TW202409077A - A conjugate consisting of or comprising at least a β-glucan or a mannan - Google Patents

A conjugate consisting of or comprising at least a β-glucan or a mannan Download PDF

Info

Publication number
TW202409077A
TW202409077A TW112124769A TW112124769A TW202409077A TW 202409077 A TW202409077 A TW 202409077A TW 112124769 A TW112124769 A TW 112124769A TW 112124769 A TW112124769 A TW 112124769A TW 202409077 A TW202409077 A TW 202409077A
Authority
TW
Taiwan
Prior art keywords
cell
glucan
conjugate
polypeptide
vaccines
Prior art date
Application number
TW112124769A
Other languages
Chinese (zh)
Inventor
馬可斯 曼德勒
沙賓 施密德胡伯
阿希姆 施內柏格
Original Assignee
奧地利商特萊頓生技有限責任兩合公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奧地利商特萊頓生技有限責任兩合公司 filed Critical 奧地利商特萊頓生技有限責任兩合公司
Publication of TW202409077A publication Critical patent/TW202409077A/en

Links

Images

Abstract

The invention relates to the use of β-glucans as C-type lectin (CLEC) polysaccharide adjuvants for B-cell or T-cell epitope polypeptides.

Description

由至少一β-葡聚糖或甘露多醣組成或包含其之結合物A conjugate consisting of or containing at least one β-glucan or mannopolysaccharide

本發明係關於屬於C型凝集素(CLEC)之種類的多醣佐劑。The present invention relates to polysaccharide adjuvants belonging to the class of C-type lectins (CLEC).

疫苗接種被視為係拯救生命及減輕疾病負擔之最有力手段之一。藉助於主動免疫接種,疫苗經投予而使得宿主之免疫系統產生非特異性的先天性免疫反應以及可針對所施加之免疫原發揮作用的特異性抗體、記憶B細胞及記憶T細胞。Vaccination is considered one of the most powerful means to save lives and reduce the burden of disease. With active immunization, vaccines are administered to induce the host's immune system to produce non-specific innate immune responses as well as specific antibodies, memory B cells and memory T cells that can act against the administered immunogen.

多醣構成重要的毒力因子,尤其對於在其表面呈現複雜碳水化合物結構的封裝細菌。細菌以及真菌或其他多醣由藉由糖苷鍵連接之重複單醣單元構成,形成聚合線性或支化結構。眾所周知,對各種細菌多醣的抗體反應較弱,且由於其不誘導免疫記憶,因此不會被後續免疫增強。Polysaccharides constitute important virulence factors, especially for encapsulated bacteria that present complex carbohydrate structures on their surfaces. Bacterial as well as fungal or other polysaccharides are composed of repeating monosaccharide units linked by glycosidic bonds to form polymeric linear or branched structures. Antibody responses to various bacterial polysaccharides are known to be weak and, since they do not induce immune memory, are not enhanced by subsequent immunizations.

此等特性係基於多醣的性質:與蛋白質不同,多醣構成T細胞非依賴性(TI)抗原。多醣抗原直接活化多醣特異性B細胞,然後分化成漿細胞以產生抗體。沒有形成記憶B細胞。相反,蛋白質及肽是T細胞依賴性抗原(TD)抗原;在與樹突狀細胞(DC)、巨噬細胞及B細胞等抗原呈遞細胞(APC)相互作用後,蛋白質抗原被內化且加工成小肽,然後重新暴露並呈遞給與主要組織相容複合體(MHC) II類分子相關的T淋巴細胞。與T細胞的相互作用誘導B細胞分化為漿細胞及記憶B細胞。與TI抗原不同,TD抗原具有免疫原性,可藉由佐劑增強及增強反應(Peltola等人 Pediatrics 1977年11月, 60 (5) 730-737, Guttormsen HK等人 INFECTION AND IMMUNITY, 1998年5月, p. 2026-2032及INFECTION AND IMMUNITY, Dec. 1999, p. 6375-6384, Avci等人 Nature Medicine volume 17, 第1602-1609頁 (2011))。These properties are based on the nature of polysaccharides: unlike proteins, polysaccharides constitute T-cell-independent (TI) antigens. Polysaccharide antigens directly activate polysaccharide-specific B cells, which then differentiate into plasma cells to produce antibodies. Memory B cells are not formed. In contrast, proteins and peptides are T-cell-dependent (TD) antigens; after interaction with antigen presenting cells (APCs) such as dendritic cells (DCs), macrophages and B cells, protein antigens are internalized and processed into small peptides, which are then re-exposed and presented to T lymphocytes associated with major histocompatibility complex (MHC) class II molecules. Interaction with T cells induces B cells to differentiate into plasma cells and memory B cells. Unlike TI antigens, TD antigens are immunogenic and can be enhanced and potentiated by adjuvants (Peltola et al. Pediatrics November 1977, 60 (5) 730-737, Guttormsen HK et al. INFECTION AND IMMUNITY, May 1998, p. 2026-2032 and INFECTION AND IMMUNITY, Dec. 1999, p. 6375-6384, Avci et al. Nature Medicine volume 17, p. 1602-1609 (2011)).

純多醣疫苗的侷限性已藉由將多醣與作為T細胞抗原決定基來源的載體蛋白共價結合而得到克服。此概念已成功應用於目前市場上的若干糖複合疫苗,此等疫苗是針對腦膜炎雙球菌、肺炎鏈球菌、b型流感嗜血桿菌及B族鏈球菌等細菌病原體研發的。所有此等疫苗均使用病原體特異性碳水化合物來誘導碳水化合物特異性抗體作為主要保護劑。The limitations of pure polysaccharide vaccines have been overcome by covalently conjugating the polysaccharide to a carrier protein that serves as a source of T-cell antigenic determinants. This concept has been successfully applied to several glycoconjugate vaccines currently on the market that have been developed against bacterial pathogens such as meningococci, Streptococcus pneumoniae, Haemophilus influenzae type b, and group B streptococci. All of these vaccines use pathogen-specific carbohydrates to induce carbohydrate-specific antibodies as the primary protective agent.

本領域眾所周知,來自植物、細菌、真菌及合成來源的基於碳水化合物的多醣可充當所謂的病原體相關分子模式(PAMP)。與免疫系統接觸後,PAMP會被專門免疫細胞上的模式識別受體(PRR)識別。It is well known in the art that carbohydrate-based polysaccharides from plants, bacteria, fungi and synthetic sources can act as so-called pathogen-associated molecular patterns (PAMPs). After contact with the immune system, PAMPs are recognized by pattern recognition receptors (PRRs) on specialized immune cells.

PRR構成一類種系編碼受體,在結合/活化後對先天免疫的啟動至關重要,先天免疫在第一線防禦中發揮關鍵作用,直到研發出更特異性的適應性免疫。先天免疫反應是抵禦傳染病及組織損傷的第一道防線。特化細胞,即主要是APC,如巨噬細胞及DC,以及一些非專職細胞,如上皮細胞、內皮細胞及纖維母細胞,正在表現此等PRR,且在先天免疫反應期間的病原體識別中發揮重要作用。此外,先天免疫信號活化APC是產生有效適應性免疫(包括抗體及記憶反應)的關鍵先決條件。PRRs constitute a class of germline-encoded receptors that upon binding/activation are critical for the initiation of innate immunity, which plays a key role in the first line of defense until more specific adaptive immunity is developed. The innate immune response is the first line of defense against infectious diseases and tissue damage. Specialized cells, namely mainly APCs such as macrophages and DCs, but also some non-professional cells such as epithelial cells, endothelial cells and fibroblasts, are expressing these PRRs and play a role in pathogen recognition during the innate immune response important role. In addition, activation of APC by innate immune signaling is a key prerequisite for the generation of effective adaptive immunity, including antibody and memory responses.

目前確定的PRR家族分為跨膜受體及位於細胞內隔室中的受體。跨膜受體包括例如類鐸受體(TLR 1-9)及C型凝集素受體(CLR)。細胞內受體包括核苷酸結合寡聚化結構域-(NOD-)樣受體(NLR)、視黃酸誘導基因-(RIG-) I樣受體(RLR)及AIM2樣受體(ALR)。The currently identified PRR family is divided into transmembrane receptors and receptors located in intracellular compartments. Transmembrane receptors include, for example, Tall-like receptors (TLRs 1-9) and C-type lectin receptors (CLR). Intracellular receptors include nucleotide-binding oligomerization domain-(NOD-)-like receptor (NLR), retinoic acid-inducible gene-(RIG-) I-like receptor (RLR) and AIM2-like receptor (ALR). ).

碳水化合物,尤其是多醣的PAMP特性引起了研發多醣作為成功疫苗佐劑的各種方法。The PAMP properties of carbohydrates, especially polysaccharides, have led to various approaches to develop polysaccharides as successful vaccine adjuvants.

一個突出的實例為菊粉,此為一種在菊科植物根部發現的多醣。其由線性β-D-(2,1)聚呋喃果糖基α-D-葡萄糖組成,最多100個果糖部分與單個端葡萄糖相連。菊糖在其天然可溶形式下沒有免疫活性,但當結晶成不同的穩定微晶顆粒(菊糖α-δ)時,其會獲得有效之蛋白質結合疫苗佐劑活性。Delta菊粉顆粒作為Advax™佐劑銷售,顯示出一致的球晶狀盤狀顆粒,直徑為1-2μm,由一系列層片組成。δ-及γ-菊粉被認為是藉由替代補體活化起作用的,因為γ-菊粉的輔助作用機制被證明涉及增加巨噬細胞表面的C3沈積,從而引起增強的T細胞活化(Kerekes等人,JLeukocBiol. 2001年1月;69(1):69-74)。A prominent example is inulin, a polysaccharide found in the roots of plants in the Asteraceae family. It consists of linear β-D-(2,1) polyfructofuranosyl α-D-glucose with up to 100 fructose moieties linked to a single terminal glucose. Inulin has no immunological activity in its natural soluble form, but when crystallized into different stable microcrystalline particles (inulin alpha-delta), it acquires potent protein-conjugated vaccine adjuvant activity. Delta inulin particles, marketed as Advax™ adjuvant, exhibit uniform spherulite discoidal particles with a diameter of 1-2 μm and are composed of a series of lamellae. δ- and γ-inulin are thought to act by surrogate complement activation, as the auxiliary mechanism of γ-inulin has been shown to involve increased C3 deposition on the macrophage surface, resulting in enhanced T cell activation (Kerekes et al. Man, J Leukoc Biol. 2001 Jan;69(1):69-74).

另一種基於多醣的佐劑候選物為基於殼聚醣的佐劑。殼聚醣是D-胺基葡萄糖及N-乙醯-D-胺基葡萄糖(GlcNAc)的線性β-(1,4)-連接共聚物,藉由幾丁質的部分鹼性脫乙醯製備。可溶性殼聚醣本身的免疫原性亦很差。然而,調配成乾粉顆粒或溶液的殼聚醣已廣泛用作黏膜及全身疫苗遞送的包封劑,亦用於製備黏膜DNA疫苗。其用於黏膜疫苗遞送,因為其促進吸收及隨後的吞噬作用,從而增強黏膜免疫反應(Dodane等人 International Journal of Pharmaceutics 182 (1999) 21-32, Seferian等人 Vaccine 19 (2001) 661-668)。殼聚醣顆粒的黏膜黏附特性歸因於其陽離子特性。Another polysaccharide-based adjuvant candidate is chitosan-based adjuvants. Chitosan is a linear β-(1,4)-linked copolymer of D-glucosamine and N-acetyl-D-glucosamine (GlcNAc), prepared by partial alkaline deacetylation of chitin. Soluble chitosan itself is also poorly immunogenic. However, chitosan formulated as dry powder or solution has been widely used as an encapsulating agent for mucosal and systemic vaccine delivery and has also been used to prepare mucosal DNA vaccines. It is used for mucosal vaccine delivery because it promotes absorption and subsequent phagocytosis, thereby enhancing mucosal immune responses (Dodane et al. International Journal of Pharmaceutics 182 (1999) 21-32, Seferian et al. Vaccine 19 (2001) 661-668). The mucoadhesive properties of chitosan particles are attributed to their cationic properties.

活體外試驗表明,與可溶性抗原相比,封裝在殼聚醣顆粒中的牛血清白蛋白(BSA)或卵白蛋白(OVA)可更有效地刺激RAW264.7巨噬細胞及BMDC活化(Koppolu B等人  The effect of antigen encapsulation in chitosan particles on uptake, activation and presentation by antigen presenting cells. Biomaterials. 2013; 34:2359-2369.)。In vitro experiments showed that bovine serum albumin (BSA) or ovalbumin (OVA) encapsulated in chitosan particles can more effectively stimulate the activation of RAW264.7 macrophages and BMDCs compared with soluble antigens (Koppolu B et al. The effect of antigen encapsulation in chitosan particles on uptake, activation and presentation by antigen presenting cells. Biomaterials. 2013; 34:2359-2369.).

Neimert-Andersson等人 使用了ViscoGel,一種可溶性殼聚醣的水凝膠。ViscoGel與b型流感嗜血桿菌疫苗(Act-HIB)一起作為無佐劑疫苗可誘導更強的體液及細胞對抗原的反應。血清中IgG1及IgG2a的效價明顯增強。Th1、Th2及Th17型細胞介素的產生亦增加了。不幸的是,事實證明Viscogel不適合人類使用(Vaccine. 2014; 32:5967-5974)。Neimert-Andersson et al used ViscoGel, a soluble chitosan hydrogel. ViscoGel induced stronger humoral and cellular responses to antigens when used as an unadjuvanted vaccine with Haemophilus influenzae type b vaccine (Act-HIB). Serum IgG1 and IgG2a titers were significantly enhanced. The production of Th1, Th2, and Th17 interleukins was also increased. Unfortunately, Viscogel was not shown to be suitable for human use (Vaccine. 2014; 32:5967-5974).

幾丁質及殼聚醣顆粒很容易被吞噬,支持藉由特定受體介導吞噬作用進行識別的作用。骨髓細胞上結合幾丁質或殼聚醣並誘導吞噬反應的受體尚未明確鑑定。到目前為止,若干受體已顯示與幾丁質或幾丁質寡糖結合,包括:FIBCD1,一種在胃腸道中表現的同源四聚體55-kDaII型跨膜蛋白;NKR-P1,大鼠自然殺手細胞上的活化受體;RegIIIc,一種分泌型C型凝集素;及半乳糖凝集素-3,一種對β-半乳糖苷具有親和力的凝集素。甘露糖受體亦顯示出與GlcNac的結合,因此為基於殼聚醣之疫苗結合物的潛在受體。據報導,ViscoGel以與幾丁質類似的方式觸發免疫反應,因為據報導幾丁質分子可作為PAMP並識別巨噬細胞上的TLR-2受體以誘導先天免疫反應。Chitin and chitosan particles are readily phagocytosed, supporting a role for recognition via specific receptor-mediated phagocytosis. The receptors on bone marrow cells that bind chitin or chitosan and induce the phagocytic response have not been clearly identified. To date, several receptors have been shown to bind chitin or chitosan oligosaccharides, including: FIBCD1, a homotetrameric 55-kDa type II transmembrane protein expressed in the gastrointestinal tract; NKR-P1, an activation receptor on rat natural killer cells; RegIIIc, a secreted C-type lectin; and galectin-3, a lectin with affinity for β-galactosides. The mannose receptor has also been shown to bind GlcNac and is therefore a potential receptor for chitosan-based vaccine conjugates. ViscoGel reportedly triggers an immune response in a similar manner to chitin, as chitin molecules have been reported to act as PAMPs and recognize TLR-2 receptors on macrophages to induce innate immune responses.

Yu等人(Mol. Pharmaceutics, 2016, DOI: 10.1021/acs.molpharmaceut.6b00138)亦表明,與非佐劑蛋白相比,菊粉-殼聚醣與結核分枝桿菌CFP10-TB10.4融合蛋白(CT)之結合物具有顯著增加的流體動力學體積,且該疫苗可引發高水平的Th1型(IFN-γ、TNF-α及IL-2)及Th2型細胞介素(IL-4)以及有效的CT特異性抗體效價,主要以IgG1及IgG2b的形式存在。藥代動力學研究表明,與菊粉-殼多醣結合可延長CT對免疫系統的血清暴露。(Mol. Pharmaceutics 2016, 13, 11, 3626-3635)。Yu et al. (Mol. Pharmaceutics, 2016, DOI: 10.1021/acs.molpharmaceut.6b00138) also showed that the conjugate of inulin-chitosan and Mycobacterium tuberculosis CFP10-TB10.4 fusion protein (CT) had significantly increased hydrodynamic volume compared to non-adjuvant protein, and the vaccine induced high levels of Th1 (IFN-γ, TNF-α and IL-2) and Th2 interleukins (IL-4) as well as potent CT-specific antibody titers, mainly in the form of IgG1 and IgG2b. Pharmacokinetic studies showed that conjugation with inulin-chitosan prolonged the serum exposure of CT to the immune system. (Mol. Pharmaceutics 2016, 13, 11, 3626-3635).

用作佐劑的最突出的多醣類別之一是C型凝集素(CLEC),其與自身的受體相互作用,稱為C型凝集素受體(CLR)。CLR被認為是Ca 2+依賴性醣類識別蛋白。此等受體在其C型凝集素樣結構域(CLECD)上表現單個或多個醣類識別結構域(CRD),此是結合CLEC所必需的。CLR家族的成分與不同的碳水化合物結合,例如甘露糖、岩藻糖、葡萄糖、麥芽糖、N-乙醯-D-葡萄糖胺或其他多醣及葡聚糖。 One of the most prominent classes of polysaccharides used as adjuvants is the C-type lectins (CLECs), which interact with their own receptors, called C-type lectin receptors (CLRs). CLRs are considered Ca2+ -dependent carbohydrate recognition proteins. These receptors exhibit single or multiple carbohydrate recognition domains (CRDs) on their C-type lectin-like domain (CLECD), which are required for binding to CLECs. Members of the CLR family bind to different carbohydrates, such as mannose, fucose, glucose, maltose, N-acetyl-D-glucosamine or other polysaccharides and dextran.

CLR分為跨膜CLR(TM-CLR)及可溶性CLR (膠原凝集素)。TM-CLR進一步分為I型TM-CLR及II型TM-CLR。I型TM-CLR包括甘露糖受體(MR)及ENDO180[甘露糖受體C2型(MRC2)]受體,且與甘露糖、岩藻糖及N-乙醯葡萄糖胺結合。II型TM-CLR包括樹突狀細胞特異性細胞內黏附分子-3結合非整合素(DC-SIGN)、胰島蛋白及巨噬細胞半乳糖型凝集素(MGL)受體。已知DC-SIGN與N-連接聚醣(支鏈三甘露糖結構)結合,例如存在於HIV-1醣蛋白gp120及其他病毒(如C型肝炎病毒、人類巨細胞病毒、登革熱或伊波拉病毒)上。DC-SIGN亦識別脂阿拉伯甘露聚醣及甘露聚醣。胰島蛋白是蘭格漢氏細胞(LC)相關的CLR,其與含有聚醣殘基的甘露糖及岩藻糖結合。MGL對端N-乙醯半乳糖胺(GalNAc)殘基具有結合特異性,且亦顯示對空腸彎曲桿菌及腫瘤相關黏蛋白MUC1具有親和力,且其參與控制效應T細胞的適應性免疫。此外,已經描述了巨噬細胞誘導型C型凝集素(Mincle,亦稱為CLEC4A)以及dectin-1/dectin-2受體家族。Dectin-1在介導針對真菌的先天免疫中起著重要作用,且能夠與真菌(例如:釀酒酵母β-葡聚糖)、地衣(例如:石耳多醣、地衣多醣)、藻類(例如:昆布多醣)或大麥等糧食品種中發現的β-葡聚糖結合。Dectin-2包含一個EPN(Glu-Pro-Asn)胺基酸基序,可為甘露糖配體提供敏感性。此外,dectin-2與白色念珠菌相互作用。CLR is divided into transmembrane CLR (TM-CLR) and soluble CLR (collagen lectin). TM-CLR is further divided into type I TM-CLR and type II TM-CLR. Type I TM-CLR includes mannose receptor (MR) and ENDO180 [mannose receptor type C2 (MRC2)] receptors, and binds to mannose, fucose, and N-acetylglucosamine. Type II TM-CLR includes dendritic cell-specific intracellular adhesion molecule-3-binding non-integrin (DC-SIGN), isletin, and macrophage galactose-type lectin (MGL) receptors. DC-SIGN is known to bind to N-linked glycans (branched trimannose structures), such as those present in the HIV-1 glycoprotein gp120 and other viruses such as hepatitis C virus, human cytomegalovirus, dengue or Ebola viruses )superior. DC-SIGN also recognizes lipoarabinomannan and mannan. Insulin is a Langerhans cell (LC)-associated CLR that binds mannose and fucose containing glycan residues. MGL has binding specificity for the terminal N-acetyl galactosamine (GalNAc) residue, and also shows affinity for Campylobacter jejuni and tumor-associated mucin MUC1, and is involved in controlling the adaptive immunity of effector T cells. In addition, the macrophage-inducible C-type lectin (Mincle, also known as CLEC4A) and the dectin-1/dectin-2 receptor family have been described. Dectin-1 plays an important role in mediating innate immunity against fungi and can interact with fungi (e.g., Saccharomyces cerevisiae β-glucan), lichens (e.g., Shitia polysaccharide, lichen polysaccharide), algae (e.g., Laminaria laminaria) polysaccharides) or beta-glucans found in grain species such as barley. Dectin-2 contains an EPN (Glu-Pro-Asn) amino acid motif that provides sensitivity to mannose ligands. Furthermore, dectin-2 interacts with Candida albicans.

將抗原靶向抗原呈遞細胞(APC)上的內吞受體為一種提高疫苗效力的有吸引力的方法。尤其,甘露糖受體(MR)及相關的C型凝集素受體(CLR)家族成員,如DEC205、DC-SIGN、MGL、胰島蛋白、dectin-1及Mincle,表現出出色的碳水化合物抗原捕獲及處理能力。Targeting antigens to endocytic receptors on antigen-presenting cells (APCs) is an attractive approach to improve vaccine efficacy. In particular, the mannose receptor (MR) and related C-type lectin receptor (CLR) family members, such as DEC205, DC-SIGN, MGL, isletin, dectin-1, and Mincle, exhibit excellent carbohydrate antigen capture and processing capabilities.

尤其未成熟的樹突狀細胞(DC)表現大量CLR,與其感知及捕獲自身以及非自身抗原以加工及呈遞到MHC分子上的重要功能相關,從而誘導抗原特異性T細胞活化。因此,其將先天性及適應性免疫反應聯繫起來。In particular, immature dendritic cells (DCs) express a large number of CLRs, which are associated with their important function of sensing and capturing self and non-self antigens for processing and presentation on MHC molecules, thereby inducing activation of antigen-specific T cells. Therefore, they link innate and adaptive immune responses.

CLEC已被用作免疫反應的非特異性刺激劑及免疫佐劑。例如,Vojtek等人 (Food and Agricultural Immunology, 2017, 28:6, 993-1002)可證明口服β-(1,3),β-(1,6)葡聚糖與針對狗的狂犬病及犬細小病毒-2免疫接種結合使用可引起針對這兩種病毒的抗體的保護水平較早發展。CLECs have been used as nonspecific stimulators of immune responses and as immune adjuvants. For example, Vojtek et al. (Food and Agricultural Immunology, 2017, 28:6, 993-1002) demonstrated that oral administration of β-(1,3),β-(1,6) glucans in conjunction with rabies and canine parvovirus-2 vaccination in dogs resulted in earlier development of protective levels of antibodies against both viruses.

若干研究表明,APC的活化狀態在誘導的免疫類型中起主導作用。例如,在炎症條件下用抗原-抗體結合物進行免疫會引起TH1反應,無論抗原是靶向CLRDEC-205、胰島蛋白、Clec9A還是Ig超家族成員Treml4均無關。Several studies have shown that the activation state of APCs plays a dominant role in the type of immunity induced. For example, immunization with antigen-antibody conjugates under inflammatory conditions elicits a TH1 response, regardless of whether the antigen targets CLRDEC-205, islet proteins, Clec9A, or the Ig superfamily member Treml4.

相反,在非炎症(穩態)條件下的免疫引起耐受性誘導。胰島蛋白+遷移性DC,但不是淋巴結駐留DC,已被確定為主要的Treg誘導劑,與樹突細胞(皮膚與肺)或靶向受體的來源無關。In contrast, immunization under non-inflammatory (steady-state) conditions induces tolerance. Islet protein+ migratory DCs, but not lymph node-resident DCs, have been identified as the major Treg inducers, independent of the source of the dendritic cells (skin vs. lung) or the targeting receptor.

尤其藉由使用甘露多醣作為CLEC來靶向甘露糖受體(MR)或其他甘露多醣敏感CLR,已證明可有效誘導細胞及體液免疫反應;因此,針對MR及其他CLR之疫苗在治療癌症、傳染病及自身免疫性疾病的特異性耐受性誘導方面獲得了越來越多的關注。In particular, targeting mannose receptors (MRs) or other mannosaccharide-sensitive CLRs by using mannosaccharides as CLECs has been shown to be effective in inducing cellular and humoral immune responses; therefore, vaccines targeting MRs and other CLRs have received increasing attention in inducing specific tolerance in the treatment of cancer, infectious diseases, and autoimmune diseases.

甘露多醣為一種源自酵母細胞壁的多醣,由主要呈β-(1,4)-連接之甘露糖骨架及少量α-(1,6)-連接之葡萄糖及半乳糖側鏈殘基組成。此外,在習知甘露多醣製劑中偵測到大約5%之蛋白質含量。作為真菌細胞壁的重要成分,甘露多醣已被廣泛用作基於碳水化合物的念珠菌疫苗的成分(Han及Rhew, Arch Pharm Res 2012, Vol 35, No 11, 2021-2027;Cassone, Nat Rev Microbiol. 2013 Dec;11(12):884-91;Johnson及Bundle, Chem. Soc. Rev., 2013, 42, 4327)。此外,亦研發了基於甘露多醣載體-抗原複合體/結合物的不同疫苗實例,包括用於腫瘤治療的甘露多醣-黏蛋白1(MUC1)融合蛋白結合物或甘露多醣與模型過敏原,如卵白蛋白(OVA)、木瓜蛋白酶或Betv1之結合物。Mannosan is a polysaccharide derived from yeast cell walls, consisting mainly of a β-(1,4)-linked mannose backbone and a small amount of α-(1,6)-linked glucose and galactose side chain residues. In addition, about 5% protein content has been detected in known mannosan preparations. As an important component of fungal cell walls, mannosan has been widely used as a component of carbohydrate-based Candida vaccines (Han and Rhew, Arch Pharm Res 2012, Vol 35, No 11, 2021-2027; Cassone, Nat Rev Microbiol. 2013 Dec;11(12):884-91; Johnson and Bundle, Chem. Soc. Rev., 2013, 42, 4327). In addition, different examples of vaccines based on mannosaccharide carrier-antigen complexes/conjugates have been developed, including mannosaccharide-mucin 1 (MUC1) fusion protein conjugates for tumor treatment or conjugates of mannosaccharide with model allergens such as ovalbumin (OVA), papain or Betv1.

黏蛋白是在細胞表面表現的高度醣基化之蛋白質。MUC1為一種原型黏蛋白,已被發現在多種腫瘤細胞上過度表現。沿著此等思路,產生了一種包含5個串聯重複的人類MUC1(包含具免疫優勢的抗原決定基:APDTRPAPGSTAPPAHGVTS)及肽(Cpl3-32)的MUC1融合蛋白,並在氧化或還原條件下與甘露多醣結合,從而引起截然不同的免疫反應:氧化甘露多醣-MUC1刺激由CD8+T細胞介導的Th1型反應,引起IFN-γ的分泌,以及主要是IgG2a的抗體反應,而還原甘露多醣-MUC1則刺激Th2型反應,產生IL-4及高IgG1抗體反應。所採用的融合蛋白代表了展示T細胞及B細胞抗原決定基的單一蛋白質。Mucins are highly glycosylated proteins expressed on the cell surface. MUC1 is a prototype mucin that has been found to be overexpressed on a variety of tumor cells. Along these lines, a MUC1 fusion protein containing 5 tandem repeats of human MUC1 (containing the immunodominant epitope: APDTRPAPGSTAPPAHGVTS) and a peptide (Cpl3-32) was generated and combined with manna under oxidizing or reducing conditions. Polysaccharide binding causes distinct immune responses: oxidized mannan-MUC1 stimulates a Th1-type response mediated by CD8+ T cells, causing the secretion of IFN-γ and an antibody response mainly IgG2a, while reduced mannan-MUC1 It stimulates Th2 type response and produces IL-4 and high IgG1 antibody response. The fusion proteins used represent a single protein displaying T cell and B cell epitopes.

最近亦生成了木瓜蛋白酶及OVA之蛋白質-碳水化合物/甘露多醣複合體,以分析其潛在致敏性。發現將甘露多醣偶合於蛋白質表面可減少針對木瓜蛋白酶的IgE抗體的結合及交聯。有趣的是,在此等實驗中,甘露多醣、右旋糖酐或麥芽糖糊精的偶合僅降低了木瓜蛋白酶的潛在致敏性,但沒有降低OVA的潛在致敏性,此表明碳水化合物的選擇對疫苗設計的重要性(Weinberger等人 J. Control. Release 2013; 165:101-109)。此等實驗亦表明,甘露多醣結合導致皮內免疫接種後針對OVA的IgG效價升高。Protein-carbohydrate/mannosaccharide complexes of papain and OVA have also recently been generated to analyze their allergenic potential. It was found that coupling mannosaccharide to the protein surface reduced the binding and cross-linking of IgE antibodies against papain. Interestingly, in these experiments, coupling of mannosaccharide, dextran, or maltodextrin only reduced the allergenic potential of papain, but not that of OVA, indicating the importance of carbohydrate choice for vaccine design (Weinberger et al. J. Control. Release 2013; 165:101-109). These experiments also showed that mannosaccharide conjugation resulted in increased IgG titers against OVA after intradermal immunization.

類似於用於MUC1的新糖結合疫苗,Ghochikyan等人 (DNA AND CELL BIOLOGY, 第25卷, 第10期, 2006, Pp. 571-580)及Petrushina等人 (Journal of Neuroinflammation 2008, 5:42)正在應用類澱粉β (Aβ)28,此為一種28個胺基酸殘基的肽,攜載人類Aβ42肽之組合B細胞及T細胞抗原決定基,其與甘露多醣偶合後可在小鼠中誘導低水平的抗-Aβ反應。此等反應亦證明在皮下免疫接種後減弱了APP轉基因小鼠皮質及海馬區的澱粉樣蛋白沈積。該免疫接種亦導致在經Aβ28-甘露多醣及BSA-甘露多醣處理的動物中誘導的抗甘露多醣效價增加。然而,該治療沒有進一步發展,很可能是由於接受治療的動物大腦中微出血的發生增加,此歸因於甘露多醣作為不良血管事件觸發因素的潛在有害作用,強調了碳水化合物選擇對於設計有效治療及安全之疫苗的重要性。Similar to the neoglycoconjugate vaccine used for MUC1, Ghochikyan et al. (DNA AND CELL BIOLOGY, Volume 25, Issue 10, 2006, Pp. 571-580) and Petrushina et al. (Journal of Neuroinflammation 2008, 5:42) Amyloid beta (Aβ)28 is being used, a 28 amino acid residue peptide that carries the combined B-cell and T-cell epitopes of the human Aβ42 peptide, which can be conjugated to mannan in mice. Induces low-level anti-Aβ responses. These responses also demonstrated that amyloid deposition in the cortex and hippocampus of APP transgenic mice was attenuated after subcutaneous immunization. The immunization also resulted in an increase in induced anti-mannan titers in A[beta]28-mannan and BSA-mannan treated animals. However, this treatment was not developed further, most likely due to an increase in the occurrence of microbleeds in the brains of treated animals, which was attributed to the potentially deleterious role of mannan as a trigger of adverse vascular events, underscoring the importance of carbohydrate selection in designing effective treatments. and the importance of safe vaccines.

迄今為止,尚未知道使用與甘露多醣或其他相關CLEC偶合的單個B細胞或T細胞抗原決定基肽之結合物。To date, there are no known conjugates using single B cell or T cell epitope peptides coupled to mannopolysaccharide or other related CLECs.

β-葡聚糖包含一類β-D-葡萄糖多醣。此等多醣為真菌中之主要細胞壁結構成分,且亦發現於細菌、酵母、藻類、地衣及植物(如燕麥及大麥)中。視來源而定,β-葡聚糖在鍵類型、支鏈化程度、分子量及三級結構方面有所不同。Beta-glucans comprise a type of beta-D-glucose polysaccharide. These polysaccharides are major cell wall structural components in fungi and are also found in bacteria, yeast, algae, lichens and plants such as oats and barley. Depending on the source, beta-glucans vary in type of linkage, degree of branching, molecular weight, and tertiary structure.

β-葡聚糖為可溶性的可發酵纖維(亦稱為益生元纖維)的來源,其為大腸內之微生物群提供受質,增加糞便體積,且產生具有廣泛生理學活性的短鏈脂肪酸作為副產物。舉例而言,在血液中膽固醇水平正常或升高的人群中,每日自燕麥中攝取至少3公克的穀物β-葡聚糖可使總膽固醇及低密度脂蛋白膽固醇水平降低5%至10%。β-Glucans are a source of soluble, fermentable fiber (also known as prebiotic fiber) that provides substrates for the microflora in the large intestine, increases stool volume, and produces short-chain fatty acids as byproducts with a wide range of physiological activities. For example, daily intake of at least 3 grams of cereal β-glucan from oats can reduce total cholesterol and LDL cholesterol levels by 5% to 10% in people with normal or elevated blood cholesterol levels.

通常情況下,β-葡聚糖形成具有1-3個β-糖苷鍵的線性主鏈,但在分子量、溶解度、黏度、支鏈結構及凝膠特性方面有所不同。酵母及真菌的β-葡聚糖通常建立在β-(1,3)主鏈上,且含有β-(1,6)側支鏈,而穀物的β-葡聚糖同時含有具有或不具有側支鏈的β-(1,3)及β-(1,4)主鏈鍵。Typically, β-glucans form linear backbones with 1-3 β-glycosidic bonds, but vary in molecular weight, solubility, viscosity, branched structure, and gel properties. The β-glucans of yeast and fungi are usually built on the β-(1,3) main chain and contain β-(1,6) side branches, while the β-glucans of cereals contain both with and without β-(1,3) and β-(1,4) main chain bonds of side branches.

β-葡聚糖被先天免疫系統識別為病原體相關分子模式(PAMP)。PRR dectin-1已經成為此等碳水化合物之主要受體,且β-葡聚糖與dectin-1之結合經由Syk/CARD9信號傳導途徑誘導各種細胞反應,包括吞噬作用、呼吸爆發及分泌細胞介素。此外,補體受體3 (CR3,CD11b/CD18)亦被認為係β-葡聚糖之受體。據報導,經由dectin-1之刺激引發Th1、Th17及細胞毒性T淋巴細胞之反應。Beta-glucans are recognized by the innate immune system as pathogen-associated molecular patterns (PAMPs). PRR dectin-1 has emerged as the primary receptor for these carbohydrates, and binding of β-glucan to dectin-1 induces various cellular responses through the Syk/CARD9 signaling pathway, including phagocytosis, respiratory burst, and secretion of interleukins . In addition, complement receptor 3 (CR3, CD11b/CD18) is also considered to be a receptor for β-glucan. It has been reported that stimulation of dectin-1 triggers Th1, Th17 and cytotoxic T lymphocyte responses.

β-葡聚糖家族的成員包括:Members of the beta-glucan family include:

β-葡聚糖肽(BGP)為一種自真菌,即雲芝( Trametes versicolor)中提取的高分子量(約100 kDa)支鏈化多醣。BGP係由一個高度分支之葡聚糖部分組成,其包含β-(1,4)主鏈及β-(1,3)側鏈,以及與富含天門冬胺酸、麩胺酸及其他胺基酸的多肽部分共價連接的β-(1,6)側鏈。 β-Glucan peptide (BGP) is a high molecular weight (approximately 100 kDa) branched polysaccharide extracted from the fungus Trametes versicolor . BGP is composed of a highly branched glucan moiety containing a β-(1,4) backbone and β-(1,3) side chains, and is rich in aspartic acid, glutamic acid, and other amines. The β-(1,6) side chain of the polypeptide portion of the amino acid is covalently attached.

卡德蘭多醣(Curdlan)為一種來自農桿菌屬( Agrobacteriumspp.)的高分子量線性聚合物,其由β-(1,3)連接之葡萄糖殘基組成。 Curdlan is a high molecular weight linear polymer from Agrobacterium spp., which consists of β-(1,3)-linked glucose residues.

來自褐藻―掌狀海帶( Laminaria digitata)之昆布多醣(laminarin)為一種帶有β-(1,6)鍵之線性β-(1,3)-葡聚糖。昆布多醣為一種低分子量(5-7kDa)之水溶性β-葡聚糖,其可作為dectin-1之拮抗劑或促效劑。其可與dectin-1結合而不刺激下游信號傳導,且能阻斷dectin-1與微粒狀β-(1,3)-葡聚糖,如酵母聚醣(zymosan)的結合。 Laminarin from the brown algae Laminaria digitata is a linear β-(1,3)-glucan with β-(1,6) bonds. Laminarin is a low molecular weight (5-7 kDa) water-soluble β-glucan that can act as an antagonist or agonist of dectin-1. It can bind to dectin-1 without stimulating downstream signaling and can block the binding of dectin-1 to particulate β-(1,3)-glucans such as zymosan.

石耳多醣(pustulan)為一種來自地衣,即泡突疱臍衣(Lasallia pustulata)的中等分子量(20 kDa)、線性β-(1,6)連接之β-D-葡聚糖,其亦能夠與作為主要受體之dectin-1結合,且藉由dectin-1活化信號傳導。Pustulan is a medium molecular weight (20 kDa), linear β-(1,6)-linked β-D-glucan from the lichen Lasallia pustulata, which can also Binds to dectin-1 as the main receptor and activates signaling through dectin-1.

地衣多醣(lichenan)為一種來自冰島地衣( Cetraria islandica)的高分子量(約22-245kDa)之線性β-(1,3) β-(1,4)-β-D葡聚糖,其結構類似於大麥及燕麥之β-葡聚糖。與其他兩種葡聚糖相比,地衣多醣具有更高比例之1,3-β與1,4-β-D鍵,β-(1,4)-與β-(1,3)-β-D鍵之比率為大約2:1。 Lichenan is a high molecular weight (about 22-245 kDa) linear β-(1,3) β-(1,4)-β-D glucan from the Icelandic lichen ( Cetraria islandica ). Its structure is similar to the β-glucans of barley and oats. Compared with the other two glucans, lichenan has a higher ratio of 1,3-β to 1,4-β-D bonds, with a β-(1,4)- to β-(1,3)-β-D bond ratio of about 2:1.

來自燕麥及大麥之Β-葡聚糖為線性β-(1,3) β-(1,4)-β-D葡聚糖,且市面上售有不同的分子量(35.6 kDa之中等分子量至至多650 kDa之高分子量)的產品。Beta-glucans from oats and barley are linear beta-(1,3) beta-(1,4)-beta-D glucans and are commercially available in different molecular weights (35.6 kDa, medium to up to products with a high molecular weight of 650 kDa).

裂褶多醣(schizophyllan;SPG)為一種來自真菌,即裂襇菌( Schizophyllum commune)之膠凝β-葡聚糖。SPG為一種高分子量(450 kDa)之β-(1,3)-D-葡聚糖,在主鏈上每三個β-(1,3)-葡萄糖基殘基中有一個β-(1,6)單葡萄糖基分支。 Schizophyllan (SPG) is a gelling β-glucan derived from the fungus Schizophyllum commune . SPG is a high molecular weight (450 kDa) β-(1,3)-D-glucan with one β-(1) for every three β-(1,3)-glucosyl residues in the main chain. ,6) Monoglucosyl branch.

硬葡聚糖(scleroglucan)為一種高分子量(>1000 kDa)多醣,其由絲狀真菌,即白絹菌( Sclerotium rolfsii)發酵產生。硬葡聚糖係由線性β-(1,3) D-葡萄糖主鏈組成,每三個主殘基有一個β-(1,6) D-葡萄糖側鏈。 Scleroglucan is a high molecular weight (>1000 kDa) polysaccharide produced by fermentation of the filamentous fungus Sclerotium rolfsii . Scleroglucan is composed of a linear β-(1,3) D-glucose backbone with one β-(1,6) D-glucose side chain for every three main residues.

全葡聚糖顆粒(WGP)為因其調節免疫反應之能力而備受關注的β-葡聚糖。WGP Dispersible (來自Biothera之WGP® Dispersible)為一種微粒狀釀酒酵母( Saccharomyces cerevisiae) β-葡聚糖製劑,其係由中空酵母細胞壁「幽靈 (ghost)」組成,該等「幽靈」主要由自釀酒酵母細胞壁進行一系列鹼及酸萃取之後獲得之β-(1,3)葡萄糖之長聚合物構成。與其他dectin-1配位體(如酵母聚醣)相比,WGP Dispersible缺乏TLR刺激活性。相比之下,可溶性WGP可在不活化此受體之情況下結合dectin-1,且其可顯著阻斷WGP Dispersible與巨噬細胞之結合及其免疫刺激作用。 Whole glucan particles (WGP) are β-glucans that have attracted much attention for their ability to modulate immune responses. WGP Dispersible (WGP® Dispersible from Biothera) is a microparticulate preparation of brewing yeast ( Saccharomyces cerevisiae ) β-glucan composed of hollow yeast cell wall "ghosts" composed primarily of long polymers of β-(1,3) glucose obtained from the brewing yeast cell wall following a series of alkaline and acid extractions. Compared to other dectin-1 ligands such as zymosan, WGP Dispersible lacks TLR stimulatory activity. In contrast, soluble WGP can bind dectin-1 without activating this receptor and can significantly block WGP Dispersible's binding to macrophages and its immunostimulatory effects.

酵母聚醣(zymosan)為酵母細胞之不溶性製劑且經由TLR2活化巨噬細胞。TLR2在對酵母聚醣的反應中與TLR6及CD14協作。酵母聚醣亦可被dectin-1識別,該dectin-1作為在巨噬細胞及樹突狀細胞上表現之吞噬細胞受體,與TLR2及TLR6協作以增強各受體對酵母聚醣之識別所引發的免疫反應。Zymosan is an insoluble preparation of yeast cells and activates macrophages via TLR2. TLR2 cooperates with TLR6 and CD14 in the response to zymosan. Zymosan can also be recognized by dectin-1, which acts as a phagocyte receptor expressed on macrophages and dendritic cells and cooperates with TLR2 and TLR6 to enhance the recognition of zymosan by each receptor. induced immune response.

作為真菌細胞壁之主要成分,不同β-葡聚糖已用作產生針對真菌感染之抗葡聚糖抗體的抗原(例如:Torosantucci等人 J Exp Med. 2005年9月5日;202(5):597-606.;Bromuro等人, Vaccine 28 (2010) 2615-2623;Liao等人, Bioconjug Chem. 2015年3月18日;26(3):466-76)。As a major component of fungal cell walls, various β-glucans have been used as antigens for the generation of anti-glucan antibodies against fungal infections (e.g., Torosantucci et al. J Exp Med. 2005 Sep 5;202(5):597-606.; Bromuro et al., Vaccine 28 (2010) 2615-2623; Liao et al., Bioconjug Chem. 2015 Mar 18;26(3):466-76).

Torosantucci等人(2005)及Bromuro等人(2010)揭示支鏈β-葡聚糖―昆布多醣及線性β-葡聚糖―卡德蘭多醣與白喉類毒素CRM197偶合的結合物。此等結合物疫苗誘導針對β-葡聚糖之高IgG效價且針對小鼠中之真菌感染賦予保護作用。另外,亦可使用此類結合物偵測針對CRM197之高效價(Donadei等人, Mol Pharm. 2015年5月4日;12(5):1662-72)。作者亦產生用人類可接受之佐劑MF59調配之β-葡聚糖-CRM197疫苗,其具有合成的線性β-(1,3)-寡醣或β-(1,6)-支鏈之β-(1,3)-寡醣。所有結合物均誘導抗β-(1,3)-葡聚糖IgG之高效價,及/或除了抗β-(1,3)-葡聚糖IgG以外,亦誘導抗β-(1,6)-葡聚糖抗體之高效價,表明不同葡聚糖與經典載體蛋白之組合之免疫原性。有趣的是,與單獨的未結合CRM相比,Torosantucci等人在使用CRM-葡聚糖結合物進行免疫接種之後未能證實更優良的抗CRM效價。Torosantucci et al. (2005) and Bromuro et al. (2010) revealed conjugates of branched β-glucan-laminarin and linear β-glucan-cadranan coupled with diphtheria toxoid CRM197. These conjugate vaccines induce high IgG titers against β-glucan and confer protection against fungal infections in mice. Alternatively, such conjugates can be used to detect high titers against CRM197 (Donadei et al., Mol Pharm. 2015 May 4;12(5):1662-72). The authors also generated β-glucan-CRM197 vaccines with synthetic linear β-(1,3)-oligosaccharides or β-(1,6)-branched β-oligosaccharides formulated with the human-acceptable adjuvant MF59. -(1,3)-oligosaccharides. All conjugates induced high titers of anti-β-(1,3)-glucan IgG and/or induced anti-β-(1,6) in addition to anti-β-(1,3)-glucan IgG. The high titers of )-dextran antibodies indicate the immunogenicity of different combinations of dextran and classic carrier proteins. Interestingly, Torosantucci et al. failed to demonstrate superior anti-CRM titers following immunization with CRM-dextran conjugates compared with unconjugated CRM alone.

Donadei等人(2015)亦分析白喉類毒素CRM197與線性β-(1,3)葡聚糖―卡德蘭多醣或合成β-(1,3)寡糖偶合的結合物。此類結合物具有免疫原性,對CRM197產生類似抗體反應。有趣的是,作者表明,與肌肉內(i.m.)免疫接種相比,CRM卡德蘭多醣結合物在皮內遞送時產生較高抗體效價。然而,與皮下施用相比,CRM-卡德蘭多醣之皮內施用並未顯示出不同的免疫原性。此外,CRM-卡德蘭多醣與以Alum為佐劑的非卡德蘭多醣偶合之CRM之間的活體內作用相當。因此,此系統中無法偵測到CLEC偶合對總體免疫反應之附加益處。Donadei et al. (2015) also analyzed conjugates of diphtheria toxoid CRM197 coupled with linear β-(1,3) glucan-cadranan or synthetic β-(1,3) oligosaccharides. Such conjugates are immunogenic and produce an antibody-like response to CRM197. Interestingly, the authors showed that CRM Cadran polysaccharide conjugates produced higher antibody titers when delivered intradermally compared to intramuscular (i.m.) immunization. However, intradermal administration of CRM-cadranan did not show different immunogenicity compared to subcutaneous administration. In addition, the in vivo effects of CRM-Cardran polysaccharide and non-Cardran polysaccharide coupled CRM using Alum as an adjuvant were comparable. Therefore, no additional benefit of CLEC coupling on the overall immune response could be detected in this system.

Liao等人(2015)揭示一系列線性β-(1,3)-β-葡聚糖寡醣(六-、八-、十-及十二-β-葡聚糖),其與KLH偶合以產生糖結合物。此等結合物被證明能引起強而有力(robust)的T細胞反應且具有高度免疫原性,可誘導高水平的抗葡聚糖抗體。使用此類疫苗進行免疫接種之小鼠亦引起對致命病原體―白色念珠菌( C . albicans)之保護性免疫反應。該文獻未進行與未經結合之KLH的抗KLH效價比較,因此在此實驗環境中無法獲得關於β-葡聚糖之潛在益處的資訊。 Liao et al. (2015) disclosed a series of linear β-(1,3)-β-glucan oligosaccharides (hexa-, octa-, deca-, and dodeca-β-glucans) that were coupled to KLH to produce glycoconjugates. These conjugates were shown to elicit robust T cell responses and were highly immunogenic, inducing high levels of anti-glucan antibodies. Mice immunized with this vaccine also elicited a protective immune response against the lethal pathogen Candida albicans ( C . albicans ). The article did not compare anti-KLH titers with unconjugated KLH, so no information on the potential benefits of β-glucans could be obtained in this experimental setting.

此等發現對於基於葡聚糖之新糖結合物作為新穎疫苗之適用性非常重要:在初始的葡聚糖結合物免疫接種後誘導的潛在抗葡聚糖抗體可能導致在隨後的追加免疫注射中快速消除相同的β-葡聚糖疫苗,或者可能減弱新穎新糖結合物疫苗針對其他適應症的免疫反應,該作用在載體疫苗中為眾所周知的。正如上述對甘露多醣及β-葡聚糖所示的高水平抗葡聚糖抗體相同(Petrushina等人 2008, Torosantucci等人 2005, Bromuro等人, 2010, Liao等人, 2015),高水平抗葡聚糖抗體之存在或甚至(再)刺激可能因此減少或消除由結合物疫苗引起之潛在免疫反應。因此,對於使用CLEC,尤其是β-葡聚糖作為免疫接種之骨架的新穎可持續平台而言,保證所用之多醣/寡醣之葡聚糖抗體誘導能力非常低或不存在將為至關重要的。These findings are important for the suitability of glucan-based neoglycoconjugates as novel vaccines: latent anti-glucan antibodies induced after an initial glucan conjugate immunization could lead to rapid elimination of the same β-glucan vaccine in subsequent booster immunizations or could attenuate the immune response of the novel neoglycoconjugate vaccine for other indications, an effect that is well known for vector vaccines. As with the high levels of anti-glucan antibodies shown above for mannosaccharides and β-glucans (Petrushina et al. 2008, Torosantucci et al. 2005, Bromuro et al., 2010, Liao et al., 2015), the presence or even (re)stimulation of high levels of anti-glucan antibodies could therefore reduce or eliminate the latent immune response elicited by the conjugate vaccine. Therefore, for novel sustainable platforms using CLECs, especially β-glucan, as backbones for immunization, it will be crucial to ensure that the glucan antibody inducing capacity of the polysaccharides/oligosaccharides used is very low or absent.

葡聚糖顆粒(GP)為高度純化的2-4 µm中空多孔細胞壁微球體,主要由β-(1,3)-D-葡聚糖構成,含有少量β-(1,6)-D-葡聚糖及幾丁質,通常使用一系列熱鹼、酸及有機萃取自釀酒酵母分離出來。該等顆粒與其受體dectin-1及CR3相互作用(亦有證據表明與類鐸受體及CD5之相互作用為GP功能之額外因素),且上調MHC分子之細胞表面呈遞,引起共刺激分子之表現改變,且誘導促炎性細胞介素之產生。由於其免疫調節特性,GP已被探索用於疫苗遞送。Glucan particles (GP) are highly purified 2-4 µm hollow porous cell wall microspheres composed primarily of β-(1,3)-D-glucan with small amounts of β-(1,6)-D-glucan and chitin, typically isolated from brewing yeast using a series of hot alkaline, acid, and organic extractions. These particles interact with their receptors dectin-1 and CR3 (there is also evidence that interactions with ferulicityl receptors and CD5 are additional factors for GP function) and upregulate cell surface presentation of MHC molecules, causing changes in the expression of co-stimulatory molecules and inducing the production of pro-inflammatory interleukins. Due to their immunomodulatory properties, GP has been explored for vaccine delivery.

在疫苗中應用GP之一般方法有三種:(i)作為與一或多種抗原共投予之佐劑,以增強T細胞及B細胞介導之免疫反應,(ii)與抗原化學交聯以及最常用的(iii)作為包裹在GP空腔內之抗原的物理遞送媒劑,向APC提供靶向抗原遞送。There are three general ways to use GP in vaccines: (i) as an adjuvant co-administered with one or more antigens to enhance T- and B-cell-mediated immune responses, (ii) chemical cross-linking with antigens and finally Commonly used (iii) serves as a physical delivery vehicle for antigen encapsulated within the GP cavity to provide targeted antigen delivery to APC.

(i):抗原特異性適應性免疫反應可藉由將GP與抗原一起共投予來增強。在此習知佐劑策略中,先天性免疫反應以及適應性免疫反應均被活化以發揮對抗病原體之保護性反應。例如,Williams等人(Int J Immunopharmacol. 1989;11(4):403-10)藉由共投予GP為克氏錐蟲( Trypanosoma cruzi)滅活疫苗添加佐劑。使用此調配物引起之免疫反應使得經克氏錐蟲攻擊之小鼠的存活率達85%。相比之下,單獨接受右旋糖、葡聚糖或疫苗之對照組的死亡率為100%。 (i): Antigen-specific adaptive immune responses can be enhanced by co-administering GP with the antigen. In this conventional adjuvant strategy, both the innate immune response and the adaptive immune response are activated to exert a protective response against the pathogen. For example, Williams et al. (Int J Immunopharmacol. 1989; 11(4): 403-10) added an adjuvant to a killed vaccine for Trypanosoma cruzi by co-administering GP. The immune response induced by this formulation resulted in an 85% survival rate in mice challenged with Trypanosoma cruzi. In contrast, the mortality rate in the control group that received dextrose, dextran, or the vaccine alone was 100%.

(ii):GP之碳水化合物表面亦可使用NaIO 4氧化、碳二亞胺交聯或1-氰基-4-二甲基胺基吡啶四氟硼酸鹽介導之抗原與GP殼之結合進行共價改性。使用此方法,偶合功效極低(大約20%,如Pan等人 Sci Rep 5, 10687 (2015)中所述),與抗原封裝在GP中或本申請案中提供之平台技術相比,其大大限制了疫苗候選物之適用性及數目。此類共價連接之抗原-GP結合物被用於研究癌症免疫療法及感染性疾病。舉例而言,Pan等人(2015)使用OVA交聯至經過碘酸鹽氧化之GP,並且用此疫苗對小鼠進行皮下免疫接種。當小鼠受到表現OVA之E.G7淋巴瘤細胞攻擊時,可觀測到腫瘤尺寸顯著減小。在皮下注射後12及36小時,可在淋巴結中的DC (CD11c +MHC-II +)中偵測到GP-OVA。腫瘤保護與總抗Ova免疫球蛋白IgG效價增加、MHC-II及共刺激分子(CD80、CD86)表現增強及細胞毒性淋巴細胞反應升高相關。 (ii): The carbohydrate surface of GP can also be covalently modified using NaIO4 oxidation, carbodiimide cross-linking, or 1-cyano-4-dimethylaminopyridinium tetrafluoroborate-mediated binding of antigen to the GP shell. Using this method, the coupling efficacy is extremely low (approximately 20%, as described in Pan et al. Sci Rep 5 , 10687 (2015)), which greatly limits the applicability and number of vaccine candidates compared to antigen encapsulation in GP or the platform technology provided in this application. Such covalently linked antigen-GP conjugates are used to study cancer immunotherapy and infectious diseases. For example, Pan et al. (2015) used OVA to cross-link to GP oxidized with periodate and used this vaccine to subcutaneously immunize mice. When mice were challenged with E.G7 lymphoma cells expressing OVA, a significant reduction in tumor size was observed. GP-OVA was detected in DCs (CD11c + MHC-II + ) in lymph nodes 12 and 36 hours after subcutaneous injection. Tumor protection was associated with increased total anti-Ova IgG titers, enhanced expression of MHC-II and co-stimulatory molecules (CD80, CD86), and elevated cytotoxic lymphocyte responses.

(iii):將GP應用於疫苗中之最有效方法為用其將疫苗/抗原封裝於空心中。GP可以高負載效率封裝一或多種抗原/DNA/RNA/佐劑/藥物/其組合,其取決於有效負載類型及預期遞送模式。(iii): The most effective way to apply GP in vaccines is to use it to encapsulate vaccines/antigens in hollows. GP can encapsulate one or more antigens/DNA/RNA/adjuvants/drugs/combinations thereof with high payload efficiency, depending on the payload type and intended delivery mode.

可使用聚合物奈米複合法將抗原封裝於GP之空腔中,該等方法如使用牛或鼠類血清白蛋白及酵母RNA/tRNA對有效負載加以負載及複合或添加褐藻酸鈣或褐藻酸鈣-殼聚醣混合物。使用此等策略,例如Huang等人(Clin. Vaccine Immunol. 2013; 20:1585-91)報導,接種GP-OVA之小鼠顯示出強烈的CD4+ T細胞淋巴增殖、Th1及Th17偏向的T細胞介導之免疫反應以及針對卵白蛋白之高IgG1特異性及IgG2c特異性抗體反應。相比於與抗原共投予之GP,非共價封裝策略引起更強的免疫反應。Antigens can be encapsulated in the cavity of GP using polymer nanocomplexes, such as using bovine or mouse serum albumin and yeast RNA/tRNA to load the payload and complex or add calcium alginate or alginate-chitosan mixture. Using these strategies, for example, Huang et al. (Clin. Vaccine Immunol. 2013; 20:1585-91) reported that mice vaccinated with GP-OVA showed strong CD4+ T cell lymphoproliferation, Th1 and Th17-biased T cell-mediated immune responses, and high IgG1-specific and IgG2c-specific antibody responses to ovalbumin. Non-covalent encapsulation strategies induce stronger immune responses than GP co-administered with antigens.

GP封裝之次單位疫苗之實例為包覆有新型隱球菌( Cryptococcus neoformans)無莢膜菌株(cap59)之可溶性鹼性萃取物的GP,其藉由誘導抗原特異性的CD4+ T細胞反應(IFN-γ、IL-17A呈陽性),使真菌菌落形成單位(colony-forming unit,CFU)比初始攻擊劑量減少超過100倍,從而保護受致死劑量之高毒力新型隱球菌攻擊的小鼠(60%存活率) (Specht CA等人 Mbio 2015; 6: e01905- e1915.及Specht CA等人, mBio 2017; 8: e01872- e1917.)。此外,用GP封裝之抗原給小鼠接種已證明對莢膜組織胞漿菌( Histoplasma capsulatum) (Deepe GS等人, Vaccine 2018; 36: 3359-67)、土倫病法蘭西斯氏菌( F . tularensis) (Whelan AO等人, PLOS ONE 2018; 13: e0200213)、皮炎芽生菌( Blastomyces dermatitidis) (Wuthrich M等人, Cell Host Microbe 2015; 17: 452-65)及波薩達斯球孢子菌( C . posadasii) (Hurtgen BJ等人, Infect. Immun. 2012; 80: 3960- 74)有效。 An example of a GP-encapsulated subunit vaccine is GP coated with a soluble alkaline extract of a non-encapsulated strain of Cryptococcus neoformans (cap59), which induces antigen-specific CD4+ T cell responses (IFN- γ, IL-17A positive), reducing fungal colony-forming units (CFU) by more than 100-fold compared with the initial challenge dose, thereby protecting mice challenged with a lethal dose of highly virulent Cryptococcus neoformans (60% survival rate) (Specht CA et al. Mbio 2015; 6: e01905- e1915. and Specht CA et al., mBio 2017; 8: e01872- e1917.). In addition, inoculation of mice with GP-encapsulated antigens has been shown to be effective against Histoplasma capsulatum ( Deepe GS et al., Vaccine 2018; 36: 3359-67), Francisella tularensis ( F. tularensis ) (Whelan AO et al., PLOS ONE 2018; 13: e0200213), Blastomyces dermatitidis (Wuthrich M et al., Cell Host Microbe 2015; 17: 452-65) and Coccidioides posadasii ( C. posadasii ) (Hurtgen BJ et al., Infect. Immun . 2012; 80: 3960-74) is effective.

除了癌症及感染性疾病的應用外,亦使用GP作為用於疫苗遞送之封裝劑進行了數目有限的使用自體抗原之研究。沿著此等思路,Rockenstein等人(J. Neurosci., 2018年1月24日• 38(4):1000 -1014)描述了負載有重組人類α突觸核蛋白(含有適用於誘導抗aSyn免疫反應之B細胞抗原決定基及T細胞抗原決定基兩者)及已知能誘導抗原特異性調節性T細胞(Treg)之雷帕黴素(Rapamycin)的GP在突觸核蛋白病變之鼠類模型中的應用。如使用全長α突觸核蛋白作為免疫原的先前研究所預期,施用含有aSyn之GP會誘導強而有力(robust)的抗α突觸核蛋白抗體效價,且減輕動物中α突觸核蛋白觸發的病理性改變,其程度與先前所公佈的相似。由於在雷帕黴素暴露之後此類Treg細胞之數目顯著增加,因此添加雷帕黴素能有效地誘導iTreg (CD25及FOXP3+)細胞之形成。負載有α突觸核蛋白抗原及雷帕黴素之GP因此在突觸核蛋白病變之小鼠模型中觸發神經保護性體液及iTreg反應,同時組合疫苗(aSyn+雷帕黴素)比單獨的體液免疫接種(GP aSyn)或細胞免疫接種(GP雷帕黴素)更有效。尚未有文獻報導關於對習知的非含α突觸核蛋白之GP免疫接種之作用之可比性的資訊。In addition to applications in cancer and infectious diseases, a limited number of studies using autologous antigens have been conducted using GP as an encapsulating agent for vaccine delivery. Along these lines, Rockenstein et al. (J. Neurosci., 2018 Jan 24 • 38(4):1000-1014) described the use of GP loaded with recombinant human α-synuclein (containing both B cell epitopes and T cell epitopes suitable for inducing anti-aSyn immune responses) and rapamycin, which is known to induce antigen-specific regulatory T cells (Tregs), in a mouse model of synucleinopathy. As expected from previous studies using full-length α-synuclein as an immunogen, administration of GP containing aSyn induced robust anti-α-synuclein antibody titers and reduced α-synuclein-triggered pathological changes in animals to a similar extent as previously published. The addition of rapamycin effectively induced the formation of iTreg (CD25 and FOXP3+) cells, as the number of these Treg cells increased significantly after rapamycin exposure. GP loaded with α-synuclein antigen and rapamycin thus triggered neuroprotective humoral and iTreg responses in a mouse model of synucleinopathy, with the combined vaccine (aSyn+rapamycin) being more effective than either humoral (GP aSyn) or cellular (GP rapamycin) vaccination alone. No information on the comparability of the effects of vaccination with known non-α-synuclein-containing GP has been reported in the literature.

β-葡聚糖新糖結合物經由C型凝集素受體dectin-1高效靶向樹突狀細胞,增強其免疫原性。具體言之,某些β-葡聚糖亦用作使用模型抗原(如OVA) (Xie等人, Biochemical and Biophysical Research Communications 391 (2010) 958-962;Korotchenko等人, Allergy. 2021;76:210-222.)或基於MUC1之融合蛋白(Wang等人, Chem. Commun., 2019, 55, 253)進行疫苗接種之潛在載體。β-glucan neoglycoconjugates efficiently target dendritic cells via the C-type lectin receptor dectin-1, enhancing their immunogenicity. Specifically, certain β-glucans are also used as model antigens (such as OVA) (Xie et al., Biochemical and Biophysical Research Communications 391 (2010) 958-962; Korotchenko et al., Allergy. 2021;76:210 -222.) or a potential vector for vaccination based on fusion proteins of MUC1 (Wang et al., Chem. Commun., 2019, 55, 253).

Xie等人及Korotchenko等人使用支鏈β-葡聚糖―昆布多醣作為OVA結合之骨架,隨後將此等新糖結合物經上表皮或經由皮下途徑施用於小鼠。Xie等人展示與單獨卵白蛋白相比,昆布多醣/OVA結合物而不是非共軛混合物誘導了抗OVA CD4+ T細胞反應增加。重要的是,共注射未結合之昆布多醣阻斷了此增強,支持昆布多醣介導之APC靶向之功能。正如所預期的一般,原生OVA及OVA與昆布多醣之混合物刺激低水平之抗OVA抗體產生。相反地,OVA/昆布多醣結合物顯著增強了抗體反應。同樣地,Korotchenko等人證實,昆布多醣與OVA之結合顯著增加了吸收,且誘導BMDC之活化及促炎性細胞介素之分泌。LamOVA結合物之此等特性亦使得與BMDC共培養之OVA特異性初始T-細胞之刺激增強。在預防性免疫接種實驗中,作者證實了用LamOVA免疫接種降低了其致敏性且在兩次免疫接種之後,誘導較OVA高約三倍之IgG1抗體效價。然而,在第三次免疫接種之後,所有組均顯示相似的抗體效價,此作用在所有處理組中均消失了。Lam/OVA結合物及OVA/alum結合物在過敏性哮喘之鼠類模型中顯示出相當的治療功效。因此,此等實驗無法提供基於葡聚糖之結合物與習知疫苗相比有明顯優勢。Xie et al. and Korotchenko et al. used branched β-glucan-laminarin as a backbone for OVA conjugation, and then administered these new glycoconjugates to mice epidermally or subcutaneously. Xie et al. showed that laminarin/OVA conjugates, but not the unconjugated mixture, induced increased anti-OVA CD4+ T cell responses compared to ovalbumin alone. Importantly, co-injection of unconjugated laminarin blocked this enhancement, supporting the function of laminarin-mediated APC targeting. As expected, native OVA and a mixture of OVA and laminarin stimulated low levels of anti-OVA antibody production. In contrast, the OVA/laminarin conjugate significantly enhanced the antibody response. Similarly, Korotchenko et al. demonstrated that the combination of laminarin with OVA significantly increased absorption and induced the activation of BMDC and the secretion of pro-inflammatory cytokines. These properties of the LamOVA conjugate also result in enhanced stimulation of OVA-specific naive T-cells co-cultured with BMDC. In prophylactic immunization experiments, the authors demonstrated that immunization with LamOVA reduced its sensitization and induced approximately three times higher IgG1 antibody titers than OVA after two immunizations. However, after the third immunization, in which all groups showed similar antibody titers, this effect disappeared in all treatment groups. Lam/OVA conjugates and OVA/alum conjugates have shown considerable therapeutic efficacy in murine models of allergic asthma. Therefore, these experiments cannot provide clear advantages of dextran-based conjugates over conventional vaccines.

Wang等人(2019)分析了基於β-葡聚糖之MUC1癌症疫苗候選物之作用。同樣地,選擇MUC1串聯重複序列GVTSAPDTRPAPGSTPPAH (經充分研究之癌症生物標記物)作為肽抗原,在重複序列中提供T細胞及B細胞抗原決定基。利用1,1'-羰基-二咪唑(CDI)介導之條件,使用乙二醇(亦即,PEG)間隔子將β-葡聚糖及MUC1肽與酵母β-(1,3)-β-葡聚糖多醣連接起來。β-葡聚糖-MUC1奈米顆粒之大小在150 nm範圍內(實際平均值162nm),而未經改性之β-葡聚糖形成之顆粒呈大約540 nm。β-葡聚糖-MUC1結合物引起抗MUC1 IgG抗體之高效價,與對照組相比明顯更高。對所產生之抗體之同型及亞型的進一步分析顯示IgG2b為主要亞型,表明Th1型反應活化,因為IgG2b/IgG1之比率>1。所觀測到的大量IgM抗體表明補體系統之C3成分參與其中,其常常誘發細胞毒性,且將此類骨架用於應避免產生細胞毒性之疫苗,例如用於慢性或退化性疾病之疫苗可能會成為問題。Wang et al. (2019) analyzed the effects of β-glucan-based MUC1 cancer vaccine candidates. Again, the MUC1 tandem repeat sequence GVTSAPDTRPAPGSTPPAH, a well-studied cancer biomarker, was chosen as a peptide antigen to provide T cell and B cell antigenic determinants in the repeat sequence. β-glucan and MUC1 peptides were linked to yeast β-(1,3)-β-glucan polysaccharide using ethylene glycol (i.e., PEG) spacers using 1,1'-carbonyl-diimidazole (CDI)-mediated conditions. The size of the β-glucan-MUC1 nanoparticles was in the 150 nm range (actual average 162 nm), while the particles formed by unmodified β-glucan were approximately 540 nm. The β-glucan-MUC1 conjugate elicited high titers of anti-MUC1 IgG antibodies, significantly higher than the control group. Further analysis of the isotype and subtype of the antibodies produced showed IgG2b as the major subtype, indicating activation of a Th1-type response, as the ratio of IgG2b/IgG1 was >1. The large amounts of IgM antibodies observed indicated the involvement of the C3 component of the complement system, which often induces cytotoxicity, and the use of such backbones in vaccines where cytotoxicity should be avoided, such as vaccines for chronic or degenerative diseases, could be problematic.

US 2013/171187 A1揭示了一種包含葡聚糖及醫藥學上可接受之載體的免疫原性組合物,以引起保護性的抗葡聚糖抗體。Metwali等人(Am. J. Respir. Crit. Care Med. 185 (2012), A4152; poster session C31 Regulation of Lung Inflammation)研究了葡聚糖衍生物在肺炎中之免疫調節作用。WO 2021/236809 A2揭示了一種包含澱粉樣蛋白-β及tau肽之多抗原決定基疫苗,用於治療阿茲海默症(AD)。US 2017/369570 A1揭示了與針對腫瘤微環境中存在之細胞的抗體連接之β-(1,6)-葡聚糖。US 2002/077288 A1揭示了單獨或結合用於治療AD之與澱粉樣蛋白-β同源的合成免疫原性但非類澱粉樣肽。US 2013/171187 A1揭示了用作抵抗白色念珠菌之真菌感染之保護劑的抗葡聚糖抗體。WO 2004/012657 A2揭示了作為疫苗佐劑的微粒β-葡聚糖。CN 113616799 A揭示了一種由經氧化之甘露多醣及陽離子聚合物組成之疫苗載體。CN 111514286 A揭示了一種帶有葡聚糖之茲卡病毒(Zika virus) E蛋白結合物疫苗。US 4,590,181 A揭示了一種與石耳多醣或黴菌葡聚糖混合於溶液中的病毒抗原。Lang等人(Front. Chem. 8 (2020): 284)綜述了疫苗研發中的碳水化合物結合物。Larsen等人(Vaccines 8 (2020): 226)報導,石耳多醣在活體外活化了源自雞骨髓之樹突狀細胞且促進離體CD4 +T細胞對感染性支氣管炎病毒之回憶反應。US 2010/266626 A1揭示了葡聚糖,較佳為昆布多醣和卡德蘭多醣,作為結合於佐劑之抗原對真菌進行免疫。Mandler等人(Alzh. Dement. 15 (2019), 1133-1148)報導了靶向澱粉樣蛋白-β蛋白及α突觸核蛋白之單一及組合免疫治療方法在類路易氏體癡呆模型中之作用。Mandler等人 (Acta Neuropathol. 127 (2014), 861-879)報導了一種針對突觸核蛋白病變之下一代主動免疫接種方法,該方法使用短的免疫原性(B細胞反應)肽,該等肽太短而無法誘導T細胞反應(自體免疫)且不攜載原生抗原決定基,而攜載模擬原始抗原決定基之序列(例如寡聚α突觸核蛋白),以及該方法對帕金森氏症(Parkinson's disease;PD)臨床試驗之影響。Mandler等人(Mol. Neurodegen. 10 (2015), 10)報導,針對α突觸核蛋白之主動免疫接種改善多發性系統萎縮症(MSA)之模型中的退化性病變且預防脫髓鞘。Jin等人(Vaccine 36 (2018), 5235-5244)主要圍繞佐劑性、結構-活性關係及受體識別特性方面綜述了作為潛在免疫佐劑之β-葡聚糖。WO 2022/060487 A1揭示了一種用於治療神經退化性疾病之包含特異性α突觸核蛋白肽之疫苗。WO 2022/060488 A1揭示了一種用於治療AD的包含澱粉樣蛋白-β及α突觸核蛋白肽之多抗原決定基疫苗。US 2009/169549 A1揭示了α突觸核蛋白之修飾形式之構形異構體,其藉由將半胱胺酸引入α突觸核蛋白多肽且擾亂雙硫鍵以形成穩定及免疫原性的異構體而產生。WO 2009/103105 A2揭示了具有自原生α突觸核蛋白序列中之胺基酸D115延伸至胺基酸N122之α突觸核蛋白抗原決定基之模擬抗原決定基的疫苗。 US 2013/171187 A1 discloses an immunogenic composition comprising a glucan and a pharmaceutically acceptable carrier to induce protective anti-glucan antibodies. Metwali et al. (Am. J. Respir. Crit. Care Med. 185 (2012), A4152; poster session C31 Regulation of Lung Inflammation) studied the immunomodulatory effects of glucan derivatives in pneumonia. WO 2021/236809 A2 discloses a multi-antigen determinant vaccine comprising amyloid-β and tau peptide for the treatment of Alzheimer's disease (AD). US 2017/369570 A1 discloses β-(1,6)-glucan linked to antibodies against cells present in the tumor microenvironment. US 2002/077288 A1 discloses synthetic immunogenic but non-amyloid peptides homologous to amyloid-β for the treatment of AD, either alone or in combination. US 2013/171187 A1 discloses anti-glucan antibodies for use as protective agents against fungal infections of Candida albicans. WO 2004/012657 A2 discloses microparticle β-glucan as a vaccine adjuvant. CN 113616799 A discloses a vaccine carrier composed of oxidized mannopolysaccharide and a cationic polymer. CN 111514286 A discloses a Zika virus E protein conjugate vaccine with glucan. US 4,590,181 A discloses a viral antigen mixed in a solution with agar polysaccharide or mold glucan. Lang et al. (Front. Chem. 8 (2020): 284) reviewed carbohydrate conjugates in vaccine development. Larsen et al. (Vaccines 8 (2020): 226) reported that Psoralea corylifolia polysaccharide activated dendritic cells derived from chicken bone marrow in vitro and promoted ex vivo CD4 + T cell recall responses to infectious bronchitis virus. US 2010/266626 A1 discloses glucans, preferably laminarin and calanin, as antigens bound to adjuvants for immunization against fungi. Mandler et al. (Alzh. Dement. 15 (2019), 1133-1148) reported the effects of single and combined immunotherapy approaches targeting amyloid-β and α-synuclein in a model of Lewy body dementia. Mandler et al. (Acta Neuropathol. 127 (2014), 861-879) reported a next-generation active immunization approach against synuclein pathologies that uses short immunogenic (B cell reactive) peptides that are too short to induce T cell responses (autoimmunity) and that do not carry native antigenic determinants but carry sequences that mimic the original antigenic determinants (e.g., oligomeric α-synuclein), and the impact of this approach on clinical trials in Parkinson's disease (PD). Mandler et al. (Mol. Neurodegen. 10 (2015), 10) reported that active immunization against α-synaptotagmin ameliorated degenerative lesions and prevented demyelination in a model of multiple systemic atrophy (MSA). Jin et al. (Vaccine 36 (2018), 5235-5244) reviewed β-glucan as a potential immune adjuvant, mainly focusing on adjuvant properties, structure-activity relationships and receptor recognition properties. WO 2022/060487 A1 discloses a vaccine comprising a specific α-synaptotagmin peptide for the treatment of neurodegenerative diseases. WO 2022/060488 A1 discloses a multi-antigen determinant vaccine comprising amyloid-β and α-synaptotagmin peptides for the treatment of AD. US 2009/169549 A1 discloses conformational isomers of modified forms of alpha-synuclein, which are produced by introducing cysteine into the alpha-synuclein polypeptide and disrupting the disulfide bonds to form stable and immunogenic isomers. WO 2009/103105 A2 discloses a vaccine having a mimetic antigenic determinant of an alpha-synuclein antigenic determinant extending from amino acid D115 to amino acid N122 in the native alpha-synuclein sequence.

到目前為止,尚未公佈有報告證明構築或使用與β-葡聚糖,尤其是對dectin-1具有高結合特異性/能力的線性β-葡聚糖及/或石耳多醣偶合的個別B細胞或T細胞抗原決定基肽,由此形成依本申請中所提出的新穎新糖結合物。To date, there has been no published report demonstrating the construction or use of individual B cell or T cell antigenic determinant peptides coupled to β-glucan, especially linear β-glucan and/or Psoralea corylifolia polysaccharide having high binding specificity/capacity for dectin-1, thereby forming the novel neoglycoconjugate proposed in the present application.

因此,本發明之一個目標為提供改良型疫苗,作為由疫苗接種抗原與基於碳水化合物之CLEC佐劑結合而製成的結合物疫苗形式,尤其是提供相較於目前先進技術之結合物疫苗在接種個體中提供經改善之免疫反應的疫苗,尤其是基於碳水化合物之CLEC-肽/蛋白質結合物疫苗。It is therefore an object of the present invention to provide improved vaccines in the form of conjugate vaccines made from a vaccination antigen in combination with a carbohydrate-based CLEC adjuvant, and in particular to provide vaccines that provide an improved immune response in vaccinated individuals compared to current state-of-the-art conjugate vaccines, in particular carbohydrate-based CLEC-peptide/protein conjugate vaccines.

本發明之另一目標為提供疫苗組合物,其使用CLEC骨架賦予短、易互換、高度特異性的B/T細胞抗原決定基免疫性,有習知疫苗先前所不能滿足的功效、特異性及親和力。Another object of the present invention is to provide vaccine compositions that use the CLEC backbone to confer short, easily interchangeable, highly specific B/T cell antigenic determinant immunity with efficacy, specificity and affinity that have not previously been met by conventional vaccines.

本發明之一特定目標為提供用於真皮區室之疫苗,其具有經改良之基於CLEC之疫苗的選擇性及/或特異性。A specific aim of the present invention is to provide a vaccine for the dermal compartment with improved selectivity and/or specificity of CLEC-based vaccines.

本發明之另一目標為提供疫苗,其儘可能專門地誘導目標特異性免疫反應,同時不誘導或僅誘導非常有限之CLEC特異性或載體蛋白特異性抗體反應。Another object of the present invention is to provide a vaccine which induces a target-specific immune response as specifically as possible, while inducing no or only very limited CLEC-specific or carrier protein-specific antibody responses.

本發明之另一目標為提供用於適當預防及治療突觸核蛋白病變的疫苗組合物,其使用CLEC骨架賦予α突觸核蛋白之短、易互換、高度特異性的B/T細胞抗原決定基免疫性,有習知疫苗先前所不能滿足的功效、特異性及親和力。Another object of the present invention is to provide vaccine compositions for the appropriate prevention and treatment of alpha-synuclein pathologies, which use a CLEC backbone to confer short, easily interchangeable, highly specific B/T cell antigenic determinant immunity to alpha-synuclein with efficacy, specificity and affinity that were previously unsatisfactory with conventional vaccines.

本發明之一特定目標為提供用於真皮區室之α突觸核蛋白疫苗,其具有經改良之基於CLEC之疫苗的選擇性及/或特異性。A particular object of the present invention is to provide an alpha-synuclein vaccine for use in the dermal compartment having improved selectivity and/or specificity of CLEC-based vaccines.

本發明之另一目標為提供疫苗,其儘可能專門地誘導α突觸核蛋白特異性免疫反應,同時不誘導或僅誘導非常有限之CLEC特異性或載體蛋白特異性抗體反應。Another object of the present invention is to provide a vaccine that induces an alpha-synuclein-specific immune response as specifically as possible while inducing no or only a very limited CLEC-specific or carrier protein-specific antibody response.

本發明之另一目標為提供α突觸核蛋白(aSyn)之肽免疫原構築體及其調配物以用於治療突觸核蛋白病變。Another object of the present invention is to provide peptide immunogen constructs of alpha-synuclein (aSyn) and formulations thereof for use in treating synuclein pathologies.

因此,本發明提供一種β-葡聚糖,其用作B細胞及/或T細胞抗原決定基多肽之C型凝集素(CLEC)多醣佐劑,較佳地,其中該β-葡聚糖共價結合於B細胞及/或T細胞抗原決定基多肽以形成β-葡聚糖與B細胞及/或T細胞抗原決定基多肽之結合物,其中該β-葡聚糖為主要呈線性的β-(1,6)-葡聚糖,其β-(1,6)偶合之單醣部分與非β-(1,6)偶合之單醣部分之比率為至少1:1、較佳為至少2:1、更佳為至少5:1、尤其是至少10:1。Therefore, the present invention provides a β-glucan for use as a C-type lectin (CLEC) polysaccharide adjuvant for B cell and/or T cell antigenic determinant polypeptides, preferably, wherein the β-glucan is covalently bound to the B cell and/or T cell antigenic determinant polypeptide to form a conjugate of β-glucan and B cell and/or T cell antigenic determinant polypeptide, wherein the β-glucan is a predominantly linear β-(1,6)-glucan having a ratio of β-(1,6)-coupled monosaccharide moieties to non-β-(1,6)-coupled monosaccharide moieties of at least 1:1, preferably at least 2:1, more preferably at least 5:1, and especially at least 10:1.

藉由本發明,成功地解決上文所列之一或多個目標。此對於熟習此項技術者為出人意料的,因為迄今為止,在本發明技術領域中未公佈有報告證明與根據本發明之新穎、小型、模組化新糖結合物相似之化合物的構築及適用性或功效。The present invention successfully solves one or more of the above-listed objectives. This is surprising to those skilled in the art because, to date, no reports have been published in the art that demonstrate the structure and applicability or efficacy of compounds similar to the novel, small, modular new sugar conjugates according to the present invention.

出人意料地,經本發明展示,藉由將肽/蛋白質與根據本發明之所選CLEC載劑之結合(亦即,藉由共價偶合;在本文中以同義使用),其中該結合可基於目前先進技術化學作用,獲得實現免疫反應之優良醫藥調配物。在本發明技術領域中,有大量不同偶合方法可用。在本發明之建立過程中,已鑑別出腙形成或經由異雙官能連接子之偶合係特定較佳方法。一般而言,需要在結合之前活化CLEC (例如在糖部分之鄰位OH基團上形成具反應性的醛)及所選肽/蛋白質上存在反應性基團(例如N端或C端的醯肼殘基、SH基團(例如經由N端或C端半胱胺酸))。反應可為單一步驟反應(例如混合活化之CLEC與醯肼-肽,引起腙形成)或多步驟製程(例如:活化之CLEC與來自異雙官能連接子之醯肼反應,且隨後肽/蛋白質經由各別反應性基團偶合)。Surprisingly, it has been demonstrated by the present invention that by conjugation (i.e., by covalent coupling; used synonymously herein) of a peptide/protein to a selected CLEC carrier according to the present invention, wherein said conjugation can be based on currently state-of-the-art chemistry, superior pharmaceutical formulations are obtained that achieve an immune response. In the art, a large number of different conjugation methods are available. During the development of the present invention, hydrazone formation or conjugation via a heterobifunctional linker has been identified as a particularly preferred method. In general, activation of the CLEC (e.g., formation of a reactive aldehyde on the vicinal OH group of the sugar moiety) and the presence of a reactive group on the selected peptide/protein (e.g., a hydrazide residue at the N-terminus or C-terminus, an SH group (e.g., via an N-terminal or C-terminal cysteine)) are required prior to conjugation. The reaction can be a single step reaction (e.g. mixing activated CLEC with hydrazide-peptide to cause hydrazone formation) or a multi-step process (e.g. reacting activated CLEC with hydrazide from a heterobifunctional linker and subsequent coupling of peptides/proteins via the respective reactive groups).

因此,本發明之結合物之各成分可彼此直接偶合,例如藉由使B細胞抗原決定基及/或T細胞抗原決定基與β-葡聚糖及/或載體蛋白偶合或藉由使β-葡聚糖與載體蛋白偶合(在所有可能的方向上)。本文中提及「B細胞抗原決定基多肽」或「T細胞抗原決定基多肽」默認意謂「B細胞抗原決定基多肽」或「T細胞抗原決定基多肽」之B細胞或T細胞抗原決定基,且不意謂載體蛋白(若存在)之B細胞或T細胞抗原決定基,除非其明確稱為載體蛋白之B細胞或T細胞抗原決定基。根據一較佳實施例,B細胞抗原決定基及/或T細胞抗原決定基較佳藉由連接子連接於β-葡聚糖或甘露多醣及/或載體蛋白,更佳為半胱胺酸殘基或包含半胱胺酸或甘胺酸殘基之連接子;由以下方式產生之連接子:醯肼介導之偶合、經由異雙官能連接子(如N-β-順丁烯二醯亞胺基丙酸醯肼(BMPH)、4-[4-N-順丁烯二醯亞胺基苯基]丁酸醯肼(MPBH)、N-[ε-順丁烯二醯亞胺基己酸)醯肼(EMCH)或N-[κ-順丁烯二醯亞胺基十一酸]醯肼(KMUH))之偶合、咪唑介導之偶合、還原胺化、碳二亞胺偶合一-NH-NH 2連接子、一NRRA、NRRA-C或NRRA-NH-NH 2連接子、肽連接子,如二聚體、三聚體、四聚體(或更長聚體)肽群,如CG或CG、或裂解位點,如組織蛋白酶裂解位點、或其組合,尤其是藉由半胱胺酸或NRRA-NH-NH 2連接子。顯而易見地,「由(例如)醯肼介導之偶合產生之連接子」係指在結合之後結合物中所得的化學結構,亦即結合之後存在於所得結合物中的化學結構。胺基酸連接子可用肽鍵(例如含有甘胺酸之連接子)或經由胺基酸之官能基(如半胱胺酸連接子之雙硫鍵)以結合形式存在。 Thus, the components of the conjugates of the invention can be coupled directly to each other, for example by coupling B cell epitopes and/or T cell epitopes to β-glucan and/or carrier proteins or by coupling β- Dextran is coupled to the carrier protein (in all possible orientations). References herein to "B cell epitope polypeptide" or "T cell epitope polypeptide" default to the B cell or T cell epitope of "B cell epitope polypeptide" or "T cell epitope polypeptide" , and does not imply a B-cell or T-cell epitope of the carrier protein (if present), unless it is expressly referred to as a B-cell or T-cell epitope of the carrier protein. According to a preferred embodiment, the B cell epitope and/or the T cell epitope are preferably connected to β-glucan or mannan and/or carrier protein through a linker, more preferably a cysteine residue. or linkers containing cysteine or glycine residues; linkers produced by: hydrazine-mediated coupling, via heterobifunctional linkers such as N-β-maleic acid amide Aminopropionic acid hydrazine (BMPH), 4-[4-N-maleyl iminophenyl]butyric acid hydrazine (MPBH), N-[ε-maleyl iminohexyl Coupling of acid) hydrazine (EMCH) or N-[κ-maleimidodecanoic acid] hydrazine (KMUH)), imidazole-mediated coupling, reductive amination, carbodiimide coupling- -NH- NH2 linker, -NRRA, NRRA-C or NRRA-NH- NH2 linker, peptide linker, such as dimer, trimer, tetramer (or longer polymer) peptide group, Such as CG or CG, or a cleavage site, such as a cathepsin cleavage site, or a combination thereof, especially via a cysteine or NRRA-NH- NH2 linker. Obviously, "linker resulting from coupling mediated by, for example, chelazine" refers to the chemical structure resulting in the conjugate after binding, ie, the chemical structure present in the resulting conjugate after binding. The amino acid linker may exist in a conjugated form via a peptide bond (eg, a linker containing glycine) or via a functional group of the amino acid (eg, a disulfide bond in a cysteine linker).

根據本發明之新穎類別之結合物被證明可藉由使用本發明之CLEC骨架賦予短、易互換、高度特異性的B細胞/T細胞抗原決定基免疫性,顯示出習知疫苗先前所不能滿足的功效、特異性及親和力:實際上,根據本發明之結合物為在基於CLEC之疫苗中使用短B細胞/T細胞抗原決定基之首個實例,避免了以融合蛋白形式呈遞抗原決定基之需要,包括形成抗原決定基之串聯重複序列或不同串聯重複序列之融合以形成穩定且有效的免疫原(如上面提到的使用甘露多醣的MUC1方法所必需的)。Novel classes of conjugates according to the present invention are demonstrated to confer immunity to short, easily interchangeable, highly specific B cell/T cell epitopes by using the CLEC backbone of the present invention, demonstrating previously unsatisfactory capabilities of conventional vaccines. Efficacy, specificity and affinity: In fact, the conjugates according to the invention are the first examples of the use of short B-cell/T-cell epitopes in CLEC-based vaccines, avoiding the need to present the epitopes in the form of fusion proteins. Requirements include tandem repeats forming epitopes or fusion of different tandem repeats to form a stable and potent immunogen (as required for the MUCl approach using mannans mentioned above).

藉由本發明,亦可避免將全長蛋白質用於CLEC疫苗(亦即,葡聚糖顆粒(GP)中之有效負載)的必要性。此外,亦可避免在使用CLEC時自體免疫反應之問題,尤其是由存在於免疫原(如自體蛋白)中之(不合需要之) T細胞抗原決定基(例如:Syn、澱粉樣蛋白β等中之T細胞抗原決定基)或混合自體抗原決定基(例如:用作免疫原之MUC1-串聯重複序列)所誘導的免疫反應。By the present invention, the necessity of using full-length proteins for CLEC vaccines (i.e., the payload in glucan particles (GP)) can also be avoided. In addition, the problem of autoimmune reactions when using CLEC can be avoided, especially those caused by (undesirable) T cell epitopes (e.g., Syn, amyloid beta) present in immunogens (e.g., autologous proteins). Immune responses induced by T cell epitopes in T cell epitopes) or mixed autologous epitopes (e.g., MUCl-tandem repeats used as immunogens).

根據本發明,短抗原決定基(B細胞及/或T細胞抗原決定基,主要是肽,經修飾的肽)可使用基於公認化學作用之共價偶合首次與基於CLEC之功能性骨架結合,其中可能的結合方法可基於本領域熟知的方法適應特定抗原決定基之要求。According to the present invention, short antigenic determinants (B cell and/or T cell antigenic determinants, mainly peptides, modified peptides) can be conjugated for the first time to a functional CLEC-based scaffold using covalent coupling based on recognized chemistry, wherein the possible conjugation methods can be adapted to the requirements of the specific antigenic determinant based on methods well known in the art.

根據本發明之短肽之呈遞可以與個別的外來T細胞抗原決定基組合的單獨結合部分(呈短肽或長蛋白)形式,或以與較大載體分子的複合體/結合物形式進行以提供T細胞抗原決定基誘導可持續的免疫反應。根據本發明之疫苗的設計實現製備多價結合物作為藉由高效B細胞受體(BCR)交聯誘導的高效免疫反應之前提條件。The presentation of short peptides according to the present invention can be carried out in the form of a single binding moiety (in the form of a short peptide or a long protein) combined with individual foreign T cell antigen determinants, or in the form of a complex/conjugate with a larger carrier molecule to provide T cell antigen determinants to induce a sustainable immune response. The design of the vaccine according to the present invention enables the preparation of multivalent conjugates as a prerequisite for the efficient immune response induced by efficient B cell receptor (BCR) cross-linking.

此外,藉由本發明,可提供對真皮區室具有極佳選擇性/特異性的基於CLEC之疫苗。實際上,根據本發明之結合物設計建立在CLEC作為目標特異性抗原決定基之載體上,該等抗原決定基對真皮APC/DC上之PRR顯示出高度結合特異性,尤其是dectin-1 (或甘露多醣的MR及DC-SIGN)上,以實現皮膚選擇性/特異性及受體介導之吸收(=靶向疫苗遞送)。Furthermore, with the present invention, a CLEC-based vaccine with excellent selectivity/specificity for the dermal compartment can be provided. In fact, the conjugate design according to the present invention is based on CLEC as a carrier of target-specific epitopes that show high binding specificity for PRRs on dermal APC/DC, especially dectin-1 ( or MR and DC-SIGN of mannan) to achieve skin selectivity/specificity and receptor-mediated absorption (=targeted vaccine delivery).

用作根據本發明之載體的CLEC多醣用於將載體-肽結合物集中至較佳真皮/皮膚DC中且啟動免疫反應。此尤其歸因於表皮或真皮(非皮下)特異性。根據本發明之CLEC骨架及有效真皮免疫反應啟動亦有助於避免強制使用佐劑,該等佐劑對於習知疫苗為典型的且亦用於例示性的基於CLEC之疫苗中(例如:使用Alum、MF59、CFA、PolyI:C或其他佐劑)。根據本發明之一較佳實施例,佐劑之使用可顯著減少或省去,例如在不指示添加佐劑之情況下。The CLEC polysaccharide used as a carrier according to the present invention serves to concentrate the carrier-peptide conjugate into optimal dermal/skin DC and initiate an immune response. This is particularly due to epidermal or dermal (not subcutaneous) specificity. The CLEC backbone and efficient dermal immune response priming according to the present invention also help to avoid the mandatory use of adjuvants that are typical for conventional vaccines and are also used in exemplary CLEC-based vaccines (e.g., using Alum , MF59, CFA, PolyI:C or other adjuvants). According to a preferred embodiment of the present invention, the use of adjuvants can be significantly reduced or eliminated, for example, when the addition of adjuvants is not indicated.

若干CLEC已被用於先前應用中,但是所提出的結合物結構中無一者可賦予皮膚選擇性(亦即,高dectin-1結合能力),高效的真皮DC靶向,以及與所有其他途徑(亦即,皮下、肌肉內及腹膜內)相比,對於真皮施用的優良免疫原性。Several CLECs have been used in previous applications, but none of the proposed conjugate structures could confer skin selectivity (i.e., high dectin-1 binding capacity), efficient dermal DC targeting, and superior immunogenicity for dermal administration compared to all other routes (i.e., subcutaneous, intramuscular, and intraperitoneal).

已選擇根據本發明之CLEC以提供新穎的解決方案來高效靶向皮膚特異性DC及皮膚特異性免疫接種。根據本發明之結合物還在其他經典接種組織如肌肉或皮下組織中發揮有限的免疫活性,其與先前描述的基於CLEC之疫苗/候選疫苗在肌肉注射或皮下注射的應用形成對比。作為在本發明之過程中進行的實驗之結果,根據本發明之疫苗,尤其使用石耳多醣作為CLEC之疫苗被鑑別為對皮膚免疫接種具有出人意料的選擇性。The CLEC according to the present invention has been selected to provide a novel solution to efficiently target skin-specific DCs and skin-specific immunization. The conjugate according to the present invention also exerts limited immunological activity in other classical vaccination tissues such as muscle or subcutaneous tissue, which is in contrast to the use of previously described CLEC-based vaccines/candidate vaccines in intramuscular or subcutaneous injections. As a result of experiments conducted during the course of the present invention, the vaccines according to the present invention, especially the vaccines using Psoralea corylifolia polysaccharide as CLEC, were identified as having unexpected selectivity for skin immunization.

本發明涉及任何В細胞及/或T細胞抗原決定基多肽及任何主要呈線性的β-(1,6)-葡聚糖,其(1,6)偶合之單醣部分與非β-(1,6)偶合之單醣部分之比率為至少1:1。亦如以下實例部分中所示,本教示內容實現且支持任何В細胞及/或T細胞抗原決定基多肽且尚未揭示關於此類抗原決定基之任何限制,尤其在抗原決定基已經為先前技術及/或現有抗原決定基之一部分的情況下。如本文中所示及提及之特異性В細胞及/或T細胞抗原決定基多肽為較佳抗原決定基,但本發明不限於此。在本發明之過程中迄今為止測試過之許多抗原決定基(見實例部分中研究及實驗證實的功能及結構非常多樣化的抗原決定基群(包括大量的模型抗原決定基))之後,對B細胞及/或T細胞抗原決定基之性質及結構沒有限制出現(線性多肽、自體肽、具有轉譯後修飾之多肽,諸如糖結構或焦麩胺酸、模擬抗原決定基、過敏原、結構性抗原決定基、構形抗原決定基等),尤其是對於作為β-(1,6)-葡聚糖的石耳多醣。在各情況下,實驗表明,根據本發明之β-葡聚糖及與抗原決定基多肽之共價結合負責免疫效能,而非由個別抗原決定基之具體結構特徵負責。The present invention relates to any V cell and/or T cell epitope polypeptide and any predominantly linear β-(1,6)-glucan having a ratio of (1,6)-coupled monosaccharide moieties to non-β-(1,6)-coupled monosaccharide moieties of at least 1:1. As also shown in the Examples section below, the present teachings enable and support any V cell and/or T cell epitope polypeptide and do not disclose any limitations with respect to such epitopes, particularly where the epitope is already part of a prior art and/or existing epitope. The specific V cell and/or T cell epitope polypeptides as shown and mentioned herein are preferred epitopes, but the present invention is not limited thereto. After the many epitopes tested so far in the course of the invention (see the group of epitopes with a very diverse function and structure investigated and experimentally confirmed in the Examples section (including a large number of model epitopes)), no restrictions on the nature and structure of the B-cell and/or T-cell epitopes appeared (linear polypeptides, autologous peptides, polypeptides with post-translational modifications, such as sugar structures or pyroglutamine, mimetic epitopes, allergens, structural epitopes, conformational epitopes, etc.), especially for Psoralea corylifolia as a β-(1,6)-glucan. In each case, the experiments showed that the β-glucan according to the invention and the covalent binding to the epitope polypeptide were responsible for the immunological efficacy, rather than the specific structural features of the individual epitopes.

如本文所用,術語「В細胞及/或T細胞抗原決定基」為本發明技術領域中之公認的功能性術語:T細胞抗原決定基呈現於抗原呈遞細胞之表面上,在此其結合於主要組織相容複合體(MHC)分子。在人體中,專業抗原呈遞細胞係專門呈遞II類MHC肽,而大部分成核體細胞呈遞I類MHC肽。由I類MHC分子呈遞之T細胞抗原決定基通常為長度在8與11個胺基酸之間的肽,而II類MHC分子呈遞較長的肽(長度為13至17個胺基酸),且非經典MHC分子亦呈遞非肽抗原決定基,如醣脂。B細胞抗原決定基為免疫球蛋白或抗體所結合之抗原之一部分。B細胞抗原決定基可為例如構形或線性的。As used herein, the term "B-cell and/or T-cell epitope" is a functional term recognized in the technical field of the present invention: T-cell epitopes are presented on the surface of antigen-presenting cells, where they bind to primary Histocompatibility complex (MHC) molecules. In humans, professional antigen-presenting cell lines exclusively present class II MHC peptides, whereas most nucleating somatic cells present class I MHC peptides. T cell epitopes presented by MHC class I molecules are typically peptides between 8 and 11 amino acids in length, whereas MHC class II molecules present longer peptides (13 to 17 amino acids in length). And non-classical MHC molecules also present non-peptide epitopes, such as glycolipids. A B cell epitope is part of the antigen to which an immunoglobulin or antibody binds. B cell epitopes may be, for example, conformational or linear.

根據本發明之一較佳實施例,根據本發明之結合物包含具有至少一個B細胞抗原決定基及至少一個T細胞抗原決定基之多肽,較佳為共價連接於β-葡聚糖之B細胞抗原決定基+CRM197結合物,尤其是肽+CRM197+線性β-(1,6)-葡聚糖或肽+CRM197+線性石耳多醣結合物。According to a preferred embodiment of the present invention, the conjugate according to the present invention comprises a polypeptide having at least one B cell antigenic determinant and at least one T cell antigenic determinant, preferably a B cell antigenic determinant + CRM197 conjugate covalently linked to β-glucan, in particular a peptide + CRM197 + linear β-(1,6)-glucan or a peptide + CRM197 + linear Pseudomonas aeruginosa polysaccharide conjugate.

較佳的葡聚糖與肽的比率,尤其是石耳多醣與肽的比率在10至1(w/w)至0.1至1(w/w)、較佳為8至1(w/w)至2至1(w/w)、尤其是4至1(w/w)範圍內,其限制條件為若結合物包含載體蛋白,則β-葡聚糖或甘露多醣與B細胞抗原決定基-載體多肽之較佳比率為50:1 (w/w)至0.1:1(w/w),尤其是10:1至0.1:1。The preferred ratio of glucan to peptide, especially the ratio of Shi fungus polysaccharide to peptide is 10 to 1 (w/w) to 0.1 to 1 (w/w), preferably 8 to 1 (w/w) to the range of 2 to 1 (w/w), especially 4 to 1 (w/w), with the proviso that if the conjugate includes a carrier protein, β-glucan or mannan and the B cell epitope - The preferred ratio of carrier polypeptide is 50:1 (w/w) to 0.1:1 (w/w), especially 10:1 to 0.1:1.

藉由本發明,就有可能在不誘導或僅誘導非常有限的CLEC或載體蛋白特異性抗體反應的同時專注於誘導目標特異性免疫反應。因此,根據本發明之結合物解決了經典結合物疫苗所帶來的問題,該等經典疫苗必須依靠使用外來載體蛋白來誘導可持續的免疫反應。目前先進技術結合物疫苗研發很大程度上建立在如KLH、CRM197、破傷風類毒素或其他適合蛋白質之載體分子上,該等載體分子與目標特異性短抗原複合,為針對不同目標疾病之免疫反應遞送受質,如感染性、退化性或贅生性疾病,包括例如Her2-neu陽性癌症;為突觸核蛋白病變(如帕金森氏症)遞送α突觸核蛋白;為澱粉樣變性病(如阿茲海默症)遞送類澱粉蛋白β肽;為tau蛋白病變(包括阿茲海默症)之治療遞送Tau蛋白;為高膽固醇血症遞送PCSK9;為牛皮癬遞送IL23;為額顳葉退化(FTLD)及肌肉萎縮性側索硬化症(ALS)遞送TDP43及FUS;為亨丁頓舞蹈症(Huntington's disease)、免疫球蛋白輕鏈及重鏈澱粉樣變性病(AL、AH、AA)遞送(突變型)亨丁頓蛋白;為2型糖尿病遞送胰島澱粉樣蛋白多肽(IAPP)及澱粉素;為ATTR/甲狀腺素運載蛋白澱粉樣變性病遞送(突變型)甲狀腺素運載蛋白;及其他。With the present invention, it is possible to focus on inducing a target-specific immune response while inducing no or only a very limited CLEC- or carrier protein-specific antibody response. Therefore, the conjugates according to the present invention solve the problems posed by classical conjugate vaccines, which must rely on the use of foreign carrier proteins to induce a sustainable immune response. The current development of advanced technology conjugate vaccines is largely based on carrier molecules such as KLH, CRM197, tetanus toxoid or other suitable proteins. These carrier molecules are complexed with target-specific short antigens to form immune responses against different target diseases. Delivery to substrates, such as infectious, degenerative or neoplastic diseases, including, for example, Her2-neu positive cancer; delivery of alpha synuclein for synucleinopathies (e.g., Parkinson's disease); delivery of amyloidosis (e.g., Deliver amyloid beta peptides for Alzheimer's disease); Deliver tau protein for the treatment of tauopathies, including Alzheimer's disease; Deliver PCSK9 for hypercholesterolemia; Deliver IL23 for psoriasis; Deliver frontotemporal lobar degeneration ( FTLD) and amyotrophic lateral sclerosis (ALS); deliver TDP43 and FUS for Huntington's disease, immunoglobulin light chain and heavy chain amyloidosis (AL, AH, AA) ( Mutant) huntingtin; delivery of islet amyloid polypeptide (IAPP) and amyloid for type 2 diabetes; delivery of (mutant) transthyretin for ATTR/transthyretin amyloidosis; and others.

鑒於先前技術之指導,其中β-葡聚糖,尤其是主要呈線性的β-(1,6)-葡聚糖本身主要作為抗原被用於引起針對存在此類β-葡聚糖之真菌的特異性免疫反應,因此根據本發明之結合物及包含此等結合物之疫苗的免疫效能及效率亦為意想不到且出人意料的(參見例如US 2013/171187 A1;Metwali等人, Am. J. Respir. Crit. Care Med. 185 (2012), A4152; poster session C31;US 2013/171187 A1;US 2010/266626 A1;Jin等人(Vaccine 36 (2018), 5235-5244))。然而,透過本發明,證實根據本發明之結合物無法誘導對β-葡聚糖之顯著免疫反應,但由於本發明結合物之架構,免疫反應轉移至與β-葡聚糖共價結合之B細胞及/或T細胞抗原決定基多肽。將此等B細胞及/或T細胞抗原決定基多肽與線性β-葡聚糖結合,似乎隱藏了β-葡聚糖之免疫反應引發能力,但暴露且大大改善了共價偶合之B細胞及/或T細胞抗原決定基多肽對免疫系統的呈遞。此教示內容既未揭示於先前技術中,亦未經此類先前技術顯而易見:In view of the guidance of the prior art, β-glucans, especially mainly linear β-(1,6)-glucans themselves, are mainly used as antigens to cause infection against fungi in which such β-glucans are present. The specific immune response, and therefore the immune potency and efficiency of the conjugates according to the invention and vaccines comprising such conjugates are also unexpected and unexpected (see, e.g., US 2013/171187 A1; Metwali et al., Am. J. Respir . Crit. Care Med. 185 (2012), A4152; poster session C31; US 2013/171187 A1; US 2010/266626 A1; Jin et al. (Vaccine 36 (2018), 5235-5244)). However, through the present invention, it was confirmed that the conjugate according to the present invention was unable to induce a significant immune response to β-glucan, but due to the structure of the conjugate of the present invention, the immune response was transferred to B covalently bound to β-glucan. Cellular and/or T cell epitope polypeptides. Combining these B cell and/or T cell epitope peptides with linear β-glucan seems to hide the immune response inducing ability of β-glucan, but exposes and greatly improves the covalently coupled B cells and /or presentation of T cell epitope peptides to the immune system. This teaching is neither disclosed in the prior art nor obvious from such prior art:

揭示與針對腫瘤微環境中所存在之細胞的抗體連接之β-(1,6)-葡聚糖的US 2017/369570 A1係基於完全不同的概念及機制(腫瘤治療)。US 2017/369570 A1, which discloses beta-(1,6)-glucan linked to antibodies directed against cells present in the tumor microenvironment, is based on a completely different concept and mechanism (tumor therapy).

另一方面,葡聚糖用作疫苗中之成分(大部分呈「(脂質體)葡聚糖(奈米)顆粒」),但沒有將B細胞及/或T細胞抗原決定基多肽共價偶合於葡聚糖(例如WO 2004/012657 A2;CN 113616799 A;US 4,590,181 A;Lang等人, Front. Chem. 8 (2020): 284;Larsen等人, Vaccines 8 (2020): 226)。On the other hand, dextran is used as a component in vaccines (mostly in the form of "(liposome) dextran (nano) particles"), but without covalent coupling of B cell and/or T cell epitope peptides In dextran (for example, WO 2004/012657 A2; CN 113616799 A; US 4,590,181 A; Lang et al., Front. Chem. 8 (2020): 284; Larsen et al., Vaccines 8 (2020): 226).

最後,與根據WO 2022/060487 A1、WO 2022/060488 A1、US 2009/169549 A1、WO 2009/103105及CN 111514286 A (如β-(1,2)-葡萄糖或β-(1,3)-葡萄糖)的構築體及組合物相比,根據本發明之主要呈線性的β-(1,6)-葡萄糖之改善作用已經在下面的實例部分得到證實。Finally, according to WO 2022/060487 A1, WO 2022/060488 A1, US 2009/169549 A1, WO 2009/103105 and CN 111514286 A (such as β-(1,2)-glucose or β-(1,3)- The improved effect of predominantly linear β-(1,6)-glucose according to the present invention compared to constructs and compositions of glucose) has been demonstrated in the Examples section below.

鑒於本發明結合物之此等有利特性,因此根據本發明之結合物及疫苗可特定用於活性抗Tau蛋白疫苗接種,亦包括經歷截短、(過)磷酸化、硝化、糖基化及/或泛素化之變異體,以用於治療及預防Tau蛋白病變,尤其阿茲海默症及唐氏症候群(Down Syndrome),或其他tau蛋白病變,包括匹克氏病(Pick disease)、進行性核上麻痹(PSP)、皮質基底核退化症、17號染色體相關額顳葉型癡呆(FTDP-17)及嗜銀顆粒病。新出現的其他疾病實體及病變包括球狀神經膠質tau蛋白病變、原發性年齡相關之tau蛋白病變(PART),其包括神經原纖維纏結癡呆、慢性創傷性腦病(CTE)及年齡相關之tau星形膠質細胞病。另外,亦包含其他疾病實體,如液泡tau蛋白病變、神經節膠質細胞瘤及神經節瘤、關島型肌肉萎縮性側索硬化(lytico-bodig)病(關島型(Guam)帕金森-癡呆症候群)、腦膜血管瘤病、腦炎後型帕金森氏症及亞急性硬化性泛腦炎(SSPE)。In view of these advantageous properties of the conjugates of the present invention, the conjugates and vaccines according to the present invention can be specifically used for active anti-Tau protein vaccination, also including those undergoing truncation, (hyper)phosphorylation, nitration, glycosylation and/or Or ubiquitinated variants for the treatment and prevention of tau protein disorders, especially Alzheimer's disease and Down syndrome (Down Syndrome), or other tau protein disorders, including Pick disease (Pick disease), progressive Supranuclear palsy (PSP), corticobasal degeneration, chromosome 17-related frontotemporal dementia (FTDP-17), and argyrophilic granulopathy. Other emerging disease entities and pathologies include glomerular glial tauopathies, primary age-related tauopathies (PART), which include neurofibrillary tangle dementia, chronic traumatic encephalopathy (CTE), and age-related tau astrocytosis. In addition, other disease entities are included, such as vacuolar tauopathies, gangliogliomas and gangliomas, and Guam amyotrophic lateral sclerosis (lytico-bodig) disease (Guam Parkinson-dementia syndrome). , meningeal angiomatosis, postencephalitic parkinsonism, and subacute sclerosing panencephalitis (SSPE).

Tau蛋白病變通常與突觸核蛋白病變重疊,可能歸因於突觸核蛋白與tau蛋白之間的相互作用。因此,根據本發明之抗Tau結合物可特定用於針對突觸核蛋白病變,尤其帕金森氏症(PD)、路易氏體癡呆(DLB)及帕金森氏症癡呆(PDD)的活性抗Tau蛋白疫苗接種。Tauopathies often overlap with synucleinopathies, possibly due to interactions between synuclein and tau proteins. Therefore, the anti-Tau conjugates according to the invention can be specifically used as active anti-Tau against synucleinopathies, especially Parkinson's disease (PD), dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD). Protein vaccination.

抗Tau疫苗在單獨使用或與已有的針對β-澱粉樣變性、tau蛋白病變或突觸核蛋白病變所涉及的其他病理分子的肽疫苗組合使用時可能非常有效,特別是在混合病變情況下(即存在Aβ病變與Tau病變及/或aSyn病變)。因此,一較佳實施例提供抗Tau疫苗與抗Aβ及/或抗Syn肽疫苗之組合以治療退化性疾病,如阿茲海默症、唐氏症候群中之癡呆、路易氏體癡呆、帕金森氏症癡呆、帕金森氏症。Anti-Tau vaccines may be very effective when used alone or in combination with existing peptide vaccines targeting other pathological molecules involved in β-amyloidosis, tauopathy, or synucleinopathy, especially in mixed pathological conditions (i.e., the presence of Aβ pathology and Tau pathology and/or aSyn pathology). Therefore, a preferred embodiment provides a combination of anti-Tau vaccines with anti-Aβ and/or anti-Syn peptide vaccines to treat degenerative diseases such as Alzheimer's disease, dementia in Down syndrome, Lewy body dementia, Parkinson's disease dementia, Parkinson's disease.

根據一較佳實施例,Tau蛋白衍生多肽係選自原生人類Tau (441 aa同種型;GenBank條目>AAC04279.1;Seq ID No 或包含以下或由以下組成之多肽:源自人類Tau之胺基酸殘基,包括轉譯後修飾、磷酸化、雙磷酸化、過磷酸化、硝化、糖基化及/或泛素化)胺基酸,包括Tau2-18、Tau 176-186、Tau 181-210、Tau 200-207、Tau 201-230、Tau 210-218、Tau 213-221、Tau 225-234、Tau 235-246、Tau 251-280、Tau 256-285、Tau 259-288、Tau 275-304、Tau260-264、Tau 267-273、Tau294-305、Tau 298-304、Tau 300-317、Tau 329-335、Tau 361-367、Tau 362-366、Tau379 - 408、Tau 389-408、Tau 391-408、Tau 393-402、Tau 393-406、Tau393-408、Tau 418-426、Tau 420-426。 According to a preferred embodiment, the Tau protein-derived polypeptide is selected from native human Tau (441 aa isoform; GenBank entry>AAC04279.1; Seq ID No or a polypeptide comprising or consisting of: amino acid residues derived from human Tau, including post-translationally modified, phosphorylated, diphosphorylated, hyperphosphorylated, nitrated, glycosylated and/or ubiquitinated) amino acids, including Tau2-18, Tau 176-186, Tau 181-210, Tau 200-207, Tau 201-230, Tau 210-218, Tau 213-221, Tau 225-234, Tau 235-246, Tau 251-280, Tau 256-285, Tau 259-288, Tau 275-304, Tau260-264, Tau 267-273, Tau294-305, Tau 298-304, Tau 300-317, Tau 329-335, Tau 361-367, Tau 362-366, Tau379 - 408, Tau 389-408, Tau 391-408, Tau 393-402, Tau 393-406, Tau393-408, Tau 418-426, Tau 420-426.

根據一較佳實施例,Tau蛋白衍生多肽係選自上述之Tau衍生多肽之模擬物,包括模擬抗原決定基及含有模擬磷酸化胺基酸之胺基酸取代(包括經D取代磷酸化的S及經E取代磷酸化的T)的肽,分別包括Tau176-186、Tau200-207、Tau210-218、Tau213-221、Tau225-234、Tau379-408、Tau389-408、Tau391-408、Tau393-402、Tau393-406、Tau418-426、Tau420-426。According to a preferred embodiment, the Tau protein-derived polypeptide is selected from the above-mentioned Tau-derived polypeptide mimics, including simulated epitopes and amino acid substitutions containing simulated phosphorylated amino acids (including D-substituted phosphorylated S and peptides with E substituted phosphorylated T), including Tau176-186, Tau200-207, Tau210-218, Tau213-221, Tau225-234, Tau379-408, Tau389-408, Tau391-408, Tau393-402, respectively. Tau393-406, Tau418-426, Tau420-426.

US 2008/050383 A1以及Asuni等人(Journal of Neuroscience 34: 9115-9129)揭示了具有兩個磷酸化aas:pS396及pS404的Tau379-408適用於針對Tau病變之免疫療法之抗體且Boutajangout等人(J. Neurosci., 12月8日, 2010 30(49):16559 -16566)揭示使用相同抗原決定基:具有pSp396及pS404之雙磷酸化多肽Tau379-408與佐劑AdjuPhos組合在htau/PS1模型中之若干測試中與活性免疫治療劑一樣有效預防認知衰退,其與腦內病理性tau減少相關。Bi等人(2011, PLoS One 12: e26860.)亦表明,使用結合於KLH且用完全或不完全弗氏佐劑(Freund's adjuvant)作為佐劑的源自雙磷酸化序列Tau395-406 (具有pS396及pS404)的10聚體多肽進行Tau靶向免疫接種,阻止了老齡P301L Tau轉殖基因小鼠的神經原纖維組織病理學之進展。US 2008/050383 A1 and Asuni et al. (Journal of Neuroscience 34: 9115-9129) revealed that Tau379-408 with two phosphorylated aas: pS396 and pS404 is suitable for antibodies for immunotherapy against Tau pathology and Boutajangout et al. ( J. Neurosci., December 8, 2010 30(49):16559 -16566) revealed that the same epitope: dual phosphorylated peptide Tau379-408 with pSp396 and pS404 was combined with the adjuvant AdjuPhos in the htau/PS1 model In several tests, it was as effective as active immunotherapeutics in preventing cognitive decline, which is associated with pathological tau reduction in the brain. Bi et al. (2011, PLoS One 12: e26860.) also showed that using double-phosphorylated sequence Tau395-406 (with pS396) bound to KLH and adjuvanted with complete or incomplete Freund's adjuvant Tau-targeted immunization with the 10-mer peptide pS404 prevented the progression of neurofibrillary histopathology in aged P301L Tau transgenic mice.

Boimel M等人(2010; Exp Neurol 2: 472-485)表明,使用乳化於弗氏完全佐劑(CFA)及百日咳毒素中之雙磷酸化肽Tau195-213[pS202/pT205]、Tau207-220[pT212/pS214]及Tau224-238[pT231]可緩解動物中之Tau相關病變。Boimel M et al. (2010; Exp Neurol 2: 472-485) showed that the use of bis-phosphorylated peptides Tau195-213[pS202/pT205], Tau207-220[ pT212/pS214] and Tau224-238[pT231] can alleviate Tau-related pathologies in animals.

Troquier等人(2012 Curr Alzheimer Res 4: 397-405)表明,在THYTau22小鼠模型中藉由主動Tau免疫療法靶向Tau可為適合治療方法,因為可偵測到與使用Y迷宮之顯著認知改善相關的不溶性Tau物種(AT100及pS422免疫反應性)減少,該免疫療法使用人工肽構築體,其由融合於源自攜載pS422之人類Tau的7聚體(Tau418-426)或11聚體(Tau417-427)肽之N端YGG連接子組成,偶合於KLH且用CFA作為佐劑。Troquier et al. (2012 Curr Alzheimer Res 4: 397-405) showed that targeting Tau by active Tau immunotherapy in the THYTau22 mouse model could be a suitable therapeutic approach as a reduction in insoluble Tau species (AT100 and pS422 immunoreactivity) could be detected that correlated with significant cognitive improvements using a Y-maze. The immunotherapy used an artificial peptide construct consisting of an N-terminal YGG linker fused to a 7-mer (Tau418-426) or 11-mer (Tau417-427) peptide derived from human Tau carrying pS422, coupled to KLH and with CFA as adjuvant.

US 2015/0232524 A1以及Davtyan H等人(Sci Rep. 2016;6:28912, Vaccine. 2017;35:2015-24及Alzheimer's Research & Therapy (2019) 11:107)及Joly-Amado等人(Neurobiol Dis. 2020年2月; 134: 104636)揭示肽免疫原且顯示,疫苗AV-1980R及AV-1980D在不同tau蛋白病變模型中引起強免疫反應且減少tau病變,該二疫苗均基於MultiTEP平台,由融合於若干混雜T細胞抗原決定基之Tau2-18的3個重複序列組成,分別作為重組多肽或DNA疫苗。US 2015/0232524 A1 and Davtyan H et al (Sci Rep. 2016;6:28912, Vaccine. 2017;35:2015-24 and Alzheimer's Research & Therapy (2019) 11:107) and Joly-Amado et al (Neurobiol Dis . February 2020; 134: 104636) revealed peptide immunogens and showed that the vaccines AV-1980R and AV-1980D induced strong immune responses and reduced tau pathology in different tau pathology models. The two vaccines are based on the MultiTEP platform, developed by It consists of three repeating sequences of Tau2-18 fused to several mixed T cell epitopes, and is used as a recombinant polypeptide or DNA vaccine respectively.

EP 3 097 925 B1揭示由源自人類Tau441之磷酸肽組成的肽免疫原,且Theunis等人(2013, PLoS ONE 8(8): e72301)表明基於EP 3 097 925 B1,一種攜載Tau肽―Tau 393-408 (攜載pS396及pS402)之脂質體疫苗能夠引起抗磷酸Tau抗體,並伴隨著Tau.P301L小鼠之腦部中臨床病狀之改善及tau蛋白病變指標降低。EP 3 097 925 B1 discloses a peptide immunogen composed of a phosphopeptide derived from human Tau441, and Theunis et al. (2013, PLoS ONE 8(8): e72301) showed that based on EP 3 097 925 B1, a liposome vaccine carrying Tau peptide - Tau 393-408 (carrying pS396 and pS402) can induce anti-phospho-Tau antibodies, accompanied by improvement of clinical symptoms and reduction of tau protein pathology indicators in the brain of Tau.P301L mice.

Sun等人(Signal Transduction and Targeted Therapy (2021) 6:61)揭示了基於諾羅病毒P顆粒的各種免疫原。疫苗pTau31(由含有具有pS202及pT205之Tau195-213及具有pS396及pS404之Tau395-406的融合肽之顆粒組成)產生穩定pTau抗體,且可在Tau Tg動物模型中顯著減少tau病變且改善行為缺陷。Sun et al. (Signal Transduction and Targeted Therapy (2021) 6:61) disclosed various immunogens based on Norovirus P particles. The vaccine pTau31 (composed of particles containing fusion peptides of Tau195-213 with pS202 and pT205 and Tau395-406 with pS396 and pS404) produced stable pTau antibodies and could significantly reduce tau pathology and improve behavioral deficits in Tau Tg animal models.

EP 2 758 433 B1揭示用於干擾Tau病變之基於肽之免疫原。本發明揭示作為肽結合物疫苗(例如:作為肽KLH疫苗)之用途。Kontsekova等人(Alzheimer's Research & Therapy 2014, 6:44)揭示此類肽疫苗(亦即,Axon肽108 (Tau294-305;KDNIKHVPGGGS),結合於KLH且用Alum作為佐劑;亦稱為AADvac1)誘導穩定的保護性體液免疫反應,抗體區分病理tau與生理tau。主動免疫療法降低轉殖基因大鼠之腦部中tau寡聚物之水平及神經原纖維病變程度。EP 2 758 433 B1 discloses peptide-based immunogens for interfering with Tauopathies. The present invention discloses the use as a peptide conjugate vaccine (eg, as a peptide KLH vaccine). Kontsekova et al. (Alzheimer's Research & Therapy 2014, 6:44) reveal that such a peptide vaccine (i.e., Axon peptide 108 (Tau294-305; KDNIKHVPGGGS), conjugated to KLH and adjuvanted with Alum; also known as AADvac1) induces Stable protective humoral immune response, antibodies distinguish pathological tau from physiological tau. Active immunotherapy reduces tau oligomer levels and neurofibrillary pathology in the brains of transgenic rats.

儘管原則上,本發明能夠改良所有提出之Tau疫苗接種多肽,但根據其對本發明平台之適用性對所選抗原決定基進行特定評定。舉例而言,Tau294-305,SeqID35+36被顯示優於EP2 758 433 B1及Kontsekova等人所提出的基於KLH之疫苗。Although in principle the present invention is able to improve all proposed Tau vaccine peptides, the selected antigenic determinants were specifically evaluated for their suitability for the platform of the present invention. For example, Tau294-305, SeqID35+36 was shown to be superior to the KLH-based vaccines proposed by EP2 758 433 B1 and Kontsekova et al.

其他較佳目標序列包括: Tau位置 序列 195-213 SGYSSPGSPGTPGSRSRTP 207-220 GSRSRTPSLPTPPT 224-238 KKVAVVRTPPKSPSS 393-408 VYKpSPVVSGDTpSPRHL 379 - 408[P-Ser396,404] RENAKAKTDHGAEIVYKpSPVVSGDTpSPRHL Tau260-264[P-Ser262] IGpSTE 294-305 KDNIKHVPGGGS 251-280 PDLKNVKSKIGSTENLKHQPGGGKVQIINK 256-285 VKSKIGSTENLKHQPGGGKVQIINKKLDLS 256-285-pS262 VKSKIGpSTENLKHQPGGGKVQIINKKLDLS 259-288 KIGSTENLKHQPGGGKVQIINKKLDLSNVQ 275-304 VQIINKKLDLSNVQSKCGSKDNIKHVPGGG 201-230-pT217 GSPGTPGSRSRTPSLPpTPPTREPKKVAVVR 379-408-pS396pS404 RENAKAKTDHGAEIVYKpSPVVSGDTpSPRHL 181-210-pS202pT205 TPPSSGEPPKSGDRSGYSSPGpSPGpTPGSRS 300-317 VPGGGSVQIVYKPVDLSK 267-273 KHQPGGG 298-304 KHVPGGG 329-335 HHVPGGG 361-367 THVPGGG 200-207(pS202/pT205) PGpSPGpTPG 200-207(pS202/pT205)磷酸模擬物 PGDPGEPG 200-207(pS202/pT205)磷酸模擬物 SPGDPGEPG 210-218 (pT212/pS214) SRpTPpSLPTP 210-218 (pT212/pS214)磷酸模擬物 SREPDLPTP 210-218 (pT212/pS214)磷酸模擬物 SREPDLP 213-221 (pT217) PSLPpTPPTR 213-221 (pS214/pT217) PpSLPpTPPTR 213-221 (pT217)磷酸模擬物 PSLPEPPTR 213-221 (pS214/pT217)磷酸模擬物 PDLPEPPTR 393-402 (pSer396) VYKpSPVVSGD 393-402 (pSer396)磷酸模擬物 VYKDPVVSG 393-406 (pSer396, pSer404) VYKpSPVVSGDTpSPR 393-406 (pSer396, pSer404)磷酸模擬物 VYKDPVVSGDTDPR 176-186 (pT181) PPAPKpTPPSSG 176-186 (pT181)磷酸模擬物 PPAPKEPPSSG 225-234  (pT231) KVAVVRpTPPK 225-234  (pT231)磷酸模擬物 KVAVVREPPKS Tau379 - 408[P-Ser396,404] RENAKAKTDHGAEIVYKpSPVVSGDTpSPRHL Tau379 - 408[P-Ser396,404]磷酸模擬物 RENAKAKTDHGAEIVYKDPVVSGDTDPRHL 389-408 GAEIVYKpSPVVSGDTpSPRHL 391-408 EIVYKpSPVVSGDTpSPRHL 389-408磷酸模擬物 GAEIVYKDPVVSGDTDPRHL 391-408磷酸模擬物 EIVYKDPVVSGDTDPRHL 418-426 DMVDpSPQLA 418-426磷酸模擬物 DMVDDPQLA 420-426 VDpSPQLA 420-426磷酸模擬物 VDDPQLA 362-366 HVPGG (LDNIT HVPGGGNKKIE) 235-246 SPSSAKSRLQTA Other good target sequences include: Tau Location sequence 195-213 SGYSSPGSPGTPGSRSRTP 207-220 GSRSRTPSLPTPPT 224-238 KKVAVVRTPPKSPSS 393-408 VYKP SPVVSGDTP SPRHL 379 - 408[P-Ser396,404] RENAKAKTDHGAEIVYKpSPVVSGDTpSPRHL Tau260-264[P-Ser262] I G 294-305 KDNIKHVPGGGS 251-280 PDLKNVKSKIGSTENLKHQPGGGKVQIINK 256-285 VKSKIGSTENLKHQPGGGKVQIINKKLDLS 256-285-pS262 VKSKIGpSTENLKHQPGGGKVQIINKKLDLS 259-288 KIGSTENLKHQPGGGKVQIINKKLDLSNVQ 275-304 VQIINKKLDLSNVQSKCGSKDNIKHVPGGG 201-230-pT217 GSPGTPGSRSRTPSLPpTPPTREPKKVAVVR 379-408-pS396pS404 RENAKAKTDHGAEIVYKpSPVVSGDTpSPRHL 181-210-pS202pT205 TPPSSGEPPKSGDRSGYSSPGpSPGpTPGSRS 300-317 VPGGGSVQIVYKPVDLSK 267-273 QUR 298-304 KHVPGGG 329-335 HHVPGGG 361-367 THVPGGG 200-207 (pS202/pT205) PGpSPGpTPG 200-207 (pS202/pT205) phosphate mimetic PGDPGEPG 200-207 (pS202/pT205) phosphate mimetic SPGDPGEPG 210-218 (pT212/pS214) SRpTPpSLPTP 210-218 (pT212/pS214) phospho-mimetic SREPDLPTP 210-218 (pT212/pS214) phospho-mimetic SREPDLP 213-221 (pT217) PSLPpTPPTR 213-221 (pS214/pT217) PpSLPpTPPTR 213-221 (pT217) Phospho-mimetic PSLPEPPTR 213-221 (pS214/pT217) phospho-mimetic PDLPEPPTR 393-402 (pSer396) VxVd 393-402 (pSer396) phospho-mimetic VYKDPVVSG 393-406 (pSer396, pSer404) VYKP SPVVSGDTP SPR 393-406 (pSer396, pSer404) phospho-mimetic VYKDPVVSGDTDPR 176-186 (pT181) PPAPKpTPPSSG 176-186 (pT181) phosphate mimetic PPAPKEPPSSG 225-234 (pT231) KVAVVRTPPK 225-234 (pT231) Phospho-mimetic KVAVVREPPKS Tau379 - 408[P-Ser396,404] RENAKAKTDHGAEIVYKpSPVVSGDTpSPRHL Tau379 - 408[P-Ser396,404] phospho-mimetic RENAKAKTDHGAEIVYKDPVVSGDTDPRHL 389-408 GAEIVYKpSPVVSGDTpSPRHL 391-408 EIVYKpSPVVSGDTpSPRHL 389-408 Phosphoric acid analog GAEIVYKDPVVSGDTDPRHL 391-408 Phosphoric acid analog EIVYKDPVVSGDTDPRHL 418-426 DMVDpSPQLA 418-426 Phosphoric acid analog DMVDDPQLA 420-426 VxDV 420-426 Phosphoric acid analog VDDPQLA 362-366 HVPGG (LDNIT HVPGG GNKKIE) 235-246 SPSSAKSRLQTA

鑒於本發明結合物之此等有利特性,因此根據本發明之結合物及疫苗可特定用於IL12/IL23相關疾病及自體免疫炎性疾病之主動免疫療法。IL-23相關疾病係選自以下之群:牛皮癬、牛皮癬性關節炎、類風濕性關節炎、全身性紅斑性狼瘡、糖尿病(較佳為1型糖尿病)、動脈粥樣硬化、發炎性腸病(IBD)/克羅恩氏病(M. Crohn)、多發性硬化症、貝切特氏病(Behcet disease)、僵直性脊椎炎、沃格特-小柳-原田病(Vogt-Koyanagi-Harada disease)、慢性肉芽腫病、化膿性汗腺炎(hidratenitis suppurtiva)、抗嗜中性球細胞質抗體(ANCA)相關血管炎、神經退化性疾病(較佳為阿茲海默症或多發性硬化症)、異位性皮膚炎、移植物抗宿主病、癌症(較佳為食道癌、大腸直腸癌、肺腺癌、小細胞癌及口腔鱗狀細胞癌),尤其牛皮癬、神經退化性疾病或IBD。此外,IL-12/23定向疫苗可與針對其他目標之疫苗一起/組合使用,因為近期資料表明IL-23驅動之發炎可加重其他疾病,諸如阿茲海默症或可能的糖尿病。In view of these advantageous properties of the conjugate of the present invention, the conjugate and vaccine according to the present invention can be specifically used for active immunotherapy of IL12/IL23 related diseases and autoimmune inflammatory diseases. IL-23 related diseases are selected from the group consisting of: psoriasis, psoriatic arthritis, rheumatoid arthritis, systemic lupus erythematosus, diabetes (preferably type 1 diabetes), atherosclerosis, inflammatory bowel disease (IBD)/M. Crohn, multiple sclerosis, Behcet disease, ankylosing spondylitis, Vogt-Koyanagi-Harada disease ), chronic granulomatous disease, hidratenitis suppurativa, antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis, neurodegenerative disease (preferably Alzheimer's disease or multiple sclerosis), Atopic dermatitis, graft versus host disease, cancer (preferably esophageal cancer, colorectal cancer, lung adenocarcinoma, small cell carcinoma and oral squamous cell carcinoma), especially psoriasis, neurodegenerative diseases or IBD. Additionally, IL-12/23-directed vaccines could be used together/in combination with vaccines targeting other targets, as recent data suggest that IL-23-driven inflammation can exacerbate other diseases, such as Alzheimer's disease or possibly diabetes.

根據一較佳實施例,IL12/IL23蛋白衍生之多肽係源自原生人類IL12/IL23或為具有一或多個aa交換的模擬物,形成各別原生序列之模擬抗原決定基。According to a preferred embodiment, the IL12/IL23 protein-derived polypeptide is derived from native human IL12/IL23 or is a mimetic having one or more aa exchanges forming mimetic epitopes of the respective native sequences.

根據一較佳實施例,IL12/IL23蛋白質衍生之多肽係選自異二聚蛋白IL23之次單元―原生人類IL-23p19或包含或由源自該次單元的胺基酸殘基或模擬抗原決定基所組成的多肽。在WO 2005/108425 A1中,源自IL-23p19之肽FYEKLLGSDIFTGE、FYEKLLGSDIFTGEPSLLPDSP、VAQLHASLLGLSQLLQP、GEPSLLPDSPVAQLHASLLGLSQLLQP、PEGHHWETQQIPSLSPSQP、PSLLPDSP、LPDSPVA、FYEKLLGSDIFTGEPSLLPDSPVAQLHASLLGLSQLLQP、LLPDSP、LLGSDIFTGEPSLLPDSPVAQLHASLLG、FYEKLLGSDIFTGEPSLLPDSPVAQLHASLLG、QPEGHHW、LPDSPVGQLHASLLGLSQLLQ及QCQQLSQKLCTLAWSAHPLV被提出作為IL-23之疫苗接種肽。在WO 03/084979 A2中,來自IL-23p19之GHMDLREEGDEETT、LLPDSPVGQLHASLLGLSQ及LLRFKILRSLQAFVAVAARV被提及為可能的抗細胞介素疫苗。WO 2016/193405 A1揭示源自IL12/23 p19次單元(登錄號:Q9NPF7)的肽免疫原 為可能的抗細胞介素疫苗,該次單元具有以上胺基酸序列,尤其是其aa136-145、aa136-143、aa 136-151、aa137-146、aa144-154、aa144-155及其他,尤其是序列:QPEGHHWETQQIPSLS、GHHWETQQIPSLSPSQPWQRL、QPEGHHWETQ、TQQIPSLSPSQ、QPEGHHWETQQIPSLSPSQ、QPEGHHWETQQIPSLSPS。 According to a preferred embodiment, the polypeptide derived from IL12/IL23 protein is selected from the subunit of heterodimeric protein IL23 - native human IL-23p19 or a polypeptide comprising or consisting of amino acid residues derived from the subunit or mimicking antigenic determinants. In WO 2005/108425 A1, peptides derived from IL-23p19, FYEKLLGSDIFTGE, FYEKLLGSDIFTGEPSLLPDSP, VAQLHASLLGLSQLLQP, GEPSLLPDSPVAQLHASLLGLSQLLQP, PEGHHWETQQIPSLSPSQP, PSLLPDSP, LPDSPVA, FYEKLLGSDIFTGEPSLLPDSPVAQLHASLLGLSQLLQP, LLPDSP, LLGSDIFTGEPSLLPDSPVAQLHASLLG, FYEKLLGSDIFTGEPSLLPDSPVAQLHASLLG, QPEGHHW, LPDSPVGQLHASLLGLSQLLQ and QCQQLSQKLCTLAWSAHPLV, were proposed as IL-23 vaccination peptides. In WO 03/084979 A2, GHMDLREEGDEETT, LLPDSPVGQLHASLLGLSQ and LLRFKILRSLQAFVAVAARV from IL-23p19 are mentioned as possible anti-interleukin vaccines. WO 2016/193405 A1 discloses a peptide immunogen derived from the IL12/23 p19 subunit (accession number: Q9NPF7) For a possible anti-interleukin vaccine, the subunit has the above amino acid sequence, especially aa136-145, aa136-143, aa 136-151, aa137-146, aa144-154, aa144-155 and others, especially the sequences: QPEGHHWETQQIPSLS, GHHWETQQIPSLSPSQPWQRL, QPEGHHWETQ, TQQIPSLSPSQ, QPEGHHWETQQIPSLSPSQ, QPEGHHWETQQIPSLSPS.

根據一較佳實施例,IL12/IL23蛋白衍生之多肽係選自異二聚蛋白IL23之次單元―原生人類IL12/23p40或包含或由以下組成之多肽:原生人類IL12/23p40 (登錄號:P29460.1)之胺基酸殘基aa15-66、aa38-46、aa53-71、aa119-130、aa160-177、aa236-253、aa274-285、aa315-330,該IL12/23p40具有以下胺基酸序列: According to a preferred embodiment, the polypeptide derived from the IL12/IL23 protein is selected from the subunit of the heterodimeric protein IL23 - native human IL12/23p40 or a polypeptide comprising or consisting of: native human IL12/23p40 (Accession number: P29460 .1) Amino acid residues aa15-66, aa38-46, aa53-71, aa119-130, aa160-177, aa236-253, aa274-285, aa315-330, the IL12/23p40 has the following amino acids sequence:

在WO 03/084979 A2中,來自IL-12/23 p40次單元之肽LLLHKKEDGIWSTDILKDQKEPKNKTFLRCE及KSSRGSSDPQG被提及為可能的抗細胞介素疫苗。In WO 03/084979 A2, peptides LLLHKKEDGIWSTDILKDQKEPKNKTFLRCE and KSSRGSSDPQG from the IL-12/23 p40 subunit were mentioned as possible anti-interleukin vaccines.

Luo等人 J Mol Biol 2010 Oct 8;402(5):797-812.揭示抗IL12/IL23p40特異性抗體烏司奴單抗(Ustekinumab)之構形抗原決定基aa15-66,其有效減少IL12/IL23相關疾病。Guan等人(Vaccine 27 (2009) 7096-7104)揭示鼠類IL12/23 (登錄號:P43432 (p40)及Q9EQ14 (p19))之免疫原aa38-46、aa53-71、aa119-130、aa160-177、aa236-253、aa274-285、aa315-330,該IL12/23具有以下胺基酸序列:P43432(p40): ;以重組方式與HBcAg連接。 Luo et al. J Mol Biol 2010 Oct 8;402(5):797-812. The conformational antigenic determinant aa15-66 of the anti-IL12/IL23p40 specific antibody Ustekinumab was revealed, which effectively reduced IL12/IL23-related diseases. Guan et al. (Vaccine 27 (2009) 7096-7104) disclosed immunogens aa38-46, aa53-71, aa119-130, aa160-177, aa236-253, aa274-285, aa315-330 of murine IL12/23 (accession numbers: P43432 (p40) and Q9EQ14 (p19)), wherein the IL12/23 has the following amino acid sequence: P43432 (p40): ; Connected to HBcAg in a recombinant manner.

儘管原則上,本發明能夠改良所有提出之IL12/IL23相關疾病疫苗接種多肽,但根據其對本發明平台之適用性對所選抗原決定基進行特定評定。舉例而言,SeqID37/38及SeqID41/42 WISIT疫苗被顯示優於基於KLH之疫苗。鼠類序列SeqID39/40在小鼠中顯示與基於KLH之結合物相似的功效,且在IL12/23識別中亦具有活性。Although in principle the invention is able to improve all proposed IL12/IL23 related disease vaccination peptides, the selected epitopes were specifically evaluated for their suitability for the platform of the invention. For example, SeqID37/38 and SeqID41/42 WISIT vaccines were shown to be superior to KLH based vaccines. The murine sequence SeqID39/40 showed similar efficacy to the KLH based conjugate in mice and was also active in IL12/23 recognition.

