TW202400153A - Therapeutic uses of a krasg12c inhibitor - Google Patents

Therapeutic uses of a krasg12c inhibitor Download PDF

Info

Publication number
TW202400153A
TW202400153A TW112113269A TW112113269A TW202400153A TW 202400153 A TW202400153 A TW 202400153A TW 112113269 A TW112113269 A TW 112113269A TW 112113269 A TW112113269 A TW 112113269A TW 202400153 A TW202400153 A TW 202400153A
Authority
TW
Taiwan
Prior art keywords
kras
compound
cancer
methyl
inhibitor
Prior art date
Application number
TW112113269A
Other languages
Chinese (zh)
Inventor
賽斯吉婭 瑪麗亞 布拉克曼
安娜 法拉戈
安德烈亞斯 維斯
Original Assignee
瑞士商諾華公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞士商諾華公司 filed Critical 瑞士商諾華公司
Publication of TW202400153A publication Critical patent/TW202400153A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/4151,2-Diazoles
    • A61K31/4161,2-Diazoles condensed with carbocyclic ring systems, e.g. indazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The present invention provides a KRAS G12C inhibitor for use in a method of treatment of a cancer or solid tumor such as NSCLC which harbors a KRAS G12C mutation and a PD-L1 expression < 1% regardless of STK11 mutation status. The present invention also provides a KRAS G12C inhibitor for use in a method of treatment of a cancer or solid tumor such as NSCLC which harbors a KRAS G12C mutation and a PD-L1 expression < 1% regardless of STK11 mutation status or a cancer or solid tumor such as NSCLC which harbors a KRAS G12C mutation and a PD-L1 expression ≥ 1% and a STK11 co-mutation.

Description

KRASG12C抑制劑之治療用途Therapeutic uses of KRASG12C inhibitors

本發明關於KRAS G12C抑制劑(如化合物A)或其藥學上可接受的鹽及其在治療癌症中之用途,該癌症特別是具有KRAS G12C突變和 < 1%的PD-L1表現而不管STK11突變狀態如何的癌症或實性瘤(如NSCLC)、或具有KRAS G12C突變和 ≥ 1%的PD-L1表現和STK11共突變的癌症或實性瘤(如NSCLC)。本發明還關於包含KRAS G12C抑制劑(如化合物A)或其藥學上可接受的鹽的藥物組成物;以及使用此類組成物治療或預防癌症或實性瘤(如NSCLC)之方法,該癌症或實性瘤(如NSCLC)具有KRAS G12C突變和 < 1%的PD-L1表現而不管STK11突變狀態如何、或具有KRAS G12C突變和 ≥ 1%的PD-L1表現和STK11共突變。The present invention relates to KRAS G12C inhibitors (such as Compound A) or pharmaceutically acceptable salts thereof and their use in the treatment of cancer, especially cancers with KRAS G12C mutations and <1% PD-L1 expression regardless of STK11 mutations Status of cancers or solid tumors (eg, NSCLC), or cancers or solid tumors (eg, NSCLC) with KRAS G12C mutations and ≥ 1% PD-L1 expression and STK11 co-mutations. The present invention also relates to pharmaceutical compositions comprising a KRAS G12C inhibitor (such as Compound A) or a pharmaceutically acceptable salt thereof; and methods of using such compositions to treat or prevent cancer or solid tumors (such as NSCLC), the cancer or solid tumors (such as NSCLC) with KRAS G12C mutations and <1% PD-L1 expression regardless of STK11 mutation status, or with KRAS G12C mutations and ≥1% PD-L1 expression and STK11 co-mutations.

癌症的生長係由多種多樣複雜的機制驅動的。一些癌症不可避免地會對給定療法產生抗性。抑制MAPK通路誘導了回饋機制和通路重新佈線,導致其在隨後重新激活。例如,一種常見機制係激活受體酪胺酸激酶(RTK)。Cancer growth is driven by a variety of complex mechanisms. Some cancers inevitably become resistant to a given therapy. Inhibition of the MAPK pathway induces feedback mechanisms and pathway rewiring, leading to its subsequent reactivation. For example, one common mechanism is activation of receptor tyrosine kinases (RTKs).

另外,儘管靶向療法和免疫療法最近取得了成功,但一些癌症,特別是轉移性癌症,在很大程度上仍然無法治癒。Additionally, despite recent successes with targeted therapies and immunotherapies, some cancers, particularly metastatic cancers, remain largely incurable.

KRAS癌蛋白係具有作為細胞內傳訊通路(如MAPK、PI3K和Ral通路)調節劑的至關重要角色的GTP酶,該等傳訊通路涉及增殖、細胞生存和腫瘤發生。KRAS的致癌基因激活主要通過密碼子12的誤義突變發生。在大約30%的所有人類癌症中均發現了 KRAS功能獲得性突變。 KRASG12C突變係特異的亞突變,盛行於大約13%的肺腺癌、4%(3%-5%)的結腸腺癌和更小部分的其他癌症類型。 The KRAS oncoprotein is a GTPase with a critical role as a modulator of intracellular signaling pathways involved in proliferation, cell survival, and tumorigenesis, such as the MAPK, PI3K, and Ral pathways. Oncogene activation of KRAS occurs primarily through missense mutations in codon 12. KRAS gain-of-function mutations are found in approximately 30% of all human cancers. The KRAS G12C mutation is a specific submutation that is prevalent in approximately 13% of lung adenocarcinomas, 4% (3%-5%) of colon adenocarcinomas, and a smaller proportion of other cancer types.

在正常細胞中,KRAS在無活性GDP束縛態與活性GTP束縛態之間交替。密碼子12處 KRAS的突變(如G12C)損害GTP酶活化蛋白(GAP)刺激的GTP水解。因此在這種情況下,KRAS G12C從GTP到GDP形式的轉化會非常緩慢。結果KRAS G12C轉變成活性GTP束縛態,因此驅動致癌基因傳訊。 In normal cells, KRAS alternates between an inactive GDP-bound state and an active GTP-bound state. Mutations in KRAS at codon 12 (eg, G12C) impair GTPase-activating protein (GAP)-stimulated GTP hydrolysis. So in this case, the conversion of KRAS G12C from GTP to GDP form will be very slow. As a result, KRAS G12C transitions into an active GTP-bound state, thereby driving oncogene signaling.

肺癌仍然是全世界最常見的癌症類型並且是包括美國在內的許多國家癌症死亡的主要原因。NSCLC占所有肺癌診斷的約85%。在大約25%的肺腺癌患者中檢測到 KRAS突變(Sequist等人 2011)。它們最常見於密碼子12處,其中 KRAS G12C突變在腺癌和鱗狀NSCLC中均為最常見的(總體上占40%)(Liu等人 2020)。 KRAS突變的存在預示著較差的生存期並且與對EGFR TKI治療的反應性降低有關。 Lung cancer remains the most common type of cancer worldwide and the leading cause of cancer death in many countries, including the United States. NSCLC accounts for approximately 85% of all lung cancer diagnoses. KRAS mutations are detected in approximately 25% of lung adenocarcinoma patients (Sequist et al. 2011). They are most commonly found at codon 12, with KRAS G12C mutations being the most common (40% overall) in both adenocarcinoma and squamous NSCLC (Liu et al. 2020). The presence of KRAS mutations predicts poor survival and is associated with reduced response to EGFR TKI therapy.

使用免疫檢查點抑制劑的用於NSCLC的免疫療法已經表明係有前景的,其中一些NSCLC患者經歷了持續數年的持久疾病控制。然而,此類長期非進展係不常見的,並且迫切需要可以增加對療法反應並實現療法持久緩解的患者比例的治療策略。Immunotherapy for NSCLC using immune checkpoint inhibitors has shown promise, with some NSCLC patients experiencing durable disease control that lasts for years. However, such long-term nonprogression is uncommon, and treatment strategies that can increase the proportion of patients who respond to therapy and achieve durable remission with therapy are urgently needed.

免疫療法作為單一療法或聯合基於鉑的化學療法的益處通常與PD-L1表現水平相關,在晚期NSCLC患者中觀察到更大幅度的益處並且其腫瘤呈現高(≥ 50%)PD-L1表現。The benefit of immunotherapy as monotherapy or in combination with platinum-based chemotherapy is generally related to the level of PD-L1 expression, with greater benefit observed in patients with advanced NSCLC and whose tumors exhibit high (≥50%) PD-L1 expression.

STK11係一種調節細胞代謝和細胞週期的絲胺酸-蘇胺酸激酶,並且功能喪失STK11突變促進免疫抑制微環境,因為它們與受損的T細胞募集和激活以及嗜中性球功能的抑制相關(Koyama等人 2016)。在約5%的晚期NSCLC患者中發現了STK11突變,在KRAS G12C突變NSCLC患者中更為常見,約15%(Skoulidis等人 2018;Scheffler等人 2019;Shire等人 2020;和Ricciuti等人 2021)。具有KRAS G12C和STK11突變兩者的腫瘤具有以促進免疫抑制性腫瘤微環境的促炎細胞介素的低表現為特徵的基因表現譜,該等促炎細胞介素諸如I型干擾素、干擾素基因刺激因子(STING)、DExD/H-Box解旋酶58(DDX58)、toll樣受體4(TLR4)和toll樣受體7(TLR7)(Ricciuti等人 2021)。STK11 is a serine-threonine kinase that regulates cellular metabolism and cell cycle, and loss-of-function STK11 mutations promote an immunosuppressive microenvironment as they are associated with impaired T cell recruitment and activation and inhibition of neutrophil function. (Koyama et al. 2016). STK11 mutations are found in approximately 5% of patients with advanced NSCLC and are more common in approximately 15% of patients with KRAS G12C mutant NSCLC (Skoulidis et al. 2018; Scheffler et al. 2019; Shire et al. 2020; and Ricciuti et al. 2021) . Tumors with both KRAS G12C and STK11 mutations have gene expression profiles characterized by low expression of pro-inflammatory cytokines that promote an immunosuppressive tumor microenvironment, such as type I interferons, interferon Stimulator of genes (STING), DExD/H-Box helicase 58 (DDX58), toll-like receptor 4 (TLR4) and toll-like receptor 7 (TLR7) (Ricciuti et al. 2021).

先前的研究表明,STK11突變與更差的預後相關,並且預測晚期NSCLC患者從基於免疫療法的治療獲益較低(Ricciuti等人 20201;Shire等人 2020)。Previous studies have shown that STK11 mutations are associated with worse prognosis and predict that patients with advanced NSCLC will benefit less from immunotherapy-based treatments (Ricciuti et al. 20201; Shire et al. 2020).

大約40%至50%的晚期NSCLC患者在停用一線療法後沒有資格接受後續治療,主要是由於在疾病進展時的臨床惡化(Davies等人 2017)。因此,較早線時投與的有效治療有可能使更多的NSCLC患者受益。Approximately 40% to 50% of patients with advanced NSCLC are ineligible for subsequent treatment after discontinuation of first-line therapy, primarily due to clinical deterioration at disease progression (Davies et al. 2017). Therefore, more NSCLC patients may benefit from effective treatments administered earlier in the line.

儘管將免疫療法納入一線設置已經顯著改善了晚期NSCLC患者的總生存期,但先前的研究已經表明,在其腫瘤具有 < 1%的PD-L1表現或STK11突變的患者中,從免疫療法獲益幅度較低:在一項包括1,261名接受免疫療法治療的晚期肺腺癌患者(其中分別有42.5%和20.6%具有KRAS和STK11突變)的回顧性研究中,Ricciuti等人已經表明,與KRAS突變同時出現的STK11突變的存在與更差的PFS相關(HR = 2.04;95%信賴區間[CI],1.66-2.51;p < 0.0001)和OS(HR = 2.09;95% CI,1.68-2.61;p < 0.0001)(Ricciuti等人 2021)。在一項涉及總共10,074名患者、包括15項隨機對照試驗的薈萃分析中,Xu等人證明了由免疫療法加化學療法產生的OS益處的幅度與PD-L1表現水平相關:對於PD-L1 < 1%,HR 0.60,95% CI,0.43-0.83;對於PD-L1 1-49%,HR 0.56,95% CI,0.40-0.78;對於PD-L1 ≥ 50%,HR 0.50,95% CI,0.35-0.72(Xu等人 2019)。因此,需要替代方案來改善這2個亞組的患者(PD-L1表現 < 1%和STK11突變)的結局,該等患者假定從基於免疫療法的治療中獲益較少。Although the incorporation of immunotherapy into the first-line setting has significantly improved overall survival in patients with advanced NSCLC, previous studies have shown a benefit from immunotherapy in patients whose tumors have <1% PD-L1 manifestation or STK11 mutations. Lower magnitude: In a retrospective study including 1,261 patients with advanced lung adenocarcinoma treated with immunotherapy (42.5% and 20.6% had KRAS and STK11 mutations, respectively), Ricciuti et al. The presence of concurrent STK11 mutations was associated with worse PFS (HR = 2.04; 95% confidence interval [CI], 1.66-2.51; p < 0.0001) and OS (HR = 2.09; 95% CI, 1.68-2.61; p < 0.0001) (Ricciuti et al. 2021). In a meta-analysis involving a total of 10,074 patients and including 15 randomized controlled trials, Xu et al demonstrated that the magnitude of the OS benefit resulting from immunotherapy plus chemotherapy was related to the level of PD-L1 expression: for PD-L1 &lt; 1%, HR 0.60, 95% CI, 0.43-0.83; for PD-L1 1-49%, HR 0.56, 95% CI, 0.40-0.78; for PD-L1 ≥ 50%, HR 0.50, 95% CI, 0.35 -0.72 (Xu et al. 2019). Therefore, alternative approaches are needed to improve outcomes in these 2 subgroups of patients (PD-L1 expression <1% and STK11 mutations), who are presumed to benefit less from immunotherapy-based treatments.

索托拉西布係一種KRAS G12C抑制劑,最近獲得了FDA的加速批准,用於治療已經接受過至少一次既往系統療法的、患有如由FDA批准的測試所確定的KRAS G12C突變的局部晚期或轉移性NSCLC的成年患者。索托拉西布於2021年5月獲得美國FDA(食品和藥物管理局)的加速批准,並於2022年1月獲得歐盟委員會(EC)的有條件標記授權,用於KRAS G12C突變型局部晚期或轉移性非小細胞肺癌(NSCLC)患者。在該患者群體中,在一項126名患者的第2期單臂研究中,索托拉西布的ORR為37%(95% CI 28.6-46.2),中位DOR為11.1個月,中位PFS為6.8個月,並且中位OS為12.5個月(Skoulidis等人, N Engl J Med [新英格蘭醫學雜誌]; 384:2371-81)。另一種KRAS G12C抑制劑阿達格拉西布(adagrasib)也在KRAS G12C突變型惡性腫瘤的臨床開發中,在患有NSCLC的患者中初步ORR為45%(Janne等人, 2019, 於2019年10月28日在AACR-NCI-EORTC國際分子靶標會議(AACR-NCI-EORTC International Conference on Molecular Targets)上發表)。Sotoraxib, a KRAS G12C inhibitor, recently received accelerated approval from the FDA for the treatment of patients with locally advanced or locally advanced KRAS G12C mutations as determined by an FDA-approved test who have received at least one prior systemic therapy. Adult patients with metastatic NSCLC. Sotorasiib received accelerated approval from the US FDA (Food and Drug Administration) in May 2021 and conditional labeling authorization from the European Commission (EC) in January 2022 for the treatment of locally advanced KRAS G12C mutant patients. or patients with metastatic non-small cell lung cancer (NSCLC). In this patient population, in a Phase 2 single-arm study of 126 patients, sotoraxib demonstrated an ORR of 37% (95% CI 28.6-46.2) and a median DOR of 11.1 months. PFS was 6.8 months, and median OS was 12.5 months (Skoulidis et al., N Engl J Med [New England Journal of Medicine]; 384:2371-81). Another KRAS G12C inhibitor, adagrasib, is also in clinical development for KRAS G12C mutant malignancies, with a preliminary ORR of 45% in patients with NSCLC (Janne et al., 2019, in October 2019 Published at the AACR-NCI-EORTC International Conference on Molecular Targets on the 28th).

然而,目前該等靶向療法對具有 KRAS G12C突變的腫瘤的益處仍不確定,因為並非所有患者都有反應,並且在一些情況下,所報告的反應持續時間很短,這可能是由於出現了抗性,該抗性至少部分是由破壞抑制劑結合和下游通路的重新激活的RAS基因突變介導的。 However, the benefit of these targeted therapies in tumors with KRAS G12C mutations remains uncertain at this time, as not all patients respond, and in some cases, the reported duration of responses is short, possibly due to the development of Resistance is mediated, at least in part, by RAS gene mutations that disrupt inhibitor binding and reactivation of downstream pathways.

例如,在阿達格拉西布研究中納入的38名患者:27名非小細胞肺癌患者、10名結直腸癌患者和1名闌尾癌患者,在17名患者(占群組的45%)中檢測到對阿達格拉西布的推定抗性機制,其中7名(占群組的18%)有多種重合機制。獲得性KRAS改變包括G12D/R/V/W、G13D、Q61H、R68S、H95D/Q/R、Y96C和KRASG12C等位基因的高水平擴增。獲得性旁路抗性機制包括MET擴增;NRAS、BRAF、MAP2K1、和RET中的激活突變;涉及ALK、RET、BRAF、RAF1、和FGFR3的致癌性融合;以及NF1和PTEN中的功能喪失性突變(Awad等人, Acquired Resistance to KRASG12C Inhibition in Cancer [癌症中對KRASG12C抑制的獲得性抗性], N Engl J Med [新英格蘭醫學雜誌] 2021;384:2382-93)。Tanaka等人(Cancer Discov [癌症發現] 2021;11:1913-22)描述了影響開關-II袋的新型KRAS Y96D突變,阿達格拉西布和其他非活性KRAS G12C抑制劑與該突變結合,干擾了關鍵的蛋白質-藥物相互作用,並在工程化和患者源性KRASG12C癌症模型中賦予該等抑制劑抗性。For example, of the 38 patients enrolled in the adagrasib study: 27 patients with non-small cell lung cancer, 10 patients with colorectal cancer, and 1 patient with appendiceal cancer, testing was performed in 17 patients (45% of the cohort) To the putative mechanisms of resistance to adagrasib, 7 (18% of the cohort) had multiple overlapping mechanisms. Acquired KRAS alterations include high-level amplification of the G12D/R/V/W, G13D, Q61H, R68S, H95D/Q/R, Y96C, and KRASG12C alleles. Mechanisms of acquired bypass resistance include MET amplification; activating mutations in NRAS, BRAF, MAP2K1, and RET; oncogenic fusions involving ALK, RET, BRAF, RAF1, and FGFR3; and loss-of-function in NF1 and PTEN mutation (Awad et al., Acquired Resistance to KRASG12C Inhibition in Cancer, N Engl J Med 2021;384:2382-93). Tanaka et al (Cancer Discov 2021;11:1913-22) describe a novel KRAS Y96D mutation affecting the switch-II pocket, to which adagrasib and other inactive KRAS G12C inhibitors bind, interfering with Key protein-drug interactions and confer resistance to these inhibitors in engineered and patient-derived KRASG12C cancer models.

因此,需要另外的治療選擇來克服在使用KRAS抑制劑(如阿達格拉西布或索托拉西布)治療期間出現的抗性機制。Therefore, additional treatment options are needed to overcome resistance mechanisms that arise during treatment with KRAS inhibitors such as adagrasiib or sotorasib.

KRAS G12C抑制劑(如阿達格拉西布或索托拉西布)在一線設置中的功療仍然未知,因為以前的試驗集中在以前暴露過標準治療(如基於鉑的化學療法和免疫療法)的晚期NSCLC患者上。The efficacy of KRAS G12C inhibitors (such as adagrasiib or sotoracib) in the first-line setting remains unknown, as previous trials have focused on patients previously exposed to standard treatments (such as platinum-based chemotherapy and immunotherapy) Patients with advanced NSCLC.

因此,對於患有肺癌(包括晚期和/或轉移性癌症,包括肺癌(包括NSCLC))的患者,尤其是當癌症或實性瘤具有KRAS G12C突變時,對新治療選擇的醫療需求仍然是迫切的。還重要的是提供用於不治之症,特別是用於患有 KRAS G12C突變型腫瘤的患者的潛在有益的新穎療法,該等患者已接受了針對其適應證的標準護理療法但失敗了,或者對於批准的療法不耐受或不具有資格,並且因此具有有限的治療選擇。 Therefore, the medical need for new treatment options remains urgent for patients with lung cancer, including advanced and/or metastatic cancer, including NSCLC, especially when the cancer or solid tumor harbors a KRAS G12C mutation of. It will also be important to provide potentially beneficial novel therapies for incurable diseases, particularly for patients with KRAS G12C mutant tumors who have received and failed standard of care therapies for their indications, or Intolerance or ineligibility for approved therapies and therefore have limited treatment options.

本發明為患有癌症(包括晚期和/或轉移性癌症)的患者提供了新的治療選擇,並且尋求改善患有 KRAS G12C驅動的癌症的患者的結局。特別地,將要藉由KRAS G12C抑制劑(如化合物A)或其藥學上可接受的鹽治療的癌症係具有KRAS G12C突變和 < 1%的PD-L1表現而不管STK11突變狀態如何的癌症或實性瘤(如NSCLC)、或具有KRAS G12C突變和 ≥ 1%的PD-L1表現和STK11共突變的癌症或實性瘤(如NSCLC)。 The present invention provides new treatment options for patients with cancer, including advanced and/or metastatic cancer, and seeks to improve outcomes for patients with KRAS G12C- driven cancers. In particular, cancers to be treated by a KRAS G12C inhibitor (e.g., Compound A) or a pharmaceutically acceptable salt thereof are cancers or tumors with KRAS G12C mutations and <1% PD-L1 expression regardless of STK11 mutation status. cancers (such as NSCLC), or cancers or solid tumors (such as NSCLC) with KRAS G12C mutations and ≥ 1% PD-L1 expression and STK11 co-mutations.

本文提供了化合物及其在治療具有KRAS G12C突變和 < 1%的PD-L1表現而不管STK11突變狀態如何的癌症或實性瘤(如NSCLC)之方法中或在治療具有KRAS G12C突變和 ≥ 1%的PD-L1表現和STK11共突變的癌症或實性瘤(如NSCLC)的方法中之用途。本發明還提供了用於不治之症,特別是用於患有 KRAS G12C突變型腫瘤的患者的潛在有益的新穎療法,該等患者對於批准的療法不耐受或不具有資格並且因此具有有限的治療選擇。此類患者包括以前沒有接受過針對晚期疾病的系統治療的晚期NSCLC患者,其腫瘤具有KRAS G12C突變以及 < 1%的PD-L1表現或者 ≥ 1%的PD-L1表現和STK11共突變。 Provided herein are compounds and methods thereof for the treatment of cancer or solid tumors (eg, NSCLC) with KRAS G12C mutations and <1% PD-L1 expression regardless of STK11 mutation status or in the treatment of patients with KRAS G12C mutations and ≥ 1 % of PD-L1 and STK11 co-mutated cancers or solid tumors such as NSCLC. The present invention also provides potentially beneficial novel therapies for incurable diseases, particularly for patients with KRAS G12C mutant tumors who are intolerant or ineligible for approved therapies and therefore have limited Treatment options. Such patients include patients with advanced NSCLC who have not received prior systemic therapy for advanced disease and whose tumors harbor KRAS G12C mutations and <1% PD-L1 expression or ≥1% PD-L1 expression and STK11 co-mutations.

另外,本發明還提供了單獨的或與一或多種另外的治療劑組合的化合物A,用於在治療對其他療法產生抗性的癌症患者之方法中使用,該等其他療法如先前用其他KRAS抑制劑(如阿達格拉西布和索托拉西布)治療;更較佳的是先前用索托拉西布治療。In addition, the present invention also provides Compound A, alone or in combination with one or more additional therapeutic agents, for use in a method of treating cancer patients who have become resistant to other therapies, such as those previously treated with other KRAS Treatment with inhibitors (e.g., adagrasiib and sotoracib); preferably prior treatment with sotoracib.

化合物A係KRAS G12C的選擇性共價不可逆抑制劑,利用與KRASG12C的獨特相互作用表現出新穎的結合模式。值得注意的是,化合物A將KRAS G12C捕獲在GDP結合的非活性狀態,同時避免了與H95(公認的抗性途徑)直接相互作用(Awad-MM等人, New Engl J Med [新英格蘭醫學雜誌] 2021;384:2382-2392)。化合物A強效抑制KRAS G12C H95Q(在臨床試驗中介導對阿達格拉西布抗性的雙突變體)。Compound A is a selective covalent irreversible inhibitor of KRAS G12C and exhibits a novel binding mode by utilizing its unique interaction with KRASG12C. Notably, Compound A traps KRAS G12C in a GDP-bound inactive state while avoiding direct interaction with H95, a well-established resistance pathway (Awad-MM et al., New Engl J Med [New England Journal of Medicine] ] 2021;384:2382-2392). Compound A potently inhibits KRAS G12C H95Q, a double mutant that mediates resistance to adagrasib in clinical trials.

化合物A在臨床前模型中顯示出強效的抗腫瘤活性和有利的藥物動力學特性。化合物A係口服生物可利用的,在預測以賦予抗腫瘤活性的範圍內實現了暴露,並且耐受性良好。Compound A showed potent antitumor activity and favorable pharmacokinetic properties in preclinical models. Compound A was orally bioavailable, achieved exposure in the range predicted to confer antitumor activity, and was well tolerated.

KontRASt-01研究(NCT04699188)的初步數據(Ib期)表明,化合物A係一種選擇性的共價和口服生物可利用的KRASG12C抑制劑,基於患有KRAS G12C突變型實性瘤的患者的初步臨床數據,在其200 mg BID的推薦劑量下顯示出抗腫瘤活性、高全身暴露以及良好的安全性。Preliminary data (Phase Ib) from the KontRASt-01 study (NCT04699188) demonstrate that Compound A is a selective covalent and orally bioavailable inhibitor of KRASG12C, based on preliminary clinical trials in patients with KRAS G12C mutant solid tumors. Data, showing anti-tumor activity, high systemic exposure, and good safety profile at its recommended dose of 200 mg BID.

