TW202407742A - 具有增加處理量與準確度的半導體晶圓3d體積檢查 - Google Patents

具有增加處理量與準確度的半導體晶圓3d體積檢查 Download PDF

Info

Publication number
TW202407742A
TW202407742A TW112112860A TW112112860A TW202407742A TW 202407742 A TW202407742 A TW 202407742A TW 112112860 A TW112112860 A TW 112112860A TW 112112860 A TW112112860 A TW 112112860A TW 202407742 A TW202407742 A TW 202407742A
Authority
TW
Taiwan
Prior art keywords
cross
image
sectional
targeted
volume
Prior art date
Application number
TW112112860A
Other languages
English (en)
Other versions
TWI836954B (zh
Inventor
迪米奇 克拉克寇夫
喬哈尼司 波許
湯瑪斯 柯柏
亞歷克斯 布克斯包姆
拉曼尼 彼休曼尼
尤傑 弗卡
詹斯提摩 紐曼
Original Assignee
德商卡爾蔡司Smt有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德商卡爾蔡司Smt有限公司 filed Critical 德商卡爾蔡司Smt有限公司
Publication of TW202407742A publication Critical patent/TW202407742A/zh
Application granted granted Critical
Publication of TWI836954B publication Critical patent/TWI836954B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching
    • H01J37/3053Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching
    • H01J37/3056Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching for microworking, e.g. etching of gratings, trimming of electrical components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/31749Focused ion beam

Abstract

本發明揭露一種用於具有增加處理量的半導體晶圓之體積檢查之系統及方法。所述系統及方法係配置用於蝕刻和快速圖像獲取一檢查體積中的截面表面。藉由將成像限制在針對性區域、或藉由平均數個快速圖像掃描而獲得高品質圖像。所述方法和裝置可用於半導體晶圓內積體電路的定量計量、缺陷偵測、製程監控、缺陷檢視及檢查。

