TW202401848A - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
TW202401848A
TW202401848A TW112131792A TW112131792A TW202401848A TW 202401848 A TW202401848 A TW 202401848A TW 112131792 A TW112131792 A TW 112131792A TW 112131792 A TW112131792 A TW 112131792A TW 202401848 A TW202401848 A TW 202401848A
Authority
TW
Taiwan
Prior art keywords
layer
light
sub
type semiconductor
opening
Prior art date
Application number
TW112131792A
Other languages
Chinese (zh)
Inventor
卓亨穎
Original Assignee
晶元光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晶元光電股份有限公司 filed Critical 晶元光電股份有限公司
Priority to TW112131792A priority Critical patent/TW202401848A/en
Publication of TW202401848A publication Critical patent/TW202401848A/en

Links

Landscapes

  • Led Devices (AREA)

Abstract

A light emitting device is disclosed. The light emitting device includes: a substrate; a semiconductor stack formed on the substrate and including a first type semiconductor layer, a second type semiconductor layer, an active region located between the first type semiconductor layer and the second type semiconductor layer to emit light; a reflective structure formed on the semiconductor stack and including one or multiple openings; and a conductive structure formed on the reflective structure and filling in the one or multiple openings to electrically connected to the second type semiconductor layer; wherein the reflective structure includes a plurality of groups of stack structures, the plurality of groups of stack structures includes a first stack structure, and the first stack structure includes a first sub-layer, a second sub-layer and a third sub-layer sequentially stacking on the semiconductor stack, wherein the first sub-layer has a first optical thickness and a first refractive index, the second sub-layer has a second optical thickness and a second refractive index, the third sub-layer has a third optical thickness and a third refractive index, wherein the first optical thickness > the third optical thickness > the second optical thickness, and the first refractive index < the second refractive index < the third refractive index.

Description

發光元件Light emitting element

本申請案係關於一種發光元件,更詳言之,係關於一種提升亮度的發光元件。This application relates to a light-emitting element, and more specifically, to a light-emitting element that improves brightness.

固態發光元件中的發光二極體(LEDs)具有具低耗電量、低產熱、壽命長、體積小、反應速度快以及良好光電特性,例如具有穩定的發光波長等特性,故已被廣泛的應用於家用裝置、指示燈及光電產品等。Light-emitting diodes (LEDs) in solid-state light-emitting components have low power consumption, low heat production, long life, small size, fast response speed, and good optoelectronic properties, such as stable luminescence wavelength, so they have been widely used. Used in household devices, indicator lights and optoelectronic products, etc.

習知的發光二極體包含一基板、一n型半導體層、一活性層及一p型半導體層形成於基板上、以及分別形成於p型/n型半導體層上的p、n-電極。當透過電極對發光二極體通電,且在一特定值的順向偏壓時,來自p型半導體層的電洞及來自n型半導體層的電子在活性區域內結合以放出光。然而,隨著發光二極體應用於不同的光電產品,對於發光二極體的亮度規格也提高,如何提升其亮度,為本技術領域人員所研究開發的目標之一。A conventional light emitting diode includes a substrate, an n-type semiconductor layer, an active layer and a p-type semiconductor layer formed on the substrate, and p and n-electrodes formed on the p-type/n-type semiconductor layer respectively. When the light-emitting diode is energized through the electrode and is forward biased at a specific value, the holes from the p-type semiconductor layer and the electrons from the n-type semiconductor layer are combined in the active region to emit light. However, as light-emitting diodes are used in different optoelectronic products, the brightness specifications of light-emitting diodes are also improved. How to improve their brightness is one of the research and development goals of those in the technical field.

本申請案揭露一種發光元件,包含基板;半導體疊層設置於基板上,包含第一型半導體層、第二型半導體層、活性區域位於第一型半導體層及第二型半導體層之間用以發出一光線;反射結構形成於該半導體疊層上,且具有一或多個反射結構開口;以及導電結構形成於反射結構上,填入一或多個反射結構開口且電性連接第二型半導體層;其中反射結構包含複數組堆疊結構,且複數組堆疊結構包含一第一組堆疊結構,該第一組堆疊結構包含第一子層、第二子層及第三子層依序堆疊於半導體疊層上,第一子層具有第一光學厚度及第一折射率,第二子層具有第二光學厚度及第二折射率,第三子層具有第三光學厚度及第三折射率,第一光學厚度>第三光學厚度>第二光學厚度,且第一折射率<第二折射率<第三折射率。This application discloses a light-emitting element, including a substrate; a semiconductor stack is disposed on the substrate, including a first-type semiconductor layer, a second-type semiconductor layer, and an active region located between the first-type semiconductor layer and the second-type semiconductor layer. Emit a light; a reflective structure is formed on the semiconductor stack and has one or more reflective structure openings; and a conductive structure is formed on the reflective structure, filling the one or more reflective structure openings and electrically connected to the second type semiconductor layer; wherein the reflective structure includes a plurality of stacked structures, and the plurality of stacked structures includes a first group of stacked structures, the first group of stacked structures includes a first sub-layer, a second sub-layer and a third sub-layer sequentially stacked on the semiconductor On the stack, the first sub-layer has a first optical thickness and a first refractive index, the second sub-layer has a second optical thickness and a second refractive index, the third sub-layer has a third optical thickness and a third refractive index, and the third sub-layer has a third optical thickness and a third refractive index. An optical thickness>third optical thickness>second optical thickness, and first refractive index<second refractive index<third refractive index.

下文中,將參照圖示詳細地描述本發明之示例性實施例,已使得本發明領域技術人員能夠充分地理解本發明之精神。本發明並不限於以下之實施例,而是可以以其他形式實施。在本說明書中,有一些相同的符號,其表示具有相同或是類似之結構、功能、原理的元件,且為業界具有一般知識能力者可以依據本說明書之教導而推知。為說明書之簡潔度考量,相同之符號的元件將不再重述。Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings to enable those skilled in the art to fully understand the spirit of the present invention. The present invention is not limited to the following embodiments, but can be implemented in other forms. In this specification, there are some identical symbols, which represent components with the same or similar structures, functions, and principles, and those with general knowledge in the industry can deduce them based on the teachings of this specification. For the sake of simplicity in the description, components with the same symbols will not be repeated.

圖1顯示本申請案一實施例發光元件1之上視圖。圖2A顯示圖1中沿A-A’線段之截面圖。發光元件1包含一基板10、一半導體疊層12 、一或複數個暴露區28、一第一保護層21、一反射結構50、一第二保護層23、一第一接觸層20、一第二接觸層30、一第三保護層25、一第一焊墊80a、以及一第二焊墊80b。於一實施例中,發光元件1可包含一透明導電層18位於第二型半導體層122上,第二型半導體層122與反射結構50之間。Figure 1 shows a top view of a light-emitting element 1 according to an embodiment of the present application. Figure 2A shows a cross-sectional view along line A-A' in Figure 1. The light-emitting element 1 includes a substrate 10, a semiconductor stack 12, one or a plurality of exposed areas 28, a first protective layer 21, a reflective structure 50, a second protective layer 23, a first contact layer 20, a first Two contact layers 30, a third protective layer 25, a first bonding pad 80a, and a second bonding pad 80b. In one embodiment, the light-emitting element 1 may include a transparent conductive layer 18 located on the second-type semiconductor layer 122 and between the second-type semiconductor layer 122 and the reflective structure 50 .