KRAS G12C抑制劑被專門設計用於抑制KRAS G12C。然而,許多腫瘤具有KRAS WT、HRAS和NRAS蛋白,該等蛋白不受KRAS G12C抑制劑的抑制。例如,在KRAS G12C抑制劑治療後,重新激活的RTK可以經由該等蛋白進入MAPK通路,從而抵消抗腫瘤活性。同樣,許多RTK和RAS蛋白直接激活並行通路,例如PI3K/AKT通路。KRAS G12C inhibitors are specifically designed to inhibit KRAS G12C. However, many tumors harbor KRAS WT, HRAS, and NRAS proteins that are not inhibited by KRAS G12C inhibitors. For example, after KRAS G12C inhibitor treatment, reactivated RTKs can enter the MAPK pathway via these proteins, thereby counteracting anti-tumor activity. Likewise, many RTK and RAS proteins directly activate parallel pathways, such as the PI3K/AKT pathway.

在臨床前數據中,KRAS G12C突變的存在與免疫抑制性腫瘤微環境相關。這種效應可以由高水平的抑制性細胞介素(如核因子κB(NF-κβ)、信號轉導蛋白和轉錄激活因子3(STAT3)、介白素6(IL-6)、介白素1-β(IL-1β))介導,並且由腫瘤基質中骨髓源性抑制細胞、調節性T細胞和M2分化的腫瘤相關巨噬細胞(所有該等都損害抗腫瘤免疫並促進腫瘤進展)的大量存在介導(Hamarsheh等人 2020和Cucurull等人 2022)。為了進一步支持這一觀念,KRAS G12C抑制劑刺激CD8+ T細胞、樹突狀細胞和M1-巨噬細胞的募集和激活,從而在NSCLC臨床前模型中促進向更具免疫活性的腫瘤微環境轉變(Canon等人 2019和Briere等人 2021)。 化合物A係化合物 1-{6-[(4 M)-4-(5-氯-6-甲基-1 H-吲唑-4-基)-5-甲基-3-(1-甲基-1 H-吲唑-5-基)-1 H-吡唑-1-基]-2-氮雜螺[3.3]庚烷-2-基}丙-2-烯-1-酮,其具有結構 (化合物A)。 In preclinical data, the presence of KRAS G12C mutations has been associated with an immunosuppressive tumor microenvironment. This effect can be caused by high levels of inhibitory interleukins such as nuclear factor kappa B (NF-κβ), signal transducer and activator of transcription 3 (STAT3), interleukin-6 (IL-6), interleukin 1-β (IL-1β)) and is mediated by myeloid-derived suppressor cells, regulatory T cells, and M2-differentiated tumor-associated macrophages in the tumor stroma (all of which impair anti-tumor immunity and promote tumor progression) mediated by the large presence of (Hamarsheh et al. 2020 and Cucurull et al. 2022). To further support this notion, KRAS G12C inhibitors stimulate the recruitment and activation of CD8+ T cells, dendritic cells, and M1-macrophages, thereby promoting a shift toward a more immunocompetent tumor microenvironment in NSCLC preclinical models ( Canon et al. 2019 and Briere et al. 2021). Compound A series compound 1-{6-[(4 M )-4-(5-chloro-6-methyl-1 H -indazol-4-yl)-5-methyl-3-(1-methyl -1H -indazol-5-yl) -1H -pyrazol-1-yl]-2-azaspiro[3.3]heptan-2-yl}prop-2-en-1-one, which has structure (Compound A).

應當理解,本文中提及的「化合物A」旨在包括游離鹼或其藥學上可接受的鹽或水合物或溶劑化物。術語「本發明之一種化合物」和「本發明之多種化合物」包括游離鹼形式或其藥學上可接受的鹽或水合物或溶劑化物形式的化合物A。It should be understood that reference herein to "Compound A" is intended to include the free base or a pharmaceutically acceptable salt or hydrate or solvate thereof. The terms "a compound of the invention" and "compounds of the invention" include Compound A in the free base form or a pharmaceutically acceptable salt or hydrate or solvate form thereof.

本發明提供了該等化合物,用於在治療如本文所述之癌症中使用。The present invention provides such compounds for use in the treatment of cancer as described herein.

本發明之治療方法和用途的功效可藉由本領域所熟知的方法確定,例如根據RECIST v.1.1確定最佳總體反應(BOR)、總體反應率(ORR)、反應持續時間(DOR)、疾病控制率(DCR)、無進展生存期(PFS)和總生存期(OS)。因此,本發明提供了本發明之藥物組合,其改善了KRAS G12C抑制劑療法,例如,如藉由根據RECIST v.1.1得出的最佳總體反應(BOR)、總體反應率(ORR)、反應持續時間(DOR)、疾病控制率(DCR)、無進展生存期(PFS)和總生存期(OS)中一或多項的增加所衡量的。The efficacy of the treatment methods and uses of the present invention can be determined by methods well known in the art, such as determining best overall response (BOR), overall response rate (ORR), duration of response (DOR), disease control according to RECIST v.1.1 rate (DCR), progression-free survival (PFS) and overall survival (OS). Accordingly, the invention provides pharmaceutical combinations of the invention that improve KRAS G12C inhibitor therapy, e.g., by best overall response (BOR), overall response rate (ORR), response according to RECIST v.1.1 Measured by an increase in one or more of duration of disease (DOR), disease control rate (DCR), progression-free survival (PFS), and overall survival (OS).

評估KRAS G12C和/或STK11突變狀態和PD-L1表現之方法在本領域係已知的。例如,可以在腫瘤組織中或在血液中評估KRAS G12C和/或STK11突變狀態。可以使用檢測源自腫瘤組織的DNA或源自血漿的循環腫瘤DNA(ctDNA)中的突變的分子測試來確定KRAS G12C和/或STK11突變。KRAS G12C突變狀態和/或STK11突變狀態的測試也可以使用下一代定序(NGS)測試來進行,該等測試檢測源自福馬林固定的石蠟包埋的腫瘤組織的DNA或源自血漿的ctDNA中的突變。可以根據PD-L1免疫組織化學(IHC)22C3或28-8 pharmDx測定評估PD-L1腫瘤比例評分(TPS)狀態,或者可以根據Ventana SP263測定評估腫瘤細胞(TC)膜表現。Methods to assess KRAS G12C and/or STK11 mutational status and PD-L1 expression are known in the art. For example, KRAS G12C and/or STK11 mutation status can be assessed in tumor tissue or in blood. KRAS G12C and/or STK11 mutations can be determined using molecular tests that detect mutations in DNA derived from tumor tissue or circulating tumor DNA (ctDNA) derived from plasma. Testing of KRAS G12C mutation status and/or STK11 mutation status can also be performed using next-generation sequencing (NGS) tests that detect DNA derived from formalin-fixed paraffin-embedded tumor tissue or ctDNA derived from plasma mutations in. PD-L1 Tumor Proportion Score (TPS) status can be assessed based on the PD-L1 immunohistochemistry (IHC) 22C3 or 28-8 pharmDx assay, or tumor cell (TC) membrane expression can be assessed based on the Ventana SP263 assay.

在另一個實施方式中係用於治療或預防有需要的受試者的癌症之方法,該方法包括向該受試者投與治療有效量的本發明之化合物。In another embodiment is a method for treating or preventing cancer in a subject in need thereof, the method comprising administering to the subject a therapeutically effective amount of a compound of the invention.

在本發明之實施方式中,待治療的癌症或腫瘤選自由肺癌(包括肺腺癌、非小細胞肺癌和肺鱗狀細胞癌)組成之群組,特別是當癌症或腫瘤具有KRAS G12C突變和KRAS G12C突變以及 < 1%的PD-L1表現而不管STK11突變狀態如何時。In embodiments of the invention, the cancer or tumor to be treated is selected from the group consisting of lung cancer, including lung adenocarcinoma, non-small cell lung cancer, and lung squamous cell carcinoma, particularly when the cancer or tumor has a KRAS G12C mutation and KRAS G12C mutation and <1% PD-L1 expression regardless of STK11 mutation status.

在本發明之實施方式中,待治療的癌症或腫瘤選自由肺癌(包括肺腺癌、非小細胞肺癌和肺鱗狀細胞癌)組成之群組,特別是當癌症或實性瘤(如NSCLC)具有KRAS G12C突變和 ≥ 1%的PD-L1表現以及STK11共突變時。In embodiments of the invention, the cancer or tumor to be treated is selected from the group consisting of lung cancer, including lung adenocarcinoma, non-small cell lung cancer, and lung squamous cell carcinoma, particularly when the cancer or solid tumor (such as NSCLC ) with KRAS G12C mutation and ≥ 1% PD-L1 manifestation and STK11 co-mutation.

在本發明之實施方式中,待治療的癌症或腫瘤係非小細胞肺癌。In embodiments of the invention, the cancer or tumor to be treated is non-small cell lung cancer.

在本發明之實施方式中,待治療的癌症或腫瘤選自結直腸癌、膽管癌、卵巢癌和胰臟癌,其中癌症具有KRAS G12C突變和 < 1%的PD-L1表現,或其中癌症具有KRAS G12C突變和 ≥ 1%的PD-L1表現和STK11共突變。In an embodiment of the invention, the cancer or tumor to be treated is selected from the group consisting of colorectal cancer, cholangiocarcinoma, ovarian cancer, and pancreatic cancer, wherein the cancer has a KRAS G12C mutation and <1% PD-L1 expression, or wherein the cancer has KRAS G12C mutations and ≥ 1% of PD-L1 manifestations are co-mutated with STK11.

在另外的實施方式中,藥物組成物進一步包含如本文所述之一或多種藥學上可接受的賦形劑。 KRAS G12C抑制劑 In additional embodiments, the pharmaceutical composition further comprises one or more pharmaceutically acceptable excipients as described herein. KRAS G12C inhibitors

可用於本發明之組合和方法的KRAS G12C抑制劑之實例包括化合物A、索托拉西布(美商安進公司(Amgen))、阿達格拉西布(Mirati公司)、D-1553(益方生物(InventisBio))、BI1701963(勃林格公司(Boehringer))、GDC6036(羅氏公司(Roche))、JNJ74699157(J&J公司)、X-Chem KRAS(X-Chem公司)、LY3537982(禮來公司)、BI1823911(勃林格公司)、AS KRAS G12C(亞盛藥業公司(Ascentage Pharma))、SF KRAS G12C(賽諾菲公司(Sanofi))、RMC032(革命藥物公司(Revolution Medicine))、JAB-21822(加科思製藥公司(Jacobio Pharmaceuticals))、AST-KRAS G12C(艾力斯製藥公司(Allist Pharmaceuticals))、AZ KRAS G12C(阿斯利康公司(Astra Zeneca))、NYU-12VC1(紐約大學(New York University))、和RMC6291(革命藥物公司)或其藥學上可接受的鹽。Examples of KRAS G12C inhibitors that can be used in the combinations and methods of the present invention include Compound A, sotoraxib (Amgen), adagrasiib (Mirati), D-1553 (Yifang) Biological (InventisBio)), BI1701963 (Boehringer), GDC6036 (Roche), JNJ74699157 (J&J), X-Chem KRAS (X-Chem), LY3537982 (Eli Lilly), BI1823911 (Boehringer), AS KRAS G12C (Ascentage Pharma), SF KRAS G12C (Sanofi), RMC032 (Revolution Medicine), JAB-21822 (Jacobio Pharmaceuticals), AST-KRAS G12C (Allist Pharmaceuticals), AZ KRAS G12C (Astra Zeneca), NYU-12VC1 (New York University) York University)), and RMC6291 (Revolution Pharmaceuticals, Inc.) or a pharmaceutically acceptable salt thereof.

KRAS G12C抑制劑也包括在A中詳述的化合物。「KRASG12C抑制劑」係如下化合物,該化合物選自在以下文獻中詳述的化合物:WO 2013/155223、WO 2014/143659、WO 2014/152588、WO 2014/160200、WO 2015/054572、WO 2016/044772、WO 2016/049524、WO 2016164675、WO 2016168540、WO 2017/058805、WO 2017015562、WO 2017058728、WO 2017058768、WO 2017058792、WO 2017058805、WO 2017058807、WO 2017058902、WO 2017058915、WO 2017087528、WO 2017100546、WO 2017/201161、WO 2018/064510、WO 2018/068017、WO 2018/119183、WO 2018/217651、WO 2018/140512、WO 2018/140513、WO 2018/140514、WO 2018/140598、WO 2018/140599、WO 2018/140600、WO 2018/143315、WO 2018/206539、WO 2018/218070、WO 2018/218071、WO 2019/051291、WO 2019/099524、WO 2019/110751、WO 2019/141250、WO 2019/150305、WO 2019/155399、WO 2019/213516、WO 2019/213526、WO 2019/217307和WO 2019/217691。實例為:1-(4-(6-氯-8-氟-7-(3-羥基-5-乙烯基苯基)喹唑啉-4-基)哌𠯤-1-基)丙-2-烯-1-酮--甲烷(1/2)(化合物1);(S)-1-(4-(6-氯-8-氟-7-(2-氟-6-羥基苯基)喹唑啉-4-基)哌𠯤-1-基)丙-2-烯-1-酮(化合物2);和2-((S)-1-丙烯醯基-4-(2-(((S)-1-甲基吡咯啶-2-基)甲氧基)-7-(萘-1-基)-5,6,7,8-四氫吡啶并[3,4-d]嘧啶-4-基)哌𠯤-2-基)乙腈(化合物3)。 KRAS G12C抑制劑化合物A KRAS G12C inhibitors also include the compounds detailed in A. "KRASG12C inhibitor" is a compound selected from the compounds detailed in the following documents: WO 2013/155223, WO 2014/143659, WO 2014/152588, WO 2014/160200, WO 2015/054572, WO 2016/044772 , WO 2016/049524, WO 2016164675, WO 2016168540, WO 2017/058805, WO 2017015562, WO 2017058728, WO 2017058768, WO 2017058792, WO 2017058805, WO 2 017058807、WO 2017058902、WO 2017058915、WO 2017087528、WO 2017100546、WO 2017/ 201161、WO 2018/064510、WO 2018/068017、WO 2018/119183、WO 2018/217651、WO 2018/140512、WO 2018/140513、WO 2018/140514、WO 2018/140598、WO 20 18/140599、WO 2018/ 140600、WO 2018/143315、WO 2018/206539、WO 2018/218070、WO 2018/218071、WO 2019/051291、WO 2019/099524、WO 2019/110751、WO 2019/141250、WO 20 19/150305、WO 2019/ 155399, WO 2019/213516, WO 2019/213526, WO 2019/217307 and WO 2019/217691. Examples are: 1-(4-(6-chloro-8-fluoro-7-(3-hydroxy-5-vinylphenyl)quinazolin-4-yl)pipien-1-yl)propan-2- En-1-one--methane (1/2) (compound 1); (S)-1-(4-(6-chloro-8-fluoro-7-(2-fluoro-6-hydroxyphenyl)quino oxazolin-4-yl)piperidine-1-yl)prop-2-en-1-one (compound 2); and 2-((S)-1-propenyl-4-(2-((( S)-1-methylpyrrolidin-2-yl)methoxy)-7-(naphth-1-yl)-5,6,7,8-tetrahydropyrido[3,4-d]pyrimidine- 4-yl)piperidine-2-yl)acetonitrile (compound 3). KRAS G12C inhibitor compound A

本發明之較佳的KRAS G12C抑制劑係化合物A,係1-{6-[(4 M)-4-(5-氯-6-甲基-1 H-吲唑-4-基)-5-甲基-3-(1-甲基-1 H-吲唑-5-基)-1 H-吡唑-1-基]-2-氮雜螺[3.3]庚烷-2-基}丙-2-烯-1-酮或其藥學上可接受的鹽。化合物A還被稱作「a( R)-1-(6-(4-(5-氯-6-甲基-1H-吲唑-4-基)-5-甲基-3-(1-甲基-1H-吲唑-5-基)-1H-吡唑-1-基)-2-氮雜螺[3.3]庚烷-2-基)丙-2-烯-1-酮」。 The preferred KRAS G12C inhibitor of the present invention is compound A, which is 1-{6-[(4 M )-4-(5-chloro-6-methyl- 1H -indazol-4-yl)-5 -Methyl-3-(1-methyl- 1H -indazol-5-yl) -1H -pyrazol-1-yl]-2-azaspiro[3.3]heptan-2-yl}propan -2-en-1-one or a pharmaceutically acceptable salt thereof. Compound A is also known as "a( R )-1-(6-(4-(5-chloro-6-methyl-1H-indazol-4-yl)-5-methyl-3-(1- Methyl-1H-indazol-5-yl)-1H-pyrazol-1-yl)-2-azaspiro[3.3]heptan-2-yl)prop-2-en-1-one".

化合物A的合成在以下實例中或在2021年6月24日公開的PCT申請WO 2021/124222之實例1中描述。2021年12月20日提交的PCT/CN 2021/139694中描述了單獨的或與另外的治療劑組合的化合物A之用途。The synthesis of compound A is described in the following examples or in Example 1 of PCT application WO 2021/124222 published on June 24, 2021. The use of Compound A alone or in combination with additional therapeutic agents is described in PCT/CN 2021/139694 filed on December 20, 2021.

化合物A的結構如下: The structure of compound A is as follows: .

可替代地,化合物A的結構可如下繪製: Alternatively, the structure of compound A can be drawn as follows: .

化合物A係強效的且選擇性的KRAS G12C小分子抑制劑,其可與突變Cys12共價結合,將KRAS G12C捕獲在非活性GDP結合狀態。與索托拉西布或阿達格拉西布相比,化合物A在結構上係獨特的;它的結合模式係一種到達殘基C12的新方式,並且與殘基H95沒有直接相互作用。Compound A is a potent and selective small molecule inhibitor of KRAS G12C, which can covalently bind to mutant Cys12 and trap KRAS G12C in an inactive GDP-bound state. Compound A is structurally unique compared to sotorasiib or adagrasiib; its binding mode is a novel way to reach residue C12 and has no direct interaction with residue H95.

臨床前數據表明,化合物A與KRAS G12C結合,其中與RAS SWII袋的可逆結合親和力低,從而抑制下游細胞傳訊和增殖,特別是在KRAS G12C驅動的細胞系中,而不是在KRAS野生型(WT)或MEK Q56P突變細胞系中。化合物A在不同KRAS G12C突變型異種移植模型中表現出深度和持續的目標佔有率,從而產生抗腫瘤活性。 待藉由本發明之化合物和方法治療的癌症 Preclinical data indicate that Compound A binds to KRAS G12C with low reversible binding affinity to the RAS SWII pocket, thereby inhibiting downstream cellular signaling and proliferation, particularly in KRAS G12C-driven cell lines but not in KRAS wild-type (WT ) or MEK Q56P mutant cell lines. Compound A demonstrated deep and sustained target occupancy in different KRAS G12C mutant xenograft models, resulting in anti-tumor activity. Cancers to be treated by the compounds and methods of the invention

因此,本發明之化合物可以用於治療癌症和KRAS G12C突變的癌症或腫瘤。特別地,本發明之化合物可以用作具有KRAS G12C突變和 < 1%的PD-L1表現而不管STK11突變狀態如何的癌症或實性瘤(如NSCLC)、或具有KRAS G12C突變和 ≥ 1%的PD-L1表現和STK11共突變的癌症或實性瘤(如NSCLC)的一線治療。Accordingly, the compounds of the present invention may be used to treat cancer and KRAS G12C mutated cancers or tumors. In particular, the compounds of the present invention can be used as cancers or solid tumors (such as NSCLC) with KRAS G12C mutations and <1% PD-L1 expression regardless of STK11 mutation status, or with KRAS G12C mutations and ≥ 1%. First-line treatment of cancers or solid tumors (such as NSCLC) that express PD-L1 and STK11 co-mutations.

待治療的癌症或腫瘤可以選自由結直腸癌、膽管癌、卵巢癌和胰臟癌組成之群組,其中特定癌症具有KRAS G12C突變和 < 1%的PD-L1表現,或其中癌症具有KRAS G12C突變和 ≥ 1%的PD-L1表現和STK11共突變。The cancer or tumor to be treated may be selected from the group consisting of colorectal, cholangiocarcinoma, ovarian, and pancreatic cancer, wherein the particular cancer has a KRAS G12C mutation and <1% PD-L1 expression, or wherein the cancer has KRAS G12C mutations and ≥ 1% of PD-L1 manifestations are co-mutated with STK11.

癌症可以處於早期、中期、晚期或可為轉移性癌症。The cancer can be early, intermediate, late or can be metastatic.

在一些實施方式中,癌症係晚期癌症。在一些實施方式中,癌症係轉移性癌症。在一些實施方式中,癌症係復發性癌症。在一些實施方式中,癌症係難治性癌症。在一些實施方式中,癌症係反復性癌症。在一些實施方式中,癌症係不可切除性癌症。In some embodiments, the cancer is advanced cancer. In some embodiments, the cancer is metastatic cancer. In some embodiments, the cancer is recurrent cancer. In some embodiments, the cancer is refractory to treatment. In some embodiments, the cancer is recurrent cancer. In some embodiments, the cancer is unresectable cancer.

癌症可以處於早期、中期、晚期或係轉移性癌症。Cancer can be early, intermediate, late or metastatic.

化合物A也可以用於治療以另外的RAS突變為特徵的實體惡性腫瘤。Compound A may also be used to treat solid malignancies characterized by additional RAS mutations.

本發明提供了本發明之化合物A和組合,用於在治療以獲得性KRAS改變(選自G12D/R/V/W、G13D、Q61H、R68S、H95D/Q/R、Y96C、Y96 D和KRASG12C等位基因的高水平擴增)為特徵或以獲得性旁路抗性機制為特徵的癌症或實性瘤中使用,該等旁路抗性機制包括MET擴增;NRAS、BRAF、MAP2K1、和RET中的激活突變;涉及ALK、RET、BRAF、RAF1、和FGFR3的致癌性融合;以及NF1和PTEN中的功能喪失性突變。The invention provides Compound A and combinations of the invention for use in the treatment of acquired KRAS alterations (selected from G12D/R/V/W, G13D, Q61H, R68S, H95D/Q/R, Y96C, Y96 D and KRASG12C for use in cancers or solid tumors characterized by high-level amplification of alleles) or by acquired bypass resistance mechanisms, including MET amplification; NRAS, BRAF, MAP2K1, and Activating mutations in RET; oncogenic fusions involving ALK, RET, BRAF, RAF1, and FGFR3; and loss-of-function mutations in NF1 and PTEN.

在另一個實施方式中係治療(例如,減輕、抑制或延遲進展中的一或多項)受試者的癌症或腫瘤之方法,該方法包括向有需要的受試者投與包含化合物A或其藥學上可接受的鹽的藥物組成物。In another embodiment is a method of treating (e.g., alleviating, inhibiting, or delaying one or more of progression) a cancer or tumor in a subject, the method comprising administering to the subject in need thereof a compound comprising Compound A or its Pharmaceutical compositions of pharmaceutically acceptable salts.

因此,本發明提供了治療(例如,減少、抑制或延遲進展中的一或多種)有需要的患者中的癌症或腫瘤之方法,其中該方法包括向該有需要的患者投與治療活性量的本發明之化合物,其中該癌症係具有KRAS G12C突變和 < 1%的PD-L1表現而不管STK11突變狀態如何的癌症或實性瘤(如NSCLC)、或具有KRAS G12C突變和 ≥ 1%的PD-L1表現和STK11共突變的癌症或實性瘤(如NSCLC)。癌症可以選自肺癌(包括肺腺癌和非小細胞肺癌)、結直腸癌、膽管癌、卵巢癌和胰臟癌。Accordingly, the present invention provides methods of treating (e.g., reducing, inhibiting, or delaying one or more of progression) a cancer or tumor in a patient in need thereof, wherein the method comprises administering to the patient in need thereof a therapeutically active amount of The compound of the present invention, wherein the cancer is a cancer or solid tumor (such as NSCLC) with KRAS G12C mutation and <1% PD-L1 expression regardless of STK11 mutation status, or a KRAS G12C mutation and ≥1% PD - Cancers or solid tumors with L1 expression and STK11 co-mutations (such as NSCLC). The cancer may be selected from lung cancer (including lung adenocarcinoma and non-small cell lung cancer), colorectal cancer, cholangiocarcinoma, ovarian cancer, and pancreatic cancer.

本發明之方法和組合可用作一線療法(或用作二線或更晚線療法)。例如,患者可能是治療不可知的患者或在先前療法中有進展和/或復發的患者。The methods and combinations of the present invention may be used as first-line therapy (or as second-line or later-line therapy). For example, the patient may be treatment agnostic or a patient who has progressed and/or relapsed on prior therapy.

例如,待藉由本發明之方法和組合治療的患者或受試者包括患有癌症(例如KRAS G12C突變型NSCLC(包括晚期(轉移性或不可切除性)KRAS G12C突變型NSCLC))的患者,視需要其中該患者已經接受了先前療法並且有進展。For example, patients or subjects to be treated by the methods and combinations of the invention include patients with cancer, such as KRAS G12C mutant NSCLC (including advanced (metastatic or unresectable) KRAS G12C mutant NSCLC), depending on Required in which the patient has received and progressed on prior therapy.

