TW202347977A - A flexible bidirectional fiber-fso-5g wireless convergent system - Google Patents

A flexible bidirectional fiber-fso-5g wireless convergent system Download PDF

Info

Publication number
TW202347977A
TW202347977A TW111118260A TW111118260A TW202347977A TW 202347977 A TW202347977 A TW 202347977A TW 111118260 A TW111118260 A TW 111118260A TW 111118260 A TW111118260 A TW 111118260A TW 202347977 A TW202347977 A TW 202347977A
Authority
TW
Taiwan
Prior art keywords
coupled
optical
ghz
wireless
mmw
Prior art date
Application number
TW111118260A
Other languages
Chinese (zh)
Inventor
呂海涵
陳昱廷
葛廷
Original Assignee
呂海涵
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 呂海涵 filed Critical 呂海涵
Priority to TW111118260A priority Critical patent/TW202347977A/en
Publication of TW202347977A publication Critical patent/TW202347977A/en

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

A flexible bidirectional fiber-free-space optical (FSO)-fifth-generation (5G) wireless convergent system with 1-Gb/s/4.5-GHz sub-6 GHz and 10-Gb/s/28-GHz millimeter-wave (MMW) (downstream), as well as 10-Gb/s/24-GHz MMW (upstream) 5G hybrid data signals is built, employing a vertical cavity surface emitting laser (VCSEL)-based wavelength selector and a remotely injection-locked distributed feedback laser diode (DFB LD) for presentation. It is the first to adopt a VCSEL-based wavelength selector to adaptively provide 5G applications and an injection-locked DFB LD to perform a phase modulation-to-intensity modulation transformation with an optical-to-electrical conversion. Good bit error rate performance and acceptable eye diagrams are achieved over 25 km single-mode fiber transport, 600 m FSO link, and 10 m/4 m RF wireless transmission. Such demonstrated fiber-FSO-5G wireless convergent system is a promising one toward optical-based long-haul networks at comparatively high-speed operations. It exhibits an excellent convergence not only due to its development for incorporating optical fiber with optical/5G wireless networks, but also due to its enhancement for flexible two-way high-speed and long-haul communications.

Description

彈性/雙向 第五代行動通訊/光纖寬頻/無線光通訊 整合接取系統 Flexible/two-way fifth-generation mobile communications/fiber optic broadband/wireless optical communications integrated access system

本發明「彈性/雙向 第五代行動通訊/光纖寬頻/無線光通訊 整合接取 系統」,結合光纖寬頻網路、無線光通訊FSO、第五代行動通訊(5G)之整合接取網路系統無論對於電信、有線電視、OTT及萬物智慧物聯網四大網路而言都有莫大之利基,其所帶來的影響與衝擊可預期的是將會相當龐大;所以對光纖寬頻網路、無線光通訊FSO、第五代行動通訊之異質整合網路接取系統有其必要作深入性探討與研究,更重要的是必須優化其傳輸訊號品質以得到傳輸訊號品質良好的第五代行動通訊光纖寬頻/無線光通訊異質整合網路接取系統。本發明規劃並建構結合光纖寬頻網路、無線光通訊FSO與5G高速行動通訊,在寬頻異質整合接取網路上傳送5G Sub-6GHz、5G MMW混合訊號,充分應用光纖接取網路、無線光通訊FSO與5G行動通訊「寬頻」、「超長距離傳輸」及「高移動性」之優勢。基於光纖高頻寬/低傳輸損失特性、無線光通訊FSO高傳輸容量/free-space低傳輸損失特性、5G行動通訊高移動性特性,整合異質光纖寬頻網路、無線光通訊FSO及第五代行動通訊,建構傳輸訊號品質良好之光纖寬頻/無線光通訊FSO/5G Sub-6GHz/5G MMW整合接取系統;最終建構出第五代行動通訊光纖寬頻/無線光通訊異質整合接取網路系統,加速實現光世代第五代行動通訊高速、高寬頻異質網路整合路接取願景。 The invention is a "flexible/two-way fifth-generation mobile communication/fiber-optic broadband/wireless optical communication integrated access system", an integrated access network system that combines fiber-optic broadband network, wireless optical communication FSO, and fifth-generation mobile communication (5G) No matter it has a huge niche for the four major networks of telecommunications, cable TV, OTT and all smart Internet of Things, the impact and impact it will bring can be expected to be quite huge; therefore, for optical fiber broadband networks, It is necessary to conduct in-depth discussion and research on the heterogeneous integrated network access system of wireless optical communication FSO and fifth-generation mobile communication. More importantly, its transmission signal quality must be optimized to obtain fifth-generation mobile communication with good transmission signal quality. Optical fiber broadband/wireless optical communication heterogeneous integrated network access system. The invention plans and constructs a combination of optical fiber broadband network, wireless optical communication FSO and 5G high-speed mobile communication to transmit 5G Sub-6GHz and 5G MMW mixed signals on the broadband heterogeneous integrated access network, making full use of optical fiber access network, wireless optical Communication FSO and 5G mobile communication have the advantages of "broadband", "ultra-long distance transmission" and "high mobility". Based on the high bandwidth/low transmission loss characteristics of optical fiber, the high transmission capacity/free-space low transmission loss characteristics of wireless optical communication FSO, and the high mobility characteristics of 5G mobile communication, it integrates heterogeneous optical fiber broadband networks, wireless optical communication FSO and fifth-generation mobile communications , constructing a fiber optic broadband/wireless optical communication FSO/5G Sub-6GHz/5G MMW integrated access system with good transmission signal quality; and finally constructing a fifth-generation mobile communication fiber optic broadband/wireless optical communication heterogeneous integrated access network system to accelerate Realize the vision of integrated path access for high-speed, high-bandwidth heterogeneous networks of the fifth generation of mobile communications in the optical generation.

近年來,由於光通訊技術的發展日漸成熟,將光通訊應用於各領域為各家研究者極力發展的重點,因為光(纖)通訊以及無線光通訊FSO其優異的特性,如:高頻寬、低損耗、電絕緣以及無電磁干擾等...優點,並同時具有高傳輸速率,使得整體系統可以具有更佳的資料傳輸率,提升訊號傳輸品質。 In recent years, as the development of optical communication technology has become increasingly mature, the application of optical communication in various fields has become the focus of various researchers. Because of the excellent characteristics of optical (fiber) communication and wireless optical communication FSO, such as: high bandwidth, low It has the advantages of loss, electrical insulation and no electromagnetic interference, and at the same time has a high transmission rate, so that the overall system can have a better data transmission rate and improve the signal transmission quality.