詳言之,半導體疊層12位於基板10上,包含一第一型半導體層121、一第二型半導體層122及位於第一型半導體層121與第二型半導體層122之間的一活性區域123。暴露區28包含分別位於半導體疊層12的周圍區域及內部區域,且暴露出一第一型半導體層上表面121a。暴露區28包含側壁及底部,底部由被暴露出的第一型半導體層上表面121a構成。第一保護層21覆蓋暴露區28中的部份第一型半導體層上表面121a,並延伸覆蓋部分第二型半導體層122的上表面。換言之,第一保護層21接觸暴露區28部分底部、側壁、以及部分第二型半導體層122的上表面。於另一實施例中,在半導體疊層12的周圍,第一保護層21更延伸覆蓋至與基板上表面10a相接的第一型半導體層121的側壁(圖未示)。第一保護層21包含一或複數個第一第一保護層開口210、一或複數個第二第一保護層開口212,第一第一保護層開口210位於第二型半導體層122上,暴露出第二型半導體層122,及/或透明導電層18,第二第一保護層開口212分別位於半導體疊層12內部區域的暴露區28上,且暴露出第一型半導體層上表面121a。於一實施例中,透明導電層18位於第一第一保護層開口210內,且延伸至第一保護層21上。反射結構50位於透明導電層18或第二型半導體層122上,包含一或複數個第一反射結構開口501對應於暴露區28及透明導電層開口180形成,以及一或複數個第二反射結構開口502暴露出透明導電層18,及/或第二型半導體層122。導電結構36位於反射結構50上,經由反射結構開口502與透明導電層18,及/或第二型半導體層122電性連接。於一實施例中(圖未示),反射結構50包含複數個島狀結構分佈於第二型半導體層122上,導電結構36經由島狀結構之間的間隙與透明導電層18及第二型半導體層122電性連接。第二保護層23形成於第一保護層21之上,自暴露區28延伸覆蓋導電結構36。第二保護層23包含一或複數個第一第二保護層開口230位於導電結構36上,且經由第一第二保護層開口230暴露部分導電結構36。此外,第二保護層23包含一或複數個第二第二保護層開口232分別位於半導體疊層12內部區域的暴露區28上,且經由第二第二保護層開口232暴露出第一型半導體層上表面121a。於一實施例中,第一保護層21及第二保護層23分別包含一或複數個第三第一保護層開口214及一或複數個第三第二保護層開口234位於半導體疊層12周圍區域的暴露區28,經由第三第一保護層開口214及第三第二保護層開口234暴露出第一型半導體層上表面121a。於一實施例中,複數個第三第一保護層開口214及複數個第三第二保護層開口234可間隔地設置於位於半導體疊層12周圍區域的暴露區28上。於一實施例中,由於第二保護層23覆蓋暴露區28的側壁,也就是半導體疊層12的側壁,可以保護半導體疊層12,避免在後續製程中可能破壞半導體疊層12或異性電性接觸形成短路。於另一實施例中,在半導體疊層12的周圍,第二保護層23更覆蓋暴露區28下方的第一型半導體層121的側壁。Specifically, the semiconductor stack 12 is located on the substrate 10 and includes a first-type semiconductor layer 121, a second-type semiconductor layer 122, and an active area between the first-type semiconductor layer 121 and the second-type semiconductor layer 122. 123. The exposed area 28 includes a peripheral area and an internal area respectively located on the semiconductor stack 12, and exposes a first-type semiconductor layer upper surface 121a. The exposed area 28 includes sidewalls and a bottom, and the bottom is composed of the exposed upper surface 121a of the first-type semiconductor layer. The first protective layer 21 covers part of the upper surface 121 a of the first-type semiconductor layer in the exposed region 28 , and extends to cover part of the upper surface of the second-type semiconductor layer 122 . In other words, the first protective layer 21 contacts part of the bottom and sidewalls of the exposed region 28 and part of the upper surface of the second-type semiconductor layer 122 . In another embodiment, around the semiconductor stack 12 , the first protective layer 21 further extends to cover the sidewalls of the first-type semiconductor layer 121 (not shown) that are in contact with the upper surface 10 a of the substrate. The first protective layer 21 includes one or a plurality of first first protective layer openings 210 and one or a plurality of second first protective layer openings 212. The first first protective layer opening 210 is located on the second type semiconductor layer 122 and exposes The second-type semiconductor layer 122 and/or the transparent conductive layer 18 are exposed, and the second first protective layer openings 212 are respectively located on the exposed areas 28 in the internal region of the semiconductor stack 12, and expose the first-type semiconductor layer upper surface 121a. In one embodiment, the transparent conductive layer 18 is located in the first protective layer opening 210 and extends onto the first protective layer 21 . The reflective structure 50 is located on the transparent conductive layer 18 or the second type semiconductor layer 122, and includes one or a plurality of first reflective structure openings 501 formed corresponding to the exposed area 28 and the transparent conductive layer opening 180, and one or a plurality of second reflective structures. The opening 502 exposes the transparent conductive layer 18 and/or the second type semiconductor layer 122 . The conductive structure 36 is located on the reflective structure 50 and is electrically connected to the transparent conductive layer 18 and/or the second-type semiconductor layer 122 through the reflective structure opening 502 . In one embodiment (not shown), the reflective structure 50 includes a plurality of island-shaped structures distributed on the second-type semiconductor layer 122, and the conductive structure 36 communicates with the transparent conductive layer 18 and the second-type semiconductor layer 122 through the gaps between the island-shaped structures. The semiconductor layer 122 is electrically connected. The second protective layer 23 is formed on the first protective layer 21 and extends from the exposed area 28 to cover the conductive structure 36 . The second protective layer 23 includes one or a plurality of first and second protective layer openings 230 located on the conductive structure 36 , and a portion of the conductive structure 36 is exposed through the first and second protective layer openings 230 . In addition, the second protective layer 23 includes one or a plurality of second protective layer openings 232 respectively located on the exposed areas 28 in the internal region of the semiconductor stack 12 , and the first-type semiconductor is exposed through the second second protective layer openings 232 Layer upper surface 121a. In one embodiment, the first protective layer 21 and the second protective layer 23 respectively include one or a plurality of third first protective layer openings 214 and one or a plurality of third second protective layer openings 234 located around the semiconductor stack 12 The exposed area 28 of the region exposes the first-type semiconductor layer upper surface 121a through the third first protective layer opening 214 and the third second protective layer opening 234. In one embodiment, a plurality of third first protective layer openings 214 and a plurality of third second protective layer openings 234 may be spaced apart on the exposed area 28 located around the semiconductor stack 12 . In one embodiment, since the second protective layer 23 covers the sidewalls of the exposed region 28 , that is, the sidewalls of the semiconductor stack 12 , the semiconductor stack 12 can be protected from possible damage to the semiconductor stack 12 or abnormal electrical properties in subsequent processes. Contact creates a short circuit. In another embodiment, around the semiconductor stack 12 , the second protective layer 23 further covers the sidewalls of the first-type semiconductor layer 121 under the exposed region 28 .

於一實施例中,暴露區28可藉由移除部分的第二型半導體層122、活性層123及第一型半導體層121,露出第一型半導體層121上表面121a而形成。如圖1所示,相對於暴露區28,其他區域的半導體疊層12形成一高台MS。於本實施例中,暴露區28包含位於半導體疊層12之周圍環繞高台MS的周圍區域以及分佈在高台MS內的內部區域。第一型半導體於一實施例中,參見圖1,高台MS的輪廓包含多個凸部及多個凹部間隔設置,於一實施例中,多個凸部及多個凹部設置的高台MS的輪廓呈波浪狀。於其他實施例中,由上視圖觀之,高台MS的輪廓包含鋸齒狀、方波狀或其他非直線的圖案。於一實施例中,多個凹部對應第三第一保護層開口214及第三第二保護層開口234設置。高台MS輪廓的凹部可以增加位於暴露區28之周圍區域的面積,進而增加接觸層20與暴露區28的接觸面積以提高電流注入。此外高台MS輪廓可以增加側向光取出面積。然而凹部的增加也會造成發光面積的損失,因此高台MS輪廓的圖案設計可以在考慮接觸層20與位於暴露區28之周圍區域的接觸面積,以及發光面積損失下做最佳化設計,藉由高台MS輪廓的圖案設計可在維持最佳發光面積下提升電流注入,且可提高發光元件1的光取出效率。In one embodiment, the exposed region 28 can be formed by removing part of the second-type semiconductor layer 122, the active layer 123 and the first-type semiconductor layer 121 to expose the upper surface 121a of the first-type semiconductor layer 121. As shown in FIG. 1 , relative to the exposed area 28 , other areas of the semiconductor stack 12 form a mesa MS. In this embodiment, the exposed area 28 includes a peripheral area surrounding the high platform MS and an internal area distributed within the high platform MS around the semiconductor stack 12 . In an embodiment of the first type semiconductor, as shown in FIG. 1 , the outline of the platform MS includes a plurality of convex portions and a plurality of concave portions arranged at intervals. It is wavy. In other embodiments, when viewed from a top view, the outline of the platform MS includes a zigzag, a square wave, or other non-linear patterns. In one embodiment, a plurality of recessed portions are provided corresponding to the third first protective layer opening 214 and the third second protective layer opening 234 . The recessed portion of the profile of the mesa MS can increase the area around the exposed region 28, thereby increasing the contact area between the contact layer 20 and the exposed region 28 to improve current injection. In addition, the high platform MS profile can increase the lateral light extraction area. However, the increase in recesses will also cause a loss of light-emitting area. Therefore, the pattern design of the high-station MS profile can be optimized by taking into account the contact area between the contact layer 20 and the area around the exposed area 28 and the loss of light-emitting area. The pattern design of the high platform MS profile can improve current injection while maintaining the optimal light-emitting area, and can improve the light extraction efficiency of the light-emitting element 1 .

第一接觸層20及第二接觸層30形成在半導體疊層12上。第一接觸層20覆蓋第一保護層21及第二保護層23,經由第二第一保護層開口212、第三第一保護層開口214、第二第二保護層開口232及第三第二保護層開口234與第一型半導體層121電性連接。第二接觸層30與第一接觸層20相互分離,經由第一第二保護層開口230接觸導電結構36,與第二型半導體層122電性連接。於一實施例中,第二接觸層30位於第一第二保護層開口230中。於另一實施例中,第二接觸層30位於第一第二保護層開口230中更延伸至第二保護層23上。第三保護層25位於第一接觸層20與第二接觸層30上,包含一或複數個第一第三保護層開口251暴露第一接觸層20,以及一或複數個第二第三保護層開口252暴露第二接觸層30。第三保護層25更覆蓋半導體疊層12周圍的側壁及基板上表面10a。第一焊墊80a位於第一第三保護層開口251中,並接觸第一接觸層20。第二焊墊80b位於第二第三保護層開口252中,並接觸第二接觸層30。於另一實施例中,第一焊墊80a及第二焊墊80b分別位於第一第三保護層開口251及第二第三保護層開口252中,並延伸至第三保護層25上。第二焊墊80b、第二接觸層30和導電結構36可形成電性連接於第二型半導體層122之一第一導電結構。第一焊墊80a和第一接觸層20可形成電性連接於第一型半導體層121之一第二導電結構。The first contact layer 20 and the second contact layer 30 are formed on the semiconductor stack 12 . The first contact layer 20 covers the first protective layer 21 and the second protective layer 23 through the second first protective layer opening 212, the third first protective layer opening 214, the second second protective layer opening 232 and the third second protective layer opening 212. The protective layer opening 234 is electrically connected to the first type semiconductor layer 121 . The second contact layer 30 is separated from the first contact layer 20 , contacts the conductive structure 36 through the first and second protective layer openings 230 , and is electrically connected to the second type semiconductor layer 122 . In one embodiment, the second contact layer 30 is located in the first and second protective layer openings 230 . In another embodiment, the second contact layer 30 is located in the first and second protective layer openings 230 and extends onto the second protective layer 23 . The third protective layer 25 is located on the first contact layer 20 and the second contact layer 30 , and includes one or a plurality of first and third protective layer openings 251 to expose the first contact layer 20 , and one or a plurality of second and third protective layers. Opening 252 exposes second contact layer 30 . The third protective layer 25 further covers the sidewalls around the semiconductor stack 12 and the upper surface 10a of the substrate. The first bonding pad 80a is located in the first and third protective layer opening 251 and contacts the first contact layer 20 . The second bonding pad 80b is located in the second and third protective layer openings 252 and contacts the second contact layer 30 . In another embodiment, the first bonding pad 80a and the second bonding pad 80b are respectively located in the first and third protective layer openings 251 and the second and third protective layer openings 252, and extend to the third protective layer 25. The second bonding pad 80b, the second contact layer 30 and the conductive structure 36 may form a first conductive structure electrically connected to the second type semiconductor layer 122. The first bonding pad 80a and the first contact layer 20 may form a second conductive structure electrically connected to the first type semiconductor layer 121.

