TW202412043A - 處理自樣本衍生之資料的方法 - Google Patents

處理自樣本衍生之資料的方法 Download PDF

Info

Publication number
TW202412043A
TW202412043A TW112119851A TW112119851A TW202412043A TW 202412043 A TW202412043 A TW 202412043A TW 112119851 A TW112119851 A TW 112119851A TW 112119851 A TW112119851 A TW 112119851A TW 202412043 A TW202412043 A TW 202412043A
Authority
TW
Taiwan
Prior art keywords
distribution model
defect
interference
signal strength
data set
Prior art date
Application number
TW112119851A
Other languages
English (en)
Inventor
芬森特 席爾菲斯特 庫柏
瑪寇 傑 加寇 威蘭德
Original Assignee
荷蘭商Asml荷蘭公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荷蘭商Asml荷蘭公司 filed Critical 荷蘭商Asml荷蘭公司
Publication of TW202412043A publication Critical patent/TW202412043A/zh

Links

Abstract

本發明提供一種處理自一樣本衍生之資料之方法,其包含處理自一偵測器之一偵測衍生之元素的一初始資料集以供校準,該資料集包含表示干擾信號及偵測信號之元素。該初始資料集之該處理包含:將一分佈模型擬合至該初始資料集以產生一干擾分佈模型;設定一信號強度值,且選擇該初始資料集中具有大於該信號強度值之一量值之元素作為一缺陷候選項集合;將一分佈模型擬合至該缺陷候選項集合以產生偵測信號之一缺陷分佈模型;及至少取決於該缺陷分佈模型來判定一信號強度臨限值。該判定包含校正該缺陷分佈模型。

