TW202347185A - Pre-screening and tuning heterojunctions for topological quantum computer - Google Patents

Pre-screening and tuning heterojunctions for topological quantum computer Download PDF

Info

Publication number
TW202347185A
TW202347185A TW111150105A TW111150105A TW202347185A TW 202347185 A TW202347185 A TW 202347185A TW 111150105 A TW111150105 A TW 111150105A TW 111150105 A TW111150105 A TW 111150105A TW 202347185 A TW202347185 A TW 202347185A
Authority
TW
Taiwan
Prior art keywords
semiconductor
superconductor
topological
heterojunction
data
Prior art date
Application number
TW111150105A
Other languages
Chinese (zh)
Inventor
迪米崔 皮庫林
馬森L 湯瑪士
切坦瓦索迪奧 奈雅客
羅曼米科拉耶維奇 盧欽
巴斯 尼霍爾特
伯納德 范赫克
艾斯特班阿德里安 馬丁內斯
喬治沃爾夫岡 溫克勒
吉斯貝圖斯 迪朗格
約翰大衛 華森
麥恩 泰穆漢
塞巴斯蒂安 赫德
托爾斯滕 卡爾齊格
維多利亞 斯維登科
羅曼貝拉 鮑爾
Original Assignee
美商微軟技術授權有限責任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/651,222 external-priority patent/US11808796B2/en
Application filed by 美商微軟技術授權有限責任公司 filed Critical 美商微軟技術授權有限責任公司
Publication of TW202347185A publication Critical patent/TW202347185A/en

Links

Abstract

A method to evaluate a semiconductor-superconductor heterojunction for use in a qubit register of a topological quantum computer includes (a) measuring one or both of a radio-frequency (radio frequency; RF) junction admittance of the semiconductor-superconductor heterojunction and a sub-RF conductance including a non-local conductance of the semiconductor-superconductor heterojunction, to obtain mapping data and refinement data; (b) finding by analysis of the mapping data one or more regions of a parameter space consistent with an unbroken topological phase of the semiconductor-superconductor heterojunction; and (c) finding by analysis of the refinement data a boundary of the unbroken topological phase in the parameter space and a topological gap of the semiconductor-superconductor heterojunction for at least one of the one or more regions of the parameter space.

Description

用於拓撲量子電腦的預篩選與調諧異質接面Prescreening and tuning heterojunctions for topological quantum computers

本申請案主張2021年3月16日申請之題為PRE-SCREENING AND TUNING HETEROJUNCTIONS FOR TOPOLOGICAL QUANTUM COMPUTER之美國臨時專利申請案第63/161,946號的優先權,其出於所有目的以全文引用之方式併入本文中。This application claims priority from U.S. Provisional Patent Application No. 63/161,946, entitled PRE-SCREENING AND TUNING HETEROJUNCTIONS FOR TOPOLOGICAL QUANTUM COMPUTER, filed on March 16, 2021, which is incorporated by reference in its entirety for all purposes. into this article.

本揭示案係關於用於拓撲量子電腦的預篩選及調諧異質接面。This disclosure is about prescreening and tuning heterojunctions for topological quantum computers.

量子電腦是經配置以執行基於量子力學現象或受量子力學現象影響的邏輯運算的實體機器。舉例而言,此類邏輯運算可包括數學計算。目前對於量子電腦技術的興趣源於有分析表明在應用於某些類型的問題時,具有適當配置的量子電腦的計算效率可能超過了任何實用的非量子電腦的計算效率。此等問題包括自然及合成量子系統的電腦模型化,整數分解,資料搜尋及應用於線性方程組及機器學習的函數最佳化。另外,吾人預測習知的電腦邏輯結構的持續小型化將最終引起關於表現出量子效應的奈米級邏輯部件的開發,並且必須根據量子計算原理來處理。A quantum computer is a physical machine configured to perform logical operations based on or affected by quantum mechanical phenomena. For example, such logical operations may include mathematical calculations. The current interest in quantum computer technology stems from analysis showing that the computational efficiency of a suitably configured quantum computer may exceed that of any practical non-quantum computer when applied to certain types of problems. These problems include computer modeling of natural and synthetic quantum systems, integer factorization, data search and function optimization with applications to linear equations and machine learning. In addition, we predict that the continued miniaturization of conventional computer logic structures will eventually lead to the development of nanoscale logic components that exhibit quantum effects and must be processed according to quantum computing principles.

不同類型的量子電腦的運行以不同的量子力學現象為基礎。「拓撲」量子電腦是某種量子電腦,其運行基於可能支援「可編織」準粒子的非阿貝耳拓撲物質相。吾人預期此類量子電腦相比於其他類型的量子電腦更不易發生量子去相干的問題,並且可能因此用作相對容錯的量子計算平臺。Different types of quantum computers operate on different quantum mechanical phenomena. A "topological" quantum computer is a quantum computer that operates on non-Abelian topological phases of matter that may support "knitable" quasiparticles. We expect that such quantum computers will be less susceptible to quantum decoherence than other types of quantum computers and may therefore serve as a relatively fault-tolerant quantum computing platform.

本揭示案的一個態樣係關於評估用於拓撲量子電腦的量子位元暫存器中的半導體-超導體異質接面的方法。方法包括:(1)量測半導體-超導體異質接面的射頻(radio frequency; RF)接面導納及包含半導體-超導體異質接面的非局部電導的次RF電導中之一或兩者,以獲取映射資料及精化資料;(2)藉由分析映射資料尋找與半導體-超導體異質接面的未破壞拓撲相一致的參數空間的一或多個區域;及(3)藉由分析精化資料,針對參數空間的一或多個區域中之至少一者尋找參數空間中的未破壞拓撲相的邊界及半導體-超導體異質接面的拓撲間隙。One aspect of this disclosure relates to methods for evaluating semiconductor-superconductor heterojunctions in qubit registers for use in topological quantum computers. The method includes: (1) measuring one or both of the radio frequency (RF) junction admittance of the semiconductor-superconductor heterojunction and the sub-RF conductance including the non-local conductance of the semiconductor-superconductor heterojunction, and Obtain mapping data and refine the data; (2) analyze the mapping data to find one or more regions of parameter space consistent with the unbroken topology of the semiconductor-superconductor heterojunction; and (3) refine the data through analysis , searching for the boundary of the unbroken topological phase in the parameter space and the topological gap of the semiconductor-superconductor heterojunction in at least one of one or more regions of the parameter space.

提供本發明內容以用簡化形式引入一系列概念,下文在實施方式中將對此進一步描述。本發明內容無意辨識所請求標的的關鍵特徵或重要特徵,亦無意限制所請求標的的範疇。所請求的標的不限於解決本揭示案之任一部分中所指出的任何缺點或所有缺點的實施方式。This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the detailed description. This summary is not intended to identify key features or critical features of the claimed subject matter, nor is it intended to limit the scope of the claimed subject matter. The claimed subject matter is not limited to implementations that solve any or all disadvantages noted in any part of this disclosure.

量子電腦架構Quantum computer architecture

第1圖展示經配置以執行量子邏輯運算的例示性量子電腦10的態樣(見下文)。儘管習知的電腦記憶體將數位資料保持於位元陣列中並執行逐位元邏輯運算,但量子電腦將資料保持於量子位元陣列中,並對量子位元執行量子力學操作,以實施所要的邏輯。因此,第1圖的量子電腦10包含至少一個量子位元暫存器12,其中包含量子位元陣列14。所示的量子位元暫存器的長度為八個量子位元;亦設想包含更長及更短的量子位元陣列的量子位元暫存器,及包含具有任何長度的兩個或更多個量子位元暫存器的量子電腦。Figure 1 shows what an exemplary quantum computer 10 configured to perform quantum logic operations looks like (see below). While conventional computer memory holds digital data in arrays of bits and performs bit-by-bit logical operations, quantum computers hold data in arrays of qubits and perform quantum mechanical operations on the qubits to perform desired operations. logic. Therefore, the quantum computer 10 of FIG. 1 includes at least one qubit register 12 including a qubit array 14 . The qubit register shown is eight qubits in length; qubit registers containing longer and shorter qubit arrays are also envisioned, as well as two or more qubit arrays of any length. A quantum computer with qubit registers.

量子位元暫存器12的量子位元14可有各種形式,其取決於量子電腦10的所要架構。儘管本揭示案係關於表現為非阿貝耳拓撲相的準粒子的量子位元,但作為非限制性實例,量子位元可替代地包括:超導約瑟夫森接面,捕獲離子,耦合至高銳度共振腔的捕獲原子,約束於富勒烯中的原子或分子,約束於主晶格中的離子或中性摻雜原子,表現出離散的空間或自旋電子態的量子點,經由靜電肼挾帶的半導體接面中的電子電洞,耦合量子線對,可藉由磁共振處理的原子核,氦中的自由電子,分子磁體,或似金屬碳奈米球。更大體而言,每一量子位元14可能包含以兩種或更多種離散的量子態存在的任何粒子或粒子系統,可用實驗量測及操控該等離散的量子態。舉例而言,可在多處理狀態及玻色-愛因斯坦冷凝物中累積的狀態中實現量子位元,多處理狀態對應於穿過線性光學元件(例如鏡子、分束器及移相器)的不同的光傳播模式。The qubits 14 of the qubit register 12 can take various forms, depending on the desired architecture of the quantum computer 10 . Although the present disclosure relates to qubits exhibiting quasiparticles that exhibit non-Abelian topological phases, as non-limiting examples, qubits may alternatively include: superconducting Josephson junctions, trapped ions, coupling to Gurry Captured atoms in the resonance cavity, atoms or molecules constrained in the fullerene, ions or neutral doping atoms in the host lattice, quantum dots exhibiting discrete spatial or spin electronic states, via electrostatic hydrazine Entrained electron holes in semiconductor junctions, coupled quantum wire pairs, atomic nuclei that can be processed by magnetic resonance, free electrons in helium, molecular magnets, or metallic carbon nanospheres. More generally, each qubit 14 may include any particle or system of particles existing in two or more discrete quantum states that can be experimentally measured and manipulated. For example, qubits can be implemented in multiprocessing states corresponding to passage through linear optical elements such as mirrors, beam splitters, and phase shifters, and in states accumulated in Bose-Einstein condensates. of different light propagation modes.

第2圖圖示布洛赫球16,其用圖形描述個別的量子位元14的一些量子力學態樣。在此描述中,布洛赫球的北極及南極分別對應於標準基底向量|0⟩及|1⟩。布洛赫球的表面上的點的集包含量子位元的所有可能的純態|𝜓⟩,而內部的點對應於所有可能的混合態。特定的量子位元的混合態可能起因於去相干,去相干的發生可能源於與外部自由度的不良耦合。Figure 2 illustrates a Bloch sphere 16, which graphically describes some quantum mechanical states of an individual qubit 14. In this description, the north and south poles of the Bloch sphere correspond to the standard basis vectors |0  and |1 , respectively. The set of points on the surface of a Bloch sphere contains all possible pure states |𝜓  of a qubit, while the points on the interior correspond to all possible mixed states. Mixed states of specific qubits may arise from decoherence, which may occur due to poor coupling to external degrees of freedom.

現回到第1圖,量子電腦10包含控制器18A。控制器包含至少一個處理器20A及相關的電腦記憶體22A。可使控制器18A的處理器20A在操作中耦接至週邊部件(如網路部件),以賦能遠端操作量子電腦。控制器18A的處理器20A可採用中央處理單元(central processing unit; CPU)、圖形處理單元(graphics processing unit; GPU)或類似者的形式。由此,控制器可能包含古典的電子部件。本文中的術語「古典」及「非量子」適用於可準確模型化為粒子總體而不考慮任何個別粒子的量子態的任何部件。舉例而言,古典的電子部件包括積體的微影蝕刻電晶體、電阻器及電容器。電腦記憶體22A可經配置以保持程式指令24A,程式指令24A使處理器20A執行控制器的任何功能或製程。電腦記憶體亦可經配置以保持額外的資料26A。在量子位元暫存器12是低溫度或低溫元件的實例中,控制器18A可能包含在低溫度或低溫下運行的控制部件,例如在77K下運行的場可程式化閘極陣列(field-programmable gate array; FPGA)。在此等實例中,可使低溫控制部件在操作中耦接至在正常溫度下運行的介面部件。Returning to Figure 1, quantum computer 10 includes controller 18A. The controller includes at least one processor 20A and associated computer memory 22A. The processor 20A of the controller 18A can be operatively coupled to peripheral components (such as network components) to enable remote operation of the quantum computer. The processor 20A of the controller 18A may be in the form of a central processing unit (CPU), a graphics processing unit (GPU), or the like. Thus, the controller may contain classical electronic components. The terms "classical" and "non-quantum" are used in this article to apply to any component that can be accurately modeled as a population of particles without regard to the quantum state of any individual particle. For example, classical electronic components include integrated photolithographically etched transistors, resistors, and capacitors. Computer memory 22A may be configured to retain program instructions 24A that cause processor 20A to perform any function or process of the controller. Computer memory can also be configured to hold additional data 26A. In the case where qubit register 12 is a low temperature or cryogenic device, controller 18A may include control components that operate at low or cryogenic temperatures, such as a field-programmable gate array operating at 77K. programmable gate array; FPGA). In such examples, the low temperature control component may be operatively coupled to the interface component operating at normal temperature.

量子電腦10的控制器18A經配置以接收複數個輸入28及提供複數個輸出30。輸入及輸出中之每一者可包含數位及/或類比線。至少一些輸入及輸出可為資料線,透過資料線向量子電腦提供資料及/或自量子電腦提取資料。其他輸入可包含控制線,可經由控制線調整或以其他方式控制量子電腦的運行。Controller 18A of quantum computer 10 is configured to receive a plurality of inputs 28 and provide a plurality of outputs 30 . Each of the inputs and outputs may include digital and/or analog lines. At least some of the inputs and outputs may be data lines through which data are provided to and/or extracted from the quantum computer. Other inputs may include control lines by which the operation of the quantum computer can be adjusted or otherwise controlled.

經由量子介面32將控制器18A在操作中耦接至量子位元暫存器12。量子介面經配置以與控制器雙向交換資料。量子介面進一步經配置以與量子位元暫存器雙向交換對應於資料的訊號。取決於量子電腦10的架構,此訊號可包括電、磁及/或光訊號。經由透過量子介面傳輸的訊號,控制器可詢問或以其他方式影響量子位元暫存器中保持的量子態,該量子態由量子位元14的陣列的集合量子態定義。為此,量子介面包含至少一個調變器34及至少一個解調器36,其中每一者在操作中耦接至量子位元暫存器的一或多個量子位元。每一調變器經配置以基於自控制器接收的調變資料向量子位元暫存器輸出訊號。每一解調器經配置以自量子位元暫存器感測訊號,並基於訊號向控制器輸出資料。在一些實例中,自解調器接收的資料可為對量子位元暫存器中保持之量子態的量測之可觀測量的估計。Controller 18A is operatively coupled to qubit register 12 via quantum interface 32 . The quantum interface is configured to exchange data bidirectionally with the controller. The quantum interface is further configured to bidirectionally exchange signals corresponding to the data with the qubit register. Depending on the architecture of quantum computer 10, this signal may include electrical, magnetic and/or optical signals. Through signals transmitted through the quantum interface, the controller can interrogate or otherwise affect the quantum state held in the qubit register, which quantum state is defined by the collective quantum state of the array of qubits 14 . To this end, the quantum interface includes at least one modulator 34 and at least one demodulator 36, each of which is operatively coupled to one or more qubits of the qubit register. Each modulator is configured to output a signal to the qubit register based on modulation data received from the controller. Each demodulator is configured to sense signals from the qubit register and output data to the controller based on the signals. In some examples, the data received from the demodulator may be an estimate of the measured observable quantity of the quantum state held in the qubit register.

在一些實例中,來自調變器24的經合適配置的訊號可與量子位元暫存器12的一或多個量子位元14發生實體交互,以觸發對一或多個量子位元中保持的量子態的量測。解調器36隨後可感測由一或多個量子位元根據量測釋放的所得訊號,並且可向控制器18A提供對應於所得訊號的資料。換言之,解調器可經配置以基於所接收的訊號輸出反映量子位元暫存器的一或多個量子位元的量子態的一或多個可觀測量的估計,並向控制器提供該估計。在一個非限制性實例中,解調器可基於來自控制器的資料向一或多個量子位元的電極提供恰當的電壓脈衝或脈衝列,以引起量測。在短時間內,解調器可自一或多個量子位元感測光子發射,並可向控制器宣告量子介面線上的對應的數位電壓位準。大體而言,對量子力學狀態的任何量測由與待量測的可觀測量對應的運算子O定義;量測的結果R確保為O的容許特徵值中之一者。在量子電腦10中,R在統計學上與量測之前的量子位元暫存器狀態相關,但不由量子位元暫存器狀態唯一地確定。In some examples, a suitably configured signal from modulator 24 can physically interact with one or more qubits 14 of qubit register 12 to trigger a change in the hold in one or more qubits. Measurement of quantum states. Demodulator 36 may then sense the resulting signal released by the one or more qubits based on the measurements, and may provide data corresponding to the resulting signal to controller 18A. In other words, the demodulator may be configured to output an estimate of one or more observables reflecting the quantum state of one or more qubits of the qubit register based on the received signal and provide the estimate to the controller . In one non-limiting example, the demodulator may provide appropriate voltage pulses or pulse trains to the electrodes of one or more qubits to cause a measurement based on data from the controller. For a short period of time, the demodulator can sense photon emission from one or more qubits and can announce the corresponding digital voltage level on the quantum interface line to the controller. Roughly speaking, any measurement of a quantum mechanical state is defined by an operator O corresponding to the observable to be measured; the result R of the measurement is guaranteed to be one of the allowed eigenvalues of O. In a quantum computer 10, R is statistically related to the qubit register state before the measurement, but is not uniquely determined by the qubit register state.

根據來自控制器18A的合適的輸入,量子介面32可經配置以實施一或多個量子邏輯閘,以對量子位元暫存器12中保持的量子態加以操作。儘管根據相應的真值表描述古典電腦系統的每一類邏輯閘的功能,但用相應的運算子矩陣描述每一類量子閘的功能。運算子矩陣對表示量子位元暫存器狀態的複向量加以操作(即相乘),並且引起彼向量在希伯特空間中的指定旋轉。Based on appropriate input from controller 18A, quantum interface 32 may be configured to implement one or more quantum logic gates to operate on the quantum states held in qubit register 12 . While the function of each type of logic gate in a classical computer system is described in terms of the corresponding truth table, the function of each type of quantum gate is described in terms of the corresponding operator matrix. The operator matrix operates on (i.e., multiplies) a complex vector representing the qubit register state and causes a specified rotation of that vector in Hibbert space.

