TW202407330A - Automatic defect classification device - Google Patents
Automatic defect classification device Download PDFInfo
- Publication number
- TW202407330A TW202407330A TW112108477A TW112108477A TW202407330A TW 202407330 A TW202407330 A TW 202407330A TW 112108477 A TW112108477 A TW 112108477A TW 112108477 A TW112108477 A TW 112108477A TW 202407330 A TW202407330 A TW 202407330A
- Authority
- TW
- Taiwan
- Prior art keywords
- defect
- classification
- image
- display
- images
- Prior art date
Links
- 230000007547 defect Effects 0.000 title claims abstract description 259
- 238000012545 processing Methods 0.000 claims abstract description 34
- 230000002950 deficient Effects 0.000 claims description 71
- 239000000463 material Substances 0.000 claims description 55
- 239000011159 matrix material Substances 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 10
- 238000011156 evaluation Methods 0.000 description 23
- 230000001174 ascending effect Effects 0.000 description 21
- 238000010586 diagram Methods 0.000 description 18
- 238000007689 inspection Methods 0.000 description 18
- 238000004364 calculation method Methods 0.000 description 13
- 238000001514 detection method Methods 0.000 description 11
- 238000003384 imaging method Methods 0.000 description 7
- 238000003066 decision tree Methods 0.000 description 5
- 238000010801 machine learning Methods 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 4
- 238000005096 rolling process Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000007637 random forest analysis Methods 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
Landscapes
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Image Analysis (AREA)
- Sorting Of Articles (AREA)
Abstract
Description
本發明係關於一種自動缺陷分類裝置,使用包含由使用者賦予有分類類別之複數個缺陷圖像之教學資料製作分類基準,基於該分類基準對分類類別未知之缺陷圖像自動地決定分類類別。The present invention relates to an automatic defect classification device that uses teaching materials including a plurality of defect images assigned classification categories by a user to create a classification standard, and automatically determines classification categories for defect images with unknown classification categories based on the classification standard.
例如,半導體器件係於1片半導體晶圓上呈層狀重疊形成多個半導體器件電路(即,器件晶片之重複外觀圖案)之後單片化為各個晶片零件,將該晶片零件封裝而作為電子零件以單獨體的形式出貨或者組裝至電氣製品中。For example, a semiconductor device is layered on a semiconductor wafer to form a plurality of semiconductor device circuits (i.e., a repeating appearance pattern of the device wafer), which are then singulated into individual chip components, and the wafer components are packaged as electronic components. Shipped as a separate unit or assembled into electrical products.
而且,於單片化為各個晶片零件之前,保持1片半導體晶圓而重複進行成膜、曝光、顯影、蝕刻、平滑化處理等,並於其中途針對形成於晶圓上之器件晶片進行缺陷檢測、缺陷種類之分類(例如,專利文獻1)。 [先前技術文獻] [專利文獻] Furthermore, before being singulated into individual wafer parts, one semiconductor wafer is kept and film formation, exposure, development, etching, smoothing, etc. are repeatedly performed, and defects of the device wafer formed on the wafer are detected during the process. Detection and classification of defect types (for example, Patent Document 1). [Prior technical literature] [Patent Document]
[專利文獻1]日本專利特開2007-071586號公報[Patent Document 1] Japanese Patent Application Publication No. 2007-071586
[發明所欲解決之問題][Problem to be solved by the invention]
為了對分類類別未知之缺陷圖像自動地決定分類類別而使用教學資料製作分類基準,但構成該教學資料之複數個缺陷圖像已由使用者賦予分類類別。因此,若教學資料中由使用者賦予之分類類別存在錯誤,則分類精度降低。In order to automatically determine the classification category for defect images whose classification categories are unknown, teaching materials are used to create classification standards. However, the plurality of defect images constituting the teaching materials have already been assigned classification categories by the user. Therefore, if there are errors in the classification categories assigned by users in the teaching materials, the classification accuracy will be reduced.
另一方面,構成教學資料之複數個缺陷圖像之個數越多,自動分類之精度越提高,但由於伴隨有利用目視來進行之作業,因此隨著個數增多,越來越難以發現錯誤,因此,難以提高分類精度。On the other hand, the greater the number of plural defect images that make up teaching materials, the higher the accuracy of automatic classification. However, since it involves visual inspection, it becomes increasingly difficult to detect errors as the number increases. , therefore, it is difficult to improve the classification accuracy.
因此,本發明係鑒於上述問題而完成者, 本發明之目的在於提供一種自動缺陷分類裝置,即便構成教學資料之缺陷圖像較多,亦容易改正預先由使用者賦予之分類類別之錯誤,能夠使自動缺陷分類之精度提高。 [解決問題之技術手段] Therefore, the present invention was completed in view of the above-mentioned problems. An object of the present invention is to provide an automatic defect classification device that can easily correct errors in classification categories assigned by users in advance even if there are many defect images constituting teaching materials, thereby improving the accuracy of automatic defect classification. [Technical means to solve problems]
為解決以上問題,本發明之一態樣係一種自動缺陷分類裝置, 使用預先由使用者對複數個缺陷圖像之各者賦予有明示該缺陷圖像屬於哪個缺陷分類之分類類別的教學資料,生成針對缺陷圖像之分類器,使用該分類器對分類類別未知之缺陷圖像自動地賦予分類類別;該自動缺陷分類裝置具備: 教學資料輸入部,其輸入教學資料; 處理部,其對複數個缺陷圖像進行規定之處理;及 顯示部,其顯示缺陷圖像;且 處理部將顯示部中之缺陷圖像之缺陷部位之顯示形式根據分類器所賦予的該缺陷圖像所屬之分類類別來變更而進行顯示。 In order to solve the above problems, one aspect of the present invention is an automatic defect classification device. Using teaching materials that have been assigned by the user in advance to each of the plurality of defect images, a classification category that clearly indicates which defect category the defect image belongs to is used to generate a classifier for the defect image, and the classifier is used to classify the unknown classification categories Defect images are automatically assigned classification categories; the automatic defect classification device has: Teaching material input department, which inputs teaching materials; A processing unit that performs prescribed processing on a plurality of defective images; and a display portion that displays an image of the defect; and The processing unit changes and displays the display format of the defective part of the defective image in the display unit according to the classification category to which the defective image belongs given by the classifier.
又,為解決上述問題,本發明之另一態樣係一種自動缺陷分類裝置, 使用預先由使用者對複數個缺陷圖像之各者賦予有明示該缺陷圖像屬於哪個缺陷分類之分類類別的教學資料,生成針對缺陷圖像之分類器,使用該分類器對分類類別未知之缺陷圖像自動地賦予分類類別;該自動缺陷分類裝置具備: 教學資料輸入部,其輸入教學資料; 處理部,其對複數個缺陷圖像進行規定之處理;及 顯示部,其顯示缺陷圖像;且 處理部將顯示部中之缺陷圖像之缺陷部位之顯示形式根據分類器所賦予的該缺陷圖像所屬之分類類別之分類準確度來變更而進行顯示。 [發明之效果] Furthermore, in order to solve the above problem, another aspect of the present invention is an automatic defect classification device. Using teaching materials that have been assigned by the user in advance to each of the plurality of defect images, a classification category that clearly indicates which defect category the defect image belongs to is used to generate a classifier for the defect image, and the classifier is used to classify the unknown classification categories Defect images are automatically assigned classification categories; the automatic defect classification device has: Teaching material input department, which inputs teaching materials; A processing unit that performs prescribed processing on a plurality of defective images; and a display portion that displays an image of the defect; and The processing unit changes and displays the display form of the defective part of the defective image in the display unit according to the classification accuracy of the classification category to which the defective image belongs given by the classifier. [Effects of the invention]
即便構成教學資料之缺陷圖像較多,亦容易改正預先由使用者賦予之分類類別之錯誤,能夠使自動缺陷分類之精度提高。Even if there are many defect images constituting the teaching materials, it is easy to correct errors in the classification categories assigned by the user in advance, which can improve the accuracy of automatic defect classification.
以下,使用圖式對用以實施本發明之實施方式進行說明。Hereinafter, embodiments for carrying out the present invention will be described using drawings.
圖1係表示使本發明具體化之實施方式中之缺陷圖像之一例的圖像圖。 圖1(a)~(d)中分別例示包含缺陷X1~X4之缺陷圖像P1~P4。此處,將缺陷X1~X4之分類類別分別設為A缺陷、B缺陷、C缺陷、D缺陷。 另一方面,圖1(e)~(h)中分別例示無缺陷之圖像P1'~P4'用於參考。 FIG. 1 is an image diagram showing an example of a defect image in an embodiment embodying the present invention. Defect images P1 to P4 including defects X1 to X4 are illustrated in FIGS. 1(a) to (d) respectively. Here, the classification categories of defects X1 to X4 are respectively set to A defect, B defect, C defect, and D defect. On the other hand, images P1' to P4' without defects are illustrated in FIGS. 1(e) to (h) respectively for reference.