在光纖通訊方面,在新型態的傳輸系統,像是主動式光纜,目前已用來取代傳統電纜在數據中心中雲端伺服器的使用。憑藉著光纖的高容量及低損耗,主動式光纜在光發送機內部的使用可提供資料傳輸速率至10Gbps或更高的雲端通訊,隨著主動式光纜在數據中心逐漸的使用,數據傳輸量有著顯著的提升以及延伸了傳輸的距離。 In terms of optical fiber communications, new types of transmission systems, such as active optical cables, are currently used to replace traditional cables in cloud servers in data centers. Relying on the high capacity and low loss of optical fiber, the use of active optical cables inside optical transmitters can provide cloud communications with data transmission rates of 10Gbps or higher. With the gradual use of active optical cables in data centers, the amount of data transmission has increased. Significant improvement and extended transmission distance.

在無線光通訊目前已經具有良好的光學特性及方便架設,並且克服許多射頻無線通訊的限制,例如:資料量傳輸限制、自由空間距離傳輸限制。在實際應用上,高速資料量傳輸為無線光通訊的首要設計考量,近來長距離、快速以及高資料傳輸率的無線光通訊FSO的通訊需求被逐漸重視。 Wireless optical communications currently have good optical properties and are easy to set up, and overcome many limitations of radio frequency wireless communications, such as data volume transmission limitations and free space distance transmission limitations. In practical applications, high-speed data transmission is the primary design consideration for wireless optical communications. Recently, the communication needs of long-distance, fast and high data transmission rate wireless optical communications FSO have been gradually paid attention to.

鑑於先前技術所述,本發明之目的在於透過結合第五代行動通訊、光纖寬頻網路、無線光通訊FSO建構出「彈性/雙向 第五代行動通訊/光纖寬頻/無線光通訊 整合接取系統」。 In view of the prior art, the purpose of the present invention is to construct a "flexible/two-way fifth generation mobile communication/fiber broadband/wireless optical communication integrated access system by combining fifth generation mobile communication, optical fiber broadband network, and wireless optical communication FSO" ”.

本發明「彈性/雙向 第五代行動通訊/光纖寬頻/無線光通訊 整合接取系統」,利用相位調變器及DFB雷射二極體建構雙向無線光通訊 FSO傳輸系統,下行訊號傳輸是利用相位調變器調變並傳送1-Gb/s/4.5-GHz 5G sub-6GHz 16-QAM-OFDM/10-Gb/s/28-GHz 5G MMW訊號,並且在經由600m free-space傳輸後對接收端DFB雷射二極體做遠端注入、以達到相位調變轉強度調變(PM-to-IM)功能;而上行訊號傳輸則是利用接收端DFB雷射二極體直接調變傳送10-Gb/s 16-QAM-OFDM訊號,經由60m free-space上傳。就下行訊號傳輸而言,接收端DFB雷射二極體同時具備相位調變轉強度調變及光電轉換(O/E)機制;而就上行訊號傳輸而言,DFB雷射二極體則為訊號光源。以DFB雷射二極體取代相位調變轉強度調變機制及光檢測器(PD)功能,大大降低了系統建構上之成本及複雜度,我們利用以下三大機制來完成。 This invention's "flexible/two-way fifth-generation mobile communication/fiber broadband/wireless optical communication integrated access system" uses phase modulators and DFB laser diodes to construct two-way wireless optical communication FSO transmission system, downlink signal transmission uses a phase modulator to modulate and transmit 1-Gb/s/4.5-GHz 5G sub-6GHz 16-QAM-OFDM/10-Gb/s/28-GHz 5G MMW signals, and After transmitting through 600m free-space, the receiving end DFB laser diode is remotely injected to achieve the phase modulation to intensity modulation (PM-to-IM) function; while the uplink signal transmission uses the receiving end DFB Laser diodes directly modulate and transmit 10-Gb/s 16-QAM-OFDM signals, which are uploaded via 60m free-space. For downlink signal transmission, the DFB laser diode at the receiving end has both phase modulation and intensity modulation and optical/electrical conversion (O/E) mechanisms; while for uplink signal transmission, the DFB laser diode is Signal light source. Using DFB laser diodes to replace the phase modulation to intensity modulation mechanism and photodetector (PD) function greatly reduces the cost and complexity of system construction. We use the following three mechanisms to complete it.

4.5-GHz 5G Sub-6GHz/5G 24-GHz/28-GHz MMW訊號產生機制,利用Dual-Arm MZM載送1-Gb/s/4.5-GHz及10-Gb/s/28-GHz 5G MMW訊號,適當的控制所輸入的1-Gb/s/4.5-GHz及10-Gb/s/28-GHz 5G MMW訊號強度以使Dual-Arm MZM輸出光訊號分別產生±1階載波輸出(1-Gb/s/4.5-GHz)及(10-Gb/s/28-GHz)(圖2(a))。對於一個光訊號調變系統而言,其電場強度E(t)可表示為: 4.5-GHz 5G Sub-6GHz/5G 24-GHz/28-GHz MMW signal generation mechanism, using Dual-Arm MZM to carry 1-Gb/s/4.5-GHz and 10-Gb/s/28-GHz 5G MMW signals , appropriately control the input 1-Gb/s/4.5-GHz and 10-Gb/s/28-GHz 5G MMW signal strengths so that the Dual-Arm MZM output optical signal can generate ±1-order carrier output (1-Gb /s/4.5-GHz) and (10-Gb/s/28-GHz) (Figure 2(a)). For an optical signal modulation system, its electric field strength E(t) can be expressed as:

Figure 111118260-A0101-12-0003-1
其中M:OMI、f m :訊號調變頻率、β:FMI、
Figure 111118260-A0101-12-0003-2
:相位延遲。當M(OMI)越大時(5G MMW訊號強度越大時),光訊號輸出波載波數(階數)越多、側模振幅越大;反之,當M(OMI)越小時(5G MMW訊號強度越小時),光訊號輸出波載波數(階數)越少、側模振幅越小。為了得到適當的載波數(階數)輸出,Dual-Arm MZM的兩側OMI值必須適當的控制在一定的大小;若要得 到多載波(階數)輸出,就需要做深度調變(large OMI);反之若不需多載波(階數)輸出,只需要做淺度調變(small OMI)即可。當彈性/動態5G Sub-6GHz/5G MMW選取機制選取中心載波及4.5GHz一階載波時,系統衍生出5G 4.5-GHz 5G Sub-6GHz訊號(圖3(b));當彈性/動態5G Sub-6GHz/5G MMW選取機制選取中心載波及28GHz一階載波時,系統衍生出5G 28-GHz MMW訊號(圖3(c));而當彈性/動態5G Sub-6GHz/5G MMW選取機制只選取中心載波時,系統衍生出中心載波提供做為上行傳輸光訊號源(圖3(d))。
Figure 111118260-A0101-12-0003-1
Among them, M : OMI, f m : signal modulation frequency, β : FMI,
Figure 111118260-A0101-12-0003-2
: Phase delay. When M (OMI) is larger (5G MMW signal strength is greater), the optical signal output wave carrier number (order) is more and the side mode amplitude is larger; conversely, when M (OMI) is smaller (5G MMW signal The smaller the intensity), the fewer the optical signal output wave carrier number (order) and the smaller the side mode amplitude. In order to obtain an appropriate carrier number (order) output, the OMI values on both sides of the Dual-Arm MZM must be appropriately controlled to a certain size; if you want to obtain a multi-carrier (order) output, you need to perform deep modulation (large OMI ); On the contrary, if multi-carrier (order) output is not required, only shallow modulation (small OMI) is required. When the flexible/dynamic 5G Sub-6GHz/5G MMW selection mechanism selects the center carrier and the 4.5GHz first-order carrier, the system derives a 5G 4.5-GHz 5G Sub-6GHz signal (Figure 3(b)); when the flexible/dynamic 5G Sub When the -6GHz/5G MMW selection mechanism selects the center carrier and the 28GHz first-order carrier, the system derives a 5G 28-GHz MMW signal (Figure 3(c)); while when the flexible/dynamic 5G Sub-6GHz/5G MMW selection mechanism only selects When the center carrier is used, the system derives the center carrier to serve as the uplink transmission optical signal source (Figure 3(d)).