舉例而言,哈德瑪閘HAD由以下定義: For example, HAD is defined by:

HAD閘作用於單個量子位元,其將基態|0⟩映射為 ,並將|1⟩映射為 。因此,HAD閘形成狀態的重疊,在量測時,該狀態的重疊有顯示|0⟩或|1⟩的相等機率。 The HAD gate acts on a single qubit, which maps the ground state |0  to , and map |1  to . Therefore, the HAD gate forms an overlap of states that has an equal probability of displaying either |0  or |1  when measured.

相閘S由以下定義: Phase gate S is defined as follows:

S閘使基態|0⟩不變,但將|1⟩映射為 。因此,此閘不改變量測到|0⟩或|1⟩的機率,但量子位元的量子態的相移動。此與沿第2圖的布洛赫球上的緯度圓將ψ旋轉90度等效。 The S gate leaves the ground state |0  unchanged, but maps |1  to . Therefore, this gate does not change the probability of measuring |0  or |1 , but the phase of the quantum state of the qubit shifts. This is equivalent to rotating ψ by 90 degrees along the latitude circle on the Bloch sphere in Figure 2.

一些量子閘對兩個或更多個量子位元加以操作。舉例而言,SWAP閘作用於兩個不同的量子位元,並交換其值。此閘由以下定義: Some quantum gates operate on two or more qubits. For example, a SWAP gate acts on two different qubits and swaps their values. This gate is defined by:

前文的量子閘及相關運算子矩陣的列表不詳盡,為便於說明而提供該列表。作為非限制性實例,其他量子閘包括包立X、Y及Z閘, 閘,其他相移閘, 閘,受控的cX、cY及cZ閘,及托弗利、弗雷德金、易辛及多伊奇閘。 The preceding list of quantum gates and related operator matrices is not exhaustive and is provided for ease of explanation. As non-limiting examples, other quantum gates include Baoli X, Y and Z gates, gate, other phase shift gates, Gates, controlled cX, cY and cZ gates, and Toffoli, Fredkin, Ising and Deutsch gates.

在第1圖中繼續,來自量子介面32的調變器34的經合適配置的訊號可與量子位元暫存器12的一或多個量子位元發生實體交互,以便宣告任何所要的量子閘操作。如上文所指出,將所要的量子閘操作具體定義為表示量子位元暫存器狀態的複向量的旋轉。為引起所要的旋轉O,量子介面32的一或多個調變器可在預定的持續時間T i內施加預定的訊號位準S i。在一些實例中,如第3圖所示,可在多序列或以其他方式相關的持續時間內施加多訊號位準,以對量子位元暫存器的一或多個量子位元宣告量子閘操作。大體而言,每一訊號位準S i及每一持續時間T i是可藉由控制器18A的適當程式化調整的控制參數。 Continuing in FIG. 1 , suitably configured signals from modulator 34 of quantum interface 32 can physically interact with one or more qubits of qubit register 12 to declare any desired quantum gate. operate. As noted above, the desired quantum gate operation is specifically defined as the rotation of a complex vector representing the qubit register state. To induce the desired rotation O, one or more modulators of quantum interface 32 may apply a predetermined signal level Si for a predetermined duration Ti . In some examples, as shown in Figure 3, multiple signal levels may be applied over multiple sequences or otherwise related durations to declare a quantum gate on one or more qubits of the qubit register. operate. In general, each signal level Si and each duration Ti are control parameters that can be adjusted by appropriate programming of controller 18A.

本文用術語「預言」描述可用量子電腦10執行的基本量子閘及/或量測運算的預定序列。舉例而言,預言可用於轉換量子位元暫存器12的量子狀態,以引起古典或非基本的量子閘操作,或應用密度運算子。在一些實例中,預言可用於執行預定義的「黑箱」運算f (x),複雜運算序列可包含該「黑箱」運算f (x)。為確保伴隨運算,將n個輸入量子位元|𝑥⟩映射為m個輸出,或輔助量子位元 的預言可定義為對n+m個量子位元操作的量子閘 。在此情況下,O可經配置以保持n個輸入量子位元不變,但經由XOR運算將運算f (x)的結果與輔助量子位元結合,使得 。如下文所進一步描述,狀態準備預言是經配置以產生具有指定量子位元長度的量子態的預言。 The term "prophecy" is used herein to describe a predetermined sequence of basic quantum gate and/or measurement operations that can be performed by quantum computer 10 . For example, predictions can be used to convert the quantum state of the qubit register 12 to cause classical or non-elementary quantum gate operations, or to apply density operators. In some instances, oracles can be used to perform predefined "black box" operations f (x) that complex sequences of operations can include. To ensure the adjoint operation, n input qubits |igh are mapped into m outputs, or auxiliary qubits The prediction of can be defined as a quantum gate operating on n+m qubits . In this case, O can be configured to keep the n input qubits unchanged, but combine the results of the operation f (x) with the auxiliary qubits via an XOR operation, such that . As described further below, a state preparation prediction is a prediction configured to produce a quantum state with a specified qubit length.

本文的描述暗示可經由量子介面32詢問量子位元暫存器12的每一量子位元14,從而可信地顯示對彼量子位元的量子態加以表徵的標準基底向量|0⟩或|1⟩。然而,在一些實施方式中,對實體量子位元的量子態的量測可出現誤差。因此,可將任一量子位元14實施為邏輯量子位元,其中包含根據誤差校正預言量測的一群實體量子位元,該誤差校正預言可信地顯示邏輯量子位元的量子態。 拓撲量子電腦 The description herein implies that each qubit 14 of the qubit register 12 can be interrogated via the quantum interface 32 to credibly reveal the standard basis vectors |0〉 or |1 characterizing the quantum state of that qubit. . However, in some embodiments, errors may occur in the measurement of the quantum state of the physical qubit. Thus, any qubit 14 may be implemented as a logical qubit, which includes a population of physical qubits measured according to an error correction prophecy that credibly indicates the quantum state of the logical qubit. Topological quantum computer

在拓撲量子電腦中,每一量子位元中保持的量子態是在非阿貝耳拓撲物質相中觀測的兩個或更多個可編織準粒子或「任意子」的狀態。量子力學禁止不同任意子的世界線交叉或合併。此特徵使其路徑形成穩定的編織物,編織物在空間-時間中相互包圍。相對於其他類型的量子電腦中使用的捕獲粒子,任意子編織物對量子去相干的抗性更強,此是量子計算的誤差源。然而,實現拓撲量子電腦需要製造合適的拓撲相,並操控其中的任意子的能力。In a topological quantum computer, the quantum state held in each qubit is the state of two or more braidable quasiparticles, or "anyons," observed in non-Abelian topological phases of matter. Quantum mechanics prohibits the world lines of different anyons from crossing or merging. This feature causes their paths to form a stable braid that surrounds each other in space-time. Relative to the trapped particles used in other types of quantum computers, anyon braids are more resistant to quantum decoherence, a source of error in quantum calculations. However, realizing a topological quantum computer requires the ability to create suitable topological phases and manipulate the anyons within them.

拓撲量子計算的早期實驗聚焦於砷化鋁鎵(ALGaAs)層之間夾層的並且在強磁場中操控的砷化鎵(GaAs)的超冷薄層的二維「電子氣體」。使用彼架構實施量子電腦需要將個別的準粒子激發的編織與任意子的基於干涉法的量測相結合,其中涉及長距離的相干準粒子傳輸。Early experiments in topological quantum computing focused on a two-dimensional "electron gas" of ultracold thin layers of gallium arsenide (GaAs) sandwiched between layers of aluminum gallium arsenide (ALGaAs) and manipulated in a strong magnetic field. Implementing quantum computers using this architecture requires combining the weaving of individual quasiparticle excitations with interferometry-based measurements of anyons, which involves coherent quasiparticle transmission over long distances.

最近提出了一維拓撲量子位元架構,其似乎更適於實際的實施。所提出的系統使用半導體-超導體異質結構,其中超導性、強自旋-軌域耦合及磁場一起形成支援馬約拉那零模式(Majorana zero mode; MZM)的拓撲超導態。此新架構使得不需利用「僅量測」方法移動準粒子,在「僅量測」方法中,量測序列與編織操作具有相同的效應。此架構不需使準粒子移動穿過干涉迴路,而是利用「費米子宇稱保護拓撲相」(所提出的異質結構的實際屬)與真拓撲相之間的區別。有利而言,可藉由MZM中的電子穿隧過程操控費米子宇稱保護拓撲相中的拓撲荷。經由一對MZM的傳輸可在存在大的充電能的情況下提供對其組合拓撲荷的量測。One-dimensional topological qubit architectures have recently been proposed, which appear to be more suitable for practical implementation. The proposed system uses a semiconductor-superconductor heterostructure in which superconductivity, strong spin-orbit coupling, and magnetic fields come together to form a topological superconducting state that supports the Majorana zero mode (MZM). This new architecture eliminates the need to move the quasiparticles using a "measurement-only" approach, in which the measurement sequence has the same effect as the weaving operation. Instead of moving quasiparticles through interference loops, this architecture exploits the difference between "fermion parity protected topological phases" (the actual nature of the proposed heterostructure) and true topological phases. Advantageously, the topological charges in the fermion parity-protected topological phase can be manipulated through the electron tunneling process in MZMs. Transmission through a pair of MZMs can provide a measure of their combined topological charge in the presence of large charging energy.

鑒於此等及其他有用的性質,MZM可用作拓撲量子電腦的量子位元的基礎。在半導體-超導體異質結構的末端產生MZM,半導體-超導體異質結構藉由適當的磁場及閘極電壓調諧為拓撲狀態。Karzig等人2017年6月21日發表的Scalable Designs for Quasiparticle-Poisoning-Protected Topological Quantum Computation with Majorana Zero Modes, arXiv:1610.05289v4 [cond-mat.mes-hall]中描述了一系列實際實施方式。Lutchyn等人2010年8月13日發表的Majorana Fermions and a Topological PhaseTransition in Semiconductor-Superconductor Heterostructures, arXiv:1002.4033v2 [cond-mat.supr-con]描述了合適的異質結構材料及材料性質。以上兩個參考文獻出於所有目的以全文引用的方式併入本文中。Because of these and other useful properties, MZMs can serve as the basis for qubits in topological quantum computers. MZM is generated at the end of the semiconductor-superconductor heterostructure, and the semiconductor-superconductor heterostructure is tuned to a topological state by appropriate magnetic fields and gate voltages. A series of practical implementations are described in Scalable Designs for Quasiparticle-Poisoning-Protected Topological Quantum Computation with Majorana Zero Modes, arXiv:1610.05289v4 [cond-mat.mes-hall], published by Karzig et al. on June 21, 2017. Majorana Fermions and a Topological PhaseTransition in Semiconductor-Superconductor Heterostructures, arXiv:1002.4033v2 [cond-mat.supr-con] published by Lutchyn et al. on August 13, 2010, describes suitable heterostructure materials and material properties. The above two references are incorporated by reference in their entirety for all purposes.

例示性實施方式在一量子位元中包含至少兩個拓撲超導段,從而每一量子位元有至少總共四個馬約拉那零模式。與非退化量子計算架構中量子位元的兩個狀態有不同的能量相比,量子計算中使用的狀態將是量子位元的退化基態。量子位元狀態的退化及馬約拉那零模式的空間分離確保相干時間長及準確應用一組克里福閘的可行性。Exemplary embodiments include at least two topological superconducting segments in a qubit, such that each qubit has a total of at least four Majorana zero modes. In contrast to non-degenerate quantum computing architectures where the two states of a qubit have different energies, the state used in quantum computing will be the degenerate ground state of the qubit. The degradation of qubit states and the spatial separation of Majorana zero modes ensure long coherence times and the feasibility of accurately applying a set of Clifford gates.

第4圖圖示包含線性四合粒子陣列38的拓撲量子位元架構的實例。線性四合粒子包含:段40及42,其中包含古典超導體,例如鋁(Al);段44,其中包含半導體,例如砷化銦(InAs)或銻化銦(InSb);及複數個MZM 46。非拓撲段的長度ℓc比非拓撲區域的對應的相干長度ξc大得多,且拓撲段的長度ℓt比拓撲區域的相干長度ξ大得多。第4圖中的虛線框表示線性四合粒子形式的單個量子位元。其他拓撲超導鏈及半導體結構允許執行適當的量測,以操控及糾纏線性四合粒子。Figure 4 illustrates an example of a topological qubit architecture including a linear tetrad particle array 38. The linear tetrad particle includes: segments 40 and 42, which include classical superconductors, such as aluminum (Al); segment 44, which includes semiconductors, such as indium arsenide (InAs) or indium antimonide (InSb); and a plurality of MZMs 46. The length ℓc of the non-topological segment is much larger than the corresponding coherence length ξc of the non-topological region, and the length ℓt of the topological segment is much larger than the coherence length ξ of the topological region. The dashed box in Figure 4 represents a single qubit in the form of a linear tetrad particle. Other topological superconducting chains and semiconductor structures allow appropriate measurements to be performed to manipulate and entangle linear tetrad particles.

難以使第4圖所示的量子位元結構的製造達到實際量子計算要求的再現性程度。由於材料或製造缺陷,一些候選結構可能無法在所要的拓撲狀態中運行。即使對於在所要的拓撲狀態中運行的候選結構,亦無法總是先驗地預測量子位元運算所需的適當的端子偏壓及磁場位準。因此,在結合至量子位元暫存器中之前,候選的半導體-超導體異質接面必須受到適當的拓撲行為的「預篩選」,並且必須對成功的異質接面加以「調諧」,以發現適當的操作參數。 方法概述 It is difficult to fabricate the qubit structure shown in Figure 4 to the degree of reproducibility required for practical quantum computing. Some candidate structures may not operate in the desired topological state due to material or manufacturing defects. Even for candidate structures operating in the desired topological state, the appropriate terminal biases and magnetic field levels required for qubit operations cannot always be predicted a priori. Therefore, candidate semiconductor-superconductor heterojunctions must be "pre-screened" for appropriate topological behavior before being incorporated into qubit registers, and successful heterojunctions must be "tuned" to find the appropriate operating parameters. Method overview

本揭示案提供預篩選及調諧拓撲量子位元的候選半導體-超導體異質接面的方法。方法包括藉由使用至少兩個階段的量測而後加以分析來提取候選異質接面(見下文)的「拓撲間隙」。量測在具有三個載流觸點的元件上進行,載流觸點中之一者是超導的(本文中的「三端子元件」)。此方法的「映射」階段包含快速量測,該快速量測粗略地識別有希望的區域。隨後的「精化」階段包含較慢的量測,對映射階段中識別的有希望區域中之每一者執行該較慢的量測。在一些實例中,方法對兩側零偏壓峰(zero-bias peak; ZBP)資料使用基於密度的叢集演算法,從而用尋峰或機器學習提取預測的拓撲區域及偏壓蹤跡的分類。藉由檢查ZBP對於切斷器閘極電壓變化的穩定性及藉由檢查疑似拓撲區域邊界處的間隙閉合提高了先前方法的準確度。對ZBP資料的後設分析用於提取在同一準備的許多元件中尋找一拓撲區域的機率。此特徵可用於對拓撲量子位元結構的生長及/或製造方法加以特性化。This disclosure provides methods to prescreen and tune candidate semiconductor-superconductor heterojunctions for topological qubits. Methods include extracting "topological gaps" for candidate heterojunctions (see below) by using at least two stages of measurements followed by analysis. Measurements are made on a component with three current-carrying contacts, one of which is superconducting (a "three-terminal component" in this article). The "mapping" phase of this method involves rapid measurements that roughly identify promising areas. The subsequent "refinement" phase consists of slower measurements that are performed on each of the promising regions identified in the mapping phase. In some instances, methods use density-based clustering algorithms on both sides of the zero-bias peak (ZBP) data to extract predicted topological regions and classify bias traces using peak hunting or machine learning. The accuracy of previous methods was improved by checking the stability of ZBP to changes in the cutter gate voltage and by checking gap closure at the boundaries of suspected topological regions. Meta-analysis of ZBP data is used to extract the probability of finding a topological region among many components of the same preparation. This feature can be used to characterize the growth and/or fabrication methods of topological qubit structures.

本文中使用的「假陽性」將平凡系統識別為拓撲的,而「假陰性」將拓撲系統識別為平凡的。本文的技術相比於基本的ZBP搜尋有改進,本文的技術包含對三端子元件的兩側單獨執行ZBP搜尋,由此降低假陽性的機率。其亦包含非局部量測,以提取候選系統中的能隙,從而提供用於拓撲間隙的偵測的其他資訊。最後,其包含在具有預定義邊界的參數空間的區域中執行非判別量測,由此排出由確認及選擇偏壓引起的假陽性(若量測區域是人為選擇的,則可能發生)。As used in this article, "false positives" identify trivial systems as topological, while "false negatives" identify topological systems as trivial. Our technique is an improvement over the basic ZBP search in that it involves performing a ZBP search independently on both sides of a three-terminal component, thereby reducing the chance of false positives. It also includes non-local measurements to extract energy gaps in candidate systems, thereby providing additional information for detection of topological gaps. Finally, it consists in performing non-discriminative measurements in a region of parameter space with predefined boundaries, thus ruling out false positives caused by validation and selection biases (which can occur if the measurement region is artificially chosen).

第5圖展示根據本文的方法評估的例示性半導體-超導體異質接面元件48的態樣。大體而言,適於測試的半導體-超導體異質接面包含用於支援電子導納及電導量測的至少三個端子及複數個靜電控制端子。第5圖的元件48是三端子元件,其包含:拓撲中段50,其經由平凡超導體耦接至接地探針52;兩個直探針54R及54L,其耦接至半導體線的兩端。此幾何形狀允許同時量測中段50的兩端處的拓撲相的穿隧簽章,以便與兩側上的零偏壓特徵相關。另外,兩個直探針之間的非局部訊號提供關於拓撲段的擴展態的最低能量的資訊,該資訊可用作拓撲間隙的代理(例如在足夠長的半導體線中,非局部訊號固定在對應於線中的最低能量擴展態的偏壓值)。因此,本文的方法不直接量測系統的拓撲特性,而是量測一組代理變數,根據分析計算及數值模擬得知代理變數與拓撲不變量有良好的相關性。用於識別拓撲非平凡區域的代理準則如下:Figure 5 shows an aspect of an exemplary semiconductor-superconductor heterojunction element 48 evaluated according to the methods herein. Generally speaking, a semiconductor-superconductor heterojunction suitable for testing includes at least three terminals and a plurality of electrostatic control terminals for supporting electronic admittance and conductance measurements. Component 48 of Figure 5 is a three-terminal component that includes: a topological midsection 50 coupled to ground probe 52 via a trivial superconductor; and two straight probes 54R and 54L coupled to both ends of the semiconductor line. This geometry allows simultaneous measurement of the tunneling signature of the topological phase at both ends of the midsection 50 in order to correlate with the zero-bias signature on both sides. Additionally, the non-local signal between two straight probes provides information about the lowest energy of the extended state of the topological segment, which can be used as a proxy for the topological gap (e.g. in a sufficiently long semiconductor wire, the non-local signal is fixed at The bias value corresponding to the lowest energy extended state in the line). Therefore, the method in this article does not directly measure the topological characteristics of the system, but measures a set of surrogate variables. Based on analytical calculations and numerical simulations, it is known that the surrogate variables have a good correlation with the topological invariants. The surrogate criterion for identifying topologically non-trivial regions is as follows:

1.相關的零偏壓差分電導峰在元件的兩側上的具有良好分離的馬約拉那的拓撲區域上出現。1. The associated zero-bias differential conductance peak occurs over topological regions with well-separated Majorana on both sides of the element.