圖2係表示包含使本發明具體化之實施方式之一例之整體構成的概略圖。 圖2中示出包含本發明之自動缺陷分類裝置1之檢查系統100之整體構成。 FIG. 2 is a schematic diagram showing the overall structure including an example of embodiment of the present invention. The overall structure of the inspection system 100 including the automatic defect classification device 1 of the present invention is shown in FIG. 2 .
檢查系統100拍攝用以對檢查對象W進行檢查之檢查圖像P,對檢查圖像P內之缺陷X之有無、個數、位置、缺陷種類等進行檢查,並輸出檢查結果。 具體而言,檢查系統100構成為除了包含自動缺陷分類裝置1以外,還包含攝像部110、搬送部120、缺陷檢測部130、控制部140等。 The inspection system 100 captures an inspection image P for inspecting the inspection object W, inspects the presence, number, location, defect type, etc. of the defects X in the inspection image P, and outputs the inspection results. Specifically, the inspection system 100 is configured to include, in addition to the automatic defect classification device 1 , an imaging unit 110 , a transport unit 120 , a defect detection unit 130 , a control unit 140 and the like.
搬送部110係一面保持檢查對象W,一面以規定之速度移動或靜止於規定之場所者。 具體而言,搬送部110具備保持檢查對象W之工件保持部、使檢查對象W於水平方向上移動、旋轉之XYθ載台部等。 The transport unit 110 moves at a predetermined speed or remains stationary at a predetermined place while holding the inspection object W. Specifically, the transport unit 110 includes a workpiece holding unit that holds the inspection object W, an XYθ stage unit that moves and rotates the inspection object W in the horizontal direction, and the like.
攝像部120係對移動中或靜止中之檢查對象W進行拍攝並輸出檢查圖像P者。 具體而言,攝像部120包括具備鏡筒、透鏡之光學系統本體部121、照明部122、攝像相機123。 更具體而言,攝像部120可例示利用黑白相機等以低倍率透鏡拍攝較廣視野範圍者、利用彩色相機等以高倍率透鏡拍攝較窄視野範圍者。 The imaging unit 120 captures a moving or stationary inspection object W and outputs an inspection image P. Specifically, the imaging unit 120 includes an optical system body unit 121 including a lens barrel and a lens, an illumination unit 122, and an imaging camera 123. More specifically, the imaging unit 120 may use a black-and-white camera or the like using a low-magnification lens to capture a wide field of view, or a color camera or the like using a high-magnification lens to capture a narrow field of view.
缺陷檢測部130係獲取從攝像部120輸出之檢查圖像P並檢測檢查圖像P內之缺陷X者。 具體而言,缺陷檢測部130構成為對檢查圖像P內是否包含缺陷X進行檢查,若包含缺陷X,則對缺陷圖像Px附加該缺陷X之個數、位置、面積等缺陷資訊(即,檢查結果)並輸出。再者,缺陷檢測部130亦可輸出在下文詳細敍述之學習用缺陷圖像Pt。 更具體而言,缺陷檢測部130可例示基於以低倍率透鏡拍攝之黑白圖像等進行檢查者、基於以高倍率透鏡拍攝之彩色圖像等進行檢查者。 The defect detection unit 130 acquires the inspection image P output from the imaging unit 120 and detects the defect X in the inspection image P. Specifically, the defect detection unit 130 is configured to check whether the defect X is included in the inspection image P, and if the defect X is included, add defect information such as the number, position, and area of the defect , check the result) and output. Furthermore, the defect detection unit 130 may also output a learning defect image Pt which will be described in detail below. More specifically, the defect detection unit 130 may be one that inspects based on a black-and-white image captured with a low-magnification lens, or one that performs an inspection based on a color image captured with a high-magnification lens.
控制部140總括地控制檢查系統100。具體而言,控制部140構成為與自動缺陷分類裝置1、搬送部110、攝像部120、缺陷檢測部130等連接,相對於各部輸入輸出控制信號而使自動缺陷分類裝置1獲取所需之缺陷圖像Px。The control unit 140 controls the inspection system 100 as a whole. Specifically, the control unit 140 is connected to the automatic defect classification device 1 , the transport unit 110 , the imaging unit 120 , the defect detection unit 130 and the like, and inputs and outputs control signals to each unit to cause the automatic defect classification device 1 to acquire the required defects. ImagePx.
圖3係表示使本發明具體化之實施方式之一例之主要部分的概略圖。圖3中示出本發明之自動缺陷分類裝置1之概略圖。FIG. 3 is a schematic diagram showing the main part of an example of embodiment of the present invention. Figure 3 shows a schematic diagram of the automatic defect classification device 1 of the present invention.
自動缺陷分類裝置1係將檢查對象W中存在之缺陷X之種類進行分類者。 具體而言,自動缺陷分類裝置1係使用教學資料T生成針對缺陷圖像之分類器,使用該分類器對分類類別未知之缺陷圖像Px自動地賦予分類類別者。教學資料T係預先由使用者針對事先獲取之複數個學習用缺陷圖像Pt(所謂之學習用圖像)之各者賦予有明示該等缺陷圖像Pt屬於哪個缺陷分類的分類類別者。 更具體而言,自動缺陷分類裝置1具備缺陷圖像輸入部GI、教學資料輸入部2、操作輸入部3、記憶部4、處理部5、顯示部6、結果輸出部RO等,由電腦(硬體)及其執行程式(軟體)等構成,對由缺陷檢測部130檢測出之缺陷圖像Px中存在之缺陷X之種類進行判別,並賦予分類類別。 The automatic defect classification device 1 classifies the types of defects X present in the inspection object W. Specifically, the automatic defect classification device 1 uses the teaching data T to generate a classifier for the defect image, and uses the classifier to automatically assign a classification class to the defect image Px whose classification class is unknown. The teaching material T is assigned by the user in advance to each of the plurality of learning defect images Pt (so-called learning images) acquired in advance, with a classification category clearly indicating which defect classification the defect image Pt belongs to. More specifically, the automatic defect classification device 1 includes a defect image input unit GI, a teaching material input unit 2, an operation input unit 3, a memory unit 4, a processing unit 5, a display unit 6, a result output unit RO, etc., and is controlled by a computer ( Hardware) and its execution program (software) are configured to determine the type of defect X present in the defect image Px detected by the defect detection unit 130 and assign a classification category.
缺陷圖像輸入部GI係輸入缺陷圖像Px者。 具體而言,缺陷圖像輸入部GI係獲取從自缺陷檢測部130輸出等輸出之缺陷圖像Px者。再者,缺陷圖像輸入部GI亦可獲取從自缺陷檢測部130輸出等輸出的追加之學習用缺陷圖像Pt。 The defect image input unit GI inputs the defect image Px. Specifically, the defect image input unit GI acquires the defect image Px output from the defect detection unit 130 or the like. Furthermore, the defect image input unit GI may acquire an additional learning defect image Pt output from the defect detection unit 130 or the like.
教學資料輸入部2係輸入教學資料T者。 具體而言,教學資料輸入部2係獲取從外部裝置、主機電腦等輸出之教學資料T者。更具體而言,教學資料輸入部2係經由記錄介質、通訊線路等而獲取教學資料T。 再者,複數個缺陷圖像Pt與該等缺陷圖像Pt中包含之缺陷X之分類類別分別建立關聯地儲存於教學資料T中。 The teaching data input department 2 is the one who inputs the teaching data T. Specifically, the teaching data input unit 2 acquires teaching data T output from an external device, a host computer, or the like. More specifically, the teaching material input unit 2 acquires the teaching material T via a recording medium, a communication line, or the like. Furthermore, a plurality of defect images Pt and the classification categories of the defects X included in the defect images Pt are stored in the teaching data T in association with each other.
操作輸入部3係受理使用者之游標(亦稱為指示器)操作、數值輸入等者。 具體而言,操作輸入部3係供選擇顯示部6中所顯示之圖像,或者選擇、變更設定項目,或者輸入數值者。 再者,缺陷圖像輸入部GI、教學資料輸入部2、操作輸入部3由電腦之輸入部DI之一部分構成。 The operation input unit 3 accepts the user's cursor (also called pointer) operation, numerical input, and the like. Specifically, the operation input unit 3 is used to select an image displayed on the display unit 6, select or change a setting item, or input a numerical value. Furthermore, the defect image input unit GI, the teaching material input unit 2, and the operation input unit 3 are composed of a part of the input unit DI of the computer.