於一實施例中,基板10可以是一成長基板,包括用於生長磷化鎵銦(AlGaInP)的砷化鎵(GaAs)基板、及磷化鎵(GaP)基板,或用於生長氮化銦鎵(InGaN)或氮化鋁鎵(AlGaN)的藍寶石(Al 2O 3)基板,氮化鎵(GaN)基板,碳化矽(SiC)基板、及氮化鋁(AlN)基板。基板10包含基板上表面10a。基板10可以是一圖案化基板,即,基板上表面10a上具有圖案化結構(圖未示)。於一實施例中,從半導體疊層12發射的光可以被基板10的圖案化結構所折射,從而提高發光元件的亮度。此外,圖案化結構減緩或抑制了基板10與半導體疊層12之間因晶格不匹配而導致的錯位,從而改善半導體疊層12的磊晶品質。 In one embodiment, the substrate 10 may be a growth substrate, including a gallium arsenide (GaAs) substrate for growing gallium indium phosphide (AlGaInP), a gallium phosphide (GaP) substrate, or a growth substrate for indium nitride. Gallium (InGaN) or aluminum gallium nitride (AlGaN) sapphire (Al 2 O 3 ) substrate, gallium nitride (GaN) substrate, silicon carbide (SiC) substrate, and aluminum nitride (AlN) substrate. The substrate 10 includes a substrate upper surface 10a. The substrate 10 may be a patterned substrate, that is, the upper surface 10a of the substrate has a patterned structure (not shown). In one embodiment, the light emitted from the semiconductor stack 12 can be refracted by the patterned structure of the substrate 10, thereby increasing the brightness of the light-emitting element. In addition, the patterned structure slows down or suppresses the dislocation caused by lattice mismatch between the substrate 10 and the semiconductor stack 12 , thereby improving the epitaxial quality of the semiconductor stack 12 .

於一實施例中,半導體疊層12可更包含一緩衝結構(圖未示),緩衝結構、第一型半導體層121、活性區域123和第二型半導體層122依序形成在基板10上。緩衝結構可減小上述的晶格不匹配並抑制錯位,從而改善磊晶品質。緩衝層的材料包括GaN、AlGaN或AlN。在一實施例中,緩衝結構包括多個子層(圖未示)。子層包括相同材料或不同材料。在一實施例中,緩衝結構包括兩個子層,其中第一子層的生長方式為濺鍍,第二子層的生長方式為MOCVD。在一實施例中,緩衝層另包含第三子層。其中第三子層的生長方式為MOCVD,第二子層的生長溫度高於或低於第三子層的生長溫度。於一實施例中,第一、第二及第三子層包括相同的材料,例如AlN,或不同材料,例如AN、GaN、AlGaN。在本申請案的一實施例中,第一型半導體層121和第二型半導體層122,例如為包覆層(cladding layer)或侷限層(confinement layer),具有不同的導電型態、電性、極性或用於提供電子或電洞的摻雜元素。例如,第一型半導體層121是n型半導體,以及第二型半導體層122是p型半導體。活性區域123形成於第一型半導體層121與第二型半導體層122之間。電子與電洞在電流驅動下在活性區域123中結合,將電能轉換成光能以發光。可藉由改變半導體疊層12中一個或多個層別的物理特性和化學組成,來調整發光元件1或半導體疊層12所發出的光之波長。In one embodiment, the semiconductor stack 12 may further include a buffer structure (not shown). The buffer structure, the first-type semiconductor layer 121, the active region 123 and the second-type semiconductor layer 122 are sequentially formed on the substrate 10. The buffer structure can reduce the above-mentioned lattice mismatch and suppress dislocation, thereby improving the epitaxial quality. The material of the buffer layer includes GaN, AlGaN or AlN. In one embodiment, the buffer structure includes multiple sub-layers (not shown). The sub-layers include the same material or different materials. In one embodiment, the buffer structure includes two sub-layers, wherein the growth method of the first sub-layer is sputtering, and the growth method of the second sub-layer is MOCVD. In one embodiment, the buffer layer further includes a third sub-layer. The growth method of the third sub-layer is MOCVD, and the growth temperature of the second sub-layer is higher or lower than the growth temperature of the third sub-layer. In one embodiment, the first, second and third sub-layers include the same material, such as AlN, or different materials, such as AN, GaN, or AlGaN. In an embodiment of the present application, the first type semiconductor layer 121 and the second type semiconductor layer 122, such as a cladding layer or a confinement layer, have different conductive types and electrical properties. , polarity, or doping elements used to provide electrons or holes. For example, the first type semiconductor layer 121 is an n-type semiconductor, and the second type semiconductor layer 122 is a p-type semiconductor. The active region 123 is formed between the first type semiconductor layer 121 and the second type semiconductor layer 122 . Electrons and holes are combined in the active region 123 driven by current, converting electrical energy into light energy to emit light. The wavelength of the light emitted by the light-emitting element 1 or the semiconductor stack 12 can be adjusted by changing the physical properties and chemical composition of one or more layers in the semiconductor stack 12 .

半導體疊層12的材料包括Al xIn yGa (1-x-y)N或Al xIn yGa (1-x-y)P的III-V族半導體材料,其中0≤x,y≤1;x+y≤1。根據活性區域123的材料,當活性區域123的材料是AlInGaP系列時,可以發出波長介於610nm和650nm之間的紅光或波長介於550nm和570nm之間的黃光。當活性區域123的材料是InGaN系列時,可以發出波長介於400nm和490nm之間的藍光或深藍光或波長介於490nm和550nm之間的綠光。當活性區域123的材料是AlGaN系列時,可以發出波長介於400nm和250nm之間的UV光。活性區域123可以是單異質結構(single heterostructure; SH)、雙異質結構(double heterostructure; DH)、雙面雙異質結構(double-side double heterostructure; DDH)、多重量子井(multi-quantum well; MQW)。活性區域123的材料可以是i型、p型或n型半導體。於一實施例中,在基板10上形成半導體疊層12的方法包含有機金屬化學氣相沉積(MOCVD)、分子束磊晶法(MBE)、氫化物氣相磊晶(HVPE)或離子鍍,例如濺鍍或蒸鍍等。 The material of the semiconductor stack 12 includes a III-V group semiconductor material of Al x In y Ga (1-xy) N or Al x In y Ga (1-xy) P, where 0≤x, y≤1; x+y ≤1. According to the material of the active region 123, when the material of the active region 123 is AlInGaP series, red light with a wavelength between 610 nm and 650 nm or yellow light with a wavelength between 550 nm and 570 nm can be emitted. When the material of the active region 123 is the InGaN series, it can emit blue light or deep blue light with a wavelength between 400nm and 490nm or green light with a wavelength between 490nm and 550nm. When the material of the active region 123 is AlGaN series, UV light with a wavelength between 400 nm and 250 nm can be emitted. The active region 123 may be a single heterostructure (single heterostructure; SH), a double heterostructure (double heterostructure; DH), a double-side double heterostructure (DDH), or a multi-quantum well (MQW). ). The material of active region 123 may be i-type, p-type or n-type semiconductor. In one embodiment, the method of forming the semiconductor stack 12 on the substrate 10 includes metal-organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), hydride vapor phase epitaxy (HVPE) or ion plating, For example, sputtering or evaporation, etc.

第一保護層21、第二保護層23及第三保護層25相對於半導體疊層12所發出的光線為透明,其材料為非導電材料,包含有機材料或無機材料。其中有機材料包含Su8、苯并環丁烯(BCB)、過氟環丁烷(PFCB)、環氧樹脂(Epoxy)、丙烯酸樹脂(Acrylic Resin)、環烯烴聚合物(COC)、聚甲基丙烯酸甲酯(PMMA)、聚對苯二甲酸乙二酯(PET)、聚碳酸酯(PC)、聚醚醯亞胺(Polyetherimide)、聚醯亞胺(Polyimide)或氟碳聚合物(Fluorocarbon Polymer)。無機材料包含例如矽膠(Silicone)、玻璃(Glass)或是介電材料,介電材料例如為氧化矽(SiO x)、氮化矽(SiN x)、氧氮化矽(SiO xN y)、氧化鈮(Nb 2O 5)、氧化鉿(HfO 2)、氧化鈦(TiO x)、氟化鎂(MgF 2)、氧化鋁(Al 2O 3)等,第一保護層21、第二保護層23與第三保護層25可為相同材料或不同材料。第一保護層21、第二保護層23及第三保護層25的形成方式包含原子沉積法(Atomic Layer Deposition, ALD)、濺鍍(sputtering)、蒸鍍(evaporation)及旋塗(spin-coating)等方式,第一保護層21、第二保護層23與第三保護層25的形成方式可相同或不同。第一保護層21、第二保護層23及第三保護層25的開口形成方式包含乾蝕刻、濕蝕刻或掀離(lift-off)等方式,第一保護層21、第二保護層23與第三保護層25的開口形成方式可相同或不同。 The first protective layer 21 , the second protective layer 23 and the third protective layer 25 are transparent to the light emitted by the semiconductor stack 12 , and their materials are non-conductive materials, including organic materials or inorganic materials. The organic materials include Su8, benzocyclobutene (BCB), perfluorocyclobutane (PFCB), epoxy resin (Epoxy), acrylic resin (Acrylic Resin), cycloolefin polymer (COC), polymethacrylic acid Methyl ester (PMMA), polyethylene terephthalate (PET), polycarbonate (PC), polyetherimide (Polyetherimide), polyimide (Polyimide) or fluorocarbon polymer (Fluorocarbon Polymer) . Inorganic materials include, for example, silicone, glass, or dielectric materials. Dielectric materials include, for example, silicon oxide (SiO x ), silicon nitride (SiN x ), silicon oxynitride (SiO x N y ), Niobium oxide (Nb 2 O 5 ), hafnium oxide (HfO 2 ), titanium oxide (TiO x ), magnesium fluoride (MgF 2 ), aluminum oxide (Al 2 O 3 ), etc., first protective layer 21, second protective layer The layer 23 and the third protective layer 25 may be of the same material or different materials. The first protective layer 21 , the second protective layer 23 and the third protective layer 25 are formed by atomic deposition (ALD), sputtering, evaporation and spin-coating. ), etc., the first protective layer 21 , the second protective layer 23 and the third protective layer 25 may be formed in the same or different ways. The opening methods of the first protective layer 21 , the second protective layer 23 and the third protective layer 25 include dry etching, wet etching or lift-off. The first protective layer 21 , the second protective layer 23 and The openings of the third protective layer 25 may be formed in the same manner or in different ways.

