TW202404105A - magnetic memory device - Google Patents

magnetic memory device Download PDF

Info

Publication number
TW202404105A
TW202404105A TW112103874A TW112103874A TW202404105A TW 202404105 A TW202404105 A TW 202404105A TW 112103874 A TW112103874 A TW 112103874A TW 112103874 A TW112103874 A TW 112103874A TW 202404105 A TW202404105 A TW 202404105A
Authority
TW
Taiwan
Prior art keywords
layer
magnetic
nonmagnetic
ferromagnetic
memory device
Prior art date
Application number
TW112103874A
Other languages
Chinese (zh)
Inventor
北川英二
李永珉
Original Assignee
日商鎧俠股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022046633A external-priority patent/JP2023140671A/en
Application filed by 日商鎧俠股份有限公司 filed Critical 日商鎧俠股份有限公司
Publication of TW202404105A publication Critical patent/TW202404105A/en

Links

Landscapes

  • Mram Or Spin Memory Techniques (AREA)

Abstract

In general, according to one embodiment, a magnetic memory device includes a magnetoresistive effect element. The magnetoresistive effect element includes first to second ferromagnetic layer, a layer stack, and first to third non-magnetic layer. The layer stack is arranged on a side opposite to the first ferromagnetic layer with respect to the second ferromagnetic layer. The third non-magnetic layer is arranged on a side opposite to the second non-magnetic layer with respect to the layer stack and contains a metallic oxide. The layer stack includes a fourth non-magnetic layer being in contact with the third non-magnetic layer and containing platinum (Pt).

Description

磁性記憶裝置magnetic memory device

本發明之實施形態係關於一種磁性記憶裝置。An embodiment of the present invention relates to a magnetic memory device.

業已知悉使用磁阻效應元件作為記憶元件之磁性記憶裝置(MRAM:Magnetoresistive Random Access Memory,磁性隨機存取記憶體)。Magnetic memory devices (MRAM: Magnetoresistive Random Access Memory) using magnetoresistive effect elements as memory elements are known.

本發明所欲解決之問題在於提供一種提高外部磁場耐性之磁性記憶裝置。The problem to be solved by the present invention is to provide a magnetic memory device that improves the resistance to external magnetic fields.

實施形態之磁性記憶裝置包含磁阻效應元件。磁阻效應元件包含:第1鐵磁性層、第2鐵磁性層、積層體、第1非磁性層、第2非磁性層、及第3非磁性層。積層體對於第2鐵磁性層設置於與第1鐵磁性層為相反側。第1非磁性層設置於第1鐵磁性層與第2鐵磁性層之間。第2非磁性層設置於第2鐵磁性層與積層體之間。第3非磁性層對於積層體設置於與第2非磁性層為相反側,且包含金屬氧化物。積層體包含與第3非磁性層相接、且包含鉑(Pt)之第4非磁性層。The magnetic memory device according to the embodiment includes a magnetoresistive effect element. The magnetoresistive effect element includes a first ferromagnetic layer, a second ferromagnetic layer, a laminated body, a first nonmagnetic layer, a second nonmagnetic layer, and a third nonmagnetic layer. The laminated body is provided on the side opposite to the first ferromagnetic layer with respect to the second ferromagnetic layer. The first nonmagnetic layer is provided between the first ferromagnetic layer and the second ferromagnetic layer. The second nonmagnetic layer is provided between the second ferromagnetic layer and the laminate. The third nonmagnetic layer is provided on the opposite side of the laminate to the second nonmagnetic layer and contains a metal oxide. The laminated body includes a fourth nonmagnetic layer that is in contact with the third nonmagnetic layer and includes platinum (Pt).

以下,針對實施形態,參照圖式進行說明。於說明時,針對具有大致同一功能及構成之構成要素賦予同一符號。又,以下所示之實施形態係例示技術性思想者。實施形態並非係特定構成零件之材質、形狀、構造、配置等者。實施形態可施加各種變更。Hereinafter, embodiments will be described with reference to the drawings. In the description, components having substantially the same function and configuration are given the same symbols. In addition, the embodiment shown below is an illustration of a technical thinker. The embodiment does not specify the materials, shapes, structures, arrangements, etc. of the constituent parts. Various changes can be added to the embodiment.

[1]第1實施形態 針對第1實施形態之磁性記憶裝置進行說明。第1實施形態之磁性記憶裝置例如包含使用藉由磁性穿隧接面(MTJ:Magnetic Tunnel Junction)而具有磁阻效應(Magnetoresistance effect)之元件(MTJ元件)作為可變電阻元件之由垂直磁化方式實現之磁性記憶裝置。亦有時將MTJ元件稱為磁阻效應元件(Magnetoresistance effect element)。於包含本實施形態而後述之實施形態中,利用應用MTJ元件作為磁阻效應元件之情形進行說明。又,為了便於說明,記述為磁阻效應元件MTJ而進行說明。 [1] First embodiment The magnetic memory device according to the first embodiment will be described. The magnetic memory device of the first embodiment includes, for example, a perpendicular magnetization method using an element (MTJ element) having a magnetoresistance effect through a magnetic tunnel junction (MTJ) as a variable resistance element. Realized magnetic memory device. MTJ elements are also sometimes called magnetoresistance effect elements. In the embodiments described below including this embodiment, description will be made using a case where an MTJ element is used as the magnetoresistive effect element. In addition, for convenience of explanation, the magnetoresistance effect element MTJ will be described and explained.

[1-1]構成 首先,針對第1實施形態之磁性記憶裝置之構成進行說明。 [1-1]Composition First, the structure of the magnetic memory device according to the first embodiment will be described.

[1-1-1]磁性記憶裝置 圖1係顯示第1實施形態之磁性記憶裝置之構成之方塊圖。如圖1所示,磁性記憶裝置1具備:記憶胞陣列10、列選擇電路11、行選擇電路12、解碼電路13、寫入電路14、讀出電路15、電壓產生電路16、輸入輸出電路17、及控制電路18。 [1-1-1]Magnetic memory device FIG. 1 is a block diagram showing the structure of the magnetic memory device according to the first embodiment. As shown in FIG. 1 , the magnetic memory device 1 includes a memory cell array 10 , a column selection circuit 11 , a row selection circuit 12 , a decoding circuit 13 , a writing circuit 14 , a reading circuit 15 , a voltage generating circuit 16 , and an input/output circuit 17 , and control circuit 18.

記憶胞陣列10具備各自與列(row)、及行(column)之組建立對應關係之複數個記憶胞MC。具體而言,位於同一列之記憶胞MC連接於同一字元線WL,位於同一行之記憶胞MC連接於同一位元線BL。The memory cell array 10 includes a plurality of memory cells MC each corresponding to a row and a column group. Specifically, the memory cells MC located in the same column are connected to the same word line WL, and the memory cells MC located in the same row are connected to the same bit line BL.

列選擇電路11經由字元線WL與記憶胞陣列10連接。向列選擇電路11,供給來自解碼電路13之位址ADD之解碼結果(列位址)。列選擇電路11將與基於位址ADD之解碼結果之列對應之字元線WL設定為選擇狀態。以下,設定為選擇狀態之字元線WL稱為選擇字元線WL。又,選擇字元線WL以外之字元線WL稱為非選擇字元線WL。The column selection circuit 11 is connected to the memory cell array 10 via the word line WL. The column selection circuit 11 is supplied with the decoding result (column address) of the address ADD from the decoding circuit 13 . The column selection circuit 11 sets the word line WL corresponding to the column of the decoding result based on the address ADD to a selected state. Hereinafter, the word line WL set to the selected state is referred to as the selected word line WL. In addition, word lines WL other than the selected word lines WL are called non-selected word lines WL.

行選擇電路12經由位元線BL與記憶胞陣列10連接。向行選擇電路12,供給來自解碼電路13之位址ADD之解碼結果(行位址)。行選擇電路12將與基於位址ADD之解碼結果之行對應之位元線BL設定為選擇狀態。以下,設定為選擇狀態之位元線BL稱為選擇位元線BL。又,選擇位元線BL以外之位元線BL稱為非選擇位元線BL。The row selection circuit 12 is connected to the memory cell array 10 via the bit line BL. The row selection circuit 12 is supplied with the decoding result (row address) of the address ADD from the decoding circuit 13 . The row selection circuit 12 sets the bit line BL corresponding to the row of the decoding result based on the address ADD to the selected state. Hereinafter, the bit line BL set to the selected state is referred to as the selected bit line BL. In addition, the bit lines BL other than the selected bit lines BL are called non-selected bit lines BL.

解碼電路13將來自輸入輸出電路17之位址ADD解碼。解碼電路13將位址ADD之解碼結果供給至列選擇電路11、及行選擇電路12。位址ADD包含所選擇之行位址、及列位址。The decoding circuit 13 decodes the address ADD from the input/output circuit 17 . The decoding circuit 13 supplies the decoding result of the address ADD to the column selection circuit 11 and the row selection circuit 12 . The address ADD includes the selected row address and column address.

寫入電路14進行資料向記憶胞MC之寫入。寫入電路14例如包含寫入驅動器(未圖示)。The writing circuit 14 writes data into the memory cell MC. The write circuit 14 includes, for example, a write driver (not shown).

讀出電路15進行資料自記憶胞MC之讀出。讀出電路15例如包含感測放大器(未圖示)。The read circuit 15 reads data from the memory cell MC. The readout circuit 15 includes, for example, a sense amplifier (not shown).

電壓產生電路16使用自磁性記憶裝置1之外部(未圖示)提供之電源電壓,產生用於記憶胞陣列10之各種動作之電壓。例如,電壓產生電路16產生於寫入動作時所需之各種電壓,並輸出至寫入電路14。又,例如,電壓產生電路16產生於讀出動作時所需之各種電壓,並輸出至讀出電路15。The voltage generating circuit 16 uses the power supply voltage provided from the outside (not shown) of the magnetic memory device 1 to generate voltages for various operations of the memory cell array 10 . For example, the voltage generation circuit 16 generates various voltages required for writing operations and outputs them to the writing circuit 14 . For example, the voltage generation circuit 16 generates various voltages required for the reading operation and outputs the voltages to the reading circuit 15 .

輸入輸出電路17將來自磁性記憶裝置1之外部之位址ADD傳送至解碼電路13。輸入輸出電路17將來自磁性記憶裝置1之外部之指令CMD傳送至控制電路18。輸入輸出電路17於磁性記憶裝置1之外部與控制電路18之間收發各種控制信號CNT。輸入輸出電路17將來自磁性記憶裝置1之外部之資料DAT傳送至寫入電路14,並將自讀出電路15傳送之資料DAT輸出至磁性記憶裝置1之外部。The input-output circuit 17 transmits the external address ADD from the magnetic memory device 1 to the decoding circuit 13 . The input/output circuit 17 transmits the command CMD from the outside of the magnetic memory device 1 to the control circuit 18 . The input/output circuit 17 sends and receives various control signals CNT between the outside of the magnetic memory device 1 and the control circuit 18 . The input/output circuit 17 transmits the data DAT from the outside of the magnetic memory device 1 to the writing circuit 14 , and outputs the data DAT transmitted from the read circuit 15 to the outside of the magnetic memory device 1 .