Description

具有增加處理量與準確度的半導體晶圓3D體積檢查
本發明是關於在半導體晶圓的檢查部位處的檢查體積的三維電路圖案檢查方法,更特係關於一種具有增加精度和準確度、用於確定半導體晶圓的檢查體積中的3D物件(諸如HAR結構)的參數之方法、電腦程式產品和相對的半導體檢查系統。所述方法採用一檢查體積中的複數個截面表面的蝕刻和成像,並且從其形成平均圖像切片堆疊。藉此,即以高準確度和高穩健性確定來自平均圖像切片堆疊的3D物件之檢查參數。所述方法、電腦程式產品和裝置可用於半導體晶圓內的定量計量、缺陷偵測、製程監控、缺陷檢視、以及積體電路的檢查。
半導體結構是最精細的人造結構之一,而且僅有極少的缺陷。這些極稀少的缺陷即為缺陷偵測或缺陷檢視或定量計量裝置正在尋找的特徵。製造的半導體結構是基於先前知識,例如來自設計資料,而且是從有限數量的材料和製程所製造。此外,半導體結構是以平行於矽晶圓基板表面的一系列層來製造。例如,在邏輯類型樣品中,金屬線路在金屬層中平行運行,而高深寬比(HAR)結構和通孔則垂直於金屬或交替的傳導/非傳導層運行。在不同層中的金屬線路之間的角度為0°或90°。另一方面,就VNAND類型結構而言,已知其截面平均為圓形且是排列成垂直於矽晶圓表面的規則光柵。在製造期間,大量的三維半導體結構於晶圓中生成,其中製造製程會受到數項影響。一般而言,半導體結構的邊緣形狀、區域或覆蓋位置會受到所涉及材料的性質、顯影曝光或任何其他所涉製造步驟(諸如蝕刻、拋光、沉積或佈植)影響。
在積體電路製造中,特徵件尺寸變得更小。目前最小特徵件尺寸或關鍵大小為低於10 nm,例如7 nm或5 nm,而且在不久的未來會逼近3 nm以下,近來甚至已經達到1 nm的最小特徵尺寸。因此,以高精度來測量圖案的邊緣形狀、以及確定結構的大小或線路邊緣粗糙度變得具有挑戰性。帶電粒子系統的測量解析度一般受到樣品上個別圖像點的採樣光柵或每一像素的停留時間、以及帶電粒子束直徑的限制。採樣光柵解析度可在成像系統內被設定,並且可調適樣品上的帶電粒子束直徑。一般光柵解析度為2 nm或更低,但光柵解析度限值可降低而無物理限制。帶電粒子束直徑具有一限制大小,其依所選定的帶電粒子類型、帶電粒子束操作條件和所使用的帶電粒子透鏡系統而定。粒子束解析度受限為概略是粒子束直徑的一半。解析度可低於3 nm,例如低於2 nm、或甚至低於1 nm。
隨著積體半導體電路的特徵件尺寸變得更小,以及隨著對帶電粒子成像系統的解析度的需求增加,晶圓中三維積體半導體結構的檢查和3D分析變得越來越有挑戰性。半導體晶圓具有直徑為300 mm,且由複數個數個部位組成,即所謂的晶粒(Die),各包含至少一積體電路圖案(諸如用於記憶體晶片或處理器晶片)。半導體晶圓經歷約1000個製程步驟,而且在半導體晶圓內約有100層以上的平行層形成,其包含電晶體層、線路中間層和互連層、以及在記憶體裝置中有複數個記憶體單元的3D陣列。
從半導體樣品生成奈米(nm)級的3D斷層掃描資料的常見方法為所謂的切片和圖像方法,其例如是由雙光束裝置來執行。切片和圖像方法係描述於專利案WO2020/244795A1中。根據WO2020/244795A1之方法,在從半導體晶圓擷取的檢查樣品處獲得3D體積檢查,此方法的缺點是必須破壞晶圓來獲得檢查樣品。如專利案WO2021/180600A1所述,這個缺點已經藉由在進入半導體晶圓表面的傾斜角度下使用切片和圖像方法而獲得解決。根據此方法,至少一第一檢查部位被確定,而且藉由切片和成像檢查體積的複數個截面表面而獲得檢查機的3D體積圖像。在精確測量的一第一實例中,生成了大量N個檢查體積的截面表面,其中N超過100或甚至更多的平均圖像切片。例如,在橫向大小為5 µm且切片距離為5 nm的體積中,有1000個切片被蝕刻和成像。對於截面平均圖像切片的對齊和配準,已經有複數個不同方法被提出。例如,可使用參考標記或所謂的基準點,或是可使用以特徵為基礎的對齊。然而,根據近來要求及在許多應用實例中,結果證明這些方法需要進一步改進複數個截面圖像切片的對齊和配準。
根據數種檢查任務,需要有具高準確度和高處理量的完全3D體積圖像。在一實例中,檢查的任務是要以高精度來確定檢查體積內部的半導體物件(例如高深寬比(HAR)結構)的一組特定參數。對於具有快速掃描時間的快速圖像獲取,訊雜比(SNR)是非常低的。先前技術採用例如長停留時間,即增加每一像素的停留時間。在其他實例中,則以快速掃描和增加數個圖像來取代單一圖像獲取,以獲得具有長停留時間的單一掃描的類似SNR。這些方法有數個缺點。首先,高SNR的圖像獲取是非常耗時的,使體積圖像獲取減緩至每小時僅數個檢查部位。其次,一次帶電粒子之累積充電、以及因此而生的一次帶電粒子的大電流會導致晶圓樣品中的高充電效應,其使得圖像生成惡化。第三,在長時間的圖像獲取中,檢查系統會出現明顯的漂移;隨著對解析度的要求提高(目前為低於5 nm),漂移也變得更加重要,在不久的未來對於解析度的需求將低於3 nm、低於2 nm或甚至更低。因此,在2D平均圖像切片堆疊的圖像獲取期間已經存在的數nm級的漂移或振動會導致不可接受的剪切。
此外,在一些應用中,WO2021/180600A1中所述方法並未提供足夠資訊供用於確定複雜半導體結構的一組參數。
因此,本發明的目的在於提供對WO2021/180600A1所述切片和圖像方法的進一步改良。一般而言,本發明的目的在於提供一種晶圓檢查方法,供用於以更高準確度、更多資訊和更高速度進行檢查體積中三維半導體結構的檢查。
所述目的係藉由申請專利範圍和實例所描述的發明、以及本發明實施例中所提出的實例而解決。
本專利申請案主張於2022年4月7日所申請之美國臨時申請案第63/328,418號的優先權,其揭露內容藉由引用而以其整體範疇併入本專利申請案供參考。
本發明是對於切片和圖像方法的改良,用以生成一晶圓樣品之檢查體積的3D體積圖像。半導體物件的研究包括從由2D平均圖像切片堆疊形成的3D體積圖像重建出針對性的半導體物件的3D形狀。2D平均圖像切片的堆疊是藉由以帶電粒子束成像裝置(例如掃描式電子顯微鏡(SEM)或氦離子顯微鏡(HIM))進行一系列截面表面的成像並且藉由以FIB重複蝕刻晶圓樣品的檢查體積中的截面表面而獲得。3D體積圖像的典型2D平均圖像切片堆疊可包含在數百個平均圖像切片至高達1000個以上的平均圖像切片之間。
在一實例中,帶電粒子束成像裝置的軸向是安排為與晶圓樣品表面垂直,而且2D平均圖像切片含有針對性半導體物件(例如,諸如高深寬比(HAR)通道之記憶體(VNAND)結構)的截面。在一實例中,晶圓樣品是由整個的晶圓所提供,而截面表面是由配置在與晶圓表面呈一傾斜角度下之FIB蝕刻而得。
根據本發明的一第一實施例,提供了一種具有增加處理量和準確度的M個平均圖像切片堆疊之圖像形成方法。根據第一實施例之M個平均圖像切片堆疊之圖像形成方法利用獲取大量的N個截面圖像,藉由快速蝕刻和快速圖像掃描通過一檢查體積的複數個截面表面。根據第一實施例,不再需要針對複數個截面表面進行獲取高品質圖像的冗長過程。相反,M個高品質圖像切片的堆疊是根據第一複數N個截面圖像的移動平均值而決定。根據第一實施例,係使用較少的圖像掃描時間來進行每個截面圖像的獲取,而且生成大量的截面圖像,其各具有較高的雜訊位準。
在一實例中,數量M小於N個截面圖像,其中M < = N乘上係數A,其中係數A > = 3,例如A=5、A=7、或A=20或更大。截面圖像的數量N一般是介於複數個截面圖像的數量Q和截面表面的數量的兩倍之間,其中2xQ = > N = > Q。根據第一實施例之M個平均圖像切片之堆疊的圖像獲取方法依賴於針對性半導體物件的一般特性,例如HAR通道,其預期僅以一預定方向稍微變化。藉由對多張截面圖像計算一預定方向中的移動平均值或平均,雜訊可有效降低,而且圖像獲取時間可減少。此外,藉由以截面間更小距離生成更多、更緻密的截面,可更有效利用用於生成截面表面所需之蝕刻時間。
在小蝕刻距離處之截面表面的截面圖像每個子集合之間,針對性半導體物件的變化通常是有限的。因此,橫向漂移的對齊和補償為計算上簡單的運算,無論是藉由最佳確定最佳匹配條件、或藉由確定每個平均圖像切片中的對比度或邊緣斜率。藉由獲取在檢查體積中形成的不同截面表面的大量N個截面圖像,載台或帶電粒子數的漂移可從截面圖像中確定並可有效移除,以確定移動平均值。在一實例中,通過具有例如2 nm、3 nm或5 nm的小z-距離的檢查體積的FIB蝕刻複數個截面表面。每個截面表面係由以帶電粒子束成像裝置進行快速掃描操作至少一次,而且對於每個截面表面而言,係獲得至少一截面圖像。在圖像獲取之後或期間,確定一截面圖像子集合之移動平均值。在平均值的確定期間,例如藉由計算移動平均值圖像中的梯度來評估影像對比度;若在一特定方向中偵測到一整體低的梯度、或低對比度,則藉由將橫向漂移包含到截面圖像中來最佳化平均值之確定。藉此,即降低了該特定方向中之漂移的效應。在漂移補償的最佳化期間,可限制最大預期漂移以減少計算時間及增加方法的穩健性。漂移可被確定為每個截面圖像相對於一參考值之絕對漂移,或相對於例如一先前截面圖像之相對漂移。可使用不同的配準或對齊方法來增進漂移補償的速度和性能。在某些情況中,可進行漂移補償的手動驗證,並且可摒棄錯誤的圖像偏移。
在一實例中,截面表面的紋理填充可變化。例如,半導體結構可包含數種不同的半導體特徵堆疊或疊層,其堆疊在彼此上方。截面圖像可因此包含不同疊層的圖像片段。例如,藉由在傾斜角度下蝕刻,截面表面通過一第一VNAND疊層和至少一第二VNAND疊層。兩疊層之間的過渡區的位置在截面圖向上逐漸變化。後續的截面圖像共用來自相同疊層、具有相同紋理(例如,顯示上VNAND疊層的通道橫面的區域)的圖相片段或區域。在這些情況中,用以確定橫向偏移的配準應限制在顯示相同紋理的區域,使得移動平均不受影響。
在一實例中,M個平均圖像切片的形成是藉由以一捲積核心從大量N個截面圖像進行一維(1D)數值捲積而達成。在一實例中,大量N個截面圖像形成了一具有每個圖像橫座標x和y的3D資料集合,而不同的z座標係對應至預定方向。移動平均值或平均是藉由在3D資料集合的z座標上以1D捲積核心進行捲積來描述。捲積核心可為一預定數量的截面圖像的函數,例如z方向上的移動矩形分布函數(rect-function)或移動高斯核心。用於計算不同加權移動平均點明智中位數過濾的其他捲積核心也可行。捲積核心的其他示例係對應於用於根據一給定雜訊模型找出一範數或匹配函數的過濾。捲積核心的寬度可預定、或可根據局部雜訊位準或生成的M個平均圖像切片的所需SNR而調適。在其他實例中,可應用基於機器學習的演算來最佳化執行移動平均值的計算。
根據第一實施例,圖像掃描時間是不用於獲取每個截面圖像及生成許多截面圖像。對於每個新的圖像掃描,移除先前截面圖像的任何蝕刻假影,且蝕刻操作的缺陷或假影會隨不同截面表面改變。根據本發明的第一實施例,這些蝕刻假影中的至少一部分係隨著移動平均的形成而被平均掉。帶電粒子束成像系統的景深相當低,難以達到完美聚焦。藉由對複數個截面圖像進行平均,個別截面圖像的聚焦缺陷被平均,而且生成具有較高清晰度的平均圖像切片。
根據本發明的第一實施例,以減少掃描時間來獲得許多截面圖像,因此增加雜訊位準。M個平均圖像切片之堆疊係藉由平均而形成。藉此,快速獲取的截面圖像的增加雜訊位準會降低,而且形成具有增加SNR的平均圖像切片。
在確定移動平均期間,可偵測及補償全域漂移,同時仍可偵測例如HAR通道的基準點的個體偏差。截面圖像在基準點或半導體中存在的圖像特徵處的進一步對齊和配準也可行。圖像獲取可藉由交換圖像掃描與蝕刻操作、或藉由交錯成像與蝕刻來執行。可在根據切片和成像方法的圖像獲取期間執行平均圖像切片的計算,藉此降低用於儲存複數N個截面圖像之記憶體需求。
根據第一實施例之方法可進一步用以生成利用機器學習之檢查方法的訓練資料。註釋可從低雜訊位準的平均圖像切片轉移到用於平均之截面圖像集合,其各具有大雜訊位準並藉由快速圖像掃描而得。
根據本發明的一第二實施例,提供了具有增加處理量和準確度之M個平均圖像切片堆疊的圖像形成方法,而且甚至進一步增進了圖像形成的準確度。根據第二實施例,圖像獲取和蝕刻操作是交錯的且同時執行,而且N個截面圖像的影像獲取和N個截面表面的蝕刻是同時執行。在一實例中,以FIB進行蝕刻是藉由排列在Y-Z平面的方向中的FIB束執行,其具有相對y軸之一蝕刻角度GF。FIB沿著垂直於FIB束的第一方向(x方向)掃描。同時,藉由成像帶電粒子束對x方向上的截面表面快速掃描及在y方向上步進來執行利用成像帶電粒子束的圖像獲取;藉此,獲得大量的N個截面圖像,其中每個交錯蝕刻和成像操作的每個截面圖像包含根據在實際蝕刻操作前之截面表面的一第一區域、以及根據實際蝕刻操作後之截面表面的一第二區域,每個截面圖像因而包含在截面圖像堆疊中不同z位置的圖像區域。大量N個截面圖像再次形成一3D資料集合,其具有各圖像的橫座標x和y、以及與各截面圖像內的兩區域相對應的不同z座標。藉此,甚至可進一步降低不同截面圖像之間漂移的影響。根據第二實施例之方法可結合根據第一實施例之方法,而且可藉由如第一實施例中所述之確定移動平均值或平均來形成M個平均圖像切片之堆疊。
根據一實例,可藉由例如重複圖像掃描以選擇性增加進一步的截面圖像。例如,第一截面圖像集合可與第二實例中所述之蝕刻操作平行獲得,而第二截面圖像集合可在兩連續蝕刻操作之間獲得。
藉由將耗時的圖像掃描操作的性能限制在選定的針對性區域,可進一步提升晶圓樣品的檢查體積中之針對性3D半導體物件的檢查方法的處理量。
根據本發明的一第三實施例,進一步提升了M個平均圖像切片堆疊的圖像形成方法,而且甚至進一步增加了圖像形成的處理量。根據第三實施例,藉由將圖像掃描限制在至少一針對性區域(ROI)來減少獲得每個截面圖像的時間。
使用切片和成像方法之全尺寸3D體積資料生成提供了關於在一晶圓樣品中的檢查體積的最整個資訊。然而,切片和成像方法會產生不便的龐大資料量。另一方面,完全重建的檢查體積通常含有大量的冗餘資訊,其對於特定的針對性半導體物件並無作用,而且不是測量或一組測量所需。同時,針對性特徵附近的圖像品質、解析度和像素大小通常會受到影響,降低獲取/處理時間以及資料量。因此希望能夠調整成像和蝕刻參數,以將圖像掃描限制在與檢查體積內部的針對性體積的區域相交的截面。利用根據第三實施例之方法,甚至可進一步減少針對性半導體物件的相關3D體積資料的總獲取時間。
根據第三實施例之晶圓樣品的檢查體積中之針對性3D半導體物件的檢查方法包含以下步驟:在一半導體晶圓的一檢查體積中定義至少一第一針對性體積,該第一針對性體積在該檢查體積內。在一實例中,針對性區域(ROI)是由檢查體積內部的至少一針對性體積所形成,而且後續截面圖像的ROI是根據與所述至少一針對性體積的重疊而確定。在一實例中,針對性體積是埋在晶圓表面下方的檢查體積中深處。
該方法更包含以下步驟:蝕刻通過檢查體積的複數個截面表面、及藉由執行該至少一第一針對性體積內截面表面片段的圖像掃描操作來獲取數個截面圖相片段。在一實例中,蝕刻是在與晶圓表面呈一傾斜角度下執行,且至少第一針對性體積為垂直於晶圓表面取向。
在一實例中,所述至少第一針對性體積是根據CAD資料而定義。該方法可更包含以下步驟:根俊該檢查體積內的一第一截面表面的至少一第一圖像掃描來對齊該檢查體積內的該至少第一針對性體積。從第一次圖像掃描,可獲得並配準晶圓內的檢查體積的精確位置,並且可精確確定針對性體積的位置。在一實例中,對齊步驟包含在該檢查體積內的一第二和其他截面表面的至少一第二或其他圖像掃描處進一步重新對齊該至少第一針對性體積。藉此,即使存在有例如蝕刻偏差,仍可精確維持針對性體積的位置。