利用VCSEL建構彈性/動態5G Sub-6GHz/5G MMW選取機制,我們構思利用VCSEL主模態波長來匹配不同階數之光載波,但如此一來需要不同主模態波長的VCSEL才能完成,然而這樣將會需要多顆VCSELs、相對的也提高了系統的建置成本與複雜度。我們提出透過調整VCSEL的驅動電流,使有效的移動VCSEL主模態之波長,使其能彈性、動態地匹配所對應之不同階數之光載波、且也可因此降低系統的建置成本與複雜度。而利用VCSEL所建構之彈性/動態5G Sub-6GHz/5G MMW選取機制(VCSEL-based 5G Sub-6GHz/5G MMW Selector),其架構及運作功能詳如圖5所示。為了能夠同時提供、選取5G Sub-6GHz/5G MMW下行光訊號及上行光載波,使用了兩個並聯的VCSEL所建構之5G Sub-6GHz/5G MMW選取機制,其中一個用來選取5G Sub-6GHz/5G MMW下行光訊號、而另一個則是用來提供上行光載波。經由光循環器(OC)將Dual-Arm MZM調變後之4.5-GHz/28-GHz MMW光訊號注入至VCSEL,如果Dual-Arm MZM調變光訊號之某一階數光載波與VCSEL之主模態相互匹配,則該階數光載波將產 生外部光源注入效應、光訊號強度將被提昇、放大,而其他階數之光載波將被有效抑制,如此一來即可彈性/動態地選取中心載波、4.5-GHz 5G Sub-6GHz或5G 28-GHz MMW。 Using VCSEL to construct a flexible/dynamic 5G Sub-6GHz/5G MMW selection mechanism, we conceive of using VCSEL main mode wavelengths to match different orders of optical carriers, but this requires VCSELs with different main mode wavelengths to complete. However, this Multiple VCSELs will be required, which will also increase the construction cost and complexity of the system. We propose that by adjusting the driving current of the VCSEL, we can effectively move the wavelength of the main mode of the VCSEL, so that it can flexibly and dynamically match the corresponding optical carriers of different orders, and this can also reduce the construction cost and complexity of the system. Spend. The flexible/dynamic 5G Sub-6GHz/5G MMW selection mechanism (VCSEL-based 5G Sub-6GHz/5G MMW Selector) constructed using VCSEL has its architecture and operational functions as shown in Figure 5. In order to provide and select 5G Sub-6GHz/5G MMW downlink optical signals and uplink optical carriers at the same time, a 5G Sub-6GHz/5G MMW selection mechanism constructed by two parallel VCSELs is used, one of which is used to select 5G Sub-6GHz /5G MMW downlink optical signal, and the other is used to provide uplink optical carrier. The 4.5-GHz/28-GHz MMW optical signal modulated by Dual-Arm MZM is injected into the VCSEL through the optical circulator (OC). If a certain order optical carrier of the Dual-Arm MZM modulated optical signal is connected to the VCSEL If the modes match each other, the optical carrier of this order will produce Due to the external light source injection effect, the optical signal intensity will be enhanced and amplified, while other orders of optical carriers will be effectively suppressed, so that the center carrier, 4.5-GHz 5G Sub-6GHz or 5G 28 can be flexibly/dynamically selected. -GHz MMW.

OCSR(Optical Carrier-to-Sideband Ratio)優化,上行傳送為利用相位調變器載送5G 24-GHz MMW光訊號,利用遠端注入鎖模技術將此相位調變光訊號注入到接收端DFB雷射二極體後產生相位調變轉強度調變及光電轉換效應,使得相位調變光訊號轉換成強度調變光訊號、並予以接收轉換成電訊號;DFB LD藉由遠端注入鎖模技術用來取代傳統的PM-to-IM轉換器與PD之功能。遠端注入鎖模效應發生時,DFB雷射二極體不但具有原本光訊號發射功能,同時亦具有光訊號接收功能;不僅能將電訊號轉換成上行光訊號,同時亦可接收、解調下行光訊號。當相位調變光訊號(圖4(a))轉換成強度調變光訊號時,其中的一階(+1階或-1階)光載波位準將被提昇、放大,而另外一階(-1階或+1階)光載波位準將被抑制。當光載波位準被提昇、放大到與中心載波位準一樣大小時(OCSR=0dB)(圖4(b)),上行訊號傳輸系統將會得到最佳的傳輸訊號品質,也就是最低的BER和EVM、以及最清晰的眼圖。所以為了讓上行傳輸有最佳的傳輸訊號品質,我們必須優化相位調變轉強度調變時所衍生的OCSR值,也就是必須適當調的整注入光訊號光功率值及波長值(optimum injection)、以得到最佳的OCSR值及最佳的上行傳輸訊號品質。 OCSR (Optical Carrier-to-Sideband Ratio) optimization, the uplink transmission uses a phase modulator to carry the 5G 24-GHz MMW optical signal, and uses remote injection mode locking technology to inject this phase modulated optical signal into the receiving end DFB thunder After emitting the diode, the phase modulation to intensity modulation and photoelectric conversion effects are generated, so that the phase modulation optical signal is converted into an intensity modulation optical signal, and is received and converted into an electrical signal; DFB LD uses remote injection mode locking technology Used to replace the functions of traditional PM-to-IM converters and PDs. When the remote injection mode-locking effect occurs, the DFB laser diode not only has the original function of transmitting optical signals, but also has the function of receiving optical signals. It can not only convert electrical signals into uplink optical signals, but also receive and demodulate downlink signals. light signal. When the phase modulated optical signal (Figure 4(a)) is converted into an intensity modulated optical signal, the level of the first order (+1 order or -1 order) optical carrier will be promoted and amplified, while the level of the other order (-1 order) will be 1st order or +1st order) optical carrier level will be suppressed. When the optical carrier level is raised and amplified to the same size as the center carrier level (OCSR=0dB) (Figure 4(b)), the uplink signal transmission system will obtain the best transmission signal quality, that is, the lowest BER and EVM, and the clearest eye diagram. Therefore, in order to have the best transmission signal quality for uplink transmission, we must optimize the OCSR value derived when phase modulation is converted to intensity modulation, that is, the optical power value and wavelength value of the injected optical signal must be appropriately adjusted (optimum injection) , to obtain the best OCSR value and the best uplink transmission signal quality.