在本發明之實施方式中,待使用化合物A進行治療並且可能從該治療中獲益的受試者或患者選自: - 患有NSCLC的患者,其腫瘤具有KRAS G12C突變和 < 1%的PD-L1表現; - 患有NSCLC的患者,其腫瘤具有KRAS G12C突變和 < 1%的PD-L1表現,不管STK11突變狀態如何; - 患有局部晚期或轉移性NSCLC的患者,其腫瘤具有KRAS G12C突變和 < 1%的PD-L1表現,不管STK11突變狀態如何; - 患有NSCLC的患者,其腫瘤具有KRAS G12C突變、≥ 1%的PD-L1表現和STK11共突變; - 患有局部晚期或轉移性NSCLC的患者,其腫瘤具有KRAS G12C突變、≥ 1%的PD-L1表現和STK11共突變。 In embodiments of the invention, the subject or patient to be treated with Compound A and who may benefit from the treatment is selected from: - Patients with NSCLC whose tumors have KRAS G12C mutations and <1% PD-L1 expression; - Patients with NSCLC whose tumors harbor KRAS G12C mutations and <1% PD-L1 expression, regardless of STK11 mutation status; - Patients with locally advanced or metastatic NSCLC whose tumors harbor KRAS G12C mutations and <1% PD-L1 expression, regardless of STK11 mutation status; - Patients with NSCLC whose tumors harbor KRAS G12C mutations, ≥ 1% PD-L1 expression, and STK11 co-mutations; - Patients with locally advanced or metastatic NSCLC whose tumors harbor KRAS G12C mutations, ≥1% PD-L1 expression, and STK11 co-mutations.

在本發明之實施方式中,患者已經接受了標準護理療法但失敗了,或者對先前的研究和/或批准療法不耐受或不具有資格; 劑量和給藥方案 In embodiments of the present invention, the patient has received standard of care therapy but failed it, or is intolerant to or ineligible for previously studied and/or approved therapy; Dosage and dosing regimen

在本發明之方法和用途中,可以將化合物A以介於100 mg與600 mg之間或介於200 mg與400 mg之間的總日劑量投與。可以將化合物A的總日劑量以QD(每日一次)或BID(每日兩次)的方案連續地投與。例如,能以200 mg BID(總日劑量為400 mg)、400 mg QD(總日劑量為400 mg)的劑量投與化合物A。也可以將化合物A以100 mg QD(總日劑量100 mg)或100 mg BID(總日劑量200 mg)的劑量或以200 mg QD(總日劑量200 mg)的劑量投與。低於推薦劑量400 mg的劑量(較佳的是每日投與兩次)可以尤其用於耐受性差或毒性較高的情況,同時保持治療功效。In the methods and uses of the invention, Compound A may be administered in a total daily dose of between 100 mg and 600 mg or between 200 mg and 400 mg. The total daily dose of Compound A can be administered continuously on a QD (once daily) or BID (twice daily) schedule. For example, Compound A can be administered at a dose of 200 mg BID (total daily dose of 400 mg), 400 mg QD (total daily dose of 400 mg). Compound A may also be administered at a dose of 100 mg QD (total daily dose 100 mg) or 100 mg BID (total daily dose 200 mg) or at a dose of 200 mg QD (total daily dose 200 mg). Doses lower than the recommended dose of 400 mg (preferably administered twice daily) may be used particularly in cases of poor tolerability or high toxicity, while maintaining therapeutic efficacy.

結合PK患者數據的臨床前目標佔有率模型預測BID計畫可能會導致更多數量的患者的響應增加。適當地,因此可以將化合物A以100 mg BID的劑量或以200 mg BID的劑量或以300 mg BID的劑量投與。典型地,可以以100 mg的劑量每日兩次投與(總日劑量為200 mg)或以200 mg的劑量每日兩次投與(總日劑量為400 mg)投與化合物A。Preclinical target occupancy models combined with PK patient data predict that BID programs may result in increased response in higher numbers of patients. Suitably, Compound A may therefore be administered at a dose of 100 mg BID or at a dose of 200 mg BID or at a dose of 300 mg BID. Typically, Compound A may be administered at a dose of 100 mg twice daily (for a total daily dose of 200 mg) or at a dose of 200 mg twice daily (for a total daily dose of 400 mg).

PK/PD建模預測在推薦劑量200 mg BID時,持續的高水平目標佔有率。化合物A的每日推薦總劑量為400 mg,每日給予一次(QD)或每日給予兩次(BID),連續地給予(即無藥物假期)。PK/PD modeling predicts sustained high levels of target occupancy at the recommended dose of 200 mg BID. The recommended total daily dose of Compound A is 400 mg, administered once daily (QD) or twice daily (BID), administered continuously (i.e., drug-free holidays).

化合物A較佳的是與食物一起投與,例如在飯後立即(30分鐘內)服用。Compound A is preferably administered with food, for example immediately after a meal (within 30 minutes).

在較佳的實施方式中,化合物A的總日劑量為400 mg,每日投與兩次。這係基於功效、安全性、PK、PK-PD模型的臨床評估以及評估DLT概率的貝葉斯分層邏輯回歸模型(BHLRM)模型確定的。In a preferred embodiment, the total daily dose of Compound A is 400 mg administered twice daily. This was determined based on clinical assessment of efficacy, safety, PK, PK-PD models, and a Bayesian hierarchical logistic regression model (BHLRM) model to assess the probability of DLT.

評價並確定200 mg BID劑量係安全和可耐受的。在所有測試的劑量水平中,在200 mg BID下獲得了最高的AUC0-24h,比200 mg和400 mg QD劑量水平的暴露高出 > 60%,並且比在不太敏感的異種移植模型中獲得最大功效所需的有效暴露至少高出3倍,該異種移植模型對腫瘤消退所需的暴露最高。在該劑量水平下,基於PK-PD模型預測了 > 90%的平均KRAS G12C靶標佔有率,並且高於各種異種移植模型中腫瘤消退所需的70%平均靶標佔有率。The 200 mg BID dose was evaluated and determined to be safe and tolerable. Among all dose levels tested, the highest AUC0-24h was obtained at 200 mg BID, which was >60% higher than the exposure at the 200 mg and 400 mg QD dose levels and higher than that obtained in the less sensitive xenograft model The effective exposure required for maximal efficacy was at least 3-fold higher and was highest for tumor regression in this xenograft model. At this dose level, an average KRAS G12C target occupancy of >90% was predicted based on the PK-PD model and was higher than the 70% average target occupancy required for tumor regression in various xenograft models.

200 mg BID劑量水平符合貝葉斯分層邏輯回歸模型(BHLRM)的控制過量用藥的劑量遞增(EWOC)標準(即在DLT評價期間,真實DLT率大於或等於33%的機率 < 25%),其中過量毒性的後驗概率小於0.1%。在該劑量水平下未觀察到DLT。The 200 mg BID dose level meets the Bayesian Hierarchical Logistic Regression Model (BHLRM) Escalation of Overdose Control (EWOC) criteria (i.e., <25% chance of true DLT rate greater than or equal to 33% during the DLT evaluation period), The posterior probability of excessive toxicity is less than 0.1%. No DLTs were observed at this dose level.

因此,預期投與400 mg總劑量的化合物A(較佳的是每日投與兩次)在本發明之用途和方法中將特別有用。Therefore, it is expected that administration of a total dose of 400 mg of Compound A, preferably twice daily, would be particularly useful in the uses and methods of the present invention.

200 mg總劑量的化合物A(較佳的是每日投與(例如100 mg BID))在本發明之用途和方法中也可能是有用的,特別是在降低毒性和/或提高治療的安全性和耐受性方面。 藥物組成物 A total dose of 200 mg of Compound A, preferably administered daily (e.g., 100 mg BID), may also be useful in the uses and methods of the invention, particularly to reduce toxicity and/or improve the safety of the treatment and tolerance aspects. pharmaceutical composition

在另一個方面,本發明提供了藥學上可接受的組成物,該藥學上可接受的組成物包含治療有效量的KRAS G12C抑制劑(例如化合物A),其與一或多種藥學上可接受的載體(添加劑)和/或稀釋劑配製在一起。In another aspect, the invention provides a pharmaceutically acceptable composition comprising a therapeutically effective amount of a KRAS G12C inhibitor (eg, Compound A) in combination with one or more pharmaceutically acceptable Carriers (additives) and/or diluents are formulated together.

較佳的是,藥學上可接受的載體係無菌的。可以將藥物組成物配製成用於特定的投與途徑,如口服投與、腸胃外投與和直腸投與等。另外,本發明之藥物組成物可以固體形式(包括但不限於膠囊、片劑、丸劑、顆粒、粉末或栓劑)、或以液體形式(包括但不限於溶液、懸浮液或乳液)製成。可以對藥物組成物進行常規的製藥操作,如滅菌和/或可以使其含有常規的惰性稀釋劑、潤滑劑或緩衝劑,以及輔助劑(如防腐劑、穩定劑、潤濕劑、乳化劑和緩衝液等)。Preferably, the pharmaceutically acceptable carrier system is sterile. Pharmaceutical compositions may be formulated for specific routes of administration, such as oral administration, parenteral administration, rectal administration, and the like. In addition, the pharmaceutical composition of the present invention can be prepared in solid form (including but not limited to capsules, tablets, pills, granules, powders or suppositories) or in liquid form (including but not limited to solutions, suspensions or emulsions). The pharmaceutical compositions may be subjected to conventional pharmaceutical operations, such as sterilization and/or may contain conventional inert diluents, lubricants or buffers, as well as auxiliary agents (such as preservatives, stabilizers, wetting agents, emulsifiers and buffer, etc.).

典型地,藥物組成物係包含活性成分及以下中的一或多種的片劑或明膠膠囊: a) 稀釋劑,例如,乳糖、右旋糖、蔗糖、甘露醇、山梨醇、纖維素和/或甘胺酸; b) 潤滑劑,例如,二氧化矽、滑石、硬酯酸、其鎂鹽或鈣鹽和/或聚乙二醇; c) 黏合劑,例如,矽酸鋁鎂、澱粉糊、明膠、黃蓍膠、甲基纖維素、羧甲基纖維素鈉和/或聚乙烯吡咯啶酮; d) 崩散劑,例如,澱粉、瓊脂、海藻酸或其鈉鹽或泡騰混合物;以及 e) 吸附劑、著色劑、調味劑及甜味劑。 Typically, pharmaceutical compositions are tablets or gelatin capsules containing the active ingredient and one or more of the following: a) diluents such as lactose, dextrose, sucrose, mannitol, sorbitol, cellulose and/or glycine; b) Lubricants, such as silica, talc, stearic acid, its magnesium or calcium salts and/or polyethylene glycol; c) Binders such as aluminum magnesium silicate, starch paste, gelatin, tragacanth, methylcellulose, sodium carboxymethylcellulose and/or polyvinylpyrrolidone; d) disintegrating agents, such as starch, agar, alginic acid or sodium salts or effervescent mixtures thereof; and e) Adsorbents, colorants, flavorings and sweeteners.

在實施方式中,藥物組成物係僅包含活性成分的膠囊。In embodiments, the pharmaceutical composition contains only capsules of active ingredients.

片劑可以根據本領域已知的方法進行薄膜包衣或腸溶包衣。Tablets may be film-coated or enteric-coated according to methods known in the art.

用於口服投與的合適的組成物包括有效量的呈片劑、錠劑、水性或油性懸浮液、可分散的粉末或顆粒、乳液、硬或軟膠囊、或糖漿或酏劑、溶液或固體分散體形式的本發明之組合中的化合物。旨在用於口服使用的組成物根據本領域已知的用於製造藥物組成物的任何方法來製備,並且此類組成物可以含有一或多種選自由甜味劑、調味劑、著色劑和防腐劑組成之群組的試劑,以便提供藥學上精緻和可口的製劑。片劑可含有與適用於製造片劑的非毒性藥學上可接受的賦形劑混合的活性成分。該等賦形劑係,例如,惰性稀釋劑,如碳酸鈣、碳酸鈉、乳糖、磷酸鈣或磷酸鈉;造粒劑和崩散劑,例如玉米澱粉或海藻酸;黏合劑,例如澱粉、明膠或阿拉伯膠;以及潤滑劑,例如硬脂酸鎂、硬脂酸或滑石。片劑係未包衣的或藉由已知技術進行包衣以延緩在胃腸道中的崩散和吸收,從而在較長的時間段內提供持續作用。例如,可以採用時間延遲材料,諸如單硬脂酸甘油酯或二硬脂酸甘油酯。用於口服使用的配製物可以被呈現為其中活性成分與惰性固體稀釋劑(例如,碳酸鈣、磷酸鈣或高嶺土)混合的硬明膠膠囊,或被呈現為其中活性成分與水或油介質(例如,花生油、液體石蠟或橄欖油)混合的軟明膠膠囊。Suitable compositions for oral administration include effective amounts in the form of tablets, lozenges, aqueous or oily suspensions, dispersible powders or granules, emulsions, hard or soft capsules, or syrups or elixirs, solutions or solids The compounds of the combinations of the invention are in the form of dispersions. Compositions intended for oral use are prepared according to any method known in the art for the manufacture of pharmaceutical compositions, and such compositions may contain one or more agents selected from the group consisting of sweetening agents, flavoring agents, coloring agents, and preservatives. The reagents are composed of groups of reagents in order to provide pharmaceutically elegant and palatable preparations. Tablets may contain the active ingredient in admixture with non-toxic pharmaceutically acceptable excipients which are suitable for the manufacture of tablets. Such excipients are, for example, inert diluents such as calcium carbonate, sodium carbonate, lactose, calcium phosphate or sodium phosphate; granulating and disintegrating agents such as corn starch or alginic acid; binders such as starch, gelatin or Gum Arabic; and lubricants such as magnesium stearate, stearic acid, or talc. Tablets may be uncoated or coated by known techniques to delay disintegration and absorption in the gastrointestinal tract, thereby providing sustained action over a longer period of time. For example, time delay materials such as glyceryl monostearate or glyceryl distearate may be used. Formulations for oral use may be presented as hard gelatin capsules in which the active ingredient is mixed with an inert solid diluent (e.g., calcium carbonate, calcium phosphate, or kaolin), or as hard gelatin capsules in which the active ingredient is mixed with an aqueous or oily vehicle (e.g., calcium carbonate, calcium phosphate, or kaolin). , peanut oil, liquid paraffin or olive oil) mixed soft gelatin capsules.

某些可注射組成物係水性等滲溶液或懸浮液,並且栓劑有利地由脂肪乳液或懸浮液製備。所述組成物可為滅菌的和/或含有輔助劑(例如,防腐劑、穩定劑、潤濕劑或乳化劑、溶液促進劑、用於調節滲透壓的鹽和/或緩衝液)。另外,它們還可以含有其他有治療價值的物質。所述組成物分別根據常規的混合、製粒或包衣方法來製備,並且含有約0.1%-75%、或含有約1%-50%的活性成分。Certain injectable compositions are aqueous isotonic solutions or suspensions, and suppositories are advantageously prepared from fatty emulsions or suspensions. The composition may be sterile and/or contain adjuvants (eg, preservatives, stabilizers, wetting or emulsifying agents, solution accelerators, salts for adjusting osmotic pressure and/or buffers). Additionally, they can contain other substances of therapeutic value. The composition is prepared according to conventional mixing, granulating or coating methods, and contains about 0.1%-75%, or about 1%-50% of active ingredients.

適用於透皮應用的適合的組成物包括有效量的本發明之化合物和適合的載體。適於透皮遞送的載體包括幫助通過宿主皮膚的可吸收的藥理學上可接受的溶劑。例如,透皮裝置呈繃帶的形式,該繃帶包括襯件、含有化合物並視需要含有載體的貯庫、視需要在延長的一段時間內以受控且預定的速率將化合物遞送至宿主皮膚的控速屏障、以及將該裝置固定至皮膚的器具。Suitable compositions for transdermal application include an effective amount of a compound of the invention and a suitable carrier. Carriers suitable for transdermal delivery include absorbable pharmacologically acceptable solvents that assist passage through the skin of the host. For example, a transdermal device is in the form of a bandage that includes a liner, a reservoir containing a compound and optionally a carrier, and a controller that delivers the compound to the skin of a host at a controlled and predetermined rate over an extended period of time. rapid barrier, and apparatus to secure the device to the skin.

適用於局部投與(例如,投與至皮膚及眼睛)的組成物包括水溶液、懸浮液、軟膏劑、霜劑、凝膠或可噴霧配製物,例如,用於借由氣溶膠或類似物遞送。該等局部遞送系統將具體地適用於真皮投與,例如,用於治療皮膚癌,例如,用於防曬霜、洗劑、噴霧及類似物中的預防用途。因此它尤其適用於局部中的用途,包括本領域中熟知的化妝品、配製物。此類系統可含有增溶劑、穩定劑、張力增強劑、緩衝液和防腐劑。Compositions suitable for topical administration (e.g., to the skin and eyes) include aqueous solutions, suspensions, ointments, creams, gels, or sprayable formulations, e.g., for delivery by aerosol or the like . Such topical delivery systems will be particularly suitable for dermal administration, eg, for the treatment of skin cancer, eg, for prophylactic use in sunscreens, lotions, sprays and the like. It is therefore particularly suitable for topical use, including cosmetics, formulations well known in the art. Such systems may contain solubilizers, stabilizers, tonicity enhancing agents, buffers and preservatives.

如本文所用,局部投與也可以涉及吸入或鼻內投與。它們可以方便地以乾粉末形式(單獨地;作為混合物,例如與乳糖的乾混物;或作為混合的組分顆粒,例如與磷脂一起)從乾粉吸入器或以氣溶膠噴霧形式從加壓容器、泵、噴霧器、霧化器或噴射器遞送,使用或不使用合適的推進劑。As used herein, topical administration may also involve inhalation or intranasal administration. They are conveniently available in dry powder form (alone; as a mixture, for example with lactose; or as mixed component particles, for example with phospholipids) from a dry powder inhaler or as an aerosol spray from a pressurized container , delivered by pump, sprayer, atomizer or ejector, with or without suitable propellants.

在一個實施方式中,本發明提供了包含化合物A或其藥學上可接受的鹽的產品,用於在療法中使用。在一個實施方式中,該療法針對具有KRAS G12C突變和 < 1%的PD-L1表現而不管STK11突變狀態如何的癌症或實性瘤(如NSCLC)、或具有KRAS G12C突變和 ≥ 1%的PD-L1表現和STK11共突變的癌症或實性瘤(如NSCLC)。作為組合製劑提供的產品包括包含套組形式的本發明化合物的組成物。In one embodiment, the present invention provides a product comprising Compound A, or a pharmaceutically acceptable salt thereof, for use in therapy. In one embodiment, the therapy is targeted to cancers or solid tumors (eg, NSCLC) with KRAS G12C mutations and <1% PD-L1 expression regardless of STK11 mutation status, or with KRAS G12C mutations and ≥1% PD - Cancers or solid tumors with L1 expression and STK11 co-mutations (such as NSCLC). Products provided as combination preparations include compositions containing the compounds of the invention in kit form.

在一個實施方式中,該套組包含用於分開保存所述組成物的裝置(如容器、分開的瓶子、或分開的箔包)。這種套組之實例係泡罩包裝,如典型地用於片劑、膠囊等的包裝。In one embodiment, the kit includes means (eg, containers, separate bottles, or separate foil packets) for holding the compositions separately. An example of such a kit is a blister pack, as is typically used for the packaging of tablets, capsules, etc.

為了有助於依從性,本發明之套組典型地包含用於投與的用法說明書。To aid compliance, the kits of the invention typically include instructions for administration.

定義definition

除非另外說明,否則上文和下文中使用的通用術語較佳的是在本揭露的上下文中具有以下含義,其中無論在什麼情況下使用的更通用的術語可以彼此獨立地由更具體的定義代替或保留,從而定義本發明之更詳細實施方式:Unless stated otherwise, the general terms used above and below preferably have the following meanings in the context of the present disclosure, wherein the more general terms used in whatever context may be replaced by more specific definitions independently of each other. Or retain, thereby defining more detailed embodiments of the present invention:

特別地,在提及劑量(dose或dosage)的情況下,其旨在包括指定值 ± 10%或 ± 5%附近的範圍。In particular, where reference is made to dosage (dose or dosage), this is intended to include a range in the vicinity of ± 10% or ± 5% of the specified value.

按照本領域的慣例,劑量係指游離形式的治療劑的量。例如,當提及200 mg劑量的化合物A並且化合物A以其藥物鹽的形式使用時,所用的治療劑的量相當於20 mg游離形式的化合物A。According to common practice in the art, dosage refers to the amount of therapeutic agent in free form. For example, when a 200 mg dose of Compound A is referred to and Compound A is used in the form of its pharmaceutical salt, the amount of therapeutic agent used is equivalent to 20 mg of Compound A in its free form.

如本文所用的,術語「受試者」或「患者」旨在包括易於患有癌症或任何障礙(直接或間接涉及癌症)或受其折磨的動物。受試者之實例包括哺乳動物,例如人、猿、猴、狗、乳牛、馬、豬、綿羊、山羊、貓、小鼠、兔、大鼠和轉基因非人動物。在一個實施方式中,受試者係人,例如患有癌症、具有患癌症的風險或可能易於患有癌症的人。As used herein, the term "subject" or "patient" is intended to include animals susceptible to or suffering from cancer or any disorder involving, directly or indirectly, cancer. Examples of subjects include mammals, such as humans, apes, monkeys, dogs, cows, horses, pigs, sheep, goats, cats, mice, rabbits, rats, and transgenic non-human animals. In one embodiment, the subject is a human, such as a human who has, is at risk of, or may be susceptible to cancer.

如本文所用的術語「治療(treating)」或「治療(treatment)」包括解除、減輕或緩解受試者的至少一種症狀或者實現疾病進展延遲的治療。例如,治療可為減少一種或幾種障礙的症狀,或者部分或完全根除障礙(如癌症)。在本揭露的含義範圍內,術語「治療」還表示阻止、延遲發作(即在疾病的臨床表現之前的時間段)和/或降低疾病發展或疾病惡化的風險。The terms "treating" or "treatment" as used herein include treatment that relieves, alleviates, or relieves at least one symptom in a subject or achieves a delay in disease progression. For example, treatment may be to reduce the symptoms of one or several disorders, or to partially or completely eradicate a disorder (such as cancer). Within the meaning of this disclosure, the term "treatment" also means preventing, delaying the onset (i.e., the period prior to clinical manifestation of the disease) and/or reducing the risk of disease progression or disease progression.

「治療」也可以藉由功效和/或藥效學終點來確定,並且可定義為安全性、功效和耐受性中的一或多個的改善。可以藉由根據RECIST v.1.1確定以下項來確定單一療法或組合療法的功效:最佳總體反應(BOR)、總體反應率(ORR)、反應持續時間(DOR)、疾病控制率(DCR)、無進展生存期(PFS)和總生存期(OS)。"Treatment" may also be determined by efficacy and/or pharmacodynamic endpoints, and may be defined as improvement in one or more of safety, efficacy, and tolerability. The efficacy of monotherapy or combination therapy can be determined by determining the following according to RECIST v.1.1: best overall response (BOR), overall response rate (ORR), duration of response (DOR), disease control rate (DCR), Progression-free survival (PFS) and overall survival (OS).

「最佳總體反應」(BOR)率被定義為從治療開始直至疾病進展/復發,並且根據RECIST 1.1記錄的最佳反應。The “best overall response” (BOR) rate was defined as the best response documented according to RECIST 1.1 from the start of treatment until disease progression/relapse.

「總體反應率」(ORR)被定義為根據RECIST 1.1,BOR為CR或PR的患者的比例。“Overall response rate” (ORR) was defined as the proportion of patients with a BOR of CR or PR according to RECIST 1.1.

根據RECIST 1.1,「反應持續時間」(DOR)係第一次記錄的反應(CR或PR)與進展或任何原因導致的死亡日期之間的時間。這裡,任何原因導致的死亡被視為保守事件,並且符合PFS事件定義。According to RECIST 1.1, “duration of response” (DOR) is the time between the first documented response (CR or PR) and the date of progression or death from any cause. Here, death from any cause is considered a conservative event and meets the PFS event definition.

根據RECIST 1.1,「疾病控制率」(DCR)被定義為根據RECIST 1.1,BOR為CR、PR或SD的患者的比例。“Disease control rate” (DCR) was defined as the proportion of patients with a BOR of CR, PR, or SD according to RECIST 1.1.

根據RECIST 1.1,「無進展生存期」(PFS)被定義為從開始治療的日期到根據RECIST 1.1第一次記錄的進展或任何原因導致的死亡的日期之間的時間。如果患者不具有事件,PFS將在最後的充分的腫瘤評估日期進行審查。According to RECIST 1.1, “progression-free survival” (PFS) is defined as the time between the date of initiation of treatment and the date of first documented progression or death from any cause according to RECIST 1.1. If the patient does not have an event, PFS will be reviewed at the date of last adequate tumor assessment.

「總生存期」(OS)被定義為從開始研究治療的日期到任何原因導致的死亡的日期之間的天數。如果在研究終止或分析截止之前未報告死亡,則將在截止日期之前/當日最後一個已知患者生存日期對生存期進行審查。沒有基線後生存資訊的患者的生存時間將在開始治療的日期進行審查。“Overall survival” (OS) was defined as the number of days from the date of initiation of study treatment to the date of death from any cause. If no death was reported before study termination or analysis cutoff, survival was censored on the last known patient survival date before/on the cutoff date. Survival time for patients without post-baseline survival information will be censored at the date of treatment initiation.

「治療」也可以定義為在減少用如本文所述之化合物A的療法的副作用方面有所改善。"Treatment" may also be defined as improvement in reducing the side effects of therapy with Compound A as described herein.

除非另外指明,否則術語「包含」和「包括」在本文中以其開放式和非限制性的含義使用。Unless otherwise indicated, the terms "comprising" and "including" are used herein in their open-ended and non-limiting sense.

除非本文另外指明或明顯與上下文矛盾,否則在描述本發明之上下文中(尤其是在以下請求項的上下文中),術語「一個」、「一種」和「該」以及類似的指示詞應當被解釋為涵蓋單數和複數這兩者。當將複數形式用於化合物、鹽等時,這也意指單一化合物、鹽等。Unless otherwise indicated herein or clearly contradicted by the context, the terms "a", "an" and "the" and similar designators shall be construed in the context of describing the invention (especially in the context of the following claims). To cover both the singular and the plural. When the plural form is used for compounds, salts, etc., this also means the singular compound, salt, etc.