2.對於磁場的低值,系統的主體有間隙。當磁場增加,主體間隙應閉合,並在拓撲區域重新打開。可在三端子元件中經由非局部電導量測偵測線的主體中的能隙的值。2. For low values of the magnetic field, there are gaps in the body of the system. As the magnetic field increases, the bulk gap should close and reopen in the topological region. The value of the energy gap in the body of the detection wire can be measured via non-local conductance in a three-terminal element.

在滿足拓撲準則的參數空間中的區域內,主體間隙的大小有變化。術語「拓撲間隙」在本揭示案的上下文中的操作意義是此拓撲區域中的最大主體間隙的大小。The size of the agent gap varies within the region in the parameter space that satisfies the topological criteria. The operational meaning of the term "topological gap" in the context of this disclosure is the size of the largest body gap in this topological region.

為能夠區分拓撲與非拓撲系統,方法必須在理想化數值測試資料集中正確識別拓撲區域。因此,本文的方法顯示拓撲識別區域與數值確定的拓撲指數之間有高度重疊(如第10圖所示)。另外,方法必須將目前已知的假陽性簽章的候選者正確標為非拓撲的。此等包括:To be able to distinguish topological from non-topological systems, methods must correctly identify topological regions in idealized numerical test data sets. Therefore, our method shows a high degree of overlap between the topologically identified regions and numerically determined topological indices (as shown in Figure 10). Additionally, the method must correctly label currently known candidates for false positive signatures as non-topological. These include:

1.切斷器、雜質或平滑勢(例如元件末端處的準馬約拉那模式對)引起的平凡局部束縛態,其為非拓撲零偏壓峰的實例;1. Trivial local bound states caused by cutters, impurities, or smoothing potentials (such as quasi-Majorana mode pairs at the ends of the element), which are examples of non-topological zero-bias peaks;

2.無序引起的低能子間隙狀態(非拓撲零偏壓峰及可能的偶然間隙閉合/重新打開特徵);2. Low-energy sub-gap states caused by disorder (non-topological zero-bias peaks and possible accidental gap closing/re-opening features);

3.有限大小的系統(例如庫侖阻斷系統)中的平凡間隙閉合而無恰當的重新打開,其中有限大小的間隙在小場處閉合,且引起低能態的振盪(假的間隙閉合/重新打開特徵);及3. Trivial gap closing without proper reopening in finite size systems (e.g. Coulomb blockade systems), where finite size gaps close at small fields and cause oscillations in low energy states (false gap closing/reopening characteristics); and

4.由跨越零能的一組離散狀態引起的平凡偶然似閉合特徵(假的間隙閉合/重新打開特徵)。4. Trivial accidental closure-like features (false gap closing/reopening features) caused by a set of discrete states spanning zero energy.

方法減少此等假陽性的方式是藉由使用在大範圍的參數值中收集的資料。偶然或微調的點在參數值變化時不應持續存在,如同拓撲相。此外,方法將拓撲相的不同指標聯繫起來,因為上述準則均待校驗(即零偏壓電導峰需在兩端同時存在),並且系統需在非局部電感中顯示間隙閉合及重新打開的特徵。鑒於彼等準則,可正確識別上述的假陽性,因為:Methods One way to reduce these false positives is by using data collected over a wide range of parameter values. Accidental or fine-tuned points should not persist when parameter values change, like topological phases. In addition, the method relates different indicators of the topological phase, since the above criteria need to be verified (i.e., the zero-bias conductance peak needs to be present at both ends), and the system needs to show gap closing and reopening in non-local inductance. Characteristics. Given these criteria, the above false positives can be correctly identified because:

1.上文列舉的假陽性1及2在非局部電感中缺少間隙閉合/重新打開的特徵;及1. False positives 1 and 2 listed above lack gap closing/reopening characteristics in non-local inductance; and

2.假陽性3及4在半導體線的兩端缺少相關及穩定的零偏壓峰。2. False positives 3 and 4 lack relevant and stable zero-bias peaks at both ends of the semiconductor line.

吾人預期不同類型的假陽性的同時存在對參數空間中的變化不穩定。We expect that the simultaneous presence of different types of false positives is unstable to changes in parameter space.

該方法的剩餘的一個關注點是防止假陰性,下文將對此進一步處理。特定而言,處理具有假陽性區域的結合特徵1及4的具體構建的實例,及與強無序系統相關的實例。儘管無序可導致零偏壓峰,但大體而言,其不會導致相關ZBP的擴展區域。類似的穩定性要求排除了上文列舉的可能的假陽性3。A remaining concern with this approach is preventing false negatives, which is dealt with further below. Specifically, specifically constructed examples of binding features 1 and 4 with false positive regions are dealt with, and examples related to strongly disordered systems. Although disorder can lead to zero-bias peaks, in general it does not lead to extended regions of associated ZBPs. Similar stability requirements rule out possible false positives listed above3.

方法以下列原則為指導:The approach is guided by the following principles:

1.方法必須確保上文列舉的兩個準則均得到校驗。1. The method must ensure that both criteria listed above are verified.

2.需要儘可能範圍廣泛地量測元件的參數空間,因為:2. It is necessary to measure the parameter space of the component as widely as possible because:

(1)拓撲相的存在及位置的初始不確定性可為高的。(1) The initial uncertainty in the existence and location of topological phases can be high.

(2)檢查參數空間中的零偏壓峰的穩定性有助於排除可能的假陽性。(2) Checking the stability of the zero-bias peak in parameter space helps rule out possible false positives.

(3)其減少無用的選擇偏壓。(3) It reduces useless selection bias.

3.應在合理的時間量(最多數天)內完成方法,且方法的實施期間需要最少的人工決策。3. The method should be completed within a reasonable amount of time (up to a few days) and require a minimum of human decision-making during implementation of the method.

4.DC中依賴偏壓的非局部電導量測目前慢。因此,可用非局部RF量測或用零偏壓或接近零偏壓的非局部DC量測加以替代DC中依賴偏壓的非局部電導量測,以確定間隙的存在。4. Non-local conductance measurement that relies on bias voltage in DC is currently slow. Therefore, bias-dependent non-local conductance measurements in DC can be replaced with non-local RF measurements or with non-local DC measurements at or near zero bias to determine the presence of gaps.

5.對於方法的特定執行,量測的序列應為預定的,並具有有限長度,從而防止開端式搜尋,開端式搜尋可花費長時間並且可引入選擇偏壓,尤其是對於大參數空間如此。仍可能藉由(例如)應用先前運行中的經驗教訓隨時間變化改進量測序列。5. For a specific implementation of the method, the sequence of measurements should be predetermined and of finite length to prevent open-ended searches, which can take a long time and can introduce selection bias, especially for large parameter spaces. It is still possible to improve the measurement sequence over time by, for example, applying lessons learned from previous runs.

6.對於方法的特定執行,應在收集及檢驗資料之前確定資料分析程序,且資料分析程序應有預定的輸出,從而避免過渡擬合及確認偏壓,並且確保方法有結果。而且,仍可能藉由(例如)使用改進的演算法及應用先前運行中的經驗教訓使資料分析碼隨時間變化而改進。6. For the specific execution of the method, the data analysis program should be determined before collecting and testing the data, and the data analysis program should have predetermined output, so as to avoid over-fitting and confirmation bias, and ensure that the method has results. Furthermore, it is still possible to improve the data analysis code over time by, for example, using improved algorithms and applying lessons learned from previous runs.

鑒於以上因素,第6圖展示用於拓撲量子電腦的量子位元暫存器中的半導體-超導體異質接面的例示性評估方法56的態樣。方法56包括映射階段58及精化階段60。在一些實例中,映射及精化階段可單獨進行,(例如)以評估新的實驗設定或實施變化。In view of the above factors, Figure 6 shows aspects of an exemplary evaluation method 56 for semiconductor-superconductor heterojunctions in qubit registers for topological quantum computers. Method 56 includes a mapping stage 58 and a refinement stage 60 . In some instances, the mapping and refinement phases can be performed separately, for example, to evaluate new experimental settings or implement changes.

映射階段58及精化階段60中各自包含量測,隨後加以分析。映射階段包含常規超導體(normal superconductor; NS)接面導納的快速RF量測62,其提供映射資料。在其他實例中,量測可為DC量測。量測的量包括偏壓、場、柱塞及左/右切斷器閘極電壓的廣泛的參數空間中半導體線之每一端處的局部電導。在一些實例中,映射資料亦可包含非局部電導資料。在一些實例中,由量測62得到的「映射資料」包含RF訊號相對於場、左切斷器、右切斷器、柱塞及左或右偏壓的兩個5D資料集。相關的資料分析64隨後在存在相關ZBP的參數空間中尋找擴展區域。在一些實例中,分析64的輸出包含4D參數空間(場、左切斷器、右切斷器、柱塞)中的「有希望」區域的列表,按照存在彼區域中具有有限拓撲區域的未破壞拓撲相的可能性為該等區域排序。The mapping stage 58 and the refinement stage 60 each include measurements that are subsequently analyzed. The mapping stage includes fast RF measurements 62 of normal superconductor (NS) junction admittance, which provide mapping data. In other examples, the measurements may be DC measurements. The measured quantities include the local conductance at each end of the semiconductor line in a wide parameter space of bias, field, plunger and left/right chopper gate voltages. In some examples, the mapping data may also include non-local conductance data. In some examples, the "mapping data" derived from measurement 62 includes two 5D data sets of the RF signal relative to the field, left chopper, right chopper, plunger, and left or right bias. The associated data analysis 64 then looks for extended regions in the parameter space where the associated ZBP exists. In some instances, the output of analysis 64 includes a list of "promising" regions in the 4D parameter space (fields, left chopper, right chopper, plunger), in order of the future existence of finite topological regions in that region. The possibility of destroying the topological phase orders such regions.

隨後在精化階段60中對以此方式識別的每一有希望的區域進一步加以迭代調查。精化階段包含用鎖相放大器並包含局部及非局部電導在每一有希望的區域內執行全電導矩陣的較慢次RF量測66。在其他實例中,更詳細的量測可為RF量測。在一些實例中,由量測66得到的「精化資料」包含隨偏壓而變的每一有希望的區域的全電導矩陣。對全電導矩陣及尤其是非局部電導的相關資料分析68得到關於主體間隙的行為的資訊,以根據上述準則將區域識別為拓撲的。相關資料分析68亦允許對每一拓撲區域中的間隙的大小進行量化評估。在一些實例中,分析68包含基於局部及非局部電導的聯合分析確定每一量測區域中的拓撲相的邊界(或不存在拓撲相)。另外,對於每一區域,確定拓撲間隙(若有)的值。在精化階段60中,舉例而言,並非無限期,而僅在適當的情況下,可用調整後的範圍及解析度對有希望區域重複量測。因此,精化階段60可包含受到重度調節的回饋迴路,其調整參數空間中的偏壓範圍及/或解析度。舉例而言,回饋迴路可包含最大兩次迭代。Each promising region identified in this way is then further iteratively investigated in a refinement phase 60 . The refinement stage involves performing slower RF measurements 66 of the full conductance matrix using a lock-in amplifier and including local and non-local conductance within each region of interest. In other examples, more detailed measurements may be RF measurements. In some examples, the "refined data" obtained from measurement 66 includes the full conductance matrix of each promising region as a function of bias voltage. An analysis of the relevant data 68 of the global conductance matrix and especially of the non-local conductance provides information on the behavior of the bulk gaps in order to identify regions as topological according to the above criteria. Relevant data analysis 68 also allows for a quantitative assessment of the size of the gaps in each topological region. In some examples, analysis 68 includes determining the boundaries of the topological phase (or the absence of the topological phase) in each measurement region based on a joint analysis of local and non-local conductance. Additionally, for each region, determine the value of the topological gap (if any). In the refinement phase 60, for example, promising areas are repeatedly measured with the adjusted range and resolution, not indefinitely, but only under appropriate circumstances. Therefore, refinement stage 60 may include a heavily tuned feedback loop that adjusts the bias range and/or resolution in parameter space. For example, a feedback loop may contain a maximum of two iterations.

精化階段60完成後,識別到具有拓撲相的最佳性質的區域。舉例而言,可結合大間隙及拓撲性質的高可信度而定義區域。為進一步提高可信度,可視情況而執行額外的驗證階段70,其中在額外的測試中加入最佳區域的穩定性。在一些實例中,驗證階段70包含藉由檢查ZBP對於切斷器-閘極電壓的變化的穩定性驗證精化階段60中識別的區域中的ZBP。此類變化可有任何所要的大小,包括大的變化。另外,在半導體-超導體異質接面是一系列有類似準備的半導體-超導體異質接面中之一者的實例中,驗證階段可包含對該系列上的ZBP資料的後設分析。可執行後設分析,從而計算在其他有類似準備的半導體-超導體異質接面中尋找拓撲區域的機率。After the refinement stage 60 is completed, regions with optimal properties of the topological phase are identified. For example, regions can be defined combining large gaps and high confidence in topological properties. To further increase the confidence, optionally an additional validation phase 70 may be performed, in which the stability of the optimal region is included in additional tests. In some examples, the verification stage 70 includes verifying the ZBP in the region identified in the refinement stage 60 by examining the stability of the ZBP to changes in the disconnector-gate voltage. Such changes can be of any desired size, including large changes. Additionally, in the case where the semiconductor-superconductor heterojunction is one of a series of similarly prepared semiconductor-superconductor heterojunctions, the validation phase may include meta-analysis of ZBP data on that series. A meta-analysis can be performed to calculate the probability of finding topological regions in other similarly prepared semiconductor-superconductor heterojunctions.

如上文所指出,如第5圖所示,方法56中的量測在三端子元件上進行。現將繼續參考彼圖而論述待量測的元件的一些限制。第5圖的元件48包含半導體線72,其通常為奈米線,包括一些實例中的二維半導體的閘極區域。在一些實施方式中,半導體線可包括選區生長(selective-area grown; SAG)奈米線。在元件48中,用半導體74近似半導體奈米線72。半導體延伸至遠離混合線的一側。第5圖展示元件48在拓撲狀態中運行的情況中的MZM 75的代表性位置。不一定需要「T」形的半導體,並且垂直超導段的寬度可擴展至元件的整個長度L。常規觸點54R及54L接觸元件的每一端上的半導體線。觸點52耦接至半導體74,使得具有三個端子的元件適合電氣輸送量測。介電層覆蓋整個元件(未圖示)。靜電切斷器閘極76R及76L用於在半導體線72的每一端處形成穿隧能障。靜電柱塞閘極78調諧元件內的化學勢。As noted above, the measurements in Method 56 are performed on a three-terminal component as shown in Figure 5. Some limitations of the components to be measured will now be discussed with continued reference to that figure. Element 48 of Figure 5 includes semiconductor wires 72, which are typically nanowires, including in some examples a gate region of a two-dimensional semiconductor. In some embodiments, the semiconductor wires may include selective-area grown (SAG) nanowires. In element 48, semiconductor nanowire 72 is approximated by semiconductor 74. The semiconductor extends to the side away from the hybrid line. Figure 5 shows a representative position of the MZM 75 in the case where the element 48 is operating in the topological state. A "T" shaped semiconductor is not necessarily required, and the width of the vertical superconducting segments can extend to the entire length L of the element. Conventional contacts 54R and 54L contact semiconductor lines on each end of the element. Contact 52 is coupled to semiconductor 74, making the element with three terminals suitable for electrical transmission measurements. A dielectric layer covers the entire component (not shown). Static interrupter gates 76R and 76L are used to form tunneling energy barriers at each end of semiconductor line 72 . Electrostatic plunger gate 78 tunes the chemical potential within the element.

在圖示的實例中,重要尺寸包括:In the example shown, important dimensions include:

L:拓撲區域的最大長度,L: the maximum length of the topological region,

L S:將拓撲區域連接至引線接地超導體74的超導段的長度, L S : the length of the superconducting segment connecting the topological region to the lead-grounded superconductor 74,

W:半導體線72(或更大體而言為截面)的寬度W,W: the width W of the semiconductor line 72 (or more generally the cross section),

L C:切斷器閘極76與超導體74之間的距離, L C : the distance between the cutter gate 76 and the superconductor 74,

W C:每一切斷器閘極76的寬度, W C : the width of each cutter gate 76,

L N:每一切斷器閘極76與相關的常規引線54之間的間距。 L N : The spacing between each breaker gate 76 and the associated conventional lead 54.

柱塞閘極78距半導體線72的距離對於槓桿臂及半導體線中的位能圖形可為重要的,其亦取決於所使用的介電材料。另一變數是柱塞閘極78的幾何形狀相對於半導體線(繞閘相對於側閘)。若柱塞閘極包繞半導體(繞閘),則槓桿臂將更大,從而使半導體線內的化學勢改變較大量。相反,若柱塞閘極對於半導體線的耦合過強,則柱塞閘極上的小電壓雜訊將有更大的效應,從而可能使半導體線72內的化學勢人為加寬。The distance of the plunger gate 78 from the semiconductor line 72 can be important to the lever arm and the potential energy pattern in the semiconductor line, which also depends on the dielectric material used. Another variable is the geometry of the plunger gate 78 relative to the semiconductor wire (wrap gate versus side gate). If the plunger gate wraps around the semiconductor (wraps the gate), the lever arm will be larger, causing the chemical potential within the semiconductor wire to change by a larger amount. On the contrary, if the coupling of the plunger gate to the semiconductor line is too strong, the small voltage noise on the plunger gate will have a greater effect, which may artificially broaden the chemical potential within the semiconductor line 72 .

最重要參數中之一者是近似半導體線的長度L。對此,兩種效應相互競爭。一方面,半導體線需有足夠的長度,來避免有限大小的效應,並且使拓撲相過渡的簽章及相關的ZBP清晰。另一方面,更長的線將使生長或製造工作元件的實際難度增加,並且可使非局部訊號減少。特定而言,當半導體線長度增加時,將更難以確保半導體線有充分的同質性並且強缺陷不存在(例如與超導體的不良接觸抑制鄰近效應)。目前很少資料可用於長於2 µm的元件。根據理論,5ξ(ξ是拓撲相干長度)顯示出最小長度尺度,其中有效大小效應得到充分的抑制。即使在清潔的線中,隨著半導體線的長度增加,非局部訊號將得到抑制。上述的問題將導致元件品質取決於非局部資訊的成功提取的L的上限。One of the most important parameters is the approximate length L of the semiconductor wire. For this, two effects compete with each other. On the one hand, the semiconductor wire needs to be of sufficient length to avoid finite-size effects and to make the signature of the topological phase transition and the associated ZBP clear. On the other hand, longer wires will make it more practical to grow or fabricate working components and may reduce non-local signals. Specifically, as the semiconductor wire length increases, it becomes more difficult to ensure that the semiconductor wire is sufficiently homogeneous and that strong defects are not present (such as poor contact with the superconductor suppressing proximity effects). Little data is currently available for components longer than 2 µm. According to theory, 5ξ (ξ is the topological coherence length) shows the smallest length scale where the effective size effect is fully suppressed. Even in clean lines, as the length of the semiconductor line increases, non-local signals will be suppressed. The above-mentioned problem will cause the component quality to depend on the upper limit of L for the successful extraction of non-local information.