例如,在規則排列的HAR通道中,針對性區域可包含僅一行或一列HAR通道。首先,藉由使用FIB束執行蝕刻操作,針對性區域成為可觸及以進行成像;藉此,形成覆蓋至少一ROI的截面表面。在偵測針對性區域後,可將藉由成像帶電粒子束進行之圖像獲取減少至該至少一ROI,藉此,減少圖像獲取之時間。該至少一ROI可具有複雜形狀,例如由一行和一列HAR通道所形成的十字形或T字形。該至少一ROI也可由數個分離的ROIs所形成,其分布於每個截面表面上。ROI也可為晶圓的檢查體積中形成之截面表面的z座標或深度之函數,且可依循針對性半導體物件的3D形狀。ROI的大小、形狀和位置的z相關性可根據針對性半導體物件的先前資訊而確定。可藉由基於模型之假設、或藉由利用以機器學習為基礎之技術來追蹤檢查體積中的結構的軌跡,以引導對未知的針對性半導體物件的追蹤。
在一實例中,針對性半導體的變化是預期被限制在一檢查體積內的某些區域。此預期可由先驗資訊觸發,其包含CAD資訊或從其他檢查體積所獲得之資訊。根據第三實施例之方法的一實例,藉由兩相鄰截面表面之間的距離的自適應變化,甚至可進一步增加處理量。該方法因此包含以下步驟:基於該至少第一針對性體積內的針對性半導體物件的先前資訊,調整兩相鄰截面表面之間的距離。在一實例中,定義兩相鄰針對性體積,並且可確定半導體樣品的不同層堆疊的對齊。
在一實例中,在蝕刻複數個截面表面至該檢查體積中期間確定該至少第一針對性體積。根據該方法,定義該至少第一針對性體積之步驟包括下列步驟: a) 獲取一第一截面表面的一第一圖像掃描; b) 選擇該第一圖像掃描中的一第一截面圖像片段,該第一截面圖像片段包含一針對性半導體物件的截面; c) 蝕刻一第二截面表面至該晶圓樣品的該檢查體積中; d) 藉由將該第一截面圖像片段投影至該第二截面表面上,選擇一第二截面圖像片段; e) 獲取該第二截面表面片段的一第二截面圖像片段; f) 藉由蝕刻其他截面表面、選擇和獲取其他截面圖像片段來重複步驟c)至e),直到符合一預先定義的中斷條件為止。
第一截面圖像片段與通過第一圖像掃描內的針對性體積的截面相對應。在第一圖像掃描中,通過針對性體積的截面是由針對性半導體物件的截面所確定,其邊界區域在針對性半導體物件的截面周圍中。針對性半導體物件的截面可藉由圖像處理、圖樣辨識、模版匹配或機器學習操作、或這些方法的組合、以及藉由利用CAD資訊來確定。
在一實例中,針對性半導體物件的截面重心對應於第一截面圖像片段的重心。在蝕刻一第二或另一截面表面後,第一截面圖像片段投射至第二或另一截面表面上,並且獲得具有第一截面圖像片段的第二或另一截面表面的圖像。再次通過圖像處理、圖樣辨識、模板匹配或機器學習操作、或這些方法的組合來確定針對性半導體物件的截面,並確定針對性半導體物件的重心。如果針對性半導體物件的重心偏離第一投影截面圖像片段的中心,則調整第一截面圖像片段,以形成一第二或調整截面圖像片段,其中針對性半導體物件的重心與第二、調整投影截面圖像片段的中心重合。此調整方法從一截面表面應用到另一截面表面,並且通過整個檢查體積的蝕刻操作和圖像獲取持續調整針對性體積。
在一實例中,該方法更包含以下步驟:根據第二截面圖像片段調整第一截面圖像片段的位置或大小之步驟,其中在第二截面圖像片段內的針對性半導體物件的截面位置和大小是通過圖像處理而確定。
在步驟e)的一實例中,將第一截面圖像片段投影到第二截面表面上是在一預定方向上進行的,例如平行於HAR通道的方向。在此實例中,預定方向為垂直於晶圓表面取向。
在根據第三實施例的方法的實例中,通過快速圖像掃描獲得一截面表面的快速截面圖像掃描,並生成具有降低SNR的截面圖像。在具有低SNR的截面圖像中,針對性體積的針對性區域被確定,並且僅針對性區域生成具有增加停留時間和增加SNR的圖像獲取。可重複進行快速圖像獲取以及確定具有低SNR的快速獲取截面圖像中的針對性區域之步驟。
在一實例中,第三實施例之方法包含生成針對性的3D半導體物件的3D體積圖像之步驟。3D體積圖像必須不限於針對性體積,其包含針對性的3D半導體對物件,而是可針對整個檢查體積而形成。在一實例中,檢查體積的3D體積圖像包含至少第一針對性體積的3D體積圖像、以及來自該至少第一針對性體積外之先驗資訊的增強3D圖像資料。增強3D圖像資料可從CAD資料或從一參考體積的先前獲取的3D體積圖像中獲得。
根據第三實施例之方法可結合根據上述第一或第二實施例之方法。藉此,從N個截面圖像形成M個平均圖像切片係簡化至確定該至少一針對性體積內的一移動平均值。此外,在交錯操作中,第一針對性體積可位於在實際蝕刻操作之前的第一z位置的區域中,且第二針對性體積可位於在實際蝕刻操作之後的第二z位置的區域中。
根據本發明的一第四實施例,進一步改進了M個平均化圖像切片堆疊的成像方法,甚至進一步提高了圖像獲取的處理量。根據第四實施例,應用了稀疏成像的方法。稀疏成像的效果與根據第三實施例的方法類似,但具有複數個小ROI。例如,在複數個HAR通道中,通常可將圖像獲取減少到幾個HAR通道甚至是HAR通道的細節。根據第四實施例之方法依賴於關於檢查體積中針對性半導體物件的先驗知識。在稀疏圖像獲取過程中,圖像獲取減少到稀疏圖像採樣位置,每個平均圖像切片根據先驗知識而填充擴增資訊。例如,可根據針對性半導體物件的CAD模型導出擴增資訊,該模型被修改為與稀疏圖像採樣位置的圖像資料最佳匹配。稀疏圖像採樣位置可根據先驗資訊預先確定,例如根據針對性的半導體物件的CAD資料。根據第四實施例之方法可與根據上述第一至第三實施例中任一者之方法結合,並且可提高晶圓檢查任務的處理量。
利用本發明第一實施例的快速圖像獲取方法,可最佳化帶電粒子成像系統的成像參數,以檢測針對性的特定半導體物件。最佳化可例如包括選擇用於偵測在每個截面表面產生的相互作用產物的偵測方法。在一些實例中,可能出現此缺點,即以犧牲其他半導體特徵為代價來實現對特定半導體特徵的檢測的增強。例如,在對半導體記憶體晶圓進行成像時,HAR通道邊界的檢測可能與準確檢測字線層所需的參數發生衝突。或者,檢測準確的HAR通道邊界可能與檢測凹槽蝕刻邊界的能力相衝突。當根據切片和圖像方法執行破壞性蝕刻時,這個問題變得更加嚴重,其中無法為已經移除的截面表面層重新獲取圖像。
根據本發明的一第五實施例,進一步改進了M個平均圖像切片堆疊的快速成像方法,甚至進一步提高了圖像獲取的準確度。第五實施例的方法採用多模態圖像獲取,包含帶電粒子束成像系統的至少第一和第二成像操作模式,以提高M個平均圖像切片的堆疊的圖像形成準確度。在一實例中,成像設定或成像模式的變化可用於藉由元素組成區分成像結構,同時對形貌對比度或表面效應不太敏感。可修改和組合成像模式,並且以來自不同成像模式的資訊增強快速獲取圖像掃描中的資訊。
根據一第一實例,至少在成像模式操作期間調整偵測器特性。例如,偵測器增益被調整到低訊號等級,而且在第二成像模式操作期間,偵測器增益被調整到高訊號等級。藉此,偵測器獲得的訊號被調整到例如檢查任務中的不同ROI。根據另一實例,調整二次或背向散射電子的截止能量。藉此,例如可將成像簡化到截面表面下方的樣品內的某些深度、或某些材料。
根據一第二實例,通過使用單獨的或不同的偵測器來實現不同的成像模式。例如,一第一偵測器和一第二偵測器可配置在不同角段中,並且配置成確定一形貌對比度。例如,一第一偵測器可配置成聚束大角度散射電子,而一第二、透鏡內偵測器可配置成聚束小角度背向散射電子。例如,第一偵測器可為一電子偵測器,而第二偵測器可為一X射線偵測器。利用多模態圖像獲取,可進一步通過獲得額外資訊來進一步提升M個平圖像切片堆疊的圖像形成。
在一實例中,該方法包含在後續圖像掃描操作之間改變偵測模式的步驟,其中偵測模式的變化包含動態範圍的變化、交互作用產物能量範圍的變化、或交互作用產物類型的變化中的至少一者。
根據第五實施例之方法可結合根據第一至第四實施例中任一者、用於多模態成像的每個成像模式之方法。例如,可針對每個成像模式的截面圖像的z堆疊應用不同的捲積核心;藉此,可在所有成像模式中平行實現高SNR。不同的多模態成像模式也可應用到選定ROI、或應用到稀疏成像位置。根據第一至第四實施例,利用多模態成像的額外資訊,可在不降低處理量提升的情況下,進一步增進與針對性半導體物件有關的所需資訊、以及圖像形成的準確度。
根據一第六實施例,提供了一種用於3D檢測在晶圓的檢查容積中針對性的半導體物件檢查檢查之系統。所述檢查系統配置成執行根據第一至第五實施例中任一者的方法,其包含一用於保持和定位晶圓樣品之晶圓樣品固持器及載台。該檢查系統包含一雙射束裝置,該雙射束裝置包含一FIB柱和一帶電粒子束成像系統,例如一掃描式電子顯微鏡(SEM)或一氦離子顯微鏡(HIM)。在另一實例中,應用具有複數個用於交互作用產物的角分辨成像的偵測器的校正電子顯微鏡。此校正電子顯微鏡係於2021年10月28日所申請之德國專利申請號第102021212203.5號中描述,該申請通過引用併入本文供參考。雙射束裝置的雙柱配置呈一角度並且形成多柱的光軸的交點。載台配置成定位及固持一樣品,該樣品包含一在針對性點附近的檢查體積。雙射束裝置更包含至少一偵測器用於二次或背向散射帶電粒子。在一實例中,雙射束裝置更包含至少一第二偵測器,用於獲取根據多模態成像操作之一第二訊號。檢查系統更包含一控制單元以控制雙射束裝置的操作。檢查系統更包含一記憶體以儲存軟體程式編碼、操作指令程式編碼,以及一記憶體已儲存所獲取的數位圖像資料。檢查系統更包含一處理器,其配置成執行用於確定移動平均的處理指令。檢查系統進一步配置成接收先前資訊,例如CAD資訊。
根據一實例,雙射束裝置的帶電粒子成像系統配置成執行不同的成像模式。不同的成像模式可包含不同的偵測器、或配置用於不同偵測器設定的偵測器。偵測器可包含具有可變柵極電壓的光柵。因此,可通過選擇排斥場來改變偵測器設定以截止低能量的帶電交互作用產物。偵測器可包含一可變類比增益因子,其配置成用於在轉換成數位訊號之前調節類比訊號。藉此,可獲得具有更高準確度和細節的微弱訊號。
帶電粒子成像系統的一實例包含一掃描偏轉器和一掃描控制器,其配置成執行不同的圖像掃描操作,例如包括線性平均的執行、停留時間的變化、掃描路徑的變化,例如之字形掃描策略、或曲折掃描策略。
配置成執行根據第五實施例之不同成像模式的帶電粒子成像系統的實例包含一帶電粒子源和多個粒子光學元件,其配置成進行加速電壓、射束電流、帶電粒子束角度、帶電粒子束的數值孔徑或帶電粒子束的截面形狀等變化。
帶電粒子成像系統的一實例包含色像差和球面像差之校正構件,其允許檢查在低於1 keV的較低電子電壓下(例如低於500 eV)具有較高解析度的檢測。
根據本發明的實施例,減少了藉由切片和圖像方法進行針對性半導體物件的3D體積圖像的獲取時間,並且增加了圖像準確度。藉此,增加了檢查任務的量,並且提供了具有增加處理量和增加準確度之用於針對性半導體物件的3D體積檢查的檢查系統。提供了具有高準確度和處理量之用於半導體晶圓的體積檢查的檢查系統。檢查系統配置成用於一檢查體積中複數個截面表面的蝕刻和成像,以及從複數個截面表面圖像確定3D物件的檢查參數。本發明提供了具有高準確度較高處理量、用於晶圓中檢查體積之3D體積檢查以及用於確定檢查體積內部的半導體特徵的參數集合之裝置和方法。可使用所述方法和配置成執行方法的系統進行半導體晶圓內之定量計量、缺陷偵測、製程監控、缺陷檢視和積體電路的檢查。
在整個圖式和說明中,相同的元件參考標號用於描述相同或相似的特徵件或組件。座標系統係經選擇使得晶圓表55符合XY平面。
近來,針對半導體晶圓中的3D體積檢查體積的研究已經提出了切片和成像方法,其適用於晶圓內部的檢查體積。藉此,以所謂的「楔形切割」方法或楔形切割幾何結構在晶圓內部的檢查體積處生成3D體積圖像,而無需從晶圓移除樣品。切片和圖像方法適用於尺寸為數微米的檢查體積,例如,在直徑為200毫米或300毫米的晶圓中橫向延伸5微米至10微米、或高達50微米。在集成半導體晶圓的頂面蝕刻出V形槽或楔形槽,以形成出與頂面呈一傾斜角度的截面。檢查體積的3D體積圖諸如在有限數量的測量位置處獲得,例如在晶粒的代表性位置,例如在製程控制監測器(PCM)處,或在由其他檢查工具識別的位置。切片和圖像方法只會局部破壞晶圓,其他晶粒仍可被使用,或是晶圓仍可用於進一步處理。根據3D體積圖像生成之方法和檢查系統已在專利案WO 2021/180600A1中描述,其通過引用整個併入本文供參考。本發明是對根據3D體積圖像生成的方法和檢查系統的改進和延伸,其中需要更高處理量。用於檢查半導體裝置的切片和成像方法之發明的成就之一是減少了獲取複數個平均圖像切片所需的成像時間。
本發明適用於具有高深寬比、及/或位於裝置內部的多層中由半導體元件組成的半導體裝置。此類裝置的製造強烈依賴於在3D中表徵半導體元件的能力。根據本發明的改進方法和設備的全尺寸3D層析成像使用改進的切片和成像技術,具有增加的處理量。
圖1中說明本發明的檢查系統。根據第一實施例,揭露一種用於3D體積檢查之改進晶圓檢查系統1000。用於高處理量3D體積檢查之改進晶圓檢查系統1000係配置用於在楔形切割幾何結構下利用雙射束裝置1的切片和成像方法。對於晶圓8,於從一檢查工具或從設計資訊生成的位置圖或檢查清單中定義出數個測量位置,其包含測量位置6.1和6.2。晶圓8放置在晶圓支撐平台15上。晶圓支撐平台15以致動器和位置控制21安裝在載台155上。用於晶圓載台155的致動器和用於精確控制之裝置21(諸如雷射干涉儀)為該領域中已知。控制單元16接收與晶圓載台155的實際為置有關的資訊,且是配置成控制晶圓載台155及調整晶圓8在雙射束裝置1的交點43處的測量位置6.1。雙射束裝置1包含一具有FIB光軸48的FIB柱50、以及一具有光軸42的帶電粒子束(CPB)成像系統40。在FIB和CPB成像系統的兩光軸的交點43處,晶圓表面55以對FIB軸48呈一傾斜角度GF而配置。FIB軸48和CPB成像系統軸42包括一角度GFE。在圖1的座標系統中,晶圓表面55的法線使用z軸表示。聚焦離子束(FIB)51是由FIB柱50所產生,而且在角度GF下撞擊於晶圓8的表面55上。在檢查位置6.1處,在預定的y位置以約傾斜角度GF,通過離子束蝕刻將傾斜的截面表面蝕刻到晶圓中,這由載台155和位置控制21所控制。在圖1的實例中,傾斜角度GF約為30°。由於聚焦離子束(例如鎵離子束)的射束發散、或由於相對於沿著截面表面蝕刻之可變材料特性,傾斜截面表面的實際傾斜角度可能偏離傾斜角度GF高達1°至4°。利用帶電粒子束成像系統40,可獲取蝕刻表面的圖像。在圖1的實例中,帶電粒子束成像系統40係配置成其帶電粒子束44垂直於晶圓表面55、並且平行於z軸。在其他組態中,帶電粒子束成像系統40的光軸42係配置成相對於z軸呈一角度。
在成像期間,帶電粒子束成像系統40的掃描單元沿著一掃描路徑於測量位置6.1處對晶圓截面掃描一帶電粒子束44,而且生成二次粒子以及背向散射粒子。粒子偵測器17.1和可選的內部粒子偵測器17.2聚束至少一些二次粒子及/或背向散射粒子,並且將粒子計數傳送給控制單元19。也可存在用於其他種類的交互作用產物(諸如X射線或光子)的其他偵測器。控制單元19控制帶電粒子束成像柱40和FIB柱50,並連接到控制單元16以控制經由晶圓載台155安裝在晶圓支撐平台15上的晶圓的位置。操作控制單元2與控制單元19通訊,其經由晶圓載台移動觸發例如晶圓8的測量位置6.1在交點43處的放置和對齊,並且觸發FIB蝕刻、圖像獲取和載台移動之重複操作。控制單元19和操作控制單元2包含用於儲存軟體碼形式的指令的記憶體、以及至少一處理器以在操作期間執行指令,例如用以執行第一至第四實施例中描述的方法。記憶體係進一步設置成儲存數位圖像資料。操作控制單元2可更包含使用者界面或對其他通訊介面之介面,以接收指令、先驗資訊及傳輸檢查結果。
每個新截面表面都由FIB束51進行蝕刻,並且由帶電粒子成像束44(其可為例如SEM的掃描電子束或氦離子顯微鏡(HIM)的氦離子束)進行成像。
操作控制單元2係配置成在晶圓8中的檢查體積160內執行3D體積檢查。操作控制單元2進一步配置成從3D體積圖像重建出針對性的半導體結構的特性。在一實例中,針對性半導體的特徵和3D位置(例如HAR結構的位置)係由圖像處理方法從例如HAR質心加以檢測。在專利案WO 2020/244795A1中進一步描述了包含圖像處理方法和基於特徵之對齊的3D體積圖像生成,其通過引用併入本文供參考。