如圖2A所示,透明導電層18覆蓋第二型半導體層122之上表面,並與第二型半導體層122電性接觸,包含一或複數個透明導電層開口180對應暴露區28形成。透明導電層18可以是金屬或是透明導電材料,其中金屬可選自具有透光性的薄金屬層,透明導電材料對於活性層123所發出的光線為透明,包含石墨烯、銦錫氧化物(ITO)、氧化鋁鋅(AZO)、氧化鎵鋅(GZO)、氧化鋅(ZnO)或銦鋅氧化物(IZO)等材料。於一實施例中,透明導電層18覆蓋部分的第一保護層21。於另一實施例中。透明導電層18不覆蓋第一保護層21。於另一實施例中,可以先形成透明導電層18,再形成第一保護層21,第一保護層21覆蓋部分透明導電層18或不覆蓋透明導電層18。於一實施例中,第一保護層21形成於透明導電層18及反射結構50之間,且暴露出透明導電層18。As shown in FIG. 2A , the transparent conductive layer 18 covers the upper surface of the second-type semiconductor layer 122 and is in electrical contact with the second-type semiconductor layer 122 , and includes one or a plurality of transparent conductive layer openings 180 formed corresponding to the exposed regions 28 . The transparent conductive layer 18 can be a metal or a transparent conductive material. The metal can be selected from a thin metal layer with light transmittance. The transparent conductive material is transparent to the light emitted by the active layer 123 and includes graphene, indium tin oxide ( Materials such as ITO), aluminum zinc oxide (AZO), gallium zinc oxide (GZO), zinc oxide (ZnO) or indium zinc oxide (IZO). In one embodiment, the transparent conductive layer 18 covers part of the first protective layer 21 . In another embodiment. The transparent conductive layer 18 does not cover the first protective layer 21 . In another embodiment, the transparent conductive layer 18 can be formed first, and then the first protective layer 21 is formed. The first protective layer 21 covers part of the transparent conductive layer 18 or does not cover the transparent conductive layer 18 . In one embodiment, the first protective layer 21 is formed between the transparent conductive layer 18 and the reflective structure 50 and exposes the transparent conductive layer 18 .

如圖1及圖2A所示,第一接觸層20覆蓋第二保護層23,經由第二保護層23的第二第二保護層開口232及第三第二保護層開口234分別電性連接第一型半導體層121與第二型半導體層122。第一接觸層20及第二接觸層30包含金屬材料,例如鋁(Al)、鉻(Cr)、鉑(Pt)、鈦(Ti)、鎢(W)、鋅(Zn) 或上述材料之合金或疊層。第一焊墊80a及第二焊墊80b分別形成在第一第三保護層開口251及第一第三保護層開口252內,且分別經由接觸第一接觸層20與第二接觸層30而分別電性連接第一型半導體層121與第二型半導體層122。第一焊墊80a及第二焊墊80b包含金屬材料,例如鉻(Cr)、鈦(Ti)、鎢(W)、金(Au)、鋁(Al)、銦(In)、錫(Sn)、鎳(Ni)、鉑(Pt)等金屬或上述材料之疊層或合金。第一焊墊80a及第二焊墊80b可由單個層或是多個層所組成。例如,第一焊墊80a及第二焊墊80b可包括Ti/Au、Ti/Pt/Au、Cr/Au、Cr/Pt/Au、Ni/Au、Ni/Pt/Au或Cr/Al/Cr/Ni/Au。於一實施例中,第一焊墊80a及第二焊墊80b以覆晶的方式和一載板(圖未示)上的電路接合,以達到和外部電子元件或外部電源的連接。於另一實施例中,第一焊墊80a及/或第二焊墊80b更可延伸覆蓋於第三保護層25上。於另一實施例中,第一焊墊80a及/或第二焊墊80b所在區域可避開暴露區28分佈在半導體疊層12內的內部區域,以避免因高低差造成焊墊與半導體疊層12之間各層介面可能產生的剝離。於一實施例中,第一焊墊80a及第二焊墊80b之表面有對應第二反射結構開口502形成的複數個凹部(圖未示),介由該些凹部,於後續封裝製程中,可提升焊墊與載板之間的接合力,以提升製程良率。As shown in FIG. 1 and FIG. 2A , the first contact layer 20 covers the second protective layer 23 and is electrically connected to the second protective layer opening 232 and the third second protective layer opening 234 of the second protective layer 23 respectively. A first-type semiconductor layer 121 and a second-type semiconductor layer 122. The first contact layer 20 and the second contact layer 30 include metal materials, such as aluminum (Al), chromium (Cr), platinum (Pt), titanium (Ti), tungsten (W), zinc (Zn) or alloys of the above materials. Or laminated. The first bonding pad 80a and the second bonding pad 80b are respectively formed in the first and third protective layer openings 251 and the first and third protective layer openings 252, and are respectively contacted with the first contact layer 20 and the second contact layer 30. The first type semiconductor layer 121 and the second type semiconductor layer 122 are electrically connected. The first bonding pad 80a and the second bonding pad 80b include metal materials, such as chromium (Cr), titanium (Ti), tungsten (W), gold (Au), aluminum (Al), indium (In), tin (Sn) , nickel (Ni), platinum (Pt) and other metals or laminates or alloys of the above materials. The first bonding pad 80a and the second bonding pad 80b may be composed of a single layer or multiple layers. For example, the first bonding pad 80a and the second bonding pad 80b may include Ti/Au, Ti/Pt/Au, Cr/Au, Cr/Pt/Au, Ni/Au, Ni/Pt/Au or Cr/Al/Cr. /Ni/Au. In one embodiment, the first bonding pad 80a and the second bonding pad 80b are connected to a circuit on a carrier board (not shown) in a flip-chip manner to achieve connection with external electronic components or an external power supply. In another embodiment, the first bonding pad 80a and/or the second bonding pad 80b can further extend to cover the third protective layer 25. In another embodiment, the area where the first bonding pad 80a and/or the second bonding pad 80b is located can avoid the exposed area 28 and be distributed in the internal area of the semiconductor stack 12 to avoid the height difference between the bonding pads and the semiconductor stack. Possible peeling at the interface between layers 12. In one embodiment, the surfaces of the first bonding pad 80a and the second bonding pad 80b have a plurality of recessed portions (not shown) formed corresponding to the second reflective structure opening 502. Through these recessed portions, in the subsequent packaging process, The bonding force between the soldering pad and the carrier board can be improved to improve the process yield.