控制電路18基於控制信號CNT及指令CMD,控制磁性記憶裝置1內之列選擇電路11、行選擇電路12、解碼電路13、寫入電路14、讀出電路15、電壓產生電路16、及輸入輸出電路17之動作。The control circuit 18 controls the column selection circuit 11, the row selection circuit 12, the decoding circuit 13, the writing circuit 14, the reading circuit 15, the voltage generating circuit 16, and the input and output in the magnetic memory device 1 based on the control signal CNT and the command CMD. Action of circuit 17.

[1-1-2]記憶胞陣列 其次,針對第1實施形態之磁性記憶裝置之記憶胞陣列之構成,使用圖2進行說明。圖2係顯示第1實施形態之磁性記憶裝置之記憶胞陣列之構成之電路圖。於圖2中,字元線WL係由包含2個小寫字母(″u″及″d″)、及索引(″<>″)之尾標予以分類而顯示。 [1-1-2]Memory cell array Next, the structure of the memory cell array of the magnetic memory device according to the first embodiment will be described using FIG. 2 . FIG. 2 is a circuit diagram showing the structure of the memory cell array of the magnetic memory device according to the first embodiment. In FIG. 2 , the word lines WL are classified and displayed by a suffix including two lowercase letters (“u” and “d”) and an index (“<>”).

如圖2所示,記憶胞MC(MCu及MCd)於記憶胞陣列10內矩陣狀配置,跟複數條位元線BL(BL<0>、BL<1>、…、BL<N>)中之1條、與複數條字元線WLd(WLd<0>、WLd<1>、…、WLd<M>)及WLu(WLu<0>、WLu<1>、…、WLu<M>)中之1條之組建立對應關係(M及N為任意之整數)。亦即,記憶胞MCd<i、j>(0≦i≦M、0≦j≦N)連接於字元線WLd<i>與位元線BL<j>之間,記憶胞MCu<i,j>連接於字元線WLu<i>與位元線BL<j>之間。As shown in Figure 2, memory cells MC (MCu and MCd) are arranged in a matrix in the memory cell array 10, and are connected to a plurality of bit lines BL (BL<0>, BL<1>,..., BL<N>). 1, and a plurality of word lines WLd (WLd<0>, WLd<1>,…, WLd<M>) and WLu (WLu<0>, WLu<1>,…, WLu<M>) A corresponding relationship is established between groups of 1 (M and N are arbitrary integers). That is, memory cell MCd<i, j> (0≦i≦M, 0≦j≦N) is connected between word line WLd<i> and bit line BL<j>, memory cell MCu<i, j> is connected between word line WLu<i> and bit line BL<j>.

此外,尾標之″d″及″u″分別係便於辨識複數個記憶胞MC中之(例如對於位元線BL)設置於下方之記憶胞、及設置於上方之記憶胞者。針對記憶胞陣列10之立體構造之例於後文描述In addition, the "d" and "u" in the suffixes are used to facilitate the identification of the memory cells disposed below (for example, for the bit line BL) and the memory cells disposed above among the plurality of memory cells MC, respectively. Examples of the three-dimensional structure of the memory cell array 10 will be described later.

記憶胞MC<i,j>包含串聯連接之開關元件SELd<i,j>及磁阻效應元件MTJd<i,j>。記憶胞MCu<i,j>包含串聯連接之開關元件SELu<i,j>及磁阻效應元件MTJu<i,j>。The memory cell MC<i,j> includes a series-connected switching element SELd<i,j> and a magnetoresistive effect element MTJd<i,j>. The memory cell MCu<i,j> includes a switching element SELu<i,j> and a magnetoresistive effect element MTJu<i,j> connected in series.

開關元件SEL具有作為於對於對應之磁阻效應元件MTJ之資料寫入及讀出時,控制電流向磁阻效應元件MTJ之供給之開關之功能。更具體而言,例如,某一記憶胞MC內之開關元件SEL於施加於該記憶胞MC之電壓低於臨限值電壓Vth時,作為電阻值較大之絕緣體,截斷電流(成為關斷狀態),於高於臨限值電壓Vth時,作為電阻值較小之導電體,流通電流(成為導通狀態)。亦即,開關元件SEL具有可不受限於流通之電流之方向,相應於施加於記憶胞MC之電壓之大小,切換將電流流通或截斷之功能。The switching element SEL has a function as a switch that controls the supply of current to the magnetoresistive effect element MTJ when writing and reading data to the corresponding magnetoresistive effect element MTJ. More specifically, for example, when the voltage applied to the memory cell MC is lower than the threshold voltage Vth, the switching element SEL in a certain memory cell MC acts as an insulator with a large resistance value and cuts off the current (turns into an off state). ), when the voltage is higher than the threshold voltage Vth, as a conductor with a small resistance value, current flows (becomes in a conductive state). That is, the switching element SEL has a function that is not limited to the direction of the flowing current and can switch the flow or interruption of the current in response to the magnitude of the voltage applied to the memory cell MC.

開關元件SEL可為例如2端子型開關元件。開關元件SEL可為例如2端子型開關元件。於施加於2端子間之電壓未達臨限值時,該開關元件為″高電阻″狀態、例如電性非導通狀態。於施加於2端子間之電壓為臨限值以上時,開關元件變化為″低電阻″狀態、例如電性導通狀態。開關元件可無論電壓為哪一極性均具有該功能。The switching element SEL may be, for example, a 2-terminal type switching element. The switching element SEL may be, for example, a 2-terminal type switching element. When the voltage applied between the two terminals does not reach the critical value, the switching element is in a "high resistance" state, such as an electrically non-conducting state. When the voltage applied between the two terminals is above a threshold value, the switching element changes to a "low resistance" state, such as an electrically conductive state. The switching element can have this function regardless of the polarity of the voltage.

磁阻效應元件MTJ藉由受開關元件SEL控制供給之電流,可將電阻值切換於低電阻狀態與高電阻狀態。磁阻效應元件MTJ作為可根據該電阻狀態之變化而寫入資料、且可將所寫入之資料非揮發地保存並讀出之記憶元件,發揮功能。The magnetoresistive effect element MTJ can switch the resistance value between a low resistance state and a high resistance state by controlling the current supplied by the switching element SEL. The magnetoresistive effect element MTJ functions as a memory element that can write data based on changes in the resistance state and can store and read the written data in a non-volatile manner.

其次,針對記憶體單元陣列10之剖面構造,使用圖3及圖4進行說明。圖3及圖4顯示用於說明第1實施形態之磁性記憶裝置之記憶胞陣列之構成之剖視圖之一例。圖3及圖4分別係自相互交叉之不同之方向觀察記憶胞陣列10之剖視圖。Next, the cross-sectional structure of the memory cell array 10 will be described using FIGS. 3 and 4 . 3 and 4 show an example of a cross-sectional view for explaining the structure of the memory cell array of the magnetic memory device according to the first embodiment. 3 and 4 are respectively cross-sectional views of the memory cell array 10 viewed from different intersecting directions.

如圖3及圖4所示,記憶胞陣列10設置於半導體基板20上。於以下之說明中,將與半導體基板20之表面平行之面設為XY平面,將垂直於XY平面之軸設為Z軸。又,於XY平面內,將沿字元線WL之軸設為X軸,將沿位元線BL之軸設為Y軸。亦即,圖3及圖4分別係沿Y軸及X軸觀察記憶胞陣列10時之剖視圖。As shown in FIGS. 3 and 4 , the memory cell array 10 is disposed on the semiconductor substrate 20 . In the following description, the plane parallel to the surface of the semiconductor substrate 20 is referred to as the XY plane, and the axis perpendicular to the XY plane is referred to as the Z axis. In addition, in the XY plane, let the axis along the word line WL be the X-axis, and let the axis along the bit line BL be the Y-axis. That is, FIG. 3 and FIG. 4 are cross-sectional views of the memory cell array 10 when viewed along the Y-axis and the X-axis respectively.

於半導體基板20之上表面上,例如設置複數個導電體21。複數個導電體21具有導電性,作為字元線WLd發揮功能。複數個導電體21例如沿Y軸排列設置,各自沿X軸延伸。此外,於圖3及圖4中,針對複數個導電體21設置於半導體基板20上之情形進行了說明,但不限於此。例如,複數個導電體21可不與半導體基板20相接,而於上方相離地設置。For example, a plurality of conductors 21 are provided on the upper surface of the semiconductor substrate 20 . The plurality of conductors 21 have electrical conductivity and function as word lines WLd. The plurality of conductors 21 are arranged in an array along the Y-axis, for example, and each extends along the X-axis. In addition, in FIGS. 3 and 4 , the case where a plurality of conductors 21 are provided on the semiconductor substrate 20 has been described, but the invention is not limited to this. For example, the plurality of conductors 21 may not be in contact with the semiconductor substrate 20 but may be provided spaced apart from each other above.

於1個導電體21之上表面上,設置各自作為開關元件SELd發揮功能之複數個元件22。設置於1個導電體21之上表面上之複數個元件22例如沿X軸排列設置。亦即,於1個導電體21之上表面,沿X軸排列之複數個元件22共通地連接。On the upper surface of one conductor 21, a plurality of elements 22 each functioning as a switching element SELd are provided. A plurality of elements 22 provided on the upper surface of one conductor 21 are arranged in an array along the X-axis, for example. That is, a plurality of elements 22 arranged along the X-axis are commonly connected to the upper surface of one conductor 21 .

於複數個元件22各者之上表面上,設置各自作為磁阻效應元件MTJd發揮功能之元件23。此外,針對元件23之構成之細節於後文描述。複數個元件23各者之上表面連接於複數個導電體24之任一者。複數個導電體24具有導電性,作為位元線BL發揮功能。複數個導電體24例如沿X軸排列設置,各自沿Y軸延伸。亦即,於1個導電體24共通地連接沿Y軸排列之複數個元件23。此外,於圖3及圖4中,針對複數個元件23各者與元件22之上表面上、及導電體24之下表面上相接地設置之情形進行了說明,但不限於此。例如,複數個元件23各者可經由導電性之接觸插塞(未圖示)與元件22、及導電體24連接。On the upper surface of each of the plurality of elements 22, an element 23 each functioning as a magnetoresistive effect element MTJd is provided. In addition, the details of the structure of the component 23 will be described later. The upper surface of each of the plurality of elements 23 is connected to any one of the plurality of conductors 24 . The plurality of conductors 24 have electrical conductivity and function as bit lines BL. The plurality of conductors 24 are arranged in an array along the X-axis, for example, and each extends along the Y-axis. That is, a plurality of elements 23 arranged along the Y-axis are connected to one conductor 24 in common. In addition, in FIGS. 3 and 4 , the case where each of the plurality of elements 23 is connected to the upper surface of the element 22 and the lower surface of the conductor 24 has been described, but the invention is not limited to this. For example, each of the plurality of components 23 may be connected to the component 22 and the conductor 24 through a conductive contact plug (not shown).