圖2進一步說明楔形切割幾何結構中切片和成像方法的細節。通過在楔形切割幾何結構中重複進行切片和成像方法,係生成包括截面表面52、53.i、…、53.J的平均圖像切片的複數J個截面平均圖像切片,而且在晶圓8的檢查位置6.1處生成檢查體積160的3D體積圖像。圖2說明在3D記憶體堆疊的實例中的楔形切割幾何結構。截面表面53.1、…、53.J係利用FIB束51以與晶圓表面55成約30°的角度GF進行蝕刻,但其他角度GF,例如在GF=20°和GF=60°之間也可行。圖2說明當表面52是最後由FIB 51所蝕刻的新截面表面時的情況。截面表面52由例如SEM束44進行掃描,而且生成高解析度截面平均圖像掃描切片。截面平均圖像切片包括由具有高深寬比(HAR)結構或通孔的相交處形成(例如HAR結構4.1、4.2和4.3的第一截面圖像特徵)的第一截面圖像特徵、以及由與層L.1、…、L.M相交形成的第二截面圖像特徵,其包含例如SiO 2、SiN -或鎢線。其部分線路也稱為「字線」。層的最大數量M通常大於50,例如大於100、或甚至大於200。HAR結構和層延伸遍及晶圓中的大部分檢查體積,但可包括間隙。HAR結構通常具有約是或低於100 nm的直徑,例如約為80 nm、或例如40 nm。HAR結構排列成規則的,例如六邊形光柵,其間距約低於300 nm,例如甚至低於200 nm。因此,截面平均圖像切片包含第一截面圖像特徵作為在各別XY位置處的不同深度(Z)處之HAR結構的交點或截面。在圓柱形的垂直記憶體HAR結構的情況下,獲得的第一截面圖像特徵是圓形或橢圓形結構,其位於由結構在傾斜截面表面52上的位置所確定的不同深度。記憶體堆疊延伸於與晶圓表面55垂直的Z方向。將兩相鄰截面平均圖像切片之間的厚度d或最小距離d調整為通常為數個奈米數量級的值,例如30 nm、20 nm、10 nm、5 nm、4 nm或甚至更小。一旦以FIB去除預定厚度d的材料層,下一截面表面53.i、…、53.J即暴露出並可用於使用帶電粒子成像束44進行成像。
以此方式所獲得的複數J個截面平均圖像切片覆蓋在測量位置6.1處的晶圓8的檢查體積,並且用於形成低於例如10 nm、較佳為低於5 nm之高3D解析度的3D體積圖像。檢查體積160(參見圖2)一般在x-y平面中具有橫向延伸LX=LY=5 µm至15 µm、以及在晶圓表面55下之深度LZ為2 µm至15 µm。然而,所述延伸也可更大,並且達到例如50 µm。
圖3示出了由成像帶電粒子束44生成、且對應於第i個截面表面53.i的平均圖像切片331.i。平均圖像切片311.i包括在邊緣座標yi處的傾斜截面和晶圓表面55之間的邊緣線315。在邊緣右側,平均圖像切片331.i顯示通過HAR結構的幾個截面307.1、…、307.S,這些截面與截面表面301.i相交。此外,平均圖像切片331.i包括在不同深度或z位置的數條字線的截面313.1至313.3。
根據第一實施例,提供了一種具有增加處理量和準確度的M個平均圖像切片的圖像形成方法。從第一複數N個截面圖像的平均值確定M個高品質平均圖像切片的資料堆疊。根據第一實施例,圖像掃描時間沒有用於獲取每個截面圖像並生成許多截面圖像,每個截面圖像具有更高的雜訊位準。通過使用捲積核心對截面圖像的子集合進行平均來生成高品質的平均圖像切片。根據第一實施例之M個平均圖像切片堆疊的圖像獲取方法係依賴於針對性半導體物件的典型特性,例如HAR通道,其預期只會在預定方向上輕微變化。通過對許多截面圖像計算該預定方向上的移動平均值或平均,可有效降低雜訊,減少圖像獲取時間。此外,用於生成截面的蝕刻時間可更有效率地用於生成更多和更密集的截面圖像,其中截面之間有更小的距離。
根據第一實施例之方法對於蝕刻和成像過程中的誤差並不敏感。圖像掃描時間沒有用於獲取每個截面圖像並生成許多截面圖像,從中計算平均圖像切片。對於每個新的圖像掃描,先前的截面圖像的任何蝕刻假影被移除,而且蝕刻操作的缺陷或假影可隨不同截面表面改變。根據本發明的第一實施例,這些蝕刻假影中的至少一部分隨著移動平均的形成而被平均掉,並且不再需要對截面表面進行拋光。帶電粒子束成像系統的景深很低,很難實現完美聚焦。通過對複數個橫截面圖像進行平均,可將各個截面圖像的聚焦缺陷平均化並生成更高清晰度的平均圖像切片,而且可省去耗時的精確調焦。
根據第一實施例之方法係說明於圖4。
在步驟A1中,選擇及定位一檢查位置6.i,並將其保持在雙射束裝置1的交點43處。定義檢查體積160,並且定義用於獲取3D體積圖像的處理參數,這些參數包括例如要蝕刻的截面表面的數量Q、要獲取的截面圖像的數量N,以及一維捲積核心的大小或擴展B、以及預定方向,其中一維捲積核心是要應用的。其他參數為停留時間、以及用於獲取截面圖像的圖像獲取的其他參數。所述參數還可更包含用於中斷或中止該方法的臨界值。
在步驟A2中,執行切片和圖像方法,直到達到臨界值為止。如果滿足預定的控制條件,例如半導體晶圓樣品內的特定深度或半導體晶圓樣品內針對性體積內的特定層的外觀,即可達到臨界值。
在步驟A2.1中,通過FIB蝕刻N個截面表面,通過帶電粒子束成像系統獲取N個截面圖像。截面圖像儲存在記憶體P中。
在選擇性步驟A2.3中,重複評估是否已達到檢查體積邊界、或是否已聚束所需資訊。如果達到預先定義的臨界值,則中止切片和圖像方法。
結果如圖5所示,以3D記憶體堆疊中的HAR通道為例。圖5a示出了以傾斜角度GF通過具有複數個HAR結構309的檢查體積160的複數個截面表面53.1至53.N。每個截面表面與複數個具有截面307的HAR結構相交。圖5b示意說明記憶體P中的具有多個截面圖像311.1至311.N的圖像資料堆疊163,每個截面圖像311.i對應於從N個截面表面53.1至53.N中其一所獲取的圖像。每個截面圖像311.i例如在第一次對齊之後在基準點或對齊標記(未示出)處或通過精確載台進行對齊。
在步驟A2.2中,處理截面圖像311.1…N之子集合的序列,並且從截面圖像的每個子集合計算平均圖像切片。在處理過程中,計算每個截面圖像子集合的移動平均值。
M個平均圖像切片的形成可描述為截面圖像的3D資料圖像堆疊與1D捲積核心的數學捲積。在一實例中,大量的N個截面圖像形成一個3D資料集合,其具有每個圖像的橫座標x和y,而且不同的z座標係對應於該預定方向。移動平均值或平均是通過在3D資料堆疊的z座標上與1D捲積核心進行捲積來描述。捲積核心可為預定數量的截面圖像的函數,例如z方向上的移動矩形函數或移動高斯核心。用於計算不同加權移動平均點明智中位數過濾的其他捲積核心也可行。捲積核心的其他示例對應於用於根據給定雜訊模型來找出一範數或匹配函數的最小值的過濾。捲積核心的寬度可在步驟A1期間確定,或者可根據局部雜訊位準或平均圖像切片所需的SNR進行自適應。例如,如果雜訊位準太高,則可增加捲積核心的擴展B。然而,該方法不限於使用捲積核心進行捲積的經典計算,而是可應用基於機器學習的演算法來最佳地執行平均圖像切片的計算。
圖6說明圖5的實例中的方法步驟A2.2的一第一實例。對於i=1到i=4的四個截面圖像的第一子集合165.1,計算平均值並且將j=1的一第一平均圖像切片331.1寫入記憶體S。然後,繼續對具有i=2至i=5的四個截面圖像的第二子集合165.2進行平均,並且將j=2的第二平均圖像切片331.2寫入記憶體S。通過疊代該方法步驟直到最後一子集合165.M,最終在記憶體S中生成了包含j=1至M個平均圖像切片331.j的平均圖像切片的資料堆疊167。
在步驟A3中,探究檢查體積中的針對性半導體物件並且確定針對性半導體物件的參數,例如,針對性半導體物件是由多個重複的半導體結構形成,例如圖2中所示的HAR結構。參數可為例如體積、橫向位置、例如距離或直徑之維度、覆蓋面積、這些特徵的平均值、以及與單一結構的平均值的最大偏差量。針對性的參數或特徵最終歸於檢查位置並且儲存在控制單元2的記憶體S中、或寫入一檢查檔案。
根據步驟A2.2生成的平均圖像切片331.1…M的資料堆疊167可根據不同的實例而獲得。在根據圖6的第一實例中,確定一移動平均值並且生成大量M個平均圖像切片。此操作相當於截面圖像311.1至311.N的資料堆疊163的指標i的方向上的數學捲積。捲積核心可為一給定座標(x,y)的每組截面圖像311的圖像強度的加權總和。權重可相同或不同。捲積核心的實例由矩形函數(具有相等權重)或高斯函數給出。捲積核心的寬度(亦即截面圖像的每個子集合的數量B,在其上計算平均值)可為B=3或更大,較佳地大於9或11。更大的數值也可行,例如B約為50或更高。通過增加平均捲積核心的擴展,在不增加平均圖像切片中的圖像雜訊的情況下,甚至可進一步減少快速圖像獲取的時間且甚至可進一步提高處理量。
圖7說明另一實例。本文中,通過僅對每第二個、每第三個、或通常每第n個截面圖像子集合執行平均操作,以進一步減少平均圖像切片311的數量M,例如圖7中的數量n=4。本文中,平均捲積核心的擴展用B=5表示,每個平均圖像切片331是從資料堆疊163的B=5個截面圖像的子集合165.j所計算的。在一實例中,數值B可更高。該實例的平均捲積核心在來自資料堆疊163的截面圖像切片上仍然具有重疊,使得來自一些截面平均圖像切片的資料用於計算兩不同的平均圖像切片331.j。在此實例中,捲積核心可為具有不等權重的加權總和,例如對稱三角函數或高斯函數。
圖8說明另一實例。本文中,平均圖像切片的數量M進一步減少,並且用於計算平均圖像切片的截面圖像子集合不再顯示有任何重疊。
在整個實例中,無須一次獲得截面圖像311.1…N的整個資料堆疊163;在一實例中,平均圖像切片331.1…M的計算與圖像獲取平行執行,而且並非所有截面圖像311.1…N必須保存在記憶體P中。一旦移動平均圖像切片331.j被計算,不再需要的截面圖像311.i可被新的截面圖像覆蓋。藉此,記憶體P的記憶體大小可受限制。
在一實例中,平均圖像切片的數量M約等於截面圖像的數量N,平均圖像切片的數量M係得自擴展為B的平均捲積核心。在另一實例中,數量M明顯小於截面圖像的數量N,其中M < = A x N;係數A > = 3,例如A=5、A=7或A=20或更大。
在上述實例中,通過快速掃描圖像獲取從每個截面表面53.i獲得截面平均圖像切片311.i。然而也可能的是,截面平均圖像切片311.1…N的數量N偏離截面表面53.1…Q的數量Q。例如,截面圖像的數量N通常介於複數個截面表面53的數量Q除以2與兩倍於截面表面53的數量之間,其中2 x Q => N => Q/ 2。例如,應用快速蝕刻,而且僅對每隔第二截面表面應用快速圖像獲取,其中N < Q。例如,每個截面表面53.1…Q通過以帶電粒子束成像裝置40快速掃描操作至少成像一次,而且對於每個截面表面53.1…Q,可獲得至少一截面圖像311.1…N,其中N>Q。
在小蝕刻距離的截面表面的截面圖像的每個子集合之間,針對性半導體物件的變化通常非常有限。在一實例中,複數個截面表面53.1…Q由FIB 50蝕刻通過檢查體積160,其具有例如小於5 nm、3 nm、或甚至低小於2 nm的小z距離。藉由獲取檢查體積160中形成的不同截面表面53.1 ... Q的大量N個截面圖像311.1…N,可從截面圖像311.1…N確定載台155或帶電粒子束成像柱40的漂移,並且在藉由確定截面圖像子集合的最佳匹配條件進行移動平均值或平均值的計算過程中將其有效去除。在一實例中,例如通過計算梯度來評估平均圖像切片331.j的圖像對比度。如果在特定方向上偵測到整體低梯度或低對比度,則通過將橫向偏移包括到截面圖像子集合的截面圖像來最佳化平均值的確定。藉此,可降低在此特定方向中漂移的影響。
在漂移補償的最佳化期間,可限制最大預期漂移以減少計算時間並增加方法的穩健性。漂移可被確定為每個截面圖像相對於參考值的絕對漂移、或者被確定為相對於例如先前截面圖像的相對漂移。可採用不同的配準或對齊方法來提高漂移補償的速度和性能。在某些情況下,可進行漂移補償的手動驗證,並且可摒棄錯誤的圖像偏移。
根據本發明的第一實施例,以減少的掃描時間來獲得大量的N個截面圖像,因此增加了雜訊位準。M個平均圖像切片的堆疊通過平均而形成。藉此,可降低快速獲取的截面圖像的增加雜訊位準,並且形成具有增加的SNR的平均圖像切片。
在確定移動平均值期間,可檢測和補償全域漂移,同時仍然可檢測例如HAR通道的軌跡的個體偏差。截面圖像在圖像特徵基準處的進一步對齊和配準也可行。根據切片和圖像方法,可在圖像獲取期間進行平均圖像切片的計算,從而減少了儲存複數N個截面圖像的記憶體需求。
根據第一實施例的方法還可應用於生成用於使用機器學習的檢查方法的訓練資料。註釋可從低雜訊位準的平均圖像切片轉移到用於平均的截面圖像集合,每個圖像具有大雜訊位準並藉由快速圖像掃描而獲取。因此,可在高品質的平均圖像切片上進行高精確度註釋,並將註釋資訊傳輸到截面圖像集合,以訓練機器學習演算法從通過快速圖像掃描獲得之具有大雜訊位準的截面圖像中擷取資訊。
根據第二實施例,甚至進一步降低漂移的影響。根據第二實施例,N個截面圖像的圖像獲取和N個截面表面的蝕刻是同時平行進行。在一實例中,通過沿第一方向(例如,x方向)掃描FIB束51來執行FIB的蝕刻。同時,通過在相同的x方向上跨截面掃描成像帶電粒子束44並且通過在y方向上從線掃描步進到線掃描來執行圖像獲取。圖9顯示在蝕刻操作期間的三個不同時間的交錯蝕刻和圖像獲取。在第一時間t1,只有一小部分截面表面53被FIB 51蝕刻,而且在蝕刻操作的後端,藉由在x方向上掃描並在y方向上步進開始圖像掃描57。因此,在時間t1時的圖像掃描是在蝕刻之前的先前截面表面61上執行大部分。在第二時間t2,下一截面表面63的概略半部被蝕刻,而且在前一截面表面61以及蝕刻之後新蝕刻的截面表面區域63上執行圖像掃描57。在時間t3,幾乎完成FIB 51的蝕刻。因此,每個交錯的蝕刻和成像操作的每個截面圖像311包括根據實際蝕刻操作之前的截面表面的第一區域61、以及根據實際蝕刻操作之後的截面表面的第二區域63。不同z位置的區域由線67分開。每個截面圖像311因此包括不同z位置的圖像區域。大量N個截面圖像再次形成一個3D資料堆疊,其具有每個圖像的橫座標為x和y,不同的z座標對應於每個截面圖像內的兩區域。藉此,甚至可進一步降低不同截面圖像之間漂移的影響。根據第二實施例的方法可與根據第一實施例的方法組合,並且可通過確定移動平均值或平均來形成M個平均圖像切片的堆疊,如在第一實施例中所描述的且如圖10中以相同元件符號所表示者。圖10說明一實例。平均圖像切片的資料堆疊167的平均圖像切片331.m的移動平均值或平均是由截面圖像311.1…N的資料堆疊163的截面圖像的子集合165.m形成。根據一實例,截面圖像的子集合165.m也僅包含截面圖像311.1…N的多個部分,這些部分位於用於計算一特定平均圖像切片331.m的捲積核心的一特定z範圍內。
根據一實例,可藉由例如重複的圖像掃描以選擇性增加更多的截面圖像。例如,第一截面圖像集合可與第二實例中描述的蝕刻操作平行獲得,而且第二截面圖像集合可在兩後續的蝕刻操作之間獲得。
根據本發明的一第三實施例,藉由將耗時的圖像掃描操作的性能限制在選定的針對性區域,可進一步提高用於檢查晶圓樣品的檢查體積中針對性的3D半導體物件之方法的處理量。圖11說明根據第三實施例之方法。
步驟A11在根據第一實例的步驟A1之後。除了第一實例的步驟A1之外,還要選擇晶圓樣品的檢查體積內的針對性體積。此選擇可通過外部輸入來執行,例如從CAD資料,或者藉由來自例如圖形使用者界面的使用者輸入來執行。例如,使用者選擇含有至少一針對性半導體物件的針對性體積。步驟A11可更包含根據所選定的針對性體積來調整截面表面的距離。
步驟A12中,執行切片和圖像方法,直到達到一臨界值為止。
在選擇性步驟A12.0中,獲取第一截面圖像並確定針對性體積與第一截面圖像的交點。藉此,記錄針對性體積的位置。
為了確定和選擇針對性體積,可使用第一截面圖像內的半導體物件的一些「參考」結構,例如字線或其他層的數量(參見圖2),或其他顯著特徵。針對性體積的確定還可包含使用機器學習檢測來識別特定特徵(例如,電晶體、接觸點、兩或多個元件的相交處)。此確定可藉由使用基準或對齊標記而進一步改進。