如本文所用的短語「治療有效量」係指包含本發明化合物的化合物、材料或組成物的量,其對於在動物中的至少一個細胞亞群中以適用於任何醫學治療的合理的受益/風險比產生一些所期望的治療效果係有效的。The phrase "therapeutically effective amount" as used herein refers to an amount of a compound, material or composition comprising a compound of the invention that results in a reasonable benefit in at least one subpopulation of cells in an animal suitable for use in any medical treatment/ The risk ratio is valid for producing some desired treatment effect.

本文使用的短語「藥學上可接受的」係指在合理的醫學判斷的範圍,適合用於與人和動物的組織接觸而不產生過度毒性、刺激、過敏反應、或其他問題或併發症,同時具有相稱的合理受益/風險比的那些化合物、材料、組成物、和/或劑型。As used herein, the phrase "pharmaceutically acceptable" means, within the scope of sound medical judgment, suitable for use in contact with human and animal tissue without producing undue toxicity, irritation, allergic reactions, or other problems or complications, Those compounds, materials, compositions, and/or dosage forms that also have a reasonable and proportionate benefit/risk ratio.

如上文所述,本發明化合物的某些實施方式可含有鹼性官能基,例如胺基或烷基胺基,並且由此能夠與藥學上可接受的酸形成藥學上可接受的鹽。在這方面,術語「藥學上可接受的鹽」係指本發明之化合物的相對無毒的無機和有機酸加成鹽。該等鹽可以在投與媒介物或劑型製造過程中 原位製備,或者藉由使純化的游離鹼形式的本發明化合物與合適的有機或無機酸分別反應,並在隨後的純化期間分離由此形成的鹽來製備。代表性鹽包括氫溴酸鹽、鹽酸鹽、硫酸鹽、硫酸氫鹽、磷酸鹽、硝酸鹽、乙酸鹽、戊酸鹽、油酸鹽、棕櫚酸鹽、硬脂酸鹽、月桂酸鹽、苯甲酸鹽、乳酸鹽、磷酸鹽、甲苯磺酸鹽、檸檬酸鹽、順丁烯二酸鹽、延胡索酸鹽、琥珀酸鹽、酒石酸鹽、萘酸鹽(napthylate)、甲磺酸鹽、葡庚糖酸鹽、乳糖醛酸鹽和月桂基磺酸鹽等。(參見例如Berge等人 (1977) 「Pharmaceutical Salts [藥用鹽]」, J. Pharm. Sci.[藥物科學雜誌] 66:1-19)。 As noted above, certain embodiments of the compounds of the present invention may contain basic functional groups, such as amine or alkylamino groups, and are thereby capable of forming pharmaceutically acceptable salts with pharmaceutically acceptable acids. In this regard, the term "pharmaceutically acceptable salts" refers to the relatively non-toxic inorganic and organic acid addition salts of the compounds of the invention. Such salts may be prepared in situ during manufacture of the administration vehicle or dosage form, or by separately reacting a purified free base form of the compound of the invention with a suitable organic or inorganic acid and isolating therefrom during subsequent purification. The salts formed are prepared. Representative salts include hydrobromide, hydrochloride, sulfate, bisulfate, phosphate, nitrate, acetate, valerate, oleate, palmitate, stearate, laurate, Benzoate, lactate, phosphate, tosylate, citrate, maleate, fumarate, succinate, tartrate, napthylate, mesylate, glucose Heptonates, lactosurates and lauryl sulfonates, etc. (See, for example, Berge et al. (1977) "Pharmaceutical Salts", J. Pharm. Sci. 66:1-19).

在本發明之方法和用途中,化合物A也旨在代表化合物的未標記形式以及同位素標記的形式。同位素標記的化合物的一或多個原子被具有選定原子質量或質量數的原子取代。可以摻入的同位素之實例包括氫、碳、氮、氧和氯的同位素(在可能的情況下),例如 2H、 3H、 11C、 13C、 14C、 15N、 35S、 36Cl。同位素標記的化合物可用於代謝研究(用 14C)、反應動力學研究(例如用 2H或 3H)、檢測或成像技術,例如正電子發射斷層掃描(PET)或單光子發射電腦斷層掃描(SPECT),包括藥物或底物組織分佈測定,或用於患者的放射治療。通常可以藉由熟悉該項技術者已知的常規技術使用適當的同位素標記的試劑來製備本發明之同位素標記的化合物。 In the methods and uses of the present invention, Compound A is also intended to represent unlabeled as well as isotopically labeled forms of the compound. Isotopically labeled compounds have one or more atoms replaced by atoms with a selected atomic mass or mass number. Examples of isotopes that may be incorporated include isotopes of hydrogen, carbon, nitrogen, oxygen and chlorine (where possible), such as 2 H, 3 H, 11 C, 13 C, 14 C, 15 N, 35 S, 36 Cl. Isotopically labeled compounds can be used in metabolic studies (with 14 C), reaction kinetic studies (e.g. with 2 H or 3 H), detection or imaging techniques such as positron emission tomography (PET) or single photon emission computed tomography ( SPECT), including drug or substrate tissue distribution determination, or for radiation therapy in patients. Isotopically labeled compounds of the present invention can generally be prepared by conventional techniques known to those skilled in the art using appropriate isotopically labeled reagents.

此外,用較重的同位素,特別是氘(即, 2H或D)取代可以提供來源於更大的代謝穩定性(例如,體內半衰期延長或劑量需求減少或治療指數改進)的某些治療優點。應當理解,在此上下文中,氘被認為是化合物A的取代基。這種較重同位素(特別是氘)的濃度可以由同位素富集因子來定義。如本文所用,術語「同位素富集因子」意指同位素豐度與指定同位素的天然豐度之間的比率。如果本發明之化合物中的取代基指定為氘,則此類化合物具有針對每個指定的氘原子的同位素富集因子為至少3500(在每個指定的氘原子上52.5%氘摻入)、至少4000(60%氘摻入)、至少4500(67.5%氘摻入)、至少5000(75%氘摻入)、至少5500(82.5%氘摻入)、至少6000(90%氘摻入)、至少6333.3(95%氘摻入)、至少6466.7(97%氘摻入)、至少6600(99%氘摻入)或至少6633.3(99.5%氘摻入)。 Furthermore, substitution with heavier isotopes, especially deuterium (i.e., H or D) may provide certain therapeutic advantages derived from greater metabolic stability (e.g., increased in vivo half-life or reduced dosage requirements or improved therapeutic index) . It should be understood that deuterium is considered a substituent of compound A in this context. The concentration of this heavier isotope (especially deuterium) can be defined by the isotope enrichment factor. As used herein, the term "isotopic enrichment factor" means the ratio between the abundance of an isotope and the natural abundance of a given isotope. If a substituent in a compound of the present invention is designated as deuterium, such compound has an isotope enrichment factor for each designated deuterium atom of at least 3500 (52.5% deuterium incorporation per designated deuterium atom), at least 4000 (60% deuterium doped), at least 4500 (67.5% deuterium doped), at least 5000 (75% deuterium doped), at least 5500 (82.5% deuterium doped), at least 6000 (90% deuterium doped), at least 6333.3 (95% deuterium incorporated), at least 6466.7 (97% deuterium incorporated), at least 6600 (99% deuterium incorporated), or at least 6633.3 (99.5% deuterium incorporated).

在化合物A中,例如吲唑基環上的甲基基團,可為氘化或全氘化的。 實例 實例1:化合物A(JDQ443)在KRAS G12C突變型CDX模型中顯示出抗腫瘤活性,這係由目標佔有率驅動的 In compound A, for example, the methyl group on the indazolyl ring can be deuterated or perdeuterated. Example Example 1: Compound A (JDQ443) shows antitumor activity in a KRAS G12C mutant CDX model driven by target occupancy

在一組不同適應證的KRAS G12C突變型CDX模型中,每日口服劑量為10 mg/kg、30 mg/kg和100 mg/kg時JDQ443的單一藥劑抗腫瘤活性。異種移植細胞系為:MIA PaCa-2(PDAC);NCI-H2122,LU99,HCC-44,NCI-H2030(NSCLC);和KYSE410(食道癌)。JDQ443以劑量依賴性方式抑制所有模型的生長(圖1A),其中劑量反應動力學和最大反應模式的模型特異性差異從消退(MIA PaCa-2,LU99),到停滯(HCC44,NCI-H2122),到中度腫瘤抑制(NCI-H2030,KYSE410)不等。LU99中觀察到最大動態範圍。相比之下,JDQ443在KRASG12V突變型異種移植模型(NCI-H441;圖1B)中未顯示生長抑制,這證實了KRASG12C的特異性,並且與體外數據一致。每日一次(QD)或每日兩次(BID)投與相同的日劑量,功效得以維持:在MIA PaCa-2中,30 mg/kg QD對比15 mg/kg BID(圖1C),或在NCI-H2122和LU99中,100 mg/kg QD對比50 mg/kg BID(圖1D-1E)。QD對比BID給藥的功效與血液中濃度-時間曲線下的可比日面積(AUC)密切相關。Single-agent antitumor activity of JDQ443 at daily oral doses of 10 mg/kg, 30 mg/kg, and 100 mg/kg in a panel of KRAS G12C mutant CDX models with different indications. The xenograft cell lines were: MIA PaCa-2 (PDAC); NCI-H2122, LU99, HCC-44, NCI-H2030 (NSCLC); and KYSE410 (esophageal cancer). JDQ443 inhibited growth in all models in a dose-dependent manner (Figure 1A), with model-specific differences in dose-response kinetics and maximal response patterns ranging from regression (MIA PaCa-2, LU99), to arrest (HCC44, NCI-H2122) , ranging from moderate tumor inhibition (NCI-H2030, KYSE410). The maximum dynamic range is observed in LU99. In contrast, JDQ443 showed no growth inhibition in a KRASG12V mutant xenograft model (NCI-H441; Figure 1B), confirming the specificity of KRASG12C and consistent with in vitro data. Efficacy was maintained when the same daily dose was administered once daily (QD) or twice daily (BID): 30 mg/kg QD versus 15 mg/kg BID in MIA PaCa-2 (Fig. 1C), or In NCI-H2122 and LU99, 100 mg/kg QD vs. 50 mg/kg BID (Figure 1D-1E). The efficacy of QD versus BID administration is closely related to the comparable daily area under the concentration-time curve (AUC) in the blood.

該等發現表明,JDQ443的功效與目標佔有率(TO)有關,並且在QD和BID給藥下都可以實現有效的AUC暴露。為了表徵AUC是否可以充當TO的替代物,研究了LU99異種移植模型中連續輸注對比口服給藥的效果。每日一次口服給藥30 mg/kg誘導了約一週的停滯,隨後腫瘤進展,並且100 mg/kg誘導了腫瘤消退(圖1F),其中穩態平均濃度(Cav)分別大致為0.3 µM和約1 µM。為了評估連續給藥,經由可程式設計微量輸注泵靜脈內遞送JDQ443,從而實現接近口服Cav的目標濃度。連續輸注和口服給藥導致相當的抗腫瘤反應(圖1F、1G)。PK/PD模型模擬表明,功效與JDQ443的TO和AUC相關性最好(圖1H、1I),而不是其他PK指標。 實例2:化合物A強效抑制KRAS G12C H95Q(在臨床試驗中介導對阿達格拉西布抗性的雙突變體) These findings demonstrate that the efficacy of JDQ443 is related to target occupancy (TO) and that effective AUC exposure can be achieved under both QD and BID dosing. To characterize whether AUC could serve as a surrogate for TO, the effects of continuous infusion versus oral administration in a LU99 xenograft model were studied. Once-daily oral administration of 30 mg/kg induced stasis followed by tumor progression for approximately one week, and 100 mg/kg induced tumor regression (Fig. 1F), with steady-state average concentrations (Cav) of approximately 0.3 µM and approximately 0.3 µM, respectively. 1 µM. To evaluate continuous dosing, JDQ443 was delivered intravenously via a programmable microinfusion pump to achieve target concentrations close to oral Cav. Continuous infusion and oral administration resulted in comparable antitumor responses (Figures 1F, 1G). PK/PD model simulations showed that efficacy was best correlated with TO and AUC of JDQ443 (Figures 1H, 1I), rather than other PK metrics. Example 2: Compound A potently inhibits KRAS G12C H95Q (a double mutant that mediates resistance to adagrasib in clinical trials)

GFP標記的KRASG12C H95Q、KRASG12C Y96D或KRASG12C R68S雙突變藉由定點誘變(QuikChange Lightning定點誘變套組(Kit)(目錄號210518)模板:pcDNA3.1(+)EGFP-T2A-FLAG-KRAS G12C)產生,並且藉由穩定轉染在含有Ba/F3細胞的Cas9中表現。用從10 mM的DMSO原液中1/3稀釋的10 μM開始的劑量反應曲線處理細胞。用指定的化合物處理細胞系72小時,並且用CellTiter-Glo測量細胞的活力。 結果: GFP-tagged KRASG12C H95Q, KRASG12C Y96D or KRASG12C R68S double mutations were generated by site-directed mutagenesis (QuikChange Lightning Site-Directed Mutagenesis Kit (Kit) (Cat. No. 210518) Template: pcDNA3.1(+)EGFP-T2A-FLAG-KRAS G12C ) were produced and expressed in Cas9-containing Ba/F3 cells by stable transfection. Treat cells with a dose-response curve starting with 10 μM diluted 1/3 from 10 mM DMSO stock. Cell lines were treated with indicated compounds for 72 hours, and cell viability was measured using CellTiter-Glo. result:

與MRTX-849(阿達格拉西布)不同,JDQ443(化合物A)和AMG-510(索托拉西布)強效抑制KRASG12C H95Q雙突變體的細胞活力。MRTX-849、AMG-510或JDQ443在指定的濃度和所述環境下(Ba/F3系統,3天增殖測定)不能抑制KRASG12C Y96D或KRASG12C R68S雙突變體,並且該等雙突變體對所有三種測試的KRASG12C抑制劑產生抗性。 KRAS G12C抑制劑 GI 50[µM] +/- 標準差(STDEV) KRAS G12C H95Q KRAS G12C Y96D KRAS G12C R68S NVP-JDQ443(化合物A) 0.57 +/- 0.18 > 10 > 10 AMG-510(索托拉西布) 0.26 +/- 0.06 > 10 > 10 MRTX-849(阿達格拉西布) > 10 > 10 > 10 結論: Unlike MRTX-849 (adagrasib), JDQ443 (compound A) and AMG-510 (sotorracib) potently inhibit the cell viability of the KRASG12C H95Q double mutant. MRTX-849, AMG-510, or JDQ443 failed to inhibit KRASG12C Y96D or KRASG12C R68S double mutants at the indicated concentrations and conditions (Ba/F3 system, 3-day proliferation assay), and the double mutants were resistant to all three tests Resistance to KRASG12C inhibitors. KRAS G12C inhibitors GI 50 [µM] +/- standard deviation (STDEV) KRAS G12C H95Q KRAS G12C Y96D KRAS G12C R68S NVP-JDQ443 (Compound A) 0.57 +/- 0.18 >10 >10 AMG-510 (Sotoracib) 0.26 +/- 0.06 >10 >10 MRTX-849 (adagrasib) >10 >10 >10 Conclusion:

在KRASG12C H95Q情況下,化合物A可能克服對阿達格拉西布的抗性。另外,由於化合物A與突變型KRAS G12C有獨特的結合相互作用,當與索托拉西布和阿達格拉西布相比時,單獨的或與如本文所述之一或多種治療劑組合的化合物A,可用於治療先前用其他KRAS G12C抑制劑(如索托拉西布或阿達格拉西布)治療的患有癌症的患者,或在初始KRAS G12C抑制劑治療中出現獲得性KRAS抗性突變後靶向抗性。 實例3:化合物A強效抑制KRAS G12C雙突變體 In the case of KRASG12C H95Q, compound A may overcome resistance to adagrasib. Additionally, due to the unique binding interaction of Compound A with mutant KRAS G12C, when compared to sotoraxib and adagrasiib, Compound A alone or in combination with one or more therapeutic agents as described herein A, may be used to treat patients with cancer previously treated with other KRAS G12C inhibitors (such as sotoraxib or adagrasiib) or after the development of acquired KRAS resistance mutations during initial KRAS G12C inhibitor therapy Targeted resistance. Example 3: Compound A potently inhibits KRAS G12C double mutant

如下還研究了化合物A和其他KRASG12C抑制劑對所報導的賦予對阿達格拉西布抗性的第二位點突變的影響。 材料與方法: 細胞系和 KRAS G12C 抑制劑: The effect of Compound A and other KRASG12C inhibitors on reported second site mutations conferring resistance to adagrasib was also studied as follows. Materials and Methods: Cell Lines and KRAS G12C Inhibitors:

除非另外指示,否則Ba/F3細胞系係小鼠原B細胞系,並且在補充有10%的胎牛血清(FBS)(生物概念公司(BioConcept),#2-01F30-I)、2 mM丙酮酸鈉(生物概念公司,# 5-60F00-H)、2 mM穩定的麩醯胺酸(生物概念公司,# 5-10K50-H)、10 mM HEPES(生物概念公司,# 5-31F00-H)的RPMI 1640(生物概念公司,#1-41F01-I)中在37°C和5% CO 2下培養。將親代Ba/F3細胞在5 ng/ml的重組鼠IL-3(生命技術公司(Life Technologies),#PMC0035)存在下培養。Ba/F3細胞通常依賴IL-3生存和增殖,然而,藉由表現致癌基因,它們能夠將其依賴性從IL-3轉向所表現的致癌基因(Curr Opin Oncology [腫瘤學當代視點], 2007年1月;19(1):55-60. doi: 10.1097/CCO.0b013e328011a25f.) 單個質體誘變和 Ba/F3 穩定細胞系的產生: Unless otherwise indicated, the Ba/F3 cell line is a mouse primary B cell line and was supplemented with 10% fetal bovine serum (FBS) (BioConcept, #2-01F30-I), 2 mM acetone Sodium phosphate (Bioconcepts, #5-60F00-H), 2 mM Stabilized Glutamine (Bioconcepts, #5-10K50-H), 10 mM HEPES (Bioconcepts, #5-31F00-H ) in RPMI 1640 (Bioconcepts, #1-41F01-I) at 37°C and 5% CO . Parental Ba/F3 cells were cultured in the presence of 5 ng/ml recombinant murine IL-3 (Life Technologies, #PMC0035). Ba/F3 cells normally rely on IL-3 for survival and proliferation, however, by expressing oncogenes, they are able to switch their dependence from IL-3 to the expressed oncogene (Curr Opin Oncology, 2007 Jan;19(1):55-60. doi: 10.1097/CCO.0b013e328011a25f.) Single plastid mutagenesis and generation of Ba/F3 stable cell lines:

使用QuikChange Lightning定點誘變套組(安捷倫公司(Agilent);# 210519)以在pSG5_Flag-(密碼子優化)KRAS G12C_puro質體模板上產生抗性突變,並且藉由桑格定序(Sanger sequencing)確認序列。 引物 引物序列 SEQ ID NO H95R_正向 5'-gtcatttgaagatatccaccgttatcgcgagcagattaaga-3' 552    H95R_反向 5'-tcttaatctgctcgcgataacggtggatatcttcaaatgac-3' 553    H95Q_正向 5'-tcatttgaagatatccaccagtatcgcgagcagattaagag-3' 554    H95Q_反向 5'-ctcttaatctgctcgcgatactggtggatatcttcaaatga-3' 555    H95D_正向 5'-agtcatttgaagatatccacgattatcgcgagcagattaag-3' 556    H95D_反向 5'-cttaatctgctcgcgataatcgtggatatcttcaaatgact-3' 557    MR68S_正向 5'-gaagagtactccgcaatgagcgatcaatacatgaggacg-3' 558    R68S_反向 5'-cgtcctcatgtattgatcgctcattgcggagtactcttc-3' 559    Y96C_正向 5'-cgaagtcatttgaagatatccaccattgtcgcgagcagatta-3' 560    Y96C_反向 5'-taatctgctcgcgacaatggtggatatcttcaaatgacttcg-3' 561    Y96D_正向 5'-cgaagtcatttgaagatatccaccatgatcgcgagcagatt-3 562    Y96D_反向 5'-aatctgctcgcgatcatggtggatatcttcaaatgacttcg-3' 563    The QuikChange Lightning site-directed mutagenesis kit (Agilent; #210519) was used to generate resistance mutations on the pSG5_Flag-(codon optimized) KRAS G12C_puro plasmid template and by Sanger sequencing Confirm sequence. primer Primer sequence SEQ ID NO H95R_Forward 5'-gtcatttgaagatatccaccgttatcgcgagcagattaaga-3' 552 H95R_Reverse 5'-tcttaatctgctcgcgataacggtggatatcttcaaatgac-3' 553 H95Q_Forward 5'-tcatttgaagatatccaccagtatcgcgagcagattaagag-3' 554 H95Q_Reverse 5'-ctcttaatctgctcgcgatactggtggatatcttcaaatga-3' 555 H95D_Forward 5'-agtcatttgaagatatccacgattatcgcgagcagattaag-3' 556 H95D_reverse 5'-cttaatctgctcgcgataatcgtggatatcttcaaatgact-3' 557 MR68S_Forward 5'-gaagagtactccgcaatgagcgatcaatacatgaggacg-3' 558 R68S_Reverse 5'-cgtcctcatgtattgatcgctcattgcggagtactcttc-3' 559 Y96C_Forward 5'-cgaagtcatttgaagatatccaccattgtcgcgagcagatta-3' 560 Y96C_Reverse 5'-taatctgctcgcgacaatggtggatatcttcaaatgacttcg-3' 561 Y96D_Forward 5'-cgaagtcatttgaagatatccaccatgatcgcgagcagatt-3 562 Y96D_reverse 5'-aatctgctcgcgatcatggtggatatcttcaaatgacttcg-3' 563

將突變型質體用NEON轉染套組(英傑公司(Invitrogen),#MPK10025)藉由電穿孔轉染到Ba/F3 WT細胞中。因此,用NEON系統(英傑公司,#MPK5000)(使用以下條件:電壓(V)1635,寬度(ms)20,脈衝1)來用10 μg pf質體電穿孔二百萬個Ba/F3細胞。電穿孔72小時後,以1 μg/ml進行嘌呤黴素選擇,以產生穩定的細胞系。 IL-3 退出( withdrawal The mutant plasmids were transfected into Ba/F3 WT cells by electroporation using NEON transfection kit (Invitrogen, #MPK10025). Therefore, two million Ba/F3 cells were electroporated with 10 μg pf plasmid using the NEON system (Invitrogen, #MPK5000) (using the following conditions: voltage (V) 1635, width (ms) 20, pulse 1). 72 hours after electroporation, puromycin selection was performed at 1 μg/ml to generate stable cell lines. IL-3 withdrawal ( withdrawal )

Ba/F3細胞通常依賴IL-3生存和增殖,然而,藉由表現致癌基因,它們能夠將其依賴性從IL-3轉向所表現的致癌基因。為了評估KRAS G12C單和雙突變體是否能夠維持Ba/F3細胞的增殖,在不存在IL-3的情況下培養表現突變構建體的工程化Ba/F3細胞。每三天測量一次細胞數量和活力,並且七天後完成IL-3退出。藉由西方墨點法(數據未顯示,觀察到KRAS G12C/R68S的上移)確認IL-3退出後突變體的表現。 KRASG12C 抑制劑的藥物反應曲線和抗性突變的驗證: Ba/F3 cells normally rely on IL-3 for survival and proliferation, however, by expressing oncogenes, they are able to switch their dependence from IL-3 to the expressed oncogene. To evaluate whether KRAS G12C single and double mutants are able to sustain proliferation of Ba/F3 cells, engineered Ba/F3 cells expressing the mutant constructs were cultured in the absence of IL-3. Cell number and viability were measured every three days, and IL-3 withdrawal was completed after seven days. The expression of the mutant after IL-3 withdrawal was confirmed by Western blotting (data not shown, upshift of KRAS G12C/R68S was observed). Validation of drug response curves and resistance mutations to KRASG12C inhibitors:

將1000個Ba/F3細胞/孔接種到96孔板(葛萊娜第一生化公司(Greiner Bio-One),#655098)中。在同一天用Tecan D300e藥物分配器進行處理。在Tecan infinitiy M200 Pro讀數器(積分時間1000 ms)上,使用CellTiter-Glo發光細胞活力測定(普洛麥格公司(Promega),#G7573),在處理起始板(第0天)的同一天和處理後三天(第3天)檢測活力。1000 Ba/F3 cells/well were seeded into a 96-well plate (Greiner Bio-One, #655098). Treat on the same day with the Tecan D300e medication dispenser. CellTiter-Glo luminescent cell viability assay (Promega, #G7573) was used on a Tecan infinitiy M200 Pro reader (integration time 1000 ms), on the same day as the starting plate was processed (day 0) and detect viability three days after treatment (day 3).