201(a),201(b):分布反饋式雷射二極體 201(a),201(b): Distributed feedback laser diode

202(a),202(b),202(c):極化控制器 202(a), 202(b), 202(c): Polarization controller

203(a):雙臂馬赫曾德爾強度調變器 203(a): Two-arm Mach-Zehnder intensity modulator

204(a),204(b),204(c):調變器驅動器 204(a),204(b),204(c): Modulator driver

205(a),205(b):摻鉺光纖放大器 205(a),205(b): Erbium-doped fiber amplifier

206(a),206(b):可調光衰減器 206(a),206(b): Adjustable light attenuator

207(a),207(b),207(c):光循環器 207(a),207(b),207(c): Optical circulator

208(a),208(b):雙合透鏡 208(a),208(b):Double lens

209:垂直共振腔面射型雷射 209: Vertical resonant cavity surface emitting laser

210(a),210(b),210(c):射頻功率放大器 210(a), 210(b), 210(c): Radio frequency power amplifier

211(a),211(b):K-Band號角天線 211(a),211(b):K-Band horn antenna

212(a),212(b),212(c):包絡檢波器 212(a),212(b),212(c): Envelope detector

213(a),213(b),213(c):低雜訊驅動器 213(a),213(b),213(c): Low noise driver

214(a),214(b):數位儲存示波器 214(a), 214(b): Digital storage oscilloscope

215(a),215(b):誤碼率分析儀 215(a),215(b): Bit error rate analyzer

216(a),216(b):4.5GHz基地台天線 216(a),216(b):4.5GHz base station antenna

217(a),217(b):Ka-Band號角天線 217(a),217(b):Ka-Band horn antenna

218(a),218(b):光檢測器 218(a),218(b): Photodetector

219:相位調變器 219:Phase modulator

圖1:第五代/行動通訊光纖寬頻/無線光通訊整合(Fiber-FSO-5G/6G Convergence)接取系統。 Figure 1: Fifth generation/mobile communication optical fiber broadband/wireless optical communication integration (Fiber-FSO-5G/6G Convergence) access system.

圖2:彈性/動態 雙向光纖寬頻/無線光通訊FSO/5G MMW/6G Sub-THz整合系統。 Figure 2: Flexible/dynamic two-way optical fiber broadband/wireless optical communication FSO/5G MMW/6G Sub-THz integrated system.

圖3:(a)通過VCSEL波長選擇器前的光譜。 Figure 3: (a) Spectrum before passing through the VCSEL wavelength selector.

(b)利用鎖模注入技術增加了下邊帶的強度(1-Gb/s/4.5-GHz 5G sub-6GHz資料訊號)。 (b) Using mode-locked injection technology to increase the strength of the lower sideband (1-Gb/s/4.5-GHz 5G sub-6GHz data signal).

(c)利用鎖模注入技術增加了下邊帶的強度(10-Gb/s/28-GHz 5G MMW資料訊號)。 (c) Using mode-locked injection technology to increase the strength of the lower sideband (10-Gb/s/28-GHz 5G MMW data signal).

(d)利用鎖模注入技術增強了中心載波的強度。 (d) The intensity of the central carrier is enhanced using mode-locked injection technology.

圖4:(a)利用鎖模注入前的光譜。 Figure 4: (a) Spectrum before injection using mode locking.

(b)利用鎖模注入增強了上邊帶的強度。 (b) The strength of the upper sideband is enhanced using mold-locked injection.

圖5:(a)鎖模注入前的光譜。 Figure 5: (a) Spectrum before mode-locked injection.

(b)利用鎖模注入技術增強了上邊帶的強度。 (b) The strength of the upper sideband is enhanced using mold-locked injection technology.

圖6:(a)1-Gb/s/4.5-GHz 5G sub-6GHz資料訊號在不同場景下的誤碼率性能。 Figure 6: (a) Bit error rate performance of 1-Gb/s/4.5-GHz 5G sub-6GHz data signals in different scenarios.

(b)通過25km SMF傳輸的眼圖。 (b) Eye diagram of transmission via 25km SMF.

(c)通過25km SMF、600m FSO鏈路及10m RF無線傳輸狀態下的眼圖。 (c) Eye diagram through 25km SMF, 600m FSO link and 10m RF wireless transmission.

圖7:(a)10-Gb/s/28-GHz 5G MMW資料訊號在不同場景下的誤碼率性能。 Figure 7: (a) Bit error rate performance of 10-Gb/s/28-GHz 5G MMW data signals in different scenarios.

(b)通過25km SMF傳輸的眼圖。 (b) Eye diagram of transmission via 25km SMF.

(c)通過25km SMF、600m FSO鏈路及4m RF無線傳輸狀態下的眼圖。 (c) Eye diagram through 25km SMF, 600m FSO link and 4m RF wireless transmission.

圖8:上行10-Gb/s/24-GHz 5G MMW資料訊號在 Figure 8: Uplink 10-Gb/s/24-GHz 5G MMW data signal in

(a)022nm波長失諧和3dBm注入條件下的眼圖。 (a) Eye diagram under 022nm wavelength detuning and 3dBm injection conditions.

(b)0.22nm波長失諧和-3dBm注入條件下的眼圖。 (b) Eye diagram under 0.22nm wavelength detuning and -3dBm injection conditions.

(c)0.42nm波長失諧。 (c) 0.42nm wavelength detuning.

圖9:(a)40-Gb/s/50-GHz(5G MMW下行) Figure 9: (a) 40-Gb/s/50-GHz (5G MMW downlink)

(b)40-Gb/s/100-GHz(6G Sub-THz下行) (b)40-Gb/s/100-GHz (6G Sub-THz downlink)

(c)40-Gb/s/200-GHz(6G Sub-THz下行) (c)40-Gb/s/200-GHz (6G Sub-THz downlink)

(d)10-Gb/s/24-GHz(5G MMW上行)16-QAM-OFDM星座圖及其對應誤碼率值。 (d) 10-Gb/s/24-GHz (5G MMW uplink) 16-QAM-OFDM constellation diagram and its corresponding bit error rate value.