Description

處理自樣本衍生之資料的方法
本文中所提供之實施例大體上係關於處理自樣本衍生之資料的方法、識別缺陷候選項之方法及評估系統。
在製造半導體積體電路(IC)晶片時,由於例如光學效應及偶然粒子所引起的非所要圖案缺陷在製造程序期間不可避免地出現在基板(亦即,晶圓)或遮罩上,從而降低良率。因此,監視非所要圖案缺陷之範圍為IC晶片之製造中之重要程序。更一般而言,基板或另一物件/材料之表面的檢測及/或量測為在其製造期間及/或之後的重要程序。
具有帶電粒子束之圖案檢測工具已用於檢測物件,例如偵測圖案缺陷。此等工具通常使用電子顯微法技術,其使用例如掃描電子顯微鏡(SEM)中之電光系統。在諸如SEM之例示性電子光學系統中,相對較高能量下之電子的初級電子束以最終減速步驟為目標,以便以相對較低著陸能量著陸於樣本上。電子束經聚焦作為樣本上之探測光點。探測光點處之材料結構與來自電子束之著陸電子之間的相互作用使得自表面發射電子,諸如次級電子、反向散射電子或歐傑(Auger)電子。可自樣本之材料結構發射所產生之次級電子。藉由在樣本表面上方掃描作為探測光點之初級電子束,可跨樣本之表面發射次級電子。藉由收集自樣本表面之此等發射之次級電子,圖案檢測工具可獲得表示樣本之表面之材料結構的特性之影像。包含反向散射電子及次級電子之電子束之強度可基於樣本的內部及外部結構之屬性變化,且藉此可指示該樣本是否具有缺陷。
為了在檢測下識別物件上之真缺陷,較佳首先捨棄例如由雜訊造成之干擾信號。以此方式,可避免時間及資源在對潛在大量干擾信號執行更詳細分析方面的情形。干擾信號常常經識別為信號強度低於某一臨限值之彼等信號。具有等於或大於臨限值之信號強度的信號有可能被視為缺陷信號,該等缺陷信號可接著經歷進一步分析以判定缺陷是否存在,且若存在,則將缺陷之性質分類。臨限值之值通常使用經由試誤法之經驗設定。此試誤法程序可能為耗時的且可能難以驗證所選值為適合的。若將該臨限值設定為過高,則存在可由於與低於該臨限值之一信號強度相關聯而遺漏真缺陷之風險。若臨限值經設定過低,則大量干擾信號將包括於資料集中以供進一步分析。此可使進一步分析耗時且低效。
本揭示案之一目標為提供處理自樣本衍生之資料之方法、識別缺陷候選項之方法及評估系統的實施例。
根據本發明之一第一態樣,提供一種處理自一樣本衍生之資料之方法,其包含處理自一偵測器之一偵測衍生之元素的一初始資料集以供校準,該資料集包含表示干擾信號及偵測信號之元素。該初始資料集之該處理包含:將一分佈模型擬合至該初始資料集以產生一干擾分佈模型;設定一信號強度值,且選擇該初始資料集中具有大於該信號強度值之一量值之元素作為一缺陷候選項集合;將一分佈模型擬合至該缺陷候選項集合以產生偵測信號之一缺陷分佈模型;及至少取決於該缺陷分佈模型來判定一信號強度臨限值。該判定包含校正該缺陷分佈模型。理想地,該校正適合於校正表示干擾信號及偵測信號之元素之間的量值重疊。
根據本發明之一第二態樣,提供一種處理自一樣本衍生之資料之方法,其包含處理自一偵測器之一偵測衍生之元素的一初始資料集以供校準,該資料集包含表示干擾信號及偵測信號之元素。該初始資料集之該處理包含:將一分佈模型擬合至該初始資料集以產生一干擾分佈模型;設定一信號強度值且選擇該初始資料集中具有大於該信號強度值之一量值之元素作為一缺陷候選項集合;將一分佈模型擬合至該缺陷候選項集合以產生偵測信號之一缺陷分佈模型;至少取決於該缺陷分佈模型來判定一信號強度臨限值;及判定捕捉速率與該信號強度臨限值之間的一關係。
根據本發明之一第三態樣,提供一種處理自一樣本衍生之資料之方法,其包含處理自一偵測器之一偵測衍生之元素的一初始資料集。該資料集包含表示干擾信號及缺陷信號之元素。一干擾分佈包含表示在量值上具有一干擾範圍之干擾信號之該等元素。一缺陷分佈包含表示在量值上具有一缺陷範圍之缺陷信號之該等元素。該干擾範圍與該缺陷範圍重疊。該干擾範圍在一重疊中與該缺陷範圍重疊。該缺陷範圍之至少一個元素具有在量值上超出該干擾範圍之一上限的一量值。
根據本發明之一第四態樣,提供一種識別缺陷候選項之方法,其包含處理自一偵測器之一偵測衍生之元素的一資料集,該資料集包含表示干擾信號及偵測信號之元素。已使用一初始資料集校準捕捉速率與一信號強度臨限值之間的一捕捉-臨限值關係。該處理包含:藉由選擇一捕捉速率且基於該捕捉臨限值關係來設定一信號強度臨限值;及使用該信號強度臨限值處理該資料集以選擇表示偵測信號之元素。
根據本發明之一第五態樣,提供一種識別自一樣本衍生之檢測資料中之缺陷候選項的評估系統。該評估系統包含:一偵測器及一處理器。該偵測器經組態以產生表示一樣本之一或多個特性之一偵測信號。該處理器經組態以:處理藉由自該偵測器之一偵測衍生之元素的一資料集,該資料集包含表示干擾信號及偵測信號之元素;藉由選擇一捕捉速率且基於捕捉速率與一信號強度臨限值之間的一捕捉臨限值關係而設定一信號強度臨限值,該捕捉關係校準藉由一初始資料集而經預校準;及使用該信號強度臨限值處理該資料集以選擇表示偵測信號之元素。
現將詳細參考例示性實施例,例示性實施例的實例在隨附圖式中加以說明。以下描述參考隨附圖式,其中除非另外表示,否則不同圖式中之相同數字表示相同或類似元件。例示性實施例之以下描述中所闡述之實施並不表示符合本發明之所有實施。實情為,其僅為符合關於所附申請專利範圍中所列舉之本發明之態樣的設備及方法之實例。
可藉由顯著增加IC晶片上之電路組件(諸如,電晶體、電容器、二極體等)之裝填密度來實現電子裝置之增強之計算能力,其減小該裝置之實體大小。此已藉由增加之解析度來實現,從而使得能夠製得更小的結構。舉例而言,智慧型手機之IC晶片(其為拇指甲大小且在2019年或更早可用)可包括超過20億個電晶體,各電晶體之大小小於人類毛髮之1/1000。因此,半導體IC製造為具有許多個別步驟之複雜且耗時的程序。此等步驟中之一者之錯誤有可能顯著地影響最終產品之功能。製造程序之目標係改良程序之總良率。舉例而言,為了針對50步驟程序(其中步驟可指示形成於晶圓上之層之數目)獲得75%良率,各個別步驟必須具有大於99.4%之良率。若各個別步驟具有95%之良率,則總程序良率將低至7%。
雖然高程序良率在IC晶片製造設施中係合乎需要的,但維持高基板(亦即,晶圓)產出量(經定義為每小時處理之基板的數目)亦為必不可少的。高程序良率及高基板產出量可受缺陷之存在影響。若需要操作員干預來查核缺陷,則此尤其成立。因此,藉由檢測工具(諸如,掃描電子顯微鏡(『SEM』))進行之微米及奈米級缺陷之高產出量偵測及識別對於維持高良率及低成本係至關重要的。
SEM包含掃描裝置及偵測器設備。掃描裝置包含:照射設備,其包含用於產生初級電子之電子源;及投影設備,其用於運用一或多個聚焦的初級電子束來掃描樣本,諸如基板。至少照射設備或照射系統及投影設備或投影系統可統稱為電子光學系統或設備。初級電子與樣本相互作用,且產生次級電子。偵測設備在掃描樣本時捕捉來自樣本之次級電子,使得SEM可產生樣本之經掃描區域之影像。此檢測設備可利用入射於樣本上之單一初級電子束。對於高產出量檢測,一些檢測設備使用初級電子之多個聚焦光束,亦即,多光束。多光束之組成光束可被稱作子光束或細光束。子光束可在多光束配置中相對於彼此配置於多光束內。多光束可同時掃描樣本之不同部分。多光束檢測設備因此可以比單光束檢測設備高得多的速度檢測樣本。
下文描述已知多光束檢測設備之實施。
諸圖為示意性的。因此為了清楚起見,放大圖式中之組件的相對尺寸。在以下圖式描述內,相同或類似附圖標號係指相同或類似組件或實體,且僅描述關於個別實施例之差異。儘管描述及圖式係針對電子光學系統,但應瞭解,實施例不用於將本揭示限制為特定帶電粒子。因此,更一般而言,貫穿本發明文件對電子之參考可被認為對帶電粒子之參考,其中帶電粒子未必為電子。
現參考 1,其為繪示例示性帶電粒子束檢測設備100之示意圖。 1之帶電粒子束檢測設備100包括主腔室10、裝載鎖定腔室20、帶電粒子評估系統40 (其亦可稱為電子束系統或工具)、設備前端模組(equipment front end module;EFEM) 30及控制器50。帶電粒子評估系統40位於主腔室10內。
EFEM 30包括第一裝載埠30a及第二裝載埠30b。EFEM 30可包括額外裝載埠。第一裝載埠30a及第二裝載埠30b可例如接收含有待檢測之基板(例如,半導體基板或由其他材料製成之基板)或樣本的基板前開式單元匣(FOUP) (基板、晶圓及樣本在下文統稱為「樣本」)。EFEM 30中之一或多個機器人臂(未展示)將樣本輸送至裝載鎖定腔室20。
裝載鎖定腔室20用於移除樣本周圍之氣體。此產生局部氣體壓力低於周圍環境中之壓力的真空。裝載鎖定腔室20可連接至裝載鎖定真空泵系統(未展示),該裝載鎖定真空泵系統移除裝載鎖定腔室20中之氣體粒子。裝載鎖定真空泵系統之操作使得裝載鎖定腔室能夠達到低於大氣壓力之第一壓力。在達到第一壓力之後,一或多個機器人臂(未展示)可將樣本自裝載鎖定腔室20輸送至主腔室10。主腔室10連接至主腔室真空泵系統(未展示)。主腔室真空泵系統移除主腔室10中之氣體粒子,使得樣本周圍之壓力達到低於第一壓力之第二壓力。在達到第二壓力之後,將樣本輸送至可藉以檢測樣本之帶電粒子評估系統40。帶電粒子評估系統40包含電子光學系統41。術語『電子光學裝置』可與電子光學系統41同義。電子光學系統41可為經組態以朝向樣本投射多光束之多光束電子光學系統41,例如,子光束相對於彼此配置於多光束配置內。替代地,電子光學系統41可為經組態以朝向樣本投射單一光束之單光束電子光學系統41。
控制器50以電子方式連接至帶電粒子評估系統40。控制器50可為經組態以控制帶電粒子束檢測設備100之處理器(諸如,電腦)。控制器50亦可包括經組態以執行各種信號及影像處理功能之處理電路系統。儘管控制器50在 1中展示為在包括主腔室10、裝載鎖定腔室20及EFEM 30之結構之外部,但應瞭解,控制器50可為該結構之部分。控制器50可位於帶電粒子束檢測設備之組成元件中之一者中或其可分佈於組成元件中之至少兩者上方。雖然本發明提供容納電子束檢測工具之主腔室10的實例,但應注意,本揭示之態樣在其最廣泛意義上而言不限於容納電子束檢測工具之腔室。實情為,應瞭解,前述原理亦可應用於在第二壓力下操作之其他工具及設備的其他配置。
現參考 2,其為繪示包括為 1之例示性帶電粒子束檢測設備100之一部分的多光束電子光學系統41之例示性帶電粒子評估系統40之示意圖。多光束電子光學系統41包含電子源201及投影設備230。帶電粒子評估系統40進一步包含致動載物台209及樣本固持器207。樣本固持器可具有用於支撐及固持樣本之固持表面(未描繪)。因此,樣本固持器可經組態以支撐樣本。此固持表面可為可在電子光學系統41之操作(例如,樣本之評估或檢測)期間操作以固持樣本之靜電夾具。固持表面可凹陷至樣本固持器中,例如經定向以面向電子光學系統41之樣本固持器的表面。電子源201及投影設備230可一起稱為電子光學系統41。樣本固持器207由致動載物台209支撐以便固持樣本208 (例如,基板或遮罩)以供檢測。多光束電子光學系統41進一步包含偵測器240 (例如,電子偵測裝置)。
電子源201可包含陰極(未展示)及提取器或陽極(未展示)。在操作期間,電子源201經組態以自陰極發射電子作為初級電子。藉由提取器及/或陽極提取或加速初級電子以形成初級電子束202。
投影設備230經組態以將初級電子束202轉換成複數個子光束211、212、213且將各子光束引導至樣本208上。儘管為簡單起見繪示三個子光束,但可能存在數十、數百或數千個子光束。子光束可稱為細光束。
控制器50可連接至 1之帶電粒子束檢測設備100之各種零件,諸如電子源201、偵測器240、投影設備230及經致動載物台209。控制器50可執行各種影像及信號處理功能。控制器50亦可產生各種控制信號以管控帶電粒子束檢測設備(包括帶電粒子多光束設備)之操作。
投影設備230可經組態以將子光束211、212及213聚焦至樣本208上以供檢測且可在樣本208之表面上形成三個探測光點221、222及223。投影設備230可經組態以使初級子光束211、212及213偏轉以橫越樣本208之表面之區段中的個別掃描區域來掃描探測光點221、222及223。回應於初級子光束211、212及213入射於樣本208上之探測光點221、222及223上,由樣本208產生電子,該等電子包括次級電子及反向散射電子。次級電子通常具有≤50 eV之電子能量。實際次級電子可具有小於5 eV之能量,但低於50 eV之任何物通常被視為次級電子。反向散射電子通常具有介於0 eV與初級子光束211、212及213之著陸能量之間的電子能量。由於偵測到之能量小於50 eV之電子大體上視為次級電子,因此一部分實際反向散射電子將視為次級電子。