圖2B顯示圖2A中標示C1處之一截面局部放大圖,反射結構50包含複數組堆疊結構51。於一實施例中,如圖2B所示,反射結構50包含一或複數個堆疊結構51,堆疊結構51依序包含一第一子層51a、一第二子層51b及一第三子層51c。於一實施例中,反射結構50包含一或複數個堆疊結構51以及一或複數個堆疊結構51’,其中堆疊結構51’僅由第一子層51a、第二子層51b及第三子層51c中任兩層堆疊組成。請參考圖2C,反射結構50至少包含兩個由第一子層51a、第二子層51b及第三子層51c依序堆疊的堆疊結構51,以及由第一子層51a及第二子層51b依序堆疊的堆疊結構51’。於一實施例中,堆疊結構51’可以是複數個。於一實施例中,堆疊結構51’可以是由第一子層51a及第三子層51c依序堆疊而成,或是由第二子層51b及第三子層51c依序堆疊而成。於一實施例中,第一子層51a、第二子層51b及第三子層51c由介電材料所形成,介電材料包括含矽材料,例如氧化矽(SiO x)、氮化矽(SiN x)、或氧氮化矽(SiOₓN y)、金屬氧化物,例如氧化鈮(Nb 2O 5)、氧化鉿(HfO 2)、氧化鈦(TiO x)、或氧化鋁(Al 2O 3)、金屬氟化物,例如氟化鎂(MgF 2)。藉由不同折射率材料的選擇搭配其厚度設計堆疊成材料疊層構成反射結構50,對活性區域123發出之特定波長範圍的光線提供反射功能,例如為一分佈式布拉格反射器(DBR, distributed Bragg reflector)。於本實施例中,第一子層51a具有第一折射率,第二子層51b具有第二折射率,第三子層51c具有第三折射率,其中第一折射率<第二折射率<第三折射率。各子層的厚度可以根據其堆疊順序及折射率來調整。於一實施例中,第一子層51a具有第一光學厚度,第二子層51b具有第二光學厚度,第三子層51c具有第三光學厚度,其中第一光學厚度>第三光學厚度>第二光學厚度。於一實施例中,第一子層51a的材料包含氧化矽,其折射率約介於1.4到1.6之間,例如為二氧化矽(SiO 2),第二子層51b的材料包含氧化鋁,其折射率約介於1.6到1.8之間,例如為三氧化二鋁(Al 2O 3),第三子層51c的材料包含氧化鈦,其折射率約介於2.4到2.6之間,例如為二氧化鈦(TiO 2)。於一實施例中,在反射結構50中包含至少一個由第一子層51a、第二子層51b及第三子層51c依序堆疊的第一組堆疊結構51的情況下,反射結構50可再包含藉由選擇任兩個子層依序堆疊的堆疊結構51’來優化反射結構50的光學效果。於一實施例中,反射結構50中最接近導電結構36的堆疊結構為堆疊結構51’,其中與導電結構36接觸的子層,其與導電結構36之黏著性大於其他子層之黏著性,藉由與導電結構36接觸的子層的材料選擇,可增加導電結構36與反射結構50之間的黏著性,以提升發光元件的可靠度。於一實施例中,第二子層51b與導電結構36有較佳的的黏著性,其材料例如為三氧化二鋁。於一實施例中,任兩個子層依序堆疊的堆疊結構51’可位於任兩組由三個子層依序堆疊的堆疊結構51之間,或堆疊結構51與透明導電層18或第二型半導體層122之間,來優化反射結構50的光學效果。反射結構50的形成方式包含原子沉積法(Atomic Layer Deposition, ALD)、濺鍍(sputtering)、蒸鍍(evaporation)及旋塗(spin-coating)等方式。反射結構50的開口形成方式包含乾蝕刻、濕蝕刻或掀離等方式。 FIG. 2B shows a partial enlarged view of a cross-section marked C1 in FIG. 2A . The reflective structure 50 includes a complex array stack structure 51 . In one embodiment, as shown in FIG. 2B , the reflective structure 50 includes one or a plurality of stacked structures 51 , and the stacked structures 51 sequentially include a first sub-layer 51 a , a second sub-layer 51 b and a third sub-layer 51 c . . In one embodiment, the reflective structure 50 includes one or a plurality of stacked structures 51 and one or a plurality of stacked structures 51', wherein the stacked structure 51' only consists of a first sub-layer 51a, a second sub-layer 51b and a third sub-layer. 51c is composed of any two stacked layers. Please refer to FIG. 2C. The reflective structure 50 includes at least two stack structures 51 sequentially stacked by a first sub-layer 51a, a second sub-layer 51b and a third sub-layer 51c, and a first sub-layer 51a and a second sub-layer 51. 51b is a stacked structure 51' stacked sequentially. In an embodiment, there may be a plurality of stacked structures 51'. In one embodiment, the stacked structure 51' may be formed by stacking the first sub-layer 51a and the third sub-layer 51c in sequence, or the second sub-layer 51b and the third sub-layer 51c being stacked in sequence. In one embodiment, the first sub-layer 51a, the second sub-layer 51b and the third sub-layer 51c are formed of dielectric materials. The dielectric materials include silicon-containing materials, such as silicon oxide (SiO x ), silicon nitride ( SiN x ), or silicon oxynitride (SiOₓN y ), metal oxides, such as niobium oxide (Nb 2 O 5 ), hafnium oxide (HfO 2 ), titanium oxide (TiO x ), or aluminum oxide (Al 2 O 3 ), metal fluorides, such as magnesium fluoride (MgF 2 ). By selecting materials with different refractive indexes and designing their thickness, they are stacked into material stacks to form the reflective structure 50, which provides a reflection function for the light in a specific wavelength range emitted by the active area 123, such as a distributed Bragg reflector (DBR, distributed Bragg). reflector). In this embodiment, the first sub-layer 51a has a first refractive index, the second sub-layer 51b has a second refractive index, and the third sub-layer 51c has a third refractive index, where the first refractive index < the second refractive index < Third refractive index. The thickness of each sub-layer can be adjusted according to its stacking order and refractive index. In one embodiment, the first sub-layer 51a has a first optical thickness, the second sub-layer 51b has a second optical thickness, and the third sub-layer 51c has a third optical thickness, where first optical thickness>third optical thickness> Second optical thickness. In one embodiment, the material of the first sub-layer 51a includes silicon oxide, whose refractive index is approximately between 1.4 and 1.6, such as silicon dioxide (SiO 2 ), and the material of the second sub-layer 51 b includes aluminum oxide, Its refractive index is approximately between 1.6 and 1.8, such as aluminum oxide (Al 2 O 3 ). The material of the third sub-layer 51 c includes titanium oxide, and its refractive index is approximately between 2.4 and 2.6, such as Titanium dioxide (TiO 2 ). In an embodiment, when the reflective structure 50 includes at least a first group of stacked structures 51 sequentially stacked by a first sub-layer 51a, a second sub-layer 51b and a third sub-layer 51c, the reflective structure 50 may It further includes optimizing the optical effect of the reflective structure 50 by selecting a stack structure 51' in which any two sub-layers are stacked sequentially. In one embodiment, the stack structure closest to the conductive structure 36 in the reflective structure 50 is the stack structure 51', in which the adhesion of the sub-layer in contact with the conductive structure 36 is greater than that of other sub-layers. By selecting the material of the sub-layer in contact with the conductive structure 36, the adhesion between the conductive structure 36 and the reflective structure 50 can be increased to improve the reliability of the light-emitting element. In one embodiment, the second sub-layer 51b has better adhesion to the conductive structure 36, and its material is, for example, aluminum oxide. In one embodiment, any two stacked structures 51 ′ of sequentially stacked sub-layers may be located between any two groups of stacked structures 51 of three sequentially stacked sub-layers, or the stacked structure 51 and the transparent conductive layer 18 or the second between the semiconductor layers 122 to optimize the optical effect of the reflective structure 50 . The reflective structure 50 is formed by methods such as atomic deposition (ALD), sputtering, evaporation, and spin-coating. The openings of the reflective structure 50 may be formed by dry etching, wet etching or lift-off.

圖2C顯示圖2A中標示C2處之一截面局部放大圖,反射結構50對應第二反射結構開口502的位置具有第一側壁W1,位於反射結構50下方的透明導電層18具有透明導電層上表面18a,且第一側壁W1與透明導電層上表面18a之間夾有銳角θ1。於一實施例中,銳角θ1介於10度到45度之間。由於反射結構50由堆疊結構51構成,相較於一般的分佈式布拉格反射器,具有較多不同折射率材料的選擇可搭配調整個子層的光學厚度,進而得到厚度可比一般的分佈式布拉格反射器來得薄的反射結構50,使得反射結構50較不易因應力而產生裂縫。此外,於後續的圖案化製程可選擇較厚的一般分佈式布拉格反射器所無法使用的掀離製程,進而使其下方的透明導電層18較不易因蝕刻而損傷。於一實施例中,第二子層51b的厚度為第一子層51a及/或第三子層51c的0到0.5倍。於一實施例中,當第二子層51b的厚度為第一子層51a及/或第三子層51c的0倍,即形成由第一子層51a與第三子層51c依序堆疊的堆疊結構51’。以蝕刻或掀離等圖案化製程在反射結構50中形成反射結構開口502後,第一側壁W1與透明導電層上表面18a之間夾有銳角θ1,使得導電結構36可順應披覆於反射結構50上,進而與透明導電層18,及/或第二型半導體層122之間形成良好的電性連接。於一實施例中,反射結構50可直接形成於第二型半導體層122上,故反射結構50的第一側壁W1與第二型半導體層122的上表面之間夾有銳角。2C shows a partial enlarged view of a cross-section marked C2 in FIG. 2A . The reflective structure 50 has a first side wall W1 at a position corresponding to the opening 502 of the second reflective structure. The transparent conductive layer 18 located below the reflective structure 50 has a transparent conductive layer upper surface. 18a, and there is an acute angle θ1 between the first side wall W1 and the upper surface 18a of the transparent conductive layer. In one embodiment, the acute angle θ1 is between 10 degrees and 45 degrees. Since the reflective structure 50 is composed of a stacked structure 51, compared to a general distributed Bragg reflector, there are more choices of materials with different refractive indexes that can be used to adjust the optical thickness of the sub-layers, thereby obtaining a distributed Bragg reflector with a thickness comparable to that of a general distributed Bragg reflector. The thin reflective structure 50 makes the reflective structure 50 less susceptible to cracks due to stress. In addition, in the subsequent patterning process, a thicker lift-off process that cannot be used for general distributed Bragg reflectors can be selected, so that the transparent conductive layer 18 below it is less likely to be damaged by etching. In one embodiment, the thickness of the second sub-layer 51b is 0 to 0.5 times that of the first sub-layer 51a and/or the third sub-layer 51c. In one embodiment, when the thickness of the second sub-layer 51b is 0 times that of the first sub-layer 51a and/or the third sub-layer 51c, a layer composed of the first sub-layer 51a and the third sub-layer 51c stacked sequentially is formed. Stacked structure 51'. After the reflective structure opening 502 is formed in the reflective structure 50 by a patterning process such as etching or lift-off, an acute angle θ1 is sandwiched between the first sidewall W1 and the upper surface 18a of the transparent conductive layer, so that the conductive structure 36 can be compliantly covered on the reflective structure. 50, and then form a good electrical connection with the transparent conductive layer 18 and/or the second-type semiconductor layer 122. In one embodiment, the reflective structure 50 can be directly formed on the second-type semiconductor layer 122, so there is an acute angle between the first sidewall W1 of the reflective structure 50 and the upper surface of the second-type semiconductor layer 122.

如圖2C所示,反射結構50具有楔形部R1、平台部R2及連接部R3連接楔形部R1與平台部R2,其中楔形部R1鄰近第二反射結構開口502且與透明導電層上表面18a之間夾有銳角θ1,平台部R2遠離第二反射結構開口502且整體具有大致相同的厚度,並具有與透明導電層上表面18a大致平行的上表面。連接部R3位於楔形部R1與平台部R2之間且具有由楔形部R1往平台部R2的漸增厚度,其中第一子層51a於楔形部R1具有第一厚度t1,於平台部R2具有第二厚度t2,於連接部R3具有第三厚度t3,第一厚度t1<第三厚度t3<第二厚度t2,藉由第一子層51a的厚度由鄰近第二反射結構開口502的位置往遠離第二反射結構開口502漸增,使得導電結構36可順應披覆於反射結構50上以接觸透明導電層18或第二型半導體層122而與第二型半導體層122形成良好的電性連接。As shown in FIG. 2C , the reflective structure 50 has a wedge-shaped portion R1 , a platform portion R2 and a connecting portion R3 connecting the wedge-shaped portion R1 and the platform portion R2 . The wedge-shaped portion R1 is adjacent to the second reflective structure opening 502 and is connected to the upper surface 18 a of the transparent conductive layer. With an acute angle θ1 between them, the platform portion R2 is far away from the second reflective structure opening 502 and has substantially the same thickness as a whole, and has an upper surface that is substantially parallel to the upper surface 18a of the transparent conductive layer. The connecting portion R3 is located between the wedge portion R1 and the platform portion R2 and has a gradually increasing thickness from the wedge portion R1 to the platform portion R2, wherein the first sub-layer 51a has a first thickness t1 at the wedge portion R1 and a third thickness t1 at the platform portion R2. The second thickness t2 has a third thickness t3 at the connection part R3, the first thickness t1<the third thickness t3<the second thickness t2, due to the thickness of the first sub-layer 51a moving away from the position adjacent to the second reflective structure opening 502 The openings 502 of the second reflective structure gradually increase, so that the conductive structure 36 can conformally cover the reflective structure 50 to contact the transparent conductive layer 18 or the second-type semiconductor layer 122 to form a good electrical connection with the second-type semiconductor layer 122 .