記憶部4係記憶教學資料T、缺陷圖像Pt、Px、各處理中使用之程式等者。 具體而言,記憶部4係由電腦之記憶體、輔助記憶裝置(SSD(Solid State Drive,固態驅動器)、HDD(Hard Disk Drive,硬碟驅動器)等)構成。 The memory unit 4 memorizes the teaching data T, defect images Pt, Px, programs used in each process, etc. Specifically, the memory unit 4 is composed of a computer memory, an auxiliary memory device (SSD (Solid State Drive, solid state drive), HDD (Hard Disk Drive, hard disk drive), etc.).
處理部5係對複數個缺陷圖像Pt、未知之缺陷圖像Px進行規定之處理者。進而,處理部5係變更顯示部6中之缺陷圖像Pt之缺陷部位Q之顯示形式而進行顯示者。 具體而言,處理部5構成為基於預先登錄之規定程序、使用者之操作(於下文敍述其一例)等,根據評估用分類器Bt所賦予之缺陷圖像所屬之上述分類類別,變更顯示部6中之缺陷圖像Pt之缺陷部位Q之顯示形式而進行顯示。 更具體而言,處理部5具備教學資料評估用分類器生成部51、特徵量算出部52、分類準確度算出部53、分類類別判定部54、缺陷部位顯示變更部55、自動缺陷分類器生成部57、缺陷類別分類部59等,由電腦(硬體)及其執行程式(軟體)構成。 The processing unit 5 performs predetermined processing on a plurality of defect images Pt and unknown defect images Px. Furthermore, the processing unit 5 changes the display format of the defective part Q of the defective image Pt on the display unit 6 and displays it. Specifically, the processing unit 5 is configured to change the display unit based on the above-mentioned classification category to which the defective image assigned by the evaluation classifier Bt belongs based on a pre-registered predetermined program, a user's operation (an example will be described below), etc. The defective image Pt in 6 is displayed in a display format of the defective part Q. More specifically, the processing unit 5 includes a classifier generation unit 51 for teaching material evaluation, a feature amount calculation unit 52, a classification accuracy calculation unit 53, a classification category determination unit 54, a defective part display changing unit 55, and an automatic defect classifier generation unit. The department 57, the defect classification department 59, etc. are composed of a computer (hardware) and its execution program (software).
教學資料評估用分類器生成部51係於生成自動缺陷分類器Ba之前的階段生成評估用分類器Bt者,該自動缺陷分類器Ba用以對分類類別未知之缺陷圖像Px賦予分類類別,該評估用分類器Bt用以評估對教學資料T中所含之複數個缺陷圖像Pt賦予之分類類別。 具體而言,教學資料評估用分類器生成部51係進行基於教學資料T之機器學習,生成包含決策樹等之評估用分類器Bt者。 更具體而言,教學資料評估用分類器生成部51生成包含如下模型(所謂之隨機森林(random forest))之評估用分類器Bt,即,生成複數個決策樹並以多數決定等來決定該等之預測結果。 The teaching material evaluation classifier generating unit 51 generates the evaluation classifier Bt in a stage before generating the automatic defect classifier Ba for assigning a classification category to the defect image Px of which the classification category is unknown. The evaluation classifier Bt is used to evaluate the classification categories assigned to the plurality of defect images Pt included in the teaching material T. Specifically, the teaching material evaluation classifier generation unit 51 performs machine learning based on the teaching material T and generates an evaluation classifier Bt including a decision tree and the like. More specifically, the teaching material evaluation classifier generation unit 51 generates an evaluation classifier Bt including a model (so-called random forest) that generates a plurality of decision trees and determines the decision tree by majority decision or the like. Wait for the predicted results.
特徵量算出部52係基於評估用分類器Bt,針對教學資料T中所包含之複數個缺陷圖像Pt之各者進行特徵量之計算處理者。 具體而言,特徵量算出部52算出通過由教學資料評估用分類器生成部51生成之評估用分類器Bt內之決策樹之預測結果之各分類類別的特徵量之出現頻度,將該出現頻度標準化等,而計算每個分類類別中之各特徵量之權重。並且,將教學資料T中包含之複數個缺陷圖像Pt全部按照分類類別來分組,根據所劃分之各分類類別中之圖像群之特徵向量,而針對各分類類別算出並決定用於判定各特徵量之一致程度(即,分類準確度)之容許基準(例如,正常值之範圍)。 The feature amount calculation unit 52 is a unit that calculates feature amounts for each of the plurality of defect images Pt included in the teaching material T based on the evaluation classifier Bt. Specifically, the feature amount calculation unit 52 calculates the frequency of appearance of the feature amount of each classification category based on the prediction result of the decision tree in the evaluation classifier Bt generated by the teaching material evaluation classifier generation unit 51, and calculates the appearance frequency. Standardization, etc., and calculate the weight of each feature quantity in each classification category. Furthermore, the plurality of defect images Pt included in the teaching material T are all grouped according to classification categories, and based on the feature vectors of the image groups in each classified classification category, the values used to determine each classification category are calculated and determined. The allowable standard (for example, the range of normal values) for the degree of consistency of feature quantities (that is, classification accuracy).
分類準確度算出部53係針對教學資料T中所包含之複數個缺陷圖像Pt之各者,算出缺陷圖像Pt之特徵量、與在和賦予至缺陷圖像Pt之分類類別相同及不同之分類類別設定的特徵量之各個容許基準的一致程度(即,分類準確度)。 具體而言,分類準確度算出部53基於由特徵量算出部52算出之各個缺陷圖像Pt之特徵量,針對使用者分類之每一相同之分類類別,進行統計性處理等算出各缺陷圖像Pt之特徵向量之各特徵量成分是否落於正常值之範圍等來作為分類準確度。 The classification accuracy calculation unit 53 calculates, for each of the plurality of defect images Pt included in the teaching material T, whether the characteristic amount of the defect image Pt is the same as or different from the classification category assigned to the defect image Pt. The degree of consistency of each allowable standard of the feature quantity set by the classification category (ie, classification accuracy). Specifically, the classification accuracy calculation unit 53 performs statistical processing, etc., to calculate each defect image for each same classification category classified by the user based on the feature amount of each defect image Pt calculated by the feature amount calculation unit 52 Whether each feature component of the feature vector of Pt falls within the range of normal values is used as the classification accuracy.
分類類別判定部54係判定評估用分類器Bt所賦予之缺陷圖像Pt所屬之分類類別者。 具體而言,分類類別判定部54基於由分類準確度算出部53算出之分類準確度,針對各個缺陷圖像Pt判定缺陷圖像Pt屬於哪個分類類別是屬合適。 The classification category determination unit 54 determines the classification category to which the defect image Pt assigned by the evaluation classifier Bt belongs. Specifically, the classification category determination unit 54 determines which classification category the defect image Pt belongs to for each defect image Pt based on the classification accuracy calculated by the classification accuracy calculation unit 53 .
缺陷部位顯示變更部55係變更缺陷圖像Pt之缺陷部位Q之顯示形式者。 具體而言,缺陷部位顯示變更部55進行如下處理:基於預先設定之參數、程序對缺陷圖像Pt進行圖像處理,按照缺陷圖像Pt所屬之每一分類類別來變更缺陷部位Q之顯示形式。 例如,若缺陷圖像Pt所屬之分類類別為A缺陷,則將缺陷部位Q變更為「綠色」,若為B缺陷則變更為「黃色」,若為C缺陷則變更為「紅色」。 再者,關於將哪個缺陷變更為哪種顏色來顯示係由使用者預先設定,且預先設為可適當變更。 The defective part display changing unit 55 changes the display mode of the defective part Q of the defective image Pt. Specifically, the defective part display changing unit 55 performs the following processing: performs image processing on the defective image Pt based on preset parameters and programs, and changes the display form of the defective part Q according to each classification category to which the defective image Pt belongs. . For example, if the classification category of the defect image Pt is A defect, the defective part Q is changed to "green", if it is a B defect, it is changed to "yellow", and if it is a C defect, it is changed to "red". In addition, which defect is changed to which color to display is set in advance by the user and can be changed appropriately in advance.
自動缺陷分類器生成部57係生成用以對缺陷圖像Px賦予分類類別之自動缺陷分類器Ba者。 具體而言,自動缺陷分類器生成部57具有與教學資料評估用分類器生成部51相同之構成,基於改進後之教學資料T'進行機器學習,生成包含決策樹等之自動缺陷分類器Ba。 The automatic defect classifier generating unit 57 generates an automatic defect classifier Ba for assigning a classification class to the defect image Px. Specifically, the automatic defect classifier generating unit 57 has the same configuration as the teaching material evaluation classifier generating unit 51, performs machine learning based on the improved teaching material T′, and generates an automatic defect classifier Ba including a decision tree and the like.
缺陷類別分類部59係對分類類別未知之缺陷圖像Px賦予分類類別者。 具體而言,缺陷類別分類部59係基於自動缺陷分類器Ba對分類類別未知之缺陷圖像Px賦予分類類別者。 The defect category classification unit 59 assigns a classification category to the defect image Px whose classification category is unknown. Specifically, the defect category classification unit 59 assigns a classification category to the defect image Px whose classification category is unknown based on the automatic defect classifier Ba.