鑒於本發明結合物之此等有利特性,因此根據本發明之結合物及疫苗可特定用於主動抗EMPD (細胞外膜近端域,作為膜IgE-BCR之一部分)疫苗接種以治療及預防IgE相關疾病。膜IgE-BCR之排他性靶向及交聯已藉由針對僅存在於膜-IgE上,而不存在於可溶性血清IgE上的膜錨定區,即IgE之細胞外膜近端域(EMPD IgE)來達成。IgE相關疾病包括過敏性疾病,諸如季節性、食物、花粉、黴菌孢子、有毒植物、藥劑/藥物、昆蟲、蠍或蜘蛛毒液、乳膠或粉塵過敏、寵物過敏、過敏性支氣管哮喘、非過敏性哮喘、查格-施特勞斯氏症候群(Churg-Strauss Syndrome) 、過敏性鼻炎及結膜炎、異位性皮膚炎、鼻息肉;木村氏症(Kimura's disease);對黏著劑、抗微生物劑、芳香劑、染髮劑、金屬、橡膠成分、局部用藥劑、松香、蠟、拋光劑、水泥及皮革之接觸性皮膚炎;慢性鼻竇炎、異位性濕疹;IgE起作用(「自體過敏」)之自體免疫疾病;慢性(特發性)及自體免疫蕁麻疹、膽鹼激導性蕁麻疹、肥大細胞增多症,尤其是皮膚肥大細胞增多症、過敏性支氣管肺麴黴病、慢性或復發性特發性血管性水腫、間質性膀胱炎、全身性過敏反應,尤其特發性及運動誘發之全身性過敏反應;免疫療法、,嗜酸性球相關疾病(諸如嗜酸性球哮喘、嗜酸性球性胃腸炎、嗜酸性球中耳炎及嗜酸性球食道炎)(參見例如Holgate 2014 World Allergy Organ. J. 7:17.;US 8,741,294 B2)。此外,根據本發明之疫苗或結合物用於治療淋巴瘤或預防抗酸治療的致敏副作用,尤其是對於胃或十二指腸潰瘍或逆流。對於本發明,術語「IgE相關疾病」包括術語「IgE依賴性疾病」或「IgE介導之疾病」或與之同義使用。In view of these favorable properties of the conjugates of the present invention, the conjugates and vaccines according to the present invention can be specifically used for active anti-EMPD (extracellular membrane proximal domain, as part of membrane IgE-BCR) vaccination to treat and prevent IgE-related diseases. Exclusive targeting and cross-linking of membrane IgE-BCR has been achieved by targeting the membrane anchoring region, i.e., the extracellular membrane proximal domain of IgE (EMPD IgE), which is only present on membrane-IgE and not on soluble serum IgE. IgE-related diseases include allergic diseases such as seasonal, food, pollen, mold spores, poisonous plants, drugs/medications, insect, scorpion or spider venom, latex or dust allergies, pet allergies, allergic bronchial asthma, non-allergic asthma, Churg-Strauss Syndrome, allergic rhinitis and conjunctivitis, atopic dermatitis, nasal polyps; Kimura's disease); contact dermatitis to adhesives, antimicrobials, fragrances, hair dyes, metals, rubber components, topical medications, rosin, waxes, polishes, cement, and leather; chronic sinusitis, atopic eczema; autoimmune diseases in which IgE plays a role ("autoallergy"); chronic (idiopathic) and autoimmune urticaria, choline-induced urticaria, mastocytosis, especially They are cutaneous mastocytosis, allergic bronchopulmonary aspergillosis, chronic or recurrent idiopathic angioedema, interstitial cystitis, systemic allergic reactions, especially idiopathic and exercise-induced systemic allergic reactions; immunotherapy, eosinophilic glomerulonephritis (such as eosinophilic asthma, eosinophilic gastroenteritis, eosinophilic otitis media and eosinophilic esophagitis) (see, for example, Holgate 2014 World Allergy Organ. J. 7:17.; US 8,741,294 B2). In addition, the vaccine or conjugate according to the present invention is used to treat lymphoma or prevent allergic side effects of antacid therapy, especially for gastric or duodenal ulcers or reflux. For the present invention, the term "IgE-related disease" includes the term "IgE-dependent disease" or "IgE-mediated disease" or synonyms thereof.

根據一較佳實施例,EMPD蛋白衍生之多肽係源自原生人類IgE-BCR或為具有一或多個aa交換的模擬物,形成各別原生序列之模擬抗原決定基。According to a preferred embodiment, the EMPD protein-derived polypeptide is derived from native human IgE-BCR or is a mimetic having one or more aa exchanges, forming mimetic epitopes of the respective native sequence.

特異性靶向人類或小鼠EMPD IgE之專用抗體之研發實現在活體外及活體內對此靶向策略進行臨床及臨床前驗證(Liour等人, 2016 Pediatr Allergy Immunol 8月;27(5):446-51)。IgE-BCR交聯概念最初是藉由在野生型小鼠(Feichtner等人, 2008 J. Immunol. 180:5499-5505)及具有部分人源化IgE-EMPD區之專用小鼠模型(Brightbill等人, 2010 J. Clin. Invest. 120:2218-2229.)中被動投予抗EMPD IgE抗體而在活體內得到證明。Chen等人(2010 Journal of Immunology 184, 1748-1756)表明,對CemX之N端或中部區段具有特異性的mAb可結合於表現mIgE之B細胞且有效誘導其細胞凋亡及ADCC。CemX係指人類膜結合e鏈。此同種型含有52個aa殘基之一額外域,位於CH4域與C端膜錨定肽之間且稱為CemX或M1'肽。此特定針對CemX N端鏈段P1 (SVNPGLAGGSAQSQRAPDRVL,其中SVNP表示m之CH4域之C端4個aa殘基)及中部鏈段P2 (HSGQQQGLPRAAGGSVPHPR)之抗體顯示抗CemX的抗體,而C端P3 (GAGRADWPGPP)沒有成功。The development of specialized antibodies that specifically target human or mouse EMPD IgE enables clinical and preclinical validation of this targeting strategy in vitro and in vivo (Liour et al., 2016 Pediatr Allergy Immunol Aug;27(5): 446-51). The concept of IgE-BCR cross-linking was initially developed in wild-type mice (Feichtner et al., 2008 J. Immunol. 180:5499-5505) and in a dedicated mouse model with a partially humanized IgE-EMPD region (Brightbill et al. , 2010 J. Clin. Invest. 120:2218-2229.) was demonstrated in vivo by passive administration of anti-EMPD IgE antibodies. Chen et al. (2010 Journal of Immunology 184, 1748-1756) showed that mAbs specific to the N-terminal or central segment of CemX can bind to mIgE-expressing B cells and effectively induce their apoptosis and ADCC. CemX refers to human membrane-bound e-chain. This isoform contains an additional domain of 52 aa residues located between the CH4 domain and the C-terminal membrane anchor peptide and is known as the CemX or M1' peptide. This antibody specifically targets the CemX N-terminal segment P1 (SVNPGLAGGSAQSQRAPDRVL, where SVNP represents the C-terminal 4 aa residues of the CH4 domain of m) and the middle segment P2 (HSGQQQGLPRAAGGSVPHPR). It shows antibodies against CemX, while the C-terminal P3 (GAGRADWPGPP ) without success.

另外,藉由針對人類EMPD IgE區主動免疫接種產生之抗體能夠活體外介導細胞凋亡及ADCC(Lin等人, Mol. Immunol., 52 (2012), 第190-199頁)。Lin等人揭示使用攜載CemX或其P1、P2及P1-P2部分之插入序列的HBcAg的免疫原作為抗EMPD疫苗。In addition, antibodies generated by active immunization against the human EMPD IgE region can mediate apoptosis and ADCC in vitro (Lin et al., Mol. Immunol., 52 (2012), pp. 190-199). Lin et al. disclosed the use of immunogens carrying HBcAg inserts of CemX or its P1, P2 and P1-P2 portions as an anti-EMPD vaccine.

第一種在臨床上抗人類EMPD IgE的單株抗體―奎利珠單抗(Quilizumab)在健康志願者中顯示選擇性IgE抑制,且在I期及II期研究中分別對過敏性鼻炎及輕微哮喘患者顯示臨床益處(Scheerens等人, 2012 Asthma Therapy: Novel Approaches: p. A6791;Gauvreau等人, 2014 Sci. Transl. Med. 6, 243ra85.),但未能改善患有重度支氣管哮喘之患者的臨床結果(Harris等人, 2016 Respir. Res. 17:29.)。奎利珠單抗之抗原決定基亦作為潛在免疫原且位於CemX之11個殘基區段SAQSQRAPDRV內。The first clinical monoclonal antibody against human EMPD IgE, Quilizumab, showed selective IgE inhibition in healthy volunteers and was effective in allergic rhinitis and mild allergic rhinitis in phase I and phase II studies, respectively. Showed clinical benefit in patients with asthma (Scheerens et al., 2012 Asthma Therapy: Novel Approaches: p. A6791; Gauvreau et al., 2014 Sci. Transl. Med. 6, 243ra85.), but failed to improve outcomes in patients with severe bronchial asthma Clinical results (Harris et al., 2016 Respir. Res. 17:29.). The epitope of qualizumab also serves as a potential immunogen and is located within the 11-residue segment SAQSQRAPDRV of CemX.

WO 2017/005851 A1及Vigl等人(Journal of Immunological Methods 449 (2017) 28-36)揭示作為活性抗EMPD免疫原與位於EMPD之膜近端域中的適合蛋白載體組合的肽。所揭示之序列包含AVSVNPGLAGGSAQSQRAPDRVLCHSGQQQGLPRAAGGSVP、QQQGLPRAAGG、QQLGLPRAAGG、QQQGLPRAAEG、QQLGLPRAAEG、QQQGLPRAAG、QQLGLPRAAG、QQQGLPRAAE、QQLGLPRAAE、HSGQQQGLPRAAGG、HSGQQLGLPRAAGG、HSGQQQGLPRAAEG、HSGQQLGLPRAAEG、QSQRAPDRVLCHSG、GSAQSQRAPDRVL及WPGPPELDV。WO 2017/005851 A1 and Vigl et al. (Journal of Immunological Methods 449 (2017) 28-36) disclose peptides as active anti-EMPD immunogens in combination with suitable protein carriers located in the membrane proximal domain of EMPD. The disclosed sequences include AVSVNPGLAGGSAQSQRAPDRVLCHSGQQQGLPRAAGGSVP, QQQGLPRAAGG, QQLGLPRAAGG, QQQGLPRAAEG, QQLGLPRAAEG, QQQGLPRAAG, QQLGLPRAAG, QQQGLPRAAE, QQLGLPRAAE, HSGQQQGLPRAAGG, HSGQQLGLPRAAGG, HSGQQQGLPRAAEG, HSGQQLGLPRAAEG, QSQRAPDRVLCHSG, GSAQSQRAPDRVL and WPGPPELDV.

儘管原則上,本發明能夠改良所有提出之IgE相關疾病疫苗接種多肽,但根據其對本發明平台之適用性對所選抗原決定基進行特定評定。舉例而言,SeqID43/44 (QQQGLPRAAGG)被顯示優於基於KLH之疫苗。Although, in principle, the present invention is capable of improving all proposed IgE-related disease vaccination polypeptides, selected epitopes are specifically assessed for their suitability for the platform of the present invention. For example, SeqID43/44 (QQQGLPRAAGG) was shown to be superior to KLH-based vaccines.

鑒於本發明結合物之此等有利特性,因此根據本發明之結合物及疫苗可特定用於主動抗人類表皮生長因子受體2(抗Her2)疫苗接種以治療及預防Her2陽性贅生性疾病。Her2之擴增或過度表現發生在約15%至30%的乳癌及10%至30%的胃癌/胃食道癌中,且作為預後及預測性生物標記物。Her2過度表現亦見於如卵巢癌、子宮內膜癌及子宮漿液性子宮內膜癌、子宮頸癌、膀胱癌、肺癌、大腸癌及頭頸癌之其他癌症中。根據一較佳實施例,Her2蛋白衍生之多肽係源自原生人類Her2或為具有一或多個aa交換的模擬物,形成各別原生序列之模擬抗原決定基。In view of these advantageous properties of the conjugates of the present invention, the conjugates and vaccines according to the present invention can be specifically used for active anti-human epidermal growth factor receptor 2 (anti-Her2) vaccination to treat and prevent Her2-positive neoplastic diseases. Amplification or overexpression of Her2 occurs in approximately 15% to 30% of breast cancers and 10% to 30% of gastric/gastroesophageal cancers, and serves as a prognostic and predictive biomarker. Her2 overexpression is also seen in other cancers such as ovarian, endometrial and serous endometrial cancer, cervical cancer, bladder cancer, lung cancer, colorectal cancer, and head and neck cancer. According to a preferred embodiment, the polypeptide derived from the Her2 protein is derived from native human Her2 or is a mimetic having one or more aa exchanges to form a simulated epitope of the respective native sequence.

Dakappagari等人(JBC (2005) 280, 1, 54-63)揭示與源自麻疹病毒融合蛋白MVF(胺基酸288-302)的混雜TH抗原決定基共線合成且藉由雙硫橋鍵環化的構形抗原決定基aa626-649。肽藉由胞壁醯二肽佐劑nor-MDP (N-乙醯基葡萄糖胺-3基-乙醯基-L-丙胺醯基-D-異麩醯胺酸)調配且在Montanide ISA 720中乳化。疫苗已具有免疫原性且用該等疫苗進行免疫接種降低了腫瘤模型中之腫瘤負荷。Dakappagari et al. (JBC (2005) 280, 1, 54-63) revealed a conformational antigenic determinant aa626-649 synthesized colinearly with a promiscuous TH antigenic determinant derived from the measles virus fusion protein MVF (amino acids 288-302) and cyclized via a disulfide bridge. The peptide was formulated with the muramyl dipeptide adjuvant nor-MDP (N-acetylglucosamin-3-yl-acetyl-L-propylaminoyl-D-isoglutamine) and emulsified in Montanide ISA 720. The vaccines have been immunogenic and immunization with these vaccines reduced tumor burden in tumor models.

EP 1 912 680 B1及Allen等人(J Immunol 2007; 179:472-482)揭示如下免疫原,其使用三個構形肽構築體aa266-296 (LHCPALVTYNTDTFESMPNPEGRYTFGASCV)、aa298-333 (ACPYNYLSTDVGSCTLVCPLHNQEVTAEDGTQRCEK)及aa315-333 (CPLHNQEVTAEDGTQRCEK)以模擬受體之二聚環路之各區域。疫苗候選物亦含有MVF的T細胞抗原決定基(aa 288-302) KLLSLIKGVIVHRLEGVE及GPSL連接子。所有肽均引起高抗Her2免疫反應且使用肽aa266-296之構築體與Herceptin相比同樣有效。Her2序列(登錄號P04626)之aa266-296肽: 作為疫苗在兩種可移植腫瘤模型中在統計學上減少腫瘤發生,且在兩種轉殖基因小鼠腫瘤模型中顯著減少腫瘤發展。 EP 1 912 680 B1 and Allen et al. (J Immunol 2007; 179:472-482) disclose immunogens using three conformational peptide constructs aa266-296 (LHCPALVTYNTDTFESMPNPEGRYTFGASCV), aa298-333 (ACPYNYLSTDVGSCTLVCPLHNQEVTAEDGTQRCEK) and aa315- 333 (CPLHNQEVTAEDGTQRCEK) to simulate various regions of the dimerization loop of the receptor. The vaccine candidate also contains the T cell epitope of MVF (aa 288-302) KLLSLIKGVIVHRLEGVE and the GPSL linker. All peptides elicited high anti-Her2 immune responses and constructs using peptides aa266-296 were equally effective compared to Herceptin. aa266-296 peptide of Her2 sequence (accession number P04626): As a vaccine, it statistically reduced tumorigenesis in two transplantable tumor models and significantly reduced tumor development in two transgenic mouse tumor models.

Garret等人(J Immunol 2007; 178:7120-7131)揭示Her2肽作為免疫原aa563-598、aa585-598、aa597-626及aa613-626與源自麻疹病毒融合蛋白(aa 288-302)之混雜Th抗原決定基共線合成且與Montanide ISA 720組合施用。疫苗已具有免疫原性且用攜載aa597-626抗原決定基之該等疫苗進行免疫接種顯著降低了腫瘤模型中之腫瘤負荷。Garret et al. (J Immunol 2007; 178:7120-7131) revealed Her2 peptides as immunogens aa563-598, aa585-598, aa597-626 and aa613-626 mixed with fusion proteins derived from measles virus (aa 288-302) Th epitopes are synthesized inline and administered in combination with Montanide ISA 720. The vaccines have become immunogenic and immunization with these vaccines carrying the aa597-626 epitope significantly reduced tumor burden in tumor models.

Jasinska等人(Int. J. Cancer: 107, 976-983 (2003))揭示7種來自Her2之細胞外域的肽作為用於癌症免疫療法之潛在抗原:P1 aa115-132 AVLDNGDPLNNTTPVTGA、P2 aa149-162 LKGGVLIQRNPQLC、P3 aa274-295 YNTDTFESMPNPEGRYTFGAS、P4 aa378-398 PESFDGDPASNTAPLQPEQLQ、P5 aa489-504 PHQALLHTANRPEDE、P6 aa544-560 CRVLQGLPREYVNARHC、P7 aa610-623 YMPIWKFPDEEGAC,該等肽與破傷風類毒素偶合且使用Gerbu作為佐劑,且在動物模型中誘導具有抗腫瘤活性之體液免疫反應。類似地,Wagner等人(2007 Breast Cancer Res Treat. 2007;106:29-38)揭示用於免疫接種研究之肽免疫原,將單肽P4 (aa378-394: PESFDGDPASNTAPLQPC)、P6 (aa545-560: RVLQGLPREYVNARHC)及P7 (aa610-623: YMPIWKFPDEEGAC)與破傷風類毒素偶合施用且使用Gerbu作為佐劑。在添加或不添加IL12之情況下進行疫苗接種,且在臨床前模型中產生抗腫瘤功效。Tobias等人 2017 (BMC Cancer (2017) 17:118)揭示用於免疫接種研究之肽免疫原,將單肽P4 (aa378-394: PESFDGDPASNTAPLQP)、P6 (aa545-560: RVLQGLPREYVNARHC)及P7 (aa610-623: YMPIWKFPDEEGAC)以以下混合肽形式組合施用:P467 (PESFDGDPASNTAPLQPRVLQGLPREYVNARHSLPYMPIWKFPDEEGAC)及P647 (RVLQGLPREYVNARHSPESFDGDPASNTAPLQPYMPIWKFPDEEGAC)。P6之半胱胺酸(C)分別經『SLP』或『S』置換。兩種構築體均與病毒體或白喉類毒素CRM197 (CRM)偶合,與作為佐劑之Montanide或氫氧化鋁(Alum)組合,且誘導之抗體展現出抗腫瘤特性。Jasinska et al. (Int. J. Cancer: 107, 976-983 (2003)) revealed 7 peptides from the extracellular domain of Her2 as potential antigens for cancer immunotherapy: P1 aa115-132 AVLDNGDPLNNTTPVTGA, P2 aa149-162 LKGGVLIQRNPQLC , P3 aa274-295 YNTDTFESMPNPEGRYTFGAS, P4 aa378-398 PESFDGDPASNTAPLQPEQLQ, P5 aa489-504 PHQALLHTANRPEDE, P6 aa544-560 CRVLQGLPREYVNARHC, P7 aa610-623 YMPIWKFPDEEGAC, these peptides are occasionally related to tetanus toxoid combined and used Gerbu as an adjuvant, and in animal models Induces humoral immune responses with anti-tumor activity. Similarly, Wagner et al. (2007 Breast Cancer Res Treat. 2007;106:29-38) disclosed peptide immunogens for vaccination studies, combining single peptides P4 (aa378-394: PESFDGDPASNTAPLQPC), P6 (aa545-560: RVLQGLPREYVNARHC) and P7 (aa610-623: YMPIWKFPDEEGAC) were administered coupled with tetanus toxoid using Gerbu as adjuvant. Vaccination was performed with or without the addition of IL12 and produced anti-tumor efficacy in preclinical models. Tobias et al. 2017 (BMC Cancer (2017) 17:118) revealed peptide immunogens for vaccination studies, combining single peptides P4 (aa378-394: PESFDGDPASNTAPLQP), P6 (aa545-560: RVLQGLPREYVNARHC) and P7 (aa610- 623: YMPIWKFPDEEGAC) was administered in combination with the following mixed peptides: P467 (PESFDGDPASNTAPLQPRVLQGLPREYVNARHSLPYMPIWKFPDEEGAC) and P647 (RVLQGLPREYVNARHSPESFDGDPASNTAPLQPYMPIWKFPDEEGAC). The cysteine (C) of P6 is replaced by "SLP" or "S" respectively. Both constructs were coupled to virions or diphtheria toxoid CRM197 (CRM), combined with Montanide or aluminum hydroxide (Alum) as adjuvants, and the induced antibodies exhibited antitumor properties.

Riemer等人(J Immunol 2004; 173:394-401)報導藉由使用限定10聚體噬菌體呈現庫在Her-2/neu上生成藉由曲妥珠單抗(Trastuzumab)識別的抗原決定基之肽模擬物。肽模擬抗原決定基與免疫原性載體―破傷風類毒素(TT)偶合且使用氫氧化鋁作為佐劑。序列包含:C-QMWAPQWGPD-C、C-KLYWADGELT-C、C-VDYHYEGTIT-C、C-QMWAPQWGPD-C、C-KLYWADGELT-C、C-KLYWADGEFT-C、C-VDYHYEGTIT-C、C-VDYHYEGAIT-C。類似地,Singer等人(ONCOIMMUNOLOGY 2016, 第5卷, 第7期, e1171446)揭示自AAV-模擬抗原決定基庫平台推導的曲妥珠單抗抗原決定基的模擬抗原決定基。所測試之模擬抗原決定基序列包含RLVPVGLERGTVDWV、TRWQKGLALGSGDMA、QVSHWVSGLAEGSFG、LSHTSGRVEGSVSLL、LDSTSLAGGPYEAIE、HVVMNWMREEFVEEF、SWASGMAVGSVSFEE. QVSHWVSGLAEGSFG及LSHTSGRVEGSVSLL,其被證明具有免疫原性且在腫瘤模型中有效。Riemer et al. (J Immunol 2004; 173:394-401) reported the generation of peptide mimetics of the antigenic determinant recognized by Trastuzumab on Her-2/neu by using a defined 10-mer phage display library. The peptide mimetic antigenic determinant was coupled to the immunogenic carrier, tetanus toxoid (TT), and aluminum hydroxide was used as an adjuvant. The sequences included: C-QMWAPQWGPD-C, C-KLYWADGELT-C, C-VDYHYEGTIT-C, C-QMWAPQWGPD-C, C-KLYWADGELT-C, C-KLYWADGEFT-C, C-VDYHYEGTIT-C, C-VDYHYEGAIT-C. Similarly, Singer et al. (ONCOIMMUNOLOGY 2016, Vol. 5, No. 7, e1171446) disclosed mimetic epitopes of trastuzumab epitopes derived from an AAV-mimetic epitope library platform. The mimetic epitope sequences tested included RLVPVGLERGTVDWV, TRWQKGLALGSGDMA, QVSHWVSGLAEGSFG, LSHTSGRVEGSVSLL, LDSTSLAGGPYEAIE, HVVMNWMREEFVEEF, SWASGMAVGSVSFEE. QVSHWVSGLAEGSFG and LSHTSGRVEGSVSLL, which were shown to be immunogenic and effective in tumor models.

Miyako等人(ANTICANCER RESEARCH 31: 3361-3368 (2011))揭示尤其是來自Her-2/neu細胞外域(aa167-175)的肽,其以Her-2/neu相關的多重抗原肽(MAP)形式存在。Her-2/neu肽含有CD4+及CD8+ T細胞之抗原決定基,促成對表現Her-2/neu之腫瘤細胞生長的抑制作用。所揭示之序列包含: 肽序列(B;叔丁氧羰基殘基(Boc))。 N:143-162 (RSLTEILKGGVLIQRNPQLC-BBB)8-K4K2KB N:153-172 (VLIQRNPQLCYQDTILWKDI-BBB)8-K4K2KB N:163-182 (YQDTILWKDIFHKNNQLALT-BBB)8-K4K2KB N:173-192 (FHKNNQLALTLIDTNRSRAC-BBB)8-K4K2KB N:183-202 (LIDTNRSRACHPCSMPCKGS-BBB)8-K4K2KB N:193-212 (HPCSMPCKGSRCWGESSEDC-BBB)8-K4K2KB N:203-222 (RCWGESSEDCQSLTRTVCAG-BBB)8-K4K2KB N:213-232 (QSLTRTVCAGGCARCKGPLP-BBB)8-K4K2KB N:223-242 (GCARCKGPLPTDCCHEQCAA-BBB)8-K4K2KB N:233-252 (TDCCHEQCAAGCTGPKHSDC-BBB)8-K4K2KB N:243-263 (GCTGPKHSDCLACLHFNHSG-BBB)8-K4K2KB N:253-272 (LACLHFNHSGICELHCPALV-BBB)8-K4K2KB N:263-282 (ICELHCPALVTYNTDTFESM-BBB)8-K4K2KB N:273-292 (TYNTDTFESMPNPEGRYTFG-BBB)8-K4K2KB N:283-302 (PNPEGRYTFGASCVTACPYN-BBB)8-K4K2KB N:292-310 (GASCVTACPYNYLSTDVGS-BBB)8-K4K2KB N:300-321 (PYNYLSTDVGSCTLVCPLHNQE-BBB)8-K4K2KB N:312-330 (TLVCPLHNQEVTAEDGTQR-BBB)8-K4K2KB N:322-341 (VTAEDGTQRCEKCSKPCARV-BBB)8-K4K2KB N:332-351 (EKCSKPCARVCYGLGMEHLR-BBB)8-K4K2KB N:343-361 (YGLGMEHLREVRAVTSANI-BBB)8-K4K2KB N:352-370 (EVRAVTSANIQEFAGCKKI-BBB)8-K4K2KB Miyako et al. (ANTICANCER RESEARCH 31: 3361-3368 (2011)) reveal, inter alia, peptides from the Her-2/neu extracellular domain (aa167-175) in the form of Her-2/neu-associated multiple antigenic peptides (MAP) exist. Her-2/neu peptide contains epitopes of CD4+ and CD8+ T cells, which contributes to the inhibitory effect on the growth of tumor cells expressing Her-2/neu. The sequence revealed includes: Peptide sequence (B; tert-butoxycarbonyl residue (Boc)). N:143-162 (RSLTEILKGGVLIQRNPQLC-BBB)8-K4K2KB N:153-172 (VLIQRNPQLCYQDTILWKDI-BBB)8-K4K2KB N:163-182 (YQDTILWKDIFHKNNQLALT-BBB)8-K4K2KB N:173-192 (FHKNNQLALTLIDTNRSRAC-BBB)8-K4K2KB N:183-202 (LIDTRNRSRACHPCSMPCKGS-BBB)8-K4K2KB N:193-212 (HPCSMPCKGSRCWGESSEDC-BBB)8-K4K2KB N:203-222 (RCWGESSEDCQSLTRTVCAG-BBB)8-K4K2KB N:213-232 (QSLTRTVCAGGCARCKGPLP-BBB)8-K4K2KB N:223-242 (GCARCKGPLPTDCCHEQCAA-BBB)8-K4K2KB N:233-252 (TDCCHEQCAAGCTGPKHSDC-BBB)8-K4K2KB N:243-263 (GCTGPKHSDCLACLHFNHSG-BBB)8-K4K2KB N:253-272 (LACLHFNHSGICELHCPALV-BBB)8-K4K2KB N:263-282 (ICELHCPALVTYNTDTFESM-BBB)8-K4K2KB N:273-292 (TYNTDTFESMPNPEGRYTFG-BBB)8-K4K2KB N:283-302 (PNPEGRYTFGASCVTACPYN-BBB)8-K4K2KB N:292-310 (GASCVTACPYNYLSTDVGS-BBB)8-K4K2KB N:300-321 (PYNYLSTDVGSCTLVCPLHNQE-BBB)8-K4K2KB N:312-330 (TLVCPLHNQEVTAEDGTQR-BBB)8-K4K2KB N:322-341 (VTAEDGTQRCEKCSKPCARV-BBB)8-K4K2KB N:332-351 (EKCSKPCARVCYGLGMEHLR-BBB)8-K4K2KB N:343-361 (YGLGMEHLREVRAVTSANI-BBB)8-K4K2KB N:352-370 (EVRAVTSANIQEFAGCKKI-BBB)8-K4K2KB

對小鼠進行免疫揭種後,其體液免疫反應被誘導,腫瘤生長被抑制且腫瘤浸潤淋巴細胞包含更多的CD8+ T細胞,此等細胞在肽的再刺激之後分泌較大量的介白素-2。After immunization of mice, the humoral immune response was induced, tumor growth was inhibited, and tumor-infiltrating lymphocytes contained more CD8+ T cells, which secreted larger amounts of interleukin- 2.

Henle等人(J Immunol. 2013年1月1日; 190(1): 479-488)揭示產生交叉反應性T細胞的源自Her2的肽抗原決定基。對於HER-2/neu HLA-A2結合肽aa369-377 (KIFGSLAFL),其已顯示對此抗原決定基具有特異性的細胞毒性T淋巴細胞(CTL)可直接殺滅過度表現HER-2/neu之乳癌細胞。所揭示之其他抗原決定基包含HER-2/neu肽p368-376,KKIFGSLAF;p372-380,GSLAFLPES;p364-373,FAGCKKIFGS;p373-382,SLAFLPESFD;p364-382,FAGCKKIFGSLAFLPESFD;及p362-384,QEFAGCKKIFGSLAFLPESFDGD。此等序列中之一者,p373-382 (SLAFLPESFD),與HLA-A2之結合比p369-377更強且被鑑別為疫苗接種之潛在抗原決定基。Henle et al. (J Immunol. 2013 Jan 1;190(1):479-488) revealed peptide epitopes derived from Her2 that generate cross-reactive T cells. For the HER-2/neu HLA-A2 binding peptide aa369-377 (KIFGSLAFL), they showed that cytotoxic T lymphocytes (CTLs) specific for this epitope can directly kill breast cancer cells overexpressing HER-2/neu. Other antigenic determinants disclosed include HER-2/neu peptides p368-376, KKIFGSLAF; p372-380, GSLAFLPES; p364-373, FAGCKKIFGS; p373-382, SLAFLPESFD; p364-382, FAGCKKIFGSLAFLPESFD; and p362-384, QEFAGCKKIFGSLAFLPESFDGD. One of these sequences, p373-382 (SLAFLPESFD), binds to HLA-A2 more strongly than p369-377 and is identified as a potential antigenic determinant for vaccination.

Kaumaya等人(ONCOIMMUNOLOGY 2020, 第9卷, 第1期, e1818437)揭示如下之組合:一Her2靶向疫苗(aa266-296及aa597-626,經由四個胺基酸殘基(GPSL)與麻疹病毒融合肽(MVF)胺基酸288-302組合,乳化於Montanide ISA 720VG中)和一新穎PD1免疫檢查點靶向疫苗(PD-1 B細胞肽抗原決定基(aa92-110;GAISLAPKAQIKESLRAEL),經由四個胺基酸殘基(GPSL)與病毒融合肽(MVF)胺基酸288-302組合,乳化於Montanide ISA 720VG中)組合以治療Her2陽性疾病。因此,提供抗贅生性疾病疫苗之組合,尤其是癌症目標特異性疫苗與免疫檢查點靶向疫苗之組合亦為一較佳實施例。Kaumaya et al. (ONCOIMMUNOLOGY 2020, Vol. 9, No. 1, e1818437) disclosed the following combination: a Her2-targeted vaccine (aa266-296 and aa597-626, combined with measles virus fusion peptide (MVF) amino acids 288-302 via four amino acid residues (GPSL), emulsified in Montanide ISA 720VG) and a novel PD1 immune checkpoint-targeted vaccine (PD-1 B cell peptide antigen determinant (aa92-110; GAISLAPKAQIKESLRAEL), combined with viral fusion peptide (MVF) amino acids 288-302 via four amino acid residues (GPSL), emulsified in Montanide ISA 720VG) for the treatment of Her2-positive disease. Therefore, providing a combination of anti-proliferative disease vaccines, especially a combination of cancer target-specific vaccines and immune checkpoint targeted vaccines is also a preferred embodiment.

儘管原則上,本發明能夠改良所有提出之Her2相關疾病疫苗接種多肽,但根據其對本發明平台之適用性對所選抗原決定基進行特定評定。舉例而言,SeqID No47/48 (aa610-623:YMPIWKFPDEEGAC)被顯示優於基於CRM之疫苗。Although in principle the invention is able to improve all proposed Her2-related disease vaccine peptides, the selected antigenic determinants were specifically evaluated for their suitability for the platform of the invention. For example, SeqID No 47/48 (aa610-623: YMPIWKFPDEEGAC) was shown to be superior to CRM-based vaccines.

鑒於本發明結合物之此等有利特性,因此根據本發明之結合物及疫苗可特定用於個別化的新抗原特異性療法,較佳為在NY-ESO-1、MAGE-A1、MAGE-A3、MAGE-C1、MAGE-C2、MAGE-C3、存活素(Survivin)、gp100、酪胺酸酶、CT7、WT1、PSA、PSCA、PSMA、STEAP1、PAP、MUC1、5 T4、KRAS或Her2之情況下。In view of these favorable properties of the conjugates of the present invention, the conjugates and vaccines according to the present invention can be specifically used for personalized neoantigen-specific therapy, preferably in the case of NY-ESO-1, MAGE-A1, MAGE-A3, MAGE-C1, MAGE-C2, MAGE-C3, Survivin, gp100, tyrosinase, CT7, WT1, PSA, PSCA, PSMA, STEAP1, PAP, MUC1, 5 T4, KRAS or Her2.

鑒於本發明結合物之此等有利特性,因此根據本發明之結合物及疫苗可特定用於控制癌症微環境之主動抗免疫檢查點疫苗接種,用於治療及預防贅生性疾病及用於治療及預防癌症/贅生性疾病中之T細胞功能障礙(例如避免CD8 T細胞浸潤癌症組織耗竭)及慢性退化性疾病,包括T細胞活性降低之疾病,如帕金森氏症。In view of these favorable properties of the conjugates of the present invention, the conjugates and vaccines according to the present invention can be specifically used for active anti-immune checkpoint vaccination to control the cancer microenvironment, for the treatment and prevention of proliferative diseases and for the treatment and prevention of T cell dysfunction in cancer/proliferative diseases (e.g., avoiding exhaustion of CD8 T cells infiltrating cancer tissues) and chronic degenerative diseases, including diseases with reduced T cell activity, such as Parkinson's disease.

本領域公認,相較於健康對照組,PD患者之T細胞區室發生不同變化(例如:Bas等人, J Neuroimmunol 2001; 113:146-52或Gruden等人, J Neuroimmunol 2011; 233:221-7)。PD中之T細胞之此類表現型變化為例如:絕對淋巴細胞計數減少、總T細胞之絕對及相對計數降低、CD4+之絕對及相對計數降低且有時CD8+淋巴細胞之絕對及相對計數亦降低、Th1/Th2及Th17/Treg比率增加,以及促炎性細胞介素之表現增加。然而,在健康衰老期間亦可發現大部分此等變化,使得難以辨別諸如PD之疾病的影響,該疾病呈現極廣泛範圍之發作(約30至90年)及可變進程速率。關於絕對細胞數目,似乎一致認為CD3+CD4+ T細胞在PD中淨減少。此CD4減少由所述之CD4:CD8比率改變支持。It is recognized in the field that compared with healthy controls, PD patients have different changes in the T cell compartment (for example: Bas et al., J Neuroimmunol 2001; 113:146-52 or Gruden et al., J Neuroimmunol 2011; 233:221- 7). Such phenotypic changes in T cells in PD are, for example, reduced absolute lymphocyte counts, reduced absolute and relative counts of total T cells, reduced absolute and relative counts of CD4+ and sometimes also reduced absolute and relative counts of CD8+ lymphocytes. , increased Th1/Th2 and Th17/Treg ratios, and increased expression of pro-inflammatory cytokines. However, most of these changes are also found during healthy aging, making it difficult to discern the impact of diseases such as PD, which exhibit a very wide range of onset (approximately 30 to 90 years) and variable progression rates. Regarding absolute cell numbers, there seems to be consensus that there is a net decrease in CD3+CD4+ T cells in PD. This CD4 reduction is supported by the change in CD4:CD8 ratio.

沿著此等思路,舉例而言,Bhatia等人(J Neuroinflammation (2021) 18:250)展示PD中與疾病嚴重程度相關的CD3+ T細胞總數之總體減少(例如使用H+Y期來量測)。此表明隨著疾病的持續,全身性T細胞功能障礙不斷進展,可能反映了持續發炎、藥物治療及生活方式改變的綜合影響。此外,Lindestam Arlehamn等人(2020)展示在前驅或早期臨床階段(<10年持續時間及H+Y 0-2期)在PD患者中可偵測到最高T細胞活性。Along these lines, for example, Bhatia et al. (J Neuroinflammation (2021) 18:250) show an overall decrease in the total number of CD3+ T cells in PD that correlates with disease severity (e.g., as measured using H+Y phase) . This suggests that systemic T cell dysfunction progresses as the disease progresses, possibly reflecting the combined effects of ongoing inflammation, drug therapy, and lifestyle changes. Furthermore, Lindestam Arlehamn et al. (2020) showed that the highest T cell activity can be detected in PD patients during the prodromal or early clinical stage (<10 years duration and H+Y stage 0-2).

因此,提供用於加強或保持PD患者中之T細胞數,尤其是T效應細胞數及T細胞功能的治療為本發明之一較佳實施例。此較佳包括將檢查點抑制劑或使用抗免疫檢查點抑制劑抗原決定基之疫苗與本發明之目標特異性疫苗組合,誘導抗免疫檢查點抑制劑免疫反應,以加強或保持PD患者中之T細胞數,尤其是T效應細胞數及T細胞功能。Therefore, providing treatment for enhancing or maintaining T cell numbers, especially T effector cell numbers and T cell functions in PD patients is a preferred embodiment of the present invention. This preferably includes combining a checkpoint inhibitor or a vaccine using anti-immune checkpoint inhibitor epitopes with the target-specific vaccine of the present invention to induce an anti-immune checkpoint inhibitor immune response to enhance or maintain immune response in PD patients. T cell number, especially T effector cell number and T cell function.

適合於/適用於治療之患者的特徵在於CD3+細胞的總體減少,尤其是對於處於所有疾病期之PD患者典型的CD3+CD4+細胞總體減少。針對此組合界定適合患者群的疾病之較佳階段分別為H+Y 1-4期、較佳為H+Y 1-3期、最佳為H+Y 2-3期。Patients suitable/applicable for treatment are characterized by an overall decrease in CD3+ cells, especially the overall decrease in CD3+CD4+ cells typical of PD patients at all disease stages. The preferred stages of disease to define the appropriate patient population for this panel are H+Y 1-4, preferably H+Y 1-3, and optimal H+Y 2-3.

此類免疫檢查點靶向疫苗之實例為向以下免疫檢查點提供抗原決定基的疫苗:細胞毒性T淋巴細胞相關抗原4 (CTLA-4,登錄號P16410)及計劃性細胞死亡蛋白1 (PD1,登錄號Q15116)或其配位體―計劃性細胞死亡配位體1 (PD-L1或PD1-L1,登錄號Q9NZQ7)、CD276 (登錄號Q5ZPR3)、VTCN1 (登錄號Q7Z7D3)、LAG3 (登錄號P18627)或Tim3 (登錄號Q8TDQ0);該等免疫檢查點具有以下胺基酸序列: 人類CTLA4:>sp|P16410|CTLA4_ Uniprot 人類PD1:>sp|Q15116|PDCD1_ Uniprot 人類PD1-L1 >sp|Q9NZQ7|PD1L1_ Uniprot 人類B7-H3 - CD276 >sp|Q5ZPR3|CD276_ Uniprot 人類B7-H4 - VTCN1 >sp|Q7Z7D3|VTCN1_ Uniprot 人類LAG3:>sp|P18627|LAG3_ Uniprot 人類Tim3:>sp|Q8TDQ0|HAVR2_ Uniprot Examples of such immune checkpoint targeted vaccines are vaccines that provide antigenic determinants to the following immune checkpoints: cytotoxic T lymphocyte-associated antigen 4 (CTLA-4, accession number P16410) and planned cell death protein 1 (PD1, accession number Q15116) or its ligands - planned cell death ligand 1 (PD-L1 or PD1-L1, accession number Q9NZQ7), CD276 (accession number Q5ZPR3), VTCN1 (accession number Q7Z7D3), LAG3 (accession number P18627) or Tim3 (accession number Q8TDQ0); these immune checkpoints have the following amino acid sequences: Human CTLA4: >sp|P16410|CTLA4_ Uniprot Human PD1:>sp|Q15116|PDCD1_ Uniprot Human PD1-L1 >sp|Q9NZQ7|PD1L1_ Uniprot Human B7-H3 - CD276 >sp|Q5ZPR3|CD276_ Uniprot Human B7-H4 - VTCN1 >sp|Q7Z7D3|VTCN1_ Uniprot Human LAG3: >sp|P18627|LAG3_ Uniprot Human Tim3: >sp|Q8TDQ0|HAVR2_ Uniprot

靶向CTLA-4之抗體以若干方式抑制免疫反應,包括在免疫反應之近端步驟(通常在淋巴結中)阻礙自體反應性T細胞活化。相比之下,PD-1路徑在免疫反應後期(通常在外周組織中)調節T細胞。因此,在臨床上現有兩個主要干預方向可通過靶向CTLA-4或PD-1/PD-L1來操控免疫檢查點:抗CTLA-4參與抗原特異性T細胞受體活化之後的淋巴細胞增殖過程,而抗PD-1/PD-L1在效應步驟期間主要作用於外周組織。然而,CTLA-4亦在調節性T淋巴球上表現,且因此參與T細胞增殖之外周抑制。Antibodies targeting CTLA-4 inhibit the immune response in several ways, including blocking autoreactive T cell activation at proximal steps of the immune response, typically in the lymph nodes. In contrast, the PD-1 pathway regulates T cells later in the immune response, usually in peripheral tissues. Therefore, there are currently two main clinical intervention directions to manipulate immune checkpoints by targeting CTLA-4 or PD-1/PD-L1: anti-CTLA-4 is involved in lymphocyte proliferation after activation of antigen-specific T cell receptors process, whereas anti-PD-1/PD-L1 mainly acts on peripheral tissues during the effector step. However, CTLA-4 is also expressed on regulatory T lymphocytes and is therefore involved in peripheral suppression of T cell proliferation.

現今,若干免疫檢查點阻斷抗體,諸如伊匹單抗(Ipilimumab) (抗CTLA-4抗體)、納武單抗(nivolumab)及帕博利珠單抗(pembrolizumab) (均為抗PD-1抗體)、阿維魯單抗(avelumab) (抗PD-L1抗體)或阿特珠單抗(atezolizumab)及度伐魯單抗(durvalumab)(均為抗B7-H1/PD-L1抗體)可誘導高抗癌免疫性及低副作用。Currently, several immune checkpoint blocking antibodies, such as ipilimumab (anti-CTLA-4 antibody), nivolumab and pembrolizumab (both anti-PD-1 antibodies), avelumab (anti-PD-L1 antibodies), or atezolizumab and durvalumab (both anti-B7-H1/PD-L1 antibodies), can induce high anti-cancer immunity with low side effects.

根據一較佳實施例,CTLA4蛋白衍生之多肽係源自原生人類CTLA4或為具有一或多個aa交換的模擬物,形成各別原生序列之模擬抗原決定基。According to a preferred embodiment, the polypeptide derived from the CTLA4 protein is derived from native human CTLA4 or is a mimetic having one or more aa exchanges to form a simulated epitope of the respective native sequence.

根據一較佳實施例,PD1蛋白衍生之多肽係源自原生人類PD1或為具有一或多個aa交換的模擬物,形成各別原生序列之模擬抗原決定基。蛋白質序列對應於鼠類PD1 (Q02242;Uniprot)及人類PD1 (Q15116;Uniprot)之細胞外域。According to a preferred embodiment, the polypeptide derived from the PD1 protein is derived from native human PD1 or is a mimetic with one or more aa exchanges, forming a mimetic antigenic determinant of the respective native sequence. The protein sequence corresponds to the extracellular domain of mouse PD1 (Q02242; Uniprot) and human PD1 (Q15116; Uniprot).

根據一較佳實施例,PD-L1蛋白衍生之多肽係源自原生人類PD-L1或為具有一或多個aa交換的模擬物,形成各別原生序列之模擬抗原決定基。According to a preferred embodiment, the polypeptide derived from the PD-L1 protein is derived from native human PD-L1 or is a mimetic having one or more aa exchanges to form a simulated epitope of the respective native sequence.

Guo等人(Br J Cancer. 2021;125:152-154)及Kaumaya等人(Oncoimmunology. 2020;9:1818437)揭示PD1衍生肽(aa92-110:GAISLAPKAQIKESLRAEL),其在具有CT26大腸癌細胞之同基因型BALB/c模型中誘導減少腫瘤生長的抗體。此外,所揭示之PD1-抗原決定基疫苗與HER-2肽疫苗之組合在大腸癌中展示出增強的腫瘤生長抑制。Guo et al. (Br J Cancer. 2021;125:152-154) and Kaumaya et al. (Oncoimmunology. 2020;9:1818437) revealed a PD1-derived peptide (aa92-110: GAISLAPKAQIKESLRAEL), which has the characteristics of CT26 colorectal cancer cells. Induction of antibodies that reduce tumor growth in the genotypic BALB/c model. Furthermore, the disclosed combination of PD1-epitope vaccine and HER-2 peptide vaccine exhibits enhanced tumor growth inhibition in colorectal cancer.

Tobias等人(Front Immunol. 2020;11:895.)揭示來自鼠類及人類PD-1之肽/模擬抗原決定基(=抗人類PD1 mAb納武單抗及抗鼠類mAb純系29F.1A12之抗原決定基)。該肽包含人類PD1衍生序列PGWFLDSPDRPWNPP、FLDSPDRPWNPPTFS及SPDRPWNPPTFSPA,分別對應於人類PD1上之位置aa21-35、aa24-38及aa27-41,分別表示為JT-N1、JT-N2及JT-N3。此外,針對鼠類PD1之模擬抗原決定基包含對應於mPD1之胺基酸殘基aa126-140的ISLHPKAKIEESPGA (JT-mPD1)。模擬抗原決定基JT-mPD1之抗腫瘤作用被證明與所用表現Her-2/neu之同基因型腫瘤小鼠模型中的腫瘤增生顯著減少及凋亡速率增加相關。此外,Her2/neu疫苗之抗腫瘤作用被證明在與JT-mPD1組合時增強。Tobias et al. (Front Immunol. 2020;11:895.) revealed peptides/mimetic epitopes from mouse and human PD-1 (= epitopes of anti-human PD1 mAb nivolumab and anti-mouse mAb pure line 29F.1A12). The peptides contain the human PD1-derived sequences PGWFLDSPDRPWNPP, FLDSPDRPWNPPTFS, and SPDRPWNPPTFSPA, corresponding to positions aa21-35, aa24-38, and aa27-41 on human PD1, respectively, denoted JT-N1, JT-N2, and JT-N3. In addition, the mimetic epitope for mouse PD1 includes ISLHPKAKIEESPGA (JT-mPD1) corresponding to amino acid residues aa126-140 of mPD1. The anti-tumor effect of the mimetic epitope JT-mPD1 was demonstrated to be associated with a significant reduction in tumor proliferation and an increase in apoptosis rate in the used syngeneic tumor mouse model expressing Her-2/neu. In addition, the anti-tumor effect of the Her2/neu vaccine was demonstrated to be enhanced when combined with JT-mPD1.

Chen等人(Cancers 2019, 11, 1909)揭示作為新穎PD-L1靶向疫苗的PDL1-Vax,其為一種連接於輔助性T抗原決定基序列及人類IgG1 Fc序列的人類PD-L1之融合蛋白(人類PD-L1之aa19-220)。Jorgensen等人(Front Immunol. 2020; 11:595035.)揭示作為新穎PD-L1靶向疫苗的具有19個胺基酸的肽(FMTYWHLLNAFTVTVPKDL),其衍生自人類PD-L1之信號肽。Tian等人(Cancer Letters 476 (2020) 170-182)揭示融合於NitraTh抗原決定基的經截短之鼠類PDL1細胞外域(aa19-239),亦藉由將經截短之人類PDL1細胞外域(aa19-238)融合於NitraTh抗原決定基來構築hPDL1-NitraTh作為新穎PD-L1靶向疫苗。Chen et al. (Cancers 2019, 11, 1909) disclosed PDL1-Vax as a novel PD-L1 targeted vaccine, which is a fusion protein of human PD-L1 connected to the helper T epitope sequence and the human IgG1 Fc sequence (Human PD-L1 aa19-220). Jorgensen et al. (Front Immunol. 2020; 11:595035.) disclosed a 19-amino acid peptide (FMTYWHLLNAFTVTVPKDL) as a novel PD-L1 targeting vaccine, which is derived from the signal peptide of human PD-L1. Tian et al. (Cancer Letters 476 (2020) 170-182) revealed a truncated murine PDL1 extracellular domain (aa19-239) fused to the NitraTh epitope, also by combining the truncated human PDL1 extracellular domain ( aa19-238) was fused to the NitraTh epitope to construct hPDL1-NitraTh as a novel PD-L1 targeted vaccine.

當單獨或與預先存在之肽疫苗組合使用時,此等抗免疫檢查點疫苗可為高度有效的。因此,一較佳實施例提供抗免疫檢查點疫苗與預先存在之肽疫苗之組合以治療贅生性或退化性疾病,如帕金森氏症。These anti-immune checkpoint vaccines can be highly effective when used alone or in combination with pre-existing peptide vaccines. Thus, a preferred embodiment provides a combination of an anti-immune checkpoint vaccine with a pre-existing peptide vaccine to treat a proliferative or degenerative disease, such as Parkinson's disease.

儘管原則上,本發明能夠改良所有提出之PD1及PD-L1相關疫苗接種多肽,但根據其對本發明平台之適用性對所選抗原決定基進行特定評定。舉例而言,SeqID No 49/50 (GAISLAPKAQIKESLRAEL)被顯示優於基於KLH之疫苗。Although in principle the invention is able to improve all proposed PD1 and PD-L1 related vaccine peptides, the selected antigenic determinants were specifically assessed for their suitability for the platform of the invention. For example, SeqID No 49/50 (GAISLAPKAQIKESLRAEL) was shown to be superior to KLH based vaccines.

鑒於本發明結合物之此等有利特性,因此根據本發明之結合物及疫苗可特定用於主動抗Aβ免疫療法,其用於預防、治療及診斷與β-澱粉樣蛋白形成及/或聚集相關之疾病。β-澱粉樣變性之最顯著形式為阿茲海默症(AD)。其他實例包括家族性及偶發性AD、家族性及偶發性Aβ腦澱粉樣蛋白血管病變、出現澱粉樣變性之遺傳性腦出血(HCHWA)、路易氏體癡呆及唐氏症候群中之癡呆、青光眼中之視網膜神經節細胞變性、包涵體肌炎/肌病。In view of these advantageous properties of the conjugates of the present invention, the conjugates and vaccines according to the present invention can be specifically used for active anti-Aβ immunotherapy for prevention, treatment and diagnosis related to β-amyloid formation and/or aggregation. disease. The most prominent form of beta-amyloidosis is Alzheimer's disease (AD). Other examples include familial and sporadic AD, familial and sporadic Aβ cerebral amyloid vasculopathy, hereditary cerebral hemorrhage with amyloidosis (HCHWA), dementia with Lewy bodies and Down syndrome, glaucoma Retinal ganglion cell degeneration, inclusion body myositis/myopathy.

Aβ肽以若干形式存在,包括全長的Aβ1-42及Aβ1-40、Aβ之各種修飾形式,包括截短、N端截短或C端截短、硝化、乙醯化及N-截短物種、焦麩胺酸Aβ3-40/42 (亦即AβpE3-40及AβpE3-42)及Aβ4-42,其似乎在神經退化中起主要作用。Aβ peptides exist in several forms, including full-length Aβ1-42 and Aβ1-40, various modified forms of Aβ, including truncated, N-terminally truncated or C-terminally truncated, nitrated, acetylated and N-truncated species, pyroglutamic acid Aβ3-40/42 (i.e., AβpE3-40 and AβpE3-42), and Aβ4-42, which appears to play a major role in neurodegeneration.

根據一較佳實施例,Aβ肽衍生多肽係選自原生人類Aβ1-40及/或Aβ1-42,其具有以下胺基酸序列: Aβ 1-40: Aβ 1-42: 或包含源自人類Aβ1-40及/或Aβ1-42之胺基酸殘基或由其組成之多肽,其包括經截短,尤其是N端截短、C端截短、轉譯後修飾、硝化、糖基化、乙醯化、泛素化肽胺基酸或在aa3或a11處攜載焦麩胺酸殘基的肽,其包括Aβ aa1-6、aa1-7、aa1-8、aa1-9、aa1-10、aa1-11、aa1-12、aa1-13、aa1-14、aa1-15、aa1-21、aa2-7、aa2-8、aa2-9、aa2-10、aa3-8、aa3-9、aa3-10、aa pE3-8、aa pE3-9、aa pE3-10、aa11-16、aa11-17、aa11-18、aa11-19、aa12-19、aa13-19、aa14- 19、aa14- 20、aa14- 21、aa14- 22、aa14- 23、aa30-40、aa31-40、aa32-40、aa33-40、aa34-40、aa30-42、aa37-42。 According to a preferred embodiment, the Aβ peptide-derived polypeptide is selected from native human Aβ1-40 and/or Aβ1-42, which has the following amino acid sequence: Aβ1-40: Aβ 1-42: Or polypeptides containing or consisting of amino acid residues derived from human Aβ1-40 and/or Aβ1-42, including truncation, especially N-terminal truncation, C-terminal truncation, post-translational modification, nitration , glycosylated, acetylated, ubiquitinated peptide amino acids or peptides carrying pyroglutamic acid residues at aa3 or a11, including Aβ aa1-6, aa1-7, aa1-8, aa1- 9. aa1-10, aa1-11, aa1-12, aa1-13, aa1-14, aa1-15, aa1-21, aa2-7, aa2-8, aa2-9, aa2-10, aa3-8, aa3-9, aa3-10, aa pE3-8, aa pE3-9, aa pE3-10, aa11-16, aa11-17, aa11-18, aa11-19, aa12-19, aa13-19, aa14- 19 , aa14-20, aa14-21, aa14-22, aa14-23, aa30-40, aa31-40, aa32-40, aa33-40, aa34-40, aa30-42, aa37-42.

根據一較佳實施例,Aβ 1-40或Aβ1-42衍生多肽係選自以上提及之Aβ衍生多肽之模擬物,包括模擬抗原決定基及含有模擬焦麩胺酸胺基酸之胺基酸取代的肽。Schenk等人(Nature. 1999 Jul 8;400(6740):173-7.)揭示作為抗Aβ免疫療法之免疫原的Aβ1-42,Pride等人(Neurodegenerative Dis 2008;5:194-196)揭示與CRM197偶合並用QS21作為佐劑的Aβ1-6之肽抗原決定基,且Wiesner等人(J Neurosci. 2011年6月22日;31(25):9323-31)揭示作為有效免疫治療劑的與Qβ病毒樣顆粒偶合之Aβ1-6肽。According to a preferred embodiment, the Aβ 1-40 or Aβ 1-42 derived polypeptide is selected from the mimics of the above-mentioned Aβ derived polypeptides, including simulated epitopes and amino acids containing simulated pyroglutamic acid amino acids. Substituted peptides. Schenk et al. (Nature. 1999 Jul 8;400(6740):173-7.) disclosed Aβ1-42 as an immunogen for anti-Aβ immunotherapy, and Pride et al. (Neurodegenerative Dis 2008;5:194-196) disclosed Aβ1-42 as an immunogen for anti-Aβ immunotherapy. CRM197 couples the peptide epitope of Aβ1-6 with QS21 as adjuvant, and Wiesner et al. (J Neurosci. 2011 Jun 22;31(25):9323-31) revealed that Qβ as potent immunotherapeutics Virus-like particle coupled Aβ1-6 peptide.

Wang等人(Alzheimer's & Dementia: Translational Research & Clinical Interventions 3 (2017) 262-272)及US 2018/0244739 A1揭示了Aβ 1-42肽免疫原,尤其是UB311,其包含呈等莫耳比之兩個Aβ免疫原,即陽離子Aβ1-14-εK-KKK-MvF5 Th [ISITEIKGVIVHRIETILF]及Aβ1-14-εK-HBsAg3 Th [KKKIITITRIITIITID]肽,將其與聚陰離子CpG寡聚去氧核苷酸(ODN)混合以形成微米級微粒之穩定免疫刺激性複合體,向其中添加鋁礦物鹽(Adju-Phos),得到最終調配物。Wang et al. (Alzheimer's & Dementia: Translational Research & Clinical Interventions 3 (2017) 262-272) and US 2018/0244739 A1 disclose Aβ 1-42 peptide immunogens, especially UB311, which comprises two Aβ immunogens in an equimolar ratio, namely cationic Aβ1-14-εK-KKK-MvF5 Th [ISITEIKGVIVHRIETILF] and Aβ1-14-εK-HBsAg3 Th [KKKIITITRIITIITID] peptides, which are mixed with polyanionic CpG oligodeoxynucleotides (ODN) to form a stable immunostimulatory complex of micron-sized particles, to which aluminum mineral salt (Adju-Phos) is added to obtain the final formulation.

Illouz等人(Vaccine 第39卷, 第34期, 9 2021年8月, 第4817-4829頁)揭示在老齡小鼠中作為疫苗的與HBsAg融合的Aβ1-11。Illouz et al. (Vaccine Volume 39, Issue 34, 9 August 2021, Pages 4817-4829) reveal Aβ1-11 fused to HBsAg as a vaccine in aged mice.

Davtyan H等人(J Neurosci. 2013年3月13日; 33(11): 4923-4934)及Petrushina等人(Molecular Therapy 第25卷 第1期 153-164)揭示包含來自破傷風毒素之兩個外來Th細胞抗原決定基―P30及P2以及Aβ1-12之B細胞抗原決定基的三個複製物的疫苗,其用QuilA作為佐劑。類似地,Davtyan H等人(Alzheimer's & Dementia 10 (2014) 271-283)揭示基於DNA之疫苗,其建立在蛋白質編碼區上,該等編碼區由免疫球蛋白(Ig) k-鏈信號序列、Aβ1-11 B細胞抗原決定基之3個複製物、1個合成肽(PADRE)及來自破傷風毒素(TT) (P2、P21、P23、P30及P32)、B型肝炎病毒(HBsAg、HBVnc)及流感(MT)之一串8個非自體的混雜Th抗原決定基組成,或另外包含3個來自以下的其他Th抗原決定基:TT (P7 (NYSLDKIIVDYNLQSKITLP);P17 (LINSTKIYSYFPSVISKVNQ);及P28 (LEYIPEITLPVIAALSIAES)。Davtyan H et al. (J Neurosci. 2013 Mar 13; 33(11): 4923-4934) and Petrushina et al. (Molecular Therapy Vol. 25 No. 1 153-164) disclosed a vaccine comprising two foreign Th cell antigenic determinants from tetanus toxin - P30 and P2 and three copies of the B cell antigenic determinant of Aβ1-12, using QuilA as an adjuvant. Similarly, Davtyan H et al. (Alzheimer's & Dementia 10 (2014) 271-283) disclosed a DNA-based vaccine based on protein coding regions consisting of an immunoglobulin (Ig) k-chain signal sequence, three copies of the Aβ1-11 B cell epitope, a synthetic peptide (PADRE) and a string of eight non-self promiscuous Th epitopes from tetanus toxin (TT) (P2, P21, P23, P30 and P32), hepatitis B virus (HBsAg, HBVnc) and influenza (MT), or additionally comprising three other Th epitopes from TT (P7 (NYSLDKIIVDYNLQSKITLP); P17 (LINSTKIYSYFPSVISKVNQ); and P28 (LEYIPEITLPVIAALSIAES).

Petrushina等人(Journal of Neuroinflammation 2008, 5:42)揭示作為潛在疫苗的N端連接子(n-CAGA)與溴乙醯化釀酒酵母甘露多醣偶合的Aβ1-28,但其有嚴重的副作用。Petrushina et al. (Journal of Neuroinflammation 2008, 5:42) revealed Aβ1-28 coupled to bromoacetylated brewing yeast mannosaccharide with an N-terminal linker (n-CAGA) as a potential vaccine, but it had serious side effects.

US 2011/0002949 A1揭示多價疫苗構築體(Aβ3-10/Aβ21-28) (MVC)及單價疫苗構築體Aβ1-8 (MoVC1-8),其與載體(KLH)結合且與基於皂素之佐劑―ISCOMATRIX一起投予。US 2011/0002949 A1 discloses a multivalent vaccine construct (Aβ3-10/Aβ21-28) (MVC) and a monovalent vaccine construct Aβ1-8 (MoVC1-8), which are combined with a carrier (KLH) and administered with a saponin-based adjuvant - ISCOMATRIX.

Muhs等人(Proc Natl Acad Sci USA. 2007年6月5日;104(23):9810-5)、Hickman等人(J Biol Chem. 2011年4月22日;286(16):13966-76)及Belichenko等人(PLoS One. 2016;11(3):e0152471)揭示呈Aβ1-15序列之陣列的Aβ1-15,包夾於兩端之棕櫚醯化離胺酸之間,錨定於脂質體表面以使肽採用聚集β-片層結構,形成構形抗原決定基。Muhs et al. (Proc Natl Acad Sci USA. 2007 Jun 5;104(23):9810-5), Hickman et al. (J Biol Chem. 2011 Apr 22;286(16):13966-76) and Belichenko et al. (PLoS One. 2016;11(3):e0152471) revealed that Aβ1-15 in an array of Aβ1-15 sequences, sandwiched between palmitoyl lysine at both ends, is anchored on the liposome surface so that the peptide adopts an aggregated β-sheet structure, forming a conformational antigenic determinant.

Ding等人(Neuroscience Letters, 第634卷, 2016年11月10日, 第1-6頁)揭示藉由使Aβ3-10與免疫原性載體蛋白―匙孔螺血氰蛋白(KLH)偶合或藉由以串聯方式線性連接5個Aβ3-10抗原決定基的肽。Ding et al. (Neuroscience Letters, Volume 634, November 10, 2016, Pages 1-6) revealed that by coupling Aβ3-10 to the immunogenic carrier protein keyhole hemocyanin (KLH) or borrowing A peptide composed of five Aβ3-10 epitopes linearly connected in series.

Bakrania等人( Mol Psychiatry(2021). https://doi.org/10.1038/s41380-021-01385-7) 揭示作為適合的免疫原的環化Aβ1-14 (硫縮醛橋接Aβ肽1-14 - KLH結合物;DAC*FRHDSGYEC*HH[Cys]-醯胺),其乳化於完全弗氏佐劑(CFA)中,隨後加打劑量之蛋白質並乳化於不完全弗氏佐劑(IFA)中。 Bakrania et al. ( Mol Psychiatry (2021). https://doi.org/10.1038/s41380-021-01385-7) revealed cyclized Aβ1-14 (thioacetal-bridged Aβ peptide 1-14 - KLH conjugate; DAC*FRHDSGYEC*HH[Cys]-amide) as a suitable immunogen, which was emulsified in complete Freund's adjuvant (CFA), followed by a dose of protein emulsified in incomplete Freund's adjuvant (IFA).

Lacosta等人(Alzheimers Res Ther. 2018年1月29日;10(1):12.)揭示包含Aβ1-40之短C端片段之多個重複序列的Aβ肽免疫原。為產生免疫反應,重複序列與匙孔螺花青(KHL)載體蛋白結合且與佐劑氫氧化鋁調配。Lacosta et al. (Alzheimers Res Ther. 2018 Jan 29;10(1):12.) disclose Aβ peptide immunogens containing multiple repeat sequences of a short C-terminal fragment of Aβ1-40. To generate an immune response, the repeat sequences were conjugated to a keyhole limpet cyanine (KHL) carrier protein and formulated with the adjuvant aluminum hydroxide.

Axelsen等人(Vaccine 第29卷, 第17期, 2011年4月12日, 第3260-3269頁)揭示與匙孔螺血氰蛋白偶合之Aβ37-42。Axelsen et al. (Vaccine Vol. 29, No. 17, April 12, 2011, pp. 3260-3269) revealed Aβ37-42 coupled to keyhole limpet hemocyanin.

WO 2004/062556 A2、WO 2006/005707 A2、WO 2009/149486 A2及WO 2009/149485 A2揭示Aβ之抗原決定基之模擬抗原決定基。其證明此等模擬抗原決定基能夠在活體內分別誘導針對非截短之Aβ1-40/42及N端截短形式AβpE3-40/42、Aβ3-40/42、Aβ11-40/42、AβpE11-40/42及Aβ14-40/42的抗體形成。WO 2004/062556 A2, WO 2006/005707 A2, WO 2009/149486 A2 and WO 2009/149485 A2 disclose mimetic epitopes of the epitope of Aβ. They demonstrate that these mimetic epitopes can induce antibody formation in vivo against non-truncated Aβ1-40/42 and N-terminal truncated forms AβpE3-40/42, Aβ3-40/42, Aβ11-40/42, AβpE11-40/42 and Aβ14-40/42, respectively.

根據一較佳實施例,Aβ肽衍生多肽係選自: 原生 Aβ Aβ 位置 序列 aa1-6 DAEFRH aa1-7 DAEFRHD aa1-8 DAEFRHDS aa1-9 DAEFRHDSG aa1-10 DAEFRHDSGY aa1-11 DAEFRHDSGYE aa1-12 DAEFRHDSGYEV aa1-13 DAEFRHDSGYEVH aa1-14 DAEFRHDSGYEVHH aa1-15 DAEFRHDSGYEVHHQ aa1-21 DAEFRHDSGYEVHHQKLVFFA aa2-7 AEFRHD aa2-8 AEFRHDS aa2-9 AEFRHDSG aa2-10 AEFRHDSGY aa3-8 EFRHDS aa3-9 EFRHDSG aa3-10 EFRHDSGY aa pE3-8 p(E)FRHDS aa pE3-9 p(E)FRHDSG aa pE3-10 p(E)FRHDSGY aa11-16 EVHHQK aa11-17 EVHHQKL aa11-18 EVHHQKLV aa11-19 EVHHQKLVF aa12-19 VHHQKLVF aa13-19 HHQKLVF aa14- 19 HQKLVF aa14- 20 HQKLVFF aa14- 21 HQKLVFFA aa14- 22 HQKLVFFAE aa14- 23 HQKLVFFAED aa30-40 AIIGLMVGGVV aa31-40 IIGLMVGGVV aa32-40 IGLMVGGVV aa33-40 GLMVGGVV aa34-40 LMVGGVV aa30-42 AIIGLMVGGVVIA 模擬抗原決定基 Aβ Aβ 位置 序列 aa1-6 DKELRI aa1-7 DKELRID aa1-8 DKELRIDS aa1-9 DKELRIDSG aa1-10 DKELRIDSGY aa1-6 SWEFRT aa1-7 SWEFRTD aa1-8 SWEFRTDS aa1-9 SWEFRTDSG aa1-10 SWEFRTDSGY aa1-7 TLHEFRH aa1-7 TLHEFKH aa1-7 THTDFRH aa1-7 THTDFKH aa2-7 AEFKHD aa2-7 AEFKHG aa2-7 SEFRHD aa2-7 SEFRHG aa2-7 SEFKHD aa2-7 SEFKHG aa2-7 ILFRHG aa2-7 ILFRHD aa2-7 ILFKHG aa2-7 ILFKHD aa pE3-8 IRWDTP aa pE3-8 IRYDAPL aa pE3-8 IRYDMAG According to a preferred embodiment, the Aβ peptide-derived polypeptide is selected from: Native A beta peptide A beta position sequence aa1-6 DAEFRH aa1-7 DAEFRHD aa1-8 DAEFRHDS aa1-9 DAEFRHDSG aa1-10 DAEFRHDSGY aa1-11 DAEFRHDSGYE aa1-12 DAEFRHDSGYEV aa1-13 DAEFRHDSGYEVH aa1-14 DAEFRHDSGYEVHH aa1-15 DAEFRHDSGYEVHHQ aa1-21 DAEFRHDSGYEVHHQKLVFFA aa2-7 AEFRHD aa2-8 AEFRHDS aa2-9 AEFRHSG aa2-10 AEFRHDSGY aa3-8 EFRHDS aa3-9 EFRHDSG aa3-10 EFRHDSGY aa pE3-8 p(E)FRHDS aa pE3-9 p(E)FRHDSG aa pE3-10 p(E)FRHDSGY aa11-16 EVHHQK aa11-17 EVHHQKL aa11-18 EVHHQKLV aa11-19 EVHHQKLVF aa12-19 VHHQKLVF aa13-19 HHQKLVF aa14-19 HQKLVF aa14-20 HQKLVFF aa14-21 HQKLVFFA aa14-22 HQKLVFFAE aa14-23 HQKLVFFAED aa30-40 AIIGLMVGGVV aa31-40 IIGLMVGGVV aa32-40 IGLMVGGVV aa33-40 GLMVGGVV aa34-40 LMVGGVV aa30-42 AIIGLMVGGVVIA Mimic epitope A beta peptide A beta position sequence aa1-6 DKELRI aa1-7 DKELRID aa1-8 DKELRIDS aa1-9 DKELRIDSG aa1-10 DKELRIDSGY aa1-6 SWEFRT aa1-7 SWEFRTD aa1-8 SWEFRTDS aa1-9 SWEFRTDSG aa1-10 SWEFRTDSGY aa1-7 TLHEFRH aa1-7 TLHEFKH aa1-7 THTDFRH aa1-7 THTDFKH aa2-7 AEFKHD aa2-7 AEFKHG aa2-7 SEFRHD aa2-7 SEFRHG aa2-7 SEFKHD aa2-7 SEFKHG aa2-7 ILFRHG aa2-7 ILFRHD aa2-7 ILFKHG aa2-7 ILFKHD aa pE3-8 IRWDTP aa pE3-8 IRYDAPL aa pE3-8 IRYDMAG

此等抗Aβ疫苗在單獨使用或與已有的針對β-澱粉樣變性、tau蛋白病變或突觸核蛋白病變所涉及的其他病理分子的肽疫苗組合使用時非常有效,特別是在混合病變情況下(即存在Aβ病變與Tau病變及/或aSyn病變)。因此,一較佳實施例提供抗Aβ疫苗與抗Tau及/或抗Syn肽疫苗之組合以治療退化性疾病,如阿茲海默症、唐氏症候群中之癡呆、路易氏體癡呆、帕金森氏症癡呆、帕金森氏症或tau蛋白病變。These anti-Aβ vaccines are very effective when used alone or in combination with existing peptide vaccines targeting other pathological molecules involved in β-amyloidosis, tauopathy or synucleinopathy, especially in mixed pathological conditions (i.e., the presence of Aβ pathology and Tau pathology and/or aSyn pathology). Therefore, a preferred embodiment provides a combination of anti-Aβ vaccines and anti-Tau and/or anti-Syn peptide vaccines to treat degenerative diseases such as Alzheimer's disease, dementia in Down syndrome, dementia with Lewy bodies, Parkinson's disease dementia, Parkinson's disease or tauopathy.

儘管原則上,本發明能夠改良所有提出之Aβ及Aβ相關疫苗接種多肽,但根據其對本發明平台之適用性對所選抗原決定基進行特定評定。舉例而言,SeqID32/33 (AβpE3-8; pEFRHDS)被顯示優於基於KLH之疫苗且SeqID10 (Aβ1-6;DAEFRH)被證明與不同CLEC組合而具有免疫原性。Although, in principle, the present invention is capable of improving all proposed Aβ and Aβ-related vaccination polypeptides, selected epitopes are specifically assessed for their suitability for the platform of the invention. For example, SeqID32/33 (AβpE3-8; pEFRHDS) was shown to be superior to KLH-based vaccines and SeqID10 (Aβ1-6; DAEFRH) was shown to be immunogenic in combination with different CLECs.

鑒於本發明結合物之此等有利特性,因此根據本發明之結合物及疫苗可特定用於主動抗IL31疫苗接種,以治療及預防IL31相關疾病及自體免疫炎性疾病。In view of these favorable properties of the conjugates of the present invention, the conjugates and vaccines according to the present invention can be specifically used for active anti-IL31 vaccination to treat and prevent IL31-related diseases and autoimmune inflammatory diseases.

IL31相關疾病包括哺乳動物(包括人類、狗、貓及馬)中的引起瘙癢之過敏性疾病、引起瘙癢之炎性疾病及引起瘙癢之自體免疫疾病。此等疾病包括異位性皮膚炎、結節性癢疹、牛皮癬、皮膚T細胞淋巴瘤(CTCL)及其他瘙癢病症、諸如尿毒症性瘙癢、膽汁鬱積性瘙癢、大皰性類天疱瘡及慢性蕁麻疹、過敏性接觸性皮膚炎(ACD)、皮肌炎、不明原因之慢性瘙癢(CPUO)、原發性局部皮膚澱粉樣變性病(PLCA)、肥大細胞增多症、慢性自發性蕁麻疹、大皰性類天疱瘡、疱疹樣皮炎及其他皮膚病狀,包括扁平苔癬、皮膚澱粉樣變性病、淤積性皮炎、硬皮病、與創傷癒合相關之瘙癢,及非瘙癢性疾病,諸如過敏性哮喘、過敏性鼻炎、發炎性腸病(IBD)、骨質疏鬆症、濾泡性淋巴瘤、霍奇金氏淋巴瘤(Hodgkin lymphoma)及慢性骨髓白血病。IL31-associated diseases include pruritic allergic diseases, pruritic inflammatory diseases, and pruritic autoimmune diseases in mammals (including humans, dogs, cats, and horses). These diseases include atopic dermatitis, prurigo nodularis, psoriasis, cutaneous T-cell lymphoma (CTCL) and other pruritic conditions, such as uremic pruritus, cholestatic pruritus, pemphigoid and chronic urticaria, allergic contact dermatitis (ACD), dermatomyositis, chronic pruritus of unknown origin (CPUO), primary localized cutaneous amyloidosis (PLCA), hypertrophic Cystic eczema, chronic spontaneous urticaria, pemphigoid, dermatitis herpetiformis and other skin conditions including lichen planus, eczematous dermatosis, stasis dermatitis, scleroderma, pruritus associated with wound healing, and non-pruritic diseases such as allergic asthma, allergic rhinitis, inflammatory bowel disease (IBD), osteoporosis, follicular lymphoma, Hodgkin lymphoma and chronic myeloid leukemia.

根據一較佳實施例,單一IL31抗原決定基可用於觸發針對IL31之不同域的免疫反應。在另一較佳實施例中,IL31抗原決定基之組合可用於觸發針對IL31之不同域之免疫反應,尤其是涉及螺旋體C或A且進一步涉及螺旋體D,藉此防止IL31與兩種IL31受體症介白素31受體α (IL-31RA)及抑瘤素M受體(OSMR)結合。According to a preferred embodiment, a single IL31 epitope can be used to trigger an immune response against different domains of IL31. In another preferred embodiment, a combination of IL31 epitopes can be used to trigger an immune response against different domains of IL31, particularly involving spirochetes C or A and further involving spirochetes D, thereby preventing IL31 from binding to two IL31 receptors, interleukin 31 receptor α (IL-31RA) and oncostatin M receptor (OSMR).

抗IL31疫苗在單獨使用或與針對引起瘙癢之過敏性疾病、引起瘙癢之炎性疾病及引起瘙癢之自體免疫疾病所涉及的其他病理分子的肽疫苗組合使用時可非常有效。因此,一較佳實施例提供抗IL31疫苗與抗IL4及/或抗IL13肽疫苗之組合以治療引起瘙癢之過敏性疾病、引起瘙癢之炎性疾病及引起瘙癢之自體免疫疾病。Anti-IL31 vaccines can be very effective when used alone or in combination with peptide vaccines targeting other pathological molecules involved in pruritic allergic diseases, pruritic inflammatory diseases, and pruritic autoimmune diseases. Therefore, a preferred embodiment provides a combination of anti-IL31 vaccines with anti-IL4 and/or anti-IL13 peptide vaccines to treat pruritic allergic diseases, pruritic inflammatory diseases, and pruritic autoimmune diseases.

根據一較佳實施例,IL31蛋白衍生多肽為IL31蛋白質之片段,及/或較佳選自原生人類IL31 (Genbank:AAS86448.1;MASHSGPSTSVLFLFCCLGGWLASHTLPVRLLRPSDDVQKIVEELQSLSKMLLKDVEEEKGVLVSQNYTLPCLSPDAQPPNNIHSPAIRAYLKTIRQLDNKSVIDEIIEHLDKLIFQDAPETNISVPTDTHECKRFILTISQQFSECMDLALKSLTSGAQQATT);原生犬IL31 (Genbank:BAH97742.1;MLSHTGPSRFALFLLCSMETLLSSHMAPTHQLPPSDVRKIILELQPLSRGLLEDYQKKETGVPESNRTLLLCLTSDSQPPRLNSSAILPYFRAIRPLSDKNIIDKIIEQLDKLKFQHEPETEISVPADTFECKSFILTILQQFSACLESVFKSLNSGPQ);原生貓IL31 (UNIPROT:A0A2I2UKP7 MLSHAGPARFALFLLCCMETLLPSHMAPAHRLQPSDVRKIILELRPMSKGLLQDYVSKEIGLPESNHSSLPCLSSDSQLPHINGSAILPYFRAIRPLSDKNTIDKIIEQLDKLKFQREPEAKVSMPADNFERKNFILAVLQQFSACLEHVLQSLNSGPQ); 或原生馬IL31 (UNIPROT F7AHG9 MVSHIGSTRFALFLLCCLGTLMFSHTGPIYQLQPKEIQAIIVELQNLSKKLLDDYVSALETSILSCFFKTDLPSCFTSDSQAPGNINSSAILPYFKAISPSLNNDKSLYIIEQLDKLNFQNAPETEVSMPTDNFERKRFILTILRWFSNCLEHRAQ) 或與前述任一者具有至少70%、75%、80%、85%、90%或95%序列一致性,或與天然存在之序列不同之處在於表面暴露之胺基酸的許多點突變的任何肽序列,其中點突變之數目為1、2或3。 According to a preferred embodiment, the IL31 protein-derived polypeptide is a fragment of the IL31 protein, and/or is preferably selected from native human IL31 (Genbank: AAS86448.1; MASHSGPSTSVLFLFCCLGGWLASHTLPVRLLRPSDDVQKIVEELQSLSKMLLKDVEEEKGVLVSQNYTLPCLSPDAQPPNNIHSPAIRAYLKTIRQLDNKSVIDEIIEHLDKLIFQDAPETNISVPTDTHECKRFILTISQQFSECMDLALKSLTSGAQQATT); native canine IL31 (Genbank: BAH97742.1; MLSHTGPSRFALFLLCSMETLLSSHMAPTHQLPPSDVRKIILELQPLSRGLLEDYQKKETGVPESNRTLLLCLTSDSQPPRLNSSAILPYFRAIRPLSDKNIIDKIIEQLDKLKFQHEPETEISVPADTFECKSFILTILQQFSACLESVFKSLNSGPQ); native cat IL31 (UNIPROT: A0A2I2UKP7 MLSHAGPARFALFLLCCMETLLPSHMAPAHRLQPSDVRKIILELRPMSKGLLQDYVSKEIGLPESNHSSLPCLSSDSQLPHINGSAILPYFRAIRPLSDKNTIDKIIEQLDKLKFQREPEAKVSMPADNFERKNFILAVLQQFSACLEHVLQSLNSGPQ); or native horse IL31 (UNIPROT F7AHG9 MVSHIGSTRFALFLLCCLGTLMFSHTGPIYQLQPKEIQAIIVELQNLSKKLLDDYVSALETSILSCFFKTDLPSCFTSDSQAPGNINSSAILPYFKAISPSLNNDKSLYIIEQLDKLNFQNAPETEVSMPTDNFERKRFILTILRWFSNCLEHRAQ) or any peptide sequence having at least 70%, 75%, 80%, 85%, 90% or 95% sequence identity to any of the foregoing, or a plurality of point mutations in surface-exposed amino acids that differ from the naturally occurring sequence, wherein the number of point mutations is 1, 2 or 3.

根據一較佳實施例,IL31蛋白衍生多肽係選自以上提及之IL31衍生多肽之模擬物,包括模擬抗原決定基及含有胺基酸取代的肽。According to a preferred embodiment, the IL31 protein-derived polypeptide is selected from the mimetics of the above-mentioned IL31-derived polypeptides, including mimetic antigenic determinants and peptides containing amino acid substitutions.

其他較佳目標序列包括(呈現為直鏈或受限肽,例如環化肽或藉由適合的aa連接子(例如:ggsgg或類似者)連接之肽):Other preferred target sequences include (presented as linear or constrained peptides, such as cyclized peptides or peptides linked by suitable aa linkers (e.g., ggsgg or similar)):

對於人類IL31:序列aa98-145、aa87-150、aa105-113、aa85-115、aa84-114、aa86-117、aa87-116衍生之肽;或其片段及肽SDDVQKIVEELQSLSKMLLKDVEEEKGVLVSQNYTL;DVQKIVEELQSLSKMLLKDV、EELQSLSK及DVQK、LDNKSVIDEIIEHLDKLIFQDA;及DEIIEH、TDTHECKRFILTISQQFSECMDLALKS、TDTHESKRF、TDTHERKRF HESKRF、HERKRF、HECKRF;SDDVQKIVEELQ、VQKIVEELQSLS、IVEELQSLSKML、ELQSLSKMLLKD、SLSKMLLKDVEE、KMLLKDVEEEKG、LKDVEEEKGVLV、VEEEKGVLVSQN、EKGVLVSQNYTL、LDNKSVIDEIIE、KSVIDEIIEHLD、IDEIIEHLDKLI、IIEHLDKLIFQD、HLDKLIFQDAPE、KLIFQDAPETNI、FQDAPETNISVP、APETNISVPTDT、TNISVPTDTHEC、SVPTDTHESKRF、TDTHECKRFILT、TDTHESKRFILT、TDTHERKRFILT、HECKRFILTISQ、HESKRFILTISQ、HERKRFILTISQ、KRFILTISQQFS、ILTISQQFSECM、ILTISQQFSESM、ILTISQQFSERM、ISQQFSECMDLA、ISQQFSESMDLA、ISQQFSERMDLA、QFSECMDLALKS、QFSESMDLALKS、QFSERMDLALKS、SKMLLKDVEEEKG、EELQSLSK、KGVLVS、SPAIRAYLKTIRQLDNKSVIDEIIEHLDKLI、DEIIEHLDK、SVIDEIIEHLDKLI、SPAIRAYLKTIRQLDNKSVI、TDTHECKRF、HECKRFILT、HERKRFILT、HESKRFILT、SVPTDTHECKRF、SVPTDTHESKRF及SVPTDTHERKRFFor human IL31: peptides derived from sequences aa98-145, aa87-150, aa105-113, aa85-115, aa84-114, aa86-117, aa87-116; or fragments thereof and peptides SDDVQKIVEELQSLSKMLLKDVEEEKGVLVSQNYTL; DVQKIVEELQSLSKMLLKDV, EELQSLSK and DVQK, LDNKSVIDEIIEHLDKLIFQDA; and DEIIEH, TDTHECKRFILTISQQFSECMDLALKS, TDTHESKRF, TDTHERKRF HESKRF, HERKRF, HECKRF; SDDVQKIVEELQ, VQKIVEELQSLS, IVEELQSLSKML, ELQSLSKMLLKD, SLSKMLLKDVEE, KMLLKDVEEEKG, LKDVEEEKGVLV, VEEEKGVLVSQN, EKGVLVSQNYTL, LDNKSVIDEIIE, KSVIDEIIEHLD, IDEIIEHLDKLI, IIEHLDKLIFQD, HLDKLIFQDAPE, KLIFQDAPETNI, FQDAPETNISVP, APETNISVPTDT, TNISVPTDTHEC, SVPTDTHESKRF, TDTHECKRFILT, TDTHESKRFILT, TDTHERKRFILT, HECKRFILTISQ, HESKRFILTIS Q,HERKRFILTISQ,KRFILTISQQFS,ILTISQQFSECM,ILTISQQFSESM,ILTISQQFSERM,ISQQFSECMDLA,ISQQFSESMDLA,ISQQFSERMDLA,QFSECMDLALKS,QFSESMDLALKS,QFSERMDLALKS,SKMLLKDVEEEKG,EELQSLSK,KGVLVS,SPAIRAYLKTIRQLDNKSVIDEIIEHLDKLI,DEIIEHLDK,SVIDEIIEHLDKLI,SPAIRAYLKTIRQLDNKSVI,TDTHECKRF,HECKRFILT,HERKRFILT,HESKRFILT,SVPTDTHECKRF,SVPTDTHESKRF,SVPTDTHERKRF

對於犬IL31:由aa97-144、aa97-133、aa97-122、aa97-114、aa90-110、aa90-144、aa86-144、aa97-149、aa90-149、aa86-149、aa 124-135或其片段組成之肽及肽:SDVRKIILELQPLSRGLLEDYQKKETGV、DVRKIILELQPLSRGLLEDY ELQPLSR LSDKNIIDKIIEQLDKLKFQHE、LSDKNIIDKIIEQLDKLKFQ、KLKFQHE、LSDKNI、LDKL、LSDKN、ADTFECKSFILTILQQFSACLESVFKS及ADNFERKNFFor canine IL31: peptides consisting of aa97-144, aa97-133, aa97-122, aa97-114, aa90-110, aa90-144, aa86-144, aa97-149, aa90-149, aa86-149, aa 124-135 or fragments thereof and peptides consisting of SDVRKIILELQPLSRGLLEDYQKKETGV, DVRKIILELQPLSRGLLEDY ELQPLSR LSDKNIIDKIIEQLDKLKFQHE, LSDKNIIDKIIEQLDKLKFQ, KLKFQHE, LSDKNI, LDKL, LSDKN, ADTFECKSFILTILQQFSACLESVFKS, and ADNFERKNF

對於貓IL31:貓IL-31序列之aa124-135及肽SDVRKIILELRPMSKGLLQDYVSKEIGL及DVRKIILELRPMSKGLLQDY、LSDKNTIDKIIEQLDKLKFQRE、ADNFERKNFILAVLQQFSACLEHVLQS及ADNFERKNFFor feline IL31: aa124-135 of the feline IL-31 sequence and peptides SDVRKIILELRPMSKGLLQDYVSKEIGL and DVRKIILELRPMSKGLLQDY, LSDKNTIDKIIEQLDKLKFQRE, ADNFERKNFILAVLQQFSACLEHVLQS and ADNFERKNF

對於馬IL31:馬IL-31序列之aa118-129及肽:LQPKEIQAIIVELQNLSKKLLDDY、EIQAIIVELQNLSKKLLDDY、SLNNDKSLYIIEQLDKLNFQ及TDNFERKRFILTILRWFSNCLEHRAQFor equine IL31: aa118-129 and peptides of equine IL-31 sequence: LQPKEIQAIIVELQNLSKKLLDDY, EIQAIIVELQNLSKKLLDDY, SLNNDKSLYIIEQLDKLNFQ and TDNFERKRFILTILRWFSNCLEHRAQ

對於模擬抗原決定基: 犬IL-31模擬抗原決定基包含胺基酸序列SVPADTFECKSF、SVPADTFERKSF、NSSAILPYFRAIRPLSDKNIIDKIIEQLDKLKF、APTHQLPPSDVRKIILELQPLSRG、TGVPES或其變異體。 貓IL-31模擬抗原決定基包含胺基酸序列SMPADNFERKNF、NGSAILPYFRAIRPLSDKNTIDKIIEQLDKLKF、APAHRLQPSDIRKIILELRPMSKG、IGLPES或其變異體。 馬IL-31模擬抗原決定基包含胺基酸序列SMPTDNFERKRF、NSSAILPYFKAISPSLNNDKSLYIIEQLDKLNF、GPIYQLQPKEIQAIIVELQNLSKK、KGVQKF或其變異體。 人類IL-31模擬抗原決定基包含胺基酸序列SVPTDTHECKRF、SVPTDTHERKRF、HSPAIRAYLKTIRQLDNKSVIDEIIEHLDKLIF、LPVRLLRPSDDVQKIVEELQSLSKM、KGVLVS或保持抗IL-31結合之其變異體。 For the mimetic antigenic determinant: The canine IL-31 mimetic antigenic determinant comprises the amino acid sequence SVPADTFERKSF, SVPADTFERKSF, NSSAILPYFRAIRPLSDKNIIDKIIEQLDKLKF, APTHQLPPSDVRKIILELQPLSRG, TGVPES or its variants. The cat IL-31 mimetic antigenic determinant comprises the amino acid sequence SMPADNFERKNF, NGSAILPYFRAIRPLSDKNTIDKIIEQLDKLKF, APAHRLQPSDIRKIILELRPMSKG, IGLPES or its variants. The horse IL-31 mimetic antigenic determinant comprises the amino acid sequence SMPTDNFERKRF, NSSAILPYFKAISPSLNNDKSLYIIEQLDKLNF, GPIYQLQPKEIQAIIVELQNLSKK, KGVQKF or its variants. The human IL-31 mimetic epitope comprises the amino acid sequence SVPTDTHECKRF, SVPTDTHERKRF, HSPAIRAYLKTIRQLDNKSVIDEIIEHLDKLIF, LPVRLLRPSDDVQKIVEELQSLSKM, KGVLVS or variants thereof that retain anti-IL-31 binding.

根據一較佳實施例,IL31抗原決定基可為包含至少兩個胺基酸或胺基酸序列之構形抗原決定基,該等胺基酸或胺基酸序列在空間上彼此不同但緊密鄰近以便形成各別互補位。互補位通常與抗IL31抗體(例如在用疫苗接種哺乳動物後獲得之多株抗IL31抗體)結合且特異性識別天然存在之IL31。According to a preferred embodiment, the IL31 antigenic determinant may be a conformational antigenic determinant comprising at least two amino acids or amino acid sequences that are spatially distinct from each other but closely adjacent to each other so as to form respective complementary sites. Complementary sites are usually bound by anti-IL31 antibodies (e.g., polyclonal anti-IL31 antibodies obtained after vaccination of mammals) and specifically recognize naturally occurring IL31.

IL31為具有4個螺旋束結構之蛋白質,如在gp 30/IL6細胞介素家族中所見。IL31之受體為介白素31受體α (IL-31 RA,亦稱為GPL或gp130樣受體)及抑瘤素M受體(OSMR)之雜二聚體。雜二聚體之兩種結構皆被稱為IL-31受體或IL-31共受體。人類IL31與其受體之間的推定的相互作用位點已由Saux等人(J Biol Chem 2010, 285, 3470-34)描述。IL31之靶向可藉由靶向IL-31及/或其受體之抗體達成。特異性靶向IL31之專用單株抗體之研發實現在活體外及活體內對此靶向策略進行臨床及臨床前驗證(Front Med (Lausanne. 2021年2月12日;8:638325))。IL31 is a protein with a 4-helical bundle structure, as seen in the gp 30/IL6 interleukin family. The receptor for IL31 is a heterodimer of interleukin 31 receptor α (IL-31 RA, also known as GPL or gp130-like receptor) and oncostatin M receptor (OSMR). Both structures of the heterodimer are called IL-31 receptors or IL-31 co-receptors. The putative interaction sites between human IL31 and its receptor have been described by Saux et al. (J Biol Chem 2010, 285, 3470-34). Targeting of IL31 can be achieved by antibodies targeting IL-31 and/or its receptor. The development of a dedicated monoclonal antibody that specifically targets IL31 has enabled clinical and preclinical validation of this targeting strategy in vitro and in vivo (Front Med (Lausanne. 2021 Feb 12;8:638325)).

BMS-981164為靶向循環IL-31之抗IL-31單株抗體,其經Bristol-Myers Squibb研發。在2012年與2015年之間進行兩部分的I期單劑量劑量遞增研究以探究BMS-981164之安全性及藥物動力學概況(NCT01614756)。研究設計為隨機分組、雙盲、安慰劑對照,且以皮下(SC)及靜脈注射(IV)調配物(0.01至3 mg/kg)形式向健康志願者(部分1)及患有異位性皮膚炎之成人(部分2)投予藥物。部分2中之成年個體需要患有至少中度的異位性皮膚炎(藉由醫師整體評定按照0至5之評分,評分為3)且視覺類比量表(10分)中瘙癢嚴重程度為至少7。迄今為止,此研究之結果尚未公佈。截至2016年,BMS-981164不再列於Bristol-Myers Squibb之研發管線中,且亦未宣佈新試驗。BMS-981164 is an anti-IL-31 monoclonal antibody targeting circulating IL-31, which was developed by Bristol-Myers Squibb. A two-part Phase I single-dose dose-escalation study was conducted between 2012 and 2015 to explore the safety and pharmacokinetic profile of BMS-981164 (NCT01614756). The study design was a randomized, double-blind, placebo-controlled study with subcutaneous (SC) and intravenous (IV) formulations (0.01 to 3 mg/kg) administered to healthy volunteers (Part 1) and patients with atopic Medication for adults with dermatitis (Part 2). Adults in Part 2 were required to have at least moderate atopic dermatitis (a score of 3 on a physician global scale of 0 to 5) and a visual analog scale (10 points) of at least itch severity of 7. To date, the results of this study have not been published. As of 2016, BMS-981164 is no longer in Bristol-Myers Squibb's development pipeline, and no new trials have been announced.

US 8,790,651 B2描述結合於IL-31之單株抗體以治療免疫病症,諸如異位性皮膚炎。針對犬IL-31之單株抗體(洛吉維單抗(Lokivetmab),Zoetis)可市售以用於治療犬異位性皮膚炎。洛吉維單抗被假定為干擾IL-31與共受體GPL之結合。US 8,790,651 B2 describes monoclonal antibodies that bind to IL-31 for the treatment of immune disorders, such as atopic dermatitis. A monoclonal antibody against canine IL-31 (Lokivetmab, Zoetis) is commercially available for the treatment of canine atopic dermatitis. Logivimab is hypothesized to interfere with the binding of IL-31 to the co-receptor GPL.

EP 4 019 546 A1揭示單特異性及多特異性抗體,其中抗體可變域阻斷IL-31與介白素31受體α(IL-31RA)/抑瘤素M受體(OSMR)複合體(IL-31RA/OS- MR複合體)之結合。EP 4 019 546 A1 discloses monospecific and multispecific antibodies in which the antibody variable domain blocks IL-31 and the interleukin 31 receptor alpha (IL-31RA)/oncostatin M receptor (OSMR) complex (IL-31RA/OS-MR complex).

Bachmann等人揭示一種疫苗,其利用與病毒樣顆粒偶合之完整犬IL-31用於對犬進行免疫接種以治療異位性皮膚炎。(Bachmann, M. F.; Zeltins, A.; Kalnins, G.; Balke, I.; Fischer, N.; Rostaher, A.; Tars, K.; Favrot, C. Vaccination against IL-31 for the Treatment of Atopic Dermatitis in Dogs. J. Allergy Clin. Immunol. 2018, 142, 279-281 . e1)。類似地,US11,324,836 B2、US11,207,390 B2及US10,556,003以及Fettelschloss等人(doi: 10.1111/eve.13408)揭示靶向來自不同物種(包括人類、犬、馬或豬)IL31之IL31及IL31相關疾病的基於VLP之免疫原。此等基於VLP之免疫原藉由分別具有全長、原生以及全長修飾IL31衍生序列的抗IL31免疫原表徵。Bachmann et al. disclose a vaccine utilizing intact canine IL-31 conjugated to virus-like particles for immunization of dogs for the treatment of atopic dermatitis. (Bachmann, M. F.; Zeltins, A.; Kalnins, G.; Balke, I.; Fischer, N.; Rostaher, A.; Tars, K.; Favrot, C. Vaccination against IL-31 for the Treatment of Atopic Dermatitis in Dogs. J. Allergy Clin. Immunol. 2018, 142, 279-281. e1). Similarly, US11,324,836 B2, US11,207,390 B2 and US10,556,003 and Fettelschloss et al. (doi: 10.1111/eve.13408) revealed that IL31 and IL31 target IL31 from different species (including human, canine, horse or porcine) VLP-based immunogens for relevant diseases. These VLP-based immunogens were characterized by anti-IL31 immunogens having full-length, native, and full-length modified IL31-derived sequences, respectively.

US2021/0079054A1揭示靶向IL31之建立在UbiTh平台技術上的基於肽之免疫原,用於治療及/或預防瘙癢病狀或過敏性病狀,諸如異位性皮膚炎。沿著此等思路,源於犬IL31 (Genbank:BAH97742.1;MLSHTGPSRFALFLLCSMETLLSSHMAPTHQLPPSDVRKIILELQPLSRGLLEDYQKKETGVPESNRTLLLCLTSDSQPPRLNSSAILPYFRAIRPLSDKNIIDKIIEQLDKLKFQHEPETEISVPADTFECKSFILTILQQFSACLESVFKSLNSGPQ)及 人類IL31 (Genbank:AAS86448.1; MASHSGPSTSVLFLFCCLGGWLASHTLPVRLLRPSDDVQKIVEELQSLSKMLLKDVEEEKGVLVSQNYTLPCLSPDAQPPNNIHSPAIRAYLKTIRQLDNKSVIDEIIEHLDKLIFQDAPETNISVPTDTHECKRFILTISQQFSECMDLALKSLTSGAQQATT)的基於B細胞抗原決定基之免疫原呈現包括: 對於犬IL31:由aa97-144、aa97-133、aa97-122、aa97-114、aa90-110、aa90-144、aa86-144、aa97-149、aa90-149、aa86-149組成之肽;對於人類IL31:適用時具有修飾(例如:絲胺酸及半胱胺酸置換)之序列aa98-145、aa87-150、aa105-113、aa85-115、aa84-114、aa86-117、aa87-116衍生之肽。B細胞抗原決定基為線性或受限的且與混雜輔助性T抗原決定基融合且在佐劑(例如:不同CpG分子、Alhydrogel、AdjuPhos、Montanides,如ISA50V2、ISA51、ISA720)存在下調配。 US2021/0079054A1 discloses peptide-based immunogens based on UbiTh platform technology targeting IL31 for the treatment and/or prevention of pruritic or allergic symptoms, such as atopic dermatitis. Along these lines, derived from canine IL31 (Genbank: BAH97742.1; MLSHTGPSRFALFLLCSMETLLSSHMAPTHQLPPSDVRKIILELQPLSRGLLEDYQKKETGVPESNRTLLLCLTSDSQPPRLNSSAILPYFRAIRPLSDKNIIDKIIEQLDKLKFQHEPETEISVPADTFECKSFILTILQQFSACLESVFKSLNSGPQ) and human IL31 (Genbank: AAS86448.1; MASHSGPSTSVLFLFCCLGGWLASHTLPVRLLRPSDDVQKIVEELQSLSKMLLKDVEEEKGVLVSQNYTLPCLSPDAQPPNNIHSPAIRAYLKTIRQLDNKSVIDEIIEHLDKLIFQDAPETNISVPTDTHECKRFILTISQQFSECMDLALKSLTSGAQQATT) based on B cell antigen determinant immunogen presentation includes: For canine IL31: peptides consisting of aa97-144, aa97-133, aa97-122, aa97-114, aa90-110, aa90-144, aa86-144, aa97-149, aa90-149, aa86-149; for human IL31: peptides derived from the sequences aa98-145, aa87-150, aa105-113, aa85-115, aa84-114, aa86-117, aa87-116 with modifications (e.g., serine and cysteine substitutions) when applicable. B cell epitopes are linear or restricted and fused to promiscuous helper T epitopes and formulated in the presence of adjuvants (e.g. different CpG molecules, Alhydrogel, AdjuPhos, Montanides, such as ISA50V2, ISA51, ISA720).

US2019/0282704 A1揭示用於使哺乳動物免疫及/或保護其免受IL-31介導之病症的疫苗組合物,其中該組合物包括以下之組合:載劑多肽(例如CRM197);及至少一種選自以下的IL31衍生抗原決定基之模擬抗原決定基:貓IL-31模擬抗原決定基、犬IL-31模擬抗原決定基、馬IL-31模擬抗原決定基或人類IL-31模擬抗原決定基;以及佐劑。模擬抗原決定基可為線性或受限的(例如:環化)。US2019/0282704 A1 discloses a vaccine composition for immunizing mammals and/or protecting them from IL-31-mediated diseases, wherein the composition comprises a combination of: a carrier polypeptide (e.g., CRM197); and at least one mimetic epitope selected from the following IL31-derived epitopes: a cat IL-31 mimetic epitope, a canine IL-31 mimetic epitope, a horse IL-31 mimetic epitope, or a human IL-31 mimetic epitope; and an adjuvant. The mimetic epitope may be linear or constrained (e.g., cyclized).

犬IL-31模擬抗原決定基包含胺基酸序列SVPADTFECKSF、SVPADTFERKSF、NSSAILPYFRAIRPLSDKNIIDKIIEQLDKLKF、APTHQLPPSDVRKIILELQPLSRG、TGVPES或其變異體。The canine IL-31 mimic epitope includes the amino acid sequences SVPADTFECKSF, SVPADTFERKSF, NSSAILPYFRAIRPLSDKNIIDKIIEQLDKLKF, APTHQLPPSDVRKIILELQPLSRG, TGVPES or variants thereof.

貓IL-31模擬抗原決定基包含胺基酸序列SMPADNFERKNF、NGSAILPYFRAIRPLSDKNTIDKIIEQLDKLKF、APAHRLQPSDIRKIILELRPMSKG、IGLPES或其變異體。The feline IL-31 mimetic epitope comprises the amino acid sequence SMPADNFERKNF, NGSAILPYFRAIRPLSDKNTIDKIIEQLDKLKF, APAHRLQPSDIRKIILELRPMSKG, IGLPES or variants thereof.

馬IL-31模擬抗原決定基包含胺基酸序列SMPTDNFERKRF、NS SAILPYFKAISPSLNNDKSLYIIEQLDKLNF、GPIYQLQPKEIQAIIVELQNLS KK、KGVQKF或其變異體。The equine IL-31 mimic epitope includes the amino acid sequence SMPTDNFERKRF, NS SAILPYFKAISPSLNNDKSLYIIEQLDKLNF, GPIYQLQPKEIQAIIVELQNLS KK, KGVQKF or variants thereof.

人類IL-31模擬抗原決定基包含胺基酸序列SVPTDTHECKRF、SVPTDTHERKRF、HSPAIRAYLKTIRQLDNKSVIDEIIEHLDKLIF、LPVRLLRPSDDVQKIVEELQSLSKM、KGVLVS或保持抗IL-31結合之其變異體。Human IL-31 mimetic epitopes include the amino acid sequences SVPTDTHECKRF, SVPTDTHERKRF, HSPAIRAYLKTIRQLDNKSVIDEIIEHLDKLIF, LPVRLLRPSDDVQKIVEELQSLSKM, KGVLVS or variants thereof that retain anti-IL-31 binding.

此外,由(UNIPROT:A0A2I2UKP7)表示的貓IL-31序列之大約胺基酸殘基124與135之間的區域;及由(Genbank:BAH97742.1)表示的犬IL-31序列之大約胺基酸殘基124與135之間的區域;以及由(UNIPROT F7AHG9)表示的馬IL-31序列之大約胺基酸殘基118與129之間的區域被揭示為適合的抗原決定基。In addition, a region between approximately amino acid residues 124 and 135 of the cat IL-31 sequence represented by (UNIPROT: A0A2I2UKP7); a region between approximately amino acid residues 124 and 135 of the canine IL-31 sequence represented by (Genbank: BAH97742.1); and a region between approximately amino acid residues 118 and 129 of the horse IL-31 sequence represented by (UNIPROT F7AHG9) were revealed as suitable antigenic determinants.

WO 2019/086694 A1揭示靶向IL31之基於肽之免疫原,其藉由來自犬、人類、貓、馬、豬、牛或駱駝IL31之IL31抗原達成,該IL31抗原包含未組裝的IL31螺旋肽,或來自上述動物中所含之抗原決定基。抗原與習知載體分子(例如:KLH)偶合且用Imject Alum作為佐劑,或可與可能含有TLR9促效劑CpG或TLR7/8促效劑咪唑並喹啉之抗CD32 scFv構築體偶合。具體而言,IL31肽包含或由鑑別為以下中之任一者的胺基酸序列組成: 螺旋體A: 人類:SDDVQKIVEELQSLSKMLLKDVEEEKGVLVSQNYTL;及DVQKIVEELQSLSKMLLKDV、EELQSLSK及DVQK 犬:SDVRKIILELQPLSRGLLEDYQKKETGV,及DVRKIILELQPLSRGLLEDY及ELQPLSR 貓:SDVRKIILELRPMSKGLLQDYVSKEIGL及DVRKIILELRPMSKGLLQDY 馬:LQPKEIQAIIVELQNLSKKLLDDY及EIQAIIVELQNLSKKLLDDY 螺旋體C 人類:LDNKSVIDEIIEHLDKLIFQDA;及DEIIEH 犬:LSDKNIIDKIIEQLDKLKFQHE、LSDKNIIDKIIEQLDKLKFQ、KLKFQHE、LSDKNI、LDKL、LSDKN, 貓:LSDKNTIDKIIEQLDKLKFQRE 馬:SLNNDKSLYIIEQLDKLNFQ 及/或螺旋體D: 人類:TDTHECKRFILTISQQFSECMDLALKS、TDTHESKRF及HESKRF 犬:ADTFECKSFILTILQQFSACLESVFKS及ADNFERKNF 貓:ADNFERKNFILAVLQQFSACLEHVLQS及ADNFERKNF 馬:TDNFERKRFILTILRWFSNCLEHRAQ 該等螺旋體呈單獨或組合形式,亦使用如所揭示之連接序列融合。 WO 2019/086694 A1 discloses a peptide-based immunogen targeting IL31, which is achieved by an IL31 antigen from canine, human, cat, horse, pig, cow or camel IL31, which comprises an unassembled IL31 helical peptide, or an antigenic determinant contained in the above animals. The antigen is coupled to a known carrier molecule (e.g., KLH) and Imject Alum is used as an adjuvant, or it may be coupled to an anti-CD32 scFv construct that may contain a TLR9 agonist CpG or a TLR7/8 agonist imidazoquinoline. Specifically, the IL31 peptide comprises or consists of an amino acid sequence identified as any of the following: Treponema A: Human: SDDVQKIVEELQSLSKMLLKDVEEEKGVLVSQNYTL; and DVQKIVEELQSLSKMLLKDV, EELQSLSK, and DVQK Canine: SDVRKIILELQPLSRGLLEDYQKKETGV, and DVRKIILELQPLSRGLLEDY and ELQPLSR Cat: SDVRKIILELRPMSKGLLQDYVSKEIGL and DVRKIILELRPMSKGLLQDY Horse: LQPKEIQAIIVELQNLSKKLLDDY and EIQAIIVELQNLSKKLLDDY Treponema C Human: LDNKSVIDEIIEHLDKLIFQDA; and DEIIEH Canine: LSDKNIIDKIIEQLDKLKFQHE, LSDKNIIDKIIEQLDKLKFQ, KLKFQHE, LSDKNI, LDKL, LSDKN, Cat: LSDKNTIDKIIEQLDKLKFQRE Horse: SNNNDKSLYIIEQLDKLNFQ and/or spirochete D: Human: TDTHECKRFILTISQQFSECMDLALKS, TDTHESKRF, and HESKRF Canine: ADTFECKSFILTILQQFSACLESVFKS and ADNFERKNF Cat: ADNFERKNFILAVLQQFSACLEHVLQS and ADNFERKNF Horse: TDNFERKRFILTILRWFSNCLEHRAQ The spirochetes are present alone or in combination, and are also fused using the linker sequences disclosed.

WO 2022/131820 A1揭示作為以藥劑或美容劑形式預防或治療異位性皮膚炎的活性成分之免疫調節性或消炎IL31衍生肽。其亦揭示其中IL31肽或其片段與生物相容性聚合物結合之結合物,例如:普魯蘭多醣、硫酸軟骨素、玻尿酸(HA)、乙二醇殼聚醣、澱粉、殼聚醣、葡聚糖、果膠、卡德蘭多醣、聚-L-離胺酸、聚天門冬胺酸(PAA)、聚乳酸(PLA)、聚乙醇酸(polyglycol Ride)(聚乙交酯,PGA)、聚己內酯(聚(ε-己內酯),PCL)、聚(己內酯-丙交酯)無規共聚物(PCLA)、聚(己內酯-乙交酯)無規共聚物(PCGA)、聚(丙交酯-乙交酯)無規共聚物(PLGA)、聚乙二醇(PEG)、pluronic F-68及pluronic F-127 (pluronic F-127)或脂肪酸,例如:己酸(hexanoic acid)、辛酸(辛酸,C8)、癸酸(癸酸,C10)、月桂酸(月桂酸,C12)、肉豆蔻酸(肉豆蔻酸,C14)、棕櫚酸(C16)、硬脂酸(C18)及膽固醇(cholesterol)以增加肽之穩定性及皮膚滲透性。在該發明中,肽及結合物均未被建議作為免疫原。WO 2022/131820 A1 discloses immunomodulatory or anti-inflammatory IL31-derived peptides as active ingredients for preventing or treating atopic dermatitis in the form of pharmaceutical or cosmetic preparations. It also discloses conjugates in which the IL31 peptide or fragment thereof is conjugated to a biocompatible polymer, such as pluronic acid, chondroitin sulfate, hyaluronic acid (HA), glycol chitosan, starch, chitosan, dextran, pectin, curdlan, poly-L-lysine, polyaspartic acid (PAA), polylactic acid (PLA), polyglycolic acid (polyglycol Ride) (polyglycolide, PGA), polycaprolactone (poly(ε-caprolactone), PCL), poly(caprolactone-lactide) random copolymer (PCLA), poly(caprolactone-glycolide) random copolymer (PCGA), poly(lactide-glycolide) random copolymer (PLGA), polyethylene glycol (PEG), pluronic F-68 and pluronic F-127 (pluronic F-127) or fatty acids, such as hexanoic acid (hexanoic acid). Acid), caprylic acid (caprylic acid, C8), capric acid (capric acid, C10), lauric acid (lauric acid, C12), myristic acid (myristic acid, C14), palmitic acid (C16), stearic acid (C18) and cholesterol are added to increase the stability and skin permeability of the peptide. In the invention, neither the peptide nor the conjugate is suggested as an immunogen.

儘管原則上,本發明能夠改良所有提出之IL31相關疾病疫苗接種多肽,但相比於基於CRM197之疫苗,根據其對本發明平台之適用性對所選抗原決定基(參見SeqID)進行特定評定。 所選序列 • SeqID132 SKMLLKDVEEEKG-NHNH2 SeqID133 SKMLLKDVEEEKG-C • SeqID134 EELQSLSK-NHNH2;SeqID135 EELQSLSK-C; • SeqID136 KGVLVS-NHNH2;SeqID137 KGVLVS-C; • SeqID138 SVIDEIIEHLDKLI-NHNH2;SeqID139 SVIDEIIEHLDKLI-C; • SeqID140 SPAIRAYLKTIRQLDNKSVI-NHNH2;SeqID141 SPAIRAYLKTIRQLDNKSVI-C; • SeqID142 HE RKRFILT-NHNH2;SeqID143 HE RKRFILT-C; • SeqID144 HE SKRFILT-NHNH2;SeqID145 HE SKRFILT-C; • SeqID146 SVPTDTHE RKRF-NHNH2,SeqID147 SVPTDTHE RKRF-C • SeqID148 SVPTDTHE SKRF-NHNH2,SeqID149 SVPTDTHE SKRF-C •   SeqID150 KRFILTISQQFS-NHNH2 SeqID151 KRFILTISQQFS-C Although in principle the present invention enables the improvement of all proposed IL31-related disease vaccination polypeptides, the selected antigenic determinants (see SeqID) were specifically assessed for their suitability for the platform of the present invention compared to CRM197-based vaccines. Selected sequences • SeqID132 SKMLLKDVEEEKG-NHNH2 SeqID133 SKMLLKDVEEEKG-C • SeqID134 EELQSLSK-NHNH2; SeqID135 EELQSLSK-C; • SeqID136 KGVLVS-NHNH2; SeqID137 KGVLVS-C; • SeqID138 SVIDEIIEHLDKLI-NHNH2; SeqID139 SVIDEIIEHLDKLI-C; • SeqID140 SPAIRAYLKTIRQLDNKSVI-NHNH2; SeqID141 SPAIRAYLKTIRQLDNKSVI-C; • SeqID142 HE R KRFILT-NHNH2; SeqID143 HE R KRFILT-C; • SeqID144 HE S KRFILT-NHNH2; SeqID145 HE S KRFILT-C; • SeqID146 SVPTDTHE R KRF-NHNH2, SeqID147 SVPTDTHE R KRF-C • SeqID148 SVPTDTHE S KRF-NHNH2, SeqID149 SVPTDTHE S KRF-C • SeqID150 KRFILTISQQFS-NHNH2 SeqID151 KRFILTISQQFS-C

鑒於本發明結合物之此等有利特性,因此根據本發明之結合物及疫苗可特定用於針對降鈣素基因相關肽(CGRP)相關疾病之主動免疫療法。In view of these advantageous properties of the conjugates of the present invention, the conjugates and vaccines according to the present invention can be specifically used for active immunotherapy against calcitonin gene-related peptide (CGRP)-related diseases.

CGRP相關疾病係選自以下之群:間歇性及慢性偏頭痛及叢集性頭痛、痛覺過敏、功能障礙性疼痛狀態下之痛覺過敏,諸如類風濕性關節炎、骨關節炎、內臟疼痛過敏症候群、纖維肌痛、發炎性腸病症候群、神經性疼痛、慢性發炎性疼痛及頭痛。CGRP-related disorders are selected from the group consisting of: intermittent and chronic migraine and cluster headache, hyperalgesia, hyperalgesia in dysfunctional pain states such as rheumatoid arthritis, osteoarthritis, visceral pain hypersensitivity syndrome, Fibromyalgia, inflammatory bowel disease syndrome, neuropathic pain, chronic inflammatory pain and headaches.

根據一較佳實施例,CGRP衍生多肽源自原生人類CGRP α (ACDTATCVTHRLAGLLSRSGGVVKNNFVPTNVGSKAF;降鈣素同種型α-CGRP前原蛋白之aa83-119之37個aa肽片段,登錄號NP_001365879.1)或原生人類CGRP β(ACNTATCVTHRLAGLLSRSGGMVKSNFVPTNVGSKAF)之aa82-228;降鈣素基因相關肽2前驅體之aa82-118之37個aa肽片段,登錄號NP_000719.1)或其前驅體分子(NP_001365879.1及NP_000719.1)。CGRP衍生多肽亦可為具有一或多個aa交換的模擬物,形成各別原生序列之模擬抗原決定基。According to a preferred embodiment, the CGRP-derived polypeptide is derived from native human CGRP α (ACDTATCVTHRLAGLLSRSGGVVKNNFVPTNVGSKAF; a 37 aa peptide fragment of aa83-119 of the calcitonin isoform α-CGRP preproprotein, accession number NP_001365879.1) or native human CGRP β (ACNTATCVTHRLAGLLSRSGGMVKSNFVPTNVGSKAF); aa82-228 of the calcitonin gene-related peptide 2 proprotein, accession number NP_000719.1) or its pro-promoter molecules (NP_001365879.1 and NP_000719.1). CGRP-derived polypeptides may also be mimetics with one or more aa exchanges forming mimetic epitopes of the respective native sequences.

根據一較佳實施例,CGRP衍生多肽係選自原生人類CGRP之功能位點,包括CGRP之中心區域(例如aa8-35)或其片段、C端CGRP受體結合區(例如:aa11-37)或其片段,或可能亦含CGRP內之C2-C7環路(例如aa1-20)之N端區或其片段,其由源自模擬抗原決定基之此等位點的胺基酸殘基組成。According to a preferred embodiment, the CGRP-derived polypeptide is selected from the functional sites of native human CGRP, including the central region of CGRP (e.g., aa8-35) or a fragment thereof, the C-terminal CGRP receptor binding region (e.g., aa11-37) or a fragment thereof, or the N-terminal region or a fragment thereof that may also contain the C2-C7 loop (e.g., aa1-20) within CGRP, which is composed of amino acid residues derived from these sites that mimic antigenic determinants.

其他較佳目標序列包括ACDTATCVTH;ACDTATCVTHRLAGL;ACDTATCVTHRLAGLLSR;ACDTATCVTHRLAGLLSRSG;ACDTATCVTHRLAGLLSRSGGVVKN;TATCVTHRLAGLL;ATCVTHRLAGLLSR;RLAGLLSR;RLAGLLSRSGGVVKN;RSGGVVKN;RLAGLLSRSGGVVKNNFVPT;RLAGLLSRSGGVVKNNFVPTNVG;RLAGLLSRSGGVVKNNFVPTNVGSK;RLAGLLSRSGGVVKNNFVPTNVGSKAF;LLSRSGGVVKNNFVPTNVGSKAF;RSGGVVKNNFVPTNVGSKAF;GGVVKNNFVPTNVGSKAF;VVKNNFVPTNVGSKAF;NNFVPTNVGSKAF;VPTNVGSKAF;NVGSKAF;GSKAFOther preferred target sequences include ACDTATCVTH; ACDTATCVTHRLAGL; ACDTATCVTHRLAGLLSR; ACDTATCVTHRLAGLLSRSG; ACDTATCVTHRLAGLLSRSGGVVKN; TATCVTHRLAGLL; ATCVTHRLAGLLSR; RLAGLLSR; RLAGLLSRSGGVVKN; RSGGVVKN; RLAGLLSRSGGVVKNNFVPT; RLAGLLSRSGGVVKNNFVPTNVG; RLAGLLSRSGGVVKNNFVPTNVGSK; RLAGLLSRSGGVVKNNFVPTNVGSKAF; LLSRSGGVVKNNFVPTNVGSKAF; RSGGVVKNNFVPTNVGSKAF; GGVVKNNFVPTNVGSKAF; VVKNNFVPTNVGSKAF; NNFVPTNVGSKAF; VPTNVGSKAF; NVGSKAF; GSKAF

在US 2022/0073582 A1中,揭示原生人類CGRP (登錄號:NP_001365879.1)之多肽構築體,其含有CGRP衍生肽aa1-10 ACDTATCVTH;aa 1-15 ACDTATCVTHRLAGL;aa 1-18 ACDTATCVTHRLAGLLSR;aa 1-20 ACDTATCVTHRLAGLLSRSG;aa 1-25 ACDTATCVTHRLAGLLSRSGGVVKN;aa 4-16 TATCVTHRLAGLL;aa 5-18 ATCVTHRLAGLLSR;aa 11-18 RLAGLLSR;aa 11-25 RLAGLLSRSGGVVKN;aa 11-30 RLAGLLSRSGGVVKNNFVPT;aa 11-33 RLAGLLSRSGGVVKNNFVPTNVG;aa 11-35 RLAGLLSRSGGVVKNNFVPTNVGSK;aa 11-37 RLAGLLSRSGGVVKNNFVPTNVGSKAF;aa 15-37 LLSRSGGVVKNNFVPTNVGSKAF;aa 18-37 RSGGVVKNNFVPTNVGSKAF;aa 20-37 GGVVKNNFVPTNVGSKAF;aa 22-37 VVKNNFVPTNVGSKAF;aa 25-37 NNFVPTNVGSKAF;aa 28-37 VPTNVGSKAF;aa 31-37 NVGSKAF;具有以下胺基酸序列:MGFQKFSPFLALSILVLLQAGSLHAAPFRSALESSPADPATLSEDEARLLLAALVQDYVQMKASELEQEQEREGSRIIAQKRACDTATCVTHRLAGLLSRSGGVVKNNFVPTNVGSKAFGRRRRDLQA。US 2022/0073582 A1中所揭示之肽免疫原構築體需要與一或多個混雜T細胞抗原決定基偶合的CGRP衍生之B細胞抗原決定基作為靶向GCRP之肽免疫原構築體。In US 2022/0073582 A1, a polypeptide construct of native human CGRP (Accession No.: NP_001365879.1) is disclosed, which contains a CGRP-derived peptide aa1-10 ACDTATCVTH;aa 1-15 ACDTATCVTHRLAGL;aa 1-18 ACDTATCVTHRLAGLLSR;aa 1-20 ACDTATCVTHRLAGLLSRSG;aa 1-25 ACDTATCVTHRLAGLLSRSGGVVKN;aa 4-16 TATCVTHRLAGLL;aa 5-18 ATCVTHRLAGLLSR;aa 11-18 RLAGLLSR;aa 11-25 RLAGLLSRSGGVVKN;aa 11-30 RLAGLLSRSGGVVKNNFVPT;aa 11-33 RLAGLLSRSGGVVKNNFVPTNVG;aa 11-35 RLAGLLSRSGGVVKNNFVPTNVGSK;aa 11-37 RLAGLLSRSGGVVKNNFVPTNVGSKAF;aa 15-37 LLSRSGGVVKNNFVPTNVGSKAF;aa 18-37 RSGGVVKNNFVPTNVGSKAF;aa 20-37 GGVVKNNFVPTNVGSKAF;aa 22-37 VVKNNFVPTNVGSKAF;aa 25-37 NNFVPTNVGSKAF;aa 28-37 VPTNVGSKAF;aa 31-37 NVGSKAF; having the following amino acid sequence: MGFQKFSPFLALSILVLLQAGSLHAAPFRSALESSPADPATLSEDEARLLLAALVQDYVQMKASELEQEQEREGSRIIAQKRACDTATCVTHRLAGLLSRSGGVVKNNFVPTNVGSKAFGRRRRDLQA. The peptide immunogen construct disclosed in US 2022/0073582 A1 requires a CGRP-derived B cell antigenic determinant coupled to one or more promiscuous T cell antigenic determinants as a peptide immunogen construct targeting GCRP.

除活性免疫治療劑以外,人源化抗降鈣素基因相關肽(CGRP)單株抗體已被表明為抗CGRP靶向範例。若干研究已發現抗體在降低慢性偏頭痛頻率方面有效(Dodick D W等人 (2014) Lancet Neurol.13:1100-1107;Dodick D W等人 (2014) Lancet Neurol.13:885-892;Bigal M E等人 (2015) Lancet Neurol.14:1081-1090;Bigal M E等人 (2015) Lancet Neurol.14:1091-1100;及Sun H等人 (2016) Lancet Neurol.15:382-390)。 In addition to active immunotherapeutics, humanized anti-calcitonin gene-related peptide (CGRP) monoclonal antibodies have been shown as an anti-CGRP targeting paradigm. Several studies have found that antibodies are effective in reducing the frequency of chronic migraines (Dodick DW et al. (2014) Lancet Neurol. 13: 1100-1107; Dodick DW et al. (2014) Lancet Neurol. 13: 885-892; Bigal ME et al. (2015) Lancet Neurol. 14: 1081-1090; Bigal ME et al. (2015) Lancet Neurol. 14: 1091-1100; and Sun H et al. (2016) Lancet Neurol. 15: 382-390).

沿著此等思路,US 8,597.649 B2、EP 1957106 B1及US 9.266,951 B2揭示臨床上使用之靶向人類CGRP內之aa25-37及/或aa33-37的單株抗體以治療偏頭痛、叢集性頭痛及緊張性頭痛。US20120294797 A1揭示臨床上使用之CGRP靶向單株抗體,根據共結晶結果顯示此抗原決定基亦對C端抗原決定基aa26-37具有特異性(https://doi.org/10.1080/21655979.2021.2006977),該抗原決定基適用於免疫療法。US 9,505,838 B2亦揭示臨床上使用之針對CGRP之單株抗體,其結合於具有CGRP之胺基酸25-37的C端片段或CGRP之胺基酸25-37內的C端抗原決定基。Along these lines, US 8,597.649 B2, EP 1957106 B1 and US 9.266,951 B2 disclose clinically used monoclonal antibodies targeting aa25-37 and/or aa33-37 in human CGRP for the treatment of migraine, cluster headache and tension headache. US20120294797 A1 discloses clinically used CGRP-targeting monoclonal antibodies, and according to the co-crystallization results, this antigenic determinant is also specific for the C-terminal antigenic determinant aa26-37 (https://doi.org/10.1080/21655979.2021.2006977), and the antigenic determinant is suitable for immunotherapy. US 9,505,838 B2 also discloses a monoclonal antibody against CGRP for clinical use, which binds to a C-terminal fragment having amino acids 25-37 of CGRP or a C-terminal epitope within amino acids 25-37 of CGRP.

儘管原則上,本發明能夠改良所有提出之CGRP相關疾病疫苗接種多肽,但相比於基於CRM197之疫苗,根據其對本發明平台之適用性對所選抗原決定基(參見SeqID 152至SeqID162)進行特定評定。 實驗之所選序列: • SeqID152 RLAGLLSR-NHNH2,SeqID153 RLAGLLSR-C • SeqID154 RLAGLLSRSGGVVKN-NHNH2,SeqID155 RLAGLLSRSGGVVKN-C • SeqID156 RSGGVVKN-NHNH2,SeqID157 RSGGVVKN-C • SeqID158 NNFVPTNVGSKAF-NHNH2,SeqID159 NNFVPTNVGSKAF-C • SeqID160 VPTNVGSKAF-NHNH2,SeqID161 VPTNVGSKAF-C •SeqID162 NVGSKAF-NHNH2,SeqID163 NVGSKAF-C Although, in principle, the present invention is capable of improving all proposed CGRP-related disease vaccination polypeptides, selected epitopes (see SeqID 152 to SeqID 162) were specified based on their suitability for the platform of the present invention compared to CRM197-based vaccines. assessment. Selected sequence for experiment: • SeqID152 RLAGLLSR-NHNH2, SeqID153 RLAGLLSR-C • SeqID154 RLAGLLSRSGGVVKN-NHNH2, SeqID155 RLAGLLSRSGGVVKN-C • SeqID156 RSGGVVKN-NHNH2, SeqID157 RSGGVVKN-C • SeqID158 NNFVPTNVGSKAF-NHNH2, SeqID159 NNFVPTNVGSKAF-C • SeqID160 VPTNVGSKAF-NHNH2, SeqID161 VPTNVGSKAF-C •SeqID162 NVGSKAF-NHNH2, SeqID163 NVGSKAF-C

鑒於本發明結合物之此等有利特性,因此根據本發明之基於CLEC之結合物及基於CLEC之疫苗特別可特定用於特異性過敏原免疫療法(AIT)以治療IgE介導之I型過敏性疾病。過敏性疾病通常係指由免疫系統對環境中通常無害物質之過敏性引起的多種病狀。此等疾病包括(但不限於)花粉熱、季節性、食物、花粉、黴菌孢子、有毒植物、藥劑/藥物、昆蟲、蠍或蜘蛛毒液、乳膠或粉塵過敏;寵物過敏;過敏性支氣管哮喘;過敏性鼻炎及結膜炎;異位性皮膚炎;對黏著劑、抗微生物劑、芳香劑、染髮劑、金屬、橡膠成分、局部用藥劑、松香、蠟、拋光劑、水泥及皮革之接觸性皮膚炎;慢性鼻竇炎;異位性濕疹;其中IgE起作用(「自體過敏」)之自體免疫疾病;慢性(特發性)及自體免疫蕁麻疹;全身性過敏反應,尤其是特發性及運動誘發之全身性過敏反應。In view of these favorable properties of the conjugates of the present invention, the CLEC-based conjugates and CLEC-based vaccines according to the present invention are particularly useful for specific allergen immunotherapy (AIT) to treat IgE-mediated type I allergic diseases. Allergic diseases generally refer to a variety of conditions caused by the immune system's sensitivity to normally harmless substances in the environment. Such diseases include (but are not limited to) hay fever, seasonal, food, pollen, mold spore, poisonous plant, agent/drug, insect, scorpion or spider venom, latex or dust allergies; pet allergies; allergic bronchial asthma; allergic rhinitis and conjunctivitis; atopic dermatitis; contact dermatitis to adhesives, antimicrobials, fragrances, hair dyes, metals, rubber components, topical medications, rosin, wax, polishes, cement and leather; chronic sinusitis; atopic eczema; autoimmune diseases in which IgE plays a role ("autoallergy"); chronic (idiopathic) and autoimmune urticaria; systemic allergic reactions, especially idiopathic and exercise-induced systemic allergic reactions.

迄今為止,特異性AIT為用於過敏之唯一治療性方法,且其藉由重複注射含有不同來源(諸如食品、花粉、動物皮屑、蟎或昆蟲毒液)之提取物的過敏原來介導。然而,目前用於臨床實踐中之特異性AIT範例之特徵在於治療期極長、注射需求頻繁且功效有限,其共同造成較低的患者順應性(Musa等人 Hum Vaccin Immunother. 2017年3月; 13(3): 514-517. doi: 10.1080/21645515.2016.1243632)。To date, specific AIT is the only therapeutic approach for allergies, and it is mediated by repeated injections of allergens containing extracts from different sources such as food, pollen, animal dander, mites or insect venoms. However, specific AIT paradigms currently used in clinical practice are characterized by extremely long treatment periods, frequent need for injections, and limited efficacy, which together result in low patient compliance (Musa et al. Hum Vaccin Immunother. March 2017; 13(3): 514-517. doi: 10.1080/21645515.2016.1243632).

AIT之主要機制為誘導所謂的阻斷抗體,較佳誘導IgG4同型以及其他同型(例如IgG1或IgA)。已顯示過敏原表面上天然存在之IgA及IgG靶向的抗原決定基不同於IgE特異性識別之抗原決定基(所謂IgE抗原決定基)(Shamji, Valenta等人 2021; Allergy 76(12): 3627-3641)。然而,後者抗原決定基負責經由高親和力cγRI受體交聯結合於肥大細胞之IgE,且因此負責誘導即時型過敏性免疫反應。The main mechanism of AIT is the induction of so-called blocking antibodies, preferably of the IgG4 isotype, as well as other isotypes (e.g., IgG1 or IgA). It has been shown that the antigenic determinants targeted by naturally occurring IgA and IgG on the surface of allergens are different from the antigenic determinants specifically recognized by IgE (the so-called IgE antigenic determinants) (Shamji, Valenta et al. 2021; Allergy 76(12): 3627-3641). However, the latter antigenic determinant is responsible for cross-linking to IgE on mast cells via the high-affinity cγRI receptor and is therefore responsible for inducing immediate allergic immune responses.

相比之下,AIT誘導之阻斷抗體(主要IgGa及IgA型)係針對所述IgE抗原決定基。其與過敏原之結合干擾與細胞結合之IgE的交聯,由此抑制過敏反應之起始。IgG4展現出作為阻斷抗體之有利特徵,因為其無法交聯過敏原且顯示對活化IgG (FcγR)之Fc受體的低親和力,同時保持對FcγRIIb之高親和力。此等特徵使得IgG4能夠成為IgE依賴性反應之有效抑制劑而不會引起與IgG免疫複合體形成及補體活化相關之炎症(Shamji, Valenta等人 2021)。然而,IgG4之阻斷能力未必優於其他IgG子類{Ejrnaes等人 2004; Molecular Immunology 第41卷, 第5期, .2004, P. 471-478},特別是在AIT早期,阻斷活性亦藉由其他IgG型賦予,尤其是IgG1 (Strobl, Demir等人 2023, Journal of Allergy and Clinical Immunology doi: 10.1016/j.jaci.2023.01.005)。In contrast, AIT-induced blocking antibodies (mainly IgGa and IgA types) are directed against the IgE antigenic determinants. Their binding to allergens interferes with the crosslinking of cell-bound IgE, thereby inhibiting the initiation of allergic reactions. IgG4 exhibits advantageous characteristics as a blocking antibody, as it is unable to crosslink allergens and shows low affinity for the Fc receptors of activating IgG (FcγR), while maintaining a high affinity for FcγRIIb. These characteristics enable IgG4 to become an effective inhibitor of IgE-dependent reactions without causing inflammation associated with IgG immune complex formation and complement activation (Shamji, Valenta et al. 2021). However, the blocking ability of IgG4 is not necessarily superior to other IgG subclasses {Ejrnaes et al. 2004; Molecular Immunology Vol. 41, No. 5, .2004, P. 471-478}, especially in the early stages of AIT, blocking activity is also conferred by other IgG types, especially IgG1 (Strobl, Demir et al. 2023, Journal of Allergy and Clinical Immunology doi: 10.1016/j.jaci.2023.01.005).

根據一較佳實施例,單一過敏原抗原決定基可用於觸發針對各別過敏原之免疫反應(例如表A及B中提及之IgE抗原決定基)。在另一個較佳實施例中,來自一種過敏原之抗原決定基組合可用於觸發針對過敏原之不同域的免疫反應。According to a preferred embodiment, a single allergen antigenic determinant can be used to trigger an immune response against a respective allergen (e.g., the IgE antigenic determinants mentioned in Tables A and B). In another preferred embodiment, a combination of antigenic determinants from one allergen can be used to trigger an immune response against different domains of the allergen.

此等抗單一過敏原疫苗當單獨或與針對過敏性疾病中所涉及之其他過敏原分子的肽疫苗組合使用時非常有效。因此,一較佳實施例為提供不同過敏原之抗原決定基組合以觸發針對不同過敏原之免疫反應。These vaccines against single allergens are very effective when used alone or in combination with peptide vaccines against other allergen molecules involved in allergic diseases. Therefore, a preferred embodiment is to provide a combination of antigenic determinants of different allergens to trigger an immune response against different allergens.

根據一較佳實施例,過敏原衍生之多肽為一種過敏原蛋白之片段,尤其表A及表B中所述之一者,及/或較佳選自原生蛋白,尤其是表A及表B中所列之彼等者。According to a preferred embodiment, the allergen-derived polypeptide is a fragment of an allergen protein, especially one of those described in Table A and Table B, and/or is preferably selected from native proteins, especially those listed in Table A and Table B.

根據一較佳實施例,過敏原衍生之多肽為一種過敏原蛋白之線性片段,包括表A及表B中所述之彼等者。According to a preferred embodiment, the allergen-derived polypeptide is a linear fragment of an allergen protein, including those described in Table A and Table B.

根據一較佳實施例,過敏原衍生多肽係選自以上提及之過敏原衍生多肽之模擬物,包括模擬抗原決定基及含有胺基酸取代的肽。According to a preferred embodiment, the allergen-derived polypeptide is selected from the mimetics of the allergen-derived polypeptides mentioned above, including mimetic antigenic determinants and peptides containing amino acid substitutions.

根據一較佳實施例,過敏原衍生多肽係源自原生過敏原或為具有一或多個aa交換的模擬物,形成各別原生序列之模擬抗原決定基。According to a preferred embodiment, the allergen-derived polypeptide is derived from a native allergen or is a mimetic having one or more aa exchanges to form a simulated epitope of the respective native sequence.

根據一較佳實施例,過敏原抗原決定基可為包含至少兩個胺基酸或胺基酸序列之構形抗原決定基,該等胺基酸或胺基酸序列在空間上彼此不同但緊密鄰近以便形成各別互補位。互補位通常與抗過敏原抗體(例如在用疫苗接種哺乳動物後獲得之多株抗過敏原抗體)結合且特異性識別天然存在之過敏原。According to a preferred embodiment, the allergen epitope may be a conformational epitope comprising at least two amino acids or amino acid sequences that are spatially different but closely related to each other. adjacent to form respective complementary bits. The paratope typically binds to an anti-allergen antibody (eg, multiple anti-allergen antibodies obtained after vaccination of a mammal) and specifically recognizes a naturally occurring allergen.

根據一較佳實施例,各別構形抗原決定基或模擬抗原決定基可自文獻獲得或使用預測性演算法(如Dall'Antonia及Keller 2019, Nucleic Acids Research 47(W1): W496-W501所揭示)或公開可用之資料庫(例如:https://www.iedb.org/)鑑別。待與本發明一起使用之潛在目標抗原及其各別抗原決定基/模擬抗原決定基的所選實例概述於表A及表B中。According to a preferred embodiment, the respective conformational epitopes or simulated epitopes can be obtained from the literature or using predictive algorithms (such as Dall'Antonia and Keller 2019, Nucleic Acids Research 47(W1): W496-W501 disclosed) or publicly available databases (e.g.: https://www.iedb.org/). Selected examples of potential target antigens and their respective epitopes/mimetic epitopes to be used with the present invention are summarized in Table A and Table B.