為了確定生長情況,將處理後三天(第3天)的讀數相對於起始板(第0天)歸一化。然後藉由將處理過的孔相對於DMSO處理過的對照樣本歸一化來計算活力百分比。使用XLfit來製作Sigmoidal劑量-反應模型的擬合曲線(四參數曲線)(圖2)。水平的紅色虛線代表GI50值。表格數據顯示如下。 [表]:化合物A(JDQ443)對KRAS G12C/H95雙突變體增殖的影響。(«STDEV»表示%增長值的標準差) 相對於第3天的處理,經處理的細胞的%生長 濃度 [μM] 1 0.333333 0.111111 0.037037 0.012346 0.004115 0.001372 0.000457 G12C 4.279 20.252 44.204 72.785 89.361 93.832 97.516 95.501 G12C STDEV 0.961 0.345 3.567 3.058 1.072 0.770 3.921 3.639 H95R 0.321 5.323 23.425 52.178 66.971 83.996 92.517 103.118 H95R STDEV 0.943 0.276 0.779 1.034 0.897 3.344 3.811 7.044 H95Q 6.635 36.908 71.333 93.319 95.722 103.375 93.606 100.054 H95Q STDEV 2.025 0.910 11.656 4.209 0.919 6.685 3.996 2.621 H95D 28.569 68.199 88.358 102.308 97.783 90.379 91.567 96.429 H95D STDEV 1.055 4.247 2.997 6.409 3.644 0.087 2.074 7.212 R68S 69.159 93.111 103.721 108.276 104.608 100.329 103.390 100.931 R68S STDEV 7.892 4.607 9.627 6.839 0.781 4.288 2.838 0.996 Y96C 80.229 91.765 102.592 104.222 96.167 105.515 102.424 109.116 Y96C STDEV 1.667 0.222 2.981 1.230 0.896 4.837 5.863 4.380 Y96D 90.864 97.260 105.866 103.946 106.613 98.191 102.224 100.903 Y96D STDEV 0.852 0.105 4.943 6.090 3.050 1.435 5.305 3.229 [表]:索托拉西布(AMG510)對KRAS G12C/H95雙突變體增殖的影響(«STDEV»表示%增長值的標準差) 相對於第3天的處理,經處理的細胞的%生長 濃度 [μM] 1 0.333333 0.111111 0.037037 0.012346 0.004115 0.001372 0.000457 G12C 24.244 46.199 71.315 77.193 92.241 95.211 94.786 100.303 G12C STDEV 5.785 4.703 0.727 0.776 2.500 1.603 2.016 5.046 H95R 3.485 8.354 23.503 53.471 71.098 83.029 90.450 93.527 H95R STDEV 1.825 1.731 0.971 4.408 1.615 6.613 10.693 5.561 H95Q 8.566 34.323 68.123 89.685 93.396 98.559 103.616 98.858 H95Q STDEV 2.203 1.572 6.416 5.515 0.970 1.603 4.610 1.842 H95D -1.171 33.638 74.059 91.299 91.484 99.189 93.064 103.216 H95D STDEV 0.374 1.962 1.683 0.716 2.837 6.975 2.489 5.237 R68S 79.748 94.396 102.811 98.842 99.936 100.994 94.166 95.566 R68S STDEV 3.473 7.672 2.021 3.308 0.455 0.885 1.904 1.680 Y96C 111.964 105.031 103.341 97.712 104.892 109.010 106.167 103.355 Y96C STDEV 3.326 0.058 2.472 2.258 0.105 2.374 0.266 3.889 Y96D 106.099 101.660 101.868 97.311 102.190 106.308 101.134 105.511 Y96D STDEV 7.943 8.231 5.850 1.065 8.679 8.652 10.362 3.819 [表]:阿達格拉西布(MRTX-849)對KRAS G12C/H95雙突變體增殖的影響(«STDEV»表示%增長值的標準差) 相對於第3天的處理,經處理的細胞的%生長 濃度 [μM] 1 0.333333 0.111111 0.037037 0.012346 0.004115 0.001372 0.000457 G12C -0.266 16.329 51.013 72.820 87.908 90.538 97.358 99.591 G12C STDEV 0.026 0.281 1.081 5.419 4.200 3.922 1.669 7.272 H95R 64.097 87.126 83.910 90.693 96.751 85.570 95.027 89.422 H95R STDEV 6.732 10.191 5.867 1.326 1.261 8.143 11.049 7.126 H95Q 73.397 88.044 95.662 101.071 92.756 100.136 91.377 98.312 H95Q STDEV 6.148 0.323 0.148 0.289 1.657 1.053 5.052 1.475 H95D 82.356 91.214 103.587 100.461 103.684 89.514 98.169 92.404 H95D STDEV 6.938 2.123 4.434 4.185 5.798 3.766 1.029 2.848 R68S 26.823 84.668 94.008 101.452 105.903 100.837 99.142 97.443 R68S STDEV 2.129 0.233 1.666 0.085 7.640 1.368 3.217 1.746 Y96C 82.638 96.520 99.562 102.615 105.187 101.092 100.220 99.819 Y96C STDEV 9.540 4.002 2.065 3.987 4.264 2.673 6.930 10.013 Y96D 81.671 95.056 108.171 97.824 105.964 97.437 102.545 106.432 Y96D STDEV 3.884 2.842 0.058 4.085 8.415 7.575 0.349 6.625 西方墨點法 To determine growth, readings three days after treatment (Day 3) were normalized relative to the starting plate (Day 0). Percent viability was then calculated by normalizing treated wells relative to DMSO-treated control samples. Use XLfit to create a fitting curve (four-parameter curve) of the Sigmoidal dose-response model (Figure 2). The horizontal red dashed line represents the GI50 value. The tabular data is shown below. [Table]: Effect of compound A (JDQ443) on the proliferation of KRAS G12C/H95 double mutant. («STDEV» represents the standard deviation of the % growth value) % growth of treated cells relative to day 3 treatment Concentration [μM] 1 0.333333 0.111111 0.037037 0.012346 0.004115 0.001372 0.000457 G12C 4.279 20.252 44.204 72.785 89.361 93.832 97.516 95.501 G12C STDEV 0.961 0.345 3.567 3.058 1.072 0.770 3.921 3.639 H95R 0.321 5.323 23.425 52.178 66.971 83.996 92.517 103.118 H95R STDEV 0.943 0.276 0.779 1.034 0.897 3.344 3.811 7.044 H95Q 6.635 36.908 71.333 93.319 95.722 103.375 93.606 100.054 H95Q STDEV 2.025 0.910 11.656 4.209 0.919 6.685 3.996 2.621 H95D 28.569 68.199 88.358 102.308 97.783 90.379 91.567 96.429 H95D STDEV 1.055 4.247 2.997 6.409 3.644 0.087 2.074 7.212 R68S 69.159 93.111 103.721 108.276 104.608 100.329 103.390 100.931 R68S STDEV 7.892 4.607 9.627 6.839 0.781 4.288 2.838 0.996 Y96C 80.229 91.765 102.592 104.222 96.167 105.515 102.424 109.116 Y96C STDEV 1.667 0.222 2.981 1.230 0.896 4.837 5.863 4.380 Y96D 90.864 97.260 105.866 103.946 106.613 98.191 102.224 100.903 Y96D STDEV 0.852 0.105 4.943 6.090 3.050 1.435 5.305 3.229 [Table]: Effect of sotoracib (AMG510) on the proliferation of KRAS G12C/H95 double mutant («STDEV» represents the standard deviation of % growth value) % growth of treated cells relative to day 3 treatment Concentration [μM] 1 0.333333 0.111111 0.037037 0.012346 0.004115 0.001372 0.000457 G12C 24.244 46.199 71.315 77.193 92.241 95.211 94.786 100.303 G12C STDEV 5.785 4.703 0.727 0.776 2.500 1.603 2.016 5.046 H95R 3.485 8.354 23.503 53.471 71.098 83.029 90.450 93.527 H95R STDEV 1.825 1.731 0.971 4.408 1.615 6.613 10.693 5.561 H95Q 8.566 34.323 68.123 89.685 93.396 98.559 103.616 98.858 H95Q STDEV 2.203 1.572 6.416 5.515 0.970 1.603 4.610 1.842 H95D -1.171 33.638 74.059 91.299 91.484 99.189 93.064 103.216 H95D STDEV 0.374 1.962 1.683 0.716 2.837 6.975 2.489 5.237 R68S 79.748 94.396 102.811 98.842 99.936 100.994 94.166 95.566 R68S STDEV 3.473 7.672 2.021 3.308 0.455 0.885 1.904 1.680 Y96C 111.964 105.031 103.341 97.712 104.892 109.010 106.167 103.355 Y96C STDEV 3.326 0.058 2.472 2.258 0.105 2.374 0.266 3.889 Y96D 106.099 101.660 101.868 97.311 102.190 106.308 101.134 105.511 Y96D STDEV 7.943 8.231 5.850 1.065 8.679 8.652 10.362 3.819 [Table]: Effect of adagrasib (MRTX-849) on the proliferation of KRAS G12C/H95 double mutant («STDEV» represents the standard deviation of % growth value) % growth of treated cells relative to day 3 treatment Concentration [μM] 1 0.333333 0.111111 0.037037 0.012346 0.004115 0.001372 0.000457 G12C -0.266 16.329 51.013 72.820 87.908 90.538 97.358 99.591 G12C STDEV 0.026 0.281 1.081 5.419 4.200 3.922 1.669 7.272 H95R 64.097 87.126 83.910 90.693 96.751 85.570 95.027 89.422 H95R STDEV 6.732 10.191 5.867 1.326 1.261 8.143 11.049 7.126 H95Q 73.397 88.044 95.662 101.071 92.756 100.136 91.377 98.312 H95Q STDEV 6.148 0.323 0.148 0.289 1.657 1.053 5.052 1.475 H95D 82.356 91.214 103.587 100.461 103.684 89.514 98.169 92.404 H95D STDEV 6.938 2.123 4.434 4.185 5.798 3.766 1.029 2.848 R68S 26.823 84.668 94.008 101.452 105.903 100.837 99.142 97.443 R68S STDEV 2.129 0.233 1.666 0.085 7.640 1.368 3.217 1.746 Y96C 82.638 96.520 99.562 102.615 105.187 101.092 100.220 99.819 Y96C STDEV 9.540 4.002 2.065 3.987 4.264 2.673 6.930 10.013 Y96D 81.671 95.056 108.171 97.824 105.964 97.437 102.545 106.432 Y96D STDEV 3.884 2.842 0.058 4.085 8.415 7.575 0.349 6.625 Western inkblot technique

在用指定濃度的不同化合物治療指定的時間之後,收集細胞,將其沈澱並在-80°C速凍。向每個樣本中添加60 μL的裂解緩衝液(50 mM Tris HCl、120 mM NaCl、25 mM NaF、40 mM β-甘油磷酸二鈉五水合物、1% NP40、1 μM微囊藻毒素、0.1 mM Na3VO3、0.1 mM PMSF、1 mM DTT和1 mM苯甲脒,每10 mL緩衝液補充有1片蛋白酶抑制劑混合片劑(羅氏公司))。然後將樣本渦旋,在冰上孵育10 min,再次渦旋並在4°C下以14000 rpm離心10 min。用BCA蛋白測定套組(皮爾斯(Pierce)公司,23225)確定蛋白質濃度。用裂解緩衝液歸一到相同的總體積後,添加NuPAGE™ LDS樣本緩衝液4 X(英傑公司,NP0007)和NuPAGE™樣本還原劑10 X(英傑公司,NP0009)。將樣本在70°C下加熱10 min,然後加載到26孔NuPAGE™ Novex™ 4%-12% Bis-Tris Midi蛋白質凝膠(英傑公司,WG1403A)上。在NuPAGE MES SDS運行緩衝液(英傑公司,NP0002)中,在200 V下跑膠45 min(PowerPac HC,伯樂公司(Biorad))。使用Trans-Blot® Turbo™系統(伯樂公司),持續7 min將蛋白質以每凝膠135 mA轉移到Trans-Blot® Turbo™ Midi硝酸纖維素轉移包膜(伯樂公司,1704159)上,然後用Ponceau紅(西格瑪公司(Sigma),P7170)對膜染色。用含有5%乳的TBST在RT下阻斷膜。將抗RAS(艾博抗公司(Abcam),108602)抗體和抗磷酸化ERK 1/2 p44/42 MAPK(細胞傳訊公司(Cell Signaling),4370)抗體在4°C下孵育過夜,將抗黏著斑蛋白(西格瑪公司,V9131)抗體在RT下孵育1 h。將膜用TBST洗滌3次持續5 min,並將抗兔(細胞傳訊公司,7074)和抗小鼠(細胞傳訊公司,7076)二抗在RT下孵育1 h。將所有抗體在TBST中稀釋到1/1000,除抗黏著斑蛋白(1/3000)。在Fusion FX(Vilber Lourmat)上使用FusionCapt Advance FX7軟體,用針對Ras和黏著斑蛋白的WesternBright ECL(Advansta公司,K-12045-D20)和SuperSignal West Femto最高靈敏度底物(賽默飛世爾公司(Thermo Fischer),34096)進行確定。(圖3)。 結果[表]:化合物A(JDQ443)抑制KRAS G12C/H95雙突變體的增殖。用JDQ443(化合物A)、AMG-510(索托拉西布)和MRTX-849(阿達格拉西布)(從1 mM開始進行8點稀釋)處理表現指定FLAG-KRAS G12C單突變體或雙突變體的Ba/F3細胞3天,並藉由Cell Titer Glo活力測定評估增殖抑制。顯示了4個獨立實驗的GI 50± 標準差(St DV)的平均值。 GI50 ± St DV [μM] JDQ443 AMG-510 MRTX-849 G12C 0.115 ± 0.060 0.389 ± 0.235 0.136 ± 0.071 G12C/H95R 0.024 ± 0.006 0.033 ± 0.008 > 1 G12C/H95Q 0.284 ± 0.041 0.233 ± 0.022 > 1 G12C/H95D 0.612 ± 0.151 0.262 ± 0.088 > 1 G12C/R68S > 1 > 1 0.707 ± 0.165 G12C/Y96C > 1 > 1 > 1 G12C/Y96D > 1 > 1 > 1 生物物理數據 材料與方法: 試劑的製備: RAS 蛋白構建體的選殖、表現和純化 After treatment with different compounds at the indicated concentrations for the indicated times, cells were harvested, pelleted and snap-frozen at -80°C. Add 60 μL of lysis buffer (50 mM Tris HCl, 120 mM NaCl, 25 mM NaF, 40 mM β-glycerophosphate disodium pentahydrate, 1% NP40, 1 μM microcystin, 0.1 mM Na3VO3, 0.1 mM PMSF, 1 mM DTT, and 1 mM benzamidine, supplemented with 1 protease inhibitor cocktail tablet (Roche) per 10 mL of buffer. The samples were then vortexed, incubated on ice for 10 min, vortexed again and centrifuged at 14000 rpm for 10 min at 4°C. Protein concentration was determined using a BCA protein assay kit (Pierce, 23225). After normalizing to the same total volume with lysis buffer, add NuPAGE™ LDS Sample Buffer 4X (Invitrogen, NP0007) and NuPAGE™ Sample Reducing Reagent 10X (Invitrogen, NP0009). Samples were heated at 70°C for 10 min and then loaded onto a 26-well NuPAGE™ Novex™ 4%-12% Bis-Tris Midi protein gel (Invitrogen, WG1403A). The gel was run at 200 V for 45 min (PowerPac HC, Biorad) in NuPAGE MES SDS running buffer (Invitrogen, NP0002). Proteins were transferred to Trans-Blot® Turbo™ Midi nitrocellulose transfer membrane (Bio-Rad, 1704159) at 135 mA per gel for 7 min using the Trans-Blot® Turbo™ System (Bio-Rad, 1704159), followed by Ponceau Red (Sigma, P7170) stained the membrane. Block membranes with TBST containing 5% milk at RT. Anti-RAS (Abcam, 108602) and anti-phospho-ERK 1/2 p44/42 MAPK (Cell Signaling, 4370) antibodies were incubated overnight at 4°C. Plakin (Sigma, V9131) antibody was incubated for 1 h at RT. The membrane was washed three times with TBST for 5 min, and anti-rabbit (Cell Communications, 7074) and anti-mouse (Cell Communications, 7076) secondary antibodies were incubated at RT for 1 h. Dilute all antibodies to 1/1000 in TBST, except anti-vinculin (1/3000). FusionCapt Advance FX7 software was used on Fusion FX (Vilber Lourmat), with WesternBright ECL (Advansta, K-12045-D20) for Ras and vinculin and SuperSignal West Femto Maximum Sensitivity Substrate (Thermo Fisher Scientific). Fischer, 34096) to determine. (Figure 3). Results [Table]: Compound A (JDQ443) inhibited the proliferation of KRAS G12C/H95 double mutant. Treatment with JDQ443 (Compound A), AMG-510 (sotorasiib), and MRTX-849 (adagrasiib) (8-point dilutions starting at 1 mM) indicated FLAG-KRAS G12C single or double mutants of Ba/F3 cells for 3 days, and proliferation inhibition was assessed by Cell Titer Glo viability assay. The mean of GI 50 ± standard deviation (St DV) from 4 independent experiments is shown. GI50 ± St DV [μM] JDQ443 AMG-510 MRTX-849 G12C 0.115 ± 0.060 0.389 ± 0.235 0.136 ± 0.071 G12C/H95R 0.024 ± 0.006 0.033 ± 0.008 >1 G12C/H95Q 0.284 ± 0.041 0.233 ± 0.022 >1 G12C/H95D 0.612 ± 0.151 0.262 ± 0.088 >1 G12C/R68S >1 >1 0.707 ± 0.165 G12C/Y96C >1 >1 >1 G12C/Y96D >1 >1 >1 Biophysical Data Materials and Methods: Preparation of Reagents: Selection, Performance, and Purification of RAS Protein Constructs

本研究中使用的 大腸桿菌表現構建體基於pET系統,並使用標準的分子選殖技術產生。在可裂解的N-末端his親和純化標籤後,編碼KRAS、NRAS和HRAS的cDNA包含aa 1-169,並藉由GeneArt(賽默飛世爾科技公司(Thermo Fisher Scientific))進行密碼子優化和合成。用QuikChange Lightning定點誘變套組(安捷倫公司)引入點突變。藉由桑格定序對所有最終的表現構建體進行序列驗證。 The E. coli expression constructs used in this study are based on the pET system and were generated using standard molecular selection techniques. cDNAs encoding KRAS, NRAS, and HRAS contained aa 1-169 after a cleavable N-terminal His affinity purification tag and were codon optimized and synthesized by GeneArt (Thermo Fisher Scientific) . Point mutations were introduced using the QuikChange Lightning site-directed mutagenesis kit (Agilent). All final expression constructs were sequence verified by Sanger sequencing.

將兩升培養基接種上用表現質體新鮮轉化的大腸桿菌BL21(DE3)的預培養物,並且用1 mM異丙基-β-D-硫代哌喃半乳糖苷(西格瑪公司)在18°C下誘導蛋白質表現16小時。將帶有avi標籤的蛋白質轉化到具有表現生物素連接酶BirA的相容質體的 大腸桿菌中,並且在培養基中補充135 µM d-生物素(西格瑪公司)。 Two liters of culture medium were inoculated with a preculture of E. coli BL21(DE3) freshly transformed with expression plasmids and incubated with 1 mM isopropyl-β-D-thiogalactopyranoside (Sigma) at 18°C. Protein expression was induced at C for 16 hours. Avi-tagged proteins were transformed into E. coli with compatible plasmids expressing the biotin ligase BirA, and the culture medium was supplemented with 135 µM d-biotin (Sigma).

將細胞沈澱重懸於補充有Turbonuclease(默克公司(Merck))和cOmplete蛋白酶抑制劑片劑(羅氏公司)的緩衝液A(20 mM Tris、500 mM NaCl、5 mM咪唑、2 mM TCEP、10%甘油,pH 8.0)中。將細胞藉由勻漿器(Avestin公司)在800-1000巴下裂解三次,並藉由在40000 g下離心40 min來澄清裂解物。Resuspend the cell pellet in buffer A (20 mM Tris, 500 mM NaCl, 5 mM imidazole, 2 mM TCEP, 10 % glycerol, pH 8.0). Cells were lysed three times by a homogenizer (Avestin) at 800-1000 bar, and the lysates were clarified by centrifugation at 40000 g for 40 min.

將裂解物加載到安裝在ÄKTA Pure 25層析系統(思拓凡公司(Cytiva))上的HisTrap HP 5 ml柱(思拓凡公司)上。將污染的蛋白質用緩衝液A洗去,並將結合的蛋白質用線性梯度洗脫到緩衝液B(補充有200 mM咪唑的緩衝液A)中。在透析O/N期間,將無標籤和avi-標籤蛋白質上的N-末端His親和純化標籤分別藉由TEV或HRV3C蛋白酶裂解。將蛋白溶液重新加載到HisTrap柱上,並收集含有靶蛋白的流。The lysate was loaded onto a HisTrap HP 5 ml column (Cytiva) installed on an ÄKTA Pure 25 chromatography system (Cytiva). Contaminating proteins were washed away with buffer A, and bound proteins were eluted with a linear gradient into buffer B (buffer A supplemented with 200 mM imidazole). During dialysis O/N, the N-terminal His affinity purification tags on untagged and avi-tagged proteins were cleaved by TEV or HRV3C protease, respectively. Reload the protein solution onto the HisTrap column and collect the stream containing the target protein.

添加5'-二磷酸鳥苷鈉鹽(GDP,西格瑪公司)或GppNHp-四鋰鹽(Jena生物科學公司)至超過蛋白質24-32倍的莫耳量。添加EDTA(pH調節至8)至最終濃度為25 mM。室溫下1小時後,在PD-10脫鹽柱(思拓凡公司)上,將緩衝液與40 mM Tris、200 mM (NH4)2SO4、0.1 mM ZnCl2,pH 8.0進行交換。將GDP(用於KRAS G12C抗性突變體H95Q/D/R、Y96D/C和R68S)或GppNHp添加至洗脫蛋白質中至超過蛋白質24-32倍的莫耳量。將40 U蝦鹼性磷酸酶(新英格蘭生物實驗室(New England Biolabs))添加到僅含有樣本的GppNHp中。然後將樣本在5°C下孵育1小時。最後,添加MgCl2至約30 mM的濃度。Guanosine 5'-diphosphate sodium salt (GDP, Sigma) or GppNHp-tetralithium salt (Jena Biosciences) was added to a molar excess of 24-32 times the protein. Add EDTA (pH adjusted to 8) to a final concentration of 25 mM. After 1 hour at room temperature, the buffer was exchanged with 40 mM Tris, 200 mM (NH4)2SO4, 0.1 mM ZnCl2, pH 8.0 on a PD-10 desalting column (Stofan Co., Ltd.). GDP (for KRAS G12C resistance mutants H95Q/D/R, Y96D/C and R68S) or GppNHp was added to the eluted protein to a molar amount exceeding the protein by 24-32-fold. 40 U of shrimp alkaline phosphatase (New England Biolabs) was added to GppNHp containing sample only. Samples were then incubated at 5°C for 1 hour. Finally, add MgCl2 to a concentration of approximately 30 mM.

然後將蛋白質經HiLoad 16/600 Superdex 200 pg柱(思拓凡公司)進一步純化,該柱用20 mM HEPES、150 mM NaCl、5 mM MgCl2、2 mM TCEP預平衡,pH 7.5。The protein was then further purified on a HiLoad 16/600 Superdex 200 pg column (Stofan) pre-equilibrated with 20 mM HEPES, 150 mM NaCl, 5 mM MgCl2, 2 mM TCEP, pH 7.5.

藉由RP-HPLC確定蛋白質的純度和濃度,藉由LC-MS確認其身份。藉由離子對層析法確定目前的核苷酸[Eberth等人, 2009]。 藉由 RapidFire MS 確定共價速率常數 測定和曲線擬合 The purity and concentration of the protein were determined by RP-HPLC and its identity was confirmed by LC-MS. The present nucleotide was determined by ion pair chromatography [Eberth et al., 2009]. Covalent rate constant determination and curve fitting by RapidFire MS

在384孔板中製備測試化合物的連續稀釋液(50 µM,½稀釋液),並在室溫下與1 µM KRAS G12C(有/無另外的突變體)在20 mM Tris(pH 7.5)、150 mM NaCl、100 µM MgCl 2、1% DMSO中孵育。在不同的時間點藉由添加1%的甲酸停止反應。使用聯接到Agilent RapidFire自動進樣器RF360設備的Agilent 6530四極桿飛行時間(QToF)MS系統進行MS測量,得出每個孔的%修飾值。同時,藉由比濁法評估化合物溶解度,導致可測濁度的化合物濃度被排除在曲線擬合之外。 Serial dilutions of test compounds (50 µM, ½ dilution) were prepared in 384-well plates and incubated with 1 µM KRAS G12C (with/without additional mutants) in 20 mM Tris (pH 7.5), 150 Incubate in mM NaCl, 100 µM MgCl 2 , and 1% DMSO. The reaction was stopped at various time points by adding 1% formic acid. MS measurements were performed using an Agilent 6530 quadrupole time-of-flight (QToF) MS system coupled to an Agilent RapidFire autosampler RF360 device to derive the % modification value for each well. At the same time, compound solubility is assessed by turbidimetry, and compound concentrations that result in measurable turbidity are excluded from curve fitting.

繪製%修飾相對於時間的關係圖,以提取不同化合物濃度的k obs值。在第二步中,將獲得的k obs值相對於化合物濃度作圖。從所得曲線的初始線性部分得出速率常數(即k inact/K I)。 MS 測量 Plot % modification versus time to extract k obs values for different compound concentrations. In a second step, the obtained k obs values are plotted against compound concentration. The rate constant (i.e. k inact /K I ) is derived from the initial linear part of the resulting curve. MS measurement

使用RapidFire自動進樣器RF 360進行注射。將溶劑藉由Agilent 1200泵遞送。使用C18固相萃取(SPE)筒用於所有的實驗。Injections were performed using the RapidFire autosampler RF 360. Solvent was delivered by Agilent 1200 pump. C18 solid phase extraction (SPE) cartridges were used for all experiments.

從384孔板的每個孔中吸出30 μL的體積。在1.5 mL/min(H2O,0.1%甲酸)的流速下,樣本加載/清洗時間為3000 ms;洗脫時間為3000 ms(乙腈,0.1%甲酸);在1.25 mL/min(H2O,0.1%甲酸)的流速下,再平衡時間為500 ms。Aspirate a volume of 30 µL from each well of the 384-well plate. At a flow rate of 1.5 mL/min (H2O, 0.1% formic acid), sample load/wash time is 3000 ms; elution time is 3000 ms (acetonitrile, 0.1% formic acid); at 1.25 mL/min (H2O, 0.1% formic acid) ), the rebalancing time is 500 ms.