「彈性/雙向 第五代行動通訊/光纖寬頻/無線光通訊 整合接取系統」,其系統架構如圖2所示,圖2展示了我們的「彈性/雙向 第五代行動通訊/光纖寬頻/無線光通訊 整合接取系統」的配置,該系統具有203(a),可提供下行強度調變的1-Gb/s/4.5-GHz sub-6GHz和10-Gb/s/28-GHz 5G MMW混合資料訊號,以及用於傳輸上行相位再調變10-Gb/s/24-GHz 5G MMW資料訊號的相位調變器。使用202(a)進行偏振後,中心波長為1540.62nm(λ1)的201(a)在203(a)上應用光載波。1-Gb/s不歸零(NRZ)數據流與4.5-GHz MW載波混合以創建1-Gb/s/4.5-GHz 5G sub-6GHz資料訊號。通過204(a)後,這個1-Gb/s/4.5-GHz 5G sub-6GHz資料訊號驅動203(a)的一個臂。此外,10-Gb/s NRZ數據流與28-GHz MMW載波混合以產生10-Gb/s/28-GHz 5G MMW資料訊號。通過204(b)後,此10-Gb/s/28-GHz MMW資料訊號驅動203(a)的另一臂。在這裡,我們在調變 光調變器之前將數據和電載波混合。鑑於在203(a)中提供了適當的5G sub-6GHz和MMW混合資料訊號,僅產生一階邊帶,波長間隔為4.5GHz(0.036nm)和28GHz(0.224nm)。使用202(b)進行極化後,1-Gb/s/4.5-GHz sub-6GHz和10-Gb/s/28-GHz MMW混合資料訊號由205(a)增強,並由206(a)優化光纖鏈路中提供的光功率,以獲得最佳傳輸性能,由207(a)循環,並在25公里SMF鏈路上進行通信。之後,光訊號使用208(a)208(b)通過600m FSO鏈路傳輸。在兩側採用多個平面鏡,雷射的FSO距離增加到600m(50m×12)。通過25.6km(25km SMF+600m FSO)的光有線-無線鏈路,光訊號由207(b)循環,然後提供給基於VCSEL的波長選擇器,以自適應地選擇其中一個光訊號。這種基於VCSEL的波長選擇器由207(c)、202(c)和209組成。鑑於VCSEL隨溫度變化的波長偏移為0.02nm/℃,因此在基於VCSEL的波長選擇器中採用溫度控制器來克服溫度變化引起的波長偏移問題。對於上行路徑,波長選擇器自適應地選擇1-Gb/s/4.5-GHz 5G sub-6GHz資料訊號。圖3(a)顯示了通過波長選擇器之前的光譜。鎖模注入增加了下邊帶的強度並產生如圖3(b)所示的光譜。1-Gb/s/4.5-GHz sub-6GHz資料訊號接下來由5-GHz 218(a)檢測,並由具有4.4-5.0GHz頻率範圍的210(b)放大,並通過一組216(a)216(b)進行無線傳輸。在10m射頻無線鏈路之後,1-Gb/s/4.5-GHz sub-6GHz資料訊號由頻率範圍為0.5-43.5GHz的212(b)檢測,並由具有DC-40GHz頻率範圍的213(b)驅動。驅動後,將1-Gb/s NRZ數據流應用到215(a)以測量BER值。此外,還部署了數位儲存示波器214(b)來捕捉1Gb/s NRZ數據流的眼圖。對於中間路徑,波長選擇器自適應選擇10-Gb/s/28-GHz 5G MMW資料訊號。鎖模注入提 高了下邊帶的強度並產生如圖3(c)所示的光譜。然後,10-Gb/s/28-GHz MMW資料訊號由30-GHz 218(b)接收,並由具有27-31GHz頻率範圍的210(c)放大,並通過一對217(a)217(b)進行無線傳輸。在4m射頻無線傳輸之後,10Gb/s/28GHz MMW資料訊號由212(c)檢測並由213(c)驅動。之後,10-Gb/s NRZ數據流被發送到215(b)進行BER性能分析。此外,214(b)用於捕獲10Gb/s NRZ數據流的眼圖。對於較低的路徑,波長選擇器自適應地選擇一個中心載波。鎖模注入增強了中心載波的強度並產生如圖3(d)所示的光譜。之後,增強的中央載波被相位調變器重用和重新調變,用於上行調變。 "Flexible/two-way fifth-generation mobile communication/fiber-optic broadband/wireless optical communication integrated access system", its system architecture is shown in Figure 2. Figure 2 shows our "flexible/two-way fifth-generation mobile communication/fiber-optic broadband/ "Wireless Optical Communications Integrated Access System" configuration, which has 203(a) and can provide 1-Gb/s/4.5-GHz sub-6GHz and 10-Gb/s/28-GHz 5G MMW with downlink intensity modulation Mixed data signals, and phase modulators for transmitting uplink phase re-modulated 10-Gb/s/24-GHz 5G MMW data signals. After using 202(a) for polarization, 201(a) with a center wavelength of 1540.62nm (λ1) applies an optical carrier on 203(a). A 1-Gb/s non-return-to-zero (NRZ) data stream is mixed with a 4.5-GHz MW carrier to create a 1-Gb/s/4.5-GHz 5G sub-6GHz data signal. After passing through 204(a), this 1-Gb/s/4.5-GHz 5G sub-6GHz data signal drives one arm of 203(a). In addition, the 10-Gb/s NRZ data stream is mixed with the 28-GHz MMW carrier to generate a 10-Gb/s/28-GHz 5G MMW data signal. After passing through 204(b), this 10-Gb/s/28-GHz MMW data signal drives the other arm of 203(a). Here we are modulating An optical modulator mixes the data and electrical carrier waves beforehand. Given that appropriate 5G sub-6GHz and MMW mixed data signals are provided in 203(a), only first-order sidebands are generated with wavelength separations of 4.5GHz (0.036nm) and 28GHz (0.224nm). After polarization using 202(b), 1-Gb/s/4.5-GHz sub-6GHz and 10-Gb/s/28-GHz MMW mixed data signals are enhanced by 205(a) and optimized by 206(a) The optical power provided in the fiber optic link for optimal transmission performance is cycled by 207(a) and communicated over a 25 km SMF link. After that, the optical signal is transmitted through the 600m FSO link using 208(a)208(b). Using multiple plane mirrors on both sides, the FSO distance of the laser is increased to 600m (50m×12). Through the 25.6km (25km SMF+600m FSO) optical wired-wireless link, the optical signal is circulated by 207(b) and then provided to the VCSEL-based wavelength selector to adaptively select one of the optical signals. This VCSEL-based wavelength selector consists of 207(c), 202(c) and 209. Since the wavelength shift of VCSEL with temperature changes is 0.02nm/°C, a temperature controller is used in the VCSEL-based wavelength selector to overcome the wavelength shift problem caused by temperature changes. For the upstream path, the wavelength selector adaptively selects 1-Gb/s/4.5-GHz 5G sub-6GHz data signals. Figure 3(a) shows the spectrum before passing through the wavelength selector. The mode-locked injection increases the intensity of the lower sideband and produces the spectrum shown in Figure 3(b). The 1-Gb/s/4.5-GHz sub-6GHz data signal is next detected by a 5-GHz 218(a), amplified by a 210(b) with a frequency range of 4.4-5.0GHz, and passed through a set of 216(a) 216(b) for wireless transmission. After the 10m RF wireless link, the 1-Gb/s/4.5-GHz sub-6GHz data signal is detected by the 212(b) with a frequency range of 0.5-43.5GHz and by the 213(b) with a DC-40GHz frequency range drive. After driving, apply the 1-Gb/s NRZ data stream to 215(a) to measure the BER value. In addition, a digital storage oscilloscope 214(b) was deployed to capture the eye diagram of the 1Gb/s NRZ data flow. For the intermediate path, the wavelength selector adaptively selects the 10-Gb/s/28-GHz 5G MMW data signal. Mold clamping injection This increases the intensity of the lower sideband and produces the spectrum shown in Figure 3(c). The 10-Gb/s/28-GHz MMW data signal is then received by the 30-GHz 218(b), amplified by the 210(c) with a frequency range of 27-31GHz, and passed through a pair of 217(a) 217(b) ) for wireless transmission. After 4m RF wireless transmission, the 10Gb/s/28GHz MMW data signal is detected by 212(c) and driven by 213(c). Afterwards, the 10-Gb/s NRZ data stream is sent to 215(b) for BER performance analysis. In addition, 214(b) is used to capture the eye diagram of the 10Gb/s NRZ data stream. For the lower path, the wavelength selector adaptively selects a center carrier. The mode-locked injection enhances the intensity of the central carrier and produces the spectrum shown in Figure 3(d). The enhanced center carrier is then reused and re-modulated by the phase modulator for uplink modulation.