偵測器240經組態以偵測諸如次級電子及/或反向散射電子之信號粒子且產生發送至信號處理系統280之對應信號,例如以建構樣本208之對應經掃描區域的影像。偵測器240可併入至投影設備230中。
信號處理系統280可包含經組態以處理來自偵測器240之信號以便形成影像的電路(未展示)。信號處理系統280可另外稱為影像處理系統。信號處理系統可併入至多光束帶電粒子評估系統40之組件中,諸如偵測器240 (如 2中所展示)。然而,信號處理系統280可併入至檢測設備100或多光束帶電粒子評估系統40之任何組件中,諸如作為投影設備230或控制器50之部分。信號處理系統280可與投影設備230及控制器50實體地分離,例如在不同空間中。信號處理系統280可包括影像獲取器(未展示)及儲存裝置(未展示)。舉例而言,信號處理系統可包含處理器、電腦、伺服器、大型電腦主機、終端機、個人電腦、任何種類之行動計算裝置及其類似者或其組合。影像獲取器可包含控制器之處理功能之至少部分。因此,影像獲取器可包含至少一或多個處理器。影像獲取器可以通信方式耦接至准許信號通信之偵測器240,諸如電導體、光纖纜線、攜帶型儲存媒體、IR、藍牙、網際網路、無線網路、無線電以及其他,或其組合。影像獲取器可自偵測器240接收信號,可處理信號中所包含之資料且可根據該資料建構影像。影像獲取器可由此獲取樣本208之影像。影像獲取器亦可執行各種後處理功能,諸如在所獲取影像上產生輪廓、疊加指示符及類似者。影像獲取器可經組態以執行所獲取影像之亮度及對比度等的調整。儲存器可為諸如以下各者之儲存媒體:硬碟、快閃隨身碟、雲端儲存器、隨機存取記憶體(RAM)、其他類型之電腦可讀記憶體及其類似者。儲存器可與影像獲取器耦接且可用於保存經掃描原始影像資料作為初始影像,及後處理影像。
信號處理系統280可包括量測電路系統(例如,類比至數位轉換器)以獲得偵測到之次級電子的分佈。在偵測時間窗期間收集之電子分佈資料可與入射於樣本表面上之初級子光束211、212及213中之各者之對應掃描路徑資料組合使用,以重建構受檢測樣本結構之影像。經重建構影像可用於顯露樣本208之內部或外部結構之各種特徵。經重建構影像可藉此用於顯露可能存在於樣本中之任何缺陷。
控制器50可控制致動載物台209以在樣本208之檢測期間移動樣本208。控制器50可使得致動載物台209能夠至少在樣本檢測期間例如以恆定速度在一方向上(較佳連續地)移動樣本208。控制器50可控制致動載物台209之移動,使得其取決於各種參數而改變樣本208之移動速度。舉例而言,控制器50可取決於掃描程序之檢測步驟之特性而控制載物台速度(包括其方向)。
諸如上文所描述之帶電粒子評估系統40及帶電粒子束檢測設備100 (及本文中別處所描述)之已知多光束系統揭示於以引用的方式併入本文中的US2020118784、US20200203116、US 2019/0259570及US2019/0259564中。
2中所展示,在實施例中,帶電粒子評估系統40包含投影總成60。投影總成60可為模組且可稱為ACC模組。投影總成60配置成引導光束62,使得光束62進入電子光學系統41與樣本208之間。
當電子束掃描樣本208時,電荷可歸因於較大束電流而累積於樣本208上,此可影響影像之品質。為調節樣本上之累積電荷,投影總成60可用於將光束62照射於樣本208上,以便控制歸因於諸如光電導性、光電或熱效應之效應的累積電荷。
下文關於 3描述可在本發明中使用之帶電粒子評估系統40之組件, 3為帶電粒子評估系統40之示意圖。 3之帶電粒子評估系統40可對應於上文所提及之帶電粒子評估系統40 (其亦可稱為設備或工具)。
電子源201朝向聚光透鏡231之陣列(另外被稱為聚光透鏡陣列)引導電極。電子源201理想地為經配置以在最佳化電子光學效能範圍內操作之高亮度熱場發射器,該最佳化電子光學效能範圍為亮度與總發射電流之間的折衷(此折衷可被視為『良好折衷』)。可能存在數十、數百或數千個聚光透鏡231。聚光透鏡231可包含多電極透鏡且具有基於EP1602121A1之建構,其文件特此以引用之方式尤其併入至用以將電子束分裂成複數個子光束之透鏡陣列的揭示內容,其中該陣列針對各子光束提供透鏡。聚光透鏡陣列231可呈至少兩個板(充當電極)的形式,其中各板中之孔徑彼此對準且對應於子光束之位置。在不同電位下在操作期間維持板中之至少兩者以達成所要透鏡效應。
陣列中之各聚光透鏡231將電子引導至各別子光束211、212、213中,該子光束聚焦於聚光透鏡陣列之順流方向的各別中間焦點處。子束相對於彼此發散。在實施例中,偏轉器235設置於中間焦點處。偏轉器235定位於對應中間焦點之位置處或至少在對應中間焦點之位置周圍的子光束路徑中。偏轉器235定位於相關聯子光束之中間影像平面處的子光束路徑中或接近於該子光束路徑而定位。偏轉器235經組態以對各別子光束211、212、213進行操作。偏轉器235經組態以使各別子光束211、212、213彎曲達一量,該量能有效確保主射線(其亦可稱為光束軸線)實質上正交入射於樣本208上(亦即,與樣本之標稱表面成實質上90°)。偏轉器235亦可稱為準直器或準直器偏轉器。偏轉器235實際上使子光束之路徑準直,使得在偏轉器之前,子光束路徑相對於彼此為發散的。偏轉器之順流方向的子光束路徑相對於彼此實質上平行,亦即實質上準直。適合準直器為揭示於2020年2月7日申請之歐洲專利申請案20156253.5中之偏轉器,該歐洲專利申請案相對於多光束陣列之偏轉器的申請案特此以引用之方式併入。準直器可包含一巨集準直器270 (例如,如 4中所展示),作為偏轉器235之替代或補充。因此,下文關於 4所描述之巨集準直器270可具備 3之特徵。相較於提供準直器陣列作為偏轉器235,此通常為較不佳的。
偏轉器235下方(亦即,順流方向或更遠離源201)存在一控制透鏡陣列250。已穿過偏轉器235之子光束211、212、213在進入控制透鏡陣列250時為實質上平行。控制透鏡預聚焦子光束(例如,在子光束到達物鏡陣列241之前對子光束實施一聚焦動作)。預聚焦可減少子光束之發散或提高子光束之會聚速率。控制透鏡陣列250及物鏡陣列241一起操作以提供一組合焦距。無一中間焦點之組合操作可降低像差風險。
控制透鏡陣列250包含複數個控制透鏡。各控制透鏡包含連接至各別電位源之至少兩個電極(例如,兩個或三個電極)。控制透鏡陣列250可包含連接至各別電位源之兩個或多於兩個(例如,三個)板狀電極陣列。控制透鏡陣列250與物鏡陣列241相關聯(例如,該等兩個陣列接近於彼此定位及/或以機械方式彼此連接及/或作為一單元一起被控制)。各控制透鏡可與一各別物鏡相關聯。控制透鏡陣列250定位於物鏡陣列241之逆流方向。
控制透鏡陣列250包含用於各子光束211、212、213之一控制透鏡。控制透鏡陣列250之功能為相對於光束之縮小率最佳化光束開度角及/或控制經遞送至物鏡陣列241之光束能量,該物鏡陣列241將子光束211、212、213引導至樣本208上。物鏡陣列241可在電子光學系統41之基座處或附近定位。控制透鏡陣列250為可選的,但較佳用於最佳化物鏡陣列之逆流方向的子光束。
舉例而言,控制透鏡陣列250可被視為提供除物鏡陣列241之電極之外的電極。物鏡陣列241可具有與物鏡陣列241相關聯且接近於該接物鏡陣列之任何數目個額外電極,例如五個、七個、十個或十五個。諸如控制透鏡陣列250之額外電極允許用於控制子光束之電子光學參數之另外的自由度。此類額外相關聯電極可被視為物鏡陣列241之額外電極,從而實現物鏡陣列241之各別物鏡的額外功能性。在一配置中,此類電極可被視為物鏡陣列241之部分,從而向物鏡陣列241之物鏡提供額外功能性。因此,控制透鏡被視為對應物鏡之部分,即使在控制透鏡僅稱作物鏡之部分的範圍內亦如此。
為了易於說明,本文中藉由橢圓形狀陣列示意性地描繪透鏡陣列(如 3中所展示)。各橢圓形狀表示透鏡陣列中之透鏡中之一者。按照慣例,橢圓形狀用以表示透鏡,類似於光學透鏡中經常採用之雙凸面形式。然而,在諸如本文中所論述之彼等帶電粒子配置的帶電粒子配置之上下文中,應理解,透鏡陣列將通常以靜電方式操作且因此可能不需要採用雙凸面形狀之任何實體元件。透鏡陣列可替代地包含具有孔徑之多個板。
視情況,將掃描偏轉器陣列260設置於控制透鏡陣列250與物鏡234之陣列之間。掃描偏轉器陣列260包含用於各子光束211、212、213之掃描偏轉器。各掃描偏轉器經組態以使各別子光束211、212、213在一個或兩個方向上偏轉,以便在一個或兩個方向上在整個樣本208中掃描子光束。
本文中所描述之物鏡陣列總成中之任一者可進一步包含偵測器240。偵測器偵測自樣本208發射之電子。所偵測之電子可包括由SEM偵測到之電子中之任一者,包括自樣本208發射之次級及/或反向散射電子。 3中繪示偵測器240之例示性建構。
4示意性地描繪根據實施例之帶電粒子評估系統40。與上文所描述之特徵相同的特徵給出相同附圖標號。為了簡明起見,未參考 4詳細地描述此類特徵。舉例而言,源201、聚光透鏡231、物鏡陣列241及樣本208可如上文所描述。
在所展示之實例中,在物鏡陣列總成之逆流方向提供準直器。準直器可包含巨集準直器270。巨集準直器270在來自源201之光束已經分裂成多光束之前作用於該光束。巨集準直器270使光束之各別部分彎曲一定量,以有效地確保自該光束衍生之子光束中之各者的光束軸線實質上垂直地入射於樣本208上(亦即,與樣本208之標稱表面實質上成90°)。巨集準直器270將宏觀準直應用於光束。巨集準直器270可由此作用於所有光束,而非包含各自經組態以作用於光束之不同個別部分的準直器元件的陣列。巨集準直器270可包含磁透鏡或磁透鏡配置,其包含複數個磁透鏡子單元(例如,形成多極配置之複數個電磁體)。替代或另外地,巨集準直器可至少部分地以靜電方式實施。巨集準直器可包含靜電透鏡或包含複數個靜電透鏡子單元之靜電透鏡配置。巨集準直器270可使用磁透鏡與靜電透鏡之組合。
如上文所描述,在一實施例中,偵測器240位於物鏡陣列241與樣本208之間。偵測器240可面向樣本208。替代地,如 4中所展示,在一實施例中,包含複數個物鏡之物鏡陣列241位於偵測器240與樣本208之間。
在一實施例中,偏轉器陣列95位於偵測器240與物鏡陣列241之間。在一實施例中,偏轉器陣列95包含韋恩濾波器(Wien filter) (或甚至韋恩濾波器陣列),使得偏轉器陣列可稱為光束分離器。偏轉器陣列95經組態以提供磁場以將投射至樣本208之帶電粒子與來自樣本208之次級電子分離開。
在一實施例中,偵測器240經組態以參考帶電粒子之能量(亦即,取決於帶隙)偵測信號粒子。此類偵測器240可稱為間接電流偵測器。自樣本208發射之次級電子自電極之間的場獲得能量。次級電極在其達至偵測器240後具有足夠能量。
本發明可應用於各種不同工具架構,參考 3 4所描繪及描述之該等各種不同工具架構之配置為例示性多光束配置。舉例而言,帶電粒子評估系統40可為例如US 20210319977 A1之單光束工具,或可包含複數個單光束柱(或裝置)或可包含複數個多光束柱。柱可包含在以上實施例或態樣中之任一者中描述的電子光學系統41。作為複數個柱(或多柱工具),例如朝向樣本(或多光束柱)投射複數個光束的柱,例如如 3 4中所描繪及參考 3 4所描述,裝置可以陣列方式配置,該陣列可編號二至一百個柱或更多。帶電粒子評估系統40可呈如關於 3所描述及 3中所描繪之實施例之形式,但較佳地具有靜電掃描偏轉器陣列及靜電準直器陣列。帶電粒子柱可視情況包含源。
2中所展示(當在如 3 4中所描繪且關於 3 4所描述之電子光學裝置41的上下文中閱讀時),在一實施例中,投影總成60包含光學系統63。在一實施例中,投影系統60包含光源61。光源61經組態以發射光束62。在一實施例中,光源61為雷射光源。雷射光提供相干光束62。然而,可替代地使用其他類型之光源。如上文所提及,投影總成60用於將光束62照射於樣本208上以便控制歸因於諸如光電導性、光電或熱效應之效應的累積電荷;且由此調節樣本上之累積電荷。
在一實施例中,光學系統63包含例如圓柱形透鏡64之透鏡。圓柱形透鏡64經組態以在一個方向上比在正交方向上更多地聚焦光束62。圓柱形透鏡增加光源61之設計自由度。在一實施例中,光源61經組態以發射具有圓形橫截面之光束62。圓柱形透鏡64經組態以聚焦光束62,使得該光束具有橢圓形橫截面。即使使用除圓柱形透鏡以外之透鏡,該透鏡經定位及設計成確保光束達至樣本之需要照射之一部分,不管樣本與電子光學裝置41之最順流方向表面之間的較小尺寸及電子光學裝置與光束路徑之定向正交之順流方向表面的較大尺寸。對於光束達至樣本表面,光束可自諸如鏡面之一或多個反射表面65、66反射。反射表面65、66之使用可改良光束62在電子光學裝置之最順流方向表面與樣本之間的達至。