於1個導電體24之上表面上設置各自作為開關元件SELu發揮功能之複數個元件25。設置於1個導電體24之上表面上之複數個元件25例如沿X軸排列設置。亦即,於1個導電體24之上表面,沿Y軸排列之複數個元件25共通地連接。A plurality of elements 25 each functioning as a switching element SELu are provided on the upper surface of one conductor 24 . A plurality of elements 25 provided on the upper surface of one conductor 24 are arranged in an array along the X-axis, for example. That is, a plurality of elements 25 arranged along the Y-axis are commonly connected to the upper surface of one conductor 24 .

於複數個元件25各者之上表面上,設置各自作為磁阻效應元件MTJu發揮功能之元件26。此外,元件26例如具有與元件23同等之構成。複數個元件26各者之上表面連接於複數個導電體27之任一者。複數個導電體27具有導電性,作為字元線WLu發揮功能。複數個導電體27例如沿Y軸排列設置,各自沿X軸延伸。亦即,於1個導電體27共通地連接沿X軸排列之複數個元件26。此外,於圖3及圖4中,針對複數個元件26各者與元件25之上表面上、及導電體27之下表面上相接地設置之情形進行了說明,但不限於此。例如,複數個元件26各者可經由導電性之接觸插塞(未圖示)與元件25、及導電體27連接。On the upper surface of each of the plurality of elements 25, an element 26 functioning as a magnetoresistive effect element MTJu is provided. In addition, the element 26 has the same structure as the element 23, for example. The upper surface of each of the plurality of elements 26 is connected to any one of the plurality of conductors 27 . The plurality of conductors 27 have electrical conductivity and function as word lines WLu. The plurality of conductors 27 are arranged in an array along the Y-axis, for example, and each extends along the X-axis. That is, a plurality of elements 26 arranged along the X-axis are connected to one conductor 27 in common. In addition, in FIGS. 3 and 4 , the case where each of the plurality of elements 26 is connected to the upper surface of the element 25 and the lower surface of the conductor 27 has been described, but the invention is not limited to this. For example, each of the plurality of components 26 may be connected to the component 25 and the conductor 27 through a conductive contact plug (not shown).

藉由如以上般構成,記憶胞陣列10為對於1條位元線BL對應2條字元線WLd及WLu之組之構造。而且,記憶胞陣列10於字元線WLd與位元線BL之間設置記憶胞MCd,於位元線BL與字元線WLu之間設置記憶胞MCu。即,記憶胞陣列10具有將複數個記憶胞MC沿Z軸設置於不同之高度之構造。於圖3及圖4中所示之胞構造中,記憶胞MCd與下層建立對應關係,記憶胞MCu與上層建立對應關係。亦即,共通地連接於1條位元線BL之2個記憶胞MC中之設置於位元線BL之上層之記憶胞MC對應於附尾標″u″之記憶胞MCu,設置於下層之記憶胞MC對應於附尾標″d″之記憶胞MCd。With the above configuration, the memory cell array 10 has a structure in which one bit line BL corresponds to a set of two word lines WLd and WLu. Furthermore, the memory cell array 10 has the memory cell MCd between the word line WLd and the bit line BL, and the memory cell MCu between the bit line BL and the word line WLu. That is, the memory cell array 10 has a structure in which a plurality of memory cells MC are arranged at different heights along the Z-axis. In the cell structures shown in Figures 3 and 4, the memory cell MCd establishes a corresponding relationship with the lower layer, and the memory cell MCu establishes a corresponding relationship with the upper layer. That is, among the two memory cells MC commonly connected to one bit line BL, the memory cell MC arranged on the upper layer of the bit line BL corresponds to the memory cell MCu with the suffix "u", which is arranged on the lower layer. Memory cell MC corresponds to memory cell MCd with the suffix "d".

[1-1-3]磁阻效應元件 其次,針對第1實施形態之磁性記憶裝置之磁阻效應元件之構成,使用圖5進行說明。圖5係用於說明第1實施形態之磁性記憶裝置之磁阻效應元件之構成之剖視圖。於圖5中,例如,顯示沿垂直於Z軸之平面(例如XZ平面)切割圖3及圖4所示之磁阻效應元件MTJd之剖面之一例。此外,磁阻效應元件MTJu由於具有與磁阻效應元件MTJd同等之構成,故省略其圖示。 [1-1-3] Magnetoresistive effect element Next, the structure of the magnetoresistance effect element of the magnetic memory device according to the first embodiment will be described using FIG. 5 . FIG. 5 is a cross-sectional view for explaining the structure of the magnetoresistance effect element of the magnetic memory device according to the first embodiment. In FIG. 5 , for example, an example of a cross-section of the magnetoresistive effect element MTJd shown in FIGS. 3 and 4 is shown along a plane perpendicular to the Z-axis (for example, the XZ plane). In addition, since the magnetoresistive effect element MTJu has the same structure as the magnetoresistive effect element MTJd, its illustration is omitted.

如圖5所示,磁阻效應元件MTJ例如包含:作為頂層TOP(Top layer)發揮功能之非磁性層31、作為覆蓋層CAP(Capping layer)發揮功能之非磁性層32、作為記憶層SL(Storage layer)發揮功能之鐵磁性層33、作為穿隧障壁層TB(Tunnel barrier layer)發揮功能之非磁性層34、作為參考層RL(Reference layer)發揮功能之積層體35、作為間隔層SP(Spacer layer)發揮功能之非磁性層36、作為移位消除層SCL(Shift cancelling layer)發揮功能之積層體37、及作為緩衝層BUF(Buffer layer)發揮功能之積層體38。記憶層SL、參考層RL、及移位消除層SCL各者可視為一體地具有鐵磁性之構造體。緩衝層BUF可視為一體地具有非磁性之構造體。As shown in FIG. 5 , the magnetoresistive effect element MTJ includes, for example, a nonmagnetic layer 31 functioning as a top layer TOP (Top layer), a nonmagnetic layer 32 functioning as a capping layer CAP (Capping layer), and a memory layer SL ( The ferromagnetic layer 33 that functions as a storage layer), the non-magnetic layer 34 that functions as a tunnel barrier layer TB (Tunnel barrier layer), the laminate 35 that functions as a reference layer RL (Reference layer), the spacer layer SP ( The non-magnetic layer 36 that functions as a spacer layer, the laminate 37 that functions as a shift canceling layer SCL (Shift cancelling layer), and the laminate 38 that functions as a buffer layer BUF (Buffer layer). Each of the memory layer SL, the reference layer RL, and the shift cancellation layer SCL can be regarded as an integral ferromagnetic structure. The buffer layer BUF can be regarded as an integrally non-magnetic structure.

磁阻效應元件MTJd例如自字元線WLd側向位元線BL側(沿Z軸方向)依照積層體38、積層體37、非磁性層36、積層體35、非磁性層34、鐵磁性層33、非磁性層32、及非磁性層31之順序積層複數個膜。磁阻效應元件MTJu例如自位元線BL側向字元線WLu側(沿Z軸方向)按照積層體38、積層體37、非磁性層36、積層體35、非磁性層34、鐵磁性層33、非磁性層32、及非磁性層31之順序積層複數個膜。磁阻效應元件MTJd及MTJu例如作為構成磁阻效應元件MTJd及MTJu之磁性體之磁化方向分別對於膜面朝向垂直方向之垂直磁化型MTJ元件發揮功能。此外,磁阻效應元件MTJ可於上述之各層31~38之間,包含未圖示之進一步之層。The magnetoresistive effect element MTJd, for example, is arranged in the order of the laminate 38, the laminate 37, the non-magnetic layer 36, the laminate 35, the non-magnetic layer 34 and the ferromagnetic layer from the word line WLd side to the bit line BL side (along the Z-axis direction). 33. The nonmagnetic layer 32 and the nonmagnetic layer 31 are laminated with a plurality of films in sequence. The magnetoresistance effect element MTJu is arranged in the order of the laminate 38, the laminate 37, the non-magnetic layer 36, the laminate 35, the non-magnetic layer 34 and the ferromagnetic layer from the bit line BL side to the word line WLu side (along the Z-axis direction). 33. The nonmagnetic layer 32 and the nonmagnetic layer 31 are laminated with a plurality of films in sequence. For example, the magnetoresistance effect elements MTJd and MTJu function as a perpendicular magnetization type MTJ element in which the magnetization directions of the magnetic bodies constituting the magnetoresistance effect elements MTJd and MTJu are respectively oriented to the vertical direction with respect to the film surface. In addition, the magnetoresistive effect element MTJ may include further layers (not shown) between the above-mentioned layers 31 to 38 .

於第1實施形態中,例如,採用於如此之磁阻效應元件MTJ中直接流通寫入電流,藉由該寫入電流向記憶層SL及參考層RL注入自旋轉矩,而控制記憶層SL之磁化方向及參考層RL之磁化方向之自旋注入寫入方式。磁阻效應元件MTJ可根據記憶層SL及參考層RL之磁化方向之相對關係為平行或反平行,而獲取低電阻狀態及高電阻狀態之任一狀態。In the first embodiment, for example, a writing current is directly passed through the magnetoresistive element MTJ, and the writing current is used to inject spin torque into the memory layer SL and the reference layer RL, thereby controlling the memory layer SL. The magnetization direction and the magnetization direction of the reference layer RL are spin injection writing methods. The magnetoresistive effect element MTJ can obtain either a low resistance state or a high resistance state according to whether the relative relationship between the magnetization directions of the memory layer SL and the reference layer RL is parallel or antiparallel.

若於磁阻效應元件MTJ中,於圖5之箭頭A1之方向、亦即自記憶層SL朝向參考層RL之方向,流通某一大小之寫入電流IwAPP,則記憶層SL及參考層RL之磁化方向之相對關為平行。於該平行狀態之情形下,磁阻效應元件MTJ之電阻值為最低,磁阻效應元件MTJ設定為低電阻狀態。該低電阻狀態被稱為「P(Parallel,平行)狀態」,被規定為例如資料″0″之狀態。If a write current IwAPP of a certain size flows in the magnetoresistive element MTJ in the direction of the arrow A1 in Figure 5, that is, from the memory layer SL toward the reference layer RL, then the memory layer SL and the reference layer RL The relative relationship between magnetization directions is parallel. In this parallel state, the resistance value of the magnetoresistive effect element MTJ is the lowest, and the magnetoresistive effect element MTJ is set to a low resistance state. This low-resistance state is called a "P (Parallel) state" and is defined as a state of data "0", for example.

