TW202403396A - Optical system and method of forming the same, method of forming a multi-color image - Google Patents

Optical system and method of forming the same, method of forming a multi-color image Download PDF

Info

Publication number
TW202403396A
TW202403396A TW111126918A TW111126918A TW202403396A TW 202403396 A TW202403396 A TW 202403396A TW 111126918 A TW111126918 A TW 111126918A TW 111126918 A TW111126918 A TW 111126918A TW 202403396 A TW202403396 A TW 202403396A
Authority
TW
Taiwan
Prior art keywords
metalenses
color
optical system
color filters
different
Prior art date
Application number
TW111126918A
Other languages
Chinese (zh)
Inventor
安東 巴拉尼科夫
葉戈爾 海達羅夫
伊曼紐爾 拉薩爾
多明格斯 拉蒙 喬斯 帕尼亞瓜
阿爾謝尼 庫茲涅佐夫
Original Assignee
新加坡科技研究局
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新加坡科技研究局 filed Critical 新加坡科技研究局
Publication of TW202403396A publication Critical patent/TW202403396A/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

Various embodiments may relate to an optical system. The optical system may include a plurality of color filters, a first color filter of the plurality of color filters configured to select light of different wavelength ranges representing different color channels. The optical system may also include a plurality of metalenses, each of the plurality of metalenses associated with a respective color channel of the plurality of color channels. Each of the plurality of metalenses may have a focal length, the plurality of metalenses having equal focal lengths such that the different color channels are combined on a common focal plane to form a multi-color image. Each of the plurality of metalenses may include a plurality of nanostructures, have a (FOV) field of view of more than 30 degrees, and a desired working spectral bandwidth dependent on an extended depth of focus, a central wavelength of the associated color channel, and the focal length at the central wavelength.

Description

光學系統、形成光學系統的方法、形成多色影像的方法Optical system, method of forming optical system, method of forming multi-color image

本揭露的各種實施例可關於一種光學系統。本揭露的各種實施例可關於一種形成光學系統的方法。本揭露的各種實施例可關於一種形成多色影像的方法。Various embodiments of the disclosure may relate to an optical system. Various embodiments of the present disclosure may relate to a method of forming an optical system. Various embodiments of the present disclosure may relate to a method of forming a multi-color image.

習知的折射型透鏡是大多數成像系統的核心。然而,為了產生具有最小光學像差(optical aberrations)的高解析度影像,高端成像系統大致上由複雜的光學串列(optical trains)(即透鏡以及/或將輸入光引導至檢測器的其他光學元件的組件)製成,例如顯微鏡物鏡或攝影物鏡。因此,這種成像系統總體上巨大且笨重。另一方面,對於某些應用,例如用於手機相機、無人機相機、衛星相機、內視鏡(endoscopes)相機,則高度期望在不妥協成像品質的情況下,具有盡可能輕化且小型化的成像系統。繞射光學器件以及平面光學器件的近期發展有望僅以具有超薄特性(即厚度低於或接近入射光的波長)的少數元件、甚至是單個元件來取代傳統的光學串列。這可使用繞射透鏡或平面透鏡(後者也稱為超穎透鏡)來達到。Conventional refractive lenses are the core of most imaging systems. However, in order to produce high-resolution images with minimal optical aberrations, high-end imaging systems generally consist of complex optical trains (i.e., lenses and/or other optics that guide the input light to the detector). components), such as microscope objectives or photographic objectives. Therefore, such imaging systems are generally large and bulky. On the other hand, for certain applications, such as for mobile phone cameras, drone cameras, satellite cameras, and endoscopic cameras, it is highly desirable to be as light and compact as possible without compromising imaging quality. imaging system. Recent developments in diffractive optics as well as planar optics promise to replace traditional optical tandems with only a few elements, or even a single element, with ultra-thin properties (i.e. thickness below or close to the wavelength of the incident light). This can be achieved using diffractive lenses or planar lenses (the latter are also called metalenses).

習知的折射型透鏡的角色是將輸入光的平面波前重塑至球面波前,以便將光聚焦至接近繞射極限的光點。潛在的物理機制與藉由光傳播通過在穿過透鏡的傳播方向呈現有變化的厚度的材料的相位累積相關。折射型透鏡通常由至少一個具有一定曲率半徑的半球形表面製成,從而導致相對較厚的裝置。折射型透鏡的繞射對應物稱為習知繞射透鏡(conventional diffractive lenses, CDL),習知繞射透鏡將這種相位調變限制在其最小值2π,這一般來說允許顯著減少透鏡的厚度至略大於光的波長最大厚度。The role of a conventional refractive lens is to reshape the plane wavefront of the input light into a spherical wavefront so as to focus the light to a light point close to the diffraction limit. The underlying physical mechanism is related to phase accumulation by light propagating through a material that exhibits a varying thickness in the direction of propagation through the lens. Refractive lenses are typically made from at least one hemispherical surface with a radius of curvature, resulting in a relatively thick device. The diffractive counterpart of refractive lenses are called conventional diffractive lenses (CDL). Conventional diffractive lenses limit this phase modulation to its minimum value of 2π, which generally allows a significant reduction in the lens' Thickness to slightly greater than the maximum thickness of the wavelength of light.

然而,繞射透鏡由於其繞射本質而存在嚴重的色差的問題,即繞射透鏡僅將單個波長(設計波長)聚焦在期望位置,而其他波長未聚焦在同一位置:較長的波長較靠近透鏡而聚焦,而較短的波長則較遠離透鏡而聚焦。色差會導致影像模糊以及彩虹效應。較長的波長較靠近透鏡而聚焦,而較短的波長則較遠離透鏡而聚焦的習知繞射透鏡的這種色差,這與折射型透鏡的通常色差不同,折射型透鏡的通常色差是由於材料色散(即材料折射率與波長的變化)造成的。對於折射型透鏡提到的是正色散(positive chromatic dispersion),且對於繞射透鏡提到的是負色散(negative chromatic dispersion)。第1圖提供(a)習知折射型透鏡以及(b)繞射透鏡的色差圖。波長λ 1>λ 2>λ 3沿著光軸聚焦在的不同的地方。折射型透鏡表現出正色散,而繞射透鏡表現出負色散。 However, diffractive lenses suffer from serious chromatic aberration problems due to their diffractive nature, that is, diffractive lenses only focus a single wavelength (the design wavelength) at the desired location, while other wavelengths are not focused at the same location: longer wavelengths are closer It is focused by the lens, and shorter wavelengths are focused further away from the lens. Chromatic aberration can cause blurry images and rainbow effects. This chromatic aberration of conventional diffractive lenses, in which longer wavelengths are focused closer to the lens, while shorter wavelengths are focused further away from the lens, is different from the usual chromatic aberration of refractive lenses, which is due to Caused by material dispersion (that is, changes in the material's refractive index and wavelength). Positive chromatic dispersion is mentioned for refractive lenses, and negative chromatic dispersion is mentioned for diffractive lenses. Figure 1 provides chromatic aberration diagrams of (a) a conventional refractive lens and (b) a diffractive lens. Wavelengths λ 1 > λ 2 > λ 3 are focused at different places along the optical axis. Refractive lenses exhibit positive dispersion, while diffractive lenses exhibit negative dispersion.

最近,隨著奈米製造技術的進步,已經探索以及利用了用於相位調變的其他物理機制。其基於光與平面上圖案化的奈米結構(稱為超穎原子)的相互作用,這些奈米結構在局部給予光一定的相位延遲。主要機制是波導、幾何相位以及共振相互作用,每種機制都有不同的優點以及限制。一般來說,超穎原子將相位調變約束至2π,且在所有方向都小於感興趣的波長(由於光傳播的方向也可能具有在波長附近的維度,因此光傳播的方向可能除外)。近期基於這種範例的極薄聚焦表面(稱為超穎透鏡)的實現展示其在數值孔徑(numerical aperture, NA)以及聚焦效率方面的效能優於繞射透鏡,使其成為替代折射型透鏡的更有希望的候選者。Recently, with the advancement of nanofabrication technology, other physical mechanisms for phase modulation have been explored and exploited. It is based on the interaction of light with patterned nanostructures on a plane, called metaatoms, which locally give the light a certain phase retardation. The main mechanisms are waveguide, geometric phase, and resonant interactions, each with different advantages and limitations. In general, metaatoms constrain phase modulation to 2π and smaller than the wavelength of interest in all directions (except perhaps in the direction of light propagation since it may also have dimensions near the wavelength). Recent implementations of extremely thin focusing surfaces (called metalenses) based on this paradigm have demonstrated superior performance in terms of numerical aperture (NA) and focusing efficiency over diffractive lenses, making them an alternative to refractive lenses. More promising candidates.

然而,主要有兩個障礙的挑戰仍然限制了超穎透鏡的適用性。首先,像繞射透鏡一樣,超穎透鏡存在很強的負色散的問題。其次,目前為止大多數超穎透鏡存在離軸單色像差(當入射角非零時焦點失真)的問題,即彗差(coma)以及散光(astigmatism),從而大大限制了當輸入光以傾斜入射進入透鏡時透鏡將光聚焦至良好品質光點的能力。透鏡能夠產生良好品質聚焦的入射角範圍稱為視場(FOV)。大視場對於成像應用很重要。到目前為止,這兩個挑戰阻止了超穎透鏡的廣泛使用,也阻止了超穎透鏡在多光譜以及寬帶成像中取代折射對應物。However, two main hurdle challenges still limit the applicability of metalenses. First, like diffractive lenses, metalenses have a strong negative dispersion problem. Secondly, most metalenses so far have problems with off-axis monochromatic aberration (focus distortion when the incident angle is non-zero), that is, coma and astigmatism, which greatly limits the ability of the input light to tilt at an angle. The ability of a lens to focus light into a good quality spot when incident into the lens. The range of angles of incidence over which a lens can produce good quality focus is called the field of view (FOV). A large field of view is important for imaging applications. These two challenges have so far prevented metalenses from being widely used and from replacing their refractive counterparts in multispectral as well as broadband imaging.

各種實施例可關於一種光學系統。光學系統可包括複數個濾色器,複數個濾色器的第一濾色器配置以選擇代表第一顏色通道的第一波長範圍的光,複數個濾色器的第二濾色器配置以選擇與第一波長範圍不同的第二波長範圍的光,第二波長範圍的光代表第二顏色通道,使得複數個濾色器提供不同的顏色通道。光學系統還可包括複數個超穎透鏡,複數個超穎透鏡分別與複數個顏色通道的相應顏色通道相關聯。複數個超穎透鏡可分別具有焦距,複數個超穎透鏡具有相等的焦距,使得不同的顏色通道在共同焦平面上組合以形成多色影像。複數個超穎透鏡可分別包括複數個奈米結構,且可具有大於30度的視場(FOV)。複數個超穎透鏡可分別具有取決於擴展焦深、相關聯顏色通道的中心波長、以及在中心波長的焦距的期望運行光譜帶寬。Various embodiments may relate to an optical system. The optical system may include a plurality of color filters, a first color filter of the plurality of color filters configured to select light representing a first wavelength range of the first color channel, and a second color filter of the plurality of color filters configured to select A second wavelength range of light that is different from the first wavelength range is selected, and the light of the second wavelength range represents a second color channel, so that the plurality of color filters provide different color channels. The optical system may further include a plurality of metalenses, the plurality of metalenses being respectively associated with corresponding color channels of the plurality of color channels. The plurality of metalenses can each have a focal length, and the plurality of metalenses have equal focal lengths, so that different color channels are combined on a common focal plane to form a multicolor image. The plurality of metalenses may each include a plurality of nanostructures, and may have a field of view (FOV) greater than 30 degrees. The plurality of metalenses may each have a desired operating spectral bandwidth that depends on the extended focal depth, the center wavelength of the associated color channel, and the focal length at the center wavelength.

各種實施例可關於一種形成光學系統的方法。此方法可包括提供複數個濾色器,複數個濾色器的第一濾色器配置以選擇代表第一顏色通道的第一波長範圍的光,且複數個濾色器的第二濾色器配置以選擇與第一波長範圍不同的第二波長範圍的光,第二波長範圍的光代表第二顏色通道,使得複數個濾色器提供不同的顏色通道。此方法還可包括提供複數個超穎透鏡,複數個超穎透鏡分別與複數個顏色通道的相應顏色通道相關聯。複數個超穎透鏡分別具有焦距,複數個超穎透鏡具有相等的焦距,使得不同的顏色通道在共同焦平面上組合以形成多色影像。複數個超穎透鏡可分別包括複數個奈米結構,且可具有大於30度的視場(FOV)。複數個超穎透鏡可分別具有取決於擴展焦深、相關聯的顏色通道的中心波長、以及在中心波長的焦距的期望運行光譜帶寬。Various embodiments may relate to a method of forming an optical system. The method may include providing a plurality of color filters, a first color filter of the plurality of color filters configured to select light representing a first wavelength range of a first color channel, and a second color filter of the plurality of color filters. Configured to select a second wavelength range of light that is different from the first wavelength range, the second wavelength range of light representing a second color channel, such that the plurality of color filters provide different color channels. The method may also include providing a plurality of metalenses, the plurality of metalenses being respectively associated with corresponding color channels of the plurality of color channels. The plurality of metalenses respectively have focal lengths, and the plurality of metalenses have equal focal lengths, so that different color channels are combined on a common focal plane to form a multicolor image. The plurality of metalenses may each include a plurality of nanostructures, and may have a field of view (FOV) greater than 30 degrees. The plurality of metalenses may each have a desired operating spectral bandwidth that depends on the extended focal depth, the center wavelength of the associated color channel, and the focal length at the center wavelength.

各種實施例可提供一種形成多色影像的方法。此方法可包括提供寬帶光至光學系統。光學系統可為如本文所述的任何合適的光學系統。光學系統可包括複數個濾色器,複數個濾色器的第一濾色器配置以選擇代表第一顏色通道的第一波長範圍的光,複數個濾色器的第二濾色器配置以選擇與第一波長範圍不同的第二波長範圍的光,第二波長範圍的光代表第二顏色通道,使得複數個濾色器提供不同的顏色通道。光學系統還可包括複數個超穎透鏡,複數個超穎透鏡分別與複數個顏色通道的相應顏色通道相關聯。複數個超穎透鏡可分別具有焦距,複數個超穎透鏡具有相等的焦距,使得不同的顏色通道在共同焦平面上組合以形成多色影像。複數個超穎透鏡可分別包括複數個奈米結構,且具有大於30度的視場。複數個超穎透鏡可分別具有取決於擴展焦深、相關聯顏色通道的中心波長、以及在中心波長的焦距的期望運行光譜帶寬。Various embodiments may provide a method of forming a multicolor image. The method may include providing broadband light to an optical system. The optical system can be any suitable optical system as described herein. The optical system may include a plurality of color filters, a first color filter of the plurality of color filters configured to select light representing a first wavelength range of the first color channel, and a second color filter of the plurality of color filters configured to select A second wavelength range of light that is different from the first wavelength range is selected, and the light of the second wavelength range represents a second color channel, so that the plurality of color filters provide different color channels. The optical system may further include a plurality of metalenses, the plurality of metalenses being respectively associated with corresponding color channels of the plurality of color channels. The plurality of metalenses can each have a focal length, and the plurality of metalenses have equal focal lengths, so that different color channels are combined on a common focal plane to form a multicolor image. The plurality of metalenses may each include a plurality of nanostructures and have a field of view greater than 30 degrees. The plurality of metalenses may each have a desired operating spectral bandwidth that depends on the extended focal depth, the center wavelength of the associated color channel, and the focal length at the center wavelength.