根據一較佳實施例,其他較佳目標序列包括受限肽,例如環化肽或藉由熟習此項技術者已知的適合的aa連接子,例如:(G)n連接子、(K)n連接子、GGSGG或類似者連接之肽。 表A - 供用於基於CLEC之疫苗的較佳過敏原 過敏原來源 過敏原 UNIPROT 普通赤楊( Alnus glutinosa) Aln g 1 P38948 互生鏈隔孢菌( Alternaria alternata) Alt a 1 P79085 Alt a 3 P78983 Alt a 4 Q00002 Alt a 5 P42037 Alt a 6 Q9HDT3 Alt a 7 P42058 Alt a 8 P0C0Y4 Alt a 10 P42041 Alt a 12 P49148 Alt a 13 Q6R4B4 豚草( Ambrosia artemisiifolia) Amb a 1 P27761 Amb a 1.05 P27762 Amb a 3 P00304 Amb a 5 P02878 Amb a 6 O04004 Amb a 7 無可用的完整序列 Amb a 8 Q2KN24 Amb a 9 Q2KN27 Amb a 10 Q2KN25 歐洲蜜蜂( Apis mellifera) Api m 1 P00630 Api m 2 Q08169 Api m 3 Q4TUB9 Api m 4 01501 Api m 5 B2D0J4 Api m 6 Q27SJ8 Api m 7 Q8MQS8 Api m 8 B2D0J5 Api m 9 C9WMM5 Api m 10 Q1HHN7 Api m 11 B3GM11 Api m 12 Q868N5 芹菜( Apium graveolens) Api g 1 P49372 Api g 2 E6Y8S8 Api g 3 P92919 Api g 4 Q9XF37 Api g 5 P81943 花生( Arachis hypogae) Ara h 1 P43238 Ara h 2 Q6PSU2-1 Ara h 3 O82580 Ara h 3.02 Q9SQH7 Ara h 5 Q9SQI9 Ara h 6 Q647G9 Ara h 7 Q9SQH1 Ara h 8 Q6VT83 垂枝樺( Betula verrucosa) Bet v 1 P15494 Bet v 2 P25816 Bet v 3 P43187 Bet v 4 Q39419 Bet v 6 O65002 Bet v 7 P81531 家犬( Canis familiaris) Can f 1 O18873 Can f 2 O18874 Can f 3 P49822 Can f 4 D7PBH4 Can f 5 P09582 Can f 6 H2B3G5 Can f 7 Q28895 Can f 8 F1PHB6 歐洲角樹( Carpinus betulus) Car b 1 P38949 歐洲栗( Castanea sativa) Cas s 1 B7TWE3 Cas s 5 Q42428 Cas s 8 序列不明 分枝孢子菌( Cladosporium herbarum) Cla h 2 無可用的完整序列 CIa h 5 P42039 CIa h 6 P42040 CIa h 7 P42059 CIa h 8 P0C0Y5 CIa h 9 B7ZK61 CIa h 10 P40108 CIa h 12 P50344 歐洲榛( Corylus avellana) Cor a 1 Q08407 Cor a 2 Q9AXH5 Cor a 6 A0A0U1VZC8 Cor a 8 Q9ATH2 Cor a 9 Q8W1C2 Cor a 10 Q9FSY7 Cor a 11 Q8S4P9 日本柳杉( Cryptomeria japonica) Cry j 1 P18632 Cry j 2 P43212 歐洲鯉( Cyprinus carpio) Cyp c 1 Q8UUS3 野胡蘿蔔( Daucus carota) Dau c 1 O04298 Dau c 4 Q8SAE6 歐洲屋塵蟎( Dermatophagoides pteronyssinus) Der p 1 P08176 (變異體) Der p 2 P49278 Der p 3 P39675 Der p 4 Q9Y197 Der p 5 P14004 Der p 6 P49277 Der p 7 P49273 Der p 8 P46419 Der p 9 Q7Z163 Der p 10 O18416 Der p 11 Q6Y2F9 Der p 14 Q8N0N0 Der p 20 B2ZSY4 Der p 21 Q2L7C5 Der p39 XP_027203190.1 歐洲山毛櫸( Fagus sylvatica) Fag s 1 B7TWE6 家貓( Felis domesticus) Fel d 1 P30438 (鏈1), P30440 (鏈2) Fel d 2 P49064 Fel d 3 Q8WNR9 Fel d 4 Q5VFH6 Fel d 5 無可用的完整序列 Fel d 6 無可用的完整序列 Fel d 7 E5D2Z5 Fel d 8 F6K0R4 橡膠樹( Hevea brasiliensis) Hev b 1 P15252 Hev b 2 P52407 Hev b 3 O82803 Hev b 4 Q6T4P0 Hev b 5 Q39967 Hev b 6 P02877 Hev b 7.01 O04008 Hev b 7.02 O65811 Hev b 8 O65812 Hev b 9 Q9LEJ0 Hev b 10 P35017 Hev b 11 Q949H3 Hev b 12 Q8RYA8 Hev b 13 Q7Y1X1 美國雪松( Juniperus ashei) Jun a 1 P81294 Jun a 2 Q9FY19 Jun a 3 P81295 蘋果( Malus domestica) Mal d 1 P43211 Mal d 2 Q9FSG7 Mal d 3.0101w Q5J026 Mal d 4 Q9XF42 白櫟木( Quercus alba) Que a 1 B6RQS1 梯牧草( Phleum pratense) PhI p 1 Q40967 PhI p 2 P43214 PhI p 4 Q5ZQK5 PhI p 5 Q40960 PhI p 6 P43215 PhI p 7 O82040 PhI p 11 Q8H6L7 PhI p 12 P35079 PhI p 13 Q9XG86 環胡蜂( Polistes annularis) Pol a 1 Q9U6W0 Pol a 5 Q05109 造紙胡蜂( Polistes dominulus) Pol d 1 Q6Q252 Pol d 4 Q7Z269 Pol d 5 Q68KJ8 幾內亞紙胡蜂( Polistes exclamans) Pol e 1 無可用的完整序列 Pol e 4 無可用的完整序列 Pol e 5 Q68KJ9 北方紙胡蜂( Polistes fuscatus) Pol f 5 P35780 柞蠶馬蜂( Polistes gallicus) Pol g 1 P83542 Pol g 5 P83377 長足胡蜂( Polistes metricus) Pol m 5 P35780 表B:供用於基於CLEC之疫苗的較佳過敏原抗原決定基 過敏原 UNIPROT 抗原決定基 / 模擬抗原決定基 Amb a 1 P27761 GMLATVAFNTFTDNVDQR (Mol Immunol. 1988年4月;25(4):355-65), AFNKFTDNVDQR, MPRCRFGF, WRTQNDVLENG (Mol Immunol. 2009 Feb;46(5):873-83.), TFTDNVDQRMPRCRH (Peptides. 2021 Nov;145:170628.), RVVELMDWTVLH, GSAMTWGMLAAE, SYNIIATGIHPV, TMVATGLMPVLI, QDFDDIL, CLFSQGNRC, VANLKVGV, NPGGLSAAPAGS, RHASTLLGRHG, EAAESMWRVASG, QNRLNSNGNNGGSQ, DDDLQHQFDDQD (Acta Chim. Slov. 2019, 66, 37-44) Amb a 3 P00304 CDIKDPIRLEPGGPD, EVWREEAYHACDIKD, GKVYLVGGPELGGWK, LGGWKLQSDPRAYAL, NFTTGEDSVAEVWRE, PGGPDRFTLLTPGSH, PGGPDRFTLLTPGSH, QFKTTDVLWFNFTTG, RAYALWSARQQFKTT, TPGSHFICTKDQKFV (Eur J Immunol. 1986年3月;16(3):229-35) Alt a1 P79085 MISTSRK, QKRNTIT, (Li等人 J Immunol (2019) 203 (1): 31-38.), KISEFYGRKP, VATATLPNYC, YSCGENSFMD, YYNSLGFNIK (Kurup等人, Peptides. 2003年2月;24(2):179-85.) Ara h 1 P43238 REREREEDWRQPREDWRRPS, RTRGRQPGDYDDDRRQPRRE, DDDRRQPRREEGGRWGPAGP, TTNQRSPPGERTRGRQPGDY,  QPREDWRRPSHQQPRKIRPE, GREGEQEWGTPGSHVREETS, PVNTPGQFEDFFPASSRDQS, AGGEQEERGQRRWSTRSSEN, REGEPDLSNNFGKLFEVKPD, NASSELHLLGFGINAENNHR, IDQIEKQAKDLAFPGSGEQV, LAFPGSGEQVEKLIKNQKES ( Cell Rep Med 2(10): 100410.), AKSSPYQKKT, QEPDDLKQKA, LEYDPRLUYD, GERTRGRQPG, PGDYDDDRRQ, PRREEGGRWG, REREEDWRQP, EDWRRPSHQQ, QPKKIRPEGR, TPGQFEDFFP, SYLQEFSRNT, FNAEFNEIRR, EQEERGQRRW, DITNPINLRE, NNFGKLFEVK, GTGNLELVAV, RRYTARLKEG, ELHLLGFGIN, HRIFLAGDKD, IDOIEKOAKD, KDLAFPGSGE, KESHFVSARP, PEKESPEKED (Eur J Biochem 245(2): 334-339) Ara h 2 Q6PSU2-1 ARQQWELQGDRRCQSQLERA, ERDPYSPSQDPYSPSPYDRR, RRCQSQLERANLRPCEQHLM, RDPYSPSPYDRRGAGSSQHQ, GRDPYSPSQDPYSPSQDPDR, PYSPSQDPDRRDPYSPSPYD, QKIQRDEDSYERDPYSPSQD (Cell Rep Med 2(10): 100410.), HASARQQWEL, QWELQGDRRC, DRRCQSQLER, LRPCEQHLMQ, KIQRDEDSYE, YERDPYSPSQ, SQDPYSPSPY, DRLQGRQQEQ, KRELRNLPQQ, QRCDLDVESG (Arch Biochem Biophys 342(2): 244-253), HASARQQWEL, ERDPYSPSQDPYSPS, RRCQSQLER, CDLEVESGGRDRY, ERDPYSPSQDPYSPS, NLRPCEQHLMQKIQRD, PQRCDLE, RQQEQQFKRELRNLPQQ, SDRLQGRQQ (Deak, Vrabel等人 2017), RRCQSQLERANLRPCEQHLMQKIQRDEDSYGRDPYSPSQDPY (Mol Immunol 85: 81-88) Ara h 3 O82580 IETWNPNNQEFECAG, GNIFSGFTPEFLEQA, VTVRGGLRILSPDRK, DEDEYEYDEEDRG (J Clin Invest 103(4): 535-542), EDEYEYDEEDRRRGRGSRGR, NIFSGFTPEFLEQAFQVDDR, ESEEEGAIVTVRGGLRILSP, SGFTPEFLEQAFQVDDRQIV, EEGAIVTVRGGLRILSPDRK, TYEEPAQQGRRYQSQRPPRR, RRADEEEEYDEDEYEYDEED, NHEQEFLRYQQQSRQSRRRS, QEFLRYQQQSRQSRRRSLPY, QEEREFSPRGQHSRRERAGQ (Cell Rep Med 2(10): 100410) Ara h 6 Q647G9 CDELNEMENTQR , CEALQQIMENQCD , CNFRAPQRCDLDV , KPCEQHIMQRI , YDSYDIR , KRELRMLPQQ , MRRERGRGGDSSSS (Sci Rep 7(1): 3981) Bet v 1 P15494 KAEQVKASKEMGETLLRAVESYLLAHSDAYN, GPGTIKKISFPEGFPFKYVKDRVDEVDHTN, DGGSILKISNKYHTKGDHEVKAEQVKASKE, LFPKVAPQAISSVENIEGNGGPGTIKKISF, MGETLLRAVESYLL, MGVFNYETETTSVIPAARLFKAFI, VDHTNFKYNYSVIEGGPIGDTLEKISNEIK (Clin Exp Allergy 34(10): 1525-1533), ISFPEGFPFK, FILDGDNLFPKVAPQAISSVE, NIEGNGGPGTIKK (Anal Chem 90(19): 11315-11323), DGDNLFPKVA ( Int Arch Allergy Appl Immunol 89(4): 410-415), ILDGDNLFPKVAPQAI Int Arch Allergy Immunol 101(1): 89-94), SKEMGETLLRAVESYLLAHSD (J Allergy Clin Immunol 116(2): 370-376), EVDHTNFKYNYSVIEG, GGPIGDTLEKISNEIK, GPGTIKKISF (J Immunol 186(9): 5333-5344), EQVKASKEMGETLLRAVESYLLA (Allergy 67(12): 1530-1537), GDNLFPKVAPQAIS, ISFPEGFPFKY, ISFPEGFPFKYVKD (Clin Exp Allergy 44(2): 288-299), aa 32-37, aa42-50, aa138-153 (BIOLOGICS AND IMMUNOTHERAPY, 第149卷, 第1期, p200-211, 2022年1月), 模擬抗原決定基:CQQFLSVRALC, QQFLSVRALC, CQQFLSVRAL Cry j 1 P18632 DALTLRTATNIW, DGDALTLRTATN, DGRGAQVYIGNG, NATPQLTKNAGV, NGGPCVFIKRVS, NGNATPQLTKNA, NSDDDPVNPAPG, VENGNATPQLTK (Biol Pharm Bull 28(8): 1496-1499), NAGVLTCSLSK (Mol Immunol 30(2): 183-189) Cry j 2 P43212 KWVNGREI, GQCKWVNGREICNDRDRPTA, GRENSRAEVSYVHVNGAKFI, PGNKKFVVNNLFFNGPCQPH, SHIIYENVEMINSENPILINQFYCT, YCTSASACQNQRSAVQIQDV (Clin Exp Allergy 33(2): 211-217), TYKNIRGTSATAAAIQLKCS  (J Clin Immunol 33(5): 977-983), AEVSYVHVNGAK (Eur J Immunol 32(6): 1631-1639) Der p 1 P08176 (變異體) KGIPNTKAP, DMFQIGKYG, GIREVWPAG, SSMGAYWGG, KGTTGVRNT (Molecular Immunology 45(5): 1308-1317), CQIYPPNANKIREALAQ, GYSNAQGVDYWI, NQSLDLAEQELVDCASQHGC, VRNSWDTNWGDNGY (Mol Immunol 29(6): 739-749), EQSYPCWLSGTPSTP, TPLCDYAAARVGACG, KEQLPTSYPPERAGW, NCLSSDEPLHIRWCQ, EALSEEEWPRYTSHP, SCDATQRAQGRCS, SCDSSQKKQGRCS, SCDESRRRQGRCS (Clin Exp Allergy 29(11): 1563-1571), 模擬抗原決定基:KGIPNTKAP, DMFQIGKYG, GIREVWPAG, SSMGAYWGG, KGTTGVRNT, CKGIPNTKAP,CDMFQIGKYG, CGIREVWPAG, CSSMGAYWGG, CKGTTGVRNT, CKGIPNTKAPC, CDMFQIGKYGC, CGIREVWPAGC, CSSMGAYWGGC, KGTTGVRNTC, KGIPNTKAPC, DMFQIGKYGC, GIREVWPAGC, SSMGAYWGGC, KGTTGVRNTC, Der p 2 P49278 FVVEYTKKW, SWWNLPQIG, KGITTKWMA, AGISYTKTW (Molecular Immunology 45(5): 1308-1317), DQVDVKDCANHEIKK, VPGIDPNACHYMKCK (Mol Immunol 28(11): 1225-1232), APKSENVVVTVKVMGDNGVLACAIATHAKIRD, CHGSEPCIIHRGKPFQLEAVFEANQNSKTAK, DQVDVKDCANHEIKKVLVPGCHGSEPCIIHRGK, EANQNSKTAKIEIKASIEGLEVDVPGIDPNAC, EVDVPGIDPNACHYMKCPLVKGQQYDIKYTWIVPKIAPKSEN (Allergy 67(5): 609-621), 模擬抗原決定基:FVVEYTKKW, SWWNLPQIG, KGITTKWMA, AGISYTKTW, FVVEYTKKWC, SWWNLPQIGC, KGITTKWMAC, AGISYTKTWC, C FVVEYTKKWC, CSWWNLPQIGC, CKGITTKWMAC, CAGISYTKTWC, CFVVEYTKKW, CSWWNLPQIG, CKGITTKWMA, CAGISYTKTW Der p39 XP_027203190.1 QEELREAFRMY, TSALREILRAL, NDELDEMIAEI (World Allergy Organization Journal (2022) 15:100651) Fel d 1 P30438 (鏈1), P30440 (鏈2) KALPVVLENARILKNCVDAKMTEEDKE, KRDVDLFLTGTPDEYVEQVAQYKALPV (Proc Natl Acad Sci U S A 90(16): 7608-7612), DAKMTEEDKENALS, EICPAVKRDVDLFLTG, EPERTAMKKIQDCY, FAVANGNELLLDLS, KKIQDCYVENGLIS, LLDKIYTSPLC, VAQYKALPVVLENA, VKMAETCPIFYDVF, VQNTVEDLKLNTLGR (J Allergy Clin Immunol 93(1 Pt 1): 34-43), EICPAVKRDVDLFLTGTPDEYVEQVAQYK, SSKDCMGEAVQNTVEDLKLNTLGR, VKMAITCPIFYDVFFAVANGNELLLDLSLTKVNA (Clin Exp Allergy 44(6): 882-894), CPAVKRDVDLFLT, EQVAQYKALPVVLENA KALPVVLENARILNCV RILKNCVDAKMTEEDKE KENALSLLDKIYTSPL TAMKKIQDCY VENGLI SRVLDGLVMTTISSSK (J ALLERGY CLIN IMMUNOL第131卷, 第1期, 109.e4), ENLAYTKALLTG; NNISVDGLLTS; VIRNELLLTYA; VINDLLLVLA; GDFYPL; NDFYPE; LDLNP (Molecular Immunology 71 (2016) 176-183), FAVANGNELL; LKLNTLGREICPAVKRGVDL; YVEQV; ENARILKNCVDAKM; aa21-31, aa21-47 (J ALLERGY CLIN IMMUNOL, 2013年1月, 109.e1) PhI p 1 Q40967 VRYTTEGGTKTEAEDVIPEGWKADTSYESK, APYHFDLSGHAFGAM, HITDDNEEPIAPYHFDLSGHA, NEEPIAPYHFDLSGHAFG, CFEIKCTKPEACSGEPVVV, CTKPEACSGEPVVVHITDDNEEPIAPYHFDLSGH, DNEEPIAPYHF, EPIAPYHFDLSGH, EQKLRSAGELELQFRRVKC, GEPVVVHITDDNEEPIAPYHFDLSGHAFGAMAKKG, GNTPIFKSGRGCGSCFEIKCTKPEACSGEPVVVHITDDNEEPIAPYHFDL, GPFTVRYTTEGGTKTE, GTKTEAEDVIPEGWKADTSYESK, GYKDVDKPPFSGMTGCGNTPIFKSGRGCGSCFEIKCTKPEACS, HITDDNEEPIAPYHF, HITDDNEEPIAPYHFDLSGHAFGA, HVEKGSNPNYLALLVKYVNGDGDVVAV, KCTKPEACSGEPVVVHITDDNEEPIAPYHFDLS, KPPFSGMTGCGNT, KTEAEDVIPEGWKADTSYESK, LTGPFTVRYTTEGGTKTEAEDVIPEGWKADTSYESK, PIAPYHFD, PIAPYHFDLSGHAFG (Faseb j 13(11): 1277-1290) PhI p 2 P43214 VPKVTFTVEKGSNEKHLAVLVKYEGDTMAEVEL, VEKGSNEKHLAVLVKYEGDTMAEVELREHGSD, REHGSDEWVAMTKGEGGVWTFDSEEPLQGPFN, FRFLTEKGMKNVFDDVVPEKYTIGATYAPEE (J Allergy Clin Immunol 135(5): 1207-1207.e1201-1211), CFRFLTEKGMKNVFDDVVPEKYTIGATYAPEE (EBioMedicine 11 (2016) 43-57), FRFLTEKGMKNVFDDVVPEKYTIGATYAPEEC PhI p 5 Q40960 AEEVKVIPAGELQVIEKVDAAFKVAATAANAAPANDK, ATTEEQKLIEKINAGFKAALAAAAGVQPADKYR, FVATFGAASNKAFAEGLSGEPKGAAESSSKAALTSK, ADLGYGPATPAAPAAGYTPATPAAPAEAAPAGK, AYKLAYKTAEGATPEAKYDAYVATLSEALRI, EAAFNDAIKASTGGAYESYKFIPALEAAVK, TVATAPEVKYTVFETALKKAITAMSEAQKAAK (J Allergy Clin Immunol 133(3): 836-845.e811), SRLGRSSAWV, THWQLGERPD, PSTPGERVRH, RGGPDDLTAL, PFWVRGTTW, PSTPGSRQNM, PSTPGDNPLV, KFVVNGRWID, KFLVNGRWID, RLTENTEPLL, FTWGGLRDKS, ERAGAMERAN, RSVSKEEPGM, KLGKFGAARV, VQDLMKSSGV (J Allergy Clin Immunol 114(6): 1294-1300), 模擬抗原決定基:KLGKFGAARV, CKLGKFGAARVC, CKLGKFGAARV, KLGKFGAARVC, PhI p 6 P43215 GKATTEEQKLIEDVNASFRAAMATTANVPPAD, YKTFEAAFTVSSKRNLADAVSKAPQLVPKLDEVYN, DAVSKAPQLVPKLDEVYNAAYNAADHAAPEDKY, AADHAAPEDKYEAFVLHFSEALRIIAGTPEVHA (J Allergy Clin Immunol 135(5): 1207-1207.e1201-1211) According to a preferred embodiment, other preferred target sequences include restricted peptides, such as cyclized peptides or suitable aa linkers known to those skilled in the art, such as: (G)n linkers, (K) Peptides connected by n-linker, GGSGG or similar. Table A - Preferred allergens for use in CLEC-based vaccines Allergen source allergens UNIPROT Common alder ( Alnus glutinosa ) Aln g 1 P38948 Alternaria alternata Alt a 1 P79085 Alt a 3 P78983 Alt a 4 Q00002 Alt a 5 P42037 Alt a 6 Q9HDT3 Alt a 7 P42058 Alt a 8 P0C0Y4 Alt a 10 P42041 Alt a 12 P49148 Alt a 13 Q6R4B4 Ragweed ( Ambrosia artemisiifolia ) Amb a 1 P27761 Amb a 1.05 P27762 Amb a 3 P00304 Amb a 5 P02878 Amb a 6 O04004 Amb a 7 No complete sequence available Amb a 8 Q2KN24 Amb a 9 Q2KN27 Amb a 10 Q2KN25 European honey bee ( Apis mellifera ) Api m 1 P00630 Api m 2 Q08169 Api m 3 Q4TUB9 Api m 4 01501 Api m 5 B2D0J4 Api m 6 Q27SJ8 Api m 7 Q8MQS8 Api m 8 B2D0J5 Api m 9 C9WMM5 Api m 10 Q1HHN7 Api m 11 B3GM11 Api m 12 Q868N5 Celery ( Apium graveolens ) Api g 1 P49372 Api g 2 E6Y8S8 Api g 3 P92919 Api g 4 Q9XF37 Api g 5 P81943 Peanut ( Arachis hypogae ) Ara h 1 P43238 Ara h 2 Q6PSU2-1 Ara h 3 O82580 Ara h 3.02 Q9SQH7 Ara h 5 Q9SQI9 Ara h 6 Q647G9 Ara h 7 Q9SQH1 Ara h 8 Q6VT83 Betula verrucosa Bet v 1 P15494 Bet v 2 P25816 Bet v 3 P43187 Bet v 4 Q39419 Bet v 6 O65002 Bet v 7 P81531 Domestic dog ( Canis familiaris ) Can f 1 O18873 Can f 2 O18874 Can f 3 P49822 Can f 4 D7PBH4 Can f 5 P09582 Can f 6 H2B3G5 Can f 7 Q28895 Can f 8 F1PHB6 European hornbeam ( Carpinus betulus ) car b 1 P38949 European chestnut ( Castanea sativa ) Cas s 1 B7TWE3 Cas s 5 Q42428 Cas s 8 Unknown sequence Cladosporium herbarum Cla h 2 No complete sequence available i h 5 P42039 i h 6 P42040 i h 7 P42059 i h 8 P0C0Y5 ci h 9 B7ZK61 CI h 10 P40108 CI h 12 P50344 Corylus avellana Cor a 1 Q08407 Cor a 2 Q9AXH5 Cor a 6 A0A0U1VZC8 Cor a 8 Q9ATH2 Cor a 9 Q8W1C2 Cor a 10 Q9FSY7 Cor a 11 Q8S4P9 Japanese cedar ( Cryptomeria japonica ) Cry j 1 P18632 Cry j 2 P43212 European carp ( Cyprinus carpio ) Cyp c 1 Q8UUS3 Wild carrot ( Daucus carota ) Dau c 1 O04298 Dau c 4 Q8SAE6 European house dust mite ( Dermatophagoides pteronyssinus ) Der p 1 P08176 (variant) Der p 2 P49278 Der p 3 P39675 Der p 4 Q9Y197 Der p 5 P14004 Der p 6 P49277 Der p 7 P49273 Der p 8 P46419 Der p 9 Q7Z163 Der p 10 O18416 Der p 11 Q6Y2F9 Der p 14 Q8N0N0 Der p 20 B2ZSY4 Der p 21 Q2L7C5 Der p39 XP_027203190.1 European beech ( Fagus sylvatica ) Fags 1 B7TWE6 Domestic cat ( Felis domesticus ) Fel d 1 P30438 (chain 1), P30440 (chain 2) Fel d 2 P49064 Fel d 3 Q8WNR9 Fel d 4 Q5VFH6 Fel d 5 No complete sequence available Fel d 6 No complete sequence available Fel d 7 E5D2Z5 Fel d 8 F6K0R4 Rubber tree ( Hevea brasiliensis ) Hev b 1 P15252 Hev b 2 P52407 Hev b 3 O82803 Hev b 4 Q6T4P0 Hev b 5 Q39967 Hev b 6 P02877 Hev b 7.01 O04008 Hev b 7.02 O65811 Hev b 8 O65812 Hev b 9 Q9LEJ0 Hev b 10 P35017 Hev b 11 Q949H3 Hev b 12 Q8RYA8 Hev b 13 Q7Y1X1 American cedar ( Juniperus ashei ) Jun a 1 P81294 Jun a 2 Q9FY19 Jun a 3 P81295 Apple ( Malus domestica ) Mal d 1 P43211 Mal d 2 Q9FSG7 Mald 3.0101w Q5J026 Mal d 4 Q9XF42 White oak ( Quercus alba ) Que a 1 B6RQS1 Phleum pratense PhIp 1 Q40967 PhI p 2 P43214 PhI p 4 Q5ZQK5 PhI p 5 Q40960 PhI p 6 P43215 PhI p 7 O82040 PhI p 11 Q8H6L7 PhI p 12 P35079 PhI p 13 Q9XG86 Polistes annularis Pol a 1 Q9U6W0 Pol a 5 Q05109 Paper Wasp ( Polistes dominulus ) Pol d 1 Q6Q252 Pol d 4 Q7Z269 Pol d 5 Q68KJ8 Guinea Paper Wasp ( Polistes exclamans ) Pol e 1 No complete sequence available Pol e 4 No complete sequence available Pol e 5 Q68KJ9 Northern paper wasp ( Polistes fuscatus ) Pol f 5 P35780 Polistes gallicus Pol g 1 P83542 Pol g 5 P83377 Polistes metricus Pol m 5 P35780 Table B: Preferred allergen epitopes for use in CLEC-based vaccines allergens UNIPROT Epitope / Mock epitope Amb a 1 P27761 GMLATVAFNTFTDNVDQR (Mol Immunol. 1988 Apr;25(4):355-65), AFNKFTDNVDQR, MPRCRFGF, WRTQNDVLENG (Mol Immunol. 2009 Feb;46(5):873-83.), TFTDNVDQRMPRCRH (Peptides. 2021 Nov; 2019, 66, 37-44) Amb a 3 P00304 16 3):229-35) Alt a1 P79085 MISTSRK, QKRNTIT, (Li et al. J Immunol (2019) 203 (1): 31-38.), KISEFYGRKP, VATATLPNYC, YSCGENSFMD, YYNSLGFNIK (Kurup et al., Peptides. 2003 Feb;24(2):179- 85.) Ara h 1 P43238 REREREEDWRQPREDWRRPS, RTRGRQPGDYDDDRRQPRRE, DDDRRQPRREEGGRWGPAGP, TTNQRSPPGERTRGRQPGDY, QPREDWRRPSHQQPRKIRPE, GREGEQEWGTPGSHVREETS, PVNTPGQFEDFFPASSRDQS, AGGEQEERGQRRWSTRSSEN, REGEPDLSNNFGKLFEVKPD, NASSELHLLGFGINAENNHR, IDQ IEKQAKDLAFPGSGEQV, LAFPGSGEQVEKLIKNQKES (Cell Rep Med 2(10): 100410.), AKSSPYQKKT, QEPDDLKQKA, LEYDPRLUYD, GERTRGRQPG, PGDYDDDRRQ, PRREEGGRWG, REREEDWRQP, EDWRRPSHQQ, QPKKIRPEGR, TPGQFEDFFP, SYLQEFSRNT, FNAEFNEIRR, EQEERGQRRW, DITNPINLRE, NNFGKLFEVK, GTGNLELVAV, RRYTARLKEG, ELHLLGFGIN, HRIFLAGDKD, IDOIEKOAKD, KDLAFPGSGE, KESHFVSARP, PEKESPEKED (Eur J Biochem 245 (2): 334-339) Ara h 2 Q6PSU2-1 HASARQQWEL, QWELQGDRRC, DRRCQSQLER, LRPCEQHLMQ, KIQRDEDSYE, YERDPYSPSQ, SQDPYSPSPY, DRLQGRQQEQ, KRELRNLPQQ, QRCDLDVESG (Arch Biochem Biophys 342 (2): 244-253), HASARQQWEL, ERDPYSPSQDPYSPS, RRCQSQLER, CDLEVESGGRDRY, ERDPYSPSQDPYSPS, NLRPCEQHLMQKIQRD, PQRCDLE, RQQEQQFKRELRNLPQQ, SDRLQGRQQ (Deak, Vrabel et al. 2017), RRCQSQLERANLRPCEQHLMQKIQR DEDSYGRDPYSPSQDPY (Mol Immunol 85: 81-88) Ara h 3 O82580 IETWNPNNQEFECAG, GNIFSGFTPEFLEQA, VTVRGGLRILSPDRK, DEDEYEYDEEDRG (J Clin Invest 103(4): 535-542), EDEYEYDEEDRRRGRGSRGR, NIFSGFTPEFLEQAFQVDDR, ESEEEGAIVTVRGGLRILSP, SGFTPEFLEQAFQVDDRQIV, EEGAIVTVRGGLRILSPDRK, TYE EPAQQGRRYQSQRPPRR, RRADEEEEYDEDEYEYDEED, NHEQEFLRYQQQSRQSRRRS, QEFLRYQQQSRQSRRRSLPY, QEEREFSPRGQHSRRERAGQ (Cell Rep Med 2(10): 100410 ) Ara h 6 Q647G9 CDELNEMENTQR, CEALQQIMENQCD, CNFRAPQRCDLDV, KPCEQHIMQRI, YDSYDIR, KRELRMLPQQ, MRRERGRGGDSSSS (Sci Rep 7(1): 3981) Bet v 1 P15494 KAEQVKASKEMGETLLRAVESYLLAHSDAYN, GPGTIKKISFPEGFPFKYVKDRVDEVDHTN, DGGSILKISNKYHTKGDHEVKAEQVKASKE, LFPKVAPQAISSVENIEGNGGPGTIKKISF, MGETLLRAVESYLL, MGVFNYETETTSVIPAARLFKAFI, VDHTNFKYNYSVIEGGPIGDTLEKISNEIK (Clin Exp Allergy 34 (10): 1525-1533), ISFPEGFPFK, FILDGDNLFPKVAPQAISSVE, NIEGNGGPGTIKK (Anal Chem 90(19): 11315-11323), DGDNLFPKVA ( Int Arch Allergy Appl immunol 89: 410-415), ILDGDNLFPKVAPQAI int Arch Allergy Immunol 101 (1): 89-94), Skemgetllravesyllahsd (J Allergy Clinol 116 (2): 370-3 76). Immunol 186 (9): 5333-5344), EQVKASKEMGETLLLLLLA (Allergy 67 (12): 1530-1537), GDNLFPKVAPQAIS, ISFPEGFPFKD (Clin Exp Alyeralgy 4 4 (2): 288-299), AA 32-37, AA42- 50, aa138-153 (BIOLOGICS AND IMMUNOTHERAPY, Vol. 149, Issue 1, p200-211, January 2022), Mimic epitopes: CQQFLSVRALC, QQFLSVRALC, CQQFLSVRAL Cry j 1 P18632 DALTLRTATNIW, DGDALTLRTATN, DGRGAQVYIGNG, NATPQLTKNAGV, NGGPCVFIKRVS, NGNATPQLTKNA, NSDDDPVNPAPG, VENGNATPQLTK (Biol Pharm Bull 28(8): 1496-1499), NAGVLTCSLSK (Mol Immunol 30(2): 183-189) Cry j 2 P43212 KWVNGREI, GQCKWVNGREICNDRDRPTA, GRENSRAEVSYVHVNGAKFI, PGNKKFVVNNLFFNGPCQPH, SHIIYENVEMINSENPILINQFYCT, YCTSASACQNQRSAVQIQDV (Clin Exp Allergy 33(2): 211-217), TYKNIRGTSATAAAIQLKCS (J Clin Immunol 33( 5): 977-983), AEVSYVHVNGAK (Eur J Immunol 32(6): 1631-1639) Der p 1 P08176 (variant) KGIPNTKAP, DMFQIGKYG, GIREVWPAG, SSMGAYWGG, KGTTGVRNT (Molecular Immunology 45(5): 1308-1317), CQIYPPNANKIREALAQ, GYSNAQGVDYWI, NQSLDLAEQELVDCASQHGC, VRNSWDTNWGDNGY (Mol Immunol 29(6): 739-749) , EQSYPCWLSGTPSTP, TPLCDYAAARVGACG, KEQLPTSYPPERAGW, NCLSSDEPLHIRWCQ, EALSEEEWPRYTSHP, SCDATQRAQGRCS, SCDSSQKKQGRCS, SCDESRRRQGRCS (Clin Exp Allergy 29(11): 1563-1571), simulated epitopes: KGIPNTKAP, DMFQIGKYG, GIREVWPAG, SSMGAYWGG, KGTTGVRNT, CKGIPNTKAP,CDMFQIGKYG, CGIREVWPAG, CSSMG AYWGG, CKGTTGVRNT, CKGIPNTKAPC, CDMFQIGKYGC, CGIREVWPAGC, CSSMGAYWGGC, KGTTGVRNTC, KGIPNTKAPC, DMFQIGKYGC, GIREVWPAGC, SSMGAYWGGC, KGTTGVRNTC, Der p 2 P49278 FVVEYTKKW, SWWNLPQIG, KGITTKWMA, AGISYTKTW (Molecular Immunology 45(5): 1308-1317), DQVDVKDCANHEIKK, VPGIDPNACHYMKCK (Mol Immunol 28(11): 1225-1232), APKSENVVVTVKVMGDNGVLACAIATHAKIRD, CH GSEPCIIHRGKPFQLEAVFEANQNSKTAK, DQVDVKDCANHEIKKVLVPGCHGSEPCIIHRGK, EANQNSKTAKIEIKASIEGLEVDVPGIDPNAC, EVDVPGIDPNACHYMKCPLVKGQQYDIKYTWIVPKIAPKSEN (Allergy 67(5 ; , CKGITTKWMA, CAGISYTKTW Der p39 XP_027203190.1 QEELREAFRMY, TSALREILRAL, NDELDEMIAEI (World Allergy Organization Journal (2022) 15:100651) Fel d 1 P30438 (chain 1), P30440 (chain 2) KALPVVLENARILKNCVDAKMTEEDKE, KRDVDLFLTGTPDEYVEQVAQYKALPV (Proc Natl Acad Sci USA 90(16): 7608-7612), DAKMTEEDKENALS, EICPAVKRDVDLFLTG, EPERTAMKKIQDCY, FAVANGNELLLDLS, KKIQDCYVENGLIS, LLDKIYTSPLC, VAQYKALPVVLENA , VKMAETCPIFYDVF, VQNTVEDLKLNTLGR (J Allergy Clin Immunol 93(1 Pt 1): 34- 43), EICPAVKRDVDLFLTGTPDEYVEQVAQYK, SSKDCMGEAVQNTVEDLKLNTLGR, VKMAITCPIFYDVFFAVANGNELLLDLSLTKVNA (Clin Exp Allergy 44(6): 882-894), CPAVKRDVDLFLT, EQVAQYKALPVVLENA KALPVVLENARILNCV RILKNCVDAKMTEEDKE KEN ALSLLDKIYTSPL TAMKKIQDCY VENGLI SRVLDGLVMTTISSSK (J ALLERGY CLIN IMMUNOL Vol. 131, Issue 1, 109.e4), ENLAYTKALLTG ; NNISVDGLLTS; VIRNELLLTYA; VINDLLLVLA; GDFYPL; NDFYPE; LDLNP (Molecular Immunology 71 (2016) 176-183), FAVANGNELL; LKLNTLGREICPAVKRGVDL; January 2013, 109.e1) PhIp 1 Q40967 VRYTTEGGTKTEAEDVIPEGWKADTSYESK, APYHFDLSGHAFGAM, HITDDNEEPIAPYHFDLSGHA, NEEPIAPYHFDLSGHAFG, CFEIKCTKPEACSGEPVVV, CTKPEACSGEPVVVHITDDNEEPIAPYHFDLSGH, DNEEPIAPYHF, EPIAPYHFDLSGH, EQKLRSAGELELQFRRVKC, GEPVVVHITDDNEEPIA PYHFDLSGHAFGAMAKKG, GYKDVDKPPFSGMTGCGNTPIFKSGRGCGSCFEIKCTKPEACS, HITDDNEEPIAPYHF, HITDDNEEPIAPYHFDLSGHAFGA, HVEKGSNPNYLALLVKYVNGDGDV VAV, KCTKPEACSGEPVVVHITDDNEEPIAPYHFDLS, KPPFSGMTGCGNT, KTEAEDVIPEGWKADTSYESK, LTGPFTVRYTTEGGTKTEAEDVIPEGWKADTSYESK, PIAPYHFD, PIAPYHFDLSGHAFG (Faseb j 13( 11): 1277-1290) PhI p 2 P43214 VPKVTFTVEKGSNEKHLAVLVKYEGDTMAEVEL, VEKGSNEKHLAVLVKYEGDTMAEVELREHGSD, REHGSDEWVAMTKGEGGVWTTFDSEEPLQGPFN, FRFLTEKGMKNVFDDVVPEKYTIGATYAPEE (J Allergy Clin Immunol 135(5): 1207-1207.e1201-1211), CFRFLTEKGM KNVFDDVVPEKYTIGATYAPEE (EBioMedicine 11 (2016) 43-57), FRFLTEKGMKNVFDDVVPEKYTIGATYAPEEC PhIp5 Q40960 AEEVKVIPAGELQVIEKVDAAFKVAATAANAAPANDK, ATTEEQKLIEKINAGFKAALAAAAGVQPADKYR, FVATFGAASNKAFAEGLSGEPKGAAESSSKAALTSK, ADLGYGPATPAAPAAGYTPATPAAPAEAAPAGK, AYKLAYKTAEGATTPEAKYDAYVATLSEALRI, EAAFNDAIKASTGGAYESYKFIPALEAAVK, TVATAPEV KYTVFETALKKAITAMSEAQKAAK (J Allergy Clin Immunol 133(3): 836-845.e811), SRLGRSSAWV, THWQLGERPD, PSTPGERVRH, RGGPDDLTAL, PFWVRGTTW, PSTPGSRQNM, PSTPGDNPLV, KFVVNGRWID, KFLVNGRWID, RLTENTEPLL, FTWGGLRDKS, ERAGAMERAN, RSVSKEEPGM, KLGKFGAARV, VQDLMKSSGV (J Allergy Clin Immunol 114(6): 1294-1300), simulated epitopes: KLGKFGAARV, CKLGKFGAARVC, CKLGKFGAARV, KLGKFGAARVC, PhI p 6 P43215 GKATTEEQKLIEDVNASFRAAMATTANVPPAD, YKTFEAAFTVSSKRNLADAVSKAPQLVPKLDEVYN, DAVSKAPQLVPKLDEVYNAAYNAADHAAPEDKY, AADHAAPEDKYEAFVLHFSEALRIIAGTPEVHA (J Allergy Clin Immunol 135(5): 1207-1207.e1201-1211)

AIT之陽性結果與能夠中和過敏原之高親和力IgG抗體的誘導相關(Svenson, Jacobi等人 2003, Molecular Immunology 39(10): 603-612;Zha, Leoratti等人 2018, Journal of Allergy and Clinical Immunology 142(5): 1529-1536.e1526.)。然而,在經典AIT期間,所誘導之阻斷IgG之初始親和力不會隨時間推移而進一步增加(Strobl等人 2023;Jakobsen CG等人, 2005, Clinical & Experimental Allergy, 35: 193-198. doi: 10.1111/j.1365-2222.2005.02160.x),其支持如下觀點,即AIT誘導之抑制過敏原結合於IgE可主要或僅由誘導增加量之特異性IgG來解釋(Svenson等人, 2003, Molecular Immunology 39(10): 603-612;Jakobsen等人, 2005 )。因此咸信習知AIT之相當有限的成功可主要歸因於現有AIT化合物之低免疫原性及在AIT施用延長時缺乏進一步的親和力成熟。 A positive result of AIT is associated with the induction of high-affinity IgG antibodies capable of neutralizing allergens (Svenson, Jacobi et al. 2003, Molecular Immunology 39 (10): 603-612; Zha, Leoratti et al. 2018, Journal of Allergy and Clinical Immunology 142 (5): 1529-1536.e1526.). However, during classical AIT, the initial affinity of the induced blocking IgG does not further increase over time (Strobl et al. 2023; Jakobsen CG et al., 2005, Clinical & Experimental Allergy, 35: 193-198. doi: 10.1111/j.1365-2222.2005.02160.x), which supports the view that AIT-induced inhibition of allergen binding to IgE can be mainly or exclusively explained by the induction of increased amounts of specific IgG (Svenson et al., 2003, Molecular Immunology 39 (10): 603-612; Jakobsen et al., 2005). It is therefore believed that the rather limited success of AIT can be primarily attributed to the low immunogenicity of existing AIT compounds and the lack of further affinity maturation upon prolonged AIT administration.

相比之下,根據本發明之疫苗或結合物尤其適合於AIT及所需高親和力IgG之誘導,因為其在重複免疫接種之後誘導具有較高抗體水平(相較於習知疫苗)之IgE-抗原決定基特異性免疫反應,並表現延長之親和力成熟(參見例如圖13及圖21)。相較於經典疫苗,包括使用Alum作為佐劑之疫苗及結合物疫苗(存在及不存在佐劑),本發明可產生較高親和力之免疫血清。In contrast, the vaccine or conjugate according to the invention is particularly suitable for the induction of AIT and the required high-affinity IgG, since it induces IgE- with higher antibody levels (compared to conventional vaccines) after repeated immunizations. Epitope-specific immune responses and exhibit prolonged affinity maturation (see, eg, Figure 13 and Figure 21). Compared with classic vaccines, including vaccines using Alum as adjuvant and conjugate vaccines (with or without adjuvant), the present invention can produce immune serum with higher affinity.

目前,AIT專門使用來自天然來源之過敏原提取物,其代表過敏原性及非過敏原性蛋白、糖蛋白及多醣之複雜的非均質混合物(Cox等人 2005, Expert Review of Clinical Immunology 1(4): 579-588.)。所得產物難以標準化且可能誘導不合需要之副作用,包含全身性過敏反應及基於T細胞之後期反應(Mellerup, Hahn等人 2000, Experimental Allergy 30(10): 1423-1429)。Currently, AIT exclusively uses allergen extracts from natural sources, which represent complex heterogeneous mixtures of allergenic and non-allergenic proteins, glycoproteins and polysaccharides (Cox et al. 2005, Expert Review of Clinical Immunology 1(4) ): 579-588.). The resulting products are difficult to standardize and may induce undesirable side effects, including anaphylaxis and T-cell-based late reactions (Mellerup, Hahn et al. 2000, Experimental Allergy 30(10): 1423-1429).

因此,臨床研發中的新穎疫苗概念利用提供通用T細胞幫助的平台(病毒樣顆粒{Shamji, 2022 #14}或載體蛋白,諸如KLH或肝炎preS融合蛋白(Marth等人 2013, The Journal of Immunology 190(7): 3068-3078)及重組過敏原蛋白或肽(包含過敏原性抗原決定基或其模擬抗原決定基),以增加免疫原性及親和力成熟(Bachmann等人, 2020, Trends in Molecular Medicine 26(4): 357-368)。 Therefore, novel vaccine concepts in clinical development utilize platforms that provide universal T cell help (virus-like particles {Shamji, 2022 #14} or carrier proteins such as KLH or hepatitis preS fusion proteins (Marth et al. 2013, The Journal of Immunology 190 (7): 3068-3078) and recombinant allergenic proteins or peptides (containing allergenic epitopes or mimetic epitopes thereof) to increase immunogenicity and affinity maturation (Bachmann et al., 2020, Trends in Molecular Medicine 26 (4): 357-368).

施加包含過敏原性抗原決定基或其模擬抗原決定基之肽-載體結合物的後一方法對於患者之新穎AIT範例將尤其有利,因為其將免疫反應集中於所需目標抗原決定基(亦即IgE抗原決定基),且完全避免即時型(亦即疫苗與和細胞結合之IgE交聯)以及後期的副作用(亦即過敏原特異性T細胞反應活化)。The latter approach of administering peptide-carrier conjugates comprising allergenic epitopes or mimetic epitopes thereof will be particularly advantageous for the novel AIT paradigm in patients, as it focuses the immune response on the desired target epitope (i.e., IgE epitope) and completely avoids both immediate (i.e., cross-linking of vaccine with cell-bound IgE) and late side effects (i.e., activation of allergen-specific T cell responses).

Marth等人(2013)揭示一種基於兩種非過敏原性肽PA及PB之融合蛋白的AIT化合物,該二非過敏原性肽源自主要樺樹花粉過敏原Bet v 1之IgE反應性區域,並在四個含有不同數目及組合的肽之重組融合蛋白中融合於B型肝炎表面蛋白PreS。類似地,臨床測試之AIT疫苗BM32使用4種融合蛋白,該等融合蛋白由來自4種梯牧草花粉過敏原(Phl p 1, Phl p 2, Phl p 5及Phl p 6)之肽組成,該等肽融合於來自B型肝炎之PreS載體蛋白。Weber等人(2017; doi: 10.1016/j.jaci.2017.03.048)可證明用Alum作為佐劑之BM32及習知提取物介導之AIT在兔中之相似免疫原性。然而,儘管起初存在有前景的臨床結果(Eckl-Dorna, 2019 EBioMedicine. 2019年12月;50:421-432. doi: 10.1016/j.ebiom.2019.11.006.),但BM32方法之進一步研發在IIb期研究之後被放棄。迄今為止,尚無肽-載體結合物或融合蛋白AIT方法,亦沒有任何其他用於AIT之新穎重組疫苗獲得許可(Pavón-Romero, 2022, Cells. 2022年1月8日;11(2):212. doi: 10.3390/cells11020212)。Marth et al. (2013) disclosed an AIT compound based on a fusion protein of two non-allergenic peptides, PA and PB, derived from the IgE-reactive region of the major birch pollen allergen Bet v 1, fused to the hepatitis B surface protein PreS in four recombinant fusion proteins containing different numbers and combinations of peptides. Similarly, the clinically tested AIT vaccine BM32 uses four fusion proteins consisting of peptides from four Timothy grass pollen allergens (Phl p 1, Phl p 2, Phl p 5 and Phl p 6) fused to the PreS carrier protein from hepatitis B. Weber et al. (2017; doi: 10.1016/j.jaci.2017.03.048) could demonstrate similar immunogenicity in rabbits of BM32 and known extract-mediated AIT with Alum as adjuvant. However, despite initial promising clinical results (Eckl-Dorna, 2019 EBioMedicine. 2019 Dec;50:421-432. doi: 10.1016/j.ebiom.2019.11.006.), further development of the BM32 approach was abandoned after a Phase IIb study. To date, no peptide-carrier conjugate or fusion protein AIT approaches, nor any other novel recombinant vaccines for AIT have been licensed (Pavón-Romero, 2022, Cells. 2022 Jan 8;11(2):212. doi: 10.3390/cells11020212).

沿著此等思路,已證明,相較於多年的習知AIT,用針對主要貓過敏原Fel d 1中之兩個抗原決定基之兩種單株抗體單次注射過敏性患者具有同等療效。(Orengo, Radin等人 2018, Nature Communications 9(1): 1421) ,其表明給定過敏原內之少量的目標抗原決定基可足以提供針對過敏性免疫反應的全面保護。根據本發明之疫苗或結合物尤其適合於組合通用T細胞抗原決定基與CLEC骨架上之此類IgE抗原決定基或模擬抗原決定基以治療過敏。 Along these lines, it has been demonstrated that a single injection of two monoclonal antibodies against two epitopes of the major cat allergen Fel d 1 in allergic patients is equally effective as AIT, which has been known for many years. (Orengo, Radin et al. 2018, Nature Communications 9 (1): 1421), which shows that a small number of target epitopes within a given allergen can be sufficient to provide comprehensive protection against allergic immune responses. Vaccines or conjugates according to the invention are particularly suitable for combining universal T cell epitopes with such IgE epitopes or mimic epitopes on the CLEC backbone for the treatment of allergies.

儘管原則上,本發明能夠改良所有提出之用於過敏性疾病疫苗接種的多肽,但所選抗原決定基(參見表A及表B及SeqID45/46)為特定較佳的。舉例而言,SeqID45/46被顯示優於基於KLH之疫苗。Although in principle, the present invention enables the improvement of all proposed polypeptides for vaccination against allergic diseases, the selected epitopes (see Tables A and B and SeqID45/46) are particularly preferred. For example, SeqID45/46 was shown to be superior to KLH-based vaccines.

鑒於本發明結合物之此等有利特性,因此根據本發明之基於CLEC之結合物及基於CLEC之疫苗可特定用於增強市售肽/糖結合物疫苗,尤其亦增強用於預防感染性疾病的糖結合物疫苗的免疫原性。此類疾病為例如微生物感染或病毒感染,其例如由以下引起:B型流感嗜血桿菌(Hib)、肺炎鏈球菌、腦膜炎雙球菌( Neisseria meningitidis)及傷寒沙門氏菌( Salmonella Typhi)或其他感染媒介物,包括導致A型或B型肝炎、人類乳突病毒感染、流感、傷寒、麻疹、腮腺炎及風疹之彼等感染媒介物。此外,有由B群腦膜炎球菌、細胞巨大病毒(CMV)、呼吸道融合病毒(RSV)、艱難梭菌( Clostridioides Difficile)、腸外致病性大腸桿菌(Expec)、肺炎克雷伯氏桿菌( Klebsiella Pneumoniae)、志賀桿菌屬( Shigella)、金黃色葡萄球菌( Staphylococcus Aureus)、惡性瘧原蟲( Plasmodium falciparum)、間日瘧原蟲( P . vivax)、卵形瘧原蟲( P . ovale)及三日瘧原蟲( P . malariae)、冠狀病毒(SARS-CoV、MERS-CoV、SARS-CoV-2)、伊波拉病毒、伯氏疏螺旋體( Borrelia burgdorferi)、HIV及其他引起的感染。 In view of these advantageous properties of the conjugates of the present invention, the CLEC-based conjugates and CLEC-based vaccines according to the present invention can be specifically used to enhance commercially available peptide/glycoconjugate vaccines, especially for the prevention of infectious diseases. Immunogenicity of glycoconjugate vaccines. Such diseases are, for example, microbial or viral infections, caused for example by Haemophilus influenzae type B (Hib), Streptococcus pneumoniae, Neisseria meningitidis and Salmonella Typhi or other infectious agents. agents, including those causing hepatitis A or B, human papillomavirus infection, influenza, typhoid, measles, mumps and rubella. In addition, there are serogroup B meningococci, cytomegalovirus (CMV), respiratory syncytial virus (RSV), Clostridioides Difficile , extraintestinal pathogenic Escherichia coli (Expec), Klebsiella pneumoniae ( Klebsiella Pneumoniae , Shigella , Staphylococcus Aureus , Plasmodium falciparum , P. vivax , P. ovale And infections caused by Plasmodium malariae ( P. malariae ), coronaviruses (SARS-CoV, MERS-CoV, SARS-CoV-2), Ebola virus, Borrelia burgdorferi , HIV and other diseases.

迄今為止,已有若干種載體蛋白在經許可之結合物疫苗中被使用,該若干種載體蛋白包括:白喉毒素之經基因修飾之交叉反應物質(CRM197)、破傷風類毒素(TT)、腦膜炎球菌外膜蛋白複合體(OMPC)、白喉類毒素(DT)、流感嗜血桿菌蛋白D (HiD)及重組銅綠假單胞菌外毒素(rEPA)。臨床試驗已證實此等結合物疫苗在預防感染性疾病及改變b型流感嗜血桿菌、肺炎鏈球菌及腦膜炎雙球菌及傷寒之傳播方面的功效。所有載體蛋白均有效增加疫苗免疫原性,但其引起抗體之數量及親和力、在相同產物中攜載多種多醣及與其他疫苗同時接種的能力不同。To date, several carrier proteins have been used in licensed conjugate vaccines, including: genetically modified cross-reactive substance of diphtheria toxin (CRM197), tetanus toxoid (TT), meningococcal outer membrane protein complex (OMPC), diphtheria toxoid (DT), Haemophilus influenzae protein D (HiD), and recombinant Pseudomonas aeruginosa exotoxin (rEPA). Clinical trials have demonstrated the efficacy of these conjugate vaccines in preventing infectious diseases and altering the transmission of Haemophilus influenzae type b, Streptococcus pneumoniae, and meningococci and typhoid fever. All carrier proteins are effective in increasing vaccine immunogenicity, but they vary in the amount and affinity of antibodies elicited, their ability to carry multiple polysaccharides in the same product, and their ability to be administered simultaneously with other vaccines.

根據一較佳實施例,適用於CLEC修飾及免疫原性增強的結合物疫苗包括(但不限於)目前可用的疫苗,其包括b型嗜血桿菌屬結合物疫苗(例如:PedvaxHIB®、ActHIB®、Hiberix®)、重組B型肝炎疫苗(例如:Recombivax HB®、PREHEVBRIO®、Engerix-B、HEPLISAV-B®)、人類乳突病毒疫苗(例如:Gardasil®、Gardasil 9®、Cervarix®)、腦膜炎球菌(A、C、Y及W-135群)寡醣白喉CRM197結合物疫苗(例如Menveo®)、腦膜炎球菌(A、C、Y及W-135群)多醣白喉類毒素結合物疫苗(例如:Menactra®)、腦膜炎球菌(A、C、Y及W-135群) TT結合物疫苗(例如:MenQuadfi®)、多價肺炎鏈球菌結合物疫苗(例如:Prevnar-13®、Prevnar 20®、Pneumovax-23®、Vaxneuvance®)、抗傷寒疫苗(例如:Typhim V®、Typhim VI®、Typherix®、結合於無毒重組銅綠假單胞菌外毒素A之Vi多醣或Vi-rEPA或多醣破傷風類毒素結合物疫苗Typbar-TCV®)、水痘-帶狀疱疹病毒疫苗(例如:Shingrix®)以及攜載以下作為載體分子的其他抗感染結合物疫苗:白喉毒素之經基因修飾之交叉反應物質(CRM197)、或破傷風類毒素(TT)、或腦膜炎球菌外膜蛋白複合體(OMPC)、或白喉類毒素(DT)、或流感嗜血桿菌蛋白D (HiD)或重組銅綠假單胞菌外毒素(rEPA)。According to a preferred embodiment, conjugate vaccines suitable for CLEC modification and immunogenicity enhancement include (but are not limited to) currently available vaccines, including Haemophilus type b conjugate vaccines (for example: PedvaxHIB®, ActHIB® , Hiberix®), recombinant hepatitis B vaccine (for example: Recombivax HB®, PREHEVBRIO®, Engerix-B, HEPLISAV-B®), human papillomavirus vaccine (for example: Gardasil®, Gardasil 9®, Cervarix®), meningeal Pneumococcal (groups A, C, Y and W-135) oligosaccharide diphtheria CRM197 conjugate vaccine (such as Menveo®), meningococci (groups A, C, Y and W-135) polysaccharide diphtheria toxoid conjugate vaccine ( For example: Menactra®), meningococcal (groups A, C, Y and W-135) TT conjugate vaccine (for example: MenQuadfi®), multivalent pneumococcal conjugate vaccine (for example: Prevnar-13®, Prevnar 20 ®, Pneumovax-23®, Vaxneuvance®), anti-typhoid vaccines (e.g. Typhim V®, Typhim VI®, Typherix®, Vi polysaccharide or Vi-rEPA conjugated to non-toxic recombinant Pseudomonas aeruginosa exotoxin A or polysaccharide tetanus Toxoid conjugate vaccines (Typbar-TCV®), varicella-zoster virus vaccines (e.g., Shingrix®) and other anti-infectious conjugate vaccines that carry as carrier molecules: genetically modified cross-reactive substances of diphtheria toxin ( CRM197), or tetanus toxoid (TT), or meningococcal outer membrane protein complex (OMPC), or diphtheria toxoid (DT), or Haemophilus influenzae protein D (HiD) or recombinant Pseudomonas aeruginosa outer membrane protein complex toxin (rEPA).

根據另一態樣,根據本發明之新穎結合物可用於預防感染性疾病。此類疾病為例如微生物感染或病毒感染,其例如由以下引起:B型流感嗜血桿菌(Hib)、肺炎鏈球菌、腦膜炎雙球菌及傷寒沙門氏菌或其他感染媒介物,包括導致A型或B型肝炎、人類乳突病毒感染、流感、傷寒、麻疹、腮腺炎及風疹之彼等感染媒介物。此外,有由B群腦膜炎球菌、細胞巨大病毒(CMV)、呼吸道融合病毒(RSV)、艱難梭菌、腸外致病性大腸桿菌(Expec)、肺炎克雷伯氏桿菌、志賀桿菌屬、金黃色葡萄球菌、瘧原蟲屬、冠狀病毒(SARS-CoV、MERS-CoV、SARS-CoV-2)、伊波拉病毒、伯氏疏螺旋體、HIV及其他引起的感染。According to another aspect, the novel conjugates according to the present invention can be used to prevent infectious diseases. Such diseases are, for example, microbial infections or viral infections, which are caused, for example, by Haemophilus influenzae type B (Hib), Streptococcus pneumoniae, Neisseria meningitidis and Salmonella typhi or other infectious agents, including those causing hepatitis A or B, human papillomavirus infection, influenza, typhoid, measles, mumps and rubella. In addition, there are infections caused by serogroup B meningococci, cytomegalovirus (CMV), respiratory syncytial virus (RSV), Clostridium difficile, extraenteric pathogenic Escherichia coli (Expec), Klebsiella pneumoniae, Shigella spp., Staphylococcus aureus, Plasmodium spp., coronaviruses (SARS-CoV, MERS-CoV, SARS-CoV-2), Ebola virus, Borrelia burgdorferi, HIV, and others.

儘管原則上,本發明可改良所有提出之抗感染結合物疫苗,但特定分析了所選疫苗。舉例而言,經CLEC修飾的腦膜炎球菌(A、C、Y及W-135群)寡醣白喉CRM197結合物疫苗(亦即,Menveo®)及b型嗜血桿菌屬結合物疫苗ActHIB®被證明優於市售Menveo®及ActHIB®疫苗。Although in principle, the present invention can improve all proposed anti-infective conjugate vaccines, selected vaccines were specifically analyzed. For example, the CLEC-modified meningococcal (groups A, C, Y and W-135) oligosaccharide diphtheria CRM197 conjugate vaccine (i.e., Menveo®) and the Haemophilus type b conjugate vaccine ActHIB® were shown to be superior to the commercially available Menveo® and ActHIB® vaccines.

鑒於本發明結合物之此等有利特性,因此根據本發明之結合物及疫苗可特定用於針對前蛋白轉化酶枯草桿菌蛋白酶/kexin 9型(Proprotein convertase subtilisin/kexin type 9;PCSK9)相關疾病之主動免疫療法,該疾病包括(但不限於)高脂血症、高膽固醇血症、動脈粥樣硬化、低密度脂蛋白膽固醇(LDL-C)之血清水平增加及心血管事件、中風或各種形式之癌症。In view of these favorable properties of the conjugates of the present invention, the conjugates and vaccines according to the present invention can be specifically used for active immunotherapy against proprotein convertase subtilisin/kexin type 9 (PCSK9)-related diseases, including (but not limited to) hyperlipidemia, hypercholesterolemia, atherosclerosis, increased serum levels of low-density lipoprotein cholesterol (LDL-C) and cardiovascular events, stroke or various forms of cancer.

根據一較佳實施例,PCSK9蛋白衍生多肽源自原生人類PCSK9 (登錄號:Q8NBP7),其具有胺基酸序列: 或其片段,或為具有一或多個aa交換的模擬物,形成各別原生序列之模擬抗原決定基。其他較佳目標序列包括直鏈或受限肽(例如環化肽)或藉由適合的aa連接子(例如:ggsgg或類似者)連接之肽。 According to a preferred embodiment, the PCSK9 protein-derived polypeptide is derived from native human PCSK9 (accession number: Q8NBP7), which has an amino acid sequence: or a fragment thereof, or a mimetic having one or more aa exchanges to form a mimetic epitope of the respective native sequence. Other preferred target sequences include linear or restricted peptides (eg cyclized peptides) or peptides linked by a suitable aa linker (eg ggsgg or similar).

根據一較佳實施例,PCSK9蛋白衍生多肽係選自以下區域:aa150至170、aa153-162、aa205至225、aa211-223、aa368-382,或為包含源自模擬抗原決定基之此等次單元之胺基酸殘基或由其組成的多肽。According to a preferred embodiment, the PCSK9 protein-derived polypeptide is selected from the following regions: aa150-170, aa153-162, aa205-225, aa211-223, aa368-382, or is a polypeptide comprising or consisting of amino acid residues derived from these subunits that mimic the antigenic determinant.

根據一較佳實施例,PCSK9蛋白衍生多肽係選自PCSK9衍生序列:NVPEEDGTRFHRQASK、NVPEEDGTRFHRQASKC、PEEDGTRFHRQASK、CPEEDGTRFHRQASK、PEEDGTRFHRQASKC、AEEDGTRFHRQASK、TEEDGTRFHRQASK、PQEDGTRFHRQASK、PEEDGTRFHRRASK、PEEDGTRFHRKASK、PEEDGTRFHRQASR、PEEDGTRFHRTASK、SIPWNLERITPPR、PEEDGTRFHRQASK、PEEDGTRFHRQA、EEDGTRFHRQASK、EEDGTRFHRQAS、SIPWNLERITP、SIPWNLERITPC、SIPWNLERIT、SIPWNLERITC、LRPRGQPNQC、SRHLAQASQ、SRHLAQASQC、SRSGKRRGER、SRSGKRRGERC、IIGASSDCSTCFVSQ、IIGASSDSSTSFVSQ、IIGASSDSSTSFVSQC、CIGASSDSSTSFVSC、IGASSDSSTSFVSC、CDGTRFHRQASKC、DGTRFHRQASKC、CDGTRFHRQASK、AGRDAGVAKGAC、RDAGVAKC、RDAGVAK、SRHLAQASQLEQC;SRHLAQASQLEQ、GDYEELVLALRC;GDYEELVLALR、LVLALRSEEDC;LVLALRSEED、AKDPWRLPC;AKDPWRLP、AARRGYLTKC、AARRGYLTK、FLVKMSGDLLELALKLPC;FLVKMSGDLLELALKLP、EEDSSVFAQC、EEDSSVFAQ、NVPEEDGTRFHRQASKC、NVPEEDGTRFHRQASK、CKSAQRHFRTGDEEPVN、KSAQRHFRTGDEEPVN。According to a preferred embodiment, the PCSK9 protein-derived polypeptide is selected from the PCSK9-derived sequence: NVPEEDGTRFHRQASK, NVPEEDGTRFHRQASKC, PEEDGTRFHRQASK, CPEEDGTRFHRQASK, PEEDGTRFHRQASKC, AEEDGTRFHRQASK, TEEDGTRFHRQASK, PQEDGTRFHRQASK, PEEDGTRFHRRASK, PEEDGTRFHRKASK, PEEDGTRFHRQASR, PEEDGTRFHRTASK, SIPWNLERITPPR, PEEDGTRFHRQASK, PEEDGTRFHRQA, EEDGTRFHRQASK, EEDGTRFHRQAS, SIPWNLERITP, SIPWNLERITPC, SIPWNLERIT, SIPWNLERITC, LRPRGQPNQC, SRHLAQASQ, SRHLAQASQC, SRSGKRRGER, SRSGKRRGERC, IIGASSDCSTCFVSQ, IIGASSDSSTSFVSQ, IIGASSDSSTSFVSQC, CIGASSDSSTSFVSC, IGASSDSSTSFVSC, CDGTRFHRQASKC, DGTRFHRQASKC, CDGTRFHRQASK, AGRDAGVAKGAC, RDAGVAKC, RDAGVAK, SRHLAQASQLEQC; SRHLAQASQLEQ, GDYEELVLALRC; GDYEELVLALR, LVLALRSEEDC; LVLALRSEED, AKDPWRLPC; AKDPWRLP, AARRGYLTKC, AARRGYLTK, FLVKMSGDLLELALKLPC; FLVKMSGDLLELALKLP, EEDSSVFAQC, EEDSSVFAQ, NVPEEDGTRFHRQASKC, NVPEEDGTRFHRQASK, CKSAQRHFRTGDEEPVN, KSAQRHFRTGDEEPVN.

根據一較佳實施例,單個PCSK9衍生抗原決定基可用於觸發針對PCSK9之3個不同域(亦即,抑制性前域(aa1-152)、催化域(aa153-448)及C端域(449-692))內之不同區的免疫反應。在另一較佳實施例中,PCSK9衍生抗原決定基之組合可用於觸發針對PCSK9之各域內的不同抗原決定基之免疫反應,尤其涉及催化域(aa153-449),且進一步涉及抑制前域(aa1-152)及/或C端域(449- 692)。According to a preferred embodiment, a single PCSK9-derived epitope can be used to trigger targeting of 3 different domains of PCSK9 (i.e., the inhibitory prodomain (aa1-152), the catalytic domain (aa153-448), and the C-terminal domain (449 -692)) immune response in different regions. In another preferred embodiment, combinations of PCSK9-derived epitopes can be used to trigger immune responses against different epitopes within each domain of PCSK9, particularly involving the catalytic domain (aa153-449), and further involving the inhibitory prodomain (aa1-152) and/or the C-terminal domain (449-692).

高脂血症、高膽固醇血症、動脈粥樣硬化、冠心病及中風等血管病症為全世界死亡的主要原因之一,且LDL-C水平升高在其致病機制中起著關鍵作用。因此,LDL-C管理為成功治療高脂血症、高膽固醇血症、動脈粥樣硬化的一個非常重要的因素。因此,PCSK9經由直接作用於LDLR而在LDL分解代謝中起關鍵作用。抑制PCSK9被證明有益於LDL-C水平。因此,抗PCSK9療法在LDLC水平之有利調節及PCSK9相關疾病之治療方面為有前景的方法。Vascular diseases such as hyperlipidemia, hypercholesterolemia, atherosclerosis, coronary heart disease and stroke are one of the leading causes of death worldwide, and elevated LDL-C levels play a key role in their pathogenesis. Therefore, LDL-C management is a very important factor in the successful treatment of hyperlipidemia, hypercholesterolemia, and atherosclerosis. Therefore, PCSK9 plays a key role in LDL catabolism via direct action on LDLR. Inhibiting PCSK9 has been shown to benefit LDL-C levels. Therefore, anti-PCSK9 therapy is a promising approach in the beneficial regulation of LDLC levels and the treatment of PCSK9-related diseases.

WO2015128287A1及EP2570135A1揭示PCSK9模擬抗原決定基載體結合物疫苗(例如:KLH或CRM197作為載體)且揭示序列PEEDGTRFHRQASK、AEEDGTRFHRQASK、TEEDGTRFHRQASK、PQEDGTRFHRQASK、PEEDGTRFHRRASK、PEEDGTRFHRKASK、PEEDGTRFHRQASR、PEEDGTRFHRTASK及PCSK9之aaa150至170及/或aa205至225,尤其是SIPWNLERITPPR、PEEDGTRFHRQASK、PEEDGTRFHRQA、EEDGTRFHRQASK、EEDGTRFHRQAS、SIPWNLERITP及SIPWNLERIT。WO2015128287A1 and EP2570135A1 disclose PCSK9 mimicking antigen determinant-carrier conjugate vaccines (e.g., KLH or CRM197 as carriers) and disclose sequences PEEDGTRFHRQASK, AEEDGTRFHRQASK, TEEDGTRFHRQASK, PQEDGTRFHRQASK, PEEDGTRFHRRASK, PEEDGTRFHRKASK, PEEDGTRFHRQASR, PEEDGTRFHRTASK and aaa150 to 170 and/or aa205 to 225 of PCSK9, in particular SIPWNLERITPPR, PEEDGTRFHRQASK, PEEDGTRFHRQA, EEDGTRFHRQASK, EEDGTRFHRQAS, SIPWNLERITP and SIPWNLERIT.

CN105085684A揭示包含PCSK9抗原決定基及白喉毒素之DTT之重組疫苗。抗原決定基肽接合於載體蛋白白喉毒素之跨膜域DTT的C端。CN106822881A揭示以重組PCSK9蛋白片段多肽(催化域及C端域)為特徵之蛋白質疫苗。CN105085684A discloses a recombinant vaccine containing PCSK9 epitope and DTT of diphtheria toxin. The epitope peptide is conjugated to the C-terminus of the transmembrane domain DTT of the carrier protein diphtheria toxin. CN106822881A discloses a protein vaccine characterized by recombinant PCSK9 protein fragment polypeptide (catalytic domain and C-terminal domain).

WO2022150661A2揭示一種用於PCSK9免疫療法之病毒(包括噬菌體病毒或植物病毒)或病毒樣顆粒,其尤其包含PCSK9衍生序列NVPEEDGTRFHRQASKC。WO2022150661A2 discloses a virus (including bacteriophage virus or plant virus) or virus-like particle for PCSK9 immunotherapy, which particularly contains the PCSK9 derived sequence NVPEEDGTRFHRQASKC.

EP3434279A1揭示一種OSK-1-PCSK9結合物疫苗,其使用PCSK9衍生序列LRPRGQPNQC、SRHLAQASQ及SRSGKRRGER。WO2021/154947 A1揭示建立在Ubith技術上之抗PCSK9免疫原,亦即包含融合於混雜T細胞抗原決定基之PCSK9抗原決定基的結合物疫苗。所揭示之序列包括aa153-162、aa368-382、aa211-223及SIPWNLERIT、CIGASSDSSTSFVSC、CDGTRFHRQASKC。EP3434279A1 discloses an OSK-1-PCSK9 conjugate vaccine using PCSK9-derived sequences LRPRGQPNQC, SRHLAQASQ and SRSGKRRGER. WO2021/154947 A1 discloses an anti-PCSK9 immunogen based on Ubith technology, i.e., a conjugate vaccine comprising a PCSK9 antigenic determinant fused to a promiscuous T cell antigenic determinant. The disclosed sequences include aa153-162, aa368-382, aa211-223 and SIPWNLERIT, CIGASSDSSTSFVSC, CDGTRFHRQASKC.

WO2011/027257 A2及WO 2012/131504 A1揭示靶向PCSK9之PCSK9衍生肽-VLP及PCSK9衍生肽-載體疫苗,其包括序列SIPWNLERITPC、SIPWNLERITC、SIPWNLERITP、AGRDAGVAKGA、RDAGVAK、SRHLAQASQLEQ、GDYEELVLALR、LVLALRSEED、AKDPWRLP-、AARRGYLTK、FLVKMSGDLLELALKLP、EEDSSVFAQ。WO2015/123291 A1揭示肽-VLP(Qb)靶向PCSK9疫苗,其包含序列:NVPEEDGTRFHRQASKC及CKSAQRHFRTGDEEPVN,且WO2018/189705揭示基於序列SIPWNLERITPC的靶向PCSK9之肽-載體結合物及其修飾衍生物。WO2011/027257 A2 and WO 2012/131504 A1 disclose PCSK9-derived peptide-VLP and PCSK9-derived peptide-vector vaccines targeting PCSK9, which include the sequences SIPWNLERITPC, SIPWNLERITC, SIPWNLERITP, AGRDAGVAKGA, RDAGVAK, SRHLAQASQLEQ, GDYEELVLALR, LVLALRSEED, AKDPWRLP-, AARRGYLTK, FLVKMSGDLLELALKLP, EEDSSVFAQ. WO2015/123291 A1 discloses a peptide-VLP (Qb) targeting PCSK9 vaccine, which includes the sequences: NVPEEDGTRFHRQASKC and CKSAQRHFRTGDEEPVN, and WO2018/189705 discloses a PCSK9-targeting peptide-carrier conjugate and its modified derivatives based on the sequence SIPWNLERITPC.

根據本發明之較佳的多肽免疫原構築體含有與CLEC偶合之來自α突觸核蛋白之B細胞抗原決定基及異源輔助性T細胞(Th)抗原決定基。本發明提供出人意料地優良新型結合物,其在免疫原性、針對α突觸核蛋白之交叉反應性、對α突觸核蛋白物種/聚集體的選擇性、親和力、親和力成熟度及抑制能力方面均超越了習知疫苗。Preferred polypeptide immunogen constructs according to the present invention contain B cell epitopes from alpha synuclein and allogeneic helper T cell (Th) epitopes coupled to CLEC. The present invention provides novel conjugates that are unexpectedly superior in terms of immunogenicity, cross-reactivity against alpha-synuclein, selectivity for alpha-synuclein species/aggregates, affinity, affinity maturity and inhibitory capacity. All surpassed conventional vaccines.

根據本發明之α突觸核蛋白多肽與β-葡聚糖或甘露多醣之共價結合使得此類多肽之免疫反應能夠出人意料且意想不到地增強。與傳統疫苗調配物,如由Rockenstein等人(J. Neurosci., 1月24日, 2018 • 38(4):1000 -1014)描述之疫苗調配物相比尤其令人印象深刻,亦如以下實例部分中所證實。The covalent binding of alpha-synuclein polypeptides according to the present invention to beta-glucan or mannan enables unexpected and unexpected enhancement of the immune response of such polypeptides. This is particularly impressive when compared to traditional vaccine formulations such as those described by Rockenstein et al. Confirmed in part.

Rockenstein等人(2018)揭示與aSyn及雷帕黴素非共價複合的酵母全葡聚糖顆粒(GP)作為帕金森氏症免疫治療劑的應用。此等GP在一系列由釀酒酵母進行之熱鹼性、有機及水性萃取步驟之後產生,產生由不含細胞質內容物且由β-葡聚糖(主要為ß1-3 β-葡聚糖)之多孔不溶性殼體包圍之高度純化的3至4 μm直徑之酵母細胞壁製劑組成之最終產物。Rockenstein et al. (2018) revealed the application of yeast whole glucan particles (GP) non-covalently complexed with aSyn and rapamycin as immunotherapeutic agents for Parkinson's disease. These GPs are produced after a series of thermal alkaline, organic and aqueous extraction steps with Saccharomyces cerevisiae, resulting in a product that contains no cytoplasmic content and consists of beta-glucans (mainly ß1-3 beta-glucans). The final product consists of a highly purified 3 to 4 μm diameter yeast cell wall preparation surrounded by a porous insoluble shell.

重要的是,Rockenstein等人(2018)所揭示的疫苗組合物係由與卵白蛋白及小鼠血清白蛋白(MSA)、人類aSyn及MSA或人類aSyn、MSA及雷帕黴素非共價複合的GP組成。此複合方法依賴於將不同的有效負載(payload)與GP共培育,且後續在無共價連接之情況下擴散至GP空腔中,因此,其與藉由僅將成分混合而未進行共價連接來調配疫苗的本申請案中提供之實例28中所揭示之一組疫苗類似,且與根據本發明之疫苗相比被證明是較為低效且不適合的。Importantly, the vaccine compositions disclosed by Rockenstein et al. (2018) consist of GP non-covalently complexed with ovalbumin and mouse serum albumin (MSA), human aSyn and MSA, or human aSyn, MSA and rapamycin. This complexation method relies on the co-incubation of different payloads with GP and subsequent diffusion into the GP cavity without covalent attachment, and is therefore similar to a set of vaccines disclosed in Example 28 provided in this application, which formulates vaccines by merely mixing the components without covalent attachment, and has been shown to be less effective and unsuitable than vaccines according to the present invention.

1) Rockenstein等人證明aSyn及GP之非共價混合引起針對aSyn之可偵測的免疫反應,因此證明GP可作為佐劑。然而,Rockenstein等人亦證明與對照組相比,需要雷帕黴素之非共價添加/共複合才能誘導此類疫苗顯著增強的功能性。自此角度看,需要各種佐劑(GP以及mTOR抑制劑雷帕黴素)之混合物來提供功能齊全的疫苗,如本發明所揭示之疫苗。1) Rockenstein et al. demonstrated that non-covalent mixing of aSyn and GP elicited a detectable immune response against aSyn, thus demonstrating that GP can serve as an adjuvant. However, Rockenstein et al. also demonstrated that non-covalent addition/co-complexation of rapamycin was required to induce significantly enhanced functionality of such vaccines compared to controls. From this perspective, a mixture of various adjuvants (GP and the mTOR inhibitor rapamycin) is required to provide a fully functional vaccine, such as the vaccine disclosed in the present invention.

2)Rockenstein等人所揭示之疫苗在此aSyn過度表現模型中具有活性,因為其提供aSyn特異性T細胞抗原決定基(以及其他T細胞抗原決定基,如MSA衍生抗原決定基)以便發揮其完整的功能性,亦即誘導神經保護性、抗aSyn定向細胞(亦即,T細胞介導)及體液(亦即,基於抗體/B細胞)免疫反應。此與本發明之教示內容形成直接對比,在本發明中,若所選疫苗僅引發aSyn特異性B細胞反應,則已經足夠。2) The vaccine disclosed by Rockenstein et al. is active in this aSyn overexpression model because it provides aSyn-specific T cell epitopes (as well as other T cell epitopes, such as MSA-derived epitopes) in order to exert its full functionality, that is, the induction of neuroprotective, anti-aSyn directed cellular (i.e., T cell mediated) and humoral (i.e., antibody/B cell based) immune responses. This is in direct contrast to the teachings of the present invention, where it is sufficient if the selected vaccine elicits only aSyn-specific B cell responses.

3)使用全長aSyn亦存在誘導/加強自體反應性Syn特異性T細胞之危險,該等T細胞具有加重PD及其他突觸核蛋白病變中之潛在神經病理學的可能性。因此,Rockenstein等人所提出的GP-aSyn-雷帕黴素疫苗就此問題而言,不適合人類使用。3) The use of full-length aSyn also carries the risk of inducing/enhancing autoreactive Syn-specific T cells, which have the potential to exacerbate the underlying neuropathology in PD and other synuclein pathologies. Therefore, the GP-aSyn-rapamycin vaccine proposed by Rockenstein et al. is not suitable for human use with respect to this issue.

4)如實例5中所示,類似於Rockenstein等人,Syn衍生肽(例如:SeqID2,亦即B細胞抗原決定基)及混雜T細胞抗原決定基(例如:SeqID7)與β-葡聚糖顆粒(例如:未經氧化之石耳多醣)之非共價混合亦能夠誘發針對aSyn之低水平抗體反應。然而,建立在此類肽與適合的葡聚糖之共價連接上的根據本發明之疫苗發揮顯著不同且更優良的免疫反應(亦參見圖5)。4) As shown in Example 5, similar to Rockenstein et al., non-covalent mixing of Syn-derived peptides (e.g., SeqID2, i.e., B cell epitopes) and promiscuous T cell epitopes (e.g., SeqID7) with β-glucan particles (e.g., unoxidized Psoralea corylifolia) was also able to induce low-level antibody responses against aSyn. However, the vaccines according to the present invention based on the covalent linkage of such peptides to suitable glucans exerted significantly different and superior immune responses (see also FIG. 5 ).

此外,且亦揭示於實例6及圖7中,相比於如本發明所揭示之建立在葡聚糖顆粒及肽上的非共價混合疫苗,此類共價連接疫苗亦顯示極為有益的缺乏抗葡聚糖抗體反應。In addition, and also disclosed in Example 6 and Figure 7, such covalently linked vaccines also show extremely beneficial deficiencies compared to non-covalent mixed vaccines based on dextran particles and peptides as disclosed in the present invention. Anti-glucan antibody response.

因此,Rockenstein等人之先前技術揭示內容未表明本發明揭示之所主張的主題。Therefore, the prior art disclosure of Rockenstein et al. does not indicate the claimed subject matter of the present invention.

本發明中待結合的特定較佳aSyn多肽係選自原生α突觸核蛋白或包含原生人類α突觸核蛋白之胺基酸序列的以下胺基酸殘基或由其組成之多肽:1至5、1至8、1至10、60至100、70至140、85至99、91至100、100至108、102至108、102至109、103至129、103至135、107至130、109至126、110至130、111至121、111至135、115至121、115至122、115至123、115至124、115至125、115至126、118至126、121至127、121至140或126至135,該胺基酸序列為: MDVFMKGLSK AKEGVVAAAE KTKQGVAEAA GKTKEGVLYV GSKTKEGVVH GVATVAEKTK EQVTNVGGAV VTGVTAVAQK TVEGAGSIAA ATGFVKKDQL GKNEEGAPQE GILEDMPVDP DNEAYEMPSE EGYQDYEPEA (人類aSyn (1-140 aa):UNIPROT登錄號P37840), 較佳為包含以下胺基酸殘基或由其組成之多肽:1至8、91至100、100至108、103至135、107至130、110至130、115至121、115至122、115至123、115至124、115至125、115至126、118至126、121至127或121至140;或選自以下之群的模擬抗原決定基:DQPVLPD、DQPVLPDN、DQPVLPDNE、DQPVLPDNEA、DQPVLPDNEAY、DQPVLPDNEAYE、DSPVLPDG、DHPVHPDS、DTPVLPDS、DAPVTPDT、DAPVRPDS及YDRPVQPDR。 The specific preferred aSyn polypeptide to be bound in the present invention is selected from native α-synaptic nucleoprotein or a polypeptide consisting of the following amino acid residues of the amino acid sequence of native human α-synaptic nucleoprotein: 1 to 5, 1 to 8, 1 to 10, 60 to 100, 70 to 140, 85 to 99, 91 to 100, 100 to 108, 102 to 108, 102 to 109, 103 to 129, 103 to 135, 107 to 130, 109 to 126, 110 to 130, 111 to 121, 111 to 135, 115 to 121, 115 to 122, 115 to 123, 115 to 124, 115 to 125, 115 to 126, 118 to 126, 121 to 127, 121 to 140 or 126 to 135, the amino acid sequence is: MDVFMKGLSK AKEGVVAAAE KTKQGVAEAA GKTKEGVLYV GSKTKEGVVH GVATVAEKTK EQVTNVGGAV VTGVTAVAQK TVEGAGSIAA ATGFVKKDQL GKNEEGAPQE GILEDMPVDP DNEAYEMPSE EGYQDYEPEA (Human aSyn (1-140 aa): UNIPROT Accession No. P37840), Preferably, the polypeptide comprises or consists of the following amino acid residues: 1 to 8, 91 to 100, 100 to 108, 103 to 135, 107 to 130, 110 to 130, 115 to 121, 115 to 122, 115 to 123, 115 to 124, 115 to 125, 115 to 126, 118 to 126, 121 to 127 or 121 to 140; or a mimetic antigenic determinant selected from the following group: DQPVLPD, DQPVLPDN, DQPVLPDNE, DQPVLPDNEA, DQPVLPDNEAY, DQPVLPDNEAYE, DSPVLPDG, DHPVHPDS, DTPVLPDS, DAPVTPDT, DAPVRPDS and YDRPVQPDR.

目前先進技術之CLEC疫苗均誘發針對所用載體蛋白(例如:CRM197或OVA)之高效價。然而,載體蛋白成分之此高免疫原性以及結構複雜性及不均勻性可能導致以目標特異性反應為代價誘導高水平載體/蛋白質特異性抗體,因此相比於所誘導的載體反應,目標特異性反應可能表現不足。Current state-of-the-art CLEC vaccines all induce high titers against the carrier protein used (e.g., CRM197 or OVA). However, this high immunogenicity as well as the structural complexity and heterogeneity of the carrier protein component may result in the induction of high levels of carrier/protein-specific antibodies at the expense of target-specific responses, so that target-specific responses may be insufficient compared to the induced carrier responses.

此外,由於結合物中載體特異性抗原決定基之過表現,在使用載體結合物重複免疫接種後誘導之目標特異性反應之親和力成熟亦受損。如本文所用及理解,免疫學中之親和力成熟為T FH細胞活化之B細胞在免疫反應過程期間產生對抗原具有增加之親和力之抗體的過程。在重複暴露於相同抗原中的情況下,宿主將產生具有逐漸增大之親和力的抗體。次級反應可以引發比初級反應高若干倍之親和力的抗體。親和力成熟主要發生於生發中心B細胞之表面免疫球蛋白上且為體細胞超突變(SHM)及T FH細胞選擇之直接結果(亦參見:https://en.wikipedia.org/wiki/Affinity_maturation)。根據西格恩氏(Segen's)醫學辭典(https://medical-dictionary.thefreedictionary.com/affinity+maturation''>affinity maturation</a>),親和力成熟為免疫接種之後抗體對抗原之平均親和力增加。親和力成熟係肇因於特異性及較均勻IgG抗體之增加,且緊隨於IgM分子特異性較低及較為非均質的早期反應之後。 Furthermore, affinity maturation of target-specific responses induced after repeated immunizations with the carrier conjugate is also impaired due to over-representation of carrier-specific epitopes in the conjugate. As used and understood herein, affinity maturation in immunology is the process by which TFH cell-activated B cells produce antibodies with increased affinity for an antigen during the course of an immune response. With repeated exposure to the same antigen, the host will produce antibodies with progressively increasing affinity. The secondary reaction can elicit antibodies with several times higher affinity than the primary reaction. Affinity maturation occurs primarily on surface immunoglobulins of germinal center B cells and is a direct result of somatic hypermutation (SHM) and T FH cell selection (see also: https://en.wikipedia.org/wiki/Affinity_maturation) . According to Segen's Medical Dictionary (https://medical-dictionary.thefreedictionary.com/affinity+maturation''>affinity maturation</a>), affinity maturation is the increase in the average affinity of the antibody for the antigen after immunization. . Affinity maturation results from an increase in specific and more homogeneous IgG antibodies and is followed by an early response of less specific and more heterogeneous IgM molecules.

此外,高抗載體反應亦造成免疫排斥及相關安全問題之風險。In addition, high anti-carrier reactions also pose risks of immune rejection and related safety issues.

因此,根據本發明之具有高免疫原性、高目標特異性及高耐受性/安全性且具有較低或不存在之載體反應性(亦即針對蛋白質載體)的有效構築體藉由創新的解決方法成功地解決此挑戰。另外,對於根據本發明之新穎疫苗,提供不誘導或僅誘導極弱的針對糖骨架之免疫反應的免疫治療劑為至關重要的。這一點尤其重要,因為免疫接種後所誘導的高抗CLEC抗體水平可能會透過疫苗中和作用而抑制或降低使用相同基於CLEC之疫苗進行重複免疫接種的功效,或亦可能對使用此類型疫苗用於針對不同目標的連續免疫接種有不利影響。Therefore, effective constructs according to the present invention with high immunogenicity, high target specificity and high tolerability/safety with low or non-existent carrier reactivity (i.e. against protein carriers) are achieved through the innovative The workaround successfully addresses this challenge. Additionally, for novel vaccines according to the present invention, it is crucial to provide immunotherapeutic agents that induce no or only a very weak immune response against the glycoskeleton. This is particularly important because high anti-CLEC antibody levels induced after immunization may inhibit or reduce the efficacy of repeated immunizations with the same CLEC-based vaccine through vaccine neutralization, or may also compromise the effectiveness of this type of vaccine. Have adverse effects on continuous immunization against different targets.

根據本發明之疫苗平台亦滿足在一種調配物中組合針對一個或若干個目標的各種抗原決定基的需求,而不引起由於如針對經典疫苗所報導之非預期抗原決定基擴散而降低功效的風險。根據本發明之平台之模組設計允許容易地交換B細胞抗原決定基及T細胞抗原決定基,而不會產生載體誘導反應之負面影響。The vaccine platform according to the invention also meets the need to combine various epitopes for one or several targets in one formulation without incurring the risk of reduced efficacy due to unintended epitope diffusion as reported for classical vaccines . The modular design of the platform according to the present invention allows for easy exchange of B cell epitopes and T cell epitopes without negative effects of vector-induced responses.

本發明係基於對同源受體發揮高度特異性結合之CLEC。此結合至關重要,且僅較強結合子作為疫苗載體/骨架為有效的。The present invention is based on CLECs that exert highly specific binding to cognate receptors. This binding is critical and only the stronger binders are effective as vaccine vectors/backbones.

根據本發明,CLEC結合能夠實現具有新穎特徵之有效免疫反應。根據本發明之結合可防止抗CLEC抗體之形成,尤其是對於石耳多醣而言,此類防止現象可在本發明的過程中令人印象深刻地顯示。此誘發抗CLEC抗體之缺乏對於用根據本發明之平台設計的個別疫苗之可重複使用性及再加強注射性非常重要-無論使用相同還是不同的抗原。According to the present invention, CLEC conjugation enables an effective immune response with novel characteristics. The conjugation according to the present invention prevents the formation of anti-CLEC antibodies, especially for Psoralea corylifolia, and such prevention can be impressively demonstrated in the process of the present invention. This lack of induction of anti-CLEC antibodies is very important for the reusability and boosting of individual vaccines designed with the platform according to the present invention - whether using the same or different antigens.

與本發明之結合實施例相比,僅混合CLEC多醣佐劑與B細胞或T細胞抗原決定基肽不會在活體內產生相當作用。然而,若將兩者結合,則肽之位向不會顯著影響根據本發明之化合物的效能;因此,CLEC結合基本上獨立於構築體中之肽位向。在本發明之過程中,可顯示CLEC結合(尤其是與石耳多醣結合)使得新穎以及現有的肽免疫原/抗原得到改良:此改良由更高、更具目標特異性及更親和的抗體反應實現(如可藉由抗體選擇性及功能性展示)。此作用在石耳多醣或類似的β-葡聚糖中最為明顯,其為主要呈線性的β-(1,6)-葡聚糖,其中β-(1,6)偶合之單醣部分與非β-(1,6)偶合之單醣部分之比率為至少1:1、較佳為至少2:1、更佳為至少5:1、尤其為至少10:1,其在直接比較中出人意料地表現得甚至顯著優於KLH或CRM,且甚至優於甘露多醣或地衣多醣結合物或包含大麥β-葡聚糖之結合物。In contrast to the conjugation examples of the present invention, merely mixing the CLEC polysaccharide adjuvant with a B-cell or T-cell antigenic determinant peptide does not produce a comparable effect in vivo. However, if the two are conjugated, the orientation of the peptide does not significantly affect the potency of the compounds according to the present invention; thus, CLEC binding is essentially independent of the orientation of the peptide in the construct. In the course of the present invention, it was shown that CLEC conjugation (particularly with Psoralea corylifolia polysaccharide) results in improvements of novel as well as existing peptide immunogens/antigens: this improvement is achieved by higher, more target-specific and more affinity antibody responses (e.g., as can be demonstrated by antibody selectivity and functional display). This effect is most pronounced in Pyricularia polysaccharides or similar β-glucans, which are predominantly linear β-(1,6)-glucans in which the ratio of β-(1,6)-coupled monosaccharide moieties to non-β-(1,6)-coupled monosaccharide moieties is at least 1:1, preferably at least 2:1, more preferably at least 5:1, especially at least 10:1, which surprisingly outperform even significantly KLH or CRM in direct comparisons, and even outperform mannosaccharide or lichen conjugates or conjugates comprising barley β-glucan.

如本文所用,術語「主要呈線性的」β-(1,6)-葡聚糖係指其中不存在或僅存在少量交聯糖單體實體的β-(1,6)-D-葡聚糖,亦即其中小於1%、較佳小於0.1%、尤其是小於0.01%之單醣部分具有超過兩個共價連接之單醣部分。As used herein, the term "predominantly linear" β-(1,6)-glucan refers to β-(1,6)-D-glucan in which there are no or only a small amount of cross-linked sugar monomer entities, i.e., less than 1%, preferably less than 0.1%, and especially less than 0.01% of the monosaccharide moieties have more than two covalently linked monosaccharide moieties.

如上文已陳述,石耳多醣為根據本發明之最佳CLEC。石耳多醣通常不含交聯糖部分且主要呈β-(1,6)偶合,使得用於製備根據本發明之結合物的常用石耳多醣製劑包含小於1%、較佳為小於0.1%、尤其是小於0.01%之單醣部分,並具有超過兩個共價連接之單醣部分,且該石耳多醣含有最多10%具有β-(1,3)或β-(1,4)偶合之單醣的雜質。As has been stated above, Lycoris polysaccharide is the best CLEC according to the present invention. The fungus polysaccharide usually does not contain cross-linking sugar moieties and is mainly β-(1,6) coupled, so that the common fungus polysaccharide preparations used to prepare the conjugates according to the invention contain less than 1%, preferably less than 0.1%, Especially less than 0.01% of the monosaccharide moieties and having more than two covalently linked monosaccharide moieties, and the fungus polysaccharide contains up to 10% of the monosaccharide moieties having β-(1,3) or β-(1,4) coupling. Monosaccharide impurities.

在本發明之過程中,石耳多醣被證明為最有效之CLEC的事實為出人意料的,因為各種參考文獻顯示,石耳多醣在dectin-1結合中應該不太有效(例如Adams等人, J Pharmacol Exp Ther. 2008年4月;325(1):115-23);在該文獻中,已報導線性1,3及支鏈化(1,3主鏈及1,6側支鏈)為最有效的dectin-1結合子。舉例而言,Adams等人, 2008已報導鼠類重組dectin-1僅識別含有β-(1,3)連接之葡萄糖主鏈之聚合物且與之相互作用。dectin-1不與僅由β-(1,6)-葡萄糖主鏈構成之葡聚糖(石耳多醣)相互作用,其亦不與非葡聚糖碳水化合物聚合物(如甘露多醣)相互作用。The fact that Pseudomonas aeruginosa was shown to be the most effective CLEC in the process of the present invention is surprising, since various references have shown that Pseudomonas aeruginosa should be less effective in dectin-1 binding (e.g. Adams et al., J Pharmacol Exp Ther. 2008 Apr;325(1):115-23); in which linear 1,3 and branched (1,3 backbone and 1,6 side branches) have been reported as the most effective dectin-1 binders. For example, Adams et al., 2008 have reported that murine recombinant dectin-1 only recognizes and interacts with polymers containing a β-(1,3) linked glucose backbone. Dectin-1 does not interact with glucans consisting solely of a β-(1,6)-glucose backbone (pyrifos), nor does it interact with non-glucan carbohydrate polymers such as mannan.

因此,根據本發明之一較佳實施例,本發明結合物之β-葡聚糖為一dectin-1結合β-葡聚糖。任何化合物,尤其是葡聚糖與C dectin-1結合之能力可容易地藉由如本文所揭示之方法測定,尤其是在實例部分中的方法。為避免疑問,「dectin-1結合β-葡聚糖」為藉由競爭性ELISA所測定,以低於10 mg/ml之IC50值結合於可溶性鼠類Fc-dectin-1a受體的β-葡聚糖,例如依實例中所揭示。Therefore, according to a preferred embodiment of the present invention, the β-glucan of the conjugate of the present invention is a dectin-1-conjugated β-glucan. The ability of any compound, especially dextran, to bind to C dectin-1 can be readily determined by methods as disclosed herein, particularly in the Examples section. For the avoidance of doubt, "dectin-1 binding beta-glucan" is beta-glucan that binds to the soluble murine Fc-dectin-1a receptor with an IC50 value below 10 mg/ml, as determined by competitive ELISA. Glycans, for example, are disclosed in the Examples.

相較於其他葡聚糖,例如DC-SIGN β-葡聚糖(如β-(1,2)-葡聚糖),根據本發明之dectin-1結合β-葡聚糖(如線性β-(1,6)-葡聚糖)更具優勢,因為透過此類dectin-1結合葡聚糖,可覆蓋較寬範圍之DC (未成熟、成熟、骨髓、漿細胞樣;此外:APC),相較於限定適用性的非dectin-1結合葡聚糖(未成熟DC、骨髓DC),其顯著地增加活體內引發有效免疫反應之潛力。Compared to other glucans, such as DC-SIGN β-glucans (such as β-(1,2)-glucans), the dectin-1-conjugated β-glucans (such as linear β-(1,6)-glucans) according to the present invention are more advantageous because a wider range of DCs (immature, mature, myeloid, plasmacytoid; in addition: APC) can be covered by such dectin-1-conjugated glucans, which significantly increase the potential to induce an effective immune response in vivo compared to non-dectin-1-conjugated glucans of limited applicability (immature DCs, myeloid DCs).

WO 2022/060487 A1及WO 2022/060488 A1揭示使肽免疫原與免疫刺激性聚合物分子(例如β-(1,2)葡聚糖)連接之結合物。包括環狀變異體之β-(1,2)葡聚糖先前已被暗示作為潛在佐劑(Martirosyan A等人, doi:10.1371/journal.ppat.1002983),其為主要結合於特定PRR(即DC-SIGN,Zhang H等人 doi:10.1093/glycob/cww041),並特異性結合於N端連接之高甘露糖寡醣及支鏈化岩藻糖基化結構之一類葡聚糖。重要的是,β-1,2葡聚糖無法結合於dectin-1 (Zhang H等人, doi:10.1093/glycob/cww041),由此限制其對DC-SIGN陽性細胞之活性。WO 2022/060487 A1 and WO 2022/060488 A1 disclose conjugates that link peptide immunogens to immunostimulatory polymer molecules such as β-(1,2) glucans. β-(1,2) glucans, including cyclic variants, have previously been suggested as potential adjuvants (Martirosyan A et al., doi:10.1371/journal.ppat.1002983), which are a type of glucan that primarily binds to specific PRRs (i.e., DC-SIGN, Zhang H et al. doi:10.1093/glycob/cww041) and specifically binds to N-terminally linked high mannose oligosaccharides and branched fucosylated structures. Importantly, β-1,2 glucan is unable to bind to dectin-1 (Zhang H et al., doi:10.1093/glycob/cww041), thereby limiting its activity on DC-SIGN positive cells.

DC-SIGN (CD209)為第一個被鑑別出的SIGN分子,且被發現僅在有限的DC子集高度表現,包括未成熟(CD83陰性) DC以及胎盤及肺臟中之特殊巨噬細胞(Soilleux EJ等人, doi: 10.1189/jlb.71.3.445)。在外周,例如皮膚中或黏膜部位處,表現及因此具有作為根據本發明之受體的生物活性的潛力僅可在未成熟的DC子集中偵測到。成熟漿細胞樣DC及其它APC,如上皮DC樣蘭格漢氏細胞(Langerhans cell)不表現DC-SIGN (Engering A等人, doi:10.4049/jimmunol.168.5.2118)。DC-SIGN (CD209) was the first SIGN molecule to be identified and was found to be highly expressed only in a limited subset of DCs, including immature (CD83 negative) DCs and special macrophages in the placenta and lungs (Soilleux EJ et al., doi: 10.1189/jlb.71.3.445). In the periphery, for example in the skin or at mucosal sites, expression and thus potential for biological activity as a receptor according to the present invention can only be detected in immature DC subsets. Mature plasmacytoid DCs and other APCs, such as epithelial DC-like Langerhans cells, do not express DC-SIGN (Engering A et al., doi:10.4049/jimmunol.168.5.2118).

與其相反,本發明中所提供的基於葡聚糖之免疫原的目標受體為dectin-1。Dectin-1表現於多種不同DC類型上,不僅包括未成熟DC、骨髓DC且亦包括漿細胞樣DC,該等DC在mRNA及蛋白質水平上以及皮膚中之DC樣蘭格漢氏細胞中均表現dectin-1。(Patente等人, doi: 10.3389/fimmu.2018.03176;Joo等人 doi: 10.4049/jimmunol.1402276)。In contrast, the target receptor of the glucan-based immunogens provided in the present invention is dectin-1. Dectin-1 is expressed on a variety of different DC types, including not only immature DC, bone marrow DC, but also plasmacytoid DC, which express dectin-1 at the mRNA and protein levels, as well as DC-like Langerhans cells in the skin. (Patente et al., doi: 10.3389/fimmu.2018.03176; Joo et al. doi: 10.4049/jimmunol.1402276).

因此,DC-SIGN靶向聚合物(如β-(1,2)葡聚糖)之生物活性僅限於特定DC目標細胞群,而如應用於本發明中的dectin-1靶向聚合物可在多種不同其他DC類型中發揮其功能。因此,與其他結合物相比,此等新穎結合物可發揮顯著不同且優良的免疫反應。因此,先前技術揭示內容未表明本發明揭示之所主張的主題。Therefore, the biological activity of DC-SIGN targeting polymers (such as β-(1,2) glucan) is limited to specific DC target cell populations, while dectin-1 targeting polymers such as those used in the present invention can be used in It functions in many different other DC types. Therefore, these novel conjugates can exert significantly different and superior immune responses compared with other conjugates. Therefore, the prior art disclosure is not indicative of the claimed subject matter of the present disclosure.

根據一特定較佳實施例,本發明之結合物包含強dectin-1結合β-葡聚糖,較佳為如下β-葡聚糖,如藉由競爭性ELISA所測定,其以低於10 mg/ml之IC50值、更佳以低於1 mg/ml之IC50值、甚至更佳以低於500 µg/ml之IC50值、尤其是以低於200 µg/ml之IC50值結合於可溶性鼠類Fc-dectin-1a受體,例如依實例所揭示。特定較佳為如下結合物,如藉由競爭性ELISA所測定,其以低於1 mg/ml之IC50值、更佳以低於500 µg/ml之IC50值、甚至更佳以低於200 µg/ml之IC50值、尤其是以低於100 µg/ml之IC50值結合於可溶性鼠類Fc-dectin-1a受體;及/或 -如下β-葡聚糖,如藉由競爭性ELISA所測定,其以低於10 mg/ml之IC50值、更佳以低於1 mg/ml之IC50值、甚至更佳以低於500 µg/ml之IC50值、尤其是以低於200 µg/ml之IC50值結合於可溶性人類Fc-dectin-1a受體;及/或 -其中如藉由競爭性ELISA所測定,結合物以低於1 mg/ml之IC50值、更佳為低於500 µg/ml之IC50值、甚至更佳為低於200 µg/ml之IC50值、尤其是低於100 µg/ml之IC50值結合於可溶性人類Fc-dectin-1a受體,例如依實例所揭示。 According to a particularly preferred embodiment, the conjugate of the present invention comprises a strong dectin-1 binding β-glucan, preferably a β-glucan that binds to a soluble murine Fc-dectin-1a receptor with an IC50 value of less than 10 mg/ml, more preferably with an IC50 value of less than 1 mg/ml, even more preferably with an IC50 value of less than 500 μg/ml, in particular with an IC50 value of less than 200 μg/ml, as determined by competitive ELISA, for example as disclosed in the examples. Particularly preferred are the following binders, as determined by competitive ELISA, which bind to soluble murine Fc-dectin-1a receptor with an IC50 value of less than 1 mg/ml, more preferably with an IC50 value of less than 500 µg/ml, even more preferably with an IC50 value of less than 200 µg/ml, in particular with an IC50 value of less than 100 µg/ml; and/or -the following β-glucan, as determined by competitive ELISA, which binds to soluble human Fc-dectin-1a receptor with an IC50 value of less than 10 mg/ml, more preferably with an IC50 value of less than 1 mg/ml, even more preferably with an IC50 value of less than 500 µg/ml, in particular with an IC50 value of less than 200 µg/ml; and/or - wherein the conjugate binds to soluble human Fc-dectin-1a receptor with an IC50 value of less than 1 mg/ml, more preferably less than 500 µg/ml, even more preferably less than 200 µg/ml, in particular less than 100 µg/ml as determined by competitive ELISA, for example as disclosed in the examples.

此外,與不含CLEC,尤其是不含石耳多醣之疫苗相比,根據本發明之結合物亦顯示出成比例高度增加之與目標多肽反應的抗體及與載體分子反應的抗體的比例。這顯著增加了抗體免疫反應對目標而非載體之特異性聚焦,從而增加了免疫反應之功效及特異性。In addition, compared with vaccines without CLEC, especially without Psoralea corylifolia polysaccharide, the conjugate according to the present invention also shows a highly proportional increase in the ratio of antibodies reacting with the target polypeptide and antibodies reacting with the carrier molecule. This significantly increases the specific focus of the antibody immune response on the target rather than the carrier, thereby increasing the efficacy and specificity of the immune response.

根據本發明之CLEC結合,尤其是與石耳多醣結合之CLEC,亦導致對目標蛋白之親和力成熟(AM)增加(AM大幅增加,而KLH/CRM結合物在重複免疫接種後僅顯示有限的AM)。The conjugation of CLEC according to the present invention, especially CLEC conjugated to Pseudomonas aeruginosa, also resulted in increased affinity maturation (AM) for the target protein (AM was greatly increased, while KLH/CRM conjugate showed only limited AM after repeated immunization).

在疫苗領域中,已經揭示了僅具有B細胞抗原決定基或僅具有T細胞抗原決定基之適合的疫苗。在特定情況下,使用僅具有T細胞抗原決定基或僅具有B細胞抗原決定基之疫苗為適合且較佳的。然而,市場上的大多數疫苗均含有兩種抗原決定基,亦即T細胞抗原決定基及B細胞抗原決定基。In the field of vaccines, suitable vaccines having only B cell epitopes or only T cell epitopes have been disclosed. In certain cases, it may be suitable and preferred to use a vaccine having only T cell epitopes or only B cell epitopes. However, most vaccines on the market contain two epitopes, namely T cell epitopes and B cell epitopes.

舉例而言,僅包含B細胞抗原決定基之疫苗在大多數情況下不是很有效,即使它們確實會引起可偵測的抗體免疫反應。然而,在大多數情況下,與含有B細胞及T細胞抗原決定基之疫苗相比,此免疫反應通常作用要差得多。此亦與本發明之實例部分中給出的實例一致,在該等實例中可偵測到較低水平之反應。For example, vaccines containing only B-cell epitopes are not very effective in most cases, even if they do elicit a detectable antibody immune response. However, in most cases, this immune response is usually much less effective compared to vaccines containing B-cell and T-cell epitopes. This is also consistent with the examples given in the Examples section of the present invention, where lower levels of response could be detected.

另一方面,僅包含T細胞抗原決定基之疫苗(例如在特定T細胞反應為反應之活性組成部分之疫苗中)對某些應用而言特別有趣,尤其是對於癌症,其中癌症特異性細胞毒性T淋巴細胞及輔助性T細胞抗原決定基或僅CTL抗原決定基與根據本發明之疫苗平台組合。在此情況下,根據本發明之具有CLEC多醣佐劑的T細胞抗原決定基在僅具有T細胞抗原決定基的情況下提供。此在某些情況下為特定較佳的,例如在癌症中的體細胞突變影響蛋白質編碼基因之情況下,其可能會產生潛在的治療性新抗原決定基。此等新抗原決定基可引導過繼性細胞療法及基於肽(及基於RNA)之新抗原決定基疫苗使用患者自體的細胞毒性T細胞選擇性地靶向腫瘤細胞。根據本發明,此可用於一般抗原及個別化的新抗原特異性治療(例如在NY-ESO-1、MAGE-A1、MAGE-A3、MAGE-C1、MAGE-C2、MAGE-C3、Survivin、gp100、酪胺酸酶、CT7、WT1、PSA、PSCA、PSMA、STEAP1、PAP、MUC1、5 T4、KRAS、Her2及其他之情況下)。就特定自體免疫疾病而言,使用僅含有T細胞抗原決定基之疫苗亦可能為較佳的。各別僅含有T細胞抗原決定基之結合物的治療作用與效應T細胞之減少及調節性T細胞(T reg細胞)群體之形成相關,從而使得各別自體免疫疾病得到抑制(例如:多發性硬化症或類似疾病)。 On the other hand, vaccines containing only T cell epitopes (e.g. in vaccines where a specific T cell response is an active component of the response) are particularly interesting for certain applications, especially cancer, where cancer-specific cytotoxicity T lymphocyte and helper T cell epitopes or only CTL epitopes are combined with the vaccine platform according to the invention. In this case, the T cell epitopes with CLEC polysaccharide adjuvant according to the invention are provided with only T cell epitopes. This is particularly preferred in certain circumstances, such as where somatic mutations in cancer affect protein-coding genes, which may generate potentially therapeutic neo-epitope(s). These neo-epitopes can guide adoptive cell therapies and peptide-based (and RNA-based) neo-epitope vaccines to selectively target tumor cells using the patient's own cytotoxic T cells. According to the present invention, this can be used for general antigen and individualized neoantigen-specific treatments (for example, in NY-ESO-1, MAGE-A1, MAGE-A3, MAGE-C1, MAGE-C2, MAGE-C3, Survivin, gp100 , tyrosinase, CT7, WT1, PSA, PSCA, PSMA, STEAP1, PAP, MUC1, 5 T4, KRAS, Her2 and others). For certain autoimmune diseases, it may also be preferable to use vaccines containing only T cell epitopes. The therapeutic effect of each conjugate containing only T cell epitopes is associated with the reduction of effector T cells and the formation of a regulatory T cell (T reg cell) population, thereby enabling the suppression of the respective autoimmune disease (e.g., multiple sclerosis or similar diseases).

由於大多數常用之疫苗設計均包含B細胞抗原決定基及T細胞抗原決定基,因此根據本發明之CLEC結合物亦較佳包含各別B細胞抗原決定基及T細胞抗原決定基(至少:至少一個B細胞抗原決定基及至少一個T細胞抗原決定基)以實現持續的B細胞免疫反應。然而,若需要,微弱的效應可能會證明T細胞非依賴性的免疫力。Since most commonly used vaccine designs contain both B cell antigenic determinants and T cell antigenic determinants, the CLEC conjugates according to the present invention preferably also contain respective B cell antigenic determinants and T cell antigenic determinants (at least: at least one B cell antigenic determinant and at least one T cell antigenic determinant) to achieve a sustained B cell immune response. However, if desired, a weak effect may demonstrate T cell-independent immunity.

因此,根據本發明之結合物在可能之疫苗抗原方面不受限制。然而,疫苗抗原(亦即B細胞及/或T細胞抗原決定基多肽)較佳具有6至50個胺基酸殘基、更佳具有7至40個胺基酸殘基、尤其是具有8至30個胺基酸殘基的長度。Therefore, the conjugates according to the invention are not limited in terms of possible vaccine antigens. However, the vaccine antigen (ie, B cell and/or T cell epitope polypeptide) preferably has 6 to 50 amino acid residues, more preferably 7 to 40 amino acid residues, especially 8 to 30 amino acid residues in length.

使用根據本發明之疫苗,B細胞受體之交聯亦為可能的。根據一特定實施例,將根據本發明之結合物用於T細胞非依賴性免疫。T細胞非依賴性反應對於多醣疫苗為眾所周知的。此等疫苗/多醣藉由直接刺激B細胞產生免疫反應,而無需T細胞的幫助。T細胞非依賴性之抗體反應較短暫。肺炎鏈球菌莢膜多醣之抗體濃度通常在3-8年內下降至基線,具體取決於血清型。通常無法透過使用額外劑量來增強疫苗反應,因為多醣疫苗不構成免疫記憶。對於兩歲以下的兒童,多醣疫苗之免疫原性很差。此處直接刺激之原因可能為B細胞表現一種稱為CR3(3型補體受體)的分子。巨噬細胞-1抗原或CR3為在B淋巴細胞及T淋巴細胞、多形核白血球(主要是嗜中性球)、NK細胞及單核吞噬細胞(如巨噬細胞)上發現的人類細胞表面受體。當結合於外來細胞及β-葡聚糖表面時,CR3亦識別iC3b,此意謂B細胞藉由Pus-CR3的相互作用直接吸收疫苗可能會引起細胞的刺激且產生低水平的TI免疫反應。Cross-linking of B cell receptors is also possible using the vaccine according to the invention. According to a specific embodiment, the conjugate according to the invention is used for T cell-independent immunity. T cell-independent responses are well known for polysaccharide vaccines. These vaccines/polysaccharides produce an immune response by directly stimulating B cells without the help of T cells. T cell-independent antibody responses are short-lived. Antibody concentrations to S. pneumoniae capsular polysaccharide typically decrease to baseline within 3-8 years, depending on the serotype. It is generally not possible to enhance the vaccine response by using additional doses because polysaccharide vaccines do not constitute immune memory. In children under two years of age, polysaccharide vaccines are poorly immunogenic. The reason for the direct stimulation here may be that the B cells express a molecule called CR3 (complement receptor type 3). Macrophage-1 antigen, or CR3, is a human cell surface found on B and T lymphocytes, polymorphonuclear leukocytes (mainly neutrophils), NK cells, and mononuclear phagocytes (such as macrophages). receptor. CR3 also recognizes iC3b when bound to the surface of foreign cells and β-glucan, which means that direct uptake of the vaccine by B cells through the Pus-CR3 interaction may cause stimulation of the cells and produce a low-level TI immune response.

根據本發明之佐劑、結合物及疫苗可固定補體且可被調理。根據本發明之經調理之結合物可具有增加的B細胞活化能力,此可產生更高的抗體效價及抗體親和力。此類作用對於C3d結合物為已知的(Green等人, J. Virol. 77 (2003), 2046-2055)且意想不到地亦可用於本發明過程中。Adjuvants, conjugates and vaccines according to the invention fix complement and can be opsonized. The opsonized conjugates according to the present invention may have increased B cell activation capacity, which may result in higher antibody titers and antibody affinity. Such effects are known for C3d conjugates (Green et al., J. Virol. 77 (2003), 2046-2055) and unexpectedly may also be used in the present process.

本發明之另一個意想不到之優點為本發明之CLEC架構實現疫苗的模組化設計。例如,抗原決定基可隨意組合,且該平台獨立於習知載體分子。雖然本發明之主要重點為僅包含肽的疫苗,但其亦適用於蛋白質與肽之獨立偶合,以及肽-蛋白質結合物與根據本發明之CLEC骨架之偶合,尤其是與石耳多醣之偶合。如使用石耳多醣之實例部分所示,根據本發明之疫苗獲得了顯著高於經典疫苗的免疫反應。Another unexpected advantage of the present invention is that the CLEC framework of the present invention enables modular design of vaccines. For example, antigenic determinants can be combined at will, and the platform is independent of conventional carrier molecules. Although the main focus of the present invention is vaccines containing only peptides, it is also applicable to independent coupling of proteins and peptides, as well as coupling of peptide-protein conjugates with the CLEC backbone according to the present invention, especially with Pyricularia polysaccharide. As shown in the example section using Pyricularia polysaccharide, the vaccine according to the present invention obtains an immune response significantly higher than that of classical vaccines.

如上所述,根據本發明之結合物,若以醫藥製劑形式提供(例如,作為一疫苗,其旨在向(人類)個體投予以引發對結合於CLEC骨架的特異性多肽抗原決定基之免疫反應,該抗原決定基為應引發免疫反應之抗原決定基),在此製劑中可不需要使用(藉由共投予) (其他)佐劑來投予。根據一較佳實施例,包含根據本發明之結合物的醫藥製劑不含佐劑。As mentioned above, the conjugate according to the invention, if provided in the form of a pharmaceutical preparation (for example, as a vaccine), is intended to be administered to a (human) individual to elicit an immune response to a specific polypeptide epitope bound to the CLEC backbone. , the epitope is an epitope that should elicit an immune response), can be administered in this formulation without the use (by co-administration) of (other) adjuvants. According to a preferred embodiment, the pharmaceutical preparation comprising the conjugate according to the invention does not contain adjuvants.

根據本發明之一類特定較佳的CLEC多醣佐劑為β-葡聚糖,尤其是石耳多醣。另一較佳的CLEC多醣佐劑為甘露多醣。與本發明相比,石耳多醣僅在先前技術中用於抗真菌疫苗(其中石耳多醣用作抗原而並非如在本發明中用作載體)。石耳多醣亦展現一條不同的主鏈,因為其僅由β-(1,6)連接之糖部分組成。One particularly preferred class of CLEC polysaccharide adjuvants according to the present invention are β-glucans, especially Schizophora polysaccharides. Another preferred CLEC polysaccharide adjuvant is mannan. In contrast to the present invention, fungus polysaccharides have only been used in antifungal vaccines in the prior art (wherein the fungus polysaccharides were used as antigens and not as carriers as in the present invention). The fungus polysaccharide also exhibits a different backbone, as it consists only of β-(1,6)-linked sugar moieties.

石耳多醣為一種中等大小的線性β-(1,6)葡聚糖。石耳多醣以及線性β-(1,6)葡聚糖的合成形式不同於所有其他的葡聚糖,該等其他的葡聚糖通常為由支鏈葡聚糖鏈(較佳為β-(1,3)主鏈及β-(1,6)側鏈,如酵母提取物、GP、昆布多醣、裂褶多醣、硬葡聚糖)組成之β-葡聚糖或僅依賴β-(1,3)葡聚糖之線性葡聚糖,如合成β-葡聚糖、卡德蘭多醣、釀酒酵母β-葡聚糖(150kDa)或線性β-(1,3:1,4)葡聚糖(如大麥及燕麥β-葡聚糖以及地衣多醣)。Schizophora polysaccharide is a medium-sized linear β-(1,6) glucan. The synthetic form of polysaccharides and linear β-(1,6) glucans differs from that of all other glucans, which are usually composed of branched glucan chains (preferably β-(1,6)). 1,3) Main chain and β-(1,6) side chain, such as yeast extract, GP, laminarin, schizophyllan, scleroglucan) β-glucan may only rely on β-(1 ,3) Linear glucan of glucan, such as synthetic β-glucan, Cardranan, Saccharomyces cerevisiae β-glucan (150kDa) or linear β-(1,3:1,4) glucan Sugars (such as barley and oat beta-glucan and lichenin).

如本發明首次所示,葡聚糖結合物在活體外與dectin-1受體之結合為後續活體內功效之替代物:低結合性的分子僅發揮低免疫反應,中等結合性的結合物較佳,而高效率的結合物則誘導高效率反應(燕麥/大麥BG<地衣多醣<石耳多醣)。As shown here for the first time, binding of dextran conjugates to the dectin-1 receptor in vitro is a surrogate for subsequent in vivo efficacy: low-binding molecules exert only a low immune response, and medium-binding conjugates are more The best, and the high-efficiency conjugate induces a high-efficiency reaction (oat/barley BG<lichenin<lichen polysaccharide).

根據本發明,CLEC被偶合(例如藉由標準技術)於個別多肽以產生具有低多分散性(流體動力學半徑(HDR)範圍:5-15 nm)的小奈米顆粒,其互不交聯,且亦不會聚集形成類似於習知CLEC疫苗的較大微粒,如文獻中所揭示之葡聚糖顆粒(2-4µm)或β-葡聚糖顆粒,該等顆粒之通常特徵為尺寸範圍>100 nm (典型範圍) (直徑;150-500 nm),例如Wang等人 (2019)提供直徑為160 nm (藉由DLS評定)且尺寸為約150 nm(藉由TEM評定)的顆粒;Jin等人(Acta Biomater. 2018年9月15日;78:211-223)提供尺寸為180-215 nm (分別藉由DLS及SEM評定)的β-葡聚糖顆粒(胺化β-葡聚糖-卵白蛋白之奈米顆粒)。According to the present invention, CLEC are coupled (e.g., by standard techniques) to individual polypeptides to produce small nanoparticles with low polydispersity (hydrodynamic radius (HDR) range: 5-15 nm) that are not cross-linked with each other , and will not aggregate to form larger particles similar to those of conventional CLEC vaccines, such as glucan particles (2-4µm) or β-glucan particles disclosed in the literature. These particles are usually characterized by a size range >100 nm (typical range) (diameter; 150-500 nm), e.g. Wang et al. (2019) provide particles with a diameter of 160 nm (evaluated by DLS) and a size of about 150 nm (evaluated by TEM); Jin (Acta Biomater. 2018 Sep 15;78:211-223) provided β-glucan particles (aminated β-glucan) with a size of 180-215 nm (evaluated by DLS and SEM, respectively). -Ovalbumin nanoparticles).

根據定義,DLS量測之流體動力學半徑為假定的硬球體半徑,該硬球體之擴散速度與受測顆粒相同。半徑係在假設該分子/顆粒呈球形且緩衝液具有一給定的黏度的情況下根據擴散係數計算得出的。HDR亦稱為斯托克斯(Stokes)半徑,且係使用斯托克斯-愛因斯坦(Stokes-Einstein)方程式由擴散係數計算得出的(參照https://en.wikipedia.org/wiki/Stokes_radius)。By definition, the hydrodynamic radius measured by DLS is the radius of an assumed hard sphere with the same diffusion velocity as the measured particle. The radius is calculated from the diffusion coefficient assuming that the molecule/particle is spherical and that the buffer has a given viscosity. HDR is also called Stokes radius and is calculated from the diffusion coefficient using the Stokes-Einstein equation (see https://en.wikipedia.org/wiki /Stokes_radius).

根據本發明之奈米顆粒的較佳尺寸範圍可為先前技術中通常提供之範圍,即尺寸為1至5000 nm、較佳為1至200 nm、尤其是2至160 nm,該等尺寸係以流體動力學半徑(HDR)形式藉由動態光散射(DLS)所測定。根據本發明之一較佳實施例,顆粒尺寸較小,例如1至50 nm、較佳為1至25 nm、尤其是2至15 nm,如以HDR形式藉由DLS所測定。因此,此等較佳顆粒更小,包括僅含有肽的結合物(平均HDR約5 nm)及CRM-石耳多醣結合物(平均HDR約10-15 nm)。因此,根據本發明之較佳顆粒小於100 nm,此將本發明與Wang等人區分開來。The preferred size range of the nanoparticles according to the present invention can be the range generally provided in the prior art, i.e., a size of 1 to 5000 nm, preferably 1 to 200 nm, and especially 2 to 160 nm, which are measured by dynamic light scattering (DLS) in the form of hydrodynamic radius (HDR). According to a preferred embodiment of the present invention, the particle size is smaller, for example, 1 to 50 nm, preferably 1 to 25 nm, and especially 2 to 15 nm, as measured by DLS in the form of HDR. Therefore, these preferred particles are smaller, including conjugates containing only peptides (average HDR of about 5 nm) and CRM-pachysan conjugates (average HDR of about 10-15 nm). Therefore, the preferred particles according to the present invention are less than 100 nm, which distinguishes the present invention from Wang et al.

因此,本發明亦關於設計用於針對特定抗原對個體進行疫苗接種之疫苗產品,其中該產品包含如下化合物,該化合物較佳包含β-葡聚糖或甘露多醣作為與特定抗原共價偶合的C型凝集素(CLEC)多醣佐劑。Therefore, the present invention also relates to a vaccine product designed for vaccinating an individual against a specific antigen, wherein the product comprises a compound, preferably β-glucan or mannosaccharide, as a C-type lectin (CLEC) polysaccharide adjuvant covalently coupled to the specific antigen.

較佳地,根據本發明之疫苗產品包含如本文所揭示或可由根據本發明之方法獲得或由其獲得的結合物。Preferably, the vaccine product according to the invention comprises a conjugate as disclosed herein or obtainable or obtainable by a method according to the invention.

根據一較佳實施例,根據本發明之疫苗產品包含一抗原,該抗原包含至少一個B細胞抗原決定基及至少一個T細胞抗原決定基,較佳地,其中該抗原為包含一或多個B細胞抗原決定基及T細胞抗原決定基的多肽。According to a preferred embodiment, the vaccine product according to the present invention comprises an antigen comprising at least one B cell antigenic determinant and at least one T cell antigenic determinant, preferably, wherein the antigen is a polypeptide comprising one or more B cell antigenic determinants and T cell antigenic determinants.

根據一較佳實施例,根據本發明之疫苗產品中的共價偶合抗原及CLEC多醣佐劑以尺寸為1至5000 nm、較佳為1至200 nm、尤其是2至160 nm的顆粒存在,係以流體動力學半徑(HDR)形式藉由動態光散射(DLS)所測定。如本文中所使用,所有顆粒尺寸均為中等尺寸,其中「中等」為將具有較大尺寸的顆粒的一半與具有較小尺寸的顆粒的一半區分開的值。其為確定的尺寸,根據該尺寸,一半顆粒較小,而另一半較大。According to a preferred embodiment, the covalently coupled antigen and CLEC polysaccharide adjuvant in the vaccine product according to the present invention are present in particles with a size of 1 to 5000 nm, preferably 1 to 200 nm, especially 2 to 160 nm, Determined by dynamic light scattering (DLS) as hydrodynamic radius (HDR). As used herein, all particle sizes are mid-size, where "mid" is the value that distinguishes half of the particles with larger sizes from half of the particles with smaller sizes. It is a defined size according to which half of the particles are smaller and the other half are larger.

根據一較佳實施例,根據本發明之疫苗產品中的共價偶合抗原及CLEC多醣佐劑以尺寸為1至50 nm、較佳為1至25 nm、尤其是2至15 nm的顆粒存在,係以HDR形式藉由DLS所測定。According to a preferred embodiment, the covalently coupled antigen and CLEC polysaccharide adjuvant in the vaccine product according to the present invention are present in particles with a size of 1 to 50 nm, preferably 1 to 25 nm, especially 2 to 15 nm, Measured by DLS in HDR format.

較佳地,根據本發明之疫苗產品中的共價偶合抗原及CLEC多醣佐劑以尺寸小於100 nm、較佳小於70 nm、尤其是小於50 nm的顆粒存在,係以HDR形式藉由DLS所測定。Preferably, the covalently coupled antigen and CLEC polysaccharide adjuvant in the vaccine product according to the present invention are present as particles with a size of less than 100 nm, preferably less than 70 nm, especially less than 50 nm, and are obtained by DLS in the form of HDR. Determination.

根據本發明之疫苗產品顯示出高儲存穩定性。在以液體或冷凍材料形式儲存時幾乎不會發生聚集(儲存溫度:-80℃、-20℃、2-8℃,或在室溫下歷經延長時段,至少3個月),可透過顆粒尺寸在儲存期間不會明顯增加(即超過10%)來確定。The vaccine product according to the invention shows high storage stability. Virtually no aggregation occurs when stored as liquid or frozen material (storage temperature: -80°C, -20°C, 2-8°C, or at room temperature for an extended period of at least 3 months), transparent particle size It is determined that it will not increase significantly (i.e. more than 10%) during storage.

藉由使用根據本發明之中等分子量成分石耳多醣製造的此類小顆粒之極高功效為出人意料的:例如,根據Adams等人(J Pharmacol Exp Ther. 2008年4月;325(1):115-23),最好的dectin-1受質為線性磷酸β(1,3)葡聚糖(約150kda)及支鏈化葡聚糖(其含有β(1,3)主鏈及β(1,6)側鏈),如硬葡聚糖或來自白色念珠菌之葡聚糖或地衣多醣。此外,Adams等人,Palma等人 (J Biol Chem. 281(9) (2006) 5771-5779)及Willment等人(J Biol Chem. 276(47) (2001), 43818-23)之資料暗示,dectin-1不與石耳多醣相互作用或僅微弱地相互作用,亦不與非葡聚糖碳水化合物聚合物(如甘露多醣)相互作用。事實上,有多個參考文獻報導石耳多醣在與dectin-1的結合中效應較差。然而,一般而言,線性1,3及支鏈化(1,3主鏈及1,6側支鏈)為最有效之dectin-1結合物;Adams等人(2008)證明鼠類重組dectin-1僅識別含有β(1,3)連接之葡萄糖主鏈的聚合物且與之相互作用。Dectin-1不與完全由β(1,6)-葡萄糖主鏈組成的葡聚糖(如石耳多醣)相互作用,亦不與非葡聚糖碳水化合物聚合物(如甘露聚糖)相互作用。The extremely high efficacy of such small particles produced by using the medium molecular weight component Trichophyton polysaccharide according to the present invention is unexpected: for example, according to Adams et al. (J Pharmacol Exp Ther. 2008 Apr;325(1):115 -23), the best dectin-1 substrates are linear phosphate β(1,3) glucan (about 150kda) and branched glucan (which contains β(1,3) backbone and β(1 , 6) side chain), such as scleroglucan or glucan or lichen from Candida albicans. In addition, the data of Adams et al., Palma et al. (J Biol Chem. 281(9) (2006) 5771-5779) and Willment et al. (J Biol Chem. 276(47) (2001), 43818-23) suggest that, Dectin-1 does not interact or interacts only weakly with agaric polysaccharides, nor with non-glucan carbohydrate polymers such as mannan. In fact, there are multiple references reporting that Shigu polysaccharide is less effective in binding to dectin-1. However, in general, linear 1,3 and branched (1,3 main chain and 1,6 side branches) are the most effective dectin-1 conjugates; Adams et al. (2008) demonstrated that murine recombinant dectin- 1 only recognizes and interacts with polymers containing a β(1,3)-linked glucose backbone. Dectin-1 does not interact with glucans composed entirely of β(1,6)-glucose backbones (e.g., polysaccharides), nor with non-glucan carbohydrate polymers (e.g., mannans) .

與此等發現形成對比,在本發明之過程中顯示基於石耳多醣之結合物能夠強力地結合於dectin-1且在活體外引發細胞反應。In contrast to these findings, it was shown in the course of the present invention that Pseudomonas aeruginosa-based conjugates are able to bind strongly to dectin-1 and elicit cellular responses in vitro.

根據本發明之一較佳實施例,β-(1,6)-葡聚糖被使用。通常在先前技術中報導大顆粒比小的(「可溶性」)單體調配物更能有效地活化PRR,因此含有大葡聚糖的顆粒更具有優勢(因此為較佳的),而小的可溶性葡聚糖則可用於阻斷DC之活化,從而干擾了預期中的作用。普遍認為,微粒狀β-葡聚糖(例如廣泛使用的酵母細胞壁成分酵母多醣)結合至並且活化dectin-1,從而誘導細胞反應。相較之下,可溶性β-葡聚糖與dectin-1的相互作用存在爭議。不過,普遍的共識為可溶性β-葡聚糖,如小的支鏈化葡聚糖―昆布多醣(β-(1,3)及β-(1,6)側鏈),可與dectin-1結合,但不能在DC中啟動信號傳導並誘導細胞反應(Willment等人, J Biol Chem. 276(47) (2001), 43818-23, Goodridge等人 Nature. 2011, 472(7344): 471-475.)。According to a preferred embodiment of the present invention, β-(1,6)-glucan is used. It is generally reported in the prior art that large particles are more effective at activating PRRs than small ("soluble") monomeric formulations, so particles containing large glucans are more advantageous (and therefore preferred), while small soluble glucans can be used to block DC activation, thereby interfering with the intended effect. It is generally believed that particulate β-glucans (such as the widely used yeast cell wall component zymosan) bind to and activate dectin-1, thereby inducing cellular responses. In contrast, the interaction of soluble β-glucans with dectin-1 is controversial. However, there is a general consensus that soluble β-glucans, such as the small branched glucan laminarin (β-(1,3) and β-(1,6) side chains), can bind to dectin-1 but cannot initiate signaling and induce cellular responses in DCs (Willment et al., J Biol Chem. 276(47) (2001), 43818-23, Goodridge et al. Nature. 2011, 472(7344): 471-475.).

根據本發明,可顯示使用高分子量葡聚糖(石耳多醣大小之10倍;例如:燕麥/大麥229kDa/地衣多醣245kDa)之結合物之作用不如石耳多醣顆粒(20kDa)。Korotchenko等人證明OVA/Lam結合物具有約10 nm的直徑,且在活體外結合dectin-1且誘導DC活化,但其為支鏈化葡聚糖,並非皮膚特異性的,且在活體內的作用並未較施用於皮膚中之OVA或皮下施用之OVA/alum出色。Wang等人提供尺寸>100 nm (平均尺寸:160 nm)的β-葡聚糖顆粒。Jin等人(2018)展示了尺寸為180-215 nm的胺化β-葡聚糖-卵白蛋白奈米顆粒。According to the present invention, it can be shown that conjugates using high molecular weight glucans (10 times the size of Psoralen; for example: oat/barley 229kDa/lichenin 245kDa) are not as effective as Psoralen particles (20kDa). Korotchenko et al. demonstrated that OVA/Lam conjugates have a diameter of about 10 nm and bind to dectin-1 in vitro and induce DC activation, but they are branched glucans, not skin-specific, and their effects in vivo are not superior to OVA applied to the skin or OVA/alum applied subcutaneously. Wang et al. provided β-glucan particles with a size of >100 nm (average size: 160 nm). Jin et al. (2018) demonstrated aminated β-glucan-ovalbumin nanoparticles with a size of 180-215 nm.

根據本發明,顯示基於石耳多醣之顆粒為強力的dectin-1結合物,可在活體外活化DC (表面標記物表現的變化)且引發非常強的免疫反應,優於a)其他途徑及b) KLH/CRM結合物疫苗(通常亦是更大的顆粒)及C)更大的葡聚糖以及甘露多醣。這對於Pep+Padre+石耳多醣(5 nm尺寸)及Pep+CRM+石耳多醣(11 nm尺寸)均是成立的。According to the present invention, it was shown that Pep-based particles are potent dectin-1 binders that can activate DC in vitro (changes in surface marker expression) and induce very strong immune responses, superior to a) other routes and b) KLH/CRM conjugate vaccines (usually also larger particles) and c) larger glucans and mannoses. This was true for both Pep+Padre+Pep-based (5 nm size) and Pep+CRM+Pep-based (11 nm size).

為了獲得最佳的免疫反應,CLEC之活化程度,尤其是石耳多醣之活化程度,以及由此活化程度所產生的肽/糖比為決定性的。各別CLEC之活化係藉由溫和的過碘酸鹽氧化達成。因此,氧化度係基於以限定莫耳比:即過碘酸鹽:糖次單元來添加過碘酸鹽溶液來確定;100%=每莫耳糖單體1莫耳過碘酸鹽。In order to obtain the best immune response, the degree of activation of CLEC, especially the degree of activation of Shigu polysaccharide, and the peptide/sugar ratio generated by this degree of activation are decisive. Activation of individual CLECs is achieved by mild periodate oxidation. The degree of oxidation is therefore determined based on the addition of a periodate solution at a defined molar ratio: periodate:sugar subunits; 100% = 1 mole of periodate per mole of sugar monomer.

根據一較佳實施例,根據本發明之結合物包含以1/5 (即20%活化)至2.6/1 (即260%活化),較佳以60%至140%,尤其是以70%至100%之過碘酸鹽與β-葡聚糖或甘露多醣(單體)部分之比率活化的CLEC。According to a preferred embodiment, the combination according to the present invention contains 1/5 (i.e. 20% activation) to 2.6/1 (i.e. 260% activation), preferably 60% to 140%, especially 70% to 70% 100% ratio of periodate to beta-glucan or mannan (monomeric) moieties activated CLEC.

低/中氧化度與高氧化度之間的最佳氧化度範圍(將會與最終結合物中抗原決定基多肽之數量直接成比例)可被界定為與席夫品紅試劑(Schiff's fuchsin-reagent)之反應程度,其類似於分別以0.2-2.6 (低/中)、0.6-1.4 (最佳範圍)及1.4-2.6 (高)之莫耳比(糖單體:過碘酸鹽)用過碘酸鹽氧化等量的給定碳水化合物(例如石耳多醣)的氧化度。The optimal range of oxidation degrees between low/medium and high oxidation degrees (which will be directly proportional to the amount of antigenic determinant polypeptide in the final conjugate) can be defined as the degree of reaction with Schiff's fuchsin-reagent, which is similar to the degree of oxidation of an equivalent amount of a given carbohydrate (e.g., Pyrrolizidine) with periodate at a molar ratio (sugar monomer:periodate salt) of 0.2-2.6 (low/medium), 0.6-1.4 (optimal range), and 1.4-2.6 (high), respectively.

較佳的葡聚糖與肽之比率在10比1 (w/w)至1比1 (w/w)、較佳在8比1 (w/w)至2比1 (w/w)、尤其是在4比1 (w/w)範圍內,亦即糖單體與肽之莫耳比為24比1,其限制條件為若結合物包含載體蛋白,則β-葡聚糖或甘露多醣與B細胞-抗原決定基-載體多肽之較佳比率為50:1(w/w)至0.1:1(w/w),尤其是10:1至0.1:1;其低於其他報導中的有效疫苗(例如Liang等人;Bromuro等人)。The preferred ratio of glucan to peptide is in the range of 10 to 1 (w/w) to 1 to 1 (w/w), preferably 8 to 1 (w/w) to 2 to 1 (w/w), and especially 4 to 1 (w/w), i.e. the molar ratio of sugar monomer to peptide is 24 to 1, with the proviso that if the conjugate comprises a carrier protein, the preferred ratio of β-glucan or mannopolysaccharide to B cell-antigen determinant-carrier polypeptide is 50:1 (w/w) to 0.1:1 (w/w), especially 10:1 to 0.1:1; which is lower than that of other reported effective vaccines (e.g. Liang et al.; Bromuro et al.).

使用目前先進技術方法測定氧化度及可用於糖偶合的反應性醛之量,如:1)重量分析法,可用來測定樣品之總質量;2)蒽酮法(根據Laurentin等人,2003年),用於樣品中完整的非氧化糖之濃度測定;在此情況下,用濃H 2SO 4將葡聚糖脫水形成糠醛,糠醛與蒽酮(0.2%在H 2SO 4中)縮合形成綠色複合體,其可在波長620 nm下用比色法測得);或3)席夫分析:使用席夫品紅亞硫酸鹽試劑評定用於結合之碳水化合物的氧化狀態。簡言之,品紅染料被二氧化硫脫色,與脂肪族醛(在葡聚糖上)反應會恢復品紅的紫色,其隨後可在波長570-600 nm下測量。產生的顏色反應與碳水化合物之氧化度(醛基的數量)成正比。其他適合的分析方法亦為可能的。可使用適合的方法,包括UV分析(205 nm/280 nm)及胺基酸分析(aa水解、衍生化及RP-HPLC分析)來評定肽比率。 The degree of oxidation and the amount of reactive aldehyde available for sugar coupling are determined using state-of-the-art methods such as: 1) gravimetric analysis, which can be used to determine the total mass of the sample; 2) the anthrone method (according to Laurentin et al., 2003), which is used for the concentration of intact non-oxidized sugars in the sample; in this case, dextran is dehydrated with concentrated H2SO4 to form furfural, which condenses with anthrone (0.2% in H2SO4 ) to form a green complex that can be measured colorimetrically at a wavelength of 620 nm); or 3) Schiff analysis: Schiff's fuchsin sulfite reagent is used to assess the oxidation state of the carbohydrate available for coupling. Briefly, the fuchsin dye is decolorized by sulfur dioxide and reaction with aliphatic aldehydes (on the dextran) restores the purple color of the fuchsin, which can then be measured at a wavelength of 570-600 nm. The color reaction produced is proportional to the degree of oxidation (number of aldehyde groups) of the carbohydrate. Other suitable analytical methods are also possible. Suitable methods including UV analysis (205 nm/280 nm) and amino acid analysis (aa hydrolysis, derivatization and RP-HPLC analysis) can be used to assess the peptide ratio.

根據本發明之結合物可進一步用於誘導目標特異性免疫反應,同時不誘導或僅誘導非常有限的CLEC或載體蛋白特異性抗體反應。亦如下面的實例部分所示,本發明亦能夠改善及聚焦於目標特異性免疫反應,因為其使觸發的免疫反應遠離對載體蛋白或CLEC的反應(例如在習知肽-載體偶合物或非結合性的比較設置中,尤其亦適用於非氧化CLEC,如石耳多醣)。The conjugates according to the invention can further be used to induce target-specific immune responses while inducing no or only a very limited CLEC- or carrier protein-specific antibody response. As also shown in the Examples section below, the present invention is also able to improve and focus target-specific immune responses because it directs the triggered immune response away from responses to carrier proteins or CLECs (e.g., in conventional peptide-carrier conjugates or non- In the comparative setting of binding properties, it is especially applicable to non-oxidized CLEC, such as auricularia polysaccharides).

除非另有說明,否則本文所用的「肽」係指較短的多肽鏈(2至50個胺基酸殘基),而「蛋白質」係指較長的多肽鏈(超過50個胺基酸殘基)。兩者均被稱為「多肽」。根據本發明之與CLEC結合的B細胞及/或T細胞抗原決定基多肽除了包含具有正常基因表現及蛋白質轉譯的天然胺基酸殘基的多肽外,亦包含所有其他形式之此類基於多肽之B-細胞及/或T細胞抗原決定基,尤其是其天然或人工修飾形式,如糖基多肽及其所有其他轉譯後修飾的形式(例如實施例中揭示的Aβ焦麩胺酸形式)。此外,根據本發明之CLEC特別適用於呈遞構形抗原決定基,例如作為較大原生多肽、模擬抗原決定基、環狀多肽或表面結合構築體之一部分的構形抗原決定基。Unless otherwise specified, "peptide" as used herein refers to a shorter polypeptide chain (2 to 50 amino acid residues), while "protein" refers to a longer polypeptide chain (more than 50 amino acid residues). Both are referred to as "polypeptides". In addition to polypeptides with natural amino acid residues of normal gene expression and protein translation, the B-cell and/or T-cell antigenic determinant polypeptides that bind to CLEC according to the present invention also include all other forms of such polypeptide-based B-cell and/or T-cell antigenic determinants, especially their natural or artificially modified forms, such as glycosyl polypeptides and all other post-translationally modified forms thereof (e.g., the Aβ pyroglutamine form disclosed in the Examples). Furthermore, CLECs according to the present invention are particularly suitable for use with conformational epitopes, such as those that are part of a larger native polypeptide, a mimetic epitope, a cyclic polypeptide or a surface-bound construct.

根據一較佳實施例,根據本發明之結合物包含一CLEC多醣骨架及一B細胞抗原決定基。「B細胞抗原決定基」為抗原中免疫球蛋白或抗體結合的部分。B細胞抗原決定基可被分為兩組:構形或線性。有兩種主要的抗原決定基定位方法:結構性研究或功能性研究。結構性定位抗原決定基的方法包括X射線晶體分析、核磁共振及電子顯微鏡法。功能性定位抗原決定基的方法通常使用結合分析,例如西方墨點法、圓漬點墨法及/或ELISA來測定抗體結合。競爭方法用於確定兩種單株抗體(mAb)是否可同時與抗原結合或相互競爭以在同一位點結合。另一種技術涉及高通量誘變,其為一種抗原決定基定位策略,旨在改良結構複雜蛋白質上構形抗原決定基的快速定位。誘變在個別殘基上使用隨機/定點突變來定位抗原決定基。B細胞抗原決定基定位可用於研發抗體療法、基於肽之疫苗及免疫診斷工具(Sanchez-Trincado等人, J. Immunol. Res. 2017-2680160)。對於許多抗原,B細胞抗原決定基為已知的且可用於本發明之CLEC平台。According to a preferred embodiment, the conjugate according to the present invention includes a CLEC polysaccharide backbone and a B cell epitope. A "B cell epitope" is the part of an antigen to which immunoglobulins or antibodies bind. B cell epitopes can be divided into two groups: conformational or linear. There are two main approaches to epitope mapping: structural studies or functional studies. Methods for structurally localizing epitopes include X-ray crystallography, nuclear magnetic resonance and electron microscopy. Methods of functionally localizing epitopes typically use binding assays such as Western blotting, disk blotting, and/or ELISA to measure antibody binding. Competition methods are used to determine whether two monoclonal antibodies (mAbs) can bind to an antigen simultaneously or compete with each other to bind at the same site. Another technique involves high-throughput mutagenesis, an epitope mapping strategy designed to improve the rapid localization of conformational epitopes on structurally complex proteins. Mutagenesis uses random/site-directed mutagenesis on individual residues to localize epitopes. B cell epitope mapping can be used to develop antibody therapies, peptide-based vaccines, and immunodiagnostic tools (Sanchez-Trinchado et al., J. Immunol. Res. 2017-2680160). For many antigens, B cell epitopes are known and can be used in the CLEC platform of the invention.

根據一特定較佳實施例,根據本發明之結合物包含一CLEC多醣骨架及一或多個T細胞抗原決定基,較佳為包含混雜T細胞抗原決定基及/或已知可與給定物種以及其他物種的數個/所有MHC等位基因一起作用的MHCII抗原決定基。According to a particularly preferred embodiment, the conjugate according to the invention comprises a CLEC polysaccharide backbone and one or more T cell epitopes, preferably comprising hybrid T cell epitopes and/or known to be associated with a given species and MHCII epitopes in which several/all MHC alleles of other species act together.

根據另一態樣,本發明亦關於使用本CLEC技術來改善已知的T細胞抗原決定基。因此,本發明亦包括用作T細胞抗原決定基多肽之C型凝集素(CLEC)多醣佐劑的β-葡聚糖或甘露多醣,其中β-葡聚糖或甘露多醣共價結合於T細胞抗原決定基多肽以形成β-葡聚糖或甘露多醣與T細胞抗原決定基多肽之結合物。According to another aspect, the invention also relates to the use of the present CLEC technology to improve known T cell epitopes. Accordingly, the present invention also includes beta-glucans or mannans for use as adjuvants for C-type lectin (CLEC) polysaccharides of T cell epitope polypeptides, wherein the beta-glucans or mannans are covalently bound to the T cells The epitope polypeptide is used to form a conjugate of β-glucan or mannan and T cell epitope polypeptide.