又,若於磁阻效應元件MTJ中,於圖5之箭頭A2之方向、亦即自參考層RL朝向記憶層SL之方向(與箭頭A1為相反方向),流通較寫入電流IwAPP為大之寫入電流IwPAP,則記憶層SL及參考層RL之磁化方向之相對關為反平行。於該反平行狀態之情形下,磁阻效應元件MTJ之電阻值為最高,磁阻效應元件MTJ設定為高電阻狀態。該高電阻狀態被稱為「AP(Anti-Parallel,反平行)狀態」,被規定為例如資料″1″之狀態。Furthermore, in the magnetoresistive element MTJ, in the direction of arrow A2 in FIG. 5 , that is, in the direction from the reference layer RL toward the memory layer SL (the opposite direction to the arrow A1), a larger write current IwAPP flows. When the writing current IwPAP is applied, the relative relationship between the magnetization directions of the memory layer SL and the reference layer RL is antiparallel. In the case of this anti-parallel state, the resistance value of the magnetoresistive effect element MTJ is the highest, and the magnetoresistive effect element MTJ is set to a high resistance state. This high-resistance state is called an "AP (Anti-Parallel, anti-parallel) state" and is defined as a state of data "1", for example.

其次,針對磁阻效應元件MTJ之各層之構成之細節進行說明。Next, the details of the structure of each layer of the magnetoresistive effect element MTJ will be described.

非磁性層31為非磁性之導電體,具有作為提高磁阻效應元件MTJ之上端與位元線BL或字元線WL之電性連接性之上部電極(top electrode)之功能。非磁性層31例如包含選自鎢(W)、鉭(Ta)、鉬(Mo)、鉿(Hf)、釕(Ru)、氮化鉭(TaN)、鈦(Ti)、及氮化鈦(TiN)之至少1種元素或化合物。或,包含含有選自前述材料之至少一種元素或化合物之積層體。The non-magnetic layer 31 is a non-magnetic conductor and functions as a top electrode to improve the electrical connection between the upper end of the magnetoresistive element MTJ and the bit line BL or word line WL. The nonmagnetic layer 31 includes, for example, tungsten (W), tantalum (Ta), molybdenum (Mo), hafnium (Hf), ruthenium (Ru), tantalum nitride (TaN), titanium (Ti), and titanium nitride ( TiN) at least one element or compound. Or, it contains a layered body containing at least one element or compound selected from the aforementioned materials.

非磁性層32係非磁性體之層,具有抑制鐵磁性層33之阻尼常數之上升、且降低寫入電流之功能。非磁性層32例如包含鹼土類元素或稀土類元素及氧、或實質上包含鹼土類金屬氧化物或稀土類元素氧化物。作為一例,包含氧及鎂、或實質上包含氧化鎂(MgO)。同樣,包含氧及鋁、或實質上包含氧化鋁(Al 2O 3)。又,非磁性層32可為該等氧化物之混合物。亦即,非磁性層32不限於含有2種元素之二元化合物,可包含含有3種元素之三元化合物、例如氧化鎂鋁(MgAlO)等。 The nonmagnetic layer 32 is a nonmagnetic layer and has the function of suppressing an increase in the damping constant of the ferromagnetic layer 33 and reducing the write current. The nonmagnetic layer 32 contains, for example, an alkaline earth element or a rare earth element and oxygen, or substantially contains an alkaline earth metal oxide or a rare earth element oxide. As an example, it contains oxygen and magnesium, or substantially contains magnesium oxide (MgO). Likewise, it contains oxygen and aluminum, or substantially contains aluminum oxide (Al 2 O 3 ). In addition, the non-magnetic layer 32 may be a mixture of these oxides. That is, the nonmagnetic layer 32 is not limited to a binary compound containing two elements, but may include a ternary compound containing three elements, such as magnesium aluminum oxide (MgAlO).

鐵磁性層33具有鐵磁性,於垂直於膜面之方向具有易磁化軸向。鐵磁性層33具有沿Z軸朝向位元線BL側、字元線WL側之任一方向之磁化方向。鐵磁性層33可包含鐵(Fe)、鈷(Co)、及鎳(Ni)中至少任一種。又,鐵磁性層33可進一步包含硼(B)。更具體而言,例如,鐵磁性層33可包含鐵鈷硼(FeCoB)或硼化鐵(FeB),具有體心立方系之結晶構造。The ferromagnetic layer 33 has ferromagnetism and has an easy magnetization axis in the direction perpendicular to the film surface. The ferromagnetic layer 33 has a magnetization direction along the Z-axis toward either the bit line BL side or the word line WL side. The ferromagnetic layer 33 may include at least any one of iron (Fe), cobalt (Co), and nickel (Ni). In addition, the ferromagnetic layer 33 may further contain boron (B). More specifically, for example, the ferromagnetic layer 33 may include iron cobalt boron (FeCoB) or iron boride (FeB) and have a body-centered cubic crystal structure.

非磁性層34為非磁性之絕緣體,例如包含氧及鎂、或實質上包含氧化鎂(MgO)。非磁性層34具有膜面配向於(001)面之NaCl結晶構造,於鐵磁性層33之結晶化處理中,作為成為用於使結晶質之膜自與鐵磁性層33之界面生長之晶核之片材發揮功能。非磁性層34設置於鐵磁性層33與積層體35之間,與該等2個鐵磁體一起形成磁性穿隧接面。The nonmagnetic layer 34 is a nonmagnetic insulator, for example, containing oxygen and magnesium, or substantially containing magnesium oxide (MgO). The nonmagnetic layer 34 has a NaCl crystal structure in which the film surface is oriented to the (001) plane, and serves as a crystal nucleus for growing a crystalline film from the interface with the ferromagnetic layer 33 during the crystallization process of the ferromagnetic layer 33 The sheet material functions. The nonmagnetic layer 34 is provided between the ferromagnetic layer 33 and the laminate 35, and forms a magnetic tunnel junction together with the two ferromagnetic bodies.

積層體35可於整體上視為1個鐵磁性層,於垂直於膜面之方向具有易磁化軸向。積層體35具有沿Z軸朝向位元線BL側、字元線WL側之任一方向之磁化方向。積層體35之磁化方向被固定,於圖5之例中朝向積層體37之方向。此外,「磁化方向被固定」意指磁化方向不會因可使鐵磁性層33之磁化方向反轉之大小之電流(自旋轉矩)而變化。The laminate 35 can be regarded as a ferromagnetic layer as a whole, and has an easy magnetization axis in the direction perpendicular to the film surface. The laminated body 35 has a magnetization direction along the Z-axis toward either the bit line BL side or the word line WL side. The magnetization direction of the laminated body 35 is fixed and faces the direction of the laminated body 37 in the example of FIG. 5 . In addition, “the magnetization direction is fixed” means that the magnetization direction does not change due to a current (spin torque) of a magnitude that can reverse the magnetization direction of the ferromagnetic layer 33 .

更具體而言,積層體35包含:作為界面層IL(Interface layer)發揮功能之鐵磁性層35a、作為功能層FL(Function layer)發揮功能之非磁性層35b、及作為主參考層MRL(Main reference layer)發揮功能之鐵磁性層35c。例如,於非磁性層36之上表面與非磁性層34之下表面之間依序積層鐵磁性層35c、非磁性層35b、及鐵磁性層35a。More specifically, the laminated body 35 includes a ferromagnetic layer 35a functioning as an interface layer IL (Interface layer), a nonmagnetic layer 35b functioning as a functional layer FL (Function layer), and a main reference layer MRL (Main). Reference layer) functions as a ferromagnetic layer 35c. For example, a ferromagnetic layer 35c, a nonmagnetic layer 35b, and a ferromagnetic layer 35a are sequentially stacked between the upper surface of the nonmagnetic layer 36 and the lower surface of the nonmagnetic layer 34.

鐵磁性層35a係鐵磁性之導電體,例如可包含鐵(Fe)、鈷(Co)、及鎳(Ni)中至少任一種。又,鐵磁性層35a可進一步包含硼(B)。更具體而言,例如,鐵磁性層35a可包含鐵鈷硼(FeCoB)或硼化鐵(FeB),具有體心立方系之結晶構造。The ferromagnetic layer 35a is a ferromagnetic conductor, and may include at least any one of iron (Fe), cobalt (Co), and nickel (Ni), for example. In addition, the ferromagnetic layer 35a may further contain boron (B). More specifically, for example, the ferromagnetic layer 35a may include iron cobalt boron (FeCoB) or iron boride (FeB) and have a body-centered cubic crystal structure.

非磁性層35b係非磁性之導電體,例如可包含選自鉭(Ta)、鉿(Hf)、鎢(W)、鋯(Zr)、鉬(Mo)、鈮(Nb)、及鈦(Ti)之至少一種金屬。非磁性層35b具有維持鐵磁性層35a與鐵磁性層35c之間之交換耦合之功能。The non-magnetic layer 35b is a non-magnetic conductor, and may include, for example, tantalum (Ta), hafnium (Hf), tungsten (W), zirconium (Zr), molybdenum (Mo), niobium (Nb), and titanium (Ti). ) of at least one metal. The nonmagnetic layer 35b has the function of maintaining exchange coupling between the ferromagnetic layer 35a and the ferromagnetic layer 35c.

鐵磁性層35c例如可包含選自鈷(Co)與鉑(Pt)之多層膜(Co/Pt多層膜)、鈷(Co)與鎳(Ni)之多層膜(Co/Ni多層膜)、及鈷(Co)與鈀(Pd)之多層膜(Co/Pd多層膜)之至少1種多層膜。或,可為至少包含Co之CoPt、CoPd、CoNi膜、或Co單層膜。此外,構成鐵磁性層35c之多層膜或單層膜中與非磁性層36相接之層例如包含鈷(Co)。The ferromagnetic layer 35c may include, for example, a multilayer film of cobalt (Co) and platinum (Pt) (Co/Pt multilayer film), a multilayer film of cobalt (Co) and nickel (Ni) (Co/Ni multilayer film), and At least one type of multilayer film of cobalt (Co) and palladium (Pd) (Co/Pd multilayer film). Alternatively, it may be a CoPt, CoPd, CoNi film or a Co single-layer film containing at least Co. In addition, the layer in contact with the non-magnetic layer 36 among the multi-layer films or single-layer films constituting the ferromagnetic layer 35c contains, for example, cobalt (Co).

非磁性層36為非磁性之導電體,例如包含選自釕(Ru)、鋨(Os)、銠(Rh)、銥(Ir)、釩(V)、及鉻(Cr)之至少一種元素。非磁性層36具有使積層體35之磁化與積層體37之磁化反平行地耦合之功能。The nonmagnetic layer 36 is a nonmagnetic conductor, and includes, for example, at least one element selected from the group consisting of ruthenium (Ru), osmium (Os), rhodium (Rh), iridium (Ir), vanadium (V), and chromium (Cr). The nonmagnetic layer 36 has a function of coupling the magnetization of the laminated body 35 and the magnetization of the laminated body 37 antiparallelly.

積層體37可於整體上視為1個鐵磁性層,於垂直於膜面之方向具有易磁化軸向。積層體37具有沿Z軸朝向位元線BL側、字元線WL側之任一方向之磁化方向。積層體37之磁化方向與積層體35同樣地被固定,於圖5之例中朝向積層體35之方向。The laminate 37 can be regarded as a ferromagnetic layer as a whole, and has an easy magnetization axis in the direction perpendicular to the film surface. The laminated body 37 has a magnetization direction along the Z-axis toward either the bit line BL side or the word line WL side. The magnetization direction of the laminated body 37 is fixed similarly to the laminated body 35, and in the example of FIG. 5, it faces the direction of the laminated body 35.