以下詳細描述參考附圖,附圖藉由繪示的方式顯示可實踐本發明的具體細節以及實施例。這些實施例被充分地詳細描述以使本領域具有一般知識者能夠實踐本發明。在不背離本發明的範圍的情況下,可利用其他實施例且可進行結構、邏輯以及電氣上的改變。由於一些實施例可與一個或多個其他實施例組合以形成新的實施例,因此各種實施例不一定是相互排斥的。The following detailed description refers to the accompanying drawings, which show by way of illustration specific details and embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those of ordinary skill in the art to practice the invention. Other embodiments may be utilized and structural, logical, and electrical changes may be made without departing from the scope of the present invention. The various embodiments are not necessarily mutually exclusive, as some embodiments may be combined with one or more other embodiments to form new embodiments.

在本文的光學系統之一中描述的實施例對其他光學系統類似地有效。相似地,在本文的方法中描述的實施例對光學系統類似地有效,反之亦然。Embodiments described in one of the optical systems herein are similarly valid for other optical systems. Similarly, embodiments described in the methods herein are similarly valid for optical systems and vice versa.

在本文的一實施例中描述的特徵可對應地適用於其他實施例中相同或相似的特徵。在本文的一實施例中描述的特徵可對應地適用於其他實施例,即使在這些其他實施例中沒有明確描述。此外,在本文的一實施例中對一特徵描述的添加以及/或組合以及/或替代可對應地適用於其他實施例中的相同或相似特徵。Features described in one embodiment herein may correspondingly apply to the same or similar features in other embodiments. Features described in one embodiment herein may correspondingly apply to other embodiments even if not explicitly described in these other embodiments. Furthermore, additions and/or combinations and/or substitutions of a feature described in one embodiment herein may be correspondingly applied to the same or similar features in other embodiments.

在本文的各種實施例中,關於特徵或元件使用的冠詞“一(a, an)”以及“該(the)”包括對一個或多個特徵或元件的引用。In various embodiments herein, use of the articles “a,” “an” and “the” with respect to a feature or element includes reference to one or more features or elements.

在本文的各種實施例中,應用於數值的用詞“大約(about, approximately)”包括精確值以及合理的變異數。In various embodiments herein, the word "about, approximately" when applied to a numerical value includes the exact value as well as reasonable variations.

如在此所使用的,用詞“以及/或”包括一個或多個相關列出的物品的任何以及所有組合。As used herein, the word "and/or" includes any and all combinations of one or more of the associated listed items.

用於色像補償(chromatic compensation)的繞射透鏡:為了解決色差的問題,已經考慮了不同的方式。所謂的消色差繞射透鏡(achromatic diffractive lens, ADL)可用於在高繞射級(high diffraction orders)的情況下運作,且為幾個離散的諧波波長提供相同的偏轉角。儘管先進的數值優化可幫助提高聚焦效率,但一近期研究表明,可達到的菲涅耳數(Fresnel number, FN)存在相當大的限制,這轉化為對於給定焦距的有限數值孔徑(NA)或透鏡尺寸。此外,應當注意的是,繞射透鏡受到其發光輪廓(blazed profiles)所固有的寄生干擾(parasitic interferences)以及陰影效應的影響,這反過來限制了繞射透鏡可接受的入射角,即繞射透鏡的視場。Diffractive lenses for chromatic compensation: In order to solve the problem of chromatic aberration, different methods have been considered. So-called achromatic diffractive lenses (ADL) can be used to operate at high diffraction orders and provide the same deflection angle for several discrete harmonic wavelengths. Although advanced numerical optimization can help improve focusing efficiency, a recent study shows that there is a considerable limit to the achievable Fresnel number (FN), which translates into a finite numerical aperture (NA) for a given focal length. or lens size. Furthermore, it should be noted that diffractive lenses are subject to parasitic interferences inherent in their blazed profiles as well as shadowing effects, which in turn limit the acceptable incidence angles of diffractive lenses, i.e. diffraction The field of view of the lens.

用於色像補償的超穎透鏡:在沒有進一步的校正色差的情況下,單個超穎透鏡因為色差無法達到覆蓋整個可見光範圍的成像(白光成像)。最初,可見光譜的覆蓋是藉由對每一單獨的波長使用個別的超穎表面來實現:紅、綠、藍(RGB)甚至更多額外的顏色。另一種方式是藉由串列(cascading)設計以在不同波長運作的不同的超穎透鏡(即,幾個超穎透鏡的堆疊)來採用,這不僅允許補償色差,還可補償單色差。然而,如果要考慮以及/或最小化層間耦接以及/或反射,這些超穎透鏡的堆疊很難設計。此外,所需的複雜製造以及對準製程對其實際應用提出了嚴峻挑戰。Metalens for color image compensation: Without further correction of chromatic aberration, a single metalens cannot achieve imaging covering the entire visible light range (white light imaging) due to chromatic aberration. Initially, coverage of the visible spectrum was achieved by using individual metasurfaces for each individual wavelength: red, green, blue (RGB) and even more additional colors. Another approach is to adopt a cascading design with different metalenses operating at different wavelengths (i.e., a stack of several metalenses), which allows compensation of not only chromatic aberrations, but also monochromatic aberrations. However, stacks of these metalenses are difficult to design if interlayer coupling and/or reflections are to be considered and/or minimized. In addition, the required complex manufacturing and alignment processes pose serious challenges to its practical application.

超穎透鏡設計的進一步發展旨在校正單個元件內的這種色差,稱為多光譜或寬帶消色差超穎透鏡,多光譜或寬帶消色差超穎透鏡將幾個離散或連續範圍的波長聚焦至單個光點上。A further development in metalens design aimed at correcting this chromatic aberration within a single element is called a multispectral or broadband achromatic metalens. Multispectral or broadband achromatic metalenses focus several discrete or continuous ranges of wavelengths to on a single point of light.

已經提出了不同的正向設計方式:Different approaches to forward design have been proposed:

(i)超穎透鏡“單位晶胞(unit-cell)”裡面不同超穎原子的空間多工(spatial multiplexing),每一超穎原子設計以操縱特定波長。然而,在這種情況下,粒子間耦接會阻礙(hinder)解析度以及影像品質。除此之外,隨著波長數量的增加,相關聯效率下降會轉化為低數量的運作波長,且代表此解決方案的主要瓶頸。(i) Spatial multiplexing of different metaatoms in the "unit-cell" of the metalens, with each metaatom designed to manipulate a specific wavelength. However, in this case, inter-particle coupling can hinder resolution and image quality. Beyond this, as the number of wavelengths increases, the associated efficiency degradation translates into a low number of operating wavelengths and represents a major bottleneck for this solution.

(ii)使用具有非直觀點擴散函數(PSF)的單個超穎透鏡一般會導致大大地擴展焦深,足以部分補償色焦偏移。這隨後需要用於影像恢復的影像處理技術,這會引入處理影像的延遲時間,這對於實時成像應用來說可能是有問題的。(ii) The use of a single metalens with a non-intuitive point spread function (PSF) generally results in a greatly expanded depth of focus, sufficient to partially compensate for the chromatic focus shift. This subsequently requires image processing techniques for image restoration, which introduces latency in processing the image, which can be problematic for real-time imaging applications.

(iii)單獨的超穎原子的色散工程(dispersion engineering),不僅操縱給予入射光的相位,且還操縱群延遲以及群延遲色散。採用這種方式的最初嘗試使用簡單直觀的幾何形狀庫。然而,由於這些庫一般僅涵蓋所需相位以及群延遲變化的一部分,因此這種方式的成功僅限於尺寸、效率、數值孔徑以及視場非常小的超穎透鏡。(iii) Dispersion engineering of individual metaatoms, manipulating not only the phase given to the incident light, but also the group delay and group delay dispersion. Initial attempts at this approach used simple and intuitive geometric shape libraries. However, since these libraries typically cover only a subset of the required phase and group delay variations, the success of this approach is limited to metalenses with very small size, efficiency, numerical aperture, and field of view.

近期,超穎原子基於電腦演算法的優化以及機器學習方法在某種程度上有助於使用逆向設計技術設計具有更高效能的多光譜以及寬帶消色差超穎透鏡。然而,這些方法通常需要高計算能力,且以製造複雜性、強粒子間耦接、以及對進入的光的偏振以及入射角的強敏感性為代價。此領域的進步已經允許克服多光譜成像中提到的一些問題,例如關於相對較大的超穎透鏡尺寸以及數值孔徑。Recently, computer algorithm-based optimization of metaatoms and machine learning methods have helped to some extent to use inverse design technology to design multispectral and broadband achromatic metalenses with higher performance. However, these methods often require high computational power at the expense of fabrication complexity, strong inter-particle coupling, and strong sensitivity to the polarization and angle of incidence of the incoming light. Advances in this field have allowed overcoming some of the problems mentioned in multispectral imaging, for example regarding the relatively large metalens size and numerical aperture.

用於大視場的超穎透鏡:關於視場,應當注意的是,視場明確地取決於由超穎透鏡編碼的相位輪廓的類型。例如,用於超穎透鏡設計的通用標準的雙曲線相位輪廓在光以垂直入射進入超穎透鏡時,產生幾乎繞射受限的光點以及高數值孔徑,而對於傾斜入射則呈現出強烈的彗形像差以及散光像差,這極大地限制了雙曲線相位輪廓的視場到僅幾度的入射角。近期引入的二次相位輪廓減輕了對視場的限制,使這種超穎透鏡成為成像應用中非常有吸引力的解決方案。另一替代解決方案使用雙合(doublets)處理有限的視場問題,但是在製造中引入了很強的複雜性。Metalenses for large fields of view: Regarding the field of view, it should be noted that the field of view depends explicitly on the type of phase profile encoded by the metalens. For example, the hyperbolic phase profile, a common standard used in metalens design, produces an almost diffraction-limited spot with high numerical aperture when light enters the metalens at normal incidence, while exhibiting strong sensitivity for oblique incidence. Coma aberration as well as astigmatic aberration, which greatly limits the field of view of the hyperbolic phase profile to angles of incidence of only a few degrees. The recent introduction of secondary phase profiles alleviates the constraints on the field of view, making such metalenses a very attractive solution for imaging applications. Another alternative solution uses doublets to deal with the limited field of view problem, but introduces significant complexity in manufacturing.

上述嘗試個別地處理消色差成像以及寬視場成像的問題,而沒有一起執行寬視場(FOV)以及多光譜或寬帶消色差成像的解決方案。The above attempts address the issues of achromatic imaging and wide field of view imaging separately, without implementing solutions for wide field of view (FOV) and multispectral or broadband achromatic imaging together.

各種實施例可同時達到小型化(compact)的寬視場(FOV)以及多光譜成像,包括白光成像。Various embodiments can simultaneously achieve compact wide field of view (FOV) and multispectral imaging, including white light imaging.

第2圖是根據各種實施例的光學系統的大致圖示。光學系統可包括複數個濾色器202,複數個濾色器202的第一濾色器配置以選擇代表第一顏色通道的第一波長範圍的光,複數個濾色器202的第二濾色器配置以選擇與第一波長範圍不同的第二波長範圍的光,第二波長範圍的光代表第二顏色通道,使得複數個濾色器202提供不同的顏色通道。光學系統還可包括複數個超穎透鏡204,複數個超穎透鏡204分別與複數個顏色通道的相應顏色通道相關聯。複數個超穎透鏡可分別具有焦距,複數個超穎透鏡204具有相等的焦距,使得不同的顏色通道在共同焦平面上組合以形成多色影像。複數個超穎透鏡204可分別包括複數個奈米結構,且可具有大於30度的視場(FOV)。複數個超穎透鏡204可分別具有取決於擴展焦深、相關聯顏色通道的中心波長、以及在中心波長的焦距的期望運行光譜帶寬。Figure 2 is a general illustration of an optical system according to various embodiments. The optical system may include a plurality of color filters 202, a first color filter of the plurality of color filters 202 configured to select light representing a first wavelength range of a first color channel, and a second color filter of the plurality of color filters 202. The filter is configured to select a second wavelength range of light that is different from the first wavelength range, the second wavelength range of light representing a second color channel, such that the plurality of color filters 202 provide different color channels. The optical system may also include a plurality of metalenses 204, the plurality of metalenses 204 being respectively associated with corresponding color channels of the plurality of color channels. The plurality of metalenses may respectively have focal lengths, and the plurality of metalenses 204 have equal focal lengths, so that different color channels are combined on a common focal plane to form a multicolor image. The plurality of metalenses 204 may each include a plurality of nanostructures, and may have a field of view (FOV) greater than 30 degrees. The plurality of metalenses 204 may each have a desired operating spectral bandwidth that depends on the extended focal depth, the center wavelength of the associated color channel, and the focal length at the center wavelength.

換言之,複數個濾色器202配置以將光過濾至不同的顏色通道中,每一顏色通道具有不同的波長範圍。光學系統還可包括複數個具有相等焦距的超穎透鏡204,以使不同的顏色通道能夠聚焦至共同焦平面上,以形成多色影像。In other words, the plurality of color filters 202 are configured to filter light into different color channels, each color channel having a different wavelength range. The optical system may also include a plurality of metal lenses 204 with equal focal lengths, so that different color channels can be focused onto a common focal plane to form a multi-color image.

為避免疑義,第2圖根據各種實施例示出光學系統的一些特徵,且並不旨在限制各種特徵的排列、定向、形狀、尺寸等等。For the avoidance of doubt, Figure 2 illustrates some features of an optical system in accordance with various embodiments and is not intended to limit the arrangement, orientation, shape, size, etc. of the various features.

在各種實施例中,光學系統可包括一個或多個界定共同焦平面的檢測器。In various embodiments, an optical system may include one or more detectors defining a common focal plane.