在聯接到雙電灑(AJS)離子源(處於正模式)的Agilent 6530四極桿飛行時間(QToF)MS系統上獲得質譜(MS)數據。儀器參數如下:氣體溫度350°C,乾燥氣體10 L/min,霧化器45 psi,保護氣體350°C,保護氣體流速11 L/min,毛細管4000 V,噴嘴1000 V,碎裂電壓250 V,撇渣器65 V,八極RF 750 V。以6個光譜/s的速度獲取數據。在300-3200 m/z範圍內進行質量校準。Mass spectrometry (MS) data were acquired on an Agilent 6530 quadrupole time-of-flight (QToF) MS system connected to a double electrospray (AJS) ion source (in positive mode). The instrument parameters are as follows: gas temperature 350°C, dry gas 10 L/min, atomizer 45 psi, shielding gas 350°C, shielding gas flow rate 11 L/min, capillary 4000 V, nozzle 1000 V, fragmentation voltage 250 V , skimmer 65 V, eight-pole RF 750 V. Acquire data at 6 spectra/s. Mass calibration was performed in the range 300-3200 m/z.

使用Agilent MassHunter定性分析、Agilent Rapid-Fire控制軟體和Agilent DA Reprocessor Offline Utilities的組合進行所有的數據處理。最大熵演算法產生每個注射的單獨檔中的零電荷譜。批量處理生成單個檔,將文本格式的所有質譜合併為x,y座標。將該檔用於計算每個孔中蛋白質修飾的百分比。 結果 All data processing was performed using a combination of Agilent MassHunter Qualitative Analysis, Agilent Rapid-Fire control software, and Agilent DA Reprocessor Offline Utilities. The maximum entropy algorithm produces a zero-charge spectrum in a separate bin for each injection. Batch processing generates a single file that combines all mass spectra in text format into x,y coordinates. Use this profile to calculate the percentage of protein modification in each well. result

使用動力學MS實驗對指定的構建體(所有加載GDP的)的修飾的二階速率常數進行量化,在不同的時間點測量化合物濃度範圍內的%修飾。K inact/K I係由k obs相對於化合物濃度曲線的初始斜率推算出來的。將相對於KRAS G12D:GDP的活性設定為1,並給出了抗性突變體的相對活性。下表給出了KRAS G12C的n = 4次實驗、G12C_Y96D的n = 3次、和其他突變體的n=2次的平均值。 [表]:抗性突變體相對於KRAS G12C的二階速率常數(K inact/K I)的倍數變化 KRAS突變體(GDP) G12C G12C_H95R G12C_H95Q G12C_H95D G12C_R68S G12C_Y96C G12C_Y96D 化合物A(JDQ443) 1 1.04 0.40 0.20 0.14 0.03 0.004 索托拉西布 1 2.39 1.67 1.45 0.31 < 0.002 < 0.001 阿達格拉西布 1 < 0.05 < 0.05 < 0.05 0.38 < 0.002 < 0.001 Second-order rate constants for modifications for specified constructs (all GDP-loaded) were quantified using kinetic MS experiments, measuring % modification over a range of compound concentrations at different time points. K inact /K I is derived from the initial slope of the k obs versus compound concentration curve. The activity relative to KRAS G12D:GDP was set to 1 and the relative activity of the resistant mutants is given. The table below gives the average of n = 4 experiments for KRAS G12C, n = 3 for G12C_Y96D, and n = 2 for other mutants. [Table]: Fold change of the second-order rate constant (K inact /K I ) of the resistant mutant relative to KRAS G12C KRAS mutant (GDP) G12C G12C_H95R G12C_H95Q G12C_H95D G12C_R68S G12C_Y96C G12C_Y96D Compound A (JDQ443) 1 1.04 0.40 0.20 0.14 0.03 0.004 sothorasib 1 2.39 1.67 1.45 0.31 <0.002 < 0.001 Adaghrasib 1 <0.05 <0.05 <0.05 0.38 <0.002 <0.001

使用動力學MS實驗對指定的構建體(所有加載GDP的)的修飾的二階速率常數進行量化,在不同的時間點測量化合物濃度範圍內的%修飾。K inact/KI係由K obs相對於化合物濃度曲線的初始斜率推算出來的。給出了KRAS G12C的n = 4次實驗、G12C_Y96D的n = 3次、和其他突變體的n = 2次的平均值。 [表]:化合物A(JDQ443)、索托拉西布和阿達格拉西布相對於抗性突變體的二階速率常數(K inact/KI [mM-1*s-1]) KRAS突變體(GDP) G12C G12C_H95R G12C_H95Q G12C_H95D G12C_R68S G12C_Y96C G12C_Y96D 化合物A(JDQ443) 24.3 25 9.5 4.85 3.45 0.65 0.09 索托拉西布 9 21.5 15 13.05 2.75 < 0.02 < 0.01 阿達格拉西布 26 < 1 < 1 < 1 9.9 < 0.04 < 0.01 結論 Second-order rate constants for modifications for specified constructs (all GDP-loaded) were quantified using kinetic MS experiments, measuring % modification over a range of compound concentrations at different time points. K inact /KI is derived from the initial slope of the K obs versus compound concentration curve. Averages are given for n = 4 experiments for KRAS G12C, n = 3 for G12C_Y96D, and n = 2 for other mutants. [Table]: Second-order rate constants (K inact /KI [mM-1*s-1]) of compound A (JDQ443), sotorasib and adagrasiib relative to the resistant mutant KRAS mutant (GDP) G12C G12C_H95R G12C_H95Q G12C_H95D G12C_R68S G12C_Y96C G12C_Y96D Compound A (JDQ443) 24.3 25 9.5 4.85 3.45 0.65 0.09 sothorasib 9 21.5 15 13.05 2.75 <0.02 <0.01 Adaghrasib 26 < 1 < 1 < 1 9.9 <0.04 <0.01 Conclusion

第一代KRAS G12C抑制劑已在臨床試驗中顯示出功效。然而,破壞抑制劑結合和下游通路的重新激活的突變的出現,限制了反應持續時間。將報告在臨床試驗中賦予對阿達格拉西布的抗性的第二位點突變體(參考:N Engl J Med. [新英格蘭醫學雜誌] 2021年6月24日;384(25):2382-2393. doi: 10.1056/NEJMoa2105281., Cancer Discov [癌症發現] 2021年8月;11(8):1913-1922. doi: 10.1158/2159-8290.CD-21-0365. 2021年4月6日電子出版. PMID: 33824136。)在Ba/F3細胞中表現,並且分析它們與KRAS G12C(GI 50= 0.115 ± 0.060 mM)相比對化合物A(JDQ443)的敏感性。如結合模式所預期的,化合物A抑制了KRAS G12C H95雙突變體的增殖和傳訊。化合物A強效抑制G12C/H95R和G12C/H95Q的增殖(分別為GI 50= 0.024 ± 0.006 mM,GI 50= 0.284 ± 0.041 mM),而G12C/R68S、G12C/Y96C和G12C/Y96D的表現賦予了對化合物A的抗性(所有的GI 50> 1 mM)。 First-generation KRAS G12C inhibitors have shown efficacy in clinical trials. However, the emergence of mutations that disrupt inhibitor binding and reactivation of downstream pathways limits response duration. Second site mutants conferring resistance to adagrasib in clinical trials will be reported (Reference: N Engl J Med. [New England Journal of Medicine] 2021 Jun 24;384(25):2382- 2393. doi: 10.1056/NEJMoa2105281., Cancer Discov 2021 Aug;11(8):1913-1922. doi: 10.1158/2159-8290.CD-21-0365. April 6, 2021 Electronic Publication. PMID: 33824136.) were expressed in Ba/F3 cells and analyzed for their sensitivity to Compound A (JDQ443) compared to KRAS G12C (GI 50 = 0.115 ± 0.060 mM). As expected from the binding pattern, Compound A inhibited proliferation and signaling of the KRAS G12C H95 double mutant. Compound A potently inhibited the proliferation of G12C/H95R and G12C/H95Q (GI 50 = 0.024 ± 0.006 mM, GI 50 = 0.284 ± 0.041 mM, respectively), while the performance of G12C/R68S, G12C/Y96C and G12C/Y96D conferred Resistance to Compound A (all GI 50 > 1 mM).

令人驚訝的是,儘管化合物A不直接與組胺酸95相互作用,但與H95R或Q相比,G12C/H95D的表現導致對化合物A的敏感性降低(GI 50= 0.612 ± 0.151 mM)。化合物A處理後pERK的西方墨點法分析以及生物物理環境中化合物A朝著該等臨床觀察到的SWII袋突變的速率常數分析( 生物物理數據,上文 )都與細胞生長抑制數據一致(參見表)。 Surprisingly, although compound A does not directly interact with histidine 95, the behavior of G12C/H95D resulted in reduced sensitivity to compound A (GI = 0.612 ± 0.151 mM) compared to H95R or Q. Western blot analysis of pERK after Compound A treatment and rate constant analysis of Compound A in a biophysical environment toward the SWII pocket mutations observed clinically ( Biophysical Data, above ) are consistent with the cell growth inhibition data (see surface).

H95D與H95R或Q之間的差異可能是由於天冬胺酸的負電荷,其能進一步增加KRAS G12C表面的負靜電電位。這可能影響配體識別並且因此降低化合物A對該突變體的特異反應性和細胞活性。另一個可能的解釋係,H95D突變可能影響KRAS的動力學,從而使得允許化合物A結合的構形變得更難獲得。The difference between H95D and H95R or Q may be due to the negative charge of aspartic acid, which can further increase the negative electrostatic potential of the KRAS G12C surface. This may affect ligand recognition and thus reduce the specific reactivity and cellular activity of Compound A to this mutant. Another possible explanation is that the H95D mutation may affect the kinetics of KRAS, making it more difficult to obtain a conformation that allows compound A to bind.

總之,數據顯示,在G12C/Q95R或G12C/H95Q情況下,化合物A應克服阿達格拉西布誘導的抗性。化合物A治療(特別是在本發明之方法中)在其已顯示出活性的G12C/H95Q情況下可能仍然有用。 實例7:化合物A的臨床功效 Taken together, the data show that compound A should overcome adagrasib-induced resistance in the context of G12C/Q95R or G12C/H95Q. Compound A treatment, particularly in the methods of the invention, may still be useful in the context of G12C/H95Q where it has shown activity. Example 7: Clinical Efficacy of Compound A

在患有具有KRAS G12C突變的晚期實性瘤(包括KRAS G12C突變型NSCLC和KRAS G12C突變型結直腸癌(KontRASt-01(NCT04699188)))的患者中,進行了單獨的化合物A(JDQ443)及其與特定藥劑組合的Ib/II期開放標籤、多中心、劑量遞增研究。進行本研究,從而評估JDQ443作為單一藥劑以及JDQ443與其他藥劑組合的抗腫瘤功效、安全性和耐受性。Compound A (JDQ443) alone and Phase Ib/II open-label, multicenter, dose-escalation study of its combination with specific agents. This study was conducted to evaluate the anti-tumor efficacy, safety and tolerability of JDQ443 as a single agent and in combination with other agents.

待治療的患者包括:患有晚期KRAS G12C突變型實性瘤的患者,其已經接受過標準護理療法,或對於批准的療法不耐受或不具有資格;或者,東部腫瘤協作組體能狀態(Eastern Cooperative Oncology Group Performance Status,ECOG PS 0-1);或者之前沒有使用過KRAS G12C抑制劑進行治療。JDQ443單一療法組的主要排除標準係:活動性腦轉移和/或之前的KRASG12C抑制劑治療。 Patients to be treated include patients with advanced KRAS G12C-mutant solid tumors who have received standard of care therapies, are intolerant to, or are ineligible for approved therapies; or who have Eastern Cooperative Oncology Group performance status (Eastern Cooperative Oncology Group performance status). Cooperative Oncology Group Performance Status, ECOG PS 0-1); or have not been previously treated with a KRAS G12C inhibitor. The main exclusion criteria for the JDQ443 monotherapy arm were active brain metastases and/or prior KRASG12C inhibitor therapy.

患有NSCLC的患者包括:先前使用基於鉑的化學療法方案和免疫檢查點抑制劑組合或順序治療的患者,除非沒有資格接受此類療法。Patients with NSCLC include those previously treated with platinum-based chemotherapy regimens and immune checkpoint inhibitors in combination or sequentially, unless otherwise ineligible for such therapies.

患有CRC的患者包括先前接受標準護理療法的患者,該療法包括基於氟嘧啶、奧沙利鉑和伊立替康的化學療法,除非沒有資格接受此類療法。Patients with CRC included those who had previously received standard of care therapy, which included fluoropyrimidine, oxaliplatin, and irinotecan-based chemotherapy, unless they were ineligible for such therapy.

來自單一療法劑量遞增組研究的初步數據如下。Preliminary data from the monotherapy dose-escalation arm study are as follows.

截止日期2022年1月5日,使用200 mg QD、400 mg QD、200 mg BID或300 mg BID的化合物A治療了39名患者。將化合物A與食物一起投與。As of January 5, 2022, 39 patients were treated with Compound A at 200 mg QD, 400 mg QD, 200 mg BID, or 300 mg BID. Compound A is administered with food.

患者具有的中位數係3個先前線的抗腫瘤療法。單一療法的推薦劑量係每日兩次(BID)口服200 mg化合物A的劑量。來自彙集的Ib期JDQ443單一藥劑群組(n = 39)的功效數據(截止2022年1月05日)顯示: •   在NSCLC中,在200 mg BID時,57%(4/7)確認總體反應率(ORR) •   在NSCLC中,在各劑量下,45%(9/20)確認和未確認ORR •   在NSCLC中,在各劑量下,35%(7/20)確認ORR •   PD/PK建模預測在推薦劑量200 mg BID時,持續的高水平目標佔有率 Patients had a median of 3 prior lines of antineoplastic therapy. The recommended dose for monotherapy is 200 mg Compound A orally twice daily (BID). Efficacy data from the pooled Phase Ib JDQ443 single-agent cohort (n = 39) (as of January 05, 2022) show: • In NSCLC, 57% (4/7) confirmed overall response rate (ORR) at 200 mg BID • In NSCLC, 45% (9/20) confirmed and unconfirmed ORR across doses • In NSCLC, 35% (7/20) confirmed ORR across doses • PD/PK modeling predicts sustained high levels of target occupancy at the recommended dose of 200 mg BID

化合物A治療通常耐受良好。大多數的治療相關不良事件(TRAE)為1-2級(Gr)。沒有4-5級TRAE。在4名單獨患者中發生過四次3級TRAE。最常見的TRAE係疲勞、噁心、水腫、腹瀉和嘔吐。各自在300 mg BID治療的單獨患者中,存在一例DLT(3級疲勞)和一例治療相關的嚴重AE(3級光敏反應)。 Compound A treatment was generally well tolerated. Most treatment-related adverse events (TRAEs) were grade 1-2 (Gr). There are no Level 4-5 TRAEs. Four Grade 3 TRAEs occurred in 4 separate patients. The most common TRAEs are fatigue, nausea, edema, diarrhea and vomiting. There was one DLT (Grade 3 fatigue) and one treatment-related serious AE (Grade 3 photosensitivity reaction) in separate patients each treated with 300 mg BID.

在推薦的200 mg BID的劑量下,存在吸收延長,其中在與食物一起投與後達到最大血漿濃度(Tmax)的中位時間為3-4小時。在穩定狀態下未觀察到顯著累積,並且也不存在自誘導的證據。半衰期係約7小時,並且穩態曲線下面積(AUCss)比敏感度更低的KRAS G12C異種移植模型的最大功效所需暴露量高出大於三倍。圖9示出了穩態下的PK曲線。 T max hr ),中位數(最小值 - 最大值) C max,ss ng/mL ),幾何平均值( CV% AUC 0-12,ss ng*hr/mL ),幾何平均值( CV% 3.2(2.0-7.8) 5950(35.0) 49,400(39.0) At the recommended dose of 200 mg BID, there is prolonged absorption, with a median time to reach maximum plasma concentration (Tmax) of 3-4 hours after administration with food. No significant accumulation was observed at steady state, and there was no evidence of autoinduction. The half-life was approximately 7 hours, and the area under the steady-state curve (AUCss) was more than three times greater than the exposure required for maximal efficacy in the less sensitive KRAS G12C xenograft model. Figure 9 shows the PK curve at steady state. T max ( hr ), median (minimum - maximum) C max ,ss ( ng/mL ), geometric mean ( CV% ) AUC 0-12 , ss ( ng*hr/mL ), geometric mean ( CV% ) 3.2 (2.0-7.8) 5950 (35.0) 49,400 (39.0)

預測的目標佔有率曲線如圖4所示。對患者PK和臨床前目標佔有率模型進行整合,從而預測在 > 82%患者中的患者目標佔有率 > 90%。該等模型假設小鼠和人類中的JDQ443結合和靶點(KRAS)轉化率相同(KRAS的半衰期約為25 hr),並且僅游離藥物可以結合靶點。The predicted target occupancy curve is shown in Figure 4. Patient PK and preclinical target occupancy models were integrated to predict patient target occupancy >90% in >82% of patients. These models assume that JDQ443 binding and target (KRAS) turnover are identical in mice and humans (KRAS has a half-life of approximately 25 hr) and that only free drug can bind to the target.

圖5上半部分和下表中顯示了各劑量水平和適應證時的最佳總體反應。 研究者根據實性瘤的反應評價標準1.1版(RECIST v1.1)評估的最佳總體反應 所有患者,N = 39, n(%) 部分反應(PR)(確認的) 8(20.5) 穩定疾病(SD) 24(61.5) 進展性疾病(PD) 5(12.8) 不可評估(NE) 2(5.1) 總體反應率(ORR)(確認和未確認的) 11(28.2) ORR(確認的) 8(20.5) The best overall response across dose levels and indications is shown in the upper part of Figure 5 and in the table below. Best overall response as assessed by investigator based on Response Evaluation Criteria in Solid Tumors version 1.1 (RECIST v1.1) All patients, N = 39, n (%) Partial Response (PR) (Confirmed) 8(20.5) stable disease (SD) 24 (61.5) Progressive disease (PD) 5(12.8) Not Evaluable (NE) 2 (5.1) Overall response rate (ORR) (confirmed and unconfirmed) 11 (28.2) ORR (confirmed) 8(20.5)

圖5下半部分和下表顯示了所有患有NSCLC的患者在各劑量水平下的最佳總體反應。所有具有部分反應或未確認的部分反應的患者均在數據截止時繼續進行治療。 研究者根據RECIST v1.1評估的 最佳總體反應 所有患有NSCLC的患者,n = 20, n(%) PR(確認的) 7(35.0) SD 11(55.0) PD 0 NE 2(10.0) ORR(確認 和未確認的) 9(45.0) ORR(確認的) 7(35.0) The bottom half of Figure 5 and the table below show the best overall response at each dose level for all patients with NSCLC. All patients with a partial response or an unconfirmed partial response continued treatment at the time of data cutoff. Investigator-assessed best overall response according to RECIST v1.1 All patients with NSCLC, n = 20, n (%) PR (confirmed) 7(35.0) SD 11 (55.0) PD 0 NE 2 (10.0) ORR (confirmed and unconfirmed) 9 (45.0) ORR (confirmed) 7(35.0)

NE,不可評估;NSCLC,非小細胞肺癌;ORR,總體反應率;PD,進展性疾病;PR,部分反應;QD,每日一次。NE, not evaluable; NSCLC, non-small cell lung cancer; ORR, overall response rate; PD, progressive disease; PR, partial response; QD, once daily.

反應係由研究者根據RECIST v1.1評估的。兩名(10.0%)患者有uPR,這有助於ORR(確認和未確認的)。Response was assessed by investigators according to RECIST v1.1. Two (10.0%) patients had uPR, which contributed to ORR (confirmed and unconfirmed).

uPR = 未確認的PR待確認,正在進行治療,無PD。在數據截止後,兩名具有uPR的患者中有一名具有確認的PR。uPR = unconfirmed PR pending confirmation, on treatment, no PD. After data cutoff, one of the two patients with uPR had a confirmed PR.

圖6顯示,PET掃描顯示,向患有NSCLC的患者投與200 mg BID的化合物A治療四個週期後,腫瘤腫塊的2-[氟-18]-氟-2-去氧-d-葡萄糖(18-F-FDG)親合力大幅下降。患者已經接受培美曲塞/派姆單抗、多西他賽、替加氟/吉美嘧啶/奧替拉西和卡鉑/紫杉醇/阿特珠單抗。第2週期後掃描顯示,與基線相比,靶病灶的最長直徑的總和減少了30.4%。PR在後續掃描中得到確認Figure 6 shows PET scans showing 2-[fluoro-18]-fluoro-2-deoxy-d-glucose ( 18-F-FDG) affinity is significantly reduced. The patient had received pemetrexed/pembrolizumab, docetaxel, tegafur/gemelapyrimidine/octilizumab, and carboplatin/paclitaxel/atezolizumab. Post-cycle 2 scans showed a 30.4% reduction in the sum of the longest diameters of target lesions compared with baseline. PR confirmed on follow-up scan

患有轉移性KRAS G12C突變型NSCLC的57歲男性。使用下一代定序(NGS)進行的局部分子測試鑒定出TP53中沒有突變。STK11、KEAP1和NRF2的突變狀態未知。患者已經接受先前的卡鉑/培美曲塞/派姆單抗、多西他賽、替加氟-吉美嘧啶-奧替拉西和卡鉑/紫杉醇/阿特珠單抗。他被納入研究的JDQ443單一療法劑量遞增部分,劑量為JDQ443 200 mg BID,以21天為週期連續給予。2個治療週期後的疾病評估顯示了RECIST 1.1部分反應,其中與基線相比,靶病灶的最長直徑的總和改變了-30.4%。部分反應在隨後的掃描中得到確認(圖6),並且患者繼續治療。基線處和4個治療週期後的正電子發射斷層掃描成像也顯示腫瘤腫塊的2-[氟-18]-氟-2-去氧-d-葡萄糖親合力大幅下降。 治療 T max(hr) C max(ng/mL) AUC 0-24h(h xng/mL 化合物A 200 mg BID連續 7.8 5920 75930 實例8:JDQ443單一藥劑作為一線治療對患有 < 1%的PD-L1表現或 ≥ 1%的PD-L1表現且具有STK11共突變的局部晚期或轉移性KRAS G12C突變型非小細胞肺癌的患者的功效和安全性研究 A 57-year-old man with metastatic KRAS G12C mutant NSCLC. Local molecular testing using next-generation sequencing (NGS) identified no mutations in TP53. The mutational status of STK11, KEAP1 and NRF2 is unknown. The patient had received prior carboplatin/pemetrexed/pembrolizumab, docetaxel, tegafur-gemetrexed-octilizumab, and carboplatin/paclitaxel/atezolizumab. He was enrolled in the JDQ443 monotherapy dose-escalation portion of the study at a dose of JDQ443 200 mg BID given continuously in 21-day cycles. Disease assessment after 2 treatment cycles demonstrated a RECIST 1.1 partial response, in which the sum of the longest diameters of target lesions changed by -30.4% compared to baseline. The partial response was confirmed on subsequent scans (Figure 6), and the patient continued treatment. Positron emission tomography imaging at baseline and after 4 treatment cycles also showed a substantial decrease in 2-[fluoro-18]-fluoro-2-deoxy-d-glucose avidity of the tumor mass. treatment T max (hr) C max (ng/mL) AUC 0-24h (h x ng/mL ) Compound A 200 mg BID continuous 7.8 5920 75930 Example 8: JDQ443 single agent as first-line treatment in patients with locally advanced or metastatic KRAS G12C mutant non-small cell lung cancer with <1% PD-L1 manifestation or ≥1% PD-L1 manifestation and STK11 co-mutations Efficacy and safety studies

證明化合物A(JDQ443)的治療用途的臨床研究可以如下進行。Clinical studies demonstrating the therapeutic use of Compound A (JDQ443) can be conducted as follows.

本研究旨在評價JDQ443單一藥劑作為一線治療對患有局部晚期或轉移性非小細胞肺癌(NSCLC)的參與者的抗腫瘤活性和安全性,該等參與者的腫瘤具有KRAS G12C突變並且具有 < 1%的PD-L1表現而不管STK11突變狀態如何(群組A)或具有 ≥ 1%的PD-L1表現和STK11共突變(群組B)。This study was designed to evaluate the antitumor activity and safety of JDQ443 as a single agent as first-line therapy in participants with locally advanced or metastatic non-small cell lung cancer (NSCLC) whose tumors harbor a KRAS G12C mutation and < 1% PD-L1 manifestation regardless of STK11 mutation status (cohort A) or ≥ 1% PD-L1 manifestation and STK11 co-mutation (cohort B).