顯示部6係顯示複數個缺陷圖像Pt、賦予至該等缺陷圖像Pt之分類類別、及其他與缺陷圖像相關之資訊等者。 具體而言,顯示部6係由影像監視器、觸控面板等(即,電腦之輸出部DO之一部分)構成,進行由處理部5進行了規定處理之缺陷圖像Pt等之顯示。更具體而言,顯示部6與上述操作輸入部3組合而構成使用者介面U。 The display unit 6 displays a plurality of defective images Pt, classification categories assigned to the defective images Pt, and other information related to the defective images. Specifically, the display unit 6 is composed of an image monitor, a touch panel, or the like (that is, a part of the output unit DO of the computer), and displays the defect image Pt and the like that have been subjected to predetermined processing by the processing unit 5 . More specifically, the display unit 6 is combined with the operation input unit 3 to form the user interface U.
圖4係表示使本發明具體化之實施方式中之顯示部之一例的圖像圖。 圖4中例示顯示於顯示部6之圖像圖GA。 FIG. 4 is an image diagram showing an example of a display unit in an embodiment embodying the present invention. FIG. 4 illustrates the image map GA displayed on the display unit 6 .
顯示部6包含缺陷圖像顯示區域G1、圖像顯示設定區域G2、顯示項目設定區域G3、顯示順序設定區域G4、分類資訊顯示區域G5等,可由使用者操作來進行顯示項目、參數等之變更、確認等。The display unit 6 includes a defect image display area G1, an image display setting area G2, a display item setting area G3, a display order setting area G4, a classification information display area G5, etc., and can be operated by the user to change display items, parameters, etc. , confirmation, etc.
缺陷圖像顯示區域G1係供顯示選擇之缺陷圖像Pt(本例中為圖像編號001)之區域。具體而言,構成為:於缺陷圖像顯示區域G1之右端設置有使顯示中之缺陷圖像Pt縱向捲動之縱捲棒L11、上下移動按鈕B11、B12,於下端設置有使顯示中之缺陷圖像Pt橫向捲動之橫捲棒L12、左右移動按鈕B13、B14,從而能夠確認無法完全顯示(即隱藏)於缺陷圖像顯示區域G1內之部位。The defect image display area G1 is an area for displaying the selected defect image Pt (image number 001 in this example). Specifically, the structure is as follows: at the right end of the defect image display area G1, a vertical scroll bar L11 for vertically scrolling the displayed defect image Pt and up and down movement buttons B11 and B12 are provided, and at the lower end there are provided The horizontal scroll bar L12 and the left and right movement buttons B13 and B14 for horizontally scrolling the defect image Pt make it possible to confirm the portion that cannot be completely displayed (that is, hidden) in the defect image display area G1.
圖像顯示設定區域G2係用以變更、設定顯示於缺陷圖像顯示區域G1之缺陷圖像Pt之顯示倍率、亮度的區域。 具體而言,於圖像顯示設定區域G2顯示有當前設定之顯示倍率(本例中為×1)。然後,當按下按鈕D21時,其他顯示倍率以下拉式選單之形式顯示。然後,在該下拉式選單內移動、點選游標C等而選擇欲顯示之倍率(例如,×2、×5、整個圖像等),由此顯示變更後之顯示倍率。 又,於圖像顯示設定區域G2配置有亮度設定值顯示區域G21、撥動開關L21。 於亮度設定值顯示區域G21顯示有當前之亮度設定值。 撥動開關L21係變更亮度設定值者。藉由將游標C對準撥動開關L21進行拖曳操作來使其左右移動,而變更當前之亮度設定值,從而變更顯示於缺陷圖像顯示區域G1之缺陷圖像Pt之亮度。 The image display setting area G2 is an area for changing and setting the display magnification and brightness of the defect image Pt displayed in the defect image display area G1. Specifically, the currently set display magnification (×1 in this example) is displayed in the image display setting area G2. Then, when button D21 is pressed, other display magnifications are displayed in the form of a pull-down menu. Then, move or click the cursor C in the drop-down menu to select the magnification to be displayed (for example, ×2, ×5, the entire image, etc.), thereby displaying the changed display magnification. In addition, a brightness setting value display area G21 and a toggle switch L21 are arranged in the image display setting area G2. The current brightness setting value is displayed in the brightness setting value display area G21. The toggle switch L21 is used to change the brightness setting value. By aligning the cursor C with the toggle switch L21 and performing a drag operation to move it left and right, the current brightness setting value is changed, thereby changing the brightness of the defect image Pt displayed in the defect image display area G1.
顯示項目設定區域G3係用以設定變更/不變更顯示於缺陷圖像顯示區域G1之缺陷圖像Pt之缺陷部位Q之顯示形式的區域。 具體而言,於顯示項目設定區域G3配置有框按鈕B3。而且,每當點選框按鈕B3時,框按鈕B3內交替地切換為白色與黑色,對應於該切換而變更缺陷圖像Pt之缺陷部位Q之顯示形式。更具體而言,當框按鈕B3為白色時,直接按缺陷圖像Pt之原樣來顯示缺陷部位Q。另一方面,當框按鈕B3為黑色時,應用下文詳細敍述之本發明來變更缺陷圖像P之缺陷部位Q之顯示形式,以附帶著顏色、模樣之狀態顯示。 The display item setting area G3 is an area for setting whether to change or not change the display mode of the defective part Q of the defective image Pt displayed in the defective image display area G1. Specifically, frame button B3 is arranged in display item setting area G3. Moreover, every time the frame button B3 is clicked, the inside of the frame button B3 is alternately switched to white and black, and the display mode of the defective part Q of the defect image Pt is changed in accordance with this switching. More specifically, when the frame button B3 is white, the defective part Q is displayed as it is in the defective image Pt. On the other hand, when the frame button B3 is black, the present invention described in detail below is used to change the display form of the defective part Q of the defective image P so that it is displayed with color and pattern.
顯示順序設定區域G4係設定顯示於缺陷圖像顯示區域G1之缺陷圖像Pt之順序的區域。 具體而言,於顯示順序設定區域G4中,自預先登錄之複數種顯示順序(例如資料清單升序、資料清單降序、類別升序、類別降序、分類準確度升序、分類準確度降序、……)中選擇一種來設定顯示順序,以該方式顯示缺陷圖像Pt。 再者,所謂資料清單升序/降序係指以賦予至缺陷圖像Pt之連續編號為基準按照升序/降序來顯示之方式。 又,所謂類別升序/降序係指以賦予至缺陷圖像Pt之分類類別為基準按照升序/降序來顯示之方式。 又,所謂分類準確度升序/降序係指以賦予至缺陷圖像Pt之分類類別之分類準確度(一致程度)為基準按照升序/降序來顯示之方式。 The display order setting area G4 is an area for setting the order of the defect images Pt displayed in the defect image display area G1. Specifically, in the display order setting area G4, from the plurality of pre-registered display orders (such as data list ascending order, data list descending order, category ascending order, category descending order, classification accuracy ascending order, classification accuracy descending order,...) Select one to set the display order in which the defect image Pt is displayed. In addition, the so-called ascending order/descending order of the data list refers to a method of displaying the data list in ascending/descending order based on the consecutive numbers assigned to the defect images Pt. In addition, the so-called ascending order/descending order of categories refers to a method of displaying them in ascending/descending order based on the classification category assigned to the defect image Pt. In addition, the classification accuracy ascending order/descending order refers to a method of displaying the classification accuracy in ascending/descending order based on the classification accuracy (degree of agreement) of the classification category assigned to the defect image Pt.
例如,於顯示基準設定區域G4顯示有當前設定之順序(本例中為資料清單升序),但當按下按鈕D41時,其他顯示順序會以下拉式選單之形式顯示出來。然後,在該下拉式選單內移動、點選游標C等而選擇欲顯示之順序(例如類別升序),由此顯示變更後之顯示順序,將缺陷圖像顯示區域G1內之缺陷圖像Pt按照類別升序重新排列而顯示。 進而,於顯示順序設定區域G4配置有圖像編號顯示區域G41、10個倒退按鈕B41、1個倒退按鈕B42、1個前送按鈕B43、10個前送按鈕44等,每當將游標C對準任一個按鈕進行點選時,便會變更顯示於圖像編號顯示區域G41之圖像編號,將該圖像編號之缺陷圖像Pt顯示於缺陷圖像顯示區域G1內。 For example, the currently set order (in this case, ascending order of the data list) is displayed in the display standard setting area G4, but when button D41 is pressed, other display orders will be displayed in the form of a drop-down menu. Then, move or click the cursor C in the drop-down menu to select the order to be displayed (for example, ascending order of categories), thereby displaying the changed display order, and the defect image Pt in the defect image display area G1 according to The categories are rearranged in ascending order and displayed. Furthermore, the image number display area G41, 10 rewind buttons B41, 1 rewind button B42, 1 forward button B43, 10 forward buttons 44, etc. are arranged in the display order setting area G4. When any button is clicked, the image number displayed in the image number display area G41 will be changed, and the defect image Pt of the image number will be displayed in the defect image display area G1.