在各種實施例中,複數個濾色器202可為一個或多個檢測器的內部帶通濾光片。換言之,複數個濾色器202的每一濾色器可為一個或多個檢測器的相應的檢測器的一部分。In various embodiments, color filters 202 may be internal bandpass filters of one or more detectors. In other words, each color filter of the plurality of color filters 202 may be part of a corresponding detector of one or more detectors.

在各種其他實施例中,複數個濾色器202可在一個或多個檢測器外部。換言之,複數個濾色器202與一個或多個檢測器可為分離的。In various other embodiments, color filters 202 may be external to one or more detectors. In other words, the plurality of color filters 202 and the one or more detectors may be separate.

在各種實施例中,複數個超穎透鏡204可為二次超穎透鏡。換言之,複數個超穎透鏡204可提供二次相位輪廓。如上所述,複數個超穎透鏡204可分別包括複數個奈米結構。分別在複數個超穎透鏡中的複數個奈米結構的特定設置可提供二次相位輪廓。這種二次相位輪廓可本質地(intrinsically)呈現一定的焦深(depth of focus, DOF),例如根據各種實施例對於紅、綠、以及藍(RGB)波長的焦距(focal length or focal distance)的大約5%至大約10%的任何值。例如,對於83µm的焦距,焦深對於紅、綠、以及藍(RGB)波長可為從大約5µm到大約7µm的任何值。在各種其他實施例中,可不同地選擇相位輪廓(即,在複數個超穎透鏡204的每一超穎透鏡內的奈米結構的設置),且使得擴展焦深不同(例如,大於二次超穎透鏡所提供的焦深)。在各種實施例中,可工程上設計複數個超穎透鏡204的焦深以提供更大的期望運行光譜帶寬。In various embodiments, the plurality of metalenses 204 may be secondary metalenses. In other words, a plurality of metalenses 204 can provide a secondary phase profile. As mentioned above, the plurality of metalenses 204 may each include a plurality of nanostructures. The specific arrangement of the plurality of nanostructures respectively in the plurality of metalenses can provide a secondary phase profile. This secondary phase profile may intrinsically exhibit a certain depth of focus (DOF), such as focal length or focal distance for red, green, and blue (RGB) wavelengths according to various embodiments. Any value from about 5% to about 10%. For example, for a focal length of 83 µm, the depth of focus can be anywhere from about 5 µm to about 7 µm for red, green, and blue (RGB) wavelengths. In various other embodiments, the phase profile (i.e., the placement of the nanostructures within each metalens of the plurality of metalenses 204) may be chosen differently and such that the extended focal depth is different (e.g., greater than quadratic Depth of focus provided by a metalens). In various embodiments, the focal depth of metalens 204 may be engineered to provide a greater desired operating spectral bandwidth.

在各種實施例中,複數個濾色器202可設置在複數個超穎透鏡204以及共同焦平面之間,使得複數個超穎透鏡204分別配置以將寬帶光引導至複數個濾色器202的相關聯濾色器,以產生相應的相關聯顏色通道。與特定顏色通道相關聯的複數個超穎透鏡204的每一超穎透鏡可將一部分寬帶光引導至複數個濾色器202的相關聯濾色器,以產生相應的相關聯顏色通道。In various embodiments, the plurality of color filters 202 may be disposed between the plurality of metalenses 204 and the common focal plane, such that the plurality of metalenses 204 are respectively configured to guide broadband light to the plurality of color filters 202 Associated color filters to produce corresponding associated color channels. Each metalens of the plurality of metal lenses 204 associated with a particular color channel may direct a portion of the broadband light to an associated color filter of the plurality of color filters 202 to produce a corresponding associated color channel.

在各種其他實施例中,複數個超穎透鏡204可設置在複數個濾色器202以及共同焦平面之間,使得複數個超穎透鏡204分別配置以將相應的相關聯顏色通道的光引導至共同焦平面上。In various other embodiments, the plurality of metalenses 204 may be disposed between the plurality of color filters 202 and the common focal plane, such that the plurality of metalenses 204 are respectively configured to direct light of corresponding associated color channels to on a common focal plane.

在各種實施例中,複數個超穎透鏡204可分別具有菲涅耳數,複數個超穎透鏡204具有不同的菲涅耳數,使得複數個超穎透鏡204具有相等的焦距。In various embodiments, the plurality of metalenses 204 may each have a Fresnel number, and the plurality of metalenses 204 may have different Fresnel numbers, such that the plurality of metalenses 204 have the same focal length.

在各種實施例中,複數個超穎透鏡204分別的奈米結構可設置成具有預定週期的週期性晶格。在各種實施例中,複數個超穎透鏡204的不同的超穎透鏡的菲涅耳數可能因為(複數個超穎透鏡204的)不同超穎透鏡的不同預定週期而不同。In various embodiments, the respective nanostructures of the plurality of metalenses 204 may be arranged into a periodic lattice with a predetermined period. In various embodiments, the Fresnel numbers of different metalenses of the plurality of metalenses 204 may differ due to different predetermined periods of the different metalenses (of the plurality of metalenses 204 ).

在各種實施例中,週期性晶格可為正方形晶格、矩形晶格、六邊形晶格或任何其他常見的週期或準週期布拉菲晶格。In various embodiments, the periodic lattice may be a square lattice, a rectangular lattice, a hexagonal lattice, or any other common periodic or quasi-periodic Bravais lattice.

在各種實施例中,光學系統可進一步包括設置在複數個超穎透鏡204之前的複數個孔徑。複數個孔徑分別可與複數個超穎透鏡204的相應超穎透鏡相關聯。在各種實施例中,複數個孔徑可與複數個超穎透鏡204一起設置,使得複數個濾色器202可設置在複數個超穎透鏡204(以及複數個孔徑)以及共同焦平面之間。在這種情況下,複數個孔徑可設置在複數個超穎透鏡204之前,而複數個濾色器202可設置在複數個超穎透鏡204之後(且在共同焦平面之前)。換言之,複數個超穎透鏡204可設置在複數個孔徑以及複數個濾色器202之間。在各種其他實施例中,複數個孔徑可與複數個超穎透鏡204一起設置,使得複數個超穎透鏡204(以及複數個孔徑)設置在複數個濾色器202以及共同焦平面之間。在這種情況下,複數個孔徑可設置在複數個超穎透鏡204之前,且在複數個濾色器202之後,即在複數個濾色器202以及複數個超穎透鏡204之間。In various embodiments, the optical system may further include a plurality of apertures disposed in front of the plurality of metalenses 204 . The plurality of apertures may each be associated with a corresponding metal lens of the plurality of metal lenses 204 . In various embodiments, a plurality of apertures may be disposed with a plurality of metal lenses 204 such that a plurality of color filters 202 may be disposed between the plurality of metal lenses 204 (and the plurality of apertures) and the common focal plane. In this case, the plurality of apertures may be disposed in front of the plurality of metalenses 204 , and the plurality of color filters 202 may be disposed after the plurality of metalenses 204 (and in front of the common focal plane). In other words, a plurality of metal lenses 204 may be disposed between a plurality of apertures and a plurality of color filters 202 . In various other embodiments, apertures may be disposed with metalenses 204 such that metalenses 204 (and apertures) are disposed between color filters 202 and a common focal plane. In this case, the plurality of apertures may be disposed before the plurality of metalenses 204 and after the plurality of color filters 202 , that is, between the plurality of color filters 202 and the plurality of metalenses 204 .

在各種實施例中,複數個超穎透鏡204可由折射率等於或大於2的材料製成。In various embodiments, metalenses 204 may be made of materials with a refractive index equal to or greater than 2.

在各種實施例中,複數個超穎透鏡204可包括合適的介電材料或合適的半導體材料。In various embodiments, metalenses 204 may include suitable dielectric materials or suitable semiconductor materials.

在各種實施例中,複數個超穎透鏡204可包括矽、磷化鎵、氧化鉿、氮化鎵、二氧化鈦、氮化矽、藍寶石、金剛石、碳化矽、氮化鋁、III-V半導體(例如,砷化鎵或磷化鎵)或II-VI半導體(例如,氧化鋅或氧化鎂)。In various embodiments, the plurality of metalenses 204 may include silicon, gallium phosphide, hafnium oxide, gallium nitride, titanium dioxide, silicon nitride, sapphire, diamond, silicon carbide, aluminum nitride, III-V semiconductors (eg, , gallium arsenide or gallium phosphide) or II-VI semiconductors (e.g., zinc oxide or magnesium oxide).

在各種實施例中,複數個超穎透鏡204的高度或厚度可相等。光學系統可包括基材。複數個超穎透鏡204可在基材上。由於複數個超穎透鏡形成在同一平面基材上,因此複數個超穎透鏡204的頂部表面可具有相同的高度水平。基材可允許光穿過。In various embodiments, the plurality of metalenses 204 may be equal in height or thickness. The optical system may include a substrate. A plurality of metalenses 204 can be on the substrate. Since the plurality of metal lenses are formed on the same planar substrate, the top surfaces of the plurality of metal lenses 204 may have the same height level. The substrate allows light to pass through.

在各種實施例中,複數個奈米結構可為奈米柱。奈米柱可具有任意橫截面,例如圓形、橢圓形、矩形、三角形、多邊形、自由形狀等等。In various embodiments, the plurality of nanostructures can be nanopillars. Nanopillars can have any cross-section, such as circular, elliptical, rectangular, triangular, polygonal, free-form, etc.

在各種實施例中,複數個奈米結構204可為奈米天線,即能夠支持一種或多種光學共振。In various embodiments, the plurality of nanostructures 204 may be nanoantennas, ie, capable of supporting one or more optical resonances.

在各種實施例中,複數個顏色通道可代表電磁光的不同光譜範圍。In various embodiments, the plurality of color channels may represent different spectral ranges of electromagnetic light.

在各種實施例中,複數個顏色通道可在光譜上彼此相鄰或可重疊。在各種實施例中,複數個顏色通道可集體覆蓋波長的連續光譜。在各種實施例中,複數個顏色通道可為或可包括紅(R)通道、綠(G)通道、以及藍(B)通道。藍通道可具有大約460nm的中心波長,綠通道可具有大約530nm的中心波長,而紅通道可具有大約620nm的中心波長。每一通道的帶寬可大約為40nm。In various embodiments, a plurality of color channels may be spectrally adjacent to each other or may overlap. In various embodiments, the plurality of color channels may collectively cover a continuous spectrum of wavelengths. In various embodiments, the plurality of color channels may be or include a red (R) channel, a green (G) channel, and a blue (B) channel. The blue channel may have a center wavelength of approximately 460 nm, the green channel may have a center wavelength of approximately 530 nm, and the red channel may have a center wavelength of approximately 620 nm. The bandwidth of each channel can be approximately 40nm.

第3圖是根據各種實施例的形成光學系統的方法的大致圖示。此方法可包括在步驟302中提供複數個濾色器,複數個濾色器的第一濾色器配置以選擇代表第一顏色通道的第一波長範圍的光,且複數個濾色器的第二濾色器配置以選擇與第一波長範圍不同的第二波長範圍的光,第二波長範圍的光代表第二顏色通道,使得複數個濾色器提供不同的顏色通道。此方法還可包括在步驟304中提供複數個超穎透鏡,複數個超穎透鏡分別與複數個顏色通道的相應顏色通道相關聯。複數個超穎透鏡分別具有焦距,複數個超穎透鏡具有相等的焦距,使得不同的顏色通道在共同焦平面上組合以形成多色影像。複數個超穎透鏡可分別包括複數個奈米結構,且可具有大於30度的視場(FOV)。複數個超穎透鏡可分別具有取決於擴展焦深、相關聯的顏色通道的中心波長、以及在中心波長的焦距的期望運行光譜帶寬。Figure 3 is a general illustration of a method of forming an optical system according to various embodiments. The method may include providing a plurality of color filters in step 302, a first color filter of the plurality of color filters configured to select light representing a first wavelength range of a first color channel, and a third color filter of the plurality of color filters. The two color filters are configured to select light in a second wavelength range that is different from the first wavelength range, and the light in the second wavelength range represents a second color channel, such that the plurality of color filters provide different color channels. The method may further include providing a plurality of metalenses in step 304, the plurality of metalenses being respectively associated with corresponding color channels of the plurality of color channels. The plurality of metalenses respectively have focal lengths, and the plurality of metalenses have equal focal lengths, so that different color channels are combined on a common focal plane to form a multicolor image. The plurality of metalenses may each include a plurality of nanostructures, and may have a field of view (FOV) greater than 30 degrees. The plurality of metalenses may each have a desired operating spectral bandwidth that depends on the extended focal depth, the center wavelength of the associated color channel, and the focal length at the center wavelength.

為免生疑問,第3圖旨在示出根據各種實施例的形成的光學系統的一些步驟,且不旨在限制各個步驟的順序。例如,步驟302可在步驟304之前、之後或同時發生。For the avoidance of doubt, Figure 3 is intended to illustrate some steps of forming an optical system in accordance with various embodiments, and is not intended to limit the order of the various steps. For example, step 302 may occur before, after, or simultaneously with step 304.

在各種實施例中,此方法還可包括形成或提供一個或多個界定共同焦平面的檢測器。在各種實施例中,複數個濾色器可為一個或多個檢測器的內部帶通濾光片。在各種其他實施例中,複數個濾色器可在一個或多個檢測器的外部。In various embodiments, the method may further include forming or providing one or more detectors defining a common focal plane. In various embodiments, the plurality of color filters may be internal bandpass filters of one or more detectors. In various other embodiments, the plurality of color filters may be external to one or more detectors.

在各種實施例中,複數個濾色器可設置在複數個超穎透鏡以及共同焦平面之間,使得複數個超穎透鏡分別配置以將寬帶光引導至複數個濾色器的相關聯濾色器,以產生相應的相關聯顏色通道。在各種其他實施例中,複數個超穎透鏡可設置在複數個濾色器以及共同焦平面之間,使得複數個超穎透鏡分別配置以將相應的相關聯的顏色通道的光引導至共同焦平面上。In various embodiments, a plurality of color filters may be disposed between a plurality of metalenses and a common focal plane, such that the plurality of metalenses are each configured to direct broadband light to an associated filter color of the plurality of color filters. processor to produce the corresponding associated color channel. In various other embodiments, a plurality of metalenses may be disposed between a plurality of color filters and a common focal plane, such that the plurality of metalenses are respectively configured to direct light of corresponding associated color channels to the common focal plane. on flat surface.

在各種實施例中,複數個超穎透鏡可分別具有菲涅耳數,複數個超穎透鏡具有不同的菲涅耳數,使得複數個超穎透鏡具有相等的焦距。In various embodiments, the plurality of metalenses may each have a Fresnel number, and the plurality of metalenses may have different Fresnel numbers, such that the plurality of metalenses have equal focal lengths.