如上所解釋,在一實施例中,帶電粒子評估系統40包含經組態以偵測藉由樣本208發射之信號粒子的偵測器240。如 3中所展示,在一實施例中,偵測器240相對於電子束211、212、213形成電子光學裝置41之最順流方向表面。在其他配置中,如本文中所提及,偵測器240可與物鏡配置相關聯,且甚至包含物鏡配置之部分。舉例而言,偵測器240可與物鏡陣列相關聯,但沿著初級光束路徑之不同位置(此與物鏡陣列之電極相關聯)、物鏡陣列之恰好逆流方向、分佈在接近且位於物鏡陣列內之沿著光束路徑之不同位置處或與物鏡陣列接近地定位。在另一配置中,偵測器定位於鄰接或連接至包含電子光學裝置41之帶電粒子柱的次級柱中。在所有此等配置中,存在最接近於樣本之電子光學系統的最順流方向元件,諸如偵測器240。最順流方向元件之最順流方向表面可面向樣本。最順流方向表面可稱為面向表面。
為了偵測樣本上之缺陷,處理自樣本衍生之資料。舉例而言,可自樣本之光學檢測衍生資料。資料可藉由帶電粒子評估系統40衍生自樣本之檢測,如 1 4中所展示。舉例而言,可將由偵測器(諸如,偵測器240)偵測到之資料與不具有任何缺陷之樣本的對應預期資料相比較,偵測到之資料與預期資料之間的差異可表示例如由雜訊引起的真缺陷與干擾信號之組合。干擾信號常常經識別為信號強度低於某一臨限值之彼等信號。具有等於或大於臨限值之信號強度的信號有可能被視為缺陷信號,該等缺陷信號可接著經歷進一步分析以判定缺陷是否存在,且若存在,則將缺陷之性質分類。需要一種用以識別適合臨限值使得被省略之真缺陷之數目可較低而不會不必要地後處理大量干擾信號的方法。
5展示包含表示干擾信號53及缺陷信號52之元素之例示性初始資料集的直方圖。此類元素可稱為資料元素。因此,初始資料集具有由干擾信號53之分佈及缺陷信號52之分佈組成的元素之分佈。缺陷信號52之分佈表示實際缺陷。 5之X軸表示信號量值,且 5之Y軸表示在各信號量值下,例如缺陷或干擾之個別信號之出現次數。 5亦展示例示性臨限值51。臨限值為可用於為干擾信號之信號與缺陷信號之間的區分之信號量值。當應用臨限值時,具有大於臨限值之量值之信號被視為偵測信號(其被認為有可能為實際缺陷信號);具有小於臨限值之量值之信號被認為干擾信號。對於在資料集中之樣本檢測期間收集之資料,預先不知曉資料集中之哪些元素表示干擾信號且哪些表示實際缺陷。因此,需要判定及應用適當臨限值,以便選擇最適合之缺陷候選資料以供進一步分析。 5提供最關注之區之放大圖54的插圖。在直方圖之此區中,存在干擾信號53之分佈及缺陷信號52之分佈的重疊。重疊具有具有相同信號強度值之干擾信號53及缺陷信號52。在重疊內,初始資料集包含干擾信號53之貢獻及缺陷信號52之貢獻。臨限值切割重疊,從而將重疊分離成兩個部分。重疊之兩個部分中之各部分包含為實際干擾信號及實際缺陷信號的混合之初始資料集之元素;然而高於臨限值之元素分類為偵測信號(其為視為有可能為缺陷信號之彼等信號)。低於臨限值之重疊之元素分類為干擾信號。因此,實際缺陷信號中之一些可分類為干擾的。干擾中之一些可分類為缺陷的,亦即不正確地被識別為缺陷。
在使用臨限值來區分開缺陷信號與干擾信號時,隨著臨限值增加,缺陷降至臨限值以下之可能性增加。隨著臨限值減小,干擾信號出現之次數增加。因此,若臨限值設定為過低,則不表示已經將信號不正確地識別為缺陷之實際缺陷之大量信號接著進行進一步分析,亦即如同其為缺陷的,此為低效的。將信號不正確地識別為缺陷將提供不準確評估資訊,例如,評估資料(諸如,檢測資料)。然而,若臨限值設定為過高,則缺陷之捕捉速率可較低。此處,捕捉速率為表示等於或大於臨限值之實際缺陷之資料集的元素之比率或百分比之量測。捕捉速率可定義為表示識別為缺陷候選項之實際缺陷之資料元素的百分比。
本發明提供一種處理自樣本衍生之資料之方法,其包含處理初始資料集元素。自由偵測器之偵測衍生初始資料集元素以供校準。樣本可為樣本207,如上文參考 2所描述,且偵測器可為偵測器240,如上文參考 2 4所描述,或本文所揭示之其他評估系統中之任一者,諸如單光束系統或多柱系統。資料之處理可使用信號處理系統280來執行,如上文參考 2所描述。處理可藉由諸如柱(或裝置)中之檢測設備執行或可在諸如遠離柱之位置的處理架之遠端位置處執行,或處理可經分佈,例如使得部分處理位於設備內且部分在遠端,如處理架處。資料可在稍後時間儲存及處理,或處理可與樣本之資料持續偵測並行。電腦程式(其可呈可分佈於多個處理器上方之程式的群組之形式)可提供經組態以控制執行資料之處理的處理器的指令。
如所展示,例如在 5中,初始資料集包含表示干擾信號53及缺陷信號52之元素。初始資料集合之處理包含將分佈模型擬合至初始資料集以產生干擾分佈模型。干擾分佈模型為表示初始資料集之分佈之理想模型。歸因於包含表示雜訊之主要干擾信號,初始資料集可具有實質上常態分佈。干擾分佈模型可例如包含高斯函數(Gaussian function)。預期表示實際缺陷之初始資料集之資料元素的數目顯著低於表示干擾信號之初始資料集之元素的數目。因此,可藉由將模型擬合至整個初始資料集來判定相當地準確之干擾信號之分佈的初步模型。初步模型稱為『相當地準確』,因為初始資料集包括表示實際缺陷之信號以及干擾信號。由於干擾分佈模型係基於包括表示實際缺陷之信號之初始資料,因此干擾分佈模型中存在錯誤。然而,初始資料集內之實際缺陷之群體比干擾信號的群體小得多(如下文將提及),使得其可被視為可忽略的。
初始資料集之處理進一步包含設定信號強度值及選擇具有大於信號強度值之量值的初始資料集中之元素作為缺陷候選項集合。信號強度值類似於 5之臨限值51起作用。具有高於選定信號強度值之單一強度量值之資料元素為被認為最可能表示實際缺陷的彼等元素。將分佈模型擬合於缺陷候選項集合以產生偵測信號之缺陷分佈模型。預期偵測信號包含缺陷信號之大部分。然而,有可能表示雜訊之一些干擾信號亦可包括於缺陷候選項集合中,或表示實際缺陷之一些信號可歸因於具有低於信號強度值之信號強度量值而自缺陷候選項集合省略。儘管如此,偵測信號之缺陷分佈模型意欲為表示表示樣本中之缺陷的信號之分佈之初步模型。缺陷候選項集合可具有實質上常態分佈。缺陷分佈模型可例如包含高斯函數。
初始資料集之處理進一步包含至少取決於缺陷分佈模型來判定信號強度臨限值。換言之,缺陷分佈模型可用以判定適當信號強度臨限值,預期將在該適當信號強度臨限值上捕捉表示缺陷之信號之適當比例。
判定信號強度臨限值包含校正缺陷分佈模型。理想地,該校正適合於校正表示干擾信號及缺陷信號之元素之間的量值重疊。此在初始資料集不具有明顯下降或局部最小值之情境中係有利的。低於局部最小值,資料主要或完全包含干擾信號。高於局部最小值,資料主要或完全包含表示實際缺陷之資料。在檢測一些樣本期間,諸如 5之放大圖54中所展示,發現在干擾信號53與缺陷信號52之間存在重疊。歸因於重疊,可在初始資料集之出現次數中不存在局部最小值以指示信號強度臨限值之適合值。舉例而言,當初始資料集在資料已歸類為:干擾信號及偵測信號(其為視為可能缺陷信號之候選項)之前被視為整體時。
此外,在此等情境中,最初產生之缺陷分佈模型可不為表示實際缺陷之資料分佈的準確表示:歸因於例如信號強度值設定為包括過多干擾信號或過少缺陷信號;及/或歸因於干擾及缺陷信號中之較大重疊。干擾及缺陷信號之較大重疊可意謂不可能使用諸如信號強度值之簡單截止有效地分離兩個資料集。因此,較佳的係校正重疊以獲得用於設定用以濾除資料以供進一步處理之信號強度臨限值之較代表性校正缺陷分佈模型,且省略認為不必要之資料。
校正重疊可包含校正偵測信號之經校正缺陷分佈模型。校正重疊較佳地包含使用干擾分佈模型及缺陷分佈模型產生初始資料集之求和分佈模型。產生求和分佈模型可包含對干擾分佈模型及缺陷分佈模型求和。因此,求和分佈模型為藉由組合干擾分佈模型及缺陷分佈模型表示整個初始資料集之模型。此係因為,如例如 5中所展示,初始資料集預期包含兩個干擾信號53及缺陷信號52。
一旦已經產生求和分佈模型,就可藉由將求和分佈模型擬合至初始資料集之實際分佈來改良求和分佈模型。求和分佈模型之擬合意謂著更新模型之參數值,直至其與初始資料集之分佈更接近地匹配為止。經更新求和分佈模型可稱為經校正求和分佈模型。模型被認為「經校正」,此係因為相較於未曾經受擬合之模型,已經受擬合之模型有可能更接近地匹配經受模型化之資料。
舉例而言, 6A展示表示缺陷分佈模型71 (厚連續線)、干擾分佈模型72 (厚短劃線)、求和分佈模型73 (或原始求和分佈模型) (厚點虛線)、經校正求和分佈模型74 (薄短劃線)及初始資料集之分佈75 (薄連續線)之圖表,其中X軸表示信號強度量值,且Y軸表示例如特定信號強度量值下之信號之出現。由於 6A之細節可難以辨別, 6B提供來自 6A之最關注區之放大圖。如自 6B可見,經校正求和分佈模型74提供比原始求和分佈模型73所展示更接近初始資料集75之分佈之近似。
通常存在比缺陷信號多若干數量級之許多干擾信號。舉例而言,干擾信號之分佈可具有10 10階元素,且缺陷信號之分佈可具有10 2。此可使得難以在擬合求和分佈模型時考量干擾及缺陷分佈模型之相對顯著性。求和分佈模型及實際分佈可各自為各別累積分佈之倒數之對數。理想地,經校正求和分佈模型為各別累積分佈之特定倒數之對數的函數。應用此函數可減小數量級之差,例如減小如 6A 6B中所展示之分佈之圖表所需的信號強度量值,且因此減小Y軸之長度。
校正重疊可包含藉由基於經校正求和分佈模型之參數值調整缺陷分佈模型之參數值而產生經校正缺陷分佈模型。替代地,校正重疊包含基於與缺陷分佈模型相關聯之經校正求和分佈模型之參數值而產生經校正缺陷分佈模型。應注意,經校正求和分佈與干擾分佈模型相關聯;實際上,根據定義,經校正求和分佈與缺陷分佈模型及干擾分佈模型兩者相關聯。因此可例如基於與干擾分佈模型相關聯之經校正求和分佈模型之參數值而產生經校正干擾分佈模型。
在校正重疊之任一情況下,經校正缺陷分佈模型預期為與表示初始資料中之缺陷之信號的實際分佈較好的匹配。此係因為用於經校正缺陷分佈模型中之參數值係基於經校正求和分佈模型中之參數值。經校正求和分佈模型可視為較好匹配,此係因為其已與初始資料集之分佈相關。
設定信號強度臨限值較佳地基於經校正缺陷分佈模型之參數值。此係因為經校正缺陷分佈模型可用以建立捕捉預期為表示缺陷之足夠量之資料所需的信號強度臨限值。足夠量可例如藉由使用者或預選定使用情況來判定。舉例而言,足夠量係至少百分之九十(90%),例如在90%與實質上100%之間。
此外,需要判定捕捉速率與信號強度臨限值之間的關係。特別地,需要判定隨信號強度臨限值而變化之捕捉速率。此可例如使用經校正缺陷分佈模型來達成。
替代或另外地,處理自樣本衍生之資料之方法可包含處理自偵測器的偵測衍生之元素之初始資料集以供校準。資料集包含表示干擾信號及偵測信號之元素,如上文所描述(及本文中別處所描述)。初始資料集之處理包含:擬合分佈模型;設定信號強度值;選擇初始資料集中之元素;將分佈模型擬合至選定元素集;及判定信號強度臨限值。分佈模型將擬合至初始資料集以產生干擾分佈模型。選擇初始資料集中之元素選擇具有大於信號強度值之量值的彼等元素。選定元素形成缺陷候選項集合。將分佈模型擬合至缺陷候選項集合將產生偵測信號之缺陷分佈模型。判定信號強度臨限值至少取決於缺陷分佈模型,理想地,其中缺陷分佈模型已校正為經校正分佈模型,如上文所描述(及本文中別處所描述)。
初始資料集之處理包含判定捕捉速率與信號強度臨限值之間的關係。判定捕捉速率與信號強度臨限值之間的關係包含判定隨信號強度臨限值而變化之捕捉速率。
判定信號強度臨限值可包含校正表示干擾信號及缺陷信號之元素之間的量值重疊,如上文所描述(及本文中別處所描述)。理想地,校正重疊包含校正至經校正缺陷分佈模型。可藉由對干擾分佈模型及缺陷分佈模型求和且擬合至初始資料集之實際分佈而產生經校正求和分佈模型。經校正缺陷分佈模型可基於經校正求和分佈模型之參數值。判定隨信號強度臨限值而變化之捕捉速率及/或判定隨信號強度臨限值而變化之捕捉速率理想地基於經校正求和分佈模型的參數值。
7A展示Y軸上之捕捉速率相對於X軸上之干擾速率之圖表。按經模型化資料92之形式標繪實際資料91。(經模型化資料92係基於經校正求和分佈模型之干擾及缺陷分佈貢獻)。信號強度臨限值可自動地基於經校正缺陷分佈模型而設定。替代地或另外,使用者可調整信號強度臨限值以達成缺陷之捕捉速率與干擾速率之間的平衡。換言之,可需要選擇具有捕捉到足夠比例之缺陷之足夠高捕捉速率的信號強度臨限值,但在該信號強度臨限值處,所捕捉之干擾信號之比例足夠低以使得資料之進一步處理不過度低效;例如資料之進一步處理非不合理地低效。應注意,用於與進一步處理之資料中任何比例之干擾信號減緩處理。因此在此配置中,資料中一定比例之干擾信號用於進一步處理,包括所得資料集及影像之後處理,且一些所得低效為可接受的。然而,其校正到點。若用於進一步處理之資料中之干擾信號之比例過高,則包括後處理之進一步處理為低效的,甚至可能在進一步處理變得無意義之程度上。