確定例如在腫瘤組織或血液樣本中的PD-L1表現狀態、KRAS G12C突變和STK11突變狀態的測試在本領域係已知的。 目標和終點: 目標 終點 主要    評估JDQ443單一藥劑作為一線治療對患有局部晚期或轉移性NSCLC的參與者的抗腫瘤活性,該等參與者的腫瘤具有KRAS G12C突變 < 1%的PD-L1表現而不管STK11突變狀態如何(群組A)。 總體反應率(ORR),定義為盲法獨立審查委員會(BIRC)根據實性瘤反應評價標準1.1版(RECIST 1.1)確認的完全反應(CR)或部分反應(PR)為最佳總體反應(BOR)的參與者比例。 關鍵次要    評估JDQ443單一藥劑作為一線治療對患有局部晚期或轉移性NSCLC的參與者的抗腫瘤活性,該等參與者的腫瘤具有KRAS G12C突變、≥ 1%的PD-L1表現和STK11共突變(群組B)。 BIRC根據RECIST 1.1確定的ORR。 評估兩個群組的反應持續時間(DOR)。 DOR,定義為從BIRC根據RECIST 1.1確定的首次出現PR或CR到疾病進展或因任何原因死亡的時間。 次要    評估兩個群組的無進展生存期(PFS)。 PFS,定義為從入組之日到BIRC根據RECIST 1.1確定的首次記錄疾病進展之日或因任何原因死亡之日的時間。 評估兩個群組的總生存期(OS)。 OS,定義為從入組之日到因任何原因死亡的時間。 評估JDQ443在兩個群組中的抗腫瘤活性。 疾病控制率(DCR),定義為BIRC根據RECIST 1.1確認的CR、PR和疾病穩定(SD)的BOR的參與者比例。到反應的時間(TTR),定義為從入組之日到BIRC根據RECIST 1.1首次記錄CR或PR反應的時間。 根據局部放射學評估,評估JDQ443在兩個群組中的抗腫瘤活性。 藉由局部放射學評估根據RECIST 1.1確定的ORR、DOR、DCR、TTR和PFS。 評估JDQ443單一藥劑作為一線治療對其腫瘤具有STK11突變而不管PD-L1表現狀態如何的參與者的抗腫瘤活性(來自兩個群組的匯總)。 由BIRC和藉由局部放射學評估根據RECIST 1.1確定的ORR、DOR、DCR、TTR和PFS。OS。 表徵JDQ443的安全性特徵。 不良事件的類型、頻率和嚴重程度,實驗室值的變化,生命徵象,心電圖(ECG)。 表徵JDQ443的藥物動力學。 血漿中JDQ443的濃度。 評估JDQ443對患者報告的肺癌症狀、健康相關生活品質和健康狀況的影響。 到來自NSCLC SAQ的疼痛、咳嗽和呼吸困難最終惡化的時間,以及來自EORTC QLQ-C30的總體健康狀況和QoL項目(感興趣的主要PRO變量) NSCLC-SAQ、患者症狀嚴重程度總體印象(PGI-S)、EORTC-QLQ C30和EQ-5D-5L的身體和角色功能域相較於基線的變化 Tests to determine PD-L1 expression status, KRAS G12C mutation and STK11 mutation status, for example in tumor tissue or blood samples, are known in the art. Goals and end points: Target end point main To evaluate the antitumor activity of JDQ443 single agent as first-line therapy in participants with locally advanced or metastatic NSCLC whose tumors harbor KRAS G12C mutations <1% PD-L1 expression regardless of STK11 mutation status (group Group A). Overall response rate (ORR), defined as a complete response (CR) or partial response (PR) confirmed by a blinded independent review committee (BIRC) according to Response Evaluation Criteria in Solid Tumors version 1.1 (RECIST 1.1) as best overall response (BOR) ) of participants. Key and secondary To evaluate the antitumor activity of JDQ443 single agent as first-line therapy in participants with locally advanced or metastatic NSCLC whose tumors harbor KRAS G12C mutations, ≥1% PD-L1 expression, and STK11 co-mutations (cohort B). ORR determined by BIRC according to RECIST 1.1. Duration of response (DOR) was assessed in both cohorts. DOR is defined as the time from the first occurrence of PR or CR as determined by BIRC according to RECIST 1.1 to disease progression or death from any cause. secondary Progression-free survival (PFS) was assessed in both cohorts. PFS, defined as the time from the date of enrollment to the date of first documented disease progression or death from any cause as determined by BIRC according to RECIST 1.1. Overall survival (OS) was assessed in both cohorts. OS, defined as the time from the date of enrollment to death from any cause. The anti-tumor activity of JDQ443 was evaluated in two cohorts. Disease control rate (DCR), defined as the proportion of participants with BOR of CR, PR, and stable disease (SD) confirmed by BIRC according to RECIST 1.1. Time to response (TTR) was defined as the time from the date of enrollment to the first recorded CR or PR response by BIRC according to RECIST 1.1. The anti-tumor activity of JDQ443 was evaluated in both cohorts based on local radiological assessment. ORR, DOR, DCR, TTR and PFS determined according to RECIST 1.1 by regional radiological assessment. To evaluate the antitumor activity of JDQ443 single agent as first-line treatment in participants whose tumors harbor STK11 mutations regardless of PD-L1 performance status (pooled from both cohorts). ORR, DOR, DCR, TTR and PFS determined by BIRC and by local radiological assessment according to RECIST 1.1. OS. Characterize the security characteristics of JDQ443. Type, frequency and severity of adverse events, changes in laboratory values, vital signs, electrocardiogram (ECG). Characterizing the pharmacokinetics of JDQ443. Concentration of JDQ443 in plasma. To assess the impact of JDQ443 on patient-reported lung cancer symptoms, health-related quality of life, and health status. Time to final worsening of pain, cough, and dyspnea from NSCLC SAQ, and general health status and QoL items from EORTC QLQ-C30 (primary PRO variables of interest) NSCLC-SAQ, Patient Global Impression of Symptom Severity (PGI- S), changes from baseline in physical and role functional domains of EORTC-QLQ C30 and EQ-5D-5L

該研究將具有2個非比較群組,其將根據以下特徵平行招募參與者: • 群組 A 其腫瘤具有KRAS G12C突變和 < 1%的PD-L1表現而不管STK11突變狀態如何的參與者(N = 90)。 • 群組 B 其腫瘤具有KRAS G12C突變、≥ 1%的PD-L1表現和STK11共突變的參與者(N = 30)。 The study will have 2 non-comparison cohorts that will recruit participants in parallel based on the following characteristics: Cohort A : Participants whose tumors have a KRAS G12C mutation and <1% PD-L1 expression regardless of STK11 mutation status (N = 90). • Cohort B : Participants whose tumors had KRAS G12C mutations, ≥1% PD-L1 expression, and STK11 co-mutations (N = 30).

化合物A(JDQ443)作為研究治療投與至所有受試者: · JDQ443,每次口服(PO)200 mg,每天兩次,連續服用(即無藥物假期)。 關鍵納入標準•   組織學確認的局部晚期(不具有明確的放化療或手術資格的IIIb/IIIc期)或轉移性(IV期)NSCLC參與者,之前沒有對轉移性疾病進行系統治療。如果療法完成和入組之間的時間 > 12個月,則接受針對局限性疾病或局部晚期疾病的化學療法和/或免疫療法的既往(新)輔助治療,或與化學療法和/或免疫治療順序或同時投與的既往放療。 •   KRAS G12C突變的存在(所有患者)和: • 群組 A < 1%的PD-L1表現,而不管STK11突變狀態如何 • 群組 B ≥ 1%的PD-L1表現和STK11共突變 •   根據RECIST 1.1確定的至少一個可測量病灶。 •   ECOG體能狀態 ≤ 1。 •   如果臨床穩定,允許患有腦轉移的參與者。 •   能夠吞咽研究藥物的參與者。 關鍵排除標準•   具有EGFR激活突變或ALK重排的參與者不具有資格。如果當地指南要求,根據當地測試診斷出具有其他可靶向突變的參與者將被排除在外。 •   既往使用KRAS G12C抑制劑或既往系統治療轉移性NSCLC。 •   一種導致光敏性增加的醫學病症(即日光性蕁麻疹、紅斑狼瘡等)。 •   正在服用禁用藥物(強CYP3A誘導劑)、在第一劑量的研究治療之前至少七天和研究持續時間內不能停用的參與者 Compound A (JDQ443) was administered to all subjects as study treatment: JDQ443, 200 mg orally (PO) twice daily, continuously (i.e., no drug holidays). Key Inclusion Criteria • Participants with histologically confirmed locally advanced (stage IIIb/IIIc not eligible for clear chemoradiotherapy or surgery) or metastatic (stage IV) NSCLC with no prior systemic therapy for metastatic disease. Receipt of prior (neo)adjuvant therapy with chemotherapy and/or immunotherapy for localized disease or locally advanced disease, or in combination with chemotherapy and/or immunotherapy if the time between completion of therapy and enrollment is >12 months Previous radiation therapy given sequentially or concurrently. • Presence of KRAS G12C mutation (all patients) and: • Cohort A : < 1% PD-L1 manifestation regardless of STK11 mutation status • Cohort B : ≥ 1% PD-L1 manifestation and STK11 co-mutation • At least one measurable lesion according to RECIST 1.1. • ECOG performance status ≤ 1. • Participants with brain metastases were allowed if clinically stable. • Participants who are able to swallow study medication. Key Exclusion Criteria • Participants with EGFR activating mutations or ALK rearrangements are not eligible. Participants diagnosed with other targetable mutations based on local testing will be excluded if required by local guidelines. • Prior use of a KRAS G12C inhibitor or prior systemic therapy for metastatic NSCLC. • A medical condition that causes increased photosensitivity (ie, solar urticaria, lupus erythematosus, etc.). • Participants who are taking prohibited medications (strong CYP3A inducers) that cannot be discontinued for at least seven days before the first dose of study treatment and for the duration of the study

因此,現在提供以下實施方式:Therefore, the following implementation is now provided:

實施方式1.  一種治療有需要的受試者的具有KRAS G12C突變和 < 1%的PD-L1表現而不管STK11突變狀態如何的癌症或實性瘤或具有KRAS G12C突變和 ≥ 1%的PD-L1表現和STK11共突變的癌症或實性瘤如NSCLC之方法,其中該方法包括向該受試者投與治療有效量的KRAS G12C抑制劑或其藥學上可接受的鹽。Embodiment 1. A treatment for a cancer or solid tumor with a KRAS G12C mutation and <1% PD-L1 expression regardless of STK11 mutation status or with a KRAS G12C mutation and ≥1% PD-L1 expression in a subject in need thereof A method for cancer or solid tumors such as NSCLC that expresses L1 and is co-mutated with STK11, wherein the method includes administering to the subject a therapeutically effective amount of a KRAS G12C inhibitor or a pharmaceutically acceptable salt thereof.

實施方式2.   如實施方式1所述之方法,其中該KRAS G12C抑制劑選自1-{6-[(4 M)-4-(5-氯-6-甲基-1 H-吲唑-4-基)-5-甲基-3-(1-甲基-1 H-吲唑-5-基)-1 H-吡唑-1-基]-2-氮雜螺[3.3]庚烷-2-基}丙-2-烯-1-酮(化合物A)、索托拉西布(美商安進公司)、阿達格拉西布(Mirati公司)、D-1553(益方生物)、BI1701963(勃林格公司)、GDC6036(羅氏公司)、JNJ74699157(J&J公司)、X-Chem KRAS(X-Chem公司)、LY3537982(禮來公司)、BI1823911(勃林格公司)、AS KRAS G12C(亞盛藥業公司)、SF KRAS G12C(賽諾菲公司)、RMC032(革命藥物公司)、JAB-21822(加科思製藥公司)、AST-KRAS G12C(艾力斯製藥公司)、AZ KRAS G12C(阿斯利康公司)、NYU-12VC1(紐約大學)、和RMC6291(革命藥物公司)或其藥學上可接受的鹽。 Embodiment 2. The method of embodiment 1, wherein the KRAS G12C inhibitor is selected from 1-{6-[(4 M )-4-(5-chloro-6-methyl-1 H -indazole- 4-yl)-5-methyl-3-(1-methyl-1 H -indazol-5-yl)-1 H -pyrazol-1-yl]-2-azaspiro[3.3]heptane -2-yl}prop-2-en-1-one (Compound A), sotorasibu (Amgen), adagrasibu (Mirati), D-1553 (Yifang Biological), BI1701963 (Boehringer), GDC6036 (Roche), JNJ74699157 (J&J), X-Chem KRAS (X-Chem), LY3537982 (Eli Lilly), BI1823911 (Boehringer), AS KRAS G12C ( Ascent Pharmaceuticals), SF KRAS G12C (Sanofi), RMC032 (Revolution Pharmaceuticals), JAB-21822 (Jax Pharmaceuticals), AST-KRAS G12C (Alix Pharmaceuticals), AZ KRAS G12C (AstraZeneca), NYU-12VC1 (New York University), and RMC6291 (Revolutionary Medicines) or their pharmaceutically acceptable salts.

實施方式3.   如實施方式2所述之方法,其中該KRAS G12C抑制劑選自1-{6-[(4 M)-4-(5-氯-6-甲基-1 H-吲唑-4-基)-5-甲基-3-(1-甲基-1 H-吲唑-5-基)-1 H-吡唑-1-基]-2-氮雜螺[3.3]庚烷-2-基}丙-2-烯-1-酮(化合物A)、索托拉西布、阿達格拉西布、D-1553、和GDC6036或其藥學上可接受的鹽。 Embodiment 3. The method of embodiment 2, wherein the KRAS G12C inhibitor is selected from 1-{6-[(4 M )-4-(5-chloro-6-methyl-1 H -indazole- 4-yl)-5-methyl-3-(1-methyl-1 H -indazol-5-yl)-1 H -pyrazol-1-yl]-2-azaspiro[3.3]heptane -2-yl}prop-2-en-1-one (Compound A), sotorasiib, adagrasiib, D-1553, and GDC6036 or pharmaceutically acceptable salts thereof.

實施方式4.   如實施方式2所述之方法,其中該KRAS G12C抑制劑係1-{6-[(4 M)-4-(5-氯-6-甲基-1 H-吲唑-4-基)-5-甲基-3-(1-甲基-1 H-吲唑-5-基)-1 H-吡唑-1-基]-2-氮雜螺[3.3]庚烷-2-基}丙-2-烯-1-酮(化合物A)或其藥學上可接受的鹽。 Embodiment 4. The method of embodiment 2, wherein the KRAS G12C inhibitor is 1-{6-[(4 M )-4-(5-chloro-6-methyl-1 H -indazole-4 -yl)-5-methyl-3-(1-methyl-1 H -indazol-5-yl)-1 H -pyrazol-1-yl]-2-azaspiro[3.3]heptane- 2-yl}prop-2-en-1-one (Compound A) or a pharmaceutically acceptable salt thereof.

實施方式5.   如實施方式2所述之方法,其中該KRAS G12C抑制劑係1-{6-[(4 M)-4-(5-氯-6-甲基-1 H-吲唑-4-基)-5-甲基-3-(1-甲基-1 H-吲唑-5-基)-1 H-吡唑-1-基]-2-氮雜螺[3.3]庚烷-2-基}丙-2-烯-1-酮(化合物A)。 Embodiment 5. The method of embodiment 2, wherein the KRAS G12C inhibitor is 1-{6-[(4 M )-4-(5-chloro-6-methyl-1 H -indazole-4 -yl)-5-methyl-3-(1-methyl-1 H -indazol-5-yl)-1 H -pyrazol-1-yl]-2-azaspiro[3.3]heptane- 2-yl}prop-2-en-1-one (Compound A).

實施方式6.   如前述實施方式中任一項所述之方法,其中該癌症或腫瘤係選自由肺癌(包括肺腺癌、非小細胞肺癌和肺鱗狀細胞癌)、結直腸癌、膽管癌、卵巢癌、胰臟癌和十二指腸乳頭癌以及實性瘤組成之群組的癌症或腫瘤。Embodiment 6. The method of any one of the preceding embodiments, wherein the cancer or tumor is selected from the group consisting of lung cancer (including lung adenocarcinoma, non-small cell lung cancer, and lung squamous cell carcinoma), colorectal cancer, and cholangiocarcinoma. , ovarian cancer, pancreatic cancer, duodenal papilla cancer and a group of cancers or tumors composed of solid tumors.

實施方式7.  如前述實施方式中任一項所述之方法,其中該癌症係非小細胞肺癌。Embodiment 7. The method of any one of the preceding embodiments, wherein the cancer is non-small cell lung cancer.

實施方式8.  如前述實施方式中任一項所述之方法,其中向有需要的受試者投與的每種治療劑的量對於治療該癌症或腫瘤係有效的。Embodiment 8. The method of any one of the preceding embodiments, wherein each therapeutic agent is administered to the subject in need thereof in an amount effective to treat the cancer or tumor.

實施方式9.  如前述實施方式中任一項所述之方法,其中以範圍從100至600 mg/天,例如從200至400 mg/天的治療有效劑量投與化合物A或其藥學上可接受的鹽。Embodiment 9. The method of any one of the preceding embodiments, wherein Compound A or a pharmaceutically acceptable dose thereof is administered at a therapeutically effective dose ranging from 100 to 600 mg/day, such as from 200 to 400 mg/day. of salt.

實施方式10. 如前述實施方式中任一項所述之方法,其中以選自100、150、200、250、300、350和400 mg/天的治療有效劑量投與化合物A或其藥學上可接受的鹽。Embodiment 10. The method of any one of the preceding embodiments, wherein Compound A or a pharmaceutically acceptable dose thereof is administered at a therapeutically effective dose selected from the group consisting of 100, 150, 200, 250, 300, 350 and 400 mg/day. Take that with a grain of salt.

實施方式11. 如前述實施方式中任一項所述之方法,其中化合物A的總日劑量係每日一次或每日兩次投與的。Embodiment 11. The method of any one of the preceding embodiments, wherein the total daily dose of Compound A is administered once daily or twice daily.

實施方式12. 如前述實施方式中任一項所述之方法,其中以每日兩次100 mg或每日兩次200 mg的劑量投與化合物A。Embodiment 12. The method of any one of the preceding embodiments, wherein Compound A is administered at a dose of 100 mg twice daily or 200 mg twice daily.

實施方式13. 如前述實施方式中任一項所述之方法,其中化合物A係與食物一起投與的。Embodiment 13. The method of any one of the preceding embodiments, wherein Compound A is administered with food.

實施方式14. 化合物A或其藥學上可接受的鹽,用於在治療具有KRAS G12C突變和 < 1%的PD-L1表現而不管STK11突變狀態如何的癌症或實性瘤或具有KRAS G12C突變和 ≥ 1%的PD-L1表現和STK11共突變的癌症或實性瘤如NSCLC之方法中使用。Embodiment 14. Compound A, or a pharmaceutically acceptable salt thereof, for use in the treatment of cancer or solid tumors with KRAS G12C mutations and <1% PD-L1 expression regardless of STK11 mutation status or with KRAS G12C mutations and Used in ≥ 1% of cancers that express PD-L1 and STK11 co-mutations or solid tumors such as NSCLC.

實施方式15. 如實施方式14所述之化合物,其中該癌症或實性瘤選自肺癌(包括肺腺癌、非小細胞肺癌和肺鱗狀細胞癌)、結直腸癌、膽管癌、卵巢癌、胰臟癌和十二指腸乳頭癌以及實性瘤。Embodiment 15. The compound of embodiment 14, wherein the cancer or solid tumor is selected from lung cancer (including lung adenocarcinoma, non-small cell lung cancer and lung squamous cell carcinoma), colorectal cancer, cholangiocarcinoma, ovarian cancer , pancreatic cancer and duodenal papilla cancer as well as solid tumors.

實施方式16. 如實施方式15所述之化合物,其中該癌症或實性瘤係非小細胞肺癌。Embodiment 16. The compound of embodiment 15, wherein the cancer or solid tumor is non-small cell lung cancer.

實施方式17. 一種化合物,該化合物係1-{6-[(4 M)-4-(5-氯-6-甲基-1 H-吲唑-4-基)-5-甲基-3-(1-甲基-1 H-吲唑-5-基)-1 H-吡唑-1-基]-2-氮雜螺[3.3]庚烷-2-基}丙-2-烯-1-酮(化合物A)或其藥學上可接受的鹽,用於在如實施方式1至13中任一項所述之治療癌症或腫瘤之方法中使用。 Embodiment 17. A compound, the compound is 1-{6-[(4 M )-4-(5-chloro-6-methyl- 1H -indazol-4-yl)-5-methyl-3 -(1-Methyl-1 H -indazol-5-yl)-1 H -pyrazol-1-yl]-2-azaspiro[3.3]heptan-2-yl}prop-2-ene- 1-one (Compound A) or a pharmaceutically acceptable salt thereof, for use in the method of treating cancer or tumors as described in any one of Embodiments 1 to 13.

實施方式18. 一種用於如前述實施方式中任一項所述使用的方法或化合物,其中該治療用於一線治療。Embodiment 18. A method or compound for use as described in any one of the preceding embodiments, wherein the treatment is for first-line treatment.

實施方式19. 一種用於在如任一實施方式所述之治療癌症或實性瘤之方法中使用的化合物、或一種用於在如任一實施方式所述之治療癌症或實性瘤之方法中使用的組合、或如任一實施方式所述之治療癌症或實性瘤之方法,其中該癌症或實性瘤存在於先前已經接受KRAS G12C抑制劑治療的患者或KRAS G12C抑制劑初治患者(即先前未接受KRAS G12C抑制劑治療的患者)中。Embodiment 19. A compound for use in the method of treating cancer or solid tumors as described in any embodiment, or a compound for use in the method of treating cancer or solid tumors as described in any embodiment A combination for use in, or a method of treating cancer or solid tumors according to any embodiment, wherein the cancer or solid tumor is present in a patient who has previously been treated with a KRAS G12C inhibitor or a KRAS G12C inhibitor-naïve patient (i.e., patients who have not previously received KRAS G12C inhibitor therapy).

本文提及的所有出版物、專利和登錄號均藉由引用以其全文特此併入,如同每個單獨的出版物或專利被特別地且單獨地表明藉由引用而併入。All publications, patents, and accession numbers mentioned herein are hereby incorporated by reference in their entirety to the same extent as if each individual publication or patent was specifically and individually indicated to be incorporated by reference.

本說明書中對「本發明」的提及旨在反映本說明書中揭露的數項發明的實施方式,並且不應被視為對所要求保護的主題的不必要限制。References in this specification to "the present invention" are intended to reflect the embodiments of the several inventions disclosed in this specification and should not be construed as unnecessarily limiting the claimed subject matter.

應理解,本文所述之實例和實施方式僅用於舉例說明目的,其各種修飾或改變對於熟悉該項技術者將是明瞭的,並包括在本申請的精神和範圍內和所附申請專利範圍的範圍內。It should be understood that the examples and implementations described herein are for illustrative purposes only, and various modifications or changes thereof will be apparent to those skilled in the art and are included within the spirit and scope of the present application and the appended claims. within the range.

雖然已經討論了本發明之特定實施方式,但上述說明係說明性而非限制性的。在綜述本說明書和以下申請專利範圍之後,本發明之許多變化對於本領域的技術者將變得顯而易見的。應當藉由參考申請專利範圍及其等同形式的全範圍以及說明書連同這樣的變化來確定本發明之全範圍。While specific embodiments of the invention have been discussed, the foregoing description is illustrative and not restrictive. Many variations of the invention will become apparent to those skilled in the art upon review of this specification and the following claims. The full scope of the invention should be determined by reference to the full scope of the patent claims and their equivalents, and the specification, along with such changes.

without

[圖1]:化合物A以突變選擇性方式強效抑制KRAS G12C細胞傳訊和增殖,並且顯示出劑量依賴性抗腫瘤活性,其中功效由每日AUC驅動。[Figure 1]: Compound A potently inhibited KRAS G12C cell signaling and proliferation in a mutation-selective manner and showed dose-dependent anti-tumor activity, with efficacy driven by daily AUC.

A.六種KRASG12C腫瘤模型中的綜合最佳腫瘤生長抑制。在小鼠中的六種人類KRAS G12C突變型CDX模型中,口服給藥10、30和100 mg/kg/天後,評估JDQ443的功效。NSCLC細胞系模型以深灰色描繪,同時PDAC(MIA Paca-2)和食道癌(KYSE-410)細胞系模型以淺灰色示出。數據為來自2-11項獨立體內研究的平均值。B-G.以指定劑量和方案口服JDQ443治療具有KRAS G12C突變型(C-G)和非KRAS G12C突變型(NCI-441,KRASG12V;B)腫瘤的CDX荷瘤小鼠。G.藉由使用微型泵進行連續靜脈內輸注,用JDQ443治療LU99荷瘤小鼠。H-I.模擬pop-PKPD指標(H)小鼠血液中JDQ443的每日AUC和(I)穩態腫瘤中的平均游離KRASG12C水平與在LU99中觀察到的功效相關(T/C或%消退)。基於100次模擬和觀察到的功效指標,點對應於模擬PK/PD指標的平均值和誤差條 ± 1 S.D。A. Comprehensive optimal tumor growth inhibition among six KRASG12C tumor models. The efficacy of JDQ443 was evaluated following oral administration of 10, 30, and 100 mg/kg/day in six human KRAS G12C mutant CDX models in mice. NSCLC cell line models are depicted in dark gray, while PDAC (MIA Paca-2) and esophageal cancer (KYSE-410) cell line models are shown in light gray. Data are averages from 2-11 independent in vivo studies. B-G. CDX tumor-bearing mice with KRAS G12C mutant (C-G) and non-KRAS G12C mutant (NCI-441, KRASG12V; B) tumors were treated orally with JDQ443 at the indicated doses and schedules. G. Treatment of LU99 tumor-bearing mice with JDQ443 by continuous intravenous infusion using a minipump. H-I. Simulated pop-PKPD metrics (H) Daily AUC of JDQ443 in mouse blood and (I) mean free KRASG12C levels in steady-state tumors correlate with efficacy (T/C or % regression) observed in LU99. Points correspond to mean and error bars ± 1 S.D of simulated PK/PD metrics based on 100 simulations and observed efficacy metrics.

藉由單因素ANOVA,*與媒介物相比,p < 0.05;#與彼此相比,p < 0.05。By one-way ANOVA, * p < 0.05 compared to vehicle; # p < 0.05 compared to each other.