對於上行調變,10-Gb/s/24-GHz 5G MMW資料訊號通過204(c),然後提供給219。上行光訊號由205(b)增強,由206(b)優化,由207(b)循環,並通過600m的FSO傳輸和25km的SMF傳輸進行通信。接下來,上行光訊號由207(a)循環並注入201(b)(λc=1540.40nm)以進行PM到IM轉換和O/E轉換。遠程鎖模注入之前的光譜如圖4(a)所示。遠程鎖模注入增加了上邊帶的強度並產生如圖4(b)中預期的光譜。然後,10-Gb/s/24-GHz 5G MMW資料訊號由具有17-24GHz頻率範圍的210(a)放大,並由一對211(a)211(b)。通過4m RF無線鏈路,資料訊號由212(a)包絡檢測並由213(a)增強。最後,10Gb/s NRZ數據流的眼圖由214(a)量測。 For uplink modulation, the 10-Gb/s/24-GHz 5G MMW data signal passes through 204(c) and is then provided to 219. The uplink optical signal is enhanced by 205(b), optimized by 206(b), recycled by 207(b), and communicated through 600m FSO transmission and 25km SMF transmission. Next, the uplink optical signal is circulated from 207(a) and injected into 201(b) (λc=1540.40nm) for PM to IM conversion and O/E conversion. The spectrum before remote mode-locked injection is shown in Figure 4(a). Remote mode-locked injection increases the intensity of the upper sideband and produces the spectrum expected in Figure 4(b). The 10-Gb/s/24-GHz 5G MMW data signal is then amplified by 210(a) with a frequency range of 17-24GHz and coupled by a pair of 211(a)211(b). Over the 4m RF wireless link, the data signal is detected by the 212(a) envelope and enhanced by the 213(a). Finally, the eye diagram of the 10Gb/s NRZ data stream is measured by 214(a).

201(a),201(b):分布反饋式雷射二極體 201(a),201(b): Distributed feedback laser diode

202(a),202(b),202(c):極化控制器 202(a), 202(b), 202(c): Polarization controller

203(a):雙臂馬赫曾德爾強度調變器 203(a): Two-arm Mach-Zehnder intensity modulator

204(a),204(b),204(c):調變器驅動器 204(a),204(b),204(c): Modulator driver

205(a),205(b):摻鉺光纖放大器 205(a),205(b): Erbium-doped fiber amplifier

206(a),206(b):可調光衰減器 206(a),206(b): Adjustable light attenuator

207(a),207(b),207(c):光循環器 207(a),207(b),207(c): Optical circulator

208(a),208(b):雙合透鏡 208(a),208(b):Double lens

209:垂直共振腔面射型雷射 209: Vertical resonant cavity surface emitting laser

210(a),210(b),210(c):射頻功率放大器 210(a), 210(b), 210(c): Radio frequency power amplifier

211(a),211(b):K-Band號角天線 211(a),211(b):K-Band horn antenna

212(a),212(b),212(c):包絡檢波器 212(a),212(b),212(c): Envelope detector

213(a),213(b),213(c):低雜訊驅動器 213(a),213(b),213(c): Low noise driver

214(a),214(b):數位儲存示波器 214(a), 214(b): Digital storage oscilloscope

215(a),215(b):誤碼率分析儀 215(a),215(b): Bit error rate analyzer

216(a),216(b):4.5GHz基地台天線 216(a),216(b):4.5GHz base station antenna

217(a),217(b):Ka-Band號角天線 217(a),217(b):Ka-Band horn antenna

218(a),218(b):光檢測器 218(a),218(b): Photodetector

219:相位調變器 219:Phase modulator

Claims (9)