選擇長度L S,使得準粒子向中心引線的洩漏得到抑制。工作估計值是L S> 10ξ S,其中ξ S是超導體74的相干長度(對於無序的Al,ξ S= 200 nm)。在典型的實驗中,L S可達到毫米的尺度,因而超過最小值若干數量級。 The length L S is chosen such that leakage of quasiparticles to the central lead is suppressed. A working estimate is L S > 10ξ S , where ξ S is the coherence length of the superconductor 74 (ξ S = 200 nm for disordered Al). In a typical experiment, L S can reach the scale of millimeters, thus exceeding the minimum value by several orders of magnitude.

實驗證據表明必須使距切斷器閘極76的距離L C小於100 nm,從而避免假的最終狀態,並且可執行高解析度穿隧能譜術。可結合靜電模擬、實際傳輸及製造能力確定L C的最佳選擇及切斷器閘極的設計。作為佔位器,可使用L C< 40 nm的要求。應指出,關於切斷器W C的寬度及切斷器與常規引線之間的距離,切斷器設計可變化。對於InSb線,可能需要減小切斷器與常規引線之間的間距,因為此等線是常閉的,並且切斷器亦需要使線的此段導通。 Experimental evidence shows that the distance L C from the chopper gate 76 must be kept less than 100 nm so that false final states are avoided and high-resolution tunneling spectroscopy can be performed. The best choice of LC and the design of the cutter gate can be determined by combining electrostatic simulation, actual transmission and manufacturing capabilities. As a placeholder, the requirement for L C < 40 nm can be used. It should be noted that the cutter design can vary with regard to the width of the cutter W C and the distance between the cutter and the conventional lead wire. For InSb lines, it may be necessary to reduce the spacing between the cutter and the regular leads, since these lines are normally closed, and the cutter needs to make this section of the line conductive as well.

應指出,線寬度W的參數對於所揭示方法的可行性不一定重要,但其將影響自該方法得到有效結果的可能性。舉例而言,寬度控制通道的數量,並且數值模擬顯示通道較少有益於達到拓撲相。It should be noted that the parameter of line width W is not necessarily important for the feasibility of the disclosed method, but it will affect the possibility of obtaining valid results from the method. For example, the width controls the number of channels, and numerical simulations show that fewer channels are beneficial in reaching topological phases.

表1總結了在目前所使用的材料方面目前對於元件幾何形狀的各種要求的估計,提出了對於元件尺寸的估計的材料特定的要求。對於此等值,使用了以下對於最大間隙點的相干長度的估計:ξ(InSb/Al) = 400 nm,ξ(InAs/Al) = 300 nm且ξ S= 200 nm。 InSb/Al InAs/Al L > 2.0 µm > 1.5 µm L S > 2 µm > 2 µm L C < 40 nm < 40 nm Table 1 summarizes current estimates of various requirements for component geometries in terms of materials currently used, and presents material-specific requirements for estimates of component dimensions. For this value, the following estimates of the coherence length at the maximum gap point were used: ξ(InSb/Al) = 400 nm, ξ(InAs/Al) = 300 nm and ξ S = 200 nm. quantity InSb/Al InAs/Al L >2.0 µm > 1.5 µm L S > 2 µm > 2 µm L C <40nm <40nm

要獲得具有足夠大的拓撲間隙的系統,需恰當地選擇材料。然而,方法56與半導體線材料無關。儘管吾人仍在研究材料堆疊(藉由理論及實驗),但目前的結果表明具有阻障材料的InAs及無阻障的InSb是在合適的能量範圍內獲得拓撲間隙的有希望的選擇。在一些實例中,25至200 µeV的範圍內的拓撲間隙可能適於支援拓撲量子電腦的運行。亦設想更窄及更廣的範圍。To obtain a system with a sufficiently large topological gap requires an appropriate choice of materials. However, method 56 is independent of semiconductor wire materials. Although we are still investigating material stacking (both theoretically and experimentally), current results indicate that InAs with barrier materials and InSb without barrier are promising options for obtaining topological gaps in the appropriate energy range. In some instances, topological gaps in the range of 25 to 200 µeV may be suitable to support the operation of topological quantum computers. Narrower and wider scopes are also envisaged.

目前對於超導體的選擇是鋁,因其在異質結構中形成硬誘導間隙,零場下無次間隙狀態。再次,方法在很大程度上與超導體的選擇無關,只要對量測參數加以相應的調適,例如將較大間隙超導體的偏壓掃描範圍加以擴展或基於表1所示的值調整元件的尺寸。The current choice of superconductor is aluminum because it forms a hard-induced gap in the heterostructure and has no sub-gap state under zero field. Again, the method is largely independent of the choice of superconductor, as long as the measurement parameters are adjusted accordingly, such as extending the bias scan range for larger gap superconductors or adjusting the size of the component based on the values shown in Table 1.

電介質的選擇在很大程度上取決於所使用的材料堆疊。混合系統對特定材料堆疊可經受的溫度施加限制。電介質崩潰前可施加於靜電閘極的最大閘電壓(崩潰電壓V break)是重要的材料量,其較佳對於給定的介電層及SAG材料系統是已知的,因為其對元件操作設定了基本限制。可在測試元件上量測崩潰電壓或藉由標準電氣特性化(standard electrical characterization; SEG)量測確定崩潰電壓。若實驗可行,一個建議是在同一晶片上臨近地製造與測試中元件相同的元件,從而可量測實際的V breakThe choice of dielectric depends largely on the material stack-up used. Hybrid systems impose limitations on the temperatures that a specific stack of materials can withstand. The maximum gate voltage that can be applied to the electrostatic gate before dielectric breakdown (breakdown voltage V break ) is an important material quantity that is preferably known for a given dielectric layer and SAG material system because it sets the device operation basic restrictions. The breakdown voltage can be measured on the test component or determined by standard electrical characterization (SEG) measurements. If the experiment is feasible, one suggestion is to fabricate the same component as the component under test closely on the same wafer so that the actual V break can be measured.

現回到第6圖,在對元件執行詳細的量測之前,可對元件加以鑑定,以確定其滿足一組準則。因此,方法56包括初始鑑定階段80。如下文所描述,初始鑑定階段可包含對電導、穿隧能譜術及時間穩定性的初步評估。Returning to Figure 6, before detailed measurements are performed on the component, the component can be qualified to determine that it meets a set of criteria. Accordingly, method 56 includes an initial qualification phase 80 . As described below, the initial qualification phase may include preliminary assessments of conductance, tunneling spectroscopy, and temporal stability.

關於元件電導,若在高偏壓電壓V bias,high> 2∆(其中∆是超導間隙)下量測的所有三個端子之間穿過元件的電阻小於25 kΩ,則將元件視為導電的。對於基於InSb的元件,可能需要在初始時藉由對切斷器閘極施加正電壓打開通道。關於閘極夾止,所有閘極電阻對地應大於500 MΩ。用於形成穿隧阻障(切斷器)的所有閘極需個別地夾止元件。為測試閘極夾止,對隨高偏壓下切斷器閘極電壓而變的超導端子與對應的常規端子之間的電導加以量測。達到小於< 0.005 e 2/h的電導時,將元件視為夾止的。用於調諧拓撲段中的化學勢的柱塞閘極應能夠在某一程度上調諧穿過元件的電導。可藉由使用下文進一步描述的穿隧能譜術在穿隧狀態中最容易地測試柱塞閘極的效應。切斷器閘極及柱塞閘極上的滯後可接受,因為可沿同一掃掠方向執行所有量測。然而,需要在任一閘極上的滯後循環之後,閘極空間中的狀態不發生可量測的移動,詳見下文。 Regarding component conductance, a component is considered conductive if the resistance across the component measured between all three terminals at a high bias voltage V bias,high > 2Δ (where Δ is the superconducting gap) is less than 25 kΩ of. For InSb-based devices, it may be necessary to initially open the channel by applying a positive voltage to the cutter gate. Regarding gate clamping, all gate resistances should be greater than 500 MΩ to ground. All gates used to form tunneling barriers (cutoffs) require individually clamped components. To test gate clamping, the conductance between a superconducting terminal and a corresponding conventional terminal was measured as a function of the cutter gate voltage under high bias. The component is considered clamped when a conductance of < 0.005 e 2 /h is reached. The plunger gate used to tune the chemical potential in the topological segment should be able to tune the conductance through the element to some extent. The effect of the plunger gate can be most easily tested in the tunneling regime by using tunneling spectroscopy as described further below. Hysteresis on the cutter gate and plunger gate is acceptable because all measurements can be taken in the same sweep direction. However, it is required that the state in gate space does not shift measurably after a hysteresis cycle on either gate, as detailed below.

關於穿隧能譜術,一旦將切斷器閘極調諧為高偏壓電導約為0.1 e 2/h的狀態,則在零磁場下量測隨偏壓及閘電壓(柱塞或隧道閘極)而變的電導。在預期誘導超導間隙附近的偏壓下,差分電導相對於偏壓的峰值應為可清楚識別的,並且其在閘極電壓變化小的情況下不應改變位置(條件是高偏壓電導不會有較大量的改變)。在零場及低於超導間隙的能量下,有限電導特徵的數量應少,從而使假陽性的機率減小。理想情況下,零場電導蹤跡應缺乏離散的次間隙狀態特徵。可藉由需使平均次間隙電導低於高偏壓電導的1/4對其加以量化。 Regarding tunneling spectroscopy, once the cutter gate is tuned to a state where the high bias conductance is approximately 0.1 e 2 /h, the bias and gate voltage dependencies (plunger or tunnel gate) are measured at zero magnetic field. pole) changes in conductance. At bias voltages near the expected superconducting gap, the peak value of the differential conductance with respect to the bias voltage should be clearly identifiable, and it should not change position with small changes in gate voltage (provided that high bias conductance There will be no major changes). At zero field and at energies below the superconducting gap, the number of finite conductance features should be small, thus reducing the chance of false positives. Ideally, the zero-field conductance trace should lack discrete subgap state features. This can be quantified by requiring the average subgap conductance to be less than 1/4 of the high bias conductance.

關於時間穩定性,在穿隧狀態下,高偏壓電導應為穩定的。此意謂在t=10分鐘的一段時間中,電導不應移動或漂移超過∆g~0.2 e 2/h。關於RF回應,對於特定元件,應(例如)藉由比較開放與夾止狀態中的共振來識別用於快速RF量測的共振。對於需要快速量測的所有端子,可見到隨相應隧道閘極而變的一個共振的清晰回應。為獲取對電導變化的最佳靈敏度,需要有效的阻抗匹配。基於大於或約等於100 kΩ的典型的元件電阻及約為200 nH的共振器電感值,元件的寄生電容應小於1 pF,以實現高靈敏度。 Regarding temporal stability, the high-bias conductance should be stable in the tunneling state. This means that the conductance should not move or drift more than Δg~0.2 e 2 /h over a period of time t = 10 minutes. Regarding the RF response, for a specific component, resonances for fast RF measurements should be identified, for example, by comparing the resonances in the open and clamped states. For all terminals that need to be measured quickly, a clear response of the resonance is seen as a function of the corresponding tunnel gate. To obtain optimal sensitivity to conductance changes, effective impedance matching is required. Based on a typical component resistance of greater than or equal to 100 kΩ and a resonator inductance value of approximately 200 nH, the component's parasitic capacitance should be less than 1 pF to achieve high sensitivity.

簡要回到第6圖,映射階段58的量測62包括電氣雜訊及能量加寬的基準校正。此步驟很重要,因為量測設定造成的能量加寬將提供可偵測拓撲間隙的下限。為確保電氣雜訊造成的加寬可忽略,1 Hz與500 Hz之間的綜合電壓雜訊RMS振幅應小於3 µV。Returning briefly to Figure 6, the measurements 62 of the mapping stage 58 include baseline corrections for electrical noise and energy broadening. This step is important because the energy broadening caused by the measurement setup will provide a lower limit for detectable topological gaps. To ensure negligible broadening due to electrical noise, the combined voltage noise RMS amplitude between 1 Hz and 500 Hz should be less than 3 µV.

第7圖展示RF反射量測術的例示性量測設定的態樣。在RF反射量測中,將樣本經由共振器接合至傳輸線。樣本電阻改變共振器與傳輸線的阻抗匹配,從而改變發送至線中的RF訊號的反射係數。將元件的兩個常規導電引線中之每一者接合至共振器,以執行RF反射量測,該共振器的左側及右側分別有共振頻率f l,res及f r,res。左側及右側上的此等共振器之間的頻率差應大於每一共振器的線寬度。中頻(intermediate-frequency; IF)源在讀出系統的頻寬內產生RF脈衝。將此等脈衝升頻轉換為接合至元件的共振器的頻率範圍。為此,具有高(大於30 dB)載波抑制的混合器將IF訊號與局部振盪器(local oscillator; LO)訊號混合。LO頻率必須消除擷取系統的頻寬f ADC與兩個共振器頻率f l,res及f r,res之間的頻率差。 Figure 7 shows an exemplary measurement setup for RF reflectometry. In RF reflection measurements, the sample is bonded to a transmission line via a resonator. The sample resistor changes the impedance match of the resonator to the transmission line, thereby changing the reflection coefficient of the RF signal sent into the line. RF reflection measurements were performed by bonding each of the component's two conventional conductive leads to a resonator with resonant frequencies fl ,res and fr,res on the left and right sides, respectively. The frequency difference between the resonators on the left and right sides should be greater than the line width of each resonator. An intermediate-frequency (IF) source generates RF pulses within the bandwidth of the readout system. These pulses are upconverted into the frequency range of the resonator coupled to the component. For this purpose, a mixer with high (greater than 30 dB) carrier rejection mixes the IF signal with a local oscillator (LO) signal. The LO frequency must eliminate the frequency difference between the bandwidth f ADC of the acquisition system and the two resonator frequencies fl ,res and f r,res .

若RF源無單獨的I及Q輸出,則必須將升頻轉換的旁帶中之一者過濾掉。可藉由選擇大於max f l,res, f r,res的f LO及在升頻轉換混合器與冰箱的輸入口之間安置截止頻率等於f LO的低通濾波器加以實現。訊號自樣本反射之後,經由低雜訊放大器。隨後藉由使用原始LO訊號的混合器將該訊號降頻轉換,低通濾波至擷取系統的頻寬,並發送至擷取系統的輸入。 If the RF source does not have separate I and Q outputs, one of the upconverted sidebands must be filtered out. This can be achieved by selecting f LO greater than max f l,res , f r,res and placing a low-pass filter with a cutoff frequency equal to f LO between the upconversion mixer and the input port of the refrigerator. After the signal is reflected from the sample, it passes through a low-noise amplifier. This signal is then down-converted by a mixer using the original LO signal, low-pass filtered to the bandwidth of the acquisition system, and sent to the input of the acquisition system.

為藉由RF反射量測術來量測局部電導,必須將反射的RF訊號值與直接量測的差分電導校準,例如用低頻的鎖相放大器。由於此是可平行於實際量測而執行的依賴樣本的程序,因此後文結合量測操作對其加以描述。In order to measure local conductance by RF reflection measurement, the reflected RF signal value must be calibrated to the directly measured differential conductance, such as using a low-frequency lock-in amplifier. Since this is a sample-dependent procedure that can be executed in parallel with the actual measurement, it will be described below in conjunction with the measurement operation.

為自快速的擷取速率中受益,用硬體觸發元件上的閘極及偏壓掃描,從而使軟體通信所花費的時間最少化(通常約為10 ms)。此可在與擷取系統同步的硬體觸發的二維掃描中完成。用鋸齒函數對一個電壓加以斜坡,並在每一斜坡期間採樣N次,而在更快斜坡的M次循環期間,第二電壓處於較低的速率,從而得到NxM個點的掃描。為與施加至觸點及閘極的電壓的DC值相容,對低通濾波DC線施加此等電壓掃描。最快的斜坡速率必須低於冰箱線中的低通濾波器的截止頻率(通常為1 kHz)。為在次RF/DC量測中有快速擷取速率,可量測靠近零偏壓的窄偏壓範圍或使用(例如)具有2亞米茄/3亞米茄設定的鎖相放大器量測訊號的第二及第三諧波。以此方式,僅用關於元件主體中存在零偏壓峰及/或間隙的目標資訊替代偏壓掃描。 映射階段58的細節 To benefit from the fast acquisition rate, the gate and bias scans on the components are triggered by hardware, thereby minimizing the time spent in software communication (typically around 10 ms). This can be accomplished in a hardware-triggered 2D scan synchronized with the acquisition system. Ramp one voltage with a sawtooth function and sample N times during each ramp, while the second voltage is at a lower rate during M cycles of the faster ramp, resulting in a scan of NxM points. To be compatible with the DC value of the voltage applied to the contacts and gates, these voltage sweeps are applied to the low-pass filtered DC line. The fastest ramp rate must be below the cutoff frequency of the low-pass filter in the refrigerator line (usually 1 kHz). For fast acquisition rates in sub-RF/DC measurements, measure a narrow bias range close to zero bias or measure the signal using, for example, a lock-in amplifier with a 2 Omega/3 Omega setting ’s second and third harmonics. In this manner, the bias scan is replaced with only target information regarding the presence of zero bias peaks and/or gaps in the component body. Details of mapping stage 58

第8圖展示量測半導體-超導體異質接面的射頻(radio frequency; RF)接面導納以獲取映射資料的其他態樣。第8圖的方法62A圖示藉由RF反射量測術快速量測局部電導,執行RF反射量測術從而滿足上文說明的兩個拓撲間隙準則中之第一者,因為其實現元件的快速特性化及基於ZBP的相關性識別拓撲區域的候選者。此等區域的識別為精化階段60的非局部量測奠定基礎。三端子元件的快速局部量測與常規的NS接面的快速量測緊密相關。Figure 8 shows other ways of measuring the radio frequency (RF) junction admittance of a semiconductor-superconductor heterojunction to obtain mapping data. Method 62A in Figure 8 illustrates the rapid measurement of local conductance by RF reflection measurements. Performing RF reflection measurements satisfies the first of the two topological gap criteria described above because it enables rapid Characterization and ZBP-based correlation identify candidates for topological regions. The identification of these regions lays the foundation for non-local measurements in the refinement stage 60 . The rapid local measurement of three-terminal components is closely related to the rapid measurement of conventional NS junctions.