分類資訊顯示區域G5係顯示與缺陷圖像顯示區域G1所顯示之缺陷圖像Pt中對游標C進行移動、點選等而選擇之圖像(以下稱為選擇圖像)相關之分類資訊的區域。具體而言,於分類資訊顯示區域G5配置有MDC(Multiple Description Coding,多重描述編碼)顯示區域G51、MDC候補顯示區域G52、分類準確度顯示區域G53、分類變更目標選擇區域G54、變更按鈕B53等。The classification information display area G5 is an area that displays classification information related to the image selected by moving, clicking, etc. the cursor C (hereinafter referred to as the selected image) among the defect images Pt displayed in the defect image display area G1 . Specifically, the classification information display area G5 is provided with an MDC (Multiple Description Coding) display area G51, an MDC candidate display area G52, a classification accuracy display area G53, a classification change target selection area G54, a change button B53, and the like. .
MDC顯示區域G51係顯示使用者對選擇圖像賦予之分類類別之區域。例如,於MDC顯示區域G51顯示有表示A缺陷之「NG-A」。The MDC display area G51 is an area that displays the classification category assigned by the user to the selected image. For example, "NG-A" indicating A defect is displayed in the MDC display area G51.
MDC候補顯示區域G52係顯示針對選擇圖像之重新分類候補類別之區域。具體而言,於MDC候補顯示區域G52顯示有分類準確度第二高之分類類別作為重新分類候補類別。The MDC candidate display area G52 is an area that displays reclassification candidate categories for the selected image. Specifically, the classification category with the second highest classification accuracy is displayed in the MDC candidate display area G52 as a reclassification candidate category.
分類準確度顯示區域G53係顯示缺陷圖像顯示區域G1中所顯示之缺陷圖像Pt所屬之分類類別之分類準確度(即,一致程度)者。具體而言,於分類準確度顯示區域G53,以表格形式顯示有各分類類別與分類準確度。 進而構成為:於分類準確度顯示區域G53之右端設置有使複數個分類類別縱向捲動之縱捲棒L51、上下移動按鈕B51、B52,可確認無法一次性完全顯示於分類準確度顯示區域G53內(即,隱藏)之其他分類類別與分類準確度。 The classification accuracy display area G53 displays the classification accuracy (that is, the degree of agreement) of the classification category to which the defect image Pt displayed in the defect image display area G1 belongs. Specifically, in the classification accuracy display area G53, each classification category and classification accuracy are displayed in a table format. Furthermore, a vertical scroll bar L51 for vertically scrolling a plurality of classification categories and up and down movement buttons B51 and B52 are provided at the right end of the classification accuracy display area G53 to confirm that the classification accuracy display area G53 cannot be fully displayed at one time. Other classification categories and classification accuracy within (i.e., hidden).
分類類別變更目標選擇區域G54係用於在變更賦予至選擇圖像之分類類別時選擇變更為哪個分類類別的區域。例如,顯示當前所賦予之分類類別(本例中為NG-A),但當按下按鈕D51時,其他分類類別(NG-B、C、D、……)會以下拉式選單的形式顯示出來。然後,藉由在該下拉式選單內對游標C進行移動、點選等而選擇欲變更之分類類別(例如,NG-C),從而顯示變更目標之分類類別(但是,於該時間點,教學資料T尚未被變更)。The classification category change target selection area G54 is an area used to select which classification category to change when changing the classification category assigned to the selected image. For example, the currently assigned classification category (NG-A in this example) is displayed, but when button D51 is pressed, other classification categories (NG-B, C, D,...) will be displayed in the form of a drop-down menu Come out. Then, by moving or clicking the cursor C in the drop-down menu, the classification category to be changed (for example, NG-C) is selected, thereby displaying the classification category of the change target (however, at this point in time, the teaching Data T has not been changed).
變更按鈕B53係用以決定分類類別之變更之開關按鈕。藉由按下變更按鈕B53,而將分類類別變更目標選擇區域G54所顯示之分類類別作為選擇圖像之分類類別來變更教學資料T。The change button B53 is a switch button used to determine the change of the classification category. By pressing the change button B53, the teaching material T is changed by using the classification category displayed in the classification category change target selection area G54 as the classification category of the selected image.
再者,於圖像圖GA之右下方配置有按鈕B4、B5。 當按下按鈕B4時,保存參數之變更等並關閉顯示中之視窗,對教學資料T進行改進,生成改進後之教學資料T'。 另一方面,當按下按鈕B5時,不保存參數之變更等而關閉顯示中之視窗(即,不對教學資料T進行改進,未生成教學資料T')。 Furthermore, buttons B4 and B5 are arranged on the lower right side of the image GA. When button B4 is pressed, the parameter changes are saved and the displayed window is closed, the teaching material T is improved, and the improved teaching material T' is generated. On the other hand, when button B5 is pressed, the displayed window is closed without saving the parameter changes (that is, the teaching material T is not improved and the teaching material T' is not generated).
結果輸出部RO係輸出分類結果者。 具體而言,將基於自動缺陷分類器Ba對由缺陷圖像輸入部GI獲取之分類類別未知之缺陷圖像Px自動賦予之分類類別(即,分類結果)輸出至外部裝置、主機電腦等。 更具體而言,結果輸出部RO係由電腦之輸出部DO之一部分構成。 The result output unit RO outputs the classification results. Specifically, the classification category (that is, the classification result) automatically assigned by the automatic defect classifier Ba to the defect image Px of unknown classification category acquired by the defect image input unit GI is output to an external device, a host computer, or the like. More specifically, the result output unit RO is composed of a part of the output unit DO of the computer.
[處理流程] 圖5係表示使本發明具體化之實施方式之一例之流程圖。圖5中示出使用本發明之自動缺陷分類裝置1來改正包含使用者所賦予之分類類別之錯誤的教學資料T,使自動缺陷分類之精度提高之流程。 [Processing flow] FIG. 5 is a flowchart showing an example of embodiment of the present invention. Figure 5 shows the process of using the automatic defect classification device 1 of the present invention to correct the teaching materials T containing errors in the classification categories assigned by the user, so as to improve the accuracy of automatic defect classification.
首先,從教學資料輸入部2輸入自外部裝置、主機電腦等輸出之教學資料T(步驟s1)。具體而言,基於使用者之指示,從外部裝置、主機電腦等輸出教學資料T。First, the teaching data T output from an external device, a host computer, etc. is input from the teaching data input unit 2 (step s1). Specifically, based on the user's instructions, the teaching data T is output from an external device, a host computer, etc.
接下來,利用教學資料評估用分類器生成部51,基於教學資料T而生成評估用分類器Bt(步驟s2)。具體而言,使用者按下顯示於任一畫面等中之「執行」按鈕等,由此開始基於當前之教學資料T之機器學習,進行評估用分類器Bt之生成處理。Next, the teaching material evaluation classifier generating unit 51 generates an evaluation classifier Bt based on the teaching material T (step s2). Specifically, the user presses the "execute" button etc. displayed on any screen etc., thereby starting machine learning based on the current teaching data T to generate the evaluation classifier Bt.
接下來,利用特徵量算出部52,基於評估用分類器Bt對教學資料T中包含之複數個缺陷圖像Pt之各者進行特徵量之算出處理(步驟s3)。Next, the feature amount calculation unit 52 performs a feature amount calculation process for each of the plurality of defect images Pt included in the teaching material T based on the evaluation classifier Bt (step s3).
接下來,利用分類準確度算出部53,針對教學資料T中包含之複數個缺陷圖像Pt之各者,算出缺陷圖像Pt之特徵量、與在和賦予至缺陷圖像Pt之分類類別相同及不同之分類類別設定的特徵量之各個容許基準的一致程度(即,分類準確度)(步驟s4)。Next, the classification accuracy calculation unit 53 calculates, for each of the plurality of defect images Pt included in the teaching material T, the feature amount of the defect image Pt, which is the same as the classification category assigned to the defect image Pt. And the degree of consistency (ie, classification accuracy) of each allowable standard of the feature quantities set for different classification categories (step s4).
接下來,利用分類類別判定部54,對複數個缺陷圖像Pt之各者判定由評估用分類器Bt賦予之缺陷圖像Pt所屬之分類類別(步驟s5)。Next, the classification category determination unit 54 determines, for each of the plurality of defect images Pt, the classification category to which the defect image Pt assigned by the evaluation classifier Bt belongs (step s5).