可基於經判定捕捉速率而設定信號強度臨限值。舉例而言,可需要缺陷之捕捉速率為至少85%。經校正缺陷分佈模型可用以判定在哪一信號強度下85%之缺陷出現在彼信號強度上。 7B展示Y軸上之捕捉速率相對於X軸上之信號強度臨限值之圖表。將實際資料93標繪為經模型化資料94 (基於經校正缺陷分佈模型)。
8A 8B提供比較經校正分佈模型與對應實際資料之另外實例。用以產生 8A 8B 初始資料集係基於獲自具有經預程式化缺陷之樣本的影像,因此已知實際缺陷及其位置之精確量(或數目)。因此,可在經校正分佈模型與對應實際資料之間進行比較。 8A 8B之上部圖表展示表示缺陷分佈模型71、干擾分佈模型72、經校正求和分佈模型74及初始資料集之分佈75的圖表,其中X軸表示信號強度量值,且Y軸表示出現。亦即, 8A 8B之上部圖表表示針對與初始資料集不同之資料的類似參數,如參看 6A所描繪及描述。 8A 8B之下部圖表展示Y軸上之捕捉速率相對於X軸上之信號強度臨限值。按經模型化資料94之形式標繪實際資料93。(經模型化資料94係基於經校正缺陷分佈模型)。亦即,對於與 8A 8B之上部圖表中所描繪相同的資料,參數之下部圖表表示如 7B中所描繪且參考看 7B所描述。自此等諸圖,可見模型提供用以量化針對給定信號強度臨限值有可能經捕捉之缺陷之百分比的方式。此可使得使用者能夠藉由使用此等模型而更高效且告知信號強度臨限值之選擇。替代地或另外,信號強度臨限值可諸如藉由所使用之電腦自動地設定,此參數諸如邊界狀況,以基於經校正缺陷分佈模型而執行資料處理。
如上文所描述(及本文中別處所描述),初始資料集之處理包含設定信號強度值及選擇初始資料集中之元素。選擇初始資料集中之元素選擇具有大於信號強度值之量值的元素。經選定初始資料集之元素經選擇為缺陷候選項集合。可基於干擾分佈模型而設定信號強度值。
舉例而言,設定信號強度值可包含基於干擾分佈模型而判定干擾臨限值。干擾臨限值表示信號強度量值,高於該信號強度量值表示干擾信號之元素之數目;干擾臨限值通常較低。一預定干擾臨限值設定為表示表示具有大於干擾臨限值之量值之干擾信號的元素之數目。可接著基於預定干擾臨限值及干擾分佈模型而判定干擾臨限值。根據干擾分佈模型,表示具有大於干擾臨限值之量值之干擾信號的元素之數目小於或等於預定干擾臨限值。預定干擾臨限值可為十個(10),理想地為一個(1),更理想地實質上可忽略的。
可基於干擾臨限值而選擇信號強度值。信號強度值理想地設定為等於干擾臨限值。以此方式,選擇元素以包括於缺陷候選項集合中的截止信號強度係基於干擾分佈模型。干擾分佈模型可指示存在高於特定信號強度之干擾信號之低出現。信號強度值可設定為等於特定信號強度。此處,缺陷候選項集合表示偵測信號(其預期為缺陷信號)。
干擾分佈模型可基於模型: ln(y) = a + c*x 2(1) 其中y為出現次數(例如,具有特定信號強度量值之資料集中之元素的數目),x為信號強度,且c為參數值。藉由擬合至初始資料集之分佈而判定參數值「a」及「c」。
例示性初始資料集81之分佈展示於 9中,其中X軸為信號強度平方(x 2),且Y軸為出現次數之自然對數。在此圖中,將一階多項式83 (或直線)擬合於初始資料83,其中分佈展示線性行為。一階多項式之梯度為等式(1)中之參數「c」。一階多項式83之Y軸截距為等式(1)之參數「a」。一階多項式83之X軸截距可用作信號強度值,其用以選擇初始資料集之元素以包括於缺陷候選項集合中。初始資料集之經發現表示實際缺陷之元素係由實際缺陷線82表示。應注意,如藉由實際缺陷線82所指示之實際缺陷之分佈存在一階多項式83之X軸截距的兩側,亦即上方及下方。由此,X軸截距左側之實際缺陷中之一些尚未包括於X軸截距右側之缺陷候選項集合中。
10A 10B展示類似於 9之分佈之分佈。 10A 10B之分佈已藉由將由等式(1)定義之模型應用於兩個另外實例初始資料集上來產生。此等實例初始資料集具有干擾及實際缺陷之已知基礎分佈。此等初始資料集係基於獲自具有經預程式化(或預定或已知)缺陷之樣本之影像,因此已知實際缺陷及其位置之精確量(或數目)。因此,可在例如由線(或一階多項式) 83表示之模型與實際資料(例如,初始資料集) 81之間進行比較。 10A 10B證明可針對具有例如干擾信號之不同分佈的不同初始資料集模型化干擾信號之分佈,從而產生干擾模型之不同梯度,亦即一階多項式83。以此方式,可針對初始資料集中之各者判定信號強度值,使得缺陷候選項集合有可能捕捉表示實際缺陷之主要信號。
替代或另外地,處理自樣本衍生之資料之方法可包含處理自偵測器的偵測衍生之元素之初始資料集。此資料集包含表示如上文參考 5所描述(及本文中別處所描述)之干擾信號及缺陷信號之元素。干擾分佈包含表示在量值上具有干擾範圍之干擾信號之元素。缺陷分佈包含表示在量值上具有缺陷範圍之偵測信號之元素。干擾範圍與缺陷範圍重疊。其中干擾範圍與缺陷範圍重疊為重疊。舉例而言,對於良好預測,缺陷範圍內之足夠數目個元素具有超出干擾範圍之上限的量值。對於良好預測,缺陷範圍之上限高於干擾範圍之上限。亦即,缺陷範圍之量值,亦即信號強度,超出,例如延伸高於干擾範圍之上限,亦即量值。其中缺陷範圍之下限低於干擾範圍之上限為重疊。亦即,重疊之下限為在低於或超出干擾範圍之上限的量值中之缺陷範圍的下限。在給出初始資料集之分佈之其他參數的情況下,足夠數目為足以估計缺陷信號之分佈的缺陷範圍之元素之數目。藉由具有缺陷範圍之足夠數目個元素,對於待區別於干擾分佈之缺陷信號之分佈之估計,缺陷信號之分佈可足夠相異。缺陷範圍之元素之足夠數目可為具有大於干擾範圍的上限之量值之缺陷範圍之元素的臨限數目。當缺陷範圍之元素之數目匹配或超出臨限數目時,缺陷分佈相異且可與干擾分佈區分開。 11展示包括於缺陷候選項集合中之實際缺陷之1%不足;然而在 10B中,包括於缺陷候選項集合中之實際缺陷約50%,且在 10A中,包括於缺陷候選項集合中之實際缺陷比50%大得多。因此,分離且相異以實現良好預測之缺陷分佈之元素的比例之臨限值係在 10B 11中所描繪之結果之間。亦即,在干擾範圍中出現之缺陷分佈之元素的比例之臨限值為:多於二分之一至多於最小值出現(因此並非所有缺陷分佈),或1與50%之間,或(替代地表述)具有高於信號強度值之信號強度量值之缺陷分佈的比例小於二分之一(50%),例如在1與50%之間。因此,原則上,具有超出干擾分佈之上限之信號強度量值的缺陷分佈之至少一個缺陷元素可為足夠數目個缺陷。然而,針對足夠數目個缺陷超出干擾分佈之上限之量值的缺陷分佈的缺陷元素之數目有可能大於一。
缺陷分佈可與干擾分佈分離/相異。至少一個元件表示包含表示偵測信號之元素之子集的偵測信號。理想地,表示偵測信號之元素之子集指示缺陷分佈與干擾分佈分離/相異。 9 10A 10B中所描繪且參考 9 10A 10B所描述之初始資料集具有此類缺陷分佈。
11展示類似於 9之圖表之圖表,其已藉由將由等式(1)定義之模型應用於另一實例初始資料集上來產生。在此資料集中,干擾範圍理想地跨缺陷分佈與缺陷範圍完全重疊。缺陷範圍完全在干擾範圍內或以其他方式具有與干擾範圍分離及相異之不足數目個元素,以用於對缺陷信號之分佈之良好預測(例如,用於缺陷分佈區別於干擾分佈之估計)。可見由實際缺陷線82表示之缺陷信號出現在非常接近於干擾資料及干擾模型之範圍的上部末端之範圍中,亦即一階多項式83。換言之,如由實際缺陷線82表示之缺陷信號之分佈完全或至少實質上(幾乎完全)與干擾信號的分佈重疊,亦即一階多項式83。
11中由實際缺陷線82所描繪之缺陷分佈可與例如由線(或一階多項式) 83表示之干擾分佈不相異或不可分離(例如,非可分離)。不同於展示與干擾信號之分佈相異之缺陷信號的分佈之 9 10A 10B中所描繪之配置,作為缺陷候選項之初始資料集之元素接近於空集。亦即,不存在或不存在足夠的缺陷信號係分離的且與干擾分佈之干擾信號相異。不存在或至多存在不足數目個缺陷信號,該等缺陷信號具有量值超出具有對應信號強度量值之元素處之干擾範圍的上限之缺陷範圍。亦即,具有超出干擾範圍上限之量值之缺陷範圍的元素之數目未達到具有大於上限干擾範圍之量值的缺陷範圍之元素之臨限值。因此,存在可基於相比於干擾分佈之缺陷分佈之相對信號強度識別初始資料集中之缺陷信號的狀況。
可自來自偵測器之初始信號(或檢測信號或評估信號)識別初始資料集。初始資料集可包括如由偵測器偵測到之初始信號之所有元素。然而,藉由此方法,存在處理大量資料之缺點,其中大多數為干擾信號。替代地,初始資料集可藉由以下操作來識別:自初始信號提取元素;及選擇具有大於預定信號強度值之量值的元素。理想地使用選定元素執行初始資料集之處理。以此方式,在如上文所描述(及本文中別處所描述)處理初始資料集之前,可在初期濾出具有足夠低以指示干擾信號之量值的元素。因此,處理可更高效。理想地,預定信號強度值低於信號強度值。以此方式,量值足夠高以指示可能缺陷之元素不大可能被捨棄,而是替代地將包括於初始資料集中。此有利地提供具有低數量之干擾資料之初始資料集,該初始資料集具有無意中省略表示實際缺陷之資料的低風險。可基於先前可比資料集之資訊或基於模型設定預定信號強度值。
一旦已設定信號強度臨限值,例如藉由使用上文所描述(及本文中別處所描述)之方法,可偵測到樣本上之缺陷。可藉由評估量值大於信號強度臨限值之缺陷候選項之子集來偵測缺陷。換言之,可評估缺陷候選項之子集以判定缺陷候選項之哪一子集對應於實際缺陷。一旦判定實際缺陷,便可進一步評估對應信號以判定缺陷之類型。用以識別及分類缺陷之信號之評估可花費大量時間及計算工作量。因此,較佳使用上文所描述(及本文中別處所描述)之方法設定適當信號強度臨限值,使得不對包括大部分干擾信號之大量信號執行詳細評估。
信號強度臨限值可經設定且用以藉由基於初始資料集評估缺陷候選項之子集來判定缺陷。替代或另外地,初始資料集可用以判定可應用於另外隨後處理及/或收集之信號資料的信號強度臨限值。舉例而言,基於單一樣本之資料或單一樣本之一部分的初始資料集可用以判定信號強度臨限值。在信號強度臨限值之此判定之後,可接收及/或處理另外初始信號。另外初始信號可衍生自與單一初始樣本相同批次之另一樣本之檢測。若單一初始樣本之僅一部分之資料用以判定信號強度臨限值,則另外初始信號可衍生自單一樣本之剩餘部分的檢測。具有大於信號強度臨限值之量值之另外初始信號的另外元素可提取為另外偵測信號。可評估另外偵測信號以判定另外偵測信號中之哪一者對應於實際缺陷。
視情況,可將另外偵測信號連同自初始資料集識別之缺陷候選項之子集一起置於缺陷候選項之子集中。以此方式,可評估初始資料集及另外偵測信號兩者中之實際缺陷以判定另外偵測信號中之哪一者對應於實際缺陷。
12A 12D繪示具有複數個特徵110之樣本,該複數個特徵110中之一或多者未正確地形成且由此被視為缺陷。本文中所描繪及描述之此類缺陷之資料可包含例如填入缺陷分佈之缺陷,諸如初始資料集之缺陷分佈(作為實際缺陷)。 12A繪示其中缺陷為所描繪區域之中心中的樣本上之缺失特徵(例如,孔)的實例。可對影像進行分析以分類缺陷採用缺失孔111的形式。可藉由比較失配信號與其他信號來分類缺陷之類型,以判定失配信號與其他信號失配,其中其他信號類似且因此彼此匹配。替代地,缺陷之類型可藉由比較失配信號與樣本之彼區域的已知預期信號圖案而分類。預期信號模式可呈與失配信號比較之資料檔案的形式。
12B繪示其中缺陷為橋接特徵112之實例。特別地, 12B描繪在其表面上包含一系列圓形特徵之樣本。橋接特徵112為細長的,例如形成橢圓形、矩形或不規則形狀,而非圓形形狀。 12C 12D繪示其中缺陷為錯誤大小之特徵的實例。特別地, 12C描繪包含過大特徵113之樣本,且 12D描繪包含過小特徵114之樣本。
提供以下條項:
條項1:一種處理自樣本衍生之資料之方法,其包含:處理自偵測器之偵測衍生之元素的初始資料集以供校準,資料集包含表示干擾信號及偵測信號之元素,初始資料集之處理包含:將分佈模型擬合至初始資料集以產生干擾分佈模型;設定信號強度值,且選擇初始資料集中具有大於信號強度值之量值之元素作為缺陷候選項集合;將分佈模型擬合至缺陷候選項集合以產生偵測信號之缺陷分佈模型;及至少取決於缺陷分佈模型來判定信號強度臨限值,判定包含校正缺陷分佈模型,理想地,校正適合於校正表示干擾信號及偵測信號之元素之間的量值重疊。
條項2:如條項1之方法,其中校正重疊包含校正偵測信號之經校正缺陷分佈模型。
條項3:如條項2之方法,其中校正重疊包含使用干擾分佈模型及缺陷分佈模型產生初始資料集之求和分佈模型。
條項4:如條項3之方法,其中產生求和分佈模型包含對干擾分佈模型及缺陷分佈模型求和。
條項5:如條項3及4中任一項之方法,其進一步包含將求和分佈模型擬合至初始資料集之實際分佈以產生經校正求和分佈模型。
條項6:如條項5之方法,其中校正重疊包含藉由基於經校正求和分佈模型之參數值調整缺陷分佈模型之參數值而產生經校正缺陷分佈模型。
條項7:如條項5之方法,其中校正重疊包含基於與缺陷分佈模型相關聯之經校正求和分佈模型之參數值而產生經校正缺陷分佈模型。