更具體而言,積層體37包含各自作為多層膜ML(Multi-layer)之一發揮功能之鐵磁性層37a(ML1)、非磁性層37b(ML2)、鐵磁性層37c(ML3)、非磁性層37d(ML4)、鐵磁性層37e(ML5)、非磁性層37f(ML6)、鐵磁性層37g(ML7)、及非磁性層37h(ML8)。例如,於積層體38之上表面與非磁性層36之下表面之間,依序積層非磁性層37h、鐵磁性層37g、非磁性層37f、鐵磁性層37e、非磁性層37d、鐵磁性層37c、非磁性層37b、及鐵磁性層37a。More specifically, the laminated body 37 includes a ferromagnetic layer 37a (ML1), a nonmagnetic layer 37b (ML2), a ferromagnetic layer 37c (ML3), a nonmagnetic layer 37c (ML3), and a ferromagnetic layer 37c (ML3). Layer 37d (ML4), ferromagnetic layer 37e (ML5), nonmagnetic layer 37f (ML6), ferromagnetic layer 37g (ML7), and nonmagnetic layer 37h (ML8). For example, between the upper surface of the laminated body 38 and the lower surface of the nonmagnetic layer 36, a nonmagnetic layer 37h, a ferromagnetic layer 37g, a nonmagnetic layer 37f, a ferromagnetic layer 37e, a nonmagnetic layer 37d, and a ferromagnetic layer are sequentially laminated. Layer 37c, nonmagnetic layer 37b, and ferromagnetic layer 37a.

鐵磁性層37a係具有六方最密填充構造(hcp:Hexagonal close-packed)或面心立方(fcc:face-centered cubic)系之結晶構造之鐵磁性之導電體,例如包含鈷(Co)。鐵磁性層35c及37a藉由非磁性層36而反鐵磁性地耦合。亦即,鐵磁性層35c(更具體而言,構成鐵磁性層35c之多層膜中之與非磁性層36相接之層)、及鐵磁性層37a以具有相互反平行之磁化方向之方式耦合。因而,於圖5之例中,鐵磁性層35c及37a之磁化方向朝向相互對向之方向。將如此之鐵磁性層35c、非磁性層36、及鐵磁性層37a之耦合構造稱為SAF(Synthetic Anti-Ferromagnetic,合成反鐵磁體)構造。The ferromagnetic layer 37a is a ferromagnetic conductor having a hexagonal close-packed structure (hcp: Hexagonal close-packed) or a face-centered cubic (fcc: face-centered cubic) crystal structure, and contains, for example, cobalt (Co). Ferromagnetic layers 35c and 37a are antiferromagnetically coupled via nonmagnetic layer 36 . That is, the ferromagnetic layer 35c (more specifically, the layer in contact with the nonmagnetic layer 36 among the multilayer films constituting the ferromagnetic layer 35c) and the ferromagnetic layer 37a are coupled so as to have mutually antiparallel magnetization directions. . Therefore, in the example of FIG. 5 , the magnetization directions of the ferromagnetic layers 35 c and 37 a are in opposite directions to each other. Such a coupling structure of the ferromagnetic layer 35c, the nonmagnetic layer 36, and the ferromagnetic layer 37a is called a SAF (Synthetic Anti-Ferromagnetic) structure.

非磁性層37b係非磁性之導電體,包含鉑(Pt)。鐵磁性層37c係鐵磁性之導電體,包含鈷(Co)。非磁性層37d係非磁性之導電體,包含鉑(Pt)。鐵磁性層37e係鐵磁性之導電體,包含鈷(Co)。非磁性層37f係非磁性之導電體,包含鉑(Pt)。鐵磁性層37g係鐵磁性之導電體,包含鈷(Co)。非磁性層37h係非磁性之導電體,包含鉑(Pt)。非磁性層37h具有膜面配向於(111)面之面心立方系之結晶構造。The nonmagnetic layer 37b is a nonmagnetic conductor and includes platinum (Pt). The ferromagnetic layer 37c is a ferromagnetic conductor and contains cobalt (Co). The nonmagnetic layer 37d is a nonmagnetic conductor and contains platinum (Pt). The ferromagnetic layer 37e is a ferromagnetic conductor and contains cobalt (Co). The nonmagnetic layer 37f is a nonmagnetic conductor and includes platinum (Pt). The ferromagnetic layer 37g is a ferromagnetic conductor and contains cobalt (Co). The nonmagnetic layer 37h is a nonmagnetic conductor, including platinum (Pt). The nonmagnetic layer 37h has a face-centered cubic crystal structure in which the film surface is aligned with the (111) plane.

此外,於圖5之例中顯示在積層體37中,將磁性層及非磁性層之組積層4組之情形,但鐵磁性層及非磁性層之組可積層5組以上,亦可積層2~3組。亦即,積層複數次之鐵磁性層及非磁性層之組各者可形成鈷(Co)與鉑(Pt)之多層膜。In addition, in the example of FIG. 5 , the case where four sets of magnetic layers and non-magnetic layers are stacked on the laminate 37 is shown. However, five or more sets of ferromagnetic layers and non-magnetic layers may be stacked, or two sets may be stacked. ~3 groups. That is, a multilayer film of cobalt (Co) and platinum (Pt) can be formed by laminating a plurality of ferromagnetic layers and nonmagnetic layers.

根據以上之構成,積層體37可將積層體35之漏磁場對鐵磁性層33之磁化方向造成之影響抵消。因而,抑制因積層體35之漏磁場等,於鐵磁性層33之磁化之易反轉性產生非對稱性(亦即,鐵磁性層33之磁化之方向之反轉時之易反轉性於自一者向另一者反轉之情形、及其反向地反轉之情形下不同)。According to the above configuration, the laminated body 37 can offset the influence of the leakage magnetic field of the laminated body 35 on the magnetization direction of the ferromagnetic layer 33 . Therefore, it is suppressed that the leakage magnetic field of the laminated body 35 causes asymmetry in the easy reversal of the magnetization of the ferromagnetic layer 33 (that is, the easy reversal of the magnetization of the ferromagnetic layer 33 when the direction of the magnetization is reversed is suppressed). The situation of reversal from one to the other and the situation of reversal from one to the other are different).

積層體38可於整體上視為1個非磁性層,具有作為提高與位元線BL及字元線WL之電性連接性之電極之功能。具體而言,積層體38包含各自作為緩衝層BUF之一發揮功能之非磁性層38a(BUF1)、及非磁性層38b(BUF2)。例如,圖3及圖4之情形下,於半導體基板20與構成元件23之積層體37之下表面之間沿Z軸依序積層非磁性層38b、及非磁性層38a。又,於位元線BL與構成元件26之積層體37之下表面之間沿Z軸依序積層非磁性層38b、及非磁性層38a。The laminate 38 can be regarded as a non-magnetic layer as a whole, and has the function of an electrode to improve the electrical connection with the bit line BL and the word line WL. Specifically, the laminate 38 includes a nonmagnetic layer 38a (BUF1) and a nonmagnetic layer 38b (BUF2) that each function as one of the buffer layers BUF. For example, in the case of FIGS. 3 and 4 , the nonmagnetic layer 38b and the nonmagnetic layer 38a are sequentially stacked along the Z-axis between the semiconductor substrate 20 and the lower surface of the laminate 37 constituting the element 23 . Furthermore, a nonmagnetic layer 38b and a nonmagnetic layer 38a are sequentially stacked along the Z-axis between the bit line BL and the lower surface of the laminate 37 constituting the element 26.

非磁性層38a係金屬氧化膜。非磁性層38a係非磁性之導電體,電負性為1.8以下之金屬之氧化物、例如包含氧化釓(GdO x)或氧化鋁(AlO x)。非磁性層38a之厚度例如為1.0 nm。非磁性層38a具有非晶質構造,且與如鉑(Pt)之貴金屬之鍵結能較小。藉此,非磁性層38a具有於非磁性層37h之成膜時促進非磁性層37h之結晶化之功能。 The nonmagnetic layer 38a is a metal oxide film. The nonmagnetic layer 38a is a nonmagnetic conductor, and is a metal oxide with an electronegativity of 1.8 or less, such as gallium oxide (GdO x ) or aluminum oxide (AlO x ). The thickness of the nonmagnetic layer 38a is, for example, 1.0 nm. The nonmagnetic layer 38a has an amorphous structure and has a small bonding energy with a noble metal such as platinum (Pt). Thereby, the nonmagnetic layer 38a has the function of promoting the crystallization of the nonmagnetic layer 37h during the film formation of the nonmagnetic layer 37h.

非磁性層38b係非磁性之導電體,包含選自氮化鈦(TiN)、氮化鉿(HfN)、窒化鋯(ZrN)、氮化鉭(TaN)、及氮化鎢(WN)之至少一種化合物。The nonmagnetic layer 38b is a nonmagnetic conductor, including at least one selected from the group consisting of titanium nitride (TiN), hafnium nitride (HfN), zirconium nitride (ZrN), tantalum nitride (TaN), and tungsten nitride (WN). A compound.

[1-2]效果 根據第1實施形態,可提高磁阻效應元件之外部磁場耐性。 [1-2]Effect According to the first embodiment, the external magnetic field resistance of the magnetoresistive effect element can be improved.

磁阻效應元件MTJ之參考層於寫入、讀出時及記憶保持時,必須磁化不反轉。為了抑制參考層之寫入、讀出時及記憶保持時之誤反轉,而必須提高對於參考層反平行地磁性耦合之移位消除層之各向異性磁場。The reference layer of the magnetoresistive element MTJ must be magnetized and not reversed during writing, reading and memory retention. In order to suppress false inversion during writing, reading and memory retention of the reference layer, it is necessary to increase the anisotropic magnetic field of the shift cancellation layer that is magnetically coupled anti-parallel to the reference layer.