在步驟A12.1中,FIB蝕刻下一截面,根據該截面與針對性體積的交點確定針對性區域。
在步驟A12.2中,利用帶電粒子束成像系統對針對性區域進行圖像掃描,獲得截面圖像。分析針對性體積內的針對性區域的截面圖像,並且選擇上,針對性體積適用於下一圖像獲取步驟。選擇上,重複實際截面表面內的經修正的針對性區域的截面圖像的圖像掃描。實際截面表面的針對性區域的最終截面圖像儲存在記憶體S中。
在選擇性步驟A12.3中,評估是否已達到針對性體積的邊界、或是否已聚束到所需資訊。如果達到預先定義的臨界值,則中止切片和圖像方法。
在步驟A13中,依循根據第一實例的步驟A3,不同之處在於針對性的半導體物件的參數的探究和確定僅限於所選定的針對性體積。
圖12示意說明有限制的圖像獲取的實例。示出了在檢查體積160內的複數個截面表面53.i,隨後通過FIB在角度GF下將其蝕刻到晶圓表面55。檢查體積的擴展為LX x LY x LZ。在檢查體積160內,確定針對性體積171。在這簡化的實例中,針對性體積具有LX x LYI x LZ的擴展。在此實例中,成像系統的帶電粒子成像束44配置成垂直於截面表面53(或垂直於FIB軸48,參見圖1)。藉此,在成像過程中可實現更高的解析度。帶電粒子成像束44對截面圖像的獲取僅限於每個截面表面53.i的針對性區域173.i(僅指出第一針對性區域173.1)。針對性區域在y方向上的擴展因而被限制為明顯小於L的LYI。帶電粒子成像束44的圖像掃描是針對每個截面表面53.i而調整,並且可減少用於圖像獲取的時間間隔。
圖13a說明用於研究HAR通道的針對性掩埋體積的實例。本文中,針對性體積受兩z平面z1和z2的限制,並且僅限於包含3個HAR通道。圖13b顯示五個連續截面表面53和相應的針對性區域173.1至173.5的俯視圖。圖像獲取的時間間隔減少了。在一實例中,橫向漂移可能發生在例如截面表面53.3和53.4的蝕刻之間,但其並不重要,因為針對性區域173.4可因此被調整成補償任何橫向漂移。
圖14說明針對性區域173的頻繁或動態調整以覆蓋檢查體積160內的針對性體積171的實例。該實例的針對性體積在步驟A12.2中被動態調整以覆蓋針對性的半導體物件,例如HAR通道309。在第一截面表面53.1中,第一針對性區域173.1被確定為覆蓋針對性的半導體物件(在此處為通過HAR通道309的截面)。針對性區域173.1被選擇為包含通過HAR通道309的截面,其具有特定邊界區域以覆蓋HAR通道309的預期橫向位置變化。接著根據第一針對性區域173.1選擇第二針對性區域173.2,並分析第二截面表面53.2的圖像切片,例如通過圖像處理方法或圖樣辨識方法。在該實例中,通過HAR通道309的截面不再位於第二針對性區域173.2的中心,而且後續的針對性區域173.3自適應改變為更大的擴展、以及在通過針對性區域173.2中的HAR通道309的截面中心處的新中心位置。在分析了從針對性區域173.3獲取的圖像內部之通過HAR通道309的截面之後,可再次減小後續的針對性區域173.3的尺寸,例如,當通過HAR通道309的截面在截面表面53.3中相對於截面表面53.2中通過HAR通道309的截面沒有改變時。通過從一切片到另一切片疊代調整針對性區域173的大小或位置,可減少掃描圖像獲取的耗時操作。
圖15顯示具有兩針對性體積171.1和171.2的第三實施例的另一實例。在一些應用中,檢查任務要擷取的相關資訊是檢查體積160內兩針對性半導體物件309.1和309.2之間的空間關係。在此實例中,生成第一針對性區域的第一平均圖像切片175.1第一針對性體積171.1和第二針對性體積171.2的第二針對性區域的第二平均圖像切片175.2,並且可確定針對性半導體物件309.1和309.2之間的空間關係。在此實例中,空間關係是HAR通道309.1和309.2的兩堆疊的對齊或覆蓋準確度dy。
根據一實例,根據第三實施例的方法包含進一步的步驟A14(參見圖11),根據該步驟經由一使用者顯示器對使用者顯示測量結果。測量的圖像資料堆疊顯示在檢查體積內,而且來自針對性體積外部的缺失圖像資訊則由例如CAD資訊來擴增。
利用第三實施例,提供一具有增加處理量的檢測方法,其包括在切片和成像方法期間進行蝕刻和成像參數的自動調整,這允許針對一特定檢查任務(例如尋找特定的缺陷)獲得最佳化的圖像切片的資料堆疊,聚焦於特定的IC元件或其部件、或聚焦於半導體晶圓內的特定位置。成像參數的調整包括將掃描圖像獲取限制在至少一針對性體積內的截面表面片段,而更快速的蝕刻會形成更大的截面表面。在一實例中,在針對性體積內以高解析度和長停留時間進行圖像獲取,在針對性體積之外以低解析度和短停留時間繼續圖像獲取。藉此,生成檢查體積的低解析度概觀圖像,其包括針對性體積之高解析度體積圖像。可根據步驟A14藉由擴增資訊來增進低解析度的概觀圖像。
第三實施例可結合根據第一或第二實施例的方法、或其兩者。藉此提供一處理量進一步提高的檢測方法。根據第三實施例之用於圖像獲取的時間間隔的減少受益於將圖像獲取限制為檢查體積內的小針對性體積。然而,在一些實例中,不可能包含針對性體積。根據本發明第四實施例的方法則克服了大針對性體積的體積圖像獲取的問題。根據第四實施例,應用稀疏圖像獲取方法。圖16中說明根據第四實施例的方法。
步驟A21在第三實例的步驟A11之後。除了步驟A11之外,步驟A21還包含選擇待獲取的稀疏圖像的密度。例如,可僅對檢查體積內不到10%截面表面執行稀疏圖像獲取。例如,可對檢查體積內的約30%或50%截面表面執行稀疏圖像獲取。
在步驟A22中,執行切片和圖像方法,直到達到一臨界值為止。
在步驟A22.1中,FIB蝕刻第一或下一截面。
在步驟A22.2中,從步驟A22.1中所蝕刻出的截面上獲取用於稀疏圖像獲取的第一或下一複數個稀疏圖像區域。稀疏圖像儲存在記憶體S中。
在步驟A22.3中,對圖像區域進行配準,並且確定下一複數個稀疏圖像區域。可從配準的複數個圖像區域獲得確定,使得例如稀疏圖像區域在檢查體積上的平均分布得以保持。藉此,保持了具有圖像區域的檢查體積的覆蓋率。稀疏圖像區域也可根據先驗資訊(例如CAD資訊)而確定,並且可確定為覆蓋檢查體積內針對性的特殊特徵。
在步驟A24中,根據在步驟A22中獲得的稀疏圖像資料計算檢查體積的3D體積圖像。可通過數學方法或機器學習方法執行計算,機器學習方法被訓練填充缺失資料以補充稀疏圖像資料。數學方法可包含內插法、外推法或平均法。在另一實例中,用於補充稀疏圖像資料的缺失資料是從CAD資訊中獲得的。例如,可通過將針對性半導體物件的參數模型描述擬合到稀疏圖像資料來導出3D體積圖像。
在步驟A23中,依循根據第一實例的步驟A3。
第四實施例可與根據第一至第三實施例的方法結合。圖17a說明根據第四實施例的方法的實例。在檢查體積160內部,定義了大針對性體積171。複數個截面表面53被蝕刻(僅指出一個)。圖17b以橫向x-y座標表示五個截面表面53.1至53.5。針對每個截面表面定義不同集合的稀疏成像區域181,並且稀疏圖像片段由帶電粒子成像束獲取。根據不同分布的稀疏圖像片段,可推斷出針對性體積的3D體積圖像,如上述步驟A24。
切片和圖像方法的一缺點是檢查體積160內的晶圓樣品的破壞。在藉由去除截面表面上方的材料來蝕刻截面表面之後,即無法獲取檢查體積中移除區域的附加圖像。這在本發明的實施例的一些實例中可能具有挑戰性。本發明的第五實施例通過利用多模態成像方法克服了快速圖像獲取的這些問題中的一部分。
第五實施例的方法採用多模態圖像獲取,包含帶電粒子束成像系統的至少第一和第二成像模式的操作,以進行截面圖像的資料堆疊或平均圖像切片的圖像形成。可對不同成像模式獲得的圖像進行正規化,並且如本發明第一實施例所述之計算平均圖像切片。在另一實例中,可利用不同的偵測器特性獲得根據第四實施例的不同稀疏圖像區域,偵測器獲得的訊號被調整至不同的半導體特徵。不同的成像模式獲得的圖像可相互補充。
根據一第一實例,針對不同成像模式的操作來調整偵測器特性。例如,在第一成像模式操作期間,偵測器增益被調整到低訊號等級,並且在第二成像模式操作期間,偵測器增益被調整到高訊號等級。根據另一實例,調整二次或背向散射電子的截止能量。藉此,例如可將成像簡化到在截面表面或某些材料下方樣品內的某些深度。
在一實例中,該方法包含在後續圖像掃描操作之間改變偵測模式的步驟,其中偵測模式的變化包含動態範圍的變化、交互作用產物能量範圍的變化、或交互作用產物類型的變化中的至少一者。
在一實例中,可通過獲取相同視野中的一系列圖像來擴展圖像樣本的動態範圍,提高計量任務的準確度。該系列中的每個圖像都是使用單個偵測器的不同偵測器設定而獲取。例如,使用特定的偵測器亮度/對比度(或增益/偏移)設定,偵測器可測量特定範圍的帶電粒子計數。帶電粒子計數由類比對數位轉換器轉換成例如8位元格式。因此,會由於轉換損失而失去弱訊號的差異。另一方面,如果偵測器增益太高,強訊號會產生偵測器溢出,強訊號的差異也會丟失。為了擴展偵測器電子計數的最小和最大範圍,可調整偏移和增益,使得可使用高解析度來偵測不同範圍的訊號。藉此,實現了SEM訊號解析度的擴展。
根據一第二實例,不同的成像模式是通過利用空間分離的或不同的偵測器平行實現的。例如,第一偵測器和第二偵測器可配置在不同角段中,且配置成確定形貌對比度。例如,第一偵測器可配置為聚束大角度散射電子,第二透鏡內偵測器可配置為聚束小角度背向散射電子。例如,第一偵測器可為電子偵測器而第二偵測器可為X射線偵測器。例如,第一偵測器可配置成偵測低能量交互作用產物,第二偵測器可配置成偵測高能量交互作用產物。交互作用產物可為帶電粒子束成像系統的二次電子或背向散射帶電粒子。對於具有第一和第二偵測器的第二實例,在不降低根據第一至第四實施例之處理量提升的情況下,進一步改進了關於針對性半導體物件的期望資訊和圖像形成的準確度。
利用多模態圖像獲取,通過獲取附加資訊而進一步改進了M個平均圖像切片堆疊的圖像形成。根據第五實施例的方法可結合根據第一至第四實施例中任一例的方法。
在本發明的第六實施例中描述了一用於3D檢測針對性半導體物件的檢查系統。圖1顯示用於晶圓樣品8的檢查體積中的3D體積檢查的檢查系統1000的第一實例。檢查系統1000配置用於執行根據第一至第五實施例中任一者的方法。檢查系統1000包含一晶圓樣品支撐平台15和載台155,以固持及定位晶圓樣品8。檢查系統包含一雙射束裝置1,其包含一FIB柱50和一帶電粒子束成像系統40,例如一掃描式電子顯微鏡(SEM)或一氦離子顯微鏡(HIM)。雙射束裝置1更包含至少一用於二次或背向散射帶電粒子的偵測器17.1。在一實例中,雙射束裝置1更包含至少一第二透鏡內偵測器17.2,用於在根據第五實施例的多模態成像操作中獲取第二訊號。檢測系統更包含一控制單元19,以控制雙射束裝置1的操作。控制單元19配置用於向帶電粒子束成像系統40的掃描單元提供指令,從而可使圖像掃描操作限於根據本發明的第三或第四實施例的針對性區域或稀疏成像區域。檢查系統1000更包含操作控制單元2,其具有用於儲存軟體程式碼、操作指令程式碼的記憶體,以及用於儲存從偵測器17.1和17.2接收之獲取的數位圖像資料的記憶體。操作控制單元2更包含配置用於執行用於計算移動平均值的處理指令的處理器。檢查系統1000的操作控制單元2還配置成經由介面接收先驗資訊,例如CAD資訊。上文描述了圖1的檢查系統1000的進一步細節。
圖18顯示用於晶圓樣品8的檢查體積中的3D體積檢查的檢查系統1000的第二實例,其中使用了與圖1的描述中相同的元件符號並參考圖1的描述。在第二實例中,帶電粒子束成像系統40由具有多個偵測器17.1和17.3的校正電子顯微鏡形成,用於應用交互作用產物的角分辨成像。這種校正電子顯微鏡在2022年10月25日申請的國際專利申請PCT/EP2022/079753中有所描述,其通過引用併入本文供參考。校正電子顯微鏡包括電子源1301、準直系統1405、分束器1500、反射鏡元件1415。利用反射鏡元件1415校正色像差、球面像差和場曲。經校正的電子顯微鏡40更包含透鏡內偵測器17.2和具有偏轉掃描器35的物鏡1102。背向散射電子和二次電子9由物鏡1102聚束並且至少部分經由分束器引導到投影系統1605到電子偵測器17.1和17.3。
雙射束裝置1的FIB柱50和帶電粒子束成像系統40以一定角度配置並且形成光軸48與柱的交點43。載台155配置用於定位和保持包括接近交點43的檢查體積的晶圓樣品8。
根據一實例,雙射束裝置的帶電粒子成像系統配置用於執行根據第五實施例的不同成像模式。不同的成像模式可包含不同的偵測器、或配置用於不同的偵測器設定的偵測器。偵測器可包含具有可變柵極電壓的光柵1607。因此,可通過選擇排斥場來改變偵測器設定,以截止低能量的帶電交互作用產物。偵測器可包含一可變類比增益因子,配置成用於在轉換成數位訊號之前調節類比訊號。因此,可獲得具有更高準確度和細節的微弱訊號。偵測器可包含多個偵測器元件17.1、17.3,用於交互作用產物的角分辨檢測。由校正電子顯微鏡形成的帶電粒子成像系統40允許在低於1keV的較低電子電壓下以更高解析度進行檢查,例如低於500eV或甚至低於300eV。
第六實施例的帶電粒子成像系統40包含一掃描偏轉器35和一掃描控制器23,其配置用於執行不同的圖像掃描操作,例如包括線平均的執行、停留時間的變化、掃描路徑的變化,例如之字形掃描策略或曲折掃描策略。掃描控制器23還配置為執行根據本發明第一至第四實施例的不同圖像掃描操作。不同的掃描配置包含根據第一實施例的快速圖像掃描、根據第二實施例的垂直於FIB束51的圖像掃描操作、限制於根據第三實施例之至少一針對性區域的有限掃描操作、或根據第四實施例配置用於圖像掃描的不同集合的稀疏成像區域181之有限掃描操作。
根據第五實施例之配置用於執行不同成像模式的帶電粒子成像系統40的實例包含一帶電粒子源1301和粒子光學元件1405和1102,其配置用於改變加速電壓、射束電流、帶電粒子束角度、帶電粒子束的數值孔徑或帶電粒子束的截面形狀。
在整個說明書中,本發明係描述用於晶圓樣本的檢查體積內之檢查。晶圓樣品8可由晶圓形成,例如300 mm晶圓,或者由從晶圓中擷取的小晶圓樣品片形成。
橫向延伸約為LX=10 µm x LY=10 µm且深度為LZ=10 µm之檢查體積的典型獲取需要對例如2000個截面圖像切片進行切片和成像,停留時間約為每像素2 µs。因此,要獲取具有約2 nm的高橫向分辨率的3D體積圖像的典型時間可能超過24小時。通常,圖像獲取時間在12小時至30小時之間。另一方面,此檢查體積所需的蝕刻時間則約為一小時甚至更短,幾乎無關於所要蝕刻截面表面的數量。使用根據本發明實施例的方法,顯著減少圖像獲取的時間,例如至少減少兩或多倍。例如,通過對包含至少四個快速掃描的截面圖像的截面圖像集合進行平均,停留時間減少四分之一,而且提高截面圖像切片的SNR。即使截面圖像的數量增加例如兩倍,圖像獲取的總時間也會減少兩倍。每個像素的停留時間甚至可進一步減少,例如低於0.1 µs,並且可增加平均核心以覆蓋例如25或30個截面圖像。假設針對性的半導體物件在預定方向(例如,垂直於晶圓表面的z方向)上緩慢變化,藉由平均而在預定方向上的微小解析度下降通常是可接受,而且可獲得具有大SNR的平均圖像切片。藉此,圖像獲取時間的減少可能是更大的倍數,例如倍數5、8或甚至更大。雜訊位準與停留時間(即停留時間的平方根)間接成正比,並且通過對一組截面圖像進行平均,至少可實現具有較大停留時間的圖像切片的類似SNR。此外,具有減少的每像素停留時間之快速圖像掃描對充電效應不太敏感,因此平均圖像切片的SNR獲得了更大的改善。
根據一實例,可確定針對性體積並且將圖像獲取限制在每個截面表面內的針對性區域。根據另一實例,圖像獲取僅在稀疏區域或截面表面的片段處執行。根據這兩實例,高品質截面圖像切片的圖像獲取時間減少了兩或多倍。在一實例中,快速圖像獲取和平均與有限的針對性區域相結合,甚至進一步減少了圖像獲取的時間。