結合超過一個HLA等位基因的單個T細胞抗原決定基被稱為「混雜T細胞抗原決定基」。較佳的混雜T細胞抗原決定基結合5個或更多、較佳10個或更多,尤其15個或更多的HLA等位基因。混雜T細胞抗原決定基適用於不同物種,且最重要的是適用於給定物種以及其他物種的若干MHC/HLA單倍型(指已知與若干/所有MHCI及MHCII等位基因一起作用的MHCI及MHCII抗原決定基)。例如,MHCII抗原決定基PADRE(=非天然泛DR抗原決定基(PADRE)),如實例部分所述,在若干人類MHC等位基因及小鼠(C57/Bl6,儘管其在Balb/c中作用較差)中起作用。例如,MHCII抗原決定基PADRE(=非天然泛DR抗原決定基(PADRE)),如實例部分所述,在若干人類MHC等位基因及小鼠(C57/Bl6,儘管其在Balb/c中作用較差)中起作用。根據較佳實施例,本發明之結合物包含一T細胞抗原決定基、較佳為包含胺基酸序列AKFVAAWTLKAAA(“PADRE(多肽)”)或PADRE(多肽)變異體的一T細胞抗原決定基。A single T cell epitope that binds more than one HLA allele is called a "promiscuous T cell epitope". Preferred promiscuous T cell epitopes bind 5 or more, preferably 10 or more, in particular 15 or more HLA alleles. Promiscuous T cell epitopes are applicable to different species and, most importantly, to several MHC/HLA haplotypes of a given species as well as other species (referring to MHC I and MHC II epitopes that are known to function with several/all MHC I and MHC II alleles). For example, the MHC II epitope PADRE (= non-natural pan-DR epitope (PADRE)), as described in the Examples section, functions in several human MHC alleles and in mice (C57/Bl6, although it functions less well in Balb/c). For example, the MHCII antigen determinant PADRE (= non-natural pan-DR antigen determinant (PADRE)), as described in the Examples section, is functional in several human MHC alleles and mice (C57/Bl6, although it is less functional in Balb/c). According to a preferred embodiment, the conjugate of the invention comprises a T cell antigen determinant, preferably a T cell antigen determinant comprising the amino acid sequence AKFVAAWTLKAAA ("PADRE (polypeptide)") or a PADRE (polypeptide) variant.

較佳的PADRE多肽或PADRE多肽變異體包括一連接子(對於本文使用的其他多肽抗原決定基亦為較佳),例如一半胱胺酸殘基或包含半胱胺酸殘基的一連接子(“-C”或“C-”;特別用於馬來醯亞胺偶合),一NRRA、NRRA-C或NRRA-NH-NH2連接子。較佳的PADRE多肽變異體包括先前技術中揭示的變異體(例如Alexander等人,Immunity1(1994),751-761;US9,249,187B2)或較佳為沒有C端A殘基(AKFVAAWTLKAA)的縮短變異體、其中第一個殘基丙胺酸被脂肪族胺基酸殘基(例如甘胺酸、纈胺酸、異白胺酸及白胺酸)取代的變異體、其中第三個殘基苯丙胺酸被L-環己基丙胺酸取代的變異體、其中第十三(最後)個胺基酸殘基丙胺酸被脂肪族胺基酸殘基(例如甘胺酸、纈胺酸、異白胺酸及白胺酸)取代的變異體、包含胺基己酸的變異體,其較佳與PADRE變異體的C端偶合,或具有胺基酸序列AX1FVAAX2 TLX3 變異體AX 4A,其中X 1選自W、F、Y、H、D、E、N、Q、I及K;X 2選自由F、N、Y及W組成之群,X 3選自由H及K組成之群,X 4選自由A、D及E組成之群(先決條件是寡肽序列不是AKFVAAWTLKAAA;US9,249,187B2);特別地,其中T細胞抗原決定基選自AKFVAAWTLKAAANRRA-(NH-NH2)、AKFVAAWTLKAAAN-C、AKFVAAWTLKAAA-C、AKFVAAWTLKAAANRRA-C、aKXVAAWTLKAAaZC、aKXVAAWTLKAAaZCNRRA (SeqID7、8、87、88、89、90、91、92)、aKXVAAWTLKAAa、aKXVAAWTLKAAaNRRA、aA(X)AAAKTAAAAa、aA(X)AAATLKAAa、aA(X)VAAATLKAAa、aA(X)IAAATLKAAa、aK(X)VAAWTLKAAa及aKFVAAWTLKAAa (序列 760.5, 760.57, 906.09, 906.11, 965.10, 1024.03 根據Alexander等人, 1994),其中X為L-環己基丙胺酸,Z為胺基己酸,a為選自丙胺酸、甘胺酸、纈胺酸、異白胺酸及白胺酸的脂肪族胺基酸殘基。 Preferred PADRE polypeptides or PADRE polypeptide variants include a linker (preferred for other polypeptide antigenic determinants used herein), such as a cysteine residue or a linker comprising a cysteine residue ("-C" or "C-"; particularly useful for maleimide coupling), a NRRA, NRRA-C or NRRA-NH-NH2 linker. Preferred PADRE polypeptide variants include variants disclosed in the prior art (e.g., Alexander et al., Immunity 1 (1994), 751-761; US9,249,187B2) or preferably a shortened variant without a C-terminal A residue (AKFVAAWTLKAA), wherein the first residue alanine is replaced by an aliphatic amino acid residue (e.g., glycine, valine, isothiocyanate, thiazolidine ... variants in which the third amino acid residue phenylalanine is substituted with L-cyclohexylalanine, variants in which the thirteenth (last) amino acid residue alanine is substituted with an aliphatic amino acid residue (e.g., glycine, valine, isoleucine and leucine), variants comprising aminocaproic acid, which are preferably coupled to the C-terminus of the PADRE variant, or variants having the amino acid sequence AX1FVAAX2 Variant AX4A of TLX3 , wherein X1 is selected from W, F, Y, H, D, E, N, Q, I and K; X2 is selected from the group consisting of F, N, Y and W, X3 is selected from the group consisting of H and K, and X4 is selected from the group consisting of A, D and E (the prerequisite is that the oligopeptide sequence is not AKFVAAWTLKAAA; US9,249,187B2); in particular, wherein the T cell antigen determinant is selected from AKFVAAWTLKAAANRRA-(NH-NH2), AKFVAAWTLKAAAN-C, AKFVAAWTLKAAA-C, AKFVAAWTLKAAANRRA-C, aKXVAAWTLKAAaZC, aKXVAAWTLKAAaZCNRRA (Seq ID 7, 8, 87, 88, 89, 90, 91, 92), aKXVAAWTLKAAa, aKXVAAWTLKAAaNRRA, aA(X)AAAKTAAAAa, aA(X)AAATLKAAa, aA(X)VAAATLKAAa, aA(X)IAAATLKAAa, aK(X)VAAWTLKAAa and aKFVAAWTLKAAa (Sequences 760.5, 760.57, 906.09, 906.11, 965.10, 1024.03 according to Alexander et al., 1994), wherein X is L-cyclohexylalanine, Z is aminohexanoic acid, and a is an aliphatic amino acid residue selected from alanine, glycine, valine, isoleucine and leucine.

T細胞抗原決定基存在於抗原呈遞細胞之表面,其與主要組織相容複合體(MHC)分子在該處結合。在人類中,專用抗原呈遞細胞專門呈遞II類MHC肽,而大部分成核體細胞呈遞I類MHC肽。由I類MHC分子呈遞之T細胞抗原決定基通常為長度在8與11個胺基酸之間的肽,而II類MHC分子則呈遞較長的肽(長度為13至17個胺基酸);且非典型MHC分子亦呈遞非肽抗原決定基,如醣脂。I類及II類MHC抗原決定基可單獨藉由計算方法可靠地預測,但並非所有電腦模擬T細胞抗原決定基預測演算法的準確性均相同。預測肽-MHC結合的方法主要有兩種:資料驅動之方法與基於結構之方法。基於結構之方法對肽-MHC結構進行建模且需要強大的計算能力。資料驅動之方法比基於結構之方法具有更高的預測性能。資料驅動之方法根據結合於MHC分子的肽序列預測肽-MHC的結合(Sanchez-Trincado等人,2017年)。藉由鑑別T細胞抗原決定基,科學家可追蹤、分型且刺激T細胞。對於許多抗原,T細胞抗原決定基為已知的,可用於本發明之CLEC平台。T cell epitopes are present on the surface of antigen presenting cells where they are bound to major histocompatibility complex (MHC) molecules. In humans, specialized antigen presenting cells are specialized for presenting class II MHC peptides, while most nucleosome cells present class I MHC peptides. T cell epitopes presented by class I MHC molecules are typically peptides between 8 and 11 amino acids in length, while class II MHC molecules present longer peptides (13 to 17 amino acids in length); and atypical MHC molecules also present non-peptide epitopes such as glycolipids. Class I and class II MHC epitopes can be reliably predicted by computational methods alone, but not all in silico T cell epitope prediction algorithms are equal in accuracy. There are two main approaches to predict peptide-MHC binding: data-driven and structure-based. Structure-based approaches model the peptide-MHC structure and require significant computational power. Data-driven approaches have higher prediction performance than structure-based approaches. Data-driven approaches predict peptide-MHC binding based on the sequence of the peptide that binds to the MHC molecule (Sanchez-Trincado et al., 2017). By identifying T cell epitopes, scientists can track, type, and stimulate T cells. For many antigens, the T cell epitopes are known and can be used with the CLEC platform of the present invention.

有趣的是,最近的突破性研究證明,α-突觸核蛋白特異性T細胞在PD患者體內增加,可能與HLA之風險單倍型有關,且暗示T細胞在PD中涉及自體免疫[Sulzer等人, Nature 2017;546:656-661及Lindestamn Arlehamn等人, Nat Commun. 1875;2020:11]。最近一項動物模型研究亦進一步證實了α-突觸核蛋白反應性T細胞的因果作用[Williams等人, Brain. 2021;144:2047-2059)。在一項案例研究中,α-突觸核蛋白反應性T細胞的出現在運動發病數年之前開始增加,且在一較大橫斷面組的PD患者中,其頻率在運動發病前後不久為最高(Lindestam Arlehamn 等人,2018年)。運動發病後,T 細胞對α-突觸核蛋白的反應隨著疾病持續時間的增加而下降。因此,抗aSyn T細胞反應在診斷出運動性PD之前或之後不久為最高,然後逐漸減弱(即在診斷後不到10年可偵測到最大活性;且較佳為Hoehn及Yahr (H+Y)1及2期)( Lindestamn Arlehamn 等人,2020年)。Interestingly, recent breakthrough studies have shown that α-synuclein-specific T cells are increased in PD patients, which may be related to the risk haplotype of HLA, and suggest that T cells are involved in autoimmunity in PD [Sulzer et al., Nature 2017;546:656-661 and Lindestamn Arlehamn et al., Nat Commun. 1875;2020:11]. A recent animal model study also further confirmed the causal role of α-synuclein-reactive T cells [Williams et al., Brain. 2021;144:2047-2059). In one case study, the presence of α-synuclein-reactive T cells began to increase several years before the onset of motor disease and was highest in frequency shortly before or after the onset of motor disease in a large cross-sectional group of PD patients (Lindestam Arlehamn et al., 2018). After the onset of motor disease, T cell responses to α-synuclein decreased with increasing disease duration. Thus, anti-aSyn T cell responses were highest before or shortly after the diagnosis of motor PD and then gradually weakened (i.e., maximal activity was detectable less than 10 years after diagnosis; and preferably Hoehn and Yahr (H+Y) stages 1 and 2) (Lindestamn Arlehamn et al., 2020).

因此,在人類α突觸核蛋白序列中包含眾所周知的T細胞抗原決定基。Benner等人(PLoS ONE 3(1): e1376.60);Sulzer等人, (2017)及Lindestam Arlehamn等人(2020)提供了實例。Thus, the human α-synuclein sequence contains well-known T cell antigenic determinants. Examples are provided by Benner et al. (PLoS ONE 3(1): e1376.60); Sulzer et al., (2017) and Lindestam Arlehamn et al. (2020).

Benner等人(Benner等人, (2008) PLoS ONE 3(1): e1376.)在PD模型中使用在含有1mg/ml結核分枝桿菌的等體積之CFA中乳化的60個aa長的硝化(在Y殘基處)多肽作為免疫原,該多肽包含aSyn之C端部分,且揭示α突觸核蛋白的T細胞抗原決定基aa71-86 (VTGVTAVAQKTVEGAGNIAAATGFVK)。Benner et al. (Benner et al., (2008) PLoS ONE 3(1): e1376.) used a 60 aa long nitrated (at the γ residue) polypeptide emulsified in an equal volume of CFA containing 1 mg/ml Mycobacterium tuberculosis as an immunogen in the PD model. The polypeptide comprises the C-terminal portion of aSyn and reveals the T cell epitope aa71-86 of α-synuclein (VTGVTAVAQKTVEGAGNIAAATGFVK).

Sulzer等人(Nature 2017;546:656-661)在人類PD患者的α突觸核蛋白之N端和C端區鑑別出兩個T細胞抗原區。第一個區域位於N端附近,由MHCII抗原決定基aa31-45 (GKTKEGVLYVGSKTK)及aa32-46 (KTKEGVLYVGSKTKE)構成,亦含有9聚體多肽aa37-45 (VLYVGSKTK)作為潛在的MHCI類抗原決定基。Sulzer等人揭示的第二個抗原區靠近C端(aa116-140)且需要胺基酸殘基S129之磷酸化。三個磷酸化的aaS129抗原決定基aa116-130 (MPVDPDNEAYEMPSE)、aa121-135 (DNEAYEMPSEEGYQD)及aa126-140 (EMPSEEGYQDYEPEA)在PD患者中產生的反應明顯高於健康對照組。作者亦證明,與PD相關的對α突觸核蛋白的天然存在之免疫反應具有I類MHC及II類MHC限制成分。Sulzer et al. (Nature 2017;546:656-661) identified two T cell antigenic regions in the N-terminal and C-terminal regions of α-synuclein from human PD patients. The first region is located near the N-terminus and is composed of MHCII antigenic determinants aa31-45 (GKTKEGVLYVGSKTK) and aa32-46 (KTKEGVLYVGSKTKE), and also contains a 9-mer peptide aa37-45 (VLYVGSKTK) as a potential MHC I class antigenic determinant. The second antigenic region revealed by Sulzer et al. is close to the C-terminus (aa116-140) and requires phosphorylation of amino acid residue S129. Three phosphorylated aaS129 epitopes, aa116-130 (MPVDPDNEAYEMPSE), aa121-135 (DNEAYEMPSEEGYQD), and aa126-140 (EMPSEEGYQDYEPEA), generated significantly higher responses in PD patients than in healthy controls. The authors also demonstrated that the naturally occurring immune response to α-synuclein associated with PD has both MHC class I and MHC class II restricted components.

此外,Lindestam Arlehamn等人(Nat Commun. 1875;2020:11)亦揭示α突觸核蛋白肽aa61-75 (EQVTNVGGAVVTGVT)作為PD患者之T細胞抗原決定基(MHCII)。In addition, Lindestam Arlehamn et al. (Nat Commun. 1875;2020:11) also revealed that alpha-synuclein peptide aa61-75 (EQVTNVGGAVVTGVT) serves as a T cell epitope (MHCII) in PD patients.

因此,根據本發明之較佳T細胞抗原決定基包括α突觸核蛋白多肽GKTKEGVLYVGSKTK   (aa31-45)、KTKEGVLYVGSKTKE (aa32-46)、EQVTNVGGAVVTGVT (aa61-75)、VTGVTAVAQKTVEGAGNIAAATGFVK (aa71-86)、DPDNEAYEMPSE   (aa116-130)、DNEAYEMPSEEGYQD (aa121-135)及EMPSEEGYQDYEPEA   (aa126-140)。Therefore, preferred T cell epitopes according to the present invention include alpha synuclein polypeptides GKTKEGVLYVGSKTK (aa31-45), KTKEGVLYVGSKTKE (aa32-46), EQVTNVGGAVVTGVT (aa61-75), VTGVTAVAQKTVEGAGNIAAATGFVK (aa71-86), DPDNEAYEMPSE ( aa116-130), DNEAYEMPSEEGYQD (aa121-135) and EMPSEEGYQDYEPEA (aa126-140).

調節性T細胞(「Treg細胞」或「Treg」)為調節免疫系統、維持對自體抗原的耐受性及預防自體免疫疾病的一T細胞亞群。Treg細胞具有免疫抑制作用,且通常會抑制或下調效應T細胞之誘導及增殖。由正常胸腺產生的Treg被稱為「天然」。天然Treg之選擇發生在髓質中的放射抗性造血衍生的II類MHC表現細胞或胸腺中的赫氏小體(Hassal's corpuscle)上。Treg選擇的過程取決於與自體肽MHC複合體相互作用的親和力。選擇成為Treg是一個「金髮女孩(Goldilocks)」的過程,即不會太高,亦不會太低,只要恰到好處即可,接收到非常強烈信號的T細胞將經歷凋亡性死亡;接收到微弱信號的細胞將存活下來且被選擇成為效應細胞。若T細胞接收到中等信號,則其將成為調節性細胞。由於T細胞活化過程的隨機性,具有給定TCR的所有T細胞群將最終成為Teff與Treg之混合物,兩者的相對比例由T細胞對自體肽-MHC的親和力決定。由胸腺外(即外周)或細胞培養物中的初始T細胞分化形成的Treg被稱為「應變性」或「誘導性」(即iTreg)。Regulatory T cells ("Treg cells" or "Treg") are a subset of T cells that regulate the immune system, maintain tolerance to self-antigens, and prevent autoimmune diseases. Treg cells have immunosuppressive effects and usually inhibit or downregulate the induction and proliferation of effector T cells. Tregs produced by the normal thymus are called "natural". Selection of natural Tregs occurs on radioresistant hematopoietic-derived MHC class II expressing cells in the medulla or on Hassal's corpuscles in the thymus. The process of Treg selection depends on the affinity of interaction with the autologous peptide MHC complex. Choosing to become a Treg is a "Goldilocks" process. It is neither too high nor too low, as long as it is just right. T cells that receive a very strong signal will undergo apoptotic death; Cells with weak signals will survive and be selected to become effector cells. If a T cell receives a moderate signal, it becomes a regulatory cell. Due to the stochastic nature of the T cell activation process, all T cell populations with a given TCR will eventually become a mixture of Teff and Tregs, with the relative ratio of the two determined by the T cell's affinity for self-peptide-MHC. Tregs formed by differentiation of naive T cells outside the thymus (i.e., in the periphery) or in cell culture are called "resilient" or "inducible" (i.e., iTregs).

天然Treg之特徵在於同時表現CD4 T細胞共受體及CD25,後者為IL-2受體之組成部分。因此Treg為CD4+ CD25+。核轉錄因子叉頭框P3 (FoxP3)之表現為決定天然Treg形成及功能的關鍵特性。Treg抑制CD4+ T細胞及CD8+ T細胞之活化、增殖及細胞介素的產生,且被認為會抑制B細胞及樹突狀細胞,從而抑制自體免疫反應。Natural Tregs are characterized by expressing both the CD4 T cell co-receptor and CD25, which is a component of the IL-2 receptor. Therefore Tregs are CD4+ CD25+. The nuclear transcription factor forkhead box P3 (FoxP3) appears to be a key property that determines the formation and function of natural Treg. Tregs inhibit the activation, proliferation and interleukin production of CD4+ T cells and CD8+ T cells, and are thought to inhibit B cells and dendritic cells, thereby inhibiting autoimmune responses.

沿著此等思路,若干研究表明PD患者之Treg數量及功能減少。例如:Hutter Saunders等人(J Neuroimmune Pharmacol (2012) 7:927-938)及Chen等人(MOLECULAR MEDICINE REPORTS 12: 6105-6111, 2015)顯示PD患者之調節性T細胞(Treg)抑制效應T細胞的功能受損,且Th1及Th17細胞之比例增加,而Th2及Treg細胞減少。Thome等人(npj Parkinson's Disease (2021) 7:41)證明,PD患者的Treg功能下降與促炎性T細胞活化的增加相關,此可直接引起隨後其他免疫細胞群的促炎性信號傳導增加。Treg對T細胞增殖的抑制與外周促炎性免疫細胞表現型顯著相關。使用H&Y疾病量表時,PD Treg對T效應細胞(例如:CD4+)增殖的抑制能力隨著PD疾病負擔的增加而降低,最高活性出現在H+Y 1及2期。重要的是,Lindestam Arlehamn等人(2020)證明,抗aSyn T細胞反應在運動型PD診斷之前或之後不久為最高,且在此後即減弱(即在診斷後不到10年可偵測到最大活性;且較佳為Hoehn及Yahr (H+Y) 1及2期) (Lindestamn Arlehamn等人,2020)。Along these lines, several studies have shown that the number and function of Tregs in PD patients are reduced. For example: Hutter Saunders et al (J Neuroimmune Pharmacol (2012) 7:927-938) and Chen et al (MOLECULAR MEDICINE REPORTS 12: 6105-6111, 2015) showed that regulatory T cells (Treg) in PD patients inhibit effector T cells The function is impaired, and the proportion of Th1 and Th17 cells increases, while the proportion of Th2 and Treg cells decreases. Thome et al. (npj Parkinson's Disease (2021) 7:41) demonstrated that decreased Treg function in PD patients is associated with increased pro-inflammatory T cell activation, which can directly lead to subsequent increased pro-inflammatory signaling in other immune cell populations. The inhibition of T cell proliferation by Tregs is significantly related to the peripheral pro-inflammatory immune cell phenotype. When using the H&Y disease scale, the ability of PD Tregs to inhibit the proliferation of T effector cells (e.g., CD4+) decreases with the increase in PD disease burden, with the highest activity occurring in H+Y stages 1 and 2. Importantly, Lindestam Arlehamn et al. (2020) demonstrated that anti-aSyn T cell responses are highest before or shortly after diagnosis of motor PD and diminish thereafter (i.e., maximal activity is detectable less than 10 years after diagnosis ; and preferably Hoehn and Yahr (H+Y) 1 and 2) (Lindestamn Arlehamn et al., 2020).

因此,根據本發明之疫苗與以下之組合 1)  含有α-突觸蛋白特異性Treg抗原決定基(例如CD4抗原決定基,如Brenner等人, Sulzer等人及Lindestam Arlehamn等人所揭示之彼等者(aa31-45 (GKTKEGVLYVGSKTK)、aa32-46 (KTKEGVLYVGSKTKE)、aa61-75 (EQVTNVGGAVVTGVT)、aa71-86 (VTGVTAVAQKTVEGAGNIAAATGFVK)、aa116-130 (MPVDPDNEAYEMPSE)、aa121-135 (DNEAYEMPSEEGYQD)及aa126-140 (EMPSEEGYQDYEPEA))的疫苗; 及/或 2) Treg誘導劑,如雷帕黴素、低劑量IL-2、TNF受體2 (TNFR2)促效劑、抗CD20抗體(例如:利妥昔單抗(rituximab))、潑尼松龍(prednisolone)、異丙肌苷(inosine pranobex)、乙酸格拉替雷、丁酸鈉 較佳在疾病的早期階段(即診斷後不到10年;且較佳為Hoehn及Yahr (H+Y) 1及2期)以增加減弱/減少的Treg數量及活性,且由此降低aSyn 特異性T效應細胞之自體免疫反應性且抑制PD患者之自體免疫反應。 Therefore, the vaccine according to the present invention is combined with the following: 1) a vaccine containing α-synaptic protein specific Treg antigenic determinants (e.g. CD4 antigenic determinants, such as those disclosed by Brenner et al., Sulzer et al. and Lindestam Arlehamn et al. (aa31-45 (GKTKEGVLYVGSKTK), aa32-46 (KTKEGVLYVGSKTKE), aa61-75 (EQVTNVGGAVVTGVT), aa71-86 (VTGVTAVAQKTVEGAGNIAAATGFVK), aa116-130 (MPVDPDNEAYEMPSE), aa121-135 (DNEAYEMPSEEGYQD) and aa126-140 (EMPSEEGYQDYEPEA)); and/or 2) Treg inducers, such as rapamycin, low-dose IL-2, TNF receptor 2 (TNFR2) agonists, anti-CD20 antibodies (e.g., rituximab), prednisolone, inosine pranobex, glatiramer acetate, sodium butyrate Preferably in the early stages of the disease (i.e., less than 10 years after diagnosis; and preferably Hoehn and Yahr (H+Y) stages 1 and 2) to increase the number and activity of weakened/diminished Tregs, and thereby reduce the autoimmune reactivity of aSyn-specific T effector cells and inhibit the autoimmune response of PD patients.

此外,Treg在許多疾病中被發現減少及/或功能失調,尤其是慢性退化性或自體免疫疾病,例如(活動性)系統性紅斑性狼瘡(SLE、aSLE)、1型糖尿病(T1D)、自體免疫性糖尿病(AID)、多發性硬化症(MS)、肌肉萎縮性側索硬化(ALS)及阿茲海默症(AD)以及其他退化性疾病(ALS:Beers等人, JCI Insight 2, e89530 (2017);AD:Faridar等人, Brain Commun. 2, fcaa112 (2020);ALS:Beers等人, JAMA Neurol. 75, 656-658 (2018);MS:Haas等人, Eur. J. Immunol. 35, 3343-3352 (2005);T1D:Lindley等人, Diabetes 54, 92-99 (2005);AID:Putnam等人, J. Autoimmun. 24, 55-62 (2005);自體免疫疾病:Ryba-Stanislawowska等人, Expert Rev. Clin. Immunol. 15, 777-789 (2019);aSLE:Valencia等人, J. Immunol. 178, 2579-2588 (2007);MS:Viglietta等人, J. Exp. Med. 199, 971-979 (2004);sLE:Zhang等人, Clin. Exp. Immunol. 153, 182-187 (2008);AD+MS:Ciccocioppo等人, Sci. Rep. 9, 8788 (2019))。In addition, Tregs have been found to be reduced and/or dysfunctional in many diseases, especially chronic degenerative or autoimmune diseases, such as (active) systemic lupus erythematosus (SLE, aSLE), type 1 diabetes (T1D), autoimmune diabetes (AID), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD) as well as other degenerative diseases (ALS: Beers et al., JCI Insight 2, e89530 (2017); AD: Faridar et al., Brain Commun. 2, fcaa112 (2020); ALS: Beers et al., JAMA Neurol. 75, 656-658 (2018); MS: Haas et al., Eur. J. Immunol. 35, 3343-3352 (2005); T1D: Lindley et al., Diabetes 54, 92-99 (2005); AID: Putnam et al., J. Autoimmun. 24, 55-62 (2005); Autoimmune diseases: Ryba-Stanislawowska et al., Expert Rev. Clin. Immunol. 15, 777-789 (2019); aSLE: Valencia et al., J. Immunol. 178, 2579-2588 (2007); MS: Viglietta et al., J. Exp. Med. 199, 971-979 (2004); sLE: Zhang et al., Clin. Exp. Immunol. 153, 182-187 (2008); AD+MS: Ciccocioppo et al., Sci. Rep. 9, 8788 (2019)).

因此,亦較佳提供適合在Treg群減少或功能失調的疾病中作為Treg抗原決定基或Treg誘導劑的T細胞抗原決定基,其以與根據本發明之疫苗組合的形式增加減弱/減少的Treg數量及活性,且由此減少疾病特異性T效應細胞之自體免疫反應性且抑制患者之自體免疫反應。而適合的Treg抗原決定基被定義為自體MHC抗原決定基(MHC II型),其特徵在於能夠在T細胞的選擇過程中誘導中等信號。Therefore, it is also preferred to provide a T cell antigenic determinant suitable as a Treg antigenic determinant or Treg inducer in diseases with a reduced or dysfunctional Treg population, which in combination with a vaccine according to the present invention increases the number and activity of weakened/reduced Tregs, and thereby reduces the autoimmune reactivity of disease-specific T effector cells and inhibits the patient's autoimmune response. Suitable Treg antigenic determinants are defined as autologous MHC antigenic determinants (MHC class II), which are characterized by the ability to induce a medium signal in the selection process of T cells.

根據一較佳實施例,根據本發明之結合物包含多肽,該多肽包含以下胺基酸序列或由其組成:SeqID7、8、22-29、87-131、GKTKEGVLYVGSKTK、KTKEGVLYVGSKTKE、EQVTNVGGAVVTGVT、VTGVTAVAQKTVEGAGNIAAATGFVK、MPVDPDNEAYEMPSE)、DNEAYEMPSEEGYQD、EMPSEEGYQDYEPEA或其組合。According to a preferred embodiment, the conjugate according to the present invention includes a polypeptide that includes or consists of the following amino acid sequences: SeqID7, 8, 22-29, 87-131, GKTKEGVLYVGSKTK, KTKEGVLYVGSKTKE, EQVTNVGGAVVTGVT, VTGVTAVAQKTVEGAGNIAAATGFVK, MPVDPDNEAYEMPSE ), DNEAYEMPSEEGYQD, EMPSEEGYQDYEPEA or combinations thereof.

因此較佳的T細胞抗原決定基為: SeqID7 AKFVAAWTLKAAANRRA-(NH-NH2) PADRE SeqID8 AKFVAAWTLKAAAN-C PADRE SeqID22 AKFVAAWTLKAAA-(NH-NH2) PADRE - 原始 SeqID23 KAAAVKAAFWTAL-NRRA-(NH-NH2) 替代合成肽 SeqID24 DSETADNLEKTVAALSILPGHGC-(NH-NH2) 白喉毒素(TV-TT交換) SeqID25 DSETADNLEKTVAALSILPGHGCNRRA-(NH-NH2) 白喉毒素 (TV-TT交換) SeqID26 ISITEIKGVIVHRIETILF-(NH-NH2) MvF5 Th (UBITh®1) SeqID27 ISITEIKGVIVHRIETILFNRRA-(NH-NH2) MvF5 Th (UBITh®1) SeqID28 ISQAVHAAHAEINEAGR-(NH-NH2) 雞Ova (323-339) SeqID29 ISQAVHAAHAEINEAGRNRRA-(NH-NH2) 雞Ova (323-339) SeqID87 AKFVAAWTLKAAA-C 順丁烯二醯亞胺偶合之Padre (原始) SeqID88 AKFVAAWTLKAAANRRA-C 順丁烯二醯亞胺偶合之Tridem' Padre (原始) SeqID89 aKXVAAWTLKAAaZC PADRE,替代性aas SeqID90 aKXVAAWTLKAAaZCNRRA PADRE,替代性aas SeqID91 aKXVAAWTLKAAa PADRE,替代性aas SeqID92 aKXVAAWTLKAAaNRRA PADRE,替代性aas SeqID93 DSETADNLEKTTAALSILPG 白喉 SeqID94 DSETADNLEKTTAALSILPGNRRA 白喉 SeqID95 LSEIKGVIVHRLEGV MvF SeqID96 LSEIKGVIVHRLEGVNRRA MvF SeqID97 KLLSLIKGVIVHRLEGVE MvF SeqID98 KLLSLIKGVIVHRLEGVENRRA MvF SeqID99 VSIDKFRIFCKANPK P23 - TT SeqID100 LKFIIKRYTPNNEIDS P32 - TT SeqID101 IREDNNTLKLDRCNN P21 - TT SeqID102 FNNFTVSFWLRVPKVSASHLE P30 - TT SeqID103 QYIKANSKFIGITE P2 - TT SeqID104 LEYIPEITLPVIAALSIAES TT SeqID105 LINSTKIYSYFPSVISKVNQ TT SeqID106 NYSLDKIIVDYNLQSKITLP TT SeqID107 PHHTALRQAILCWGELMTLA HBV核衣殼 SeqID108 FFLLTRILTIPQSLD HBV表面AG SeqID109 YSGPLKAEIAQRLEDV MT流感基質抗原決定基 SeqID110 FFLLTRILTIPQSL HBsAg SeqID111 GAYARCPNGTRALTVAELRGNAEL 百日咳桿菌 SeqID112 ALNIWDRFDVFCTLGATTGYLKGNS 霍亂毒素 SeqID113 QYIKANSKFIGITEL 破傷風梭菌TT1 SeqID114 FNNFTVSFWLRVPKVSASHLE 破傷風梭菌TT2 SeqID115 KFIIKRYTPNNEIDSF 破傷風梭菌TT3 SeqID116 VSIDKFRIFCKALNPK 破傷風梭菌TT4 SeqID117 WVRDIIDDFTNESSQKT 破傷風梭菌2  SeqID118 AGLTLSLLVICSYLFISRG EBV BHRF1   SeqID119 PGPLRESIVCYFMVFLQTHI EBV EBNA-1    SeqID120 VPGLYSPCRAFFNKEELL EBV CP SeqID121 TGHGARTSTEPTTDY EBV GP340 SeqID122 KELKRQYEKKLRQ EBV BPLF1 SeqID123 TVFYNIPPMPL EBV EBNA-2 SeqID124 DKREMWMACIKELH HCMV IE1 SeqID125 FVFTLTVPSER 流感MP1 - 1 SeqID126 PKYVKQNTLKLAT  流感血凝素 SeqID127 EKKIAKMEKASSVFNV  瘧疾CS:T3抗原決定基 SeqID128 FFLLTRILTI                                                           B型肝炎表面抗原 SeqID129 DQSIGDLIAEAMDKVGNEG                           熱激蛋白65 SeqID130 QVHFQPLPPAVVKL 卡介苗桿菌 SeqID131 KQIINMWQEVGKAMYA          HIV gp120 其中X為L-環己基丙胺酸,Z為胺基己酸且a為選自丙胺酸、甘胺酸、纈胺酸、異白胺酸及白胺酸的脂肪族胺基酸。 Therefore, the preferred T cell epitope is: SeqID7 AKFVAAWTLKAAANRRA-(NH-NH2) PADRE SeqID8 AKFVAAWTLKAAAN-C PADRE SeqID22 AKFVAAWTLKAAA-(NH-NH2) PADRE-Original SeqID23 KAAAVKAAFWTAL-NRRA-(NH-NH2) Alternative synthetic peptides SeqID24 DSETADNLEKTVAALSILPGHGC-(NH-NH2) Diphtheria toxin (TV-TT exchange) SeqID25 DSETADNLEKTVAALSILPGHGCNRRA-(NH-NH2) Diphtheria toxin (TV-TT exchange) SeqID26 ISITEIKGVIVHRIETILF-(NH-NH2) MvF5 Th (UBITh®1) SeqID27 ISITEIKGVIVHRIETILFNRRA-(NH-NH2) MvF5 Th (UBITh®1) SeqID28 ISQAVHAAHAEINEAGR-(NH-NH2) Chicken Ova (323-339) SeqID29 ISQAVHAAHAEINEAGNRRA-(NH-NH2) Chicken Ova (323-339) SeqID87 AKFVAAWTLKAAA-C Padre of maleimide coupling (original) SeqID88 AKFVAAWTLKAAANRRA-C Maleimide Coupling Tridem' Padre (Original) SeqID89 aKXVAAWTLKAAaZC PADRE, alternative aas SeqID90 aKXVAAWTLKAAaZCNRRA PADRE, alternative aas SeqID91 aKXVAAWTLKAAa PADRE, alternative aas SeqID92 aKXVAAWTLKAAaNRRA PADRE, alternative aas SeqID93 DSETADNLEKTTAALSILPG diphtheria SeqID94 DSETADNLEKTTAALSILPGNRRA diphtheria SeqID95 LSEIKGVIVHRLEGV f SeqID96 LSEIKGVIVHRLEGVNRRA f SeqID97 KLLSLIKGVIVHRLEGVE f SeqID98 KLLSLIKGVIVHRLEGVENRRA f SeqID99 VSIDKFRIFCKANPK P23-TT SeqID100 LKFIIKRYTPNNEIDS P32-TT SeqID101 IREDNNTLKLDRCNN P21-TT SeqID102 FNNFTVSFWLRVPKVSASHLE P30-TT SeqID103 QYIKANSKFIGITE P2-TT SeqID104 LEYIPEITLPVIAALSIAES TT SeqID105 LINSTKIYSYFPSVISKVNQ TT SeqID106 NYSLDKIIVDYNLQSKITLP TT SeqID107 PHHTALRQAILCWGELMTLA HBV nucleocapsid SeqID108 FFLLTRILTIPQSLD HBV surface AG SeqID109 YSGPLKAEIAQRLEDV MT influenza matrix epitope SeqID110 FFLLTRILTIPQSL HBsAg SeqID111 GAYARCPNGTRALTVAELRGNAEL Bordetella pertussis SeqID112 ALNIWDRFDVFCTLGATTGYLKGNS cholera toxin SeqID113 QYIKANSKFIGITEL Clostridium tetani TT1 SeqID114 FNNFTVSFWLRVPKVSASHLE Clostridium tetani TT2 SeqID115 KFIIKRYTPNNEIDSF Clostridium tetani TT3 SeqID116 VSIDKFRIFCKALNPK Clostridium tetani TT4 SeqID117 WVRDIIDDFTNESSQKT Clostridium tetani 2 SeqID118 AGLTLSLLVICSYLFISRG EBV BHRF1 SeqID119 PGPLRESIVCYFMVFLQTHI EBV EBNA-1 SeqID120 VPGLYSPCRAFFNKEELL EBV CP SeqID121 TGHGARTSTEPTTDY EBV GP340 SeqID122 KELKRQYEKKLRQ EBVBPLF1 SeqID123 TVFYNIPPPMPL EBV EBNA-2 SeqID124 DKREMWMACIKELH HCMV IE1 SeqID125 FVFTLTVPSER Influenza MP1-1 SeqID126 PKYVKQNTLKLAT influenza hemagglutinin SeqID127 EKKIAKMEKASSVFNV Malaria CS:T3 epitope SeqID128 FFLLTRILTI Hepatitis B surface antigen SeqID129 DQSIGDLIAEAMDKVGNEG heat shock protein 65 SeqID130 QVHFQPLPPAVVKL Bacillus Calmette-Guérin SeqID131 KQIINMWQEVGKAMYA HIV gp120 Wherein X is L-cyclohexyl alanine, Z is aminocaproic acid and a is an aliphatic amino acid selected from alanine, glycine, valine, isoleucine and leucine.

根據另一較佳實施例,根據本發明之結合物包含一B細胞抗原決定基及一T細胞抗原決定基,較佳為泛特異性/混雜T細胞抗原決定基,該B細胞及T細胞抗原決定基獨立地偶合於根據本發明之CLEC多醣骨架,尤其是偶合於石耳多醣。According to another preferred embodiment, the conjugate according to the present invention comprises a B cell antigenic determinant and a T cell antigenic determinant, preferably a pan-specific/promiscuous T cell antigenic determinant, and the B cell and T cell antigenic determinants are independently coupled to the CLEC polysaccharide backbone according to the present invention, in particular to Psoralea corylifolia polysaccharide.

根據另一較佳實施例,根據本發明之結合物包含與「經典」載體蛋白,如CRM197偶合的B細胞抗原決定基,其中該構築體進一步與根據本發明之CLEC載體偶合,尤其是與石耳多醣偶合。According to another preferred embodiment, the conjugate according to the invention comprises a B cell antigenic determinant coupled to a "classical" carrier protein, such as CRM197, wherein said construct is further coupled to a CLEC carrier according to the invention, in particular to Psoralea corylifolia.

例如,在第一步中,CRM結合物之形成可藉由GMBS或sulfo-GMBS等活化CRM來進行,然後活化CRM之順丁烯二醯亞胺基與肽(半胱胺酸)之SH基團發生反應,然後用DTT處理CRM結合物以還原雙硫鍵並在半胱胺酸上生成SH基團。隨後,可藉由混合還原的CRM-結合物與BMPH (N-β-順丁烯二醯亞胺-丙酸醯肼)及活化的石耳多醣(已被氧化)的一鍋化反應產生基於CLEC之疫苗。一鍋化反應之機制可能為(相對於石耳多醣而言)氧化的石耳多醣與BMPH (具有醯肼殘基)反應且形成BMPH-腙,還原的CRM結合物接著藉由CRM結合物上之SH基團與BMPH活化的石耳多醣的順丁烯二醯亞胺反應。For example, in the first step, the formation of the CRM conjugate can be carried out by activating the CRM with GMBS or sulfo-GMBS, etc., and then activating the maleimide group of the CRM and the SH group of the peptide (cysteine) The CRM conjugate is then treated with DTT to reduce the disulfide bonds and generate SH groups on the cysteine. Subsequently, a one-pot reaction of mixed reduced CRM-conjugates with BMPH (N-β-maleimide-propionic acid hydrazine) and activated Schizophora polysaccharide (which has been oxidized) can be produced based on Vaccine for CLEC. The mechanism of the one-pot reaction may be that (compared to the phylloxera polysaccharide) the oxidized phylloxera polysaccharide reacts with BMPH (having a hydrazine residue) and forms BMPH-hydrazone, and the reduced CRM conjugate is then taken up by the CRM conjugate The SH group reacts with the maleimide of BMPH-activated Schizophora polysaccharide.

根據另一較佳實施例,根據本發明之結合物包含「經典」載體蛋白,例如CRM197,其含有多個T細胞抗原決定基。根據本發明之結合物亦包含共價偶合於多醣部分的B細胞抗原決定基。在該實施例中,兩種多肽(B細胞抗原決定基及載體分子)獨立地偶合於根據本發明之CLEC載體,尤其是偶合於石耳多醣。According to another preferred embodiment, the conjugate according to the invention comprises a "classical" carrier protein, such as CRM197, which contains multiple T cell epitopes. Conjugates according to the invention also comprise B cell epitopes covalently coupled to the polysaccharide moiety. In this example, the two polypeptides (B cell epitope and carrier molecule) are independently coupled to the CLEC carrier according to the invention, in particular to the fungus polysaccharide.

根據另一較佳實施例,根據本發明之結合物亦包含「經典」載體蛋白,例如CRM197,其含有多個T細胞抗原決定基。根據本發明之結合物亦包含共價偶合於「經典」載體蛋白的B細胞抗原決定基。根據本發明之肽-載體結合物亦共價偶合於多醣部分。在該實施例中,兩種多肽(B細胞抗原決定基及載體分子)以結合物的形式偶合於根據本發明之CLEC載體,尤其是偶合於石耳多醣。載體蛋白接著作為本發明結合物中β-葡聚糖或甘露多醣與B細胞及/或T細胞抗原決定基多肽之間的連接。β-葡聚糖或甘露多醣與B細胞及/或T細胞抗原決定基多肽之間的共價結合隨後由載體蛋白(作為功能性連接部分)進行。According to another preferred embodiment, the conjugate according to the invention also comprises a "classical" carrier protein, such as CRM197, which contains multiple T cell antigenic determinants. The conjugate according to the invention also comprises a B cell antigenic determinant covalently coupled to a "classical" carrier protein. The peptide-carrier conjugate according to the invention is also covalently coupled to a polysaccharide portion. In this embodiment, two polypeptides (B cell antigenic determinant and carrier molecule) are coupled to the CLEC carrier according to the invention in the form of a conjugate, in particular to Psoralea corylifolia. The carrier protein graft serves as a link between the β-glucan or mannosaccharide and the B cell and/or T cell antigenic determinant polypeptides in the conjugate according to the invention. The covalent binding between the β-glucan or mannan and the B cell and/or T cell antigenic determinant polypeptide is then carried out by the carrier protein (as a functional linker).

根據本發明之較佳結合物可包含偶合於CRM197的B細胞抗原決定基,其中該構築體進一步偶合於根據本發明之CLEC聚合物,尤其是β-葡聚糖,其中β-葡聚糖為石耳多醣、地衣多醣、昆布多醣、卡德蘭多醣、β-葡聚糖肽(BGP)、裂褶多醣、硬葡聚糖、全葡聚糖顆粒(WGP)、酵母多醣或蘑菇多醣、較佳為石耳多醣、昆布多醣、地衣多醣、蘑菇多醣、裂褶多醣或硬葡聚糖,尤其是石耳多醣。Preferred conjugates according to the present invention may comprise a B cell epitope coupled to CRM197, wherein the construct is further coupled to a CLEC polymer according to the present invention, especially β-glucan, wherein the β-glucan is Pyrrolidone, Lichenin, Laminaria, Curdlan, β-glucan peptide (BGP), Schizophyllan, Scleroglucan, Whole Glucan Particles (WGP), Yeast Polysaccharide or Mushroom Polysaccharide, preferably Pyrrolidone, Laminaria, Lichenin, Mushroom Polysaccharide, Schizophyllan or Scleroglucan, especially Pyrrolidone.

根據本發明,顯示與石耳多醣偶合的新型B細胞抗原決定基-CRM197結合物為強力的dectin-1結合物並引發非常強的免疫反應,優於習知的CRM結合物疫苗。According to the present invention, it is shown that the novel B cell antigen determinant-CRM197 conjugate coupled with Psoralea corylifolia polysaccharide is a potent dectin-1 conjugate and induces a very strong immune response, which is superior to the conventional CRM conjugate vaccine.

根據本發明,顯示CLEC與新穎B細胞抗原決定基-CRM197結合物之結合,尤其是產生B細胞抗原決定基-CRM197-葡聚糖,更佳為B細胞抗原決定基-CRM197-線性β-(1,6)-葡聚糖或B細胞抗原決定基-CRM197-石耳多醣結合物對於誘導關於各種肽-CRM197-CLEC,尤其是肽-CRM197-β-葡聚糖,更佳為肽-CRM197-線性β-(1,6)-葡聚糖或肽-CRM197-線性石耳多醣結合物所描述的相較於有或沒有藉由與β-葡聚糖/石耳多醣混合添加佐劑的習知CRM偶合疫苗之優異免疫原性為必不可少的。According to the present invention, it is shown that the binding of CLEC to novel B cell antigen determinant-CRM197 conjugates, in particular the production of B cell antigen determinant-CRM197-glucan, more preferably B cell antigen determinant-CRM197-linear β-(1,6)-glucan or B cell antigen determinant-CRM197-Pseudomonas aeruginosa conjugates, is essential for inducing the superior immunogenicity described for various peptide-CRM197-CLEC, in particular peptide-CRM197-β-glucan, more preferably peptide-CRM197-linear β-(1,6)-glucan or peptide-CRM197-linear Pseudomonas aeruginosa conjugates compared to conventional CRM conjugate vaccines with or without the addition of adjuvants by mixing with β-glucan/Pseudomonas aeruginosa.

根據本發明之一較佳實施例,根據本發明之CLEC結合物包含作為B細胞抗原決定基的寡糖/多醣,其偶合於作為T細胞抗原決定基來源的載體蛋白(例如:CRM197,KLH、白喉類毒素(DT)、破傷風類毒素(TT)、流感嗜血桿菌蛋白D (HipD)及腦膜炎雙球菌血清群B之外膜蛋白質複合體(OMPC)、銅綠假單胞菌外毒素A之重組無毒形式( rEPA)、鞭毛蛋白、大腸桿菌熱不穩定腸毒素(LT)、霍亂毒素(CT)、突變毒素(例如LTK63及LTR72),其中該構築體進一步偶合於根據本發明之CLEC聚合物,尤其是β-葡聚糖,其中β-葡聚糖為石耳多醣、地衣多醣、昆布多醣、卡德蘭多醣、β-葡聚糖肽(BGP)、裂褶多醣、硬葡聚糖、全葡聚糖顆粒(WGP)、酵母多醣或蘑菇多醣、較佳為石耳多醣、昆布多醣、地衣多醣、蘑菇多醣、裂褶多醣或硬葡聚糖,尤其是石耳多醣。若結合物包含載體蛋白,則本發明之較佳實施例為根據本發明之結合物包含至少一另外的、獨立結合的T細胞或B細胞抗原決定基。該較佳實施例進一步闡明,本發明不是為了引發針對主要呈線性的β-(1,6)-葡聚糖特異性抗體,該葡聚糖之(1,6)偶合之單醣部分與非β-(1,6)偶合之單醣部分的比率為至少1:1,例如石耳多醣。因此,僅含有醣類作為抗原及載體蛋白的含有(1,6)偶合之單醣部分與非β-(1,6)偶合之單醣部分的比率為至少1:1的主要呈線性的β-(1,6)-葡聚糖結合物被排除在本發明之外,因為若結合物包含額外的T細胞或B細胞抗原決定基(參見下方實例7及圖7),則根據本發明之結合物會顯著減少或消除活體內針對葡聚糖骨架的強烈新生免疫反應的誘導。相反,重複施用未結合的葡聚糖(或僅與載體蛋白結合的葡聚糖)會藉由提高針對葡聚糖多醣之抗體水平來誘導強烈的抗葡聚糖免疫反應。此表明根據本發明之結合物必須具有另外的T細胞或B細胞抗原決定基多肽,該多肽共價結合於主要呈線性的β-(1,6)-葡聚糖與載體蛋白的結合物。 According to a preferred embodiment of the present invention, the CLEC conjugate according to the present invention comprises an oligosaccharide/polysaccharide as a B cell antigenic determinant coupled to a carrier protein as a source of T cell antigenic determinant (e.g., CRM197, KLH, diphtheria toxoid (DT), tetanus toxoid (TT), Haemophilus influenzae protein D (HipD) and outer membrane protein complex of meningococcal serogroup B (OMPC), recombinant non-toxic form of Pseudomonas aeruginosa exotoxin A ( r EPA), flagellin, Escherichia coli heat-labile enterotoxin (LT), cholera toxin (CT), mutant toxins (such as LTK63 and LTR72), wherein the construct is further coupled to a CLEC polymer according to the present invention, especially β-glucan, wherein the β-glucan is auricularia polysaccharide, lichen polysaccharide, laminarin polysaccharide, curdlan polysaccharide, β-glucan peptide (BGP), schizophyllan, scleroglucan, whole glucan particles (WGP), yeast polysaccharide or mushroom polysaccharide, Preferred are Pyricularia polysaccharides, Laminaria polysaccharides, Lichen polysaccharides, Mushroom polysaccharides, Schizophyllan polysaccharides or Scleroglucan, especially Pyricularia polysaccharides. If the conjugate comprises a carrier protein, a preferred embodiment of the present invention is that the conjugate according to the present invention comprises at least one additional, independently bound T cell or B cell antigenic determinant. The preferred embodiment further illustrates that the present invention is not intended to induce antibodies specific for predominantly linear β-(1,6)-glucan, the (1,6)-coupled monosaccharide portion of which is bound to The ratio of non-β-(1,6)-coupled monosaccharide moieties is at least 1:1, such as Psoralen. Therefore, predominantly linear β-(1,6)-glucan conjugates containing only carbohydrates as antigens and carrier proteins and containing a ratio of (1,6)-coupled monosaccharide moieties to non-β-(1,6)-coupled monosaccharide moieties of at least 1:1 are excluded from the present invention, because if the conjugate contains additional T-cell or B-cell antigenic determinants (see Example 7 and Figure 7 below), then according to the present invention The conjugate significantly reduced or eliminated the induction of a strong neonatal immune response in vivo against the glucan backbone. In contrast, repeated administration of unconjugated glucan (or glucan conjugated only to a carrier protein) induced a strong anti-glucan immune response by increasing the level of antibodies against the glucan polysaccharide. This indicates that the conjugate according to the present invention must have an additional T cell or B cell antigenic determinant polypeptide covalently bound to the conjugate of the predominantly linear β-(1,6)-glucan and the carrier protein.

此亦解釋了根據本發明之結合物不涵蓋藉由提供(1,6)偶合之單醣部分與非β-(1,6)偶合之單醣部分的比率為至少1:1的主要呈線性的β-(1,6)-葡聚糖(最終與載體蛋白偶合)作為抗原來預防或治療由真菌,尤其是白色念珠菌直接或間接引起的疾病。This also explains that the conjugates according to the present invention do not cover the prevention or treatment of diseases caused directly or indirectly by fungi, especially Candida albicans, by providing mainly linear β-(1,6)-glucans (ultimately coupled to a carrier protein) with a ratio of at least 1:1 of β-(1,6)-coupled monosaccharide moieties to non-β-(1,6)-coupled monosaccharide moieties as antigens.

根據本發明,證明與石耳多醣偶合的此類寡糖/多醣結合物疫苗為強力的dectin-1結合物,且若在活體內施用,會引發有益/有效的免疫反應。According to the present invention, such oligosaccharide/polysaccharide conjugate vaccines coupled with Psoralea corylifolia polysaccharide are demonstrated to be potent dectin-1 conjugates and to induce beneficial/effective immune responses if administered in vivo.

因此,本發明亦涉及藉由將載體蛋白(已包含一或多種T細胞抗原(作為其多肽序列之一部分,視情況以轉譯後修飾的形式存在))與根據本發明之CLEC多醣佐劑,即β-葡聚糖或甘露多醣,較佳為石耳多醣、地衣多醣、昆布多醣、卡德蘭多醣、β-葡聚糖肽(BGP)、裂褶多醣、硬葡聚糖、全葡聚糖顆粒(WGP)、酵母多醣或蘑菇多醣共價偶合來改良及/或最佳化載體蛋白。因此,本發明涉及用作B細胞及/或T細胞抗原決定基多肽之C型凝集素(CLEC)多醣佐劑的β-葡聚糖或甘露多醣,其中β-葡聚糖或甘露多醣與B細胞及/或T細胞抗原決定基多肽共價結合以形成β-葡聚糖或甘露多醣與B細胞及/或T細胞抗原決定基多肽之結合物,其中載體蛋白共價偶合於β-葡聚糖或甘露多醣。Therefore, the present invention also relates to improving and/or optimizing the carrier protein by covalently coupling the carrier protein (already comprising one or more T cell antigens (as part of its polypeptide sequence, optionally in a post-translationally modified form)) with a CLEC polysaccharide adjuvant according to the present invention, i.e., β-glucan or mannosaccharide, preferably Pyricularia polysaccharide, Lichen polysaccharide, Laminaria polysaccharide, Curdlan polysaccharide, β-glucan peptide (BGP), Schizophyllan, Scleroglucan, Whole Glucan Particles (WGP), Yeast Polysaccharide or Mushroom Polysaccharide. Therefore, the present invention relates to β-glucan or mannopolysaccharide used as a C-type lectin (CLEC) polysaccharide adjuvant for B cell and/or T cell antigenic determinant polypeptides, wherein the β-glucan or mannopolysaccharide is covalently bound to the B cell and/or T cell antigenic determinant polypeptide to form a conjugate of β-glucan or mannopolysaccharide and B cell and/or T cell antigenic determinant polypeptide, wherein a carrier protein is covalently coupled to the β-glucan or mannopolysaccharide.

此類改良及/或最佳化導致B細胞對CLEC及/或載體蛋白的反應顯著減少或消除及/或增強(或至少保持)T細胞對載體蛋白之T細胞抗原決定基的反應。此能夠減少或消除對CLEC及/或載體的抗體反應(隨後僅遞送T細胞反應),且特異性增強抗體對結合於載體及/或CLEC的實際目標多肽之反應。Such modifications and/or optimization result in a significant reduction or elimination of B cell responses to CLEC and/or the carrier protein and/or enhancement (or at least maintenance) of T cell responses to T cell epitopes of the carrier protein. This can reduce or eliminate the antibody response to CLEC and/or the vector (subsequently delivering only the T cell response), and specifically enhance the antibody response to the actual target polypeptide bound to the vector and/or CLEC.

因此,本發明之一特定較佳實施例為由以下組成或包含以下之結合物 (a)一β-葡聚糖 (b)至少一B細胞或T細胞抗原決定基多肽,及 (c)一載體蛋白, 其中該等三種成分(a)、(b)及(c)彼此共價結合。 Therefore, a specific preferred embodiment of the present invention is composed of or includes a combination of the following (a)-β-glucan (b) at least one B cell or T cell epitope polypeptide, and (c) a carrier protein, The three components (a), (b) and (c) are covalently bonded to each other.

此三種成分之組合可以任何方向或順序,即以順序(a)-(b)-(c)、(a)-(c)-(b)或(b)-(a)-(c)提供,其中(b)及/或(c)可自N端至C端或自C端至N端共價結合,或藉由多肽內的官能基(例如藉由離胺酸、精胺酸、天門冬胺酸、麩胺酸、天門冬醯胺、麩醯胺酸、絲胺酸、蘇胺酸、酪胺酸、色胺酸或組胺酸殘基中之官能基,尤其是藉由離胺酸殘基的ε-銨基)結合。當然,β-葡聚糖可與成分(b)及(c)中之各者的一或多者偶合,較佳藉由本文揭示的方法。較佳地,此等成分藉由連接子結合,尤其是藉由所有至少三種成分之間的連接子結合。較佳的連接子在本文中揭示,例如半胱胺酸殘基或包含半胱胺酸或甘胺酸殘基的連接子、由以下產生之連接子:醯肼介導之偶合、經由異雙官能連接子,例如BMPH、MPBH、EMCH或KMUH之偶合、咪唑介導之偶合、還原胺化、碳二亞胺偶合一-NH-NH 2連接子、一NRRA、NRRA-C或NRRA-NH-NH 2連接子、肽連接子,諸如二聚、三聚、四聚-(或更長)肽基,如CG或CG。在現有載體蛋白,尤其是CRM、CRM197及KLH的情況下,該至少三種成分的較佳順序為(a)-(c)-(b),即其中該β-葡聚糖及該至少一種B細胞或一種T細胞抗原決定基多肽與載體蛋白偶合。 The combination of these three ingredients can be provided in any direction or order, i.e., in the order (a)-(b)-(c), (a)-(c)-(b) or (b)-(a)-(c) , wherein (b) and/or (c) can be covalently bonded from the N-terminus to the C-terminus or from the C-terminus to the N-terminus, or through functional groups in the polypeptide (for example, through lysine, arginine, Tianmen Functional groups in asparagine, glutamate, asparagine, glutamine, serine, threonine, tyrosine, tryptophan or histidine residues, especially through ionized amines The ε-ammonium group of the acid residue) is bound. Of course, beta-glucan can be coupled to one or more of each of components (b) and (c), preferably by the methods disclosed herein. Preferably, these components are bound by linkers, in particular by linkers between all at least three components. Preferred linkers are disclosed herein, for example, cysteine residues or linkers containing cysteine or glycine residues, linkers produced by: hydrazine-mediated coupling, via heterobis Functional linkers, such as coupling of BMPH, MPBH, EMCH or KMUH, imidazole-mediated coupling, reductive amination, carbodiimide coupling - -NH- NH linker, -NRRA, NRRA-C or NRRA-NH- NH2 linker, peptide linker such as dimeric, trimeric, tetrameric- (or longer) peptidyl groups such as CG or CG. In the case of existing carrier proteins, especially CRM, CRM197 and KLH, the preferred sequence of the at least three components is (a)-(c)-(b), that is, the β-glucan and the at least one B Cells or a T cell epitope polypeptide are coupled to a carrier protein.

根據另一較佳實施例,根據本發明之結合物包含一T細胞抗原決定基且不含B細胞抗原決定基,其中該結合物較佳包含多於一個T細胞抗原決定基,尤其是兩個、三個、四個或五個T細胞抗原決定基。該構築體特別適用於癌症疫苗。該構築體亦特別適用於自體抗原,尤其是自體免疫疾病相關之自體抗原。各別結合物之治療作用與效應T細胞之減少及調節性T細胞(T reg細胞)群的形成有關,該二現象使得相應疾病,例如自體免疫疾病或過敏性疾病得到抑制,例如如多發性硬化症所示。值得注意的是,此等Treg細胞執行強烈的旁觀者免疫抑制,且因此改善由同源及非同源自體抗原誘發之疾病。 According to another preferred embodiment, the conjugate according to the invention contains a T cell epitope and does not contain a B cell epitope, wherein the conjugate preferably contains more than one T cell epitope, especially two , three, four or five T cell epitopes. This construct is particularly suitable for use in cancer vaccines. The construct is also particularly suitable for use with self-antigens, especially those associated with autoimmune diseases. The therapeutic effects of the respective conjugates are related to the reduction of effector T cells and the formation of regulatory T cell (T reg cell) populations. These two phenomena enable the suppression of corresponding diseases, such as autoimmune diseases or allergic diseases, such as multiple Sexual sclerosis is shown. Notably, these Treg cells perform strong bystander immunosuppression and thus ameliorate diseases induced by homologous and non-homologous autologous antigens.

用來作為根據本發明之多醣骨架之較佳CLEC為石耳多醣或其他β-(1,6)葡聚糖(亦包括此類葡聚糖之合成形式);所用其他者:甘露多醣,β-葡聚糖家族成員,尤其是線性β-(1,3)(釀酒酵母β-葡聚糖(例如:150kDa)、卡德蘭多醣)或含有支鏈β-(1,3)及β-(1,6)的葡聚糖,例如:昆布多醣(4,5-7kDa),硬葡聚糖,裂褶多醣、更佳為線性葡聚糖,(例如:β(1,3):釀酒酵母β-葡聚糖(150kd),卡德蘭多醣(75-80kDa或更大),β-(1,3)+β-(1,4)地衣多醣(22-250kDa) β-(1,6)石耳多醣(20kDa)。因此,根據本發明之較佳CLEC是甘露多醣及β-葡聚糖,包括線性及支鏈化β-葡聚糖,其特徵在於存在β-(1,3)-、β-(1,3)+β-(1,4)-及β(-1,6)主鏈以及帶有β-(1,6)的附加側鏈殘基,更佳為含有β-(1,3)、β-(1,3)+β-(1,4)及β-(1,6)鏈的線性β-葡聚糖,更佳為線性β-(1,6) β-葡聚糖,尤其是石耳多醣或由多聚β-(1,6)-葡聚糖單醣(例如4聚體、5聚體、6聚體、8聚體、10聚體、12聚體、15聚體、17聚體或25聚體)所組成之其片段或合成變異體。Preferred CLECs used as the polysaccharide backbone according to the present invention are Shigu polysaccharides or other β-(1,6) glucans (also including synthetic forms of such glucans); others used: mannan polysaccharides, β -Members of the glucan family, especially linear β-(1,3) (Saccharomyces cerevisiae β-glucan (e.g. 150kDa), Cardranan) or containing branched β-(1,3) and β- Glucans of (1,6), such as: laminarin (4,5-7kDa), scleroglucan, schizophyllan, preferably linear glucan, (for example: β (1,3): brewing Yeast β-glucan (150kD), Cadranan (75-80kDa or larger), β-(1,3)+β-(1,4) lichenan (22-250kDa) β-(1, 6) Fungi polysaccharide (20 kDa). Therefore, preferred CLECs according to the present invention are mannan polysaccharides and β-glucans, including linear and branched β-glucans, characterized by the presence of β-(1,3 )-, β-(1,3)+β-(1,4)- and β(-1,6) backbones and additional side chain residues with β-(1,6), preferably containing Linear β-glucans of β-(1,3), β-(1,3)+β-(1,4) and β-(1,6) chains, preferably linear β-(1,6 ) β-glucan, especially agaric polysaccharide or polysaccharide β-(1,6)-glucan monosaccharide (such as 4-mer, 5-mer, 6-mer, 8-mer, 10-mer , 12-mer, 15-mer, 17-mer or 25-mer) fragments or synthetic variants thereof.

較佳地,根據本發明之CLEC之最小長度為6聚體,因為對於更小的多醣來說,根據本發明所進行的氧化反應是有問題的(最終其他偶合機制可用於此類更小的多醣形式及/或藉由增加反應形式進行末端連接)。具有6個或更多單體單元(即6聚體及更大聚體)的CLEC顯示出良好的dectin結合性。通常,CLEC愈長,dectin結合性愈好。聚合度(即一葡聚糖整體中單個葡萄糖分子之量,DP)為20-25 (即DP20-25)可以確保良好的結合及活體內功效(例如昆布多醣為具有20-30之DP之典型實例)。Preferably, the minimum length of the CLEC according to the present invention is 6-mer, since the oxidation reaction performed according to the present invention is problematic for smaller polysaccharides (ultimately other coupling mechanisms can be used for such smaller polysaccharide forms and/or end-linking by increasing the reaction form). CLECs with 6 or more monomer units (i.e. 6-mers and larger) show good dectin binding. In general, the longer the CLEC, the better the dectin binding. A degree of polymerization (i.e. the amount of a single glucose molecule in a glucan mass, DP) of 20-25 (i.e. DP20-25) can ensure good binding and in vivo efficacy (e.g. laminarin is a typical example with a DP of 20-30).

合成的CLEC之分子量亦可能更小,相應地例如低至1-2kDa,而葡聚糖及其片段的較佳分子量範圍可為1-250kDa(例如昆布多醣、地衣多醣、釀酒酵母β-葡聚糖、石耳多醣、卡德蘭多醣及大麥葡聚糖等)、較佳為4.5至80kDa(例如昆布多醣、石耳多醣、卡德蘭多醣、低分子量地衣多醣等),尤其是4.5至30kDa(例如昆布多醣、石耳多醣、低分子量地衣多醣等)。The molecular weight of synthetic CLEC may also be smaller, correspondingly as low as 1-2kDa, while the preferred molecular weight range of glucans and their fragments may be 1-250kDa (e.g. laminarin, lichenin, Saccharomyces cerevisiae β-glucan saccharide, Lycoris polysaccharide, Calderan polysaccharide, barley glucan, etc.), preferably 4.5 to 80 kDa (such as laminarin, Lycoris polysaccharide, Calderan polysaccharide, low molecular weight lichenan, etc.), especially 4.5 to 30 kDa (For example, laminarin, Shigu polysaccharide, low molecular weight lichenin, etc.).

甘露多醣是由甘露醣組成的線性聚合物多醣。植物甘露多醣具有β-(1,4)鍵,其為儲存多醣的一種形式。酵母中發現的甘露多醣細胞壁具有α-(1,6)連接之骨架及α-(1,2)及α-(1,3)連接之分支。其在血清學上與哺乳動物糖蛋白上發現的結構相似。Mannan is a linear polymer polysaccharide composed of mannose. Plant mannans have beta-(1,4) linkages and are a form of storage polysaccharide. The mannan cell wall found in yeast has an α-(1,6)-linked backbone and α-(1,2) and α-(1,3)-linked branches. It is serologically similar to structures found on mammalian glycoproteins.

為了產生根據本發明之結合物,該CLEC,尤其是石耳多醣,必須被活化(例如藉由使用溫和的過碘酸鹽介導之氧化),且氧化度對於免疫反應而言非常重要。正如上文已揭示,實際的氧化範圍,尤其是對於石耳多醣而言,為大約20%至260%氧化。在許多情況下,最佳的氧化範圍介於低/中等氧化度(即20-60%氧化)及高氧化度(即140-260%氧化)之間,即在60-140%氧化範圍內。熟悉此項技術者可容易地調整對其他CLEC的優化,例如對於地衣多醣而言,超過200%的氧化度是獲得類似量的醛基所必需的。In order to produce the conjugates according to the present invention, the CLEC, especially Pseudomonas polysaccharide, must be activated (e.g. by using mild periodate-mediated oxidation), and the degree of oxidation is very important for the immune response. As disclosed above, the practical oxidation range, especially for Pseudomonas polysaccharide, is about 20% to 260% oxidation. In many cases, the optimal oxidation range is between low/medium oxidation (i.e. 20-60% oxidation) and high oxidation (i.e. 140-260% oxidation), i.e. in the range of 60-140% oxidation. The optimization for other CLECs can be easily adjusted by those skilled in the art, for example, for lichen polysaccharide, an oxidation degree of more than 200% is necessary to obtain a similar amount of aldehyde groups.

因此,該範圍亦可替代地界定為與席夫品紅試劑之反應程度,對於石耳多醣之實例,可分別界定為如下:在0.2-0.6莫耳比(糖單體:過碘酸鹽)下的低/中等氧化度、0.6-1.4之最佳範圍、1.4-2.6之高氧化度。Therefore, the range can also be alternatively defined as the degree of reaction with Schiff's red reagent. For the example of Pyrrolidone, it can be defined as follows: low/medium oxidation degree at a molar ratio (sugar monomer:periodate salt) of 0.2-0.6, an optimal range of 0.6-1.4, and a high oxidation degree of 1.4-2.6.

無論如何,氧化度應被界定為以滿足各特定CLEC之最佳範圍。較佳地,線性β-葡聚糖,更佳為β-(1,6)-葡聚糖,尤其是石耳多醣、石耳多醣片段或由多聚β(1,6)-葡聚糖單醣(例如4聚體、5聚體、6聚體、8聚體、10聚體、12聚體、15聚體、17聚體或25聚體)組成的其合成變異體被溫和的過碘酸鹽氧化活化,引起鄰位羥基的裂解,並因此產生具反應性的醛。溫和的過碘酸鹽氧化是指使用過碘酸鈉(NaIO 4),其為一種眾所周知的溫和試劑,可有效氧化碳水化合物糖類中的鄰位二醇,產生反應性醛基。碳-碳鍵在相鄰的羥基之間裂解。藉由改變過碘酸鹽之使用量,醛可以化學計量方式引入至給定多醣之較少或較多數量的糖部分中。 In any case, the degree of oxidation should be defined to satisfy the optimal range for each specific CLEC. Preferably, linear β-glucan, more preferably β-(1,6)-glucan, especially Pyrrolidone, Pyrrolidone fragments or synthetic variants thereof consisting of poly β(1,6)-glucan monosaccharides (e.g., 4-mer, 5-mer, 6-mer, 8-mer, 10-mer, 12-mer, 15-mer, 17-mer or 25-mer) are activated by mild periodate oxidation, resulting in cleavage of vicinal hydroxyl groups and thereby generating reactive aldehydes. Mild periodate oxidation refers to the use of sodium periodate (NaIO 4 ), which is a well-known mild reagent that can effectively oxidize vicinal diols in carbohydrate sugars to generate reactive aldehyde groups. Carbon-carbon bonds are cleaved between adjacent hydroxyl groups. By varying the amount of periodate salt used, aldehydes can be stoichiometrically introduced into a smaller or larger number of sugar moieties of a given polysaccharide.

用於活化碳水化合物之其他實例性方法為此項技術中眾所周知的且包括羥基之氰基化(例如:藉由使用有機氰基化試劑,如1-氰基-4-(二甲胺基)-吡啶四氟硼酸鹽(CDAP)或N-氰基三乙基四氟硼酸銨(CTEA)、碳水化合物之還原胺化或使用羧酸反應性化學基團(如碳二亞胺)進行活化及偶合。Other exemplary methods for activating carbohydrates are well known in the art and include cyanation of hydroxyl groups (e.g., by using an organic cyanation reagent such as 1-cyano-4-(dimethylamino)-pyridinium tetrafluoroborate (CDAP) or N-cyanotriethylammonium tetrafluoroborate (CTEA), reductive amination of carbohydrates, or activation and coupling using carboxylic acid-reactive chemical groups such as carbodiimides.

接著,活化後的碳水化合物與多肽反應以偶合於活化的CLEC並形成CLEC與B細胞或T細胞抗原決定基多肽之結合物。Next, the activated carbohydrate reacts with the polypeptide to couple to the activated CLEC and form a conjugate of CLEC and the B cell or T cell epitope polypeptide.

因此,本發明亦關於產生根據本發明之結合物的方法,其中β-葡聚糖或甘露多醣藉由氧化被活化且其中活化的β-葡聚糖或甘露多醣與B細胞及/或T細胞抗原決定基多肽接觸,從而獲得β-葡聚糖或甘露多醣與B細胞及/或T細胞抗原決定基多肽之結合物。Therefore, the present invention also relates to a method for producing a conjugate according to the present invention, wherein β-glucan or mannopolysaccharide is activated by oxidation and wherein the activated β-glucan or mannopolysaccharide is contacted with a B cell and/or T cell antigenic determinant polypeptide, thereby obtaining a conjugate of β-glucan or mannopolysaccharide and a B cell and/or T cell antigenic determinant polypeptide.

較佳地,β-葡聚糖或甘露多醣係藉由鄰位羥基處之過碘酸鹽氧化、還原胺化或羥基之氰基化獲得。Preferably, the β-glucan or mannopolysaccharide is obtained by periodate oxidation of adjacent hydroxyl groups, reductive amination or cyanation of hydroxyl groups.

根據一較佳實施例,β-葡聚糖或甘露多醣被氧化至如下氧化度,該氧化度被界定為與席夫品紅試劑之反應程度,其相當於以0.2-2.6、較佳以0.6-1.4、尤其是以0.7-1之莫耳比用過碘酸鹽氧化等量的石耳多醣的氧化度。According to a preferred embodiment, the β-glucan or mannopolysaccharide is oxidized to a degree of oxidation, which is defined as the degree of reaction with Schiff's fuchsin reagent, which is equivalent to the degree of oxidation of an equivalent amount of Pyrrolidone polysaccharide oxidized with periodate at a molar ratio of 0.2-2.6, preferably 0.6-1.4, and especially 0.7-1.

較佳地,該結合物係藉由基於腙之偶合將醯肼結合於羰基(醛),或藉由使用異雙官能順丁烯二醯亞胺及醯肼連接子(例如:BMPH (N-β-順丁烯二醯亞胺基丙酸醯肼、MPBH (4-[4-N-順丁烯二醯亞胺基-苯基]丁酸醯肼)、EMCH (N-[ε-順丁烯二醯亞胺基己酸)醯肼)或KMUH (N-[κ-順丁烯二醯亞胺基十一酸]醯肼)的偶合將巰基(例如:半胱胺酸)與羰基(醛)結合來產生。Preferably, the conjugate is produced by coupling a hydrazide to a carbonyl group (aldehyde) via a hydrazone-based coupling, or by coupling a hydrazide (e.g., cysteine) to a carbonyl group (aldehyde) via coupling using an isobifunctional cis-butenediimide and a hydrazide linker (e.g., BMPH (N-β-cis-butenediimidopropionic acid hydrazide, MPBH (4-[4-N-cis-butenediimido-phenyl]butyric acid hydrazide), EMCH (N-[ε-cis-butenediimidohexanoic acid) hydrazide), or KMUH (N-[κ-cis-butenediimidoundecanoic acid] hydrazide).

與根據本發明之CLEC偶合的多肽為或包含至少一個B細胞抗原決定基或至少一個T細胞抗原決定基。較佳地,與CLEC偶合之多肽包含單個B細胞或T細胞抗原決定基(即使在多於一種多肽與CLEC多醣骨架偶合的實施例中)。同樣如實例部分所示,多肽之較佳長度為5至29個胺基酸殘基、較佳為5至25個胺基酸殘基、更佳為7至20個胺基酸殘基、甚至更佳為7至15個胺基酸殘基、尤其是7至13個胺基酸殘基。在此方面,重要的是要注意此等長度範圍僅針對抗原決定基序列,但不包括連接子,包括肽連接子,例如半胱胺酸或甘胺酸或二聚體、三聚體、四聚體(或更長聚體)肽群,如CG或CG,或裂解位點,如組織蛋白酶裂解位點;或其組合(例如-NRRAC)。實例部分已經測試了抗原決定基之實例;自此等結果可看出,根據本發明之平台不限於任何特定的多肽。因此,實際上所有可能的抗原決定基均符合本發明之條件,包括此項技術中已知的彼等抗原決定基,尤其是已被描述為可整合至展現平台中的抗原決定基(例如連同「經典」載體分子或佐劑)。The polypeptide coupled to the CLEC according to the present invention is or comprises at least one B cell antigenic determinant or at least one T cell antigenic determinant. Preferably, the polypeptide coupled to the CLEC comprises a single B cell or T cell antigenic determinant (even in embodiments where more than one polypeptide is coupled to the CLEC polysaccharide backbone). Also as shown in the Examples section, the preferred length of the polypeptide is 5 to 29 amino acid residues, preferably 5 to 25 amino acid residues, more preferably 7 to 20 amino acid residues, even more preferably 7 to 15 amino acid residues, especially 7 to 13 amino acid residues. In this regard, it is important to note that these length ranges are for the epitope sequence only, but do not include linkers, including peptide linkers, such as cysteine or glycine or dimer, trimer, tetramer (or longer) peptide groups, such as CG or CG, or cleavage sites, such as a tissue protease cleavage site; or combinations thereof (e.g. -NRRAC). Examples of epitopes have been tested in the Examples section; as can be seen from these results, the platform according to the present invention is not limited to any particular polypeptide. Therefore, virtually all possible epitopes are eligible for the present invention, including those epitopes known in the art, in particular epitopes that have been described as being incorporable into display platforms (e.g. in conjunction with "classical" carrier molecules or adjuvants).

抗原決定基若能以基於目前先進技術的偶合方法偶合於活化的β-葡聚糖,包括醯肼介導之偶合、藉由異雙官能連接子(例如:BMPH、MPBH、EMCH、KMUH等)之偶合、咪唑介導之偶合、還原胺化、碳二亞胺偶合等(更多待補充),則該抗原決定基為特別較佳的。所使用的抗原決定基包含個別肽,可包含在肽或蛋白質中,或可在偶合於CLEC之前呈現為肽-蛋白質結合物。If the epitope can be coupled to activated β-glucan by coupling methods based on current advanced technology, including hydrazine-mediated coupling, through heterobifunctional linkers (for example: BMPH, MPBH, EMCH, KMUH, etc.) Coupling, imidazole-mediated coupling, reductive amination, carbodiimide coupling, etc. (more to be added), then this epitope is particularly preferred. The epitopes used comprise individual peptides, may be contained within a peptide or protein, or may be presented as a peptide-protein conjugate prior to coupling to CLEC.

因此,用於提供根據本發明之結合物的較佳偶合方法為醯肼偶合或使用硫酯形成之偶合(例如使用BMPH (N-β-順丁烯二醯亞胺基丙酸醯肼)、MPBH、EMCH、KMUH的順丁烯二醯亞胺偶合),特別言之,其中石耳多醣藉由腙的形成與BMPH偶合,而多肽藉由硫酯偶合。Therefore, preferred coupling methods for providing conjugates according to the present invention are hydrazine couplings or couplings using thioester formation (for example using BMPH (N-β-maleiminopropionic acid hydrazide), Maleimide coupling of MPBH, EMCH, KMUH), in particular, in which the polysaccharide is coupled to BMPH through the formation of hydrazone, and the polypeptide is coupled through the thioester.

在該實施例中,較佳提供具有兩個較佳連接子之多肽,例如用於腙偶合之醯肼多肽/抗原決定基: 多肽N端偶合:H 2N-NH-CO-CH 2-CH 2-CO-多肽-COOH;較佳與丁二酸或替代的適合連接子組合,例如其他適合的二羧酸,尤其是用作間隔子/連接子的戊二酸; C端偶合(此為根據本發明之較佳偶合方向):NH 2-多肽-NH-NH 2In this embodiment, it is preferred to provide a polypeptide having two preferred linkers, such as hydrazide polypeptide/antigenic determinant for hydrazone coupling: N-terminal coupling of polypeptide: H2N -NH-CO- CH2 - CH2 -CO-polypeptide-COOH; preferably in combination with succinic acid or an alternative suitable linker, such as other suitable dicarboxylic acids, especially glutaric acid used as a spacer/linker; C-terminal coupling (this is the preferred coupling direction according to the present invention): NH2 -polypeptide-NH- NH2 .

或者,未修飾的多肽/抗原決定基可應用於本發明,例如在C或N端含有(額外)半胱胺酸殘基或SH基團的替代來源的多肽,用於異雙官能連接子介導之偶合(尤其是BMPH、MPBH、EMCH、KMUH):NH 2-Cys-Pep-COOH或NH 2-Pep-Cys-COOH)。 Alternatively, unmodified polypeptides/epitopes may be used in the present invention, e.g. polypeptides containing an (additional) cysteine residue at the C or N terminus or an alternative source of SH group for heterobifunctional linker-mediated coupling (especially BMPH, MPBH, EMCH, KMUH): NH2 -Cys-Pep-COOH or NH2 -Pep-Cys-COOH).

根據本發明所使用的B細胞多肽長度較佳為5至19個胺基酸殘基,更佳為6至18個胺基酸殘基,尤其是7至15個胺基酸殘基的多肽。B細胞抗原決定基較佳為短的線性多肽、糖多肽、脂多肽、其他轉譯後修飾多肽(例如:磷酸化、乙醯化、硝化、含有焦麩胺酸殘基、糖基化等)、環狀多肽等。The length of the B cell polypeptide used according to the present invention is preferably 5 to 19 amino acid residues, more preferably 6 to 18 amino acid residues, and especially 7 to 15 amino acid residues. The B cell antigen determinant is preferably a short linear polypeptide, a glycopeptide, a lipopeptide, other post-translationally modified polypeptides (e.g., phosphorylated, acetylated, nitrated, containing pyroglutamic acid residues, glycosylated, etc.), a cyclic polypeptide, etc.

較佳的B細胞抗原決定基為代表自體抗原的B細胞抗原決定基、代表腫瘤疾病中存在的抗原的B細胞抗原決定基、代表過敏性IgE介導之疾病中存在的抗原的B細胞抗原決定基、代表自體免疫疾病中存在的抗原的B細胞抗原決定基、代表感染性疾病中存在的抗原的B細胞抗原決定基、代表構形抗原決定基的B細胞抗原決定基、代表碳水化合物抗原決定基的B細胞抗原決定基、固定/偶合於形成適用於CLEC偶合的多價B細胞抗原決定基蛋白/多肽結合物的多肽或蛋白質的B細胞抗原決定基,該等結合物包括載體分子,如CRM197、KLH、破傷風類毒素或熟悉此項技術者已知的其他市售載體蛋白或載體、較佳為CRM197及KLH、最佳為CRM197;適合與石耳多醣/CLEC上存在的反應性醛基偶合的非肽原性抗原(包括線性多肽、代表構形抗原決定基的多肽、模擬抗原決定基或來自天然抗原決定基/序列的多肽變異體、糖多肽、脂多肽、其他轉譯後修飾肽(例如:磷酸化、乙醯化,含有焦麩胺酸殘基等),環狀多肽等)。Preferred B cell epitopes are B cell epitopes representing self-antigens, B cell epitopes representing antigens present in neoplastic diseases, B cell epitopes representing antigens present in allergic IgE-mediated diseases, B cell epitopes representing antigens present in autoimmune diseases, B cell epitopes representing antigens present in infectious diseases, B cell epitopes representing conformational epitopes, B cell epitopes representing carbohydrate epitopes, polypeptides or proteins immobilized/coupled to form multivalent B cell epitope protein/polypeptide conjugates suitable for CLEC coupling B cell antigenic determinants, such conjugates include carrier molecules, such as CRM197, KLH, tetanus toxoid or other commercially available carrier proteins or carriers known to those skilled in the art, preferably CRM197 and KLH, and most preferably CRM197; non-peptide-derived antigens suitable for coupling with reactive aldehyde groups present on Pyricularia auriculariae polysaccharide/CLEC (including linear polypeptides, polypeptides representing conformational antigenic determinants, polypeptide variants mimicking antigenic determinants or derived from natural antigenic determinants/sequences, glycopeptides, lipopeptides, other post-translationally modified peptides (e.g., phosphorylated, acetylated, containing pyroglutamic acid residues, etc.), cyclic polypeptides, etc.).

根據本發明所使用的T細胞多肽之長度較佳為8至30個胺基酸殘基,更佳為13至29個胺基酸殘基,尤其是13至28個胺基酸殘基。The length of the T cell polypeptide used according to the present invention is preferably 8 to 30 amino acid residues, more preferably 13 to 29 amino acid residues, especially 13 to 28 amino acid residues.

用於本發明之T細胞抗原決定基的較佳特異性為適合或已知適合藉由MHC I及II呈遞的短線性肽(如熟悉此項技術者所知),尤其是CD4效應T細胞及CD4 Treg細胞之MHCII抗原決定基、細胞毒性T細胞(CD8+)及CD8 Treg細胞之MHCI抗原決定基,其例如可以在人類或動物中的癌症、自體免疫或感染性疾病具有已知功效;適合藉由MHC I及II呈遞的短線性肽(如熟悉此項技術者所知),其在N或C端附加一溶酶體蛋白酶裂解位點,尤其是組織蛋白酶家族成員特異性位點,更尤其是半胱胺酸組織蛋白酶,如組織蛋白酶B、C、F、H、K、L、O、S、V、X及W,尤其是組織蛋白酶S或L位點,最佳為組織蛋白酶L裂解位點,其促進呈遞MHC的肽之有效內切/溶酶體釋放,尤其是在人類或動物中具有已知功效的MHCII。各種蛋白質中之組織蛋白酶裂解位點已被鑑別且為此項技術中眾所周知的。此包括揭示此類序列或鑑別此類序列的方法:例如:Biniossek等人, J. Proteome Res. 2011, 10, 12, 5363-5373;Adams-Cioaba等人, Nature Comm. 2011, 2:197;Ferrall-Fairbanks PROTEIN SCIENCE 2018 VOL 27:714—724;Kleine-Weber等人, Scientific Reports (2018) 8:1659, https://en.wikipedia.org/wiki/Cathepsin_S及其他。具體而言,使用如本發明所示之人工蛋白酶裂解位點對肽序列進行的調整係基於當抗原與CLEC偶合時,此等序列延伸在皮膚施用根據本發明之CLEC疫苗後引發更有效的免疫反應的意外作用。根據本發明之疫苗被DC吸收,肽抗原隨後被溶酶體處理並呈遞在MHC上。Preferred specificities for T cell epitopes for use in the present invention are short linear peptides that are suitable or known to be suitable for presentation by MHC I and II (as known to those skilled in the art), especially CD4 effector T cells and MHCII epitopes of CD4 Treg cells, MHCII epitopes of cytotoxic T cells (CD8+) and CD8 Treg cells, which may, for example, have known efficacy in cancer, autoimmune or infectious diseases in humans or animals; suitable Short linear peptides presented by MHC I and II (as known to those skilled in the art), which have a lysosomal protease cleavage site attached to the N or C terminus, especially a site specific for members of the cathepsin family, and more Especially cysteine cathepsins, such as cathepsins B, C, F, H, K, L, O, S, V, X and W, especially cathepsin S or L site, preferably cathepsin L Cleavage sites that promote efficient endo/lysosomal release of MHC-presenting peptides, especially MHCII with known efficacy in humans or animals. Cathepsin cleavage sites in various proteins have been identified and are well known in the art. This includes methods for revealing such sequences or identifying such sequences: for example: Biniossek et al., J. Proteome Res. 2011, 10, 12, 5363-5373; Adams-Cioaba et al., Nature Comm. 2011, 2:197; Ferrall-Fairbanks PROTEIN SCIENCE 2018 VOL 27:714—724; Kleine-Weber et al., Scientific Reports (2018) 8:1659, https://en.wikipedia.org/wiki/Cathepsin_S and others. Specifically, the adjustment of the peptide sequence using artificial protease cleavage sites as shown in the present invention is based on the fact that when the antigen is coupled to CLEC, these sequence extensions trigger more effective immunity after cutaneous application of the CLEC vaccine according to the present invention. Unexpected effects of reactions. The vaccine according to the invention is taken up by DC and the peptide antigen is subsequently processed by lysosomes and presented on the MHC.

溶酶體是在細胞內與細胞膜結合的胞器,其內部呈酸性且含有多種水解酶,包括參與細胞分解代謝的脂肪酶、蛋白酶及糖苷酶。在溶酶體所含的各種酶中,組織蛋白酶是一具有廣泛功能的溶酶體蛋白酶家族。所有組織蛋白酶均屬於三個不同的蛋白酶家族:絲胺酸蛋白酶(組織蛋白酶A及G)、天門冬胺酸蛋白酶(組織蛋白酶D及E)及十一種半胱胺酸組織蛋白酶。在人類中,已知有11種半胱胺酸組織蛋白酶亦具有與木瓜蛋白酶相似的結構:組織蛋白酶B、C(J、二肽基肽酶I或DPPI)、F、H、K(O2)、L、O、S、V(L2),X(P,Y,Z)及W(淋巴蛋白酶)。Lysosomes are organelles bound to the cell membrane within cells. Their interior is acidic and contains a variety of hydrolases, including lipases, proteases and glycosidases that participate in cell catabolism. Among the various enzymes contained in lysosomes, cathepsins are a family of lysosomal proteases with a wide range of functions. All cathepsins belong to three different protease families: serine proteases (cathepsins A and G), aspartic proteases (cathepsins D and E), and eleven cysteine cathepsins. In humans, 11 cysteine cathepsins are known to have structures similar to papain: cathepsins B, C (J, dipeptidyl peptidase I or DPPI), F, H, K (O2) , L, O, S, V (L2), X (P, Y, Z) and W (lymphase).

組織蛋白酶在其細胞定位及生物合成方面表現出相似性,但在其表現模式上存在一些差異。在所有溶酶體蛋白酶中,組織蛋白酶L、B及D含量最高,其溶酶體濃度相當於1mM。組織蛋白酶B、H、L、C、X、V及O在各細胞中均有表現,而組織蛋白酶K、S、E及W則顯示出細胞或組織特異性表現。組織蛋白酶K在破骨細胞及上皮細胞中表現。組織蛋白酶S、E及W則主要在免疫細胞中表現。Cathepsins show similarities in their cellular localization and biosynthesis, but there are some differences in their expression patterns. Of all the lysosomal proteases, cathepsins L, B, and D are the most abundant, with lysosomal concentrations equivalent to 1 mM. Cathepsins B, H, L, C, X, V, and O are expressed in all cells, while cathepsins K, S, E, and W show cell- or tissue-specific expression. Cathepsin K is expressed in osteoclasts and epithelial cells. Cathepsins S, E, and W are mainly expressed in immune cells.

除了在溶酶體蛋白循環中的主要功能外,組織蛋白酶在各種生理過程中亦發揮著重要作用。組織蛋白酶S是參與MHC II Ag加工及呈遞的主要蛋白酶。組織蛋白酶S缺失的小鼠在與MHC II結合的li片段的生成及呈現方面表現出顯著差異,此是由於在組織蛋白酶S大量表現的專業APC中li降解顯著減少。此外,內吞作用將外源物質選擇性地靶向人類DC中的組織蛋白酶S。在組織蛋白酶S缺陷的小鼠的脾臟DC中亦一直注意到晚期內吞結構中MHC II分子的富集。最近的研究表明,組織蛋白酶B及D均參與其中,但對於MHC II介導的Ag呈遞亦不是必需的。組織蛋白酶L亦在多種細胞過程中發揮作用,包括抗原加工、腫瘤侵襲及轉移、骨吸收以及參與生長調節的細胞內及分泌蛋白的周轉。雖然普遍被認為為一種溶酶體蛋白酶,但組織蛋白酶L亦被分泌。此廣譜蛋白酶可有效降解多種細胞外蛋白(層黏連蛋白、纖連蛋白、膠原蛋白I及IV、彈性蛋白及基底膜的其他結構蛋白)以及血清蛋白及細胞質及核蛋白。In addition to its main function in lysosomal protein recycling, cathepsins also play an important role in various physiological processes. Cathepsin S is the main protease involved in MHC II Ag processing and presentation. Cathepsin S-deficient mice show significant differences in the production and presentation of MHC II-bound Li fragments, due to significantly reduced Li degradation in professional APCs where cathepsin S is abundantly expressed. Furthermore, endocytosis selectively targets exogenous substances to cathepsin S in human DCs. Enrichment of MHC II molecules in late endocytic structures has also been consistently noted in splenic DCs from cathepsin S-deficient mice. Recent studies have shown that both cathepsins B and D are involved but are not required for MHC II-mediated Ag presentation. Cathepsin L also plays a role in a variety of cellular processes, including antigen processing, tumor invasion and metastasis, bone resorption, and the turnover of intracellular and secreted proteins involved in growth regulation. Although generally considered a lysosomal protease, cathepsin L is also secreted. This broad-spectrum protease can effectively degrade a variety of extracellular proteins (laminin, fibronectin, collagen I and IV, elastin and other structural proteins of the basement membrane) as well as serum proteins and cytoplasmic and nuclear proteins.

作為強化疫苗中,尤其是基於CLEC之疫苗中之T細胞抗原決定基功效的新穎手段,溶酶體蛋白酶裂解位點之N端或C端添加作為本發明之一較佳實施例提供。As a novel means to enhance the efficacy of T cell antigenic determinants in vaccines, especially in CLEC-based vaccines, the N-terminal or C-terminal addition of lysosomal protease cleavage sites is provided as a preferred embodiment of the present invention.

根據本發明之該等裂解位點之特徵可如下: 組織蛋白酶L樣裂解位點: 既定組織蛋白酶L樣裂解位點係基於熟習此項技術者已知之蛋白酶裂解位點序列定義,特定言之,亦如Biniossek等人(J. Proteome Res. 2011, 10, 5363-5373)及Adams-Cioaba等人(Nature Comm. 2011, 2:197)中所揭示的序列。位點之定向可為N端或C端,較佳為C端。C端組織蛋白酶L位點之較佳共同序列由下式組成: X n-X 1-X 2-X 3-X 4-X 5-X 6-X 7-X 8X n:來自免疫原性肽之3-27個胺基酸 X 1:任何胺基酸 X 2:任何胺基酸 X 3:任何胺基酸 X 4:N/D/A/Q/S/R/G/L;較佳為N/D,更佳為N X 5:F/R/A/K/T/S/E;較佳為F或R,更佳為R X 6:F/R/A/K/V/S/Y;較佳為F或R,更佳為R X 7:任何胺基酸,較佳為A/G/P/F,更佳為A X 8:半胱胺酸或連接子,如NHNH 2最佳序列:X n-X 1X 2X 3NRRA-連接子 組織蛋白酶S樣裂解位點: 既定組織蛋白酶S裂解位點係基於熟習此項技術者已知之蛋白酶裂解位點序列,特定言之,亦如Biniossek等人(J. Proteome Res. 2011, 10, 5363-5373)及https://en.wikipedia.org/wiki/Cathepsin_S中所揭示的序列,且由以下共同序列表徵: X n-X 1-X 2-X 3-X 4-X 5-X 6-X 7-X 8其中X特徵在於 X n:來自免疫原性肽之3-27個胺基酸 X 1:任何胺基酸 X 2:任何胺基酸 X 3:任何胺基酸,較佳為V、L、I、F、W、Y、H,更佳為V X 4:任何胺基酸,較佳為V、L、I、F、W、Y、H,更佳為V X 5:K、R、E、D、Q、N,較佳為K、R,更佳為R X 6:任何胺基酸 X 7:任何胺基酸,較佳為A X 8:較佳為A X 8:半胱胺酸或連接子,如NHNH 2最佳序列:X n-X 1X 2VVRAA-連接子 Characteristics of such cleavage sites according to the present invention may be as follows: Cathepsin L-like cleavage site: A given cathepsin L-like cleavage site is defined based on protease cleavage site sequences known to those skilled in the art, in particular, Also as disclosed in Biniossek et al. (J. Proteome Res. 2011, 10, 5363-5373) and Adams-Cioaba et al. (Nature Comm. 2011, 2:197). The orientation of the site can be N-terminal or C-terminal, preferably C-terminal. The preferred consensus sequence of the C-terminal cathepsin L site is composed of the following formula: X n -X 1 -X 2 -X 3 -X 4 -X 5 -X 6 -X 7 -X 8 X n : from immunogenicity 3-27 amino acids of the peptide X 1 : any amino acid X 2 : any amino acid X 3 : any amino acid X 4 : N/D/A/Q/S/R/G/L; more Preferably N/D, preferably N X 5 : F/R/A/K/T/S/E; preferably F or R, preferably R /Y; preferably F or R, more preferably R X 7 : Any amino acid, preferably A/G/P/F, more preferably A X 8 : Cysteine or linker, such as NHNH 2 Optimal sequence: X n -X 1 Also as the sequence disclosed in Biniossek et al. (J. Proteome Res. 2011, 10, 5363-5373) and https://en.wikipedia.org/wiki/Cathepsin_S, and is characterized by the following common sequence: X n -X 1 -X 2 -X 3 -X 4 -X 5 -X 6 -X 7 -X 8 where X is characterized by X n : 3-27 amino acids from the immunogenic peptide X 1 : any amino acid X 2 : Any amino acid X 3 : Any amino acid, preferably V, L, I, F, W, Y, H, more preferably V X 4 : Any amino acid, preferably V, L, I , F, W, Y, H, preferably V X 5 : K, R, E, D, Q, N, preferably K, R, more preferably R X 6 : any amino acid X 7 : any amino group Acid , preferably A

T細胞抗原決定基包含於適合與CLEC偶合之蛋白質內,包括載體蛋白,尤其是白喉毒素之無毒交叉反應物質(CRM),尤其是CRM197、KLH、白喉類毒素(DT)、破傷風類毒素(TT)、流感嗜血桿菌蛋白D (HipD)及腦膜炎球菌血清群B之外膜蛋白質複合體(OMPC)、銅綠假單胞菌外毒素A之重組無毒形式( rEPA)、鞭毛蛋白、大腸桿菌熱不穩定腸毒素(LT)、霍亂毒素(CT)、突變毒素(例如LTK63及LTR72)、病毒樣顆粒、白蛋白結合蛋白、牛血清白蛋白、卵白蛋白、合成肽樹枝狀聚合物,例如,多抗原肽(MAP)或其他市售載體蛋白,較佳為CRM197及KLH,最佳為CRM197,較佳地,其中結合物中載體蛋白與β-葡聚糖之比率為1/0.1至1/50、較佳為1/0.1至1/40、更佳為1/0.1至1/20,尤其是1/0.1至1/10。 The T cell antigen determinant is contained in a protein suitable for coupling to CLEC, including a carrier protein, in particular a non-toxic cross-reactive material (CRM) of diphtheria toxin, in particular CRM197, KLH, diphtheria toxoid (DT), tetanus toxoid (TT), Haemophilus influenzae protein D (HipD) and the outer membrane protein complex of meningococcal serogroup B (OMPC), a recombinant non-toxic form of Pseudomonas aeruginosa exotoxin A ( r EPA), flagellin, Escherichia coli heat-labile enterotoxin (LT), cholera toxin (CT), mutant toxins (e.g., LTK63 and LTR72), virus-like particles, albumin-binding protein, bovine serum albumin, ovalbumin, synthetic peptide dendrimers, e.g., multiple antigenic peptides (MAP) or other commercially available carrier proteins, preferably CRM197 and KLH, most preferably CRM197, preferably, wherein the ratio of the carrier protein to the β-glucan in the conjugate is 1/0.1 to 1/50, preferably 1/0.1 to 1/40, more preferably 1/0.1 to 1/20, especially 1/0.1 to 1/10.

根據本發明之較佳實施例,根據本發明之CLEC結合物包含(a)與個別B細胞及/或T細胞抗原決定基結合的CLEC,包括B細胞或T細胞抗原決定基的混合物,尤其是與石耳多醣偶合的此等抗原決定基;(b)與多肽-載體蛋白結合物結合的CLEC,較佳為與石耳多醣偶合的多肽-KLH或多肽CRM197結合物,最佳為與石耳多醣偶合的多肽-CRM197結合物;(c)與來自自體蛋白(癌症)或病原體(感染性疾病)的個別B及T細胞抗原決定基結合的CLEC,CLEC不是與混雜MHC/HLA特異性T細胞抗原決定基結合,而是與已知疾病特異性T細胞抗原決定基結合,最佳為與石耳多醣偶合的CLEC;(d)與包含在多肽或蛋白質,例如載體蛋白、自體蛋白、來自病原體的外來蛋白、過敏原等中的B細胞抗原決定基及T細胞抗原決定基獨立偶合的CLEC (此處「獨立」指多肽鏈不以融合蛋白、串聯重複多肽或肽-蛋白質結合物存在,而是以獨立實體存在;即一獨立的含有B細胞抗原決定基的多肽及一獨立的含有T細胞抗原決定基的多肽);(e)與代表線性MHCI及MHCII抗原決定基或包含在蛋白質中,例如載體蛋白或目標蛋白中的T細胞抗原決定基獨立偶合的CLEC (「獨立」,具有與(d)相同的含義),例如用於治療腫瘤疾病或自體免疫疾病。According to a preferred embodiment of the present invention, the CLEC conjugate according to the present invention comprises (a) CLEC conjugated to individual B cell and/or T cell antigenic determinants, including a mixture of B cell or T cell antigenic determinants, especially such antigenic determinants coupled to Psoralea corylifolia polysaccharide; (b) CLEC conjugated to a polypeptide-carrier protein conjugate, preferably a polypeptide-KLH or polypeptide CRM197 conjugate coupled to Psoralea corylifolia polysaccharide, and most preferably a polypeptide-CRM197 conjugate coupled to Psoralea corylifolia polysaccharide; (c) CLEC conjugated to a polypeptide-carrier protein conjugate, preferably a polypeptide-KLH or polypeptide CRM197 conjugate coupled to Psoralea corylifolia polysaccharide, and most preferably a polypeptide-CRM197 conjugate coupled to Psoralea corylifolia polysaccharide; CLECs that bind to individual B and T cell epitopes of self-proteins (cancer) or pathogens (infectious diseases). CLECs that bind to known disease-specific T cell epitopes instead of promiscuous MHC/HLA-specific T cell epitopes, preferably CLECs coupled to Psoralea corylifolia polysaccharide; (d) CLECs that independently couple to B cell epitopes and T cell epitopes contained in polypeptides or proteins, such as carrier proteins, self-proteins, foreign proteins from pathogens, allergens, etc. (Here, "independent" means that the polypeptide chain does not exist as a fusion protein, a tandem repeat polypeptide or a peptide-protein conjugate, but exists as an independent entity; i.e., an independent polypeptide containing a B cell antigenic determinant and an independent polypeptide containing a T cell antigenic determinant); (e) CLECs independently coupled to T cell antigenic determinants representing linear MHC I and MHC II antigenic determinants or contained in proteins such as carrier proteins or target proteins ("independent", has the same meaning as (d)), for example, for the treatment of tumor diseases or autoimmune diseases.

鑒於本發明結合物之此等有利特性,因此根據本發明之結合物及疫苗可特定用於主動抗Aβ、抗Tau及/或抗α突觸核蛋白疫苗,用於治療及預防β-澱粉樣變性、tau蛋白病變或突觸核蛋白病變,較佳為帕金森氏症(PD)、路易氏體癡呆(DLB)、多發性系統萎縮症(MSA)、帕金森氏症癡呆(PDD)、神經軸索性營養不良、阿茲海默症(AD)、伴隨杏仁核受限路易氏體之AD (AD/ALB)、唐氏症候群中之癡呆、匹克氏病、進行性核上麻痹(PSP)、皮質基底核退化症、17號染色體相關額顳葉型癡呆及帕金森氏症(FTDP-17)及嗜銀顆粒病。In view of these favorable properties of the conjugates of the present invention, the conjugates and vaccines according to the present invention can be specifically used as active anti-Aβ, anti-Tau and/or anti-α-synuclein vaccines for the treatment and prevention of β-amyloidosis, tauopathy or synucleinopathy, preferably Parkinson's disease (PD), dementia with Lewy bodies (DLB), multiple system atrophy (MSA), Parkinson's disease dementia (PDD), axonal dystrophy, Alzheimer's disease (AD), AD with restricted Lewy bodies in the amygdala (AD/ALB), dementia in Down syndrome, Pick's disease, progressive supranuclear palsy (PSP), corticobasal degeneration, frontotemporal dementia and parkinsonism related to chromosome 17 (FTDP-17), and argyrophilic granulopathy.

因此,根據本發明之結合物可特定用於預防或治療例如人類、哺乳動物或鳥類中的疾病,尤其用於治療及預防人類疾病。因此,本發明之一個態樣為本發明結合物在醫學領域中作為醫學指示的用途。本發明關於根據本發明之結合物用於治療或預防疾病。因此,本發明亦關於根據本發明之結合物在製造供用於預防或治療疾病,較佳用於預防或治療感染性疾病、慢性疾病、過敏性反應或自體免疫疾病的藥劑中的用途。因此,本發明亦關於一種預防或治療疾病,較佳用於預防或治療感染性疾病、慢性疾病、過敏性反應或自體免疫疾病的方法,其中向有需要的患者投予有效量之根據本發明之結合物。Therefore, the conjugates according to the present invention can be used specifically for the prevention or treatment of diseases in humans, mammals or birds, for example, and in particular for the treatment and prevention of human diseases. Therefore, one aspect of the present invention is the use of the conjugates according to the present invention as a medical indication in the medical field. The present invention relates to the use of the conjugates according to the present invention for the treatment or prevention of diseases. Therefore, the present invention also relates to the use of the conjugates according to the present invention in the manufacture of a medicament for the prevention or treatment of diseases, preferably for the prevention or treatment of infectious diseases, chronic diseases, allergic reactions or autoimmune diseases. Therefore, the present invention also relates to a method for the prevention or treatment of diseases, preferably for the prevention or treatment of infectious diseases, chronic diseases, allergic reactions or autoimmune diseases, wherein an effective amount of the conjugates according to the present invention is administered to a patient in need thereof.

根據另一態樣,根據本發明之新穎糖結合物可用於預防感染性疾病;較佳限制條件為藉由提供(1,6)偶合之單醣部分與非β-(1,6)偶合之單醣部分之比率為至少1:1的主要呈線性的β-(1,6)-葡聚糖作為抗原(最終偶合於載體蛋白)來預防或治療由真菌,尤其是白色念珠菌直接或間接引起的疾病的用途被排除在外。此類疾病為例如微生物感染,例如由b型流感嗜血桿菌(Hib)、肺炎鏈球菌、腦膜炎鏈球菌及傷寒沙門氏菌或其他感染原引起。According to another aspect, the novel glycoconjugates according to the present invention can be used to prevent infectious diseases; preferably by providing (1,6) coupled monosaccharide moieties with non-β-(1,6) coupled monosaccharide moieties. Predominantly linear beta-(1,6)-glucan with a ratio of monosaccharide moieties of at least 1:1 as an antigen (eventually coupled to a carrier protein) for the prevention or treatment of direct or indirect diseases caused by fungi, especially Candida albicans Uses causing illness are excluded. Such diseases are, for example, microbial infections caused, for example, by Haemophilus influenzae type b (Hib), Streptococcus pneumoniae, Streptococcus meningitidis and Salmonella typhi or other infectious agents.

根據另一態樣,本發明亦關於包含如上所定義的結合物或疫苗及醫藥學上可接受之載體的醫藥組合物。According to another aspect, the present invention also relates to a pharmaceutical composition comprising a conjugate or vaccine as defined above and a pharmaceutically acceptable carrier.

較佳地,醫藥學上可接受之載體為緩衝液,較佳為磷酸鹽或基於TRIS之緩衝液。Preferably, the pharmaceutically acceptable carrier is a buffer, preferably a phosphate or TRIS-based buffer.

根據本發明之一較佳實施例,醫藥組合物係包含在基於針之遞送系統中,較佳為注射器、微型針系統、空心針系統、實心微針系統或包含針配接器之系統;安瓿、無針注射系統,較佳為噴射注射器;貼劑、經皮貼劑、微結構經皮系統、微針陣列貼劑(MAP)(較佳為固體MAP(S-MAP)、包衣MAP(C-MAP)或溶解MAP(D-MAP));電泳系統、離子電泳系統、基於雷射之系統,尤其是鉺YAG雷射系統;或基因槍系統。根據本發明之結合物不限於任何形式之製造、儲存或遞送狀態。因此,所有傳統及典型的形式均適用於本發明。較佳地,根據本發明之組合物可包含呈溶液或懸浮液、深度冷凍溶液或懸浮液、凍乾物、粉劑或顆粒之本發明結合物或疫苗。本發明藉由以下實例及附圖進一步說明,但不侷限於此。According to a preferred embodiment of the invention, the pharmaceutical composition is contained in a needle-based delivery system, preferably a syringe, a microneedle system, a hollow needle system, a solid microneedle system or a system including a needle adapter; ampoule , needle-free injection system, preferably a jet injector; patch, transdermal patch, microstructured transdermal system, microneedle array patch (MAP) (preferably solid MAP (S-MAP), coated MAP ( C-MAP) or dissolved MAP (D-MAP)); electrophoresis systems, ion electrophoresis systems, laser-based systems, especially erbium YAG laser systems; or gene gun systems. Conjugates according to the invention are not limited to any form of manufacture, storage or delivery. Therefore, all traditional and typical forms are suitable for use in the present invention. Preferably, the composition according to the invention may comprise the conjugate or vaccine of the invention in the form of a solution or suspension, a deep-frozen solution or suspension, a lyophilisate, a powder or a granule. The present invention is further illustrated by the following examples and drawings, but is not limited thereto.

實例 材料及方法 1) CLEC/ 葡聚糖骨架的氧化 Examples : Materials and Methods 1) Oxidation of CLEC/ dextran backbone

為了形成疫苗結合物,需要對多醣,尤其是亦對CLEC/β-葡聚糖進行化學修飾,以生成可用於連接蛋白質/肽之反應基團。多醣活化之兩種常用方法為鄰位羥基處的過碘酸鹽氧化以及羥基的氰基化。活化多醣的其他方法為可能的且為此項技術所眾所周知的。本實例部分中顯示的實例係使用溫和的過碘酸鹽氧化。In order to form vaccine conjugates, polysaccharides, especially CLEC/β-glucan, need to be chemically modified to generate reactive groups that can be used to link proteins/peptides. Two common methods for polysaccharide activation are periodate oxidation at the ortho-hydroxyl group and cyanation of the hydroxyl group. Other methods of activating polysaccharides are possible and well known in the art. The example shown in this Examples section uses mild periodate oxidation.

根據其溶解度,CLEC及β-葡聚糖(例如甘露多醣、地衣聚糖、石耳多醣或來自大麥的β-葡聚糖)在水溶液或DMSO中使用過碘酸鹽氧化進行氧化。Depending on their solubility, CLEC and β-glucans (such as mannan, lichenan, phyllan or β-glucan from barley) are oxidized using periodate oxidation in aqueous solution or DMSO.

基於以1:5 (即20%氧化)至2,6:1的莫耳比(過碘酸鹽:糖次單元;100%=1莫耳過碘酸鹽/莫耳糖單體)添加過碘酸鹽溶液來預先確定氧化度(260%氧化度)。Based on molar ratios (periodate: sugar subunit; 100% = 1 mole of periodate/moles of sugar monomer) of 1:5 (i.e. 20% oxidation) to 2,6:1 iodate solution to predetermine the degree of oxidation (260% oxidation degree).

簡言之,以1:5至2.6:1的莫耳比(過碘酸鹽:糖次單元,對應於20%及260%的氧化度)添加過碘酸鈉以打開鄰位二醇之間的β-葡聚糖的呋喃糖環,留下兩個醛基作為後續偶合反應的受質。添加10% (v/v)的2-丙醇作為自由基清除劑。將反應在黑暗中在迴轉式震盪器(1000rpm)上室溫培育4小時。隨後,使用截止值為20kDa的Slide-A-Lyzer™ (ThermoScientific)或Pur-A-Lyzer™ (Sigma Aldrich)盒將氧化葡聚糖及水透析3次,以移除(過)碘酸鈉及低分子量葡聚糖雜質。透析後的葡聚糖可直接進行肽結合反應或儲存在-20℃或凍乾且儲存在4℃以供進一步使用。 2) WISIT 疫苗之結合 2a. 藉由腙形成 Briefly, sodium periodate was added at a molar ratio of 1:5 to 2.6:1 (periodate:sugar subunit, corresponding to 20% and 260% oxidation degrees) to open the furanose ring of β-glucan between vicinal diols, leaving two aldehyde groups as substrates for subsequent coupling reactions. 10% (v/v) 2-propanol was added as a free radical scavenger. The reaction was incubated at room temperature for 4 hours in the dark on an orbital shaker (1000 rpm). Subsequently, the oxidized dextran was dialyzed three times against water using a Slide-A-Lyzer™ (ThermoScientific) or Pur-A-Lyzer™ (Sigma Aldrich) cassette with a cutoff of 20 kDa to remove sodium (periodate) and low molecular weight dextran impurities. The dialyzed dextran can be directly used for peptide conjugation reaction or stored at -20°C or freeze-dried and stored at 4°C for further use. 2) Conjugation of WISIT vaccine 2a. Formation by hydrazone

多肽在N或C端包含一個醯肼基團用於醛偶合。在偶合方向意欲藉由所選肽之N端偶合至葡聚糖部分之醛基之情況下,該肽被設計為包含適合的連接子/間隔子,例如丁二酸。或者,完整蛋白質(例如:CRM197)亦已被用於葡聚糖偶合。The peptide contains a hydrazine group at the N or C terminus for aldehyde coupling. Where the direction of coupling is intended to be via the N-terminus of the selected peptide to the aldehyde group of the dextran moiety, the peptide is designed to contain a suitable linker/spacer, such as succinic acid. Alternatively, intact proteins (eg CRM197) have been used for dextran coupling.

此類肽之典型實例:肽之N端偶合:H 2N-NH-CO-CH 2-CH 2-CO-多肽-COOH;C端偶合:NH 2-多肽-NH-NH 2Typical examples of this type of peptide: N-terminal coupling of the peptide: H 2 N-NH-CO-CH 2 -CH 2 -CO-polypeptide-COOH; C-terminal coupling: NH 2- polypeptide-NH-NH 2 .

對於偶合,將活化之葡聚糖溶液(即經氧化之石耳多醣)與溶解的醯肼修飾肽或完整蛋白質(例如:CRM197)在偶合緩衝液(取決於肽之等電點,可擇一使用pH 5.4的乙酸鈉緩衝液或中性pH (6.8)下之DMEDA)中攪拌。肽中的游離醯肼基團與醛基反應形成腙鍵,形成最終的結合物。對於蛋白質來說,與活化葡聚糖的偶合係基於離胺酸殘基的胺基在氰基硼氫化鈉存在下與葡聚糖部分上的活性醛發生反應。For coupling, an activated dextran solution (i.e., oxidized acanthus polysaccharide) is mixed with a dissolved chelazine-modified peptide or intact protein (e.g., CRM197) in a coupling buffer (either depending on the isoelectric point of the peptide). Stir in sodium acetate buffer pH 5.4 or DMEDA at neutral pH (6.8). The free hydrazine group in the peptide reacts with the aldehyde group to form a hydrazone bond, forming the final conjugate. For proteins, coupling to activated dextran is based on the reaction of the amine group of the lysine residue with an active aldehyde on the dextran moiety in the presence of sodium cyanoborohydride.

隨後,藉由在硼酸鹽緩衝液(pH 8.5)中加入硼氫化鈉來還原結合物。該步驟將肼鍵還原為穩定的二級胺,且將糖骨架中未反應的醛基轉化為一級醇。結合物中的碳水化合物濃度使用蒽酮法估計,肽濃度藉由UV光譜法估計或藉由胺基酸分析估計。 2b. 使用異雙官能連接子偶合 The conjugate is then reduced by the addition of sodium borohydride in borate buffer (pH 8.5). This step reduces the hydrazine bond to a stable diamine and converts unreacted aldehyde groups in the sugar backbone to primary alcohols. The carbohydrate concentration in the conjugate is estimated using the anthrone method, and the peptide concentration is estimated by UV spectroscopy or by amino acid analysis. 2b. Coupling using a heterobifunctional linker

所應用的第二種結合技術依賴於異雙官能連接子(例如:BMPH (N-β-順丁烯二醯亞胺基丙酸醯肼、MPBH (4-[4-N-順丁烯二醯亞胺基苯基]丁酸醯肼)、EMCH (N-[ε-順丁烯二醯亞胺基己酸)醯肼)或KMUH (N-[κ-順丁烯二醯亞胺基十一酸]醯肼)短順丁烯二醯亞胺及醯肼交聯劑,用於將巰基(半胱胺酸)與羰基(醛)結合。The second conjugation technology applied relies on heterobifunctional linkers (e.g.: BMPH (N-β-maleyl iminopropionic acid hydrazide), MPBH (4-[4-N-maleyl dihydrazide)). acylimidophenyl]butyric acid hydrazine), EMCH (N-[ε-maleyl iminocaproic acid) hydrazine) or KMUH (N-[κ-maleyl iminocaproic acid) hydrazine Undecanoic acid] hydrazine) short maleic imine and hydrazine cross-linking agent, used to combine sulfhydryl (cysteine) and carbonyl (aldehyde) groups.

多肽在N或C端包含半胱胺酸(Cys),用於順丁烯二醯亞胺偶合。此類肽之典型實例:肽之N端偶合:Cys-肽-COOH;C端偶合:NH 2-Pept-Cys-COOH。 The peptide contains cysteine (Cys) at the N or C terminus for maleimide coupling. Typical examples of such peptides: N-terminal coupling of peptide: Cys-peptide-COOH; C-terminal coupling: NH 2 -Pept-Cys-COOH.

對於偶合,活化葡聚糖溶液(即,經氧化之石耳多醣)與BMPH經隔夜反應(比率為1:1比率(w/w)至2:1比率BMPH:石耳多醣),隨後用PBS透析3次。然後將BMPH活化之葡聚糖與溶解的Cys修飾之多肽在偶合緩衝液(例如磷酸鹽緩衝鹽水,PBS)中混合。順丁烯二醯亞胺基與肽中的巰基反應形成穩定的硫醚鍵,且與連接子與反應性醛之間形成的腙一起產生穩定的結合物。使用蒽酮法估計結合物中的碳水化合物濃度,且藉由胺基酸分析或使用埃爾曼試劑(5,5'-二硫代雙-(2-硝基苯甲酸),DTNB)進行埃爾曼分析以測定多肽濃度。DTNB與巰基反應生成有色產物,為藉由分光光度法量測溶液中還原的半胱胺酸及其他游離巰基提供了可靠的方法(λmax=412 nm;ε=14,150/M·cm)。 2c) 多肽 KLH/CRM 結合 For coupling, an activated dextran solution (i.e., oxidized phylloxanthin) was reacted with BMPH overnight (in a ratio of 1:1 ratio (w/w) to a 2:1 ratio of BMPH:phenylalanine polysaccharide) followed by PBS Dialysis 3 times. The BMPH-activated dextran is then mixed with the solubilized Cys-modified polypeptide in a coupling buffer (eg, phosphate buffered saline, PBS). The maleimide group reacts with the sulfhydryl group in the peptide to form a stable thioether bond, and together with the hydrazone formed between the linker and the reactive aldehyde, produces a stable conjugate. The carbohydrate concentration in the conjugate was estimated using the anthrone method and analyzed by amino acid analysis or using Ellman's reagent (5,5'-dithiobis-(2-nitrobenzoic acid), DTNB). Mann analysis to determine peptide concentration. DTNB reacts with sulfhydryl groups to produce colored products, which provides a reliable method for measuring reduced cysteine and other free sulfhydryl groups in solutions through spectrophotometry (λmax=412 nm; ε=14,150/M·cm). 2c) Peptide KLH/CRM binding

藉由使用異雙官能交聯劑GMBS或SMCC (Thermo Fisher),將多肽(含有N或C端Cys殘基,見上文)與載體CRM-197 (例如:EcoCRM、Fina Biosolutions)或KLH(Sigma Aldrich)偶合。簡言之,CRM-197/KLH在室溫下與過量的GMBS或SMCC(根據製造商的方案)混合以進行活化,然後藉由脫鹽柱離心移除過量的GMBS,再將過量的肽添加至活化之載體中用於偶合(緩衝液:200mM磷酸鈉(pH=6.8)),隨後用PBS透析3次。藉由用於定量溶液中的游離巰基之埃爾曼測定(埃爾曼試劑:5,5'-二硫代-雙-(2-硝基苯甲酸))評定偶合功效/肽含量。多肽CRM-197/KLH結合物進一步與Alum (Alhydrogel®佐劑2%)調配且皮下施用於動物。當將CRM-197/KLH疫苗與根據本發明之其他疫苗進行比較時,每隻小鼠注射相同量的結合多肽。 2d) 使用多肽、 KLH/CRM197 及葡聚糖形成葡萄糖新結合物 By using the heterobifunctional cross-linker GMBS or SMCC (Thermo Fisher), the peptide (containing N- or C-terminal Cys residues, see above) is combined with the carrier CRM-197 (e.g. EcoCRM, Fina Biosolutions) or KLH (Sigma Aldrich) coupling. Briefly, CRM-197/KLH was mixed with excess GMBS or SMCC (according to the manufacturer's protocol) at room temperature for activation, then excess GMBS was removed by centrifugation on a desalting column, and excess peptide was added to Activated carrier was used for coupling (buffer: 200mM sodium phosphate (pH=6.8)), followed by dialysis three times with PBS. Coupling efficacy/peptide content was assessed by the Ellman assay (Ellman's reagent: 5,5'-dithio-bis-(2-nitrobenzoic acid)) for quantification of free thiol groups in solution. The peptide CRM-197/KLH conjugate was further formulated with Alum (Alhydrogel® Adjuvant 2%) and administered subcutaneously to the animals. When comparing the CRM-197/KLH vaccine with other vaccines according to the invention, each mouse was injected with the same amount of binding polypeptide. 2d) Formation of new glucose conjugates using peptides, KLH/CRM197 and dextran

如2c)所述產生的多肽-KLH及多肽-CRM197結合物亦以不同的多肽-KLH及多肽-CRM197與葡聚糖的比率(即分別為1/1 (w/w)、1/2 (w/w)、1/5 (w/w)、1/10 (w/w)及1/20 (w/w))偶合於活化葡聚糖。在形成多肽結合物後,使用二硫蘇糖醇(DTT)還原Pep-KLH或Pep-CRM結合物。在存在過量的異雙官能連接子BMPH之情況下,還原的載體結合物與活化之葡聚糖偶合。藉由BMPH的順丁烯二醯亞胺基與還原的KLH或CRM197結合物之巰基殘基形成穩定的硫醚鍵,同時聚糖中的醛基與BMPH的醯肼基團實現偶合。在室溫下2小時後,藉由與氰基硼氫化鈉進行隔夜反應,將生成的腙還原為穩定的二級胺。隨後,使用Slide-A-Lyzer™ (ThermoScientific)或Pur-A-Lyzer™ (Sigma Aldrich)盒將新糖結合物用PBS或水透析3次以移除低分子量雜質(亦參見:實例23)。 3)CLEC 結合物活體外生物活性測定 The polypeptide-KLH and polypeptide-CRM197 conjugates produced as described in 2c) were also coupled to activated dextran at different ratios of polypeptide-KLH and polypeptide-CRM197 to dextran, i.e., 1/1 (w/w), 1/2 (w/w), 1/5 (w/w), 1/10 (w/w) and 1/20 (w/w), respectively. After the formation of the polypeptide conjugate, the Pep-KLH or Pep-CRM conjugate was reduced using dithiothreitol (DTT). The reduced carrier conjugate was coupled to activated dextran in the presence of an excess of the heterobifunctional linker BMPH. The cis-butylenediimide group of BMPH forms a stable thioether bond with the hydroxyl residue of the reduced KLH or CRM197 conjugate, while the aldehyde group in the glycan is coupled with the hydrazide group of BMPH. After 2 hours at room temperature, the generated hydrazone is reduced to a stable diamine by overnight reaction with sodium cyanoborohydride. Subsequently, the new sugar conjugate is dialyzed three times with PBS or water using a Slide-A-Lyzer™ (ThermoScientific) or Pur-A-Lyzer™ (Sigma Aldrich) cassette to remove low molecular weight impurities (see also: Example 23). 3) In vitro biological activity assay of CLEC conjugates

藉由如Korotchenko等人所述(2020)之使用可溶性鼠Fc-dectin-1a受體(InvivoGen)或ConA之ELISA分析甘露多醣及葡聚糖結合物之活體外生物活性。簡言之,ELISA盤塗有一參考葡聚糖(CLR-促效劑,CLEC),例如:石耳多醣、地衣多醣或甘露多醣,且與螢光標記之ConA(對於甘露多醣)或可溶性小鼠Fc-dectin-1a受體(對於石耳多醣及其他β-D-葡聚糖)發生反應,可偵測到藉由HRP標記之二級抗體。在競爭性ELISA中測試經氧化之碳水化合物以及葡萄糖複合體(逐漸增加CLEC的濃度或結合物被添加至用於分析的可溶性受體以減少受體與塗佈的CLEC的結合)以證明其功能。IC 50值用於確定生物活性(即:與未經氧化、非偶合配位體相比對可溶性受體的結合功效)。 4) 使用骨髓衍生之樹突狀細胞進行活化分析 The in vitro bioactivity of mannosan and glucan conjugates was analyzed by ELISA using soluble mouse Fc-dectin-1a receptor (InvivoGen) or ConA as described by Korotchenko et al. (2020). Briefly, ELISA plates were coated with a reference glucan (CLR-agonist, CLEC), such as pyralidin, lichenin, or mannosan, and reacted with fluorescently labeled ConA (for mannosan) or soluble mouse Fc-dectin-1a receptor (for pyralidin and other β-D-glucans), which was detected by HRP-labeled secondary antibodies. Oxidized carbohydrates and glucose complexes were tested in competitive ELISAs (increasing concentrations of CLEC or conjugates were added to the soluble receptors used in the assay to reduce receptor binding to coated CLEC) to demonstrate functionality. IC50 values were used to determine biological activity (i.e., binding efficacy to soluble receptors compared to non-oxidized, uncoupled ligand). 4) Activation assays using bone marrow-derived dendritic cells

骨髓衍生之樹突狀細胞(BMDC)自小鼠股骨及脛骨中採集,且與20 ng/mL小鼠GM-CSF(Immunotools)一起培育,如Korotchenko等人所述(2020),並進行了細微改動。藉由對CD11c +MHCII +CD11b intGM-CSF衍生的DC (GM-DC)進行FACS分析,評定了各種結合物以及陽性對照組(=LPS)對CD80及MHCII表現的影響。 5) 流體動力學半徑之測定 Bone marrow-derived dendritic cells (BMDC) were collected from mouse femurs and tibias and cultured with 20 ng/mL mouse GM-CSF (Immunotools) as described by Korotchenko et al. (2020), and were subjected to subtle Change. By performing FACS analysis on CD11c + MHCII + CD11b int GM-CSF-derived DC (GM-DC), the effect of various conjugates and positive control (=LPS) on the expression of CD80 and MHCII was evaluated. 5) Determination of hydrodynamic radius

藉由動態光散射(DLS)分析結合物之流體動力學半徑。簡言之,將樣品(即結合物)以10,000g離心15分鐘(Merck Millipore, Ultrafree-MC-VV Durapore PVDF)。所有樣品孔均用矽油密封以防止蒸發,且按順序收集資料約24小時。所有量測均在25℃下使用WYATT DynaPro PlateReader-II1536孔盤(1536W SensoPlate, Greiner Bio-One)進行。以一式三份的方式量測樣品。所有量測值均針對1.00±0.005的基線值進行過濾,因此只有返回至0.995及1.005之間的值的曲線才被考慮用於進一步分析(例如,累積半徑及正則化分析)。樣品分析根據https://www.wyatt.com/library/application-notes/by-technique/dls.html及DYNAMICS用戶指南(M1406Rev.C,版本7.6.0),Technical Notes TN2004及TN2005(皆在:www.wyatt.com上)。 6) 動物實驗 The hydrodynamic radius of the conjugates was analyzed by dynamic light scattering (DLS). Briefly, samples (i.e., conjugates) were centrifuged at 10,000<i>g for 15 min (Merck Millipore, Ultrafree-MC-VV Durapore PVDF). All sample wells were sealed with silicone oil to prevent evaporation, and data were collected sequentially for approximately 24 hours. All measurements were performed at 25°C using a WYATT DynaPro PlateReader-II1536 well plate (1536W SensoPlate, Greiner Bio-One). Samples were measured in triplicate. All measurements were filtered against a baseline value of 1.00±0.005, so only curves returning values between 0.995 and 1.005 were considered for further analysis (e.g. cumulative radius and regularization analysis). Sample analysis was performed according to https://www.wyatt.com/library/application-notes/by-technique/dls.html and DYNAMICS User Guide (M1406Rev.C, version 7.6.0), Technical Notes TN2004 and TN2005 (both at: www.wyatt.com). 6) Animal experiments

雌性BALB/c小鼠,每組n=5隻小鼠,用不同的CLEC結合物(i.d.、i.m.、s.c.)、肽-CRM-197/KLH結合物(i.d.)或吸附於Alum的肽-CRM-197/KLH結合物(s.c.)以及各別對照組(例如未結合之CLEC、CLEC及肽之混合物等)進行免疫接種。動物以每兩週一次的間隔接種3次疫苗,除非另有說明,否則在每次接種前一天及最後一次施用後兩週定期採集血液樣本。 7) 使用 ELISA 對小鼠血漿中之疫苗誘導抗體進行定量 Female BALB/c mice, n = 5 mice per group, treated with different CLEC conjugates (id, im, sc), peptide-CRM-197/KLH conjugate (id) or peptide-CRM adsorbed to Alum Immunization was performed with -197/KLH conjugate (sc) and respective control groups (e.g., unconjugated CLEC, mixture of CLEC and peptides, etc.). Animals were vaccinated three times at biweekly intervals, and blood samples were collected the day before each vaccination and periodically two weeks after the last administration, unless otherwise stated. 7) Quantification of vaccine-induced antibodies in mouse plasma using ELISA

使用肝素作為抗凝劑,自小鼠收集全血,再藉由離心獲得血漿,將血漿樣品儲存在-80℃。為了偵測抗目標特異性抗體,使用50mM碳酸鈉緩衝液在ELISA盤(Nunc Maxisorb)上塗上肽-BSA結合物或重組蛋白/片段(通常濃度為1µg/ml),在4℃下放置隔夜。所提供的實例中使用的所有抗多肽ELISA均使用Pep-BSA結合物(例如,SeqID3 (序列:DQPVLPD),其C端用於與順丁烯二醯亞胺活化之BSA偶合;命名法:Pep1c (DQPVLPD-C,SeqID3)用作由含有Pep1b(SeqID2;DQPVLPD-(NH-NH 2))及Pep1c的結合物疫苗所引發的抗Pep1特異性反應的誘餌)。使用1%牛血清白蛋白(BSA)封閉ELISA盤,血漿樣品在盤中連續稀釋。使用生物素化的抗小鼠 IgG (Southern Biotech)進行目標特異性抗體的偵測,隨後使用鏈黴親和素-POD(Roche)及TMB進行顯色反應。使用GraphPad Prism軟體(Graph Pad Prism www.graphpad.com/scientific-software/prism/)透過非線性回歸分析(四參數邏輯擬合函數)計算EC 50值。 目標蛋白 抗體 α突觸核蛋白重組型(Anaspec) 抗α突觸核蛋白115-121 AB (LB509) (Biolegend) α突觸核蛋白單體(Abcam) 抗α突觸核蛋白115-121 AB (LB509) (Biolegend) α突觸核蛋白纖維(Abcam) 抗α突觸核蛋白115-121 AB (LB509) (Biolegend) 澱粉樣蛋白β 1-40 (Biolegend) 抗澱粉樣蛋白β 1-16 AB (6E10) (Biolegend) 澱粉樣蛋白β 1-42 (Biolegend) 抗澱粉樣蛋白β 1-16 AB (6E10) (Biolegend) [Pyr3] 澱粉樣蛋白β 3-40 (Anaspec) [Pyr3] 澱粉樣蛋白β 3-42 (Anaspec) Tau 441重組型(Anaspec) PD1重組型(Abcam) Erb2/Her2重組型(R&D Systems) Bet v1重組型 細胞外膜近端域(EMPD)重組型 石耳多醣(Biozol) KLH (Sigma) 抗KLH AB (Sigma) CRM197 (FinaBiosolution) 抗白喉AB (Abcam) 8) 藉由抑制 ELISA 評估 aSyn 特異性抗體的結合偏好 Whole blood was collected from mice using heparin as an anticoagulant, and plasma was obtained by centrifugation. The plasma samples were stored at -80°C. To detect anti-target-specific antibodies, ELISA plates (Nunc Maxisorb) are coated with peptide-BSA conjugates or recombinant proteins/fragments (typically at a concentration of 1 µg/ml) using 50mM sodium carbonate buffer and left overnight at 4°C. All anti-peptide ELISAs used in the examples provided use Pep-BSA conjugates (e.g., SeqID3 (Sequence: DQPVLPD), whose C-terminus is used for coupling to maleimide-activated BSA; nomenclature: Pep1c (DQPVLPD-C, SeqID3) was used as a bait for the anti-Pep1-specific response elicited by a conjugate vaccine containing Pep1b (SeqID2; DQPVLPD-(NH- NH2 )) and Pep1c). ELISA plates were blocked using 1% bovine serum albumin (BSA), and plasma samples were serially diluted in the plates. Biotinylated anti-mouse IgG (Southern Biotech) was used for detection of target-specific antibodies, followed by streptavidin-POD (Roche) and TMB for color development. EC 50 values were calculated through nonlinear regression analysis (four-parameter logistic fitting function) using GraphPad Prism software (Graph Pad Prism www.graphpad.com/scientific-software/prism/). target protein antibody Alpha synuclein recombinant (Anaspec) Anti-alpha synuclein 115-121 AB (LB509) (Biolegend) Alpha synuclein monomer (Abcam) Anti-alpha synuclein 115-121 AB (LB509) (Biolegend) Alpha synuclein fibers (Abcam) Anti-alpha synuclein 115-121 AB (LB509) (Biolegend) Amyloid beta 1-40 (Biolegend) Anti-amyloid beta 1-16 AB (6E10) (Biolegend) Amyloid beta 1-42 (Biolegend) Anti-amyloid beta 1-16 AB (6E10) (Biolegend) [Pyr3] Amyloid beta 3-40 (Anaspec) [Pyr3] Amyloid beta 3-42 (Anaspec) Tau 441 recombinant type (Anaspec) PD1 recombinant type (Abcam) Erb2/Her2 recombinant type (R&D Systems) Bet v1 recombinant type Extracellular membrane proximal domain (EMPD) recombinant Biozol KLH (Sigma) Anti-KLH AB (Sigma) CRM197 (FinaBiosolution) Anti-diphtheria AB (Abcam) 8) Evaluate the binding preference of aSyn- specific antibodies by inhibition ELISA

ELISA盤(Nunc Maxisorb)塗有aSyn單體(Abcam)或aSyn纖維(Abcam),且用1%牛血清白蛋白(BSA)封閉。在低結合性ELISA盤中將對照組抗體及血漿樣品與連續稀釋的aSyn單體或aSyn纖維一起培育。接下來,將預培育的抗體/血漿樣品添加至單體/纖維塗佈的盤中,且使用生物素化抗小鼠 IgG (Southern Biotech)進行結合偵測,隨後使用鏈黴親和素-POD(Roche)及TMB進行顯色反應。logIC 50值計算為淬滅一半ELISA信號所需的單體或絲狀aSyn的濃度,且用作所研究抗原的Ab選擇性的估計值。使用GraphPad Prism軟體(Graph Pad Prism www.graphpad.com/scientific-software/prism/)透過非線性回歸分析(四參數邏輯擬合函數)計算logIC 50值。 9)aSyn 聚合的定量 ELISA plates (Nunc Maxisorb) were coated with aSyn monomers (Abcam) or aSyn fibers (Abcam) and blocked with 1% bovine serum albumin (BSA). Control antibodies and plasma samples were incubated with serially diluted aSyn monomers or aSyn fibers in low-binding ELISA plates. Next, the pre-incubated antibody/plasma samples were added to the monomer/fiber coated plates and binding was detected using biotinylated anti-mouse IgG (Southern Biotech), followed by color development using streptavidin-POD (Roche) and TMB. The logIC50 value was calculated as the concentration of monomer or filamentous aSyn required to quench half of the ELISA signal and was used as an estimate of the selectivity of the Ab for the antigen under study. The logIC50 values were calculated by nonlinear regression analysis (four-parameter logical fitting function) using GraphPad Prism software (Graph Pad Prism www.graphpad.com/scientific-software/prism/). 9) Quantification of aSyn aggregation

在GENIOS酶標儀(Tecan,奧地利)中以連續迴轉震盪的方式,在黑色平底96孔盤中以0.1ml的反應體積進行自動形式之蛋白質聚集分析。使用450nm激發及505nm發射濾光片,藉由每20分鐘一次的螢光強度頂部讀數來監測動力學。在不存在及存在抗體之情況下的原纖維形成(抗體/蛋白質莫耳比為自6×10 -5至3×10 -3不等)係藉由在10 mM HEPES緩衝液(pH7.5)、100 mM NaCl、5 μM ThT及25μg/ml硫酸肝素中,在37℃下在盤讀取器(Tecan,奧地利)中震盪濃度為0.3mg/ml (20.8μM)的aSyn溶液開始。 Protein aggregation assays were performed in an automated format in a GENIOS microplate reader (Tecan, Austria) with a reaction volume of 0.1 ml in black flat-bottom 96-well plates using continuous orbital shaking. Kinetics were monitored by top readings of fluorescence intensity every 20 min using 450 nm excitation and 505 nm emission filters. Fibril formation in the absence and presence of antibodies (antibody/protein molar ratio varied from 6× 10-5 to 3× 10-3 ) was initiated by shaking a 0.3 mg/ml (20.8 μM) aSyn solution in 10 mM HEPES buffer (pH 7.5), 100 mM NaCl, 5 μM ThT and 25 μg/ml heparin sulfate at 37°C in a plate reader (Tecan, Austria).

此外,不存在及存在抗體下之原纖維形成亦藉由預先形成之原纖維的存在引發。簡言之,aSyn預形成之原纖維(1µM)在存在活化aSyn單體(10µM)及10 µM ThT之情況下在100 µl PBS中聚集0-24小時。In addition, protofibril formation in the absence and presence of antibodies was also triggered by the presence of preformed protofibrils. Briefly, aSyn preformed protofibrils (1 µM) were aggregated in 100 µl PBS in the presence of activated aSyn monomers (10 µM) and 10 µM ThT for 0-24 h.

對於資料分析,計算陰性對照組樣品的平均值,即ThT的背景螢光,且在給定的時間點自每個樣品中除去,例如,在Microsoft Excel中進行計算。為了比較聚集分析中的不同條件/抑制劑,將每個樣品標準化為測定開始時測定的螢光讀數且設置為1。(t0=1)。For data analysis, the mean value of the negative control samples, i.e. the background fluorescence of ThT, is calculated and removed from each sample at a given time point, e.g., in Microsoft Excel. For comparison of different conditions/inhibitors in aggregation analysis, each sample is normalized to the fluorescence reading measured at the start of the assay and set to 1. (t0=1).

為了評估動力學曲線,使用了Michaelis Menten動力學模型:使用GraphPad Prism軟體計算各條件之Km(產生半最大速度的受質濃度)及Vmax (最大速度)值,然後進行酶的動力學分析(Michaelis-Menten)。To evaluate the kinetic curves, the Michaelis Menten kinetic model was used: GraphPad Prism software was used to calculate the Km (substrate concentration that produces half-maximal velocity) and Vmax (maximum velocity) values for each condition, and then the kinetic analysis of the enzyme was performed (Michaelis -Menten).

為了比較聚集分析中的不同條件/抑制劑,使用GraphPad Prism軟體按照線性回歸計算ThT動力學指數生長期的斜率值。 10) 單一抗原結合區段與抗原的 親和力 (affinity) 及抗體分子與抗原的親和力 (a vidity ) 的測定 To compare different conditions/inhibitors in the aggregation analysis, the slope of the exponential growth phase of the ThT kinetics was calculated by linear regression using GraphPad Prism software . 10) Determination of the affinity of a single antigen-binding segment to the antigen and the affinity of an antibody molecule to the antigen

為了測定抗體分子與抗原的親和力,使用了標準ELISA分析的變體,其中含有與各個實例的不同抗原結合的抗體的複製孔暴露於逐漸增加濃度的離液硫氰酸根離子。對硫氰酸鹽溶離的抗性用作測量抗體分子與抗原的親和力之量度,且表示50%有效抗體結合的指數(親和力指數)用於比較不同的血清。簡言之,將血漿在PBS中稀釋1/500,然後分配到經過塗佈和封閉的ELISA盤(Nunc Maxisorb)上。培育1小時後,將濃度為0.25至3M的硫氰酸鈉(NaSCN、SIGMA;在PBS中)添加至樣品中。將ELISA盤在室溫下培育15分鐘,然後洗滌,使用鏈黴親和素-POD (Roche)及TMB進行偵測及後續顯色反應。假設不存在NaSCN時的吸光度讀數表示特定抗體的有效總結合(100%結合),隨後在濃度逐漸增加的NaSCN存在下的吸光度讀數被轉換為總結合抗體的適當百分比。將資料擬合至NaSCN的(%結合)濃度與(log)濃度的圖表中,且藉由線性回歸分析親和力指數,表示將初始光密度降低50%所需的NaSCN濃度。若直線擬合之相關係數低於0.88,則該資料會被排除。To determine the affinity of the antibody molecule to the antigen, a variation of the standard ELISA assay was used in which replicate wells containing antibodies bound to different antigens of each example were exposed to increasing concentrations of ionized thiocyanate ions. Resistance to thiocyanate dissolution was used as a measure of the affinity of the antibody molecule to the antigen, and the index representing 50% effective antibody binding (affinity index) was used to compare different sera. Briefly, plasma was diluted 1/500 in PBS and then dispensed onto coated and sealed ELISA plates (Nunc Maxisorb). After incubation for 1 hour, sodium thiocyanate (NaSCN, SIGMA; in PBS) was added to the sample at a concentration of 0.25 to 3 M. ELISA plates were incubated at room temperature for 15 minutes, then washed and detected using streptavidin-POD (Roche) and TMB and subsequent color development. The absorbance readings in the presence of increasing concentrations of NaSCN were subsequently converted to the appropriate percentage of total bound antibody, assuming that the absorbance readings in the absence of NaSCN represented effective total binding of the specific antibody (100% binding). The data were fit to a graph of (% bound) versus (log) concentration of NaSCN and the affinity index, representing the concentration of NaSCN required to reduce the initial optical density by 50%, was analyzed by linear regression. Data were excluded if the correlation coefficient of the linear fit was less than 0.88.