請再參見圖2A,導電結構36形成於透明導電層18及反射結構50 上,其經由反射結構50的第二反射結構開口502與透明導電層18及第二型半導體層122電性連接。導電結構36包含複數個導電結構開口360對應於反射結構50的第一反射結構開口501及暴露區28之位置形成。於一實施例中,導電結構36包含一金屬結構,可包含單層金屬或是由複數層金屬所形成之疊層,導電結構36與反射結構50形成一全方位反射鏡(omnidirectional reflector,ODR),增進光的反射及發光元件1的亮度。於一實施例中,對於活性區域123發出峰值波長介於400奈米到700奈米之間的光線,導電結構36與反射結構50形成的全方位反射鏡具有90%以上的反射率。於一實施例中,導電結構36包含阻障層(圖未示)及反射層(圖未示),阻障層形成並覆蓋於反射層上,阻障層可以防止反射層之金屬元素的遷移、擴散或氧化。反射層的材料包含對於半導體疊層12 所發射的光線具有高反射率的金屬材料,例如銀(Ag)、金(Au)、鋁(Al)、鈦(Ti)、鉻(Cr)、銅(Cu)、鎳(Ni)、鉑(Pt)、釕(Ru)或上述材料之合金或疊層。阻障層的材料包括鉻(Cr)、鉑(Pt)、鈦(Ti)、鎢(W)、鋅(Zn) 或上述材料之合金或疊層。於一實施例中,當阻障層為金屬疊層時,阻障層係由兩層或兩層以上的金屬交替堆疊而形成,例如Cr/Pt,Cr/Ti,Cr/TiW,Cr/W,Cr/Zn,Ti/Pt,Ti/W,Ti/TiW,Ti/Zn,Pt/TiW,Pt/W,Pt/Zn,TiW/W,TiW/Zn,或W/Zn等。Referring again to FIG. 2A , the conductive structure 36 is formed on the transparent conductive layer 18 and the reflective structure 50 , and is electrically connected to the transparent conductive layer 18 and the second-type semiconductor layer 122 through the second reflective structure opening 502 of the reflective structure 50 . The conductive structure 36 includes a plurality of conductive structure openings 360 formed corresponding to the positions of the first reflective structure opening 501 and the exposed area 28 of the reflective structure 50 . In one embodiment, the conductive structure 36 includes a metal structure, which may include a single layer of metal or a stack of multiple layers of metal. The conductive structure 36 and the reflective structure 50 form an omnidirectional reflector (ODR). , improve the reflection of light and the brightness of the light-emitting element 1. In one embodiment, for the light emitted by the active area 123 with a peak wavelength between 400 nanometers and 700 nanometers, the omnidirectional mirror formed by the conductive structure 36 and the reflective structure 50 has a reflectivity of more than 90%. In one embodiment, the conductive structure 36 includes a barrier layer (not shown) and a reflective layer (not shown). The barrier layer is formed and covers the reflective layer. The barrier layer can prevent the migration of metal elements in the reflective layer. , diffusion or oxidation. The material of the reflective layer includes metal materials with high reflectivity for the light emitted by the semiconductor stack 12, such as silver (Ag), gold (Au), aluminum (Al), titanium (Ti), chromium (Cr), copper ( Cu), nickel (Ni), platinum (Pt), ruthenium (Ru) or alloys or laminates of the above materials. Materials of the barrier layer include chromium (Cr), platinum (Pt), titanium (Ti), tungsten (W), zinc (Zn) or alloys or laminates of the above materials. In one embodiment, when the barrier layer is a metal stack, the barrier layer is formed by alternately stacking two or more layers of metal, such as Cr/Pt, Cr/Ti, Cr/TiW, Cr/W. , Cr/Zn, Ti/Pt, Ti/W, Ti/TiW, Ti/Zn, Pt/TiW, Pt/W, Pt/Zn, TiW/W, TiW/Zn, or W/Zn, etc.

於一實施例中,藉由在第一子層51a及第三子層51c間插入折射率介於第一子層51a及第三子層51c折射率的第二子層51b,可降低一般分佈式布拉格反射器的疊層因折射率差異過大所造成的干涉現象,使得導電結構36與反射結構50形成的全方位反射鏡對於活性區域123發出的特定波長範圍光線可具有90%以上的反射率,亦使得導電結構36與反射結構50形成的全方位反射鏡在全角度皆具有良好的反射率。舉例而言,圖4顯示本申請案一實施例發光元件1、第一比較例發光元件及第二比較例發光元件的波長對應反射率曲線圖,發光元件1、第一比較例發光元件及第二比較例發光元件的結構類似,差異在第一比較例發光元件僅有導電結構36(即導電結構36下方無反射結構50),第二比較例發光元件為由導電結構36與兩個子層的堆疊結構構成的一般分佈式布拉格反射器形成的全方位反射鏡,曲線O1為第一比較例發光元件對於峰值波長介於380奈米到780奈米之間光線的反射率,曲線P1為第二比較例發光元件對於峰值波長介於380奈米到780奈米之間光線的反射率,曲線E1為本案實施例發光元件1具有導電結構36與反射結構50形成的全方位反射鏡對於峰值波長介於380奈米到780奈米之間光線的反射率。由於一般分佈式布拉格反射器的疊層因折射率差異過大所造成的干涉現象而導致第二比較例發光元件的曲線P1在波長接近400奈米處反射率急遽下降;由第一比較例發光元件的反射率曲線O1來看雖然沒有曲線P1因干涉現象在波長接近400奈米處反射率急遽下降的情形,但其在波長580奈米以下的反射率都較第二比較例發光元件及發光元件1來得低;而發光元件1的曲線E1觀之,沒有前述因干涉現象的反射率驟降,且於波長介於400奈米到780奈米之間的反射率皆可達到90%以上。In one embodiment, by inserting a second sub-layer 51 b having a refractive index between the first sub-layer 51 a and the third sub-layer 51 c between the first sub-layer 51 a and the third sub-layer 51 c, the general distribution can be reduced. The interference phenomenon caused by the excessive difference in refractive index of the stack of Bragg reflectors allows the omnidirectional reflector formed by the conductive structure 36 and the reflective structure 50 to have a reflectivity of more than 90% for the light in a specific wavelength range emitted by the active area 123 , which also makes the omnidirectional reflector formed by the conductive structure 36 and the reflective structure 50 have good reflectivity at all angles. For example, Figure 4 shows the wavelength-corresponding reflectance curve of the light-emitting element 1 of the first embodiment of the present application, the first comparative example and the second comparative example of the light-emitting element. The light-emitting element 1, the first comparative example and the second comparative example are The structures of the light-emitting elements of the two comparative examples are similar. The difference is that the light-emitting element of the first comparative example only has a conductive structure 36 (that is, there is no reflective structure 50 below the conductive structure 36), while the light-emitting element of the second comparative example consists of a conductive structure 36 and two sub-layers. An omnidirectional reflector formed by a general distributed Bragg reflector composed of a stacked structure. The curve O1 is the reflectivity of the light-emitting element of the first comparative example for light with a peak wavelength between 380 nanometers and 780 nanometers. The curve P1 is the reflectivity of the light-emitting element of the first comparative example. The reflectivity of the light-emitting element of the two comparative examples for light with a peak wavelength between 380 nanometers and 780 nanometers. The curve E1 is the peak wavelength of the omnidirectional reflector formed by the light-emitting element 1 of the embodiment of this case with the conductive structure 36 and the reflective structure 50. The reflectivity of light between 380 nanometers and 780 nanometers. Due to the interference phenomenon caused by the excessive difference in refractive index of the stack of general distributed Bragg reflectors, the reflectivity of the curve P1 of the light-emitting element of the second comparative example drops sharply at a wavelength close to 400 nanometers; from the light-emitting element of the first comparative example Judging from the reflectance curve O1, although there is no sharp drop in reflectivity at a wavelength close to 400 nanometers due to interference in curve P1, its reflectivity below a wavelength of 580 nanometers is better than that of the second comparative example of the light-emitting element and the light-emitting element. 1 is much lower; and from the curve E1 of the light-emitting element 1, there is no sudden drop in reflectivity due to the interference phenomenon mentioned above, and the reflectivity can reach more than 90% at wavelengths between 400 nanometers and 780 nanometers.

圖3A顯示本申請案一實施例發光元件1’之截面圖,圖3B顯示圖3A中標示C3處之一截面局部放大圖。然而,相同之符號的元件之相關敘述,已如先前圖1及圖2A-2C說明所述,故於此不再贅述。差異在於發光元件1’更包含中間層40,形成於第二型半導體層122,及/或透明導電層18與反射結構50之間,其中中間層40包含一或複數個第一中間層開口401及一或複數個第二中間層開口402。第一中間層開口401的位置對應於暴露區28及透明導電層開口180,第二中間層開口402分佈在第二型半導體層122,及/或透明導電層18上,且分別對應複數個第二反射結構開口502位置形成,並暴露其下方的第二型半導體層122,及/或透明導電層18。於一實施例中,在半導體疊層12的周圍,中間層40更覆蓋第一型半導體層121的側壁。Figure 3A shows a cross-sectional view of the light-emitting element 1' according to an embodiment of the present application, and Figure 3B shows a partial enlarged view of the cross-section marked C3 in Figure 3A. However, the relevant descriptions of components with the same symbols have been previously described in FIG. 1 and FIG. 2A-2C , and therefore will not be described again here. The difference is that the light-emitting element 1' further includes an intermediate layer 40 formed between the second-type semiconductor layer 122 and/or the transparent conductive layer 18 and the reflective structure 50, wherein the intermediate layer 40 includes one or a plurality of first intermediate layer openings 401. and one or more second intermediate layer openings 402. The position of the first intermediate layer opening 401 corresponds to the exposed area 28 and the transparent conductive layer opening 180. The second intermediate layer opening 402 is distributed on the second type semiconductor layer 122 and/or the transparent conductive layer 18, and respectively corresponds to a plurality of third Two reflective structure openings 502 are formed and expose the second type semiconductor layer 122 and/or the transparent conductive layer 18 below them. In one embodiment, around the semiconductor stack 12 , the intermediate layer 40 further covers the sidewalls of the first-type semiconductor layer 121 .