如上所述,用於計算平均圖像的多個圖像的圖像配準或對齊是在例如基準點或對齊特徵處執行。這種對齊特徵可為通過金屬層沉積和金屬層中對齊特徵的帶電粒子束誘導濺鍍所預先製造的二維結構。這種對齊特徵通常具有更大的延伸,例如線寬為20 nm或更大,例如50 nm、100 nm或甚至更大。對齊特徵的其他示例包括存在於半導體晶圓上的現有特徵,例如對齊標記。對齊特徵的其他示例包括三維對齊特徵,諸如蝕刻至晶圓中的線結構、跨孔。
相較於尺寸低於10 nm或甚至更小(例如5 nm)的半導體特徵(其通常需要2 nm或更小的圖像解析度或採樣距離,例如1 nm),這種更大的延伸不需要高解析度的圖像獲取。在每次截面圖像的獲取之間,漂移可能會在連續圖像之間產生橫向位移。即使利用如上所述的粗對齊特徵,也可在不犧牲圖像獲取速度的情況下以低於1 nm的高準確度確定圖像到圖像的橫向位移。
在根據第一和第二實施例的一第一實例中,在每個快速獲得的具有較大雜訊位準的截面圖像中,可在相同於半導體特徵的高解析度下獲得對齊基準點的圖像。為了精確計算基準點的中心位置,可通過橫向捲積核心對覆蓋粗基準點的像素進行平均。因此,每個圖像在含有對齊基準點的圖像資料的圖像區域處局部平均,並且從對齊基準點的局部平均的圖像資料高精度地獲得圖像的參考位置。通過橫向平均降低了圖像雜訊,使得例如可高精度獲得對齊基準點的中心位置,然後通過對具有高橫向重疊精度的多個圖像進行平均以獲得半導體特徵的平均圖像。
在根據第三實施例的一第二實例中,通過將圖像獲取限制在針對性區域來獲得快速成像。在一第三實例中,在每個圖像掃描中獲得針對性的半導體特徵的複數個稀疏圖像片段。除了針對性區域或稀疏圖像區域的圖像獲取之外,可在每個圖像獲取內包括含有對齊基準點的圖像區域。由此,可高精度橫向對齊針對性區域或稀疏圖像區域的圖像。在一實例中,通過減少對齊基準點的圖像片段的圖像獲取時間來進一步提高圖像獲取的速度。如上所述,對齊基準點通常比針對性的半導體特徵大而且不需要高解析度。由於雜訊的統計本質,時間平均和整體平均是相同。對齊基準點的低解析度圖像因此可通過如上所述的快速掃描和橫向像素合併或平均來獲得,或者通過將對齊基準點的掃描圖像獲取改變為以較低掃描頻率、或平均對齊基準點的數個低解析度圖像之較低解析度來獲得。
實施例所描述之本發明可藉由下述實例來描述:
實例1:一種用於體積檢測在晶圓樣品的檢查體積中針對性的3D半導體物件的體積檢查方法,包含: - 藉由快速蝕刻和快速圖像掃描通過該檢查體積的複數個截面表面,獲取一第一數量N個截面圖像; - 藉由計算該針對性半導體物件的一預定方向中的移動平均值,從該第一數量N個截面圖像形成一第二數量M個平均圖像切片,其中每個平均圖像切片之所述移動平均值是從該第一數量N個截面圖像的一子集合所計算。
實例2:如實例1所述之方法,其中該第二數量M小於該第一數量N,其中M < N,較佳是M <= A x N,其中A >= 3,例如A介於3與11之間,A=20或甚至A約為50。因此,例如,以下任何關係式都可成立:3 ≤ A ≤ 11、或3 ≤ A ≤ 20、或45 ≤ A ≤ 55。
實例3:如實例1所述之方法,其中該第二數量M幾乎等於該第一數量N。較佳係,M < N及/或M/N ≤ 0.95、或M/N ≤ 0.98、或M/N ≤ 0.99。
實例4:如實例1至3中任一所述之方法,其包含在不同時間依次執行一新截面表面的快速蝕刻和快速圖像掃描以獲取一截面圖像。
實例5:如實例1至3中任一所述之方法,更包含在相同時間平行執行一新截面表面的快速蝕刻和快速圖像掃描以獲取一截面圖像,其中一帶電粒子成像束的掃描方向垂直於一聚焦離子束(FIB)的方向,且其中一截面圖像包含在一實際快速蝕刻操作之前對應於一第一截面表面的第一區域、及根據該實際快速蝕刻之對應於一第二更深截面表面的第二區域。
實例6:如實例1至5中任一所述之方法,其中該針對性半導體物件為至少一HAR通道,其具有垂直於該晶圓樣品的頂表面取向之預定方向。
實例7:如實例1至6中任一所述之方法,更包含以對該樣品的一頂表面呈一傾斜角度執行該快速蝕刻,其中傾斜角度GF等於或小於45°,例如等於或小於30°。
實例8:如實例1至7中任一所述之方法,更包含藉由所述截面圖像與平行於該預定方向之一維捲積核心的捲積,以計算該第二數量的截面圖像之移動平均值。
實例9:如實例8所述之方法,其中該一維捲積核心係延伸超過至少B=3個連續截面圖像,較佳為介於B=3和B=20個連續截面圖像,且具有加權總和、矩形分布函數或高斯分布函數的形式。較佳係,下列關係式成立:3 ≤ B ≤ 20。
實例10:如實例8或9所述之方法,更包含根據該截面圖像中的一雜訊位準以選擇該一維捲積核心的延伸B,從而獲得一平均圖像切片中的一預定訊雜比(SNR),其中對於較高的雜訊位準之較大延伸B為例如B=11、B=20或更高。
實例11:如實例1至實例10中任一所述之方法,更包含在計算移動平均值期間,補償所述複數個截面圖像的截面圖像的橫向漂移,其中該橫向漂移方向垂直於該預定方向。
實例12:如實例11所述之方法,更包含根據漂移方向中的一低梯度或低對比度以確定一平均圖像切片中的截面圖像中的該橫向漂移,並且藉由對至少一截面圖像進行平均和包含橫向漂移而最佳化具有最大各向同性對比度或梯度的平均圖像切片的計算。
實例13:如實例11所述之方法,更包含確定相對於從對齊基準點的一圖像片段所獲得參考位置之橫向漂移。
實例14:如實例13所述之方法,更包含藉由具一平均捲積核心的該對齊基準點的該圖像片段的像素合併或橫向捲積而橫向平均。
實例15:如實例1至14中任一所述之方法,其中該方法更包含步驟:根據該至少第一針對性體積內的該針對性半導體物件的先前資訊來調整兩相鄰截面表面之間的距離。
實例16:如實例1至15中任一所述之方法,更包含以下步驟:根據該至少第一針對性體積內的該針對性半導體物件的先前資訊來調整一隨後蝕刻截面表面的蝕刻角度。
實例17:如實例1至16中任一所述之方法,更包含以下步驟:改變後續快速圖像掃描之間的一偵測模式,其中偵測模式的變化包含動態範圍的變化、交互作用產物能量範圍的變化、或交互作用產物類型的變化中的至少一者。
實例18:一種用於檢測晶圓樣品的檢查體積中針對性的3D半導體物件的方法,包含: - 定義一半導體晶圓的檢查體積中的至少一第一針對性體積,該第一針對性體積在該檢查體積內; - 蝕刻通過該檢查體積的複數個截面表面; - 藉由執行在該至少第一針對性體積內的截面表面片段的圖像掃描操作來獲取數個截面圖像片段,其中每個截面圖像片段是根據一截面表面與該至少第一針對性體積相交所形成的一針對性區域而確定。
實例19:如實例18所述之方法,更包含對一晶圓表面呈一傾斜角度執行蝕刻,且其中該至少第一針對性體積為垂直於該晶圓表面取向。
實例20:如實例18或19所述之方法,更包含根據CAD資料定義該至少第一針對性體積。
實例21:如實例18至20中任一所述之方法,更包含以下步驟:根俊該檢查體積內的一第一截面表面的至少一第一圖像掃描來對齊該檢查體積內的該至少第一針對性體積。
實例22:如實例21所述之方法,其中對齊步驟包含在該檢查體積內的一第二和其他截面表面的至少一第二或其他圖像掃描處進一步重新對齊該至少第一針對性體積。
實例23:如實例18至19中任一所述之方法,其中定義該至少第一針對性體積之步驟包含下列步驟: a) 獲取一第一截面表面的一第一圖像掃描; b) 選擇該第一圖像掃描中的一第一截面圖像片段,該第一截面圖像片段包含一針對性半導體物件的截面; c) 蝕刻一第二截面表面至該晶圓樣品的該檢查體積中; d) 藉由將該第一截面圖像片段投影至該第二截面表面上以選擇一第二截面圖像片段; e) 獲取該第二截面表面片段的一第二截面圖像片段; f) 藉由蝕刻其他截面表面、選擇和獲取其他截面圖像片段來重複步驟c)至e),直到符合一預先定義的中斷條件為止。
實例24:如實例23所述之方法,其中,在步驟e)中,將該第一截面圖像片段投影至該第二截面表面上是沿該預定方向執行。
實例25:如實例23或24所述之方法,更包含以下步驟:根俊該第二截面圖像片段調整該第一截面圖像片段的位置和尺寸,其中該第二截面圖像片段內的該針對性半導體物件的截面位置和尺寸係藉由圖像處理進行分析。
實例26:如實例18至25中任一所述之方法,其中該針對性半導體物件為一HAR通道,且該預定方向為垂直於一晶圓表面取向。
實例27:如實例18至26中任一所述之方法,更包含以下步驟:生成該針對性3D半導體物件的一3D體積圖像。
實例28:如實例27所述之方法,其中生成該針對性3D半導體物件的一3D體積圖像之步驟包含生成該至少第一針對性體積的3D體積圖像之步驟、以及生成該至少第一針對性體積外部的一擴增3D圖像資料之步驟。
實例29:如實例28所述之方法,其中該擴增3D圖像資料是得自CAD資料。
實例30:如實例18至29中任一所述之方法,更包含以下步驟:根據該至少第一針對性體積內的該針對性半導體物件的先前資訊來調整兩相鄰截面表面之間的距離。
實例31:如實例18至30中任一所述之方法,更包含以下步驟:藉由確定沿著一預定方向的移動平均,從所述複數個截面圖像片段形成數個圖像切片片段。
實例32:如實例18至31中任一所述之方法,更包含以下步驟:改變兩後續圖像掃描操作之間的一偵測模式,其中偵測模式的變化包含動態範圍的變化、交互作用產物能量範圍的變化、或交互作用產物類型的變化中的至少一者。
實例33:一種用於檢測晶圓樣品的檢查體積中針對性的3D半導體物件之方法,包含: - 蝕刻通過該檢查體積的複數個截面表面; - 針對每個橫截面表面選擇複數個稀疏區域; - 藉由執行每個截面表面的所述複數個稀疏區域的圖像掃描操作來獲取複數個稀疏截面圖像片段; - 從所述複數個稀疏截面圖像片段生成該檢查體積的一3D體積圖像。
實例34:如實例33所述之方法,其中生成該3D體積圖像之步驟包含在所述複數個稀疏截面圖像片段之間的一圖像插值。
實例35:如實例34所述之方法,其中所述複數個稀疏截面圖像片段之間的該圖像插值是基於該針對性3D半導體物件的CAD資料。
實例36:如實例33所述之方法,其中每個截面表面的所述複數個稀疏區域的選擇隨不同截面表面改變。
實例37:如實例33至36中任一所述之方法,其中每個截面表面的所述複數個稀疏區域的選擇是根據先前獲取的複數個稀疏截面圖像片段的圖像分析而執行。
實例38:如實例33至37中任一所述之方法,其中所述複數個稀疏區域的選擇是根據CAD資料而執行。
實例39:如實例33至38中任一所述之方法,其中所述蝕刻是在與晶圓表面呈一傾斜角度下執行。
實例40:如實例33至39中任一所述之方法,其中該方法更包含步驟:根俊該針對性半導體物件的先前資訊來調整兩相鄰截面表面之間的距離。
實例41:如實例33至40中任一所述之方法,其更包含以下步驟:改變兩圖像掃描操作之間的一偵測模式,其中偵測模式的變化包含動態範圍的變化、交互作用產物能量範圍的變化、或交互作用產物類型的變化中的至少一者。
實例42:如實例33至41中任一所述之方法,更包含補償每個截面表面的各複數個稀疏區域的一橫向漂移。
實例43:如實例42所述之方法,更包含確定相對於從對齊基準點的一圖像片段所獲得參考位置之橫向漂移。
實例44:如實例43所述之方法,更包含獲得具有較低解析度的該對齊基準點的圖像片段。
實例45:一種用於檢測在晶圓樣品的檢查體積中針對性的3D半導體物件之方法,包含: - 蝕刻通過該檢查體積的複數個截面表面; - 使用一成像帶電粒子束掃描每個截面表面,其中在掃描期間生成交互作用產物,其包含在不同能量範圍中的二次電子、背向散射帶電粒子、光子或X射線; - 從至少一第一和一第二交互作用產物的偵測信號形成複數個截面圖像。
實例46:如實例45所述之方法,其中該第一交互作用產物和第二交互作用產物是根據下列任一者而選擇: - a)一選定交互作用產物的一第一和一第二能量範圍;或 - b)一選定交互作用產物的一第一和一第二動態範圍;或 - c)一選定交互作用產物的一第一和一第二類型。
實例47:如實例45或46所述之方法,其中在形成所述複數個截面圖像之步驟期間,從一第一偵測器所獲得的截面圖像係藉由從一第二偵測器所接收的資訊而增強。
實例48:如實例45或46所述之方法,其中在形成所述複數個截面圖像之步驟期間,從一第一圖像掃描所獲得的截面圖像係藉由從一第二圖像掃描所接收的資訊而增強。
實例49:一種用於檢測對在晶圓樣品的檢查體積中針對性的3D半導體物件之半導體檢測裝置,其包含: - 一晶圓樣品載台,用於固持和定位一晶圓樣品; - 一雙柱顯微鏡,其包含一聚焦離子束(FIB)柱和一帶電粒子數成像柱,形成該FIB柱的光軸和該帶電粒子束成像柱的光軸的一共同交點; - 一控制單元,其配置成控制該雙柱顯微鏡以於該檢查體積中執行一切片及圖像方法; - 一處理器和一安裝有軟體碼的記憶體,該處理器配置成執行上述方法步驟中的任一者。
實例50:如實例49所述之半導體檢測裝置,更包含至少一第一和一第二偵測器,其配置成執行多模式圖像獲取。
實例51:如實例49或50所述之半導體檢測裝置,其中該帶電粒子束成像柱係由具有用於校正色像差和球面像差的校正構件之一校正電子顯微鏡所形成。
然而,實例和實施例所描述之本發明並不限於上述實例,而是可由熟習該項技藝者藉由其各種組合或修飾而實施。
1:雙射束裝置 2:操作控制單元 4:截面圖像特徵 6:測量位置 8:晶圓樣品 15:晶圓支撐平台 16:載台控制單元 17:二次或背向散射電子偵測器 19:控制單元 21:位置感應器 23:掃描控制器 40:帶電粒子束(CPB)成像系統 42:成像系統的光軸 43:交點 44:成像帶電粒子束 48:FIB光軸 50:FIB柱 51:聚焦離子束(FIB) 52:截面表面 53:截面表面 55:晶圓頂表面 57:成像束的掃描路徑 61:蝕刻前的表面圖像區域 63:蝕刻後的表面圖像區域 67:不同區域之間的線或階部 155:晶圓載台 160:檢查體積 163:圖像資料堆疊 165:截面圖像子集合 165.1~165.M:截面圖像的子集合 167:圖像切片堆疊 171:針對性體積 173:針對性區域 175:針對性區域的平均圖像 181:圖像獲取的稀疏區域 307:HAR結構的測量截面圖像 309:HAR結構 311:截面圖像切片 313:通過字線的截面 315:表面邊緣 331:平均圖像切片 331.1~331.M:平均圖像切片
實例和實施例所描述之本發明並不限於實施例和實例,而是可由熟習該項技藝者通過各種組合或修飾而實施。參照下列圖式將更充分理解本發明:
圖1顯示具有雙射束裝置之用於3D體積檢查的檢查系統之說明。
圖2說明藉由雙射束裝置以傾斜截面蝕刻和成像進行晶圓體積檢查之方法。
圖3說明平均圖像切片的一實例。
圖4圖示說明根據第一實施例之方法。
圖5圖示說明截面表面的數量和截面圖像的資料堆疊。
圖6顯示平均圖像切片之計算的一第一實例。
圖7顯示平均圖像切片之計算的一第二實例。
圖8顯示平均圖像切片之計算的一第三實例。
圖9顯示根據第二實施例之掃描獲取截面圖像平行於蝕刻操作的實例。
圖10顯示平均圖像切片之計算的另一實例。
圖11顯示根據第三實施例之有限針對性體積進行之方法。
圖12說明第三實施例的一第一實例。
圖13說明第三實施例的一第二實例。
圖14說明第三實施例的另一實例,其中進行針對性區域的動態調整。
圖15說明第三實施例的另一實例,其中進行一重疊或對齊誤差的確定。
圖16顯示根據第四實施例之方法。
圖17說明稀疏圖像獲取之第四實施例的一實例。
圖18顯示具有校正電子顯微鏡之具有雙射束裝置之用於3D體積檢查的檢查系統之說明。
163:圖像的資料堆疊
165.1~165.M:截面圖像的子集合
167:圖像切片的資料堆疊
307:HAR結構的測量截面圖像
309:HAR結構/通道
311:截面圖像切片
331.1~331.M:平均圖像切片