在各種實施例中,複數個超穎透鏡分別的奈米結構可設置在具有預定週期的週期性晶格。在各種實施例中,複數個超穎透鏡的不同的超穎透鏡的菲涅耳數可能因為(複數個超穎透鏡204的)不同超穎透鏡的不同預定週期而不同。In various embodiments, the respective nanostructures of a plurality of metalenses may be arranged in a periodic lattice with a predetermined period. In various embodiments, the Fresnel numbers of different metalenses of the plurality of metalenses may differ due to different predetermined periods of the different metalenses (of the plurality of metalenses 204 ).

在各種實施例中,週期性晶格可為正方形晶格、矩形晶格、六邊形晶格或任何其他常見的週期或準週期布拉菲晶格。In various embodiments, the periodic lattice may be a square lattice, a rectangular lattice, a hexagonal lattice, or any other common periodic or quasi-periodic Bravais lattice.

在各種實施例中,此方法可更包括提供或形成設置在複數個超穎透鏡之前的複數個孔徑。In various embodiments, the method may further include providing or forming a plurality of apertures disposed in front of a plurality of metalenses.

在各種實施例中,複數個超穎透鏡可由折射率等於或大於2的材料製成。In various embodiments, the plurality of metalenses may be made of materials with a refractive index equal to or greater than 2.

在各種實施例中,複數個超穎透鏡可包括合適的介電材料或合適的半導體材料。In various embodiments, the plurality of metalenses may include suitable dielectric materials or suitable semiconductor materials.

在各種實施例中,複數個超穎透鏡可包括矽、磷化鎵、氧化鉿、氮化鎵、二氧化鈦、氮化矽、藍寶石、金剛石、碳化矽、氮化鋁、III-V半導體(例如,砷化鎵或磷化鎵),或II-VI半導體(例如,氧化鋅或氧化鎂)。In various embodiments, the plurality of metalenses may include silicon, gallium phosphide, hafnium oxide, gallium nitride, titanium dioxide, silicon nitride, sapphire, diamond, silicon carbide, aluminum nitride, III-V semiconductors (e.g., Gallium arsenide or gallium phosphide), or II-VI semiconductors (e.g., zinc oxide or magnesium oxide).

在各種實施例中,複數個超穎透鏡的高度可相等。光學系統可包括基材。複數個超穎透鏡可在基材上。基材可允許光穿過。In various embodiments, the plurality of metalenses may be of equal height. The optical system may include a substrate. Multiple metalenses can be on the substrate. The substrate allows light to pass through.

在各種實施例中,複數個奈米結構可為奈米柱。奈米柱可具有任意橫截面,例如圓形、橢圓形、矩形、三角形、多邊形、自由形狀等等。In various embodiments, the plurality of nanostructures can be nanopillars. Nanopillars can have any cross-section, such as circular, elliptical, rectangular, triangular, polygonal, free-form, etc.

在各種實施例中,複數個奈米結構可為奈米天線,即能夠支持一種或多種光學共振。In various embodiments, the plurality of nanostructures may be nanoantennas, ie, capable of supporting one or more optical resonances.

在各種實施例中,複數個顏色通道可代表電磁光的不同光譜範圍。In various embodiments, the plurality of color channels may represent different spectral ranges of electromagnetic light.

在各種實施例中,複數個顏色通道可在光譜上彼此相鄰或可重疊。在各種實施例中,複數個顏色通道可為或可包括紅(R)通道、綠(G)通道、以及藍(B)通道。In various embodiments, a plurality of color channels may be spectrally adjacent to each other or may overlap. In various embodiments, the plurality of color channels may be or include a red (R) channel, a green (G) channel, and a blue (B) channel.

第4圖是根據各種實施例的形成多色影像的方法的大致圖示。此方法可包括在步驟402中提供寬帶光至光學系統。光學系統可為如本文所述的任何合適的光學系統。光學系統可包括複數個濾色器,複數個濾色器的第一濾色器配置以選擇代表第一顏色通道的第一波長範圍的光,複數個濾色器的第二濾色器配置以選擇與第一波長範圍不同的第二波長範圍的光,第二波長範圍的光代表第二顏色通道,使得複數個濾色器提供不同的顏色通道。光學系統還可包括複數個超穎透鏡,複數個超穎透鏡分別與複數個顏色通道的相應顏色通道相關聯。複數個超穎透鏡可分別具有焦距,複數個超穎透鏡具有相等的焦距,使得不同的顏色通道在共同焦平面上組合以形成多色影像。複數個超穎透鏡可分別包括複數個奈米結構,且具有大於30度的視場。複數個超穎透鏡可分別具有取決於擴展焦深、相關聯顏色通道的中心波長、以及在中心波長的焦距的期望運行光譜帶寬。Figure 4 is a general illustration of a method of forming a multicolor image in accordance with various embodiments. The method may include providing broadband light to the optical system in step 402 . The optical system can be any suitable optical system as described herein. The optical system may include a plurality of color filters, a first color filter of the plurality of color filters configured to select light representing a first wavelength range of the first color channel, and a second color filter of the plurality of color filters configured to select A second wavelength range of light that is different from the first wavelength range is selected, and the light of the second wavelength range represents a second color channel, so that the plurality of color filters provide different color channels. The optical system may further include a plurality of metalenses, the plurality of metalenses being respectively associated with corresponding color channels of the plurality of color channels. The plurality of metalenses can each have a focal length, and the plurality of metalenses have equal focal lengths, so that different color channels are combined on a common focal plane to form a multicolor image. The plurality of metalenses may each include a plurality of nanostructures and have a field of view greater than 30 degrees. The plurality of metalenses may each have a desired operating spectral bandwidth that depends on the extended focal depth, the center wavelength of the associated color channel, and the focal length at the center wavelength.

在各種實施例中,多色影像可由界定共同焦平面的一個或多個檢測器檢測。In various embodiments, multicolor images may be detected by one or more detectors defining a common focal plane.

第5A圖顯示根據各種實施例的光學系統的示意圖。來自物體的光藉由製造在相同基材(晶片)上且具有相同厚度的寬視場超穎透鏡504的集合聚焦在像素化(pixelated)顏色檢測器506上。在各種實施例中,可使用給予二次相位輪廓至輸入光(incoming light)的超穎透鏡504。超穎透鏡504的集合可設置在任何任意形狀的一維(1D)或二維(2D)陣列中。陣列中的每一超穎透鏡可被優化,以在特定顏色(中心波長λ c)以及具有特定帶寬(即,顏色通道)的對應頻帶之下運作,此帶寬有意地匹配系統中濾色器502的帶寬。換言之,每一通道可提供具有一定帶寬的寬視場影像。因此,可形成每一顏色通道的對應影像,且最終可合併顏色通道以產生多色影像。濾色器502可為檢測器的內部帶通濾光片。內部帶通濾光片可能會限制每一通道的帶寬。 Figure 5A shows a schematic diagram of an optical system according to various embodiments. Light from the object is focused onto a pixelated color detector 506 by a collection of wide-field metalenses 504 fabricated on the same substrate (wafer) and having the same thickness. In various embodiments, a metalens 504 that imparts a secondary phase profile to the incoming light may be used. The collection of metalenses 504 may be arranged in any arbitrarily shaped one-dimensional (1D) or two-dimensional (2D) array. Each metalens in the array can be optimized to operate at a specific color (center wavelength λ c ) and a corresponding frequency band with a specific bandwidth (i.e., color channel) that is intentionally matched to the color filter 502 in the system bandwidth. In other words, each channel can provide a wide field of view image with a certain bandwidth. Thus, a corresponding image for each color channel can be formed, and the color channels can ultimately be combined to produce a multicolor image. Color filter 502 may be an internal bandpass filter of the detector. Internal bandpass filters may limit the bandwidth of each channel.

第5B圖顯示根據各種實施例的另一光學系統的示意圖。來自物體的光藉由製造在相同晶片上的超穎透鏡504的集合聚焦在像素化顏色檢測器506上。每一通道可產生具有一定帶寬的寬視場影像。光可在到達超穎透鏡504之前穿過濾色器502。隨後可合併影像以產生最終的多色影像。為了限制每一通道的帶寬,可使用外部帶通濾光片。Figure 5B shows a schematic diagram of another optical system according to various embodiments. Light from the object is focused onto a pixelated color detector 506 by a collection of metalenses 504 fabricated on the same wafer. Each channel can produce a wide field of view image with a certain bandwidth. Light may pass through color filter 502 before reaching metalens 504 . The images can then be merged to produce the final multicolor image. To limit the bandwidth of each channel, external bandpass filters can be used.

為了便於後期處理,影像可具有相同的放大倍數。這可藉由所有超穎透鏡504的相同焦距f來確保,這也可意味著所有影像在對應於檢測器平面(檢測器506的平面)的相同焦平面中獲得。為了確保在每一帶寬(Δλ)之上的良好影像品質,二次超穎透鏡504的焦深(DOF)可能需要被調整,以在期望的非零帶寬內運行。換句話說,焦點可能需要與檢測器平面相交,且為帶寬範圍中的所有波長提供良好的點擴散函數(PSF),這可藉由工程上設計擴展焦深來達到。To facilitate post-processing, the images can have the same magnification. This can be ensured by the same focal length f of all metalenses 504, which can also mean that all images are acquired in the same focal plane corresponding to the detector plane (the plane of detector 506). To ensure good image quality over each bandwidth (Δλ), the depth of focus (DOF) of the secondary metalens 504 may need to be adjusted to operate within the desired non-zero bandwidth. In other words, the focal point may need to intersect the detector plane and provide a good point spread function (PSF) for all wavelengths in the bandwidth, which can be achieved by engineering an extended focal depth.

實際上,超穎透鏡的焦距隨著波長的色像偏移可由 提供,其中 代表感興趣範圍的中心波長 的焦距。藉由考慮對焦距的最大可接受偏移對應到焦深: ,可發現超穎透鏡∆λ的運行光譜帶寬以及焦深之間的以下關係: In fact, the color image shift of the focal length of the metalens with the wavelength can be expressed by provided, which Represents the center wavelength of the range of interest the focal length. By considering the maximum acceptable offset from the focal length corresponding to the depth of focus: , the following relationship between the operating spectral bandwidth and focal depth of the metalens Δλ can be found: .

在各種實施例中,當中心波長為紅(R)、綠(G)、或藍(B)時,可工程上設計焦距f c的~5%-10%的焦深以覆蓋~40nm的帶寬,這對應到商業顏色感測器中使用的典型濾光片的帶寬。以此為基礎,系統中的每一通道可具有一定的運作帶寬,且可使多種色相(multiple-hues)帶入聚焦。超穎透鏡可在與檢測器506不同的檢測器位置(如第5A圖)或相同的位置(如第5C圖)形成影像聚焦光。 In various embodiments, when the central wavelength is red (R), green (G), or blue (B), a focal depth of ~5%-10% of the focal length fc can be engineered to cover a bandwidth of ~40nm , which corresponds to the bandwidth of typical filters used in commercial color sensors. Based on this, each channel in the system can have a certain operating bandwidth and can bring multiple-hues into focus. The metalens can form image focused light at a different detector position (as shown in Figure 5A) or at the same position (as shown in Figure 5C) as the detector 506.

第5C圖顯示根據各種實施例的又一光學系統的示意圖。來自物體的光(穿過濾色器502)可藉由製造在相同晶片上的超穎透鏡504的集合聚焦在像素化顏色檢測器506上。超穎透鏡506可在檢測器502的相同位置形成影像聚焦光。Figure 5C shows a schematic diagram of yet another optical system according to various embodiments. Light from the object (passing through the color filter 502) can be focused onto the pixelated color detector 506 by a collection of metalenses 504 fabricated on the same wafer. Metalens 506 can form an image focused light at the same location as detector 502 .

第5D圖顯示用於達到紅-綠-藍(RGB)成像的光學系統的一個特定實施例的示意圖,其中每一超穎透鏡對於紅(λ R=620nm)、綠(λ G=530nm)、以及藍(λ B=460nm)區域中的對應的中心波長進行優化。 Figure 5D shows a schematic diagram of a specific embodiment of an optical system for achieving red-green-blue (RGB) imaging, in which each metalens is suitable for red (λ R =620 nm), green (λ G =530 nm), And the corresponding center wavelength in the blue (λ B =460nm) region is optimized.

寬視場超穎透鏡可包括奈米結構的集合(在文獻中通常稱為奈米天線或超穎原子)。在不同的實施例中,超穎原子可為:1)奈米柱,具有圓形、橢圓形、矩形或多邊形橫截面,用作為波導;2)奈米鰭,在超穎透鏡中旋轉以利用Pancharatnam-Berry相;3)共振奈米天線,支持一種或多種光學共振,例如構成惠更斯超穎表面(Huygens metasurface),或常見用來映射期望相位輪廓的任何其他類型的超穎原子。奈米天線可嵌入或不嵌入介質中。第6圖根據各種實施例示出的奈米天線的可能示例。A wide-field metalens may include a collection of nanostructures (often referred to as nanoantennas or metaatoms in the literature). In various embodiments, metaatoms can be: 1) nanopillars, with circular, elliptical, rectangular or polygonal cross-sections, used as waveguides; 2) nanofins, rotated in metalenses to utilize Pancharatnam-Berry phase; 3) Resonant nanoantennas that support one or more optical resonances, such as those constituting a Huygens metasurface, or any other type of metaatomic commonly used to map the desired phase profile. Nanoantennas may or may not be embedded in the medium. Figure 6 shows possible examples of nanoantennas according to various embodiments.

產生超穎原子的材料可包括介電以及半導體材料,例如矽、磷化鎵(GaP)、氧化鉿、氮化鎵、二氧化鈦、氮化矽、藍寶石、金剛石、碳化矽(SiC)、氮化鋁(AlN),或其他IV族半導體、III-V族半導體、或II-VI族半導體,或其他具有中等或高折射率(一般來說n>2),且在感興趣的波長範圍(k<0.1)中相對透明的氧化物。Materials that generate metaatoms can include dielectric and semiconductor materials such as silicon, gallium phosphide (GaP), hafnium oxide, gallium nitride, titanium dioxide, silicon nitride, sapphire, diamond, silicon carbide (SiC), aluminum nitride (AlN), or other Group IV semiconductors, Group III-V semiconductors, or Group II-VI semiconductors, or others with medium or high refractive index (generally n>2), and in the wavelength range of interest (k< 0.1) A relatively transparent oxide.