中間層40相對於半導體疊層12所發出的光線為透明,其材料為非導電材料,包含有機材料或無機材料。其中有機材料包含Su8、苯并環丁烯、過氟環丁烷、環氧樹脂、丙烯酸樹脂、環烯烴聚合物、聚甲基丙烯酸甲酯、聚對苯二甲酸乙二酯、聚碳酸酯、聚醚醯亞胺、聚醯亞胺或氟碳聚合物。無機材料包含例如矽膠、玻璃或是介電材料,介電材料例如為氧化矽、氮化矽、氧氮化矽、氧化鈮、氧化鉿、氧化鈦、氟化鎂、氧化鋁等。中間層40的形成方式包含原子沉積法、濺鍍、蒸鍍及旋塗等方式。中間層40的開口形成方式包含乾蝕刻、濕蝕刻或掀離等方式。於一實施例中,在反射結構50以蝕刻方式,例如乾蝕刻,形成第二反射結構開口502時,可藉由中間層40做為蝕刻阻擋層,以避免蝕刻傷害到其下方的第二型半導體層122,及/或透明導電層18。於一實施例中,在形成第二反射結構開口502之後,可藉由相同或不同蝕刻方式,例如濕蝕刻,在中間層40中形成第二中間層開口402暴露第二型半導體層122,及/或透明導電層18。第二中間層開口402對應第二反射結構開口502形成於其下方。於一實施例中,中間層40可與第一保護層21由相同材料形成,例如為氧化矽。於一實例中,中間層40可與第一保護層21以同一道製程形成於透明導電層18上。於一實施例中,中間層40可與第二子層51b由相同材料形成,例如為氧化鋁,可藉由中間層40增加導電結構36與反射結構50整體的黏著性。The intermediate layer 40 is transparent to the light emitted by the semiconductor stack 12 , and its material is a non-conductive material, including organic materials or inorganic materials. The organic materials include Su8, benzocyclobutene, perfluorocyclobutane, epoxy resin, acrylic resin, cycloolefin polymer, polymethyl methacrylate, polyethylene terephthalate, polycarbonate, Polyetherimide, polyimide or fluorocarbon polymer. Inorganic materials include, for example, silicone, glass, or dielectric materials. The dielectric materials include, for example, silicon oxide, silicon nitride, silicon oxynitride, niobium oxide, hafnium oxide, titanium oxide, magnesium fluoride, aluminum oxide, etc. The intermediate layer 40 may be formed by atomic deposition, sputtering, evaporation, spin coating, or other methods. The openings of the intermediate layer 40 may be formed by dry etching, wet etching or lift-off. In one embodiment, when the reflective structure 50 is etched, such as dry etching, to form the second reflective structure opening 502, the intermediate layer 40 can be used as an etching barrier layer to prevent etching from damaging the second-type structure underneath it. Semiconductor layer 122, and/or transparent conductive layer 18. In one embodiment, after the second reflective structure opening 502 is formed, the second interlayer opening 402 can be formed in the interlayer 40 to expose the second type semiconductor layer 122 by the same or different etching methods, such as wet etching, and /or transparent conductive layer 18 . The second intermediate layer opening 402 is formed below the second intermediate layer opening 402 corresponding to the second reflective structure opening 502 . In one embodiment, the intermediate layer 40 and the first protective layer 21 may be formed of the same material, such as silicon oxide. In one example, the intermediate layer 40 and the first protective layer 21 can be formed on the transparent conductive layer 18 in the same process. In one embodiment, the intermediate layer 40 and the second sub-layer 51b can be formed of the same material, such as aluminum oxide, and the intermediate layer 40 can increase the overall adhesion between the conductive structure 36 and the reflective structure 50 .

請參見圖3B,中間層40形成於透明導電層18上並具有第二中間層開口402暴露透明導電層18。於一實施例中,中間層40可直接形成於第二型半導體層122上。反射結構50形成於中間層40上並具有第二反射結構開口502對應中間層40的第二中間層開口402。反射結構50對應第二反射結構開口502的位置具有第一側壁W1,中間層40對應第二反射結構開口502的位置具有中間層上表面40a,中間層40對應第二中間層開口402的位置具有第二側壁W2,反射結構50的第一側壁W1位於中間層上表面40a上且與中間層40的第二側壁W2位於同一側,並與第二側壁W2之間具有第一距離D1。反射結構50對應第二反射結構開口502的位置相對於第一側壁W1的另一側具有第三側壁W3位於中間層上表面40a上,中間層40對應第二中間層開口402的位置具有第四側壁W4且與反射結構50的第三側壁W3位於同一側,並與第三側壁W3之間具有第二距離D2,其中第一距離D1與第二距離D2可相同或不同。於一實施例中,反射結構50的第一側壁W1與第三側壁W3之間的最小距離定義為第二反射結構開口502的第一寬度,中間層40的第二側壁W2與第四側壁W4之間的最小距離定義為第二中間層開口402的第二寬度,第一寬度大於第二寬度。於一實施例中,反射結構50的第一側壁W1及第三側壁W3與中間層上表面40a之間分別具有相同角度的內夾角或不同角度的內夾角。於一實施例中,中間層40的第二側壁W2及第四側壁W4與透明導電層上表面18a之間分別具有相同角度的內夾角或不同角度的內夾角。於一實施例中,反射結構50的第一側壁W1與中間層上表面40a及中間層40的第二側壁W2與透明導電層上表面18a分別具有相同角度的內夾角或不同角度的內夾角。於一實施例中,反射結構50的第三側壁W3與中間層上表面40a及中間層40的第四側壁W4與透明導電層上表面18a分別具有相同角度的內夾角或不同角度的內夾角。Referring to FIG. 3B , the intermediate layer 40 is formed on the transparent conductive layer 18 and has a second intermediate layer opening 402 exposing the transparent conductive layer 18 . In one embodiment, the intermediate layer 40 can be directly formed on the second-type semiconductor layer 122 . The reflective structure 50 is formed on the intermediate layer 40 and has a second reflective structure opening 502 corresponding to the second intermediate layer opening 402 of the intermediate layer 40 . The reflective structure 50 has a first side wall W1 at a position corresponding to the opening 502 of the second reflective structure. The intermediate layer 40 has an upper surface 40a of the middle layer at a position corresponding to the opening 502 of the second reflective structure. The intermediate layer 40 has an upper surface 40a at a position corresponding to the opening 402 of the second intermediate layer. The second side wall W2, the first side wall W1 of the reflective structure 50 is located on the upper surface 40a of the intermediate layer and is located on the same side as the second side wall W2 of the intermediate layer 40, and has a first distance D1 from the second side wall W2. The reflective structure 50 has a third sidewall W3 located on the upper surface 40a of the middle layer on the other side of the first sidewall W1 at a position corresponding to the second reflective structure opening 502. The middle layer 40 has a fourth sidewall W3 at a position corresponding to the second middle layer opening 402. The side wall W4 is located on the same side as the third side wall W3 of the reflective structure 50 and has a second distance D2 between it and the third side wall W3, where the first distance D1 and the second distance D2 may be the same or different. In one embodiment, the minimum distance between the first side wall W1 and the third side wall W3 of the reflective structure 50 is defined as the first width of the second reflective structure opening 502, and the second side wall W2 and the fourth side wall W4 of the intermediate layer 40 are The minimum distance between them is defined as the second width of the second intermediate layer opening 402, and the first width is greater than the second width. In one embodiment, the first sidewall W1 and the third sidewall W3 of the reflective structure 50 and the upper surface 40a of the intermediate layer respectively have the same included angle or different included angles. In one embodiment, the second sidewall W2 and the fourth sidewall W4 of the intermediate layer 40 and the upper surface 18a of the transparent conductive layer respectively have the same included angle or different included angles. In one embodiment, the first sidewall W1 of the reflective structure 50 and the upper surface 40a of the intermediate layer, and the second sidewall W2 of the intermediate layer 40 and the upper surface 18a of the transparent conductive layer respectively have the same included angle or different included angles. In one embodiment, the third sidewall W3 of the reflective structure 50 and the upper surface 40a of the intermediate layer, and the fourth sidewall W4 of the intermediate layer 40 and the upper surface 18a of the transparent conductive layer respectively have the same included angle or different included angles.

惟上述實施例僅為例示性說明本申請案之原理及其功效,而非用於限制本申請案。任何本申請案所屬技術領域中具有通常知識者均可在不違背本申請案之技術原理及精神的情況下,對上述實施例進行修改及變化。舉凡依本申請案申請專利範圍所述之形狀、構造、特徵及精神所為之均等變化與修飾,均應包括於本申請案之申請專利範圍內。However, the above embodiments are only illustrative to illustrate the principle and effect of the present application, and are not used to limit the present application. Anyone with ordinary knowledge in the technical field to which this application belongs can make modifications and changes to the above embodiments without violating the technical principles and spirit of this application. All changes and modifications made equally to the shape, structure, characteristics and spirit described in the patentable scope of this application shall be included in the patentable scope of this application.