一種彈性/雙向 第五代行動通訊/光纖寬頻/無線光通訊 整合接取系統,包括: A flexible/two-way fifth generation mobile communication/fiber broadband/wireless optical communication integrated access system, including: 一下行傳輸系統,可提供下行強度調變的1-Gb/s/4.5-GHz sub-6GHz和10-Gb/s/28-GHz 5G MMW混合資料訊號;以及 A downlink transmission system that can provide downlink intensity modulated 1-Gb/s/4.5-GHz sub-6GHz and 10-Gb/s/28-GHz 5G MMW mixed data signals; and 一上行傳輸系統,可提供傳輸上行相位再調變10-Gb/s/24-GHz 5G MMW資料訊號的相位調變器。 An uplink transmission system can provide a phase modulator for transmitting uplink phase re-modulation of 10-Gb/s/24-GHz 5G MMW data signals. 如申請專利範圍請求項1所述的彈性/雙向 第五代行動通訊/光纖寬頻/無線光通訊 整合接取系統,其中該下行傳輸系統包括: As described in claim 1 of the patent application, the flexible/two-way fifth-generation mobile communication/fiber broadband/wireless optical communication integrated access system, wherein the downlink transmission system includes: 一下行發射系統;以及 a downlink launch system; and 一下行接收系統。 Downstream receiving system. 如申請專利範圍請求項2所述的下行傳輸系統,其中該下行發射系統包括: The downlink transmission system as described in claim 2 of the patent application, wherein the downlink transmission system includes: 一分布反饋式雷射二極體;以及 a distributed feedback laser diode; and 一第一極化控制器,耦接第一分布反饋式雷射二極體,用以調整該資料光波的偏振方向;以及 a first polarization controller coupled to the first distributed feedback laser diode for adjusting the polarization direction of the data light wave; and 一雙臂馬赫曾德爾強度調變器,耦接第一極化控制器與2個調變器驅動器,用以將1-Gb/s/4.5-GHz 5G sub-6GHz資料訊號,以及10-Gb/s/28-GHz 5G MMW資料訊號,將數據和電載波混合;以及 A pair of dual-arm Mach-Zehnder intensity modulators coupled to the first polarization controller and two modulator drivers to convert 1-Gb/s/4.5-GHz 5G sub-6GHz data signals to 10-Gb /s/28-GHz 5G MMW data signal, which mixes data and electrical carriers; and 一第二極化控制器,耦接雙臂馬赫曾德爾強度調變器,用以調整該資料光波的偏振方向;以及 a second polarization controller coupled to the dual-arm Mach-Zehnder intensity modulator for adjusting the polarization direction of the data light wave; and 一第一摻鉺光纖放大器,耦接第二極化控制器,用以增強光功率;以及 a first erbium-doped fiber amplifier coupled to the second polarization controller for enhancing optical power; and 一第一可調光衰減器,耦接第一摻鉺光纖放大器,用以優化光纖鏈路中提供的光功率,以獲得最佳傳輸性能;以及 a first adjustable optical attenuator, coupled to the first erbium-doped fiber amplifier, for optimizing the optical power provided in the optical fiber link to obtain the best transmission performance; and 一第一光循環器,耦接第一可調光衰減器,用以引導該資料光波與該第一預設光波的光傳輸方向;以及 a first optical circulator, coupled to the first adjustable optical attenuator, for guiding the optical transmission direction of the data light wave and the first preset light wave; and 一25km單模光纖,耦接第一光循環器;以及 A 25km single-mode optical fiber, coupled to the first optical circulator; and 一600m無線光通訊鏈路,耦接25km單模光纖;以及 A 600m wireless optical communication link coupled to 25km single-mode optical fiber; and 一第二光循環器,耦接600m無線光通訊,用以引導該資料光波與該第一預設光波的光傳輸方向;以及 a second optical circulator, coupled to 600m wireless optical communication, for guiding the optical transmission direction of the data light wave and the first preset light wave; and 一VCSEL的波長選擇器,耦接第二光循環器,以自適應地選擇其中一個光訊號,進入任一下行接收系統。 A VCSEL wavelength selector is coupled to the second optical circulator to adaptively select one of the optical signals to enter any downstream receiving system. 如申請專利範圍請求項2所述的下行傳輸系統,其中該下行接收系統包括: The downlink transmission system as described in claim 2 of the patent application, wherein the downlink receiving system includes: 一1-Gb/s/4.5-GHz sub-6GHz接收系統;以及 a 1-Gb/s/4.5-GHz sub-6GHz receiving system; and 一10-Gb/s/28-GHz 5G MMW接收系統。 A 10-Gb/s/28-GHz 5G MMW receiving system. 如申請專利範圍請求項4所述的下行接收系統,其中該1-Gb/s/4.5-GHz sub-6GHz接收系統包括: The downlink receiving system as described in claim 4 of the patent application, wherein the 1-Gb/s/4.5-GHz sub-6GHz receiving system includes: 一5GHz光檢測器,耦接下行發射系統,用以光電轉換;以及 A 5GHz photodetector, coupled to the downlink transmitting system for photoelectric conversion; and 一第二射頻功率放大器,耦接5GHz光檢測器,用以做功率放大;以及 a second radio frequency power amplifier coupled to the 5GHz photodetector for power amplification; and 一4.5GHz基地台天線,耦接第二射頻功率放大器,用以做10m的射頻無線傳輸;以及 A 4.5GHz base station antenna coupled to the second radio frequency power amplifier for 10m radio frequency wireless transmission; and 一第二包絡檢波器,耦接4.5GHz基地台天線;以及 a second envelope detector coupled to the 4.5GHz base station antenna; and 一第二低雜訊驅動器,耦接第二包絡檢波器;以及 a second low-noise driver coupled to the second envelope detector; and 一誤碼率分析儀,耦接第二低雜訊驅動器,用以測量BER值;以及 a bit error rate analyzer coupled to the second low-noise driver for measuring the BER value; and 一數位儲存示波器,耦接第二低雜訊驅動器,用以查看訊號眼圖。 A digital storage oscilloscope is coupled to the second low-noise driver to view the signal eye diagram. 如申請專利範圍請求項4所述的下行接收系統,其中該10-Gb/s/28-GHz 5G MMW接收系統包括: The downlink receiving system as described in claim 4 of the patent application, wherein the 10-Gb/s/28-GHz 5G MMW receiving system includes: 一30GHz光檢測器,耦接下行發射系統,用以光電轉換;以及 A 30GHz photodetector, coupled to the downlink emission system for photoelectric conversion; and 一第三射頻功率放大器,耦接30GHz光檢測器,用以做功率放大;以及 a third radio frequency power amplifier, coupled to the 30GHz photodetector, for power amplification; and 一Ka-Band號角天線,耦接第三射頻功率放大器,用以做4m的射頻無線傳輸;以及 A Ka-Band horn antenna, coupled to a third radio frequency power amplifier, used for 4m radio frequency wireless transmission; and 一第三包絡檢波器,耦接Ka-Band號角天線;以及 a third envelope detector coupled to the Ka-Band horn antenna; and 一第三低雜訊驅動器,耦接第三包絡檢波器;以及 a third low-noise driver coupled to the third envelope detector; and 一誤碼率分析儀,耦接第三低雜訊驅動器,用以測量BER值;以及 a bit error rate analyzer, coupled to the third low-noise driver, for measuring the BER value; and 一數位儲存示波器,耦接第三低雜訊驅動器,用以查看訊號眼圖。 A digital storage oscilloscope is coupled to the third low-noise driver to view the signal eye diagram. 如申請專利範圍請求項1所述的彈性/雙向 第五代行動通訊/光纖寬頻/無線光通訊 整合接取系統,其中該上行傳輸系統包括: As described in claim 1 of the patent application, the flexible/two-way fifth-generation mobile communication/fiber broadband/wireless optical communication integrated access system, wherein the uplink transmission system includes: 一上行發射系統;以及 an uplink transmitting system; and 一上行接收系統 An upstream receiving system 如申請專利範圍請求項7所述的上行傳輸系統,其中該上行發射系統包括: The uplink transmission system as described in claim 7 of the patent application, wherein the uplink transmission system includes: 一相位調變器,耦接調變器驅動器,用以將10-Gb/s/24-GHz 5G MMW資料訊號,將數據和電載波混合;以及 a phase modulator coupled to the modulator driver for mixing the 10-Gb/s/24-GHz 5G MMW data signal with data and electrical carriers; and 一第二摻鉺光纖放大器,耦接相位調變器,用以增強光功率;以及 a second erbium-doped fiber amplifier coupled to the phase modulator for enhancing optical power; and 一第二可調光衰減器,耦接第二摻鉺光纖放大器,用以優化光纖鏈路中提供的光功率,以獲得最佳傳輸性能;以及 a second adjustable optical attenuator coupled to the second erbium-doped fiber amplifier to optimize the optical power provided in the optical fiber link to obtain the best transmission performance; and 一第二光循環器,耦接第二可調光衰減器,用以引導該資料光波與該第三預設光波的光傳輸方向;以及 a second optical circulator, coupled to the second adjustable optical attenuator, for guiding the optical transmission direction of the data light wave and the third preset light wave; and 一600m無線光通訊鏈路,耦接第二光循環器;以及 A 600m wireless optical communication link coupled to the second optical circulator; and 一25km單模光纖,耦接600m無線光通訊鏈路;以及 A 25km single-mode optical fiber, coupled to a 600m wireless optical communication link; and 一第一光循環器,耦接25km單模光纖,用以引導該資料光波與該第二預設光波的光傳輸方向。 A first optical circulator, coupled to the 25km single-mode optical fiber, is used to guide the optical transmission direction of the data light wave and the second preset light wave. 如申請專利範圍請求項7所述的上行傳輸系統,其中該上行接收系統包括: The uplink transmission system as described in claim 7 of the patent application, wherein the uplink receiving system includes: 一第二分布反饋式雷射二極體,耦接上行發射系統,用以進行相位調變到強度調變的轉換和光電轉換;以及 a second distributed feedback laser diode, coupled to the uplink emission system, for conversion from phase modulation to intensity modulation and photoelectric conversion; and 一第一射頻功率放大器,耦接第二分布反饋式雷射二極體,用以做功率放大;以及 a first radio frequency power amplifier coupled to the second distributed feedback laser diode for power amplification; and 一K-Band號角天線,耦接第一射頻功率放大器,用以做4m的射頻無線傳輸;以及 A K-Band horn antenna, coupled to the first radio frequency power amplifier, used for 4m radio frequency wireless transmission; and 一第一包絡檢波器,耦接K-Band號角天線;以及 a first envelope detector coupled to the K-Band horn antenna; and 一第一低雜訊驅動器,耦接第一包絡檢波器;以及 a first low-noise driver coupled to the first envelope detector; and 一數位儲存示波器,耦接第二低雜訊驅動器,用以查看訊號眼圖。 A digital storage oscilloscope is coupled to the second low-noise driver to view the signal eye diagram.
TW111118260A 2022-05-16 2022-05-16 A flexible bidirectional fiber-fso-5g wireless convergent system TW202347977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111118260A TW202347977A (en) 2022-05-16 2022-05-16 A flexible bidirectional fiber-fso-5g wireless convergent system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111118260A TW202347977A (en) 2022-05-16 2022-05-16 A flexible bidirectional fiber-fso-5g wireless convergent system