[圖2]:化合物A(JDQ443)、索托拉西布(AMG510)和阿達格拉西布(MRTX-849)對KRAS G12C/H95雙突變體增殖的影響 用指定的化合物濃度處理表現指定FLAG-KRAS G12C單突變體或雙突變體的Ba/F3細胞3天,並藉由Cell titer glo活力測定評估增殖抑制。y軸示出經處理細胞相對於第3天處理的%生長,x軸示出KRASG12C抑制劑的對數濃度(μM)。 [Figure 2]: Effects of Compound A (JDQ443), sotorasib (AMG510) and adagrasiib (MRTX-849) on the proliferation of KRAS G12C/H95 double mutant . Ba/F3 cells expressing the indicated FLAG-KRAS G12C single or double mutants were treated with the indicated compound concentrations for 3 days, and proliferation inhibition was assessed by Cell titer glo viability assay. The y-axis shows the % growth of treated cells relative to day 3 treatment, and the x-axis shows the logarithmic concentration of KRASG12C inhibitor (μM).

[圖3]:ERK磷酸化的西方墨點法分析,以評估化合物A(JDQ443)、索托拉西布(AMG510)和阿達格拉西布(MRTX-849)對KRAS G12C/H95雙突變體傳訊的影響。用指定的化合物濃度處理表現指定FLAG-KRAS G12C單突變體或雙突變體的Ba/F3細胞30 min,並藉由西方墨點法探測細胞裂解物的pERK減少來評估MAPK通路的抑制。 [Figure 3]: Western blot analysis of ERK phosphorylation to evaluate signaling of KRAS G12C/H95 double mutant by Compound A (JDQ443), sotorasiib (AMG510), and adagrasiib (MRTX-849) influence. Ba/F3 cells expressing the specified FLAG-KRAS G12C single or double mutants were treated with the indicated compound concentrations for 30 min, and inhibition of the MAPK pathway was assessed by detecting the decrease in pERK in cell lysates by Western blotting.

[圖4]:JDQ443 RD 200 mg BID的PK和目標佔有率曲線。頂部小圖示出了穩態下的PK曲線。誤差條表示每個時間點的PK曲線的標準差。底部小圖示出了預測的目標佔有率曲線,其中線示出模擬的中位數,並且陰影區域示出5%-95%的預測區間。[Figure 4]: PK and target occupancy curve of JDQ443 RD 200 mg BID. The top panel shows the PK curve at steady state. Error bars represent the standard deviation of the PK curve at each time point. The bottom panel shows the predicted target occupancy curve, where the line shows the simulated median and the shaded area shows the 5%-95% prediction interval.

[圖5]:頂部小圖示出了JDQ443單一療法在各劑量水平和適應證方面的最佳總體反應。瀑布圖:相較於基線腫瘤評估,37名(94.9%)患者具有可得變化;繪製了N = 39名JDQ443單一藥劑患者的數據。根據RECIST v1.1,研究者對最佳總體反應進行評估。三名(7.7%)患者具有uPR,這有助於ORR(確認的和未確認的)。uPR = 未確認的PR待確認,正在進行治療,無PD。根據方案,四名患者中發生從200 mg QD(每天投與一次)到200 mg BID(每日投與兩次)的患者內劑量遞增。[Figure 5]: The top panel illustrates the best overall response of JDQ443 monotherapy across dose levels and indications. Waterfall plot: 37 (94.9%) patients had measurable changes compared to baseline tumor assessment; data from N = 39 JDQ443 single-agent patients plotted. Investigators assessed best overall response according to RECIST v1.1. Three (7.7%) patients had uPR, which contributed to ORR (confirmed and unconfirmed). uPR = unconfirmed PR pending confirmation, on treatment, no PD. Per protocol, intrapatient dose escalation from 200 mg QD (administered once daily) to 200 mg BID (administered twice daily) occurred in four patients.

底部小圖示出了所有患有NSCLC的患者在不同劑量下的最佳總體反應。瀑布圖:相較於基線腫瘤評估,19名(95.0%)NSCLC患者具有可得變化;繪製了JDQ443單一藥劑群組中N = 20名NSCLC患者的數據。The bottom panel shows the best overall response at different doses for all patients with NSCLC. Waterfall plot: 19 (95.0%) NSCLC patients had measurable changes compared to baseline tumor assessment; data plotted for N = 20 NSCLC patients in the JDQ443 single-agent cohort.

[圖6]:PET掃描顯示,向患有NSCLC的患者投與200 mg BID的化合物A治療四個週期後,腫瘤腫塊的2-[氟-18]-氟-2-去氧-d-葡萄糖(18-F-FDG)親合力大幅下降。CT:電腦斷層掃描;PET,正電子發射斷層掃描。箭頭指示腫瘤部位。[Figure 6]: PET scan showing 2-[fluoro-18]-fluoro-2-deoxy-d-glucose in tumor masses after four cycles of treatment with 200 mg BID of Compound A in patients with NSCLC. (18-F-FDG) affinity decreased significantly. CT: computed tomography; PET, positron emission tomography. Arrows indicate tumor sites.

without

Claims (19)

一種治療有需要的受試者的具有KRAS G12C突變和 < 1%的PD-L1表現而不管STK11突變狀態如何的癌症或實性瘤或具有KRAS G12C突變和 ≥ 1%的PD-L1表現和STK11共突變的癌症或實性瘤如NSCLC之方法,其中該方法包括向該受試者投與治療有效量的KRAS G12C抑制劑或其藥學上可接受的鹽。A cancer or solid tumor with a KRAS G12C mutation and ≥ 1% PD-L1 expression regardless of STK11 mutation status or a KRAS G12C mutation and ≥ 1% PD-L1 expression and STK11 in a subject in need of treatment A method of co-mutating cancer or solid tumors such as NSCLC, wherein the method includes administering to the subject a therapeutically effective amount of a KRAS G12C inhibitor or a pharmaceutically acceptable salt thereof. 如請求項1所述之方法,其中該KRAS G12C抑制劑選自1-{6-[(4 M)-4-(5-氯-6-甲基-1 H-吲唑-4-基)-5-甲基-3-(1-甲基-1 H-吲唑-5-基)-1 H-吡唑-1-基]-2-氮雜螺[3.3]庚烷-2-基}丙-2-烯-1-酮(化合物A)、索托拉西布(美商安進公司)、阿達格拉西布(Mirati公司)、D-1553(益方生物)、BI1701963(勃林格公司)、GDC6036(羅氏公司)、JNJ74699157(J&J公司)、X-Chem KRAS(X-Chem公司)、LY3537982(禮來公司)、BI1823911(勃林格公司)、AS KRAS G12C(亞盛藥業公司)、SF KRAS G12C(賽諾菲公司)、RMC032(革命藥物公司)、JAB-21822(加科思製藥公司)、AST-KRAS G12C(艾力斯製藥公司)、AZ KRAS G12C(阿斯利康公司)、NYU-12VC1(紐約大學)、和RMC6291(革命藥物公司)或其藥學上可接受的鹽。 The method of claim 1, wherein the KRAS G12C inhibitor is selected from 1-{6-[(4 M )-4-(5-chloro-6-methyl-1 H -indazol-4-yl) -5-Methyl-3-(1-methyl-1 H -indazol-5-yl)-1 H -pyrazol-1-yl]-2-azaspiro[3.3]heptan-2-yl }Propan-2-en-1-one (Compound A), sotorasibu (Amgen), adagrasiib (Mirati), D-1553 (Yifang Biological), BI1701963 (Bolin GDC6036 (Roche), JNJ74699157 (J&J), X-Chem KRAS (X-Chem), LY3537982 (Eli Lilly), BI1823911 (Boehringer), AS KRAS G12C (Ascent Pharmaceuticals) Company), SF KRAS G12C (Sanofi), RMC032 (Revolutionary Pharmaceuticals), JAB-21822 (Jax Pharmaceuticals), AST-KRAS G12C (Alix Pharmaceuticals), AZ KRAS G12C (AstraZeneca) Company), NYU-12VC1 (New York University), and RMC6291 (Revolutionary Pharmaceuticals, Inc.) or their pharmaceutically acceptable salts. 如請求項2所述之方法,其中該KRAS G12C抑制劑選自1-{6-[(4 M)-4-(5-氯-6-甲基-1 H-吲唑-4-基)-5-甲基-3-(1-甲基-1 H-吲唑-5-基)-1 H-吡唑-1-基]-2-氮雜螺[3.3]庚烷-2-基}丙-2-烯-1-酮(化合物A)、索托拉西布、阿達格拉西布、D-1553、和GDC6036或其藥學上可接受的鹽。 The method of claim 2, wherein the KRAS G12C inhibitor is selected from 1-{6-[(4 M )-4-(5-chloro-6-methyl-1 H -indazol-4-yl) -5-Methyl-3-(1-methyl-1 H -indazol-5-yl)-1 H -pyrazol-1-yl]-2-azaspiro[3.3]heptan-2-yl }Propan-2-en-1-one (Compound A), sotoraxib, adagrasiib, D-1553, and GDC6036 or pharmaceutically acceptable salts thereof. 如請求項2所述之方法,其中該KRAS G12C抑制劑係1-{6-[(4 M)-4-(5-氯-6-甲基-1 H-吲唑-4-基)-5-甲基-3-(1-甲基-1 H-吲唑-5-基)-1 H-吡唑-1-基]-2-氮雜螺[3.3]庚烷-2-基}丙-2-烯-1-酮(化合物A)或其藥學上可接受的鹽。 The method of claim 2, wherein the KRAS G12C inhibitor is 1-{6-[(4 M )-4-(5-chloro-6-methyl- 1H -indazol-4-yl)- 5-Methyl-3-(1-methyl-1 H -indazol-5-yl)-1 H -pyrazol-1-yl]-2-azaspiro[3.3]heptan-2-yl} Propan-2-en-1-one (Compound A) or a pharmaceutically acceptable salt thereof. 如請求項2所述之方法,其中該KRAS G12C抑制劑係1-{6-[(4 M)-4-(5-氯-6-甲基-1 H-吲唑-4-基)-5-甲基-3-(1-甲基-1 H-吲唑-5-基)-1 H-吡唑-1-基]-2-氮雜螺[3.3]庚烷-2-基}丙-2-烯-1-酮(化合物A)。 The method of claim 2, wherein the KRAS G12C inhibitor is 1-{6-[(4 M )-4-(5-chloro-6-methyl- 1H -indazol-4-yl)- 5-Methyl-3-(1-methyl-1 H -indazol-5-yl)-1 H -pyrazol-1-yl]-2-azaspiro[3.3]heptan-2-yl} Propan-2-en-1-one (Compound A). 如前述請求項中任一項所述之方法,其中該癌症或腫瘤係選自由肺癌(包括肺腺癌、非小細胞肺癌和肺鱗狀細胞癌)、結直腸癌、膽管癌、卵巢癌、胰臟癌和十二指腸乳頭癌以及實性瘤組成之群組的癌症或腫瘤。The method according to any one of the preceding claims, wherein the cancer or tumor is selected from the group consisting of lung cancer (including lung adenocarcinoma, non-small cell lung cancer and lung squamous cell carcinoma), colorectal cancer, cholangiocarcinoma, ovarian cancer, A group of cancers or tumors consisting of pancreatic cancer, duodenal papilla cancer, and solid tumors. 如前述請求項中任一項所述之方法,其中該癌症係非小細胞肺癌。The method of any one of the preceding claims, wherein the cancer is non-small cell lung cancer. 如前述請求項中任一項所述之方法,其中向該有需要的受試者投與的每種治療劑的量對治療該癌症或腫瘤係有效的。The method of any one of the preceding claims, wherein each therapeutic agent is administered to the subject in need thereof in an amount effective to treat the cancer or tumor. 如前述請求項中任一項所述之方法,其中以範圍從100至600 mg/天,例如從200至400 mg/天的治療有效劑量投與化合物A或其藥學上可接受的鹽。The method of any one of the preceding claims, wherein Compound A or a pharmaceutically acceptable salt thereof is administered in a therapeutically effective dose ranging from 100 to 600 mg/day, for example from 200 to 400 mg/day. 如前述請求項中任一項所述之方法,其中以選自100、150、200、250、300、350和400 mg/天的治療有效劑量投與化合物A或其藥學上可接受的鹽。The method of any one of the preceding claims, wherein Compound A or a pharmaceutically acceptable salt thereof is administered at a therapeutically effective dose selected from the group consisting of 100, 150, 200, 250, 300, 350 and 400 mg/day. 如前述請求項中任一項所述之方法,其中化合物A的總日劑量係每日一次或每日兩次投與的。A method as claimed in any one of the preceding claims, wherein the total daily dose of Compound A is administered once daily or twice daily. 如前述請求項中任一項所述之方法,其中以每日兩次100 mg或每日兩次200 mg的劑量投與化合物A。The method of any one of the preceding claims, wherein Compound A is administered at a dose of 100 mg twice daily or 200 mg twice daily. 如前述請求項中任一項所述之方法,其中化合物A係與食物一起投與的。A method as claimed in any one of the preceding claims, wherein Compound A is administered with food. 化合物A或其藥學上可接受的鹽,用於在治療具有KRAS G12C突變和 < 1%的PD-L1表現而不管STK11突變狀態如何的癌症或實性瘤或具有KRAS G12C突變和 ≥ 1%的PD-L1表現和STK11共突變的癌症或實性瘤如NSCLC之方法中使用。Compound A, or a pharmaceutically acceptable salt thereof, for the treatment of cancer or solid tumors with KRAS G12C mutations and < 1% PD-L1 expression regardless of STK11 mutation status or with KRAS G12C mutations and ≥ 1% This method is used in cancers or solid tumors such as NSCLC that express PD-L1 and STK11 co-mutations. 如請求項14所述之化合物,其中該癌症或實性瘤選自肺癌(包括肺腺癌、非小細胞肺癌和肺鱗狀細胞癌)、結直腸癌、膽管癌、卵巢癌、胰臟癌和十二指腸乳頭癌以及實性瘤。The compound of claim 14, wherein the cancer or solid tumor is selected from the group consisting of lung cancer (including lung adenocarcinoma, non-small cell lung cancer and lung squamous cell carcinoma), colorectal cancer, cholangiocarcinoma, ovarian cancer, and pancreatic cancer and duodenal papilla carcinoma and solid tumors. 如請求項15所述之化合物,其中該癌症或實性瘤係非小細胞肺癌。The compound of claim 15, wherein the cancer or solid tumor is non-small cell lung cancer. 一種化合物,該化合物係1-{6-[(4 M)-4-(5-氯-6-甲基-1 H-吲唑-4-基)-5-甲基-3-(1-甲基-1 H-吲唑-5-基)-1 H-吡唑-1-基]-2-氮雜螺[3.3]庚烷-2-基}丙-2-烯-1-酮(化合物A)或其藥學上可接受的鹽,用於在如請求項1至13中任一項所述之治療癌症或腫瘤之方法中使用。 A compound, the compound is 1-{6-[(4 M )-4-(5-chloro-6-methyl- 1H -indazol-4-yl)-5-methyl-3-(1- Methyl- 1H -indazol-5-yl) -1H -pyrazol-1-yl]-2-azaspiro[3.3]heptan-2-yl}prop-2-en-1-one ( Compound A) or a pharmaceutically acceptable salt thereof, for use in the method of treating cancer or tumors as described in any one of claims 1 to 13. 一種用於如前述請求項中任一項所述使用的方法或化合物,其中該治療用於一線治療。A method or compound for use as claimed in any one of the preceding claims, wherein the treatment is for first-line treatment. 一種用於在如請求項中任一項所述之治療癌症或實性瘤之方法中使用的化合物、或一種用於在如請求項中任一項所述之治療癌症或實性瘤之方法中使用的組合、或如請求項中任一項所述之治療癌症或實性瘤之方法,其中該癌症或實性瘤存在於先前已經接受KRAS G12C抑制劑治療的患者或KRAS G12C抑制劑初治患者(即先前未接受KRAS G12C抑制劑治療的患者)中。A compound for use in the method of treating cancer or solid tumors as described in any one of the claims, or a compound for use in the method of treating cancer or solid tumors as described in any of the claims A combination for use in, or a method of treating cancer or solid tumors as described in any one of the claims, wherein the cancer or solid tumors are present in patients who have previously been treated with a KRAS G12C inhibitor or who are new to a KRAS G12C inhibitor. in patients who have not previously received KRAS G12C inhibitor therapy.
TW112113269A 2022-04-11 2023-04-10 Therapeutic uses of a krasg12c inhibitor TW202400153A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263329608P 2022-04-11 2022-04-11
US63/329,608 2022-04-11

Publications (1)

Publication Number Publication Date
TW202400153A true TW202400153A (en) 2024-01-01

Family

ID=86328597

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112113269A TW202400153A (en) 2022-04-11 2023-04-10 Therapeutic uses of a krasg12c inhibitor

Country Status (2)

Country Link
TW (1) TW202400153A (en)
WO (1) WO2023199180A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024206858A1 (en) 2023-03-30 2024-10-03 Revolution Medicines, Inc. Compositions for inducing ras gtp hydrolysis and uses thereof

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104379563B (en) 2012-04-10 2018-12-21 加利福尼亚大学董事会 Composition and method for treating cancer
US10723753B2 (en) 2013-03-13 2020-07-28 Dana-Farber Cancer Institute, Inc. Ras inhibitors and uses thereof
US9745319B2 (en) 2013-03-15 2017-08-29 Araxes Pharma Llc Irreversible covalent inhibitors of the GTPase K-Ras G12C
CA2904393A1 (en) 2013-03-15 2014-09-25 Araxes Pharma Llc Covalent inhibitors of kras g12c
CN106488910B (en) 2013-10-10 2020-07-31 亚瑞克西斯制药公司 Inhibitors of KRAS G12C
JO3556B1 (en) 2014-09-18 2020-07-05 Araxes Pharma Llc Combination therapies for treatment of cancer
ES2826443T3 (en) 2014-09-25 2021-05-18 Araxes Pharma Llc KRAS G12C Mutant Protein Inhibitors
EP3280708B1 (en) 2015-04-10 2021-09-01 Araxes Pharma LLC Substituted quinazoline compounds and methods of use thereof
US10428064B2 (en) 2015-04-15 2019-10-01 Araxes Pharma Llc Fused-tricyclic inhibitors of KRAS and methods of use thereof
WO2017015562A1 (en) 2015-07-22 2017-01-26 Araxes Pharma Llc Substituted quinazoline compounds and their use as inhibitors of g12c mutant kras, hras and/or nras proteins
EP3356351A1 (en) 2015-09-28 2018-08-08 Araxes Pharma LLC Inhibitors of kras g12c mutant proteins
EP3356349A1 (en) 2015-09-28 2018-08-08 Araxes Pharma LLC Inhibitors of kras g12c mutant proteins
EP3356354A1 (en) 2015-09-28 2018-08-08 Araxes Pharma LLC Inhibitors of kras g12c mutant proteins
EP3356359B1 (en) 2015-09-28 2021-10-20 Araxes Pharma LLC Inhibitors of kras g12c mutant proteins
EP3356353A1 (en) 2015-09-28 2018-08-08 Araxes Pharma LLC Inhibitors of kras g12c mutant proteins
US10875842B2 (en) 2015-09-28 2020-12-29 Araxes Pharma Llc Inhibitors of KRAS G12C mutant proteins
US10689356B2 (en) 2015-09-28 2020-06-23 Araxes Pharma Llc Inhibitors of KRAS G12C mutant proteins
WO2017087528A1 (en) 2015-11-16 2017-05-26 Araxes Pharma Llc 2-substituted quinazoline compounds comprising a substituted heterocyclic group and methods of use thereof
US9988357B2 (en) 2015-12-09 2018-06-05 Araxes Pharma Llc Methods for preparation of quinazoline derivatives
EP3458445B1 (en) 2016-05-18 2021-02-17 Mirati Therapeutics, Inc. Kras g12c inhibitors
EP3519402A1 (en) 2016-09-29 2019-08-07 Araxes Pharma LLC Inhibitors of kras g12c mutant proteins
CN110312711A (en) 2016-10-07 2019-10-08 亚瑞克西斯制药公司 Heterocyclic compound and its application method as RAS inhibitor
MY196830A (en) 2016-12-22 2023-05-03 Amgen Inc Kras g12c inhibitors and methods of using the same
EP3573966A1 (en) 2017-01-26 2019-12-04 Araxes Pharma LLC Fused n-heterocyclic compounds and methods of use thereof
US11279689B2 (en) 2017-01-26 2022-03-22 Araxes Pharma Llc 1-(3-(6-(3-hydroxynaphthalen-1-yl)benzofuran-2-yl)azetidin-1 yl)prop-2-en-1-one derivatives and similar compounds as KRAS G12C modulators for treating cancer
EP3573954A1 (en) 2017-01-26 2019-12-04 Araxes Pharma LLC Fused bicyclic benzoheteroaromatic compounds and methods of use thereof
WO2018140514A1 (en) 2017-01-26 2018-08-02 Araxes Pharma Llc 1-(6-(3-hydroxynaphthalen-1-yl)quinazolin-2-yl)azetidin-1-yl)prop-2-en-1-one derivatives and similar compounds as kras g12c inhibitors for the treatment of cancer
EP3573964A1 (en) 2017-01-26 2019-12-04 Araxes Pharma LLC Benzothiophene and benzothiazole compounds and methods of use thereof
JP7327802B2 (en) 2017-01-26 2023-08-16 アラクセス ファーマ エルエルシー Fused hetero-heterobicyclic compounds and methods of use thereof
JOP20190186A1 (en) 2017-02-02 2019-08-01 Astellas Pharma Inc Quinazoline compound
WO2018206539A1 (en) 2017-05-11 2018-11-15 Astrazeneca Ab Heteroaryl compounds that inhibit g12c mutant ras proteins
JOP20190272A1 (en) 2017-05-22 2019-11-21 Amgen Inc Kras g12c inhibitors and methods of using the same
AU2018271990A1 (en) 2017-05-25 2019-12-12 Araxes Pharma Llc Covalent inhibitors of KRAS
TW201906832A (en) 2017-05-25 2019-02-16 美商亞瑞克西斯製藥公司 Compounds for cancer treatment and methods of use thereof
EP4141005B1 (en) 2017-09-08 2024-04-03 Amgen Inc. Inhibitors of kras g12c and methods of using the same
SG11202004427TA (en) 2017-11-15 2020-06-29 Mirati Therapeutics Inc Kras g12c inhibitors
TW201938561A (en) 2017-12-08 2019-10-01 瑞典商阿斯特捷利康公司 Chemical compounds
SG10202102462SA (en) 2018-01-19 2021-04-29 Medshine Discovery Inc Pyridone-pyrimidine derivative acting as krasg12c mutein inhibitor
TW201942115A (en) 2018-02-01 2019-11-01 美商輝瑞股份有限公司 Substituted quinazoline and pyridopyrimidine derivatives useful as anticancer agents
TW201942116A (en) 2018-02-09 2019-11-01 美商輝瑞股份有限公司 Tetrahydroquinazoline derivatives useful as anticancer agents
AU2019262589B2 (en) 2018-05-04 2022-07-07 Amgen Inc. KRAS G12C inhibitors and methods of using the same
MA52496A (en) 2018-05-04 2021-03-10 Amgen Inc KRAS G12C INHIBITORS AND THEIR PROCEDURES FOR USE
WO2019217307A1 (en) 2018-05-07 2019-11-14 Mirati Therapeutics, Inc. Kras g12c inhibitors
EP3790886B1 (en) 2018-05-10 2024-06-26 Amgen Inc. Kras g12c inhibitors for the treatment of cancer
WO2021120890A1 (en) 2019-12-20 2021-06-24 Novartis Ag Pyrazolyl derivatives useful as anti-cancer agents
AU2021293228A1 (en) * 2020-06-18 2023-02-09 Revolution Medicines, Inc. Methods for delaying, preventing, and treating acquired resistance to RAS inhibitors
IL303917A (en) * 2020-12-22 2023-08-01 Novartis Ag Pharmaceutical combinations comprising a kras g12c inhibitor and uses of a kras g12c inhibitor for the treatment of cancers
EP4320143A1 (en) * 2021-04-02 2024-02-14 The General Hospital Corporation Methods for inhibiting ras

Also Published As

Publication number Publication date
WO2023199180A1 (en) 2023-10-19

Similar Documents

Publication Publication Date Title
US20180280408A1 (en) Mutant selectivity and combinations of a phosphoinositide 3-kinase inhibitor compound and chemotherapeutic agents for the treatment of cancer
WO2022135346A1 (en) Pharmaceutical combinations comprising a kras g12c inhibitor and uses of a kras g12c inhibitor for the treatment of cancers
TWI654979B (en) Method of treating cancer using TOR kinase inhibitor combination therapy
US20230107195A1 (en) Treatment of cancer with smg1-inhibitors
JP2024526145A (en) Combination medicines containing KRAS G12C inhibitors and their use for the treatment of cancer - Patents.com
US20220125777A1 (en) Combination of a cdk inhibitor and a pim inhibitor
CA2945068A1 (en) Methods of treating pr-positive, luminal a breast cancer with pi3k inhibitor, pictilisib
US20210290620A1 (en) Combinations of RET Inhibitors and mTORC1 Inhibitors and Uses Thereof for the Treatment of Cancer Mediated by Aberrant RET Activity
WO2019165473A1 (en) Methods of treatment of cancer comprising cdc7 inhibitors
AU2020268762A1 (en) 6-(2,4-dichlorophenyl)-5-[4-[(3S)-1-(3-fluoropropyl)pyrrolidin-3-yl]oxyphenyl]-8,9-dihydro-7H-benzo[7]annulene-2-carboxylic acid for use in metastatic or advanced breast cancer patients
TW202400153A (en) Therapeutic uses of a krasg12c inhibitor
Krishnan et al. Targeting mutated KRAS genes to treat solid tumours
WO2023100131A1 (en) Methods and dosing regimens comprising a cdk2 inhibitor for the treatment of cancer
US20240366567A1 (en) Pharmaceutical combinations comprising a kras g12c inhibitor and uses thereof for the treatment of cancers
WO2014031856A1 (en) Combination therapy using pi3 kinase and braf inhibitors
CN117529314A (en) Pharmaceutical combinations comprising KRAS G12C inhibitors and their use for the treatment of cancer
TW202123929A (en) Methods of treating cancer