條項8:如條項2至7中任一項之方法,其中設定信號強度臨限值係基於經校正缺陷分佈模型之參數值。
條項9:如任一前述條項之方法,其進一步包含判定捕捉速率與信號強度臨限值之間的關係,理想地判定隨信號強度臨限值而變化之捕捉速率。
條項10:一種處理自樣本衍生之資料之方法,其包含:處理自偵測器之偵測衍生之元素的初始資料集以供校準,資料集包含表示干擾信號及偵測信號之元素,初始資料集之處理包含:將分佈模型擬合至初始資料集以產生干擾分佈模型;設定信號強度值且選擇初始資料集中具有大於信號強度值之量值的元素作為缺陷候選項集合;將分佈模型擬合至缺陷候選項集合以產生偵測信號之缺陷分佈模型;至少取決於缺陷分佈模型而判定信號強度臨限值;及判定捕捉速率與信號強度臨限值之間的關係。
條項11:如條項10之方法,其中判定信號強度臨限值包含校正表示干擾信號及偵測信號之元素之間的量值重疊,理想地,校正重疊包含理想地使用藉由對干擾分佈模型及缺陷分佈模型求和及擬合至初始資料集之實際分佈之經校正求和分佈模型來校正至經校正缺陷分佈模型。
條項12:如條項9至11中任一項之方法,其中判定捕捉速率與信號強度臨限值之間的關係包含判定隨信號強度臨限值而變化之捕捉速率。
條項13:如條項12之方法,其中判定隨信號強度臨限值而變化之捕捉速率係基於經校正求和分佈模型之參數值。
條項14:如條項13之方法,其包含基於經校正缺陷分佈模型而判定隨信號強度臨限值而變化之捕捉速率。
條項15:如條項13或14中任一項之方法,其進一步包含基於經判定捕捉速率而設定信號強度臨限值。
條項16:如條項1至15中任一項之方法,其中干擾分佈模型包含高斯函數。
條項17:如條項1至16中任一項之方法,其中缺陷分佈模型包含高斯函數。
條項18:如條項5至9及11至17中任一項之方法,其中求和分佈模型及實際分佈各自為各別累積分佈之倒數之對數,理想地經校正求和分佈模型為各別累積分佈之倒數之對數。
條項19:如條項1至18中任一項之方法,其中信號強度值基於干擾分佈模型而設定。
條項20:如條項19之方法,其中設定信號強度值包含:基於干擾分佈模型而判定干擾臨限值,其中根據干擾分佈模型,表示具有大於干擾臨限值之量值之干擾信號的元素之數目小於或等於預定干擾臨限值;及基於干擾臨限值而選擇信號強度值。
條項21:如條項20之方法,其中信號強度值設定為等於干擾臨限值。
條項22:如條項20及21中任一項之方法,其中預定干擾臨限值為1。
條項23:如條項1至22中任一項之方法,其中干擾分佈模型係基於以下模型:ln(y) = a + c*x^2其中,y為出現次數,x為信號強度,且a及c為藉由擬合至初始資料集之分佈而判定之參數值。
條項24:如條項1至23中任一項之方法,其進一步包含自偵測器接收偵測信號;及自偵測信號識別初始資料集。
條項25:如條項1至24中任一項之方法,其進一步包含藉由以下操作識別初始資料集:自偵測信號提取元素;及選擇具有大於預定信號強度值之量值之元素,其中預定信號強度值低於信號強度值;其中使用選定元素執行初始資料集之處理。
條項26:如條項1至25中任一項之方法,其中初始資料集之處理進一步包含識別具有大於信號強度臨限值之量值的缺陷候選項之子集。
條項27:如條項1至26中任一項之方法,其進一步包含:接收另一初始信號;及自另一初始信號提取具有大於信號強度臨限值之量值之另外元素;理想地包括缺陷候選項集合中之另外元素,理想地,另外元素可稱為缺陷候選項之子集。
條項28:如條項26及27中任一項之方法,其中初始資料集之處理進一步包含藉由評估缺陷候選項之子集而偵測樣本上之缺陷。
條項29:如條項1至28中任一項之方法,其中處理自樣本衍生之資料進一步包含使用包含於帶電粒子光學設備中之處理器。
條項30:如條項1至29中任一項之方法,其進一步包含使用包含偵測器之帶電粒子光學裝置朝向樣本投射至少帶電粒子束,偵測器回應於回應於光束與樣本之衝擊而自樣本接收到之信號粒子來偵測偵測信號。
條項31:一種處理自樣本衍生之資料之方法,其包含處理自偵測器之偵測衍生之元素的初始資料集,資料集包含表示干擾信號及缺陷信號之元素,干擾分佈包含表示在量值上具有干擾範圍之干擾信號之元素,且缺陷分佈包含表示在量值上具有缺陷範圍之偵測信號之元素,其中干擾範圍與缺陷範圍重疊,理想地處於重疊,且缺陷範圍之至少一個元素具有超出干擾範圍之上限之量值,理想地在量值中,理想地超出干擾範圍之上限,理想地,缺陷範圍之至少一個元素係缺陷範圍之足夠數目個元素,以用於缺陷分佈與干擾分佈相異,足夠數目可為或可超出具有大於干擾範圍之上限之量值的缺陷範圍之元素之臨限數目,以使得理想地缺陷分佈與干擾分佈相異。
條項32:如條項31之方法,其中缺陷分佈與干擾分佈分離/相異。
條項33:如條項31及32中任一項之方法,其中至少一個元素表示包含表示偵測信號之元素之子集的偵測信號,理想地,表示偵測信號之元素之子集指示缺陷分佈與干擾分佈分離/相異。
條項34:如條項31至33中任一項之處理自樣本衍生之資料的方法,其包含如條項1至30中任一項之方法。
條項35:一種評估樣本之方法包含如條項1至34中任一項之方法。
條項36:一種識別缺陷候選項之方法,其包含處理自偵測器之偵測衍生之元素的資料集,資料集包含表示干擾信號及偵測信號之元素,捕捉速率與已使用初始資料集校準之信號強度臨限值之間的捕捉臨限值關係,處理包含:藉由選擇捕捉速率且基於捕捉臨限值關係而設定信號強度臨限值;及使用信號強度臨限值選擇表示偵測信號之元素來處理資料集。
條項37:如條項36之方法,其中處理包含:藉由識別具有大於信號強度臨限值之量值之缺陷候選項的子集來選擇表示偵測信號之元素。
條項38:如條項37中任一項之方法,其中處理進一步包含藉由評估缺陷候選項之子集來偵測樣本上之缺陷。
條項39:如條項36至38中任一項之方法,其進一步包含:接收包含資料集之偵測信號;及在處理內,提取表示偵測信號之元素。
條項40:如條項36至39之識別缺陷候選項之方法,其中使用如條項9至30中任一項之處理資料之方法,理想地基於捕捉速率與信號強度臨限值之間的關係,判定在使用初始資料集進行校準時之捕捉臨限值關係。
條項41:一種處理設備,其包含:處理器,其經組態以執行如條項1至40中任一項之處理。
條項42:一種電腦程式,其包含經組態以控制處理器執行如條項1至40中任一項之方法之指令。
條項43:一種在自樣本衍生組織資料之評估中識別缺陷候選項之評估系統,評估系統包含:偵測器,其經組態以產生表示樣本之一或多個特性之偵測信號;處理器,其經組態以:處理自偵測器之偵測衍生之元素的資料集,資料集包含表示干擾信號及偵測信號之元素;藉由選擇捕捉速率及基於捕捉速率與信號強度臨限值之間的捕捉臨限值關係而設定信號強度臨限值,捕捉關係校準經初始資料集預校準;及使用信號強度臨限值選擇表示偵測信號之元素來處理資料集。
對組件或組件或元件之系統的參考係可控制的而以某種方式操控帶電粒子束包括:組態控制器或控制系統或控制單元以控制組件以按所描述方式操控帶電粒子束,並且視情況使用其他控制器或裝置(例如,電壓供應件及或電流供應件)以控制組件從而以此方式操控帶電粒子束。舉例而言,電壓供應件可電連接至一或多個組件以在控制器或控制系統或控制單元之控制下將電位施加至該等組件,諸如在非限制清單中之控制透鏡陣列250、物鏡陣列241、聚光透鏡231、校正器、準直器元件陣列及掃描偏轉器陣列260。諸如載物台之可致動組件可為可控制的,以使用用以控制該組件之致動之一或多個控制器、控制系統或控制單元來致動諸如光束路徑之另一組件且由此相對於諸如光束路徑之另一組件移動。
由控制器或控制系統或控制單元提供之功能性可經電腦實施。元件之任何適合組合可用於提供所需功能性,包括例如CPU、RAM、SSD、主機板、網路連接、韌體、軟體及/或此項技術中已知的允許執行所需計算操作之其他元件。所需的計算操作可由一或多個電腦程式定義。一或多個電腦程式可以儲存電腦可讀指令之媒體、視情況非暫時性媒體之形式提供。當電腦可讀指令藉由電腦讀取時,電腦執行所需之方法步驟。電腦可由自含式單元或具有經由網路彼此連接之複數個不同電腦的分佈式計算系統組成。
電腦程式可包含指令以發指令給控制器50執行以下步驟。控制器50控制帶電粒子束設備以朝向樣本208投射帶電粒子束。在一實施例中,控制器50控制至少一個帶電粒子光學元件(例如,多個偏轉器或掃描偏轉器260之陣列)以對帶電粒子束路徑中之帶電粒子束進行操作。另外或替代地,在一實施例中,控制器50控制至少一個帶電粒子光學元件(例如,偵測器240)以對回應於帶電粒子束而自樣本208發射之帶電粒子束進行操作。
根據本揭示之一實施例的評估系統可為進行樣本之定性評估(例如,通過/失敗)之工具、進行樣本之定量量測(例如,特徵之大小)之工具或產生樣本之映圖之影像的工具。評估系統之實例為檢測工具(例如,用於識別缺陷)、檢閱工具(例如,用於分類缺陷)及度量衡工具,或能夠執行與檢測工具、檢閱工具或度量衡工具(例如,度量衡檢測工具)相關聯之評估功能性之任何組合的工具。電子光學柱40可為評估系統之組件,諸如檢測工具或度量衡檢測工具。本文中對工具之任何參考均意欲涵蓋裝置、設備或系統,該工具包含可共置或可不共置且甚至可位於單獨場所中尤其例如用於資料處理元件的各種組件。
對上部及下部、向上及向下、上方及下方之參考應理解為係指平行於照射於樣本208上之電子束或多光束之(通常但未必總是豎直的)逆流方向及順流方向的方向。因此,對逆流方向及順流方向之參考意欲係指獨立於任何當前重力場相對於光束路徑之方向。
術語「子光束」及「細光束」在本文中可互換使用且均理解為涵蓋藉由劃分或分裂母輻射光束而自母輻射光束衍生之任何輻射光束。術語「操縱器」用以涵蓋影響子光束或細光束之路徑之任何元件,諸如透鏡或偏轉器。
對沿著光束路徑或子光束路徑對準之元件的參考應理解為意謂各別元件沿著光束路徑或子光束路徑定位。
雖然已經結合各種實施例描述本發明,但自本說明書之考量及本文中揭示之本發明之實踐,本發明之其他實施例對於熟習此項技術者將顯而易見。意欲將本說明書及實例視為僅例示性的,其中本發明之真實範疇及精神由以下申請專利範圍及條項指示。
上述描述意欲為說明性的,而非限制性的。因此,對於熟習此項技術者將顯而易見,可在不脫離本文中所闡明之申請專利範圍及條項之範疇的情況下如所描述進行修改。
10:主腔室 20:裝載鎖定腔室 30:設備前端模組 30a:第一裝載埠 30b:第二裝載埠 40:帶電粒子評估系統 41:電子光學系統 50:控制器 51:臨限值 52:缺陷信號 53:干擾信號 54:放大圖 60:投影總成 61:光源 62:光束 63:光學系統 64:圓柱形透鏡 65:反射表面 66:反射表面 71:缺陷分佈模型 72:干擾分佈模型 73:求和分佈模型 74:經校正求和分佈模型 75:初始資料集之分佈 81:實際資料 82:實際缺陷線 83:初始資料/一階多項式 91:實際資料 92:經模型化資料 93:實際資料 94:經模型化資料 95:偏轉器陣列 100:帶電粒子束檢測設備 110:特徵 111:缺失孔 112:橋接特徵 113:過大特徵 114:過小特徵 201:電子源 202:初級電子束 207:樣本固持器 208:樣本 209:致動載物台 211:子光束 212:子光束 213:子光束 221:探測光點 222:探測光點 223:探測光點 230:投影設備 231:聚光透鏡 234:物鏡 235:偏轉器 240:偵測器 241:物鏡陣列 250:控制透鏡陣列 260:掃描偏轉器陣列 270:準直器 280:信號處理系統
本揭示之上述及其他態樣將自與隨附圖式結合獲取之例示性實施例之描述變得更顯而易見。
1為繪示例示性電子束檢測設備之示意圖。
2繪示為 1之例示性電子束檢測設備之一部分的例示性多光束帶電粒子評估系統之示意圖。
3為根據實施例之例示性多光束帶電粒子評估系統之示意圖。
4為根據實施例之例示性多光束帶電粒子評估系統之示意圖。
5為自樣本衍生之信號強度資料之例示性直方圖。
6A為求和分佈模型、初始資料集之實際分佈、缺陷分佈模型及干擾分佈模型之例示性圖形表示,且 6B為圖6A之區之放大圖。
7A為干擾速率相對於捕捉速率之例示性曲線圖; 7B為捕捉速率相對於信號強度臨限值之例示性曲線圖。
8A 8B為比較經校正分佈模型與對應實際資料之另外實例。
9為包括干擾信號之分佈之模型的例示性初始資料集之分佈之圖形表示。
10A 10B為包括具有不同梯度之干擾信號之分佈的對應模型之兩個另外例示性初始資料集之分佈的圖形表示。
11為包括干擾信號之分佈之對應模型的另一例示性初始資料集之分佈之圖形表示,其中干擾範圍與缺陷範圍重疊。
12A 12D為描繪各自具有複數個特徵及缺陷之樣本之影像的示意圖。
示意圖及視圖展示下文所描述之組件。然而,諸圖中所描繪之組件未按比例繪製。
51:臨限值
52:缺陷信號
53:干擾信號
54:放大圖