在方法62A的82中,將磁場設定為0T。在84中,對於三端子元件的每一側,在大的偏壓(例如1 mV)下量測反射的RF訊號,該偏壓隨估計共振頻率(每一側為100 MHz)附近的頻率及自開通道設定點(即對於InAs通常為0 V,而對於InSb通常為1 V)至超過全夾止電壓100 mV的相關切斷器電壓而變。將共振頻率f res識別為訊號隨切斷器閘電壓變化最劇烈的頻率,及切斷器電壓V tunn,res,其中反射訊號隨頻率而變的傾角有最小的絕對值。 In method 62A, step 82, the magnetic field is set to OT. In 84, for each side of a three-terminal component, the reflected RF signal is measured at a large bias voltage (e.g., 1 mV) that varies with frequencies near the estimated resonant frequency (100 MHz for each side) and Varies from the open channel set point (i.e. typically 0 V for InAs and 1 V for InSb) to the associated cutout voltage 100 mV above the full clamp-on voltage. The resonant frequency fres is identified as the frequency at which the signal changes most dramatically with the cutter gate voltage, and the cutter voltage Vtunn ,res , where the inclination angle of the reflected signal as a function of frequency has the smallest absolute value.

在86中,頻率固定為f res,且滿足以下三個條件的切斷器電壓範圍(V c,min至V c,max)得到確定: In 86, the frequency is fixed at fres and the cutter voltage range (V c,min to V c,max ) satisfying the following three conditions is determined:

(1)根據滯後循環之後量測的再現性,範圍無滯後。(1) According to the reproducibility of the measurement after the hysteresis cycle, the range has no hysteresis.

(2)在遠高於超導間隙(例如對於Al的1 mV)時量測的局部電導為0.05 e 2/h至0.2 e 2/h。 (2) The local conductance measured well above the superconducting gap (eg 1 mV for Al) is 0.05 e 2 /h to 0.2 e 2 /h.

(3)經由標準低頻鎖相放大器技術量測的非局部電導訊號高於雜訊位準。(3) The non-local conductance signal measured by standard low-frequency lock-in amplifier technology is higher than the noise level.

對於柱塞與切斷器(幾何形狀及材料特定的)之間的大量靜電串擾,可針對柱塞閘電壓的不同值重複此步驟。For large electrostatic crosstalk between plunger and cutter (geometry and material specific), this step can be repeated for different values of plunger gate voltage.

在88中,將RF讀出功率加以最佳化。在一些實例中,此動作包括在切割器空間中尋找一區域,該區域顯示清晰的間隙,其具有定義明確的相干峰。為此,掃描每一側上的RF讀出功率,並在樣本處(冰箱底部)自-80 dBm至-130 dBm(以1 dB為步)對其加以量測。對於每一RF功率,自-1.5∆ 0至1.5∆ 0(對Al,∆ 0是上級超導體的間隙,其造成-350 µV至350 µV的偏壓範圍)對各別的側執行偏壓的快速掃描,其最大步長為5 µV,並且量測反射的RF訊號。對於每一側,尋找在量測中不加寬特徵(例如相干峰)的最大RF功率,並設定為工作RF功率。 At 88, the RF readout power is optimized. In some instances, this action includes finding a region in cutter space that shows a clear gap with a well-defined coherence peak. To do this, scan the RF readout power on each side and measure it at the sample (bottom of the refrigerator) from -80 dBm to -130 dBm (in 1 dB steps). For each RF power, perform a rapid step of biasing the respective sides from -1.5Δ0 to 1.5Δ0 (for Al, Δ0 is the gap in the upper superconductor, which results in a bias range of -350 µV to 350 µV). Scan with a maximum step size of 5 µV and measure the reflected RF signal. For each side, find the maximum RF power that does not broaden the features (such as coherence peaks) in the measurement and set it as the operating RF power.

在90中,對磁場角加以校準,以便與半導體線平行。為此,將磁場設定為一值,使得超導間隙在平行於半導體線的場中不閉合,但在垂直於半導體線的場中大幅減小,例如對於InAs及InSb SAG為500 mT。圍繞線幾何形狀的預期值掃描磁場角,且對於角的每一值,自-1.5∆ 0至+1.5∆ 0(對於Al的-350 µV至+350 µV)掃描元件的每一側上的偏壓,其中最大步長為5 µV。隨後對反射的RF訊號加以量測。設定場角,使得其得到最大間隙大小。此處的目標是在方位角及極角的對準準確度均優於2°。 At 90, the magnetic field angle is calibrated to be parallel to the semiconductor wire. To this end, the magnetic field is set to a value such that the superconducting gap is not closed in the field parallel to the semiconductor wire, but is greatly reduced in the field perpendicular to the semiconductor wire, for example 500 mT for InAs and InSb SAG. The magnetic field angle is scanned around the expected value of the line geometry, and for each value of angle, the bias on each side of the element is scanned from -1.5Δ 0 to +1.5Δ 0 (-350 µV to +350 µV for Al). voltage with a maximum step size of 5 µV. The reflected RF signal is then measured. Set the field angle so that it gives the maximum gap size. The goal here is to achieve alignment accuracy better than 2° in both azimuth and polar angles.

在92中,確定最大磁場B max,其中超導主體間隙閉合。在94中,以100 mT為步,自0 T至B max掃描磁場,以執行RF-DC校準。對於每一場值,執行以下的額外的校準。 In 92, the maximum magnetic field B max with which the superconducting body gap is closed is determined. In 94, perform an RF-DC calibration by scanning the magnetic field from 0 T to B max in steps of 100 mT. For each field value, perform the following additional calibration.

在96中,量測最佳的RF讀出功率。此可藉由重複步驟84得以完成。然而,一旦識別到讀出頻率,則可使用更快的方法。在一個實例中,將切割器閘電壓設定為V c,res,其中隨頻率而變的反射RF訊號的傾角在零場有最小的絕對值。對RF反射訊號加以量測,該RF反射訊號隨RF頻率而變,RF頻率為自50 MHz至為最新場值尋找的共振頻率的每一側。找到最接近先前找到的傾角的RF訊號的量值的傾角,且將其設定為RF讀出頻率。可將此量測的結果保存至資料庫。 At 96, the optimal RF read power is measured. This can be accomplished by repeating step 84. However, once the readout frequency is identified, faster methods can be used. In one example, the cutter gate voltage is set to V c,res , where the tilt angle of the reflected RF signal as a function of frequency has a minimum absolute value at zero field. The RF reflected signal is measured as a function of RF frequency on each side from 50 MHz to the resonant frequency found for the latest field value. The tilt angle closest to the magnitude of the RF signal to the previously found tilt angle is found and set to the RF readout frequency. The measurement results can be saved to the database.

在98中,對RF-DC校準曲線加以量測。在每一側上,將偏壓設定為高偏壓(例如對於Al的1 mV),使其高於超導間隙。自開通道設定點(即通常對於InAs為0 V,而對於InSb為1 V)至超過夾止電壓的100 mV掃描各別的切斷器閘電壓。對於每一切斷器電壓,用各別的側上的鎖相放大器量測局部電導,及反射RF訊號。將此量測的結果保存至資料庫,以便隨後建立反射RF訊號與電導之間的校準函數。At 98, the RF-DC calibration curve is measured. On each side, set the bias voltage to a high bias voltage (e.g. 1 mV for Al) so that it is above the superconducting gap. The respective cutout gate voltages are swept from the open channel set point (i.e., typically 0 V for InAs and 1 V for InSb) to 100 mV above the pinch-off voltage. For each disconnect voltage, the local conductance and reflected RF signals are measured using a lock-in amplifier on the respective side. The results of this measurement are saved to a database so that a calibration function between the reflected RF signal and the conductance can later be established.

在100中,再次將磁場設定為0T。在102中,以∆B為步,自0 T至B max對磁場加以斜坡。場步∆B取決於g因子,且使得隨場移動的狀態可得到追蹤。InAs或InSb SAG的合理範圍是10 mT≤∆B≤ 50 mT。對於場的每一值,執行以下的額外的步驟。 In 100, set the magnetic field to 0T again. In 102, the magnetic field is ramped from 0 T to B max in steps of ΔB. The field step ΔB depends on the g factor and allows the state to be tracked as the field moves. A reasonable range for InAs or InSb SAG is 10 mT≤ΔB≤50 mT. For each value of the field, perform the following additional steps.

在104,以N C= 15步自V c,min至V c,max對每一側獨立掃描切斷器閘電勢,以得到總共2N C的配置。當切斷器-柱塞串擾的槓桿臂及切斷器閘極掃描的範圍小到使有效柱塞電壓的變化不超過柱塞電壓步長時,此獨立的掃描對於局部電導量測是合理的。對於每一切斷器閘極配置,執行以下的量測。在86中確定電壓限制V c,min及V c,maxAt 104, the chopper gate potential is scanned independently for each side from V c,min to V c,max in N C = 15 steps to obtain a total 2 N C configuration. When the range of the cutter-plunger crosstalk lever arm and cutter gate scan is small enough that the effective plunger voltage does not change by more than the plunger voltage step, this independent scan is reasonable for local conductance measurements. . For each breaker gate configuration, perform the following measurements. The voltage limits V c,min and V c,max are determined at 86 .

在106中,對每一側執行柱塞電壓及偏壓的快速掃描。自V p,max至V p,min掃描柱塞電壓。柱塞的界限是材料所特定的,且受到上及下崩潰電壓(在崩潰電壓V break的80%停止)及可能的目標區域範圍的限制。後者的範圍是完全無間隙狀態至完全耗盡,且需要理論輸入。柱塞掃描的解析度需足以解決跨越間隙的個別的次間隙狀態(取決於槓桿臂)。對於柱塞閘極的每一值,以不超過5 µV的解析度自-1.5∆0至1.5∆0(對於Al的-350 µV至+350 µV)掃描彼端子處的偏壓。對隨柱塞及偏壓而變的反射RF訊號加以量測。將所得的二維掃描保存至資料庫。在其他實例中,在接近零偏壓的窄偏壓範圍中,可用DC量測替代RF。 At 106, a quick scan of the plunger voltage and bias is performed for each side. Scan the plunger voltage from V p,max to V p,min . The boundaries of the plunger are material specific and are limited by the upper and lower breakdown voltage (stopping at 80% of the breakdown voltage Vbreak ) and the range of possible target areas. The latter ranges from completely gapless states to complete depletion and requires theoretical input. The resolution of the plunger scan needs to be sufficient to resolve the individual sub-gap states across the gap (depending on the lever arm). For each value of the plunger gate, scan the bias voltage at that terminal from -1.5Δ0 to 1.5Δ0 (-350 µV to +350 µV for Al) with a resolution of no more than 5 µV. Measure the reflected RF signal as a function of plunger and bias voltage. Save the resulting 2D scan to the database. In other instances, DC measurements may be used instead of RF in a narrow bias range close to zero bias.

作為方法62A的輸出而產生的映射資料包含以下:The mapping data generated as the output of Method 62A includes the following:

1.校準資料集由左側及右側的兩次2D切斷器-場掃描組成。對於此掃描的每一點,量測三個參數:RF同相分量,RF反相分量,及各別側的電導。1. The calibration data set consists of two 2D cutter-field scans on the left and right. For each point in this scan, three parameters are measured: the RF in-phase component, the RF out-of-phase component, and the conductance on each side.

2.包含兩次5D場-左切斷器-右切斷器-柱塞-偏壓掃描的量測資料集,其中在左邊及右邊執行偏壓掃描。對於此掃描的每一點,量測兩個參數:RF同相分量及RF反相分量。2. Measurement data set containing two 5D field-left chopper-right chopper-plunger-bias scans, in which bias scans are performed on the left and right. For each point of this scan, two parameters are measured: the RF in-phase component and the RF out-of-phase component.

此階段中資料分析的目標是識別參數空間中可能含有未破壞拓撲相的有希望的區域。第9圖展示藉由分析映射資料尋找與半導體-超導體異質接面的未破壞拓撲相一致的參數空間的一或多個區域的其他態樣。The goal of data analysis in this phase is to identify promising regions in parameter space that may contain unbroken topological phases. Figure 9 illustrates other aspects of analyzing mapping data to find one or more regions of parameter space consistent with the unbroken topology of a semiconductor-superconductor heterojunction.

在方法64A的108,使用校準資料集將RF訊號輸入轉換為電導,以定義傳遞函數。在110中,使用來自彼點量測的偏壓蹤跡的各別的左端子及右端子(G ll、G rr)的局部電導作為輸入,將(場、柱塞、切斷器)參數空間中的每一點分類為(可能的)拓撲或平凡。在一個實例中,在分類中,可檢查兩個電導蹤跡中ZBP的存在。 At 108 of Method 64A, the RF signal input is converted to conductance using the calibration data set to define the transfer function. In 110, the local conductances of the respective left and right terminals (G ll , G rr ) from the bias traces measured at that point are used as inputs to (Field, Plunger, Cutoff) parameter space. Each point of is classified as (possibly) topological or trivial. In one example, during classification, both conductance traces can be checked for the presence of ZBP.

映射資料的分析包括對自RF或次RF量測獲取的兩側ZBP資料進行基於密度的叢集。在112中,找到已分類為拓撲的點的叢集,並且過濾掉對於參數空間中的量及形狀視為與拓撲相不相容的叢集。在一些實例中,在柱塞電壓-磁場空間中,叢集量必須大於0.03 V x T。過濾後存在的叢集是存在拓撲相的可能的區域。在一些實例中,對於每一2D柱塞-場掃描,可用基於密度的叢集實施此步驟,並且可排除延伸至零磁場的區域。在114中,按包含拓撲相的可能性對有希望的區域加以排序。在一些實例中,排序分數由每一叢集的平均柱塞閘極電壓確定,其優先級與更多負閘極電壓相關。Analysis of the mapped data involves density-based clustering of ZBP data from both sides obtained from RF or sub-RF measurements. In 112, clusters of points that have been classified as topological are found and clusters deemed topologically incompatible with respect to quantities and shapes in parameter space are filtered out. In some instances, the amount of clustering must be greater than 0.03 V x T in plunger voltage-magnetic field space. The clusters that exist after filtering are possible regions where topological phases exist. In some examples, this step can be implemented with density-based clustering for each 2D plunger-field scan, and regions extending to zero magnetic field can be excluded. In 114, promising regions are ranked by their likelihood of containing topological phases. In some examples, the ranking score is determined by the average plunger gate voltage of each cluster, with priority associated with more negative gate voltages.

第10圖展示根據方法64A分析映射資料的態樣。使用長度L等於3 µm且平均自由路徑為3 µm的InSb/Al奈米線的模擬資料集說明及校驗分析。圖中自左至右所示的柱塞閘極(V)及磁場(T)的函數為:由散射矩陣計算的拓撲指數Q;二進制陣列,其中1對應於元件的兩側上存在的ZBP;及叢集的ZBP布林資料,其中叢集顏色對應於對應叢集的分數(更小的對應於更佳的)。使用此資料,有可能找到包含真拓撲區域的區域,以用於進一步分析。Figure 10 shows what mapping data looks like when analyzed according to Method 64A. Description and verification analysis of the simulation data set using InSb/Al nanowires with length L equal to 3 µm and a mean free path of 3 µm. The plunger gate (V) and magnetic field (T) shown in the figure from left to right are functions of: the topological index Q calculated from the scattering matrix; a binary array where 1 corresponds to the ZBP present on both sides of the element; and clustered ZBP Bollinger data, where the cluster color corresponds to the score of the corresponding cluster (smaller corresponds to better). Using this information, it is possible to find regions containing true topological regions for further analysis.

在方法56的映射階段58中執行的資料分析的結果確定將在後續精化階段60中執行的量測。對於上述排序中的每一有希望的區域,將封閉區域的場、柱塞及切斷器值的範圍指定為精化階段的輸入。在一些實例中,可對排序中的各個識別到的區域執行精化階段。需使映射階段中的量測的終點與精化階段中的量測的起點之間的等待時間最少化,從而使元件閒置時可能發生的閘極漂移、閘極跳動及其他問題的效應最少化。出於此原因,以具有時效性的方式執行上文列出的資料分析至關重要。應指出RF量測階段中產生的原始資料可相當大:現有的此類RF資料集的總大小超過100 GB,其中簡化及分析花費若干小時。 精化階段60的細節 The results of the data analysis performed in the mapping stage 58 of the method 56 determine the measurements to be performed in the subsequent refinement stage 60 . For each promising region in the above ranking, a range of field, plunger, and cutter values for the enclosed region is specified as input to the refinement stage. In some instances, a refinement phase may be performed on each identified region in the ranking. The waiting time between the end of the measurement in the mapping phase and the start of the measurement in the refinement phase needs to be minimized to minimize the effects of gate drift, gate bounce and other problems that can occur when the component is idle . For this reason, it is critical that the data analysis outlined above be performed in a timely manner. It should be noted that the raw data generated during the RF measurement phase can be quite large: the total size of existing such RF data sets exceeds 100 GB, with reduction and analysis taking several hours. Details of Refinement Phase 60

執行精化階段,從而更詳細地尋找有希望的區域。取決於實施方式,可使用RF或DC/次RF量測執行精化階段。在一個實例中,可使用如第11圖所示的標準的低頻鎖相放大器技術對所評估的元件的差分電導加以量測。藉由用兩個不同的AC激發頻率f l及f r分別在左及右端子54處施加DC偏壓V bias,l/r及AC電壓δV l/r量測全電導矩陣。此等頻率必須低於系統中的低通濾波器截止值,且足夠低以使寄生電容效應最小化。為確保此點,電流相對於電壓激勵的相移必須小於10°。用接地的中超導引線對流至左或右側的同相AC電流δI l/r加以量測。與地的連接相比於其他兩條線的電阻需為低歐姆的(即通常小於幾kΩ),從而抑制假的分壓器效應。為此,可相應地設計低通濾波器,或者使超導引線在PCB平面(冷地)接地。 A refinement phase is performed to find promising areas in more detail. Depending on the implementation, the refinement stage can be performed using RF or DC/sub-RF measurements. In one example, the differential conductance of the component under evaluation can be measured using standard low frequency lock-in amplifier techniques as shown in Figure 11. The full conductance matrix is measured by applying a DC bias voltage Vbias,l/r and an AC voltage δVl /r at the left and right terminals 54 using two different AC excitation frequencies f l and fr respectively. These frequencies must be below the low-pass filter cutoff in the system and low enough to minimize the effects of parasitic capacitance. To ensure this, the phase shift of the current relative to the voltage excitation must be less than 10°. The in-phase AC current δI l/r flowing to the left or right side is measured using a grounded medium superconducting lead. The resistance of the connection to ground needs to be low ohmic compared to the other two lines (i.e. typically less than a few kΩ) to suppress false voltage divider effects. For this purpose, the low-pass filter can be designed accordingly, or the superconducting lead can be grounded at the PCB plane (cold ground).