接下來,變更顯示部6中之缺陷圖像Pt之缺陷部位Q之顯示形式來進行顯示(步驟s6)。Next, the display format of the defective part Q of the defective image Pt is changed and displayed on the display unit 6 (step s6).
然後,由使用者確認缺陷圖像Pt之分類類別是否合適,判斷是否需要變更(即,修正)教學資料T中包含之分類類別(步驟s7)。Then, the user confirms whether the classification category of the defect image Pt is appropriate and determines whether the classification category included in the teaching material T needs to be changed (ie, corrected) (step s7).
視需要對1個或複數個缺陷圖像Pt進行分類類別之變更(步驟s8),對教學資料T進行改進,生成改進後之教學資料T'。If necessary, change the classification category of one or more defect images Pt (step s8), improve the teaching material T, and generate the improved teaching material T'.
然後,判斷是否利用教學資料評估用分類器生成部51,進行基於改進後之教學資料T'之機器學習(重新學習)而重新生成評估用分類器Bt(步驟s9)。若需要重新學習,則重複進行上述之步驟s2~s9,若無須重新學習,則結束一連串之流程。Then, it is determined whether to use the teaching material evaluation classifier generation unit 51 to perform machine learning (relearning) based on the improved teaching material T' and regenerate the evaluation classifier Bt (step s9). If it is necessary to re-learn, repeat the above steps s2 to s9. If it is not necessary to re-learn, then the series of processes will be ended.
然後,使用自動缺陷分類器生成部57,基於最新狀態(即,改進後)之教學資料T'進行機器學習,生成自動缺陷分類器Ba。然後,於本發明之自動缺陷分類裝置1中,由缺陷類別分類部59使用自動缺陷分類器Ba對分類類別未知之缺陷圖像Px賦予分類類別。Then, the automatic defect classifier generating unit 57 is used to perform machine learning based on the latest state (ie, improved) teaching material T′ to generate an automatic defect classifier Ba. Then, in the automatic defect classification device 1 of the present invention, the defect class classification unit 59 uses the automatic defect classifier Ba to assign a classification class to the defect image Px whose classification class is unknown.
本發明之自動缺陷分類裝置1具有如上所述之構成,因此,可利用處理部5對複數個缺陷圖像Pt進行規定之處理,變更顯示部6中之缺陷圖像Pt之缺陷部位Q之顯示形式來進行顯示。 因此,即便構成教學資料T之缺陷圖像Pt較多,亦容易改正由使用者賦予之分類類別之錯誤,能夠使自動缺陷分類之精度提高。 The automatic defect classification device 1 of the present invention has the above-mentioned structure. Therefore, the processing unit 5 can be used to perform predetermined processing on a plurality of defect images Pt, and the display of the defective part Q of the defect image Pt in the display unit 6 can be changed. form to display. Therefore, even if there are many defect images Pt constituting the teaching material T, errors in the classification categories assigned by the user can be easily corrected, and the accuracy of automatic defect classification can be improved.
[關於顯示模式] 於使本發明具體化之方面,並不限定於上述構成,亦可構成為處理部5具備單一圖像顯示模式及圖像一覽顯示模式,使在圖像一覽顯示模式下由使用者選擇之任意缺陷圖像Pt以單一圖像顯示模式顯示。 [About display mode] In terms of embodying the present invention, it is not limited to the above-described configuration. The processing unit 5 may be configured to have a single image display mode and an image list display mode, so that any image selected by the user in the image list display mode can be used. The defect image Pt is displayed in the single image display mode.
「單一圖像顯示模式」係使分類類別被分類為相同類別之複數個缺陷圖像Pt中所選擇之一圖像顯示於顯示部6的模式。再者,圖4所例示之顯示於顯示部6之圖像圖GA相當於「單一圖像顯示模式」下之顯示,因此,省略詳細說明。 另一方面,「圖像一覽顯示模式」係使分類類別被分類為相同類別之複數個缺陷圖像Pt呈矩陣狀排列顯示於顯示部6之模式。 The "single image display mode" is a mode in which an image selected from a plurality of defect images Pt classified into the same category is displayed on the display unit 6 . In addition, the image diagram GA displayed on the display unit 6 illustrated in FIG. 4 is equivalent to the display in the "single image display mode", and therefore a detailed description is omitted. On the other hand, the "image list display mode" is a mode in which a plurality of defect images Pt classified into the same category are displayed on the display unit 6 in a matrix arrangement.
圖6係表示使本發明具體化之實施方式中之顯示部之一例的圖像圖。 圖6中例示以「圖像一覽顯示模式」顯示於顯示部6之圖像圖GB。 FIG. 6 is an image diagram showing an example of a display unit in an embodiment embodying the present invention. FIG. 6 illustrates the image image GB displayed on the display unit 6 in the "image list display mode".
當切換顯示模式時,會預先在顯示部6之缺陷圖像顯示區域G1之上方等配置按鈕B1、B2。按鈕B1係供將缺陷圖像顯示區域G1切換為「單一圖像顯示模式」而顯示者。另一方面,按鈕B2係供將缺陷圖像顯示區域G1切換為「圖像一覽顯示模式」而顯示者。 具體而言,當處於如圖4所示之「單一圖像顯示模式」之圖像圖GA之狀態時,若按下按鈕B2,則切換為如圖6所示之「圖像一覽顯示模式」之圖像圖GB,若按下按鈕B1,則切換為如圖4所示之「單一圖像顯示模式」之圖像圖GA。 When switching the display mode, buttons B1 and B2 are arranged above the defect image display area G1 of the display unit 6 in advance. Button B1 is used to switch and display the defect image display area G1 to the "single image display mode". On the other hand, button B2 is used to switch and display the defect image display area G1 to the "image list display mode". Specifically, when button B2 is pressed while the image graph GA is in the "single image display mode" as shown in Figure 4, it switches to the "image list display mode" as shown in Figure 6 Image GB, if button B1 is pressed, switches to image GA in the "single image display mode" as shown in Figure 4.
於「圖像一覽顯示模式」下,缺陷圖像顯示區域G1係顯示複數個缺陷圖像Pt與賦予至該缺陷圖像Pt之分類類別的區域。 具體而言,於缺陷圖像顯示區域G1,複數個缺陷圖像Pt呈矩陣狀(亦稱為磚塊狀)顯示,於該缺陷圖像Pt之下顯示有分類類別。進而構成為:於缺陷圖像顯示區域G1之右端設置有使複數個缺陷圖像Pt縱向捲動之縱捲棒L11、上下移動按鈕B11、B12,於下端設置有使複數個缺陷圖像Pt橫向捲動之橫捲棒L12、左右移動按鈕B13、B14,從而能夠確認無法完全顯示於缺陷圖像顯示區域G1內(即,隱藏)之其他缺陷圖像Pt。 In the "image list display mode", the defect image display area G1 is an area that displays a plurality of defect images Pt and classification categories assigned to the defect images Pt. Specifically, in the defect image display area G1, a plurality of defect images Pt are displayed in a matrix form (also called a brick shape), and a classification category is displayed under the defect images Pt. Furthermore, the right end of the defect image display area G1 is provided with a vertical scroll bar L11 for vertically scrolling the plurality of defect images Pt, and the vertical movement buttons B11 and B12, and the lower end is provided with a vertical scroll bar L11 for vertically scrolling the plurality of defect images Pt. By scrolling the horizontal scroll bar L12 and the left and right movement buttons B13 and B14, it is possible to confirm other defect images Pt that cannot be completely displayed in the defect image display area G1 (that is, are hidden).
「圖像一覽顯示模式」係基於在顯示順序設定區域G4設定之顯示順序(例如資料清單升序、資料清單降序、類別升序、類別降序、分類準確度升序、分類準確度降序、……)而顯示複數個缺陷圖像Pt。 具體而言,若為資料清單升序/降序,則以賦予至缺陷圖像Pt之連續編號為基準,將複數個缺陷圖像Pt按照升序/降序自左上端至右側及下側排列、顯示。 另一方面,若為類別升序/降序,則以賦予至缺陷圖像Pt之分類類別為基準,將複數個缺陷圖像Pt按照升序/降序自左上端至右側及下側排列、顯示。 另一方面,若為分類準確度升序/降序,則以賦予至缺陷圖像Pt之分類類別之分類準確度(一致程度)為基準,將複數個缺陷圖像Pt按照升序/降序自左上端至右側及下側排列、顯示。 又,「圖像一覽顯示模式」係將使用者選擇之缺陷圖像Pt(例如,使用者使游標C移動至缺陷圖像Pt上並進行單擊)之圖像編號顯示於圖像編號顯示區域G41。 "Image list display mode" is displayed based on the display order set in the display order setting area G4 (for example, data list ascending order, data list descending order, category ascending order, category descending order, classification accuracy ascending order, classification accuracy descending order,...) A plurality of defect images Pt. Specifically, in the ascending/descending order of the data list, based on the consecutive numbers assigned to the defect images Pt, a plurality of defect images Pt are arranged and displayed in ascending/descending order from the upper left end to the right and lower sides. On the other hand, in the case of ascending/descending category order, based on the classification category assigned to the defect image Pt, a plurality of defect images Pt are arranged and displayed in ascending/descending order from the upper left end to the right and lower sides. On the other hand, in the ascending/descending order of classification accuracy, based on the classification accuracy (degree of consistency) of the classification category assigned to the defect image Pt, the plurality of defect images Pt are sorted in ascending/descending order from the upper left to the Arrange and display on the right and lower sides. In addition, the "image list display mode" displays the image number of the defective image Pt selected by the user (for example, the user moves the cursor C to the defective image Pt and clicks it) in the image number display area. G41.