為了測定對aSyn纖維的k D值(結合親和力(affinity)),使用了能夠簡單測定由抗體及其競爭性配位體形成的複合體之k D值的位移ELISA。簡言之,在量測具有固定化aSyn纖維的盤上的游離抗體效價之前,等濃度的抗體與逐漸增加濃度的游離aSyn纖維共同培育。抗體的相對結合表示為每個樣品在測定中觀測到的最大結合的百分比,與aSyn纖維(5µg/ml)的競爭反應被定義為表示0%結合(非特異性結合),沒有競爭的反應被認為是在位移曲線中表示100%(最大)結合。 使用來自GraphPad的電腦輔助曲線擬合軟體根據單點模型對競爭結合曲線進行分析。 11) 小鼠突觸核蛋白病的誘導 In order to measure the kD value (binding affinity) to aSyn fiber, a displacement ELISA that can easily measure the kD value of a complex formed by an antibody and its competing ligand was used. Briefly, equal concentrations of antibody were incubated with increasing concentrations of free aSyn fibers before measuring free antibody titers on disks with immobilized aSyn fibers. Relative binding of antibodies was expressed as a percentage of the maximum binding observed in the assay for each sample. Competition reactions with aSyn fiber (5 µg/ml) were defined to represent 0% binding (non-specific binding). Reactions with no competition were It is considered to represent 100% (maximum) binding in the displacement curve. Competition binding curves were analyzed based on a single point model using computer-assisted curve fitting software from GraphPad. 11) Induction of synucleinopathies in mice

為了誘導突觸核蛋白病,九週大的雄性C57BL/6小鼠在右側黑質水平進行預製多晶型原纖維(PFF,即預製超聲處理τ−多晶型aSyn原纖維1B)的立體定向注射。PFF的製備及驗證如Sci. Adv. 2020, 6, eabc4364, doi:10.1126/sciadv.abc4364; DOI: 10.1126/sciadv.abc4364所述。簡言之,每隻動物接受單側注射2µL PFFs 1B溶液(濃度:2.5mg/ml)至右側黑質正上方的區域(來自前囟的座標:-2.9AP、±1.3L及-4.5DV),注射流速為0.4µL/min[Sci. Adv. 2020, 6, eabc4364, doi:10.1126/sciadv.abc4364; DOI: 10.1126/sciadv.abc4364],針頭在原位停留5分鐘,然後慢慢自腦部中取出。To induce synucleinopathy, nine-week-old male C57BL/6 mice were stereotactically injected with preformed polymorphic protofibrils (PFFs, preformed sonicated τ-polymorphic aSyn protofibrils 1B) at the level of the right substantia nigra. PFFs were prepared and validated as described in Sci. Adv. 2020, 6, eabc4364, doi:10.1126/sciadv.abc4364; DOI: 10.1126/sciadv.abc4364. Briefly, each animal received a unilateral injection of 2 µL of PFFs 1B solution (concentration: 2.5 mg/ml) into the area just above the right substantia nigra (coordinates from bregma: -2.9AP, ±1.3L, and -4.5DV) at a flow rate of 0.4 µL/min [Sci. Adv. 2020, 6, eabc4364, doi:10.1126/sciadv.abc4364; DOI: 10.1126/sciadv.abc4364]. The needle remained in place for 5 minutes and was then slowly removed from the brain.

從接種的同一天開始,動物接受三次id免疫接種,每兩週接種一次(即第0、2、4週),並使用基於CLEC之疫苗(n=5)或非偶合CLEC(n=10))作為對照組,隨後在第10週進行加強免疫接種。研究結束後(第126天),藉由小腦延髓池穿刺術收集腦脊液(CSF),小心取出大腦並固定在多聚甲醛(PFA;4%)中。使用低溫恆溫器以50µm的間隔收集並處理整個大腦的冠狀序列切片(自前額端大腦皮層至紋狀體到延髓-即前囟-6.72毫米)並進行免疫組織化學處理。 12) 免疫組織化學 (IHC) Starting on the same day of vaccination, animals received three id vaccinations, once every two weeks (ie, weeks 0, 2, and 4), with CLEC-based vaccines (n=5) or unconjugated CLEC (n=10) ) served as the control group, followed by booster vaccination at week 10. After the end of the study (day 126), cerebrospinal fluid (CSF) was collected by cistern puncture, and the brains were carefully removed and fixed in paraformaldehyde (PFA; 4%). Coronal serial sections of the entire brain (6.72 mm from the frontal cerebral cortex to the striatum to the medulla oblongata - bregma) were collected and processed at 50 µm intervals using a cryostat and processed for immunohistochemistry. 12) Immunohistochemistry (IHC)

如前所述,對冠狀序列切片上的磷S129 aSyn (pS129aSyn)進行IHC染色[Sci. Adv. 2020, 6, eabc4364, doi:10.1126/sciadv.abc4364; DOI: 10.1126/sciadv.abc4364]。使用單株兔抗pS129aSyn抗體EP1536Y(ab51253,Abcam),然後與標記的多聚體HRP抗兔(DakoEnVision+TM套組,K4011)一起培育。pS129aSyn染色的可視化是用DakoDAB(K3468)完成的,切片用Nissl染色劑複染。每個結構(大腦皮層、紋狀體、視丘、黑質及腦幹)的pS129aSyn聚集體的實際數量及pS129aSyn聚集體的總數係藉由Panoramic Scan II (3DHISTECH, 匈牙利)進行全切片採集,再透過專門開發的QuPath演算法對其進行進一步處理來評定。 實例 1 :活體外測定 CLEC 結合物之生物活性 IHC staining for phospho-S129 aSyn (pS129aSyn) on coronal serial sections was performed as described previously [Sci. Adv. 2020, 6, eabc4364, doi:10.1126/sciadv.abc4364; DOI: 10.1126/sciadv.abc4364]. Monoclonal rabbit anti-pS129aSyn antibody EP1536Y (ab51253, Abcam) was used, followed by incubation with labeled multimeric HRP anti-rabbit (DakoEnVision+TM kit, K4011). Visualization of pS129aSyn staining was performed with DakoDAB (K3468), and sections were counterstained with Nissl stain. The actual number of pS129aSyn aggregates in each structure (cerebral cortex, striatum, thalamus, substantia nigra, and brainstem) and the total number of pS129aSyn aggregates were assessed by whole-section acquisition using Panoramic Scan II (3DHISTECH, Hungary) and further processing using the specially developed QuPath algorithm. Example 1 : In vitro determination of the bioactivity of CLEC conjugates

PAMP(例如:CLEC)會被APC中存在的PRR識別。需要CLEC與其同源PRR (例如:β-葡聚糖的dectin-1)的結合來控制各種水平的適應性免疫,例如,藉由誘導下游碳水化合物特異性信號傳導及細胞活化、細胞成熟及細胞遷移至引流淋巴結或藉由與其他PRR的相互干擾。因此,為了提供本申請案中提出的新型疫苗平台技術,所使用的CLEC保留其PRR結合能力至關重要,此證明了所選之CLEC以及基於CLEC之結合物之生物活性。PAMPs (e.g., CLECs) are recognized by PRRs present in APCs. Binding of CLECs to their cognate PRRs (e.g., dectin-1 for β-glucan) is required to control various levels of adaptive immunity, for example, by inducing downstream carbohydrate-specific signaling and cell activation, cell maturation, and cell migration to draining lymph nodes or by cross-talk with other PRRs. Therefore, in order to provide the novel vaccine platform technology proposed in this application, it is critical that the CLECs used retain their PRR binding ability, which demonstrates the biological activity of the selected CLECs and CLEC-based conjugates.

沿著此等思路且為了確保1) CLEC的結構在輕度過碘酸鹽氧化過程中不被破壞,以及2)多醣在偶合後保持生物活性,藉由ELISA評定與dectin-1的結合。首先,幾種不同的CLEC已被溫和的過碘酸鹽氧化作用氧化,以產生所提出疫苗的活性糖骨架。此等CLEC包括:甘露多醣、石耳多醣(20kDa)、地衣多醣(245kDa)、大麥β-葡聚糖(229kDa)、燕麥β-葡聚糖(295kDa)及燕麥β-葡聚糖(391kDa)。隨後,使用不同的B細胞抗原決定基肽(SeqID2、SeqID10、SeqID16)及SeqID7作為輔助性T抗原決定基肽進行腙偶合並產生疫苗結合物,上述所有此等抗原決定基肽均包含用於偶合之C端醯肼連接子。此外,亦使用了藉由異雙官能連接子BMPH偶合SeqID10產生的肽-石耳多醣結合物。Along these lines and to ensure that 1) the structure of the CLECs was not destroyed during mild periodate oxidation and 2) the polysaccharides remained bioactive after conjugation, binding to dectin-1 was assessed by ELISA. First, several different CLECs were oxidized by mild periodate oxidation to produce the active carbohydrate backbone of the proposed vaccine. These CLECs included: mannosaccharide, pyrifos polysaccharide (20 kDa), lichen polysaccharide (245 kDa), barley β-glucan (229 kDa), oat β-glucan (295 kDa), and oat β-glucan (391 kDa). Subsequently, different B cell epitope peptides (SeqID2, SeqID10, SeqID16) and SeqID7 were used as helper T epitope peptides for hydrazone coupling and vaccine conjugates were generated. All of these epitope peptides contained a C-terminal hydrazide linker for coupling. In addition, a peptide-A. pyrifos conjugate generated by coupling SeqID10 with the heterobifunctional linker BMPH was also used.

接著,使用基於可溶性鼠Fc-dectin-1a受體(InvivoGen)或ConA競爭性結合的競爭性ELISA系統評定了未經氧化及經氧化之CLEC以及基於CLEC之新型結合物之生物活性,如Korotchenko等人所述(2020)。 結果: The bioactivity of non-oxidized and oxidized CLEC and the novel CLEC-based conjugates was then assessed using a competitive ELISA system based on competitive binding to soluble murine Fc-dectin-1a receptor (InvivoGen) or ConA as described by Korotchenko et al. (2020) .

所測試的不同CLEC顯示與PRR結合的不同功效。在一系列ELISA實驗中評定了dectin-1配位體石耳多醣、地衣多醣、大麥β-葡聚糖、燕麥β-葡聚糖與dectin-1的結合功效。隨後的實驗表明,中等分子量(20kDa)且為線性β-(1,6)連接之β-D-葡聚糖石耳多醣,與更大、更高分子量的線性β-(1,3 )β-(1,4)-β-D葡聚糖地衣聚糖(約245kDa)相比,顯示出顯著更高的與dectin-1之結合功效(約3倍)(見圖1)。The different CLECs tested showed different efficacy in binding to PRR. The binding efficacy of dectin-1 ligands Shigu polysaccharide, lichenin, barley β-glucan, oat β-glucan and dectin-1 was evaluated in a series of ELISA experiments. Subsequent experiments showed that the medium molecular weight (20 kDa) linear β-(1,6)-linked β-D-glucan polysaccharide was comparable to the larger, higher molecular weight linear β-(1,3)β Compared with -(1,4)-β-D glucan lichenan (approximately 245kDa), it shows significantly higher binding efficacy to dectin-1 (approximately 3 times) (see Figure 1).

當將石耳多醣與來自燕麥及大麥的其他線性β-(1,3)β-(1,4)-β-D葡聚糖(大麥β-葡聚糖(229kDa)、燕麥β-葡聚糖:265及391kd)進行比較時,此差異更加明顯,上述其他線性β-(1,3)β-(1,4)-β-D葡聚糖與石耳多醣相比僅顯示出有限的結合功效(例如:大麥β-葡聚糖(229kDa)低約30倍)。This difference was even more pronounced when Pseudomonas aeruginosa was compared to other linear β-(1,3)β-(1,4)-β-D glucans from oats and barley (barley β-glucan (229 kDa), oat β-glucan: 265 and 391 kd), which showed only limited binding efficacy compared to Pseudomonas aeruginosa (e.g., barley β-glucan (229 kDa) was approximately 30 times lower).

選定之CLEC的溫和過碘酸鹽氧化會造成與dectin-1結合的減少。甘露多醣的氧化將其與凝集素ConA的結合能力降低至與經過碘酸鹽氧化後之氧化石耳多醣-dectin-1結合所描述的降低相似的程度。同樣地,葡聚糖的氧化會引起類似比率之PRR結合的減少(參見圖1A)。Mild periodate oxidation of selected CLEC results in reduced binding to dectin-1. Oxidation of mannan polysaccharide reduces its binding capacity to the lectin ConA to an extent similar to the reduction described for oxidized dectin-1 binding following iodate oxidation. Likewise, oxidation of dextran resulted in a similar ratio of reduction in PRR binding (see Figure 1A).

重要的是,與未結合之CLEC相比,結合物形成亦導致肽-CLEC結合物之PRR結合能力降低,如含甘露多醣之結合物以及所測試的不同石耳多醣、地衣多醣或大麥及燕麥-β-葡聚糖之結合物所示(參見圖1B)。Importantly, conjugate formation also resulted in a reduction in the PRR binding capacity of peptide-CLEC conjugates compared to unconjugated CLEC, such as mannan-containing conjugates as well as the different Achyris polysaccharides, lichenin or barley and oat polysaccharides tested. -β-glucan conjugates (see Figure 1B).

實驗表明,儘管石耳多醣尺寸較小且不存在β-(1,3)糖苷鍵(請注意:含有葡聚糖的β-(1,3)被描述為dectin-1的最佳配位體),但線性β-(1,6)連接之β-D-葡聚糖石耳多醣可發揮最高的結合功效,無論氧化或結合。例如,含有石耳多醣之結合物保留了比基於地衣多醣的構築體高約3倍的結合力。Experiments have shown that despite the small size and absence of β-(1,3) glycosidic linkages in the polysaccharide of Schizophora polysaccharides (note: glucan-containing β-(1,3) is described as the best ligand for dectin-1 ), but linear β-(1,6)-linked β-D-glucan polysaccharide can exert the highest binding effect, regardless of oxidation or binding. For example, conjugates containing the polysaccharide retained approximately 3 times higher binding capacity than lichenin-based constructs.

關於IC50值,根據圖1的結合結果顯示各種構築體與可溶性鼠類Fc-dectin-1a受體的結合。得到的IC50值為(圖1): - 燕麥β-葡聚糖265:860µg/ml - 燕麥β-葡聚糖391:820µg/ml - 大麥β-葡聚糖229:145µg/ml - 地衣多醣(圖1E):13µg/ml - 地衣多醣200%結合物(圖1E):27µg/ml (即大約一半的未結合之地衣多醣) - β-葡聚糖229的結合至少比145µg/ml強30倍) - 石耳多醣結合物(圖1D):11、14及15µg/ml (即大約一半的未結合之石耳多醣) - 石耳多醣BMPH結合物(圖1F):80µg/ml(肽與石耳多醣的異雙官能連接子偶合)。 Regarding IC50 values, the binding results in Figure 1 show the binding of various constructs to soluble murine Fc-dectin-1a receptor. The IC50 values obtained were (Figure 1): - Oat β-glucan 265: 860µg/ml - Oat β-glucan 391: 820µg/ml - Barley β-glucan 229: 145µg/ml - Lichenin (Figure 1E): 13µg/ml - Lichenin 200% conjugate (Figure 1E): 27µg/ml (i.e., about half of the unconjugated lichenin) - β-glucan 229 binds at least 30 times more strongly than 145µg/ml) - Pyricularia polysaccharide conjugate (Figure 1D): 11, 14 and 15µg/ml (i.e., about half of the unconjugated yricularia polysaccharide) - Psoralea corylifolia BMPH conjugate (Figure 1F): 80µg/ml (peptide coupled to the heterobifunctional linker of Psoralea corylifolia).

圖1A及圖1B進一步證明,藉由腙形成或藉由異雙官能連接子進行的肽結合同樣適用於WISIT結合物,因為兩種類型的結合物均保留了高的dectin-1結合功效。 實例 2 :活體外暴露於石耳多醣後 DC 活化之測定 Figures 1A and 1B further demonstrate that peptide conjugation via hydrazone formation or via a heterobifunctional linker is equally applicable to WISIT conjugates, as both types of conjugates retain high dectin-1 binding efficacy. Example 2 : Assay of DC activation after in vitro exposure to Psoralea corylifolia polysaccharide

所提出之疫苗的一個重要功能是其在PRR結合及攝取後活化DC的能力。為證明基於CLEC之結合物不僅結合至PRR,且亦在其目標細胞(即DC)中發揮生物學功能,進行了DC活化實驗。An important function of the proposed vaccine is its ability to activate DCs upon PRR binding and uptake. To demonstrate that the CLEC-based conjugates not only bind to PRRs but also exert biological functions in their target cells (i.e., DCs), DC activation experiments were performed.

首先,根據已發表的方案,將小鼠骨髓細胞與mGM-CSF一起培育以生成BMDC,然後將此等GM-CSFDC暴露於肽-葡聚糖結合物PSeqID2+SeqID7+石耳多醣或等量的氧化但未結合之糖。在各情況下,結合物/糖各由500µg逐漸滴定至62.5µg/mL。為了進行比較,強活化劑LPS被用作起始濃度為2ng/ml的對照組。重要的是,用於氧化及結合物形成的石耳多醣製劑亦含有少量LPS,因此,等效劑量的LPS被用來標準化此效應。隨後使用FACS分析(包括CD80及MHCII)評定DC的DC活化及成熟標記物的表現。 結果: First, mouse bone marrow cells were cultured with mGM-CSF to generate BMDCs according to published protocols, and these GM-CSF DCs were then exposed to the peptide-glucan conjugate PSeqID2+SeqID7+Pseudomonas aeruginosa or an equivalent amount of oxidized but unconjugated saccharide. In each case, the conjugate/saccharide was titrated from 500µg to 62.5µg/mL each. For comparison, the strong activator LPS was used as a control group with a starting concentration of 2ng/ml. Importantly, the Pseudomonas aeruginosa preparation used for oxidation and conjugate formation also contained a small amount of LPS, so an equivalent amount of LPS was used to normalize this effect. DCs were then assessed for the expression of DC activation and maturation markers using FACS analysis (including CD80 and MHCII). Results:

用SeqId2-SeqID7-石耳多醣結合物在活體外刺激的GM-CSFDC顯示CD80及MHCII的表現顯著增加(參見圖2)。其水平明顯高於結合物製劑中包含的等效劑量之LPS所觀測到的作用。相比之下,等量的氧化但未結合之糖引起的CD80表現略微降低,正如自製劑中的LPS水平所預期的,且與石耳多醣結合物相比,MHCII的誘導顯著降低。GM-CSFDC stimulated in vitro with SeqId2-SeqID7-Pseudomonas aeruginosa conjugates showed a significant increase in the expression of CD80 and MHCII (see Figure 2). The levels were significantly higher than the effects observed with equivalent amounts of LPS included in the conjugate preparation. In contrast, an equivalent amount of oxidized but unconjugated sugars caused a slight decrease in CD80 expression, as expected from the levels of LPS in the home-preparation, and a significant decrease in the induction of MHCII compared to the Pseudomonas aeruginosa conjugate.

總之,MHC-II的上調表明DC活化。此外,CD80的上調超過了相同量的LPS的預期,此現象強烈表明石耳多醣結合物對DC的成熟及活化有顯著貢獻(超出了單獨暴露於LPS所解釋的作用)。因此,實例1及2清楚地證明了石耳多醣疫苗的生物活性。 實例 3 :藉由 DLS 測定粒 子尺寸 Taken together, upregulation of MHC-II indicates DC activation. In addition, CD80 was up-regulated beyond what would be expected for the same amount of LPS, strongly suggesting that the amygdala polysaccharide conjugate contributes significantly to DC maturation and activation (beyond what could be explained by exposure to LPS alone). Therefore, Examples 1 and 2 clearly demonstrate the biological activity of the Shi fungus polysaccharide vaccine. Example 3 : Determination of particle size by DLS

已經進行了分析不同葡聚糖結合物之粒子尺寸/流體動力學半徑的單獨實驗。Separate experiments analyzing the particle size/hydrodynamic radius of different dextran conjugates have been performed.

對於DLS分析,分析了不同的肽-葡聚糖及肽-載體-葡聚糖結合物,且分別與非結合的石耳多醣進行了比較。所有分析均使用WYATT DynaPro PlateReader-II以一式三份的方式進行。獲得的結果表明對於所有測試的結合物,在低nm光譜中具有最大值的粒子尺寸分佈。 所測結合物: B 細胞抗原決定基 T 細胞抗原決定基 CLEC SeqID2 SeqID7 石耳多醣(80%) SeqID3 CRM197 石耳多醣(80%) na na 未經氧化之石耳多醣 結果 For the DLS analysis, different peptide-dextran and peptide-carrier-dextran conjugates were analyzed and compared with unconjugated Shi Fuchsia polysaccharide respectively. All analyzes were performed in triplicate using WYATT DynaPro PlateReader-II. The results obtained indicate a particle size distribution with a maximum in the low nm spectrum for all tested conjugates. Tested conjugates: B cell epitope T cell epitope CLEC SeqID2 SeqID7 Shi fungus polysaccharide (80%) SeqID3 CRM197 Shi fungus polysaccharide (80%) na na Unoxidized polysaccharide result :

目前的分析表明用於該測定中的肽-石耳多醣結合物SeqID2+SeqID7+石耳多醣之平均主要顆粒流體動力學半徑(HDR)為約5 nm。在約60 nm處可偵測到較小的第二個峰表示調配物中存在極少量的聚集體(參見圖3A)。然而,大多數結合物製劑似乎以單體形式存在。單體而非交聯或聚集的結合物之此普遍性亦由單體石耳多醣(約20kDa)可在約5 nm處被偵測到(如對照組樣品所示,亦參見圖3C)之事實支持,該事實亦支持單體石耳多醣結合物之普遍性(假設單體石耳多醣的HDR為約5 nm)。如超過24小時的累積半徑分析所示,結合物之HDR亦很穩定,且不會再次聚集,此支持了單體結合物之普遍性。The current analysis shows that the peptide-SeqID2+SeqID7+SeqID7+SeqID2 polysaccharide used in this assay has an average major particle hydrodynamic radius (HDR) of approximately 5 nm. A smaller second peak detected at approximately 60 nm indicates the presence of very small amounts of aggregates in the formulation (see Figure 3A). However, most conjugate formulations appear to exist in monomeric form. This ubiquity of monomeric rather than cross-linked or aggregated conjugates is also explained by the fact that the monomeric Lycoris polysaccharide (approximately 20 kDa) can be detected at approximately 5 nm (as shown in the control sample, see also Figure 3C) This fact supports the universality of monomeric Acanthus polysaccharide conjugates (assuming that the HDR of monomeric Acanthus polysaccharide is about 5 nm). As shown by cumulative radius analysis over 24 hours, the HDR of the conjugate is also very stable and does not aggregate again, which supports the universality of the monomeric conjugate.

為了表徵基於肽-載體-葡聚糖結合物之疫苗,本案分析了額外結合於石耳多醣的SeqID6+CRM197結合物。同樣地,DLS分析顯示平均HDR為11 nm,位於約75 nm的第二個較小的峰再次表明存在少量聚集體(參見圖3B)。由於CRM197之大小約為60kDa,因此11 nm的輕微增加很可能反映了所得結合物分子量的增加。並未偵測到CRM結合物之顯著聚集或交聯,且24小時的累積半徑分析亦表明,結合物之HDR為穩定的,不會發生聚集。同樣地,此替代類型的基於CLEC之疫苗的DLS分析支持單體結合物之普遍性。To characterize vaccines based on peptide-carrier-dextran conjugates, an additional SeqID6+CRM197 conjugate conjugated to Psoralea corylifolia was analyzed in this case. Again, DLS analysis showed an average HDR of 11 nm, with a second smaller peak at approximately 75 nm again indicating the presence of a small amount of aggregates (see Figure 3B). Since the size of CRM197 is approximately 60 kDa, the slight increase of 11 nm most likely reflects an increase in the molecular weight of the resulting conjugate. No significant aggregation or cross-linking of the CRM conjugate was detected, and the 24-hour cumulative radius analysis also showed that the HDR of the conjugate was stable and aggregation did not occur. Again, DLS analysis of this alternative type of CLEC-based vaccine supports the prevalence of monomeric conjugates.

對照組樣品(即未經氧化之石耳多醣)顯示出更大的HDR,平均為約600nm,並且另具有兩個分別位於5 nm及46 nm的較小峰(參見圖3C)。石耳多醣單體的HDR為約5 nm,與假定的20kD分子量非常吻合,可很容易地偵測到較大的聚集體,且大部分葡聚糖以大的、高分子量顆粒的形式存在。重要的是,超過24小時的累積半徑分析亦表明,與石耳多醣結合物相比,非結合的石耳多醣傾向於隨著時間的推移強烈聚集,引起大顆粒的普遍形成,此與各種文獻報導一致。The control sample (i.e., non-oxidized Auricularia polysaccharide) showed a larger HDR, averaging about 600 nm, and had two smaller peaks located at 5 nm and 46 nm respectively (see Figure 3C). The HDR of the fungus polysaccharide monomer is about 5 nm, which is in good agreement with the assumed molecular weight of 20kD. Larger aggregates can be easily detected, and most of the glucan exists in the form of large, high molecular weight particles. Importantly, cumulative radius analysis over 24 hours also showed that compared with the conjugated Acanthus polysaccharides, unconjugated Acanthus polysaccharides tend to aggregate strongly over time, causing the widespread formation of large particles, which is consistent with various literatures. The reports are consistent.

圖3描繪了此兩種結合物及未經氧化之石耳多醣對照的實例圖。FIG3 depicts examples of these two conjugates and unoxidized Pyricularia polysaccharide as a control.

與此項技術中眾所周知的實例(例如:Wang等人,2019年;Jin等人,2018年)相比,本實例中獲得的結果進一步展示了迄今為止基於CLEC之結合物的獨特特徵,即顯示出小(即,5-11 nm),主要是單體糖基奈米顆粒,HDR遠小於150 nm,該尺寸通常被認為是免疫治療活性結合物疫苗的較佳尺寸。此主要是由於較大顆粒(包括全葡聚糖顆粒)的PRR結合及活化特性。已知較大的顆粒(>150 nm至2-4 µm)能與其受體更有效地相互作用,且可啟動DC信號傳遞、活化、成熟及遷移至引流淋巴結,而小型的、甚至可溶的PRR-配位體被認為能夠與其受體結合,但會阻止隨後的DC活化(Goodridge等人,2011)。然而,此等資料連同實例1、2及3中描述的資料以及下文提供的其他實例首次證明基於單體β-葡聚糖的小且可溶的肽基葡萄糖-新結合物,例如:線性β(1,6)-β-D葡聚糖石耳多醣,作為骨架可有效地結合PRR (dectin-1),活化相應的APC (如GM-CSFDC)且顯示出非常高的生物活性,其皮膚特異性方式的免疫原性亦顯著超越經典結合物疫苗的作用。 實例 4 :不同 CLEC 疫苗的活體內比較 Compared to well-known examples in this technology (e.g. Wang et al., 2019; Jin et al., 2018), the results obtained in this example further demonstrate the unique characteristics of CLEC-based conjugates to date, namely showing The resulting small (i.e., 5-11 nm), predominantly monomeric glycosyl nanoparticles have an HDR much less than 150 nm, which is generally considered the preferred size for immunotherapeutic active conjugate vaccines. This is primarily due to the PRR binding and activation properties of larger particles, including whole glucan particles. Larger particles (>150 nm to 2-4 µm) are known to interact more efficiently with their receptors and initiate DC signaling, activation, maturation, and migration to draining lymph nodes, whereas smaller, even soluble, PRR-ligands are thought to bind to their receptors but prevent subsequent DC activation (Goodridge et al., 2011). However, these data, together with those described in Examples 1, 2 and 3 and other examples provided below, demonstrate for the first time small and soluble peptidylglucose-novel conjugates based on monomeric β-glucan, e.g. linear β (1,6)-β-D glucan fungus polysaccharide, as a skeleton, can effectively bind to PRR (dectin-1), activate the corresponding APC (such as GM-CSFDC) and show very high biological activity, and its skin The immunogenicity in a specific manner also significantly exceeds that of classic conjugate vaccines. Example 4 : In vivo comparison of different CLEC vaccines

能夠結合至其DC受體(例如:dectin-1或ConA)的基於CLEC之疫苗在n=5Balb/c小鼠/組中重複施用後,測試了其誘導強烈及特異性免疫反應的能力。典型的實驗使用每劑量5µg淨肽含量的B細胞抗原決定基肽進行。CLEC-based vaccines that bind to their DC receptors (e.g., dectin-1 or ConA) were tested for their ability to induce a strong and specific immune response after repeated administration in n=5 Balb/c mice/group. Typical experiments were performed using 5µg of neat peptide content of B cell epitope peptide per dose.

在第一組實驗中比較了三種不同的CLEC。在本實驗中,α突觸核蛋白衍生肽SeqID2或澱粉樣蛋白β42(Aβ42)衍生肽SeqID10及混雜的輔助性T細胞抗原決定基SeqID7藉由C端醯肼連接子與經氧化之石耳多醣素(20%氧化度)、甘露多醣(20%氧化度)或大麥β-葡聚糖(229kDa,20%氧化度)偶合。 所用疫苗: B 細胞抗原決定基 T 細胞抗原決定基 CLEC SeqID2 SeqID7 石耳多醣(20%) SeqID2 SeqID7 甘露多醣(20% SeqID2 SeqID7 大麥β-葡聚糖(229kDa,20%) SeqID2 SeqID7 石耳多醣(80%) SeqID2 SeqID7 地衣多醣(245kDa, 200% SeqID10 SeqID7 石耳多醣(80%) SeqID10 SeqID7 地衣多醣(245kDa, 200% Three different CLECs were compared in the first set of experiments. In this experiment, the α-synuclein-derived peptide SeqID2 or the amyloid β42 (Aβ42)-derived peptide SeqID10 and the hybrid helper T cell epitope SeqID7 were combined with oxidized auricularia polysaccharide through a C-terminal hydrazine linker. Coupled with beta-glucan (20% oxidation degree), mannan (20% oxidation degree) or barley β-glucan (229kDa, 20% oxidation degree). Vaccines used: B cell epitope T cell epitope CLEC SeqID2 SeqID7 Shi fungus polysaccharide (20%) SeqID2 SeqID7 Mannan (20% SeqID2 SeqID7 Barley β-glucan (229kDa, 20%) SeqID2 SeqID7 Shi fungus polysaccharide (80%) SeqID2 SeqID7 Lichenin (245kDa, 200% SeqID10 SeqID7 Shi fungus polysaccharide (80%) SeqID10 SeqID7 Lichenin (245kDa, 200%

動物(雌性Balb/c小鼠)每兩週接種一次的間隔接種疫苗3次(途徑:i.d.),隨後使用第三次免疫接種後兩週採集的小鼠血漿分析針對注射肽(即分別為SeqID2及SeqID10)的免疫反應。 結果: Animals (female Balb/c mice) were vaccinated 3 times at 2-week intervals (Route: id), and mouse plasma collected 2 weeks after the third immunization was subsequently analyzed for the injected peptide (i.e., SeqID2, respectively). and SeqID10) immune response. result:

如圖4A所示,所有三種CLEC疫苗(SeqID2+SeqID7+甘露多醣、SeqID2+SeqID7+石耳多醣(線性β(1,6)β-葡聚糖)及大麥SeqID2+SeqID7+β-葡聚糖(229kDa)均能夠誘導可偵測的免疫反應。有趣的是,使用基於大麥高分子量β-葡聚糖之疫苗進行免疫接種僅誘導非常低的抗肽反應(OD max/2效價約為1/100)。相比之下,基於石耳多醣之結合物可誘導平均效價約為1/11000之顯著更高的反應。與基於石耳多醣之結合物相比,基於甘露多醣之結合物顯示出約降低7倍的免疫原性,因為在該實驗中免疫接種後的平均效價達到約1/1500。 As shown in Figure 4A , all three CLEC vaccines (SeqID2+SeqID7+mannan, SeqID2+SeqID7+Shitu polysaccharide (linear β(1,6)β-glucan) and barley SeqID2+SeqID7+β-glucan (229kDa ) were able to induce a detectable immune response. Interestingly, immunization with a barley high molecular weight β-glucan-based vaccine induced only a very low anti-peptide response (OD max/2 titer approximately 1/100 ). In contrast, the conjugates based on Schizophora polysaccharides induced significantly higher responses with an average titer of approximately 1/11000. Compared to the conjugates based on Schizophora polysaccharides, the mannan polysaccharide-based conjugates showed Approximately 7-fold reduction in immunogenicity since the average titer after immunization in this experiment reached approximately 1/1500.

圖4B顯示了第二組實驗的結果,使用突觸核蛋白衍生肽SeqID2或澱粉樣蛋白β42(Aβ42)衍生肽SeqID10作為B細胞抗原決定基及T細胞抗原決定基SeqID7比較兩種不同變異體的葡聚糖基結合物的免疫原性。第一個變異體再次使用石耳多醣作為CLEC進行結合,第二個變異體係藉由使用線性β-(1,3)β-(1,4)-β-D葡聚糖―地衣多醣(ca245kDa)所產生。如圖4B所示,兩種變異體均可誘導針對注射肽之高效價免疫反應(即SeqID2/3(SeqID3=SeqID2適用於BSA偶合)及SeqID10/11(SeqID11=SeqID10適用於BSA偶合))。然而,肽-地衣多醣結合物在此等實驗中顯示出比肽-石耳多醣結合物顯著更低的免疫原性(在5μg劑量下抗肽效價高4-8倍),此亦與實例1中所示的較低的dectin-1結合能力一致。此表明dectin-1在活體外的結合功效可直接與疫苗的活體內免疫原性及生物活性相關聯。此導致石耳多醣或其片段(即線性β(1,6)-β-D葡聚糖)被鑑定為本申請中提出的最有效的葡聚糖變異體。疫苗對不同的肽亦有功能,證明了此疫苗類型的平台潛力。 實例 5 :肽石耳多醣結合物與未結合的肽疫苗的活體內比較 Figure 4B shows the results of a second set of experiments comparing two different variants using the synuclein-derived peptide SeqID2 or the amyloid beta 42 (Aβ42)-derived peptide SeqID10 as a B-cell epitope and the T-cell epitope SeqID7. Immunogenicity of dextran-based conjugates. The first variant once again used Shigu polysaccharide as CLEC for binding, and the second variant system was modified by using linear β-(1,3)β-(1,4)-β-D glucan-lichenin (ca245kDa). ) produced. As shown in Figure 4B, both variants can induce high-titer immune responses against the injected peptides (i.e., SeqID2/3 (SeqID3=SeqID2 is suitable for BSA coupling) and SeqID10/11 (SeqID11=SeqID10 is suitable for BSA coupling)). However, the peptide-lichenin conjugates showed significantly lower immunogenicity than the peptide-lichenin conjugates in these experiments (4-8 times higher anti-peptide potency at the 5 μg dose), which is also consistent with Examples The lower dectin-1 binding capacity shown in 1 is consistent. This indicates that the binding efficacy of dectin-1 in vitro can be directly related to the in vivo immunogenicity and biological activity of the vaccine. This led to the identification of the fungus polysaccharide or its fragments (i.e. linear β(1,6)-β-D glucan) as the most potent glucan variant proposed in this application. The vaccine is also functional on different peptides, demonstrating the platform potential of this vaccine type. Example 5 : In vivo comparison of peptide Shigu polysaccharide conjugates and unconjugated peptide vaccines

為了評估CLEC與肽免疫原的結合是否是誘導根據本發明之疫苗的優異免疫原性所必須的,本案進行了一組實驗,將兩種結合物(SeqID2+SeqID7+石耳多醣或SeqID2+SeqID7+甘露多醣)與包含所有成分的混合(沒有結合)製劑的疫苗進行比較(即,SeqID2及SeqID7分別加上非氧化石耳多醣或甘露多醣)。同樣地,n=5隻雌性Balb/c小鼠以每兩週一次的間隔進行皮內注射免疫接種三次,並使用第三次免疫接種兩週後採集的鼠血漿分析隨後針對注射肽(即SeqID3)的免疫反應。 所用疫苗: B 細胞抗原決定基 T 細胞抗原決定基 CLEC 結合 SeqID2 SeqID7 石耳多醣(20%) SeqID2) SeqID7 甘露多醣(20%) SeqID2 SeqID7 石耳多醣(未經氧化) 非結合;混合 SeqID2 SeqID7 甘露多醣(未經氧化) 非結合;混合 結果: In order to evaluate whether the conjugation of CLEC with peptide immunogens is necessary to induce the excellent immunogenicity of the vaccine according to the invention, a set of experiments was performed in which two conjugates (SeqID2+SeqID7+SeqID7+SeqID2+SeqID7+Mannan polysaccharide) were compared to a vaccine containing a mixed (not combined) formulation of all components (i.e., SeqID2 and SeqID7 plus non-oxidized auricularia polysaccharide or mannan polysaccharide, respectively). Similarly, n = 5 female Balb/c mice were immunized intradermally three times at biweekly intervals, and mouse plasma collected two weeks after the third immunization was analyzed subsequently for the injected peptide (i.e., SeqID3 ) immune response. Vaccines used: B cell epitope T cell epitope CLEC combine SeqID2 SeqID7 Shi fungus polysaccharide (20%) yes SeqID2) SeqID7 Mannan (20%) yes SeqID2 SeqID7 Shi fungus polysaccharide (not oxidized) unbound; mixed SeqID2 SeqID7 Mannan (not oxidized) unbound; mixed result:

圖5顯示了三次免疫接種後可偵測到的抗肽(SeqID3)特異性免疫反應的比較。在此實驗中,SeqID2+SeqID7+石耳多醣結合物(20%氧化)能夠誘導4倍高於未偶合肽SeqID2、SeqID7及非氧化石耳多醣混合物(即1/12000對1/3000)的免疫反應。類似地,SeqID2+SeqID7+甘露多醣結合物(20%氧化)亦能更有效地誘導肽特異性免疫反應,而施用此等成分的混合物則較弱(1/7000對1/4000;增加1.75倍)。此等數據表明,需要將肽免疫原與活化的CLEC結合才能在活體內誘導強烈且可持續的免疫反應。 實例 6 SeqID5+SeqID7+ 石耳多醣及 SeqID2+ Seq-7+ 石耳多醣結合物的活體內比較 Figure 5 shows a comparison of the anti-peptide (SeqID3) specific immune responses detected after three immunizations. In this experiment, the SeqID2+SeqID7+Pseudomonas aeruginosa conjugate (20% oxidized) was able to induce a 4-fold higher immune response than the mixture of unconjugated peptide SeqID2, SeqID7, and non-oxidized Pseudomonas aeruginosa (i.e., 1/12000 vs. 1/3000). Similarly, the SeqID2+SeqID7+Mannan polysaccharide conjugate (20% oxidized) was also more effective in inducing a peptide-specific immune response, while the mixture of these components was weaker (1/7000 vs. 1/4000; 1.75-fold increase). These data indicate that the peptide immunogen needs to be conjugated to activated CLECs to induce a strong and sustained immune response in vivo. Example 6 : In vivo comparison of SeqID5+SeqID7+ Psoralea corylifolia and SeqID2+ or Seq-7+ Psoralea corylifolia conjugates

為了評估基於CLEC之疫苗是否需要B細胞及T細胞抗原決定基來在活體內誘導可持續的抗B細胞抗原決定基特異性免疫反應,本案進行了一組實驗來比較三種結合物:SeqID5+SeqID7+石耳多醣、SeqID5+石耳多醣及SeqID7+石耳多醣。n=5隻雌性Balb/c小鼠以每兩週一次的間隔進行皮內注射免疫接種三次,隨後使用第三次免疫接種後兩週採集的鼠血漿分析針對注射肽(即SeqID6)的後續免疫反應。 B 細胞抗原決定基 T 細胞抗原決定基 CLEC SeqID5 SeqID7 石耳多醣(80%) SeqID5 n.a. 石耳多醣(80%) n.a. SeqID7 石耳多醣(80%) 結果: To evaluate whether CLEC-based vaccines require both B-cell and T-cell epitopes to induce sustained anti-B-cell epitope-specific immune responses in vivo, a set of experiments was conducted to compare three conjugates: SeqID5+SeqID7+Pseudomonas aeruginosa, SeqID5+Pseudomonas aeruginosa, and SeqID7+Pseudomonas aeruginosa. n=5 female Balb/c mice were immunized intradermally three times at biweekly intervals, and subsequent immune responses to the injected peptide (i.e., SeqID6) were analyzed using mouse plasma collected two weeks after the third immunization. B cell antigen determinant T cell antigen determinant CLEC SeqID5 SeqID7 Pyricularia auricula polysaccharide (80%) SeqID5 na Pyricularia auricula polysaccharide (80%) na SeqID7 Pyricularia auricula polysaccharide (80%) result:

如圖6所示,在此實驗中,SeqID5+SeqID7+石耳多醣結合物(80%氧化)能夠誘導針對注射之肽部分(即α突觸核蛋白衍生肽SeqID6)的高特異性免疫反應,平均效價達到1/36000。藉由腙偶合反應偶合至石耳多醣的含有單獨的SeqID5或SeqID7的肽-石耳多醣結合物以每兩週一次的間隔進行免疫接種三次(途徑:i.d.)後,在SeqID5-石耳多醣(1/3000)的情況下可誘導低12倍的免疫反應,或沒有SeqID6特異性免疫反應(對於SeqID7-石耳多醣結合物,效價<1/100,低於偵測極限)。As shown in FIG6 , in this experiment, SeqID5+SeqID7+Auricularia auriculariae polysaccharide conjugate (80% oxidized) was able to induce a highly specific immune response against the injected peptide portion (i.e., α-synuclein-derived peptide SeqID6), with an average titer of 1/36,000. Peptide-Pseudo-Pseudo-Auricularia polysaccharide conjugates containing either SeqID5 or SeqID7 alone coupled to Pseudo-Auricularia polysaccharide by hydrazone coupling reaction were immunized three times at intervals of once every two weeks (route: i.d.) and induced a 12-fold lower immune response in the case of SeqID5-Pseudo-Auricularia polysaccharide (1/3000) or no SeqID6-specific immune response (for SeqID7-Pseudo-Auricularia polysaccharide conjugates, the titer was <1/100, which is below the detection limit).

此等數據表明,需要將肽免疫原與活化的CLEC結合才能在活體內誘導強烈且可持續的免疫反應。然而,其亦表明,在沒有T細胞抗原決定基(例如:單獨的SeqID5)的情況下,石耳多醣與單個短B細胞抗原決定基的結合可在活體內誘導T細胞非依賴性B細胞反應,儘管效力顯著低於報導所述之含有T細胞及B細胞抗原決定基的CLEC結合物。 實例 7 :肽 - 石耳多醣免疫後抗石耳多醣 / 葡聚糖免疫反應的活體內分析 These data demonstrate that conjugation of peptide immunogens to activated CLEC is required to induce strong and sustainable immune responses in vivo. However, it was also shown that in the absence of a T cell epitope (e.g., SeqID5 alone), the binding of acanthus polysaccharides to a single short B cell epitope can induce T cell independent B cell responses in vivo , although the potency is significantly lower than reported CLEC conjugates containing T cell and B cell epitopes. Example 7 : In vivo analysis of anti-Agaricus polysaccharide / dextran immune response after peptide - Acacia polysaccharide immunization

抗CLEC抗體的分析對於根據本發明提出的CLEC疫苗的新穎性及功效在兩個層面上是重要的:The analysis of anti-CLEC antibodies is important for the novelty and efficacy of the CLEC vaccine proposed according to the present invention on two levels:

1)β-葡聚糖為各種真菌、地衣及植物細胞壁的主要成分,賦予細胞壁抵抗細胞內滲透壓的典型強度。因此,β-葡聚糖亦被認為是典型的微生物病原體相關分子模式(PAMP),且是健康人類受試者中高效價循環天然抗體的主要目標。PAMP是許多病原體共有的常見且相對不變的分子結構,是免疫系統的強大活化劑。(Chiani等人 Vaccine 27 (2009) 513-519, Noss等人 Int Arch Allergy Immunol 2012;157:98-108, Dong等人 J Immunol 2014; 192:1302-1312, Ishibashi等人 FEMS Immunology and Medical Microbiology 44 (2005) 99-109, Harada等人 Biol Pharm Bull. 2003 Aug;26(8):1225-8)。針對β-(1,3)-及-β-(1,6)-葡聚糖的IgG可在正常人血清中找到,且β-(1,6)-葡聚糖似乎比β-(1-3)變異體為更強效的抗體。此外,β-(1-6)-β-葡聚糖部分已被確定為典型的微生物PAMP之一,其作為識別及攻擊免疫惡性腫瘤監測以及抵禦微生物入侵的焦點。石耳多醣是根據本發明之CLEC結合物的較佳葡聚糖骨架,其由線性β-(1-6)-β-葡聚糖部分構成,且若干研究小組已經報導過抗-石耳多醣免疫反應可在未接受過石耳多醣免疫的人類受試者的血漿中偵測到。因此,研究基於CLEC之疫苗活化抗石耳多醣免疫反應性的潛力至關重要。抗β-葡聚糖抗體可在活體內特異性地與肽-石耳多醣相互作用,並可藉由形成抗原-抗體複合體引起快速消除,從而排除誘導有效的免疫反應。或者,免疫接種後之誘導/增強抗石耳多醣抗體反應亦可促進免疫原性,因為抗石耳多醣特異性IgG抗體與CLEC結合物的潛在交叉呈遞及APC的攝取亦可提高所施用疫苗的功效。1) β-glucan is the main component of the cell walls of various fungi, lichens and plants, giving the cell walls typical strength to resist intracellular osmotic pressure. Therefore, β-glucan is also considered to be a classic microbial pathogen-associated molecular pattern (PAMP) and a major target of high-titer circulating natural antibodies in healthy human subjects. PAMPs are common and relatively immutable molecular structures shared by many pathogens and are powerful activators of the immune system. (Chiani et al. Vaccine 27 (2009) 513-519, Noss et al. Int Arch Allergy Immunol 2012;157:98-108, Dong et al. J Immunol 2014; 192:1302-1312, Ishibashi et al. FEMS Immunology and Medical Microbiology 44 (2005) 99-109, Harada et al. Biol Pharm Bull. 2003 Aug;26(8):1225-8). IgG against β-(1,3)- and -β-(1,6)-glucan can be found in normal human serum, and β-(1,6)-glucan appears to be more sensitive than β-(1 -3) The variant is a more potent antibody. In addition, the β-(1-6)-β-glucan moiety has been identified as one of the typical microbial PAMPs, which serves as a focal point for recognition and surveillance of immune malignancies as well as defense against microbial invasion. The preferred glucan backbone for CLEC conjugates according to the present invention is the polysaccharide, which is composed of linear β-(1-6)-β-glucan moieties, and several research groups have reported anti- Immune responses can be detected in the plasma of human subjects who have not been immunized with Schizophora polysaccharide. Therefore, it is crucial to investigate the potential of CLEC-based vaccines to activate immune reactivity against Schizophora polysaccharides. Anti-β-glucan antibodies can specifically interact with peptide-Fructus polysaccharides in vivo and cause rapid elimination by forming antigen-antibody complexes, thereby precluding the induction of an effective immune response. Alternatively, the induction/enhancement of anti-Agaricus polysaccharide antibody responses following immunization may also promote immunogenicity, as potential cross-presentation of anti-Agaricus polysaccharide-specific IgG antibodies with CLEC conjugates and uptake of APCs may also enhance the efficacy of the administered vaccine. effect.

在此之前尚未有正式研究調查未經處理之小鼠中抗石耳多醣抗體的存在。然而,Ishibashi等人及Harada等人可證明在未經處理之DBA/2小鼠的血清中存在針對可溶性硬化葡聚糖/β-葡聚糖(即1,3/1,6-β-葡聚糖)的β-葡聚糖IgG。Prior to this, no formal studies have investigated the presence of anti-A. pyrenoidosa antibodies in untreated mice. However, Ishibashi et al. and Harada et al. were able to demonstrate the presence of β-glucan IgG against soluble sclerosant glucan/β-glucan (i.e., 1,3/1,6-β-glucan) in the serum of untreated DBA/2 mice.

2)如前所述(例如:Torosantucci等人、Bromuro等人、Donadei等人、Liao等人)的CLEC-蛋白質結合物,例如CRM197-偶合昆布多醣、卡德蘭多醣或合成β(1,3)-β-D葡聚糖,可作為強力免疫原,不僅誘導高抗CRM197效價,且亦誘導高抗葡聚糖效價並防止真菌感染。因此,先前使用此類結合物的嘗試一直是聚焦在使用CLEC作為真正的疾病/真菌感染特異性免疫原,而不是如本申請中提出的將其用作載體及免疫學惰性骨架。2) As previously described (e.g., Torosantucci et al., Bromuro et al., Donadei et al., Liao et al.), CLEC-protein conjugates, such as CRM197-coupled laminarin, curdlan or synthetic β(1,3)-β-D-glucan, can act as potent immunogens, inducing not only high anti-CRM197 titers, but also high anti-glucan titers and protecting against fungal infection. Therefore, previous attempts to use such conjugates have been focused on using CLEC as a true disease/fungal infection specific immunogen, rather than using it as a carrier and immunologically inert backbone as proposed in the present application.

沿著此等思路,針對免疫接種前及重複免疫接種後的抗石耳多醣抗體的存在,分別開始了針對首次免疫及肽-CLEC結合物免疫Balb/c小鼠(n=5/組)血漿樣本的廣泛分析。 所用疫苗: B 細胞抗原決定基 T 細胞抗原決定基 CLEC 結合 SeqID2 SeqID7 石耳多醣(20%) SeqID2 SeqID7 甘露多醣(20%) SeqID2 SeqID7 石耳多醣(未經氧化) 非結合;混合 SeqID2 SeqID7 甘露多醣(未經氧化) 非結合;混合 結果: Along these lines, an extensive analysis of plasma samples from Balb/c mice (n=5/group) immunized with the first and peptide-CLEC conjugates was performed for the presence of anti-A. pyrenoidosa antibodies before and after repeated immunization. B cell antigen determinant T cell antigen determinant CLEC Combine SeqID2 SeqID7 Pyricularia auricula polysaccharide (20%) yes SeqID2 SeqID7 Mannopolysaccharide (20%) yes SeqID2 SeqID7 Pyricularia auricula polysaccharide (unoxidized) Unbound; Mixed SeqID2 SeqID7 Mannopolysaccharide (unoxidized) Unbound; Mixed result:

因此,分析了來自接受肽-石耳多醣(SeqID2+SeqID7+石耳多醣(20%)及肽-甘露多醣(SeqID2+SeqID7+甘露多醣(20%)免疫接種的動物的樣本(所有疫苗:4µgaSyn靶向肽/劑量)。為了控制目的,亦使用了接受由非結合肽及非氧化CLEC組成之疫苗施用的動物(即,SeqID2+SeqID7+非氧化石耳多醣,SeqID2+SeqID7+非氧化甘露多醣)。如圖7A所示,所分析的Balb/c動物顯示出針對石耳多醣/β(1,6)-β-D葡聚糖的預先存在的低水平免疫反應。所測試的兩種CLEC疫苗(SeqID2+SeqID7+石耳多醣(20%)及SeqID2+SeqID7+甘露多醣(20%))未能在活體內誘導針對葡聚糖骨架的強烈從頭免疫反應。相比之下,重複施用對照組中存在的未結合、未經氧化之石耳多醣(包含所有三種成分的混合物)藉由將針對石耳多醣的抗體水平提高18.5倍(與免疫接種前血漿相比),導致了強烈的抗葡聚糖免疫反應的誘導。含有甘露多醣之結合物或混合物無法誘導抗石耳多醣效價,表明偵測到的抗葡聚糖反應具有特異性。抗石耳多醣抗體效價的動力學分析顯示其會隨著時間的推移穩定增加,在使用非偶合及未經氧化之石耳多醣進行免疫接種的動物中,第三次免疫接種後該效價出現強烈增加(參見圖7B)。使用逐漸增加的天然石耳多醣的競爭型ELISA亦證明了在包含混合成分的組中可偵測到的抗體反應的特異性(圖7C)。Therefore, samples from animals vaccinated with peptide-SeqID2+SeqID7+SeqID (20%) and peptide-mannan (SeqID2+SeqID7+mannan (20%)) were analyzed (all vaccines: 4µgaSyn targeted peptide/dose). For control purposes, animals receiving administration of a vaccine consisting of non-conjugated peptides and non-oxidized CLEC (i.e., SeqID2+SeqID7+non-oxidized mannan polysaccharide, SeqID2+SeqID7+non-oxidized mannan polysaccharide) were also used. Figure As shown in 7A, the Balb/c animals analyzed showed a pre-existing low-level immune response against Shigu polysaccharide/β(1,6)-β-D glucan. The two CLEC vaccines tested (SeqID2+ SeqID7 + Shigu polysaccharide (20%) and SeqID2 + SeqID7 + mannan polysaccharide (20%)) failed to induce strong de novo immune responses against the dextran backbone in vivo. In contrast, repeated administration of unbound polysaccharide present in the control group , non-oxidized agaric polysaccharides (containing a mixture of all three components) led to a strong anti-glucan immune response by increasing antibody levels against agaric polysaccharides 18.5-fold (compared to pre-immunization plasma) Induction. Conjugates or mixtures containing mannan polysaccharides were unable to induce anti-Sea polysaccharide titers, indicating the specificity of the anti-glucan response detected. Kinetic analysis of anti-Sea mannan antibody titers showed that they increased over time The titers increased steadily over time, with a strong increase after the third immunization in animals vaccinated with unconjugated and non-oxidized Shifu polysaccharide (see Figure 7B). The titers using gradually increasing amounts of natural Shifu polysaccharide Competitive ELISA also demonstrated the specificity of the antibody responses detectable in groups containing mixed components (Fig. 7C).

總之,此等分析可證明:儘管在未經處理之的Balb/c小鼠中存在針對石耳多醣(IgG)的低水平自身反應性,但在使用各種CLEC結合物進行免疫接種後,並無法誘導/僅誘導非常低之疫苗接種依賴性的抗石耳多醣免疫反應性的增加。因此,根據本發明用作肽-CLEC結合物的CLEC使用根據本發明之新型疫苗設計確實是免疫學惰性的。此與先前公佈的結果形成強烈對比,因此構成了根據本發明之碳水化合物骨架(例如,β-葡聚糖或甘露多醣,尤其是石耳多醣骨架)的令人驚訝及具創造性的新特徵。Taken together, these analyzes demonstrate that, despite the presence of low-level autoreactivity against Shigella polysaccharide (IgG) in untreated Balb/c mice, this does not occur after immunization with various CLEC conjugates. Induces/only induces a very low vaccination-dependent increase in immune reactivity against Schizophora polysaccharide. Therefore, CLEC used as peptide-CLEC conjugates according to the invention are indeed immunologically inert using the novel vaccine design according to the invention. This is in strong contrast to previously published results and thus constitutes a surprising and inventive new feature of the carbohydrate backbone according to the present invention (for example, β-glucan or mannan polysaccharide, especially the polysaccharide backbone).

此外,預先存在的抗石耳多醣反應似乎並不排除對WISIT疫苗肽成分的免疫反應,因為兩個實驗的注射肽反應均顯示出高抗肽效價。 實例 8 :葡聚糖結合物與 N- C 端偶合的肽免疫原的免疫原性分析 Furthermore, pre-existing anti-WISIT polysaccharide responses do not appear to preclude an immune response to the peptide component of the WISIT vaccine, as the injected peptide responses in both experiments showed high anti-peptide titers. Example 8 : Immunogenicity analysis of dextran conjugates with N- or C -terminally coupled peptide immunogens

為了評估用於偶合的連接子方向是否會干擾疫苗的免疫原性,本案製造了4種不同的候選疫苗:在該實驗中,α突觸核蛋白衍生肽SeqID1/2及SeqID4/5藉由N-或C端醯肼連接子偶合於氧化型石耳多醣(80%)。此外,4種疫苗中的每一種均攜載混雜的輔助性T細胞抗原決定基SeqID7,藉由C端醯肼連接子與CLEC骨架偶合。 所用疫苗: B 細胞抗原決定基 T 細胞抗原決定基 CLEC SeqI1 SeqID7 石耳多醣(80%) SeqID2 SeqID7 石耳多醣(80%) SeqID4 SeqID7 石耳多醣(80%) SeqID5 SeqID7 石耳多醣(80%) To evaluate whether the orientation of the linker used for conjugation would interfere with the immunogenicity of the vaccine, four different candidate vaccines were produced: In this experiment, α-synuclein-derived peptides SeqID1/2 and SeqID4/5 were conjugated to oxidized Pseudomonas aeruginosa (80%) via an N- or C-terminal hydrazide linker. In addition, each of the four vaccines carried a promiscuous helper T cell epitope SeqID7, conjugated to the CLEC backbone via a C-terminal hydrazide linker. Vaccines used: B cell antigen determinant T cell antigen determinant CLEC SeqI1 SeqID7 Pyricularia auricula polysaccharide (80%) SeqID2 SeqID7 Pyricularia auricula polysaccharide (80%) SeqID4 SeqID7 Pyricularia auricula polysaccharide (80%) SeqID5 SeqID7 Pyricularia auricula polysaccharide (80%)

動物(雌性Balb/c小鼠)以每兩週一次的間隔接種3次疫苗(途徑:i.d.),隨後使用第三次免疫接種後兩週採集的小鼠血漿,對針對注射肽(即SeqID3及SeqID6)以及針對目標蛋白(即重組α突觸核蛋白)的免疫反應進行了分析。 結果: Animals (female Balb/c mice) were vaccinated three times at biweekly intervals (Route: id), and mouse plasma collected two weeks after the third immunization was subsequently tested against the injected peptides (i.e., SeqID3 and SeqID6) and the immune response against the target protein (i.e., recombinant α-synuclein) were analyzed. result:

如圖8所示,使用N或C端偶合B細胞抗原決定基的所有4種CLEC疫苗均能夠誘導針對注射的肽部分(圖8A)及目標蛋白(α突觸核蛋白,圖8B)的強烈且高度特異性的免疫反應。有趣的是,偶合方向對免疫原性的影響不同。例如,與C端偶合的SeqID2+SeqID7+CLEC相比,N端偶合的SeqID1+SeqID7+CLEC疫苗誘導的抗注射肽反應降低了7倍,針對重組aSyn的免疫反應降低了10倍。相比之下,C端偶合的SeqID5+SeqID7+CLEC疫苗與N端偶合的SeqID4+SeqID7+CLEC疫苗相比,分別誘導了低約4倍的注射肽反應,但抗aSyn反應相同。因此,可根據肽之特異性特徵改變偶合方向,而不影響高效價免疫反應的發展。As shown in Figure 8, all four CLEC vaccines using N- or C-terminally coupled B cell epitopes were able to induce strong and highly specific immune responses against the injected peptide portion (Figure 8A) and the target protein (α-synuclein, Figure 8B). Interestingly, the coupling direction had different effects on immunogenicity. For example, the N-terminally coupled SeqID1+SeqID7+CLEC vaccine induced a 7-fold lower anti-injected peptide response and a 10-fold lower immune response against recombinant aSyn compared to the C-terminally coupled SeqID2+SeqID7+CLEC. In contrast, the C-terminally coupled SeqID5+SeqID7+CLEC vaccine induced approximately 4-fold lower injected peptide responses compared to the N-terminally coupled SeqID4+SeqID7+CLEC vaccine, but the same anti-aSyn response. Therefore, the direction of coupling can be varied depending on the specific characteristics of the peptide without affecting the development of a high titer immune response.

然而,如圖8所示,藉由改變免疫原性肽之偶合方向,可顯著增加針對目標蛋白的後續反應的特異性,因此可用於產生新的及前所未有的免疫反應: 例如:與目標蛋白相比,SeqID1疫苗接種導致針對肽之反應高出4.5倍,與SeqID2疫苗誘導的蛋白相比,抗肽反應高出3.3倍。 However, as shown in Figure 8, by changing the coupling direction of the immunogenic peptide, the specificity of the subsequent response against the target protein can be significantly increased and can therefore be used to generate new and unprecedented immune responses: For example: SeqID1 vaccination resulted in a 4.5-fold higher response against the peptide compared to the protein of interest and a 3.3-fold higher anti-peptide response compared to the protein induced by the SeqID2 vaccine.

相比之下,與蛋白質相比,SeqID4疫苗誘導對肽之反應高出1.7倍,而SeqID5疫苗可逆轉此比例,引起與可偵測的注射肽反應相比高出2.5倍的蛋白質特異性反應。In contrast, the SeqID4 vaccine induced a 1.7-fold higher response to the peptide compared to the protein, while the SeqID5 vaccine reversed this ratio, eliciting a 2.5-fold higher protein-specific response than could be detected with the injected peptide.

總之,此等數據清楚地表明使用任一偶合方向之疫苗均具有生物活性且適用於該施用。其亦表明,偶合方向可用於根據要解決的肽及目標選擇特別較佳及前所未有的活性疫苗。 實例 9 :使用不同的輔助性 T 細胞抗原決定基分析 CLEC 結合物的免疫原性 Taken together, these data clearly demonstrate that vaccines using either coupling orientation are biologically active and suitable for this administration. It also demonstrates that coupling orientation can be used to select particularly optimal and unprecedented active vaccines based on the peptide and target to be addressed. Example 9 : Analysis of the immunogenicity of CLEC conjugates using different helper T cell epitopes

在此實例中,將含有非天然泛DR抗原決定基(含有人工組織蛋白酶裂解位點的PADRE,SeqID7)的基於CLEC之疫苗的免疫原性與其他眾所周知的輔助性T細胞抗原決定基進行了比較。為此,本案選擇了若干混雜的抗原決定基,此等抗原決定基要麼使用一種新的、人工包含的組織蛋白酶L裂解位點進行改造,以便在APCs/DCs中受體介導的攝取後有效地釋放細胞內/溶酶體,要麼保持不變。選擇的抗原決定基包括: 序列 抗原決定基 組織蛋白酶 L 裂解位點 SeqID7 AKFVAAWTLKAAANRRA-(NH-NH 2) PADRE + SeqID22 AKFVAAWTLKAAA-(NH-NH 2) PADRE - SeqID23 KAAAVKAAFWTAL-NRRA-(NH-NH 2) 人工 + SeqID24 DSETADNLEKTVAALSILPGHGC-(NH-NH 2) 白喉 - SeqID25 DSETADNLEKTVAALSILPGHGCNRRA-(NH-NH 2) 白喉 + SeqID26 ISITEIKGVIVHRIETILF-(NH-NH 2) 麻疹病毒融合蛋白 - SeqID27 ISITEIKGVIVHRIETILFNRRA-(NH-NH 2) 麻疹病毒融合蛋白 + SeqID28 ISQAVHAAHAEINEAGR-(NH-NH 2) 雞OVA (323-339) - SeqID29 ISQAVHAAHAEINEAGRNRRA-(NH-NH 2) 雞OVA (323-339) + In this example, the immunogenicity of a CLEC-based vaccine containing a non-native pan-DR epitope (PADRE containing an artificial cathepsin L cleavage site, SeqID7) was compared to other well-known helper T cell epitopes. For this purpose, several promiscuous epitopes were selected that were either engineered with a novel, artificially included cathepsin L cleavage site for efficient intracellular/lysosomal release following receptor-mediated uptake in APCs/DCs or remained unchanged. The epitopes selected included: Peptides sequence Antigenic determinant Cathepsin L cleavage site SeqID7 AKFVAAWTLKAAANRRA-(NH-NH 2 ) PADRE + SeqID22 AKFVAAWTLKAAA-(NH-NH 2 ) PADRE - SeqID23 KAAAVKAAFWTAL-NRRA-(NH-NH 2 ) Artificial + SeqID24 DSETADNLEKTVAALSILPGHGC-(NH-NH 2 ) diphtheria - SeqID25 DSETADNLEKTVAALSILPGHGCNRRA-(NH-NH 2 ) diphtheria + SeqID26 ISITEIKGVIVHRIETILF-(NH-NH 2 ) Measles virus fusion protein - SeqID27 ISITEIKGVIVHRIETILFNRRA-(NH-NH 2 ) Measles virus fusion protein + SeqID28 ISQAVHAAHAEINEAGR-(NH-NH 2 ) Chicken OVA (323-339) - SeqID29 ISQAVHAAHAEINEAGRNRRA-(NH-NH 2 ) Chicken OVA (323-339) +

為了評估攜載此等輔助性T細胞抗原決定基肽之肽疫苗是否能在重複免疫接種後產生高免疫反應,且能誘導比傳統結合疫苗更優秀的免疫反應,本實驗測試了10種不同的候選疫苗:In order to evaluate whether peptide vaccines carrying these helper T cell epitope peptides can produce high immune responses after repeated immunizations and induce better immune responses than traditional conjugate vaccines, this experiment tested 10 different Vaccine candidates:

在本實驗中,aSyn衍生的肽SeqID2被用作肽-CLEC疫苗(即:SeqID2,與不同的輔助性T細胞抗原決定基結合,藉由C端醯肼連接子偶合於經氧化之石耳多醣(80%;))或習知使用含有用於與GMBS活化的KLH偶合的C端半胱胺酸的SeqID3生成肽結合物。 所用疫苗: 疫苗 B 細胞抗原決定基 T 細胞抗原決定基 / 載體 CLEC 佐劑 途徑 1 SeqID2 SeqID7 石耳多醣(80%) n.a i.d. 2 SeqID2 SeqID22 石耳多醣(80%) n.a i.d. 3 SeqID2 SeqID23 石耳多醣(80%) n.a i.d. 4 SeqID2 SeqID24 石耳多醣(80%) n.a i.d. 5 SeqID2 SeqID25 石耳多醣(80%) n.a i.d. 6 SeqID2 SeqID26 石耳多醣(80%) n.a i.d. 7 SeqID2 SeqID27 石耳多醣(80%) n.a i.d. 8 SeqID2 SeqID28 石耳多醣(80%) n.a i.d. 9 SeqID2 SeqID29 石耳多醣(80%) n.a i.d. 10 SeqID3 KLH n.a Alhydrogel s.c. In this experiment, aSyn derived peptide SeqID2 was used as peptide-CLEC vaccine (i.e. SeqID2, conjugated to different helper T cell epitopes, coupled to oxidized Pseudomonas polysaccharide (80%;) via a C-terminal hydrazide linker) or peptide conjugates were generated using SeqID3 containing a C-terminal cysteine for coupling to GMBS-activated KLH. Vaccines used: vaccine B cell antigen determinant T cell antigen determinant / vector CLEC Adjuvant Way 1 SeqID2 SeqID7 Pyricularia auricula polysaccharide (80%) na id 2 SeqID2 SeqID22 Pyricularia auricula polysaccharide (80%) na id 3 SeqID2 SeqID23 Pyricularia auricula polysaccharide (80%) na id 4 SeqID2 SeqID24 Pyricularia auricula polysaccharide (80%) na id 5 SeqID2 SeqID25 Pyricularia auricula polysaccharide (80%) na id 6 SeqID2 SeqID26 Pyricularia auricula polysaccharide (80%) na id 7 SeqID2 SeqID27 Pyricularia auricula polysaccharide (80%) na id 8 SeqID2 SeqID28 Pyricularia auricula polysaccharide (80%) na id 9 SeqID2 SeqID29 Pyricularia auricula polysaccharide (80%) na id 10 SeqID3 KLH na Alhydrogel sc

動物(雌性Balb/c小鼠)以每兩週一次的間隔接種疫苗3次(所有疫苗:5μgaSyn靶向肽/劑量;途徑:基於CLEC之疫苗用i.d.,基於KLH之疫苗用s.c.(以Alhydrogel作為佐劑)),隨後使用第三次免疫接種後兩週採集的鼠血漿對針對注射肽(即SeqID3)以及針對目標蛋白(即重組人類α突觸核蛋白)的免疫反應進行了分析。 結果: Animals (female Balb/c mice) were vaccinated three times at biweekly intervals (all vaccines: 5 μg of Syn targeting peptide/dose; route: id for CLEC-based vaccines, sc for KLH-based vaccines (with Alhydrogel as adjuvant)), and immune responses to the injected peptide (i.e., SeqID3) and to the target protein (i.e., recombinant human α-synuclein) were subsequently analyzed using mouse plasma collected two weeks after the third immunization. Results:

如圖9所示,所有使用不同輔助性T細胞抗原決定基的9種CLEC疫苗及KLH結合物均能夠誘導針對注射的肽部分(SeqID3,圖9A)及目標蛋白(重組α突觸核蛋白,圖9B)的強烈及特異性免疫反應。As shown in Figure 9, all nine CLEC vaccines and KLH conjugates using different helper T cell epitopes were able to induce responses to the injected peptide moiety (SeqID3, Figure 9A) and the target protein (recombinant α-synuclein, Figure 9B) strong and specific immune response.

所有輔助性T抗原決定基均可誘導與習知SeqID3+KLH結合物相似或更優秀的抗肽效價。例如,疫苗1(包含與石耳多醣偶合的SeqID2及SeqID7)可誘導比KLH對照組高60%的反應,而疫苗8(包含SeqID28,一種眾所周知的輔助性T抗原決定基,特別適用於Balb/c動物、SeqID2及石耳多醣)可誘導比對照組高5.5倍的反應。即使是混雜的輔助性T抗原決定基SeqID24(源自白喉毒素,WO2019/21355A1中揭示的Balb/c動物的弱輔助性T抗原決定基)亦能夠誘導可持續的免疫反應,儘管其較KLH對照組弱。All helper T epitopes induced anti-peptide titers similar to or superior to the known SeqID3+KLH conjugate. For example, vaccine 1 (comprising SeqID2 and SeqID7 coupled to Psoralea corylifolia) induced a 60% higher response than the KLH control, while vaccine 8 (comprising SeqID28, a well-known helper T epitope specifically suitable for Balb/c animals, SeqID2, and Psoralea corylifolia) induced a 5.5-fold higher response than the control. Even the promiscuous helper T antigenic determinant SeqID24 (derived from diphtheria toxin, a weak helper T antigenic determinant of Balb/c animals disclosed in WO2019/21355A1) was able to induce a sustainable immune response, although it was weaker than the KLH control group.

類似地,所有輔助性T抗原決定基均可誘導類似於或優於傳統SeqID3-KLH結合物的抗蛋白效價。重要的是,例如,疫苗1(包含與石耳多醣偶合的SeqID2及SeqID7)可誘導比KLH對照組高2.5倍的反應,而疫苗8(包含SeqID28,一種眾所周知的輔助性T抗原決定基,特別適合應用在Balb/c動物中、SeqID2及石耳多醣)可誘導比對照組高3倍的反應,再次支持了根據本發明之基於CLEC之疫苗可誘導優異的抗靶反應的事實。Similarly, all helper T epitopes induced anti-protein titers that were similar to or superior to traditional SeqID3-KLH conjugates. Importantly, for example, vaccine 1 (containing SeqID2 and SeqID7 coupled to Shigu polysaccharide) induced a 2.5-fold higher response than the KLH control group, whereas vaccine 8 (containing SeqID28, a well-known helper T epitope, specifically Suitable for application in Balb/c animals, SeqID2 and Shigu polysaccharide) can induce a response 3 times higher than that of the control group, again supporting the fact that the CLEC-based vaccine according to the present invention can induce an excellent anti-target response.

該實例還表明,與習知疫苗及沒有此人工序列的基於CLEC之疫苗相比,將額外的組織蛋白酶L裂解位點引入已知的輔助性T細胞抗原決定基會引起更有效的免疫反應誘導。This example also demonstrates that the introduction of an additional cathepsin L cleavage site into a known helper T cell epitope leads to a more effective induction of an immune response compared to both the known vaccine and a CLEC-based vaccine without this artificial sequence.

例如,SeqID25是包含裂解位點的弱輔助性T抗原決定基SeqID24的修飾變異體,與未修飾的肽(疫苗5 vs. 疫苗4)相比,SeqID25可誘導高7.5倍的抗肽反應及高3.6倍的抗蛋白反應。此外,與KLH對照相比,此改變亦引起抗蛋白效價增加40%。SeqID27是SeqID26的組織蛋白酶L裂解位點的修飾變異體(一種源自麻疹病毒融合蛋白的抗原決定基,揭示於WO2019/21355A1),其與SeqID26-CLEC疫苗相比亦可顯著增加效價,抗肽反應增加1.8倍,抗蛋白效價增加3.2倍(即疫苗7 vs. 疫苗6)。與KLH對照組相比,疫苗7還誘導了2.2倍高的抗肽反應及1.6倍高的抗蛋白反應。與未修飾的變異體(例如:SeqID22)相比,基於SeqID7之CLEC疫苗亦可誘導更高的抗蛋白效價(增加20%),且與KLH對照組相比,此兩種肽分別導致大約兩倍的抗SeqID2肽及抗aSyn效價。For example, SeqID25, a modified variant of the weak helper T epitope SeqID24 that contains a cleavage site, induced a 7.5-fold higher anti-peptide response and a higher 3.6 times the anti-protein response. In addition, this change also resulted in a 40% increase in anti-protein titer compared to the KLH control. SeqID27 is a modified variant of the cathepsin L cleavage site of SeqID26 (an epitope derived from measles virus fusion protein, disclosed in WO2019/21355A1). Compared with the SeqID26-CLEC vaccine, it can also significantly increase the titer and anti- The peptide response increased by 1.8-fold, and the anti-protein titer increased by 3.2-fold (ie, vaccine 7 vs. vaccine 6). Compared with the KLH control group, vaccine 7 also induced a 2.2-fold higher anti-peptide response and a 1.6-fold higher anti-protein response. The SeqID7-based CLEC vaccine also induced higher anti-protein titers (20% increase) compared with unmodified variants (e.g., SeqID22), and compared with the KLH control group, these two peptides resulted in approximately Twice the anti-SeqID2 peptide and anti-aSyn titers.

添加組織蛋白酶裂解位點引起具有額外N的肽變異體(例如:在裂解時釋放的C端。例如:SeqID22,PADRE,作為AKFVAAWTLKAAA釋放,而對於SeqID7而言,修飾的PADRE作為AKFVAAWTLKAAA-N釋放)的形成。此N亦可能對進一步加工及MHCII呈遞產生負面影響,從而降低相應肽之功效。此現象可在非常強的OVA衍生抗原決定基SeqID28及SeqID29的實例中看到。未修飾的肽誘導非常高的免疫反應而與未修飾的變異體相比,修飾的變異體pep17誘導之抗肽效價減少75%及抗蛋白效價減少98%。 實例 10 :使用載體蛋白作為輔助性 T 細胞抗原決定基的 CLEC 結合物之免疫原性分析: KLH Addition of a cathepsin cleavage site results in the formation of peptide variants with an additional N (e.g. a C-terminus that is released upon cleavage. For example: SeqID22, PADRE, is released as AKFVAAWTLKAAA, whereas for SeqID7 the modified PADRE is released as AKFVAAWTLKAAA-N). This N may also negatively influence further processing and MHCII presentation, thereby reducing the efficacy of the corresponding peptide. This phenomenon can be seen in the case of the very strong OVA-derived epitopes SeqID28 and SeqID29. The unmodified peptide induces a very high immune response while the modified variant pep17 induces a 75% reduction in anti-peptide titers and a 98% reduction in anti-protein titers compared to the unmodified variant. Example 10 : Immunogenicity analysis of CLEC conjugates using carrier protein as helper T cell antigen determinant : KLH

在此實例中,將含有眾所周知的載體蛋白KLH的基於CLEC之結合物疫苗的免疫原性與習知KLH疫苗進行了比較。為此,本實驗選擇了兩個aSyn衍生抗原決定基(SeqID3及SeqID6)與GMBS活化之KLH偶合。隨後,使用BPMH交聯劑將Pep-KLH結合物偶合於氧化石耳多醣的活性醛上,形成基於CLEC之結合物疫苗,其中KLH作為輔助性T細胞抗原決定基的來源,以誘導可持續的免疫反應。 所用疫苗: B 細胞抗原決定基 T 細胞抗原決定基 / 載體 CLEC 佐劑 途徑 SeqID3 KLH 石耳多醣(140%) n.a i.d. SeqID3 KLH n.a n.a i.d SeqID3 KLH n.a Alhydrogel s.c. SeqID6 KLH 石耳多醣(80%) n.a i.d. SeqID6 KLH n.a n.a i.d. SeqID6 KLH n.a Alhydrogel s.c. In this example, the immunogenicity of a CLEC-based conjugate vaccine containing the well-known carrier protein KLH was compared to conventional KLH vaccines. For this purpose, two aSyn-derived epitopes (SeqID3 and SeqID6) were selected for coupling with GMBS-activated KLH in this experiment. Subsequently, the Pep-KLH conjugate was coupled to the active aldehyde of the oxidized auricularia polysaccharide using a BPMH cross-linker to form a CLEC-based conjugate vaccine, in which KLH serves as a source of helper T cell epitopes to induce sustainable immune response. Vaccines used: B cell epitope T cell epitope / carrier CLEC Adjuvant way SeqID3 htK Shi fungus polysaccharide (140%) na ID SeqID3 htK na na ID SeqID3 htK na Alhydrogel sc SeqID6 htK Shi fungus polysaccharide (80%) na ID SeqID6 htK na na ID SeqID6 htK na Alhydrogel sc

動物(雌性Balb/c小鼠)以每兩週一次的間隔接種疫苗3次(所有疫苗:20µg aSyn靶向肽/劑量;途徑:基於CLEC之疫苗及無佐劑之基於KLH之疫苗用i.d.;用Alhydrogel作為佐劑之基於KLH疫苗用s.c.)且隨後使用第三次免疫接種後兩週採集的鼠類血漿對針對注射肽(即SeqID3及SeqID6)以及目標蛋白(即重組人類α突觸核蛋白)的免疫反應進行了分析。 結果: Animals (female Balb/c mice) were vaccinated 3 times at biweekly intervals (all vaccines: 20 µg aSyn targeting peptide/dose; route: CLEC-based vaccines and unadjuvanted KLH-based vaccines with id; KLH-based vaccines adjuvanted with Alhydrogel (sc) and subsequently used murine plasma collected two weeks after the third immunization to target the injected peptides (i.e., SeqID3 and SeqID6) as well as the target protein (i.e., recombinant human α-synuclein). ) were analyzed. result:

如圖10A所示,使用KLH作為輔助性T抗原決定基之來源的所有6種疫苗均能夠誘導針對注射的肽部分(SeqID3及SeqID6)及目標蛋白:重組α突觸核蛋白的強烈及特異性免疫反應。As shown in Figure 10A, all six vaccines using KLH as the source of the helper T epitope were able to induce strong and specific responses to the injected peptide portions (SeqID3 and SeqID6) and the target protein: recombinant alpha synuclein. immune response.

KLH結合物之CLEC修飾引起分別使用SeqID3及SeqID6兩種肽之高度優越的免疫反應。SeqID3+KLH+石耳多醣能夠誘導比Alhydrogel作為佐劑的SeqID3+KLH高2.3倍的抗肽反應,且獲得較皮內施用之不含佐劑的SeqID3+KLH高14倍的反應。類似地,抗蛋白效價亦增加了8.5倍(與Alhydrogel作為佐劑的SeqID3+KLH相比),與無佐劑材料相比增加了17倍。SeqID6+KLH+石耳多醣的免疫反應效果亦比帶佐劑的SeqID6+KLH高2(在注射肽方面)至4.6倍(在α-突觸核蛋白方面),而免疫原性則比無佐劑的SeqID6+KLH疫苗高8.7(在注射肽方面)及11倍(在α-突觸核蛋白方面)。CLEC modification of KLH conjugates elicited highly superior immune responses using both peptides, SeqID3 and SeqID6, respectively. SeqID3+KLH+Pyrrolidone was able to induce a 2.3-fold higher anti-peptide response than SeqID3+KLH adjuvanted with Alhydrogel, and a 14-fold higher response than SeqID3+KLH administered intradermally without adjuvant. Similarly, anti-protein titers were also increased by 8.5-fold (compared to SeqID3+KLH adjuvanted with Alhydrogel) and 17-fold compared to the unadjuvanted material. The immune response effect of SeqID6+KLH+Psoralea corylifolia polysaccharide was also 2 (in terms of injected peptide) to 4.6 times (in terms of α-synaptobin) higher than that of SeqID6+KLH with adjuvant, while the immunogenicity was 8.7 (in terms of injected peptide) and 11 times (in terms of α-synaptobin) higher than that of SeqID6+KLH without adjuvant.

除了經CLEC修飾之疫苗的免疫原性普遍增加外,實驗結果亦表明,根據本發明之CLEC修飾會造成與目標分子(即蛋白質)結合的誘導抗體的相對量顯著增加,從而顯著增加目標特異性的隨後免疫反應。因此,對於SeqID3+KLH+石耳多醣誘導之反應,其偵測α突觸核蛋白的抗體的相對量(即總抗注射肽效價與抗α突觸核蛋白特異性效價的比率)比佐劑化的SeqID3+KLH高3.7倍,在SeqID6+KLH+石耳多醣之情況下,其較佐劑化的結合物高2.2倍。In addition to the general increase in immunogenicity of the CLEC-modified vaccines, the experimental results also showed that the CLEC modification according to the present invention resulted in a significant increase in the relative amount of induced antibodies bound to the target molecule (i.e., protein), thereby significantly increasing the subsequent immune response specific to the target. Thus, for the response induced by SeqID3+KLH+Pseudomonas aeruginosa, the relative amount of antibodies detecting α-synaptophysin (i.e., the ratio of total anti-injected peptide titer to anti-α-synaptophysin specific titer) was 3.7 times higher than that of the adjuvanted SeqID3+KLH, and in the case of SeqID6+KLH+Pseudomonas aeruginosa, it was 2.2 times higher than that of the adjuvanted conjugate.

在第二組實驗中,比較了所使用的相同疫苗(所有疫苗:5µg aSyn靶向肽/劑量;途徑:基於CLEC之疫苗用i.d.;以Alhydrogel作為佐劑的基於KLH之疫苗用s.c.)的誘導抗載體特異性抗體反應的能力。正如預期地,傳統的基於SeqID3+及SeqID6+KLH之疫苗能夠誘導高抗KLH效價(SeqID3+KLH:1/2100及SeqID6+KLH:1/7700),而基於CLEC之SeqID3+KLH+石耳多醣及SeqID6+KLH+石耳多醣疫苗基本上無法誘導持續的抗載體抗體,所獲得的效價接近偵測極限,SeqID3+KLH+石耳多醣為1/150,而SeqID6+KLH+石耳多醣小於1/100,因此產生了一種新穎但未描述過的肽結合物疫苗之最佳化策略,以提高目標特異性效價,同時減少不需要的抗載體反應。 實例 11 :使用載體蛋白作為輔助性 T 細胞抗原決定基的 CLEC 結合物之免疫原性分析: CRM197 In a second set of experiments, the induction of the same vaccines used (all vaccines: 5 µg aSyn targeting peptide/dose; route: CLEC-based vaccine with id; KLH-based vaccine with Alhydrogel as adjuvant with sc) was compared Ability to react with vector-specific antibodies. As expected, the traditional SeqID3+ and SeqID6+KLH-based vaccines were able to induce high anti-KLH titers (SeqID3+KLH: 1/2100 and SeqID6+KLH: 1/7700), while the CLEC-based SeqID3+KLH+ Shi fungus polysaccharide and The SeqID6+KLH+ Fungi polysaccharide vaccine is basically unable to induce sustained anti-carrier antibodies, and the titer obtained is close to the detection limit. SeqID3+KLH+ Fungus polysaccharide is 1/150, while SeqID6+KLH+ Fungus polysaccharide is less than 1/100. This resulted in a novel but undescribed strategy for optimizing peptide conjugate vaccines to increase target-specific potency while reducing unwanted anti-vector responses. Example 11 : Immunogenicity analysis of CLEC conjugates using carrier proteins as helper T cell epitopes : CRM197

在本實例中,將含有眾所周知的載體蛋白CRM197的基於CLEC之結合物疫苗的免疫原性與習知CRM197疫苗進行了比較。為此,α突觸核蛋白衍生抗原決定基SeqID6與順丁烯二醯亞胺活化之CRM197偶合,隨後,使用異雙官能連接子BPMH將SeqID6+CRM197結合物與活化之石耳多醣偶合,形成基於CLEC之結合物疫苗,其中CRM197作為輔助性T細胞抗原決定基的來源,以誘導可持續的免疫反應。或者,SeqID5-(NH-NH2;SeqID5)及CRM197獨立地與活化之石耳多醣偶合。此步驟係藉由SeqID5 C端的醯肼及CRM197中存在的溶素與活化之石耳多醣上的活性醛反應來完成的。 所用疫苗: B 細胞抗原決定基 T 細胞抗原決定基 / 載體 CLEC CLEC 偶合 佐劑 途徑 SeqID6 CRM197 石耳多醣(80%) 呈結合物 n.a i.d. SeqID5 CRM197 石耳多醣(80%) 獨立 n.a i.d. SeqID6 CRM197 n.a n.a Alhydrogel s.c. In this example, the immunogenicity of a CLEC-based conjugate vaccine containing the well-known carrier protein CRM197 was compared to the conventional CRM197 vaccine. To this end, the α-synuclein-derived epitope SeqID6 was coupled to maleimide-activated CRM197. Subsequently, the SeqID6+CRM197 conjugate was coupled to the activated Schizophora polysaccharide using the heterobifunctional linker BPMH to form A CLEC-based conjugate vaccine in which CRM197 serves as a source of helper T cell epitopes to induce a sustainable immune response. Alternatively, SeqID5-(NH-NH2; SeqID5) and CRM197 were independently coupled to activated auricularia polysaccharide. This step is accomplished by reacting the hydrazine at the C-terminus of SeqID5 and the lysin present in CRM197 with the active aldehyde on the activated auricularia polysaccharide. Vaccines used: B cell epitope T cell epitope / carrier CLEC CLEC coupling Adjuvant way SeqID6 CRM197 Shi fungus polysaccharide (80%) in conjugate na ID SeqID5 CRM197 Shi fungus polysaccharide (80%) Independence na ID SeqID6 CRM197 na na Alhydrogel sc

動物(雌性Balb/c小鼠)以每兩週一次的間隔接種疫苗3次(所有疫苗:20µg α突觸核蛋白靶向肽/劑量;途徑:i.d.用於基於CLEC之疫苗,s.c.用於以Alhydrogel作為佐劑的基於CRM197之疫苗)且使用第三次免疫接種後兩週採集的鼠類血漿對針對注射肽(即SeqID6)以及目標蛋白(即重組人類α突觸核蛋白及α突觸核蛋白纖維)的後續免疫反應進行了分析。 結果: Animals (female Balb/c mice) were vaccinated three times at biweekly intervals (all vaccines: 20 µg α-synuclein targeting peptide/dose; route: id for CLEC-based vaccines, sc for CRM197-based vaccines adjuvanted with Alhydrogel) and subsequent immune responses to the injected peptide (i.e., SeqID6) and target protein (i.e., recombinant human α-synuclein and α-synuclein fibers) were analyzed using mouse plasma collected two weeks after the third immunization. Results:

如圖11A所示,使用CRM197作為輔助性T抗原決定基之來源的所有3種疫苗均能夠誘導針對注射的肽部分(SeqID6)及目標蛋白:重組α突觸核蛋白的強烈及特異性免疫反應。As shown in Figure 11A, all 3 vaccines using CRM197 as the source of the helper T epitope were able to induce strong and specific immune responses against the injected peptide moiety (SeqID6) and the target protein: recombinant alpha synuclein. .

同樣地,CRM197結合物之CLEC修飾引起了非常出色的免疫反應。SeqID6+CRM197+石耳多醣能夠誘導比Alhydrogel作為佐劑的SeqID6+CRM197高28倍的抗肽反應。類似地,針對重組α突觸核蛋白的抗蛋白效價亦增加了15倍(與Alhydrogel作為佐劑的SeqID6+CRM197相比),針對aSyn聚集形式(aSyn纖維)的效價增加了11倍。藉由將SeqID5及CRM197獨立偶合於石耳多醣產生之疫苗亦比習知的用Alhydrogel作為佐劑的SeqID6+CRM197誘導了1.7倍的高注射肽效價,對重組aSyn的反應性亦增加了6.6倍,抗絲反應增加了4.25倍。Likewise, CLEC modification of the CRM197 conjugate elicited an excellent immune response. SeqID6+CRM197+Shitu polysaccharide can induce 28 times higher anti-peptide response than SeqID6+CRM197 with Alhydrogel as adjuvant. Similarly, anti-protein titers increased 15-fold against recombinant alpha-synuclein (compared to SeqID6+CRM197 adjuvanted with Alhydrogel) and 11-fold against aggregated forms of aSyn (aSyn fibers). The vaccine generated by independently coupling SeqID5 and CRM197 to Shigu polysaccharide also induced a 1.7-fold higher injection peptide titer than the conventional SeqID6+CRM197 using Alhydrogel as an adjuvant, and the reactivity to recombinant aSyn also increased by 6.6 times, the anti-silk reaction increased by 4.25 times.

抗載體特異性抗體反應的比較表明,傳統的基於SeqID6+CRM197之疫苗能夠誘導高抗CRM197效價(1/6600),而基於CLEC之SeqID6+CRM197+石耳多醣疫苗基本上不能誘導持續的抗載體抗體。獲得的效價接近偵測極限,SeqID6+CRM197+石耳多醣小於1/100。Comparison of anti-carrier-specific antibody responses showed that the traditional SeqID6+CRM197-based vaccine was able to induce high anti-CRM197 titers (1/6600), while the CLEC-based SeqID6+CRM197+Shitu polysaccharide vaccine was basically unable to induce sustained anti-carrier antibody. The obtained titer is close to the detection limit, and the titer of SeqID6+CRM197+Shitu polysaccharide is less than 1/100.

因此,本實驗表明,習知肽-蛋白質結合物之CLEC修飾顯著損害了抗載體反應的發展,且造成隨後免疫反應的目標特異性大幅增強,為最佳化目前以KLH、CRM197等載體蛋白為基礎的先進技術結合物疫苗提供了前所未有的新策略。Therefore, this experiment shows that the CLEC modification of conventional peptide-protein conjugates significantly impairs the development of anti-carrier responses and results in a substantial enhancement of the target specificity of subsequent immune responses. For optimization, carrier proteins such as KLH and CRM197 are currently used as Basic advanced technology conjugate vaccines offer unprecedented new strategies.

CRM197及SeqID6與石耳多醣的獨立偶合引起針對CRM197上存在的B細胞抗原決定基的可持續反應,儘管其偵測率低於傳統的非CLEC修飾結合物(效價約1/400)。此表明根據本發明之CLEC骨架亦適合提供來自CLEC偶合免疫原性蛋白的B細胞抗原決定基以用作疫苗。 實例 12 :活體內由基於 CLEC 之疫苗引發的免疫反應的選擇性分析 Independent conjugation of CRM197 and SeqID6 to Psoralea corylifolia polysaccharide resulted in a sustained response to B cell epitopes present on CRM197, although the detection rate was lower than that of conventional non-CLEC modified conjugates (about 1/400 of the potency). This indicates that the CLEC backbone according to the present invention is also suitable for providing B cell epitopes from CLEC-coupled immunogenic proteins for use as vaccines. Example 12 : Selective analysis of immune responses elicited by CLEC -based vaccines in vivo

突觸前蛋白aSyn的聚集被認為是如帕金森氏症等突觸核蛋白病的主要病理元兇,而單體的、非聚集的aSyn具有重要的神經元功能。因此,咸信對於突觸核蛋白病的治療,例如藉由主動或被動免疫療法,以減少/移除聚集的aSyn而不影響存在的可用的非聚集分子庫是至關重要的。Aggregation of the presynaptic protein aSyn is believed to be the primary pathological culprit in synucleinopathies such as Parkinson's disease, and monomeric, non-aggregated aSyn has important neuronal functions. Therefore, it is believed to be critical for the treatment of synucleinopathies, for example by active or passive immunotherapy, to reduce/remove aggregated aSyn without affecting the available pool of non-aggregated molecules.

為了進一步表徵與習知肽載體疫苗(即SeqID3+KLH及SeqID6+CRM197)相比,包含aSyn靶向肽SeqID2及SeqID3以及SeqID5及SeqID6的基於CLEC之疫苗引起的免疫反應,本實例進行了一組實驗分析隨後的免疫反應對兩種不同形式的突觸前蛋白aSyn的選擇性:非聚集的,主要是單體aSyn以及聚集的aSyn纖維。 所用疫苗: B 細胞抗原決定基 T 細胞抗原決定基 / 載體 CLEC 佐劑 途徑 SeqID2 SeqID7 石耳多醣(80%) n.a i.d. SeqID3 KLH 石耳多醣(80%) n.a i.d. SeqID3 KLH n.a Alhydrogel s.c. SeqID5 SeqID7 石耳多醣(80%) n.a i.d. SeqID6 CRM197 石耳多醣(80%) n.a i.d. SeqID6 CRM197 n.a Alhydrogel s.c. In order to further characterize the immune response induced by a CLEC-based vaccine containing aSyn targeting peptides SeqID2 and SeqID3 and SeqID5 and SeqID6 compared with conventional peptide carrier vaccines (i.e., SeqID3+KLH and SeqID6+CRM197), a set of The experiments analyzed the selectivity of the subsequent immune response to two different forms of the presynaptic protein aSyn: non-aggregated, predominantly monomeric aSyn, and aggregated aSyn fibers. Vaccines used: B cell epitope T cell epitope / carrier CLEC Adjuvant way SeqID2 SeqID7 Shi fungus polysaccharide (80%) na ID SeqID3 htK Shi fungus polysaccharide (80%) na ID SeqID3 htK na Alhydrogel sc SeqID5 SeqID7 Shi fungus polysaccharide (80%) na ID SeqID6 CRM197 Shi fungus polysaccharide (80%) na ID SeqID6 CRM197 na Alhydrogel sc

動物(雌性Balb/c小鼠)以每兩週一次的間隔接種疫苗3次(所有疫苗:20µg aSyn靶向肽/劑量;途徑:i.d.用於基於CLEC之疫苗,s.c.用於以Alhydrogel作為佐劑的基於KLH及CRM197之疫苗),使用第三次免疫接種後兩週採集的小鼠類血漿分析了隨後針對目標蛋白(即重組人類α突觸核蛋白及aSyn纖維)的免疫反應。對血漿樣品進行aSyn特異性抑制ELISA,且測定IC50值。 結果: Animals (female Balb/c mice) were vaccinated 3 times at biweekly intervals (all vaccines: 20 µg aSyn targeting peptide/dose; route: id for CLEC-based vaccines, sc for adjuvanted with Alhydrogel KLH and CRM197-based vaccines), subsequent immune responses against the target proteins (i.e., recombinant human alpha-synuclein and aSyn fibers) were analyzed using mouse plasma collected two weeks after the third immunization. ASyn-specific inhibition ELISA was performed on plasma samples, and IC50 values were determined. result:

簡言之,與傳統的肽結合物疫苗(即SeqID3+KLH及SeqID6+CRM,參見圖12)相比,本實驗中使用的所有基於CLEC之結合物均表現出優異的免疫原性及α突觸核蛋白聚集特異性目標選擇性。Briefly, compared with traditional peptide conjugate vaccines (i.e., SeqID3+KLH and SeqID6+CRM, see Figure 12), all CLEC-based conjugates used in this experiment showed excellent immunogenicity and α-mutant Synuclein aggregation-specific target selectivity.

與單體/重組aSyn相比,習知肽結合物疫苗可誘導對aSyn聚集體(即,纖維)的選擇性略有增加的抗體反應。與重組aSyn相比,以Alhydrogel為佐劑的SeqID3+KLH對aSyn聚集體的選擇性提高了9倍。與主要為單體的重組aSyn相比,以Alhydrogel為佐劑的SeqID6+CRM197誘導選擇性較低的免疫反應,針對聚集體的選擇性結合達3.5倍。Conventional peptide conjugate vaccines are known to induce antibody responses with slightly increased selectivity for aSyn aggregates (i.e., fibrils) compared to monomeric/recombinant aSyn. Compared with recombinant aSyn, the selectivity of SeqID3+KLH with Alhydrogel as adjuvant for aSyn aggregates increased 9-fold. Compared with recombinant aSyn, which is mainly monomeric, SeqID6+CRM197 adjuvanted with Alhydrogel induced a less selective immune response, with 3.5-fold selective binding against aggregates.

相比之下,與KLH或CRM197結合物疫苗相比,由基於CLEC之肽結合物疫苗誘導之抗體的特徵在於選擇性結合提高了數倍。SeqID2+SeqID7+石耳多醣及SeqID5+SeqID7+石耳多醣誘導之血漿分別顯示大約高97倍(即比對照疫苗SeqID3+KLH、Alhydrogel高14倍)及高50倍(即比對照疫苗SeqID6+CRM、Alhydrogel高14倍)的聚集選擇性。SeqID3+KLH+石耳多醣及SeqID6+CRM197+石耳多醣對aSyn聚合體的選擇性分別達40倍(即比SeqID3+KLH高5倍)及50倍(即比SeqID6+CRM高14倍)。In contrast, antibodies induced by CLEC-based peptide conjugate vaccines were characterized by several-fold increased selectivity compared to KLH or CRM197 conjugate vaccines. Plasma induced by SeqID2+SeqID7+Pseudomonas aeruginosa and SeqID5+SeqID7+Pseudomonas aeruginosa showed approximately 97-fold (i.e. 14-fold higher than the control vaccine SeqID3+KLH, Alhydrogel) and 50-fold (i.e. 14-fold higher than the control vaccine SeqID6+CRM, Alhydrogel) higher aggregation selectivity, respectively. SeqID3+KLH+Pseudomonas aeruginosa and SeqID6+CRM197+Pseudomonas aeruginosa showed 40-fold (i.e. 5-fold higher than SeqID3+KLH) and 50-fold (i.e. 14-fold higher than SeqID6+CRM) selectivity for aSyn aggregates, respectively.

因此,實驗表明,肽結合物以及肽-蛋白質結合物之CLEC修飾引起隨後免疫反應的目標特異性大大增強,為最佳化目前先進技術結合物疫苗提供了前所未有的新策略。 實例 13 :由基於 CLEC 之疫苗引發的免疫反應之抗體分子與抗原的親和力 (avidity) 及單一抗原結合區段與抗原的親和力 (affinity) 分析 Therefore, the experiments show that CLEC modification of peptide conjugates and peptide-protein conjugates greatly enhances the target specificity of the subsequent immune response, providing an unprecedented new strategy for optimizing current advanced technology conjugate vaccines. Example 13 : Analysis of the affinity of antibody molecules and antigens and the affinity of single antigen-binding segments to antigens in immune responses induced by CLEC - based vaccines

為了進一步表徵與習知肽載體疫苗(即SeqID3+KLH及SeqID6+CRM197)相比,包含aSyn靶向肽SeqID2、SeqID3、SeqID5及SeqID6的基於CLEC之疫苗引起的免疫反應,本實例進行了一組實驗分析抗體分子整體及單一抗原結合區段對aSyn之親和力。 所用疫苗: B 細胞抗原決定基 T 細胞抗原決定基 / 載體 CLEC 佐劑 途徑 SeqID2 SeqID7 石耳多醣(80%) n.a i.d. SeqID3 KLH 石耳多醣(80%) n.a i.d. SeqID3 KLH n.a Alhydrogel s.c. SeqID5 SeqID7 石耳多醣(80%) n.a i.d. SeqID6 CRM197 石耳多醣(80%) n.a i.d. SeqID6 CRM197 n.a Alhydrogel s.c. In order to further characterize the immune response induced by CLEC-based vaccines containing aSyn targeting peptides SeqID2, SeqID3, SeqID5 and SeqID6 compared with conventional peptide carrier vaccines (i.e., SeqID3+KLH and SeqID6+CRM197), a set of The experiment analyzes the affinity of the entire antibody molecule and a single antigen-binding segment to aSyn. Vaccines used: B cell epitope T cell epitope / carrier CLEC Adjuvant way SeqID2 SeqID7 Shi fungus polysaccharide (80%) na ID SeqID3 htK Shi fungus polysaccharide (80%) na ID SeqID3 htK na Alhydrogel sc SeqID5 SeqID7 Shi fungus polysaccharide (80%) na ID SeqID6 CRM197 Shi fungus polysaccharide (80%) na ID SeqID6 CRM197 na Alhydrogel sc

動物(雌性Balb/c小鼠)以每兩週一次的間隔接種疫苗3次(所有疫苗:20µg aSyn靶向肽/劑量;途徑:i.d.用於基於CLEC之疫苗,s.c.用於以Alhydrogel作為佐劑的基於KLH及CRM197之疫苗),且使用每次免疫後兩週採集的鼠類血漿分析了針對目標蛋白(即重組人類aSyn及aSyn纖維)的後續免疫反應。為了確定誘導之抗體分子整體對重組aSyn之親和力,使用標準ELISA測定的變體,其中含有與抗原結合的抗體的複製孔暴露於逐漸增加濃度的離液硫氰酸根離子。對硫氰酸鹽洗脫的抗性用作抗體分子整體親和力之量度,且表示有效抗體結合的50%的一指數(抗體分子整體親和力指數)用於比較血漿樣品(處理組之間及時間點之間)。Animals (female Balb/c mice) were vaccinated 3 times at biweekly intervals (all vaccines: 20 µg aSyn targeting peptide/dose; route: i.d. for CLEC-based vaccines, s.c. for adjuvanted with Alhydrogel KLH and CRM197-based vaccines), and subsequent immune responses against the target proteins (i.e., recombinant human aSyn and aSyn fibers) were analyzed using mouse plasma collected two weeks after each immunization. To determine the affinity of the induced antibody molecule ensemble for recombinant aSyn, a variation of the standard ELISA assay was used in which replicate wells containing antigen-bound antibodies were exposed to increasing concentrations of chaotropic thiocyanate ions. Resistance to thiocyanate elution is used as a measure of the overall affinity of the antibody molecule, and an index representing 50% of effective antibody binding (the overall affinity index of the antibody molecule) is used to compare plasma samples (between treatment groups and time points between).

此外,亦藉由aSyn競爭型ELISA測定最後一次免疫後2週的抗體對aSyn纖維的kD值(抗體單一抗原結合區段對aSyn纖維之親和力)。 結果: In addition, the kD value of the antibody to aSyn fiber (the affinity of the single antigen-binding segment of the antibody to aSyn fiber) was also determined by aSyn competitive ELISA 2 weeks after the last immunization. result:

如圖13所示,在比較第二次免疫接種(T2)後兩週或第三次免疫接種後兩週獲得的免疫樣品時(抗體分子整體之親和力成熟(AM,比較T2及T3樣品的IC 50值:1.1)),習知的SeqID3+KLH結合物(以Alhydrogel作為佐劑)與aSyn的結合僅表現出有限的親和力成熟。相比之下,基於CLEC之疫苗,如SeqID2+SeqID7+石耳多醣,可誘導抗aSyn反應的強烈成熟,如2.2的親和力指數(AI)所示,與T3樣品對α突觸核蛋白之親和力的強烈增加相關。與單獨使用SeqID3+KLH相比,由接受SeqID3+KLH+石耳多醣免疫接種的動物身上獲得的樣品亦顯示出顯著更高之親和力及略微增加的成熟度。 As shown in Figure 13, when comparing immune samples obtained two weeks after the second immunization (T2) or two weeks after the third immunization (affinity maturation of the antibody molecule ensemble (AM), the IC of the T2 and T3 samples were compared 50 value: 1.1)), the conventional SeqID3+KLH conjugate (with Alhydrogel as adjuvant) shows only limited affinity maturation for binding to aSyn. In contrast, CLEC-based vaccines, such as SeqID2+SeqID7+SeqID7, induce strong maturation of the anti-aSyn response, as shown by an affinity index (AI) of 2.2, which is comparable to the affinity of the T3 sample for α-synuclein. Strongly increased correlation. Samples obtained from animals vaccinated with SeqID3+KLH+Fructus polysaccharide also showed significantly higher affinity and slightly increased maturity compared to SeqID3+KLH alone.

類似地,與SeqID6+CRM197基準疫苗相比,SeqID5+SeqID7+石耳多醣及SeqID6+CRM197+石耳多醣疫苗誘導的抗體分子整體對aSyn蛋白所誘導的免疫反應之親和力亦顯著增加(在T3時分析;即需要高3-3.8倍的離液鹽水平才能減少結合),且單一抗原結合區段的親和力成熟度在分別比較T2及T3值時亦有所增加。比較T2及T3時,SeqID6+CRM197沒有引起抗體分子整體對aSyn之親和力增加,而兩種基於CLEC之疫苗則引起aSyn特異性結合的強烈增加。Similarly, the overall affinity of antibody molecules induced by SeqID5+SeqID7+Psoralea corylifolia and SeqID6+CRM197+Psoralea corylifolia vaccines for the immune response induced by aSyn protein was also significantly increased compared to the SeqID6+CRM197 baseline vaccine (analyzed at T3; i.e., 3-3.8-fold higher ionization salt levels were required to reduce binding), and the affinity maturation of the single antigen binding segment was also increased when comparing T2 and T3 values, respectively. When comparing T2 and T3, SeqID6+CRM197 did not induce an increase in the overall affinity of antibody molecules for aSyn, while the two CLEC-based vaccines induced a strong increase in specific binding to aSyn.

由基於CLEC之疫苗以及習知基準疫苗引發的免疫反應之aSyn纖維k D值的定量實驗表明,基於CLEC之疫苗誘導之抗體對aSyn的總體親和力顯著增加(參見圖14)。SeqID2+SeqID7+石耳多醣及SeqID3+KLH+石耳多醣結合物顯示出比以Alhydrogel作為佐劑的基準疫苗SeqID3+KLH高6-9倍之親和力(即,Kd:110nM及160nM,與1mM的k D相比)。SeqID5+SeqID7+石耳多醣及SeqID6+CRM+石耳多醣結合物顯示出比以Alhydrogel作為佐劑的基準對照組SeqID6+CRM197高12-15倍的Kd值(即Kd:50nM及60nM,與750nM的k D相比)。 Quantitative experiments of aSyn fiber k D values of immune responses elicited by CLEC-based vaccines and conventional baseline vaccines showed that the overall affinity of antibodies induced by CLEC-based vaccines for aSyn was significantly increased (see Figure 14). SeqID2+SeqID7+Shit fungus polysaccharide and SeqID3+KLH+Shit fungus polysaccharide conjugates showed 6-9 times higher affinity than the baseline vaccine SeqID3+KLH with Alhydrogel as adjuvant (i.e., Kd: 110nM and 160nM, with kD of 1mM compared to). SeqID5+SeqID7+Shit fungus polysaccharide and SeqID6+CRM+Shit fungus polysaccharide conjugates showed 12-15 times higher Kd values than the baseline control group SeqID6+CRM197 with Alhydrogel as adjuvant (i.e. Kd: 50nM and 60nM, with a k of 750nM D compared to).

因此,本實驗表明肽結合物以及肽-蛋白質結合物之CLEC修飾造成隨後免疫反應的目標特異性及親和力大大增強,提供了一種前所未有的新策略來最佳化目前先進技術的結合物疫苗。 實例 14 :由基於 CLEC 之疫苗引發的免疫反應的活體外功能分析 Thus, this experiment demonstrates that CLEC modification of peptide conjugates and peptide-protein conjugates results in a significant enhancement of the target specificity and affinity of the subsequent immune response, providing an unprecedented new strategy to optimize current state-of-the-art conjugate vaccines. Example 14 : In vitro functional analysis of immune responses elicited by CLEC -based vaccines

為了分析由基於CLEC之疫苗(包含aSyn靶向肽SeqID2/3及SeqID5/6)引發的aSyn特異性抗體是否具有生物活性,本實例進行了一組實驗,分析了抗體在活體外抑制aSyn聚集的能力。 所用疫苗: B 細胞抗原決定基 T 細胞抗原決定基 / 載體 CLEC 佐劑 途徑 SeqId2 SeqID7 石耳多醣(80%) n.a i.d. SeqID3 KLH n.a Alhydrogel s.c. SeqID5 SeqID7 石耳多醣(80%) n.a i.d. SeqID6 CRM197 石耳多醣(80%) n.a i.d. SeqID6 CRM197 n.a Alhydrogel s.c. In order to analyze whether the aSyn-specific antibodies elicited by the CLEC-based vaccine (containing aSyn targeting peptides SeqID2/3 and SeqID5/6) have biological activity, this example conducted a set of experiments to analyze the ability of the antibodies to inhibit aSyn aggregation in vitro. Vaccine used: B cell antigen determinant T cell antigen determinant / vector CLEC Adjuvant Way SeqId2 SeqID7 Pyricularia auricula polysaccharide (80%) na id SeqID3 KLH na Alhydrogel sc SeqID5 SeqID7 Pyricularia auricula polysaccharide (80%) na id SeqID6 CRM197 Pyricularia auricula polysaccharide (80%) na id SeqID6 CRM197 na Alhydrogel sc

動物(雌性Balb/c小鼠)以每兩週一次的間隔接種疫苗3次(所有疫苗:20µg aSyn靶向肽/劑量;途徑:i.d.用於基於CLEC之疫苗,s.c.用於以Alhydrogel作為佐劑的基於KLH及CRM197之疫苗)。並對每次免疫後兩週採集的鼠類血漿樣品以及其相應的對照組樣品(例如:非aSyn結合抗體或免疫前獲得的免疫前血漿)的活體外聚集抑制能力進行分析。 結果: Animals (female Balb/c mice) were vaccinated 3 times at biweekly intervals (all vaccines: 20 µg aSyn targeting peptide/dose; route: id for CLEC-based vaccines, sc for adjuvanted with Alhydrogel of vaccines based on KLH and CRM197). The in vitro aggregation inhibition capabilities of mouse plasma samples collected two weeks after each immunization and their corresponding control samples (for example: non-aSyn-binding antibodies or pre-immune plasma obtained before immunization) were analyzed. result:

如圖15A所示,免疫前自動物身上提取的對照組抗體或血漿對aSyn的聚集動力學沒有顯著影響,證實了該測定的特異性。習知的SeqID3+KLH結合物(以Alhydrogel作為佐劑)誘導之抗體能夠顯著減少aSyn聚集,如斜率值降低40%所示(僅aSyn單體:100%;KLH:60%)。SeqID2+SeqID7+石耳多醣疫苗誘導之抗體強烈地抑制aSyn聚集,如斜率值降低85%所示(僅aSyn單體:100%;CLEC:15%),表明與經典疫苗誘導之抗體相比,其抑制能力顯著更高。As shown in Figure 15A, control antibodies or plasma extracted from animals before immunization had no significant effect on aSyn aggregation kinetics, confirming the specificity of the assay. Antibodies induced by the known SeqID3+KLH conjugate (with Alhydrogel as adjuvant) can significantly reduce aSyn aggregation, as shown by a 40% decrease in slope values (aSyn monomer only: 100%; KLH: 60%). Antibodies induced by the SeqID2 + SeqID7 + Shigu polysaccharide vaccine strongly inhibited aSyn aggregation, as shown by an 85% decrease in slope values (aSyn monomer only: 100%; CLEC: 15%), indicating that compared with antibodies induced by classic vaccines, their Inhibitory capacity is significantly higher.

基於SeqID5-SeqID7-石耳多醣及SeqID6+CRM+石耳多醣之疫苗誘導的抗體顯示對自重組aSyn(低含量的聚集體)開始的聚集體形成有86-92%的抑制作用,以預形成之原纖維開始的聚集體(=真正的聚集體)形成有67-82%的抑制作用,而以Alhydrogel為佐劑的基準疫苗SeqID6+CRM所誘導之抗體對上述兩聚集體形成的抑制作用分別為68%及57%(參見圖15B)。 實例 15 :分析免疫途徑對由基於 CLEC 之疫苗引發的免疫反應的影響 Vaccine-induced antibodies based on SeqID5-SeqID7-SeqFructus polysaccharide and SeqID6+CRM+SeqFructus polysaccharide showed 86-92% inhibition of aggregate formation starting from recombinant aSyn (low-content aggregates), with preformed The formation of aggregates (=real aggregates) starting from fibrils has an inhibitory effect of 67-82%, and the inhibitory effect of antibodies induced by the benchmark vaccine SeqID6+CRM using Alhydrogel as an adjuvant on the formation of the above two aggregates is respectively 68% and 57% (see Figure 15B). Example 15 : Analysis of the impact of immune pathways on immune responses elicited by CLEC -based vaccines

本實例進行了一系列免疫接種以比較i.d.給藥與替代途徑,包括皮下(s.c.)及肌肉內(i.m.)。 所用疫苗: B 細胞抗原決定基 T 細胞抗原決定基 / 載體 CLEC 佐劑 途徑 SeqID2 SeqID7 石耳多醣(80%) n.a i.d. SeqID2 SeqID7 石耳多醣(80%) n.a s.c. SeqID2 SeqID7 石耳多醣(80%) n.a i.m This example performed a series of immunizations to compare id administration with alternative routes, including subcutaneous (sc) and intramuscular (im). Vaccines used: B cell epitope T cell epitope / carrier CLEC Adjuvant way SeqID2 SeqID7 Shi fungus polysaccharide (80%) na ID SeqID2 SeqID7 Shi fungus polysaccharide (80%) na sc SeqID2 SeqID7 Shi fungus polysaccharide (80%) na im

動物(雌性Balb/c小鼠)以每兩週一次的間隔接種3次疫苗(所有疫苗:1µg、5µg及20µgaSyn靶向肽/劑量),使用第三次免疫接種後兩週採集的鼠血漿對隨後針對注射的肽及目標蛋白(即重組人類α突觸核蛋白及aSyn絲)產生的免疫反應進行了分析。 結果: Animals (female Balb/c mice) were vaccinated three times at biweekly intervals (all vaccines: 1µg, 5µg and 20µg aSyn targeting peptide/dose), and immune responses to the subsequently injected peptides and target proteins (i.e., recombinant human alpha-synuclein and aSyn filaments) were analyzed using mouse plasma collected two weeks after the third immunization. Results:

表1及表2以及圖16顯示,藉由肌肉內或皮下途徑施用的SeqID2+SeqID7+石耳多醣疫苗可誘導針對注射肽(圖16A)及抗aSyn反應(圖16B)的高免疫反應。在所有測試劑量下,所達到的最大效價明顯低於i.d.施用後的效價。s.c.施用顯示出與i.d.相似的劑量反應行為,而i.m.在5及20µg之間沒有顯示顯著差異,表明在此等劑量/施用體積達到飽和。針對單體及聚集的aSyn的反應性亦分別獲得了類似的結果。此等結果表明,不同於其他途徑/組織,本發明所呈現的CLEC骨架對於施用於皮膚具有高選擇性。 1µg 5µg 20µg i.d. 16.000 83.000 140.000 s.c. 1000 2.000 12.000 i.m. 4.000 16.000 15.000 表1:藉由不同途徑應用WISIT疫苗後抗SeqID2/3誘導的抗體反應 1µg 5µg 20µg i.d. 2.000 5.000 10.000 s.c. 100 1.000 4.000 i.m. 2.000 2.000 5.000 表2:藉由不同途徑應用WISIT疫苗後抗aSyn誘導的抗體反應 實例 16 :使用轉譯後修飾的肽分析 B 細胞抗原決定基: Tables 1 and 2 and Figure 16 show that the SeqID2 + SeqID7 + Shia polysaccharide vaccine administered by intramuscular or subcutaneous route can induce a hyperimmune response against the injected peptide (Figure 16A) and an anti-aSyn response (Figure 16B). At all doses tested, the maximum titers achieved were significantly lower than those after id administration. sc administration showed a similar dose-response behavior to id, whereas im showed no significant difference between 5 and 20 µg, suggesting that saturation is reached at these doses/administration volumes. Similar results were obtained for the reactivity of monomeric and aggregated aSyn respectively. These results demonstrate that, unlike other pathways/tissues, the CLEC scaffold presented in the present invention is highly selective for application to skin. 1µg 5µg 20µg ID 16.000 83.000 140.000 sc 1000 2.000 12.000 im 4.000 16.000 15.000 Table 1: Antibody responses induced by anti-SeqID2/3 after application of WISIT vaccine by different routes 1µg 5µg 20µg ID 2.000 5.000 10.000 sc 100 1.000 4.000 im 2.000 2.000 5.000 Table 2: Antibody responses induced by anti-aSyn after application of WISIT vaccine by different routes Example 16 : Analysis of B cell epitopes using post-translationally modified peptides :

為了評估攜載以轉譯後修飾為特徵的肽(例如:包括胺基酸的磷酸化、乙醯化或焦麩胺酸修飾)的肽疫苗是否可在重複免疫接種後產生高免疫反應並誘導優於習知結合疫苗的免疫反應,本實驗以2種不同之候選疫苗進行了測試:To evaluate whether peptide vaccines carrying peptides characterized by post-translational modifications (e.g. including phosphorylation, acetylation or pyroglutamic acid modification of amino acids) can generate high immune responses and induce superior immune responses after repeated immunizations. Based on the known immune response of conjugated vaccines, this experiment tested 2 different candidate vaccines:

在該實驗中,澱粉樣蛋白β(Aβ)40/42衍生的肽,該肽攜載N端焦麩胺酸胺基酸作為轉譯後修飾的實例,被用作肽-CLEC疫苗(即:SeqID33,與混雜的T-細胞抗原決定基SeqID7藉由C端醯肼連接子與經氧化之石耳多醣(80%;)偶合),或者使用含有C端半胱胺酸的SeqID32產生習知肽結合物,用於偶合GMBS活化的KLH。 所用疫苗: B 細胞抗原決定基 T 細胞抗原決定基 / 載體 CLEC 佐劑 途徑 SeqID33 SeqID7 石耳多醣(80%) n.a i.d. SeqID32 KLH n.a Alhydrogel s.c. In this experiment, an amyloid beta (Aβ) 40/42-derived peptide carrying an N-terminal pyroglutamine amino acid as an example of post-translational modification was used as a peptide-CLEC vaccine (i.e., SeqID33, coupled to the promiscuous T-cell epitope SeqID7 via a C-terminal hydrazide linker to oxidized Pseudomonas aeruginosa (80%;)), or SeqID32 containing a C-terminal cysteine was used to generate a known peptide conjugate for coupling to GMBS-activated KLH. Vaccines used: B cell antigen determinant T cell antigen determinant / vector CLEC Adjuvant Way SeqID33 SeqID7 Pyricularia auricula polysaccharide (80%) na id SeqID32 KLH na Alhydrogel sc

動物(雌性Balb/c小鼠)以每兩週一次的間隔接種疫苗3次(途徑:基於CLEC之疫苗用i.d.,基於KLH之疫苗(以Alhydrogel作為佐劑)用s.c.),使用第三次免疫接種後兩週採集的鼠血漿對針對注射的多肽(即SeqID32/33)以及針對目標蛋白(即重組Aβ(pE)3-40及Aβ(pE)3-42)的隨後免疫反應進行了分析。 結果: Animals (female Balb/c mice) were vaccinated 3 times at biweekly intervals (route: CLEC-based vaccine with id, KLH-based vaccine (with Alhydrogel as adjuvant) with sc), using the third immunization Rat plasma collected two weeks after vaccination was analyzed for subsequent immune responses to the injected peptides (i.e., SeqID32/33) and to the proteins of interest (i.e., recombinant Aβ(pE)3-40 and Aβ(pE)3-42). result:

如圖17所示,兩種疫苗均能誘導針對注射的肽部分及目標蛋白(Aβ1-40/42、Aβ(pE)3-40及Aβ(pE)3-42)的強烈及特異性免疫反應。然而,與以Alhydrogel為佐劑的SeqID32+KLH相比,基於SeqID33+SeqID7+CLEC之疫苗顯示針對注射肽部分的免疫反應高6倍,最重要的是,該疫苗針對目標蛋白/肽AβpE3-42的免疫反應亦高3.7倍,對Aβ變異體AβpE3-40的免疫反應高1.6倍。令人驚訝的是,兩種測試之疫苗亦誘導了針對Aβ1-42的反應,顯示出免疫原性自焦麩胺酸(pE)修飾的截短Aβ形式(即AβpE3-42及AβpE3-40)意想不到地延伸到完整的、未修飾的此澱粉樣蛋白生成及病理分子(即Aβ1-40/42),從而擴展了此類疫苗的潛在治療活性。同樣地,與以Alhydrogel作為佐劑的SeqID32+KLH相比,基於SeqID33+SeqID7+CLEC之疫苗針對此未修飾形式的Aβ顯示出高數倍(3倍)的免疫反應,顯示出基於CLEC之疫苗的卓越免疫原性。As shown in Figure 17, both vaccines were able to induce strong and specific immune responses against the injected peptide moiety and target proteins (Aβ1-40/42, Aβ(pE)3-40 and Aβ(pE)3-42) . However, compared to SeqID32+KLH adjuvanted with Alhydrogel, the vaccine based on SeqID33+SeqID7+CLEC showed a 6-fold higher immune response against the injected peptide moiety. Most importantly, the vaccine was against the target protein/peptide AβpE3-42. The immune response was also 3.7 times higher, and the immune response to the Aβ variant AβpE3-40 was 1.6 times higher. Surprisingly, both vaccines tested also induced responses against Aβ1-42, showing immunogenicity from pyroglutamic acid (pE)-modified truncated Aβ forms (i.e., AβpE3-42 and AβpE3-40). Unexpected extension to intact, unmodified amyloidogenic and pathological molecules (i.e., Aβ1-40/42) expands the potential therapeutic activity of this class of vaccines. Likewise, the SeqID33+SeqID7+CLEC-based vaccine showed several times higher (3-fold) immune response against this unmodified form of Aβ compared to SeqID32+KLH with Alhydrogel as adjuvant, demonstrating that the CLEC-based vaccine excellent immunogenicity.

此外,使用抗硫氰酸鹽洗脫(NaSCN)的親和力(avidity)分析表明,與SeqID32+KLH誘導的抗體相比,SeqID33+SeqID7+CLEC誘導的抗體對AβpE3-42的親和力高2.6倍。Furthermore, avidity analysis using anti-thiocyanate elution (NaSCN) showed that the antibody induced by SeqID33+SeqID7+CLEC had a 2.6-fold higher affinity for AβpE3-42 compared with the antibody induced by SeqID32+KLH.

因此,基於CLEC之疫苗非常適合使用轉譯後修飾的肽作為免疫原(無論其是否構成自身抗原(如SeqID32/33)或外來目標結構),且當作為基於CLEC的疫苗施用時,此類抗原決定基可誘導優異的免疫反應,從而賦予基於CLEC之疫苗與傳統疫苗相比更高的免疫反應以及更高的目標特異性反應。Therefore, CLEC-based vaccines are well suited to use post-translationally modified peptides as immunogens (whether they constitute autoantigens (e.g., SeqID32/33) or foreign target structures), and when administered as CLEC-based vaccines, such antigens determine The gene can induce excellent immune responses, thereby endowing CLEC-based vaccines with higher immune responses and higher target-specific responses compared with traditional vaccines.

此外,此實例還提供了明確的證據,表明基於CLEC之疫苗使用存在於澱粉樣變性(包括阿茲海默症、路易氏體癡呆或唐氏症候群)中的目標蛋白抗原決定基,與先前技術疫苗相比,令人驚訝地誘導了更具特異性的免疫反應。 實例 17 :細胞內蛋白及自體抗原的 B 細胞抗原決定基之分析: Tau Furthermore, this example provides clear evidence that CLEC-based vaccines using target protein epitopes present in amyloidosis (including Alzheimer's disease, Lewy body dementia or Down syndrome) induce surprisingly more specific immune responses than prior art vaccines. Example 17 : Analysis of B cell epitopes of intracellular proteins and self-antigens : Tau

為了評估攜載衍生自可進行廣泛修飾(如過磷酸化、截短及聚集)的細胞內蛋白的肽之肽疫苗(無論其是否構成自身抗原(如SeqID32/33)或外來目標結構)是否可在重複免疫接種後產生高免疫反應並誘導優於習知結合疫苗的免疫反應,本實驗以2種不同之候選疫苗進行了測試:To assess whether peptide vaccines carrying peptides derived from intracellular proteins that are subject to extensive modifications (e.g., hyperphosphorylation, truncation, and aggregation), regardless of whether they constitute autoantigens (e.g., SeqID32/33) or foreign target structures, can After repeated immunization, a high immune response was produced and the immune response was better than that of conventional conjugate vaccines. This experiment was tested with 2 different candidate vaccines:

在該實驗中,Tau衍生的肽被用作肽-CLEC疫苗(即:SeqID35,與混雜的T-細胞抗原決定基SeqID7藉由C端醯肼連接子與經氧化之石耳多醣(80%;)偶合),或者使用含有C端半胱胺酸的SeqID36產生習知肽結合物,用於偶合GMBS活化的KLH。 所用疫苗: B 細胞抗原決定基 T 細胞抗原決定基 / 載體 CLEC 佐劑 途徑 SeqID36 SeqID7 石耳多醣(80%) n.a i.d. SeqID35 KLH n.a Alhydrogel s.c. In this experiment, a Tau-derived peptide was used as a peptide-CLEC vaccine (i.e., SeqID35) with the hybrid T-cell epitope SeqID7 via a C-terminal hydrazine linker with oxidized auricularia polysaccharide (80%; ) coupling), or use SeqID36 containing a C-terminal cysteine to generate conventional peptide conjugates for coupling to GMBS-activated KLH. Vaccines used: B cell epitope T cell epitope / carrier CLEC Adjuvant way SeqID36 SeqID7 Shi fungus polysaccharide (80%) na ID SeqID35 htK na Alhydrogel sc

動物(雌性Balb/c小鼠)以每兩週一次的間隔接種疫苗3次(途徑:基於CLEC之疫苗用i.d.,以Alhydrogel作為佐劑基於KLH之疫苗用s.c.),使用第三次免疫接種後兩週的鼠血漿對針對注射肽(即SeqID35/36)及針對目標蛋白(即重組人類Tau441)之免疫反應已進行分析。SeqID35/36是眾所周知且有效的Tau抗原決定基,跨越人類4Rtau441中的aa294-305,在EP2758433中被選為功能有效的抗原決定基。 結果: Animals (female Balb/c mice) were vaccinated 3 times at biweekly intervals (route: CLEC-based vaccine for id, KLH-based vaccine for sc with Alhydrogel as adjuvant), after the third immunization Two weeks of mouse plasma were analyzed for immune responses to the injected peptide (i.e., SeqID35/36) and to the target protein (i.e., recombinant human Tau441). SeqID35/36 is a well-known and effective Tau epitope, spanning aa294-305 in human 4Rtau441, and was selected as a functionally effective epitope in EP2758433. result:

如圖18所示,兩種疫苗均能夠誘導針對注射的肽部分及目標蛋白Tau441的強烈及特異性免疫反應。然而,相較於以Alhydrogel作為佐劑的SeqID35+KLH(根據EP2758433之針對Tau441的較佳疫苗結合物),基於SeqID36+SeqID7+CLEC之疫苗顯示針對注射肽部分的免疫反應高2.3倍,最重要的是,針對目標蛋白Tau441的免疫反應亦高3.3倍。As shown in Figure 18, both vaccines were able to induce strong and specific immune responses against the injected peptide moiety and the target protein Tau441. However, compared to SeqID35+KLH with Alhydrogel as adjuvant (the better vaccine conjugate against Tau441 according to EP2758433), the vaccine based on SeqID36+SeqID7+CLEC showed a 2.3-fold higher immune response against the injected peptide moiety, most importantly Interestingly, the immune response against the target protein Tau441 was also 3.3 times higher.

此外,使用抗硫氰酸鹽洗脫(NaSCN)的親和力(avidity)分析顯示,與SeqID35+KLH誘導抗體相比,SeqID36+SeqID7+CLEC誘導抗體對SeqID35的親和力分別高2.3倍。In addition, avidity analysis using anti-thiocyanate elution (NaSCN) showed that the affinity of SeqID36+SeqID7+CLEC-inducing antibodies to SeqID35 was 2.3 times higher than that of SeqID35+KLH-inducing antibodies.

因此,基於CLEC之疫苗非常適合使用針對細胞內蛋白質的抗原決定基作為免疫原,從而賦予更高的免疫反應以及與習知疫苗一樣更高的目標特異性反應。Therefore, CLEC-based vaccines are well suited to use antigenic determinants against intracellular proteins as immunogens, thereby conferring higher immune responses and higher target-specific responses as compared to conventional vaccines.

此外,此實例還提供了明確的證據,表明相較於目前先進技術之Tau靶向疫苗,使用存在於tau病變及阿爾茨海默氏病中的目標蛋白抗原決定基的基於CLEC之疫苗正在誘導針對Tau中存在的自身抗原決定基的令人驚訝的優越及更具特異性的免疫反應。tau病變為一種神經退化性疾病,其特徵是異常的tau蛋白在大腦中沈積。tau病變的範圍超出了傳統上討論的疾病形式,如匹克氏病、進行性核上麻痹、皮質基底核退化症及嗜銀顆粒病,其還包括球狀神經膠質tau病變、原發性年齡相關tau病變,其中包括神經原纖維纏結癡呆、慢性創傷性腦病(CTE)及與衰老相關的tau星形膠質細胞病。 實例 18 :分泌蛋白、自身抗原及構形抗原決定基的 B 細胞抗原決定基分析: IL23 Furthermore, this example provides clear evidence that CLEC-based vaccines using target protein epitopes present in tauopathy and Alzheimer's disease are inducing surprisingly superior and more specific immune responses against self-epitopes present in tau compared to current state-of-the-art tau-targeted vaccines. Tauopathy is a neurodegenerative disease characterized by abnormal tau protein deposits in the brain. The spectrum of tauopathies extends beyond the traditionally discussed disease forms such as Pick's disease, progressive supranuclear palsy, corticobasal degeneration, and argyrophilic granulopathy to include glomerular neurological tauopathies, primary age-related tauopathies including neurofibrillary entanglement dementia, chronic traumatic encephalopathy (CTE), and aging-related tauo-astrocytopathy. Example 18 : B -cell epitope analysis of secreted proteins, autoantigens, and conformational epitopes : IL23

為了評估攜載源自分泌蛋白的肽的肽疫苗(無論其是否構成自身抗原(如SeqID37至SeqID42)或外來目標結構)是否可在重複免疫接種後產生高免疫反應並誘導優於傳統結合疫苗的免疫反應,本實驗測試了6種不同的候選疫苗:To evaluate whether peptide vaccines carrying peptides derived from secreted proteins, whether they constitute self-antigens (e.g., SeqID37 to SeqID42) or foreign target structures, can generate high immune responses after repeated immunizations and induce immune responses superior to those of traditional conjugate vaccines, six different candidate vaccines were tested:

在該實驗中,三種不同的IL23衍生肽被用作肽-CLEC疫苗(即:SeqID38、SeqID40、SeqID42與泛T細胞抗原決定基SeqID7組合,藉由C端醯肼連接子與經氧化之石耳多醣(80%;)偶合)或作為習知肽結合物,使用含有C端半胱胺酸的SeqID37、SeqID39及SeqID41產生,用於與GMBS活化的KLH偶合。 所用疫苗: B 細胞抗原決定基 T 細胞抗原決定基 / 載體 CLEC 佐劑 途徑 SeqID38 SeqID7 石耳多醣(80%) n.a i.d. SeqID37 KLH n.a Alhydrogel s.c. SeqID40 SeqID7 石耳多醣(80%) n.a i.d. SeqID39 KLH n.a Alhydrogel s.c. SeqID42 SeqID7 石耳多醣(80%) n.a i.d. SeqID41 KLH n.a Alhydrogel s.c. In this experiment, three different IL23-derived peptides were used as peptide-CLEC vaccines (i.e., SeqID38, SeqID40, SeqID42 in combination with the pan-T cell epitope SeqID7, coupled to oxidized Pseudomonas aeruginosa (80%;) via a C-terminal hydrazide linker) or as known peptide conjugates, generated using SeqID37, SeqID39 and SeqID41 containing a C-terminal cysteine, for coupling to GMBS-activated KLH. Vaccines used: B cell antigen determinant T cell antigen determinant / vector CLEC Adjuvant Way SeqID38 SeqID7 Pyricularia polysaccharide (80%) na id SeqID37 KLH na Alhydrogel sc SeqID40 SeqID7 Pyricularia polysaccharide (80%) na id SeqID39 KLH na Alhydrogel sc SeqID42 SeqID7 Pyricularia polysaccharide (80%) na id SeqID41 KLH na Alhydrogel sc

動物(雌性Balb/c小鼠)以每兩週一次的間隔接種疫苗3次(途徑:基於CLEC之疫苗用i.d.,以Alhydrogel作為佐劑的基於KLH之疫苗用s.c. ),使用第三次免疫接種後兩週採集的鼠血漿對針對注射肽(即SeqID37,SeqID39及SeqID41)以及針對目標蛋白(即重組人類IL23)之隨後的免疫反應進行了分析。 結果: Animals (female Balb/c mice) were vaccinated three times at biweekly intervals (route: id for CLEC-based vaccines, sc for KLH-based vaccines with Alhydrogel as adjuvant) and subsequent immune responses to the injected peptides (i.e., SeqID37, SeqID39, and SeqID41) and to the target protein (i.e., recombinant human IL23) were analyzed using mouse plasma collected two weeks after the third immunization. Results:

如圖19所示,所有6種疫苗均能夠誘導針對注射的肽部分及目標蛋白:IL23(p12/p40)的強烈且特異性的免疫反應。As shown in Figure 19, all six vaccines were able to induce strong and specific immune responses against the injected peptide moieties and the target protein: IL23 (p12/p40).

然而,與以Alhydrogel為佐劑的SeqID37+KLH相比,基於SeqID38+SeqID7+CLEC之疫苗顯示出針對注射肽部分的免疫反應高2倍,最重要的是,針對目標蛋白IL23的免疫反應亦高3倍。SeqID37/SeqID38代表IL-12及IL-23的p40亞基D1結構域上的構形抗原決定基,其反映了特異性結合至IL-12/IL-23p40並中和人類IL-12及IL-23的生物活性之完全人類單株抗體Ustekinumab的抗原決定基(Luo等人,JMolBiol2010年10月8日;402(5)):797-812.)。However, compared with SeqID37+KLH adjuvanted with Alhydrogel, the vaccine based on SeqID38+SeqID7+CLEC showed a 2-fold higher immune response against the injected peptide moiety and, most importantly, a higher immune response against the target protein IL23. 3 times. SeqID37/SeqID38 represent conformational epitopes on the D1 domain of the p40 subunit of IL-12 and IL-23, which reflect specific binding to IL-12/IL-23p40 and neutralization of human IL-12 and IL- 23 epitopes of the biologically active fully human monoclonal antibody Ustekinumab (Luo et al., J Mol Biol 2010 Oct 8; 402(5)): 797-812.).

相比之下,以Alhydrogel為佐劑的SeqID39+KLH及基於SeqID40+SeqID7+CLEC之疫苗誘導了類似的針對注射肽部分及目標蛋白IL23的反應。有趣的是,SeqID39/SeqID40為一種分別跨越IL12及IL23的p40亞基中的線性抗原決定基aa38-46的肽(Guanetal.,2009)。In contrast, Alhydrogel-adjuvanted SeqID39+KLH and SeqID40+SeqID7+CLEC-based vaccines induced similar responses against the injected peptide moiety and the target protein IL23. Interestingly, SeqID39/SeqID40 is a peptide spanning the linear epitope aa38-46 in the p40 subunit of IL12 and IL23 respectively (Guane et al., 2009).

與使用CLEC骨架顯示出相當或非常優異的抗目標反應的SeqID38及SeqID40相比,SeqID41/42沒有顯示出相同的特徵,其支持這樣一個事實即所選的肽免疫原適用於此等實例中所提供的令人驚訝的作用。SeqID41/42為一種分別跨越IL23的p19亞基中的線性抗原決定基aa144-154的肽。與本實驗中使用的SeqID42+SeqID7+CLEC疫苗相比,以Alhydrogel為佐劑的SeqID41+KLH誘導的針對注射肽部分的反應高15倍,針對目標蛋白IL23的反應高8倍。Compared to SeqID38 and SeqID40, which showed comparable or very superior anti-target responses using the CLEC backbone, SeqID41/42 did not show the same characteristics, which supports the fact that the selected peptide immunogens are suitable for the surprising effects provided in these examples. SeqID41/42 are peptides spanning the linear epitope aa144-154 in the p19 subunit of IL23, respectively. SeqID41+KLH adjuvanted with Alhydrogel induced 15-fold higher responses against the injected peptide portion and 8-fold higher responses against the target protein IL23 compared to the SeqID42+SeqID7+CLEC vaccine used in this experiment.

總之,基於CLEC之疫苗非常適合使用針對分泌蛋白(包括信號分子或細胞介素/趨化因子)的抗原決定基作為免疫原,其可賦予與習知疫苗相比更高的免疫反應以及更高的目標特異性反應。In summary, CLEC-based vaccines are well suited to use epitopes targeting secreted proteins (including signaling molecules or interleukins/chemokines) as immunogens, which can confer higher immune responses and higher immunity than conventional vaccines. target-specific response.

此外,該實例還提供了明確的證據,表明基於CLEC之疫苗適合使用構形抗原決定基,且當作為基於CLEC之疫苗施用時,構形抗原決定基可誘導更好的免疫反應。Furthermore, this example provides clear evidence that CLEC-based vaccines are suitable for the use of conformational epitopes and that conformational epitopes can induce better immune responses when administered as CLEC-based vaccines.

該實例還提供了證明使用IL12/IL23抗原決定基的基於CLEC的免疫原令人驚訝地誘導比針對此等自身抗原決定基的先前技術疫苗更特異的免疫反應。因此,此類疫苗可用於治療IL12/IL23相關的自身免疫性炎性疾病,包括:銀屑病、慢性發炎性腸病、類風濕性關節炎。 實例 19 :跨膜蛋白中存在的自身抗原決定基的 B 細胞抗原決定基分析:膜結合 IgE 的胞外膜近端結構域 (EMPD) This example also provides evidence that CLEC-based immunogens using IL12/IL23 epitopes surprisingly induce more specific immune responses than prior art vaccines directed against these self-epitopes. Therefore, such vaccines may be useful in treating IL12/IL23-related autoimmune inflammatory diseases, including: psoriasis, chronic inflammatory bowel disease, rheumatoid arthritis. Example 19 : B cell epitope analysis of self-epitopes present in transmembrane proteins : Extracellular membrane proximal domain (EMPD) of membrane-bound IgE

在該實驗中,使用了源自人類EMPD的肽。SeqID43/SeqID44構成WO2017/005851A1中揭示的一抗原決定基,並被用作肽-CLEC疫苗(即:SeqID44與泛T細胞抗原決定基SeqID7組合,藉由C端醯肼連接子與經氧化之石耳多醣(80%;)偶合)或作為習知肽結合物,使用含有C端半胱胺酸的SeqID43產生,用於與GMBS活化的KLH偶合。 所用疫苗: B 細胞抗原決定基 T 細胞抗原決定基 / 載體 CLEC 佐劑 途徑 SeqID44 SeqID7 石耳多醣(80%) n.a i.d. SeqID43 KLH n.a Alhydrogel s.c. In this experiment, peptides derived from human EMPD were used. SeqID43/SeqID44 constitutes an epitope disclosed in WO2017/005851A1 and is used as a peptide-CLEC vaccine (i.e.: SeqID44 is combined with the pan-T cell epitope SeqID7, via a C-terminal hydrazine linker and oxidized stone Auritic polysaccharides (80%; coupling) or as known peptide conjugates were generated using SeqID43 containing a C-terminal cysteine for coupling to GMBS-activated KLH. Vaccines used: B cell epitope T cell epitope / carrier CLEC Adjuvant way SeqID44 SeqID7 Shi fungus polysaccharide (80%) na ID SeqID43 htK na Alhydrogel sc

動物(雌性Balb/c小鼠)以每兩週一次的間隔接種疫苗3次(途徑:基於CLEC之疫苗用i.d.,以Alhydrogel作為佐劑的基於KLH之疫苗用s.c.),使用第三次免疫接種後兩週採集的鼠血漿對針對注射的肽(即SeqID43)以及針對目標蛋白質區域EMPD的41個胺基酸片段(在WO2017/005851A1中揭示,作為蛋白質識別的合適替代物)之隨後免疫反應進行了分析。 結果: Animals (female Balb/c mice) were vaccinated 3 times at biweekly intervals (route: CLEC-based vaccine with id, KLH-based vaccine with Alhydrogel as adjuvant with sc), using the third immunization Rat plasma collected two weeks later was subjected to subsequent immunoreactions against the injected peptide (i.e. SeqID43) and against the 41 amino acid fragment of the target protein region EMPD (revealed in WO2017/005851A1 as a suitable surrogate for protein recognition). analyzed. result:

如圖20所示,兩種疫苗均能夠誘導針對注射的肽部分及EMPD蛋白片段的強烈且特異性的免疫反應。As shown in Figure 20, both vaccines were able to induce strong and specific immune responses against the injected peptide portion and EMPD protein fragment.