此三端子設定實現對左(l)及右(r)端子之間的電導矩陣G的所有四個元素的量測: This three-terminal setup enables measurement of all four elements of the conductance matrix G between the left (l) and right (r) terminals:

電導矩陣元素G ll=dI l/dV l及G rr=dI r/dV r稱為「局部電導」,而元素G lr=dI l/dV r及G rl=dI l/dV r稱為「非局部電導」。 The conductivity matrix elements G ll =dI l /dV l and G rr =dI r /dV r are called "local conductance", while the elements G lr =dI l /dV r and G rl =dI l /dV r are called "non-conductance". local conductance".

精化量測66的輸入包含(切斷器閘極、柱塞閘極、場)空間中的一區域,該區域是進一步研究的候選者。在一些實施例中,可使柱塞閘極/場空間中的區域的大小增加20%,以確保精化量測充分捕獲包圍每一區域的拓撲相過渡。The input to the refinement measurement 66 consists of a region in (slash gate, plunger gate, field) space that is a candidate for further study. In some embodiments, the size of the regions in the plunger gate/field space can be increased by 20% to ensure that the refined measurements adequately capture the topological phase transitions surrounding each region.

第12圖展示對參數空間的一或多個映射區域中之每一者中的半導體-超導體異質接面的次RF電導加以量測以獲取精化資料的其他態樣。特定而言,方法66A包含適合提取半導體-超導體異質接面的能隙的局部及非局部電導量測。Figure 12 illustrates other aspects of measuring the sub-RF conductance of a semiconductor-superconductor heterojunction in each of one or more mapped regions of parameter space to obtain refined data. Specifically, Method 66A includes local and non-local conductance measurements suitable for extracting the energy gap of a semiconductor-superconductor heterojunction.

在方法66A的116,將磁場設定為候選區域中的最小場值。此場應足夠低,使得誘導間隙仍為打開的,以便觀測該誘導間隙在候選區域中是否閉合。在118,將切斷器閘極設定為其在(例如)候選區域中的中位值。在120,對V L及V R(參見第11圖)的小偏壓偏置加以校正,以確保直接提取局部及非局部訊號的反對稱分量。此可藉由找到V L-V R參數空間中之絕對電流(|I L|+|I R|)之總和的最小值實現。在122中,以∆B為步,在候選區域中對磁場加以斜坡。對於場的每一值,如下文將緊接著描述,執行偏壓-柱塞掃描。 At 116 of method 66A, the magnetic field is set to the minimum field value in the candidate region. This field should be low enough that the induced gap is still open in order to observe whether it closes in the candidate region. At 118, the cutter gate is set to its median value in, for example, the candidate region. At 120, the small bias offsets of V L and VR (see Figure 11) are corrected to ensure direct extraction of the anti-symmetric components of the local and non-local signals. This can be achieved by finding the minimum value of the sum of the absolute currents (|I L | + |I R |) in the V L -V R parameter space. In 122, the magnetic field is ramped in the candidate region in steps of ΔB. For each value of the field, as will be described immediately below, a bias-plunger scan is performed.

在124,將柱塞電壓設定為待探索區域中的最大柱塞電壓(V p,max)。以∆V p為步,自V max至待探索區域中的最小柱塞電壓(V p,min)掃描柱塞電壓。在其他實例中,可按相反方向掃描柱塞電壓。對於每一柱塞電壓值,以5 µV的步,自–50 µV至+50 µV掃描左端子上的偏壓。若資料顯示拓撲間隙在此窗口之外,則用更大的窗口大小重複掃描。將所得的二維掃描保存至資料庫。 At 124, the plunger voltage is set to the maximum plunger voltage (V p,max ) in the area to be explored. Taking ΔV p as a step, the plunger voltage is scanned from V max to the minimum plunger voltage (V p,min ) in the area to be explored. In other examples, the plunger voltage can be swept in opposite directions. For each plunger voltage value, sweep the bias voltage on the left terminal from –50 µV to +50 µV in 5 µV steps. If the data shows topological gaps outside this window, repeat the scan with a larger window size. Save the resulting 2D scan to the database.

由較慢的全電導矩陣量測產生的精化資料是每一候選區域的資料集。每一資料集由兩個3D場-柱塞-偏壓掃描組成,其中在左側及右側單獨掃描偏壓。對於掃描中的每一點,量測兩個參數:左側上的電導及右側上的電導。在一些實施例中,可增加資料集的維數,從而亦包括(例如)切斷器電壓的掃描。在一些實施例中,每一電導可包含元件的對應側的全電導矩陣。The refined data produced by the slower full conductance matrix measurements is a data set for each candidate region. Each data set consists of two 3D field-plunger-bias scans, with separate bias scans on the left and right. For each point in the scan, two parameters are measured: conductance on the left and conductance on the right. In some embodiments, the dimensionality of the data set may be increased to also include, for example, a scan of the switch voltage. In some embodiments, each conductance may include a full conductance matrix for the corresponding side of the element.

第13圖展示藉由分析精化資料針對在方法66A中所詢問的參數空間的一或多個區域中之至少一者找到參數空間中之未破壞拓撲相之邊界及半導體-超導體異質接面的拓撲間隙的其他態樣。在一些實施例中,對於每一有希望的區域,迭代地執行所示的方法。Figure 13 illustrates finding boundaries of unbroken topological phases in parameter space and semiconductor-superconductor heterojunctions by analyzing refined data for at least one of one or more regions of parameter space interrogated in method 66A. Other aspects of topological gaps. In some embodiments, the illustrated method is performed iteratively for each promising region.

在方法68A的126,重複方法64A的步驟110,從而確認所量測的區域仍為有希望的,並且調整候選拓撲區域的邊界。此時,精化資料的分析包括校驗參數空間的一或多個區域中之每一者的邊界處的間隙閉合。在128,執行檢查,以基於非局部電導訊號確定有希望區域的邊界的哪一部分無間隙。在130,藉由非局部電導的定限提取每一區域j中之每一點i的間隙∆ (j)的大小。在132,基於無間隙邊界的範圍及候選拓撲區域中的間隙的值,向區域分配分數。分數反映有希望的區域實際上是拓撲且有間隙的機率。在一些實例中,分數S由S i= X • median i(∆ (j))定義。在134,獲取每一拓撲區域內的最大的間隙及誤差的估計。在一些實例中,最大間隙點處的非局部電導的定限的不確定性決定誤差槓。此分數是可能的分數中之一者,其中用作為例示性替代分數的最大值替代中位間隙。 At 126 of method 68A, step 110 of method 64A is repeated to confirm that the measured region is still promising and to adjust the boundaries of the candidate topology region. At this point, analysis of the refined data includes checking for gap closure at the boundaries of each of the one or more regions of the parameter space. At 128, a check is performed to determine which portion of the boundary of the promising region is free of gaps based on the non-local conductance signal. At 130, the size of the gap Δ (j) at each point i in each region j is extracted by defining the non-local conductance. At 132, a score is assigned to the region based on the extent of the gap-free boundary and the value of gaps in the candidate topology region. The score reflects the probability that a promising region is actually topological and has gaps. In some instances, the fraction S is defined by S i = X • median i(j) ). At 134, estimates of the maximum gap and error within each topological region are obtained. In some instances, the uncertainty in the bounds of the non-local conductance at the point of maximum gap determines the error bar. This score is one of the possible scores, with the maximum replacing the median gap used as an exemplary surrogate score.

此分析的輸出包含對應於方法56的映射階段58中識別的區域的一組機率,即具有未破壞拓撲相的機率。(非平凡)區域中之每一者中的最大(拓撲)間隙與每一機率相關。第14圖展示使用與第10圖中之模擬相同之模擬根據方法68A分析精化資料的態樣。自左至右:自非局部資料提取的間隙;ZBP叢集的分數,其由區域內的平均間隙乘以無間隙的邊界的百分比定義;及ZBP叢集的分數,其與中間圖相同,但用區域中的中位間隙替代平均間隙。區域內的最大間隙是175 µeV。因此,總體方法56的輸出是對於每一有希望區域中的拓撲間隙的值及其在所探索參數空間中的位置的估計。 假陽性及假陰性的詳細實例 The output of this analysis contains a set of probabilities corresponding to the regions identified in the mapping stage 58 of the method 56 , ie, probabilities of having an unbroken topological phase. The maximum (topological) gap in each of the (non-trivial) regions is associated with each probability. Figure 14 shows the analysis of refined data according to Method 68A using the same simulation as in Figure 10. From left to right: gaps extracted from non-local data; fraction of ZBP clusters, which is defined by the average gap within a region multiplied by the percentage of gaps-free boundaries; and fraction of ZBP clusters, which is the same as the middle figure but with regions The median gap in replaces the mean gap. The maximum gap within the region is 175 µeV. The output of the overall method 56 is therefore an estimate of the value of the topological gap in each promising region and its position in the explored parameter space. Detailed examples of false positives and false negatives

準馬約拉那的一個可能的問題是其可能作為真拓撲狀態的前驅物而出現。此意謂拓撲區域可能與非拓撲的準馬約拉那狀態直接相鄰(在參數空間中)。在彼情況下,目前的將相關ZBP的區域加以叢集的演算法可識別在映射階段中過大的區域。換言之,儘管含有拓撲區域,但所識別的區域可延伸至更遠,包括一些準馬約拉那狀態。在彼情況下,精化階段的目前分析失敗,因為其將過多參數空間識別為拓撲的或因準馬約拉那狀態中不存在間隙閉合/重新打開而未辨別拓撲區域。One possible problem with quasi-Majorana is that it may arise as a precursor to a true topological state. This means that topological regions may be directly adjacent (in parameter space) to non-topological quasi-Majorana states. In that case, current algorithms for clustering regions of related ZBPs can identify regions that are too large during the mapping stage. In other words, although containing topological regions, the identified regions extend much further, including some quasi-Majorana states. In that case, the current analysis of the refinement phase fails because it identifies too much parameter space as topological or does not identify topological regions due to the absence of gap closing/reopening in the quasi-Majorana state.

對此問題的解決方案是:在精化階段中實施另一叢集演算法,該叢集演算法識別參數空間中(具體而言在場-柱塞空間中)的間隙閉合/重新打開特徵的線;並隨後確定此等線與相關ZBP的區域的交叉點,以找到拓撲相。應指出此主要是精化階段中的資料分析的問題。映射階段仍適於識別在精化階段中受到更嚴密檢查的資料的有希望區域。The solution to this problem is to implement in the refinement phase another clustering algorithm that identifies lines of gap closing/reopening features in parameter space (specifically in field-plunger space); The intersection of this isoline with the region of the relevant ZBP is then determined to find the topological phase. It should be pointed out that this is mainly a problem of data analysis in the refinement stage. The mapping phase is still suitable for identifying promising areas of the material that are subject to closer inspection in the refinement phase.

資料分析中的不穩定行為可來源於固定切斷器電壓的資料切割。可藉由將一或兩個切斷器-閘極電勢用作精化資料分析68中的額外維度來提高穩定性。此應改進叢集,並且更好地利用可用的資料集。Unstable behavior in data analysis can originate from data cutting with a fixed cutter voltage. Stability can be improved by using one or two switch-gate potentials as extra dimensions in refining the data analysis 68 . This should improve clustering and make better use of the available datasets.

以下實例處理半導體線的末端處的平滑勢,其與準馬約拉那及假陰性相關。長程不均勻性(平滑勢的變化)的存在可使得更加難以觀測間隙閉合/重新打開特徵,從而導致假陰性。有趣的是,平滑勢的變化亦是吾人預期將出現準馬約拉那模式的狀態。此處論述兩種效應之間的相互影響。The following example deals with smoothing potentials at the ends of semiconductor lines, which are associated with quasi-Majorana and false negatives. The presence of long-range inhomogeneities (changes in smooth potential) can make it more difficult to observe gap closing/reopening features, leading to false negatives. Interestingly, the change in smoothing potential is also what we would expect a quasi-Majorana pattern to appear. The interaction between the two effects is discussed here.

出現準馬約拉那模式的典型情境是將系統調諧至接近拓撲相但在拓撲相之外時的情境。為具體化,考慮一實例,其中在固定的磁場中,化學勢µ小於進入拓撲相所需的臨界化學勢µ C。可將平滑勢的變化解釋為空間上變化的化學勢µ(x) = µ 0V(x),其中V(x)是電勢。在以上情境中,如第15圖所示,電勢傾角可能接近半導體線的末端(此處為右),從而將系統局部調諧為拓撲相µ(x)>µ C,其造成局部的馬約拉那模式對。後者隨著半導體線主體中的拓撲相過渡而在低得多的場中的右端表現為局部電導(可經由不存在平滑勢變化的另一(左)端處的局部電導讀出)。 A typical situation in which quasi-Majorana modes occur is when the system is tuned close to but outside the topological phase. To make this concrete, consider an example where, in a fixed magnetic field, the chemical potential µ is smaller than the critical chemical potential µ C required to enter the topological phase. The change in smooth potential can be interpreted as a spatially varying chemical potential µ(x) = µ 0 V(x), where V(x) is the electric potential. In the above scenario, as shown in Figure 15, the potential inclination may be close to the end of the semiconductor wire (here on the right), thus locally tuning the system to the topological phase µ(x)>µ C , which causes a local Majora That's the right pattern. The latter appears as a local conductance at the right end in much lower fields (which can be read out via the local conductance at the other (left) end where there is no smooth potential change) following the topological phase transition in the body of the semiconductor wire.

第15圖展示1D模型中之半導體線之右端處的平滑勢的效應。左:經由半導體線的自能(橙,上圖)實施的半導殼層的電勢(下圖)及位置的空間相依性。右:電導矩陣,其包含非局部電導的反對稱部分。應指出非局部電導無間隙重新打開特徵。相過渡的唯一特徵是發生弱馬約拉那振盪。Figure 15 shows the effect of the smoothing potential at the right end of the semiconductor line in the 1D model. Left: Spatial dependence of the potential (bottom) and position of the semiconductor shell implemented via the self-energy of the semiconductor wire (orange, top). Right: Conductance matrix containing the antisymmetric part of the non-local conductance. It should be noted that the non-local conductance gapless reopening feature. The only characteristic of the phase transition is the occurrence of weak Majorana oscillations.

具體而言,在第15圖的實例中,固定化學勢的相過渡在B C≈2.7 T。方法56中將B≈1 T附近出現的準馬約拉那模式造成的ZBP準確地標為非拓撲的,因為非局部電導無間隙閉合及重新打開的特徵。然而,即使在拓撲相過渡中,亦不可見間隙閉合/重新打開的特徵。原因是右側平滑勢下系統的一部分已經歷相過渡,並因此在B與B C交叉時,系統的一部分有間隙。此抑制相過渡時主體模式的訊號,因為其僅與右引線瞬間耦合。應指出在此特定的模型中,拓撲間隙是100 µeV,並因此其比吾人在實際系統中預期的大。對於較小的間隙,非局部訊號變大,由此使間隙閉合/重新打開特徵的強度增加。然而,由於有限大小的振盪的訊號亦將更強,因此仍難以觀測間隙閉合/重新打開。 Specifically, in the example of Figure 15, the phase transition at fixed chemical potential is at BC ≈ 2.7 T. In Method 56, the ZBP caused by the quasi-Majorana mode appearing near B≈1 T is accurately labeled as non-topological, because the non-local conductance has no gap closing and reopening characteristics. However, even in topological phase transitions, gap closing/reopening features are not visible. The reason is that part of the system under the smooth potential on the right has experienced phase transition, and therefore there is a gap in part of the system when B crosses B and C. This suppresses the main mode signal during phase transition since it is only momentarily coupled to the right lead. It should be noted that in this particular model the topological gap is 100 µeV and is therefore larger than one would expect in a real system. For smaller gaps, the non-local signal becomes larger, thereby increasing the intensity of the gap closing/reopening feature. However, it is still difficult to observe gap closing/reopening since the signal of finite-sized oscillations will also be stronger.

總之,儘管半導體線末端處的準馬約拉那模式不會造成非局部電導中的假陽性特徵,但一旦將系統調諧至拓撲相,則準馬約拉那模式的存在增加假陰性的可能性。In summary, although quasi-Majorana modes at the ends of semiconductor wires do not cause false positive features in non-local conductance, the presence of quasi-Majorana modes increases the likelihood of false negatives once the system is tuned to the topological phase .

第二個實例處理與假陽性相關的半導體線中心的平滑勢。此處,吾人論述識別到的唯一實例,其中半導體線的兩端處均有ZBP,而非局部電導中有可解釋為間隙閉合(及可能是重新打開)的非平凡特徵,而系統的主體是非拓撲的。The second example deals with the smoothing potential at the center of a semiconductor line associated with false positives. Here, we discuss the only example we have identified where a semiconductor wire has ZBP at both ends and there are non-trivial features in the non-local conductance that can be interpreted as gap closing (and possibly reopening), and the bulk of the system is non-trivial. Topological.

第16圖描繪了設定。將半導體線的主體調諧為非拓撲的,同時半導體線中心處的平滑勢凸達到勢的拓撲狀態。吾人因此可想到在半導體線中心成核的一對馬約拉那零模式。儘管選擇的中心區域對於分離良好的馬約拉那模式過小,但勢的平滑度可導致半導體線中心出現接近但弱耦合的準馬約拉那模式。Figure 16 depicts the setup. The main body of the semiconductor wire is tuned to be non-topological, while the smooth potential bulge at the center of the semiconductor wire reaches the topological state of the potential. One can therefore think of a pair of Majorana zero modes nucleating at the center of a semiconductor wire. Although the central region is chosen to be too small for well-separated Majorana modes, the smoothness of the potential can lead to close but weakly coupled quasi-Majorana modes in the center of the semiconductor line.

如第16圖所示,由於有限大小效應,可探測到作為每一端處電導的相關ZBP的相應的零模式。此外,由於中心處的低能模式與兩側重疊,因此其亦影響非局部電導,從而可能將其誤解為間隙閉合。As shown in Figure 16, due to the finite size effect, the corresponding zero mode can be detected as the associated ZBP of the conductance at each end. In addition, since the low-energy mode in the center overlaps with the sides, it also affects non-local conductance, which may be misinterpreted as gap closure.

第16圖展示1D模型中之半導體線之中心處的平滑勢的效應。左:經由半導體線的自能(橙,上圖)實施的半導殼層的電勢(下圖)及位置的空間相依性。右:電導矩陣,其包含非局部電導的反對稱部分。應指出,由於有限大小效應,可見到作為相關ZBP的在中心區域處成核的準馬約拉那模式,且亦影響非局部電導。Figure 16 shows the effect of the smoothing potential at the center of the semiconductor wire in the 1D model. Left: Spatial dependence of the potential (bottom) and position of the semiconductor shell implemented via the self-energy of the semiconductor wire (orange, top). Right: Conductance matrix containing the antisymmetric part of the non-local conductance. It should be noted that due to finite size effects, a quasi-Majorana mode nucleating at the central region is seen as the relevant ZBP and also affects the non-local conductance.