[關於切換操作] 當存在「單一圖像顯示模式」與「圖像一覽顯示模式」時,若使用者在「圖像一覽顯示模式」下進行如下操作,則處理部5將使用者選擇之任意缺陷圖像Pt切換為「單一圖像顯示模式」而顯示。 [About switching operations] When there are "single image display mode" and "image list display mode", if the user performs the following operations in the "image list display mode", the processing unit 5 switches any defect image Pt selected by the user Displayed for "single image display mode".
具體而言,於如圖6所示之「圖像一覽顯示模式」之圖像圖GB之狀態下,使用者使游標C移動至欲放大顯示之缺陷圖像Pt(本例中為從最上段之左側起第2個)之上並雙擊,由此使該缺陷圖像Pt以「單一圖像顯示模式」顯示。 或者,使用者使游標C移動至欲放大顯示之缺陷圖像Pt(本例中為從最上段之左側起第2個)之上並單擊而成為圖像選擇狀態後按下按鈕B1,由此使缺陷圖像Pt以「單一圖像顯示模式」顯示。 Specifically, in the state of the image diagram GB in the "image list display mode" shown in FIG. 6, the user moves the cursor C to the defect image Pt to be displayed enlarged (in this example, from the top 2) from the left and double-click to display the defect image Pt in the "single image display mode". Alternatively, the user moves the cursor C to the defect image Pt to be displayed enlarged (in this example, the second one from the left of the uppermost segment) and clicks it to enter the image selection state and then presses the button B1. This causes the defect image Pt to be displayed in the "single image display mode".
圖7係表示使本發明具體化之實施方式中之顯示部之一例的圖像圖。 圖7中例示了將使用者選擇之任意缺陷圖像Pt(本例中為圖像編號002)以「單一圖像顯示模式」顯示於顯示部6之缺陷圖像顯示區域G1的圖像圖GC。 FIG. 7 is an image diagram showing an example of a display unit in an embodiment embodying the present invention. FIG. 7 illustrates an image diagram GC in which any defect image Pt selected by the user (image number 002 in this example) is displayed in the defect image display area G1 of the display unit 6 in the "single image display mode". .
若為此種構成,則能夠於圖像一覽顯示模式下俯視觀察複數個缺陷圖像Pt之缺陷部位Q之顏色、模樣等,或者能夠使應注意之缺陷圖像Pt以單一圖像顯示模式顯示來判斷分類類別是否合適,故較佳。 例如,於圖像一覽顯示模式下,對比缺陷部位Q為相同顯示形式(顏色、模樣等)之缺陷圖像Pt,有助於使用者判斷被賦予相同分類類別是否合適。另一方面,於單一畫面顯示模式下,能夠一面一個個地傳送缺陷圖像Pt,一面確認以相同之顯示形式(顏色、模樣等)顯示之缺陷部位Q有無不自然(缺陷部位Q存在於相分開之地方,或者缺陷部位Q未存在於其應存在之地方等)。 With this configuration, the color, shape, etc. of the defective parts Q of the plurality of defective images Pt can be observed from above in the image list display mode, or the defective image Pt that requires attention can be displayed in the single image display mode. It is better to judge whether the classification category is appropriate. For example, in the image list display mode, comparing the defective image Pt with the same display format (color, shape, etc.) of the defective part Q helps the user to judge whether it is appropriate to be assigned the same classification category. On the other hand, in the single-screen display mode, it is possible to confirm whether the defective part Q displayed in the same display format (color, pattern, etc.) is unnatural (the defective part Q exists in the corresponding phase) while transmitting the defective images Pt one by one. separated place, or the defective part Q does not exist where it should exist, etc.).
因此,即便構成教學資料T之缺陷圖像Pt較多,亦容易改正預先由使用者賦予之分類類別之錯誤,能夠使自動缺陷分類之精度提高。Therefore, even if there are many defect images Pt constituting the teaching material T, errors in the classification categories assigned in advance by the user can be easily corrected, and the accuracy of automatic defect classification can be improved.
再者,於使本發明具體化之方面,如上所述之顯示模式之切換並非為必需功能,亦可利用與上述單一畫面顯示模式、圖像一覽顯示模式之任一者相同之顯示方法來顯示缺陷圖像Pt。於此情形時,亦可較不變更缺陷部位Q之顯示形式之情形(先前之顯示)更容易改正分類類別之錯誤,使自動缺陷分類之精度提高。Furthermore, in the aspect of embodying the present invention, the switching of the display mode as described above is not an essential function, and the same display method as the single screen display mode or the image list display mode can be used for display. Defect image Pt. In this case, it is also easier to correct the error in the classification category than in the case where the display form of the defective part Q is not changed (previous display), thereby improving the accuracy of automatic defect classification.
再者,於上文中,作為處理部5示出了如下構成,即,根據分類器所賦予之缺陷圖像Pt所屬之分類類別來變更顯示部6中之缺陷圖像之缺陷部位Q的顯示形式而進行顯示。Furthermore, in the above, the processing unit 5 has been shown to be configured to change the display format of the defective part Q of the defective image in the display unit 6 according to the classification category to which the defective image Pt assigned by the classifier belongs. And display.
但是,處理部5亦可以如下構成代替此種構成,或者除此種構成以外再加上如下構成,即,將顯示部6中之缺陷圖像之缺陷部位Q之顯示形式根據分類器賦予之該缺陷圖像Pt所屬之分類類別之分類準確度進行變更再顯示。However, the processing unit 5 may be configured as follows instead of this structure, or may be configured in addition to this structure to assign the display format of the defective part Q of the defective image in the display unit 6 based on the classifier. The classification accuracy of the classification category to which the defect image Pt belongs is changed and then displayed.
圖8係表示使本發明具體化之實施方式中之顯示部之一例的圖像圖。 圖8(a)~(c)分別示出顯示於顯示部6之缺陷圖像顯示區域G1之缺陷圖像Pt之缺陷部位Q的一例。 圖8(a)~(c)所示之缺陷圖像Pt均屬於相同之分類類別(例如,被分類為A缺陷),但分類準確度各不相同。 FIG. 8 is an image diagram showing an example of a display unit in an embodiment embodying the present invention. 8(a) to (c) respectively show an example of the defective part Q of the defective image Pt displayed in the defective image display area G1 of the display unit 6. The defect images Pt shown in Figures 8(a) to (c) all belong to the same classification category (for example, classified as A defect), but the classification accuracy is different.
再者,本例中係根據分類類別之分類準確度來變更缺陷部位Q之影線(即,模樣)而進行顯示,但亦可變更缺陷部位Q之顏色。例如,於分類準確度較高之情形時,將顯示形式變更為「綠色」而顯示,於分類準確度較低之情形時,將顯示形式變更為「紅色」而顯示,於分類準確度為中等程度之情形時,將顯示形式變更為「黃色」而顯示。Furthermore, in this example, the hatching (that is, the shape) of the defective part Q is changed and displayed according to the classification accuracy of the classification category, but the color of the defective part Q may also be changed. For example, when the classification accuracy is high, the display format is changed to "green", when the classification accuracy is low, the display format is changed to "red", and when the classification accuracy is medium, the display format is changed to "red". In this case, the display format will be changed to "yellow" and displayed.
若為此種構成,則不論是以單一畫面顯示模式一面一個個地傳送缺陷圖像Pt一面進行確認時,還是以圖像一覽顯示模式一次確認複數個缺陷圖像Pt時,使用者均可認識到分類準確度較低者,並且可判斷是否修正分類類別,故較佳。With this configuration, the user can recognize the defective images Pt one by one while confirming them in the single screen display mode or confirming a plurality of defective images Pt at once in the image list display mode. The classification accuracy is low, and it can be judged whether to correct the classification category, so it is better.