圖6係用於說明第1實施形態之移位消除層之元件加工之前之膜特性與加工後之元件特性之關係之曲線圖。橫軸表示移位消除層之膜之各向異性磁場(Hk)。縱軸表示移位消除層之膜之保磁力(Hc)。鏈線表示在參考層與移位消除層維持反平行不變下反轉之元件之自旋反轉(Spin-flip)磁場(Hsw)與某一值Hsw0相等之線。值Hsw0例如係於複數個元件之自旋反轉(Spin-flip)磁場(Hsw)正態分佈時以-3σ之概率存在之元件之Hsw。於較鏈線為右側,-3σ之元件之自旋反轉(Spin-flip)磁場(Hsw)高於值Hsw0,於較鏈線為左側,-3σ之元件之自旋反轉(Spin-flip)磁場(Hsw)低於值Hsw0。於圖6中顯示2個標繪點P1及P2。標繪點P1表示於緩衝層未使用金屬氧化物之比較例。標繪點P1之元件之自旋反轉(Spin-flip)磁場(Hsw)低於值Hsw0。標繪點P2對應於第1實施形態。標繪點P2相較於標繪點P1,移位消除層之各向異性磁場(Hk)為高,元件之自旋反轉(Spin-flip)磁場(Hsw)高於值Hsw0。如此,根據第1實施形態,藉由維持作為元件加工之前之膜特性之移位消除層之保磁力(Hc),且提高各向異性磁場(Hk),而可提高以-3σ之概率存在之元件之自旋反轉(Spin-flip)磁場(Hsw)。FIG. 6 is a graph illustrating the relationship between the film properties of the shift eliminating layer of the first embodiment before device processing and the device properties after processing. The horizontal axis represents the anisotropic magnetic field (Hk) of the film of the displacement elimination layer. The vertical axis represents the coercive force (Hc) of the film of the displacement elimination layer. The chain line represents the line where the spin-flip magnetic field (Hsw) of the inverted element is equal to a certain value Hsw0 when the reference layer and the shift cancellation layer remain anti-parallel. The value Hsw0 is, for example, the Hsw of an element that exists with a probability of -3σ when the spin-flip magnetic field (Hsw) of multiple elements is normally distributed. On the right side of the hinge line, the spin-flip magnetic field (Hsw) of the -3σ component is higher than the value Hsw0. On the left side of the hinge line, the spin-flip magnetic field (Hsw) of the -3σ component ) magnetic field (Hsw) is lower than the value Hsw0. In Figure 6, two plot points P1 and P2 are shown. Plotted point P1 represents a comparative example in which no metal oxide is used in the buffer layer. The spin-flip magnetic field (Hsw) of the element plotted at point P1 is lower than the value Hsw0. Plot point P2 corresponds to the first embodiment. Compared with the plotted point P1, the anisotropic magnetic field (Hk) of the shift cancellation layer is higher at plot point P2, and the spin-flip magnetic field (Hsw) of the element is higher than the value Hsw0. In this way, according to the first embodiment, by maintaining the coercive force (Hc) of the displacement elimination layer, which is a film characteristic before device processing, and increasing the anisotropic magnetic field (Hk), the probability of existence at -3σ can be increased. The spin-flip magnetic field (Hsw) of the component.

移位消除層之各向異性磁場係若移位消除層之結晶性提高則變高。於第1實施形態中,對於與移位消除層鄰接之緩衝層之非磁性層38a,使用具有非晶質構造之電陰性為1.8以下之金屬之氧化物。又,鄰接之移位消除層之非磁性層37h包含鉑(Pt)。非晶質構造之金屬氧化物與鉑(Pt)之結合能小。進而,鉑(Pt)優先配向於(111)面。因而,於鄰接於非晶質構造之非磁性層38a之非磁性層37h中,促進鉑(Pt)之結晶化。因此,根據第1實施形態,可設置結晶性高之移位消除層、亦即各向異性磁場高之移位消除層。The anisotropic magnetic field of the shift canceling layer becomes higher when the crystallinity of the shift canceling layer is increased. In the first embodiment, for the nonmagnetic layer 38a of the buffer layer adjacent to the shift elimination layer, a metal oxide having an amorphous structure and a negative conductivity of 1.8 or less is used. In addition, the nonmagnetic layer 37h adjacent to the shift elimination layer contains platinum (Pt). The binding energy between metal oxides with an amorphous structure and platinum (Pt) is small. Furthermore, platinum (Pt) is preferentially aligned on the (111) plane. Therefore, the crystallization of platinum (Pt) is promoted in the nonmagnetic layer 37h adjacent to the nonmagnetic layer 38a of an amorphous structure. Therefore, according to the first embodiment, it is possible to provide a shift cancellation layer with high crystallinity, that is, a shift cancellation layer with a high anisotropic magnetic field.

如此,根據第1實施形態,可設置各向異性磁場高之移位消除層,由於參考層之反轉磁場變高,故可提高磁阻效應元件MTJ之外部磁場耐性。In this way, according to the first embodiment, a shift cancellation layer with a high anisotropic magnetic field can be provided. Since the reversal magnetic field of the reference layer becomes high, the external magnetic field resistance of the magnetoresistive element MTJ can be improved.

此外,作為設置結晶性高之移位消除層之方法,亦考量於緩衝層設置2.0 nm左右之厚度之鉑(Pt)、釕(Ru)、銥(Ir)等之層之方法。於第1實施形態中,非磁性層38a之厚度例如為1.0 nm,較設置2.0 nm左右之厚度之鉑(Pt)、釕(Ru)、銥(Ir)等之層之情形,可減薄緩衝層。藉此,第1實施形態之磁性記憶裝置可將磁阻效應元件MTJ進一步高積體化。In addition, as a method of providing a shift elimination layer with high crystallinity, a method of providing a layer of platinum (Pt), ruthenium (Ru), iridium (Ir), etc. with a thickness of approximately 2.0 nm is also considered in the buffer layer. In the first embodiment, the thickness of the non-magnetic layer 38a is, for example, 1.0 nm. Compared with the case where a layer of platinum (Pt), ruthenium (Ru), iridium (Ir), etc. is provided with a thickness of about 2.0 nm, the buffer can be thinned. layer. Thereby, the magnetic memory device of the first embodiment can further integrate the magnetoresistive effect element MTJ into a higher density.

[2]第2實施形態 第2實施形態之磁性記憶裝置相對於第1實施形態之磁性記憶裝置,磁阻效應元件MTJ之積層體38之構成不同。以下,針對第2實施形態之磁阻效應元件,說明與第1實施形態不同之點。 [2] Second embodiment The magnetic memory device of the second embodiment is different from the magnetic memory device of the first embodiment in the structure of the laminate 38 of the magnetoresistive effect element MTJ. Hereinafter, the differences between the magnetoresistive effect element of the second embodiment and the first embodiment will be described.

[2-1]構成 [2-1-1]磁阻效應元件 圖7係用於說明第2實施形態之磁性記憶裝置之磁阻效應元件之構成之剖視圖。第2實施形態之磁阻效應元件相對於第1實施形態之磁阻效應元件,積層體38進一步包含非磁性層38c之點不同。 [2-1]Composition [2-1-1] Magnetoresistive effect element 7 is a cross-sectional view for explaining the structure of the magnetoresistance effect element of the magnetic memory device according to the second embodiment. The magnetoresistive effect element of the second embodiment is different from the magnetoresistive effect element of the first embodiment in that the laminate 38 further includes a non-magnetic layer 38c.

積層體38可於整體上視為1個非磁性層,具有作為提高與位元線BL及字元線WL之電性連接性之電極之功能。具體而言,積層體38包含各自作為緩衝層BUF之一發揮功能之非磁性層38a(BUF1)、非磁性層38c(BUF3)、及非磁性層38b(BUF2)。例如,圖3及圖4之情形下,於半導體基板20與構成元件23之積層體37之下表面之間沿Z軸依序積層非磁性層38b、及非磁性層38a。又,於位元線BL與構成元件26之積層體37之下表面之間沿Z軸依序積層非磁性層38b、及非磁性層38a。The laminate 38 can be regarded as a non-magnetic layer as a whole, and has the function of an electrode to improve the electrical connection with the bit line BL and the word line WL. Specifically, the laminate 38 includes a nonmagnetic layer 38a (BUF1), a nonmagnetic layer 38c (BUF3), and a nonmagnetic layer 38b (BUF2) that each function as one of the buffer layers BUF. For example, in the case of FIGS. 3 and 4 , the nonmagnetic layer 38b and the nonmagnetic layer 38a are sequentially stacked along the Z-axis between the semiconductor substrate 20 and the lower surface of the laminate 37 constituting the element 23 . Furthermore, a nonmagnetic layer 38b and a nonmagnetic layer 38a are sequentially stacked along the Z-axis between the bit line BL and the lower surface of the laminate 37 constituting the element 26.

非磁性層38c係非磁性之導電體,包含選自鈦(Ti)、鋯(Zr)、鉿(Hf)、釩(V)、鈮(Nb)、鉭(Ta)、鉻(Cr)、鉬(Mo)、鎢(W)、碳(C)、矽(Si)、及鍺(Ge)之至少1種元素。非磁性層38b具有降低積層體38之電阻之功能。The non-magnetic layer 38c is a non-magnetic conductor, including titanium (Ti), zirconium (Zr), hafnium (Hf), vanadium (V), niobium (Nb), tantalum (Ta), chromium (Cr), molybdenum At least one element of (Mo), tungsten (W), carbon (C), silicon (Si), and germanium (Ge). The nonmagnetic layer 38b has the function of reducing the resistance of the laminated body 38.

第2實施形態之磁阻效應元件之其他構成與第1實施形態同樣。The other structures of the magnetoresistive effect element of the second embodiment are the same as those of the first embodiment.

[2-2]效果 根據第2實施形態,與第1實施形態同樣地,可提高磁阻效應元件之外部磁場耐性。進而,根據第2實施形態,可抑制MR比之降低。 [2-2]Effect According to the second embodiment, similarly to the first embodiment, the external magnetic field resistance of the magnetoresistive effect element can be improved. Furthermore, according to the second embodiment, it is possible to suppress a decrease in the MR ratio.

於第2實施形態中,在非晶質構造之非磁性層38a之下設置非磁性層38c。藉由設置非磁性層38c,而降低積層體38之電阻。藉此,可抑制磁阻效應元件MTJ之高電阻狀態之電阻值、與低電阻狀態之電阻值之比率、亦即MR比降低。In the second embodiment, the nonmagnetic layer 38c is provided under the nonmagnetic layer 38a of an amorphous structure. By providing the nonmagnetic layer 38c, the resistance of the laminated body 38 is reduced. Thereby, the ratio of the resistance value in the high-resistance state and the resistance value in the low-resistance state of the magnetoresistive effect element MTJ, that is, the MR ratio can be suppressed from decreasing.

[3]其他 上述之實施形態所述之記憶胞MC針對將磁阻效應元件MTJ設置於開關元件SEL之上方之情形進行了說明,但可將磁阻效應元件MTJ設置於開關元件SEL之下方。 [3]Others The memory cell MC described in the above-mentioned embodiment has been described in the case where the magnetoresistive effect element MTJ is disposed above the switching element SEL. However, the magnetoresistive effect element MTJ may be disposed below the switching element SEL.