1、1’:發光元件 10:基板 10a:基板上表面 12:半導體疊層 121:第一型半導體層 121a:第一型半導體層上表面 122:第二型半導體層 123:活性層 18:透明導電層 18a:透明導電層上表面 180:透明導電層開口 28:暴露區 20:第一接觸層 21:第一保護層 210:第一第一保護層開口 212:第二第一保護層開口 214:第三第一保護層開口 23:第二保護層 230:第一第二保護層開口 232:第二第二保護層開口 234:第三第二保護層開口 25:第三保護層 251:第一第三保護層開口 252:第二第三保護層開口 30:第二接觸層 36:導電結構 360:導電結構開口 40:中間層 40a:中間層上表面 401:第一中間層開口 402:第二中間層開口 50:反射結構 51、51:堆疊結構 51a、51b、51c:第一子層、第二子層、第三子層 501:第一反射結構開口 502:第二反射結構開口 80a:第一焊墊 80b:第二焊墊 D1、D2:第一距離、第二距離 MS:高台 P1、E1、O1:曲線 R1:楔形部 R2:平台部 R3:連接部 t1、t2、t3:第一厚度、第二厚度、第三厚度 W1、W2、W3、W4:第一側壁、第二側壁、第三側壁、第四側壁 θ1:銳角 1. 1’: Light-emitting element 10:Substrate 10a: Upper surface of substrate 12: Semiconductor stack 121: First type semiconductor layer 121a: Upper surface of the first type semiconductor layer 122: Second type semiconductor layer 123:Active layer 18:Transparent conductive layer 18a: Upper surface of transparent conductive layer 180: Transparent conductive layer opening 28: Exposed area 20: First contact layer 21: First protective layer 210: First first protective layer opening 212: Second first protective layer opening 214: Third first protective layer opening 23:Second protective layer 230: First and second protective layer openings 232: Second second protective layer opening 234: Third and second protective layer opening 25:Third protective layer 251: First and third protective layer openings 252: Second and third protective layer openings 30: Second contact layer 36:Conductive structure 360: Conductive structure openings 40:Middle layer 40a: Upper surface of the middle layer 401: First middle layer opening 402: Second middle layer opening 50: Reflective structure 51, 51: stacked structure 51a, 51b, 51c: first sub-layer, second sub-layer, third sub-layer 501: First reflective structure opening 502: Second reflective structure opening 80a: First pad 80b: Second pad D1, D2: first distance, second distance MS:Gaotai P1, E1, O1: Curve R1: wedge-shaped part R2:Platform Department R3:Connection part t1, t2, t3: first thickness, second thickness, third thickness W1, W2, W3, W4: first side wall, second side wall, third side wall, fourth side wall θ1: acute angle

﹝圖1﹞顯示本申請案一實施例發光元件1之上視圖。 ﹝圖2A﹞顯示本申請案一實施例發光元件1之截面圖。 ﹝圖2B﹞顯示本申請案一實施例發光元件1中的一截面局部放大圖。 ﹝圖2C﹞顯示本申請案一實施例發光元件1中的一截面局部放大圖。 ﹝圖3A﹞顯示本申請案一實施例發光元件1’之截面圖。 ﹝圖3B﹞顯示本申請案一實施例發光元件1’中的一截面局部放大圖。 ﹝圖4﹞顯示本申請案一實施例發光元件1以及比較例發光元件的反射率曲線圖。 ﹝Figure 1﹞ shows a top view of the light-emitting element 1 according to an embodiment of the present application. ﹝Figure 2A﹞ shows a cross-sectional view of the light-emitting element 1 according to an embodiment of the present application. ﹝ FIG. 2B ﹞ shows a partially enlarged cross-sectional view of the light-emitting element 1 according to an embodiment of the present application. ﹝Figure 2C﹞shows a partially enlarged cross-sectional view of the light-emitting element 1 according to an embodiment of the present application. ﹝Figure 3A﹞ shows a cross-sectional view of a light-emitting element 1' according to an embodiment of the present application. ﹝Figure 3B﹞ shows a partial enlarged view of a cross-section of the light-emitting element 1' according to an embodiment of the present application. ﹝Figure 4﹞ shows the reflectance curves of the light-emitting element 1 of the first embodiment of the present application and the light-emitting element of the comparative example.

18:透明導電層 18:Transparent conductive layer

18a:透明導電層上表面 18a: Upper surface of transparent conductive layer

36:導電結構 36:Conductive structure

50:反射結構 50: Reflective structure

51、51’:堆疊結構 51, 51’: stacked structure

51a:第一子層 51a: First sub-layer

51b:第二子層 51b: Second sub-layer

51c:第三子層 51c: The third sub-layer

502:第二反射結構開口 502: Second reflective structure opening

R1:楔形部 R1: wedge-shaped part

R2:平台部 R2:Platform Department

R3:連接部 R3:Connection part

t1、t2、t3:第一厚度、第二厚度、第三厚度 t1, t2, t3: first thickness, second thickness, third thickness

W1:第一側壁 W1: first side wall

θ1:銳角 θ1: acute angle

Claims (10)

一種發光元件包含: 一基板; 一半導體疊層形成於該基板上,包含一第一型半導體層、一第二型半導體層、一主動層位於該第一型半導體層及該第二型半導體層之間用以發出一光線; 一絕緣反射結構形成於該半導體疊層上,該絕緣反射結構包含一堆疊結構且具有一開口,該堆疊結構包括複數子層;以及 一第一導電結構形成於該絕緣反射結構上,經由該開口電性連接該第二型半導體層; 其中該堆疊結構之最外側與該第一導電結構相接觸之一子層的材料包含氧化鋁,其中該子層與該第一導電結構之間的黏著性大於該複數子層之其他層與該第一導電結構之間的黏著性。 A light-emitting element contains: a substrate; A semiconductor stack is formed on the substrate, including a first-type semiconductor layer, a second-type semiconductor layer, and an active layer located between the first-type semiconductor layer and the second-type semiconductor layer for emitting a light; An insulating reflective structure is formed on the semiconductor stack, the insulating reflective structure includes a stacked structure and has an opening, the stacked structure includes a plurality of sub-layers; and A first conductive structure is formed on the insulating reflective structure and is electrically connected to the second-type semiconductor layer through the opening; The material of the outermost sub-layer of the stacked structure in contact with the first conductive structure includes aluminum oxide, and the adhesion between the sub-layer and the first conductive structure is greater than that between other layers of the plurality of sub-layers and the first conductive structure. Adhesion between first conductive structures. 如請求項1所述之發光元件,更包含一中間層,形成於該半導體疊層與該絕緣反射結構之間,其中該中間層具有一中間層開口對應該絕緣反射結構的該開口。The light-emitting element of claim 1, further comprising an intermediate layer formed between the semiconductor stack and the insulating reflective structure, wherein the intermediate layer has an interlayer opening corresponding to the opening of the insulating reflective structure. 如請求項2所述之發光元件,其中該開口具有一第一寬度,該中間層開口具有一第二寬度,該第一寬度大於該第二寬度。The light-emitting element of claim 2, wherein the opening has a first width, the middle layer opening has a second width, and the first width is greater than the second width. 如請求項2所述之發光元件,其中該絕緣反射結構具有一第一側壁,該中間層具有一第二側壁及一中間層上表面,該第一側壁位於該中間層上表面上且與該第二側壁之間具有一距離。The light-emitting element of claim 2, wherein the insulating reflective structure has a first side wall, the intermediate layer has a second side wall and an upper surface of the intermediate layer, and the first side wall is located on the upper surface of the intermediate layer and is connected to the upper surface of the intermediate layer. There is a distance between the second side walls. 如請求項2所述之發光元件,其中該中間層的材料包含氧化鋁或氧化矽。The light-emitting element of claim 2, wherein the material of the intermediate layer includes aluminum oxide or silicon oxide. 如請求項2所述之發光元件,更包括一透明導電層位於該絕緣反射結構與該半導體疊層的第二型半導體層之間。The light-emitting element of claim 2 further includes a transparent conductive layer located between the insulating reflective structure and the second-type semiconductor layer of the semiconductor stack. 如請求項6所述之發光元件,其中該中間層開口暴露該透明導電層,該第一導電結構披覆於該絕緣反射結構上並透過該開口和該中間層開口電性連接於該透明導電層。The light-emitting element of claim 6, wherein the intermediate layer opening exposes the transparent conductive layer, and the first conductive structure is covered on the insulating reflective structure and is electrically connected to the transparent conductive layer through the opening and the intermediate layer opening. layer. 如請求項7所述之發光元件,更包含一第二導電結構,其中該絕緣反射結構包含另一開口,該第二導電結構經由該另一開口電性連接於該第一型半導體層。The light-emitting element of claim 7, further comprising a second conductive structure, wherein the insulating reflective structure includes another opening, and the second conductive structure is electrically connected to the first-type semiconductor layer through the other opening. 如請求項1所述之發光元件,其中該第一導電結構包含一反射層,該反射層的材料包含對於該半導體疊層所發射的該光線具有高反射率的金屬材料。The light-emitting element of claim 1, wherein the first conductive structure includes a reflective layer, and the material of the reflective layer includes a metal material with high reflectivity for the light emitted by the semiconductor stack. 如請求項1所述之發光元件,其中該複數子層之其他層之材料包含氧化矽、氮化矽、氧氮化矽、氧化鈮、氧化鉿、氧化鈦或氧化鋁。The light-emitting element according to claim 1, wherein the materials of other layers of the plurality of sub-layers include silicon oxide, silicon nitride, silicon oxynitride, niobium oxide, hafnium oxide, titanium oxide or aluminum oxide.
TW112131792A 2021-08-30 2021-08-30 Light emitting device TW202401848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW112131792A TW202401848A (en) 2021-08-30 2021-08-30 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW112131792A TW202401848A (en) 2021-08-30 2021-08-30 Light emitting device

Publications (1)

Publication Number Publication Date
TW202401848A true TW202401848A (en) 2024-01-01

Family

ID=90457701

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112131792A TW202401848A (en) 2021-08-30 2021-08-30 Light emitting device

Country Status (1)

Country Link
TW (1) TW202401848A (en)

Similar Documents

Publication Publication Date Title
US10749075B2 (en) Semiconductor light-emitting device
KR102606543B1 (en) Light-emitting device
US11658269B2 (en) Light-emitting device
US20190103515A1 (en) Light-emitting device and manufacturing method thereof
US11942509B2 (en) Light-emitting device
US11799060B2 (en) Light-emitting device with a plurality of concave parts on the edge of the semiconductor mesa
TWI816970B (en) Light-emitting device and manufacturing method thereof
US11894491B2 (en) Semiconductor light-emitting device
US11942510B2 (en) Light-emitting device
TW202029529A (en) Light-emitting device and manufacturing method thereof
US20210336090A1 (en) Light-emitting device and manufacturing method thereof
TWI816177B (en) Light emitting device
TW202401848A (en) Light emitting device
TWI816191B (en) Light emitting device
US20240204131A1 (en) Light-emitting device and manufacturing method thereof
TW202141814A (en) Light-emitting device and manufacturing method thereof
CN117810338A (en) Light emitting element, backlight unit having the same, and display device having the same