因此,即便構成教學資料T之缺陷圖像Pt較多,亦容易改正預先由使用者賦予之分類類別之錯誤,能夠使自動缺陷分類之精度提高。Therefore, even if there are many defect images Pt constituting the teaching material T, errors in the classification categories assigned in advance by the user can be easily corrected, and the accuracy of automatic defect classification can be improved.
1:自動缺陷分類裝置 2:教學資料輸入部 3:操作輸入部 4:記憶部 5:處理部 6:顯示部 51:教學資料評估用分類器生成部 52:特徵量算出部 53:分類準確度算出部 54:分類類別判定部 55:缺陷部位顯示變更部 57:自動缺陷分類器生成部 59:缺陷類別分類部 100:檢查系統 110:攝像部 120:搬送部 121:光學系統本體部 122:照明部 123:攝像相機 130:缺陷檢測部 140:控制部 B1:按鈕 B2:按鈕 B3:按鈕 B4:按鈕 B5:按鈕 B11,B12:上下移動按鈕 B13,B14:左右移動按鈕 B41:倒退按鈕 B42:倒退按鈕 B43:前送按鈕 B44:前送按鈕 B51,B52:上下移動按鈕 B53:變更按鈕 Ba:自動缺陷分類器 Bt:評估用分類器 C:游標 D21:按鈕 D41:按鈕 D51:按鈕 DI:輸入部 DO:輸出部 G1:缺陷圖像顯示區域 G2:圖像顯示設定區域 G3:顯示項目設定區域 G4:顯示順序設定區域 G5:分類資訊顯示區域 G21:亮度設定值顯示區域 G41:圖像編號顯示區域 G51:MDC顯示區域 G52:MDC候補顯示區域 G53:分類準確度顯示區域 G54:分類變更目標選擇區域 GA:圖像圖 GB:圖像圖 GC:圖像圖 GI:缺陷圖像輸入部 L11:縱捲棒 L12:橫捲棒 L21:撥動開關 L51:縱捲棒 P:檢查圖像 P1~P4:缺陷圖像 P1'~P4':無缺陷之圖像 Pt:學習用缺陷圖像(完成賦予分類類別) Px:檢查圖像(分類類別未知) Q:缺陷部位 RO:結果輸出部 T:教學資料(改進前) T':教學資料(改進後) U:使用者介面 W:檢查對象 X:缺陷 X1~X4:缺陷 s1~s9:步驟 1: Automatic defect classification device 2:Teaching material input department 3: Operation input part 4:Memory Department 5:Processing Department 6:Display part 51: Classifier generation part for teaching material evaluation 52: Feature quantity calculation part 53: Classification accuracy calculation part 54: Classification Category Judgment Department 55: Defect part display change part 57: Automatic defect classifier generation part 59:Defect Category Classification Department 100: Check system 110:Camera Department 120:Transportation Department 121: Optical system body part 122:Lighting Department 123:Camera 130: Defect detection department 140:Control Department B1:Button B2:Button B3:Button B4:Button B5:Button B11,B12: move up and down buttons B13, B14: left and right movement buttons B41: Reverse button B42: Reverse button B43: forward button B44: forward button B51, B52: move up and down buttons B53:Change button Ba: Automatic defect classifier Bt: Classifier for evaluation C:cursor D21:Button D41:Button D51:Button DI: input department DO: output department G1: Defect image display area G2: Image display setting area G3: Display project setting area G4: Display order setting area G5: Classified information display area G21: Brightness setting value display area G41: Image number display area G51: MDC display area G52: MDC candidate display area G53: Classification accuracy display area G54: Classification change target selection area GA: image graph GB: image map GC: image graph GI: Defect image input unit L11: Longitudinal rolling rod L12: Horizontal rolling stick L21: toggle switch L51: Longitudinal rolling rod P: Check image P1~P4: Defect images P1'~P4': images without defects Pt: Defect images for learning (complete classification assignment) Px: Check image (classification category unknown) Q:Defective parts RO: Result Output Department T: Teaching materials (before improvement) T': Teaching materials (improved) U: User interface W: Check object X: Defect X1~X4: Defects s1~s9: steps
圖1(a)~(h)係表示使本發明具體化之實施方式中之缺陷圖像之一例的圖像圖。 圖2係表示包含使本發明具體化之實施方式之一例之整體構成的概略圖。 圖3係表示使本發明具體化之實施方式之一例之主要部分的概略圖。 圖4係表示使本發明具體化之實施方式中之顯示部之一例的圖像圖。 圖5係表示使本發明具體化之實施方式之一例之流程圖。 圖6係表示使本發明具體化之實施方式中之顯示部之一例的圖像圖。 圖7係表示使本發明具體化之實施方式中之顯示部之一例的圖像圖。 圖8(a)~(c)係表示使本發明具體化之實施方式中之另一例之圖像圖。 1 (a) to (h) are image diagrams showing an example of a defect image in an embodiment embodying the present invention. FIG. 2 is a schematic diagram showing the overall structure including an example of embodiment of the present invention. FIG. 3 is a schematic diagram showing the main part of an example of embodiment of the present invention. FIG. 4 is an image diagram showing an example of a display unit in an embodiment embodying the present invention. FIG. 5 is a flowchart showing an example of embodiment of the present invention. FIG. 6 is an image diagram showing an example of a display unit in an embodiment embodying the present invention. FIG. 7 is an image diagram showing an example of a display unit in an embodiment embodying the present invention. 8(a) to (c) are image diagrams showing another example of the embodiment embodying the present invention.
P1~P4:缺陷圖像 P1~P4: Defect images
P1'~P4':無缺陷之圖像 P1'~P4': images without defects
X1~X4:缺陷 X1~X4: Defects
Claims (3)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022054831A JP2023147373A (en) | 2022-03-30 | 2022-03-30 | Automatic defect classification device |
JP2022-054831 | 2022-03-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202407330A true TW202407330A (en) | 2024-02-16 |
Family
ID=88200857
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW112108477A TW202407330A (en) | 2022-03-30 | 2023-03-08 | Automatic defect classification device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2023147373A (en) |
TW (1) | TW202407330A (en) |
WO (1) | WO2023188803A1 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001156135A (en) * | 1999-11-29 | 2001-06-08 | Hitachi Ltd | Method and device for sorting defective image and manufacturing method of semiconductor device using them |
JP6596260B2 (en) * | 2015-08-19 | 2019-10-23 | 株式会社Screenホールディングス | Teaching support method and image classification method |
JP2021076994A (en) * | 2019-11-07 | 2021-05-20 | 東レエンジニアリング株式会社 | Classification device and image classification system |
JP7408516B2 (en) * | 2020-09-09 | 2024-01-05 | 株式会社東芝 | Defect management devices, methods and programs |
-
2022
- 2022-03-30 JP JP2022054831A patent/JP2023147373A/en active Pending
-
2023
- 2023-02-02 WO PCT/JP2023/003386 patent/WO2023188803A1/en unknown
- 2023-03-08 TW TW112108477A patent/TW202407330A/en unknown
Also Published As
Publication number | Publication date |
---|---|
JP2023147373A (en) | 2023-10-13 |
WO2023188803A1 (en) | 2023-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3480735B1 (en) | Inspection apparatus, data generation apparatus, data generation method, and data generation program | |
KR101704325B1 (en) | Defect observation method and defect observation device | |
US20200043157A1 (en) | Inspection Apparatus, Inspection Method, And Program | |
JP4374303B2 (en) | Inspection method and apparatus | |
JP3834041B2 (en) | Learning type classification apparatus and learning type classification method | |
TWI512787B (en) | A defect analysis support means, a program executed by the defect analysis support means, and a defect analysis system | |
JP6113024B2 (en) | Classifier acquisition method, defect classification method, defect classification device, and program | |
JP2010054346A (en) | Method and device for defect inspection | |
US9280814B2 (en) | Charged particle beam apparatus that performs image classification assistance | |
JP2020187656A (en) | Image inspection device | |
JP6049052B2 (en) | Wafer visual inspection apparatus and sensitivity threshold setting method in wafer visual inspection apparatus | |
WO2014208193A1 (en) | Wafer appearance inspection device | |
WO2017203572A1 (en) | Defective image classification apparatus and defective image classification method | |
WO2016092614A1 (en) | Defect inspection device, display device, and defect classification device | |
TW202407330A (en) | Automatic defect classification device | |
WO2023095505A1 (en) | Automatic defect classifier | |
WO2022019110A1 (en) | Program, information processing device, information processing method, and model generation method | |
JP2001134763A (en) | Method for sorting defect on basis of picked-up image and method for displaying the result | |
JP5374225B2 (en) | Wafer inspection condition determination method, wafer inspection condition determination system, and wafer inspection system | |
WO2021075152A1 (en) | Defect-classifying device and defect-classifying program | |
JP4127285B2 (en) | Inspection method and apparatus | |
JP2020013378A (en) | Image classification method and image classification device | |
JP2022130035A (en) | Image processing system, and image processing method |