然而,與以Alhydrogel為佐劑的SeqID43+KLH相比,基於SeqID44+SeqID7+CLEC之疫苗顯示出針對注射的肽部分的免疫反應提高了約60%,最重要的是,針對目標蛋白片段的免疫反應亦提高30%。However, compared with SeqID43+KLH adjuvanted with Alhydrogel, the vaccine based on SeqID44+SeqID7+CLEC showed an approximately 60% increase in immune response against the injected peptide portion and, most importantly, a 30% increase in immune response against the target protein fragment.

此外,使用抗硫氰酸鹽洗脫(NaSCN)的親和力(avidity)分析顯示,與SeqID43+KLH誘導抗體相比,SeqID44+SeqID7+CLEC誘導抗體對EMPD肽之親和力高3.8倍。Furthermore, avidity analysis using anti-thiocyanate elution (NaSCN) showed that the SeqID44+SeqID7+CLEC-induced antibody had a 3.8-fold higher affinity for the EMPD peptide compared to the SeqID43+KLH-induced antibody.

總之,基於CLEC之疫苗非常適合使用針對跨膜蛋白的抗原決定基,包括膜結合IgE的細胞外膜近端結構域(EMPD),與習知疫苗相比,其可賦予更高的免疫反應以及更高的目標特異性反應。In summary, CLEC-based vaccines are well suited to use epitopes targeting transmembrane proteins, including the extracellular membrane proximal domain (EMPD) of membrane-bound IgE, which can confer higher immune responses than conventional vaccines and Higher target-specific response.

因此,顯然根據本發明之基於CLEC之疫苗可較佳用於主動抗EMPD疫苗接種以治療及預防IgE相關疾病。IgE相關疾病包括過敏性疾病,如季節性、食物、花粉、黴菌孢子、有毒植物、藥物、昆蟲、蠍子或蜘蛛毒液、乳膠或灰塵過敏、寵物過敏、過敏性支氣管哮喘、非過敏性哮喘、查格-施特勞斯氏症候群、過敏性鼻炎及結膜炎、異位性皮膚炎、鼻息肉病、木村氏病、黏合劑接觸性皮膚炎、抗菌劑、香料、染髮劑、金屬、橡膠成分、外用藥物、松香、蠟、拋光劑、水泥及皮革,慢性鼻竇炎,異位性濕疹,IgE起作用的自身免疫性疾病(「自身過敏」),慢性(特發性)及自身免疫性蕁麻疹,膽鹼性蕁麻疹,肥大細胞增多症,尤其是皮膚肥大細胞增多症,過敏性支氣管肺曲黴菌病,慢性或復發性特發性血管性水腫,間質性膀胱炎、過敏反應,尤其是特發性及運動引起的過敏反應、免疫療法、嗜酸性球相關疾病,如嗜酸性球性哮喘、嗜酸性球性胃腸炎、嗜酸性球性中耳炎及嗜酸性球性食管炎(參見Holgate World Allergy Organization Journal 2014,7:17,US8,741,294B2,Usatine Am Fam Physician。2010年8月1日;82(3):249-55.)。此外,根據本發明之疫苗可用於治療淋巴瘤或預防抗酸治療的致敏副作用,尤其用於胃或十二指腸潰瘍或逆流。對於本發明,術語「IgE相關疾病」包括或與術語「IgE依賴性疾病」或「IgE介導的疾病」同義使用。 實例 20 :過敏原之模擬抗原決定基及構形抗原決定基的 B 細胞抗原決定基分析: Betv1 Therefore, it is apparent that the CLEC-based vaccine according to the present invention can be preferably used for active anti-EMPD vaccination for the treatment and prevention of IgE-related diseases. IgE-related diseases include allergic diseases such as seasonal, food, pollen, mold spores, poisonous plants, drugs, insect, scorpion or spider venom, latex or dust allergy, pet allergy, allergic bronchial asthma, non-allergic asthma, Churg-Strauss syndrome, allergic rhinitis and conjunctivitis, atopic dermatitis, nasal polyposis, Kimura's disease, adhesive contact dermatitis, antibacterial agents, fragrances, hair dyes, metals, rubber components, topical medications, rosin, wax, polishes, cement and leather, chronic sinusitis, atopic eczema, Ig E-related autoimmune diseases ("autoallergies"), chronic (idiopathic) and autoimmune urticaria, choleretic urticaria, mastocytosis, especially cutaneous mastocytosis, allergic bronchopulmonary aspergillosis, chronic or recurrent idiopathic angioedema, interstitial cystitis, allergic reactions, especially idiopathic and exercise-induced allergic reactions, immunotherapy, eosinophilic-related diseases, such as eosinophilic asthma, eosinophilic gastroenteritis, eosinophilic otitis media, and eosinophilic esophagitis (see Holgate World Allergy Organization Journal 2014, 7:17, US8,741,294B2, Usatine Am Fam Physician. 2010 Aug 1;82(3):249-55.). In addition, the vaccine according to the present invention can be used to treat lymphoma or prevent the allergic side effects of antacid therapy, especially for gastric or duodenal ulcers or reflux. For the present invention, the term "IgE-related disease" includes or is used synonymously with the term "IgE-dependent disease" or "IgE-mediated disease". Example 20 : B cell epitope analysis of mimetic epitopes and conformational epitopes of allergens : Betv1

為了評估攜載來自外來蛋白質/過敏原的肽之肽疫苗是否可在重複免疫接種後產生高免疫反應,且可誘導優於傳統結合疫苗的免疫反應,本實驗測試了2種不同的候選疫苗:To evaluate whether peptide vaccines carrying peptides derived from foreign proteins/allergens can generate high immune responses after repeated immunizations and induce immune responses superior to traditional conjugate vaccines, 2 different vaccine candidates were tested:

本實驗使用了源自廣為人知的主要白樺( Betula verrucosa)花粉抗原Betv1的肽SeqID45/SeqID46。SeqID45/SeqID46構成Betv1天然序列的一模擬抗原決定基(ImmunolLett.2009Jan29;122(1):68-75.)。此外,作者還表明,由此類模擬抗原決定基誘導的抗體可結合Betv1中的兩個不同區域,即胺基酸9-22及104-113。因此,模擬抗原決定基SeqID45/SeqID46亦是構形抗原決定基的一個實例。 The present experiments used peptides SeqID45/SeqID46 derived from the well-known major birch ( Betula verrucosa ) pollen antigen Bet v 1. SeqID45/SeqID46 constitutes a mimetic epitope of the native sequence of Bet v 1 (Immunol Lett. 2009 Jan 29; 122(1): 68-75.). In addition, the authors showed that antibodies induced by this mimetic epitope can bind to two different regions in Bet v 1, namely amino acids 9-22 and 104-113. Therefore, the mimetic epitope SeqID45/SeqID46 is also an example of a conformational epitope.

SeqID45/SeqID46被用作肽-CLEC疫苗(即:SeqID46與泛T細胞抗原決定基SeqID7組合,藉由C端醯肼連接子與經氧化之石耳多醣(80%;)偶合)或用作習知肽結合物,使用含有C端半胱胺酸的SeqID45產生,用於與GMBS活化的KLH偶合。 所用疫苗: B 細胞抗原決定基 T 細胞抗原決定基 / 載體 CLEC 佐劑 途徑 SeqID46 SeqID7 石耳多醣(80%) n.a i.d. SeqID45 KLH n.a Alhydrogel s.c. SeqID45/SeqID46 are used as peptide-CLEC vaccines (i.e., SeqID46 in combination with the pan-T cell epitope SeqID7, coupled to oxidized auricularia polysaccharide (80%;) via a C-terminal hydrazine linker) or as a habit Peptide conjugates, generated using SeqID45 containing a C-terminal cysteine, were used for coupling to GMBS-activated KLH. Vaccines used: B cell epitope T cell epitope / carrier CLEC Adjuvant way SeqID46 SeqID7 Shi fungus polysaccharide (80%) na ID SeqID45 htK na Alhydrogel sc

動物(雌性Balb/c小鼠)以每兩週一次的間隔接種疫苗3次(途徑:基於CLEC之疫苗用i.d.,以Alhydrogel作為佐劑的基於KLH之疫苗用s.c.),使用第三次免疫接種後兩週採集的鼠血漿對針對注射的肽(即SeqID45)及針對目標蛋白(即重組Betv1)產生的隨後的免疫反應進行了分析。 結果: Animals (female Balb/c mice) were vaccinated 3 times at biweekly intervals (route: CLEC-based vaccine with id, KLH-based vaccine with Alhydrogel as adjuvant with sc), using the third immunization Rat plasma collected two weeks later was analyzed for subsequent immune responses to the injected peptide (i.e., SeqID45) and to the target protein (i.e., recombinant Betv1). result:

如圖21所示,兩種疫苗均能夠誘導針對注射的肽部分及目標蛋白:Betv1的強烈及特異性免疫反應。As shown in Figure 21, both vaccines were able to induce strong and specific immune responses against the injected peptide moiety and the target protein: Betv1.

然而,與以Alhydrogel為佐劑的SeqID45+KLH相比,基於SeqID46+SeqID7+CLEC之疫苗顯示針對注射肽部分的免疫反應高3.3倍,最重要的是,針對目標蛋白Betv1的免疫反應亦高2倍。However, compared with SeqID45+KLH adjuvanted with Alhydrogel, the vaccine based on SeqID46+SeqID7+CLEC showed a 3.3-fold higher immune response against the injected peptide moiety and, most importantly, a 2-fold higher immune response against the target protein Betv1. times.

此外,使用抗硫氰酸鹽洗脫(NaSCN)的親和力(avidity)分析表明,與SeqID45+KLH誘導抗體相比,SeqID46+SeqID7+CLEC誘導抗體對重組BetvI的親和力分別高1.9倍。In addition, affinity analysis using anti-thiocyanate elution (NaSCN) showed that the affinity of SeqID46+SeqID7+CLEC induced antibodies to recombinant BetvI was 1.9-fold higher than that of SeqID45+KLH induced antibodies.

總之,基於CLEC之疫苗非常適合使用包括Betv1在內的過敏原抗原決定基,與習知疫苗相比,其可賦予更高的免疫反應以及更高的目標特異性反應。此外,該實例還提供了明確的證據,表明基於CLEC之疫苗適合使用模擬抗原決定基及構形抗原決定基,且當作為基於CLEC之疫苗施用時,此類模擬抗原決定基及構形抗原決定基可誘導優異的免疫反應。因此,此類疫苗可用於治療過敏性疾病,如花粉熱、季節性、食物、花粉、黴菌孢子、毒植物、藥物、昆蟲、蠍子或蜘蛛毒液,乳膠或粉塵過敏、寵物過敏、過敏性支氣管哮喘、過敏性鼻炎及結膜炎、異位性皮膚炎、黏合劑接觸性皮炎、抗菌劑、香料、染髮劑、金屬、橡膠成分、外用藥物、松香、蠟、拋光劑、水泥及皮革、慢性鼻竇炎、異位性濕疹、IgE發揮作用的自身免疫性疾病(「自身過敏」)、慢性(特發性)及自身免疫性蕁麻疹、過敏反應,尤其特發性及運動誘發之過敏反應。 實例 21 :存在於不同形式的癌症 / 腫瘤疾病 ( 即致癌基因 ) 中的 B 細胞抗原決定基的分析: Her2 In conclusion, CLEC-based vaccines are well suited to use allergen epitopes including Betv1, conferring higher immune responses and higher target-specific responses compared with conventional vaccines. Furthermore, this example provides clear evidence that CLEC-based vaccines are suitable for the use of mimetic and conformational epitopes and that such mimetic and conformational epitopes when administered as a CLEC-based vaccine can induce excellent immune responses. Therefore, such vaccines can be used to treat allergic diseases such as hay fever, seasonal, food, pollen, mold spores, poisonous plants, drugs, insect, scorpion or spider venom, latex or dust allergy, pet allergies, allergic bronchial asthma , allergic rhinitis and conjunctivitis, atopic dermatitis, adhesive contact dermatitis, antibacterial agents, fragrances, hair dyes, metals, rubber ingredients, topical drugs, rosin, wax, polishes, cement and leather, chronic sinusitis, Atopic eczema, autoimmune diseases in which IgE plays a role ("autoallergy"), chronic (idiopathic) and autoimmune urticaria, allergic reactions, especially idiopathic and exercise-induced allergic reactions. Example 21 : Analysis of B cell epitopes present in different forms of cancer / tumor diseases ( i.e. oncogenes ) : Her2

為了評估攜載源自癌症相關抗原/致癌基因的肽之肽疫苗是否可在重複免疫接種後產生高免疫反應,且可誘導優於傳統結合疫苗的免疫反應,本實驗測試了2種不同的候選疫苗:To evaluate whether peptide vaccines carrying peptides derived from cancer-associated antigens/oncogenes can generate high immune responses after repeated immunizations and induce immune responses superior to traditional conjugate vaccines, 2 different candidates were tested in this experiment vaccine:

在本實驗中,使用了源自人類表皮生長因子受體(HER/EGFR/ERBB)家族中廣為人知的Her2的肽SeqID47/SeqID48。In this experiment, peptides SeqID47/SeqID48 derived from Her2, a well-known member of the human epidermal growth factor receptor (HER/EGFR/ERBB) family, were used.

SeqID47/SeqID48構成人類Her2細胞外結構域天然序列的抗原決定基:aa位置610-623。抗原決定基SeqID47/SeqID48已被Wagner等人(2007年)及Tobias等人(2017年)揭示為強大的抗原,分別存在於習知結合疫苗中,如肽-破傷風類毒素及肽-CRM197結合物。SeqID47/SeqID48 constitute the epitope of the native sequence of the human Her2 extracellular domain: aa positions 610-623. The epitope SeqID47/SeqID48 has been revealed as a powerful antigen by Wagner et al. (2007) and Tobias et al. (2017), which are respectively present in conventional conjugate vaccines, such as peptide-tetanus toxoid and peptide-CRM197 conjugates. .

SeqID47/SeqID48被用作肽-CLEC疫苗(即:SeqID48與泛T細胞抗原決定基SeqID7組合,藉由C端醯肼連接子與經氧化之石耳多醣(80%;)偶合)或用作習知肽結合物,使用包含C端半胱胺酸(天然序列的一部分)的SeqID47生成,用於與馬來醯亞胺活化的CRM197偶合。 所用疫苗: B 細胞抗原決定基 T 細胞抗原決定基 / 載體 CLEC 佐劑 途徑 SeqID48 SeqID7 石耳多醣(80%) n.a i.d. SeqID47 CRM197 n.a Alhydrogel s.c. SeqID47/SeqID48 were used as peptide-CLEC vaccines (i.e., SeqID48 combined with the pan-T cell epitope SeqID7, coupled to oxidized Pseudomonas aeruginosa (80%; ) via a C-terminal hydrazide linker) or as known peptide conjugates, generated using SeqID47 containing a C-terminal cysteine (part of the native sequence), for coupling to maleimide-activated CRM197. Vaccines used: B cell antigen determinant T cell antigen determinant / vector CLEC Adjuvant Way SeqID48 SeqID7 Pyricularia auricula polysaccharide (80%) na id SeqID47 CRM197 na Alhydrogel sc

動物(雌性Balb/c小鼠)以每兩週一次的間隔接種疫苗3次(途徑:基於CLEC之疫苗用i.d.,以Alhydrogel作為佐劑的基於CRM197之疫苗用s.c.),使用第三次免疫接種後兩週採集的鼠血漿對針對注射的肽(即SeqID47)以及針對目標蛋白(即重組人類Her2)所產生的隨後的免疫反應進行了分析。 結果: Animals (female Balb/c mice) were vaccinated 3 times at biweekly intervals (route: CLEC-based vaccine for id, CRM197-based vaccine for sc with Alhydrogel as adjuvant), using the third immunization Rat plasma collected two weeks later was analyzed for subsequent immune responses to the injected peptide (i.e., SeqID47) and to the target protein (i.e., recombinant human Her2). result:

如圖22所示,兩種疫苗均能夠誘導針對注射的肽部分及目標蛋白:Her2的強烈且特異性的免疫反應。As shown in Figure 22, both vaccines were able to induce strong and specific immune responses against the injected peptide moiety and the target protein: Her2.

然而,與以Alhydrogel作為佐劑的SeqID47+CRM197相比,基於SeqID48+SeqID7+CLEC之疫苗針對注射的肽部分顯示出高23%的免疫反應,最重要的是,針對目標蛋白Her2的免疫反應亦高出30%。However, compared to SeqID47+CRM197 with Alhydrogel as adjuvant, the vaccine based on SeqID48+SeqID7+CLEC showed a 23% higher immune response against the injected peptide part and, most importantly, a 30% higher immune response against the target protein Her2.

總之,基於CLEC之疫苗非常適合用作癌症疫苗,與習知疫苗(例如基於CRM197之結合物疫苗)相比,可賦予更高的免疫反應以及更高的目標特異性反應。因此,顯然此類疫苗可用於治療腫瘤疾病。 實例 22 :存在於不同形式的腫瘤疾病 / 癌症 ( 即致癌基因 ) 中的 B 細胞抗原決定基的分析: PD1 In conclusion, CLEC-based vaccines are very suitable for use as cancer vaccines, conferring higher immune responses and higher target-specific responses compared to conventional vaccines (such as CRM197-based conjugate vaccines). Therefore, it is clear that such vaccines can be used to treat neoplastic diseases. Example 22 : Analysis of B cell epitopes present in different forms of neoplastic disease / cancer ( i.e. oncogenes ) : PD1

為了評估攜載來自癌症相關抗原/致癌基因的肽之肽疫苗是否可在重複免疫接種後產生高免疫反應,且可誘導優於傳統結合疫苗的免疫反應,針對程序性細胞死亡蛋白1(PD1)的不同候選疫苗測試:To evaluate whether peptide vaccines carrying peptides from cancer-related antigens/oncogenes can generate high immune responses after repeated immunizations and induce immune responses superior to those of traditional conjugate vaccines, different candidate vaccines targeting programmed cell death protein 1 (PD1) were tested:

PD-1為一種免疫檢查點,藉由兩種機制防止自身免疫:1)其促進淋巴結中抗原特異性T細胞的凋亡(程序性細胞死亡)。2)其減少調節性T細胞(抗炎、抑制性T細胞)的細胞凋亡。下調免疫檢查點活性,例如:PD1信號傳遞(藉由阻斷PD1活化)是最近研發的活化免疫系統攻擊腫瘤的策略,其目前可用於治療某些類型的癌症。靶向人類PD1的合適B細胞抗原決定基及原型疫苗業已被揭示。PD-1 is an immune checkpoint that prevents autoimmunity by two mechanisms: 1) It promotes apoptosis (programmed cell death) of antigen-specific T cells in lymph nodes. 2) It reduces apoptosis of regulatory T cells (anti-inflammatory, suppressive T cells). Downregulating the activity of immune checkpoints such as PD1 signaling (by blocking PD1 activation) is a recently developed strategy to activate the immune system to attack tumors, which is currently used to treat certain types of cancer. Suitable B cell epitopes and prototype vaccines targeting human PD1 have been revealed.

在本實驗中,源自人類PD1,aa位置92-110的肽SeqID49/SeqID50,已被用作B細胞抗原決定基。該抗原決定基已被Kaumaya等人 (ONCOIMMUNOLOGY 2020, VOL. 9, NO. 1, e1818437)揭示為強大的抗原,其存在於基於融合肽之疫苗中,其中PD1抗原決定基藉由一四胺基酸殘基(GPSL)連接至麻疹病毒融合肽(MVF)胺基酸(aa288-302),並在佐劑Montanide ISA 720VG中乳化以誘導阻斷PD-1信號傳導的抗體。In this experiment, peptide SeqID49/SeqID50, derived from human PD1, aa position 92-110, has been used as a B cell epitope. This epitope has been revealed by Kaumaya et al. (ONCOIMMUNOLOGY 2020, VOL. 9, NO. 1, e1818437) as a potent antigen in a fusion peptide-based vaccine, in which the PD1 epitope is linked to measles virus fusion peptide (MVF) amino acids (aa288-302) via a tetraamino acid residue (GPSL) and emulsified in the adjuvant Montanide ISA 720VG to induce antibodies that block PD-1 signaling.

SeqID49/SeqID50要麼用作肽-CLEC疫苗(即:SeqID50與泛T細胞抗原決定基SeqID7組合,藉由C端醯肼連接子與經氧化之石耳多醣(80%;)偶合),要麼用作習知肽結合物,使用含有C端半胱胺酸(天然序列的一部分)的SeqID49與馬來醯亞胺活化的KLH偶合。 所用疫苗: B 細胞抗原決定基 T 細胞抗原決定基 / 載體 CLEC 佐劑 途徑 SeqID50 SeqID7 石耳多醣(80%) n.a i.d. SeqID49 KLH n.a Alhydrogel s.c. SeqID49/SeqID50 were either used as peptide-CLEC vaccines (i.e., SeqID50 combined with the pan-T cell epitope SeqID7 coupled to oxidized Pseudomonas aeruginosa (80%; ) via a C-terminal hydrazide linker) or as known peptide conjugates using SeqID49 containing a C-terminal cysteine (part of the native sequence) coupled to maleimide-activated KLH. Vaccines used: B cell antigen determinant T cell antigen determinant / vector CLEC Adjuvant Way SeqID50 SeqID7 Pyricularia auricula polysaccharide (80%) na id SeqID49 KLH na Alhydrogel sc

動物(雌性Balb/c小鼠)每兩週一次的間隔接種疫苗3次(途徑:基於CLEC之疫苗用i.d.,以Alhydrogel作為佐劑的基於KLH之疫苗用s.c.),使用第三次免疫接種後兩週的鼠血漿對針對注射的肽(即SeqID49)以及針對目標蛋白(即重組人類PD1)產生的隨後的免疫反應進行了分析。 結果: Animals (female Balb/c mice) were vaccinated 3 times every two weeks (route: CLEC-based vaccine with id, KLH-based vaccine with Alhydrogel as adjuvant with sc), after the third immunization Two weeks of mouse plasma were analyzed for subsequent immune responses to the injected peptide (i.e., SeqID49) and to the protein of interest (i.e., recombinant human PD1). result:

如圖23A所示,兩種疫苗均能夠誘導針對注射的肽部分及目標蛋白:PD1的強烈且特異性的免疫反應。As shown in Figure 23A, both vaccines were able to induce strong and specific immune responses against the injected peptide portion and the target protein: PD1.

然而,與以Alhydrogel為佐劑的SeqID49+KLH相比,基於SeqID50+SeqID7+CLEC之疫苗顯示出類似的針對注射肽部分的高免疫反應,但最重要的是,針對目標蛋白PD1的免疫反應亦高出2倍,表明與習知疫苗相比,特異性偵測所選目標蛋白的抗體的不同發展。However, compared to SeqID49+KLH with Alhydrogel as adjuvant, the vaccine based on SeqID50+SeqID7+CLEC showed similar high immune responses against the injected peptide part, but most importantly, also 2-fold higher immune responses against the target protein PD1, indicating a different development of antibodies that specifically detect the selected target protein compared to the conventional vaccine.

此外,使用抗硫氰酸鹽洗脫(NaSCN)的親和力分析表明(圖23B),與SeqID49+KLH誘導的抗體相比,SeqID50+SeqID7+CLEC誘導的抗體對SeqID49的親和力分別高4.5倍。In addition, affinity analysis using anti-thiocyanate elution (NaSCN) showed (Figure 23B) that the antibodies induced by SeqID50+SeqID7+CLEC had a 4.5-fold higher affinity for SeqID49 compared to the antibodies induced by SeqID49+KLH.

總之,基於CLEC之疫苗非常適合用作癌症疫苗,尤其還藉由靶向免疫檢查點,如PD-PDL1/2系統或CTLA4,賦予更高的免疫反應,尤其是與習知疫苗(例如基於KLH的結合物疫苗)相比,亦具有更高的目標特異性反應基於結合疫苗。因此,同樣明顯的是,此類疫苗可用於治療腫瘤疾病。 實例 23 :使用載體蛋白作為輔助性 T 細胞抗原決定基的 CLEC 結合物之免疫原性分析:不同的結合物 /CLEC 比率 In summary, CLEC-based vaccines are very suitable for use as cancer vaccines, especially by targeting immune checkpoints, such as the PD-PDL1/2 system or CTLA4, to confer higher immune responses, especially when compared with conventional vaccines (e.g., KLH-based vaccines). Conjugate vaccines also have higher target-specific responses than conjugate vaccines. It is therefore also evident that such vaccines could be used to treat neoplastic diseases. Example 23 : Immunogenicity Analysis of CLEC Conjugates Using Carrier Proteins as Helper T Cell Epitopes : Different Conjugate /CLEC Ratios

在此實例中,比較了基於CLEC之結合物疫苗的免疫原性,該疫苗含有眾所周知的載體蛋白CRM197,且使用不同的肽-CRM/CLEC比率。為此,aSyn衍生抗原決定基SeqID6與順丁烯二醯亞胺活化之CRM197偶合,隨後,SeqID6+CRM197結合物藉由異雙官能連接子BPMH以不同的w/w比率與活化之石耳多醣偶合,形成基於CLEC之結合物疫苗,其中CRM197作為輔助性T細胞抗原決定基的來源,以誘導可持續的免疫反應。 所用疫苗: B 細胞抗原決定基 T 細胞抗原決定基 / 載體 CLEC 比率 (w/w) 佐劑 途徑 SeqID6 CRM197 石耳多醣(80%) 1/1 n.a i.d. SeqID6 CRM197 石耳多醣(80%) 1/2.5 n.a i.d. SeqID6 CRM197 石耳多醣(80%) 1/5 n.a i.d. SeqID6 CRM197 石耳多醣(80%) 1/10 n.a i.d. SeqID6 CRM197 石耳多醣(80%) 1/20 n.a i.d. In this example, the immunogenicity of CLEC-based conjugate vaccines containing the well-known carrier protein CRM197 and using different peptide-CRM/CLEC ratios was compared. To this end, the aSyn-derived epitope SeqID6 was coupled to cis-butylenediamide-activated CRM197. Subsequently, the SeqID6+CRM197 conjugate was coupled to activated Psoralea corylifolia polysaccharide via the heterobifunctional linker BPMH at different w/w ratios to form CLEC-based conjugate vaccines, in which CRM197 served as a source of helper T cell epitopes to induce a sustained immune response. Vaccines used: B cell antigen determinant T cell antigen determinant / vector CLEC Ratio (w/w) Adjuvant Way SeqID6 CRM197 Pyricularia auricula polysaccharide (80%) 1/1 na id SeqID6 CRM197 Pyricularia auricula polysaccharide (80%) 1/2.5 na id SeqID6 CRM197 Pyricularia auricula polysaccharide (80%) 1/5 na id SeqID6 CRM197 Pyricularia auricula polysaccharide (80%) 1/10 na id SeqID6 CRM197 Pyricularia auricula polysaccharide (80%) 1/20 na id

動物(雌性Balb/c小鼠)以每兩週一次的間隔接種3次疫苗(所有疫苗:5μg aSyn靶向肽/劑量;途徑:基於CLEC之疫苗用i.d.)且使用第三次免疫接種後兩週採集的鼠類血漿對針對注射肽(即,SeqID6)、針對目標蛋白(即重組人類α突觸核蛋白)以及針對aSyn纖維的免疫反應進行了分析。 結果: Animals (female Balb/c mice) were vaccinated 3 times at biweekly intervals (all vaccines: 5 μg aSyn targeting peptide/dose; route: CLEC-based vaccine id) and immune responses against the injected peptide (i.e., SeqID6), against the target protein (i.e., recombinant human α-synuclein), and against aSyn fibers were analyzed using mouse plasma collected 2 weeks after the third immunization. Results:

如圖24所示,使用CRM197作為輔助性T抗原決定基之來源的所有5種疫苗均能夠誘導針對注射的肽部分(SeqID6)及目標蛋白:重組α突觸核蛋白的強烈及特異性免疫反應。As shown in FIG. 24 , all five vaccines using CRM197 as a source of helper T antigenic determinants were able to induce strong and specific immune responses against the injected peptide portion (SeqID6) and the target protein: recombinant α-synuclein.

CRM197結合物之CLEC修飾引起了高效的免疫反應,本實例測試了所有w/w結合物/CLEC比率。與測試的其他變體相比,SeqID6-CRM197-石耳多醣(w/w 1/10)提供了最高的抗-aSyn特異性免疫反應。因此,具有中/高之結合物/CLEC比率的SeqID6+CRM197結合物特別適合誘導最佳免疫反應(例如:1/5、1/10及1/20)。The CLEC modification of the CRM197 conjugate induced a highly efficient immune response, and all w/w conjugate/CLEC ratios were tested in this example. SeqID6-CRM197-Pyrrolidone (w/w 1/10) provided the highest anti-aSyn specific immune response compared to the other variants tested. Therefore, SeqID6+CRM197 conjugates with medium/high conjugate/CLEC ratios were particularly suitable for inducing the best immune response (e.g., 1/5, 1/10, and 1/20).

因此,該實驗表明,習知肽-蛋白質結合物之CLEC修飾引起隨後的免疫反應具有很強的目標特異性,從而提供了一種前所未有的新策略來最佳化構築在載體蛋白(如KLH、CRM197或其他蛋白)上的目前先進技術結合物疫苗。 實例 24 :使用載體蛋白作為輔助性 T 細胞抗原決定基的 CLEC 結合物及肽結合物的免疫原性分析 -aSyn N (aa1-10) Therefore, this experiment demonstrates that CLEC modification of known peptide-protein conjugates causes subsequent immune responses with strong target specificity, thus providing an unprecedented new strategy to optimize the construction of carrier proteins (such as KLH, CRM197 or other proteins), currently advanced technology conjugate vaccines. Example 24 : Immunogenicity analysis of CLEC conjugates and peptide conjugates using carrier proteins as helper T cell epitopes - aSyn N- terminus (aa1-10)

在該實例中,評估了與使用最先進的載體蛋白作為T細胞抗原決定基來源的相應肽結合物相比,根據本發明之基於CLEC之結合物疫苗是否能夠誘導針對aSyn聚集體的更好的免疫反應。In this example, it was assessed whether the CLEC-based conjugate vaccine according to the invention could induce a better immune response against aSyn aggregates compared to the corresponding peptide conjugate using a state-of-the-art carrier protein as source of T cell antigenic determinants.

因此,開始了一組比較兩種結合物的實驗,此兩種結合物均含有建議適合作為aSyn靶向抗原決定基的一抗原決定基。實驗可證明針對注射的肽及aSyn蛋白所引發的免疫反應,以及隨後針對兩種不同形式的突觸前蛋白aSyn(非聚集的、主要是單體的aSyn以及聚集的aSyn細絲)引發的免疫反應的選擇性。Therefore, a set of experiments was initiated comparing two conjugates containing an epitope suggested to be suitable as aSyn targeting epitope. The experiments allowed to demonstrate the selectivity of the immune response elicited against the injected peptide and aSyn protein, and subsequently against two different forms of the presynaptic protein aSyn: non-aggregated, mainly monomeric aSyn and aggregated aSyn filaments.

例如,Weihofen等人(Neurobiology of Disease 124 (2019) 276-288,aa1-10作為Cinpanemab的抗原決定基)及WO2016/062720(aa1-8作為基於VLP的免疫治療中的抗原決定基)表明源自aa1-10位置的N端aSyn序列作為aSyn靶向免疫治療的潛在合適抗原決定基。為了評估CLEC修飾是否確實會產生更好的免疫反應,因此將含有aSyn序列aa1-8(SeqID12+SeqID7+石耳多醣)的基於CLEC之疫苗與相應的習知肽-KLH疫苗(用Alum作為佐劑之SeqID13+KLH)進行了比較。 所用疫苗: B 細胞抗原決定基 T 細胞抗原決定基/ 載體 CLEC 佐劑 途徑 SeqID12 SeqID7 石耳多醣(80%) n.a i.d. SeqID13 KLH na Alum i.d. For example, Weihofen et al. (Neurobiology of Disease 124 (2019) 276-288, aa1-10 as an epitope of Cinpanemab) and WO2016/062720 (aa1-8 as an epitope in VLP-based immunotherapy) showed that derived from The N-terminal aSyn sequence at position aa1-10 serves as a potentially suitable epitope for aSyn-targeted immunotherapy. In order to evaluate whether CLEC modification indeed results in a better immune response, a CLEC-based vaccine containing aSyn sequence aa1-8 (SeqID12+SeqID7+Fructus polysaccharide) was compared with the corresponding conventional peptide-KLH vaccine (using Alum as adjuvant). SeqID13+KLH) were compared. Vaccines used: B cell epitope T cell epitope/ carrier CLEC Adjuvant way SeqID12 SeqID7 Shi fungus polysaccharide (80%) na ID SeqID13 htK na Alum ID

動物(雌性Balb/c小鼠)以每兩週一次的間隔接種疫苗3次(所有疫苗:5μgaSyn靶向肽/劑量;途徑:基於CLEC之疫苗用i.d.,以Alhydrogel作為佐劑的基於KLH之疫苗用s.c.)且藉由ELISA及EC50值測定針對注射肽及目標蛋白的隨後的免疫反應。此外,為了評估免疫反應的選擇性,對血漿樣品進行aSyn特異性抑制ELISA,並表示為最大結合百分比。 結果: Animals (female Balb/c mice) were vaccinated 3 times at biweekly intervals (all vaccines: 5 μgaSyn targeting peptide/dose; route: CLEC-based vaccine with id, KLH-based vaccine with Alhydrogel as adjuvant The subsequent immune response against the injected peptide and target protein was determined sc) and by ELISA and EC50 values. Additionally, to assess the selectivity of the immune response, aSyn-specific inhibition ELISA was performed on plasma samples and expressed as percent maximal binding. result:

與習知肽-結合物疫苗(即,SeqID13+KLH,參見圖25A)相比,本實驗中使用的靶向基於CLEC之結合物疫苗(SeqID12+SeqID7+石耳多醣)展示了針對aSyn蛋白的優異免疫原性。作為比較組,基於CLEC之疫苗誘導抗aSyn效價增加1.8倍,並伴隨抗肽與抗蛋白質反應的比率增加3倍。此有力地支持了本發明之教示,即CLEC修飾引起與類似的習知疫苗相比更加優異的免疫反應。Compared to the known peptide-conjugate vaccine (i.e., SeqID13+KLH, see Figure 25A), the targeted CLEC-based conjugate vaccine used in this experiment (SeqID12+SeqID7+Pseudomonas aeruginosa) exhibited superior immunogenicity against aSyn protein. As a comparison group, the CLEC-based vaccine induced a 1.8-fold increase in anti-aSyn titers, accompanied by a 3-fold increase in the ratio of anti-peptide to anti-protein responses. This strongly supports the teaching of the present invention that CLEC modification elicits a superior immune response compared to similar known vaccines.

此外,與聚集體(即細絲,參見圖25B)相比,習知肽KLH偶合疫苗誘導對aSyn單體的選擇性大大增加(約10倍)的抗體反應。與此發現相反且非常令人驚訝的是,基於CLEC之結合物引起完全不同的選擇性:與重組aSyn相比,SeqID12+SeqID7+石耳多醣誘導的抗體對aSyn聚集體的選擇性顯著地提高了約10倍,從而完全改變了抗體誘導的概況(參見圖25B)。Furthermore, the known peptide KLH-coupled vaccine induced a greatly increased (about 10-fold) antibody response that was selective for aSyn monomers compared to aggregates (i.e., filaments, see Figure 25B). In contrast to this finding and very surprisingly, the CLEC-based conjugates elicited a completely different selectivity: the SeqID12+SeqID7+Pseudomonas polysaccharide-induced antibodies showed a significant increase in selectivity for aSyn aggregates compared to recombinant aSyn, by about 10-fold, completely changing the profile of antibody induction (see Figure 25B).

因此,本實驗表明,應用aSyn aa1-8的習知肽疫苗較不適合在活體內產生有效及具選擇性的免疫反應,表明該抗原決定基不適合聚集選擇性免疫療法。重要的是,實驗結果還表明肽結合物的CLEC修飾引起隨後免疫反應的目標特異性大大增強以及對聚集體的選擇性發生變化,因此提供了一種前所未有的靶向aSyn之結合物疫苗。 實例 25 :使用載體蛋白作為輔助性 T 細胞抗原決定基的 CLEC 結合物及肽結合物的免疫原性分析 -aSyn aa100-108 Thus, the present experiments demonstrate that known peptide vaccines using aSyn aa1-8 are poorly suited to generate effective and selective immune responses in vivo, indicating that this antigenic determinant is not suitable for aggregate-selective immunotherapy. Importantly, the results also demonstrate that CLEC modification of the peptide conjugates results in a greatly enhanced target specificity of the subsequent immune response and a change in selectivity for aggregates, thus providing an unprecedented conjugate vaccine targeting aSyn. Example 25 : Immunogenicity Analysis of CLEC Conjugates and Peptide Conjugates Using Carrier Proteins as Helper T Cell Epitopes - aSyn aa100-108

在此,本案進行了一組比較兩種結合物的實驗,該兩種結合物均含有建議適合作為aSyn靶向抗原決定基的抗原決定基,藉由分析針對注射的肽及aSyn蛋白所引發的免疫反應以及隨後針對兩種不同形式的突觸前蛋白aSyn (非聚集的,主要是單體aSyn以及聚集的aSyn細絲)引發的免疫反應的選擇性來比較兩種結合物。Here, a set of experiments was performed to compare two conjugates, both containing an epitope suggested to be suitable as an aSyn targeting epitope, by analyzing the selectivity of the immune response elicited against the injected peptide and aSyn protein and the subsequent immune response elicited against two different forms of the presynaptic protein aSyn: non-aggregated, mainly monomeric aSyn and aggregated aSyn filaments.

例如,WO2011/020133及WO2016/062720建議將源自aa 100-108/109位置的aSyn序列(作為天然序列或模擬抗原決定基,即100-108)作為潛在適合用於aSyn靶向免疫療法的抗原決定基。為了評估CLEC修飾是否確實會使用該抗原決定基區域產生更好的免疫反應,因此將含有aSyn aa 100-108(SeqID16+SeqID7+石耳多醣)的基於CLEC之疫苗與相應的習知肽-KLH疫苗(用Alum作為佐劑之SeqID17+KLH)進行了比較。 所用疫苗: B 細胞抗原決定基 T 細胞抗原決定基/ 載體 CLEC 佐劑 途徑 SeqID16 SeqID7 石耳多醣(80%) n.a i.d. SeqID17 KLH na Alum i.d. For example, WO2011/020133 and WO2016/062720 suggest aSyn sequences derived from positions aa 100-108/109 (as native sequences or simulated epitopes, i.e. 100-108) as potentially suitable antigens for aSyn targeted immunotherapy Determining base. In order to evaluate whether CLEC modification would indeed produce a better immune response using this epitope region, a CLEC-based vaccine containing aSyn aa 100-108 (SeqID16+SeqID7+Shitia polysaccharide) was compared with the corresponding conventional peptide-KLH vaccine. (SeqID17+KLH using Alum as adjuvant) was compared. Vaccines used: B cell epitope T cell epitope/ carrier CLEC Adjuvant way SeqID16 SeqID7 Shi fungus polysaccharide (80%) na ID SeqID17 htK na Alum ID

動物(雌性Balb/c小鼠)每兩週接種一次疫苗3次(所有疫苗:5μgaSyn靶向肽/劑量;途徑:基於CLEC之疫苗用i.d.,以Alhydrogel作為佐劑的基於KLH之疫苗用s.c.)且藉由ELISA及EC50值測定針對注射肽及目標蛋白的隨後的免疫反應。此外,為了評估免疫反應的選擇性,對血漿樣品進行aSyn特異性抑制ELISA,並表示為最大結合百分比。 結果: Animals (female Balb/c mice) were vaccinated 3 times every two weeks (all vaccines: 5 μg aSyn targeting peptide/dose; route: id for CLEC-based vaccines, sc for KLH-based vaccines with Alhydrogel as adjuvant) and the subsequent immune responses against the injected peptides and target proteins were determined by ELISA and EC50 values. In addition, to assess the selectivity of the immune response, aSyn-specific inhibition ELISA was performed on plasma samples and expressed as percentage of maximum binding. Results:

本實驗中使用的基於CLEC的aSyn靶向結合疫苗(SeqID16+SeqID7+石耳多醣)展示了整體非常低的抗aSyn蛋白反應,與習知肽-結合疫苗(即,SeqID17+KLH,參見圖26A)相比亦較低。與基於CLEC之疫苗相比,習知疫苗誘導以抗aSyn效價增加2.1倍為特徵的免疫反應,但同時抗肽/抗蛋白效價降低2倍。後一發現支持本發明之教示,即CLEC修飾引起更好的抗目標蛋白反應,即使在與類似的習知疫苗相比總體免疫原性較低的情況下亦是如此。The CLEC-based aSyn-targeted conjugate vaccine (SeqID16+SeqID7+Pseudomonas aeruginosa) used in this experiment demonstrated an overall very low anti-aSyn protein response, which was also lower than the known peptide-conjugate vaccine (i.e., SeqID17+KLH, see Figure 26A). Compared to the CLEC-based vaccine, the known vaccine induced an immune response characterized by a 2.1-fold increase in anti-aSyn titer, but at the same time a 2-fold decrease in anti-peptide/anti-protein titer. The latter finding supports the teaching of the present invention that CLEC modifications elicit better anti-target protein responses, even at a lower overall immunogenicity than similar known vaccines.

此外,兩種疫苗,即習知肽結合物及基於CLEC之疫苗,均不太適用於誘導聚集的選擇性免疫反應,參見圖26B)。因此,所提供的實驗表明,靶向aa100-108區域的基於CLEC的肽疫苗及習知肽疫苗較不適合在活體內產生有效及選擇性的免疫反應,此表明根據本發明,該抗原決定基可能不是聚合選擇性免疫療法的最佳選擇。 實例 26 :使用載體蛋白作為輔助性 T 細胞抗原決定基的 CLEC 結合物及肽結合物的免疫原性分析 -aSyn aa91-100 Furthermore, both vaccines, namely the conventional peptide conjugate and the CLEC-based vaccine, are not well suited for inducing aggregation-selective immune responses (see Figure 26B). Therefore, the experiments provided show that CLEC-based peptide vaccines targeting the aa100-108 region and conventional peptide vaccines are less suitable for generating effective and selective immune responses in vivo, indicating that this epitope may be used in accordance with the present invention. Not the best choice for aggregate-selective immunotherapy. Example 26 : Immunogenicity analysis of CLEC conjugates and peptide conjugates using carrier proteins as helper T cell epitopes - aSyn aa91-100

在這個實例中,開始了一組實驗來比較兩種結合物,此兩種結合物均包含一個抗原決定基,該抗原決定基藉由分析針對注射的肽及aSyn蛋白引起的免疫反應被認為適合作為aSyn靶向抗原決定基。In this example, a set of experiments was initiated to compare two conjugates, both of which contained an antigenic determinant that was considered suitable as an aSyn targeting antigenic determinant by analyzing the immune response elicited against injected peptides and aSyn protein.

例如,US 2014/0377271 A1表明抗原決定基aa91-99在PD患者中充當自身抗原決定基,因此應該構成aSyn靶向免疫療法的潛在合適抗原決定基。為了評估CLEC修飾是否確實引起應用該抗原決定基的卓越免疫反應,因此將含有aSyn aa91-100(SeqID14+SeqID7+石耳多醣)的基於CLEC之疫苗與相應的習知肽-KLH疫苗(用Alum作為佐劑之SeqID15+KLH)進行了比較。 所用疫苗: B 細胞抗原決定基 T 細胞抗原決定基/ 載體 CLEC 佐劑 途徑 SeqID14 SeqID7 石耳多醣(80%) n.a i.d. SeqID15 KLH na Alum i.d. For example, US 2014/0377271 A1 showed that the antigenic determinant aa91-99 acts as an autoantigen in PD patients and should therefore constitute a potentially suitable antigenic determinant for aSyn targeted immunotherapy. In order to assess whether CLEC modification indeed elicits a superior immune response using this antigenic determinant, a CLEC-based vaccine containing aSyn aa91-100 (SeqID14+SeqID7+Pyricularia auriculariae) was compared with the corresponding known peptide-KLH vaccine (SeqID15+KLH with Alum as adjuvant). Vaccines used: B cell antigen determinant T cell antigen determinant/ vector CLEC Adjuvant Way SeqID14 SeqID7 Pyricularia auricula polysaccharide (80%) na id SeqID15 KLH na Alum id

動物(雌性Balb/c小鼠)以每兩週一次的間隔接種疫苗3次(所有疫苗:5μgaSyn靶向肽/劑量;途徑:基於CLEC之疫苗用i.d.,以Alhydrogel作為佐劑的基於KLH之疫苗用s.c.)且藉由ELISA及EC50值確定針對注射肽及目標蛋白aSyn的隨後的免疫反應。 結果: Animals (female Balb/c mice) were vaccinated 3 times at biweekly intervals (all vaccines: 5 μg aSyn targeting peptide/dose; route: id for CLEC-based vaccines, sc for KLH-based vaccines with Alhydrogel as adjuvant) and the subsequent immune responses against the injected peptides and the target protein aSyn were determined by ELISA and EC50 values.

令人驚訝的是,兩種疫苗均誘導了相關的抗肽效價,但較未能誘導了可偵測的抗aSyn蛋白效價(參見圖27)。因此,所提供的實驗表明,靶向aa 91-100區域的基於CLEC的及傳統的肽疫苗較不適合在活體內產生有效及選擇性的免疫反應,此表明根據本發明,該抗原決定基可能不是聚合選擇性免疫療法的最佳選擇。 實例 27 :使用載體蛋白作為輔助性 T 細胞抗原決定基的 CLEC 結合物及肽結合物的免疫原性分析 -aSyn C 端區域 aa131-140 Surprisingly, both vaccines induced relevant anti-peptide titers, but failed to induce detectable anti-aSyn protein titers (see Figure 27). Thus, the experiments provided show that CLEC-based and traditional peptide vaccines targeting the aa 91-100 region are less suitable for generating effective and selective immune responses in vivo, suggesting that this epitope may not be the best choice for polymerized selective immunotherapy according to the present invention. Example 27 : Immunogenicity Analysis of CLEC Conjugates and Peptide Conjugates Using Carrier Protein as Helper T Cell Epitope - aSyn C- terminal Region aa131-140

在這個實例中,開始了一組實驗來比較兩種結合物,此兩種結合物均包含一個抗原決定基,該抗原決定基藉由分析針對注射的肽及aSyn蛋白引起的免疫反應被認為適合作為aSyn靶向抗原決定基。此外,還評估了針對兩種不同形式的突觸前蛋白aSyn引發的隨後免疫反應的選擇性。In this example, a set of experiments was initiated to compare two conjugates, both of which contained an epitope that was deemed suitable by analyzing the immune response elicited against the injected peptide and the aSyn protein. As aSyn targets epitopes. In addition, the selectivity of the subsequent immune response elicited against two different forms of the presynaptic protein aSyn was evaluated.

例如,US 2015/0232524及WO 2016/062720提出來自aa-126-140及131-140位置的C端aSyn序列作為aSyn靶向免疫療法的潛在合適抗原決定基。為了評估CLEC修飾是否確實會產生更好的免疫反應,因此將含有aSyn aa131-140(SeqID20+SeqID7+石耳多醣)的基於CLEC之疫苗與相應的習知肽-KLH疫苗(用Alum作為佐劑之SeqID21+KLH)進行了比較。 所用疫苗: B 細胞抗原決定基 T 細胞抗原決定基/ 載體 CLEC 佐劑 途徑 SeqID20 SeqID7 石耳多醣(80%) n.a i.d. SeqID21 KLH na Alum i.d. For example, US 2015/0232524 and WO 2016/062720 proposed C-terminal aSyn sequences from positions aa-126-140 and 131-140 as potential suitable antigenic determinants for aSyn targeted immunotherapy. To evaluate whether CLEC modification would indeed result in a better immune response, a CLEC-based vaccine containing aSyn aa131-140 (SeqID20+SeqID7+Pyricularia auriculariae) was compared with the corresponding known peptide-KLH vaccine (SeqID21+KLH with Alum as adjuvant). Vaccines used: B cell antigen determinant T cell antigen determinant/ vector CLEC Adjuvant Way SeqID20 SeqID7 Pyricularia auricula polysaccharide (80%) na id SeqID21 KLH na Alum id

動物(雌性Balb/c小鼠)以每兩週一次的間隔接種疫苗3次(所有疫苗:5μgaSyn靶向肽/劑量;途徑:基於CLEC之疫苗用i.d.,以Alhydrogel作為佐劑的基於KLH之疫苗用s.c.)且藉由ELISA及EC50值測定針對注射肽及目標蛋白的隨後的免疫反應。此外,為了評估免疫反應的選擇性,對血漿樣品進行aSyn特異性抑制ELISA,並表示為最大結合百分比。 結果: Animals (female Balb/c mice) were vaccinated 3 times at biweekly intervals (all vaccines: 5 μgaSyn targeting peptide/dose; route: CLEC-based vaccine with id, KLH-based vaccine with Alhydrogel as adjuvant The subsequent immune response against the injected peptide and target protein was determined sc) and by ELISA and EC50 values. Additionally, to assess the selectivity of the immune response, aSyn-specific inhibition ELISA was performed on plasma samples and expressed as percent maximal binding. result:

與習知肽-結合物疫苗(即,SeqID21+KLH,參見圖28A)相比,本實驗中使用的基於CLEC的aSyn靶向結合物疫苗(SeqID20+SeqID7+石耳多醣)展示了整體較低的抗aSyn蛋白反應。與基於CLEC之疫苗相比,習知疫苗誘導的免疫反應的特徵是抗aSyn效價增加1.8倍,但抗肽/抗蛋白質效價的比率降低45%。後一發現支持本發明之教示,即CLEC修飾引起更好的抗目標蛋白反應,即使在與類似的習知疫苗相比總體免疫原性較低的情況下亦是如此。Compared to the known peptide-conjugate vaccine (i.e., SeqID21+KLH, see Figure 28A), the CLEC-based aSyn-targeted conjugate vaccine (SeqID20+SeqID7+Pseudomonas aeruginosa) used in this experiment demonstrated an overall lower anti-aSyn protein response. Compared to the CLEC-based vaccine, the immune response induced by the known vaccine was characterized by a 1.8-fold increase in anti-aSyn titer, but a 45% decrease in the ratio of anti-peptide/anti-protein titer. The latter finding supports the teaching of the present invention that CLEC modification elicits a better anti-target protein response, even at a lower overall immunogenicity than a similar known vaccine.

此外,習知的肽結合物較不適合誘導聚合選擇性免疫反應(參見圖28B)。相比之下,基於CLEC之疫苗產生的抗體對單體aSyn的選擇性增加約10倍,代價是聚集的aSyn(參見圖28B)。因此,所提供的實驗表明,針對aa131-140區域的基於CLEC的及習知的肽疫苗較不適合在活體內對聚集的aSyn產生有效及選擇性的免疫反應,此表明根據本發明,該抗原決定基可能不是聚集選擇性免疫療法的最佳選擇。 實例 28 :使用載體蛋白作為輔助性 T 細胞抗原決定基的 CLEC 結合物及肽結合物的免疫原性分析 -aSynC 端區域 aa103-135 Furthermore, known peptide conjugates are less suitable for inducing polymerization-selective immune responses (see Figure 28B). In contrast, antibodies generated by CLEC-based vaccines were approximately 10-fold more selective for monomeric aSyn at the expense of aggregated aSyn (see Figure 28B). Therefore, the experiments presented show that CLEC-based and conventional peptide vaccines targeting the aa131-140 region are less suitable to generate an effective and selective immune response to aggregated aSyn in vivo, indicating that this antigen determines the may not be the best choice for aggregation-selective immunotherapy. Example 28 : Immunogenicity analysis of CLEC conjugates and peptide conjugates using carrier proteins as helper T cell epitopes - aSyn C- terminal region aa103-135

在該實例中,評估了與使用最先進的載體蛋白作為T細胞抗原決定基來源的相應肽結合物相比,根據本發明之基於CLEC之結合物疫苗是否可誘導針對aSyn的更好的免疫反應。In this example, it was assessed whether the CLEC-based conjugate vaccine according to the present invention could induce a better immune response against aSyn compared to the corresponding peptide conjugate using a state-of-the-art carrier protein as the source of T cell antigenic determinants.

因此,開始了一組實驗來比較若干結合物,此等結合物源自建議適合作為aSyn靶向抗原決定基的抗原決定基區域。此等實驗可證明針對注射的肽及aSyn蛋白引發的免疫反應,以及隨後針對兩種不同形式的突觸前蛋白aSyn(非聚集的、主要是單體的aSyn以及聚集的aSyn細絲)所引發的免疫反應的選擇性。Therefore, a set of experiments was initiated to compare several binders derived from epitope regions suggested to be suitable as aSyn targeting epitopes. These experiments allowed to demonstrate the selectivity of the immune response elicited against the injected peptide and aSyn protein, and subsequently against two different forms of the presynaptic protein aSyn: non-aggregated, mainly monomeric aSyn and aggregated aSyn filaments.

若干研究表明,源自aa103-135位置的C端aSyn序列是aSyn靶向免疫療法的潛在合適抗原決定基,無論是作為自身抗原決定基的來源,還是包含其原始序列或其模擬抗原決定基的肽。為了評估CLEC修飾是否確實會在aSyn中使用該區域產生更好的免疫反應,因此將若干基於CLEC之疫苗(使用區域107-126內的肽)與相應的習知肽-CRM疫苗(用Alum作為佐劑)進行了比較。 所用疫苗: B 細胞抗原決定基 T 細胞抗原決定基 / 載體 CLEC 佐劑 途徑 SeqID56 SeqID7 石耳多醣(80%) n.a i.d. SeqID58 CRM na Alum s.c. SeqID53 SeqID7 石耳多醣(80%) n.a i.d. SeqID55 CRM na Alum s.c. SeqID51 SeqID7 石耳多醣(80%) n.a i.d. SeqID52 CRM na Alum s.c. SeqID65 SeqID7 石耳多醣(80%) n.a i.d. SeqID66 CRM na Alum s.c. SeqID67 SeqID7 石耳多醣(80%) n.a i.d. SeqID68 CRM na Alum s.c. SeqID69 SeqID7 石耳多醣(80%) n.a i.d. SeqID70 CRM na Alum s.c. SeqID71 SeqID7 石耳多醣(80%) n.a i.d. SeqID72 CRM na Alum s.c. Several studies have shown that the C-terminal aSyn sequence originating from the position aa103-135 is a potential suitable epitope for aSyn targeted immunotherapy, either as a source of self-epitopes or peptides containing its original sequence or its mimicking epitopes. In order to assess whether CLEC modification would indeed lead to a better immune response using this region in aSyn, several CLEC-based vaccines (using peptides within the region 107-126) were compared with the corresponding known peptide-CRM vaccine (using Alum as adjuvant). Vaccines used: B cell antigen determinant T cell antigen determinant / vector CLEC Adjuvant Way SeqID56 SeqID7 Pyricularia polysaccharide (80%) na id SeqID58 CRM na Alum sc SeqID53 SeqID7 Pyricularia auricula polysaccharide (80%) na id SeqID55 CRM na Alum sc SeqID51 SeqID7 Pyricularia auricula polysaccharide (80%) na id SeqID52 CRM na Alum sc SeqID65 SeqID7 Pyricularia auricula polysaccharide (80%) na id SeqID66 CRM na Alum sc SeqID67 SeqID7 Pyricularia auricula polysaccharide (80%) na id SeqID68 CRM na Alum sc SeqID69 SeqID7 Pyricularia auricula polysaccharide (80%) na id SeqID70 CRM na Alum sc SeqID71 SeqID7 Pyricularia auricula polysaccharide (80%) na id SeqID72 CRM na Alum sc

動物(雌性Balb/c小鼠)每兩週接種一次疫苗3次(所有疫苗:5μgaSyn靶向肽/劑量;途徑:基於CLEC之疫苗用i.d.,以Alum作為佐劑的基於CRM之疫苗用s.c.)且藉由ELISA及EC50值測定針對注射肽及目標蛋白的隨後的免疫反應。此外,為了評估免疫反應的選擇性,對血漿樣品進行aSyn特異性抑制ELISA,並表示為最大結合百分比。 結果: 疫苗 肽效價 (x1000) aSyn 纖維效價 (x1000) SeqDI56+SeqID7+石耳多醣 0,1 0,1 SeqID58+CRM+Alum 9,781 0,1 SeqDI53+SeqID7+石耳多醣 0,1 0,1 SeqID55+CRM+Alum 17,647 0,8 SeqDI51+SeqID7+石耳多醣 19,694 1,687 SeqID52+CRM+Alum 13,115 1,594 SeqDI65+SeqID7+石耳多醣 9,04 3,256 SeqID66+CRM+Alum 7,984 1,108 SeqDI67+SeqID7+石耳多醣 12,016 7,335 SeqID68+CRM+Alum 18,126 1,864 SeqDI69+SeqID7+石耳多醣 28,125 3,523 SeqID70+CRM+Alum 37,88 1,054 SeqDI71+SeqID7+石耳多醣 7,783 5,788 SeqID72+CRM+Alum 14,603 2,429 表3:涵蓋aa107-126之疫苗引發的免疫反應 Animals (female Balb/c mice) were vaccinated 3 times every two weeks (all vaccines: 5 μg aSyn targeting peptide/dose; route: id for CLEC-based vaccines, sc for CRM-based vaccines with Alum as adjuvant) and the subsequent immune responses against the injected peptides and target proteins were determined by ELISA and EC50 values. In addition, to assess the selectivity of the immune response, aSyn-specific inhibition ELISA was performed on plasma samples and expressed as percentage of maximum binding. Results: vaccine Peptide titer (x1000) aSyn fiber potency (x1000) SeqDI56+SeqID7+Pyricularia polysaccharide 0,1 0,1 SeqID58+CRM+Alum 9,781 0,1 SeqDI53+SeqID7+Pyricularia auricula 0,1 0,1 SeqID55+CRM+Alum 17,647 0,8 SeqDI51+SeqID7+Pyricularia auricula 19,694 1,687 SeqID52+CRM+Alum 13,115 1,594 SeqDI65+SeqID7+Pyricularia polysaccharide 9,04 3,256 SeqID66+CRM+Alum 7,984 1,108 SeqDI67+SeqID7+Pyricularia auricula polysaccharide 12,016 7,335 SeqID68+CRM+Alum 18,126 1,864 SeqDI69+SeqID7+Pyricularia auricula 28,125 3,523 SeqID70+CRM+Alum 37,88 1,054 SeqDI71+SeqID7+Pyricularia auricula polysaccharide 7,783 5,788 SeqID72+CRM+Alum 14,603 2,429 Table 3: Immune responses induced by vaccines covering aa107-126

基於CLEC以及基於CRM的含有5聚體及6聚體肽之疫苗均較不適合在本實驗中誘導高抗aSyn絲效價。與習知肽結合物疫苗相比,本實驗中使用的靶向aSyn C端的基於CLEC的結合疫苗(7至12聚體肽)(參見表3及圖29A、30A及31A)均顯示出針對aSyn絲狀物的優異免疫原性(見表3,最多增加4倍)。此有力地支持了本發明之教示,即CLEC修飾引起與使用源自103-135,尤其是107-126的抗原決定基的類似習知疫苗相比更優異的免疫反應。Both CLEC-based and CRM-based vaccines containing 5- and 6-mer peptides were less suitable for inducing high anti-aSyn silk titers in this experiment. Compared with conventional peptide conjugate vaccines, the CLEC-based conjugate vaccines (7- to 12-mer peptides) targeting the C-terminus of aSyn used in this experiment (see Table 3 and Figures 29A, 30A, and 31A) all showed strong efficacy against aSyn. Excellent immunogenicity of filaments (see Table 3, up to 4-fold increase). This strongly supports the teaching of the present invention that CLEC modifications elicit superior immune responses compared to similar conventional vaccines using epitopes derived from 103-135, especially 107-126.

聚合aSyn的選擇性分析進一步支持了此教示。如圖29B及30B所示,含有源自序列aa115-126的抗原決定基的CLEC疫苗在引發高度聚集的選擇性免疫反應方面出人意料地有效。如圖29B所示,基於CLEC之疫苗SeqID51+SeqID7+石耳多醣,包含一8聚體的aSyn靶向抗原決定基,所誘導抗體對aSyn聚集體的選擇性高10倍,而相應的習知疫苗(SeqID52+CRM+Alum)則無法誘導聚集選擇性抗體。同樣地,基於CLEC之疫苗SeqID67+SeqID7+石耳多醣,包含一個10聚體的aSyn靶向抗原決定基,誘導了與單體相比,高約10倍的aSyn聚集體的選擇性,而相應的習知疫苗(SeqID68+CRM+Alum)所引發的抗體則對單體更具選擇性,相較於聚集體約高3倍(參見圖30B)。Selectivity analysis of polymerized aSyn further supports this teaching. As shown in Figures 29B and 30B, a CLEC vaccine containing an epitope derived from sequence aa115-126 was unexpectedly effective in eliciting a highly aggregated selective immune response. As shown in Figure 29B, the CLEC-based vaccine SeqID51+SeqID7+Shitu polysaccharide contains an 8-mer aSyn targeting epitope, and the induced antibodies are 10 times more selective for aSyn aggregates, while the corresponding conventional vaccine (SeqID52+CRM+Alum) cannot induce aggregation-selective antibodies. Similarly, the CLEC-based vaccine SeqID67+SeqID7+Shitu polysaccharide, which contains a 10-mer aSyn targeting epitope, induced approximately 10 times higher selectivity of aSyn aggregates compared with monomers, and the corresponding The antibodies elicited by the conventional vaccine (SeqID68+CRM+Alum) are more selective for monomers, about 3 times more selective than aggregates (see Figure 30B).

對含有抗原決定基aa107-114之疫苗(SeqID73+SeqID7+石耳多醣及SeqID74+CRM+Alum,參見圖31B)的選擇性分析令人驚訝地表明,儘管存在由基於CLEC之疫苗所引發的高抗aSyn效價(即,更優異的免疫原性),然而無論是CLEC疫苗還是傳統疫苗均不能誘導聚集選擇性抗體,此表明只有aa103-135中高度選擇的肽序列才適合作為特異性靶向聚集aSyn的免疫療法。Selectivity analysis of vaccines containing the epitope aa107-114 (SeqID73+SeqID7+Fructus polysaccharide and SeqID74+CRM+Alum, see Figure 31B) surprisingly showed that despite the presence of high resistance elicited by the CLEC-based vaccine aSyn titer (i.e., superior immunogenicity), however neither the CLEC vaccine nor the conventional vaccine was able to induce aggregation-selective antibodies, suggesting that only the highly selected peptide sequence in aa103-135 is suitable as a specific target for aggregation aSyn's immunotherapy.

如前所示(見圖26-28),還可注意到源自aa91-100、aa100-108及aa131-140的抗原決定基均較不適合作為特異性靶向聚集的aSyn的潛在免疫治療區域。 實例 29: 由基於 CLEC 之疫苗引發的免疫反應的活體外功能分析 As shown above (see Figures 26-28), it can also be noted that the epitopes derived from aa91-100, aa100-108 and aa131-140 are all less suitable as potential immunotherapeutic regions for specifically targeting aggregated aSyn. Example 29: In vitro functional analysis of immune responses elicited by CLEC -based vaccines

為了分析由基於CLEC之疫苗(含有來自抗原決定基區域aa103-135的aSyn靶向肽)引發的aSyn特異性抗體是否具有生物活性,本實例進行了一組實驗,分析了抗體在活體外抑制aSyn聚集的能力。 所用疫苗: B 細胞抗原決定基 T 細胞抗原決定基/ 載體 CLEC 佐劑 途徑 SeqID67 SeqID7 石耳多醣(80%) n.a i.d. SeqID68 CRM n.a Alhydrogel s.c. SeqID71 SeqID7 石耳多醣(80%) n.a i.d. SeqID72 CRM197 n.a Alhydrogel i.d. SeqID73 SeqID7 石耳多醣(80%) n.a i.d. SeqID74 CRM197 n.a Alhydrogel s.c. In order to analyze whether aSyn-specific antibodies elicited by a CLEC-based vaccine (containing aSyn-targeting peptide from the epitope region aa103-135) are biologically active, a set of experiments was performed to analyze the inhibition of aSyn in vitro by the antibodies. The ability to gather. Vaccines used: B cell epitope T cell epitope/ carrier CLEC Adjuvant way SeqID67 SeqID7 Shi fungus polysaccharide (80%) na ID SeqID68 CRM na Alhydrogel sc SeqID71 SeqID7 Shi fungus polysaccharide (80%) na ID SeqID72 CRM197 na Alhydrogel ID SeqID73 SeqID7 Shi fungus polysaccharide (80%) na ID SeqID74 CRM197 na Alhydrogel sc

動物(雌性Balb/c小鼠)以每兩週一次的間隔接種疫苗3次(所有疫苗:20µg aSyn靶向肽/劑量;途徑:i.d.用於基於CLEC之疫苗,s.c.用於以Alhydrogel作為佐劑的基於CRM197之疫苗)。透過每次免疫後兩週採集的鼠血漿樣品以及各別對照組樣品(例如:aSyn結合抗體LB509、抗原決定基aa115-122或免疫前獲得的免疫前血漿)分析了活體外聚集抑制能力。 結果: Animals (female Balb/c mice) were vaccinated 3 times at biweekly intervals (all vaccines: 20 µg aSyn targeting peptide/dose; route: id for CLEC-based vaccines, sc for adjuvanted with Alhydrogel of vaccines based on CRM197). The in vitro aggregation inhibition ability was analyzed through mouse plasma samples collected two weeks after each immunization and respective control samples (e.g., aSyn-conjugated antibody LB509, epitope aa115-122, or pre-immune plasma obtained before immunization). result:

如圖32D所示,免疫前取自動物的血漿對aSyn的聚集動力學沒有顯著影響,證實了測定的特異性。As shown in Figure 32D, plasma obtained from animals before immunization had no significant effect on the aggregation kinetics of aSyn, confirming the specificity of the assay.

SeqID67+SeqID7+石耳多醣疫苗(包含10聚體aSyn衍生肽)誘導的抗體強烈抑制aSyn聚集,正如該測定中聚集隨時間推移減少40%所表明的那樣,而相應的CRM結合疫苗僅顯示出最小的影響,表明其與經典疫苗誘導的抗體相比具有更高的抑制能力(圖32A)。分析由SeqID71+SeqID7+石耳多醣(包含12聚體aSyn衍生肽)誘導的抗體可獲得類似的結果,其可更強烈地減少聚集(70-80%抑制)且可超過習知CRM疫苗(SeqID72+CRM+Alhydrogel)誘導的抗體的抑制能力2到2.5倍。相較之下,圖32C顯示由基於抗原決定基aa107-114(含有8聚體aSyn衍生肽)構建的基於CLEC之疫苗及習知疫苗誘導的抗體均未能抑制aSyn聚集。Antibodies induced by the SeqID67+SeqID7+Skeleton polysaccharide vaccine (containing a 10-mer aSyn-derived peptide) strongly inhibited aSyn aggregation, as demonstrated by a 40% reduction in aggregation over time in this assay, whereas the corresponding CRM conjugate vaccine showed only minimal effect, indicating that it has a higher inhibitory capacity compared with classical vaccine-induced antibodies (Figure 32A). Similar results were obtained by analyzing antibodies induced by SeqID71+SeqID7+ Shifu polysaccharide (containing 12-mer aSyn-derived peptide), which reduced aggregation more strongly (70-80% inhibition) and exceeded that of the conventional CRM vaccine (SeqID72+ The inhibitory capacity of antibodies induced by CRM+Alhydrogel is 2 to 2.5 times. In comparison, Figure 32C shows that neither the CLEC-based vaccine constructed based on the epitope aa107-114 (containing an 8-mer aSyn-derived peptide) nor the antibodies induced by conventional vaccines inhibited aSyn aggregation.

如圖32D所示,aSyn特異性抗體LB509無法抑制aSyn聚集。相反地,在此分析中可偵測到聚集的輕微增加。As shown in Figure 32D, aSyn-specific antibody LB509 was unable to inhibit aSyn aggregation. In contrast, a slight increase in aggregation was detectable in this analysis.

考慮到本發明之教示(參見實例14及圖15分析衍生自aSyn序列aa115-126,尤其是aa115-121的抗原決定基),以及描述含有抗原決定基115-126疫苗的表1及圖29-32),此是一個非常令人驚訝的作用。作為單株LB509(抗原決定基aa:115-122),已知其與不同形式的aSyn結合(Jakes等人. Neurosci. Lett. 1999 Jul 2;269(1):13-6)且與根據本發明之生物有效疫苗具有相同的抗原決定基(參見圖32D)。因此,使用基於CLEC之疫苗獲得的優越的生物學效果確實令人驚訝,且表明aa115-126中包含的高度選擇的肽序列在aa103-135區域中作為特異性靶向聚集的aSyn的免疫治療劑為較佳的。 實例 30 :肽 -CRM197-CLEC 結合物對鼠類 dectin -1 受體的活體外生物活性的測定 This is a very surprising effect in view of the teachings of the present invention (see Example 14 and Figure 15 for analysis of antigenic determinants derived from the aSyn sequence aa115-126, in particular aa115-121), as well as Table 1 and Figures 29-32 describing vaccines containing antigenic determinants 115-126), as the single strain LB509 (antigenic determinant aa:115-122) is known to bind to different forms of aSyn (Jakes et al. Neurosci. Lett. 1999 Jul 2;269(1):13-6) and has the same antigenic determinant as the biologically effective vaccine according to the present invention (see Figure 32D). Therefore, the superior biological effects obtained using the CLEC-based vaccine are indeed surprising and suggest that the highly selected peptide sequence contained in aa115-126 is superior as an immunotherapeutic agent that specifically targets aggregated aSyn in the aa103-135 region. Example 30 : Determination of in vitro biological activity of peptide -CRM197-CLEC conjugates against murine dectin -1 receptor

在一系列ELISA實驗中,針對含有dectin-1配位體石耳多醣、地衣多醣及昆布多醣的結合物對鼠科動物dectin-1的結合功效進行了評估。肽+CRM197+CLEC結合物之生物活性由其PRR結合能力表示。沿著此等思路且為了確保CLEC(石耳多醣、地衣多醣、昆布多醣)的結構在偶合後仍保持生物活性,評定了與小鼠dectin-1的結合。然後使用基於可溶性鼠Fc-dectin-1a(InvivoGen)的競爭性結合的競爭性ELISA系統評定了未經氧化及經氧化之石耳多醣、地衣多醣及昆布多醣以及CRM結合物疫苗及基於肽+CRM197+CLEC的新型結合物之生物活性,如Korotchenko等人所述(2020)。 結果: In a series of ELISA experiments, the binding efficacy of murine dectin-1 was evaluated for conjugates containing the dectin-1 ligands pyrrolidone, lichenin and laminarin. The bioactivity of the peptide + CRM197 + CLEC conjugate was indicated by its PRR binding capacity. Along these lines and to ensure that the structure of CLEC (pyrrolidone, lichenin, laminarin) remained bioactive after conjugation, binding to mouse dectin-1 was assessed. The bioactivity of unoxidized and oxidized Psoralen, lichenin and laminarin, as well as the CRM conjugate vaccine and the novel conjugate based on peptide+CRM197+CLEC, was then assessed using a competitive ELISA system based on competitive binding of soluble murine Fc-dectin-1a (InvivoGen) as described by Korotchenko et al. (2020) .

隨後的實驗表明,中等分子量(20kDa)的線性β-(1,6)連接之β-D-葡聚糖―石耳多醣及具有β(1-6)-連接的線性β(1-3)-葡聚糖―昆布多醣發揮了相較於較大的高分子量線性β-(1,3) β-(1,4)-β-D葡聚糖―地衣聚糖(約245kDa)約高10倍的與鼠類dectin-1結合的效率(參見圖33)。Subsequent experiments showed that the medium molecular weight (20 kDa) linear β-(1,6)-linked β-D-glucan, Pyrrolizan, and the β(1-6)-linked linear β(1-3)-glucan, Laminaria japonica, exhibited approximately 10 times higher efficiency in binding to mouse dectin-1 than the larger high molecular weight linear β-(1,3) β-(1,4)-β-D-glucan, lichenan (approximately 245 kDa) (see Figure 33).

如圖33A所示,藉由ELISA分析評定dectin-1配位體石耳多醣、氧化石耳多醣、SeqID6+CRM結合物(CRM結合物1)及SeqID6+CRM+石耳多醣結合物(CRM-石耳多醣結合物1)對鼠類dectin-1的結合功效。隨後的實驗表明,肽+CRM197+石耳多醣結合物顯示出與氧化石耳多醣相似的對鼠類dectin-1的結合功效。相比之下,傳統的CRM結合物1沒有顯示出特異性的小鼠dectin-1結合能力。5種新型CRM-石耳多醣結合物(SeqID52/66/68/70/72)亦顯示出與鼠類dectin-1的高結合功效(圖33B)。隨後的實驗表明,肽-CRM197-石耳多醣與不同的B細胞抗原決定基,範圍自7聚體B細胞抗原決定基(SeqID6+CRM+石耳多醣;圖33A)至12聚體B細胞抗原決定基(SeqID71+CRM+石耳多醣;圖33B)顯示與經氧化之石耳多醣相似的小鼠dectin-1結合功效。如圖33C所示,無論是氧化或結合,高分子量(約22-245kDa)的線性β-(1,3) β-(1,4)-β-D葡聚糖―地衣多醣均比基於線性β-(1,6)連接之β-D-葡聚糖石耳多醣的構築體發揮較低的結合功效。例如,含有CRM197肽結合物之石耳多醣保留了比基於地衣多醣的構築體高約10倍的結合力。具有β(1-6)-連接的線性β(1-3)-葡聚糖―昆布多醣亦顯示出對鼠類dectin-1的高結合功效(圖33D)。隨後的實驗表明,無論氧化或結合,肽+CRM197+昆布多醣結合物均顯示出與基於石耳多醣的構築體相似的鼠類dectin-1結合功效。As shown in Figure 33A, the dectin-1 ligand Schistocaryon polysaccharide, oxidized Schizophyllum polysaccharide, SeqID6+CRM conjugate (CRM conjugate 1) and SeqID6+CRM+ Schistocaryon polysaccharide conjugate (CRM-Sequencer polysaccharide) were evaluated by ELISA analysis. Binding effect of otic polysaccharide conjugate 1) on mouse dectin-1. Subsequent experiments showed that the peptide+CRM197+Fructus polysaccharide conjugate showed similar binding efficacy to murine dectin-1 as the oxidized Fructus polysaccharide. In contrast, traditional CRM conjugate 1 showed no specific mouse dectin-1 binding ability. Five new CRM-Fructus polysaccharide conjugates (SeqID52/66/68/70/72) also showed high binding efficacy to murine dectin-1 (Figure 33B). Subsequent experiments showed that the peptide-CRM197-Fructus polysaccharide interacts with different B cell epitopes, ranging from a 7-mer B cell epitope (SeqID6+CRM+Fructus polysaccharide; Figure 33A) to a 12-mer B cell epitope The base (SeqID71+CRM+Fructus polysaccharide; Figure 33B) showed similar mouse dectin-1 binding efficacy to oxidized Fructus polysaccharide. As shown in Figure 33C, whether oxidized or combined, linear β-(1,3) β-(1,4)-β-D glucan-lichen with high molecular weight (approximately 22-245 kDa) is more abundant than linear-based β-(1,3)-lichenin. The construct of β-(1,6)-linked β-D-glucan polysaccharide exhibits lower binding efficacy. For example, auricularia polysaccharides containing CRM197 peptide conjugates retained approximately 10-fold higher binding capacity than lichenin-based constructs. Laminarin, a linear β(1-3)-glucan with β(1-6)-linkages, also showed high binding efficacy to murine dectin-1 (Figure 33D). Subsequent experiments showed that regardless of oxidation or conjugation, the peptide + CRM197 + laminarin conjugate showed similar murine dectin-1 binding efficacy to the fungus polysaccharide-based construct.

實驗表明,肽+CRM197+CLEC結合物藉由與小鼠系統中的dectin-1結合顯示出對樹突狀細胞的生物活性。 實例 31 :肽 -CRM197-CLEC 結合物對人類 dectin -1 受體之活體外生物活性的測定 The experiment showed that the peptide + CRM197 + CLEC conjugate exhibited biological activity against dendritic cells by binding to dectin-1 in the mouse system. Example 31 : Determination of the in vitro biological activity of the peptide -CRM197-CLEC conjugate against the human dectin -1 receptor

在一系列ELISA實驗中評定了dectin-1配位體石耳多醣、地衣多醣及昆布多醣與人類dectin-1的結合功效。肽+CRM197+CLEC結合物之生物活性由其PRR結合能力表示。沿著此等思路且為了確保CLEC(石耳多醣、地衣多醣、昆布多醣)的結構在偶合後仍保持生物活性,藉由基於可溶性人類Fc-dectin-1a受體(InvivoGen)的競爭性結合的競爭性ELISA系統評定與人類dectin-1的結合。 結果: The binding efficacy of the dectin-1 ligands Shiguan, lichenin and laminarin to human dectin-1 was evaluated in a series of ELISA experiments. The biological activity of the peptide+CRM197+CLEC conjugate is expressed by its PRR binding ability. Along these lines and in order to ensure that the structure of CLEC (leafia polysaccharide, lichenin, laminarin) still maintains biological activity after coupling, through competitive binding based on soluble human Fc-dectin-1a receptor (InvivoGen) Competitive ELISA system to assess binding to human dectin-1. result:

如圖34所示,藉由ELISA分析評定了與地衣多醣(Lich結合物)、石耳多醣(Pus結合物)或昆布多醣(Lam結合物)偶合之SeqID6+CRM結合物對人類dectin-1的結合功效。As shown in FIG. 34 , the binding efficacy of SeqID6+CRM conjugates conjugated with lichenin (Lich conjugate), Psoralen polysaccharide (Pus conjugate) or laminarin polysaccharide (Lam conjugate) to human dectin-1 was assessed by ELISA analysis.

隨後的實驗表明,肽+CRM197+石耳多醣疫苗對人類dectin-1的結合效力明顯高於與地衣多醣結合之疫苗(約30倍) (參見圖34)。相反地,肽+CRM197+昆布多醣疫苗顯示出與人類dectin-1的弱結合。 實例 32 :不同的基於肽 +CRM197+ 石耳多醣之疫苗的活體內比較 Subsequent experiments showed that the peptide + CRM197 + Psoralea corylifolia polysaccharide vaccine had a significantly higher binding potency to human dectin-1 than the vaccine combined with lichen polysaccharide (about 30 times) (see Figure 34). In contrast, the peptide + CRM197 + laminarin polysaccharide vaccine showed weak binding to human dectin-1. Example 32 : In vivo comparison of different vaccines based on peptide + CRM197 + Psoralea corylifolia polysaccharide

新型CRM197-石耳多醣疫苗具有不同的B細胞抗原決定基,範圍自8聚體至11聚體,其能夠與其DC受體(例如:dectin-1)結合,並測試該疫苗經過重複施用於n=5 Balb/c小鼠/組後誘導強烈及特異性免疫反應的能力。典型的實驗係使用每劑量5µg淨肽含量的B細胞抗原決定基肽進行。The novel CRM197-Auricularia polysaccharide vaccine has different B cell epitopes ranging from 8-mer to 11-mer that are able to bind to their DC receptors (e.g. dectin-1) and is tested for its ability to induce a strong and specific immune response after repeated administration to n=5 Balb/c mice/group. Typical experiments were performed using 5µg of the B cell epitope peptides per dose.

在該實驗中,aSyn衍生肽SeqID52+CRM197及SeqID66/68/70+CRM結合物與經氧化之石耳多醣偶合。動物(雌性Balb/c小鼠)以每兩週一次的間隔接種經β-葡聚糖修飾或未經修飾之肽-CRM結合物3次(途徑:i.d.),使用第三次免疫接種後兩週採集的鼠類血漿對針對注射的肽(即分別為SeqID52/66/68/70)及針對聚集的aSyn纖維產生的隨後的免疫反應進行分析。 所用疫苗: B 細胞抗原決定基 T 細胞抗原決定基 / 載體 CLEC 佐劑 途徑 SeqID52 CRM 石耳多醣(80%) n.a i.d. SeqID66 CRM 石耳多醣(80%) n.a i.d. SeqID68 CRM 石耳多醣(80%) n.a i.d. SeqID70 CRM 石耳多醣(80%) n.a i.d. SeqID52 CRM n.a. Alhydrogel s.c. SeqID66 CRM n.a Alhydrogel s.c. SeqID68 CRM n.a Alhydrogel s.c. SeqID70 CRM n.a. Alhydrogel s.c. 結果: In this experiment, aSyn-derived peptides SeqID52+CRM197 and SeqID66/68/70+CRM conjugates were coupled to oxidized auricularia polysaccharides. Animals (female Balb/c mice) were vaccinated with β-glucan-modified or unmodified peptide-CRM conjugates 3 times at biweekly intervals (Route: id), using two days after the third immunization. Murine plasma collected weekly was analyzed for subsequent immune responses to the injected peptides (i.e., SeqID52/66/68/70, respectively) and to aggregated aSyn fibers. Vaccines used: B cell epitope T cell epitope / carrier CLEC Adjuvant way SeqID52 CRM Shi fungus polysaccharide (80%) na ID SeqID66 CRM Shi fungus polysaccharide (80%) na ID SeqID68 CRM Shi fungus polysaccharide (80%) na ID SeqID70 CRM Shi fungus polysaccharide (80%) na ID SeqID52 CRM na Alhydrogel sc SeqID66 CRM na Alhydrogel sc SeqID68 CRM na Alhydrogel sc SeqID70 CRM na Alhydrogel sc result:

如圖35A所示,與以Alhydrogel為佐劑的未經修飾之基於肽CRM之疫苗相比,所有4種基於CRM-石耳多醣之疫苗(SeqID52/66/68/70/72)均能夠對針對注射的肽部分(例如:SeqID52/66/68/70)及針對聚集的aSyn纖維產生顯著提高的反應。As shown in Figure 35A, compared with the unmodified peptide CRM-based vaccine with Alhydrogel as adjuvant, all four CRM-Agaricus polysaccharide-based vaccines (SeqID52/66/68/70/72) were able to Significantly enhanced responses were produced against injected peptide moieties (eg: SeqID52/66/68/70) and against aggregated aSyn fibers.

相較於未經修飾之基於肽-CRM的結合物疫苗,基於肽+CRM+石耳多醣的結合物可誘導提高2-5倍之相對於各別肽之效價(最高效價為1/190.000)及提高3-13倍之針對aSyn纖維的效價(最高效價為1/29.000)。 實例 33 :由基於肽 +CRM+ 石耳多醣之疫苗在活體內引發的免疫反應的選擇性分析 Compared with the unmodified peptide-CRM-based conjugate vaccine, the conjugate based on peptide+CRM+Fructus polysaccharide can induce a 2-5 times increase in potency relative to the respective peptides (the highest potency is 1/190.000 ) and increase the potency against aSyn fiber by 3-13 times (the highest potency is 1/29.000). Example 33 : Selective analysis of immune responses elicited in vivo by vaccines based on peptide +CRM+ Fructus polysaccharides

與習知的肽+CRM197疫苗相比,為了進一步表徵由含有不同B細胞抗原決定基的肽+CRM197+石耳多醣疫苗引發的免疫反應,本實例進行了一組實驗,分析了針對聚集的aSyn纖維引發的隨後的免疫反應的選擇性。Compared with the conventional peptide + CRM197 vaccine, in order to further characterize the immune response triggered by the peptide + CRM197 + Shigu polysaccharide vaccine containing different B cell epitopes, a set of experiments was performed in this example to analyze the aSyn fibers against aggregated Selectivity of the subsequent immune response elicited.

動物(雌性Balb/c小鼠)以每兩週一次的間隔接種疫苗3次(所有疫苗:5μg aSyn靶向肽/劑量;途徑:4種基於肽+CRM197+CLEC之疫苗(SeqID52/SeqID66/68/70-CRM197-石耳多醣)用i.d.;s.c.用於以Alhydrogel為佐劑的4種基於肽+CRM197之疫苗(SeqID52/SeqID66/68/70-CRM197))以及使用第三次免疫接種後兩週採集的鼠類血漿對針對目標蛋白(即重組人類α突觸核蛋白及aSyn纖維)產生的隨後的免疫反應進行分析。對血漿樣品進行aSyn特異性抑制ELISA,且測定IC50值。 所用疫苗: B 細胞抗原決定基 T 細胞抗原決定基 / 載體 CLEC 佐劑 途徑 SeqID52 CRM 石耳多醣(80%) n.a i.d. SeqID66 CRM 石耳多醣(80%) n.a i.d. SeqID68 CRM 石耳多醣(80%) n.a i.d. SeqID70 CRM 石耳多醣(80%) n.a i.d. SeqID52 CRM n.a. Alhydrogel s.c. SeqID66 CRM n.a Alhydrogel s.c. SeqID68 CRM n.a Alhydrogel s.c. SeqID70 CRM n.a. Alhydrogel s.c. 結果: Animals (female Balb/c mice) were vaccinated 3 times at biweekly intervals (all vaccines: 5 μg aSyn targeting peptide/dose; route: 4 peptide+CRM197+CLEC-based vaccines (SeqID52/SeqID66/68 /70-CRM197-Shifu polysaccharide) with id; sc for 4 peptide + CRM197-based vaccines with Alhydrogel as adjuvant (SeqID52/SeqID66/68/70-CRM197)) and for two days after the third immunization The subsequent immune response to target proteins, namely recombinant human alpha-synuclein and aSyn fibers, was analyzed in mouse plasma collected weekly. ASyn-specific inhibition ELISA was performed on plasma samples, and IC50 values were determined. Vaccines used: B cell epitope T cell epitope / carrier CLEC Adjuvant way SeqID52 CRM Shi fungus polysaccharide (80%) na ID SeqID66 CRM Shi fungus polysaccharide (80%) na ID SeqID68 CRM Shi fungus polysaccharide (80%) na ID SeqID70 CRM Shi fungus polysaccharide (80%) na ID SeqID52 CRM na Alhydrogel sc SeqID66 CRM na Alhydrogel sc SeqID68 CRM na Alhydrogel sc SeqID70 CRM na Alhydrogel sc result:

簡言之,與習知肽-CRM197結合物疫苗相比,本實驗中使用的所有基於CLEC之結合物均表現出優異的aSyn聚集體特異性目標選擇性,這是藉由針對aSyn纖維明顯更低的IC50值所確定的(參見圖36)。Briefly, compared to conventional peptide-CRM197 conjugate vaccines, all CLEC-based conjugates used in this experiment demonstrated excellent aSyn aggregate-specific target selectivity by targeting aSyn fibers with significantly higher as determined by low IC50 values (see Figure 36).

在該實驗中測試的所有4種習知肽-CRM197結合物疫苗均誘導抗體,其表現出非常弱的對aSyn纖維的選擇性,係藉由400-1700 ng/ml之非常高的IC50值來顯示。All 4 known peptide-CRM197 conjugate vaccines tested in this experiment induced antibodies that showed very weak selectivity for aSyn fibers, indicated by very high IC50 values of 400-1700 ng/ml. display.

相比之下,由新型基於肽+CRM197+石耳多醣的結合物疫苗誘導之所有抗體的特徵在於具有顯著較低的aSyn纖維的IC50值,範圍為3.5-15 ng/ml。In contrast, all antibodies induced by the novel peptide+CRM197+Fructus polysaccharide-based conjugate vaccine were characterized by significantly lower IC50 values for aSyn fibers, ranging from 3.5-15 ng/ml.

因此,實驗表明無論使用的抗原決定基為何,CRM197結合物之CLEC修飾引起隨後免疫反應的目標特異性大大增強,提供了一種前所未有的新策略來最佳化目前先進技術結合物疫苗。 實例 34 :由基於肽 +CRM197+ 石耳多醣之疫苗引發的免疫反應之親和力分析 Therefore, the experiments show that regardless of the epitope used, CLEC modification of the CRM197 conjugate causes a greatly enhanced target specificity of the subsequent immune response, providing an unprecedented new strategy to optimize the current advanced technology conjugate vaccine. Example 34 : Affinity analysis of immune responses elicited by vaccines based on peptide +CRM197+ Fructus polysaccharides

為了進一步表徵與習知肽-CRM197疫苗相比,含有不同B細胞抗原決定基的基於肽-CRM197-石耳多醣之疫苗引發的免疫反應,本實例進行了一組實驗,分析了針對aSyn纖維引發的抗體之整體親和力(avidity)。In order to further characterize the immune response elicited by peptide-CRM197-Auricularia auriculariae polysaccharide-based vaccines containing different B cell epitopes compared to known peptide-CRM197 vaccines, a set of experiments was conducted in this example to analyze the overall avidity of antibodies elicited against aSyn fibers.

動物(雌性Balb/c小鼠)以每兩週一次的間隔接種3次疫苗(所有疫苗:5μg aSyn靶向肽/劑量;途徑:基於CLEC之疫苗用i.d. (SeqID52/66/68/70+CRM197+石耳多醣);s.c.用於以Alhydrogel (SeqID52/66/68/70-CRM197)為佐劑的基於CRM197之疫苗),使用每次免疫接種後兩週採集的鼠類血漿分析了隨後針對目標蛋白(即,aSyn纖維)的免疫反應。對於針對aSyn纖維的誘導抗體,使用標準ELISA分析的變體,其中包含與抗原結合的抗體的複製孔暴露於濃度逐漸增加的離液硫氰酸根離子。對硫氰酸鹽洗脫的抗性用作抗體分子整體親和力之量度,且表示50%的有效抗體結合的一指數(抗體分子整體親和力指數)用於比較血漿樣品。 所用疫苗: B 細胞抗原決定基 T 細胞抗原決定基 / 載體 CLEC 佐劑 途徑 SeqID52 CRM197 石耳多醣(80%) n.a i.d. SeqID66 CRM197 石耳多醣(80%) n.a i.d. SeqID68 CRM197 石耳多醣(80%) n.a i.d. SeqID70 CRM197 石耳多醣(80%) n.a i.d. SeqID52 CRM197 n.a. Alhydrogel s.c. SeqID66 CRM197 n.a Alhydrogel s.c. SeqID68 CRM197 n.a Alhydrogel s.c. SeqID70 CRM197 n.a Alhydrogel s.c. 結果: Animals (female Balb/c mice) were vaccinated 3 times at biweekly intervals (all vaccines: 5 μg aSyn targeting peptide/dose; route: CLEC-based vaccine with id (SeqID52/66/68/70+CRM197+ fungus polysaccharide); sc for a CRM197-based vaccine adjuvanted with Alhydrogel (SeqID52/66/68/70-CRM197), subsequent analysis of target proteins using mouse plasma collected two weeks after each immunization (i.e., aSyn fibers) immune response. For induction of antibodies against aSyn fibers, a variation of the standard ELISA assay was used in which replicate wells containing antibodies bound to the antigen were exposed to increasing concentrations of chaotropic thiocyanate ions. Resistance to thiocyanate elution is used as a measure of the overall affinity of the antibody molecule, and an index indicating 50% effective antibody binding (the overall antibody molecule affinity index) is used to compare plasma samples. Vaccines used: B cell epitope T cell epitope / carrier CLEC Adjuvant way SeqID52 CRM197 Shi fungus polysaccharide (80%) na ID SeqID66 CRM197 Shi fungus polysaccharide (80%) na ID SeqID68 CRM197 Shi fungus polysaccharide (80%) na ID SeqID70 CRM197 Shi fungus polysaccharide (80%) na ID SeqID52 CRM197 na Alhydrogel sc SeqID66 CRM197 na Alhydrogel sc SeqID68 CRM197 na Alhydrogel sc SeqID70 CRM197 na Alhydrogel sc result:

如圖37所示,所有測試的習知肽-CRM197結合物(以Alhydrogel作為佐劑)誘導之抗體僅顯示出對aSyn纖維的有限結合強度,如0.25至0.85範圍內的非常低之親和力指數所證明的。相比之下,所有新型的基於肽+CRM197+石耳多醣之疫苗誘導的抗體顯示出對aSyn纖維顯著更高的結合強度,AI範圍為0.5-2.2。As shown in Figure 37, the antibodies induced by all tested conventional peptide-CRM197 conjugates (with Alhydrogel as adjuvant) showed only limited binding strength to aSyn fibers, as indicated by very low affinity indices ranging from 0.25 to 0.85. Proven. In contrast, the antibodies induced by all novel peptide+CRM197+Fructus polysaccharide-based vaccines showed significantly higher binding strengths to aSyn fibers, with AI ranging from 0.5 to 2.2.

因此,實驗表明,肽-CRM197結合物之CLEC修飾引起目標特異性免疫反應(效價)的強烈增強,以及,無論使用何種抗原決定基均造成誘導抗體反應的目標特異性及親和力的強烈增強,提供了一種前所未有的新策略來最佳化目前最先進之蛋白質結合物疫苗,包括CRM197。 實例 35 :不同肽 +CRM197+ 基於 CLEC 之疫苗的活體內比較 Thus, the experiments show that CLEC modification of peptide-CRM197 conjugates leads to a strong enhancement of target-specific immune responses (titer), and that, regardless of the antigenic determinant used, the target specificity and affinity of the induced antibody response are strongly enhanced, providing an unprecedented new strategy to optimize the most advanced protein conjugate vaccines, including CRM197. Example 35 : In vivo comparison of different peptides + CRM197 + CLEC - based vaccines

本實例對與石耳多醣、地衣多醣或昆布多醣偶合之aSyn衍生肽SeqID6+CRM197結合物進行了測試,以確定其在n=5 Balb/c小鼠/組中重複施用後誘導強大及特異性免疫反應的能力。典型的實驗使用每劑量5µg淨肽含量的B細胞抗原決定基肽進行,動物(雌性Balb/c小鼠)以每兩週一次的間隔接種3次疫苗(途徑:i.d.),隨後使用第三次免疫注射後兩週採集的鼠類血漿分析針對注射肽(即SeqID6)及聚集的aSyn纖維的免疫反應。 所用疫苗: B 細胞抗原決定基 T 細胞抗原決定基 / 載體 CLEC 佐劑 途徑 SeqID6 CRM197 石耳多醣(80%) n.a i.d. SeqID6 CRM197 地衣多醣(200%) n.a i.d. SeqID6 CRM197 昆布多醣 (200%) n.a i.d. SeqID6 CRM197 n.a Alhydrogel s.c. 結果: In this example, aSyn-derived peptide SeqID6+CRM197 conjugates coupled to Shiguan, lichenin, or laminarin were tested to determine their potent and specific induction after repeated administration in n=5 Balb/c mice/group The ability of the immune response. A typical experiment was performed using B cell epitope peptides at a net peptide content of 5 µg per dose, with animals (female Balb/c mice) vaccinated 3 times at biweekly intervals (Route: id), followed by a third dose Mouse plasma collected two weeks after immunization was analyzed for immune responses to the injected peptide (i.e., SeqID6) and aggregated aSyn fibers. Vaccines used: B cell epitope T cell epitope / carrier CLEC Adjuvant way SeqID6 CRM197 Shi fungus polysaccharide (80%) na ID SeqID6 CRM197 Lichenin (200%) na ID SeqID6 CRM197 Laminaria polysaccharide (200%) na ID SeqID6 CRM197 na Alhydrogel sc result:

所測試之疫苗可誘導對注射肽(例如SeqID6)以及在小鼠中重複免疫接種後聚集的aSyn纖維的顯著免疫反應。The vaccines tested induced significant immune responses to injected peptides such as SeqID6 and to aSyn fibers that aggregated after repeated immunizations in mice.

與傳統的基於肽-CRM之疫苗及與結合至昆布多醣或地衣多醣的基於肽-CRM之疫苗相比,基於肽+CRM+石耳多醣的結合物誘導針對各別肽及aSyn纖維的高效價(參見圖38)。Compared to conventional peptide-CRM based vaccines and to peptide-CRM based vaccines conjugated to laminarin or lichenin, peptide+CRM+Psoralen based conjugates induced high titers against the respective peptides and aSyn fibers (see FIG. 38 ).

具體而言,與SeqID6+CRM197+地衣多醣相比,SeqID+CRM197+石耳多醣誘導針對注射肽SeqID6的效價高了1.6倍,與SeqID6+CRM197+昆布多醣相比高了12倍。與SeqID6+CRM197+昆布多醣相比,SeqID6+CRM197+地衣多醣可誘導高7.5倍的效價。Specifically, SeqID+CRM197+Lynaridin induced a 1.6-fold higher potency against the injected peptide SeqID6 compared to SeqID6+CRM197+lichenin, and a 12-fold higher potency compared to SeqID6+CRM197+laminarin. Compared with SeqID6+CRM197+laminarin, SeqID6+CRM197+lichenin induced a 7.5-fold higher titer.

同樣地,與SeqID6+CRM197+地衣多醣相比,SeqID+CRM197+石耳多醣誘導針對aSyn聚集體(細絲)的效價高了3.1倍,與SeqID6+CRM197+昆布多醣相比高了7.6倍,比以Alhydrogel作為佐劑的非CLEC修飾之SeqID6+CRM197高了6倍。與SeqID6+CRM197+昆布多醣相比,SeqID6+CRM197+地衣多醣可誘導高2.4倍的效價,與以Alum作為佐劑的非CLEC修飾之SeqID6+CRM197相比,可誘導高2倍的效價。Similarly, the potency induced by SeqID+CRM197+lichenin against aSyn aggregates (filaments) was 3.1 times higher than that of SeqID6+CRM197+lichenin, 7.6 times higher than that of SeqID6+CRM197+laminarin, and 7.6 times higher than that of SeqID6+CRM197+laminarin. The non-CLEC modified SeqID6+CRM197 with Alhydrogel as an adjuvant was 6 times higher. Compared with SeqID6+CRM197+laminarin, SeqID6+CRM197+lichenin can induce a 2.4-fold higher titer, and compared with the non-CLEC-modified SeqID6+CRM197 using Alum as an adjuvant, it can induce a 2-fold higher titer.

肽-CRM197結合物之CLEC修飾提供了一種前所未有的新策略來最佳化目前最先進之蛋白質結合物疫苗,包括CRM197。 實例 36 :肽 --CLEC- 結合物對鼠類及人類 dectin-1 受體的活體外生物活性的測定 CLEC modification of peptide-CRM197 conjugates provides an unprecedented new strategy to optimize currently the most advanced protein conjugate vaccines, including CRM197. Example 36 : Determination of in vitro biological activity of peptide -CLEC- conjugates on murine and human dectin-1 receptors

在一系列ELISA實驗中,評估了dectin-1配體石耳多醣、地衣多醣及昆布多醣對鼠類及人類dectin-1的結合功效。肽-CLEC結合物的生物活性由其PRR結合能力表示。沿著此等思路並為了確保CLEC(石耳多醣、地衣多醣、昆布多醣)的結構在偶合後仍保持生物活性,藉由基於可溶性鼠類及人類Fc-dectin-1a受體(InvivoGen)的競爭性結合的競爭性ELISA系統評估與鼠類及人類dectin-1的結合。 結果: In a series of ELISA experiments, the binding efficacy of the dectin-1 ligands Shiguan, lichenin and laminarin on murine and human dectin-1 was evaluated. The biological activity of the peptide-CLEC conjugate is represented by its PRR binding ability. Along these lines and in order to ensure that the structure of CLEC (leafia polysaccharide, lichenin, laminarin) remains biologically active after coupling, through competition based on soluble murine and human Fc-dectin-1a receptors (InvivoGen) A competitive ELISA system assessing binding to murine and human dectin-1. result:

如圖39所示,已藉由ELISA分析評估了與地衣多醣(Lich結合物)、石耳多醣(Pus結合物)或昆布多醣(Lam結合物)偶合的SeqID5+SeqID7+CLEC結合物對鼠類及人類dectin-1的結合功效。As shown in FIG. 39 , the binding efficacy of SeqID5+SeqID7+CLEC conjugates conjugated to lichenan (Lich conjugate), Psoralen polysaccharide (Pus conjugate) or laminarin polysaccharide (Lam conjugate) to mouse and human dectin-1 was evaluated by ELISA analysis.

隨後的實驗表明,肽-石耳多醣疫苗對小鼠類及人類dectin-1的結合效力明顯高於與地衣多醣結合之疫苗(參見圖39A+B)。相比之下,肽-昆布多醣疫苗對鼠類dectin-1顯示出非常高的結合效力(圖39A),但對人類dectin-1僅顯示很弱的結合效力(圖39B)。 實例 37: 不同的基於肽 -CLEC 之疫苗的活體內比較 Subsequent experiments showed that the peptide-Auricularia polysaccharide vaccine had significantly higher binding efficacy against mouse and human dectin-1 than the vaccine combined with lichen polysaccharide (see Figure 39A+B). In contrast, the peptide-laminarin polysaccharide vaccine showed very high binding efficacy against mouse dectin-1 (Figure 39A), but only weak binding efficacy against human dectin-1 (Figure 39B). Example 37: In vivo comparison of different peptide -CLEC- based vaccines

對能夠結合鼠類及/或人類dectin-1的基於CLEC之疫苗進行了測試,以確定其在n=5 Balb/c小鼠/組中重複施用後誘導強烈及特異性免疫反應的能力。典型的實驗使用每劑量5µg淨肽含量的B細胞抗原決定基肽進行。CLEC-based vaccines that bind murine and/or human dectin-1 were tested for their ability to induce a strong and specific immune response following repeated administration in n=5 Balb/c mice/group. Typical experiments were performed using 5µg of neat peptide per dose of B cell epitope peptide.

在該實驗中,α突觸核蛋白衍生肽SeqID5及混雜的輔助性T細胞抗原決定基SeqID7藉由C端醯肼連接子與經氧化之石耳多醣、地衣多醣或昆布多醣偶合。 所用疫苗: B 細胞抗原決定基 T 細胞抗原決定基 CLEC SeqID5 SeqID7 石耳多醣 SeqID5 SeqID7 地衣多醣 SeqID5 SeqID7 昆布多醣 In this experiment, the alpha-synuclein-derived peptide SeqID5 and the promiscuous helper T cell epitope SeqID7 were coupled to oxidized Psoralen, Lichenin or Laminaria polysaccharide via a C-terminal hydrazide linker. B cell antigen determinant T cell antigen determinant CLEC SeqID5 SeqID7 Pyricularia auricula SeqID5 SeqID7 Lichen polysaccharide SeqID5 SeqID7 Kelp Polysaccharide

動物(雌性Balb/c小鼠)以每兩週一次的間隔接種3次疫苗(劑量:5µg及20µg;途徑:i.d.),隨後使用第三次免疫接種兩週後採集的小鼠血漿分析針對注射肽(即SeqID6)的隨後免疫反應。 結果: Animals (female Balb/c mice) were vaccinated 3 times at 2-week intervals (dose: 5µg and 20µg; route: id), followed by analysis of mouse plasma collected 2 weeks after the third immunization for injection Subsequent immune response to the peptide (i.e., SeqID6). result:

如圖40A(劑量:5µg SeqID5肽當量)及B(劑量:20µg SeqID5肽當量)所示,所有三種CLEC疫苗(SeqID5+SeqID7+石耳多醣、SeqID5+SeqID7+地衣多醣及SeqID5+SeqID7+昆布多醣)均能夠以劑量依賴性方式誘導可偵測的免疫反應。有趣的是,無論所用劑量為何,使用基於昆布多醣之疫苗進行免疫接種僅能誘導非常低的抗肽及抗aSyn反應。相比之下,基於石耳多醣之結合物可誘導顯著更高的抗肽及抗aSyn反應。與基於石耳多醣之結合物相比,基於地衣多醣之結合物顯示出較低的免疫原性,但在該實驗中其可誘導比基於昆布多醣之結合物更高的效價。As shown in Figure 40A (dose: 5µg SeqID5 peptide equivalent) and B (dose: 20µg SeqID5 peptide equivalent), all three CLEC vaccines (SeqID5+SeqID7+Pseudomonas aeruginosa, SeqID5+SeqID7+Lichenin, and SeqID5+SeqID7+Laminaria polysaccharide) were able to induce detectable immune responses in a dose-dependent manner. Interestingly, immunization with the laminarin-based vaccine induced only very low anti-peptide and anti-aSyn responses, regardless of the dose used. In contrast, the Pseudomonas aeruginosa-based conjugate induced significantly higher anti-peptide and anti-aSyn responses. The lichenin-based conjugate showed lower immunogenicity compared to the Psoralea corylifolia-based conjugate, but induced higher titers than the laminarin-based conjugate in this experiment.

此表明在活體外與dectin-1的結合功效,尤其是與人類的結合功效,可直接與疫苗的活體內免疫原性及生物活性相關聯。此結論導致石耳多醣或其片段(即線性β(1,6)-β-D葡聚糖)被鑑定為本申請中提出的最有效的葡聚糖變異體。 實例 38 CLEC 修飾之寡醣 / 多醣 +CRM197 及寡醣 / 多醣 +TT- 糖結合物之活體外生物活性測定 This indicates that the in vitro binding efficacy to dectin-1, especially to humans, can be directly related to the in vivo immunogenicity and biological activity of the vaccine. This conclusion leads to the identification of Psoralea corylifolia polysaccharide or its fragment (i.e., linear β(1,6)-β-D glucan) as the most effective glucan variant proposed in this application. Example 38 : In vitro biological activity assay of CLEC -modified oligosaccharide / polysaccharide + CRM197 and oligosaccharide / polysaccharide + TT- sugar conjugates

寡聚/多醣+CRM197+石耳多醣及寡聚/多醣+TT+石耳多醣結合物之生物活性由其PRR結合能力表示。在此實例中,兩種市售結合物可與石耳多醣偶合或保持不變,並且對其進行了分析:i)含有CRM197之腦膜炎雙球菌寡醣(A、C、W135及Y)結合物疫苗Menveo®及ii)嗜血桿菌b型流感病毒莢膜多醣(聚核糖核糖醇磷酸鹽,PRP)破傷風類毒素(TT)結合物ActHIB®。The biological activity of the oligo/polysaccharide + CRM197 + Shia polysaccharide and oligo/polysaccharide + TT + Shia polysaccharide conjugates is expressed by their PRR binding ability. In this example, two commercially available conjugates that could be coupled to or left unchanged were analyzed: i) conjugation with N. meningitidis oligosaccharides (A, C, W135 and Y) containing CRM197 Biological vaccine Menveo® and ii) Haemophilus influenza type b virus capsular polysaccharide (polyribose phosphate, PRP) tetanus toxoid (TT) conjugate ActHIB®.

為確保石耳多醣的結構在與Menveo®及ActHIB®偶合後保持生物活性,使用競爭性ELISA系統評定與dectin-1的結合,該系統基於與可溶性鼠Fc-dectin-1a受體(InvivoGen)的競爭性結合,如在Korotchenko等人所述(2020)。隨後評定了未修飾及石耳多醣修飾之CRM197及TT結合物疫苗的生物活性,且與相關對照組進行了比較。 結果: To ensure that the structure of Pseudomonas aeruginosa remained bioactive after conjugation to Menveo® and ActHIB®, binding to dectin-1 was assessed using a competitive ELISA system based on competitive binding to soluble murine Fc-dectin-1a receptor (InvivoGen) as described in Korotchenko et al. (2020). The bioactivity of unmodified and Pseudomonas aeruginosa-modified CRM197 and TT conjugate vaccines was then assessed and compared to relevant control groups. Results:

在ELISA實驗中,評定了經氧化之dectin-1配位體石耳多醣、經石耳多醣修飾或未經修飾的b型流感嗜血桿菌莢膜多醣(聚核糖基-核糖醇-磷酸,PRP)破傷風類毒素(TT)結合物ActHIB®,以及經β-葡聚糖修飾或未經修飾的含有CRM197之腦膜炎雙球菌寡醣(A、C、W135及Y)結合物疫苗Menveo®與dectin-1的結合功效。隨後的實驗(圖41)表明,CRM-石耳多醣及TT-石耳多醣結合物顯示出與氧化石耳多醣相似的與dectin-1的結合功效。相比之下,傳統的非修飾CRM-及TT結合物顯示沒有特異性的dectin-1結合。In ELISA experiments, the binding efficacy of the oxidized dectin-1 ligand Pseudomonas aeruginosa, the Pseudomonas aeruginosa modified or unmodified Haemophilus influenzae type b capsular polysaccharide (polyribosyl-ribitol-phosphate, PRP) tetanus toxoid (TT) conjugate ActHIB®, and the β-glucan modified or unmodified meningococcal oligosaccharide (A, C, W135 and Y) conjugate vaccine Menveo® containing CRM197 was evaluated with dectin-1. Subsequent experiments (Figure 41) showed that CRM-Pseudomonas aeruginosa and TT-Pseudomonas aeruginosa conjugates showed similar binding efficacy to dectin-1 as oxidized Pseudomonas aeruginosa. In contrast, traditional non-modified CRM- and TT conjugates showed no specific dectin-1 binding.

實驗表明,寡聚糖/多醣-CRM197/TT-石耳多醣結合物藉由與dectin-1結合顯示出對樹突狀細胞的生物活性。 實例 39 :基於不同寡醣 / 多醣 +CRM197+ 石耳多醣之疫苗及基於寡醣 / 多醣 +TT+ 石耳多醣之疫苗的活體內比較 The experiment showed that the oligosaccharide/polysaccharide-CRM197/TT-Auricularia auricularia polysaccharide conjugate exhibited biological activity against dendritic cells by binding to dectin-1. Example 39 : In vivo comparison of vaccines based on different oligosaccharides / polysaccharides + CRM197 + Auricularia auricularia polysaccharide and vaccines based on oligosaccharides / polysaccharides + TT + Auricularia auricularia polysaccharide

將B型流感嗜血桿菌莢膜多醣(聚核糖基-核糖醇-磷酸,PRP)破傷風類毒素(TT)結合物ActHIB®及含有CRM197的腦膜炎雙球菌寡醣(A、C、W135及Y)的結合物疫苗Menveo®分別偶合於氧化石耳多醣且測試了其在n=5 Balb/c小鼠/組中重複施用後誘導強大及特異性免疫反應的能力。ActHIB®, a conjugate of Haemophilus influenzae type B capsular polysaccharide (polyribosyl-ribitol-phosphate, PRP) and tetanus toxoid (TT) and Menveo®, a conjugate vaccine containing CRM197 of meningococcal oligosaccharides (A, C, W135 and Y), were coupled to Pseudomonas oxidans and tested for their ability to induce robust and specific immune responses after repeated administration in n=5 Balb/c mice/group.

在本實驗中,動物(雌性Balb/c小鼠)以每兩週一次的間隔接種3次經β-葡聚糖修飾(途徑:i.d.)或未經修飾之結合物(途徑i.m.),使用第三次免疫接種後兩週採集的鼠類血漿對隨後產生針對ActHIB®及Menveo®的免疫反應進行分析。 所用疫苗: B 細胞抗原決定基 T 細胞抗原決定基 / 載體 CLEC 佐劑 途徑 腦膜炎雙球菌(A、C、W135、Y) CRM197 石耳多醣(80%) n.a i.d. 腦膜炎雙球菌(A、C、W135、Y) CRM197 n.a. n.a i.m. 流感嗜血桿菌(b) PRP TT 石耳多醣(80%) n.a i.d. 流感嗜血桿菌(b) PRP TT n.a. n.a i.m. 結果: In this experiment, animals (female Balb/c mice) were inoculated three times at biweekly intervals with β-glucan-modified (route: id) or unmodified conjugates (route im), using the Rat plasma collected two weeks after three immunizations was analyzed for subsequent immune responses to ActHIB® and Menveo®. Vaccines used: B cell epitope T cell epitope / carrier CLEC Adjuvant way Neisseria meningitidis (A, C, W135, Y) CRM197 Shi fungus polysaccharide (80%) na ID Neisseria meningitidis (A, C, W135, Y) CRM197 na na im Haemophilus influenzae (b) PRP TT Shi fungus polysaccharide (80%) na ID Haemophilus influenzae (b) PRP TT na na im result:

如圖42所示,所有測試之疫苗均可以在小鼠中重複免疫接種後誘導針對免疫結合物之顯著免疫反應。As shown in Figure 42, all vaccines tested were able to induce significant immune responses against the immunoconjugates after repeated immunization in mice.

經CLEC修飾之Menveo®及ActHIB®處理後的動物顯示出比未修飾疫苗高2.4倍及1.4倍的抗結合物反應,表明寡醣/多醣載體疫苗的免疫原性有所提高。此等結果亦表明,根據本發明對現有的臨床驗證的寡醣/多醣載體疫苗進行CLEC修飾可提高該等疫苗的免疫原性。Animals treated with CLEC-modified Menveo® and ActHIB® showed 2.4-fold and 1.4-fold higher anti-conjugate responses than unmodified vaccines, indicating improved immunogenicity of oligosaccharide/polysaccharide carrier vaccines. These results also indicate that CLEC modification of existing clinically proven oligosaccharide/polysaccharide carrier vaccines according to the present invention can improve the immunogenicity of these vaccines.

此外,所提供的實例表明,肽-及寡醣/多醣-CRM/TT-β-葡聚糖疫苗在活體內是有功能的,且適合作為根據本發明之用於治療感染性疾病的新型疫苗組合物。 實例 40 :分泌蛋白、自身抗原及構形抗原決定基的 B 細胞抗原決定基分析: IL31 Furthermore, the examples provided demonstrate that peptide- and oligo/polysaccharide-CRM/TT-β-glucan vaccines are functional in vivo and are suitable as novel vaccine compositions for the treatment of infectious diseases according to the present invention. Example 40 : B cell epitope analysis of secreted proteins, autoantigens and conformational epitopes : IL31

為了評估攜載源自分泌蛋白的肽(無論其是否構成自身抗原(如SeqID132至SeqID147)或外來目標結構)的肽疫苗是否可在重複免疫接種後產生高免疫反應,且可誘導優於傳統結合疫苗的免疫反應,測試了8種不同的候選疫苗:To evaluate whether peptide vaccines carrying peptides derived from secreted proteins, whether they constitute autoantigens (e.g., SeqID132 to SeqID147) or foreign target structures, can generate high immune responses after repeated immunizations and induce superior immune responses than traditional conjugates Immune response to the vaccine, 8 different vaccine candidates were tested:

在該實驗中,8種不同的IL31衍生肽被用作肽-CLEC疫苗(即:SeqID132;SeqID 134;SeqID 136;SeqID 138;SeqID 140;SeqID 142;SeqID 144;及SeqID146與泛T細胞抗原決定基SeqID7結合,藉由C端醯肼連接子與經氧化之石耳多醣(80%;)偶合)或作為使用SeqID133、SeqID135、SeqID137、SeqID139、SeqID141、SeqID143、SeqID145及SeqID147產生的習知肽結合物,其含有用於與GMBS活化的CRM197偶合的C端半胱胺酸。 所用疫苗: B 細胞抗原決定基 T 細胞抗原決定基 / 載體 CLEC 佐劑 途徑 SeqID132 SeqID7 石耳多醣(80%) n.a i.d. SeqID133 CRM197 n.a Alhydrogel s.c. SeqID134 SeqID7 石耳多醣(80%) n.a i.d. SeqID135 CRM197 n.a Alhydrogel s.c. SeqID136 SeqID7 石耳多醣(80%) n.a i.d. SeqID137 CRM197 n.a Alhydrogel s.c. SeqID138 SeqID7 石耳多醣(80%) n.a i.d. SeqID139 CRM197 n.a Alhydrogel s.c. SeqID140 SeqID7 石耳多醣(80%) n.a i.d. SeqID141 CRM197 n.a Alhydrogel s.c. SeqID142 SeqID7 石耳多醣(80%) n.a i.d. SeqID143 CRM197 n.a Alhydrogel s.c. SeqID144 SeqID7 石耳多醣(80%) n.a i.d. SeqID145 CRM197 n.a Alhydrogel s.c. SeqID146 SeqID7 石耳多醣(80%) n.a i.d. SeqID147 CRM197 n.a Alhydrogel s.c. In this experiment, 8 different IL31-derived peptides were used as peptide-CLEC vaccines (i.e.: SeqID132; SeqID 134; SeqID 136; SeqID 138; SeqID 140; SeqID 142; SeqID 144; and SeqID146) with pan-T cell antigenic determination based on SeqID7 conjugation via a C-terminal hydrazine linker coupled to oxidized Schizophora polysaccharide (80%; material containing a C-terminal cysteine for coupling to GMBS-activated CRM197. Vaccines used: B cell epitope T cell epitope / carrier CLEC Adjuvant way SeqID132 SeqID7 Shi fungus polysaccharide (80%) na ID SeqID133 CRM197 na Alhydrogel sc SeqID134 SeqID7 Shi fungus polysaccharide (80%) na ID SeqID135 CRM197 na Alhydrogel sc SeqID136 SeqID7 Shi fungus polysaccharide (80%) na ID SeqID137 CRM197 na Alhydrogel sc SeqID138 SeqID7 Shi fungus polysaccharide (80%) na ID SeqID139 CRM197 na Alhydrogel sc SeqID140 SeqID7 Shi fungus polysaccharide (80%) na ID SeqID141 CRM197 na Alhydrogel sc SeqID142 SeqID7 Shi fungus polysaccharide (80%) na ID SeqID143 CRM197 na Alhydrogel sc SeqID144 SeqID7 Shi fungus polysaccharide (80%) na ID SeqID145 CRM197 na Alhydrogel sc SeqID146 SeqID7 Shi fungus polysaccharide (80%) na ID SeqID147 CRM197 na Alhydrogel sc

動物(雌性Balb/c小鼠)以每兩週一次的間隔接種疫苗3次(途徑:基於CLEC之疫苗用i.d.,以Alhydrogel作為佐劑的基於CRM之疫苗用s.c.),使用第三次免疫接種後兩週採集的鼠血漿對針對注射的肽(即SeqID133、SeqID135、SeqID137、SeqID139、SeqID141、SeqID143、SeqID145、及SeqID147)以及針對目標蛋白(即重組人類IL31)產生的隨後免疫反應進行分析。 結果: Animals (female Balb/c mice) were vaccinated 3 times at biweekly intervals (route: CLEC-based vaccine with id, CRM-based vaccine with Alhydrogel as adjuvant with sc), using the third immunization Rat plasma collected two weeks later was analyzed for subsequent immune responses to the injected peptides (i.e., SeqID133, SeqID135, SeqID137, SeqID139, SeqID141, SeqID143, SeqID145, and SeqID147) and to the protein of interest (i.e., recombinant human IL31). result:

如圖43所示,疫苗能夠誘導針對注射的肽部分(圖43A) 以及目標蛋白:人類IL31(圖43B)強烈及且具有特異性的免疫反應。As shown in FIG. 43 , the vaccine was able to induce a strong and specific immune response against the injected peptide portion ( FIG. 43A ) as well as the target protein: human IL31 ( FIG. 43B ).

然而,與以Alhydrogel為佐劑的CRM197肽結合物疫苗相比,本實例的基於肽-CLEC之疫苗顯示出類似或顯著更高的針對注射肽部分的免疫反應,最重要的是,其亦針對全長目標―人類IL31。However, compared to the CRM197 peptide conjugate vaccine adjuvanted with Alhydrogel, the peptide-CLEC-based vaccine of this example showed similar or significantly higher immune responses against the injected peptide portion and, most importantly, also against the full-length target - human IL31.

此外,使用硫氰酸鹽洗脫抗性(NaSCN)對親和力的分析表明,與肽-CRM197誘導的抗體相比,肽-CLEC誘導的抗體對全長人類IL31的親和力顯著更高(參見圖43C;實例:比較SeqID132+SeqID7+石耳多醣及SeqID133+CRM Alum誘導的抗體)。Furthermore, analysis of affinity using thiocyanate elution resistance (NaSCN) showed that peptide-CLEC-induced antibodies had significantly higher affinity for full-length human IL31 compared to peptide-CRM197-induced antibodies (see Figure 43C; Example: Comparison of antibodies induced by SeqID132+SeqID7+Shitia polysaccharide and SeqID133+CRM Alum).

總之,所測試的基於CLEC之疫苗非常適合使用針對分泌蛋白的抗原決定基,包括信號傳遞分子或細胞/趨化因子,尤其是人類IL31,作為免疫原,其與傳統疫苗相比,具有高免疫反應及高目標特異性反應。In conclusion, the CLEC-based vaccines tested are well suited to use antigenic determinants against secreted proteins, including signaling molecules or cellular/tendinogens, especially human IL31, as immunogens, which have high immune responses and high target-specific responses compared to conventional vaccines.

該實例還提供了結果,表明與針對此等自身抗原決定基的先前技術疫苗相比,使用人類IL31抗原決定基的基於CLEC的免疫原令人驚訝地誘導了具有更高親和力的免疫反應。This example also provides results showing that CLEC-based immunogens using human IL31 epitopes surprisingly induced immune responses with higher avidity compared to prior art vaccines directed against these self-epitopes.

因此,顯然根據本發明之基於CLEC之疫苗可較佳用於主動抗IL31免疫接種。 實例 41 :使用載體蛋白作為輔助性 T 細胞抗原決定基的靶向 IL31 CLEC 結合物的免疫原性分析 CRM197 Therefore, it is clear that the CLEC-based vaccine according to the present invention can be preferably used for active anti-IL31 immunization. Example 41 : Immunogenicity Analysis of CLEC Conjugates Targeting IL31 Using Carrier Proteins as Helper T Cell Epitopes : CRM197

在本實例中,將含有眾所周知的載體蛋白CRM197的基於CLEC之結合物疫苗的免疫原性與習知CRM197疫苗進行了比較。為此,將人類IL31衍生抗原決定基SeqID133、SeqID135、SeqID137、SeqID139、SeqID141、SeqID143、SeqID145、SeqID147、SeqID149及SeqID151與順丁烯二醯亞胺活化之CRM197偶合。隨後,使用異雙官能連接子BPMH將CRM197結合物與活化之石耳多醣偶合,形成基於CLEC之結合物疫苗,其中CRM197作為輔助性T細胞抗原決定基的來源,以誘導可持續的免疫反應。 所用疫苗: B 細胞抗原決定基 T 細胞抗原決定基 / 載體 CLEC 佐劑 途徑 SeqID133 CRM197 石耳多醣(80%) n.a i.d. SeqID133 CRM197 n.a Alhydrogel s.c. SeqID135 CRM197 石耳多醣(80%) n.a i.d. SeqID135 CRM197 n.a Alhydrogel s.c. SeqID137 CRM197 石耳多醣(80%) n.a i.d. SeqID137 CRM197 n.a Alhydrogel s.c. SeqID139 CRM197 石耳多醣(80%) n.a i.d. SeqID139 CRM197 n.a Alhydrogel s.c. SeqID141 CRM197 石耳多醣(80%) n.a i.d. SeqID141 CRM197 n.a Alhydrogel s.c. SeqID143 CRM197 石耳多醣(80%) n.a i.d. SeqID143 CRM197 n.a Alhydrogel s.c. SeqID145 CRM197 石耳多醣(80%) n.a i.d. SeqID145 CRM197 n.a Alhydrogel s.c. SeqID147 CRM197 石耳多醣(80%) n.a i.d. SeqID147 CRM197 n.a Alhydrogel s.c. SeqID149 CRM197 石耳多醣(80%) n.a i.d. SeqID149 CRM197 n.a Alhydrogel s.c. SeqID151 CRM197 石耳多醣(80%) n.a i.d. SeqID151 CRM197 n.a Alhydrogel s.c. In this example, the immunogenicity of a CLEC-based conjugate vaccine containing the well-known carrier protein CRM197 was compared with the known CRM197 vaccine. To this end, human IL31-derived epitopes SeqID133, SeqID135, SeqID137, SeqID139, SeqID141, SeqID143, SeqID145, SeqID147, SeqID149 and SeqID151 were coupled to cis-butylene imide-activated CRM197. Subsequently, the CRM197 conjugate was coupled to activated Psoralea corylifolia polysaccharide using the heterobifunctional linker BPMH to form a CLEC-based conjugate vaccine, in which CRM197 served as a source of helper T cell antigenic determinants to induce a sustainable immune response. B cell antigen determinant T cell antigen determinant / vector CLEC Adjuvant Way SeqID133 CRM197 Pyricularia auricula polysaccharide (80%) na id SeqID133 CRM197 na Alhydrogel sc SeqID135 CRM197 Pyricularia auricula polysaccharide (80%) na id SeqID135 CRM197 na Alhydrogel sc SeqID137 CRM197 Pyricularia auricula polysaccharide (80%) na id SeqID137 CRM197 na Alhydrogel sc SeqID139 CRM197 Pyricularia auricula polysaccharide (80%) na id SeqID139 CRM197 na Alhydrogel sc SeqID141 CRM197 Pyricularia auricula polysaccharide (80%) na id SeqID141 CRM197 na Alhydrogel sc SeqID143 CRM197 Pyricularia polysaccharide (80%) na id SeqID143 CRM197 na Alhydrogel sc SeqID145 CRM197 Pyricularia polysaccharide (80%) na id SeqID145 CRM197 na Alhydrogel sc SeqID147 CRM197 Pyricularia polysaccharide (80%) na id SeqID147 CRM197 na Alhydrogel sc SeqID149 CRM197 Pyricularia auricula polysaccharide (80%) na id SeqID149 CRM197 na Alhydrogel sc SeqID151 CRM197 Pyricularia auricula polysaccharide (80%) na id SeqID151 CRM197 na Alhydrogel sc

動物(雌性Balb/c小鼠)以每兩週一次的間隔接種疫苗3次(所有疫苗:5μg IL31靶向肽/劑量;途徑:基於CLEC之疫苗用i.d.,以Alhydrogel作為佐劑的基於CRM197之疫苗用s.c.)並使用第三次免疫接種後兩週採集的鼠類血漿對針對注射肽(即,SeqID133、SeqID135、SeqID137、SeqID139、SeqID141、SeqID143、SeqID145、SeqID147、SeqID149及SeqID151)以及針對全長IL31產生的隨後免疫反應進行分析。 結果: Animals (female Balb/c mice) were vaccinated 3 times at biweekly intervals (all vaccines: 5 μg IL31 targeting peptide/dose; route: CLEC-based vaccine with id, CRM197-based vaccine with Alhydrogel as adjuvant sc) and used murine plasma collected two weeks after the third immunization against the injected peptides (i.e., SeqID133, SeqID135, SeqID137, SeqID139, SeqID141, SeqID143, SeqID145, SeqID147, SeqID149, and SeqID151) and against full-length IL31 The subsequent immune responses generated were analyzed. result:

IL31-肽+CRM197之疫苗誘導了針對注射的肽部分(圖44A)及目標蛋白:人類IL31(圖44B)的強烈且特異性的免疫反應。The IL31-peptide + CRM197 vaccine induced a strong and specific immune response against the injected peptide portion (Figure 44A) and the target protein: human IL31 (Figure 44B).

與非CLEC修飾之以Alhydrogel為佐劑的基於CRM197的習知疫苗相比,靶向IL31的CRM197結合物之CLEC修飾引起針對免疫肽之相似或顯著更高的免疫反應。重要的是,由非CLEC修飾之以Alhydrogel為佐劑的基於CRM197之習知疫苗引發的目標特異性抗全長IL31效價與經CLEC修飾之疫苗相比相似(SeqID141+CRM及SeqID147+CRM)或低2-9倍。CLEC modification of the CRM197 conjugate targeting IL31 elicited similar or significantly higher immune responses against the immunizing peptide compared to the non-CLEC modified Alhydrogel adjuvanted CRM197-based known vaccine. Importantly, target-specific anti-full-length IL31 titers elicited by the non-CLEC modified Alhydrogel adjuvanted CRM197-based known vaccine were similar (SeqID141+CRM and SeqID147+CRM) or 2-9-fold lower than those of the CLEC-modified vaccine.

此外,使用硫氰酸鹽洗脫抗性(NaSCN)之親和力分析表明,與IL31-肽+CRM197誘導之抗體相比,IL31-肽+CRM197+CLEC誘導之抗體對全長人類IL31之親和力顯著更高(參見圖44C,實例:SeqID133+CRM+石耳多醣及SeqID133+CRMAlum誘導抗體的比較)。In addition, affinity analysis using thiocyanate elution resistance (NaSCN) showed that the antibody induced by IL31-peptide+CRM197+CLEC had significantly higher affinity for full-length human IL31 than the antibody induced by IL31-peptide+CRM197 (see Figure 44C, example: comparison of antibodies induced by SeqID133+CRM+Pseudomonas aeruginosa and SeqID133+CRMAlum).

因此,該實驗表明,習知肽-蛋白質結合物之CLEC修飾造成隨後免疫反應的目標特異性大大增強,從而提供了一種前所未有的新策略來最佳化構築在載體蛋白(如KLH、CRM197或其他蛋白)上的目前先進技術結合物疫苗。Thus, this experiment demonstrates that CLEC modification of known peptide-protein conjugates results in a greatly enhanced target specificity of the subsequent immune response, thereby providing an unprecedented new strategy to optimize current state-of-the-art conjugate vaccines constructed on carrier proteins such as KLH, CRM197 or other proteins.

該實例亦提供了結果,表明與最先進的IL31疫苗相比,使用人類IL31抗原決定基的基於CLEC之免疫原出人意料地誘導了具有更高效價及親和力的免疫反應。This example also provides results showing that CLEC-based immunogens using human IL31 epitopes unexpectedly induced immune responses with higher potency and affinity compared to state-of-the-art IL31 vaccines.

因此,顯然根據本發明之基於CLEC之疫苗可較佳用於主動抗IL31免疫。 實例 42 WISIT 疫苗誘導之抗 IL31 抗體對 IL31 信號傳導的抑制 Therefore, it is clear that the CLEC-based vaccine according to the present invention is preferably used for active anti-IL31 immunization. Example 42 : Inhibition of IL31 signaling by anti -IL31 antibodies induced by WISIT vaccine

為了研究WISIT疫苗誘導抗體及習知CRM197疫苗誘導抗體對天然IL-31信號傳導的抑制,本實驗使用了人類腺癌肺泡基底上皮細胞―A549細胞(ATCC,維吉尼亞州,美國),該細胞用不同之疫苗誘導抗體(1000 ng/ml)處理後添加人類IL-31。所用之疫苗誘導抗體來自經實例40及41中所述的重複免疫接種的動物。所有樣品均以1000 ng/ml的抗IL31抗體濃度施用。在此測定中,對照組包括用作陽性對照組的IL31阻斷抗體(針對大腸桿菌衍生之重組人類IL-31Ser24-Thr164,登錄號#Q6EBC2的免疫原,濃度為1000 ng/ml)以及用作陰性對照組的不含抑制性抗體的鼠類血漿。In order to study the inhibition of natural IL-31 signaling by WISIT vaccine-induced antibodies and conventional CRM197 vaccine-induced antibodies, human adenocarcinoma alveolar basal epithelial cells-A549 cells (ATCC, Virginia, USA) were used in this experiment. Cells were treated with different vaccine-induced antibodies (1000 ng/ml) and human IL-31 was added. The vaccine-induced antibodies used were from animals that were repeatedly immunized as described in Examples 40 and 41. All samples were administered at an anti-IL31 antibody concentration of 1000 ng/ml. In this assay, controls include IL31-blocking antibody (immunogen against E. coli -derived recombinant human IL-31Ser24-Thr164, accession #Q6EBC2 at 1000 ng/ml) used as a positive control and Negative control murine plasma without inhibitory antibodies.

培育20分鐘後,裂解細胞且使用PathScan Phospho-Stat3 (Tyr705) Sandwich ELISA Kit(Cell Signaling Technologies, Danvers, MA, USA)分析STAT3的磷酸化。 結果: After incubation for 20 minutes, cells were lysed and STAT3 phosphorylation analyzed using PathScan Phospho-Stat3 (Tyr705) Sandwich ELISA Kit (Cell Signaling Technologies, Danvers, MA, USA). result:

習知的肽+載體、肽+CLEC以及肽+載體+CLEC疫苗誘導的抗體均可使用此種基於細胞的活體外測定法對IL31信號傳導進行特異性抑制(圖45及圖46),證明其能夠改變由IL31活性所產生的影響(即展示生物活性及治療潛力)。Antibodies induced by known peptide + carrier, peptide + CLEC, and peptide + carrier + CLEC vaccines can specifically inhibit IL31 signaling using this cell-based in vitro assay (Figure 45 and Figure 46), proving that it Able to modify the effects produced by IL31 activity (i.e., demonstrate biological activity and therapeutic potential).

IL31靶向疫苗(兩種類型,包括肽結合物以及肽-CRM結合物)的CLEC修飾出人意料地引起了與先前技術及非CLEC修飾之以Alhydrogel為佐劑的習知基於CRM197之疫苗相比具有相似或顯著更高的抑制能力的免疫反應。The CLEC modification of IL31-targeted vaccines (two types, including peptide conjugates and peptide-CRM conjugates) unexpectedly resulted in improved performance compared with prior art and non-CLEC-modified conventional CRM197-based vaccines with Alhydrogel as adjuvant. Similar or significantly higher suppressive capacity of the immune response.

圖45總結了由IL31-肽+SeqID7+石耳多醣結合物(IL31肽:SeqID132、SeqID134、SeqID136、SeqID138、SeqID140、SeqID142、SeqID144、SeqID146)以及習知IL31-肽+CRM結合物(IL31肽:SeqID133、SeqID135、SeqID137、SeqID139、SeqID141、SeqID143、SeqID145、SeqID147)所誘導之抗體的抑制能力的分析。Figure 45 summarizes the composition of the IL31-peptide + SeqID7 + Shi fungus polysaccharide conjugate (IL31 peptide: SeqID132, SeqID134, SeqID136, SeqID138, SeqID140, SeqID142, SeqID144, SeqID146) and the conventional IL31-peptide + CRM conjugate (IL31 peptide: SeqID133 , SeqID135, SeqID137, SeqID139, SeqID141, SeqID143, SeqID145, SeqID147). Analysis of the inhibitory ability of antibodies induced.

圖46分別總結了由IL31-肽+CRM+石耳多醣結合物(IL31肽:SeqID133、SeqID135、SeqID137、SeqID139、SeqID141、SeqID143、SeqID145、SeqID147、SeqID149、SeqID151)以及以Alum作為佐劑之習知IL31-肽+CRM結合物(IL31肽:SeqID133、SeqID135、SeqID137、SeqID139、SeqID141、SeqID143、SeqID145、SeqID147、SeqID149、SeqID151)所誘導之抗體的抑制能力的分析。Figure 46 summarizes the conventional IL31 conjugates composed of IL31-peptide + CRM + Shigu polysaccharide (IL31 peptide: SeqID133, SeqID135, SeqID137, SeqID139, SeqID141, SeqID143, SeqID145, SeqID147, SeqID149, SeqID151) and Alum as adjuvant. - Analysis of the inhibitory ability of antibodies induced by peptide + CRM conjugates (IL31 peptides: SeqID133, SeqID135, SeqID137, SeqID139, SeqID141, SeqID143, SeqID145, SeqID147, SeqID149, SeqID151).

因此,顯然根據本發明之基於CLEC之疫苗可較佳用於主動抗IL31免疫接種。因此,此類疫苗可用於治療及預防IL31相關疾病及自體免疫性炎性疾病。疫苗誘導抗體的抑制能力分析亦表明,免疫原性肽SeqID132/133、SeqID134/135、SeqID138/139、SeqID146/147、SeqID148/149及SeqID150/151可誘導更有效的抗體(在抑制IL31活性以及與習知疫苗誘導抗體相比皆是),因此非常適合治療及預防前述疾病,而SeqID136/137、SeqID140/141、SeqID142/143及SeqID144/145則較不適合。 實例 43 :分泌蛋白、自身抗原及構形抗原決定基的 B 細胞抗原決定基分析: CGRP Therefore, it is clear that the CLEC-based vaccines according to the present invention are preferably used for active anti-IL31 immunization. Therefore, such vaccines can be used to treat and prevent IL31-related diseases and autoimmune inflammatory diseases. Analysis of the inhibitory ability of vaccine-induced antibodies also showed that immunogenic peptides SeqID132/133, SeqID134/135, SeqID138/139, SeqID146/147, SeqID148/149 and SeqID150/151 can induce more effective antibodies (both in inhibiting IL31 activity and compared with known vaccine-induced antibodies), and are therefore very suitable for treating and preventing the aforementioned diseases, while SeqID136/137, SeqID140/141, SeqID142/143 and SeqID144/145 are less suitable. Example 43 : B cell epitope analysis of secreted proteins, autoantigens and conformational epitopes : CGRP

為了評估攜載來自分泌蛋白的肽(無論其是否構成自身抗原或外來目標結構)的肽疫苗是否可在重複免疫接種後產生高免疫反應,且可誘導優於習知結合疫苗的免疫反應,本實驗測試了不同的候選疫苗:To evaluate whether peptide vaccines carrying peptides from secreted proteins (regardless of whether they constitute self-antigens or foreign target structures) can generate high immune responses after repeated immunizations and induce immune responses superior to those of learned conjugate vaccines, different candidate vaccines were tested:

在該實驗中,不同的CGRP(降鈣素基因相關肽)衍生肽被用作肽+CLEC疫苗(即:SeqID152、SeqID154、SeqID156、SeqID158、SeqID160及SeqID162結合泛T細胞抗原決定基SeqID7,藉由C端醯肼連接子與經氧化之石耳多醣(80%;)結合),或作為習知肽+CRM結合物,使用SeqID153、SeqID157、SeqID159、SeqID161及SeqID163產生,其含有用於偶合於GMBS活化的CRM197的C端半胱胺酸。 所用疫苗: B 細胞抗原決定基 T 細胞抗原決定基 / 載體 CLEC 佐劑 途徑 SeqID152 SeqID7 石耳多醣(80%) n.a i.d. SeqID153 CRM197 n.a Alhydrogel s.c. SeqID154 SeqID7 石耳多醣(80%) n.a i.d. SeqID155 CRM197 n.a Alhydrogel s.c. SeqID156 SeqID7 石耳多醣(80%) n.a i.d. SeqID157 CRM197 n.a Alhydrogel s.c. SeqID158 SeqID7 石耳多醣(80%) n.a i.d. SeqID159 CRM197 n.a Alhydrogel s.c. SeqID160 SeqID7 石耳多醣(80%) n.a i.d. SeqID161 CRM197 n.a Alhydrogel s.c. SeqID162 SeqID7 石耳多醣(80%) n.a i.d. SeqID163 CRM197 n.a Alhydrogel s.c. In this experiment, different CGRP (calcitonin gene related peptide) derived peptides were used as peptide+CLEC vaccines (i.e.: SeqID152, SeqID154, SeqID156, SeqID158, SeqID160 and SeqID162) in combination with the pan-T cell epitope SeqID7, by The C-terminal hydrazine linker was conjugated to oxidized Schizophora polysaccharide (80%; C-terminal cysteine of activated CRM197. Vaccines used: B cell epitope T cell epitope / carrier CLEC Adjuvant way SeqID152 SeqID7 Shi fungus polysaccharide (80%) na ID SeqID153 CRM197 na Alhydrogel sc SeqID154 SeqID7 Shi fungus polysaccharide (80%) na ID SeqID155 CRM197 na Alhydrogel sc SeqID156 SeqID7 Shi fungus polysaccharide (80%) na ID SeqID157 CRM197 na Alhydrogel sc SeqID158 SeqID7 Shi fungus polysaccharide (80%) na ID SeqID159 CRM197 na Alhydrogel sc SeqID160 SeqID7 Shi fungus polysaccharide (80%) na ID SeqID161 CRM197 na Alhydrogel sc SeqID162 SeqID7 Shi fungus polysaccharide (80%) na ID SeqID163 CRM197 na Alhydrogel sc

動物(雌性Balb/c小鼠)以每兩週一次的間隔接種疫苗3次(途徑:基於CLEC之疫苗用i.d.,以Alhydrogel作為佐劑的基於CRM之疫苗用s.c.),並使用第三次免疫接種後兩週採集的鼠血漿對針對注射的肽(即SeqID153、SeqID155、SeqID157、SeqID159、SeqID161及SeqID163)以及針對目標蛋白(即,重組人類CGRP)產生的隨後的免疫反應進行了分析。 結果: Animals (female Balb/c mice) were vaccinated three times at biweekly intervals (route: id for CLEC-based vaccines, sc for CRM-based vaccines with Alhydrogel as adjuvant), and subsequent immune responses against the injected peptides (i.e., SeqID153, SeqID155, SeqID157, SeqID159, SeqID161, and SeqID163) and against the target protein (i.e., recombinant human CGRP) were analyzed using mouse plasma collected two weeks after the third immunization. Results:

所測試之疫苗能夠誘導針對注射的肽部分及目標蛋白:人類CGRP強烈及具有特異性的免疫反應(圖47)。The vaccines tested were able to induce strong and specific immune responses against the injected peptide moiety and the target protein: human CGRP (Figure 47).