Claims (51)

  1. 一種用於體積檢測在晶圓樣品的檢查體積中針對性的3D半導體物件的體積檢查方法,包含: - 藉由快速蝕刻和快速圖像掃描通過該檢查體積的複數個截面表面,獲取一第一數量N個截面圖像; - 藉由計算該針對性半導體物件的一預定方向中的移動平均值,從該第一數量N個截面圖像形成一第二數量M個平均圖像切片,其中每個平均圖像切片之所述移動平均值是從該第一數量N個截面圖像的一子集合所計算。
  2. 如請求項1所述之方法,其中該第二數量M小於該第一數量N,其中M < N,特別是M ≤ A x N,其中A ≥ 3。
  3. 如請求項1所述之方法,其中該第二數量M幾乎等於該第一數量N,特別是M < N且M/N ≤ 0.95。
  4. 如請求項1至3中任一項所述之方法,更包含在不同時間依次執行一新截面表面的快速蝕刻和快速圖像掃描以獲取一截面圖像。
  5. 如請求項1至3中任一項所述之方法,更包含在相同時間平行執行一新截面表面的快速蝕刻和快速圖像掃描以獲取一截面圖像,其中一帶電粒子成像束的掃描方向垂直於一聚焦離子束(FIB)的方向,且其中一截面圖像包含一實際快速蝕刻操作之前,對應於一第一截面表面的第一區域;及根據該實際快速蝕刻操作之對應於一第二更深截面表面的第二區域。
  6. 如請求項1至5中任一項所述之方法,其中該針對性半導體物件為至少一HAR通道,其具有垂直於該晶圓樣品的頂表面取向之預定方向。
  7. 如請求項1至6中任一項所述之方法,更包含在與該樣品的頂表面呈一傾斜角度下執行該快速蝕刻,其中一傾斜角度GF ≤ 45°,特別是GF ≤ 30°。
  8. 如請求項1至7中任一項所述之方法,更包含藉由所述截面圖像與平行於該預定方向之一維捲積核心的捲積,以計算該第二數量的截面圖像之移動平均值。
  9. 如請求項8所述之方法,其中該一維捲積核心係延伸超過至少B=3個連續截面圖像,且具有加權總和、矩形分布函數或高斯分布函數的形式。
  10. 如請求項8或9所述之方法,更包含根據該截面圖像中的一雜訊位準以選擇該一維捲積核心的延伸B,從而獲得一平均圖像切片中的一預定訊雜比(SNR)。
  11. 如請求項1至10中任一項所述之方法,更包含計算移動平均值期間,補償所述複數個截面圖像的截面圖像的橫向漂移,其中該橫向漂移方向垂直於該預定方向。
  12. 如請求項11所述之方法,更包含根據漂移方向中的一低梯度或低對比度以確定一平均圖像切片中的截面圖像中的該橫向漂移,並且藉由對至少一截面圖像進行平均和包含橫向漂移而最佳化具有最大各向同性對比度的平均圖像切片的計算。
  13. 如請求項11所述之方法,更包含確定相對於從對齊基準點的一圖像片段所獲得參考位置之橫向漂移。
  14. 如請求項13之方法,更包含藉由具一平均捲積核心的該對齊基準點的該圖像片段的像素合併或橫向捲積而橫向平均。
  15. 如請求項1至14中任一項所述之方法,其中該方法更包含以下步驟:根據該至少第一針對性體積內的該針對性半導體物件的先前資訊來調整兩相鄰截面表面之間的距離。
  16. 如請求項1至15中任一項所述之方法,更包含以下步驟:根據該至少第一針對性體積內的該針對性半導體物件的先前資訊來調整一隨後蝕刻截面表面的蝕刻角度。
  17. 如請求項1至16中任一項所述之方法,更包含以下步驟:改變後續快速圖像掃描之間的一偵測模式,其中偵測模式的變化包含動態範圍的變化、交互作用產物能量範圍的變化、或交互作用產物類型的變化中的至少一者。
  18. 一種用於檢測晶圓樣品的檢測體積中針對性的3D半導體物件的方法,包含: - 定義半導體晶圓的檢查體積中的至少一第一針對性體積的該第一針對性體積在該檢查體積內; - 通過該檢查體積蝕刻複數個截面表面; - 藉由執行在該至少第一針對性體積內的截面表面片段的圖像掃描操作來獲取數個截面圖像片段,其中每個截面圖像片段是根據一截面表面與該至少第一針對性體積相交所形成的一針對性區域而確定。
  19. 如請求項18所述之方法,更包含在與晶圓表面呈一傾斜角度下執行蝕刻,且其中該至少第一針對性體積為垂直於該晶圓表面取向。
  20. 如請求項18或19所述之方法,更包含根據CAD資料定義該至少第一針對性體積。
  21. 如請求項18至20中任一項所述之方法,更包含以下步驟:根俊該檢查體積內的一第一截面表面的至少一第一圖像掃描來對齊該檢查體積內的該至少第一針對性體積。
  22. 如請求項21之方法,其中對齊步驟包含在該檢查體積內的一第二和其他截面表面的至少一第二或其他圖像掃描處進一步重新對齊該至少第一針對性體積。
  23. 如請求項18至19中任一項所述之方法,其中定義該至少第一針對性體積之步驟包含下列步驟: a) 獲取一第一截面表面的一第一圖像掃描; b) 選擇該第一圖像掃描中的一第一截面圖像片段,該第一截面圖像片段包括一針對性半導體物件的截面; c) 蝕刻一第二截面表面至該晶圓樣品的該檢查體積中; d) 藉由將該第一截面圖像片段投影至該第二截面表面上以選擇一第二截面圖像片段; e) 獲取該第二截面表面片段的一第二截面圖像片段; f) 藉由蝕刻其他截面表面、選擇和獲取其他截面圖像片段來重複步驟c)至e),直到符合一預先定義的中斷條件為止。
  24. 如請求項23所述之方法,其中在步驟e)中,將該第一截面圖像片段投影至該第二截面表面上是沿該預定方向執行。
  25. 如請求項23或請求項24之方法,更包含以下步驟:根俊該第二截面圖像片段調整該第一截面圖像片段的位置和尺寸,其中該第二截面圖像片段內的該針對性半導體物件的截面位置和尺寸係藉由圖像處理進行分析。
  26. 如請求項18至25中任一項所述之方法,其中該針對性半導體物件為一HAR通道,且該預定方向為垂直於一晶圓表面取向。
  27. 如請求項18至26中任一項所述之方法,更包含以下步驟:生成該針對性3D半導體物件的一3D體積圖像。
  28. 如請求項27所述之方法,其中生成該針對性3D半導體物件的一3D體積圖像之步驟包含生成該至少第一針對性體積的3D體積圖像之步驟、以及生成該至少第一針對性體積外部的一擴增3D圖像資料之步驟。
  29. 如請求項28所述之方法,其中該擴增3D圖像資料是得自CAD資料。
  30. 如請求項18至29中任一項所述之方法,更包含以下步驟:根據該至少第一針對性體積內的該針對性半導體物件的先前資訊來調整兩相鄰截面表面之間的距離。
  31. 如請求項18至30中任一項所述之方法,更包含以下步驟:藉由確定沿著一預定方向的移動平均,從所述複數個截面圖像片段形成數個圖像切片片段。
  32. 如請求項18至31中任一項所述之方法,更包含以下步驟:改變兩後續圖像掃描操作之間的一偵測模式,其中一偵測模式的變化包含動態範圍的變化、交互作用產物能量範圍的變化、或交互作用產物類型的變化中的至少一者。
  33. 一種用於檢測在晶圓樣品的檢查體積中針對性的3D半導體物件之方法,包含: - 蝕刻通過該檢查體積的複數個截面表面; - 針對每個橫截面表面選擇複數個稀疏區域; - 藉由執行每個截面表面的所述複數個稀疏區域的圖像掃描操作來獲取複數個稀疏截面圖像片段; - 從所述複數個稀疏截面圖像片段生成該檢查體積的一3D體積圖像。
  34. 如請求項33所述之方法,其中生成該3D體積圖像之步驟包含在所述複數個稀疏截面圖像片段之間的一圖像插值。
  35. 如請求項34所述之方法,其中所述複數個稀疏截面圖像片段之間的該圖像插值是基於該針對性3D半導體物件的CAD資料。
  36. 如請求項33所述之方法,其中每個截面表面的所述複數個稀疏區域的選擇隨不同截面表面改變。
  37. 如請求項33至36中任一項所述之方法,其中每個截面表面的所述複數個稀疏區域的選擇是根據先前獲取的複數個稀疏截面圖像片段的圖像分析而執行。
  38. 如請求項33至37中任一項所述之方法,其中所述複數個稀疏區域的選擇是根據CAD資料而執行。
  39. 如請求項33至38中任一項所述之方法,其中所述蝕刻是在與晶圓表面呈一傾斜角度下執行。
  40. 如請求項33至39中任一項所述之方法,其中該方法更包含步驟:根俊該針對性半導體物件的先前資訊來調整兩相鄰截面表面之間的距離。
  41. 如請求項33至40中任一項所述之方法,更包含以下步驟:改變兩圖像掃描操作之間的一偵測模式,其中偵測模式的變化包含動態範圍的變化、交互作用產物能量範圍的變化、或交互作用產物類型的變化中的至少一者。
  42. 如請求項33至1中任一項所述之方法,更包含補償每個截面表面的各複數個稀疏區域的一橫向漂移。
  43. 如請求項42所述之方法,包含確定相對於從對齊基準點的一圖像片段所獲得參考位置之橫向漂移。
  44. 如請求項43所述之方法,更包含獲得具有較低解析度的該對齊基準點的圖像片段。
  45. 一種用於檢測在晶圓樣品的檢查體積中針對性的3D半導體物件之方法,包含: - 蝕刻通過該檢查體積的複數個截面表面; - 使用一成像帶電粒子束掃描每個截面表面,其中在掃描期間生成交互作用產物,其包含在不同能量範圍中的二次電子、背向散射帶電粒子、光子或X射線; - 從至少一第一和一第二交互作用產物的偵測信號形成複數個截面圖像。
  46. 如請求項45所述之方法,其中該第一交互作用產物和第二交互作用產物是根據下列任一者而選擇: - a)一選定交互作用產物的第一和第二能量範圍;或 - b)一選定交互作用產物的第一和第二動態範圍;或 - c)一選定交互作用產物的第一和第二類型。
  47. 如請求項45或46所述之方法,其中在形成所述複數個截面圖像之步驟期間,從一第一偵測器所獲得的截面圖像係藉由從一第二偵測器所接收的資訊而增強。
  48. 如請求項45或46所述之方法,其中在形成所述複數個截面圖像之步驟期間,從一第一圖像掃描所獲得的截面圖像係藉由從一第二圖像掃描所接收的資訊而增強。
  49. 一種用於檢測在晶圓樣品的檢查體積中針對性的3D半導體物件之半導體檢測裝置,包含: - 一晶圓樣品載台,用於固持和定位一晶圓樣品; - 一雙柱顯微鏡,其包含一聚焦離子束(FIB)柱和一帶電粒子數成像柱,形成該FIB柱的光軸和該帶電粒子束成像柱的光軸的一共同交點; - 一控制單元,其配置成控制該雙柱顯微鏡以於該檢查體積中執行一切片及圖像方法; - 一處理器和一安裝有軟體碼的記憶體,該處理器配置成執行上述方法步驟中的任一者。
  50. 如請求項49所述之半導體檢測裝置,更包含至少一第一和一第二偵測器,其配置成執行多模式圖像獲取。
  51. 如請求項49或50所述之半導體檢測裝置,其中該帶電粒子束成像柱係由具有用於校正色像差和球面像差的校正構件之一校正電子顯微鏡所形成。
TW112112860A 2022-04-07 2023-04-06 具有增加處理量與準確度的半導體晶圓3d體積檢查的方法和裝置 TWI836954B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263328418P 2022-04-07 2022-04-07
US63/328,418 2022-04-07