作為示例,在第5D圖所顯示的特定實施例中,在玻璃基材上具有圓形橫截面以及相同高度(H=300nm)的磷化鎵奈米柱可用來創建組成陣列的三個超穎透鏡。對於在不同光譜範圍內的運作,可使用其他材料(例如以上提出的那些)以及其他超穎原子形狀以及高度。原則上,超穎原子可具有與最長運作帶寬中的最長波長大致相同或較低的長度的高度。重要的是,為了簡化實際實施的製造,所有超穎透鏡中的所有超穎原子可具有相同的高度。第7圖顯示根據各種實施例的超穎透鏡集合的橫向投影的示例。第7圖示出上述設計規則。在各種實施例中,超穎原子可被設計以用作入射光的局部波導。因此,超穎原子可能會依據超穎原子的直徑引入可變的相位延遲。重要的是,圓形橫截面可確保偏振不敏感運作(polarization-insensitive operation)。As an example, in the specific embodiment shown in Figure 5D, gallium phosphide nanopillars with circular cross-sections and the same height (H=300nm) on a glass substrate can be used to create three nanopillars that make up the array. lens. For operation in different spectral ranges, other materials (such as those proposed above) as well as other metaatomic shapes and heights can be used. In principle, metaatoms can have heights that are approximately the same or a lower length than the longest wavelength in the longest operating bandwidth. Importantly, to simplify fabrication for practical implementations, all meta-atoms in all meta-lenses can have the same height. Figure 7 shows an example of a lateral projection of a metalens assembly according to various embodiments. Figure 7 illustrates the above design rules. In various embodiments, metaatoms can be designed to act as local waveguides for incident light. Therefore, metaatoms may introduce variable phase retardation depending on the diameter of the metaatom. Importantly, the circular cross-section ensures polarization-insensitive operation.

對於每一超穎透鏡,超穎原子可設置成某個週期性晶格,例如正方形晶格、矩形晶格、六邊形晶格或任何其他合適的二維晶格。放置在離透鏡中心距離r的某個晶格格位的超穎原子的直徑以隨後以二次相位輪廓 形式給予相位延遲這樣的方式來選擇。 For each metalens, the metaatoms can be arranged into some periodic lattice, such as a square lattice, a rectangular lattice, a hexagonal lattice, or any other suitable two-dimensional lattice. The diameter of a metaatom placed at a certain lattice site at a distance r from the lens center to subsequently form a quadratic phase profile The form gives the phase delay this way to choose.

在這個表達式中, 是在超穎原子位置的期望相位延遲,f是透鏡的焦距, 是為透鏡中心選擇的任意初始相位,且 是感興趣的波長帶的中心波長或通道,下標i明確標示多光譜成像系統的通道選擇內的特定通道,例如在第5A圖到第5C圖中i=1…N,且在第5D圖所顯示的實施例中i=R,G,B。 In this expression, is the expected phase retardation at the metaatomic position, f is the focal length of the lens, is an arbitrary initial phase chosen for the lens center, and is the center wavelength or channel of the wavelength band of interest, and the subscript i clearly identifies the specific channel within the channel selection of the multispectral imaging system, for example i=1...N in Figures 5A through 5C, and in Figure 5D In the example shown i=R,G,B.

為了使不同的 具有相同的超穎透鏡直徑D以及焦距f,可根據公式 調整每一超穎透鏡的菲涅耳數(FN)。這可藉由對在中心波長 運作的每一超穎透鏡按比例縮小晶格週期 來達到。在紅綠藍成像實施例中,在玻璃基材上的磷化鎵奈米柱以週期p R=260nm、p G=220nm、以及p B=190nm設置成六邊形晶格,相應地用於在紅(B)、綠(G)、以及藍(R)波長之下運行的超穎透鏡。 in order to make different With the same metalens diameter D and focal length f, it can be calculated according to the formula Adjust the Fresnel number (FN) of each metalens. This can be achieved by measuring the central wavelength Each metalens operates to scale down the lattice period to reach. In the red, green, and blue imaging embodiment, gallium phosphide nanopillars on a glass substrate are arranged in a hexagonal lattice with periods p R =260 nm, p G =220 nm, and p B =190 nm, correspondingly for Metalenses operating at red (B), green (G), and blue (R) wavelengths.

第8A圖到第8B圖顯示用於被包括在紅、綠、以及藍超穎透鏡(相應地描繪為實線、虛線、以及點虛線)中的奈米柱的透射以及相位值的模擬值(使用有限差分時域(FDTD)方法獲得),以工作循環的函數給定,工作循環的函數為奈米柱直徑與晶格常數之間的比率。為了展示所揭露技術的可行性,紅綠藍實施例是以實驗達到的。Figures 8A-8B show simulated values for transmission and phase values for nanopillars included in red, green, and blue metalenses (depicted as solid, dashed, and dotted lines, respectively) ( Obtained using the finite difference time domain (FDTD) method), given as a function of the duty cycle as the ratio between the nanopillar diameter and the lattice constant. In order to demonstrate the feasibility of the disclosed technology, the red, green, and blue embodiments are achieved experimentally.

第8C圖顯示根據各種實施例製造的紅(R)、綠(G)、以及藍(B)超穎透鏡的(上)光學顯微鏡影像以及(下)掃描電子顯微鏡(SEM)影像。超穎透鏡可各自具有200µm的直徑(D)以及83µm的焦距(f)。光學顯微鏡影像中的比例尺對應於20µm,而電子顯微鏡影像中的比例尺對應於200nm。參數p R=260nm、p G=220nm、以及p B=190nm標示所設計的晶格週期。 Figure 8C shows (top) optical microscope images and (bottom) scanning electron microscope (SEM) images of red (R), green (G), and blue (B) metalenses fabricated according to various embodiments. Metalenses can each have a diameter (D) of 200µm and a focal length (f) of 83µm. The scale bar in the light microscopy image corresponds to 20µm, while the scale bar in the electron microscopy image corresponds to 200nm. The parameters p R =260 nm, p G =220 nm, and p B =190 nm indicate the designed lattice period.

為了特性化(characterize)所揭露的成像系統的光學效能,可對於每一超穎透鏡的不同入射角以及中心波長附近的頻率帶寬來測量超穎透鏡的點擴散函數(PSF)以及調變轉換函數(MTF)。這可使用準直(collimated)雷射光束來完成,準直雷射光束至超穎透鏡上的入射角度(φ)以及帶寬(Δλ)可調整。In order to characterize the optical performance of the disclosed imaging system, the point spread function (PSF) and the modulation transfer function of each metalens can be measured for different incident angles and frequency bandwidths around the central wavelength of each metalens. (MTF). This can be accomplished using a collimated laser beam whose incidence angle (φ) and bandwidth (Δλ) on the metalens can be adjusted.

第9圖顯示(a)-(c)調變轉換函數(MTF)隨著空間頻率(每毫米循環或循環/mm)變化的曲線圖,顯示根據各種實施例的具有理想二次相位輪廓的紅二次透鏡的調變轉換函數模擬值,設計以在紅(R)區域(中心波長λ R=620nm)中對於入射角φ=0°、30°、和50°且中心波長附近的帶寬處Δλ=10nm、20nm、30nm、和40nm運行,以及(d)-(f)為相應地對應於(a)-(c)中的條件的點擴散函數(PSF)。對於相似的數值孔徑=0.5以及Δλ=0nm,可給定繞射限制的調變轉換函數。(d)-(f)中的比例尺對應於2µm。 Figure 9 shows (a)-(c) plots of modulation transfer function (MTF) as a function of spatial frequency (cycles per millimeter or cycles/mm), showing red with an ideal quadratic phase profile according to various embodiments. Simulated values of the modulation transfer function of the secondary lens, designed to operate at a bandwidth Δλ near the center wavelength for incident angles φ=0°, 30°, and 50° in the red (R) region (center wavelength λ R =620 nm) =10 nm, 20 nm, 30 nm, and 40 nm runs, and (d)-(f) are the point spread functions (PSF) corresponding to the conditions in (a)-(c), respectively. For similar numerical aperture = 0.5 and Δλ = 0 nm, a diffraction-limited modulation transfer function can be given. Scale bars in (d)-(f) correspond to 2 µm.

第10圖顯示對於所製造的超穎透鏡測量的相同特性。第10圖顯示(a)-(c)調變轉換函數(MTF)隨著空間頻率(每毫米循環或循環/mm)變化的曲線圖,顯示根據各種實施例的具有理想二次相位輪廓的紅二次透鏡的調變轉換函數測量值,設計以在紅(R)區域(中心波長λ R=620nm)中對於入射角φ=0°、30°、和50°且中心波長附近的帶寬處Δλ=10nm、20nm、30nm、和40nm運行,以及(d)-(f)為相應地對應於(a)-(c)中的條件的點擴散函數(PSF)。對於相似的數值孔徑=0.5以及Δλ=0nm,可給定繞射限制的調變轉換函數。(d)-(f)中的比例尺對應於2µm。 Figure 10 shows the same properties measured for the fabricated metalens. Figure 10 shows (a)-(c) plots of modulation transfer function (MTF) as a function of spatial frequency (cycles per millimeter or cycles/mm), showing red with an ideal quadratic phase profile according to various embodiments. Measured values of modulation transfer functions of secondary lenses designed to operate at bandwidths Δλ near the center wavelength for incident angles φ = 0°, 30°, and 50° in the red (R) region (center wavelength λ R =620 nm) =10 nm, 20 nm, 30 nm, and 40 nm runs, and (d)-(f) are the point spread functions (PSF) corresponding to the conditions in (a)-(c), respectively. For similar numerical aperture = 0.5 and Δλ = 0 nm, a diffraction-limited modulation transfer function can be given. Scale bars in (d)-(f) correspond to 2 µm.

顯然,觀察到與模擬的良好匹配。如可見的,由於超穎透鏡相位輪廓固有的球面像差,調變轉換函數比相似數值孔徑=0.5的繞射限制透鏡更差。如果應用需要,可藉由在超穎透鏡的前焦平面中放置孔徑光闌來改善調變轉換函數。此實施例與調變轉換函數改善一起在第11圖中示出。第11圖顯示(a)根據各種實施例的包括複數個孔徑1108的光學系統的示意圖;(b)調變轉換函數(MTF)隨著空間頻率(每毫米循環或循環/mm)變化的曲線圖,顯示根據各種實施例的紅二次超穎透鏡(中心波長λ R=620nm)在有以及沒有孔徑光闌的情況下對於入射角φ=0°的調變轉換函數模擬值;以及(c)調變轉換函數(MTF)隨著空間頻率(每毫米循環或循環/mm)變化的曲線圖,顯示根據各種實施例的紅二次超穎透鏡(中心波長λ R=620nm)在有以及沒有孔徑光闌的情況下對於入射角φ=30°的調變轉換函數模擬值。除了複數個孔徑1108之外,光學系統還可包括複數個濾光片1102、複數個超穎透鏡1104、以及檢測器1106。 Clearly, a good match with the simulations is observed. As can be seen, due to the spherical aberration inherent in the metalens phase profile, the modulation transfer function is worse than that of a similar numerical aperture = 0.5 diffraction limited lens. If the application requires, the modulation transfer function can be improved by placing an aperture stop in the front focal plane of the metalens. This embodiment is shown in Figure 11 together with the modulation transfer function improvement. Figure 11 shows (a) a schematic diagram of an optical system including a plurality of apertures 1108 according to various embodiments; (b) a plot of modulation transfer function (MTF) as a function of spatial frequency (cycles per millimeter or cycles/mm) , showing the simulated values of the modulation transfer function of a red secondary metalens (center wavelength λ R =620 nm) with and without an aperture stop for an incident angle φ = 0° according to various embodiments; and (c) Plot of modulation transfer function (MTF) as a function of spatial frequency (cycles per millimeter or cycles/mm) showing red secondary metalenses (center wavelength λ R =620 nm) with and without aperture according to various embodiments Simulated values of the modulation transfer function for the incident angle φ=30° in the case of aperture. In addition to apertures 1108 , the optical system may also include filters 1102 , metalenses 1104 , and detectors 1106 .

重要的是,如第9圖到第10圖所見,對於φ=0°,調變轉換函數可能對帶寬幾乎不敏感,且對於φ=30°以及φ=50°可能會隨著點擴散函數展寬而緩慢下降。這種與色差相關聯的退化可能只會隨著φ以及Δλ緩慢增加,而且重要的是,對於某些超穎透鏡帶寬(例如40nm)的大多數應用來說,可能是可接受的。Importantly, as seen in Figures 9 to 10, the modulation transfer function may be almost insensitive to bandwidth for φ = 0°, and may broaden with the point spread function for φ = 30° and φ = 50° And slowly decline. This degradation associated with chromatic aberration may only increase slowly with φ and Δλ and, importantly, may be acceptable for most applications at certain metalens bandwidths (e.g., 40 nm).

調變轉換函數數據可轉化為成像品質。為了示出在帶寬之上成像的均勻性,當成像波長偏離第12圖中所顯示的設計波長時,對於φ=0°進行單色成像模擬。Modulation transfer function data can be converted into imaging quality. To show the uniformity of imaging over the bandwidth, monochromatic imaging simulations were performed for φ=0° when the imaging wavelength deviated from the design wavelength shown in Figure 12.

第12圖顯示當成像波長改變時,在紅運作(λ R=620nm)的特定情況下,根據各種實施例的用於二次超穎透鏡的模擬二次相位輪廓影像。為了比較,也呈現了與文獻中先前提出的雙曲線相位輪廓對應的模擬。對於後者,透鏡數值孔徑、直徑以及設計波長相似於二次相位輪廓固定在0.5µm、200µm、以及620nm。雙曲線超穎透鏡的焦距已更改為173µm,以獲得與二次超穎透鏡相同的數值孔徑。這導致差異縮小,這可藉由不同尺寸的比例尺而見得。雙曲線相位輪廓影像的比例尺為10µm,而二次相位輪廓影像的比例尺為5µm。如所見,用於二次相位輪廓的在不同波長的影像實質上保持不變,在40nm帶寬之上表現出均勻的成像。相比之下,雙曲線相位輪廓僅在設計波長(620nm)顯示高解析度影像,但在600nm以及640nm處顯著退化。 Figure 12 shows simulated secondary phase profile images for a secondary metalens according to various embodiments in the specific case of red operation (λ R =620 nm) when the imaging wavelength is changed. For comparison, simulations corresponding to hyperbolic phase profiles previously proposed in the literature are also presented. For the latter, the lens numerical aperture, diameter, and design wavelength are fixed at 0.5µm, 200µm, and 620nm similar to the secondary phase profile. The focal length of the hyperbolic metal lens has been changed to 173µm to obtain the same numerical aperture as the quadratic metal lens. This results in reduced differences, which can be seen by the different sized scale bars. The scale bar for hyperbolic phase profile images is 10µm, while the scale bar for quadratic phase profile images is 5µm. As can be seen, the images at different wavelengths for the secondary phase profile remain essentially unchanged, showing uniform imaging over a 40nm bandwidth. In contrast, the hyperbolic phase profile only shows high-resolution images at the design wavelength (620nm), but is significantly degraded at 600nm and 640nm.