與以Alhydrogel為佐劑的CRM197肽結合物疫苗相比,本實例的基於肽-CLEC之疫苗顯示出類似或顯著更高的針對注射肽部分的免疫反應(圖47A),最重要的是,其亦針對全長目標―人類CGRP(圖47B)。Compared to the CRM197 peptide conjugate vaccine adjuvanted with Alhydrogel, the peptide-CLEC based vaccine of this example showed similar or significantly higher immune responses against the injected peptide portion ( FIG. 47A ) and, most importantly, also against the full-length target - human CGRP ( FIG. 47B ).

此外,使用硫氰酸鹽洗脫抗性(NaSCN)的親和力分析表明,與肽+CRM197誘導的抗體相比,肽+CLEC誘導的抗體對全長人類CGRP的親和力顯著更高(圖47C)。In addition, affinity analysis using thiocyanate washout resistance (NaSCN) showed that the peptide + CLEC-induced antibody had a significantly higher affinity for full-length human CGRP than the peptide + CRM197-induced antibody ( Figure 47C ).

總之,所測試的基於CLEC之疫苗非常適合使用針對分泌蛋白的抗原決定基,包括信號傳遞分子或細胞/趨化因子,尤其是人類CGPR,以作為免疫原,與傳統疫苗相比,具有高免疫反應及高目標特異性反應。In conclusion, the CLEC-based vaccines tested are well suited to use antigenic determinants against secreted proteins, including signaling molecules or cellular/tendering factors, especially human CGPR, as immunogens, with high immune responses and high target-specific responses compared to conventional vaccines.

該實例還提供了結果,表明與針對此等自身抗原決定基的先前技術疫苗相比,使用人類CGPR抗原決定基的基於CLEC的免疫原令人驚訝地誘導了具有更高親和力的免疫反應。This example also provides results showing that CLEC-based immunogens using human CGPR epitopes surprisingly induced immune responses with higher affinity compared to prior art vaccines targeting these self-epitope.

因此,顯然根據本發明之基於CLEC之疫苗可較佳用於主動抗CGRP免疫接種。因此,此類疫苗可用於治療CGRP相關疾病,包括:偶發性及慢性偏頭痛及叢集性頭痛、痛覺過敏、功能障礙性疼痛狀態下的痛覺過敏,例如類風濕性關節炎、骨關節炎、內臟疼痛超敏反應症候群、纖維肌痛、炎症性腸病、神經性疼痛、慢性炎性疼痛及頭痛。 實例 44 :使用載體蛋白作為輔助性 T 細胞抗原決定基的靶向 CGRPCLEC 結合物之免疫原性分析: CRM197 Therefore, it is clear that the CLEC-based vaccine according to the present invention can be preferably used for active anti-CGRP immunization. Therefore, such vaccines can be used to treat CGRP-related diseases, including episodic and chronic migraines and cluster headaches, hyperalgesia, and hyperalgesia in dysfunctional pain states such as rheumatoid arthritis, osteoarthritis, visceral Pain hypersensitivity syndrome, fibromyalgia, inflammatory bowel disease, neuropathic pain, chronic inflammatory pain and headaches. Example 44 : Immunogenicity Analysis of Targeted CGRPCLEC Conjugates Using Carrier Proteins as Helper T Cell Epitopes : CRM197

在本實例中,將含有眾所周知的載體蛋白CRM197的基於CLEC之結合物疫苗的免疫原性與習知肽+CRM197疫苗進行了比較。為此,將人類CGRP衍生抗原決定基SeqID153、SeqID155、SeqID157、SeqID159、SeqID161及SeqID163與順丁烯二醯亞胺活化之CRM197偶合。隨後,使用異雙官能連接子BPMH將CRM197結合物與活化之石耳多醣偶合,形成基於CLEC之結合物疫苗,其中CRM197作為輔助性T細胞抗原決定基的來源,以誘導可持續的免疫反應。 所用疫苗: B 細胞抗原決定基 T 細胞抗原決定基 / 載體 CLEC 佐劑 途徑 SeqID153 CRM197 石耳多醣(80%) n.a i.d. SeqID153 CRM197 n.a Alhydrogel s.c. SeqID155 CRM197 石耳多醣(80%) n.a i.d. SeqID155 CRM197 n.a Alhydrogel s.c. SeqID157 CRM197 石耳多醣(80%) n.a i.d. SeqID157 CRM197 n.a Alhydrogel s.c. SeqID159 CRM197 石耳多醣(80%) n.a i.d. SeqID159 CRM197 n.a Alhydrogel s.c. SeqID161 CRM197 石耳多醣(80%) n.a i.d. SeqID161 CRM197 n.a Alhydrogel s.c. SeqID163 CRM197 石耳多醣(80%) n.a i.d. SeqID163 CRM197 n.a Alhydrogel s.c. In this example, the immunogenicity of a CLEC-based conjugate vaccine containing the well-known carrier protein CRM197 was compared to a conventional peptide + CRM197 vaccine. To this end, the human CGRP-derived epitopes SeqID153, SeqID155, SeqID157, SeqID159, SeqID161 and SeqID163 were coupled to maleimide-activated CRM197. Subsequently, the heterobifunctional linker BPMH was used to couple the CRM197 conjugate with activated Shigu polysaccharide to form a CLEC-based conjugate vaccine, in which CRM197 served as a source of helper T cell epitopes to induce a sustainable immune response. Vaccines used: B cell epitope T cell epitope / carrier CLEC Adjuvant way SeqID153 CRM197 Shi fungus polysaccharide (80%) na ID SeqID153 CRM197 na Alhydrogel sc SeqID155 CRM197 Shi fungus polysaccharide (80%) na ID SeqID155 CRM197 na Alhydrogel sc SeqID157 CRM197 Shi fungus polysaccharide (80%) na ID SeqID157 CRM197 na Alhydrogel sc SeqID159 CRM197 Shi fungus polysaccharide (80%) na ID SeqID159 CRM197 na Alhydrogel sc SeqID161 CRM197 Shi fungus polysaccharide (80%) na ID SeqID161 CRM197 na Alhydrogel sc SeqID163 CRM197 Shi fungus polysaccharide (80%) na ID SeqID163 CRM197 na Alhydrogel sc

動物(雌性Balb/c小鼠)以每兩週一次的間隔接種疫苗3次(所有疫苗:5µg CGRP靶向肽/劑量;途徑:基於CLEC之疫苗用i.d.,以Alhydrogel作為佐劑的基於CRM197之疫苗用s.c.),並使用第三次免疫接種後兩週採集的鼠類血漿對針對注射肽(即,SeqID153、SeqID155、SeqID157、SeqID159、SeqID161及SeqID163)以及針對全長CGRP所產生的隨後免疫反應進行分析。 結果: Animals (female Balb/c mice) were vaccinated 3 times at biweekly intervals (all vaccines: 5 µg CGRP targeting peptide/dose; route: CLEC-based vaccine with ID, CRM197-based vaccine with Alhydrogel as adjuvant sc), and subsequent immune responses to the injected peptides (i.e., SeqID153, SeqID155, SeqID157, SeqID159, SeqID161, and SeqID163) and to full-length CGRP were performed using murine plasma collected two weeks after the third immunization. analyze. result:

基於CRM197之疫苗可誘導針對注射的肽部分及目標蛋白:人類CGRP的強烈且特異性的免疫反應(圖48)。The CRM197-based vaccine induced a strong and specific immune response against the injected peptide moiety and the target protein: human CGRP (Figure 48).

與非CLEC修飾之以Alhydrogel作為佐劑的基於CRM197的習知疫苗相比,靶向CGRP的CRM197結合物之CLEC修飾誘導了相似或更高的針對抗免疫肽(圖48A)及抗全長CGRP(圖48B)的免疫反應。Compared with the non-CLEC-modified known CRM197-based vaccine with Alhydrogel as adjuvant, the CLEC-modified CRM197 conjugate targeting CGRP induced similar or higher immune responses against the anti-immunizing peptide ( FIG. 48A ) and anti-full-length CGRP ( FIG. 48B ).

此外,使用硫氰酸鹽洗脫抗性(NaSCN)之親和力分析表明,與CGRP-肽+CRM197誘導抗體相比,CGRP-肽+CRM197+CLEC誘導抗體對全長人類CGRP之親和力顯著更高(圖48C)。In addition, affinity analysis using thiocyanate washout resistance (NaSCN) showed that the CGRP-peptide+CRM197+CLEC-induced antibody had significantly higher affinity for full-length human CGRP than the CGRP-peptide+CRM197-induced antibody ( FIG. 48C ).

因此,實驗表明,習知肽-蛋白質結合物之CLEC修飾造成隨後免疫反應的高目標特異性,提供了一種前所未有的新策略來最佳化構築在載體蛋白(如KLH、CRM197或其他蛋白)上的目前先進技術結合物疫苗。Thus, the experiments demonstrate that CLEC modification of known peptide-protein conjugates results in high target specificity of the subsequent immune response, providing an unprecedented new strategy to optimize current state-of-the-art conjugate vaccines constructed on carrier proteins such as KLH, CRM197 or other proteins.

該實例亦提供了結果,表明與最先進的CGRP疫苗相比,使用人類CGPR抗原決定基的基於CLEC之免疫原出人意料地誘導了具有更高效價及親和力的免疫反應。This example also provides results showing that CLEC-based immunogens using human CGPR epitopes unexpectedly induced immune responses with higher potency and affinity compared to state-of-the-art CGRP vaccines.

因此,顯然根據本發明之基於CLEC之疫苗可較佳用於主動抗CGRP免疫接種。因此,此類疫苗可用於治療CGPR相關疾病,包括偶發性及慢性偏頭痛及叢集性頭痛、痛覺過敏、功能障礙性疼痛狀態下的痛覺過敏,例如類風濕性關節炎、骨關節炎、內臟疼痛超敏反應症候群、纖維肌痛、炎症性腸病,神經性疼痛、慢性炎性疼痛及頭痛。 實例 45: 由基於 CLEC 之疫苗引發的免疫反應的活體內功能分析 Therefore, it is apparent that the CLEC-based vaccines according to the present invention are preferably used for active anti-CGRP immunization. Such vaccines can therefore be used to treat CGRP-related diseases, including sporadic and chronic migraine and cluster headaches, allergic pain, allergic pain in dysfunctional pain states, such as rheumatoid arthritis, osteoarthritis, visceral pain hypersensitivity syndrome, fibromyalgia, inflammatory bowel disease, neuropathic pain, chronic inflammatory pain and headache. Example 45: In vivo functional analysis of immune responses induced by CLEC -based vaccines

為了確定由基於CLEC之疫苗引發的aSyn特異性抗體是否能夠在活體內抑制aSyn原纖維形成,本實例使用已建立的突觸核蛋白病變接種模型啟動了一概念驗證實驗[Sci. Adv. 2020, 6, eabc4364, doi:10.1126/sciadv.abc4364; DOI: 10.1126/sciadv.abc4364]。 所用疫苗: B 細胞抗原決定基 T 細胞抗原決定基 / 載體 CLEC 佐劑 途徑 SeqID5 SeqID7 石耳多醣(80%) n.a i.d. na na 石耳多醣 n.a i.d. To determine whether aSyn-specific antibodies elicited by CLEC-based vaccines can inhibit aSyn fibril formation in vivo, a proof-of-concept experiment was initiated using an established synucleinopathy vaccination model [Sci. Adv. 2020, 6, eabc4364, doi:10.1126/sciadv.abc4364; DOI: 10.1126/sciadv.abc4364]. Vaccine used: B cell antigen determinant T cell antigen determinant / vector CLEC Adjuvant Way SeqID5 SeqID7 Pyricularia auricula polysaccharide (80%) na id na na Pyricularia auricula na id

在該模型中,C57BL/6小鼠在右側黑質水平立體定向注射α-syn預成型原纖維(PFF),隨後引起廣泛的突觸核蛋白病變,其特徵是磷酸突觸核蛋白免疫陽性類路易氏神經突及沿著解剖連接的胞漿內聚集體。動物在第0、2、4及10週免疫接種四次,使用SeqID5+SeqID7+石耳多醣疫苗或作為對照組的非偶合CLEC進行接種,在PFF接種當天開始第一次免疫接種。PFF注射後126天,處死動物,並分析大腦中選定大腦區域(包括大腦皮層、紋狀體、丘腦、黑質及腦幹)中磷酸化S129aSyn陽性聚集體的存在。 結果: In this model, C57BL/6 mice are stereotactically injected with α-syn preformed fibrils (PFF) at the level of the right substantia nigra, subsequently causing extensive synucleinopathy characterized by phosphosynuclein immunopositive species. Lewy neurites and intracytoplasmic aggregates along anatomical junctions. Animals were immunized four times at 0, 2, 4 and 10 weeks, using SeqID5+SeqID7+Shitia polysaccharide vaccine or uncoupled CLEC as a control group, and the first immunization was started on the day of PFF vaccination. 126 days after PFF injection, the animals were sacrificed and the brains were analyzed for the presence of phosphorylated S129aSyn-positive aggregates in selected brain regions, including the cerebral cortex, striatum, thalamus, substantia nigra, and brainstem. result:

使用處死時獲得的血漿及CSF對隨後的免疫反應進行分析。在經SeqID5+SeqID7+石耳多醣疫苗治療的動物的血漿中偵測到針對注射肽之高抗體效價。相比之下,在僅經CLEC治療的對照組中無法偵測到高於背景的信號(圖49)。CSF中抗肽效價的分析亦顯示了高水平的SeqID5+SeqID7+石耳多醣疫苗誘導抗體,而對於以載體處理的動物則沒有偵測到高於背景的信號(圖49)。腦切片的免疫組織化學顯示在載體處理組的所有分析區域中存在大量磷酸化S129aSyn陽性聚集體,表明aSyn病變的強烈傳播。相反,突觸核蛋白病變在經SeqID5+SeqID7+石耳多醣疫苗接種的小鼠中顯著減少(圖49)。值得注意的是,抗體反應的強度與疫苗接受者的突觸核蛋白病變水平之間存在強烈且顯著的相互關係(圖49)。 實例 46 :肽 +CRM+CLEC 結合物之免疫原性分析 Plasma and CSF obtained at sacrifice were used to analyze subsequent immune responses. High antibody titers against the injected peptides were detected in the plasma of animals treated with the SeqID5+SeqID7+Psoralea corylifolia vaccine. In contrast, no signal above background was detected in the control group treated with CLEC alone (Figure 49). Analysis of anti-peptide titers in CSF also showed high levels of SeqID5+SeqID7+Psoralea corylifolia vaccine-induced antibodies, while no signal above background was detected for animals treated with the vehicle (Figure 49). Immunohistochemistry of brain sections showed the presence of large numbers of phosphorylated S129aSyn-positive aggregates in all analyzed areas of the vehicle-treated group, indicating a strong dissemination of aSyn pathology. In contrast, synuclein pathology was significantly reduced in mice vaccinated with SeqID5+SeqID7+Pseudomonas aeruginosa vaccine (Figure 49). Of note, there was a strong and significant correlation between the magnitude of the antibody response and the level of synuclein pathology in vaccine recipients (Figure 49). Example 46 : Immunogenicity Analysis of Peptide +CRM+CLEC Conjugates

在此實例中,將基於CLEC之結合物疫苗的載體特異性免疫原性與習知載體疫苗進行了比較。In this example, the vector-specific immunogenicity of a CLEC-based conjugate vaccine was compared with that of a conventional vector vaccine.

為此,將α突觸核蛋白衍生抗原決定基SeqID6或IL31衍生抗原決定基SeqID133、SeqID135及SeqID137與順丁烯二醯亞胺活化之CRM197偶合。隨後,使用異雙官能連接子BPMH將肽-CRM197結合物與活化之石耳多醣偶合,形成基於CLEC之結合物疫苗,其中CRM197作為輔助性T細胞抗原決定基的來源,以誘導可持續的免疫反應。 所用疫苗: B 細胞抗原決定基 T 細胞抗原決定基 / 載體 CLEC 佐劑 途徑 SeqID6 CRM197 石耳多醣(80%) n.a i.d. SeqID6 CRM197 n.a Alhydrogel s.c. SeqID133 CRM197 石耳多醣(80%) n.a i.d. SeqID133 CRM197 n.a Alhydrogel s.c. SeqID135 CRM197 石耳多醣(80%) n.a i.d. SeqID135 CRM197 n.a Alhydrogel s.c. SeqID137 CRM197 石耳多醣(80%) n.a i.d. SeqID137 CRM197 n.a Alhydrogel s.c. To this end, α-synuclein derived epitopes SeqID6 or IL31 derived epitopes SeqID133, SeqID135 and SeqID137 were coupled to cis-butylenediamide activated CRM197. Subsequently, the peptide-CRM197 conjugate was coupled to activated Pseudomonas aeruginosa polysaccharide using the heterobifunctional linker BPMH to form a CLEC-based conjugate vaccine, in which CRM197 served as a source of helper T cell epitopes to induce a sustained immune response. Vaccines used: B cell antigen determinant T cell antigen determinant / vector CLEC Adjuvant Way SeqID6 CRM197 Pyricularia auricula polysaccharide (80%) na id SeqID6 CRM197 na Alhydrogel sc SeqID133 CRM197 Pyricularia auricula polysaccharide (80%) na id SeqID133 CRM197 na Alhydrogel sc SeqID135 CRM197 Pyricularia auricula polysaccharide (80%) na id SeqID135 CRM197 na Alhydrogel sc SeqID137 CRM197 Pyricularia auricula polysaccharide (80%) na id SeqID137 CRM197 na Alhydrogel sc

動物(雌性Balb/c小鼠)以每兩週一次的間隔接種3次疫苗,隨後使用第三次免疫接種後兩週採集的小鼠血漿分析針對載體蛋白CRM197的免疫反應。含有SeqID6之疫苗劑量:20µg及100µg α突觸核蛋白靶向肽/劑量;途徑:i.d.用於基於CLEC之疫苗,s.c.用於以Alhydrogel作為佐劑的基於CRM197之疫苗(圖50A)。用於含有SeqID133、SeqID135及SeqID137之疫苗的劑量:5µg IL31靶向肽/劑量;途徑:i.d.用於基於CLEC之疫苗及s.c.用於以Alhydrogel作為佐劑的基於CRM197之疫苗。 結果: Animals (female Balb/c mice) were vaccinated three times at biweekly intervals, and immune responses against the carrier protein CRM197 were analyzed using mouse plasma collected two weeks after the third immunization. Vaccine doses containing SeqID6: 20 µg and 100 µg alpha-synuclein targeting peptide/dose; route: id for CLEC-based vaccine, sc for CRM197-based vaccine with Alhydrogel as adjuvant (Figure 50A). Dose for vaccines containing SeqID133, SeqID135 and SeqID137: 5 µg IL31 targeting peptide/dose; route: id for CLEC-based vaccines and sc for CRM197-based vaccines with Alhydrogel as adjuvant. result:

抗載體特異性抗體反應的比較表明,傳統的基於SeqID6+CRM197之疫苗能夠劑量依賴性地誘導高抗CRM197效價。相較之下,所使用的基於CLEC之SeqID6+CRM197+石耳多醣疫苗在使用20µg及100µg劑量重複免疫接種後均誘導顯著降低的抗CRM反應(減少程度:4.5-5倍;圖50A)。Comparison of anti-vector-specific antibody responses demonstrated that conventional SeqID6+CRM197-based vaccines were able to induce high anti-CRM197 titers in a dose-dependent manner. In comparison, the CLEC-based SeqID6+CRM197+Fructus auricularia polysaccharide vaccine used induced significantly reduced anti-CRM responses after repeated immunizations with both 20 µg and 100 µg doses (degree of reduction: 4.5-5-fold; Figure 50A).

類似地,以5µg IL31靶向肽/劑量使用的非CLEC修飾之基於SeqID133-、SeqID135-及SeqID137+CRM197的疫苗誘導之抗CRM197效價比CLEC修飾之肽-CRM結合物分別高了3.7-5.8倍(圖50B)。Similarly, non-CLEC-modified SeqID133-, SeqID135-, and SeqID137+CRM197-based vaccines used at 5 µg IL31-targeting peptide/dose induced 3.7- to 5.8-fold higher anti-CRM197 titers than the CLEC-modified peptide-CRM conjugates, respectively ( FIG. 50B ).

因此,實驗表明,習知肽-蛋白質結合物之共價CLEC修飾顯著損害了抗載體反應的發展,提供了一種前所未有的新策略來最佳化構築在載體蛋白(如KLH、CRM197或其他蛋白)上的目前先進技術結合物疫苗。 實例 47 免疫接種後抗石耳多醣 / 葡聚糖之免疫反應的活體內分析 Therefore, experiments show that covalent CLEC modification of conventional peptide-protein conjugates significantly impairs the development of anti-carrier responses, providing an unprecedented new strategy to optimize the construction of carrier proteins (such as KLH, CRM197 or other proteins) The current advanced technology conjugate vaccine. Example 47 : In vivo analysis of the immune response against Shigu polysaccharide / glucan following immunization

如實例7中所論述,由基於CLEC的免疫原誘導的抗CLEC抗體的分析對於根據本發明提出的CLEC-疫苗的新穎性及功效在兩個層面上是重要的。As discussed in Example 7, analysis of anti-CLEC antibodies induced by CLEC-based immunogens is important for the novelty and efficacy of the CLEC-vaccines proposed according to the present invention on two levels.

沿著此等思路,在免疫接種前及重複免疫接種後,對首次免疫接種、肽+CLEC免疫接種及肽+CRM+CLEC結合物免疫接種的Balb/c小鼠(n=5/組)的血漿樣品中的抗石耳多醣抗體進行了廣泛分析。 所用疫苗: B 細胞抗原決定基 T 細胞抗原決定基 CLEC 佐劑 比率 (w/w) n.a. n.a. 石耳多醣 n.a. n.a. SeqID6 CRM197 石耳多醣(80%) n.a 1/1 SeqID6 CRM197 石耳多醣(80%) n.a 1/2,5 SeqID6 CRM197 石耳多醣(80%) n.a 1/5 SeqID6 CRM197 石耳多醣(80%) n.a 1/10 SeqID6 CRM197 石耳多醣(80%) n.a 1/20 SeqID6 CRM197 地衣多醣(200%) n.a SeqID6 CRM197 昆布多醣(200%) n.a SeqID132 SeqID7 石耳多醣(80%) n.a. SeqID133 CRM197 石耳多醣(80%) n.a. SeqID133 CRM197 n.a Alhydrogel SeqID134 SeqID7 石耳多醣(80%) n.a. SeqID135 CRM197 石耳多醣(80%) n.a. SeqID135 CRM197 n.a Alhydrogel SeqID136 SeqID7 石耳多醣(80%) n.a. SeqID137 CRM197 石耳多醣(80%) n.a. SeqID137 CRM197 n.a Alhydrogel 結果: Along these lines, before immunization and after repeated immunization, the results of the first immunization, peptide+CLEC immunization and peptide+CRM+CLEC conjugate immunization of Balb/c mice (n=5/group) Plasma samples were extensively analyzed for anti-S. Vaccines used: B cell epitope T cell epitope CLEC Adjuvant Ratio (w/w) na na Shi fungus polysaccharide na na SeqID6 CRM197 Shi fungus polysaccharide (80%) na 1/1 SeqID6 CRM197 Shi fungus polysaccharide (80%) na 1/2,5 SeqID6 CRM197 Shi fungus polysaccharide (80%) na 1/5 SeqID6 CRM197 Shi fungus polysaccharide (80%) na 1/10 SeqID6 CRM197 Shi fungus polysaccharide (80%) na 1/20 SeqID6 CRM197 Lichenin (200%) na SeqID6 CRM197 Laminaria polysaccharide (200%) na SeqID132 SeqID7 Shi fungus polysaccharide (80%) na SeqID133 CRM197 Shi fungus polysaccharide (80%) na SeqID133 CRM197 na Alhydrogel SeqID134 SeqID7 Shi fungus polysaccharide (80%) na SeqID135 CRM197 Shi fungus polysaccharide (80%) na SeqID135 CRM197 na Alhydrogel SeqID136 SeqID7 Shi fungus polysaccharide (80%) na SeqID137 CRM197 Shi fungus polysaccharide (80%) na SeqID137 CRM197 na Alhydrogel result:

在此實例中分析4種不同類型之樣品:In this example 4 different types of samples are analyzed:

圖51A顯示了從經歷重複的SeqID6+CRM+石耳多醣、SeqID6+CRM+地衣多醣或SeqID6+CRM+昆布多醣免疫接種的動物獲得的樣品的抗石耳多醣免疫反應性(所有疫苗:20μg aSyn靶向肽/劑量)。圖51B顯示來自使用含有不同w/w肽+CRM結合物/CLEC比例之疫苗(即,結合物/CLEC比例為1/1、1/2、5、1/5、1/10及1/20)進行重複SeqID6+CRM+石耳多醣免疫接種的動物的樣品的抗石耳多醣免疫反應性(所有疫苗:5µg aSyn靶向肽/劑量)。圖51C顯示了從經歷重複的SeqID133+CRM+石耳多醣、SeqID135+CRM+石耳多醣或SeqID137+CRM+石耳多醣免疫接種(所有疫苗:5μg IL31靶向肽/劑量)的動物獲得的樣品的抗石耳多醣免疫反應性。圖51D顯示了從經歷重複的SeqID132+SeqID7+石耳多醣、SeqID134+SeqID7+石耳多醣或SeqID136+SeqID7+石耳多醣免疫接種(所有疫苗:5μgIL31靶向肽/劑量)的動物獲得的樣品的抗石耳多醣免疫反應性。Figure 51A shows the anti-Pseudomonas polysaccharide immune reactivity of samples obtained from animals that underwent repeated immunizations with SeqID6+CRM+Pseudomonas polysaccharide, SeqID6+CRM+Lichen polysaccharide, or SeqID6+CRM+Laminaria polysaccharide (all vaccines: 20 μg aSyn targeting peptide/dose). Figure 51B shows the anti-Pseudomonas polysaccharide immune reactivity of samples from animals that underwent repeated immunizations with SeqID6+CRM+Pseudomonas polysaccharide using vaccines containing different w/w peptide+CRM conjugate/CLEC ratios (i.e., conjugate/CLEC ratios of 1/1, 1/2, 5, 1/5, 1/10, and 1/20) (all vaccines: 5 μg aSyn targeting peptide/dose). Figure 51C shows the anti-Pseudomonas polysaccharide immune reactivity of samples obtained from animals that underwent repeated vaccinations with SeqID133+CRM+Pseudomonas polysaccharide, SeqID135+CRM+Pseudomonas polysaccharide, or SeqID137+CRM+Pseudomonas polysaccharide (all vaccines: 5 μg IL31 targeting peptide/dose). Figure 51D shows the anti-Pseudomonas polysaccharide immune reactivity of samples obtained from animals that underwent repeated vaccinations with SeqID132+SeqID7+Pseudomonas polysaccharide, SeqID134+SeqID7+Pseudomonas polysaccharide, or SeqID136+SeqID7+Pseudomonas polysaccharide (all vaccines: 5 μg IL31 targeting peptide/dose).

為了對照目的,本實驗使用了來自免疫前的動物以及來自未經氧化之CLEC處理的動物獲得的樣品。此外,來自接受由非CLEC修飾之肽+CRM結合物(SeqID133+CRM、SeqID135+CRM或SeqID137+CRM,以Alum作為佐劑)組成之疫苗施用的動物獲得的樣品亦包括在該分析中。For control purposes, samples from animals before immunization and from animals treated with non-oxidized CLEC were used in this experiment. In addition, samples from animals administered with vaccines consisting of non-CLEC modified peptide + CRM conjugates (SeqID133 + CRM, SeqID135 + CRM or SeqID137 + CRM with Alum as adjuvant) were also included in the analysis.

如圖51所示,分析的Balb/c動物顯示出針對葡聚糖/石耳多醣/β(1,6)-β-D葡聚糖的預先存在的低水平免疫反應。As shown in Figure 51, the Balb/c animals analyzed showed a pre-existing low-level immune response against glucan/Pyropolysaccharide/[beta](1,6)-[beta]-D glucan.

所測試的所有CLEC疫苗(肽+CLEC及肽+CRM+CLEC結合物)未能顯著增加預先存在的抗葡聚糖反應或從頭誘導針對活體內葡聚糖骨架的高免疫反應(所有測試的樣品:<2x預免疫水平;平均:0.8+/-0.5倍變化)。All CLEC vaccines tested (peptide+CLEC and peptide+CRM+CLEC conjugates) failed to significantly increase pre-existing anti-glucan responses or to induce de novo high immune responses against the glucan backbone in vivo (all samples tested: <2x pre-immune levels; mean: 0.8+/-0.5-fold change).

相比之下,重複施用存在於對照組中的未結合、未經氧化之石耳多醣藉由提高針對石耳多醣的抗體水平>5倍(與免疫前血漿相比)誘導強烈的抗葡聚糖免疫反應。非CLEC修飾之肽+CRM結合物及含有地衣多醣及昆布多醣的結合物無法誘導高於免疫前水平的抗石耳多醣效價,表明偵測到的抗葡聚糖反應的特異性。In contrast, repeated administration of unconjugated, unoxidized Psoralea corylifolia polysaccharide present in the control group induced a strong anti-glucan immune response by increasing the antibody levels against Psoralea corylifolia polysaccharide by >5-fold (compared to pre-immune plasma). Non-CLEC modified peptide + CRM conjugates and conjugates containing lichenin and laminarin failed to induce anti-Psoralea corylifolia polysaccharide titers above pre-immune levels, indicating the specificity of the anti-glucan response detected.

總之,此等分析表明儘管在未經處理之的Balb/c小鼠中存在低水平的、預先存在的針對石耳多醣(IgG)的自身反應性,但在使用各種CLEC結合物進行免疫接種後,無法或僅能偵測到非常低之與疫苗接種有關的抗石耳多醣免疫反應性變化。此表明施用根據本發明之新型疫苗設計顯著降低了葡聚糖免疫原性。此與先前公佈的結果形成強烈對比,因此構成了根據本發明之碳水化合物骨架(例如,β-葡聚糖,尤其是石耳多醣骨架)的出人意料及具有創造性的新特徵。Taken together, these analyzes demonstrate that despite low levels of pre-existing autoreactivity against Shigella polysaccharide (IgG) in untreated Balb/c mice, after immunization with various CLEC conjugates , no or only very low vaccination-related changes in immune reactivity against Shia polysaccharide could be detected. This shows that administration of the novel vaccine design according to the invention significantly reduces dextran immunogenicity. This is in strong contrast to previously published results and thus constitutes an unexpected and inventive new feature of the carbohydrate backbone according to the invention (eg, β-glucan, especially the polysaccharide backbone).

此外,預先存在的抗石耳多醣反應似乎並不排除對WISIT疫苗肽成分的免疫反應,因為所有實驗的注射肽反應均顯示出高抗肽效價。 實例 48 :葡聚糖結合對肽 + 載體疫苗免疫原性影響的活體內比較 Furthermore, pre-existing anti-A. pyrifos polysaccharide responses do not appear to preclude immune responses to the peptide component of the WISIT vaccine, as all experimental responses to injected peptides showed high anti-peptide titers. Example 48 : In vivo comparison of the effect of dextran conjugation on the immunogenicity of peptide + vector vaccines

為了評定CLEC與肽+載體免疫原的結合是否是誘導根據本發明之疫苗的優異免疫原性所必需的,本實例開始了一組實驗來比較三種疫苗製劑:一種用β-葡聚糖共價修飾之肽+載體結合物,一種包含肽+載體結合物及未偶合之β-葡聚糖之混合物的疫苗製劑,以及一種未經修飾且無Alum佐劑的肽+載體疫苗。To assess whether conjugation of CLEC to the peptide + carrier immunogen is necessary to induce superior immunogenicity of the vaccine according to the present invention, this example initiated a set of experiments to compare three vaccine formulations: a peptide + carrier conjugate covalently modified with β-glucan, a vaccine formulation comprising a mixture of the peptide + carrier conjugate and uncoupled β-glucan, and an unmodified peptide + carrier vaccine without Alum adjuvant.

同樣地,n=5隻雌性Balb/c小鼠以每兩週一次的間隔免疫接種三次,隨後使用第三次免疫接種後兩週採集的鼠類血漿分析針對注射肽及aSyn纖維(即SeqID6)的後續免疫反應。 所用疫苗: B 細胞抗原決定基 載體 CLEC CLEC 結合 SeqID6 CRM197 石耳多醣(80%) SeqID6 CRM197 石耳多醣(未氧化) 否;僅混合 SeqID6 CRM197 n.a.,無佐劑 結果: Similarly, n=5 female Balb/c mice were immunized three times at two-week intervals, and subsequent immune responses to the injected peptide and aSyn fibers (i.e., SeqID6) were analyzed using mouse plasma collected two weeks after the third immunization. Vaccines used: B cell antigen determinant Carrier CLEC CLEC Combined SeqID6 CRM197 Pyricularia auricula polysaccharide (80%) yes SeqID6 CRM197 Pyricularia auricula polysaccharide (unoxidized) No; mixed only SeqID6 CRM197 na, unadjuvanted no result:

圖52顯示三種免疫接種後可偵測到的抗肽(SeqID6)及抗aSyn單體特異性免疫反應的比較。相較於SeqID6+CRM197及未經氧化之石耳多醣之混合物,SeqID6+CRM197+石耳多醣的結合物能夠誘導高約10倍的針對注射肽的免疫反應(圖52A),以及高4倍的抗aSyn效價(圖52B),相較於SeqID6+CRM197 (無佐劑),SeqID6+CRM197+石耳多醣的結合物亦可誘導高約10倍的針對注射肽的免疫反應。有趣的是,SeqID6+CRM197及未經氧化之石耳多醣的混合不會引起與習知SeqID6+CRM197明顯不同的免疫反應。Figure 52 shows a comparison of the anti-peptide (SeqID6) and anti-aSyn monomer specific immune responses detected after three immunizations. Compared with the mixture of SeqID6+CRM197 and unoxidized Psoralea corylifolia polysaccharide, the conjugate of SeqID6+CRM197+Psoralea corylifolia polysaccharide can induce an immune response against the injected peptide that is about 10 times higher (Figure 52A) and a 4-fold higher anti-aSyn titer (Figure 52B). Compared with SeqID6+CRM197 (without adjuvant), the conjugate of SeqID6+CRM197+Psoralea corylifolia polysaccharide can also induce an immune response against the injected peptide that is about 10 times higher. Interestingly, the mixture of SeqID6+CRM197 and unoxidized Psoralea corylifolia polysaccharide did not induce an immune response significantly different from that of SeqID6+CRM197.

此等資料表明,需要根據本發明將肽載體免疫原與活化之CLEC結合以在活體內誘導更好的免疫反應。These data demonstrate the need to combine peptide carrier immunogens with activated CLEC in accordance with the present invention to induce better immune responses in vivo.

實例中所揭示之B細胞抗原決定基序列如下: SeqID 序列 父本蛋白 SeqID1 (H2N-NH-CO-CH2-CH2-CO)-DQPVLPD α突觸核蛋白 SeqID2 DQPVLPD-(NH-NH2) α突觸核蛋白 SeqID3 C-DQPVLPD α突觸核蛋白 SeqID4 (H2N-NH-CO-CH2-CH2-CO)-DMPVDPD α突觸核蛋白 SeqID5 DMPVDPD-(NH-NH2) α突觸核蛋白 SeqID6 C-DMPVDPD α突觸核蛋白 SeqID10 DAEFRH-(NH-NH2) SeqID11 DAEFRH-C SeqID12 MDVFMKGL-(NH-NH2) α突觸核蛋白 SeqID13 MDVFMKGL-C α突觸核蛋白 SeqID14 ATGFVKKDQL-(NH-NH2) α突觸核蛋白 SeqID15 ATGFVKKDQL-C α突觸核蛋白 SeqID16 LGKNEEGAP-(NH-NH2) α突觸核蛋白 SeqID20 EGYQDYEPEA-(NH-NH2) α突觸核蛋白 SeqID21 EGYQDYEPEA-C α突觸核蛋白 SeqID32 p(E)FRHDS-C SeqID33 p(E)FRHDS-(NH-NH2) SeqID35 KDNIKHVPGGGS-C Tau SeqID36 KDNIKHVPGGGS-(NH-NH2) Tau SeqID37 WDPGMLQSELIQKEFGDY-C IL12/23 SeqID38 WDPGMLQSELIQKEFGDY-(NH-NH2) IL12/23 SeqID39 TPDAPGETV-C IL12/23 SeqID40 TPDAPGETV-(NH-NH2) IL12/23 SeqID41 TQQIPSLSPSQ-C IL12/23 SeqID42 TQQIPSLSPSQ-(NH-NH2) IL12/23 SeqID43 QQQGLPRAAGG-C EMPD SeqID44 QQQGLPRAAGG-(NH-NH2) EMPD SeqID45 QQFLSVRAL-C Bet v1 SeqID46 QQFLSVRAL-(NH-NH2) Bet v2 SeqID47 YMPIWKFPDEEGAC Her2 SeqID48 YMPIWKFPDEEGA C-(NH-NH2) Her2 SeqID49 GAISLAPKAQIKESLRAEL-C PD1 SeqID50 GAISLAPKAQIKESLRAEL-(NH-NH2) PD1 SeqID51 DMPVDPDN-NH-NH2 α突觸核蛋白 SeqID52 CDMPVDPDN α突觸核蛋白 SeqID53 DMPVDP-(NH-NH2) α突觸核蛋白 SeqID55 C-DMPVDP α突觸核蛋白 SeqID56 DMPVD-(NH-NH2) α突觸核蛋白 SeqID58 C-DMPVD α突觸核蛋白 SeqID65 DMPVDPDNE-(NH-NH2) α突觸核蛋白 SeqID66 DMPVDPDNE-C α突觸核蛋白 SeqID67 DMPVDPDNEA-(NH-NH2) α突觸核蛋白 SeqID68 DMPVDPDNEA-C α突觸核蛋白 SeqID69 DMPVDPDNEAY-(NH-NH2) α突觸核蛋白 SeqID70 DMPVDPDNEAY-C α突觸核蛋白 SeqID71 DMPVDPDNEAYE-(NH-NH2) α突觸核蛋白 SeqID72 DMPVDPDNEAYE-C α突觸核蛋白 SeqID73 APQEGILE-(NH-NH2) α突觸核蛋白 SeqID74 APQEGILE-C α突觸核蛋白 SeqID132 SKMLLKDVEEEKG-NHNH2 IL31 SeqID133 SKMLLKDVEEEKG-C IL31 SeqID134 EELQSLSK-NHNH2 IL31 SeqID135 EELQSLSK-C; IL31 SeqID136 KGVLVS-NHNH2 IL31 SeqID137 KGVLVS-C IL31 SeqID138 SVIDEIIEHLDKLI-NHNH2 IL31 SeqID139 SVIDEIIEHLDKLI-C IL31 SeqID140 SPAIRAYLKTIRQLDNKSVI-NHNH2 IL31 SeqID141 SPAIRAYLKTIRQLDNKSVI-C IL31 SeqID142 HERKRFILT-NHNH2 IL31 SeqID143 HERKRFILT-C IL31 SeqID144 HESKRFILT-NHNH2 IL31 SeqID145 HESKRFILT-C IL31 SeqID146 SVPTDTHERKRF-NHNH2 IL31 SeqID147 SVPTDTHERKRF-C IL31 SeqID148 SVPTDTHESKRF-NHNH2 IL31 SeqID149 SVPTDTHESKRF-C IL31 SeqID150 KRFILTISQQFS-NHNH2 IL31 SeqID151 KRFILTISQQFS-C IL31 SeqID152 RLAGLLSR-NHNH2 CGRP SeqID153 RLAGLLSR-C CGRP SeqID154 RLAGLLSRSGGVVKN-NHNH2 CGRP SeqID155 RLAGLLSRSGGVVKN-C CGRP SeqID156 RSGGVVKN-NHNH2 CGRP SeqID157 RSGGVVKN-C CGRP SeqID158 NNFVPTNVGSKAF-NHNH2 CGRP SeqID159 NNFVPTNVGSKAF-C CGRP SeqID160 VPTNVGSKAF-NHNH2 CGRP SeqID161 VPTNVGSKAF-C CGRP SeqID162 NVGSKAF-NHNH2 CGRP SeqID163 NVGSKAF-C CGRP The B cell antigenic determinant sequence disclosed in the examples is as follows: SeqID sequence Paternal protein SeqID1 (H2N-NH-CO-CH2-CH2-CO)-DQPVLPD alpha-synuclein SeqID2 DQPVLPD-(NH-NH2) alpha-synuclein SeqID3 C-DQPVLPD alpha-synuclein SeqID4 (H2N-NH-CO-CH2-CH2-CO)-DMPVDPD alpha-synuclein SeqID5 DMPVDPD-(NH-NH2) alpha-synuclein SeqID6 C-DMPVDPD alpha-synuclein SeqID10 DAEFRH-(NH-NH2) SeqID11 DAEFRH-C SeqID12 MDVFMKGL-(NH-NH2) alpha-synuclein SeqID13 MDVFMKGL-C alpha-synuclein SeqID14 ATGFVKKDQL-(NH-NH2) alpha-synuclein SeqID15 ATGFVKKDQL-C alpha-synuclein SeqID16 LGKNEEGAP-(NH-NH2) alpha-synuclein SeqID20 EGYQDYEPEA-(NH-NH2) alpha-synuclein SeqID21 EGYQDYEPEA-C alpha-synuclein SeqID32 p(E)FRHDS-C SeqID33 p(E)FRHDS-(NH-NH2) SeqID35 KDNIKHVPGGGS-C Tau SeqID36 KDNIKHVPGGGS-(NH-NH2) Tau SeqID37 WDPGMLQSELIQKEFGDY-C IL12/23 SeqID38 WDPGMLQSELIQKEFGDY-(NH-NH2) IL12/23 SeqID39 TPDAPGETV-C IL12/23 SeqID40 TPDAPGETV-(NH-NH2) IL12/23 SeqID41 TQQIPSLSPSQ-C IL12/23 SeqID42 TQQIPSLSPSQ-(NH-NH2) IL12/23 SeqID43 QQQGLPRAAGG-C EMPD SeqID44 QQQGLPRAAGG-(NH-NH2) EMPD SeqID45 QQFLSVRAL-C Bet v1 SeqID46 QQFLSVRAL-(NH-NH2) Bet v2 SeqID47 YMPIWKFPDEEGAC Her2 SeqID48 YMPIWKFPDEEGA C -(NH-NH2) Her2 SeqID49 GAISLAPKAQIKESLRAEL-C PD1 SeqID50 GAISLAPKAQIKESLRAEL-(NH-NH2) PD1 SeqID51 DMPVDPDN-NH-NH2 alpha-synuclein SeqID52 CDMPVDPDN alpha-synuclein SeqID53 DMPVDP-(NH-NH2) alpha-synuclein SeqID55 C-DMPVDP alpha-synuclein SeqID56 DMPVD-(NH-NH2) alpha-synuclein SeqID58 C-DMPVD alpha-synuclein SeqID65 DMPVDPDNE-(NH-NH2) alpha-synuclein SeqID66 DMPVDPDNE-C alpha-synuclein SeqID67 DMPVDPDNEA-(NH-NH2) alpha-synuclein SeqID68 DMPVDPDNEA-C alpha-synuclein SeqID69 DMPVDPDNEAY-(NH-NH2) alpha-synuclein SeqID70 DMPVDPDNEAY-C alpha-synuclein SeqID71 DMPVDPDNEAYE-(NH-NH2) alpha-synuclein SeqID72 DMPVDPDNEAYE-C alpha-synuclein SeqID73 APQEGILE-(NH-NH2) alpha-synuclein SeqID74 APQEGILE-C alpha-synuclein SeqID132 SKMLLKDVEEEKG-NHNH2 IL31 SeqID133 SKMLLKDVEEEKG-C IL31 SeqID134 EELQSLSK-NHNH2 IL31 SeqID135 EELQSLSK-C; IL31 SeqID136 KGVLVS-NHNH2 IL31 SeqID137 KGVLVS-C IL31 SeqID138 SVIDEIIEHLDKLI-NHNH2 IL31 SeqID139 SVIDEIIEHLDKLI-C IL31 SeqID140 SPAIRAYLKTIRQLDNKSVI-NHNH2 IL31 SeqID141 SPAIRAYLKTIRQLDNKSVI-C IL31 SeqID142 HERKRFILT-NHNH2 IL31 SeqID143 HERKRFILT-C IL31 SeqID144 HESKRFILT-NHNH2 IL31 SeqID145 HESKRFILT-C IL31 SeqID146 SVPTDTHERKRF-NHNH2 IL31 SeqID147 SVPTDTHERKRF-C IL31 SeqID148 SVPTDTHESKRF-NHNH2 IL31 SeqID149 SVPTDTHESKRF-C IL31 SeqID150 KRFILTISQQFS-NHNH2 IL31 SeqID151 KRFILTISQQFS-C IL31 SeqID152 RLAGLLSR-NHNH2 CGRP SeqID153 RLAGLLSR-C CGRP SeqID154 RLAGLLSRSGGVVKN-NHNH2 CGRP SeqID155 RLAGLLSRSGGVVKN-C CGRP SeqID156 RSGGVVKN-NHNH2 CGRP SeqID157 RSGGVVKN-C CGRP SeqID158 NNFVPTNVGSKAF-NHNH2 CGRP SeqID159 NNFVPTNVGSKAF-C CGRP SeqID160 VPTNVGSKAF-NHNH2 CGRP SeqID161 VPTNVGSKAF-C CGRP SeqID162 NVGSKAF-NHNH2 CGRP SeqID163 NVGSKAF-C CGRP

基於本發明之一般揭示內容及此等實施例,揭示本發明之以下較佳實施例: 1.       一種結合物,其由以下組成或包含以下:至少一種β-葡聚糖或甘露多醣;及至少一種B細胞或T細胞抗原決定基多肽,其中β-葡聚糖或甘露多醣與B細胞及/或T細胞抗原決定基多肽共價結合以形成β-葡聚糖或甘露多醣與B細胞及/或T細胞抗原決定基多肽之結合物。 2.       根據實施例1之結合物,其中該β-葡聚糖為主要呈線性的β-(1,6)-葡聚糖,其β-(1,6)偶合之單醣部分與非β-(1,6)偶合之單醣部分之比率為至少1:1、較佳為至少2:1、更佳為至少5:1、尤其是至少10:1。 3.       根據實施例1或2之結合物,其中β-葡聚糖為dectin-1結合β-葡聚糖,較佳為石耳多醣、地衣多醣、昆布多醣、卡德蘭多醣、β-葡聚糖肽(BGP)、裂褶多醣、硬葡聚糖、全葡聚糖顆粒(WGP)、酵母多醣或蘑菇多醣,更佳為石耳多醣、昆布多醣、地衣多醣、蘑菇多醣、裂褶多醣或硬葡聚糖,尤其是石耳多醣;及/或其中β-葡聚糖為強dectin-1結合β-葡聚糖,較佳為藉由競爭性ELISA所測定,以低於10 mg/ml之IC50值、更佳以低於1 mg/ml之IC50值、甚至更佳以低於500 µg/ml之IC50值、尤其是以低於200 µg/ml之IC50值結合於可溶性鼠類Fc-dectin-1a受體的β-葡聚糖;及/或其中如藉由競爭性ELISA所測定,結合物以低於1 mg/ml之IC50值、更佳以低於500 µg/ml之IC50值、甚至更佳以低於200 µg/ml之IC50值、尤其是以低於100 µg/ml之IC50值結合於可溶性鼠類Fc-dectin-1a受體;及/或 -一β-葡聚糖,其以低於10 mg/ml之IC50值、更佳以低於1 mg/ml之IC50值、甚至更佳以低於500 µg/ml之IC50值、尤其是以低於200 µg/ml之IC50值結合於可溶性人類Fc-dectin-1a受體;及/或 -其中如藉由競爭性ELISA所測定,結合物以低於1 mg/ml之IC50值、更佳以低於500 µg/ml之IC50值、甚至更佳以低於200 µg/ml之IC50值、尤其是以低於100 µg/ml之IC50值結合於可溶性人類Fc-dectin-1a受體。 4.       根據實施例1至3中任一項之結合物,其中該等多肽包含至少一個B細胞抗原決定基及至少一個T細胞抗原決定基,較佳為一共價連接於β-葡聚糖之B細胞抗原決定基+CRM197結合物,尤其是肽+CRM197+線性β-(1,6)-葡聚糖或肽+CRM197+線性石耳多醣結合物。 5.       根據實施例1至4中任一項之結合物,其中結合物中β-葡聚糖與B細胞及/或T細胞抗原決定基多肽之比率,尤其是石耳多醣與肽比率在10:1(w/w)至0.1:1(w/w)、較佳為8:1(w/w)至2:1(w/w)、尤其是4:1(w/w)範圍內,其限制條件為若結合物包含載體蛋白,則β-葡聚糖與B細胞抗原決定基-載體多肽之較佳比率為50:1 (w/w)至0.1:1(w/w),尤其是10:1至0.1:1。 6.       根據實施例1至5中任一項之結合物,其中B細胞抗原決定基及泛特異性/混雜T細胞抗原決定基獨立地與該β-葡聚糖結合。 7.       根據實施例1至6中任一項之結合物,其中該B細胞抗原決定基多肽之長度為5至20個胺基酸殘基、較佳為6至19個胺基酸殘基、尤其是7至15個胺基酸殘基;及/或其中該T細胞抗原決定基多肽之長度為8至30個胺基酸殘基、較佳為13至29個胺基酸殘基、尤其是13至28個胺基酸殘基, 其中B細胞抗原決定基及/或T細胞抗原決定基較佳藉由連接子連接於β-葡聚糖及/或載體蛋白,更佳為藉由半胱胺酸殘基或包含半胱胺酸或甘胺酸殘基之連接子;或由以下方法產生之連接子:醯肼介導之偶合、經由異雙官能連接子(諸如N-β-順丁烯二醯亞胺基丙酸醯肼(BMPH)、4-[4-N-順丁烯二醯亞胺基苯基]丁酸醯肼(MPBH)、N-[ε-順丁烯二醯亞胺基己酸)醯肼(EMCH)或N-[κ-順丁烯二醯亞胺基十一酸]醯肼(KMUH))之偶合、咪唑介導之偶合、還原胺化、碳二亞胺偶合;一-NH-NH 2連接子、一NRRA、NRRA-C或NRRA-NH-NH 2連接子;肽連接子,諸如二聚體、三聚體、四聚體(或更長聚體)肽群,諸如CG或CG;或裂解位點,諸如組織蛋白酶裂解位點;或其組合,尤其是藉由半胱胺酸或NRRA-NH-NH 2連接子; 其中T細胞抗原決定基較佳為包含胺基酸序列AKFVAAWTLKAAA之多肽,其視情況連接於連接子,如半胱胺酸殘基或包含半胱胺酸殘基之連接子、NRRA、NRRA-C或NRRA-NH-NH 2連接子;或胺基酸序列AKFVAAWTLKAAA之變異體;其中該等變異體包括胺基酸序列AKFVAAWTLKAA;其中第一殘基丙胺酸經諸如甘胺酸、纈胺酸、異白胺酸及白胺酸之脂肪族胺基酸殘基置換的變異體;其中第三殘基苯丙胺酸經L-環己基苯丙胺酸置換的變異體;其中第十三胺基酸殘基丙胺酸經脂肪族胺基酸殘基(例如甘胺酸、纈胺酸、異白胺酸及白胺酸)置換的變異體;包含胺基己酸的變異體,較佳為與胺基酸序列AKFVAAWTLKAA之C端偶合之包含胺基己酸的變異體;具有胺基酸序列AX 1FVAAX 2TLX 3AX 4A之變異體,其中X 1係選自由W、F、Y、H、D、E、N、Q、I及K組成之群;X 2係選自由F、N、Y及W組成之群;X 3係選自由H及K組成之群,且X 4係選自由A、D及E組成之群,其限制條件為寡肽序列不為AKFVAAWTLKAAA;尤其其中T細胞抗原決定基係選自AKFVAAWTLKAAANRRA-(NH-NH 2)、AKFVAAWTLKAAAN-C、AKFVAAWTLKAAA-C、AKFVAAWTLKAAANRRA-C、aKXVAAWTLKAAaZC、aKXVAAWTLKAAaZCNRRA、aKXVAAWTLKAAa、aKXVAAWTLKAAaNRRA、aA(X)AAAKTAAAAa、aA(X)AAATLKAAa、aA(X)VAAATLKAAa、aA(X)IAAATLKAAa、aK(X)VAAWTLKAAa及aKFVAAWTLKAAa,其中X為L-環己基丙胺酸,Z為胺基己酸,且a為選自丙胺酸、甘胺酸、纈胺酸、異白胺酸及白胺酸之脂肪族胺基酸殘基;及/或 其中T細胞抗原決定基為選自以下之群之α突觸核蛋白多肽:GKTKEGVLYVGSKTK (aa31-45)、KTKEGVLYVGSKTKE  (aa32-46)、EQVTNVGGAVVTGVT    (aa61-75)、VTGVTAVAQKTVEGAGNIAAATGFVK (aa71-86)、DPDNEAYEMPSE          (aa116-130)、DNEAYEMPSEEGYQ    (aa121-135)及EMPSEEGYQDYEPEA (aa126-140)。 8.       根據實施例1至7中任一項之結合物,其中該結合物進一步包含載體蛋白,較佳為白喉毒素之無毒交叉反應物質(CRM),尤其是CRM197、KLH、白喉類毒素(DT)、破傷風類毒素(TT)、流感嗜血桿菌蛋白D (HipD)及腦膜炎球菌血清群B之外膜蛋白質複合體(OMPC)、銅綠假單胞菌外毒素A之重組無毒形式( rEPA)、鞭毛蛋白、大腸桿菌熱不穩定腸毒素(LT)、霍亂毒素(CT)、突變毒素(例如LTK63及LTR72)、病毒樣顆粒、白蛋白結合蛋白、牛血清白蛋白、卵白蛋白、合成肽樹枝狀聚合物,例如,多抗原肽(MAP),尤其是其中結合物中載體蛋白與β-葡聚糖或甘露多醣之比率為1/0.1至1/50、較佳為1/0.1至1/40、更佳為1/0.1至1/20,尤其是1/0.1至1/10;其中較佳限制條件為若結合物包含載體蛋白,則結合物包含至少另一獨立結合之T細胞或B細胞抗原決定基多肽, 其中較佳地,結合物係由以下組成或包含以下: (a) β-葡聚糖 (b)至少B細胞或T細胞抗原決定基多肽,及 (c)載體蛋白, 其中該等三種成分(a)、(b)及(c)以順序(a)-(b)-(c)、(a)-(c)-(b)或(b)-(a)-(c),尤其是以順序(a)-(c)-(b)彼此共價結合;及 其中較佳所有此等成分(a)、(b)及(c)均藉由連接子結合。 9.       根據實施例1至8中任一項之結合物,其中該多肽為或包含B細胞或T細胞抗原決定基多肽,其中該多肽較佳為或包含B細胞及T細胞抗原決定基,尤其是其中該抗原決定基多肽係選自以下之群: Tau多肽,較佳為 Tau2-18、Tau 176-186、Tau 181-210、Tau 200-207、Tau 201-230、Tau 210-218、Tau 213-221、Tau 225-234、Tau 235-246、Tau 251-280、Tau 256-285、Tau 259-288、Tau 275-304、Tau260-264、Tau 267-273、Tau294-305、Tau 298-304、Tau 300-317、Tau 329-335、Tau 361-367、Tau 362-366、Tau379 - 408、Tau 389-408、Tau 391-408、Tau 393-402、Tau 393-406、Tau393-408、Tau 418-426、Tau 420-426;包括模擬抗原決定基的上述之Tau衍生多肽之模擬物,及含有模擬磷酸化胺基酸之胺基酸取代(包括經D取代磷酸化S及經E取代磷酸化T)的肽,分別包括Tau176-186、Tau200-207、Tau210-218、Tau213-221、Tau225-234、Tau379-408、Tau389-408、Tau391-408、Tau393-402、Tau393-406、Tau418-426、Tau420-426;具有pSp396及pS404之Tau379-408、雙磷酸化多肽Tau195-213[pS202/pT205]、Tau207-220[pT212/pS214]及Tau224-238[pT231]、融合於7聚體(Tau418-426)或11聚體(Tau417-427)之N端YGG連接子, Tau位置 序列 195-213 SGYSSPGSPGTPGSRSRTP 207-220 GSRSRTPSLPTPPT 224-238 KKVAVVRTPPKSPSS 393-408 VYKpSPVVSGDTpSPRHL 379 - 408[P-Ser396,404] RENAKAKTDHGAEIVYKpSPVVSGDTpSPRHL Tau260-264[P-Ser262] IGpSTE 294-305 KDNIKHVPGGGS* 251-280 PDLKNVKSKIGSTENLKHQPGGGKVQIINK 256-285 VKSKIGSTENLKHQPGGGKVQIINKKLDLS 256-285-pS262 VKSKIGpSTENLKHQPGGGKVQIINKKLDLS 259-288 KIGSTENLKHQPGGGKVQIINKKLDLSNVQ 275-304 VQIINKKLDLSNVQSKCGSKDNIKHVPGGG 201-230-pT217 GSPGTPGSRSRTPSLPpTPPTREPKKVAVVR 379-408-pS396pS404 RENAKAKTDHGAEIVYKpSPVVSGDTpSPRHL 181-210-pS202pT205 TPPSSGEPPKSGDRSGYSSPGpSPGpTPGSRS 300-317 VPGGGSVQIVYKPVDLSK 267-273 KHQPGGG 298-304 KHVPGGG 329-335 HHVPGGG 361-367 THVPGGG 200-207(pS202/pT205) PGpSPGpTPG 200-207(pS202/pT205)磷酸模擬物 PGDPGEPG 200-207(pS202/pT205)磷酸模擬物 SPGDPGEPG 210-218 (pT212/pS214) SRpTPpSLPTP 210-218 (pT212/pS214)磷酸模擬物 SREPDLPTP 210-218 (pT212/pS214)磷酸模擬物 SREPDLP 213-221 (pT217) PSLPpTPPTR 213-221 (pS214/pT217) PpSLPpTPPTR 213-221 (pT217)磷酸模擬物 PSLPEPPTR 213-221 (pS214/pT217)磷酸模擬物 PDLPEPPTR 393-402 (pSer396) VYKpSPVVSGD 393-402 (pSer396)磷酸模擬物 VYKDPVVSG 393-406 (pSer396, pSer404) VYKpSPVVSGDTpSPR 393-406 (pSer396, pSer404)磷酸模擬物 VYKDPVVSGDTDPR 176-186 (pT181) PPAPKpTPPSSG 176-186 (pT181)磷酸模擬物 PPAPKEPPSSG 225-234  (pT231) KVAVVRpTPPK 225-234  (pT231)磷酸模擬物 KVAVVREPPKS Tau379 - 408[P-Ser396,404] RENAKAKTDHGAEIVYKpSPVVSGDTpSPRHL Tau379 - 408[P-Ser396,404]磷酸模擬物 RENAKAKTDHGAEIVYKDPVVSGDTDPRHL 389-408 GAEIVYKpSPVVSGDTpSPRHL 391-408 EIVYKpSPVVSGDTpSPRHL 389-408磷酸模擬物 GAEIVYKDPVVSGDTDPRHL 391-408磷酸模擬物 EIVYKDPVVSGDTDPRHL 418-426 DMVDpSPQLA 418-426磷酸模擬物 DMVDDPQLA 420-426 VDpSPQLA 420-426磷酸模擬物 VDDPQLA 362-366 HVPGG (LDNIT HVPGGGNKKIE) 235-246 SPSSAKSRLQTA ; IL12/23多肽,較佳為 FYEKLLGSDIFTGE、FYEKLLGSDIFTGEPSLLPDSP、VAQLHASLLGLSQLLQP、GEPSLLPDSPVAQLHASLLGLSQLLQP、PEGHHWETQQIPSLSPSQP、PSLLPDSP、LPDSPVA、FYEKLLGSDIFTGEPSLLPDSPVAQLHASLLGLSQLLQP、LLPDSP、LLGSDIFTGEPSLLPDSPVAQLHASLLG、FYEKLLGSDIFTGEPSLLPDSPVAQLHASLLG、QPEGHHW、LPDSPVGQLHASLLGLSQLLQ及QCQQLSQKLCTLAWSAHPLV;GHMDLREEGDEETT、LLPDSPVGQLHASLLGLSQ及LLRFKILRSLQAFVAVAARV;IL12/23 p40次單元之aa136-145、aa136-143、aa 136-151、aa137-146、aa144-154、aa144-155;QPEGHHWETQQIPSLS、GHHWETQQIPSLSPSQPWQRL、QPEGHHWETQ、TQQIPSLSPSQ、QPEGHHWETQQIPSLSPSQ、QPEGHHWETQQIPSLSPS;原生人類IL12/23p40之aa15-66、aa38-46、aa53-71、aa119-130、aa160-177、aa236-253、aa274-285、aa315-330;LLLHKKEDGIWSTDILKDQKEPKNKTFLRCE及KSSRGSSDPQG;鼠類IL12/23之aa38-46、aa53-71、aa119-130、aa160-177、aa236-253、aa274-285、aa315-330; IgE多肽,較佳為 SVNPGLAGGSAQSQRAPDRVL、HSGQQQGLPRAAGGSVPHPR; AVSVNPGLAGGSAQSQRAPDRVLCHSGQQQGLPRAAGGSVP、QQQGLPRAAGG、QQLGLPRAAGG、QQQGLPRAAEG、QQLGLPRAAEG、QQQGLPRAAG、QQLGLPRAAG、QQQGLPRAAE、QQLGLPRAAE、HSGQQQGLPRAAGG、HSGQQLGLPRAAGG、HSGQQQGLPRAAEG、HSGQQLGLPRAAEG、QSQRAPDRVLCHSG、GSAQSQRAPDRVL及WPGPPELDV; Her2多肽,較佳為 LHCPALVTYNTDTFESMPNPEGRYTFGASCV、ACPYNYLSTDVGSCTLVCPLHNQEVTAEDGTQRCEK及CPLHNQEVTAEDGTQRCEK;KLLSLIKGVIVHRLEGVE;Her2序列之aa266-296、aa563-598、aa585-598、aa597-626及aa613-626;AVLDNGDPLNNTTPVTGA、LKGGVLIQRNPQLC、YNTDTFESMPNPEGRYTFGAS、PESFDGDPASNTAPLQPEQLQ、PHQALLHTANRPEDE、CRVLQGLPREYVNARHC、YMPIWKFPDEEGAC;PESFDGDPASNTAPLQPC、RVLQGLPREYVNARHC、YMPIWKFPDEEGAC、PESFDGDPASNTAPLQP、YMPIWKFPDEEGAC、PESFDGDPASNTAPLQPRVLQGLPREYVNARHSLPYMPIWKFPDEEGAC、RVLQGLPREYVNARHSPESFDGDPASNTAPLQPYMPIWKFPDEEGAC;C-QMWAPQWGPD-C、C-KLYWADGELT-C、C-VDYHYEGTIT-C、C-QMWAPQWGPD-C、C-KLYWADGELT-C、C-KLYWADGEFT-C、C-VDYHYEGTIT-C、C-VDYHYEGAIT-C;RLVPVGLERGTVDWV、TRWQKGLALGSGDMA、QVSHWVSGLAEGSFG、LSHTSGRVEGSVSLL、LDSTSLAGGPYEAIE、HVVMNWMREEFVEEF、SWASGMAVGSVSFEE. QVSHWVSGLAEGSFG及LSHTSGRVEGSVSLL;RSLTEILKGGVLIQRNPQLC、VLIQRNPQLCYQDTILWKDI、YQDTILWKDIFHKNNQLALT、FHKNNQLALTLIDTNRSRAC、LIDTNRSRACHPCSMPCKGS、HPCSMPCKGSRCWGESSEDC、RCWGESSEDCQSLTRTVCAG、QSLTRTVCAGGCARCKGPLP、 GCARCKGPLPTDCCHEQCAA、TDCCHEQCAAGCTGPKHSDC、GCTGPKHSDCLACLHFNHSG、LACLHFNHSGICELHCPALV、ICELHCPALVTYNTDTFESM、TYNTDTFESMPNPEGRYTFG、 PNPEGRYTFGASCVTACPYN、GASCVTACPYNYLSTDVGS、PYNYLSTDVGSCTLVCPLHNQE、TLVCPLHNQEVTAEDGTQR、VTAEDGTQRCEKCSKPCARV、EKCSKPCARVCYGLGMEHLR、YGLGMEHLREVRAVTSANI、EVRAVTSANIQEFAGCKKI;KKIFGSLAF、GSLAFLPES、FAGCKKIFGS、SLAFLPESFD、FAGCKKIFGSLAFLPESFD、QEFAGCKKIFGSLAFLPESFDGD、SLAFLPESFD、尤其是YMPIWKFPDEEGAC; PD1、PDL1及CTLA-4多肽,較佳為 GAISLAPKAQIKESLRAEL、PGWFLDSPDRPWNPP、FLDSPDRPWNPPTFS、SPDRPWNPPTFSPA、ISLHPKAKIEESPGA及FMTYWHLLNAFTVTVPKDL,尤其是GAISLAPKAQIKESLRAEL; Aβ多肽,較佳為 原生人類Aβ1-40及/或Aβ1-42或具有Aβ1-42序列之aa1-6、aa1-7、aa1-8、aa1-9、aa1-10、aa1-11、aa1-12、aa1-13、aa1-14、aa1-15、aa1-21、aa2-7、aa2-8、aa2-9、aa2-10、aa3-8、aa3-9、aa3-10、aa pE3-8、aa pE3-9、aa pE3-10、aa11-16、aa11-17、aa11-18、aa11-19、aa12-19、aa13-19、aa14- 19、aa14- 20、aa14- 21、aa14- 22、aa14- 23、aa30-40、aa31-40、aa32-40、aa33-40、aa34-40、aa30-42、aa37-42的多肽片段;NYSLDKIIVDYNLQSKITLP、LINSTKIYSYFPSVISKVNQ、LEYIPEITLPVIAALSIAES;環化Aβ1-14;DKELRI、DKELRID、DKELRIDS、DKELRIDSG、DKELRIDSGY、SWEFRT、SWEFRTD、SWEFRTDS、SWEFRTDSG、SWEFRTDSGY、TLHEFRH、TLHEFKH、THTDFRH、THTDFKH、AEFKHD、AEFKHG、SEFRHD、SEFRHG、SEFKHD、SEFKHG、ILFRHG、ILFRHD、ILFKHG、ILFKHD、IRWDTP、IRYDAPL、IRYDMAG; IL31多肽,較佳為 原生人類IL31 (Genbank: AAS86448.1)、原生犬IL31 (Genbank:BAH97742.1)、原生貓IL31 (UNIPROT: A0A2I2UKP7)、原生馬IL31 (UNIPROT F7AHG9)或與前述任一者具有至少70%、75%、80%、85%、90%或95%序列一致性的任何肽序列,IL31蛋白衍生多肽係選自以上提及之IL31衍生多肽之模擬物,包括模擬抗原決定基及含有胺基酸取代的肽, 對於人類IL31:序列aa98-145、aa87-150、aa105-113、aa85-115、aa84-114、aa86-117、aa87-116衍生之肽;或其片段及肽SDDVQKIVEELQSLSKMLLKDVEEEKGVLVSQNYTL;DVQKIVEELQSLSKMLLKDV、EELQSLSK及DVQK、LDNKSVIDEIIEHLDKLIFQDA;及DEIIEH、TDTHECKRFILTISQQFSECMDLALKS、TDTHESKRF、TDTHERKRF HESKRF、HERKRF、HECKRF;SDDVQKIVEELQ、VQKIVEELQSLS、IVEELQSLSKML、ELQSLSKMLLKD、SLSKMLLKDVEE、KMLLKDVEEEKG、LKDVEEEKGVLV、VEEEKGVLVSQN、EKGVLVSQNYTL、LDNKSVIDEIIE、KSVIDEIIEHLD、IDEIIEHLDKLI、IIEHLDKLIFQD、HLDKLIFQDAPE、KLIFQDAPETNI、FQDAPETNISVP、APETNISVPTDT、TNISVPTDTHEC、SVPTDTHESKRF、TDTHECKRFILT、TDTHESKRFILT、TDTHERKRFILT、HECKRFILTISQ、HESKRFILTISQ、HERKRFILTISQ、KRFILTISQQFS、ILTISQQFSECM、ILTISQQFSESM、ILTISQQFSERM、ISQQFSECMDLA、ISQQFSESMDLA、ISQQFSERMDLA、QFSECMDLALKS、QFSESMDLALKS、QFSERMDLALKS、SKMLLKDVEEEKG、EELQSLSK、KGVLVS、SPAIRAYLKTIRQLDNKSVIDEIIEHLDKLI、DEIIEHLDK、SVIDEIIEHLDKLI、SPAIRAYLKTIRQLDNKSVI、TDTHECKRF、HECKRFILT、HERKRFILT、HESKRFILT、SVPTDTHECKRF、SVPTDTHESKRF及SVPTDTHERKRF 對於犬IL31:由aa97-144、aa97-133、aa97-122、aa97-114、aa90-110、aa90-144、aa86-144、aa97-149、aa90-149、aa86-149、aa 124-135或其片段組成之肽及肽:SDVRKIILELQPLSRGLLEDYQKKETGV、DVRKIILELQPLSRGLLEDY ELQPLSR LSDKNIIDKIIEQLDKLKFQHE、LSDKNIIDKIIEQLDKLKFQ、KLKFQHE、LSDKNI、LDKL、LSDKN、ADTFECKSFILTILQQFSACLESVFKS及ADNFERKNF 對於貓IL31:貓IL-31序列之aa124-135及肽SDVRKIILELRPMSKGLLQDYVSKEIGL及DVRKIILELRPMSKGLLQDY, LSDKNTIDKIIEQLDKLKFQRE, ADNFERKNFILAVLQQFSACLEHVLQS及ADNFERKNF 對於馬IL31:馬IL-31序列之aa118-129及肽:LQPKEIQAIIVELQNLSKKLLDDY, EIQAIIVELQNLSKKLLDDY, SLNNDKSLYIIEQLDKLNFQ and TDNFERKRFILTILRWFSNCLEHRAQ CGRP多肽,較佳為: 原生人類CGRP α (ACDTATCVTHRLAGLLSRSGGVVKNNFVPTNVGSKAF);降鈣素同種型α-CGRP前原蛋白之aa83-119,登錄號NP_001365879.1或原生人類CGRP β (ACNTATCVTHRLAGLLSRSGGMVKSNFVPTNVGSKAF)之aa82-228;降鈣素基因相關肽2前驅體之aa82-118,登錄號NP_000719.1或其前驅體分子(NP_001365879.1及NP_000719.1),較佳選自aa8-35、aa11-37、aa1-20或其片段之序列及序列ACDTATCVTH;ACDTATCVTHRLAGL;ACDTATCVTHRLAGLLSR;ACDTATCVTHRLAGLLSRSG;ACDTATCVTHRLAGLLSRSGGVVKN;TATCVTHRLAGLL;ATCVTHRLAGLLSR;RLAGLLSR;RLAGLLSRSGGVVKN;RSGGVVKN;RLAGLLSRSGGVVKNNFVPT;RLAGLLSRSGGVVKNNFVPTNVG;RLAGLLSRSGGVVKNNFVPTNVGSK;RLAGLLSRSGGVVKNNFVPTNVGSKAF;LLSRSGGVVKNNFVPTNVGSKAF;RSGGVVKNNFVPTNVGSKAF;GGVVKNNFVPTNVGSKAF;VVKNNFVPTNVGSKAF;NNFVPTNVGSKAF;VPTNVGSKAF;NVGSKAF;GSKAF 過敏原抗原決定基多肽,較佳為:源於原生過敏原之多肽、過敏原蛋白質衍生之多肽,該多肽選自上述過敏原衍生多肽之模擬物,包括模擬抗原決定基、受限肽、含有胺基酸取代之肽及構形抗原決定基,參見表A及表B 較佳選自: 過敏原來源 過敏原 UNIPROT 普通赤楊 Aln g 1 P38948 互生鏈隔孢菌 Alt a 1 P79085 Alt a 3 P78983 Alt a 4 Q00002 Alt a 5 P42037 Alt a 6 Q9HDT3 Alt a 7 P42058 Alt a 8 P0C0Y4 Alt a 10 P42041 Alt a 12 P49148 Alt a 13 Q6R4B4 豚草 Amb a 1 P27761 Amb a 1.05 P27762 Amb a 3 P00304 Amb a 5 P02878 Amb a 6 O04004 Amb a 7 無可用的完整序列 Amb a 8 Q2KN24 Amb a 9 Q2KN27 Amb a 10 Q2KN25 歐洲蜜蜂 Api m 1 P00630 Api m 2 Q08169 Api m 3 Q4TUB9 Api m 4 01501 Api m 5 B2D0J4 Api m 6 Q27SJ8 Api m 7 Q8MQS8 Api m 8 B2D0J5 Api m 9 C9WMM5 Api m 10 Q1HHN7 Api m 11 B3GM11 Api m 12 Q868N5 芹菜 Api g 1 P49372 Api g 2 E6Y8S8 Api g 3 P92919 Api g 4 Q9XF37 Api g 5 P81943 花生 Ara h 1 P43238 Ara h 2 Q6PSU2-1 Ara h 3 O82580 Ara h 3.02 Q9SQH7 Ara h 5 Q9SQI9 Ara h 6 Q647G9 Ara h 7 Q9SQH1 Ara h 8 Q6VT83 垂枝樺 Bet v 1 P15494 Bet v 2 P25816 Bet v 3 P43187 Bet v 4 Q39419 Bet v 6 O65002 Bet v 7 P81531 家犬 Can f 1 O18873 Can f 2 O18874 Can f 3 P49822 Can f 4 D7PBH4 Can f 5 P09582 Can f 6 H2B3G5 Can f 7 Q28895 Can f 8 F1PHB6 歐洲角樹 Car b 1 P38949 歐洲栗 Cas s 1 B7TWE3 Cas s 5 Q42428 Cas s 8 序列不明 分枝孢子菌 Cla h 2 無可用的完整序列 CIa h 5 P42039 CIa h 6 P42040 CIa h 7 P42059 CIa h 8 P0C0Y5 CIa h 9 B7ZK61 CIa h 10 P40108 CIa h 12 P50344 歐洲榛 Cor a 1 Q08407 Cor a 2 Q9AXH5 Cor a 6 A0A0U1VZC8 Cor a 8 Q9ATH2 Cor a 9 Q8W1C2 Cor a 10 Q9FSY7 Cor a 11 Q8S4P9 日本柳杉 Cry j 1 P18632 Cry j 2 P43212 歐洲鯉 Cyp c 1 Q8UUS3 野胡蘿蔔 Dau c 1 O04298 Dau c 4 Q8SAE6 歐洲屋塵蟎 Der p 1 P08176 (變異體) Der p 2 P49278 Der p 3 P39675 Der p 4 Q9Y197 Der p 5 P14004 Der p 6 P49277 Der p 7 P49273 Der p 8 P46419 Der p 9 Q7Z163 Der p 10 O18416 Der p 11 Q6Y2F9 Der p 14 Q8N0N0 Der p 20 B2ZSY4 Der p 21 Q2L7C5 Der p39 XP_027203190.1 歐洲山毛櫸 Fag s 1 B7TWE6 家貓 Fel d 1 P30438 (鏈1), P30440 (鏈2) Fel d 2 P49064 Fel d 3 Q8WNR9 Fel d 4 Q5VFH6 Fel d 5 無可用的完整序列 Fel d 6 無可用的完整序列 Fel d 7 E5D2Z5 Fel d 8 F6K0R4 橡膠樹 Hev b 1 P15252 Hev b 2 P52407 Hev b 3 O82803 Hev b 4 Q6T4P0 Hev b 5 Q39967 Hev b 6 P02877 Hev b 7.01 O04008 Hev b 7.02 O65811 Hev b 8 O65812 Hev b 9 Q9LEJ0 Hev b 10 P35017 Hev b 11 Q949H3 Hev b 12 Q8RYA8 Hev b 13 Q7Y1X1 美國雪松 Jun a 1 P81294 Jun a 2 Q9FY19 Jun a 3 P81295 蘋果 Mal d 1 P43211 Mal d 2 Q9FSG7 Mal d 3.0101w Q5J026 Mal d 4 Q9XF42 白櫟木 Que a 1 B6RQS1 梯牧草 PhI p 1 Q40967 PhI p 2 P43214 PhI p 4 Q5ZQK5 PhI p 5 Q40960 PhI p 6 P43215 PhI p 7 O82040 PhI p 11 Q8H6L7 PhI p 12 P35079 PhI p 13 Q9XG86 環胡蜂 (Polistes annularis) Pol a 1 Q9U6W0 Pol a 5 Q05109 造紙胡蜂 Pol d 1 Q6Q252 Pol d 4 Q7Z269 Pol d 5 Q68KJ8 幾內亞紙胡蜂 (Polistes exclamans) Pol e 1 無可用的完整序列 Pol e 4 無可用的完整序列 Pol e 5 Q68KJ9 北方紙胡蜂 (Polistes fuscatus) Pol f 5 P35780 柞蠶馬蜂 (Polistes gallicus) Pol g 1 P83542 Pol g 5 P83377 長足胡蜂 (Polistes metricus) Pol m 5 P35780 及/或選自: 過敏原 UNIPROT 抗原決定基 / 模擬抗原決定基 Amb a 1 P27761 GMLATVAFNTFTDNVDQR, AFNKFTDNVDQR, MPRCRFGF, WRTQNDVLENG TFTDNVDQRMPRCRH RVVELMDWTVLH, GSAMTWGMLAAE, SYNIIATGIHPV, TMVATGLMPVLI, QDFDDIL, CLFSQGNRC, VANLKVGV, NPGGLSAAPAGS, RHASTLLGRHG, EAAESMWRVASG, QNRLNSNGNNGGSQ, DDDLQHQFDDQD Amb a 3 P00304 CDIKDPIRLEPGGPD, EVWREEAYHACDIKD, GKVYLVGGPELGGWK, LGGWKLQSDPRAYAL, NFTTGEDSVAEVWRE, PGGPDRFTLLTPGSH, PGGPDRFTLLTPGSH, QFKTTDVLWFNFTTG, RAYALWSARQQFKTT, TPGSHFICTKDQKFV Alt a1 P79085 MISTSRK, QKRNTIT, KISEFYGRKP, VATATLPNYC, YSCGENSFMD, YYNSLGFNIK Ara h 1 P43238 REREREEDWRQPREDWRRPS, RTRGRQPGDYDDDRRQPRRE, DDDRRQPRREEGGRWGPAGP, TTNQRSPPGERTRGRQPGDY,  QPREDWRRPSHQQPRKIRPE, GREGEQEWGTPGSHVREETS, PVNTPGQFEDFFPASSRDQS, AGGEQEERGQRRWSTRSSEN, REGEPDLSNNFGKLFEVKPD, NASSELHLLGFGINAENNHR, IDQIEKQAKDLAFPGSGEQV, LAFPGSGEQVEKLIKNQKES  AKSSPYQKKT, QEPDDLKQKA, LEYDPRLUYD, GERTRGRQPG, PGDYDDDRRQ, PRREEGGRWG, REREEDWRQP, EDWRRPSHQQ, QPKKIRPEGR, TPGQFEDFFP, SYLQEFSRNT, FNAEFNEIRR, EQEERGQRRW, DITNPINLRE, NNFGKLFEVK, GTGNLELVAV, RRYTARLKEG, ELHLLGFGIN, HRIFLAGDKD, IDOIEKOAKD, KDLAFPGSGE, KESHFVSARP, PEKESPEKED Ara h 2 Q6PSU2-1 ARQQWELQGDRRCQSQLERA, ERDPYSPSQDPYSPSPYDRR, RRCQSQLERANLRPCEQHLM, RDPYSPSPYDRRGAGSSQHQ, GRDPYSPSQDPYSPSQDPDR, PYSPSQDPDRRDPYSPSPYD, QKIQRDEDSYERDPYSPSQD, HASARQQWEL, QWELQGDRRC, DRRCQSQLER, LRPCEQHLMQ, KIQRDEDSYE, YERDPYSPSQ, SQDPYSPSPY, DRLQGRQQEQ, KRELRNLPQQ, QRCDLDVESG, HASARQQWEL, ERDPYSPSQDPYSPS, RRCQSQLER, CDLEVESGGRDRY, ERDPYSPSQDPYSPS, NLRPCEQHLMQKIQRD, PQRCDLE, RQQEQQFKRELRNLPQQ, SDRLQGRQQ, RRCQSQLERANLRPCEQHLMQKIQRDEDSYGRDPYSPSQDPY Ara h 3 O82580 IETWNPNNQEFECAG, GNIFSGFTPEFLEQA, VTVRGGLRILSPDRK, DEDEYEYDEEDRG, EDEYEYDEEDRRRGRGSRGR, NIFSGFTPEFLEQAFQVDDR, ESEEEGAIVTVRGGLRILSP, SGFTPEFLEQAFQVDDRQIV, EEGAIVTVRGGLRILSPDRK, TYEEPAQQGRRYQSQRPPRR, RRADEEEEYDEDEYEYDEED, NHEQEFLRYQQQSRQSRRRS, QEFLRYQQQSRQSRRRSLPY, QEEREFSPRGQHSRRERAGQ Ara h 6 Q647G9 CDELNEMENTQR, CEALQQIMENQCD, CNFRAPQRCDLDV, KPCEQHIMQRI, YDSYDIR, KRELRMLPQQ, MRRERGRGGDSSSS Bet v 1 P15494 KAEQVKASKEMGETLLRAVESYLLAHSDAYN, GPGTIKKISFPEGFPFKYVKDRVDEVDHTN, DGGSILKISNKYHTKGDHEVKAEQVKASKE, LFPKVAPQAISSVENIEGNGGPGTIKKISF, MGETLLRAVESYLL, MGVFNYETETTSVIPAARLFKAFI, VDHTNFKYNYSVIEGGPIGDTLEKISNEIK, ISFPEGFPFK, FILDGDNLFPKVAPQAISSVE, NIEGNGGPGTIKK, DGDNLFPKVA, ILDGDNLFPKVAPQAI, SKEMGETLLRAVESYLLAHSD, EVDHTNFKYNYSVIEG, GGPIGDTLEKISNEIK, GPGTIKKISF, EQVKASKEMGETLLRAVESYLLA, GDNLFPKVAPQAIS, ISFPEGFPFKY, ISFPEGFPFKYVKD, aa 32-37, aa42-50, aa138-153. CQQFLSVRALC, QQFLSVRALC, CQQFLSVRAL Cry j 1 P18632 DALTLRTATNIW, DGDALTLRTATN, DGRGAQVYIGNG, NATPQLTKNAGV, NGGPCVFIKRVS, NGNATPQLTKNA, NSDDDPVNPAPG, VENGNATPQLTK, NAGVLTCSLSK Cry j 2 P43212 KWVNGREI, GQCKWVNGREICNDRDRPTA, GRENSRAEVSYVHVNGAKFI, PGNKKFVVNNLFFNGPCQPH, SHIIYENVEMINSENPILINQFYCT, YCTSASACQNQRSAVQIQDV, TYKNIRGTSATAAAIQLKCS, AEVSYVHVNGAK Der p 1 P08176 (變異體) KGIPNTKAP, DMFQIGKYG, GIREVWPAG, SSMGAYWGG, KGTTGVRNT, CQIYPPNANKIREALAQ, GYSNAQGVDYWI, NQSLDLAEQELVDCASQHGC, VRNSWDTNWGDNGY, EQSYPCWLSGTPSTP, TPLCDYAAARVGACG, KEQLPTSYPPERAGW, NCLSSDEPLHIRWCQ, EALSEEEWPRYTSHP, SCDATQRAQGRCS, SCDSSQKKQGRCS, SCDESRRRQGRCS, KGIPNTKAP, DMFQIGKYG, GIREVWPAG, SSMGAYWGG, KGTTGVRNT, CKGIPNTKAP, CDMFQIGKYG, CGIREVWPAG, CSSMGAYWGG, CKGTTGVRNT, CKGIPNTKAPC, CDMFQIGKYGC, CGIREVWPAGC, CSSMGAYWGGC, KGTTGVRNTC, KGIPNTKAPC, DMFQIGKYGC, GIREVWPAGC, SSMGAYWGGC, KGTTGVRNTC, Der p 2 P49278 FVVEYTKKW, SWWNLPQIG, KGITTKWMA, AGISYTKTW, DQVDVKDCANHEIKK, VPGIDPNACHYMKCK, APKSENVVVTVKVMGDNGVLACAIATHAKIRD, CHGSEPCIIHRGKPFQLEAVFEANQNSKTAK, DQVDVKDCANHEIKKVLVPGCHGSEPCIIHRGK, EANQNSKTAKIEIKASIEGLEVDVPGIDPNAC, EVDVPGIDPNACHYMKCPLVKGQQYDIKYTWIVPKIAPKSEN, FVVEYTKKW, SWWNLPQIG, KGITTKWMA, AGISYTKTW, FVVEYTKKWC, SWWNLPQIGC, KGITTKWMAC, AGISYTKTWC, CFVVEYTKKWC, CSWWNLPQIGC, CKGITTKWMAC, CAGISYTKTWC, CFVVEYTKKW, CSWWNLPQIG, CKGITTKWMA, CAGISYTKTW Der p39 XP_027203190.1 QEELREAFRMY, TSALREILRAL, NDELDEMIAEI Fel d 1 P30438 (鏈1), P30440 (鏈2) KALPVVLENARILKNCVDAKMTEEDKE, KRDVDLFLTGTPDEYVEQVAQYKALPV, DAKMTEEDKENALS, EICPAVKRDVDLFLTG, EPERTAMKKIQDCY, FAVANGNELLLDLS, KKIQDCYVENGLIS, LLDKIYTSPLC, VAQYKALPVVLENA, VKMAETCPIFYDVF, VQNTVEDLKLNTLGR, EICPAVKRDVDLFLTGTPDEYVEQVAQYK, SSKDCMGEAVQNTVEDLKLNTLGR, VKMAITCPIFYDVFFAVANGNELLLDLSLTKVNA, CPAVKRDVDLFLT, EQVAQYKALPVVLENA KALPVVLENARILNCV RILKNCVDAKMTEEDKE KENALSLLDKIYTSPL TAMKKIQDCY VENGLI SRVLDGLVMTTISSSK, ENLAYTKALLTG; NNISVDGLLTS; VIRNELLLTYA; VINDLLLVLA; GDFYPL; NDFYPE; LDLNP, FAVANGNELL; LKLNTLGREICPAVKRGVDL; YVEQV; ENARILKNCVDAKM; aa21-31, aa21-47 PhI p 1 Q40967 VRYTTEGGTKTEAEDVIPEGWKADTSYESK, APYHFDLSGHAFGAM, HITDDNEEPIAPYHFDLSGHA, NEEPIAPYHFDLSGHAFG, CFEIKCTKPEACSGEPVVV, CTKPEACSGEPVVVHITDDNEEPIAPYHFDLSGH, DNEEPIAPYHF, EPIAPYHFDLSGH, EQKLRSAGELELQFRRVKC, GEPVVVHITDDNEEPIAPYHFDLSGHAFGAMAKKG, GNTPIFKSGRGCGSCFEIKCTKPEACSGEPVVVHITDDNEEPIAPYHFDL, GPFTVRYTTEGGTKTE, GTKTEAEDVIPEGWKADTSYESK, GYKDVDKPPFSGMTGCGNTPIFKSGRGCGSCFEIKCTKPEACS, HITDDNEEPIAPYHF, HITDDNEEPIAPYHFDLSGHAFGA, HVEKGSNPNYLALLVKYVNGDGDVVAV, KCTKPEACSGEPVVVHITDDNEEPIAPYHFDLS, KPPFSGMTGCGNT, KTEAEDVIPEGWKADTSYESK, LTGPFTVRYTTEGGTKTEAEDVIPEGWKADTSYESK, PIAPYHFD, PIAPYHFDLSGHAFG PhI p 2 P43214 VPKVTFTVEKGSNEKHLAVLVKYEGDTMAEVEL, VEKGSNEKHLAVLVKYEGDTMAEVELREHGSD, REHGSDEWVAMTKGEGGVWTFDSEEPLQGPFN, FRFLTEKGMKNVFDDVVPEKYTIGATYAPEE, CFRFLTEKGMKNVFDDVVPEKYTIGATYAPEE, FRFLTEKGMKNVFDDVVPEKYTIGATYAPEEC PhI p 5 Q40960 AEEVKVIPAGELQVIEKVDAAFKVAATAANAAPANDK, ATTEEQKLIEKINAGFKAALAAAAGVQPADKYR, FVATFGAASNKAFAEGLSGEPKGAAESSSKAALTSK, ADLGYGPATPAAPAAGYTPATPAAPAEAAPAGK, AYKLAYKTAEGATPEAKYDAYVATLSEALRI, EAAFNDAIKASTGGAYESYKFIPALEAAVK, TVATAPEVKYTVFETALKKAITAMSEAQKAAK, SRLGRSSAWV, THWQLGERPD, PSTPGERVRH, RGGPDDLTAL, PFWVRGTTW, PSTPGSRQNM, PSTPGDNPLV, KFVVNGRWID, KFLVNGRWID, RLTENTEPLL, FTWGGLRDKS, ERAGAMERAN, RSVSKEEPGM, KLGKFGAARV, VQDLMKSSGV, KLGKFGAARV, CKLGKFGAARVC, CKLGKFGAARV, KLGKFGAARVC, PhI p 6 P43215 GKATTEEQKLIEDVNASFRAAMATTANVPPAD, YKTFEAAFTVSSKRNLADAVSKAPQLVPKLDEVYN, DAVSKAPQLVPKLDEVYNAAYNAADHAAPEDKY, AADHAAPEDKYEAFVLHFSEALRIIAGTPEVHA 人類PCSK9多肽,較佳為原生人類PCSK9或包含胺基酸殘基aa150至170、aa153-162、aa205至225、aa211-223、aa368-382或由其組成之多肽,其具有胺基酸序列(登錄號:Q8NBP7): 及/或PCSK9蛋白質衍生多肽,其選自上述多肽之模擬物,包括模擬抗原決定基及含有胺基酸取代之肽, 及/或PCSK9衍生序列NVPEEDGTRFHRQASK、NVPEEDGTRFHRQASKC、PEEDGTRFHRQASK、CPEEDGTRFHRQASK、PEEDGTRFHRQASKC、AEEDGTRFHRQASK、TEEDGTRFHRQASK、PQEDGTRFHRQASK、PEEDGTRFHRRASK、PEEDGTRFHRKASK、PEEDGTRFHRQASR、PEEDGTRFHRTASK、SIPWNLERITPPR、PEEDGTRFHRQASK、PEEDGTRFHRQA、EEDGTRFHRQASK、EEDGTRFHRQAS、SIPWNLERITP、SIPWNLERITPC、SIPWNLERIT、SIPWNLERITC、LRPRGQPNQC、SRHLAQASQ、SRHLAQASQC、SRSGKRRGER、SRSGKRRGERC、IIGASSDCSTCFVSQ、IIGASSDSSTSFVSQ、IIGASSDSSTSFVSQC、CIGASSDSSTSFVSC、IGASSDSSTSFVSC、CDGTRFHRQASKC、DGTRFHRQASKC、CDGTRFHRQASK、AGRDAGVAKGAC、RDAGVAKC、RDAGVAK、SRHLAQASQLEQC;SRHLAQASQLEQ、GDYEELVLALRC;GDYEELVLALR、LVLALRSEEDC; LVLALRSEED、AKDPWRLPC; AKDPWRLP、AARRGYLTKC、AARRGYLTK、FLVKMSGDLLELALKLPC;  FLVKMSGDLLELALKLP、EEDSSVFAQC、EEDSSVFAQ、NVPEEDGTRFHRQASKC、NVPEEDGTRFHRQASK、CKSAQRHFRTGDEEPVN、KSAQRHFRTGDEEPVN, α突觸核蛋白多肽,較佳為 原生α突觸核蛋白或包含原生人類α突觸核蛋白之胺基酸序列的以下胺基酸殘基或由其組成之多肽:1至5、1至8、1至10、60至100、70至140、85至99、91至100、100至108、102至108、102至109、103至129、103至135、107至130、109至126、110至130、111至121、111至135、115至121、115至122、115至123、115至124、115至125、115至126、118至126、121至127、121至140或126至135,該胺基酸序列為: MDVFMKGLSK AKEGVVAAAE KTKQGVAEAA GKTKEGVLYV GSKTKEGVVH GVATVAEKTK EQVTNVGGAV VTGVTAVAQK TVEGAGSIAA ATGFVKKDQL GKNEEGAPQE GILEDMPVDP DNEAYEMPSE EGYQDYEPEA (人類aSyn (1-140 aa):UNIPROT登錄號P37840), 較佳為包含以下胺基酸殘基或由其組成之多肽:1至8、91至100、100至108、103至135、107至130、110至130、115至121、115至122、115至123、115至124、115至125、115至126、118至126、121至127或121至140;或選自以下之群的模擬抗原決定基:DQPVLPD、DQPVLPDN、DQPVLPDNE、DQPVLPDNEA、DQPVLPDNEAY、DQPVLPDNEAYE、DSPVLPDG、DHPVHPDS、DTPVLPDS、DAPVTPDT、DAPVRPDS及YDRPVQPDR。 10.     如實施例1至8中任一項之結合物,其中該結合物包含T細胞抗原決定基且不含B細胞抗原決定基,其中該結合物較佳包含多於一個T細胞抗原決定基,尤其是包含兩個、三個、四個或五個T細胞抗原決定基。 11.     根據實施例1至10中任一項之結合物,其用於預防或治療人類、哺乳動物或鳥類中之疾病,較佳用於預防或治療尤其人類中之感染性疾病、慢性疾病、過敏或自體免疫疾病;較佳限制條件為在預防或治療由真菌,尤其是白色念珠菌直接或間接引起之疾病中之用途被排除在外。 12.     根據實施例1至11中任一項之結合物,其用於針對以下之主動抗Tau蛋白疫苗接種:突觸核蛋白病變、匹克氏病(Pick disease)、進行性核上麻痹(PSP)、皮質基底核退化症、17號染色體相關額顳葉型癡呆(FTDP-17)及嗜銀顆粒病;及/或 用於IL12/IL23相關疾病及自體免疫炎性疾病之主動免疫療法,該等疾病尤其選自以下之群:牛皮癬、牛皮癬性關節炎、類風濕性關節炎、全身性紅斑狼瘡、糖尿病(較佳為1型糖尿病)、動脈粥樣硬化、發炎性腸病(IBD)/克羅恩氏病(M. Crohn)、多發性硬化症、貝切特氏病、僵直性脊椎炎、沃格特-小柳-原田病、慢性肉芽腫病、化膿性汗腺炎、抗嗜中性球細胞質抗體(ANCA)相關血管炎、神經退化性疾病(較佳為阿茲海默症或多發性硬化症)、異位性皮膚炎、移植物抗宿主病、癌症(較佳為食道癌、大腸直腸癌、肺腺癌、小細胞癌及口腔鱗狀細胞癌),尤其是牛皮癬、神經退化性疾病或IBD;及/或 用作主動抗EMPD疫苗,其用於治療及預防IgE相關疾病,較佳為過敏性疾病,諸如季節性、食物、花粉、黴菌孢子、有毒植物、藥劑/藥物、昆蟲、蠍或蜘蛛毒液、乳膠或粉塵過敏;寵物過敏;過敏性支氣管哮喘;非過敏性哮喘;查格-施特勞斯氏症候群;過敏性鼻炎及結膜炎;異位性皮膚炎;鼻息肉;木村氏病;對黏著劑、抗微生物劑、芳香劑、染髮劑、金屬、橡膠成分、局部用藥劑、松香、蠟、拋光劑、水泥及皮革之接觸性皮膚炎;慢性鼻竇炎;異位性濕疹;其中IgE起作用(「自體過敏」)之自體免疫疾病;慢性(特發性)及自體免疫蕁麻疹;膽鹼激導性蕁麻疹;肥大細胞增多症,尤其是皮膚肥大細胞增多症;過敏性支氣管肺麴黴病;慢性或復發性特發性血管性水腫;間質性膀胱炎;全身性過敏反應,尤其是特發性及運動誘發之全身性過敏反應;免疫療法,嗜酸性球相關疾病(諸如嗜酸性球哮喘、嗜酸性球性胃腸炎、嗜酸性球中耳炎及嗜酸性球食道炎);或供用於治療淋巴瘤或預防抗酸治療的致敏副作用,尤其是對於胃或十二指腸潰瘍或逆流;及/或 用於主動抗人類表皮生長因子受體2(抗Her2)疫苗接種以治療及預防Her2陽性贅生性疾病;及/或 用於個別化新抗原特異性療法,較佳在NY-ESO-1、MAGE-A1、MAGE-A3、MAGE-C1、MAGE-C2、MAGE-C3、存活素、gp100、酪胺酸酶、CT7、WT1、PSA、PSCA、PSMA、STEAP1、PAP、MUC1、5 T4、KRAS或Her2之情況下;及/或 用於控制癌症微環境之主動抗免疫檢查點疫苗接種,用於治療及預防贅生性疾病及用於治療及預防癌症/贅生性疾病中之T細胞功能障礙(例如避免CD8 T細胞浸潤癌症組織耗竭)及慢性退化性疾病,包括T細胞活性降低之疾病,如帕金森氏症;及/或 用於家族性及偶發性AD、家族性及偶發性Aβ腦澱粉樣蛋白血管病、出現澱粉樣變性之遺傳性腦出血(HCHWA)、路易氏體癡呆及唐氏症候群中之癡呆、青光眼中之視網膜神經節細胞變性、包涵體肌炎/肌病;及/或 用作活性疫苗,其用於治療及預防突觸核蛋白病變,較佳為帕金森氏症(PD)、路易氏體癡呆(DLB)、多發性系統萎縮症(MSA)、帕金森氏症癡呆(PDD)、神經軸索性營養不良、伴隨杏仁核受限路易氏體之阿茲海默症(AD/ALB);及/或 其用作包含選自以下之群的抗原或新抗原的活性疫苗:NY-ESO-1、MAGE-A1、MAGE-A3、MAGE-C1、MAGE-C2、MAGE-C3、Survivin、gp100、酪胺酸酶、CT7、WT1、PSA、PSCA、PSMA、STEAP1、PAP、MUC1、5 T4及KRAS;及/或 用於治療或預防伴隨IL31蛋白衍生多肽,諸如IL31蛋白之片段之IL31相關疾病,較佳為哺乳動物(包括人類、狗、貓及馬)中的引起瘙癢之過敏性疾病、引起瘙癢之炎性疾病及引起瘙癢之自體免疫疾病;異位性皮膚炎、結節性癢疹、牛皮癬、皮膚T細胞淋巴瘤(CTCL)及其他瘙癢病症、諸如尿毒症性瘙癢、膽汁鬱積性瘙癢、大皰性類天疱瘡及慢性蕁麻疹、過敏性接觸性皮膚炎(ACD)、皮肌炎、不明原因之慢性瘙癢(CPUO)、原發性局部皮膚澱粉樣變性病(PLCA)、肥大細胞增多症、慢性自發性蕁麻疹、大皰性類天疱瘡、疱疹樣皮炎及其他皮膚病狀,包括扁平苔癬、皮膚澱粉樣變性病、淤積性皮炎、硬皮病、與創傷癒合相關之瘙癢,及非瘙癢性疾病,諸如過敏性哮喘、過敏性鼻炎、發炎性腸病(IBD)、骨質疏鬆症、濾泡性淋巴瘤、霍奇金氏淋巴瘤(Hodgkin lymphoma)及慢性骨髓白血病;尤其是其中抗IL31治療與抗IL4及/或抗IL13肽疫苗組合;及/或 用於治療或預防伴隨CGRP衍生多肽,諸如CGRP之片段之CGRP相關疾病,較佳為間歇性及慢性偏頭痛及叢集性頭痛、痛覺過敏、功能障礙性疼痛狀態下之痛覺過敏,諸如類風濕性關節炎、骨關節炎、內臟疼痛超敏反應症候群、纖維肌痛、發炎性腸病、神經性疼痛、慢性發炎性疼痛及頭痛;及/或 用於治療IgE介導之I型過敏性疾病的特異性過敏原免疫療法(AIT)中。此等疾病包括(但不限於)花粉熱、季節性、食物、花粉、黴菌孢子、有毒植物、藥劑/藥物、昆蟲、蠍或蜘蛛毒液、乳膠或粉塵過敏;寵物過敏;過敏性支氣管哮喘;過敏性鼻炎及結膜炎;異位性皮膚炎;對黏著劑、抗微生物劑、芳香劑、染髮劑、金屬、橡膠成分、局部用藥劑、松香、蠟、拋光劑、水泥及皮革之接觸性皮膚炎;慢性鼻竇炎;異位性濕疹;其中IgE起作用(「自體過敏」)之自體免疫疾病;慢性(特發性)及自體免疫蕁麻疹;全身性過敏反應,尤其是特發性及運動誘發之全身性過敏反應;及/或 用於改良利用現有疫苗,尤其是抗感染性疫苗之目標特異性免疫反應,同時不誘導或僅誘導非常有限之CLEC特異性或載體蛋白特異性抗體反應,該等疫苗係較佳選自由以下疫苗之群:PedvaxHIB®、ActHIB®、Hiberix®、Recombivax HB®、PREHEVBRIO®、Engerix-B、HEPLISAV-B®、Gardasil®、Gardasil 9®、Cervarix®、Menveo®、Menactra®、MenQuadfi®、Prevnar-13®、Prevnar 20®、Pneumovax-23®、Vaxneuvance®、Typhim V®、Typhim VI®、Typherix®、結合於無毒重組銅綠假單胞菌外毒素A之Vi多醣、Typbar-TCV®、Shingrix®;及/或 用於預防感染性疾病,例如微生物感染或病毒感染,較佳由以下引起:B型流感嗜血桿菌(Hib)、肺炎鏈球菌、腦膜炎雙球菌及傷寒沙門氏菌或其他感染媒介物,包括導致A型或B型肝炎、人類乳突病毒感染、流感、傷寒、麻疹、腮腺炎及風疹之彼等感染媒介物。此外,有由B群腦膜炎球菌、細胞巨大病毒(CMV)、呼吸道融合病毒(RSV)、艱難梭菌、腸外致病性大腸桿菌(Expec)、肺炎克雷伯氏桿菌、志賀桿菌屬、金黃色葡萄球菌、鐮狀瘧原蟲、間日瘧原蟲、卵形瘧原蟲及三日瘧原蟲、冠狀病毒(SARS-CoV、MERS-CoV、SARS-CoV-2)、伊波拉病毒、伯氏疏螺旋體、HIV及其他引起的感染;及/或 用於治療或預防前蛋白轉化酶枯草桿菌蛋白酶kexin 9型相關疾病,該疾病包括(但不限於)高脂血症、高膽固醇血症、動脈粥樣硬化、低密度脂蛋白膽固醇(LDL-C)之血清水平增加及心血管事件、中風或各種形式之癌症,及/或 用於誘導目標特異性免疫反應,同時不誘導或僅誘導非常有限之CLEC特異性或載體蛋白特異性抗體反應;及/或 用於誘導目標特異性免疫反應,同時不誘導或僅誘導非常有限之CLEC特異性或載體蛋白特異性抗體反應;及/或 用於伴隨減少或功能異常之Treg群的疾病中以增強減弱/減少Treg數量及活性,且由此減少疾病特異性T效應細胞之自體免疫反應且抑制患者之自體免疫反應,其中使用適合作為Treg抗原決定基或與Treg誘導劑,如雷帕黴素、低劑量IL-2、TNF受體2 (TNFR2)促效劑、抗CD20抗體(例如利妥昔單抗)、潑尼松龍、異丙肌苷、乙酸格拉替雷或丁酸鈉之組合的T細胞抗原決定基;及/或 用於加強或保持PD患者中之T細胞數,尤其T效應細胞數及T細胞功能的治療,其較佳包括使用抗免疫檢查點抑制劑抗原決定基誘導抗免疫檢查點抑制劑免疫反應的檢查點抑制劑或疫苗之組合,以加強或保持PD患者中之T細胞數,尤其是T效應細胞數及T細胞功能,其中PD患者較佳選自CD3+細胞總體減少者,尤其是處於所有疾病期之PD患者典型的CD3+CD4+細胞總體減少者;較佳為處於H+Y1-4期、更佳為H+Y 1-3期、最佳為H+Y 2-3期之患者。 13.     根據實施例1至12中任一項之結合物,其中β-葡聚糖或甘露多醣係用作C型凝集素(CLEC)多醣佐劑,較佳為用於增強針對給定T細胞抗原決定基多肽之T細胞反應,其中T細胞抗原決定基更佳為線性T細胞抗原決定基,尤其是其中T細胞抗原決定基為多肽,該多肽包含以下胺基酸序列或由其組成:SeqID7、8、22-29、87-131、GKTKEGVLYVGSKTK、KTKEGVLYVGSKTKE、EQVTNVGGAVVTGVT、VTGVTAVAQKTVEGAGNIAAATGFVK、MPVDPDNEAYEMPSE)、DNEAYEMPSEEGYQD、EMPSEEGYQDYEPEA或其組合。 14.     根據實施例1至13中任一項之結合物,其用於增加針對特異性多肽抗原之親和力成熟或用於誘導相對於人類自體抗原之增加之免疫反應。 15.     根據實施例1至14中任一項之結合物,其進一步包含含有T細胞抗原決定基之載體蛋白,以用於減少或消除B細胞對CLEC及/或載體蛋白之反應及/或增強T細胞對載體蛋白之T細胞抗原決定基的反應,其中該載體蛋白較佳為白喉毒素之無毒交叉反應物質(CRM),尤其是CRM197、KLH、白喉類毒素(DT)、破傷風類毒素(TT)、流感嗜血桿菌蛋白D (HipD)及腦膜炎球菌血清群B之外膜蛋白質複合體(OMPC)、銅綠假單胞菌外毒素A之重組無毒形式( rEPA)、鞭毛蛋白、大腸桿菌熱不穩定腸毒素(LT)、霍亂毒素(CT)、突變毒素(例如LTK63及LTR72)、病毒樣顆粒、白蛋白結合蛋白、牛血清白蛋白、卵白蛋白、合成肽樹枝狀聚合物,例如,多抗原肽(MAP),較佳地,其中結合物中載體蛋白與β-葡聚糖之比率為1/0.1至1/50、較佳為1/0.1至1/40、更佳為1/0.1至1/20,尤其是1/0.1至1/10,尤其是其中包含線性T細胞抗原決定基之疫苗中之T細胞抗原決定基功效增強,例如藉由在N或C端添加溶酶體蛋白酶裂解位點,諸如組織蛋白酶L樣裂解位點或組織蛋白酶S樣裂解位點來增強,其中組織蛋白酶L樣裂解位點較佳由以下共同序列界定: X n-X 1-X 2-X 3-X 4-X 5-X 6-X 7-X 8X n:來自免疫原性肽之3-27個胺基酸 X 1:任何胺基酸 X 2:任何胺基酸 X 3:任何胺基酸 X 4:N/D/A/Q/S/R/G/L;較佳為N/D,更佳為N X 5:F/R/A/K/T/S/E;較佳為F或R,更佳為R X 6:F/R/A/K/V/S/Y;較佳為F或R,更佳為R X 7:任何胺基酸,較佳為A/G/P/F,更佳為A X 8:半胱胺酸或連接子,如NHNH 2, 其中最佳序列為X n-X 1X 2X 3NRRA-連接子; 且其中組織蛋白酶樣裂解位點較佳由以下共同序列界定: X n-X 1-X 2-X 3-X 4-X 5-X 6-X 7-X 8X n:來自免疫原性肽之3-27個胺基酸 X 1:任何胺基酸 X 2:任何胺基酸 X 3:任何胺基酸,較佳為V、L、I、F、W、Y、H,更佳為V X 4:任何胺基酸,較佳為V、L、I、F、W、Y、H,更佳為V X 5:K、R、E、D、Q、N,較佳為K、R,更佳為R X 6:任何胺基酸 X 7:任何胺基酸,較佳為A X 8:較佳為A X 8:半胱胺酸或連接子,如NHNH 2,其中最佳序列為X n-X 1X 2VVRAA-連接子 16.     一種用於產生如實施例1至15中任一項之結合物的方法,其中該β-葡聚糖或甘露多醣係藉由氧化活化且其中使活化β-葡聚糖或甘露多醣與該B細胞抗原決定基多肽及/或該T細胞抗原決定基多肽接觸,由此獲得該β-葡聚糖或甘露多醣與該B細胞抗原決定基多肽及/或該T細胞抗原決定基多肽之結合物。 17.     根據實施例16之方法,其中該β-葡聚糖或甘露多醣係藉由鄰位羥基處之過碘酸鹽氧化、還原胺化或羥基之氰基化獲得。 18.     根據實施例16或17之方法,該β-葡聚糖或甘露多醣被氧化至如下氧化度,該氧化度被界定為與席夫品紅試劑之反應度,其相當於以0.2-2.6、較佳以0.6-1.4、尤其是以0.7-1之莫耳比用過碘酸鹽氧化等量的石耳多醣的氧化度。 19.     根據實施例16至18中任一項之方法,其中結合物係藉由基於腙之偶合將醯肼結合於羰基(醛),或藉由使用異雙官能順丁烯二醯亞胺及醯肼連接子(例如:BMPH (N-β-順丁烯二醯亞胺基丙酸醯肼、MPBH (4-[4-N-順丁烯二醯亞胺基-苯基]丁酸醯肼)、EMCH (N-[ε-順丁烯二醯亞胺基己酸)醯肼)或KMUH (N-[κ-順丁烯二醯亞胺基十一酸]醯肼)偶合將巰基(例如:半胱胺酸)與羰基(醛)結合來產生。 20.     一種疫苗產品,其經設計用於針對特定抗原對個體進行接種,其中該產品包含如下化合物,該化合物包含β-(1,6)-葡聚糖或甘露多醣作為與特定抗原共價偶合的C型凝集素(CLEC)多醣佐劑。 21.     根據實施例20之疫苗產品,其中該產品包含根據實施例1至16中任一項或可由/已由實施例16至19中任一項之方法獲得的結合物。 22.     根據實施例20或21之疫苗產品,其中該抗原包含至少一個B細胞抗原決定基及至少一個T細胞抗原決定基,較佳地,其中該抗原為包含一或多個B細胞抗原決定基及T細胞抗原決定基的多肽。 23.     根據實施例20至22中任一項之疫苗產品,其中共價偶合抗原及CLEC多醣佐劑以尺寸為1至5000 nm、較佳為1至200 nm、尤其是2至160 nm的顆粒存在,該尺寸係以流體動力學半徑(HDR)形式藉由動態光散射(DLS)所測定。 24.     根據實施例20至23中任一項之疫苗產品,其中共價偶合抗原及CLEC多醣佐劑以尺寸為1至50 nm、較佳為1至25 nm、尤其是2至15 nm的顆粒存在,該尺寸係以HDR形式藉由DLS所測定。 25.     根據實施例20至24中任一項之疫苗產品,其中共價偶合抗原及CLEC多醣佐劑以尺寸小於100 nm、較佳小於70 nm、尤其是小於50nm的顆粒存在,該尺寸係以HDR形式藉由DLS所測定。 26.     一種醫藥組合物,其包含如實施例1至25中任一項中所定義之結合物或疫苗及醫藥學上可接受之載體。 27.     根據實施例26之醫藥組合物,其中醫藥學上可接受之載體為緩衝液,較佳為磷酸鹽或基於TRIS之緩衝液。 28.     根據實施例26或27之醫藥組合物,其包含在一基於針之遞送系統中,較佳為注射器、微型針系統、空心針系統、實心微針系統或包含針配接器之系統;安瓿、無針注射系統,較佳為噴射注射器;貼劑、經皮貼劑、微結構經皮系統、微針陣列貼劑(MAP)(較佳固體MAP(S-MAP)、包衣MAP(C-MAP)或溶解MAP(D-MAP));電泳系統、離子電泳系統、基於雷射之系統,尤其是鉺YAG雷射系統;或基因槍系統。 29.     根據實施例26至28中任一項之醫藥組合物,其中結合物或疫苗以溶液或懸浮液、深度冷凍溶液或懸浮液、凍乾物、粉劑或顆粒的形式包含在內。 30.     一種根據實施例1至15中任一項之結合物之用途,其用於製造供預防或治療疾病,較佳為供預防或治療感染性疾病、慢性疾病、過敏性反應或自體免疫疾病的藥劑。 31.      一種用於預防或治療疾病,較佳為供用於預防或治療感染性疾病、慢性疾病、過敏性反應或自體免疫疾病之方法,其中向有需要之患者投予有效量的根據實施例1至15中任一項之結合物。 Based on the general disclosure of the present invention and these examples, the following preferred embodiments of the present invention are disclosed: 1. A conjugate consisting of or containing the following: at least one β-glucan or mannan polysaccharide; and at least one β-glucan or mannan polysaccharide; A B cell or T cell epitope polypeptide, wherein β-glucan or mannan polysaccharide is covalently combined with the B cell and/or T cell epitope polypeptide to form β-glucan or mannan polysaccharide with B cells and/or Or conjugates of T cell epitope polypeptides. 2. The conjugate according to embodiment 1, wherein the β-glucan is a predominantly linear β-(1,6)-glucan with a β-(1,6) coupled monosaccharide moiety and a non-β-glucan. The ratio of -(1,6) coupled monosaccharide moieties is at least 1:1, preferably at least 2:1, more preferably at least 5:1, especially at least 10:1. 3. The conjugate according to Embodiment 1 or 2, wherein the β-glucan is dectin-1 combined with β-glucan, preferably agaric polysaccharide, lichenin, laminarin, cardranan, β-glucan. Polyglycan peptide (BGP), schizophyllan, scleroglucan, whole glucan granules (WGP), zymosan or mushroom polysaccharide, more preferably Shitu polysaccharide, laminarin, lichenin, mushroom polysaccharide, schizophyllan Or scleroglucan, especially Shigu polysaccharide; and/or wherein the β-glucan is a strong dectin-1 binding β-glucan, preferably measured by competitive ELISA, with less than 10 mg/ ml, preferably with an IC50 value of less than 1 mg/ml, even more preferably with an IC50 value of less than 500 µg/ml, especially with an IC50 value of less than 200 µg/ml, binding to soluble murine Fc - beta-glucan of the dectin-1a receptor; and/or wherein the conjugate has an IC50 value of less than 1 mg/ml, preferably less than 500 µg/ml, as determined by competitive ELISA Binding to the soluble murine Fc-dectin-1a receptor with an IC50 value of less than 200 µg/ml, especially with an IC50 value of less than 100 µg/ml; and/or - beta-glucan Sugar with an IC50 value below 10 mg/ml, preferably below 1 mg/ml, even better with an IC50 value below 500 µg/ml, especially below 200 µg/ml binds to soluble human Fc-dectin-1a receptor with an IC50 value; and/or - wherein the conjugate binds with an IC50 value of less than 1 mg/ml, preferably less than 500 µg/ml, as determined by competitive ELISA Binds to soluble human Fc-dectin-1a receptor with an IC50 value of ml, even better with an IC50 value of less than 200 µg/ml, especially with an IC50 value of less than 100 µg/ml. 4. The conjugate according to any one of embodiments 1 to 3, wherein the polypeptides comprise at least one B cell epitope and at least one T cell epitope, preferably one covalently linked to β-glucan. B cell epitope+CRM197 conjugate, especially peptide+CRM197+linear β-(1,6)-glucan or peptide+CRM197+linear Shi fungus polysaccharide conjugate. 5. The conjugate according to any one of embodiments 1 to 4, wherein the ratio of β-glucan to B cell and/or T cell epitope polypeptide in the conjugate, especially the ratio of Shi fungus polysaccharide to peptide is 10 :1(w/w) to 0.1:1(w/w), preferably 8:1(w/w) to 2:1(w/w), especially within the range of 4:1(w/w) , the restriction is that if the conjugate contains a carrier protein, the preferred ratio of β-glucan to B cell epitope-carrier polypeptide is 50:1 (w/w) to 0.1:1 (w/w), Especially 10:1 to 0.1:1. 6. The conjugate according to any one of embodiments 1 to 5, wherein the B cell epitope and the pan-specific/hybrid T cell epitope independently bind to the β-glucan. 7. The conjugate according to any one of embodiments 1 to 6, wherein the length of the B cell epitope polypeptide is 5 to 20 amino acid residues, preferably 6 to 19 amino acid residues, Especially 7 to 15 amino acid residues; and/or the length of the T cell epitope polypeptide is 8 to 30 amino acid residues, preferably 13 to 29 amino acid residues, especially Is 13 to 28 amino acid residues, wherein the B cell epitope and/or the T cell epitope are preferably connected to β-glucan and/or carrier protein through a linker, more preferably through a half A cystine residue or a linker comprising a cysteine or glycine residue; or a linker produced by: hydrazine-mediated coupling, via a heterobifunctional linker such as N-β-cis Butenediimidopropionic acid hydrazide (BMPH), 4-[4-N-maleimidophenyl]butyric acid hydrazine (MPBH), N-[ε-maleic acid hydrazide Coupling of acylimidocaproic acid) hydrazine (EMCH) or N-[κ-maleimidodecanoic acid] hydrazine (KMUH)), imidazole-mediated coupling, reductive amination, carbon Diimine coupling; -NH- NH linker, -NRRA, NRRA-C or NRRA-NH- NH linker; peptide linkers such as dimers, trimers, tetramers (or longer Polymers) peptide groups, such as CG or CG; or cleavage sites, such as cathepsin cleavage sites; or combinations thereof, especially by cysteine or NRRA-NH- NH2 linkers; wherein the T cell antigen determines The base is preferably a polypeptide comprising the amino acid sequence AKFVAAWTLKAAA, optionally connected to a linker, such as a cysteine residue or a linker comprising a cysteine residue, NRRA, NRRA-C or NRRA-NH- NH linker; or a variant of the amino acid sequence AKFVAAWTLKAAA; wherein such variants include the amino acid sequence AKFVAAWTLKAA; wherein the first residue alanine is modified by an amino acid sequence such as glycine, valine, isoleucine, and leucine. Variants of amino acids in which aliphatic amino acid residues are substituted; variants in which the third amino acid residue, phenylalanine, is substituted by L-cyclohexylphenylalanine; wherein the thirteenth amino acid residue, alanine, is substituted by an aliphatic amine group Variants with substitutions of acid residues (such as glycine, valine, isoleucine and leucine); variants containing aminocaproic acid, preferably coupled to the C-terminus of the amino acid sequence AKFVAAWTLKAA Variants comprising aminocaproic acid; variants having the amino acid sequence AX 1 FVAAX 2 TLX 3 AX 4 A, wherein X 1 is selected from the group consisting of W, F, Y, H, D, E, N, Q, I and K; X 2 is selected from the group consisting of F, N, Y and W; X 3 is selected from the group consisting of H and K, and X 4 is selected from the group consisting of A, D and E. The restriction is that the oligopeptide sequence is not AKFVAAWTLKAAA; in particular, the T cell epitope is selected from the group consisting of AKFVAAWTLKAAANRRA-(NH-NH 2 ), AKFVAAWTLKAAAN-C, AKFVAAWTLKAAA-C, AKFVAAWTLKAAANRRA-C, aKXVAAWTLKAAaZC, aKXVAAWTLKAAaZCNRRA, aKXVAAWTLKAAa, aKXVAAW TLKAAaNRRA,aA (X)AAAKTAAAAa, aA(X)AAATLKAAa, aA(X)VAAATLKAAa, aA(X)IAAATLKAAa, aK(X)VAAWTLKAAa and aKFVAAWTLKAAa, where X is L-cyclohexylalanine, Z is aminocaproic acid, and a is an aliphatic amino acid residue selected from the group consisting of alanine, glycine, valine, isoleucine and leucine; and/or an alpha synapse in which the T cell epitope is selected from the following group Nucleoprotein peptides: GKTKEGVLYVGSKTK (aa31-45), KTKEGVLYVGSKTKE (aa32-46), EQVTNVGGAVVTGVT (aa61-75), VTGVTAVAQKTVEGAGNIAAATGFVK (aa71-86), DPDNEAYEMPSE (aa116-130), DNEAYEMPSEEGYQ (aa 121-135) and EMPSEEGYQDYEPEA (aa126- 140). 8. The conjugate according to any one of embodiments 1 to 7, wherein the conjugate further comprises a carrier protein, preferably a non-toxic cross-reactive material (CRM) of diphtheria toxin, especially CRM197, KLH, diphtheria toxoid (DT) ), tetanus toxoid (TT), Haemophilus influenzae protein D (HipD) and meningococcal serogroup B outer membrane protein complex (OMPC), recombinant non-toxic form of Pseudomonas aeruginosa exotoxin A ( r EPA ), flagellin, E. coli heat-labile enterotoxin (LT), cholera toxin (CT), mutant toxins (such as LTK63 and LTR72), virus-like particles, albumin-binding protein, bovine serum albumin, ovalbumin, synthetic peptides Dendrimers, for example, multiple antigenic peptides (MAP), especially wherein the ratio of carrier protein to β-glucan or mannan in the conjugate is 1/0.1 to 1/50, preferably 1/0.1 to 1 /40, more preferably 1/0.1 to 1/20, especially 1/0.1 to 1/10; the preferred restriction condition is that if the conjugate contains a carrier protein, the conjugate contains at least one other independently bound T cell or B cell epitope polypeptide, wherein preferably, the conjugate is composed of or includes the following: (a) β-glucan (b) at least B cell or T cell epitope polypeptide, and (c) carrier protein , wherein the three components (a), (b) and (c) are in the order (a)-(b)-(c), (a)-(c)-(b) or (b)-(a) -(c), especially covalently bonded to each other in the order (a)-(c)-(b); and preferably all such components (a), (b) and (c) are bonded via a linker . 9. The conjugate according to any one of embodiments 1 to 8, wherein the polypeptide is or includes a B cell or T cell epitope polypeptide, wherein the polypeptide is preferably or includes a B cell and T cell epitope, especially wherein the epitope polypeptide is selected from the following group: Tau polypeptide, preferably Tau2-18, Tau 176-186, Tau 181-210, Tau 200-207, Tau 201-230, Tau 210-218, Tau 213-221, Tau 225-234, Tau 235-246, Tau 251-280, Tau 256-285, Tau 259-288, Tau 275-304, Tau260-264, Tau 267-273, Tau294-305, Tau 298- 304, Tau 300-317, Tau 329-335, Tau 361-367, Tau 362-366, Tau379 - 408, Tau 389-408, Tau 391-408, Tau 393-402, Tau 393-406, Tau393-408, Tau 418-426, Tau 420-426; including mimics of the above-mentioned Tau-derived polypeptides that mimic epitopes, and amino acid substitutions containing simulated phosphorylated amino acids (including substitution of phosphorylated S by D and substitution by E Phosphorylated T) peptides include Tau176-186, Tau200-207, Tau210-218, Tau213-221, Tau225-234, Tau379-408, Tau389-408, Tau391-408, Tau393-402, Tau393-406, and Tau418 respectively. -426, Tau420-426; Tau379-408 with pSp396 and pS404, dual phosphorylated peptides Tau195-213 [pS202/pT205], Tau207-220 [pT212/pS214] and Tau224-238 [pT231], fused to a 7-mer (Tau418-426) or 11-mer (Tau417-427) N-terminal YGG linker, Tau position sequence 195-213 SGYSSPGSPGTPGSRSRTP 207-220 GRSRSRTPSLPTPPT 224-238 KKVAVVRTPPKSPSS 393-408 VYKpSPVVSGDTpSPRHL 379-408[P-Ser396,404] RENAKAKTDHGAEIVYKpSPVVSGDTpSPRHL Tau260-264[P-Ser262] ikB 294-305 KDNIKHVPGGGS* 251-280 PDLKNVKSKIGSTENLKHQPGGGKVQIINK 256-285 VKSKIGSTENLKHQPGGGKVQIINKKLDLS 256-285-pS262 VKSKIGpSTENLKHQPGGGKVQIINKKLDLS 259-288 KIGSTENLKHQPGGGKVQIINKKLDLSNVQ 275-304 VQIINKKLDLSNVQSKCGSKDNIKHVPGGG 201-230-pT217 GSPTPGSRSRTPSLPpTPPTREPKKVAVVR 379-408-pS396pS404 RENAKAKTDHGAEIVYKpSPVVSGDTpSPRHL 181-210-pS202pT205 TPPSSGEPPKSGDRSGYSSPGpSPGpTPGSRS 300-317 VPGGGSVQIVYKPVDLSK 267-273 KHQPGGG 298-304 KHVPGGG 329-335 HHVPGGG 361-367 THVPGGG 200-207(pS202/pT205) PGpSPGpTPG 200-207(pS202/pT205) phosphate mimetics PGDPGEPG 200-207(pS202/pT205) phosphate mimetics SPGDPGEPG 210-218 (pT212/pS214) SRpTPpSLPTP 210-218 (pT212/pS214) Phosphomimetic SREPDLPTP 210-218 (pT212/pS214) Phosphomimetic SREPDLP 213-221 (pT217) PSLPpTPPTR 213-221 (pS214/pT217) PpSLPpTPPTR 213-221 (pT217) Phosphomimetic PSLPEPPTR 213-221 (pS214/pT217) Phosphomimetic PDLPEPPTR 393-402 (pSer396) VYKpSPVVSGD 393-402 (pSer396) Phosphomimetic VYKDPVVSG 393-406 (pSer396, pSer404) VYKpSPVVSGDTpSPR 393-406 (pSer396, pSer404) Phosphomimetics VYKDPVVSGDTDPR 176-186 (pT181) PPAPKpTPPSSG 176-186 (pT181) Phosphomimetic PPAPKEPPSSG 225-234 (pT231) KVAVVRpTPPK 225-234 (pT231) Phosphomimetic KVAVVREPPKS Tau379-408[P-Ser396,404] RENAKAKTDHGAEIVYKpSPVVSGDTpSPRHL Tau379 - 408[P-Ser396,404] phosphate mimetics RENAKAKTDHGAEIVYKDPVVSGDTDPRHL 389-408 GAEIVYKpSPVVSGDTpSPRHL 391-408 EIVYKpSPVVSGDTpSPRHL 389-408 Phosphate Mimic GAEIVYKDPVVSGDTDPRHL 391-408 Phosphate mimetic EIVYKDPVVSGDTDPRHL 418-426 DMVDpSPQLA 418-426 Phosphate Mimics DMVDDPQLA 420-426 VDpSPQLA 420-426 Phosphate Mimic VDDPQLA 362-366 HVPGG (LDNIT HVPGG GNKKIE) 235-246 SPSSAKSRLQTA ; IL12/23 polypeptide, preferably FYEKLLGSDIFTGE, FYEKLLGSDIFTGEEPSLLPDSP, VAQLHASLLGLSQLLQP, GEPSLLPDSPVAQLHASLLGLSQLLQP, PEGHHWETQQIPSLSPSQP, PSLLPDSP, LPDSPVA, FYEKLLGSDIFTGEEPSLLPDSPVAQLHASLLGLSQLLQP, LLPDSP, LLGSDIFTGEPS LLPDSPVAQLHASLLG, FYEKLLGSDIFTGEEPSLLPDSPVAQLHASLLG, QPEGHHW, LPDSPVGQLHASLLGLSQLLQ and QCQQLSQKLCTLAWSAHPLV; GHMDLREEGDEETT, LLPDSPVGQLHASLLGLSQ and LLRFKILRSLQAFVAVAARV; IL12/23 p40 sub-unit aa136-145, aa136-143, aa 136-151, aa137-146, aa144-154, aa144-155; QPEGHHWETQQIPSLS, GHHWETQQIPSLSPSQPWQRL, QPEGHHWETQ, TQQIPSLSPSQ, QPEGHHWETQQIPSLSPSQ, QPEGHHWETQQIPSLSPS; Native human IL12/23p40-aa15-66, aa38-46 , aa53-71, aa119-130, aa160-177, aa236-253, aa274-285, aa315-330; LLLHKKEDGIWSTDILKDQKEPKNKTFLRCE and KSSRGSSDPQG; aa38-46, aa53-71, aa119-130, aa of mouse IL12/23 160-177 , aa236-253, aa274-285, aa315-330; IgE polypeptides, preferably SVNPGLAGGSAQSQRAPDRVL, HSGQQQGLPRAAGGSVPHPR; AVSVNPGLAGGSAQSQRAPDRVLCHSGQQGLPRAAGGSVP, QQQGLPRAAGG, QQLGLPRAAGG, QQQGLPRAAEG, QQLGLPRA AEG, QQQGLPRAAG, QQLGLPRAAG, QQQGLPRAAE, QQLGLPRAAE, HSGQQQGLPRAAGG, HSGQQLGLPRAAGG, HSGQQQGLPRAAEG, HSGQQLGLPRAAEG, QSQRAPDRVLCHSG , GSAQSQRAPDRVL and WPGPPELDV; Her2 polypeptides, preferably LHCPALVTYNTDTFESMPNPEGRYTFGASCV, ACPYNYLSTDVGSCTLVCPLHNQEVTAEDGTQRCEK and CPLHNQEVTAEDGTQRCEK; KLLSLIKGVIVHRLEGVE; Her2 sequence aa266-296, aa563-598, aa585-598 , aa597-626 and aa613-626; AVLDNGDPLNNTTPVTGA, LKGGVLIQRNPQLC, YNTDTFESMPNPEGRYTFGAS, PESFDGDPASNTAPLQPEQLQ, PHQALLHTANRPEDE, CRVLQGLPREYVNARHC, YMPIWKFPDEEGAC; RHSPESFDGDPASNTAPLQPYMPIWKFPDEEGAC; C-KLYWADGEFT-C, C-VDYHYEGTIT-C, C-VDYHYEGAIT-C; RLVPVGLERGTVDWV, TRWQKGLALGSGDMA, QVSHWVSGLAEGSFG, LSHTSGRVEGSVSLL, LDSTSLAGGPYEAIE, HVVMNWMREEFVEEF, SWASGMAVGSVSFEE. QVSHWVSGLAEGSFG and LSHTSGRVEGSVSLL; RLSLTEI LKGGVLIQRNPQLC, VLIQRNPQLCYQDTILWKDI, YQDTILWKDIFHKNNQLALT, FHKNNQLALTLIDTNRSRAC, LIDTNRSRACHPCSMPCKGS, HPCSMPCKGSRCWGESSEDC, RCWGESSEDCQSLTRTVCAG, QSLTRTVCAGGCARCKGPLP, GCARCKGPLPTDCCHEQCAA, TDCCHEQCAAGCTGPKHSDC, GCTGPKHSDCLACLHFNHSG, LACLHFNHSGICELHCPALV, ICELHCPALVTYNTDTFESM, TYNTDTFESMPNPEGRYTFG, PNPEGRYTFGASCVTACPYN, GASCVTACPYNYLSTDVGS, PYNYLSTDVGSCTLVCPLHNQE, TLVCPLHNQEVTAED PD1, PDL1 and CTLA-4 polypeptides are preferably GAISLAPKAQIKESLRAEL, PGWFLDSPDRPWNPP, FLDSPDRPWNPPTFS, SPDRPWNPPTFSPA, ISLHPKAKIEESPGA and FMTYWHLLNAFTVTVPKDL, especially GAISLAPKAQIKESLRAEL; Aβ polypeptides are preferably native human Aβ1-40 and/or Aβ1-42 or those having Aβ1-42 sequences. aa1-6, aa1-7, aa1-8, aa1-9, aa1-10, aa1-11, aa1-12, aa1-13, aa1-14, aa1-15, aa1-21, aa2-7, aa2- 8. aa2-9, aa2-10, aa3-8, aa3-9, aa3-10, aa pE3-8, aa pE3-9, aa pE3-10, aa11-16, aa11-17, aa11-18, aa11 -19, aa12-19, aa13-19, aa14- 19, aa14- 20, aa14- 21, aa14- 22, aa14- 23, aa30-40, aa31-40, aa32-40, aa33-40, aa34-40 , polypeptide fragments of aa30-42, aa37-42; NYSLDKIIVDYNLQSKITLP, LINSTKIYSYFPSVISKVNQ, LEYIPEITLPVIAALSIAES; cyclized Aβ1-14; DKELRI, DKELRID, DKELRIDS, DKELRIDSG, DKELRIDSGY, SWEFRT, SWEFRTD, SWEFRTDS, SWEFRTDSG, SWEFRTDSGY ,TLHEFRH,TLHEFKH,THTDFRH, THTDFKH, AEFKHD, AEFKHG, SEFRHD, SEFRHG, SEFKHD, SEFKHG, ILFRHG, ILFRHD, ILFKHG, ILFKHD, IRWDTP, IRYDAPL, IRYDMAG; IL31 polypeptide, preferably native human IL31 (Genbank: AAS86448.1), native canine IL31 (Genbank :BAH97742.1), native feline IL31 (UNIPROT: A0A2I2UKP7), native equine IL31 (UNIPROT F7AHG9), or at least 70%, 75%, 80%, 85%, 90% or 95% sequence identity to any of the foregoing Any peptide sequence, IL31 protein-derived polypeptides are selected from the mimetics of the above-mentioned IL31-derived polypeptides, including mimetic epitopes and peptides containing amino acid substitutions, for human IL31: sequences aa98-145, aa87-150, Peptides derived from aa105-113, aa85-115, aa84-114, aa86-117, aa87-116; or fragments and peptides thereof SDDVQKIVEELQSLSKMLLKDVEEEKGVLVSQNYTL; DVQKIVEELQSLSKMLLKDV, EELQSLSK and DVQK, LDNKSVIDEIIEHLDKLIFQDA; and DEIIEH, TD THECKRFILTISQQFSECMDALKS,TDTHESKRF,TDTHERKRF HESKRF,HERKRF, HECKRF; KLIFQDAPETNI, FQDAPETNISVP, APETNISVPTDT, TNISVPTDTHEC, SVPTDTHESKRF, TDTHECKRFILT, TDTHESKRFILT, TDTHERKRFILT, HECKRFILTISQ, HESKRFILTISQ, HERKRFILTISQ, KRFILTISQQFS, ILTISQQFSECM, ILTISQQFSESM, ILTISQQFSERM, ISQQFSECMDLA, ISQQFSESMDLA, ISQQFSERMDLA, QFSECMDALKS, QFSESMDLALKS, QFSERMDLALKS, SKMLLKDVEEEKG, EELQSLSK, KGVLVS, SPAIRAYLKTIRQLDNKSVIDEI For Canine IL31: consisting of aa97-144, aa97-133, aa97-122, aa97-114, aa90-110, aa90-144, aa86-144, aa97-149, aa90-149, aa86-149, aa 124-135 or other Peptides and peptides composed of fragments: SDVRKIILELQPLSRGLLEDYQKKETGV, DVRKIILELQPLSRGLLEDY ELQPLSR LSDKNIIDKIIEQLDKLKFQHE, LSDKNIIDKIIEQLDKLKFQ, KLKFQHE, LSDKNI, LDKL, LSDKN, ADTFECKSFILTILQQFSACLESVFKS and ADNFERKNF For feline IL31: feline IL-31 sequence aa124-135 and peptides SDVRKIILELRPMSKGLLQDYVSKEIGL and DVRKIILELRPMSKGLLQDY, LSDKNTIDKIIEQLDKLKFQRE, ADNFERKNFILAVLQQFSACLEHVLQS and ADNFERKNF For equine IL31: aa118-129 and peptides of equine IL-31 sequence: LQPKEIQAIIVELQNLSKKLLDDY, EIQAIIVELQNLSKKLLDDY, SLNNDKSLYIIEQLDKLNFQ and TDNFERKRFILTILRWFSNCLEHRAQ CGRP polypeptide, preferably: native human CGRP α (ACDTATCVTHRLAGLLSRSGGVVKNNFVPTNVGSKAF ); calcitonin isoform α-CGRP preproprotein aa83 -119, accession number NP_001365879.1 or aa82-228 of native human CGRP β (ACNTATCVTHRLAGLSRSGGMVKSNFVPTNVGSKAF); aa82-118 of calcitonin gene-related peptide 2 precursor, accession number NP_000719.1 or its precursor molecule (NP_001365879.1 and NP_000719.1), preferably selected from the sequence of aa8-35, aa11-37, aa1-20 or fragments thereof and the sequence ACDTATCVTH; ACDTATCVTHRLAGL; ACDTATCVTHRLAGLLSR; ACDTATCVTHRLAGLLSRSG; ACDTATCVTHRLAGLLSRSGGVVKN; VVKN; RSGGVVKN; RLAGLLSRSGGVVKNNFVPT; RLAGLLSRSGGVVKNNFVPTNVG ; RLAGLLSRSGGVVKNNFVPTNVGSK; RLAGLLSRSGGVVKNNFVPTNVGSKAF; LLSRSGGVVKNNFVPTNVGSKAF; RSGGVVKNNFVPTNVGSKAF; GGVVKNNFVPTNVGSKAF; VVKNNFVPTNVGSKAF; NNFVPTNVGSKAF; VPTNVGSKAF; NVGSKAF; GSKAF allergen epitope polypeptide , preferably: polypeptides derived from native allergens, polypeptides derived from allergen proteins, the polypeptides are selected from Mimetics of the above-mentioned allergen-derived polypeptides include simulated epitopes, restricted peptides, peptides containing amino acid substitutions and conformational epitopes, see Table A and Table B. Preferably selected from: Allergen source allergens UNIPROT common alder Aln g 1 P38948 Alternaria alternata Alt a 1 P79085 Alt a 3 P78983 Alt a 4 Q00002 Alt a 5 P42037 Alt a 6 Q9HDT3 Alt a 7 P42058 Alt a 8 P0C0Y4 Alt a 10 P42041 Alt a 12 P49148 Alt a 13 Q6R4B4 Ragweed Amb a 1 P27761 Amb a 1.05 P27762 Amb a 3 P00304 Amb a 5 P02878 Amb a 6 O04004 Amb a 7 No complete sequence available Amb a 8 Q2KN24 Amb a 9 Q2KN27 Amb a 10 Q2KN25 European honey bee Api m 1 P00630 Api m 2 Q08169 Api m 3 Q4TUB9 Api m 4 01501 Api m 5 B2D0J4 Api m 6 Q27SJ8 Api m 7 Q8MQS8 Api m 8 B2D0J5 Api m 9 C9WMM5 Api m 10 Q1HHN7 Api m 11 B3GM11 Api m 12 Q868N5 celery Api g 1 P49372 Api g 2 E6Y8S8 Api g 3 P92919 Api g 4 Q9XF37 Api g 5 P81943 peanut Ara h 1 P43238 Ara h 2 Q6PSU2-1 Ara h 3 O82580 Ara h 3.02 Q9SQH7 Ara h 5 Q9SQI9 Ara h 6 Q647G9 Ara h 7 Q9SQH1 Ara h 8 Q6VT83 weeping birch Bet v 1 P15494 Bet v 2 P25816 Bet v 3 P43187 Bet v 4 Q39419 Bet v 6 O65002 Bet v 7 P81531 domestic dog Can f 1 O18873 Can f 2 O18874 Can f 3 P49822 Can f 4 D7PBH4 Can f 5 P09582 Can f 6 H2B3G5 Can f 7 Q28895 Can f 8 F1PHB6 European hornbeam car b 1 P38949 European chestnut Cas s 1 B7TWE3 Cas s 5 Q42428 Cas s 8 Unknown sequence Mycosporium Cla h 2 No complete sequence available i h 5 P42039 i h 6 P42040 i h 7 P42059 i h 8 P0C0Y5 ci h 9 B7ZK61 CI h 10 P40108 CI h 12 P50344 filbert Cor a 1 Q08407 Cor a 2 Q9AXH5 Cor a 6 A0A0U1VZC8 Cor a 8 Q9ATH2 Cor a 9 Q8W1C2 Cor a 10 Q9FSY7 Cor a 11 Q8S4P9 Japanese cedar Cry j 1 P18632 Cry j 2 P43212 European carp Cyp c 1 Q8UUS3 wild carrot Dau c 1 O04298 Dau c 4 Q8SAE6 European house dust mite Der p 1 P08176 (variant) Der p 2 P49278 Der p 3 P39675 Der p 4 Q9Y197 Der p 5 P14004 Der p 6 P49277 Der p 7 P49273 Der p 8 P46419 Der p 9 Q7Z163 Der p 10 O18416 Der p 11 Q6Y2F9 Der p 14 Q8N0N0 Der p 20 B2ZSY4 Der p 21 Q2L7C5 Der p39 XP_027203190.1 european beech Fags 1 B7TWE6 domestic cat Fel d 1 P30438 (chain 1), P30440 (chain 2) Fel d 2 P49064 Fel d 3 Q8WNR9 Fel d 4 Q5VFH6 Fel d 5 No complete sequence available Fel d 6 No complete sequence available Fel d 7 E5D2Z5 Fel d 8 F6K0R4 rubber tree Hev b 1 P15252 Hev b 2 P52407 Hev b 3 O82803 Hev b 4 Q6T4P0 Hev b 5 Q39967 Hev b 6 P02877 Hev b 7.01 O04008 Hev b 7.02 O65811 Hev b 8 O65812 Hev b 9 Q9LEJ0 Hev b 10 P35017 Hev b 11 Q949H3 Hev b 12 Q8RYA8 Hev b 13 Q7Y1X1 American cedar Jun a 1 P81294 Jun a 2 Q9FY19 Jun a 3 P81295 apple Mal d 1 P43211 Mal d 2 Q9FSG7 Mald 3.0101w Q5J026 Mal d 4 Q9XF42 white oak Que a 1 B6RQS1 timothy grass PhIp 1 Q40967 PhI p 2 P43214 PhI p 4 Q5ZQK5 PhI p 5 Q40960 PhI p 6 P43215 PhI p 7 O82040 PhI p 11 Q8H6L7 PhI p 12 P35079 PhI p 13 Q9XG86 Polistes annularis Pol a 1 Q9U6W0 Pol a 5 Q05109 paper wasp Pol d 1 Q6Q252 Pol d 4 Q7Z269 Pol d 5 Q68KJ8 Guinea Paper Wasp (Polistes exclamans) Pol e 1 No complete sequence available Pol e 4 No complete sequence available Pol e 5 Q68KJ9 Northern paper wasp (Polistes fuscatus) Pol f 5 P35780 Polistes gallicus Pol g 1 P83542 Pol g 5 P83377 Polistes metricus Pol m 5 P35780 and/or selected from: allergens UNIPROT Epitope / Mock epitope Amb a 1 P27761 GMLATVAFNTFTDNVDQR, AFNKFTDNVDQR, MPRCRFGF, WRTQNDVLENG TFTDNVDQRMPRCRH RVVELMDWTVLH, GSAMTWGMLAAE, SYNIIATGIHPV, TMVATGLMPVLI, QDFDDIL, CLFSQGNRC, VANLKVGV, NPGGLSAAPAGS, RHASTLLGRHG, EAAESMWRVASG, QNRLNSNGNNGG SQ, DDDLQHQFDDQD Amb a 3 P00304 CDIKDPIRLEPGGPD, EVWREEAYHACDIKD, GKVYLVGGPELGGWK, LGGWKLQSDPRAYAL, NFTTGEDSVAEVWRE, PGGPDRFTLLTPGSH, PGGPDRFTLLTPGSH, QFKTTDVLWFNFTTG, RAYALWSARQQFKTT, TPGSHFICTKDQKFV Alt a1 P79085 MISTSRK, QKRNTIT, KISEFYGRKP, VATATLPNYC, YSCGENSFMD, YYNSLGFNIK Ara h 1 P43238 REREREEDWRQPREDWRRPS, RTRGRQPGDYDDDRRQPRRE, DDDRRQPRREEGGRWGPAGP, TTNQRSPPGERTRGRQPGDY, QPREDWRRPSHQQPRKIRPE, GREGEQEWGTPGSHVREETS, PVNTPGQFEDFFPASSRDQS, AGGEQEERGQRRWSTRSSEN, REGEPDLSNNFGKLFEVKPD, NASSELHLLGFGINAENNHR, IDQ IEKQAKDLAFPGSGEQV, LAFPGSGEQVEKLIKNQKES AKSSPYQKKT, QEPDDLKQKA, LEYDPRLUYD, GERTRGRQPG, PGDYDDDRRQ, PRREEGGRWG, REREEDWRQP, EDWRRPSHQQ, QPKKIRPEGR, TPGQFEDFFP, SYLQEFSRNT, FNAEFNEIRR, EQEERGQRRW, DITNPINL RE , NNFGKLFEVK, GTGNLELVAV, RRYTARLKEG, ELHLLGFGIN, HRIFLAGDKD, IDOIEKOAKD, KDLAFPGSGE, KESHFVSARP, PEKESPEKED Ara h 2 Q6PSU2-1 ARQQWELQGDRRCQSQLERA, ERDPYSPSQDPYSPSPYDRR, RRCQSQLERANLRPCEQHLM, RDPYSSPYDRRGAGSSQHQ, GRDPYSPSQDPYSPSQDPDR, PYSPSQDPDRRDPYSPSPYD, QKIQRDEDSYERDPYSPSQD, HASARQQWEL, QWELQGDRRC, DRRCQSQLER, LRPCEQHLM Q, KIQRDEDSYE, YERDPYSPSQ, SQDPYSPSPY, DRLQGRQQEQ, KRELRNLPQQ, QRCDLDVESG, HASARQQWEL, ERDPYSPSQDPYSPS, RRCQSQLER, CDLEVESGGRDRY, ERDPYSPSQDPYSPS, NLRPCEQHLMQKIQRD, PQRCDLE, RQQEQQFKRELRNLPQQ, SDRLQGRQQ, RRCQSQLERANLRPCEQHLMQKIQRDEDSYGRDPYSPSQDPY Ara h 3 O82580 IETWNPNNQEFECAG, GNIFSGFTPEFLEQA, VTVRGGLRILSPDRK, DEDEYEYDEEDRG, EDEYEYDEEDRRRGRGSRGR, NIFSGFTPEFLEQAFQVDDR, ESEEEGAIVTVRGGLRILSP, SGFTPEFLEQAFQVDDRQIV, EEGAIVTVRGGLRILSPDRK, TYEEPAQQGRRYQSQRPPRR, RRADEEEEYDEDEYDEED , NHEQEFLRYQQQSRQSRRRS, QEFLRYQQQSRQSRRRSLPY, QEEREFSPRGQHSRRERAGQ Ara h 6 Q647G9 CDELNEMENTQR, CEALQQIMENQCD, CNFRAPQRCDLDV, KPCEQHIMQRI, YDSYDIR, KRELRMLPQQ, MRRERGRGGDSSSS Bet v 1 P15494 FILDG aa 32-37, aa 42-50, aa138 -153. CQQFLSVRALC, QQFLSVRALC, CQQFLSVRAL Cry j 1 P18632 DALTLRTATNIW, DGDALTLRTATN, DGRGAQVYIGNG, NATPQLTKNAGV, NGGPCVFIKRVS, NGNATPQLTKNA, NSDDDPVNPAPG, VENGNATPQLTK, NAGVLTCSLSK Cry j 2 P43212 KWVNGREI, GQCKWVNGREICNDRDRPTA, GRENSRAEVSYVHVNGAKFI, PGNKKFVVNNLFFNGPCQPH, SHIIYENVEMINSENPILINQFYCT, YCTSASACQNQRSAVQIQDV, TYKNIRGTSATAAAIQLKCS, AEVSYVHVNGAK Der p 1 P08176 (variant) KGIPNTKAP, DMFQIGKYG, GIREVWPAG, SSMGAYWGG, KGTTGVRNT, CQIYPPNANKIREALAQ, GYSNAQGVDYWI, NQSLDLAEQELVDCASQHGC, VRNSWDTNWGDNGY, EQSYPCWLSGTPSTP, TPLCDYAAARVGACG, KEQLPTSYPPERAGW, NCLSSDEPLHIRWCQ, EALSEEEWPRYTS HP, SCDATQRAQGRCS, SCDSSQKKQGRCS, SCDESRRRQGRCS, KGIPNTKAP, DMFQIGKYG, GIREVWPAG, SSMGAYWGG, KGTTGVRNT, CKGIPNTKAP, CDMFQIGKYG, CGIREVWPAG, CSSMGAYWGG, CKGTTGVRNT, CKGIPNTKAPC, CDMFQIGKYGC, CGIREVWPAGC, CSSMGAYWGGC, KGTTGVRNTC, KGIPNTKAPC, DMFQIGKYGC, GIREVWPAGC, SSMGAYWGGC, KGTTGVRNTC, Der p 2 P49278 FVVEYTKKW, SWWNLPQIG, KGITTKWMA, AGISYTKTW, DQVDVKDCANHEIKK, VPGIDPNACHYMKCK, APKSENVVVTVKVMGDNGVLACAIATHAKIRD, CHGSEPCIIHRGKPFQLEAVFEANQNSKTAK, DQVDVKDCANHEIKKVLVPGCHGSEPCIIHRGK, EANQNSKTAKIE IKASIEGLEVDVPGIDPNAC, EVDVPGIDPNACHYMKCPLVKGQQYDIKYTWIVPKIAPKSEN, FVVEYTKKW, SWWNLPQIG, KGITTKWMA, AGISYTKTW, FVVEYTKKWC, SWWNLPQIGC, KGITTKWMAC, AGISYTKTWC, CFVVEYTKKWC, CSWWNLPQIGC, CKGITTKWMAC, CAGI SYTKTWC, CFVVEYTKKW, CSWWNLPQIG, CKGITTKWMA, CAGISYTKTW Der p39 XP_027203190.1 QEELREAFRMY, TSALREILRAL, NDELDEMIAEI Fel d 1 P30438 (chain 1), P30440 (chain 2) KALPVVLENARILKNCVDAKMTEEDKE, KRDVDLFLTGTPDEYVEQVAQYKALPV, DAKMTEEDKENALS, EICPAVKRDVDLFLTG, EPERTAMKKIQDCY, FAVANGNELLLDLS, KKIQDCYVENGLIS, LLDKIYTSPLC, VAQYKALPVVLENA, VKMAETCPIFYDVF, VQNTVEDLKLNTLGR, EICPAVKRDVD LFLTGTPDEYVEQVAQYK, SSKDCMGEAVQNTVEDLKLNTLGR, VKMAITCPIFYDVFFAVANGNELLLDLSLTKVNA, CPAVKRDVDLFLT, EQVAQYKALPVVLENA KALPVVLENARILNCV RILKNCVDAKMTEEDKE KENALSLLDKIYTSPL TAMKKIQDCY VENGLI SRVLDGLVMTTISSSK, ENLAYTKALLTG; NNISVDGLLTS; VIRNELLLTYA; VINDLLLVLA; GDFYPL; NDFYPE; LDLNP, FAVANGNELL; LKLNTLGREICPAVKRGVDL; YVEQV; ENARILKNCVDAKM; aa21-31, aa21-47 PhIp 1 Q40967 VRYTTEGGTKTEAEDVIPEGWKADTSYESK, APYHFDLSGHAFGAM, HITDDNEEPIAPYHFDLSGHA, NEEPIAPYHFDLSGHAFG, CFEIKCTKPEACSGEPVVV, CTKPEACSGEPVVVHITDDNEEPIAPYHFDLSGH, DNEEPIAPYHF, EPIAPYHFDLSGH, EQKLRSAGELELQFRRVKC, GEPVVVHITDDNEEPIA PYHFDLSGHAFGAMAKKG, GYKDVDKPPFSGMTGCGNTPIFKSGRGCGSCFEIKCTKPEACS, HITDDNEEPIAPYHF, HITDDNEEPIAPYHFDLSGHAFGA, HVEKGSNPNYLALLVKYVNGDGDV VAV, KCTKPEACSGEPVVVHITDDNEEPIAPYHFDLS, KPPFSGMTGCGNT, KTEAEDVIPEGWKADTSYESK, LTGPFTVRYTTEGGTKTEAEDVIPEGWKADTSYESK, PIAPYHFD, PIAPYHFDLSGHAFG PhI p 2 P43214 VPKVTFTVEKGSNEKHLAVLVKYEGDTMAEVEL, VEKGSNEKHLAVLVKYEGDTMAEVELREHGSD, REHGSDEWVAMTKGEGGVWTFDSEEPLQGPFN, FRFLTEKGMKNVFDDVVPEKYTIGATYAPEE, CFRFLTEKGMKNVFDDVVPEKYTIGATYAPEE, FRFLTEKGMKNVFDDVVPEKYTIGATYAPEEC PhIp5 Q40960 AEEVKVIPAGELQVIEKVDAAFKVAATAANAAPANDK, ATTEEQKLIEKINAGFKAALAAAAGVQPADKYR, FVATFGAASNKAFAEGLSGEPKGAAESSSKAALTSK, ADLGYGPATPAAPAAGYTPATPAAPAEAAPAGK, AYKLAYKTAEGATTPEAKYDAYVATLSEALRI, EAAFNDAIKASTGGAYESYKFIPALEAAVK, TVATAPEV KYTVFETALKKAITAMSEAQKAAK, SRLGRSSAWV, THWQLGERPD, PSTPGERVRH, RGGPDDLTAL, PFWVRGTTW, PSTPGSRQNM, PSTPGDNPLV, KFVVNGRWID, KFLVNGRWID, RLTENTEPLL, FTWGGLRDKS, ERAGAMERAN, RSVSKEEPGM, KLGKFGAARV, VQDLMKSSGV, KLGKF GAARV, CKLGKFGAARVC, CKLGKFGAARV, KLGKFGAARVC, PhI p 6 P43215 GKATTEEQKLIEDVNASFRAAMATTANVPPAD, YKTFEAAFTVSSKRNLADAVSKAPQLVPKLDEVYN, DAVSKAPQLVPKLDEVYNAAYNAADHAAPEDKY, AADHAAPEDKYEAFVLHFSEALRIIAGTPEVHA Human PCSK9 polypeptide, preferably native human PCSK9 or a polypeptide comprising amino acid residues aa150 to 170, aa153-162, aa205 to 225, aa211-223, aa368-382 or composed thereof, which has an amino acid sequence ( Registration number: Q8NBP7): And/or PCSK9 protein-derived polypeptides, which are selected from mimics of the above-mentioned polypeptides, including simulated epitopes and peptides containing amino acid substitutions, and/or PCSK9 derived sequences NVPEEDGTRFHRQASK, NVPEEDGTRFHRQASKC, PEEDGTRFHRQASK, CPEEDGTRFHRQASK, PEEDGTRFHRQASKC, AEEDGTRFHRQASK, TEEDGTRFHRQASK , PQEDGTRFHRQASK, PEEDGTRFHRRASK, PEEDGTRFHRKASK, PEEDGTRFHRQASR, PEEDGTRFHRTASK, SIPWNLERITPPR, PEEDGTRFHRQASK, PEEDGTRFHRQA, EEDGTRFHRQASK, EEDGTRFHRQAS, SIPWNLERITP, SIPWNLERITPC, SIPWNLERIT, SIPWNLERITC, LRPRGQPNQC, SRHLAQASQ, SRHLAQASQC, SRSGKRRGER, SRSGKRRGERC, IIGASSDCSTCFVSQ, IIGASSDSSTSFVSQ, IIGASSDSSTSFVSQC, CIGASSDSSTSFVSC, IGASSDSSTSFVSC, CDGTRFHRQASKC , DGTRFHRQASKC, CDGTRFHRQASK, AGRDAGVAKGAC, RDAGVAKC, RDAGVAK, SRHLAQASQLEQC; SRHLAQASQLEQ, GDYEELVLALRC; GDLLELALKLP, EEDSSVFAQC, EEDSSVFAQ, NVPEEDGTRFHRQASKC, NVPEEDGTRFHRQASK, CKSAQRHFRTGDEEPVN, KSAQRHFRTGDEEPVN, alpha synapse Nucleoprotein polypeptides, preferably native α-synuclein or polypeptides composed of the following amino acid residues of the amino acid sequence of native human α-synuclein: 1 to 5, 1 to 8, 1 to 10, 60 to 100, 70 to 140, 85 to 99, 91 to 100, 100 to 108, 102 to 108, 102 to 109, 103 to 129, 103 to 135, 107 to 130, 109 to 126, 110 to 130 , 111 to 121, 111 to 135, 115 to 121, 115 to 122, 115 to 123, 115 to 124, 115 to 125, 115 to 126, 118 to 126, 121 to 127, 121 to 140 or 126 to 135, the The amino acid sequence is: MDVFMKGLSK AKEGVVAAAE KTKQGVAEAA GKTKEGVLYV GSKTKEGVVH GVATVAEKTK EQVTNVGGAV VTGVTAVAQK TVEGAGSIAA ATGFVKKDQL GKNEEGAPQE GILEDMPVDP DNEAYEMPSE EGYQDYEPEA (human aSyn (1-140 aa): UNIPROT accession number P3 7840), preferably comprising or consisting of the following amino acid residues Polypeptides: 1 to 8, 91 to 100, 100 to 108, 103 to 135, 107 to 130, 110 to 130, 115 to 121, 115 to 122, 115 to 123, 115 to 124, 115 to 125, 115 to 126 , 118 to 126, 121 to 127 or 121 to 140; or a simulated epitope selected from the group consisting of: DQPVLPD, DQPVLPDN, DQPVLPDNE, DQPVLPDNEA, DQPVLPDNEAY, DQPVLPDNEAYE, DSPVLPDG, DHPVHPDS, DTPVLPDS, DAPVTPDT, DAPVRPDS and YDRPVQPDR. 10. The conjugate of any one of embodiments 1 to 8, wherein the conjugate includes a T cell epitope and does not contain a B cell epitope, wherein the conjugate preferably contains more than one T cell epitope. , especially containing two, three, four or five T cell epitopes. 11. The combination according to any one of embodiments 1 to 10, which is used for preventing or treating diseases in humans, mammals or birds, preferably for preventing or treating infectious diseases, chronic diseases, especially in humans. Allergic or autoimmune diseases; preferably, use in the prevention or treatment of diseases caused directly or indirectly by fungi, especially Candida albicans, is excluded. 12. The conjugate according to any one of embodiments 1 to 11 for active anti-Tau vaccination against: synucleinopathies, Pick disease, progressive supranuclear palsy (PSP) ), corticobasal degeneration, frontotemporal dementia associated with chromosome 17 (FTDP-17) and argyrophilic granulopathy; and/or active immunotherapy for IL12/IL23 related diseases and autoimmune inflammatory diseases, Such diseases are especially selected from the group consisting of: psoriasis, psoriatic arthritis, rheumatoid arthritis, systemic lupus erythematosus, diabetes (preferably type 1 diabetes), atherosclerosis, inflammatory bowel disease (IBD) /Crohn's disease (M. Crohn), multiple sclerosis, Behcet's disease, ankylosing spondylitis, Vogt-Koyanagi-Harada disease, chronic granulomatous disease, hidradenitis suppurativa, anti-neutropenia ANCA-associated vasculitis, neurodegenerative disease (preferably Alzheimer's disease or multiple sclerosis), atopic dermatitis, graft-versus-host disease, cancer (preferably esophageal cancer) , colorectal cancer, lung adenocarcinoma, small cell carcinoma and oral squamous cell carcinoma), especially psoriasis, neurodegenerative diseases or IBD; and/or as an active anti-EMPD vaccine for the treatment and prevention of IgE-related diseases , preferably allergic diseases such as seasonal, food, pollen, mold spores, poisonous plants, agents/medicines, insect, scorpion or spider venom, latex or dust allergies; pet allergies; allergic bronchial asthma; non-allergic asthma ;Chager-Strauss syndrome; allergic rhinitis and conjunctivitis; atopic dermatitis; nasal polyps; Kimura's disease; reactions to adhesives, antimicrobials, fragrances, hair dyes, metals, rubber ingredients, topical Contact dermatitis with agents, rosins, waxes, polishes, cement and leather; chronic sinusitis; atopic eczema; autoimmune diseases in which IgE plays a role ("autoallergy"); chronic (idiopathic) chronic or autoimmune urticaria; choline-induced urticaria; mastocytosis, especially cutaneous mastocytosis; allergic bronchopulmonary zoomycosis; chronic or recurrent idiopathic angioedema; intermittent Qualitative cystitis; anaphylaxis, especially idiopathic and exercise-induced anaphylaxis; immunotherapy, eosinophil-related diseases (such as eosinophilic asthma, eosinophilic gastroenteritis, eosinophilic otitis media and eosinophilic esophagitis); or for the treatment of lymphoma or prevention of sensitizing side effects of antacid therapy, especially for gastric or duodenal ulcers or reflux; and/or for active anti-human epidermal growth factor receptor 2 (anti- Her2) vaccination to treat and prevent Her2-positive neoplastic diseases; and/or for individualized neoantigen-specific therapy, preferably NY-ESO-1, MAGE-A1, MAGE-A3, MAGE-C1, MAGE- In the case of C2, MAGE-C3, survivin, gp100, tyrosinase, CT7, WT1, PSA, PSCA, PSMA, STEAP1, PAP, MUC1, 5 T4, KRAS or Her2; and/or for the control of cancer microorganisms Environmental active anti-immune checkpoint vaccination for the treatment and prevention of neoplastic diseases and for the treatment and prevention of T cell dysfunction in cancer/neoplastic diseases (e.g., avoidance of CD8 T cell infiltration into cancer tissue depletion) and chronic degenerative diseases Diseases, including diseases with reduced T cell activity, such as Parkinson's disease; and/or for familial and sporadic AD, familial and sporadic Aβ cerebral amyloid angiopathy, hereditary cerebral hemorrhage with amyloidosis (HCHWA), dementia with Lewy bodies and Down syndrome, retinal ganglion cell degeneration in glaucoma, inclusion body myositis/myopathy; and/or as an active vaccine for the treatment and prevention of synaptic nuclei Proteinopathy, preferably Parkinson's disease (PD), dementia with Lewy bodies (DLB), multiple system atrophy (MSA), Parkinson's disease dementia (PDD), neuroaxonal dystrophy, amygdala damage Lewy body-limited Alzheimer's disease (AD/ALB); and/or its use as an active vaccine containing an antigen or neoantigen selected from the group consisting of: NY-ESO-1, MAGE-A1, MAGE-A3 , MAGE-C1, MAGE-C2, MAGE-C3, Survivin, gp100, tyrosinase, CT7, WT1, PSA, PSCA, PSMA, STEAP1, PAP, MUC1, 5 T4 and KRAS; and/or for the treatment of or Prevention of IL31-related diseases associated with IL31 protein-derived polypeptides, such as fragments of IL31 protein, preferably pruritus-causing allergic diseases, pruritus-causing inflammatory diseases, and pruritus-causing inflammatory diseases in mammals (including humans, dogs, cats, and horses) Autoimmune diseases; atopic dermatitis, prurigo nodularis, psoriasis, cutaneous T-cell lymphoma (CTCL) and other itching conditions, such as uremic pruritus, cholestatic pruritus, bullous pemphigoid and Chronic urticaria, allergic contact dermatitis (ACD), dermatomyositis, chronic pruritus of unknown origin (CPUO), primary localized cutaneous amyloidosis (PLCA), mastocytosis, chronic spontaneous urticaria , bullous pemphigoid, dermatitis herpetiformis, and other skin conditions including lichen planus, cutaneous amyloidosis, stasis dermatitis, scleroderma, pruritus associated with wound healing, and non-pruritic conditions such as Allergic asthma, allergic rhinitis, inflammatory bowel disease (IBD), osteoporosis, follicular lymphoma, Hodgkin lymphoma and chronic myelogenous leukemia; especially anti-IL31 therapy and anti-IL4 and/or anti-IL13 peptide vaccine combination; and/or for the treatment or prevention of CGRP-related diseases associated with CGRP-derived polypeptides, such as fragments of CGRP, preferably intermittent and chronic migraine and cluster headache, hyperalgesia, and dysfunction Hyperalgesia in painful conditions such as rheumatoid arthritis, osteoarthritis, visceral pain hypersensitivity syndrome, fibromyalgia, inflammatory bowel disease, neuropathic pain, chronic inflammatory pain and headache; and/or use In specific allergen immunotherapy (AIT) for the treatment of IgE-mediated type I allergic diseases. Such illnesses include (but are not limited to) hay fever, seasonal, food, pollen, mold spores, poisonous plants, agents/medicines, insect, scorpion or spider venom, latex or dust allergies; pet allergies; allergic bronchial asthma; allergies Rhinitis and conjunctivitis; atopic dermatitis; contact dermatitis to adhesives, antimicrobials, fragrances, hair dyes, metals, rubber ingredients, topical agents, rosin, waxes, polishes, cement and leather; Chronic sinusitis; atopic eczema; autoimmune diseases in which IgE plays a role ("autoallergy"); chronic (idiopathic) and autoimmune urticaria; systemic allergic reactions, especially idiopathic and exercise-induced anaphylaxis; and/or used to improve the target-specific immune response of existing vaccines, especially anti-infectious vaccines, while inducing no or only very limited CLEC-specific or carrier protein-specific antibodies. reaction, these vaccines are preferably selected from the group of vaccines: PedvaxHIB®, ActHIB®, Hiberix®, Recombivax HB®, PREHEVBRIO®, Engerix-B, HEPLISAV-B®, Gardasil®, Gardasil 9®, Cervarix®, Menveo®, Menactra®, MenQuadfi®, Prevnar-13®, Prevnar 20®, Pneumovax-23®, Vaxneuvance®, Typhim V®, Typhim VI®, Typherix®, combined with non-toxic recombinant Pseudomonas aeruginosa exotoxin A Vi polysaccharide, Typbar-TCV®, Shingrix®; and/or for the prevention of infectious diseases, such as microbial infections or viral infections, preferably caused by: Haemophilus influenzae type B (Hib), Streptococcus pneumoniae, meningitis Diplococcus and Salmonella typhi or other infectious agents, including those causing hepatitis A or B, human papillomavirus infection, influenza, typhoid, measles, mumps and rubella. In addition, there are meningococci group B, cytomegalovirus (CMV), respiratory syncytial virus (RSV), Clostridium difficile, extraintestinal pathogenic Escherichia coli (Expec), Klebsiella pneumoniae, Shigella spp. Staphylococcus aureus, Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale and Plasmodium malariae, coronaviruses (SARS-CoV, MERS-CoV, SARS-CoV-2), Ebola virus , Borrelia burgdorferi, HIV and other infections; and/or used to treat or prevent proprotein convertase subtilisin kexin type 9 related diseases, which include (but are not limited to) hyperlipidemia, hypercholesterolemia disease, atherosclerosis, increased serum levels of low-density lipoprotein cholesterol (LDL-C) and cardiovascular events, stroke or various forms of cancer, and/or for inducing target-specific immune responses without inducing or only Induces a very limited CLEC-specific or carrier protein-specific antibody response; and/or is used to induce a target-specific immune response while inducing no or only a very limited CLEC-specific or carrier protein-specific antibody response; and/or Used in diseases associated with reduced or dysfunctional Treg populations to enhance the weakened/reduced Treg number and activity, and thereby reduce the autoimmune response of disease-specific T effector cells and suppress the patient's autoimmune response, where the use is suitable As a Treg epitope or with Treg inducers such as rapamycin, low-dose IL-2, TNF receptor 2 (TNFR2) agonists, anti-CD20 antibodies (e.g., rituximab), prednisolone , T cell epitopes of a combination of isoprinosine, glatiramer acetate or sodium butyrate; and/or treatment for enhancing or maintaining T cell numbers, especially T effector cell numbers and T cell functions in PD patients , which preferably includes a combination of checkpoint inhibitors or vaccines that use anti-immune checkpoint inhibitor epitopes to induce an anti-immune checkpoint inhibitor immune response, to enhance or maintain the number of T cells, especially the T effect, in PD patients cell number and T cell function, among which PD patients are preferably selected from those with an overall decrease in CD3+ cells, especially those with an overall decrease in CD3+CD4+ cells typical of PD patients in all disease stages; preferably, those in H+Y1-4 stages, It is better for patients with H+Y stage 1-3, and the best is H+Y stage 2-3. 13. The conjugate according to any one of embodiments 1 to 12, wherein β-glucan or mannan is used as a C-type lectin (CLEC) polysaccharide adjuvant, preferably for enhancing the response to a given T cell T cell response to an epitope polypeptide, wherein the T cell epitope is preferably a linear T cell epitope, especially the T cell epitope is a polypeptide, and the polypeptide includes or consists of the following amino acid sequence: SeqID7 , 8, 22-29, 87-131, GKTKEGVLYVGSKTK, KTKEGVLYVGSKTKE, EQVTNVGGAVVTGVT, VTGVTAVAQKTVEGAGNIAAATGFVK, MPVDPDNEAYEMPSE), DNEAYEMPSEEGYQD, EMPSEEGYQDYEPEA or combinations thereof. 14. The conjugate according to any one of embodiments 1 to 13 for increasing affinity maturation against a specific polypeptide antigen or for inducing an increased immune response relative to a human autologous antigen. 15. The conjugate according to any one of embodiments 1 to 14, further comprising a carrier protein containing a T cell epitope for reducing or eliminating the response and/or enhancement of B cells to CLEC and/or the carrier protein The reaction of T cells to the T cell epitope of a carrier protein, wherein the carrier protein is preferably a non-toxic cross-reactive material (CRM) of diphtheria toxin, especially CRM197, KLH, diphtheria toxoid (DT), tetanus toxoid (TT) ), Haemophilus influenzae protein D (HipD) and meningococcal serogroup B outer membrane protein complex (OMPC), recombinant non-toxic form of Pseudomonas aeruginosa exotoxin A ( rEPA ), flagellin, Escherichia coli Heat-labile enterotoxin (LT), cholera toxin (CT), mutant toxins (e.g. LTK63 and LTR72), virus-like particles, albumin-binding proteins, bovine serum albumin, ovalbumin, synthetic peptide dendrimers, e.g. Multiple antigen peptide (MAP), preferably, the ratio of carrier protein to β-glucan in the conjugate is 1/0.1 to 1/50, preferably 1/0.1 to 1/40, more preferably 1/ 0.1 to 1/20, especially 1/0.1 to 1/10, especially T cell epitopes in vaccines containing linear T cell epitopes with enhanced efficacy, for example by adding lysosomes at the N or C terminus Enhanced by a protease cleavage site, such as a cathepsin L-like cleavage site or a cathepsin S-like cleavage site, wherein the cathepsin L-like cleavage site is preferably defined by the following common sequence: X n -X 1 -X 2 -X 3 -X 4 -X 5 -X 6 -X 7 -X 8 Xn : 3-27 amino acids from immunogenic peptide X 1 : Any amino acid X 2 : Any amino acid Amino acid X 4 : N/D/A/ Q /S/R/G/L; preferably N/D, more preferably N Preferably F or R, more preferably R X 6 : F/R/A/K/V/S/Y; Preferably F or R, more preferably R /P/F, preferably AX 8 : cysteine or linker, such as NHNH 2 , where the best sequence is X n -X 1 Preferably defined by the following common sequence: X n -X 1 -X 2 -X 3 -X 4 -X 5 -X 6 -X 7 -X 8 X 1 : any amino acid X 2 : any amino acid X 3 : any amino acid, preferably V, L, I, F, W, Y, H, more preferably V X 4 : any amino acid, Preferably V, L, I, F, W, Y, H, more preferably V X 5 : K, R, E, D, Q, N, preferably K, R, more preferably R X 6 : any amine Amino acid X 7 : any amino acid , preferably AX 8 : preferably AX 8 : cysteine or linker, such as NHNH 2 , where the best sequence is 16. A method for producing a conjugate as any one of embodiments 1 to 15, wherein the β-glucan or mannan is activated by oxidation and wherein the activated β-glucan or mannan is combined with The B cell epitope polypeptide and/or the T cell epitope polypeptide are contacted, thereby obtaining a relationship between the β-glucan or mannan polysaccharide and the B cell epitope polypeptide and/or the T cell epitope polypeptide. conjugate. 17. The method according to embodiment 16, wherein the β-glucan or mannan is obtained by periodate oxidation, reductive amination or cyanation of the hydroxyl group at the ortho-position. 18. According to the method of embodiment 16 or 17, the β-glucan or mannan polysaccharide is oxidized to the following oxidation degree, which is defined as the degree of reactivity with Schiff’s fuchsin reagent, which is equivalent to 0.2-2.6 , preferably at a molar ratio of 0.6-1.4, especially at a molar ratio of 0.7-1, for the oxidation degree of an equal amount of the fungus polysaccharide oxidized with periodate. 19. The method according to any one of embodiments 16 to 18, wherein the conjugate is conjugated to the carbonyl (aldehyde) by hydrazone-based coupling, or by using a heterobifunctional maleimide and Hydrazine linker (for example: BMPH (N-β-maleyl imino propionic acid hydrazine, MPBH (4-[4-N-maleyl imino-phenyl] butyric acid hydrazine Hydrazine), EMCH (N-[ε-maleimidocaproic acid] hydrazine) or KMUH (N-[κ-maleimidodecanoic acid] hydrazine) couple the thiol group (For example: cysteine) is produced by combining with a carbonyl group (aldehyde). 20. A vaccine product designed to vaccinate an individual against a specific antigen, wherein the product contains a compound containing β-(1 , 6)-glucan or mannan as a C-type lectin (CLEC) polysaccharide adjuvant covalently coupled to a specific antigen. 21. The vaccine product according to embodiment 20, wherein the product comprises the method according to embodiments 1 to 16 Any one or a conjugate obtainable by/has been obtained by the method of any one of embodiments 16 to 19. 22. The vaccine product according to embodiment 20 or 21, wherein the antigen comprises at least one B cell epitope and at least one T cell epitope, preferably, wherein the antigen is a polypeptide comprising one or more B cell epitopes and T cell epitopes. 23. The vaccine product according to any one of embodiments 20 to 22, wherein The covalently coupled antigen and CLEC polysaccharide adjuvant are present in particles with a size of 1 to 5000 nm, preferably 1 to 200 nm, especially 2 to 160 nm, which size is dynamically determined in the form of hydrodynamic radius (HDR) Determined by light scattering (DLS). 24. The vaccine product according to any one of embodiments 20 to 23, wherein the covalently coupled antigen and CLEC polysaccharide adjuvant have a size of 1 to 50 nm, preferably 1 to 25 nm, In particular particles of 2 to 15 nm are present, the size being determined by DLS in HDR format. 25. The vaccine product according to any one of embodiments 20 to 24, wherein the covalently coupled antigen and the CLEC polysaccharide adjuvant are in size Particles of less than 100 nm, preferably less than 70 nm, especially less than 50 nm are present, the size being determined by DLS in HDR format. 26. A pharmaceutical composition comprising as in any one of embodiments 1 to 25 The defined conjugate or vaccine and a pharmaceutically acceptable carrier. 27. The pharmaceutical composition according to embodiment 26, wherein the pharmaceutically acceptable carrier is a buffer, preferably a phosphate or TRIS-based buffer 28. The pharmaceutical composition according to embodiment 26 or 27, which is contained in a needle-based delivery system, preferably a syringe, a microneedle system, a hollow needle system, a solid microneedle system or a system including a needle adapter ; Ampoules, needle-free injection systems, preferably jet syringes; patches, transdermal patches, microstructured transdermal systems, microneedle array patches (MAP) (preferably solid MAP (S-MAP), coated MAP (C-MAP) or dissolved MAP (D-MAP)); electrophoresis systems, ion electrophoresis systems, laser-based systems, especially erbium YAG laser systems; or gene gun systems. 29. The pharmaceutical composition according to any one of embodiments 26 to 28, wherein the conjugate or vaccine is included in the form of a solution or suspension, a deep-frozen solution or suspension, a lyophilisate, a powder or a granule. 30. The use of a conjugate according to any one of embodiments 1 to 15, for the manufacture of a composition for preventing or treating diseases, preferably for preventing or treating infectious diseases, chronic diseases, allergic reactions or autoimmunity Elixir for disease. 31. A method for preventing or treating diseases, preferably for preventing or treating infectious diseases, chronic diseases, allergic reactions or autoimmune diseases, wherein an effective amount according to the embodiment is administered to a patient in need A combination of any of 1 to 15.