Publications (2)

Publication Number Publication Date
TW202407742A true TW202407742A (zh) 2024-02-16
TWI836954B TWI836954B (zh) 2024-03-21

Family

ID=

Also Published As

Publication number Publication date
WO2023193947A1 (en) 2023-10-12

Similar Documents

Publication Publication Date Title
US20220392793A1 (en) Methods of cross-section imaging of an inspection volume in a wafer
TWI776163B (zh) 得到積體半導體樣本之立體影像之方法、電腦程式產品、及半導體檢測裝置
US7732761B2 (en) Method for measuring a pattern dimension using a scanning electron microscope
KR101828124B1 (ko) 패턴 평가 방법 및 패턴 평가 장치
US7335881B2 (en) Method of measuring dimensions of pattern
TWI767385B (zh) 半導體檢查裝置以及用以分析在一積體半導體裝置內的一組har結構的方法
EP3025369B1 (en) Auto-focus system and methods for die-to-die inspection
CN114391178A (zh) 使用多扫描电子显微镜的晶片对准
US20210350507A1 (en) Image enhancement for multi-layered structure in charged-particle beam inspection
TWI836954B (zh) 具有增加處理量與準確度的半導體晶圓3d體積檢查的方法和裝置
TW202407742A (zh) 具有增加處理量與準確度的半導體晶圓3d體積檢查
TWI826123B (zh) 以更高的精度對半導體晶圓進行3d體積檢測的方法和檢測系統
TWI835407B (zh) 測定說明半導體晶圓之檢測體積內部三維結構參數之方法、獲取半導體晶圓內深層檢測體積之3d體積影像的切片與成像方法、用於晶圓檢測的檢測裝置、及對晶圓中三維結構進行檢測之方法
Lee et al. Automated Diagonal Slice and View Solution for 3D Device Structure Analysis
TW202326604A (zh) 提高產率的半導體晶圓3d體積檢測方法
WO2024088923A1 (en) Improved method and apparatus for segmentation of semiconductor inspection images
WO2024023116A1 (en) Method for distortion measurement and parameter setting for charged particle beam imaging devices and corresponding devices
Konno et al. Efficient cross-sectional evaluation method of three-dimensional NAND flash memory by cooperation of coherence scanning interferometry and scanning electron microscopy