根據各種實施例的光學系統的調變轉換函數(以及對應的影像品質)在某些帶寬之上的穩定性可提供更平衡的成像且可減少顏色失真(color distortions)。更複雜的超穎原子可被使用以經由分散工程改善調變轉換函數穩定性。此處作為示例描述的奈米柱在製造過程方面可能很簡單。Stability of the modulation transfer function (and corresponding image quality) of an optical system over certain bandwidths according to various embodiments may provide more balanced imaging and may reduce color distortions. More complex metaatoms can be used to improve modulation transfer function stability via dispersion engineering. The nanopillars described here as examples may be simple in terms of their fabrication process.

各種實施例還可允許良好的顏色再現。光學系統的顏色再現可藉由具有24個色塊的標準ColorChecker測試圖(通常稱為Macbeth圖)來特性化,如第13(a)圖中所描繪。Various embodiments may also allow for good color reproduction. The color reproduction of an optical system can be characterized by a standard ColorChecker test chart with 24 color patches (often called a Macbeth chart), as depicted in Figure 13(a).

第13圖顯示(a)具有24個色塊的原始標準ColorChecker測試圖;(b)由根據各種實施例的光學系統對於30°×20°的視場(FOV)的紅-綠-藍(RGB)成像的結果;(c)由根據各種實施例的光學系統對於100°×67°的視場(FOV)的紅-綠-藍(RGB)成像的結果。Figure 13 shows (a) the original standard ColorChecker test pattern with 24 color patches; (b) red-green-blue (RGB) for a field of view (FOV) of 30° × 20° by an optical system according to various embodiments. ) results of imaging; (c) results of red-green-blue (RGB) imaging for a field of view (FOV) of 100°×67° by the optical system according to various embodiments.

第13(b)圖到第13(c)圖相應地顯示由紅、綠、以及藍製造的超穎透鏡獲得的單獨的紅、綠、以及藍顏色通道的影像。紅、綠、以及藍顏色通道顯示每一超穎透鏡獲得的未處理的影像,而紅綠藍影像是經過後處理之後得到的合併影像。紅綠藍影像可藉由後處理合併過程獲得,此過程包括簡單的正規化程序(normalization procedure),以說明每一通道中的最小以及最大強度值(顏色平衡)。Figures 13(b) to 13(c) respectively show images of separate red, green, and blue color channels obtained by metalenses made of red, green, and blue. The red, green, and blue color channels show the unprocessed images obtained by each metalens, while the red, green, and blue images are the merged images obtained after post-processing. Red, green, and blue images are obtained through a post-processing merging process that includes a simple normalization procedure to account for the minimum and maximum intensity values (color balance) in each channel.

顏色再現的品質可使用CIELAB度量進行評估。為此,用於參考以及測量影像的紅綠藍強度值可變換為亮度(L*)、紅綠中的顏色關係(a*)以及黃藍中的顏色關係(b*)。然後,顏色誤差ΔE被計算為L*a*b*三維空間中的幾何差: 。第14圖顯示(a)根據各種實施例的具有30°×20°的視場(FOV)的ColorChecker紅-綠-藍(RGB)的顏色ΔE;(b)根據各種實施例的具有100°×67°的視場(FOV)的ColorChecker紅-綠-藍(RGB)的顏色ΔE;以及(c)根據各種實施例的對於100°×67°的視場在效率校正程序之後的(左)顏色誤差以及(右)獲得的紅-綠-藍(RGB)影像。 The quality of color reproduction can be evaluated using CIELAB metrics. For this purpose, the red, green, and blue intensity values used for reference and measurement images can be transformed into brightness (L*), color relationships in red and green (a*), and color relationships in yellow and blue (b*). The color error ΔE is then calculated as the geometric difference in L*a*b* three-dimensional space: . Figure 14 shows (a) ColorChecker red-green-blue (RGB) color ΔE with a field of view (FOV) of 30° × 20° in accordance with various embodiments; (b) color ΔE of a ColorChecker with a field of view (FOV) of 30° × 20° in accordance with various embodiments; ColorChecker red-green-blue (RGB) color ΔE for a field of view (FOV) of 67°; and (c) (left) color after efficiency correction procedure for a field of view of 100° × 67° according to various embodiments Error and (right) the red-green-blue (RGB) image obtained.

對於紅綠藍成像,對於30°×20°的視場(第14a圖),發現顏色誤差ΔE對於不同區塊變化在5到23之間的範圍中,且對於較大的100°×67°的視場(第14b圖),則在5到57之間。對於較大視場發現的較大誤差可能與超穎透鏡的與角度相依的聚焦效率相關聯。為了在每一紅、綠、以及藍通道中實施強度校正程序,可測量聚焦效率,且將聚焦效率用來作為校準曲線。此程序可允許減少顏色誤差(第14c圖顯示具有對應顏色誤差的效率校正紅綠藍影像,第15圖顯示測量的超穎透鏡聚焦效率)。For red, green, and blue imaging, for a field of view of 30° × 20° (Fig. 14a), the color error ΔE was found to vary between 5 and 23 for different blocks, and for the larger 100° × 67° The field of view (Figure 14b) is between 5 and 57. The larger errors found for larger fields of view may be related to the angle-dependent focusing efficiency of the metalens. To implement the intensity correction procedure in each of the red, green, and blue channels, the focus efficiency can be measured and used as a calibration curve. This procedure allows for reduction of color errors (Figure 14c shows efficiency corrected red, green and blue images with corresponding color errors, Figure 15 shows the measured metalens focusing efficiency).

第15圖顯示(a)效率(以百分比或%為單位)隨著角度(以度為單位)的變化的曲線圖,顯示根據各種實施例的用於紅超穎透鏡的聚焦效率在10nm、20nm、30nm、和40nm的中心波長(Δλ)附近的帶寬處的角度相依性(angular dependence);(b)效率(以百分比或%為單位)隨著角度(以度為單位)的變化的曲線圖,顯示根據各種實施例的用於綠超穎透鏡的聚焦效率在10nm、20nm、30nm、和40nm的中心波長(Δλ)附近的帶寬處的角度相依性;以及(c)效率(以百分比或%為單位)隨著角度(以度為單位)的變化的曲線圖,顯示根據各種實施例的用於藍超穎透鏡的聚焦效率在10nm、20nm、30nm、和40nm的中心波長(Δλ)附近的帶寬處的角度相依性。Figure 15 shows (a) a graph of efficiency (in percent or %) as a function of angle (in degrees) showing focusing efficiency at 10 nm, 20 nm for red metalenses according to various embodiments. Angular dependence (angular dependence) at the bandwidth near the central wavelength (Δλ) of , 30nm, and 40nm; (b) Graph of efficiency (in percentage or %) as a function of angle (in degrees) , showing the angular dependence of focusing efficiency for green metalenses at bandwidths near central wavelengths (Δλ) of 10 nm, 20 nm, 30 nm, and 40 nm according to various embodiments; and (c) efficiency (in percent or % A graph of (in units) as a function of angle (in degrees) showing focusing efficiency around center wavelengths (Δλ) of 10 nm, 20 nm, 30 nm, and 40 nm for a blue metalens according to various embodiments. Angular dependence at bandwidth.

對於常規的成像品質評估,可使用多色詳細圖片。第16圖顯示(a)原始靜止影像;(b)由根據各種實施例的具有50°×35°的視場(FOV)的光學系統的紅-綠-藍(RGB)成像的結果;以及(c)由根據各種實施例的具有100°×67°的視場(FOV)的光學系統的紅-綠-藍(RGB)成像的結果。紅(R)、綠(G)、以及藍(B)通道顯示由每一超穎透鏡產生的未處理的影像,而紅綠藍影像表示不同通道的融合(fusion)的結果。標示為“文納濾光片(wiener filter)”的影像表示影像是藉由反卷積(deconvolution)重建的。For general imaging quality assessment, multicolor detailed pictures are available. Figure 16 shows (a) the original still image; (b) the result of red-green-blue (RGB) imaging by an optical system having a field of view (FOV) of 50° x 35° according to various embodiments; and ( c) Results of red-green-blue (RGB) imaging by an optical system with a field of view (FOV) of 100° x 67° according to various embodiments. The red (R), green (G), and blue (B) channels show the unprocessed images produced by each metalens, while the red, green, and blue images represent the results of the fusion of different channels. Images labeled "wiener filter" represent images reconstructed by deconvolution.

可能會注意到的是,產生的紅綠藍影像的對比度低於原始影像。這源於二次超穎透鏡調變轉換函數行為,也稱為“面紗眩光(veiling glare)”效應。然而,調變轉換函數仍然可在更高的空間頻率被保留(見第9(a)圖到第9(c)圖),以使影像資訊不會遺失。此屬性可藉由基於廣泛使用的文納濾波的簡單反卷積演算法進一步改善品質。重建的影像(在第16(b)圖到第16(c)圖中標示為文納濾光片)可展示出大大改善的清晰度以及良好的顏色一致性。從實用的角度來看,濾光片速度快且不耗能可能很重要,這使其適用於可攜式以及小型化裝置。儘管對資源有更多需求且需要更長的時間來處理,其他過濾器(例如總變化正則化器(total variation regularizer))可進一步改善影像。這可能是專注於更好的精度以及顏色再現、但可能不需要實時更新的其他類型系統的解決方案。You may notice that the resulting red, green, and blue image has lower contrast than the original image. This results from the behavior of the quadratic metalens modulation transfer function, also known as the "veiling glare" effect. However, the modulation transfer function can still be preserved at higher spatial frequencies (see Figure 9(a) to Figure 9(c)) so that the image information is not lost. This property can be further improved by a simple deconvolution algorithm based on the widely used Wenner filter. The reconstructed images (labeled Wenner filters in Figures 16(b) through 16(c)) exhibit much improved sharpness and good color consistency. From a practical perspective, it may be important that the filter is fast and does not consume energy, making it suitable for portable as well as miniaturized devices. Other filters, such as the total variation regularizer, can further improve the image, although they are more resource demanding and take longer to process. This may be a solution for other types of systems that focus on better accuracy and color reproduction, but may not require real-time updates.

第17圖是將實施例與典型手機相機以及習知繞射透鏡進行比較的表格。“+”表示存在特定特質,而“-”表示不存在特定特質。Figure 17 is a table comparing an embodiment with a typical cell phone camera and a conventional diffractive lens. "+" indicates the presence of a specific trait, while "-" indicates its absence.

各種實施例可包括或提供在單個晶片上的二次超穎透鏡陣列以及顏色檢測器,每一超穎透鏡被設計以在某個角度範圍中提供良好品質的寬視場聚焦,且使用介電材料達成。光學系統可在每一超穎透鏡的前焦平面中包括額外的帶通濾色器以及/或孔徑。每一超穎透鏡(顏色通道)可在由內部檢測器或外部帶通濾色器界定的特定光譜帶寬中運行。每一通道可提供一大的視場影像。最終的多光譜影像可藉由通道融合產生。合併過程可包括強度校正、顏色平衡、以及反卷積。Various embodiments may include or provide an array of secondary metalenses and color detectors on a single wafer, each metalens designed to provide good quality wide field focusing over a range of angles, and using dielectric Materials achieved. The optical system may include additional bandpass color filters and/or apertures in the front focal plane of each metalens. Each metalens (color channel) can operate in a specific spectral bandwidth defined by an internal detector or an external bandpass filter. Each channel can provide a large field of view image. The final multispectral image can be produced by channel fusion. The merging process may include intensity correction, color balancing, and deconvolution.

各種實施例可相關於用於多光譜以及白光成像的提供寬視場的二次相位輪廓超穎透鏡陣列的使用。各種實施例可關於一種在具有相似於超穎透鏡運作帶寬的檢測器濾光片帶寬的相同檢測器平面中形成影像的方式。各種實施例可關於具有擴展焦深的二次相位輪廓透鏡的使用,藉此允許品質增強影像處理技術。Various embodiments may relate to the use of quadratic phase profile metalens arrays providing a wide field of view for multispectral as well as white light imaging. Various embodiments may relate to a manner of forming an image in the same detector plane with a detector filter bandwidth similar to the operational bandwidth of the metalens. Various embodiments may involve the use of quadratic phase profile lenses with extended depth of focus, thereby allowing for quality enhanced image processing techniques.

各種實施例可在需要全彩大視場成像的許多應用中具有巨大的商業潛力。各種實施例可應用於可攜式相機、行動電話相機、保全相機、用於醫學、農業、以及物體辨識的小型化顯微鏡、以及常規的無人機偵測。Various embodiments may have significant commercial potential in many applications requiring full-color, wide-field imaging. Various embodiments may be applied to portable cameras, mobile phone cameras, security cameras, miniaturized microscopes for medicine, agriculture, and object recognition, as well as general drone detection.

“包括”是指包括但不限於“包括”一詞後面的任何內容。因此,用詞“包括”的使用表示所列元素是必需的或必備的,但其他元素是可選的且可能存在也可能不存在。"Including" means including, but not limited to, anything that follows the word "includes." Thus, use of the word "includes" means that the listed elements are required or required, but that other elements are optional and may or may not be present.

“由…組成”是指包括且限於“由…組成”用語後面的任何內容。因此,用語“由…組成”表示列出的元素是必需的或必備的,且不可存在其他元件。“Consisting of” means including and limited to anything that follows the phrase “consisting of.” Thus, the phrase "consisting of" means that the listed elements are required or required and no other elements may be present.

在此所示描述的發明可在沒有在此未具體揭露的任何元件或數個元件、一限制或數個限制的情況下適當地實施。因此,例如“包括(comprising, including)”、“包含(containing)”等等的用詞應被廣泛地理解且不受限制。此外,在此採用的用詞以及表述已被用作描述性用詞而不是限制性用詞,且在使用這些用詞以及表述時無意排除所顯示以及所描述的特徵或其部分的任何等同物,而是認可在要求保護的本發明的範圍內可進行各種修改。因此,應當理解,雖然本發明已經藉由較佳實施例以及可選特徵具體揭露,但是本領域具有一般知識者可對在此所揭露的本發明進行修改以及變化,且這些修改以及變化被視為是在本發明的範圍內。The inventions shown and described herein may suitably be practiced without any element or elements, limitation or limitations not specifically disclosed herein. Accordingly, terms such as "comprising, including," "containing" and the like are to be construed broadly and without limitation. Furthermore, the words and expressions employed herein have been used as descriptive rather than restrictive terms and their use is not intended to exclude any equivalents of the features shown and described, or parts thereof. , but recognizes that various modifications may be made within the scope of the claimed invention. Therefore, it should be understood that although the present invention has been specifically disclosed in terms of preferred embodiments and optional features, modifications and changes to the invention disclosed herein may be made by those of ordinary skill in the art, and these modifications and changes are considered is within the scope of the present invention.