於上述之實施形態中,針對在開關元件SEL之上表面上設置磁阻效應元件MTJ之情形進行了說明,但可於開關元件SEL與磁阻效應元件MTJ之間設置導電體。圖8及圖9顯示用於說明變化例之磁性記憶裝置之記憶胞陣列之構成之剖視圖之一例。圖8所示之剖面對應於圖3所示之剖面。圖9所示之剖面對應於圖4所示之剖面。於複數個元件22各者之上表面上分別設置導電體28。導電體28具有導電性。於複數個導電體28各者之上表面上設置元件23。於複數個元件25各者之上表面上分別設置導電體29。導電體29具有導電性。於複數個導電體29各者之上表面上設置元件26。變化例之磁性記憶裝置之其他構成與第1實施形態之磁性記憶裝置同樣。根據變化例,亦與第1實施形態或第2實施形態同樣地,可提高磁阻效應元件之外部磁場耐性。In the above embodiment, the case where the magnetoresistive effect element MTJ is provided on the upper surface of the switching element SEL has been described. However, a conductor may be provided between the switching element SEL and the magnetoresistive effect element MTJ. 8 and 9 show an example of a cross-sectional view for explaining the structure of a memory cell array of a magnetic memory device according to a modified example. The cross-section shown in FIG. 8 corresponds to the cross-section shown in FIG. 3 . The cross-section shown in Figure 9 corresponds to the cross-section shown in Figure 4. Conductors 28 are respectively provided on the upper surfaces of each of the plurality of components 22 . The electrical conductor 28 has electrical conductivity. The element 23 is provided on the upper surface of each of the plurality of conductors 28 . Conductors 29 are respectively provided on the upper surfaces of each of the plurality of elements 25 . The conductor 29 has electrical conductivity. The element 26 is provided on the upper surface of each of the plurality of conductors 29 . The other structures of the magnetic memory device of the modified example are the same as those of the magnetic memory device of the first embodiment. According to the modified example, similarly to the first embodiment or the second embodiment, the external magnetic field resistance of the magnetoresistive effect element can be improved.

於上述之實施形態中,針對積層體38包含非磁性層38b之情形進行了說明,但可省略非磁性層38b。例如,於在第1實施形態中省略非磁性層38b之情形下,磁阻效應元件MTJ之下端為非磁性層38a。例如,於在第2實施形態中省略非磁性層38b之情形下,磁阻效應元件MTJ之下端為非磁性層38c。磁阻效應元件MTJ之下端於上述之實施形態所示之例中連接於開關元件SEL。磁阻效應元件MTJ之下端於將磁阻效應元件MTJ設置於開關元件SEL之下方之情形下連接於字元線WL或位元線BL。磁阻效應元件MTJ之下端於將磁阻效應元件MTJ設置於開關元件SEL之上方,且於開關元件SEL與磁阻效應元件MTJ之間設置有導電體之情形下,連接於導電體。In the above embodiment, the case where the laminated body 38 includes the nonmagnetic layer 38b has been described, but the nonmagnetic layer 38b may be omitted. For example, when the nonmagnetic layer 38b is omitted in the first embodiment, the lower end of the magnetoresistance effect element MTJ is the nonmagnetic layer 38a. For example, when the nonmagnetic layer 38b is omitted in the second embodiment, the lower end of the magnetoresistance effect element MTJ is the nonmagnetic layer 38c. The lower end of the magnetoresistance effect element MTJ is connected to the switching element SEL in the example shown in the above-mentioned embodiment. The lower end of the magnetoresistive effect element MTJ is connected to the word line WL or the bit line BL when the magnetoresistive effect element MTJ is disposed below the switching element SEL. The lower end of the magnetoresistive effect element MTJ is connected to the conductor when the magnetoresistive effect element MTJ is disposed above the switching element SEL and a conductor is disposed between the switching element SEL and the magnetoresistive effect element MTJ.

於本說明書中,″連接″表示電性連接,例如不排除在其間經由其他元件。又,″電性連接″只要可與經電性連接者同樣地動作,則可經由絕緣體。In this specification, "connection" means electrical connection, for example, it does not exclude the use of other components therebetween. In addition, "electrical connection" may be through an insulator as long as it can operate in the same manner as an electrical connection.

說明了本發明之若干個實施形態,但該等實施形態係作為例子而提出者,並非意欲限定發明之範圍。該等新穎之實施形態可以其他各種形態實施,於不脫離發明之要旨之範圍內可進行各種省略、置換、變更。該等實施形態及其變化,包含於發明之範圍及要旨內,且包含於申請專利範圍所記載之發明及其均等之範圍內。Several embodiments of the present invention have been described, but these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, substitutions, and changes can be made without departing from the gist of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are included in the scope of the invention described in the patent application and their equivalent scope.

[相關申請案之參照] 本發明申請案享有以日本專利申請案2022-046633號(申請日:2022年3月23日)及美國專利申請案17/942365(申請日:2022年9月12日)為基礎申請案之優先權。本發明申請案藉由參照該基礎申請案而包含基礎申請案之全部內容。 [Reference to related applications] The application for this invention enjoys the priority of applications based on Japanese Patent Application No. 2022-046633 (filing date: March 23, 2022) and US Patent Application No. 17/942365 (filing date: September 12, 2022). right. The present application includes the entire contents of the basic application by reference to the basic application.

1:磁性記憶裝置 10:記憶胞陣列 11:列選擇電路 12:行選擇電路 13:解碼電路 14:寫入電路 15:讀出電路 16:電壓產生電路 17:輸入輸出電路 18:控制電路 20:半導體基板 21:導電體 22,23,25,26:元件 24,27,28,29:導電體 31,32,34,35b,36,37b,37d,37f,37h,38a,38b,38c,BUF1,BUF2,BUF3,ML2,ML4,ML6,ML8:非磁性層 33,35a,35c,37a,37c,37e,37g,ML1,ML3,ML5,ML7:鐵磁性層 35,37,38:積層體 A1,A2:箭頭 ADD:位址 AP:反平行 BL,BL<0>~BL<N>:位元線 BUF:緩衝層 CAP:覆蓋層 CNT:控制信號 CMD:指令 DAT:資料 FL:功能層 IL:界面層 MC,MCd<0,0>~MCd<0,N>,MCd<1,0>~MCd<1,N>,MCd<M,0>~MCd<M,N>,MCu<0,0>~MCu<0,N>,MCu<1,0>~MCu<1,N>,MCu<M,0>~MCu<M,N>:記憶胞 MRL:主參考層 MTJ,MTJd,MTJd<0,0>,MTJu,MTJu<0,0>:磁阻效應元件 P:平行 P1,P2:標繪點 RL:參考層 SCL:移位消除層 SELd,SELd<0,0>,SELu,SELu<0,0>:開關元件 SL:記憶層 SP:間隔層 TB:穿隧障壁層 TOP:頂層 WL,WLd,WLd<0>~WLd<M>,WLu,WLu<0>~WLu<M>:字元線 X,Y,Z:軸 1: Magnetic memory device 10: Memory cell array 11: Column selection circuit 12: Row selection circuit 13: Decoding circuit 14:Writing circuit 15: Readout circuit 16: Voltage generation circuit 17: Input and output circuit 18:Control circuit 20:Semiconductor substrate 21:Conductor 22,23,25,26: components 24,27,28,29: conductor 31,32,34,35b,36,37b,37d,37f,37h,38a,38b,38c,BUF1,BUF2,BUF3,ML2,ML4,ML6,ML8: non-magnetic layer 33,35a,35c,37a,37c,37e,37g,ML1,ML3,ML5,ML7: ferromagnetic layer 35,37,38:Laminated body A1,A2: arrow ADD:address AP: anti-parallel BL, BL<0>~BL<N>: bit lines BUF: buffer layer CAP: covering layer CNT: control signal CMD: command DAT:data FL: functional layer IL: interface layer MC,MCd<0,0>~MCd<0,N>,MCd<1,0>~MCd<1,N>,MCd<M,0>~MCd<M,N>,MCu<0,0> ~MCu<0,N>,MCu<1,0>~MCu<1,N>,MCu<M,0>~MCu<M,N>: memory cells MRL: main reference layer MTJ, MTJd, MTJd<0,0>, MTJu, MTJu<0,0>: magnetoresistive effect element P: parallel P1, P2: plot points RL: reference layer SCL: shift cancellation layer SELd, SELd<0,0>, SELu, SELu<0,0>: switching element SL: memory layer SP: spacer layer TB: tunneling barrier layer TOP: Top level WL, WLd, WLd<0>~WLd<M>, WLu, WLu<0>~WLu<M>: word lines X,Y,Z: axis

圖1係顯示第1實施形態之磁性記憶裝置之構成之方塊圖。 圖2係顯示第1實施形態之磁性記憶裝置之記憶胞陣列之構成之電路圖。 圖3係用於說明第1實施形態之磁性記憶裝置之記憶胞陣列之構成之剖視圖。 圖4係用於說明第1實施形態之磁性記憶裝置之記憶胞陣列之構成之剖視圖。 圖5係用於說明第1實施形態之磁性記憶裝置之磁阻效應元件之構成之剖視圖。 圖6係用於說明第1實施形態之移位消除層之元件加工之前之膜特性與加工後之元件特性之關係之曲線圖。 圖7係用於說明第2實施形態之磁性記憶裝置之磁阻效應元件之構成之剖視圖。 圖8係用於說明變化例之磁性記憶裝置之記憶胞陣列之構成之剖視圖。 圖9係用於說明變化例之磁性記憶裝置之記憶胞陣列之構成之剖視圖。 FIG. 1 is a block diagram showing the structure of the magnetic memory device according to the first embodiment. FIG. 2 is a circuit diagram showing the structure of the memory cell array of the magnetic memory device according to the first embodiment. FIG. 3 is a cross-sectional view illustrating the structure of the memory cell array of the magnetic memory device according to the first embodiment. FIG. 4 is a cross-sectional view illustrating the structure of the memory cell array of the magnetic memory device according to the first embodiment. FIG. 5 is a cross-sectional view for explaining the structure of the magnetoresistance effect element of the magnetic memory device according to the first embodiment. FIG. 6 is a graph illustrating the relationship between the film properties of the shift eliminating layer of the first embodiment before device processing and the device properties after processing. 7 is a cross-sectional view for explaining the structure of the magnetoresistance effect element of the magnetic memory device according to the second embodiment. 8 is a cross-sectional view illustrating the structure of a memory cell array of a magnetic memory device according to a modified example. FIG. 9 is a cross-sectional view illustrating the structure of a memory cell array of a magnetic memory device according to a modified example.