Claims (15)

  1. 一種處理自一樣本衍生之資料之方法,其包含處理自一偵測器之一偵測衍生之元素的一初始資料集以供校準,該資料集包含表示干擾信號及偵測信號之元素,該初始資料集之該處理包含: 將一分佈模型擬合至該初始資料集以產生一干擾分佈模型; 設定一信號強度值,且選擇該初始資料集中具有大於該信號強度值之一量值之元素作為一缺陷候選項集合; 將一分佈模型擬合至該缺陷候選項集合以產生偵測信號之一缺陷分佈模型;及 至少取決於該缺陷分佈模型來判定一信號強度臨限值,該判定包含校正該缺陷分佈模型,理想地,該校正適合於校正表示干擾信號及偵測信號之元素之間的量值重疊。
  2. 如請求項1之方法,其中該校正重疊包含校正偵測信號之一經校正缺陷分佈模型。
  3. 如請求項2之方法,其中該校正重疊包含使用該干擾分佈模型及該缺陷分佈模型產生該初始資料集之一求和分佈模型。
  4. 如請求項3之方法,其中產生該求和分佈模型包含對該干擾分佈模型及該缺陷分佈模型求和。
  5. 如請求項3及4中任一項之方法,其進一步包含將該求和分佈模型擬合至該初始資料集之一實際分佈以產生一經校正求和分佈模型。
  6. 如請求項5之方法,其中該校正重疊包含基於與該缺陷分佈模型相關聯之該經校正求和分佈模型之參數值而產生該經校正缺陷分佈模型。
  7. 如請求項2至4中任一項之方法,其中設定該信號強度臨限值係基於該經校正缺陷分佈模型之參數值。
  8. 如請求項1至4中任一項之方法,其進一步包含判定捕捉速率與該信號強度臨限值之間的一關係,理想地,判定隨該信號強度臨限值而變化之該捕捉速率。
  9. 如請求項8之方法,其中判定捕捉速率與信號強度臨限值之間的一關係包含判定隨該信號強度臨限值而變化之該捕捉速率。
  10. 如請求項9之方法,其中該判定隨信號強度臨限值而變化之該捕捉速率係基於該經校正求和分佈模型之參數值。
  11. 如請求項1至4中任一項之方法,其中該干擾分佈模型包含一高斯函數(Gaussian function)及/或其中該缺陷分佈模型包含一高斯函數。
  12. 如請求項5之方法,其中該求和分佈模型及該實際分佈各自為一各別累積分佈之倒數的一對數,理想地,該經校正求和分佈模型為一各別累積分佈之該倒數的一對數。
  13. 如請求項1至4中任一項之方法,其中該信號強度值係基於該干擾分佈模型而設定。
  14. 如請求項13之方法,其中設定一信號強度值包含: 基於該干擾分佈模型而判定一干擾臨限值,其中根據該干擾分佈模型,表示具有大於該干擾臨限值之一量值之干擾信號的元素之數目小於或等於一預定干擾臨限值;及 基於該干擾臨限值而選擇該信號強度值。
  15. 如請求項1至4中任一項之方法,其進一步包含 自一偵測器接收一偵測信號;及 自該偵測信號識別該初始資料集。
TW112119851A 2022-05-30 2023-05-29 處理自樣本衍生之資料的方法 TW202412043A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP22176199.2 2022-05-30
EP22181883.4 2022-06-29