關於給定數值的“大約”(例如對於焦)是指包括在指定值的10%以內的數值。"Approximately" with respect to a given value (for example, for a focus) means a value included within 10% of the specified value.

本發明已在此被廣泛且上位地描述。落入上位揭露內容的每一較窄子類別以及下位類組也形成本發明的一部分。這包括本發明的上位描述具有從上位移除任何標的的但書或負面限制,無論在此是否具體引用了刪減的材料。The invention has been described broadly and generically herein. Each narrower subcategory and subordinate grouping that falls within the overriding disclosure also forms a part of this invention. This includes the generic description of the invention having a proviso or negative limitation removing any subject matter from the generic description, whether or not the truncated material is specifically cited herein.

其他實施例在以下申請專利範圍以及非限制性示例內。此外,本發明的特徵或特點以馬庫西群組的形式描述,在本領域具有一般知識者將認可到本發明因此也以馬庫西群組的任何單個構件或下位的構件來描述。Other embodiments are within the scope of the following claims as well as the non-limiting examples. Furthermore, where features or characteristics of the invention are described in terms of Markusian groups, one of ordinary skill in the art will recognize that the invention is therefore also described in terms of any individual or underlying component of a Markusian group.

202,502:複數個濾色器/濾色器 204,504,1104:複數個超穎透鏡/超穎透鏡 302,304,402:步驟 506:顏色檢測器 1102:過濾器 1106:檢測器 1108:孔徑 P R,P G,P B:週期 λ 12345:波長 λ RGB:中心波長 202,502: A plurality of color filters/color filters 204,504,1104: A plurality of metalenses/metalenses 302,304,402: Step 506: Color detector 1102: Filter 1106: Detector 1108: Aperture P R , P G , P B : Period λ 1 , λ 2 , λ 3 , λ 4 , λ 5 : Wavelength λ R , λ G , λ B : Center wavelength

在圖式中,相同的參考符號在不同視圖中大致指的是相同的部分。圖式不一定按比例繪製,而是大致將重點放在示出各種實施例的原理上。在以下描述中,本發明的各種實施例將參照以下圖式描述。 第1圖提供(a)習知折射型透鏡以及(b)繞射透鏡的色差圖,其中波長λ 1>λ 2>λ 3沿著光軸聚焦在的不同的地方。 第2圖是根據各種實施例的光學系統的大致圖示。 第3圖是根據各種實施例的形成光學系統的方法的大致圖示。 第4圖是根據各種實施例的形成多色影像的方法的大致圖示。 第5A圖顯示根據各種實施例的光學系統的示意圖。 第5B圖顯示根據各種實施例的另一光學系統的示意圖。 第5C圖顯示根據各種實施例的又一光學系統的示意圖。 第5D圖顯示用於達到紅-綠-藍(red-green-blue, RGB)成像的光學系統的一個特定實施例的示意圖,其中每一超穎透鏡對於紅(λ R=620nm)、綠(λ G=530nm)、以及藍(λ B=460nm)區域中的對應的中心波長進行優化。 第6圖示出根據各種實施例的奈米天線的可能示例。 第7圖顯示根據各種實施例的超穎透鏡集合的橫向投影的示例。 第8A圖是透射隨著工作循環的變化的曲線圖,顯示根據各種實施例的包括奈米柱的超穎透鏡的模擬透射值(使用有限差分時域(finite-difference time-domain, FDTD)方法獲得)。 第8B圖是透射隨著工作循環的變化的曲線圖,顯示根據各種實施例的包括奈米柱的超穎透鏡的模擬相位值(使用有限差分時域(FDTD)方法獲得)。 第8C圖顯示根據各種實施例製造的紅(R)、綠(G)、以及藍(B)超穎透鏡的(上)光學顯微鏡影像以及(下)掃描電子顯微鏡(SEM)影像。 第9圖顯示(a)-(c)調變轉換函數(MTF)隨著空間頻率(每毫米循環或循環/mm)變化的曲線圖,顯示根據各種實施例的具有理想二次相位輪廓的紅二次透鏡的調變轉換函數模擬值,設計以在紅(R)區域(中心波長λ R=620nm)中對於入射角φ=0°、30°、和50°且中心波長附近的帶寬處Δλ=10nm、20nm、30nm、和40nm運行,以及(d)-(f)為相應地對應於(a)-(c)中的條件的點擴散函數(point spread function, PSF)。 第10圖顯示(a)-(c)調變轉換函數(MTF)隨著空間頻率(每毫米循環或循環/mm)變化的曲線圖,顯示根據各種實施例的具有理想二次相位輪廓的紅二次透鏡的調變轉換函數測量值,設計以在紅(R)區域(中心波長λ R=620nm)中對於入射角φ=0°、30°、和50°且中心波長附近的帶寬處Δλ=10nm、20nm、30nm、和40nm運行,以及(d)-(f)為相應地對應於(a)-(c)中的條件的點擴散函數(PSF)。 第11圖顯示(a)根據各種實施例的包括複數個孔徑的光學系統的示意圖;(b)調變轉換函數(MTF)隨著空間頻率(每毫米循環或循環/mm)變化的曲線圖,顯示根據各種實施例的紅二次超穎透鏡(中心波長λ R=620nm)在有以及沒有孔徑光闌(aperture stop)的情況下對於入射角φ=0°的調變轉換函數模擬值;以及(c)調變轉換函數(MTF)隨著空間頻率(每毫米循環或循環/mm)變化的曲線圖,顯示根據各種實施例的紅二次超穎透鏡(中心波長λ R=620nm)在有以及沒有孔徑光闌的情況下對於入射角φ=30°的調變轉換函數模擬值。 第12圖顯示根據各種實施例的雙曲線相位輪廓超穎透鏡以及二次相位輪廓超穎透鏡對於入射角φ=0°的單色成像模擬。 第13圖顯示(a)具有24個色塊(painted patches)的原始標準ColorChecker測試圖;(b)由根據各種實施例的光學系統對於30°× 20°的視場(FOV)的紅-綠-藍(RGB)成像的結果;(c)由根據各種實施例的光學系統對於100°×67°的視場(FOV)的紅-綠-藍(RGB)成像的結果。 第14圖顯示(a)根據各種實施例的具有30°×20°的視場(FOV)的ColorChecker紅-綠-藍(RGB)的顏色ΔE;(b)根據各種實施例的具有100°×67°的視場(FOV)的ColorChecker紅-綠-藍(RGB)的顏色ΔE;以及(c)根據各種實施例的對於100°×67°的視場在效率校正程序之後的(左)顏色誤差以及(右)獲得的紅-綠-藍(RGB)影像。 第15圖顯示(a)效率(以百分比或%為單位)隨著角度(以度為單位)的變化的曲線圖,顯示根據各種實施例的用於紅超穎透鏡的聚焦效率在10nm、20nm、30nm、和40nm的中心波長(Δλ)附近的帶寬處的角度相依性(angular dependence);(b)效率(以百分比或%為單位)隨著角度(以度為單位)的變化的曲線圖,顯示根據各種實施例的用於綠超穎透鏡的聚焦效率在10nm、20nm、30nm、和40nm的中心波長(Δλ)附近的帶寬處的角度相依性;以及(c)效率(以百分比或%為單位)隨著角度(以度為單位)的變化的曲線圖,顯示根據各種實施例的用於藍超穎透鏡的聚焦效率在10nm、20nm、30nm、和40nm的中心波長(Δλ)附近的帶寬處的角度相依性。 第16圖顯示(a)原始靜止影像;(b)由根據各種實施例的具有50°×35°的視場(FOV)的光學系統的紅-綠-藍(RGB)成像的結果;以及(c)由根據各種實施例的具有100°×67°的視場(FOV)的光學系統的紅-綠-藍(RGB)成像的結果。 第17圖是將實施例與典型手機相機以及習知繞射透鏡進行比較的表格。 In the drawings, the same reference characters generally refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed generally upon illustrating the principles of the various embodiments. In the following description, various embodiments of the invention will be described with reference to the following drawings. Figure 1 provides chromatic aberration diagrams of (a) a conventional refractive lens and (b) a diffractive lens, in which wavelengths λ 1 > λ 2 > λ 3 are focused at different places along the optical axis. Figure 2 is a general illustration of an optical system according to various embodiments. Figure 3 is a general illustration of a method of forming an optical system according to various embodiments. Figure 4 is a general illustration of a method of forming a multicolor image in accordance with various embodiments. Figure 5A shows a schematic diagram of an optical system according to various embodiments. Figure 5B shows a schematic diagram of another optical system according to various embodiments. Figure 5C shows a schematic diagram of yet another optical system according to various embodiments. Figure 5D shows a schematic diagram of a specific embodiment of an optical system for achieving red-green-blue (RGB) imaging, in which each metalens is suitable for red (λ R =620 nm), green ( The corresponding center wavelengths in the λ G =530nm) and blue (λ B =460nm) regions are optimized. Figure 6 shows possible examples of nanoantennas according to various embodiments. Figure 7 shows an example of a lateral projection of a metalens assembly according to various embodiments. Figure 8A is a graph of transmission as a function of duty cycle showing simulated transmission values for metalenses including nanopillars (using the finite-difference time-domain (FDTD) method) according to various embodiments obtained). Figure 8B is a graph of transmission as a function of duty cycle showing simulated phase values (obtained using a finite difference time domain (FDTD) method) for a metalens including nanopillars according to various embodiments. Figure 8C shows (top) optical microscope images and (bottom) scanning electron microscope (SEM) images of red (R), green (G), and blue (B) metalenses fabricated according to various embodiments. Figure 9 shows (a)-(c) plots of modulation transfer function (MTF) as a function of spatial frequency (cycles per millimeter or cycles/mm), showing red with an ideal quadratic phase profile according to various embodiments. Simulated values of the modulation transfer function of the secondary lens, designed to operate at a bandwidth Δλ near the center wavelength for incident angles φ=0°, 30°, and 50° in the red (R) region (center wavelength λ R =620 nm) =10nm, 20nm, 30nm, and 40nm runs, and (d)-(f) are point spread functions (PSF) corresponding to the conditions in (a)-(c), respectively. Figure 10 shows (a)-(c) plots of modulation transfer function (MTF) as a function of spatial frequency (cycles per millimeter or cycles/mm), showing red with an ideal quadratic phase profile according to various embodiments. Measured values of modulation transfer functions of secondary lenses designed to operate at bandwidths Δλ near the center wavelength for incident angles φ = 0°, 30°, and 50° in the red (R) region (center wavelength λ R =620 nm) =10 nm, 20 nm, 30 nm, and 40 nm runs, and (d)-(f) are the point spread functions (PSF) corresponding to the conditions in (a)-(c), respectively. Figure 11 shows (a) a schematic diagram of an optical system including a plurality of apertures according to various embodiments; (b) a plot of modulation transfer function (MTF) as a function of spatial frequency (cycles per millimeter or cycles/mm), Shows simulated modulation transfer function values for a red secondary metalens (center wavelength λ R =620 nm) with and without an aperture stop for an incident angle φ = 0° according to various embodiments; and (c) Plot of modulation transfer function (MTF) as a function of spatial frequency (cycles per millimeter or cycles/mm), showing that a red secondary metalens (center wavelength λ R =620 nm) according to various embodiments has And the simulated value of the modulation transfer function for the incident angle φ=30° without aperture diaphragm. Figure 12 shows monochromatic imaging simulations of a hyperbolic phase profile metalens and a quadratic phase profile metalens for an incident angle φ=0° according to various embodiments. Figure 13 shows (a) the original standard ColorChecker test pattern with 24 painted patches; (b) red-green color for a 30° × 20° field of view (FOV) by an optical system according to various embodiments. - Results of blue (RGB) imaging; (c) Results of red-green-blue (RGB) imaging for a field of view (FOV) of 100°×67° by an optical system according to various embodiments. Figure 14 shows (a) ColorChecker red-green-blue (RGB) color ΔE with a field of view (FOV) of 30° × 20° in accordance with various embodiments; (b) color ΔE of a ColorChecker with a field of view (FOV) of 30° × 20° in accordance with various embodiments; ColorChecker red-green-blue (RGB) color ΔE for a field of view (FOV) of 67°; and (c) (left) color after efficiency correction procedure for a field of view of 100° × 67° according to various embodiments Error and (right) the red-green-blue (RGB) image obtained. Figure 15 shows (a) a graph of efficiency (in percent or %) as a function of angle (in degrees) showing focusing efficiency at 10 nm, 20 nm for red metalenses according to various embodiments. Angular dependence (angular dependence) at the bandwidth near the central wavelength (Δλ) of , 30nm, and 40nm; (b) Graph of efficiency (in percentage or %) as a function of angle (in degrees) , showing the angular dependence of focusing efficiency for green metalenses at bandwidths near central wavelengths (Δλ) of 10 nm, 20 nm, 30 nm, and 40 nm according to various embodiments; and (c) efficiency (in percent or % A graph of (in units) as a function of angle (in degrees) showing focusing efficiency around center wavelengths (Δλ) of 10 nm, 20 nm, 30 nm, and 40 nm for a blue metalens according to various embodiments. Angular dependence at bandwidth. Figure 16 shows (a) the original still image; (b) the result of red-green-blue (RGB) imaging by an optical system having a field of view (FOV) of 50° x 35° according to various embodiments; and ( c) Results of red-green-blue (RGB) imaging by an optical system with a field of view (FOV) of 100° x 67° according to various embodiments. Figure 17 is a table comparing an embodiment with a typical cell phone camera and a conventional diffractive lens.

without

202:複數個濾色器 202: Multiple color filters

204:複數個超穎透鏡 204: Multiple metalenses

Claims (20)