Publications (1)

Publication Number Publication Date
TW202347977A true TW202347977A (en) 2023-12-01

Family

ID=90039422

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111118260A TW202347977A (en) 2022-05-16 2022-05-16 A flexible bidirectional fiber-fso-5g wireless convergent system

Country Status (1)

Country Link
TW (1) TW202347977A (en)

Similar Documents

Publication Publication Date Title
Lu et al. An 8 m/9.6 Gbps underwater wireless optical communication system
Liu et al. 100 Gbit/s THz photonic wireless transmission in the 350-GHz band with extended reach
Zhao et al. 200 Gb/s FSO WDM communication system empowered by multiwavelength directly modulated TOSA for 5G wireless networks
Wu et al. A 448-Gb/s PAM4 FSO communication with polarization-multiplexing injection-locked VCSELs through 600 m free-space link
Shindo et al. High power and high speed SOA assisted extended reach EADFB laser (AXEL) for 53-Gbaud PAM4 fiber-amplifier-less 60-km optical link
Puerta et al. Optically generated single side-band radio-over-fiber transmission of 60Gbit/s over 50m at W-band
Lu et al. Bi-directional fiber-FSO-5G MMW/5G new radio sub-THz convergence
Ho et al. A 10m/10Gbps underwater wireless laser transmission system
Li et al. D-band millimeter wave generation and transmission though radio-over-fiber system
Khan et al. 4 m/100 Gb/s optical wireless communication based on far L–band injection locked quantum-dash laser
Sato et al. Radio-over-fiber transmission with optical power supply using a double-clad fiber
de Souza et al. Implementation of a full optically-powered 5G NR fiber-wireless system
Wang et al. A high-speed 84 Gb/s VSB-PAM8 VCSEL transmitter-based fiber–IVLLC integration
Bohata et al. Hybrid RoF-RoFSO system using directly modulated laser for 24–26 GHz 5G networks
CN111740781B (en) Device and method for generating W-band vector QPSK millimeter wave signal
Vallejo et al. Demonstration of M-QAM OFDM bidirectional 60/25 GHz transmission over 10 km Fiber, 100 m FSO and 2 m radio seamless heterogeneous fronthaul link
Tsai et al. Centralized-light-source two-way PAM8/PAM4 FSO communications with parallel optical injection locking operation
Ng’oma et al. Simple multi-Gbps 60 GHz radio-over-fiber links employing optical and electrical data up-conversion and feed-forward equalization
TW202347977A (en) A flexible bidirectional fiber-fso-5g wireless convergent system
Buchali et al. Amplifier less 400 Gb/s coherent transmission at short reach
Zhang et al. Aggregated 1.059 Tbit/s photonic-wireless transmission at 350 GHz over 10 meters
Van Gasse et al. 480Mbps/1 Gbps radio-over-fiber link based on a directly modulated III-V-on-silicon DFB laser
Shi et al. 84 GHz millimeter-wave PAM4 signal generation based on one PDM-MZM modulator and one polarizer without DAC and filters
Kuboki et al. Modal dispersion and feed light crosstalk mitigations by using center-and offset-launching for optically-powered radio-over-multimode fiber systems
Charbonnier et al. Photonics for broadband radio communications at 60 GHz in access and home networks