Publications (1)

Publication Number Publication Date
TW202412043A true TW202412043A (zh) 2024-03-16

Family

ID=

Similar Documents

Publication Publication Date Title
US11626267B2 (en) Back-scatter electrons (BSE) imaging with a SEM in tilted mode using cap bias voltage
JP6604751B2 (ja) 電子を用いた超高速検査装置および電子を用いた超高速検査方法
TW202412043A (zh) 處理自樣本衍生之資料的方法
JP7457820B2 (ja) 荷電粒子検査ツール、検査方法
EP4300087A1 (en) Method of processing data derived from a sample
EP4092614A1 (en) Data processing device and method, charged particle assessment system and method
WO2023232474A1 (en) Method of processing data derived from a sample
TWI842250B (zh) 產生樣本圖的方法、電腦程式產品、帶電粒子檢測系統、用於處理樣本的方法、評估方法
TWI832338B (zh) 資料處理裝置及方法、帶電粒子評估系統及方法
EP4303908A1 (en) Assessment apparatus using a plurality of charged particle beams
US20240087842A1 (en) Data processing device and method, charged particle assessment system and method
EP4306945A1 (en) Method of assessing a sample, apparatus for assessing a sample
US20150241369A1 (en) Charged particle beam apparatus, image acquiring method and non-transitory computer-readable recording medium
US20240079205A1 (en) Assessment system, method of assessing
TW202338497A (zh) 產生樣本圖的方法、電腦程式產品、帶電粒子檢測系統、用於處理樣本的方法、評估方法
CN117296122A (zh) 评估系统和评估方法
KR20240017084A (ko) 전극 왜곡의 영향을 보상하는 방법, 평가 시스템
TW202411639A (zh) 評估設備及方法
WO2024008493A1 (en) Assessment apparatus and methods
CN117337446A (zh) 数据处理设备和方法、带电粒子评估系统和方法
CN117716464A (zh) 带电粒子评估系统和在带电粒子评估系统中对准样品的方法
WO2024115204A1 (en) Charged particle assessment method and system
CN116569303A (zh) 具有射束倾斜的带电粒子束装置及其方法
TW202338889A (zh) 使用帽偏壓以傾斜模式的掃描式電子顯微鏡(sem)作反散射電子(bse)成像
CN117836892A (zh) 带电粒子光学设备、带电粒子装置及方法