第17圖圖示對於半導體線之中心有勢凸之1D模型之間隙方法的場/柱塞參數空間的資料分析。左:偵測到的ZBP。右:由資料確定的間隙。在此情況下,ZBP尋找器偵測到兩個重疊的區域:一者以柱塞等於0為中心(體拓撲區域),且一者以柱塞等於0.0025為中心(中心凸拓撲)。尚不清楚此情況是否表示假陽性(在體拓撲區域之外),因為中心有小的拓撲區域,且有限大小效應顯著。實際而言,有限大小效應造成自資料提取的估計間隙中的區域中之每一者(中心及主體)的間隙閉合的特徵。Figure 17 illustrates data analysis of the field/plunger parameter space of the gap method for a 1D model with a potential convexity at the center of a semiconductor wire. Left: Detected ZBP. Right: Gaps determined from data. In this case, the ZBP finder detects two overlapping regions: one centered on plunger equal to 0 (volume topology region), and one centered on plunger equal to 0.0025 (central convex topology). It is unclear whether this case represents a false positive (outside the volume topological region), since there is a small topological region in the center and the finite size effect is significant. In practical terms, the finite size effect results in the characteristic gap closure of each of the regions (center and body) in the estimated gap extracted from the data.

此問題性實例說明本文中之方法中使用的資料分析的持續發展的價值。應指出,ZBP叢集演算法已將兩個區域(中心及主體)識別為單一區域。此實例說明鄰近拓撲區域的非拓撲區域如何相對難以分離並且需要在資料分析中進一步精化。This problematic example illustrates the value of continued development of the data analysis used in the methods in this article. It should be noted that the ZBP clustering algorithm has identified two regions (center and body) as a single region. This example illustrates how nontopological regions adjacent to topological regions are relatively difficult to separate and require further refinement in data analysis.

第三個實例係關於強無序造成的非拓撲ZBP。此處代表的是具有強無序的一維模型的實例。舉例而言,第18圖展示極其無序的1D模型的場/柱塞參數空間的資料分析。左:相關ZBP的點(紅色)。右:參數空間中之每一點處的提取的間隙。儘管存在ZBP,但第18圖中的資料顯示相關ZBP的區域稀疏並且很大程度上是不相連的。隨後可藉由在間隙方法中添加所識別區域的大小及連續性的要求排除極其無序的區域。 儀器及其他方法 The third example concerns non-topological ZBP caused by strong disorder. Represented here is an instance of a one-dimensional model with strong disorder. For example, Figure 18 shows data analysis of the field/plunger parameter space of an extremely disordered 1D model. Left: Points related to ZBP (red). Right: Extracted gap at each point in parameter space. Despite the presence of ZBPs, the data in Figure 18 show that the regions of associated ZBPs are sparse and largely disconnected. Extremely disordered regions can then be excluded by adding size and continuity requirements for the identified regions to the gap method. Instruments and other methods

儘管本文揭示的特徵及實例係關於評估用於拓撲量子電腦的量子位元暫存器中的半導體-超導體異質接面的方法,此等特徵及實例亦適用於相關的儀器。第19圖展示經配置以評估用於拓撲量子電腦的量子位元暫存器中的半導體-超導體異質接面的例示性儀器136的態樣。儀器包含控制器18B。控制器包含至少一個處理器20B及在操作中耦接至處理器的電腦記憶體22B。電腦記憶體經配置以保持指令24B,指令24B使處理器執行本文所描述的各個量測及分析方法。為此,處理器在操作中可耦接至RF導納量測元件138及次RF電導量測元件140。RF導納量測元件可包含第7圖所示的特徵;次RF電導量測元件可包含第11圖所示的特徵。在所示的實例中,儀器136包含介面142,該介面142將處理器耦接至量測元件,並且亦向元件48的靜電閘極及磁體144提供控制訊號。Although the features and examples disclosed herein relate to methods for evaluating semiconductor-superconductor heterojunctions in qubit registers for use in topological quantum computers, these features and examples are also applicable to related instrumentation. Figure 19 shows aspects of an exemplary instrument 136 configured to evaluate semiconductor-superconductor heterojunctions in qubit registers for topological quantum computers. The instrument includes controller 18B. The controller includes at least one processor 20B and computer memory 22B operatively coupled to the processor. The computer memory is configured to hold instructions 24B that cause the processor to perform various measurement and analysis methods described herein. To this end, the processor may be operatively coupled to the RF admittance measurement element 138 and the sub-RF conductance measurement element 140 . The RF admittance measurement element may include the features shown in Figure 7; the sub-RF conductivity measurement element may include the features shown in Figure 11. In the example shown, instrument 136 includes interface 142 that couples the processor to the measurement element and also provides control signals to the electrostatic gate and magnet 144 of element 48 .

本文揭示的特徵及實例係同等地關於構建拓撲量子電腦。第20圖展示建造拓撲量子電腦的例示性方法146的態樣。The features and examples revealed in this article are equally relevant for building topological quantum computers. Figure 20 shows aspects of an exemplary method 146 of building a topological quantum computer.

方法146的148中製造的是半導體-超導體異質接面,其具有經配置以支援電子導納測試的至少三個端子。在62中,對半導體-超導體異質接面的RF接面導納加以量測,以獲取映射資料。在64中,藉由分析映射資料尋找與半導體-超導體異質接面的未破壞拓撲相一致的參數空間的一或多個區域。在66中,在參數空間的一或多個區域中之每一者中對半導體-超導體異質接面的次RF電導加以量測,以獲取精化資料。在68中,藉由分析精化資料針對參數空間的一或多個區域中之至少一者尋找參數空間中之未破壞拓撲相之邊界及半導體-超導體異質接面的拓撲間隙。在150中,在拓撲量子電腦的量子位元暫存器中加入半導體-超導體異質接面,其限制條件為找到的邊界及拓撲間隙在各別的預定範圍內。在以此方式建造的拓撲量子電腦的運行中,對參數空間中的邊界加以特性化的一或多個值可用作處理量子位元暫存器中的半導體-超導體異質接面的調諧參數。Fabricated in 148 of method 146 is a semiconductor-superconductor heterojunction having at least three terminals configured to support electron admittance testing. In 62, the RF junction admittance of the semiconductor-superconductor heterojunction is measured to obtain mapping data. At 64, the mapping data is analyzed to find one or more regions of parameter space consistent with the unbroken topology of the semiconductor-superconductor heterojunction. At 66, the sub-RF conductance of the semiconductor-superconductor heterojunction is measured in each of one or more regions of parameter space to obtain refined data. At 68, boundaries of unbroken topological phases and topological gaps of semiconductor-superconductor heterojunctions in the parameter space are found by analyzing the refined data for at least one of one or more regions of the parameter space. In 150, a semiconductor-superconductor heterojunction is added to the qubit register of a topological quantum computer, with the constraint that the found boundaries and topological gaps are within respective predetermined ranges. In the operation of a topological quantum computer built in this way, one or more values characterizing the boundaries in the parameter space can be used as tuning parameters to process the semiconductor-superconductor heterojunction in the qubit register.

不應將前文的圖式或描述的任何態樣理解為限制性的,因為亦設想大量添加、省略及變化。如上文在第6圖及其後各圖的上下文中所論述,可用三端子元件(例如第5圖的元件48)在兩個階段中找到馬約拉那零模式,其中對於第一階段(即第6圖的映射階段58),在射頻下完成量測,且對於第二階段(即精化階段60),在低頻或DC下完成量測。來自第一階段的輸出資料的資料分析將第一階段的輸出有效地「轉換為」適合第二階段的輸入。來自第二階段的輸出資料的最終分析隨後是對拓撲量子計算有用之拓撲區域之存在及範圍之預測基礎。然而,在其他實例中,可能不經常需要RF及DC量測的離散及未破壞的階段及資料分析的對應的離散及未破壞的階段。Any aspect of the foregoing drawings or descriptions is not to be construed as limiting, as numerous additions, omissions and variations are also contemplated. As discussed above in the context of Figure 6 et seq., the Majorana zero mode can be found in two stages using a three-terminal element (e.g. element 48 of Figure 5), where for the first stage (i.e. For the mapping stage 58 of Figure 6), the measurements are done at RF, and for the second stage, the refinement stage 60, the measurements are done at low frequency or DC. Data analysis of the output data from the first stage effectively "converts" the output of the first stage into input suitable for the second stage. Final analysis of the output data from the second stage is then the basis for predictions of the existence and extent of topological regions useful for topological quantum computing. However, in other instances, the discrete and non-destructive stages of RF and DC measurements and the corresponding discrete and non-destructive stages of data analysis may not always be needed.

第21圖圖示設想的變體的一個實例,其展示評估用於拓撲量子電腦的量子位元暫存器中的半導體-超導體異質接面的例示性方法56'的態樣。方法56'包括映射階段58'及精化階段60'。在62',藉由對本文所描述的半導體-超導體異質接面的RF導納及/或次RF電導加以量測獲取映射資料。在64',分析映射資料,從而找到與拓撲相一致的參數空間的區域。在66',藉由對半導體-超導體異質接面的RF導納及/或次RF電導加以量測獲取精化資料,其集中於64'中找到的任何區域、一些區域或所有區域。在68',分析精化資料,從而找到每一重點區域中的對應的拓撲相邊界及拓撲間隙。Figure 21 illustrates an example of a variant envisaged showing aspects of an exemplary method 56' for evaluating semiconductor-superconductor heterojunctions in qubit registers for topological quantum computers. Method 56' includes a mapping stage 58' and a refinement stage 60'. At 62', mapping data is obtained by measuring the RF admittance and/or sub-RF conductance of the semiconductor-superconductor heterojunction described herein. At 64', the mapping data is analyzed to find regions of parameter space that are consistent with the topology. At 66', refined data is obtained by measuring the RF admittance and/or sub-RF conductance of the semiconductor-superconductor heterojunction, focusing on any, some, or all of the regions found in 64'. At 68', the refined data are analyzed to find corresponding topological phase boundaries and topological gaps in each focus region.

舉例而言,操作類似的量測可在不分為離散且未破壞階段的情況下進行,因為類似(例如等效)的硬體及提取方法可實現對異質元件的整個參數空間或其預定區域的快速RF或DC量測。在此情況下,對前述的量測的第二階段(第6圖中的68)的資料分析可應用於單一量測階段。此變體的優勢可能是速度(若使用RF技術)或徹底性(若對整個參數空間或其預定區域應用次RF或DC量測)中之一或多者。另一優勢可能是速度及其他資訊的結合,若用次RF技術量測接近零偏壓的小的偏壓窗,或者量測訊號的第二及第三諧波(見上)。For example, measurements with similar operations can be performed without being divided into discrete and non-destructive stages, since similar (e.g. equivalent) hardware and extraction methods can be used to measure the entire parameter space of a heterogeneous component or a predetermined region thereof Fast RF or DC measurements. In this case, the data analysis of the aforementioned second stage of measurement (68 in Figure 6) can be applied to a single measurement stage. The advantage of this variant may be one or more of speed (if RF technology is used) or thoroughness (if sub-RF or DC measurements are applied to the entire parameter space or a predetermined region thereof). Another advantage may be the combination of speed and other information, if sub-RF techniques are used to measure small bias windows close to zero bias, or to measure the second and third harmonics of the signal (see above).

在一些實例中,在第一及第二階段中亦可執行兩階段協定,但兩個階段可為RF或DC。此處的第二階段可為第一階段中顯示的次區域的解析度細的掃描。對每一階段的結果執行的資料分析可能類似於第二階段得到的資料分析(第6圖中的68),第一階段的分析定義的輸出區域用作第二階段的量測的輸入區域。In some examples, a two-phase protocol can also be performed in the first and second phases, but the two phases can be RF or DC. The second stage here may be a fine resolution scan of the sub-region shown in the first stage. The data analysis performed on the results of each stage may be similar to the data analysis obtained in the second stage (68 in Figure 6), with the output regions defined by the first stage analysis serving as input regions for the second stage measurements.

在一些實例中,來自量測第一階段的資料的即時分析在識別到有希望的區域時可能觸發向量測第二階段的突然過渡,與精化之前等待整個參數空間受到覆蓋相反。此變體可使總評估時間減少,尤其在待覆蓋的參數空間極大及/或量測第一階段為低頻或DC量測時。In some instances, immediate analysis of data from the first phase of measurement may trigger an abrupt transition to the second phase of measurement when promising regions are identified, as opposed to waiting for the entire parameter space to be covered before refinement. This variant can reduce the total evaluation time, especially when the parameter space to be covered is very large and/or the first stage of the measurement is a low-frequency or DC measurement.

在一些實例中,可允許量測的第一與第二階段之間沿兩個方向過渡,使得資料擷取的模式在兩個階段之間交替。為此,執行參數空間的適應性量測,僅在需要時執行所找到的參數值的收縮精化(即解析度細的掃描)。此策略可能導致大參數空間的有效掃描。在更特定的實例中,初始的量測第一階段在磁場及閘電壓上可能是粗粒度的,但可在間歇的第二階段的資料分析之後得到調整,從而以更高的解析度映射出目標區域。同樣,可對偏壓範圍加以動態調整,以在偵測到初始間隙閉合之後執行體間隙提取。In some examples, transitions in both directions between the first and second phases of measurement may be allowed, such that the mode of data acquisition alternates between the two phases. For this purpose, a fitness measurement of the parameter space is performed, and a shrinkage refinement of the found parameter values (i.e. a fine-resolution scan) is performed only when necessary. This strategy may lead to efficient scanning of large parameter spaces. In a more specific example, the initial first phase of measurements may be coarse-grained in magnetic fields and gate voltages, but can be adjusted after intermittent second phase data analysis to map with higher resolution. target area. Likewise, the bias range can be dynamically adjusted to perform volume gap extraction after initial gap closure is detected.

在一些實施例中,可對具有額外的接地端子的四合粒子量子位元元件執行本文考慮的任何量測及分析序列。藉由使四合粒子接地,吾人可量測穿過同時調諧為拓撲狀態的兩個區域的傳輸。在此等實例中,兩個區域中的柱塞及切斷器閘極的調諧可單獨進行,但可在全域施加磁場。此處,可執行參數的循環,使得外循環是磁場循環,從而實現對兩個區域的同時量測。舉例而言,資料分析可如第13圖的方法進行,但僅在兩個區域的拓撲狀態在磁場值中重疊時宣佈成功。對於此調諧之後的量子位元操作,可在未接地狀態下操作四合粒子量子位元。In some embodiments, any of the measurement and analysis sequences considered herein can be performed on a quad particle qubit element with an additional ground terminal. By grounding the tetrad, we can measure transmission through two regions that are simultaneously tuned to topological states. In these examples, tuning of the plunger and shutoff gate in the two regions can be done independently, but the magnetic field can be applied over the entire region. Here, a loop of parameters can be performed so that the outer loop is a magnetic field loop, thereby achieving simultaneous measurement of two regions. For example, data analysis can be performed as in Figure 13, but success is declared only when the topological states of the two regions overlap in the magnetic field values. For qubit operation after this tuning, the quadruple particle qubit can be operated in the ungrounded state.

在類似於上文的四合粒子量子位元實例的實例中,可對六合粒子量子位元或許多量子位元(即四合粒子或更高)的集合執行本文考慮的任何量測及分析序列。相對於上文的四合粒子量子位元實例的一個差別是僅在三個或更多個拓撲狀態在磁場值中重疊時宣佈成功。In an example similar to the tetrad qubit example above, any of the measurement and analysis sequences considered herein can be performed on a tetrad qubit or a collection of many qubits (i.e., tetrads or higher). . One difference relative to the quadruple particle qubit example above is that success is only declared when three or more topological states overlap in magnetic field values.

在上文的兩個實例的另一變體中,現有(即原生)的四合粒子及/或六合粒子端子中之任一者可用作接地端子。此處,穿過元件的電流路徑用於使個別的量子位元接地,以用於類3端子的量測。在此變體中,本文考慮的任何量測及分析序列可在同一量子位元中的不同段之間串聯進行,但亦可在不同量子位元上並聯進行。量子位元的並聯詢問可用於進一步界定由個別的詢問識別的目標區域。對於兩種方法,一個段的末端用於藉由使儘可能多的切斷器閘極導通接地,而對其他段加以量測。對於四合粒子或六合粒子量子位元,此方法涉及對將調諧至拓撲狀態之區域之子集至少兩次執行協定。In another variation on the two examples above, any of the existing (i.e. native) four-part and/or six-part terminals may be used as the ground terminal. Here, the current path through the element is used to ground individual qubits for Class 3 terminal measurements. In this variant, any sequence of measurements and analyzes considered here can be performed in series between different segments within the same qubit, but can also be performed in parallel on different qubits. Parallel interrogation of qubits can be used to further define target areas identified by individual interrogations. For both methods, the end of one segment is used to measure the other segments by bringing as many of the breaker gates to ground as possible. For tetrad or hexad qubits, this method involves performing agreement at least twice on a subset of the regions that will be tuned to the topological state.

在一些情境中,此等額外的實例可使調諧拓撲量子電腦的速度增加,並且亦可使獲取的拓撲相的可信度增加。In some scenarios, these additional instances could increase the speed of tuning a topological quantum computer and also increase the confidence in the obtained topological phases.

對於其他上下文,以下參考文獻出於所有目的以引用的方式併入本文中。For additional context, the following references are incorporated herein by reference for all purposes.

T. Ô. Rosdahl, A. Vuik, M. Kjaergaard, and A. R. Akhmerov, Andreevrectifier: A nonlocal conductance signature of topological phase transitions, Phys. Rev. B 97, 045421 (2018).T. Ô. Rosdahl, A. Vuik, M. Kjaergaard, and A. R. Akhmerov, Andreevrectifier: A nonlocal conductance signature of topological phase transitions, Phys. Rev. B 97, 045421 (2018).

Jeroen Danon, Anna Birk Hellenes, Esben Bork Hansen, Lucas Casparis,Andrew P. Higginbotham, and Karsten Flensberg, Nonlocal conductance spectroscopy of Andreev bound states: Symmetry relations and BCS charges, arXiv:1905.05438 [cond-mat] (2019), arXiv:1905.05438 [cond-mat].Jeroen Danon, Anna Birk Hellenes, Esben Bork Hansen, Lucas Casparis,Andrew P. Higginbotham, and Karsten Flensberg, Nonlocal conductance spectroscopy of Andreev bound states: Symmetry relations and BCS charges, arXiv:1905.05438 [cond-mat] (2019), arXiv :1905.05438 [cond-mat].