without

Figure 11 顯示:Display: CLECCLEC 結合物對Conjugate ConAConA and DCDC 受體Receptor (( Right now dectindectin -1)-1) of 活體外結合活性。In vitro binding activity.

A)與當與地衣多醣(Lich)相比時,石耳多醣(Pus)對dectin-1被證明具有更高之結合功效;及B)與石耳多醣相比,來自燕麥(燕麥_BG265、燕麥_BG391)及大麥(大麥_BG229)之β-葡聚糖顯示出有限的結合功效;C)不同的葡聚糖類型(即石耳多醣、甘露多醣及大麥葡聚糖(229kd))在葡聚糖氧化後保留高或中等的受體結合活性,該活性係藉由競爭性結合分析所評定。「經20%及40%氧化」表示用於結合的葡聚糖部分之氧化狀態。抑制%表示在指定濃度的測試CLEC存在下,抑制可溶性dectin-1受體(石耳多醣及大麥_BG229)或ConA (甘露多醣)與盤結合之β-葡聚糖或甘露多醣的結合抑制程度。D)石耳多醣結合物及E)地衣多醣結合物與未偶合之β-葡聚糖相比保持約50%的dectin-1結合能力,該結合能力係藉由競爭性結合分析所評定。F)藉由異雙官能連接子產生的石耳多醣結合物保持高的dectin-1結合功效。數據以發光ELISA的相對光單位(RLU)顯示。Pus70結合物1-3分別指三種不同的CLEC肽結合物(SeqID2、SeqID10及SeqID16)。Pus 70%及Lich 200%係指各別氧化狀態下的石耳多醣及地衣多醣。BMP HPus係指活化之石耳多醣。BMPH結合物2係指CLEC-SeqID10結合物。 2 顯示:藉由脂多醣 (LPS) 及不同的石耳多醣製劑活化樹突狀細胞的流式細胞術分析A) Shitu polysaccharide (Pus) was shown to have higher binding efficacy to dectin-1 when compared with lichen (Lich); and B) Compared with Shifu polysaccharide, from oat (Oat_BG265, Beta-glucans from oats_BG391) and barley (Barley_BG229) show limited binding efficacy; C) Different glucan types (i.e., Shigu polysaccharide, mannan polysaccharide and barley glucan (229kd)) in Dextran retains high or moderate receptor binding activity after oxidation, as assessed by competitive binding assays. "20% and 40% oxidized" indicates the oxidation state of the dextran portion used for conjugation. % inhibition represents the degree of inhibition of the binding of β-glucan or mannan to the disc by inhibiting the binding of soluble dectin-1 receptors (Shitia polysaccharide and barley_BG229) or ConA (mannan) in the presence of the specified concentration of test CLEC. . D) Schizophora polysaccharide conjugates and E) lichenin conjugates retain approximately 50% of the dectin-1 binding capacity compared to uncoupled β-glucan, as assessed by competitive binding assays. F) The fungus polysaccharide conjugate produced by the heterobifunctional linker maintains high dectin-1 binding efficacy. Data are presented in relative light units (RLU) for luminescence ELISA. Pus70 conjugates 1-3 refer to three different CLEC peptide conjugates (SeqID2, SeqID10 and SeqID16) respectively. Pus 70% and Lich 200% refer to the polysaccharide and lichen polysaccharide in their respective oxidation states. BMP HPus refers to activated agaricus polysaccharide. BMPH conjugate 2 refers to the CLEC-SeqID10 conjugate. Figure 2 shows: Flow cytometric analysis of dendritic cells activated by lipopolysaccharide (LPS) and different auricularia polysaccharide preparations.

使用粒細胞-巨噬細胞群落刺激因子(GM-CSF)在活體外生成未成熟的骨髓衍生之小鼠樹突狀細胞(BMDC)。GM-CSF-BMDC用LPS (經氧化之石耳多醣及石耳多醣結合物製劑中含有的等效劑量)、SeqID2+SeqID7+石耳多醣結合物或僅經氧化之石耳多醣刺激24小時。石耳多醣結合物及僅石耳多醣的使用劑量自62.5 µg/mL開始逐漸增加(直至500 µg/mL)。藉由CD11c/CD11b表現來鑑別DC,且藉由流式細胞術量測根據 A)C)SeqID2+SeqID7+石耳多醣結合物或 B)D)僅經氧化之石耳多醣之CD80及II類主要組織相容複合體(MHC)的表面表現。藉由CytExpert軟體分析經由石耳多醣製劑處理的DC (=量測)及經由等量的LPS處理(=預期)的DC之活化標誌物的表現。 3 顯示:藉由動態光散射 (DLS) 測定 CLEC 結合物之粒子尺寸 Immature bone marrow-derived mouse dendritic cells (BMDCs) were generated in vitro using granulocyte-macrophage colony-stimulating factor (GM-CSF). GM-CSF-BMDCs were stimulated with LPS (equivalent amounts contained in oxidized Psoralea corylifolia and Psoralea corylifolia conjugate preparations), SeqID2+SeqID7+Psoralea corylifolia conjugate, or oxidized Psoralea corylifolia conjugate alone for 24 hours. The doses of Psoralea corylifolia conjugate and Psoralea corylifolia conjugate alone were increased starting from 62.5 µg/mL (up to 500 µg/mL). DCs were identified by CD11c/CD11b expression, and the surface expression of CD80 and class II major histocompatibility complex (MHC) according to A) and C) SeqID2+SeqID7+ Pseudomonas aeruginosa conjugates or B) and D) oxidized Pseudomonas aeruginosa only was measured by flow cytometry. The expression of activation markers in DCs treated with Pseudomonas aeruginosa preparations (=measured) and treated with an equal amount of LPS (=expected) was analyzed by CytExpert software. Figure 3 shows: Particle size of CLEC conjugates was determined by dynamic light scattering (DLS) .

藉由DLS量測自懸浮液或溶液散射的光之強度的隨機變化來測定粒子尺寸。分別顯示 A)SeqID5+SeqID7+石耳多醣(80%氧化狀態)結合物、 B)SeqID6+CRM+石耳多醣結合物及 C)未經修飾之石耳多醣的24小時內之正則化分析及相應的累積半徑分析。 4 顯示: 基於不同 CLEC 之疫苗的免疫原性比較。 Particle size is determined by DLS by measuring random changes in the intensity of light scattered from a suspension or solution. Shown are the regularized analysis and the corresponding results within 24 hours of A) SeqID5+SeqID7+Shit fungi polysaccharide (80% oxidation state) conjugate, B) SeqID6+CRM+Shit fungus polysaccharide conjugate, and C) unmodified Shi fungus polysaccharide. Cumulative radius analysis. Figure 4 shows: Comparison of immunogenicity of vaccines based on different CLECs .

8-12週齡的雌性BALB/c小鼠接受總共3次皮內疫苗接種,施用間隔時間為2週。在基線及每次接種疫苗後收集血液樣本,以瞭解隨後的免疫反應的動力學。第3次施用後2週採集樣品且分析 A)基於甘露多醣、大麥及石耳多醣之疫苗(SeqID2+SeqID7+CLEC)的抗肽反應(SeqID3)及 B)基於石耳多醣及地衣多醣之疫苗(SeqID2+SeqID7+CLEC及SeqID10+SeqID7+CLEC)的抗肽反應(SeqID3及SeqID11)。 5 顯示: 石耳多醣結合物及由未結合的肽及 CLEC 組成之疫苗的免疫原性比較分析Female BALB/c mice aged 8-12 weeks received a total of 3 intradermal vaccinations with an interval of 2 weeks. Blood samples were collected at baseline and after each vaccination to understand the kinetics of the subsequent immune response. Samples were collected 2 weeks after the third administration and analyzed for A) anti-peptide responses (SeqID3) to vaccines based on mannoses, barley and pyriferan (SeqID2+SeqID7+CLEC) and B) anti-peptide responses (SeqID3 and SeqID11) to vaccines based on pyriferan and lichenin (SeqID2+SeqID7+CLEC and SeqID10+SeqID7+CLEC). Figure 5 shows: Comparative analysis of the immunogenicity of pyriferan conjugates and vaccines consisting of unconjugated peptides and CLEC .

8-12週齡的雌性BALB/c小鼠接受總共3次皮內疫苗接種,施用間隔時間為2週。在基線及每次接種疫苗後收集血液樣本,以瞭解隨後的免疫反應的動力學。在第3次施用後2週取樣並分析抗肽反應(SeqID3)。使用之疫苗為:SeqID2+SeqID7+CLEC或未結合的SeqID2、SeqID7及CLEC的混合物。 6 顯示: 含有 B 細胞及 T 細胞抗原決定基的石耳多醣結合物與僅含有各別 B 細胞或 T 細胞抗原決定基之結合物的免疫原性比較分析。 Female BALB/c mice aged 8-12 weeks received a total of 3 intradermal vaccinations, administered 2 weeks apart. Blood samples were collected at baseline and after each vaccination to understand the dynamics of the subsequent immune response. Samples were taken 2 weeks after the 3rd dose and analyzed for anti-peptide responses (SeqID3). The vaccines used are: SeqID2+SeqID7+CLEC or a mixture of unconjugated SeqID2, SeqID7 and CLEC. Figure 6 shows: Comparative analysis of the immunogenicity of the Shi fungus polysaccharide conjugates containing B cell and T cell epitopes and the conjugates containing only the respective B cell or T cell epitopes.

8-12週齡的雌性BALB/c小鼠接受總共3次皮內疫苗接種,施用間隔時間為2週。在基線及每次接種疫苗後收集血液樣本,以瞭解隨後的免疫反應的動力學。使用之疫苗為:SeqID5+SeqID7+CLEC或SeqID5+CLEC,以及SeqID7+CLEC。在第3次施用後2週取樣且分析抗肽反應(SeqID6)。 7 顯示: 使用多肽 - 石耳多醣結合物或含有相應非偶合成分之疫苗重複免疫接種後小鼠抗石耳多醣抗體反應的比較分析Female BALB/c mice aged 8-12 weeks received a total of 3 intradermal vaccinations with an interval of 2 weeks. Blood samples were collected at baseline and after each vaccination to understand the kinetics of the subsequent immune response. The vaccines used were: SeqID5+SeqID7+CLEC or SeqID5+CLEC, and SeqID7+CLEC. Samples were taken 2 weeks after the third administration and analyzed for anti-peptide responses (SeqID6). Figure 7 shows: Comparative analysis of anti-Pseudomonas aeruginosa antibody responses in mice after repeated immunization with peptide - Pseudomonas aeruginosa conjugates or vaccines containing the corresponding unconjugated components.

8-12週齡的雌性BALB/c小鼠接受總共3次皮內疫苗接種,施用間隔時間為2週。在基線及每次接種疫苗後收集血液樣本,以瞭解隨後的免疫反應的動力學。前血漿及t1-t3表示在第一次(t1)、第二次(t2)或第三次(t3)免疫接種之前(血漿前)或之後可偵測到的免疫反應。在第3次施用後2週取樣且分析抗石耳多醣反應。 A)不同疫苗引起的抗石耳多醣反應的分析。 B)免疫反應的動力學。 C)抑制ELISA證明了ELISA系統的特異性。使用之疫苗:SeqID2+SeqID7+CLEC或未結合的SeqID2、SeqID7及CLEC的混合物。 8 顯示: 使用差異肽偶合方向對基於 CLEC 之疫苗引發的免疫反應進行比較分析Female BALB/c mice aged 8-12 weeks received a total of 3 intradermal vaccinations, administered 2 weeks apart. Blood samples were collected at baseline and after each vaccination to understand the kinetics of the subsequent immune response. Pre-plasma and t1-t3 represent immune responses detectable before (pre-plasma) or after the first (t1), second (t2), or third (t3) immunization. Samples were taken 2 weeks after the third administration and analyzed for anti-Psoralen responses. A) Analysis of anti-Psoralen responses elicited by different vaccines. B) Kinetics of immune responses. C) Inhibition ELISA demonstrates the specificity of the ELISA system. Vaccines used: SeqID2+SeqID7+CLEC or a mixture of unconjugated SeqID2, SeqID7, and CLEC. FIG8 shows a comparative analysis of immune responses elicited by CLEC-based vaccines using different peptide coupling orientations .

8-12週齡的雌性BALB/c小鼠接受總共3次皮內疫苗接種,施用間隔時間為2週。在基線及每次接種疫苗後收集血液樣本,以瞭解隨後的免疫反應的動力學。測試了4種不同的基於CLEC的候選原型疫苗(兩種不同的肽藉由其C端或N端與石耳多醣偶合)。在第3次施用後2週取樣且分析 A)抗肽及 B)抗aSyn蛋白反應。使用之疫苗為:SeqID1/2/4/5+SeqID7+CLEC。 9 顯示: 使用不同的混雜輔助性 T 細胞抗原決定基對基於 CLEC 之疫苗的免疫原性進行比較分析Female BALB/c mice aged 8-12 weeks received a total of 3 intradermal vaccinations with an interval of 2 weeks between administrations. Blood samples were collected at baseline and after each vaccination to understand the kinetics of the subsequent immune response. Four different CLEC-based candidate prototype vaccines were tested (two different peptides coupled to Psoralea corylifolia polysaccharide via their C-terminus or N-terminus). Samples were taken 2 weeks after the third administration and analyzed for A) anti-peptide and B) anti-aSyn protein responses. The vaccines used were: SeqID1/2/4/5+SeqID7+CLEC. Figure 9 shows: Comparative analysis of the immunogenicity of CLEC -based vaccines using different promiscuous helper T cell epitopes .

8-12週齡的雌性BALB/c小鼠接受總共3次皮內疫苗接種,施用間隔時間為2週。在基線及每次接種疫苗後收集血液樣本,以瞭解隨後的免疫反應的動力學。以相應的肽-KLH結合物(疫苗10)分別評估了包含相同B細胞抗原決定基及不同輔助性T抗原決定基(即SeqID7、SeqID22-29)的9種不同的基於CLEC之疫苗(疫苗1-9)所引起的免疫反應。在第3次施用後2週取樣且分析 A)抗肽及 B)抗aSyn蛋白反應。 10 顯示:使用載體蛋白 KLH 作為 輔助性 T 細胞抗原決定基之來源,基於 CLEC 之疫苗及習知肽 - 蛋白質結合物疫苗誘導之目標蛋白 載體蛋白特異性免疫原性的比較分析 Female BALB/c mice aged 8-12 weeks received a total of 3 intradermal vaccinations, administered 2 weeks apart. Blood samples were collected at baseline and after each vaccination to understand the kinetics of the subsequent immune response. The immune responses elicited by 9 different CLEC-based vaccines (vaccines 1-9) containing the same B cell epitope and different helper T epitopes (i.e., SeqID7, SeqID22-29) were evaluated with the corresponding peptide-KLH conjugate (vaccine 10). Samples were taken 2 weeks after the third administration and analyzed for A) anti-peptide and B) anti-aSyn protein responses. FIG. 10 shows a comparative analysis of the target protein and carrier protein- specific immunogenicity induced by CLEC -based vaccines and known peptide - protein conjugate vaccines using the carrier protein KLH as a source of helper T cell antigenic determinants .

8-12週齡之雌性BALB/c小鼠接受總共3次皮內或皮下(s.c.)疫苗接種,施用間隔時間為2週。在基線及每次接種疫苗後收集血液樣本,以瞭解隨後的免疫反應之動力學。相對於與Alum/Alhydrogel共同施用(s.c.,即皮下注射)或不使用額外佐劑(i.d.,即皮內注射)之習知肽-KLH結合物(即SeqID3+KLH及SeqID6+KLH)所誘導之反應,對使用KLH作為輔助性T抗原決定基之來源且結合CLEC修飾(分別為SeqID3+KLH+石耳多醣及SeqID6+KLH+石耳多醣)的2種肽-蛋白質結合物疫苗引發的免疫反應進行評估。在第3次施用後2週取樣且藉由ELISA分析 A)抗肽及抗aSyn蛋白反應及 B)抗KLH反應。 11 顯示:使用載體蛋白 CRM197 作為 輔助性 T 細胞抗原決定基之來源,基於 CLEC 之疫苗及習知肽 - 蛋白質結合物疫苗誘導之目標蛋白及載體蛋白特異性免疫原性的比較分析 Female BALB/c mice aged 8-12 weeks received a total of 3 intradermal or subcutaneous (sc) vaccinations administered 2 weeks apart. Blood samples were collected at baseline and after each vaccination to understand the dynamics of the subsequent immune response. Compared to that induced by conventional peptide-KLH conjugates (i.e. SeqID3+KLH and SeqID6+KLH) co-administered with Alum/Alhydrogel (sc, i.e. subcutaneous injection) or without additional adjuvant (id, i.e. intradermal injection) Response, the immune response elicited by two peptide-protein conjugate vaccines using KLH as the source of the helper T epitope and combined with CLEC modifications (SeqID3+KLH+Shitia polysaccharide and SeqID6+KLH+Shit fungus polysaccharide, respectively) was evaluated. . Samples were taken 2 weeks after the 3rd administration and analyzed by ELISA for A) anti-peptide and anti-aSyn protein responses and B) anti-KLH responses. Figure 11 shows: Comparative analysis of target protein and carrier protein specific immunogenicity induced by CLEC -based vaccines and conventional peptide - protein conjugate vaccines using carrier protein CRM197 as a source of helper T cell epitopes .

8-12週齡之雌性BALB/c小鼠接受總共3次皮內或皮下疫苗接種,施用間隔時間為2週。在基線及每次接種疫苗後收集血液樣本,以瞭解隨後的免疫反應之動力學。本研究使用2種不同的基於CRM之疫苗類型。SeqID6+CRM+Pus表示隨後與石耳多醣偶合之肽-CRM結合物,而SeqID5+CRM+Pus表示其中肽成分及載體分子已分別與CLEC偶合之結合物。相對於各別習知肽-CRM結合物(即SeqID6+CRM,以Alum/Alhydrogel作為佐劑且皮下施用)評估兩種類型誘導之免疫反應。在第3次施用後2週取樣且藉由ELISA分析A)抗肽及抗aSyn蛋白反應及B)抗CRM反應。 12 顯示:基於 CLEC 之疫苗在活體內針對兩種不同 aSyn 形式引發的免疫反應選擇性的比較分析 Female BALB/c mice aged 8-12 weeks received a total of 3 intradermal or subcutaneous vaccinations, administered 2 weeks apart. Blood samples were collected at baseline and after each vaccination to understand the dynamics of the subsequent immune response. This study used 2 different CRM-based vaccine types. SeqID6+CRM+Pus represents the peptide-CRM conjugate that is subsequently coupled to the fungus polysaccharide, while SeqID5+CRM+Pus represents the conjugate in which the peptide component and the carrier molecule have been coupled to CLEC respectively. The immune responses induced by both types were evaluated relative to respective known peptide-CRM conjugates (i.e., SeqID6+CRM, adjuvanted with Alum/Alhydrogel and administered subcutaneously). Samples were taken 2 weeks after the 3rd administration and analyzed by ELISA for A) anti-peptide and anti-aSyn protein responses and B) anti-CRM responses. Figure 12 shows: Comparative analysis of the selectivity of immune responses elicited by CLEC -based vaccines against two different aSyn forms in vivo .

8-12週齡之雌性BALB/c小鼠接受總共3次皮內或皮下疫苗接種,施用間隔時間為2週。相對於習知肽成分疫苗(SeqID3+KLH+Alum及SeqID6+CRM+Alum,皮下施用),評估基於CLEC之疫苗(SeqID2+SeqID7+Pus及SeqID5+SeqID7+Pus;皮內施用)及基於CLEC之替代疫苗(SeqID3+KLH+Pus及SeqID6+CRM+Pus;皮內施用)。在第3次施用後2週取樣且進行aSyn選擇性分析(抑制ELISA)。黑線:用於抑制之單體aSyn;虛線:用於抑制之絲狀aSyn。 13 顯示:對基於 CLEC 之疫苗引發的免疫反應 抗體分子與抗原的 親和力 (avidity) 的比較分析 Female BALB/c mice aged 8-12 weeks received a total of 3 intradermal or subcutaneous vaccinations with 2-week intervals. CLEC-based vaccines (SeqID2+SeqID7+Pus and SeqID5+SeqID7+Pus; intradermal) and CLEC-based alternative vaccines (SeqID3+KLH+Pus and SeqID6+CRM+Pus; intradermal) were evaluated relative to known peptide component vaccines (SeqID3+KLH+Alum and SeqID6+CRM+Alum, subcutaneous). Samples were taken 2 weeks after the third administration and analyzed for aSyn selectivity (inhibition ELISA). Black line: monomeric aSyn for inhibition; dashed line: filamentous aSyn for inhibition. FIG. 13 shows a comparative analysis of the affinity of antibody molecules to antigens in immune responses induced by CLEC -based vaccines .

8-12週齡之雌性BALB/c小鼠接受總共3次皮內或皮下疫苗接種,施用間隔時間為2週。相對於習知肽成分疫苗(SeqID3+KLH+Alum及SeqID6+CRM+Alum,皮下施用)評估基於CLEC之疫苗(SeqID2+SeqID7+Pus及SeqID5+SeqID7+Pus,皮內施用)及基於CLEC之替代疫苗(SeqID3+KLH+Pus及SeqID6+CRM+Pus,皮內施用)。第二次免疫接種(T2)後2週或第三次免疫接種(T3)後兩週取樣,且藉由基於ELISA之親和力分析評定對aSyn之抗體親和力。 14 顯示:對基於 CLEC 之疫苗引發的免疫反應中 單一抗原結合區段與抗原的 親和力 (affinity) 的比較分析 Female BALB/c mice aged 8-12 weeks received a total of 3 intradermal or subcutaneous vaccinations, with an interval of 2 weeks between administrations. CLEC-based vaccines (SeqID2+SeqID7+Pus and SeqID5+SeqID7+Pus, intradermally administered) and CLEC-based alternative vaccines (SeqID3+KLH+Pus and SeqID6+CRM+Pus, intradermally administered) were evaluated relative to known peptide component vaccines (SeqID3+KLH+Alum and SeqID6+CRM+Alum, subcutaneously administered). Samples were taken 2 weeks after the second immunization (T2) or 2 weeks after the third immunization (T3), and antibody affinity to aSyn was assessed by ELISA-based affinity analysis. FIG. 14 shows a comparative analysis of the affinity of single antigen binding segments to antigens in immune responses elicited by CLEC -based vaccines .

8-12週齡之雌性BALB/c小鼠接受總共3次皮內或皮下疫苗接種,施用間隔時間為2週。相對於習知肽成分疫苗(SeqID3+KLH+Alum及SeqID6+CRM+Alum,皮下施用)評估基於CLEC之疫苗(SeqID2+SeqID7+Pus及SeqID5+SeqID7+Pus,皮內施用)及基於CLEC之替代疫苗(SeqID3+KLH+Pus及SeqID6+CRM+Pus,皮內施用)。在第3次施用後2週取樣,且藉由aSyn位移ELISA分析評定對aSyn的抗體平衡解離常數(Kd)。 15 顯示:由基於 CLEC 之疫苗引起的免疫反應的活體外功能的比較分析 Female BALB/c mice aged 8-12 weeks received a total of 3 intradermal or subcutaneous vaccinations, administered 2 weeks apart. Evaluate CLEC-based vaccines (SeqID2+SeqID7+Pus and SeqID5+SeqID7+Pus, administered intradermally) relative to conventional peptide-component vaccines (SeqID3+KLH+Alum and SeqID6+CRM+Alum, administered subcutaneously) and CLEC-based alternatives Vaccines (SeqID3+KLH+Pus and SeqID6+CRM+Pus, administered intradermally). Samples were taken 2 weeks after the 3rd administration, and the antibody equilibrium dissociation constant (Kd) to aSyn was assessed by aSyn shift ELISA analysis. Figure 15 shows: Comparative in vitro functional analysis of immune responses elicited by CLEC -based vaccines .

8-12週齡之雌性BALB/c小鼠接受總共3次皮內及皮下疫苗接種,施用間隔時間為2週。在第3次施用後2週取樣,且藉由ThT螢光分析評定aSyn特異性抗體存在下aSyn聚集的調節。 A) aSyn在CLEC疫苗誘導之抗體(SeqID2+SeqID7+Pus;皮內施用)、習知肽成分誘導之抗體(SeqID3+KLH+Alum,皮下施用)或鼠類血漿中聚集0-72小時。 B)aSyn或具有預形成之原纖維的aSyn在CLEC疫苗誘導之抗體(SeqID5+SeqID7+Pus及SeqID6+CRM+Pus,皮內施用)、習知肽成分誘導之抗體(SeqID6+CRM+Alum,皮下施用)或鼠類血漿之情況下聚集0-92小時。藉由在t0處對ThT螢光進行標準化來計算動力學曲線,且使用自ThT動力學指數生長期之線性回歸分析中擷取的斜率值來計算aSyn聚集之抑制百分比。 16 顯示: 免疫途徑對由基於 CLEC 之疫苗引發的免疫反應的影響的比較分析。 Female BALB/c mice aged 8-12 weeks received a total of 3 intradermal and subcutaneous vaccinations with an interval of 2 weeks. Samples were taken 2 weeks after the third administration and the modulation of aSyn aggregation in the presence of aSyn-specific antibodies was assessed by ThT fluorescence analysis. A ) aSyn aggregation in CLEC vaccine-induced antibodies (SeqID2+SeqID7+Pus; intradermal administration), antibodies induced by the known peptide component (SeqID3+KLH+Alum, subcutaneous administration) or mouse plasma for 0-72 hours. B) Aggregation of aSyn or aSyn with preformed protofibrils in the presence of CLEC vaccine-induced antibodies (SeqID5+SeqID7+Pus and SeqID6+CRM+Pus, intradermally administered), known peptide component-induced antibodies (SeqID6+CRM+Alum, subcutaneously administered), or mouse plasma for 0-92 hours. Kinetic curves were calculated by normalizing to ThT fluorescence at t0, and the percentage inhibition of aSyn aggregation was calculated using the slope values extracted from the linear regression analysis of the exponential growth phase of the ThT kinetics. Figure 16 shows: Comparative analysis of the effects of the immunization route on the immune response elicited by CLEC -based vaccines.

8-12週齡的雌性BALB/c小鼠以2週的間隔接受總共3次疫苗接種。在基線及每次接種疫苗後收集血液樣本,以瞭解隨後的免疫反應的動力學。將包括皮下(s.c.)及肌肉內(i.m.)施用在內的兩種替代途徑與基於CLEC之疫苗的真皮內(i.d.)施用進行了比較。每條途徑皆施用三劑基於CLEC之疫苗(SeqID2+SeqID7+Pus)。在第3次施用後2週取樣且分析 A)抗肽及 B)抗aSyn蛋白反應。 17 顯示: 由含有以轉譯後修飾肽 A β 為特徵的 B 細胞抗原決定基的 CLEC 疫苗引起的免疫反應的比較分析。 Female BALB/c mice aged 8-12 weeks received a total of 3 vaccinations at 2-week intervals. Blood samples were collected at baseline and after each vaccination to understand the dynamics of the subsequent immune response. Two alternative routes including subcutaneous (sc) and intramuscular (im) administration were compared with intradermal (id) administration of CLEC-based vaccines. Three doses of CLEC-based vaccine (SeqID2+SeqID7+Pus) were administered per route. Samples were taken 2 weeks after the 3rd dose and analyzed for A) anti-peptide and B) anti-aSyn protein responses. Figure 17 shows a comparative analysis of immune responses elicited by CLEC vaccines containing B cell epitopes characterized by post-translationally modified peptide .

8-12週齡的雌性BALB/c小鼠接受總共3次疫苗接種,施用間隔時間為2週(i.d.及s.c.)。在基線及每次接種疫苗後收集血液樣本,以瞭解隨後的免疫反應的動力學。將基於CLEC之疫苗(SeqID33+SeqID7+Pus,i.d.)相對於傳統的基於肽結合物之疫苗(SeqID32+KLH+Alum,s.c.)進行了評估。在第3次施用後2週取樣且分析 A)抗肽、抗AβpE3-40、抗AβpE3-42及抗Aβ1-42反應。 B)藉由基於ELISA的親和力測定法評估針對AβpE3-42的抗體親和力。 18 顯示: 由含有源自細胞內蛋白及自身抗原的 B 細胞抗原決定基的 CLEC 疫苗引發的免疫反應的比較分析: Tau Female BALB/c mice aged 8-12 weeks received a total of 3 vaccinations, administered 2 weeks apart (id and sc). Blood samples were collected at baseline and after each vaccination to understand the kinetics of the subsequent immune response. CLEC-based vaccines (SeqID33+SeqID7+Pus, id) were evaluated against traditional peptide conjugate-based vaccines (SeqID32+KLH+Alum, sc). Samples were taken 2 weeks after the third administration and analyzed for A) anti-peptide, anti-AβpE3-40, anti-AβpE3-42, and anti-Aβ1-42 responses. B) Antibody affinity to AβpE3-42 was evaluated by ELISA-based affinity assay. Figure 18 shows: Comparative analysis of immune responses elicited by CLEC vaccines containing B cell antigenic determinants derived from intracellular proteins and self-antigens : Tau .

8-12週齡的雌性BALB/c小鼠接受總共3次疫苗接種,施用間隔時間為2週(i.d.及s.c.)。在基線及每次接種疫苗後收集血液樣本,以瞭解隨後的免疫反應的動力學。將基於CLEC之疫苗(SeqID36+SeqID7+Pus,i.d.)相對於傳統的基於肽成分之疫苗(SeqID35+KLH+Alum,s.c.)進行了評估。在第3次施用後2週取樣且分析 A)抗肽及抗重組Tau441蛋白反應。 B)將抗體對SeqID35的親和力藉由基於ELISA的親和力測定進行評估。 19 顯示: 由含有源自分泌蛋白的 B 細胞抗原決定基、自身抗原及構形抗原決定基的 CLEC 疫苗引起的免疫反應的比較分析: IL23 Female BALB/c mice aged 8-12 weeks received a total of 3 vaccinations administered 2 weeks apart (id and sc). Blood samples were collected at baseline and after each vaccination to understand the dynamics of the subsequent immune response. The CLEC-based vaccine (SeqID36+SeqID7+Pus, id) was evaluated against a traditional peptide-component-based vaccine (SeqID35+KLH+Alum, sc). Samples were taken 2 weeks after the 3rd dose and analyzed for A) anti-peptide and anti-recombinant Tau441 protein responses. B) The affinity of the antibodies for SeqID35 was assessed by ELISA-based affinity assay. Figure 19 shows: Comparative analysis of immune responses elicited by CLEC vaccines containing B cell epitopes, autoantigens and conformational epitopes derived from the secreted protein : IL23 .

8-12週齡的雌性BALB/c小鼠接受總共3次疫苗接種,施用間隔時間為2週(i.d.及s.c.)。在基線及每次接種疫苗後收集血液樣本,以瞭解隨後的免疫反應的動力學。將3種基於CLEC之疫苗(SeqID38/SeqID40/SeqID42均與SeqID7及石耳多醣結合,i.d.)相對於傳統的基於肽結合物之疫苗(SeqID37/SeqID39/SeqID41與KLH及Alhydrogel (Alum)結合,s.c.)進行了評估。在第3次施用後2週取樣且分析抗肽及抗IL23蛋白反應。 20 顯示: 由含有源自存在於跨膜蛋白中的自身抗原決定基的 B 細胞抗原決定基的 CLEC 疫苗引起的免疫反應的比較分析:膜結合 IgE 的胞外膜近端結構域 (EMPD) Female BALB/c mice aged 8-12 weeks received a total of 3 vaccinations, administered 2 weeks apart (id and sc). Blood samples were collected at baseline and after each vaccination to understand the kinetics of the subsequent immune response. Three CLEC-based vaccines (SeqID38/SeqID40/SeqID42 all conjugated to SeqID7 and Psoralea corylifolia, id) were evaluated against a traditional peptide conjugate-based vaccine (SeqID37/SeqID39/SeqID41 conjugated to KLH and Alhydrogel (Alum), sc). Samples were taken 2 weeks after the third administration and analyzed for anti-peptide and anti-IL23 protein responses. Figure 20 shows: Comparative analysis of immune responses elicited by CLEC vaccines containing B cell antigenic determinants derived from self antigenic determinants present in a transmembrane protein : the extracellular membrane proximal domain (EMPD) of membrane-bound IgE .

8-12週齡的雌性BALB/c小鼠接受總共3次疫苗接種,施用間隔時間為2週(i.d.及s.c.)。在基線及每次接種疫苗後收集血液樣本,以瞭解隨後的免疫反應的動力學。將基於CLEC之疫苗(SeqID44+SeqID7+Pus,i.d.)相對於傳統的基於肽成分之疫苗(SeqID43+KLH+Alum,s.c.)進行了評估。第3次施用後2週取樣且分析 A)抗注射肽及抗EMPD肽反應。 B)將抗體對EMPD肽之親和力藉由基於ELISA的親和力測定進行評估。 21 顯示: 由含有源自過敏原、模擬抗原決定基及構形抗原決定基的 B 細胞抗原決定基的 CLEC 疫苗引起的免疫反應的比較分析: Betv1 Female BALB/c mice aged 8-12 weeks received a total of 3 vaccinations administered 2 weeks apart (id and sc). Blood samples were collected at baseline and after each vaccination to understand the dynamics of the subsequent immune response. The CLEC-based vaccine (SeqID44+SeqID7+Pus, id) was evaluated against a traditional peptide component-based vaccine (SeqID43+KLH+Alum, sc). Samples were taken 2 weeks after the 3rd administration and analyzed for A) anti-injection peptide and anti-EMPD peptide responses. B) The affinity of the antibodies for the EMPD peptide was assessed by an ELISA-based affinity assay. Figure 21 shows: Comparative analysis of immune responses elicited by CLEC vaccines containing B cell epitopes derived from allergens, mimic epitopes and conformational epitopes : Betv1 .

8-12週齡的雌性BALB/c小鼠接受總共3次疫苗接種,施用間隔時間為2週(i.d.及s.c.)。在基線及每次接種疫苗後收集血液樣本,以瞭解隨後的免疫反應的動力學。將基於CLEC之疫苗(SeqID46+SeqID7+Pus,i.d.)相對於傳統的基於肽成分之疫苗(SeqID45+KLH+Alum,s.c.)進行了評估。在第3次施用後2週取樣且分析 A)抗肽及抗Betv1蛋白反應。 B)藉由基於ELISA的親和力測定評估Betv1的抗體親和力。 22 顯示: 由含有存在於不同形式的癌症 / 腫瘤疾病 ( 即致癌基因 ) 中的 B 細胞抗原決定基的 CLEC 疫苗引發的免疫反應的比較分析: Her2 Female BALB/c mice aged 8-12 weeks received a total of 3 vaccinations with an interval of 2 weeks between administrations (id and sc). Blood samples were collected at baseline and after each vaccination to understand the kinetics of the subsequent immune response. CLEC-based vaccines (SeqID46+SeqID7+Pus, id) were evaluated against traditional peptide-based vaccines (SeqID45+KLH+Alum, sc). Samples were taken 2 weeks after the third administration and analyzed for A) anti-peptide and anti-Bet v 1 protein responses. B) Antibody affinity for Bet v 1 was assessed by ELISA-based affinity assay. Figure 22 shows: Comparative analysis of immune responses elicited by CLEC vaccines containing B cell antigenic determinants present in different forms of cancer / tumor diseases ( i.e., oncogenes ) : Her2 .

8-12週齡的雌性BALB/c小鼠接受總共3次疫苗接種,施用間隔時間為2週(i.d.及s.c.)。在基線及每次接種疫苗後收集血液樣本,以瞭解隨後的免疫反應的動力學。將基於CLEC之疫苗(SeqID48+SeqID7+Pus,i.d.)相對於傳統的基於肽成分之疫苗(SeqID47+KLH+Alum,s.c.)進行了評估。在第3次施用後2週取樣且分析抗肽及抗Her2蛋白反應。 23 顯示: 由含有存在於不同形式的腫瘤疾病 / 癌症 ( 即致癌基因 ) 中的 B 細胞抗原決定基的 CLEC 疫苗引起的免疫反應的比較分析: PD1 Female BALB/c mice aged 8-12 weeks received a total of 3 vaccinations, with an interval of 2 weeks between administrations (id and sc). Blood samples were collected at baseline and after each vaccination to understand the kinetics of the subsequent immune response. CLEC-based vaccines (SeqID48+SeqID7+Pus, id) were evaluated relative to traditional peptide-based vaccines (SeqID47+KLH+Alum, sc). Samples were taken 2 weeks after the third administration and analyzed for anti-peptide and anti-Her2 protein responses. Figure 23 shows: Comparative analysis of immune responses elicited by CLEC vaccines containing B cell antigenic determinants present in different forms of neoplastic diseases / cancers ( i.e. , oncogenes ) : PD1 .

8-12週齡的雌性BALB/c小鼠接受總共3次疫苗接種,施用間隔時間為2週(i.d.及s.c.)。在基線及每次接種疫苗後收集血液樣本,以瞭解隨後的免疫反應的動力學。將基於CLEC之疫苗(SeqID50+SeqID7+Pus,i.d.)相對於傳統的基於肽成分之疫苗(SeqID49+KLH+Alum,s.c.)進行了評估。在第3次施用後2週採集樣品且分析 A)抗肽及抗PD1蛋白反應。 B)將抗體對SeqID49的親和力藉由基於ELISA的親和力測定進行評估。 24 顯示:使用不同肽 -CRM197/CLEC 比率的基於 CLEC 之肽 -CRM197 結合物疫苗誘導之目標蛋白特異性免疫原性的比較分析 Female BALB/c mice aged 8-12 weeks received a total of 3 vaccinations with an interval of 2 weeks between administrations (id and sc). Blood samples were collected at baseline and after each vaccination to understand the kinetics of the subsequent immune response. CLEC-based vaccines (SeqID50+SeqID7+Pus, id) were evaluated against traditional peptide-based vaccines (SeqID49+KLH+Alum, sc). Samples were collected 2 weeks after the third administration and analyzed for A) anti-peptide and anti-PD1 protein responses. B) The affinity of antibodies to SeqID49 was evaluated by ELISA-based affinity assay. Figure 24 shows: Comparative analysis of target protein-specific immunogenicity induced by CLEC- based peptide -CRM197 conjugate vaccines using different peptide -CRM197/CLEC ratios .

8-12週齡之雌性BALB/c小鼠接受總共3次皮內疫苗接種,施用間隔時間為2週。在基線及每次接種疫苗後收集血液樣本,以瞭解隨後的免疫反應之動力學。本研究使用5種不同的基於肽-CRM之疫苗,其具有不同的肽-CRM/石耳多醣比率(w/w)。所有5個組均已用SeqID6+CRM+Pus結合物免疫。1:1、1:2.5、1:5、1:10及1:20表示肽-CRM結合物/CLEC w/w比率為1/1、1/2.5、1/5、1/10及1/20之結合物。使用第3次施用後2週採集的樣本評估誘導之免疫反應,且藉由ELISA分析抗aSyn蛋白反應。效價測定係基於ODmax/2的計算。 25 顯示: 由含有來自 aSyn (aa1-8) B 細胞抗原決定基的 CLEC 疫苗引發的免疫反應的比較分析 Female BALB/c mice aged 8-12 weeks received a total of 3 intradermal vaccinations, administered 2 weeks apart. Blood samples were collected at baseline and after each vaccination to understand the dynamics of the subsequent immune response. This study used 5 different peptide-CRM-based vaccines with different peptide-CRM/fungal polysaccharide ratios (w/w). All 5 groups were immunized with SeqID6+CRM+Pus conjugate. 1:1, 1:2.5, 1:5, 1:10 and 1:20 represent peptide-CRM conjugate/CLEC w/w ratios of 1/1, 1/2.5, 1/5, 1/10 and 1/ A combination of 20. Induced immune responses were assessed using samples collected 2 weeks after the 3rd administration, and anti-aSyn protein responses were analyzed by ELISA. Potency determination is based on calculation of ODmax/2. Figure 25 shows: Comparative analysis of immune responses elicited by CLEC vaccines containing B cell epitopes from aSyn (aal-8) .

8-12週齡的雌性BALB/c小鼠接受總共3次疫苗接種,施用間隔時間為2週(i.d.及s.c.)。在基線及每次接種疫苗後收集血液樣本,以瞭解隨後的免疫反應的動力學。將基於CLEC之疫苗(SeqID12+SeqID7+石耳多醣,i.d.)相對於傳統的基於肽成分結合物之疫苗(SeqID13與KLH及Alhydrogel (Alum)結合,s.c.)進行了評估。第3次施用後2週取樣且分析A)抗肽及抗aSyn蛋白反應及B)aSyn選擇性(抑制ELISA)。黑線:用於抑制之單體aSyn;虛線:用於抑制之絲狀aSyn。 26 顯示: 由含有來自 aSyn (aa100-108) B 細胞抗原決定基的 CLEC 疫苗引發的免疫反應的比較分析 Female BALB/c mice aged 8-12 weeks received a total of 3 vaccinations with an interval of 2 weeks between administrations (id and sc). Blood samples were collected at baseline and after each vaccination to understand the kinetics of the subsequent immune response. CLEC-based vaccines (SeqID12+SeqID7+Psoralea corylifolia, id) were evaluated against traditional peptide component conjugate-based vaccines (SeqID13 conjugated with KLH and Alhydrogel (Alum), sc). Samples were taken 2 weeks after the third administration and analyzed for A) anti-peptide and anti-aSyn protein responses and B) aSyn selectivity (inhibition ELISA). Black line: monomeric aSyn for inhibition; dashed line: filamentous aSyn for inhibition. Figure 26 shows: Comparative analysis of immune responses elicited by CLEC vaccines containing B cell antigenic determinants from aSyn (aa100-108) .

8-12週齡的雌性BALB/c小鼠接受總共3次疫苗接種,施用間隔時間為2週(i.d.及s.c.)。在基線及每次接種疫苗後收集血液樣本,以瞭解隨後的免疫反應的動力學。將基於CLEC之疫苗(SeqID16+SeqID7及石耳多醣,i.d.)相對於習知的基於肽成分結合物之疫苗(SeqID17與KLH及Alhydrogel (Alum)結合,s.c.)進行了評估。第3次施用後2週取樣且分析A)抗肽及抗aSyn蛋白反應及B)aSyn選擇性(抑制ELISA)。黑線:用於抑制之單體aSyn;虛線:用於抑制之絲狀aSyn。 27 顯示: 由含有來自 aSyn (aa91-97) B 細胞抗原決定基的 CLEC 疫苗引發的免疫反應的比較分析 Female BALB/c mice aged 8-12 weeks received a total of 3 vaccinations administered 2 weeks apart (id and sc). Blood samples were collected at baseline and after each vaccination to understand the dynamics of the subsequent immune response. The CLEC-based vaccine (SeqID16 + SeqID7 and Shigu polysaccharide, id) was evaluated against a conventional vaccine based on a conjugate of peptide components (SeqID17 combined with KLH and Alhydrogel (Alum), sc). Samples were taken 2 weeks after the 3rd dose and analyzed for A) anti-peptide and anti-aSyn protein responses and B) aSyn selectivity (inhibition ELISA). Black line: monomeric aSyn used for inhibition; dashed line: filamentous aSyn used for inhibition. Figure 27 shows: Comparative analysis of immune responses elicited by CLEC vaccines containing B cell epitopes from aSyn (aa91-97) .

8-12週齡的雌性BALB/c小鼠接受總共3次疫苗接種,施用間隔時間為2週(i.d.及s.c.)。在基線及每次接種疫苗後收集血液樣本,以瞭解隨後的免疫反應的動力學。基於CLEC之疫苗(SeqID14+SeqID7及石耳多醣,i.d.)針對習知的基於肽成分結合物之疫苗(SeqID15與KLH及Alhydrogel (Alum)結合,s.c.)進行了評估。在第3次施用後2週取樣且分析抗肽及抗aSyn蛋白反應。 28 顯示: 由含有來自 aSyn (aa130-140) B 細胞抗原決定基的 CLEC 疫苗引發的免疫反應的比較分析 Female BALB/c mice aged 8-12 weeks received a total of 3 vaccinations with an interval of 2 weeks between administrations (id and sc). Blood samples were collected at baseline and after each vaccination to understand the kinetics of the subsequent immune response. CLEC-based vaccines (SeqID14+SeqID7 and Psoralea corylifolia, id) were evaluated against known peptide component conjugate-based vaccines (SeqID15 conjugated with KLH and Alhydrogel (Alum), sc). Samples were taken 2 weeks after the third administration and analyzed for anti-peptide and anti-aSyn protein responses. Figure 28 shows: Comparative analysis of immune responses elicited by CLEC vaccines containing B cell antigenic determinants from aSyn (aa130-140) .

8-12週齡的雌性BALB/c小鼠接受總共3次疫苗接種,施用間隔時間為2週(i.d.及s.c.)。在基線及每次接種疫苗後收集血液樣本,以瞭解隨後的免疫反應的動力學。將基於CLEC之疫苗(SeqID20+SeqID7及石耳多醣,i.d.)相對於習知的基於肽成分結合物之疫苗(SeqID21與KLH及Alhydrogel (Alum)結合,s.c.)進行了評估。第3次施用後2週取樣且分析A)抗肽及抗aSyn蛋白反應及B)aSyn選擇性(抑制ELISA)。黑線:用於抑制之單體aSyn;虛線:用於抑制之絲狀aSyn。 29 顯示: 由含有來自 aSyn (aa115-122) B 細胞抗原決定基的 CLEC 疫苗引發的免疫反應的比較分析 Female BALB/c mice aged 8-12 weeks received a total of 3 vaccinations with an interval of 2 weeks between administrations (id and sc). Blood samples were collected at baseline and after each vaccination to understand the kinetics of the subsequent immune response. CLEC-based vaccines (SeqID20+SeqID7 and Psoralea corylifolia, id) were evaluated against a known peptide component conjugate-based vaccine (SeqID21 conjugated with KLH and Alhydrogel (Alum), sc). Samples were taken 2 weeks after the third administration and analyzed for A) anti-peptide and anti-aSyn protein responses and B) aSyn selectivity (inhibition ELISA). Black line: monomeric aSyn for inhibition; dashed line: filamentous aSyn for inhibition. Figure 29 shows: Comparative analysis of immune responses elicited by CLEC vaccines containing B cell antigenic determinants from aSyn (aa115-122) .

8-12週齡的雌性BALB/c小鼠接受總共3次疫苗接種,施用間隔時間為2週(i.d.及s.c.)。在基線及每次接種疫苗後收集血液樣本,以瞭解隨後的免疫反應的動力學。將基於CLEC之疫苗(SeqID51+SeqID7及石耳多醣,i.d.)相對於習知的基於肽成分結合物之疫苗(SeqID52與CRM及Alhydrogel (Alum)結合,s.c.)進行了評估。在第3次施用後2週取樣且分析A)抗肽及抗aSyn絲反應及B)aSyn選擇性(抑制ELISA)。黑線:用於抑制之單體aSyn;虛線:用於抑制之絲狀aSyn。 30 顯示: 由含有來自 aSyn (aa115-124) B 細胞抗原決定基的 CLEC 疫苗引發的免疫反應的比較分析 Female BALB/c mice aged 8-12 weeks received a total of 3 vaccinations administered 2 weeks apart (id and sc). Blood samples were collected at baseline and after each vaccination to understand the dynamics of the subsequent immune response. The CLEC-based vaccine (SeqID51 + SeqID7 and Shigu polysaccharide, id) was evaluated against a conventional vaccine based on a conjugate of peptide components (SeqID52 combined with CRM and Alhydrogel (Alum), sc). Samples were taken 2 weeks after the 3rd dose and analyzed for A) anti-peptide and anti-aSyn silk responses and B) aSyn selectivity (inhibition ELISA). Black line: monomeric aSyn used for inhibition; dashed line: filamentous aSyn used for inhibition. Figure 30 shows: Comparative analysis of immune responses elicited by CLEC vaccines containing B cell epitopes from aSyn (aa115-124) .

8-12週齡的雌性BALB/c小鼠接受總共3次疫苗接種,施用間隔時間為2週(i.d.及s.c.)。在基線及每次接種疫苗後收集血液樣本,以瞭解隨後的免疫反應的動力學。將基於CLEC之疫苗(SeqID67+SeqID7及石耳多醣,i.d.)相對於傳統的基於肽成分結合物之疫苗(SeqID68與CRM及Alhydrogel (Alum)結合,s.c.)進行了評估。在第3次施用後2週取樣且分析A)抗肽及抗aSyn絲反應及B)aSyn選擇性(抑制ELISA)。黑線:用於抑制之單體aSyn;虛線:用於抑制之絲狀aSyn。 31 顯示: 由含有來自 aSyn (aa107-113) B 細胞抗原決定基的 CLEC 疫苗引發的免疫反應的比較分析 Female BALB/c mice aged 8-12 weeks received a total of 3 vaccinations administered 2 weeks apart (id and sc). Blood samples were collected at baseline and after each vaccination to understand the dynamics of the subsequent immune response. The CLEC-based vaccine (SeqID67 + SeqID7 and Shigu polysaccharide, id) was evaluated against a traditional peptide conjugate-based vaccine (SeqID68 combined with CRM and Alhydrogel (Alum), sc). Samples were taken 2 weeks after the 3rd dose and analyzed for A) anti-peptide and anti-aSyn silk responses and B) aSyn selectivity (inhibition ELISA). Black line: monomeric aSyn used for inhibition; dashed line: filamentous aSyn used for inhibition. Figure 31 shows: Comparative analysis of immune responses elicited by CLEC vaccines containing B cell epitopes from aSyn (aa107-113) .

8-12週齡的雌性BALB/c小鼠接受總共3次疫苗接種,施用間隔時間為2週(i.d.及s.c.)。在基線及每次接種疫苗後收集血液樣本,以瞭解隨後的免疫反應的動力學。將基於CLEC之疫苗(SeqID73+SeqID7及石耳多醣,i.d.)相對於傳統的基於肽成分結合物之疫苗(SeqID74與CRM及Alhydrogel (Alum)結合,s.c.)進行了評估。在第3次施用後2週取樣且分析A)抗肽及抗aSyn絲反應及B)aSyn選擇性(抑制ELISA)。黑線:用於抑制之單體aSyn;虛線:用於抑制之絲狀aSyn。 32 顯示: 由基於 CLEC 之疫苗引發的免疫反應的活體外功能的比較分析 Female BALB/c mice aged 8-12 weeks received a total of 3 vaccinations administered 2 weeks apart (id and sc). Blood samples were collected at baseline and after each vaccination to understand the dynamics of the subsequent immune response. The CLEC-based vaccine (SeqID73 + SeqID7 and Shigu polysaccharide, id) was evaluated against a traditional peptide conjugate-based vaccine (SeqID74 combined with CRM and Alhydrogel (Alum), sc). Samples were taken 2 weeks after the 3rd dose and analyzed for A) anti-peptide and anti-aSyn silk responses and B) aSyn selectivity (inhibition ELISA). Black line: monomeric aSyn used for inhibition; dashed line: filamentous aSyn used for inhibition. Figure 32 shows: Comparative in vitro functional analysis of immune responses elicited by CLEC -based vaccines .

8-12週齡的雌性BALB/c小鼠接受總共3次疫苗接種,施用間隔時間為2週(i.d.及s.c.)。在基線及每次接種疫苗後收集血液樣本,以瞭解隨後的免疫反應的動力學。在第3次施用後2週採集樣品,且在AC、CLEC疫苗誘導的抗體(SeqID67/71/73+SeqID7及石耳多醣,i.d.)或習知肽成分存在的情況下評估ThT動力學測量(即aSyn的纖維狀部分)-誘導的抗體(SeqID68/72/74與CRM及Alhydrogel (Alum)結合,s.c.),或D)aSyn特異性單株抗體LB09或未經處理的小鼠血漿。 33 顯示: CRM197-CLEC 結合物在活體外對鼠 DC 受體 ( dectin -1) 之結合活性 Female BALB/c mice aged 8-12 weeks received a total of 3 vaccinations administered 2 weeks apart (id and sc). Blood samples were collected at baseline and after each vaccination to understand the dynamics of the subsequent immune response. Samples were collected 2 weeks after the 3rd administration, and ThT kinetic measurements were assessed in the presence of AC, CLEC vaccine-induced antibodies (SeqID67/71/73+SeqID7 and Shigu polysaccharide, id), or known peptide components ( i.e., the fibrillar part of aSyn)-induced antibodies (SeqID68/72/74 combined with CRM and Alhydrogel (Alum), sc), or D) aSyn-specific monoclonal antibody LB09 or untreated mouse plasma. Figure 33 shows the binding activity of CRM197-CLEC conjugate to murine DC receptor ( ie, dectin -1) in vitro .

顯示藉由ELISA測定的dectin-1結合能力的比較分析。A) Pus係指未經修飾之石耳多醣,且pus oxi係指活化之石耳多醣。CRM-pus結合物1係指SeqID6+CRM197+石耳多醣結合物,且CRM結合物1係指不含β-葡聚糖修飾之CRM197+SeqID6結合物。陰性對照組係指不含抑制劑之樣品。B) SeqID52/66/68/70/72係指具有指定B細胞抗原決定基的CRM197-石耳多醣結合物;C) Lich oxi係指活化之地衣多醣,且CRM-Lich結合物1係指SeqID6+CRM197+地衣多醣結合物。D) Lam oxi係指活化之昆布多醣,且CRM-Lam結合物1係指SeqID6+CRM197+昆布多醣結合物。 34 顯示: CRM197-CLEC 結合物在活體外對人類 DC 受體 ( dectin-1) 的結合活性 Comparative analysis of dectin-1 binding capacity determined by ELISA is shown. A) Pus refers to unmodified Pseudomonas polysaccharide, and pus oxi refers to activated Pseudomonas polysaccharide. CRM-pus conjugate 1 refers to SeqID6+CRM197+Pseudomonas polysaccharide conjugate, and CRM conjugate 1 refers to CRM197+SeqID6 conjugate without β-glucan modification. Negative control group refers to samples without inhibitor. B) SeqID52/66/68/70/72 refer to CRM197-Pseudomonas polysaccharide conjugates with the indicated B cell epitopes; C) Lich oxi refers to activated lich oxi and CRM-Lich conjugate 1 refers to SeqID6+CRM197+lich oxi conjugate. D) Lam oxi refers to activated laminarin, and CRM-Lam conjugate 1 refers to SeqID6+CRM197+laminarin conjugate. Figure 34 shows the binding activity of CRM197-CLEC conjugate to human DC receptor ( ie, dectin-1) in vitro .

顯示藉由ELISA測定的dectin-1結合能力的比較分析。Lich結合物係指SeqID6+CRM197+地衣多醣結合物,Pus結合物係指SeqID6+CRM197+石耳多醣結合物,且Lam結合物係指SeqID6+CRM197+昆布多醣結合物。陰性對照組係指不含抑制劑之樣品。 35 顯示: 不同的基於 CRM- 石耳多醣之疫苗的免疫原性比較 Shows comparative analysis of dectin-1 binding capacity determined by ELISA. Lich conjugate refers to SeqID6+CRM197+lichenin conjugate, Pus conjugate refers to SeqID6+CRM197+Pyricularia polysaccharide conjugate, and Lam conjugate refers to SeqID6+CRM197+laminan conjugate. Negative control group refers to samples without inhibitor. Figure 35 shows: Comparison of immunogenicity of different CRM -Pyricularia polysaccharide-based vaccines .

8-12週齡之雌性BALB/c小鼠接受總共3次皮內疫苗接種,施用間隔時間為2週。在基線及每次接種疫苗後收集血液樣本,以瞭解隨後的免疫反應之動力學。在第3次施用後2週取樣且分析A)抗肽反應B)抗聚集的aSyn纖維反應。 36 顯示: 由基於肽 +CRM+ 石耳多醣之疫苗相對於 aSyn 纖維在活體內引發的免疫反應之選擇性的比較分析 Female BALB/c mice aged 8-12 weeks received a total of 3 intradermal vaccinations, with an interval of 2 weeks between administrations. Blood samples were collected at baseline and after each vaccination to understand the kinetics of the subsequent immune response. Samples were taken 2 weeks after the third administration and analyzed for A) anti-peptide response B) anti-aggregated aSyn fiber response. Figure 36 shows: Comparative analysis of the selectivity of the immune response elicited in vivo by vaccines based on peptides + CRM + Pseudomonas aeruginosa versus aSyn fibers .

8-12週齡之雌性BALB/c小鼠接受總共3次皮內或皮下疫苗接種,施用間隔時間為2週。相對於習知CRM疫苗評估基於CRM-石耳多醣之疫苗。在第3次施用後2週取樣且進行aSyn選擇性分析(抑制ELISA)。顯示隨著aSyn纖維的劑量增加而受到抑制的抗體的IC50值。 37 顯示: +CRM197+ 石耳多醣疫苗誘導之抗體 分子與抗原的 親和力 (avidity) Female BALB/c mice aged 8-12 weeks received a total of 3 intradermal or subcutaneous vaccinations with an interval of 2 weeks. CRM-Pseudomonas aeruginosa based vaccines were evaluated relative to the known CRM vaccine. Samples were taken 2 weeks after the third administration and aSyn selectivity analysis (inhibition ELISA) was performed. The IC50 values of antibodies inhibited with increasing doses of aSyn fibers are shown. Figure 37 shows: Avidity of antibody molecules induced by peptide + CRM197 + Pseudomonas aeruginosa vaccine to antigen .

顯示在用不同濃度的離液劑硫氰酸鈉(NaSCN)攻擊後由肽+CRM197+石耳多醣或肽+CRM197疫苗誘導之aSyn-抗體複合體的穩定性及測定之親和力指數。 38 顯示:不同的基於 CLEC 之疫苗的免疫原性比較 The stability and affinity index of aSyn-antibody complexes induced by peptide+CRM197+Pseudomonas aeruginosa or peptide+CRM197 vaccines after challenge with different concentrations of the isocyanate sodium thiocyanate (NaSCN) are shown. Figure 38 shows: Comparison of immunogenicity of different CLEC- based vaccines .

8-12週齡之雌性BALB/c小鼠接受總共3次皮內疫苗接種,施用間隔時間為2週。在基線及每次接種疫苗後收集血液樣本,以瞭解隨後的免疫反應動力學。在第3次施用後2週取樣並分析由基於肽+載體+葡聚糖之疫苗或非CLEC修飾之以Alum作為佐劑之疫苗誘導之抗SeqID6肽反應(A)及抗aSyn纖維反應(B);劑量:20µg肽當量/注射;石耳多醣表示SeqID6+CRM+石耳多醣,地衣多醣表示SeqID6+CRM+地衣多醣,昆布多醣表示SeqID6+CRM+昆布多醣,且s.c.+Alum表示非CLEC修飾之以Alum作為佐劑的疫苗SeqID6+CRM。 39 顯示: -CLEC- 結合物在活體外對鼠 (A) 及人類 (B)DC 受體 ( dectin-1) 的結合活性 Female BALB/c mice aged 8-12 weeks received a total of 3 intradermal vaccinations, administered 2 weeks apart. Blood samples were collected at baseline and after each vaccination to understand subsequent immune response dynamics. Anti-SeqID6 peptide responses (A) and anti-aSyn fiber responses (B) induced by peptide+vector+dextran-based vaccines or non-CLEC-modified vaccines adjuvanted with Alum were sampled and analyzed 2 weeks after the 3rd administration. ); Dosage: 20 µg peptide equivalent/injection; Schizophyllum polysaccharide means SeqID6+CRM+ Schizophyllum polysaccharide, lichenin means SeqID6+CRM+lichenin, laminarin means SeqID6+CRM+laminarin, and sc+Alum means non-CLEC modified with Alum Vaccine SeqID6+CRM as adjuvant. Figure 39 shows the in vitro binding activity of peptide -CLEC- conjugates to murine (A) and human (B) DC receptors ( ie, dectin-1) .

顯示了藉由ELISA測定的dectin-1結合能力的比較分析。Lich結合物是指SeqID5+SeqID7+地衣多醣結合物,Pus結合物是指SeqID5+SeqID7+石耳多醣結合物,Lam結合物是指SeqID5+SeqID7+昆布多醣結合物。陰性對照組是指不含抑制劑的樣品。 40 顯示: 不同的基於 CLEC 之疫苗的免疫原性比較 Comparative analysis of dectin-1 binding capacity measured by ELISA is shown. Lich conjugate refers to SeqID5+SeqID7+lichenin conjugate, Pus conjugate refers to SeqID5+SeqID7+pyracantha conjugate, Lam conjugate refers to SeqID5+SeqID7+laminan conjugate. Negative control group refers to samples without inhibitor. Figure 40 shows: Comparison of immunogenicity of different CLEC- based vaccines .

8-12週齡的雌性BALB/c小鼠接受總共3次皮內疫苗接種,施用間隔時間為2週。在基線及每次接種疫苗後收集血液樣本,以瞭解隨後的免疫反應的動力學。在第3次施用後2週取樣且分析抗肽反應(SeqID6,表示為肽)及基於肽-葡聚糖之疫苗誘導的抗aSyn反應(表示為蛋白質)(即:SeqID5+SeqID7+CLEC,劑量:5µg及20µg/注射;地衣多醣表示SeqID5+SeqID7+地衣多醣;昆布多醣表示SeqID5+SeqID7+昆布多醣;而石耳多醣表示SeqID5+SeqID7+石耳多醣)。 41 顯示: 糖結合物 - 石耳多醣結合物在活體外的 DC 受體 ( dectin -1) 結合活性 Female BALB/c mice aged 8-12 weeks received a total of 3 intradermal vaccinations, administered 2 weeks apart. Blood samples were collected at baseline and after each vaccination to understand the dynamics of the subsequent immune response. Samples were taken 2 weeks after the 3rd dose and analyzed for anti-peptide responses (SeqID6, expressed as peptide) and peptide-dextran-based vaccine-induced anti-aSyn responses (expressed as protein) (i.e.: SeqID5+SeqID7+CLEC, dose ) Figure 41 shows the in vitro DC receptor ( ie, dectin -1) binding activity of the glycoconjugate - Fructus polysaccharide conjugate .

兩種經CLEC修飾之疫苗,寡醣+CRM197+石耳多醣結合物及多醣+TT+石耳多醣結合物均保持高dectin-1結合功效。圖41顯示藉由ELISA測定的dectin-1結合能力的比較分析。Act-Pus係指經石耳多醣修飾之b型流感嗜血桿菌莢膜多醣(聚核糖基-核糖醇-磷酸鹽,PRP)破傷風類毒素(TT)結合物ActHIB®,Act係指不含β-葡聚糖修飾之ActHIB®結合物疫苗,Men係指不含β-葡聚糖修飾之含腦膜炎雙球菌寡醣(A、C、W135、Y)之CRM197結合物疫苗Menveo®,Men-Pus係指用石耳多醣修飾之Menveo®疫苗,pus oxi係指用於修飾之活化石耳多醣。 42 顯示: 不同的基於 CLEC 之糖結合物疫苗的免疫原性比較 Both CLEC-modified vaccines, oligosaccharide + CRM197 + Psoralea corylifolia polysaccharide conjugate and polysaccharide + TT + Psoralea corylifolia polysaccharide conjugate, maintained high dectin-1 binding efficacy. Figure 41 shows a comparative analysis of dectin-1 binding capacity measured by ELISA. Act-Pus refers to the tetanus toxoid (TT) conjugate ActHIB® of Haemophilus influenzae type b capsular polysaccharide (polyribosyl-ribitol-phosphate, PRP) modified with Pseudomonas aeruginosa polysaccharide, Act refers to ActHIB® conjugate vaccine without β-glucan modification, Men refers to CRM197 conjugate vaccine Menveo® containing meningococcal oligosaccharides (A, C, W135, Y) without β-glucan modification, Men-Pus refers to Menveo® vaccine modified with Pseudomonas aeruginosa polysaccharide, and pus oxi refers to the active Pseudomonas aeruginosa polysaccharide used for modification. Figure 42 shows the comparison of immunogenicity of different CLEC -based saccharide conjugate vaccines .

8-12週齡之雌性BALB/c小鼠接受總共3次i.d./i.m.疫苗接種,施用間隔時間為2週。在基線及每次接種疫苗後收集血液樣本,以瞭解隨後的免疫反應之動力學。在第3次施用後2週取樣且分析由基於寡醣/多醣載體-葡聚糖或非葡聚糖修飾之結合物疫苗誘導之抗疫苗反應。A)顯示由以下誘導之反應:與石耳多醣結合之Menveo® (Menveo®+石耳多醣):腦膜炎雙球菌(A、C、W135、Y)+CRM197+石耳多醣(80%),或未經修飾之Menveo®:腦膜炎雙球菌(A、C、W135、Y)+CRM197,(劑量:5µg);B)顯示由以下誘導之反應:與石耳多醣結合之ActHIB® (ActHIB®+石耳多醣):流感嗜血桿菌(b) PRP+TT+石耳多醣(80%),或未經修飾之ActHIB®H:流感(b) PRP+TT (劑量:2µg)。 43 顯示:使用不同 IL31 肽抗原決定基的基於 CLEC 之疫苗的免疫原性比較分析 Female BALB/c mice aged 8-12 weeks received a total of 3 id/im vaccinations with an interval of 2 weeks. Blood samples were collected at baseline and after each vaccination to understand the kinetics of the subsequent immune response. Samples were taken 2 weeks after the third administration and analyzed for anti-vaccine responses induced by oligo/polysaccharide carrier-dextran or non-dextran-modified conjugate vaccines. A) Shows the response induced by: Menveo® conjugated with Psoralea corylifolia (Menveo®+Psoralea corylifolia): N. meningitidis (A, C, W135, Y) + CRM197 + Psoralea corylifolia (80%), or unmodified Menveo®: N. meningitidis (A, C, W135, Y) + CRM197, (dose: 5µg); B) Shows the response induced by: ActHIB® conjugated with Psoralea corylifolia (ActHIB®+Psoralea corylifolia): H. influenzae (b) PRP + TT + Psoralea corylifolia (80%), or unmodified ActHIB®H: H. influenzae (b) PRP + TT (dose: 2µg). FIG. 43 shows: Comparative analysis of the immunogenicity of CLEC -based vaccines using different IL31 peptide epitopes .

8-12週齡之雌性BALB/c小鼠接受總共3次皮內疫苗接種,施用間隔時間為2週。在基線及每次接種疫苗後收集血液樣本,以瞭解隨後的免疫反應的動力學。將8種不同的基於CLEC之疫苗(SeqID132+SeqID7+石耳多醣;SeqID134+SeqID7+石耳多醣;SeqID136+SeqID7+石耳多醣;SeqID138+SeqID7+石耳多醣;SeqID140+SeqID7+石耳多醣;SeqID142+SeqID7+石耳多醣;SeqID144+SeqID7+石耳多醣;SeqID146+SeqID7+eqIDS147)所引起的免疫反應相對於以Alum為佐劑的相應肽-CRM197結合物(即SeqID133+CRM197;SeqID135+CRM197;SeqID137+CRM197;SeqID139+CRM197;SeqID141+CRM197;SeqID143+CRM197;SeqID145+CRM197;;及SeqID147+CRM197)。在第3次施用後2週取樣且分析 A)抗肽及 B)抗IL31蛋白反應。 C)顯示了由SeqID132+SeqID7+石耳多醣或SeqID133+CRM疫苗誘導的抗體的親和力,該疫苗藉由用不同濃度的離液劑硫氰酸鈉(NaSCN)攻擊來確定。 44 顯示: 使用不同 IL31 肽抗原決定基的基於 CLEC 之疫苗的免疫原性比較分析。 Female BALB/c mice aged 8-12 weeks received a total of 3 intradermal vaccinations, with an interval of 2 weeks between administrations. Blood samples were collected at baseline and after each vaccination to understand the kinetics of the subsequent immune response. Eight different CLEC-based vaccines (SeqID132+SeqID7+Pseudomonas aeruginosa; SeqID134+SeqID7+Pseudomonas aeruginosa; SeqID136+SeqID7+Pseudomonas aeruginosa; SeqID138+SeqID7+Pseudomonas aeruginosa; SeqID140+SeqID7+Pseudomonas aeruginosa; SeqID142+SeqID7+Pseudomonas aeruginosa; SeqID144+SeqID7+Pseudomonas aeruginosa; SeqID146+SeqID 7+eqIDS147) relative to the corresponding peptide-CRM197 conjugates adjuvanted with Alum (i.e., SeqID133+CRM197; SeqID135+CRM197; SeqID137+CRM197; SeqID139+CRM197; SeqID141+CRM197; SeqID143+CRM197; SeqID145+CRM197; and SeqID147+CRM197). Samples were taken 2 weeks after the third administration and analyzed for A) anti-peptide and B) anti-IL31 protein responses. C) shows the affinity of antibodies induced by SeqID132+SeqID7+Pseudomonas aeruginosa or SeqID133+CRM vaccines determined by challenging with different concentrations of the isocyanate sodium thiocyanate (NaSCN). Figure 44 shows: Comparative immunogenicity analysis of CLEC -based vaccines using different IL31 peptide epitopes .

8-12週齡的雌性BALB/c小鼠接受總共3次皮內疫苗接種,施用間隔時間為2週。在基線及每次接種疫苗後收集血液樣本,以瞭解隨後的免疫反應之動力學。相對於以Alum為佐劑的各別未經修飾之肽-CRM197結合物(即SeqID133+CRM197;SeqID135+CRM197;SeqID137+CRM197;SeqID139+CRM197;SeqID141+CRM197;SeqID143+CRM197;SeqID145+CRM197;SeqID147+CRM197;Se-qID149+CRM197;及SeqID151+CRM197),分別評估由10種不同的基於CLEC之疫苗(SeqID133+CRM197+石耳多醣;SeqID135+CRM197+石耳多醣;SeqID137+CRM197+石耳多醣;SeqID139+CRM197+石耳多醣;SeqID141+CRM197+石耳多醣;SeqID143+CRM197+石耳多醣;Se-qID145+CRM197+石耳多醣;SeqID147+CRM197+石耳多醣;Se-qID149+CRM197+石耳多醣;及SeqID151+CRM197+石耳多醣)。在第3次施用後2週取樣且分析 A)抗肽及 B)抗IL31蛋白反應; C)顯示藉由用不同濃度的離液劑硫氰酸鈉(NaSCN)進行攻擊來測定由SeqID133+CRM197+石耳多醣或SeqID133+CRM疫苗誘導之抗體之親和力 45 顯示: IL31 -CLEC 疫苗誘導之抗 IL31 抗體對 IL31 信號傳導的抑制。 Female BALB/c mice aged 8-12 weeks received a total of 3 intradermal vaccinations, administered 2 weeks apart. Blood samples were collected at baseline and after each vaccination to understand the kinetics of the subsequent immune response. The 10 different CLEC-based vaccines were evaluated relative to the respective unmodified peptide-CRM197 conjugates adjuvanted with alum (i.e., SeqID133+CRM197; SeqID135+CRM197; SeqID137+CRM197; SeqID139+CRM197; SeqID141+CRM197; SeqID143+CRM197; SeqID145+CRM197; SeqID147+CRM197; SeqID149+CRM197; and SeqID151+CRM197). (SeqID133+CRM197+Pyricularia auricularia polysaccharide; SeqID135+CRM197+Pyricularia auricularia polysaccharide; SeqID137+CRM197+Pyricularia auricularia polysaccharide; SeqID139+CRM197+Pyricularia auricularia polysaccharide; SeqID141+CRM197+Pyricularia auricularia polysaccharide; SeqID143+CRM197+Pyricularia auricularia polysaccharide; SeqID145+CRM197+Pyricularia auricularia polysaccharide; SeqID147+CRM197+Pyricularia auricularia polysaccharide; SeqID149+CRM197+Pyricularia auricularia polysaccharide; and SeqID151+CRM197+Pyricularia auricularia polysaccharide). Samples were taken 2 weeks after the third administration and analyzed for A) anti-peptide and B) anti-IL31 protein responses; C) The affinity of antibodies induced by SeqID133+CRM197+Pyricularia auriculariae or SeqID133+CRM vaccines was determined by challenging with different concentrations of the isocyanate (NaSCN) . Figure 45 shows: Inhibition of IL31 signaling by anti -IL31 antibodies induced by IL31 peptide -CLEC vaccine.

在人類A549細胞(ATCC, 維吉尼亞州, 美國)中評定疫苗誘導之抗體對人類IL-31信號傳導的抑制作用。使用之疫苗誘導抗體是從使用IL31-肽+SeqID7+石耳多醣結合物(CLEC;IL31肽:SeqID132、SeqID134、SeqID136、SeqID138、SeqID140、SeqID142、SeqID144、SeqID146)以及用Alum作為佐劑之習知IL31-肽+CRM結合物 (CRM-Alum;IL31肽:SeqID133、SeqID135、SeqID137、SeqID139、SeqID141、SeqID143、SeqID145、SeqID147)進行免疫接種的動物獲得的。陽性對照組:市售抗IL31阻斷抗體;不含抑制劑:僅IL31刺激,bg:無IL31刺激的背景。 46 顯示: IL31 - 載體 -CLEC 疫苗誘導的抗 IL31 抗體對 IL31 信號傳導的抑制。 The inhibitory effects of vaccine-induced antibodies on human IL-31 signaling were assessed in human A549 cells (ATCC, Virginia, USA). The vaccine-induced antibodies used were obtained from animals immunized with IL31-peptide + SeqID7 + Psoralea corylifolia polysaccharide conjugate (CLEC; IL31 peptides: SeqID132, SeqID134, SeqID136, SeqID138, SeqID140, SeqID142, SeqID144, SeqID146) and the known IL31-peptide + CRM conjugate with Alum as adjuvant (CRM-Alum; IL31 peptides: SeqID133, SeqID135, SeqID137, SeqID139, SeqID141, SeqID143, SeqID145, SeqID147). Positive control group: commercial anti-IL31 blocking antibody; without inhibitor: IL31 stimulation only, bg: background without IL31 stimulation. FIG46 shows the inhibition of IL31 signaling by anti - IL31 antibodies induced by IL31 peptide - vector -CLEC vaccine.

在人類A549 細胞(ATCC,維吉尼亞州,美國)中評估了疫苗誘導抗體對人 IL-31 信號傳導的抑制作用。使用的疫苗誘導抗體是源自使用IL31-肽+CRM197+石耳多醣結合物(CRM-CLEC;IL31 肽:SeqID133、SeqID135、SeqID137、SeqID139、SeqID141、SeqID143、SeqID145、SeqID147、SeqID149、SeqID 151)以及以Alum作為佐劑的常規 IL31-肽 + CRM結合物(CRM-Alum;IL31 肽:SeqID133、SeqID135、SeqID137、SeqID139、SeqID141、SeqID143、SeqID145、SeqID147、SeqID149、SeqID 151)進行重複免疫接種的動物。陽性對照組:市售抗IL31阻斷抗體;不含抑制劑:僅 IL31 刺激,bg:無 IL31 刺激的背景。 47 顯示:使用不同 CGRP 肽抗原決定基的基於 CLEC 之疫苗的免疫原性比較分析 The inhibitory effect of vaccine-induced antibodies on human IL-31 signaling was evaluated in human A549 cells (ATCC, VA, USA). The vaccine-induced antibodies used were derived from the use of IL31-peptide+CRM197+Crimsonose polysaccharide conjugate (CRM-CLEC; IL31 peptide: SeqID133, SeqID135, SeqID137, SeqID139, SeqID141, SeqID143, SeqID145, SeqID147, SeqID149, SeqID 151) and Animals were repeatedly immunized with Alum as adjuvant with conventional IL31-peptide + CRM conjugate (CRM-Alum; IL31 peptide: SeqID133, SeqID135, SeqID137, SeqID139, SeqID141, SeqID143, SeqID145, SeqID147, SeqID149, SeqID 151). Positive control group: commercially available anti-IL31 blocking antibody; no inhibitor: only IL31 stimulation, bg: no background of IL31 stimulation. Figure 47 shows: Comparative immunogenicity analysis of CLEC -based vaccines using different CGRP peptide epitopes .

8-12週齡之雌性BALB/c小鼠接受總共3次皮內疫苗接種,施用間隔時間為2週。在基線及每次接種疫苗後收集血液樣本,以瞭解隨後的免疫反應之動力學。相對於各別以Alum為佐劑的肽-CRM197結合物(即SeqID153+CRM197;SeqID155+CRM197;SeqID157+CRM197;SeqID159+CRM197;SeqID161+CRM197;及SeqID163+CRM197),分別評估由6種不同的基於CLEC之疫苗(SeqID152+SeqID7+石耳多醣;SeqID154+SeqID7+石耳多醣;SeqID156+SeqID7+石耳多醣;SeqID158+SeqID7+石耳多醣;SeqID160+SeqID7+石耳多醣;及SeqID162+SeqID7+石耳多醣)引起的免疫反應。在第3次施用後2週取樣且分析 A)抗肽及 B)抗CGRP蛋白反應; C)顯示藉由用不同濃度的離液劑硫氰酸鈉(NaSCN)進行攻擊來測定由SeqID152+SeqID7+石耳多醣或SeqID153+CRM疫苗誘導之抗體之親和力。 48 顯示: 使用不同 CGRP 肽抗原決定基的基於 CLEC 之疫苗的免疫原性比較分析。 Female BALB/c mice aged 8-12 weeks received a total of 3 intradermal vaccinations, administered 2 weeks apart. Blood samples were collected at baseline and after each vaccination to understand the dynamics of the subsequent immune response. Relative to the respective Alum-adjuvanted peptide-CRM197 conjugates (i.e., SeqID153+CRM197; SeqID155+CRM197; SeqID157+CRM197; SeqID159+CRM197; SeqID161+CRM197; and SeqID163+CRM197), six different Caused by CLEC-based vaccines (SeqID152+SeqID7+Shit fungus polysaccharide; SeqID154+SeqID7+Shit fungus polysaccharide; SeqID156+SeqID7+Shit fungus polysaccharide; SeqID158+SeqID7+Shit fungus polysaccharide; SeqID160+SeqID7+Shit fungus polysaccharide; and SeqID162+SeqID7+Shit fungi polysaccharide). immune response. Samples were taken 2 weeks after the 3rd dose and analyzed for A) anti-peptide and B) anti-CGRP protein responses; C) Shown by SeqID152+SeqID7+ determined by challenge with varying concentrations of the chaotrope sodium thiocyanate (NaSCN) Affinity of antibodies induced by Shigu polysaccharide or SeqID153+CRM vaccine. Figure 48 shows: Comparative immunogenicity analysis of CLEC -based vaccines using different CGRP peptide epitopes .

8-12週齡的雌性BALB/c小鼠接受總共3次皮內疫苗接種,施用間隔時間為2週。在基線及每次接種疫苗後收集血液樣本,以瞭解後續的免疫反應動力學。評估了6種不同的基於CLEC之疫苗(SeqID153+CRM197+石耳多醣;SeqID155+CRM197+石耳多醣;SeqID157+CRM197+石耳多醣;SeqID159+CRM197+石耳多醣;SeqID161+CRM197+石耳多醣;及SeqID163+CRM197+石耳多醣)相對於以Alum為佐劑的相應未修飾肽+CRM197結合物(即SeqID153+CRM197;SeqID155+CRM197;SeqID157+CRM197;SeqID159+CRM197;SeqID161+CRM197;及SeqID163+CRM197)。在第3次施用後2週取樣且分析 A)抗肽及 B)抗CGRP蛋白反應。 C)顯示了由SeqID153+CRM197+石耳多醣或SeqID153+CRM疫苗誘導的抗體的親和力,該疫苗藉由用不同濃度的離液劑硫氰酸鈉(NaSCN)攻擊來確定。 49 顯示: SeqID5+SeqID7+ 石耳多醣疫苗誘導的抗體在活體內 PFF 模型中抑制 aSyn 聚集 Female BALB/c mice aged 8-12 weeks received a total of 3 intradermal vaccinations, administered 2 weeks apart. Blood samples were collected at baseline and after each vaccination to understand subsequent immune response dynamics. Six different CLEC-based vaccines were evaluated (SeqID153+CRM197+Shit fungus polysaccharide; SeqID155+CRM197+Shit fungus polysaccharide; SeqID157+CRM197+Shit fungus polysaccharide; SeqID159+CRM197+Shit fungus polysaccharide; SeqID161+CRM197+Shit fungus polysaccharide; and SeqID163+CRM197+ Fungi polysaccharide) versus the corresponding unmodified peptide+CRM197 conjugates with Alum as adjuvant (i.e., SeqID153+CRM197; SeqID155+CRM197; SeqID157+CRM197; SeqID159+CRM197; SeqID161+CRM197; and SeqID163+CRM197). Samples were taken 2 weeks after the 3rd dose and analyzed for A) anti-peptide and B) anti-CGRP protein responses. C) shows the avidity of antibodies induced by SeqID153+CRM197+Shitu polysaccharide or SeqID153+CRM vaccine, determined by challenge with different concentrations of the chaotropic agent sodium thiocyanate (NaSCN). Figure 49 shows: Antibodies induced by SeqID5+SeqID7+ Shitu polysaccharide vaccine inhibit aSyn aggregation in the in vivo PFF model .

自PFF接種當天開始,將以重組aSynPFF立體定向注射到右側黑質中的C57BL/6小鼠使用SeqID5+SeqID7+石耳多醣疫苗(疫苗)或未結合的CLEC(載體)作為對照組進行免疫接種四次。第三次免疫接種後收集血漿。PFF接種後126天收穫腦、血漿及CSF。用於免疫的肽特異性抗體的血漿效價(A)在第126天進行第三次免疫接種後兩週收集。(B)在第126天時腦脊液及疫苗B細胞肽特異性抗體的血漿效價比較。(C)SeqID5+SeqID7+石耳多醣疫苗接種及CLEC處理的小鼠所有腦區的磷-S129 aSyn陽性聚集體分析。(D)抗體反應與疫苗接種者突觸核蛋白病水平的相關性(r=-0.9391;CI(95%)-0.9961至-0.3318,p=0.0179,R2=0.882)。(E-H)在注射的大腦半球中代表pSer129aSyn染色在(E,F)黑質及(G,H)紋狀體的水平。(E,G)以載體處理的小鼠類及(F,H)以疫苗處理後進行PFF注射的小鼠。誤差棒表示每組n=5-9隻動物的平均值±SEM。藉由未配對的t檢驗評估統計差異;**p<0.01;*p<0.05。 50 顯示: + CLEC 及肽 +CRM+CLEC 結合物之載體特異性免疫原性分析。 Beginning on the day of PFF vaccination, C57BL/6 mice with recombinant aSynPFF stereotactically injected into the right substantia nigra were immunized for four times using SeqID5+SeqID7+Shitia polysaccharide vaccine (vaccine) or unconjugated CLEC (vector) as a control group. Second-rate. Plasma was collected after the third immunization. Brain, plasma and CSF were harvested 126 days after PFF inoculation. Plasma titers (A) of peptide-specific antibodies used for immunization were collected two weeks after the third immunization on day 126. (B) Comparison of cerebrospinal fluid and plasma titers of vaccine B cell peptide-specific antibodies at day 126. (C) Analysis of phospho-S129 aSyn-positive aggregates in all brain regions of mice vaccinated with SeqID5+SeqID7+SeqID7+vaccinated with CLEC. (D) Correlation between antibody response and synucleinopathy levels in vaccine recipients (r=-0.9391; CI (95%) -0.9961 to -0.3318, p=0.0179, R2=0.882). (EH) Representative pSer129aSyn staining at the level of (E,F) substantia nigra and (G,H) striatum in the injected cerebral hemisphere. (E,G) Mice treated with vehicle and (F,H) mice treated with vaccine and then injected with PFF. Error bars represent mean ± SEM from n = 5-9 animals per group. Statistical differences were assessed by unpaired t-test; **p<0.01;*p<0.05. Figure 50 shows: carrier-specific immunogenicity analysis of peptide +CLEC and peptide +CRM+CLEC conjugates.

8-12週齡之雌性BALB/c小鼠接受總共3次皮內/皮下疫苗接種,施用間隔時間為2週。在基線及每次接種疫苗後收集血液樣本,以瞭解隨後的免疫反應之動力學。相對於各別以Alum為佐劑的肽-CRM197結合物(CRM-Alum;即SeqID6+CRM197;SeqID133+CRM197;SeqID135+CRM197;及SeqID137+CRM197),分別評估由4種不同的基於CLEC之疫苗(CRM-石耳多醣;即SeqID6+CRM197+石耳多醣;SeqID133+CRM197+石耳多醣;SeqID135+CRM197+石耳多醣;及SeqID137+CRM197+石耳多醣)所引發的免疫反應。第3次施用後2週取樣且分析 A)SeqID6+CRM197+石耳多醣誘導之活體內抗CRM反應及 B)SeqID133+CRM197+石耳多醣;SeqID135+CRM197+石耳多醣;及SeqID137+CRM197+石耳多醣誘導之活體內抗CRM反應。 51 顯示: +CLEC 及肽 +CRM+CLEC 結合物之 CLEC 特異性免疫原性分析。 Female BALB/c mice aged 8-12 weeks received a total of 3 intradermal/subcutaneous vaccinations, administered 2 weeks apart. Blood samples were collected at baseline and after each vaccination to understand the kinetics of the subsequent immune response. The immune responses elicited by four different CLEC-based vaccines (CRM-Psoralea corylifolia; i.e., SeqID6+CRM197+Psoralea corylifolia; SeqID133+CRM197+Psoralea corylifolia; SeqID135+CRM197+Psoralea corylifolia; and SeqID137+CRM197+Psoralea corylifolia) were evaluated relative to respective peptide-CRM197 conjugates adjuvanted with Alum (CRM-Alum; i.e., SeqID6+CRM197; SeqID133+CRM197+Psoralea corylifolia; SeqID135+CRM197+Psoralea corylifolia; and SeqID137+CRM197+Psoralea corylifolia). Samples were taken 2 weeks after the third administration and analyzed for A) SeqID6+CRM197+Psoralea corylifolia polysaccharide-induced in vivo anti-CRM response and B) SeqID133+CRM197+Psoralea corylifolia polysaccharide; SeqID135+CRM197+Psoralea corylifolia polysaccharide; and SeqID137+CRM197+Psoralea corylifolia polysaccharide-induced in vivo anti-CRM response. Figure 51 shows: CLEC- specific immunogenicity analysis of peptide +CLEC and peptide +CRM+CLEC conjugates .

8-12週齡之雌性BALB/c小鼠接受總共3次皮內疫苗接種,施用間隔時間為2週。在基線及每次接種疫苗後收集血液樣本,以瞭解隨後的免疫反應之動力學。評估了14種不同的基於CLEC之疫苗引起的免疫反應。在第3次施用後2週取樣且分析活體內抗石耳多醣反應; A)樣品:SeqID6+CRM197+石耳多醣,SeqID6+CRM197+地衣多醣;SeqID6+CRM197+昆布多醣 B)樣品SeqID6+CRM197+石耳多醣;以指定的結合物/石耳多醣比率(w/w)偶合的石耳多醣; C)樣品:SeqID133+CRM197+石耳多醣;SeqID135+CRM197+石耳多醣;及SeqID137+CRM197+石耳多醣; D)SeqID132+SeqID7+石耳多醣;SeqID134+SeqID7+石耳多醣;及SeqID136+SeqID7+石耳多醣;前血清:免疫接種前獲得的樣品;陽性對照組:來自僅用未經氧化之石耳多醣免疫接種的動物的樣品。 52 顯示:肽 - 載體 - 葡聚糖結合物及由肽 - 載體結合物及未結合之葡聚糖組成之疫苗的免疫原性分析 Female BALB/c mice aged 8-12 weeks received a total of 3 intradermal vaccinations, administered 2 weeks apart. Blood samples were collected at baseline and after each vaccination to understand the kinetics of the subsequent immune response. The immune responses elicited by 14 different CLEC-based vaccines were evaluated. Samples were taken 2 weeks after the third application and analyzed for in vivo anti-Pseudomonas polysaccharide responses; A) Samples: SeqID6+CRM197+Pseudomonas polysaccharide, SeqID6+CRM197+Lichen polysaccharide; SeqID6+CRM197+Laminaria polysaccharide ; B) Samples SeqID6+CRM197+Pseudomonas polysaccharide; Pseudomonas polysaccharide coupled at the specified conjugate/Pseudomonas polysaccharide ratio (w/w); C) Samples: SeqID133+CRM197+Pseudomonas polysaccharide; SeqID135+CRM197+Pseudomonas polysaccharide; and SeqID137+CRM197+Pseudomonas polysaccharide; D) SeqID132+SeqID7+Pyricularia polysaccharide; SeqID134+SeqID7+Pyricularia polysaccharide; and SeqID136+SeqID7+Pyricularia polysaccharide; Pre-serum: samples obtained before immunization; Positive control group: samples from animals immunized with only non-oxidized Pyricularia polysaccharide. Figure 52 shows: immunogenicity analysis of peptide - carrier - dextran conjugates and vaccines composed of peptide - carrier conjugates and unconjugated dextran .

8-12週齡之雌性BALB/c小鼠接受總共3次皮內疫苗接種,施用間隔時間為2週。在基線及每次接種疫苗後收集血液樣本,以瞭解隨後的免疫反應之動力學。第3次施用後2週取樣且分析抗SeqID6肽(A)及抗aSyn單體(B)反應。所用疫苗:SeqID6+CRM197+石耳多醣、與未經氧化之石耳多醣混合之SeqID6+CRM197及非CLEC修飾、無佐劑之SeqID6+CRM197。Female BALB/c mice aged 8-12 weeks received a total of 3 intradermal vaccinations, with an interval of 2 weeks between administrations. Blood samples were collected at baseline and after each vaccination to understand the kinetics of the subsequent immune response. Samples were taken 2 weeks after the third administration and analyzed for anti-SeqID6 peptide (A) and anti-aSyn monomer (B) responses. Vaccines used: SeqID6+CRM197+Pseudomonas aeruginosa, SeqID6+CRM197 mixed with unoxidized Pseudomonas aeruginosa, and non-CLEC-modified, unadjuvanted SeqID6+CRM197.

TW202409077A_112124769_SEQL.xmlTW202409077A_112124769_SEQL.xml

Claims (15)

一種結合物,其包含β-葡聚糖以及B細胞及/或T細胞抗原決定基多肽,其中該β-葡聚糖共價結合於該B細胞及/或T細胞抗原決定基多肽以形成該β-葡聚糖與該B細胞及/或T細胞抗原決定基多肽之結合物,該β-葡聚糖為主要呈線性的β-(1,6)-葡聚糖,其(1,6)偶合之單醣部分與非β-(1,6)偶合之單醣部分之比率為至少1:1、較佳為至少2:1、更佳為至少5:1、尤其是至少10:1。A conjugate comprising β-glucan and a B cell and/or T cell epitope polypeptide, wherein the β-glucan is covalently bound to the B cell and/or T cell epitope polypeptide to form the The conjugate of β-glucan and the B cell and/or T cell epitope polypeptide, the β-glucan is mainly linear β-(1,6)-glucan, and its (1,6 ) The ratio of coupled monosaccharide moieties to non-β-(1,6) coupled monosaccharide moieties is at least 1:1, preferably at least 2:1, more preferably at least 5:1, especially at least 10:1 . 如請求項1之結合物,其中該β-葡聚糖為石耳多醣(pustulan)。The conjugate of claim 1, wherein the β-glucan is pustulan. 如請求項1或2之結合物,其中該等多肽包含至少一個B細胞抗原決定基及至少一個T細胞抗原決定基。The conjugate of claim 1 or 2, wherein the polypeptides comprise at least one B cell antigenic determinant and at least one T cell antigenic determinant. 如請求項1至3中任一項之結合物,其中該結合物中的β-葡聚糖與B細胞及/或T細胞抗原決定基多肽之比率為10:1 (w/w)至1:1 (w/w)、較佳為8:1 (w/w)至2:1 (w/w)、尤其是4:1 (w/w)。The conjugate of any one of claims 1 to 3, wherein the ratio of β-glucan to B cell and/or T cell epitope polypeptide in the conjugate is 10:1 (w/w) to 1 :1 (w/w), preferably 8:1 (w/w) to 2:1 (w/w), especially 4:1 (w/w). 如請求項1至4中任一項之結合物,其中B細胞抗原決定基及泛特異性/混雜T細胞抗原決定基獨立地與該β-葡聚糖結合。The conjugate of any one of claims 1 to 4, wherein the B cell antigen determinant and the pan-specific/promiscuous T cell antigen determinant are independently bound to the β-glucan. 如請求項1至5中任一項之結合物,其中該B細胞抗原決定基多肽之長度為5至20個胺基酸殘基、較佳為6至19個胺基酸殘基、尤其是7至15個胺基酸殘基。The conjugate of any one of claims 1 to 5, wherein the length of the B cell epitope polypeptide is 5 to 20 amino acid residues, preferably 6 to 19 amino acid residues, especially 7 to 15 amino acid residues. 如請求項1至6中任一項之結合物,其中該T細胞抗原決定基多肽之長度為8至30個胺基酸殘基、較佳為13至29個胺基酸殘基、尤其是13至28個胺基酸殘基。A conjugate according to any one of claims 1 to 6, wherein the length of the T cell antigen determinant polypeptide is 8 to 30 amino acid residues, preferably 13 to 29 amino acid residues, and especially 13 to 28 amino acid residues. 如請求項1至7中任一項之結合物,其中該結合物進一步包含載體蛋白,較佳係選自白喉毒素之無毒交叉反應物質(CRM),尤其是CRM197、KLH、白喉類毒素(DT)、破傷風類毒素(TT)、流感嗜血桿菌( Haemophilus influenzae)蛋白D (HipD)及腦膜炎球菌血清群B之外膜蛋白質複合體(OMPC)、銅綠假單胞菌( Pseudomonas aeruginosa)外毒素A之重組無毒形式( rEPA)、鞭毛蛋白、大腸桿菌熱不穩定腸毒素(LT)、霍亂毒素(CT)、突變毒素(例如LTK63及LTR72)、病毒樣顆粒、白蛋白結合蛋白、牛血清白蛋白、卵白蛋白、合成肽樹枝狀聚合物,例如,多抗原肽(MAP),其限制條件為若結合物包含載體蛋白,則結合物包含至少另一經獨立結合之T細胞或B細胞抗原決定基多肽,尤其是其中該結合物中載體蛋白與β-葡聚糖之比率為1/0.1至1/50、較佳為1/0.1至1/40、更佳為1/0.1至1/20、尤其是1/0.1至1/10。 The conjugate of any one of claims 1 to 7, wherein the conjugate further comprises a carrier protein, preferably a non-toxic cross-reactive material (CRM) selected from diphtheria toxin, especially CRM197, KLH, diphtheria toxoid (DT) ), tetanus toxoid (TT), Haemophilus influenzae protein D (HipD), meningococcal serogroup B outer membrane protein complex (OMPC), Pseudomonas aeruginosa exotoxin Recombinant non-toxic form of A ( r EPA), flagellin, E. coli heat-labile enterotoxin (LT), cholera toxin (CT), mutant toxins (such as LTK63 and LTR72), virus-like particles, albumin-binding protein, bovine serum Albumin, ovalbumin, synthetic peptide dendrimers, for example, multiple antigenic peptides (MAP), with the proviso that if the conjugate includes a carrier protein, the conjugate includes at least one other independently bound T cell or B cell epitope base polypeptide, especially wherein the ratio of carrier protein to β-glucan in the conjugate is 1/0.1 to 1/50, preferably 1/0.1 to 1/40, more preferably 1/0.1 to 1/20 , especially 1/0.1 to 1/10. 如請求項1至8中任一項之結合物,其中該多肽為或包含B細胞或T細胞抗原決定基多肽,其中該多肽較佳為B細胞及T細胞抗原決定基或包含B細胞及T細胞抗原決定基。A conjugate according to any one of claims 1 to 8, wherein the polypeptide is or comprises a B cell or T cell antigenic determinant polypeptide, wherein the polypeptide is preferably a B cell and T cell antigenic determinant or comprises a B cell and T cell antigenic determinant. 如請求項1至8中任一項之結合物,其中該結合物包含T細胞抗原決定基且不含B細胞抗原決定基,其中該結合物較佳包含多於一個T細胞抗原決定基,尤其是包含兩個、三個、四個或五個T細胞抗原決定基。The conjugate of any one of claims 1 to 8, wherein the conjugate contains a T cell epitope and does not contain a B cell epitope, wherein the conjugate preferably contains more than one T cell epitope, especially Is composed of two, three, four or five T cell epitopes. 如請求項1至10中任一項之結合物,其用於預防或治療疾病,較佳用於預防或治療感染性疾病、慢性疾病、過敏或自體免疫疾病。The conjugate according to any one of claims 1 to 10, which is used for preventing or treating a disease, preferably for preventing or treating an infectious disease, a chronic disease, an allergy or an autoimmune disease. 如請求項1至11中任一項之結合物,其係用作活性抗Aβ、抗Tau及/或抗α突觸核蛋白疫苗,用於治療及預防β-澱粉樣變性、tau蛋白病變或突觸核蛋白病變,較佳為帕金森氏症(PD)、路易氏體癡呆(DLB)、多發性系統萎縮症(MSA)、帕金森氏症癡呆(PDD)、神經軸索性營養不良、阿茲海默症(AD)、伴隨杏仁核受限路易氏體之AD (AD/ALB)、唐氏症候群(Down syndrome)中之癡呆、匹克氏病(Pick disease)、進行性核上麻痹(PSP)、皮質基底核退化症、17號染色體相關額顳葉型癡呆及帕金森氏症(FTDP-17)及嗜銀顆粒病。For example, the conjugate of any one of claims 1 to 11 is used as an active anti-Aβ, anti-Tau and/or anti-α-synuclein vaccine for the treatment and prevention of β-amyloidosis, tauopathy or Synucleinopathy, preferably Parkinson's disease (PD), dementia with Lewy bodies (DLB), multiple system atrophy (MSA), Parkinson's disease dementia (PDD), neuroaxonal dystrophy, Alzheimer's disease Alzheimer's disease (AD), AD with Lewy bodies restricted by the amygdala (AD/ALB), dementia in Down syndrome, Pick disease, progressive supranuclear palsy (PSP) ), corticobasal degeneration, chromosome 17-related frontotemporal dementia and Parkinson's disease (FTDP-17), and argyrophilic granulopathy. 一種用於產生如請求項1至12中任一項之結合物的方法,其中該β-葡聚糖藉由氧化活化且其中使該活化β-葡聚糖與該B細胞抗原決定基多肽及/或該T細胞抗原決定基多肽接觸,由此獲得該β-葡聚糖與該B細胞抗原決定基多肽及/或該T細胞抗原決定基多肽之結合物。A method for producing a conjugate as in any one of claims 1 to 12, wherein the β-glucan is activated by oxidation and wherein the activated β-glucan and the B cell epitope polypeptide and /or the T cell epitope polypeptide comes into contact, thereby obtaining a conjugate of the β-glucan and the B cell epitope polypeptide and/or the T cell epitope polypeptide. 如請求項13之方法,其中該β-葡聚糖係藉由鄰位羥基處之過碘酸鹽氧化、還原胺化或羥基之氰基化獲得。The method of claim 13, wherein the β-glucan is obtained by periodate oxidation, reductive amination or cyanation of the hydroxyl group at the ortho-position. 如請求項13或14之方法,其中該β-葡聚糖被氧化至如下氧化度,該氧化度被界定為與席夫品紅試劑(Schiff's fuchsin-reagent)之反應度,其相當於以0.2-2.6、較佳以0.6-1.4、尤其是以0.7-1之莫耳比用過碘酸鹽氧化等量的石耳多醣的氧化度。The method of claim 13 or 14, wherein the β-glucan is oxidized to a degree of oxidation, which is defined as a reactivity with Schiff's fuchsin-reagent, which is equivalent to the degree of oxidation of an equivalent amount of Pyrrolidone polysaccharide oxidized with periodate at a molar ratio of 0.2-2.6, preferably 0.6-1.4, and especially 0.7-1.
TW112124769A 2022-08-19 2023-07-03 A conjugate consisting of or comprising at least a β-glucan or a mannan TW202409077A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP22191221.5 2022-08-19

Publications (1)

Publication Number Publication Date
TW202409077A true TW202409077A (en) 2024-03-01

Family

ID=

Similar Documents

Publication Publication Date Title
Yin et al. Boosting immunity to small tumor-associated carbohydrates with bacteriophage Qβ capsids
Costantino et al. The design of semi-synthetic and synthetic glycoconjugate vaccines
Astronomo et al. Carbohydrate vaccines: developing sweet solutions to sticky situations?
Adamo et al. Synthetically defined glycoprotein vaccines: current status and future directions
Berti et al. Recent mechanistic insights on glycoconjugate vaccines and future perspectives
Liao et al. Fully synthetic self-adjuvanting α-2, 9-oligosialic acid based conjugate vaccines against group C meningitis
RU2634405C2 (en) Immunogenic composition
US10752704B2 (en) Antibodies targeted to fungal cell wall polysaccharides
Fallarini et al. A synthetic disaccharide analogue from Neisseria meningitidis A capsular polysaccharide stimulates immune cell responses and induces immunoglobulin G (IgG) production in mice when protein-conjugated
JP2013504588A (en) Protein matrix vaccine with high immunogenicity
Stefanetti et al. Immunobiology of carbohydrates: implications for novel vaccine and adjuvant design against infectious diseases
Sungsuwan et al. Structure guided design of bacteriophage Qβ mutants as next generation carriers for conjugate vaccines
Rashidijahanabad et al. Virus-like particle display of Vibrio cholerae O-specific polysaccharide as a potential vaccine against cholera
Moeller et al. Interplay of carbohydrate and carrier in antibacterial glycoconjugate vaccines
WO2017011338A1 (en) Sortase-mediated coupling of immunogenic polysaccharide-protein conjugates and their use
Micoli et al. Exploring the variables influencing the immune response of traditional and innovative glycoconjugate vaccines
WO2012106251A2 (en) Pertussis vaccine
TW202409077A (en) A conjugate consisting of or comprising at least a β-glucan or a mannan
US9144604B2 (en) Vaccine for Shigella
AU2014235004B2 (en) Carbohydrate-modified glycoproteins and uses thereof
Hevey et al. Conjugation Strategies Used for the Preparation of Carbohydrate‐Conjugate Vaccines
WO2023161528A1 (en) A CONJUGATE COMPRISING AT LEAST A ß-GLUCAN
Feng et al. Exploration of recombinant fusion proteins YAPO and YAPL as carrier proteins for glycoconjugate vaccine design against Streptococcus pneumoniae infection
TW202402327A (en) A CONJUGATE CONSISTING OF OR COMPRISING AT LEAST A β-GLUCAN OR A MANNAN
AT525943A2 (en) Conjugate consisting of or comprising at least one ß-glucan or a mannan