一種光學系統,包括: 複數個濾色器,該等複數個濾色器的一第一濾色器配置以選擇代表一第一顏色通道的一第一波長範圍的光,且該等複數個濾色器的一第二濾色器配置以選擇與該第一波長範圍不同的一第二波長範圍的光,該第二波長範圍的光代表一第二顏色通道,使得該等複數個濾色器提供不同的數個顏色通道;以及 複數個超穎透鏡,該等複數個超穎透鏡分別與該等複數個顏色通道的相應的一顏色通道相關聯; 其中,該等複數個超穎透鏡分別具有一焦距,該等複數個超穎透鏡具有相等的焦距,使得不同的該等顏色通道在一共同焦平面上組合,以形成一多色影像; 其中,該等複數個超穎透鏡分別包括複數個奈米結構,且具有大於30度的一視場;以及 其中,該等複數個超穎透鏡分別具有一期望運行光譜帶寬,該期望運行光譜帶寬取決於一擴展焦深、相關聯的該顏色通道的一中心波長、以及在該中心波長的該焦距。 An optical system including: a plurality of color filters, a first color filter of the plurality of color filters configured to select light representing a first wavelength range of a first color channel, and a second color filter of the plurality of color filters The color filters are configured to select a second wavelength range of light that is different from the first wavelength range, and the second wavelength range of light represents a second color channel, so that the plurality of color filters provide different colors. channel; and A plurality of metalenses, the plurality of metalenses are respectively associated with a corresponding color channel of the plurality of color channels; Wherein, the plurality of metalenses each have a focal length, and the plurality of metalenses have equal focal lengths, so that the different color channels are combined on a common focal plane to form a multicolor image; Wherein, the plurality of metalenses respectively include a plurality of nanostructures and have a field of view greater than 30 degrees; and Wherein, the plurality of metalenses each have a desired operating spectral bandwidth, and the desired operating spectral bandwidth depends on an extended focal depth, a center wavelength of the associated color channel, and the focal length at the center wavelength. 如請求項1之光學系統,更包括: 一個或多個檢測器,界定該共同焦平面。 The optical system of claim 1 further includes: One or more detectors define the common focal plane. 如請求項2之光學系統, 其中,該等複數個濾色器是該一個或多個檢測器的內部帶通濾光片。 Such as the optical system of claim 2, Wherein, the plurality of color filters are internal bandpass filters of the one or more detectors. 如請求項2之光學系統, 其中,該等複數個濾色器在該一個或多個檢測器的外部。 Such as the optical system of claim 2, Wherein, the plurality of color filters are outside the one or more detectors. 如請求項1之光學系統, 其中,該等複數個濾色器設置在該等複數個超穎透鏡以及該共同焦平面之間,使得該等複數個超穎透鏡分別配置以將一寬帶光引導至該等複數個濾色器的相關聯的一濾色器,以產生相應的相關聯的該顏色通道。 Such as the optical system of claim 1, Wherein, the plurality of color filters are disposed between the plurality of metalenses and the common focal plane, so that the plurality of metalenses are respectively configured to guide a broadband light to the plurality of color filters. associated with a color filter to produce the corresponding associated color channel. 如請求項1之光學系統, 其中,該等複數個超穎透鏡設置在該等複數個濾色器以及該共同焦平面之間,使得該等複數個超穎透鏡分別配置以將相應的相關聯的該顏色通道的光引導至該共同焦平面上。 Such as the optical system of claim 1, Wherein, the plurality of metalenses are disposed between the plurality of color filters and the common focal plane, so that the plurality of metalenses are respectively configured to guide the light of the corresponding associated color channel to on the common focal plane. 如請求項1之光學系統, 其中,該等複數個超穎透鏡分別具有一菲涅耳數,該等複數個超穎透鏡具有不同的菲涅耳數,使得該等複數個超穎透鏡具有相等的焦距。 Such as the optical system of claim 1, Wherein, the plurality of metalenses each have a Fresnel number, and the plurality of metalenses have different Fresnel numbers, so that the plurality of metalenses have the same focal length. 如請求項1之光學系統, 其中,該等複數個超穎透鏡分別的奈米結構設置成具有一預定週期的一週期性晶格; 其中,該等複數個超穎透鏡的不同的數個超穎透鏡的菲涅耳數因不同的該等超穎透鏡的不同的該等預定週期而不同。 Such as the optical system of claim 1, Wherein, the respective nanostructures of the plurality of metalenses are arranged into a periodic lattice with a predetermined period; Wherein, the Fresnel numbers of different metalenses of the plurality of metalenses are different due to the different predetermined periods of the different metalenses. 如請求項8之光學系統, 其中,該週期性晶格為一正方形晶格、一矩形晶格、一六邊形晶格或任何其他常見的週期或準週期布拉菲晶格。 Such as the optical system of claim 8, Wherein, the periodic lattice is a square lattice, a rectangular lattice, a hexagonal lattice or any other common periodic or quasi-periodic Bravais lattice. 如請求項1之光學系統,更包括: 複數個孔徑,設置在該等複數個超穎透鏡之前。 The optical system of claim 1 further includes: A plurality of apertures are provided in front of the plurality of metalenses. 如請求項1之光學系統, 其中,該等複數個超穎透鏡由折射率等於或大於2的材料製成。 Such as the optical system of claim 1, Wherein, the plurality of metalenses are made of materials with a refractive index equal to or greater than 2. 如請求項1之光學系統, 其中,該等複數個超穎透鏡包括一合適的介電材料或一合適的半導體材料。 Such as the optical system of claim 1, Wherein, the plurality of metalenses include a suitable dielectric material or a suitable semiconductor material. 如請求項1之光學系統, 其中,該等複數個超穎透鏡包括矽、磷化鎵、氧化鉿、氮化鎵、二氧化鈦、氮化矽、藍寶石、金剛石、碳化矽、氮化鋁、III-V半導體或II-VI半導體。 Such as the optical system of claim 1, Among them, the plurality of metalenses include silicon, gallium phosphide, hafnium oxide, gallium nitride, titanium dioxide, silicon nitride, sapphire, diamond, silicon carbide, aluminum nitride, III-V semiconductor or II-VI semiconductor. 如請求項1之光學系統, 其中,該等複數個超穎透鏡的高度相等;以及 其中,該光學系統更包括一基材,該等複數個超穎透鏡在該基材上。 Such as the optical system of claim 1, Wherein, the plurality of metalenses have the same height; and Wherein, the optical system further includes a base material, and the plurality of metal lenses are on the base material. 如請求項1之光學系統, 其中,該等複數個奈米結構是具有任何合適橫截面的奈米柱。 Such as the optical system of claim 1, Wherein, the plurality of nanostructures are nanopillars with any suitable cross-section. 如請求項1之光學系統, 其中,該等複數個奈米結構是奈米天線。 Such as the optical system of claim 1, Wherein, the plurality of nanostructures are nanoantennas. 如請求項1之光學系統, 其中,該等複數個顏色通道代表電磁光的不同光譜範圍。 Such as the optical system of claim 1, The plurality of color channels represent different spectral ranges of electromagnetic light. 如請求項1之光學系統, 其中,該等複數個顏色通道在光譜上彼此相鄰或重疊。 Such as the optical system of claim 1, The plurality of color channels are spectrally adjacent to or overlapping each other. 一種形成光學系統的方法,包括: 提供複數個濾色器,該等複數個濾色器的一第一濾色器配置以選擇代表一第一顏色通道的一第一波長範圍的光,且該等複數個濾色器的一第二濾色器配置以選擇與該第一波長範圍不同的一第二波長範圍的光,該第二波長範圍的光代表一第二顏色通道,使得該等複數個濾色器提供不同的數個顏色通道;以及 提供複數個超穎透鏡,該等複數個超穎透鏡分別與該等複數個顏色通道的相應的一顏色通道相關聯; 其中,該等複數個超穎透鏡分別具有一焦距,該等複數個超穎透鏡具有相等的焦距,使得不同的該等顏色通道在一共同焦平面上組合,以形成一多色影像; 其中,該等複數個超穎透鏡分別包括複數個奈米結構,且具有大於30度的一視場;以及 其中,該等複數個超穎透鏡分別具有一期望運行光譜帶寬,該期望運行光譜帶寬取決於一擴展焦深、相關聯的該顏色通道的一中心波長、以及在該中心波長的該焦距。 A method of forming an optical system, including: A plurality of color filters are provided, a first color filter of the plurality of color filters is configured to select light representing a first wavelength range of a first color channel, and a first color filter of the plurality of color filters is provided. The two color filters are configured to select a second wavelength range of light that is different from the first wavelength range, and the second wavelength range of light represents a second color channel, so that the plurality of color filters provide different numbers of color channels; and Provide a plurality of metalenses, the plurality of metalenses being respectively associated with a corresponding color channel of the plurality of color channels; Wherein, the plurality of metalenses each have a focal length, and the plurality of metalenses have equal focal lengths, so that the different color channels are combined on a common focal plane to form a multicolor image; Wherein, the plurality of metalenses respectively include a plurality of nanostructures and have a field of view greater than 30 degrees; and Wherein, the plurality of metalenses each have a desired operating spectral bandwidth, and the desired operating spectral bandwidth depends on an extended focal depth, a center wavelength of the associated color channel, and the focal length at the center wavelength. 一種形成多色影像的方法,包括: 提供一寬帶光至一光學系統,該光學系統包括: 複數個濾色器,該等複數個濾色器的一第一濾色器配置以選擇代表一第一顏色通道的一第一波長範圍的光,且該等複數個濾色器的一第二濾色器配置以選擇與該第一波長範圍不同的一第二波長範圍的光,該第二波長範圍的光基於該寬帶光代表一第二顏色通道,使得該等複數個濾色器提供不同的數個顏色通道;以及 複數個超穎透鏡,該等複數個超穎透鏡分別與該等複數個顏色通道的相應的一顏色通道相關聯; 其中,該等複數個超穎透鏡分別具有一焦距,該等複數個超穎透鏡具有相等的焦距,使得不同的該等顏色通道在一共同焦平面上組合,以形成該多色影像; 其中,該等複數個超穎透鏡分別包括複數個奈米結構,且具有大於30度的一視場;以及 其中,該等複數個超穎透鏡分別具有一期望運行光譜帶寬,該期望運行光譜帶寬取決於一擴展焦深、相關聯的該顏色通道的一中心波長、以及在該中心波長的該焦距。 A method of forming multi-color images consisting of: Provide a broadband light to an optical system, the optical system includes: a plurality of color filters, a first color filter of the plurality of color filters configured to select light representing a first wavelength range of a first color channel, and a second color filter of the plurality of color filters The color filters are configured to select a second wavelength range of light that is different from the first wavelength range, and the light of the second wavelength range represents a second color channel based on the broadband light, so that the plurality of color filters provide different several color channels; and A plurality of metalenses, the plurality of metalenses are respectively associated with a corresponding color channel of the plurality of color channels; Wherein, the plurality of metalenses each have a focal length, and the plurality of metalenses have equal focal lengths, so that the different color channels are combined on a common focal plane to form the multicolor image; Wherein, the plurality of metalenses respectively include a plurality of nanostructures and have a field of view greater than 30 degrees; and Wherein, the plurality of metalenses each have a desired operating spectral bandwidth, and the desired operating spectral bandwidth depends on an extended focal depth, a center wavelength of the associated color channel, and the focal length at the center wavelength.
TW111126918A 2022-07-12 2022-07-18 Optical system and method of forming the same, method of forming a multi-color image TW202403396A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
WOPCT/SG2022/050485 2022-07-12
PCT/SG2022/050485 WO2024015012A1 (en) 2022-07-12 2022-07-12 Optical system and method of forming the same, method of forming a multi-color image

Publications (1)

Publication Number Publication Date
TW202403396A true TW202403396A (en) 2024-01-16

Family

ID=89537214

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111126918A TW202403396A (en) 2022-07-12 2022-07-18 Optical system and method of forming the same, method of forming a multi-color image

Country Status (2)

Country Link
TW (1) TW202403396A (en)
WO (1) WO2024015012A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3746817A4 (en) * 2018-01-29 2021-10-20 University of Washington Metasurfaces and systems for full-color imaging and methods of imaging
JP2022535238A (en) * 2019-06-06 2022-08-05 アプライド マテリアルズ インコーポレイテッド IMAGING SYSTEM AND METHOD FOR GENERATING A SYNTHETIC IMAGE
JP2022542172A (en) * 2019-07-26 2022-09-29 メタレンズ,インコーポレイテッド Aperture Metasurface and Hybrid Refractive Metasurface Imaging Systems
CN114341674A (en) * 2019-08-08 2022-04-12 麻省理工学院 Ultra-wide view field planar optical device
KR20210020469A (en) * 2019-08-14 2021-02-24 삼성전자주식회사 Spectral camera
US11640040B2 (en) * 2020-01-27 2023-05-02 University Of Washington Simultaneous focal length control and achromatic computational imaging with quartic metasurfaces
US11269075B2 (en) * 2020-04-17 2022-03-08 Samsung Electronics Co., Ltd. Hybrid sensor system and method for providing 3D imaging

Also Published As

Publication number Publication date
WO2024015012A1 (en) 2024-01-18

Similar Documents

Publication Publication Date Title
TWI696297B (en) Broadband achromatic metalens in the visible spectrum
US11194082B2 (en) Ultra-compact, aberration corrected, visible chiral spectrometer with meta-lenses
US11567240B2 (en) Multilayered meta lens and optical apparatus including the same
Arbabi et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations
JP7328232B2 (en) Metasurfaces and systems for full-color imaging and methods of imaging
JP6725526B2 (en) Imager with image to create spatially encoded image in a distributed manner
CN111897036A (en) Achromatic microlens array metasurfaces
CN110515215B (en) Ultrathin optical module and ultrathin display device
Chen et al. Full-color nanorouter for high-resolution imaging
CN102334333A (en) Improving the depth of field in an imaging system
WO2019103762A9 (en) Topology optimized multi-layered meta-optics
US11640040B2 (en) Simultaneous focal length control and achromatic computational imaging with quartic metasurfaces
WO2021212811A1 (en) Metasurface imaging device
CN116953923B (en) Superlens design method and superlens
US10996383B2 (en) Diffractive axilenses and uses thereof
Baranikov et al. Large Field‐of‐View and Multi‐Color Imaging with GaP Quadratic Metalenses
Arbabi et al. An optical metasurface planar camera
CN109541735B (en) Design method of thin film diffraction element and thin film diffraction element
TW202403396A (en) Optical system and method of forming the same, method of forming a multi-color image
Hu et al. Ultra-broadband dispersion-manipulated dielectric metalenses by nonlinear dispersive phase compensation
JP7364066B2 (en) Imaging device and imaging device
US20230095994A1 (en) Meta optical device, optical system, and method for aberration correction
Shrestha et al. Broadband Achromatic Dielectric Metalenses Concise running title: Achromatic Metalenses
CN117872518A (en) Superlens for realizing middle-far infrared cross-band ultra-wideband achromatism
Shrestha Dielectric Metasurfaces for Optical Wavefront Manipulation