31,32,34,35b,36,37b,37d,37f,37h,38a,38b,BUF1,BUF2,ML2,ML4,ML6,ML8:非磁性層 31,32,34,35b,36,37b,37d,37f,37h,38a,38b,BUF1,BUF2,ML2,ML4,ML6,ML8: non-magnetic layer

33,35a,35c,37a,37c,37e,37g,ML1,ML3,ML5,ML7:鐵磁性層 33,35a,35c,37a,37c,37e,37g,ML1,ML3,ML5,ML7: ferromagnetic layer

35,37,38:積層體 35,37,38:Laminated body

A1,A2:箭頭 A1,A2: arrow

AP:反平行 AP: anti-parallel

BUF:緩衝層 BUF: buffer layer

CAP:覆蓋層 CAP: covering layer

FL:功能層 FL: functional layer

IL:界面層 IL: interface layer

MRL:主參考層 MRL: main reference layer

MTJ:磁阻效應元件 MTJ: magnetoresistance element

P:平行 P: parallel

RL:參考層 RL: reference layer

SCL:移位消除層 SCL: shift cancellation layer

SL:記憶層 SL: memory layer

SP:間隔層 SP: spacer layer

TB:穿隧障壁層 TB: tunneling barrier layer

TOP:頂層 TOP: Top level

X,Y,Z:軸 X,Y,Z: axis

Claims (15)

一種磁性記憶裝置,其包含磁阻效應元件;且 前述磁阻效應元件包含: 第1鐵磁性層; 第2鐵磁性層; 積層體,其對於前述第2鐵磁性層設置於與前述第1鐵磁性層為相反側; 第1非磁性層,其設置於前述第1鐵磁性層與前述第2鐵磁性層之間; 第2非磁性層,其設置於前述第2鐵磁性層與前述積層體之間;及 第3非磁性層,其對於前述積層體設置於與前述第2非磁性層為相反側,且包含金屬氧化物;且 前述積層體包含與前述第3非磁性層相接、且包含鉑(Pt)之第4非磁性層。 A magnetic memory device including a magnetoresistive effect element; and The aforementioned magnetoresistive effect elements include: 1st ferromagnetic layer; 2nd ferromagnetic layer; A laminate in which the second ferromagnetic layer is provided on the opposite side to the first ferromagnetic layer; a first nonmagnetic layer disposed between the first ferromagnetic layer and the second ferromagnetic layer; a second nonmagnetic layer provided between the second ferromagnetic layer and the laminate; and a third nonmagnetic layer, which is provided on the opposite side of the laminate to the second nonmagnetic layer and contains a metal oxide; and The laminated body includes a fourth nonmagnetic layer that is in contact with the third nonmagnetic layer and contains platinum (Pt). 如請求項1之磁性記憶裝置,其中前述第3非磁性層包含釓(Gd)或鋁(Al)。The magnetic memory device of claim 1, wherein the third non-magnetic layer contains gallium (Gd) or aluminum (Al). 如請求項1之磁性記憶裝置,其中前述第3非磁性層包含電陰性小於1.8之金屬元素之氧化物。The magnetic memory device of claim 1, wherein the third non-magnetic layer contains an oxide of a metal element with a negative electronegativity less than 1.8. 如請求項1之磁性記憶裝置,其中前述積層體進一步包含: 第3鐵磁性層,其對於前述第4非磁性層在與前述第3非磁性層為相反側與前述第4非磁性層相接; 第5非磁性層,其對於前述第3鐵磁性層在與前述第4非磁性層為相反側與前述第3鐵磁性層相接;及 第4鐵磁性層,其對於前述第5非磁性層在與前述第3鐵磁性層為相反側與前述第5非磁性層相接。 The magnetic memory device of claim 1, wherein the aforementioned laminate further includes: a third ferromagnetic layer, which is in contact with the fourth non-magnetic layer on the opposite side to the third non-magnetic layer; a fifth nonmagnetic layer that is in contact with the third ferromagnetic layer on the opposite side to the fourth nonmagnetic layer from the third ferromagnetic layer; and The fourth ferromagnetic layer is in contact with the fifth nonmagnetic layer on the opposite side to the third ferromagnetic layer from the fifth nonmagnetic layer. 如請求項4之磁性記憶裝置,其中前述第5非磁性層包含鉑(Pt);且 前述第3鐵磁性層及前述第4鐵磁性層包含鈷(Co)。 The magnetic memory device of claim 4, wherein the fifth non-magnetic layer contains platinum (Pt); and The third ferromagnetic layer and the fourth ferromagnetic layer contain cobalt (Co). 如請求項1之磁性記憶裝置,其中前述積層體進一步包含: 第3鐵磁性層,其對於前述第4非磁性層在與前述第3非磁性層為相反側與前述第4非磁性層相接;及 子積層體,其對於前述第3鐵磁性層在與前述第4非磁性層為相反側與前述第3鐵磁性層相接;且 前述子積層體包含複數個第6非磁性層、及複數個第5鐵磁性層; 前述子積層體具有積層複數組將前述第6非磁性層與前述第5鐵磁性層自前述第3鐵磁性層側依照前述第6非磁性層、前述第5鐵磁性層之順序而積層之組之構造。 The magnetic memory device of claim 1, wherein the aforementioned laminate further includes: a third ferromagnetic layer, which is in contact with the fourth non-magnetic layer on the opposite side to the aforementioned third non-magnetic layer; and A sub-laminated body in which the third ferromagnetic layer is in contact with the third ferromagnetic layer on the side opposite to the fourth non-magnetic layer; and The aforementioned sub-laminated body includes a plurality of sixth non-magnetic layers and a plurality of fifth ferromagnetic layers; The sub-laminated body has a plurality of laminated groups in which the sixth nonmagnetic layer and the fifth ferromagnetic layer are laminated in the order of the sixth nonmagnetic layer and the fifth ferromagnetic layer from the side of the third ferromagnetic layer. its structure. 如請求項6之磁性記憶裝置,其中前述第6非磁性層包含鉑(Pt);且 前述第3鐵磁性層及前述第5鐵磁性層包含鈷(Co)。 The magnetic memory device of claim 6, wherein the sixth non-magnetic layer contains platinum (Pt); and The third ferromagnetic layer and the fifth ferromagnetic layer contain cobalt (Co). 如請求項1之磁性記憶裝置,其中前述磁阻效應元件進一步包含第7非磁性層,該第7非磁性層對於前述第3非磁性層在與前述積層體為相反側與前述第3非磁性層相接;且 前述第7非磁性層包含選自氮化鈦(TiN)、氮化鉿(HfN)、窒化鋯(ZrN)、氮化鉭(TaN)、及氮化鎢(WN)之至少一種化合物。 The magnetic memory device of claim 1, wherein the magnetoresistive effect element further includes a seventh nonmagnetic layer, and the seventh nonmagnetic layer is opposite to the third nonmagnetic layer from the laminate on the opposite side to the third nonmagnetic layer. layers are connected; and The seventh nonmagnetic layer includes at least one compound selected from titanium nitride (TiN), hafnium nitride (HfN), zirconium sulfide (ZrN), tantalum nitride (TaN), and tungsten nitride (WN). 如請求項1之磁性記憶裝置,其中前述磁阻效應元件進一步包含第8非磁性層,該第8非磁性層對於前述第3非磁性層在與前述積層體為相反側與前述第3非磁性層相接;且 前述第8非磁性層包含選自鈦(Ti)、鋯(Zr)、鉿(Hf)、釩(V)、鈮(Nb)、鉭(Ta)、鉻(Cr)、鉬(Mo)、鎢(W)、碳(C)、矽(Si)、及鍺(Ge)之至少1種元素。 The magnetic memory device of claim 1, wherein the magnetoresistance effect element further includes an eighth nonmagnetic layer, and the eighth nonmagnetic layer is opposite to the third nonmagnetic layer from the laminate on the opposite side to the third nonmagnetic layer. layers are connected; and The aforementioned eighth non-magnetic layer includes titanium (Ti), zirconium (Zr), hafnium (Hf), vanadium (V), niobium (Nb), tantalum (Ta), chromium (Cr), molybdenum (Mo), tungsten At least one element of (W), carbon (C), silicon (Si), and germanium (Ge). 如請求項9之磁性記憶裝置,其中前述磁阻效應元件進一步包含第9非磁性層,該第9非磁性層對於前述第8非磁性層在與前述第3非磁性層為相反側與前述第8非磁性層相接;且 前述第9非磁性層包含選自氮化鈦(TiN)、氮化鉿(HfN)、窒化鋯(ZrN)、氮化鉭(TaN)、及氮化鎢(WN)之至少一種化合物。 The magnetic memory device of claim 9, wherein the magnetoresistive effect element further includes a ninth non-magnetic layer, and the ninth non-magnetic layer is on the opposite side of the aforementioned third non-magnetic layer to the aforementioned eighth non-magnetic layer and the aforementioned third non-magnetic layer. 8 non-magnetic layers are connected; and The ninth nonmagnetic layer includes at least one compound selected from titanium nitride (TiN), hafnium nitride (HfN), zirconium nitride (ZrN), tantalum nitride (TaN), and tungsten nitride (WN). 如請求項1之磁性記憶裝置,其中前述第3非磁性層係非晶質。The magnetic memory device of claim 1, wherein the third non-magnetic layer is amorphous. 如請求項1之磁性記憶裝置,其中前述第2非磁性層包含選自釕(Ru)、鋨(Os)、銠(Rh)、銥(Ir)、釩(V)、及鉻(Cr)之至少一種元素。The magnetic memory device of claim 1, wherein the second non-magnetic layer includes a material selected from the group consisting of ruthenium (Ru), osmium (Os), rhodium (Rh), iridium (Ir), vanadium (V), and chromium (Cr). At least one element. 如請求項1之磁性記憶裝置,其中前述第1非磁性層包含氧化鎂(MgO)。The magnetic memory device of claim 1, wherein the first non-magnetic layer contains magnesium oxide (MgO). 如請求項1之磁性記憶裝置,其進一步包含基板;且 在與前述基板之表面垂直之方向,依序設置有前述基板、前述第3非磁性層、前述積層體、前述第2非磁性層、前述第2鐵磁性層、前述第1非磁性層、前述第1鐵磁性層。 The magnetic memory device of claim 1, further comprising a substrate; and In a direction perpendicular to the surface of the substrate, the substrate, the third nonmagnetic layer, the laminated body, the second nonmagnetic layer, the second ferromagnetic layer, the first nonmagnetic layer, and the 1st ferromagnetic layer. 如請求項14之磁性記憶裝置,其中前述基板不與前述第3非磁性層相接。The magnetic memory device of claim 14, wherein the substrate is not in contact with the third non-magnetic layer.
TW112103874A 2022-03-23 2023-02-03 magnetic memory device TW202404105A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-046633 2022-03-23
JP2022046633A JP2023140671A (en) 2022-03-23 2022-03-23 magnetic storage device
US17/942,365 2022-09-12
US17/942,365 US20230309413A1 (en) 2022-03-23 2022-09-12 Magnetic memory device

Publications (1)

Publication Number Publication Date
TW202404105A true TW202404105A (en) 2024-01-16

Family

ID=90457526

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112103874A TW202404105A (en) 2022-03-23 2023-02-03 magnetic memory device

Country Status (1)

Country Link
TW (1) TW202404105A (en)

Similar Documents

Publication Publication Date Title
CN108573725B (en) Magnetic memory device
US11316095B2 (en) Magnetic device which improves write error rate while maintaining retention properties
US10854252B2 (en) Magnetic storage device with a stack of magnetic layers including iron (Fe) and cobalt (co)
CN111724839B (en) Magnetic memory device
US10937947B2 (en) Magnetic memory device with a nonmagnet between two ferromagnets of a magnetoresistive effect element
TWI746085B (en) Magnetic memory device
US11133456B2 (en) Magnetic storage device
CN115811926A (en) Storage device
TWI794931B (en) magnetic memory device
US20240284803A1 (en) Tunnel junction laminated film, magnetic memory element, and magnetic memory
TW202404105A (en) magnetic memory device
US20230309413A1 (en) Magnetic memory device
US10867650B2 (en) Magnetic storage device
CN116806114A (en) Magnetic memory device
TWI850723B (en) Memory device
TW202335324A (en) magnetic memory device