G. C. Menard, G. L. R. Anselmetti, E. A. Martinez, D. Puglia, F. K.Malinowski, J. S. Lee, S. Choi, M. Pendharkar, C. J. Palmstrom, K. Flensberg, C. M. Marcus, L. Casparis, and A. P. Higginbotham, Conductance-matrix symmetries of a three-terminal hybrid device, arXiv:1905.05505 [cond-mat] (2019), arXiv:1905.05505 [cond-mat].G. C. Menard, G. L. R. Anselmetti, E. A. Martinez, D. Puglia, F. K.Malinowski, J. S. Lee, S. Choi, M. Pendharkar, C. J. Palmstrom, K. Flensberg, C. M. Marcus, L. Casparis, and A. P. Higginbotham, Conductance-matrix symmetries of a three-terminal hybrid device, arXiv:1905.05505 [cond-mat] (2019), arXiv:1905.05505 [cond-mat].

Davydas Razmadze, Deividas Sabonis, Filip K. Malinowski, Gerbold C.Menard, Sebastian Pauka, Hung Nguyen, David M.T. van Zanten, Eoin C.T. O'Farrell, Judith Suter, Peter Krogstrup, Ferdinand Kuemmeth, and Charles M. Marcus, Radio-Frequency Methods for Majorana-Based Quantum Devices: Fast Charge Sensing and Phase-Diagram Mapping, Phys. Rev. Applied 11,064011 (2019).Davydas Razmadze, Deividas Sabonis, Filip K. Malinowski, Gerbold C.Menard, Sebastian Pauka, Hung Nguyen, David M.T. van Zanten, Eoin C.T. O'Farrell, Judith Suter, Peter Krogstrup, Ferdinand Kuemmeth, and Charles M. Marcus, Radio- Frequency Methods for Majorana-Based Quantum Devices: Fast Charge Sensing and Phase-Diagram Mapping, Phys. Rev. Applied 11,064011 (2019).

MITEQ AFS4-00100800-14-10P-4.MITEQ AFS4-00100800-14-10P-4.

附錄A:在三端子近似奈米線元件中找到拓撲相的協定 結論 Appendix A: Agreement for finding topological phases in three-terminal approximate nanowire components Conclusion

總之,本揭示案的一個態樣係關於評估用於拓撲量子電腦的量子位元暫存器中的半導體-超導體異質接面的方法。方法包括:量測半導體-超導體異質接面的射頻(RF)接面導納及包含半導體-超導體異質接面的非局部電導的次RF電導中之一或兩者,以獲取映射資料及精化資料;藉由分析映射資料尋找與半導體-超導體異質接面的未破壞拓撲相一致的參數空間的一或多個區域;及藉由分析精化資料針對參數空間的一或多個區域中之至少一者尋找參數空間中的未破壞拓撲相的邊界及半導體-超導體異質接面的拓撲間隙。此方法在拓撲量子電腦的構建及如此構建的拓撲量子電腦方面提供大量有利的技術效果。此等技術效果包括對量子電腦的量子位元加以準確篩選及調諧以改進性能的效果。In summary, one aspect of the present disclosure relates to methods for evaluating semiconductor-superconductor heterojunctions in qubit registers for use in topological quantum computers. Methods include measuring one or both of the radio frequency (RF) junction admittance of the semiconductor-superconductor heterojunction and the sub-RF conductance including the non-local conductance of the semiconductor-superconductor heterojunction to obtain mapping data and refinement data; by analyzing the mapping data to find one or more regions of parameter space consistent with an unbroken topology of the semiconductor-superconductor heterojunction; and by analyzing and refining the data for at least one or more regions of the parameter space One searches for the boundaries of unbroken topological phases in parameter space and the topological gaps of semiconductor-superconductor heterojunctions. This method provides a number of advantageous technical effects in the construction of topological quantum computers and topological quantum computers so constructed. These technical effects include the effects of accurately screening and tuning the qubits of quantum computers to improve performance.

在一些實施例中,此方法中的量測在第一及第二階段中進行,其中在第一階段中獲取映射資料,並在第二階段中獲取精化資料,且其中第二階段包含對藉由分析映射資料找到的參數空間的一或多個區域的子區域的掃描。此變體在提高篩選/調諧製程的效率方面提供附加技術效果。在一些實施方式中,方法進一步包括取決於對映射資料的分析自第一階段突然過渡至第二階段。在一些實施方式中,量測在第一與第二階段之間交替,以實現對參數空間的適應性量測。此等特徵提供額外的技術效果:有效地同時探索參數空間,並精確確定目標區域中的拓撲間隙,從而改進篩選及調諧性能。在一些實施方式中,第一階段中的量測相比於第二階段在磁場及/或閘電壓上有更粗的粒度。在一些實施方式中,方法進一步包括:在第一階段與第二階段之間動態調整偏壓範圍,從而在偵測到初始間隙閉合之後執行體間隙提取。在一些實施方式中,映射資料的分析包括對來自半導體-超導體異質接面的相對端的零偏壓峰資料執行基於密度的叢集。在一些實施方式中,方法進一步包括藉由檢查ZBP對於切斷器-閘極電壓的變化的穩定性驗證一或多個區域中之每一者中的零偏壓峰(zero-bias peak; ZBP)。在一些實施方式中,精化資料的分析包括校驗參數空間的一或多個區域中之每一者的邊界處的間隙閉合。在一些實施方式中,半導體-超導體異質接面是一系列具有類似準備的半導體-超導體異質接面中之一者,方法進一步包括對系列中的零偏壓峰資料加以後設分析,以計算在另一類似準備的半導體-超導體異質接面中找到拓撲區域的機率。此等變體提供在拓撲量子位元的篩選及調諧中整合其他有用製程的額外的技術效果。在一些實施方式中,量測次RF電導包括執行局部及非局部電導的量測,以識別及/或提取半導體超導體異質接面的能隙。在一些實施方式中,半導體-超導體異質接面包含一半導體線及至少三個端子,該等端子支援半導體線的相對端處的導納及電導量測。在一些實施方式中,半導體-超導體異質接面包含複數個靜電控制端子。此等變體提供經由量子位元結構的可觸及特徵執行量子位元篩選及調諧的額外的技術效果。In some embodiments, the measurement in this method is performed in a first and a second stage, wherein the mapping data is obtained in the first stage, and the refinement data is obtained in the second stage, and the second stage includes A scan of a subregion of one or more regions of parameter space found by analyzing mapping data. This variant provides additional technical benefits in increasing the efficiency of the screening/tuning process. In some embodiments, the method further includes an abrupt transition from the first stage to the second stage dependent on analysis of the mapping data. In some embodiments, measurements alternate between first and second stages to achieve adaptive measurements of the parameter space. These features provide the additional technical benefit of efficiently simultaneously exploring parameter space and accurately determining topological gaps in target regions, thereby improving filtering and tuning performance. In some embodiments, the measurements in the first stage have coarser granularity in magnetic field and/or gate voltage than in the second stage. In some embodiments, the method further includes dynamically adjusting the bias range between the first stage and the second stage to perform body gap extraction after detecting initial gap closure. In some embodiments, analysis of the mapping data includes performing density-based clustering of zero-bias peak data from opposite ends of the semiconductor-superconductor heterojunction. In some embodiments, the method further includes verifying a zero-bias peak (ZBP) in each of the one or more regions by examining the stability of the ZBP to changes in the cutter-gate voltage. ). In some embodiments, analysis of the refined data includes checking for gap closure at the boundaries of each of one or more regions of the parameter space. In some embodiments, the semiconductor-superconductor heterojunction is one of a series of similarly prepared semiconductor-superconductor heterojunctions, and the method further includes performing a meta-analysis on the zero-bias peak data in the series to calculate Probability of finding topological regions in another similarly prepared semiconductor-superconductor heterojunction. These variants provide the additional technical benefit of integrating other useful processes in the screening and tuning of topological qubits. In some embodiments, measuring sub-RF conductance includes performing local and non-local conductance measurements to identify and/or extract energy gaps of semiconductor superconductor heterojunctions. In some embodiments, a semiconductor-superconductor heterojunction includes a semiconductor wire and at least three terminals that support admittance and conductance measurements at opposite ends of the semiconductor wire. In some embodiments, a semiconductor-superconductor heterojunction includes a plurality of static control terminals. These variations provide the additional technical effect of performing qubit screening and tuning via accessible features of the qubit structure.

本揭示案的另一態樣係關於經配置以評估用於拓撲量子電腦的量子位元暫存器中的半導體-超導體異質接面的儀器。儀器包括:控制器,其具有處理器及在操作中耦接至處理器的電腦記憶體,該控制器經配置以:量測半導體-超導體異質接面的射頻(RF)接面導納及包含半導體-超導體異質接面的非局部電導的次RF電導中之一或兩者,以獲取映射資料及精化資料;藉由分析映射資料尋找與半導體-超導體異質接面的未破壞拓撲相一致的參數空間的一或多個區域;及藉由分析精化資料針對參數空間的一或多個區域中之至少一者尋找參數空間中的未破壞拓撲相的邊界及半導體-超導體異質接面的拓撲間隙。此提供提高篩選/調諧儀器的效率的技術效果。Another aspect of the disclosure relates to instruments configured to evaluate semiconductor-superconductor heterojunctions in qubit registers for topological quantum computers. The instrument includes a controller having a processor and a computer memory operatively coupled to the processor, the controller configured to: measure a radio frequency (RF) junction admittance of a semiconductor-superconductor heterojunction and include One or both of the non-local conductivity and the sub-RF conductance of the semiconductor-superconductor heterojunction to obtain mapping data and refined data; by analyzing the mapping data to find the unbroken topology consistent with the semiconductor-superconductor heterojunction one or more regions of the parameter space; and searching for the boundary of the unbroken topological phase in the parameter space and the topology of the semiconductor-superconductor heterojunction for at least one of the one or more regions of the parameter space by analyzing and refining the data gap. This provides the technical effect of increasing the efficiency of the screening/tuning instrument.

在一些實施方式中,儀器在操作中耦接至RF導納量測元件及/或次RF電導量測元件。In some embodiments, the instrument is operatively coupled to an RF admittance measurement element and/or a sub-RF conductance measurement element.

本揭示案的另一態樣係關於構建拓撲量子電腦的方法。方法包括:製造半導體-超導體異質接面,其具有經配置以支援電子導納測試的至少三個端子;量測半導體-超導體異質接面的射頻(RF)接面導納及包含半導體-超導體異質接面的非局部電導的次RF電導中之一或兩者,以獲取映射資料及精化資料;藉由分析映射資料尋找與半導體-超導體異質接面的未破壞拓撲相一致的參數空間的一或多個區域;及藉由分析精化資料針對參數空間的一或多個區域中之至少一者尋找參數空間中的未破壞拓撲相的邊界及半導體-超導體異質接面的拓撲間隙;及在拓撲量子電腦的量子位元暫存器中加入半導體-超導體異質接面,其限制條件為所找到的邊界及拓撲在各別的預定範圍內。此方法提供改進所構建的量子電腦的篩選及調諧的技術效果。Another aspect of the disclosure concerns methods for building topological quantum computers. The method includes: fabricating a semiconductor-superconductor heterojunction having at least three terminals configured to support electron admittance testing; measuring a radio frequency (RF) junction admittance of the semiconductor-superconductor heterojunction and including the semiconductor-superconductor heterojunction One or both of the non-local conductivity and sub-RF conductance of the junction are used to obtain mapping data and refined data; by analyzing the mapping data, a parameter space consistent with the unbroken topology of the semiconductor-superconductor heterojunction is found. or multiple regions; and searching for the boundary of the unbroken topological phase in the parameter space and the topological gap of the semiconductor-superconductor heterojunction for at least one of one or more regions of the parameter space by analyzing and refining the data; and in A semiconductor-superconductor heterojunction is added to the qubit register of a topological quantum computer. The restriction condition is that the found boundary and topology are within respective predetermined ranges. This approach provides technical results that improve the screening and tuning of constructed quantum computers.

在一些實施方式中,對參數空間中的邊界加以特性化的一或多個值用作處理量子位元暫存器中的半導體-超導體異質接面的調諧參數。在一些實施方式中,在具有額外的接地端子的四合粒子量子位元元件中佈置半導體-超導體異質接面,且同時對穿過調諧為拓撲狀態的相對區域的傳輸加以量測。在一些實施方式中,在六合粒子量子位元元件中佈置半導體-超導體異質接面。在一些實施方式中,在四合粒子或六合粒子量子位元元件中佈置半導體-超導體異質接面,該元件具有在本方法中用作接地端子的原生端子,其中穿過元件的電流路徑用於使個別的量子位元接地,從而執行類3端子的量測。此等變體提供將方法延伸至目前該領域特別關注的拓撲量子電腦架構的額外的技術效果。In some embodiments, one or more values that characterize boundaries in parameter space are used as tuning parameters for processing semiconductor-superconductor heterojunctions in qubit registers. In some embodiments, a semiconductor-superconductor heterojunction is arranged in a quadruple particle qubit element with an additional ground terminal, and transmission through opposing regions tuned to a topological state is simultaneously measured. In some embodiments, a semiconductor-superconductor heterojunction is disposed in a hexagonal particle qubit element. In some embodiments, a semiconductor-superconductor heterojunction is disposed in a tetrad or hexad qubit element that has a native terminal used as a ground terminal in the present method, where the current path through the element is Connect individual qubits to ground to perform Class 3 terminal measurements. These variants provide the additional technical benefit of extending the method to topological quantum computer architectures that are currently of particular interest in the field.

本揭示案的另一態樣係關於拓撲相的提取的兩階段方法。值得注意的是,此包括按階段分離,其中映射階段允許對參數空間的廣泛搜尋,同時仍產生假陽性,且精化階段允許將假陽性清除,從而緩慢掃描映射階段的目標區域。本揭示案的另一態樣係關於對兩側ZBP資料使用基於密度的叢集演算法,以提取預測的拓撲區域。值得注意的是,此包括為此使用的叢集演算法。吾人認為此是用於尋找有希望區域的第一個系統性方法。本揭示案的另一態樣係關於在RF與DC電導之間映射,從而在RF量測中實現快速電導提取。值得注意的是,此包括使用映射以繞過DC電導量測,並且仍提取相同的資料,但由於RF技術更快而可更快地提取。本揭示案的另一態樣係關於使用尋峰或機器學習執行偏壓蹤跡的分類。值得注意的是,此包括拓撲蹤跡的機器學習及對尋峰效果如何的統計特性化。本揭示案的另一態樣係關於自非局部電導蹤跡提取間隙,尤其使用偏壓蹤跡及實驗雜訊或偏壓/場掃描的過濾及平滑化。值得注意的是,此包括自動間隙提取。本揭示案的另一態樣係關於藉由檢查疑似拓撲區域的邊界處的間隙閉合提高先前方法的準確度。值得注意的是,此包括自資料提取間隙的應用,以將區域分類為拓撲/平凡的區域。本揭示案的另一態樣是對ZBP資料執行後設分析,以提取在同一準備的許多元件中尋找一拓撲區域的機率。此可用於經由拓撲相圖對生長/製造方法加以特性化。本揭示案的另一態樣是使用上述的任一者將拓撲量子電腦的量子位元向上調諧。Another aspect of the present disclosure concerns a two-stage method for topological phase extraction. Notably, this includes a separation by stage, where the mapping stage allows a broad search of the parameter space while still producing false positives, and the refinement stage allows false positives to be weeded out, thereby slowly scanning the target area of the mapping stage. Another aspect of this disclosure involves using density-based clustering algorithms on both sides of the ZBP data to extract predicted topological regions. It is worth noting that this includes the clustering algorithm used for this. We believe this is the first systematic approach to finding promising areas. Another aspect of the disclosure relates to mapping between RF and DC conductances to enable rapid conductance extraction in RF measurements. Notably, this involves using mapping to bypass the DC conductance measurement and still extract the same data, but much faster because RF technology is faster. Another aspect of the disclosure concerns using peak hunting or machine learning to perform classification of bias traces. Notably, this includes machine learning of topological traces and statistical characterization of how effective peak hunting is. Another aspect of the disclosure relates to gap extraction from non-local conductance traces, particularly using filtering and smoothing of bias traces and experimental noise or bias/field scans. Notably, this includes automatic gap extraction. Another aspect of the present disclosure relates to improving the accuracy of previous methods by checking for gap closure at the boundaries of suspected topological regions. Notably, this includes the application of self-extraction gaps to classify regions into topological/trivial regions. Another aspect of the disclosure is to perform a meta-analysis on ZBP data to extract the probability of finding a topological region among many components of the same preparation. This can be used to characterize growth/fabrication methods via topological phase diagrams. Another aspect of the present disclosure is to use any of the above to up-tune the qubits of a topological quantum computer.

吾人將理解本文描述的配置及/或方法在本質上是例示性的,並且不應將此等具體的實施例或實例視為限制性的,因為可能有大量變化。本文描述的具體常式或方法可表示任何數量的處理策略中之一或多者。由此,所說明及/或描述的各個行為可按所說明及/或描述的序列進行,在其他序列中進行,並行進行或省略。同一,可改變上述的製程的次序。It is to be understood that the configurations and/or methods described herein are illustrative in nature and such specific embodiments or examples should not be considered limiting as numerous variations are possible. The specific routines or methods described herein may represent one or more of any number of processing strategies. Thus, various actions illustrated and/or described may be performed in the sequence illustrated and/or described, performed in other sequences, performed in parallel, or omitted. Similarly, the order of the above-mentioned processes can be changed.

本揭示案的標的包含本文所揭示的各個製程、系統及配置及其他特徵、功能、行為及/或性質的所有新型及非顯而易見的組合及子組合,及其任何等效者或所有等效者。The subject matter of this disclosure includes all novel and non-obvious combinations and sub-combinations of the various processes, systems and configurations and other features, functions, behaviors and/or properties disclosed herein, and any and all equivalents thereof .

10:量子電腦 12:量子位元暫存器 14A:量子位元 14B:量子位元 14C:量子位元 14D:量子位元 14E:量子位元 14F:量子位元 14G:量子位元 14H:量子位元 16:布洛赫球 18A:控制器 18B:控制器 20A:處理器 20B:處理器 22A:電腦記憶體 22B:電腦記憶體 24A:程式指令 24B:指令 26A:資料 28:輸入 30:輸出 32:量子介面 34:調變器 36:解調器 40:段 42:段 44:段 46:MZM 48:半導體-超導體異質接面元件 50:中段 52:探針 54L:觸點 54R:觸點 56:方法 56':方法 58:映射階段 58':映射階段 60:精化階段 60':精化階段 62:量測 62':步驟 62A:方法 64:資料分析 64':步驟 64A:方法 66:量測 66A:方法 68:資料分析 68A:方法 70:驗證階段 72:半導體線 74:超導體 75:MZM 76L:靜電切斷器閘極 76R:靜電切斷器閘極 78:靜電柱塞閘極 80:初始鑑定階段 82:步驟 84:步驟 86:步驟 88:步驟 90:步驟 92:步驟 94:步驟 96:步驟 98:步驟 100:步驟 102:步驟 104:步驟 106:步驟 108:步驟 110:步驟 112:步驟 114:步驟 116:步驟 118:步驟 120:步驟 122:步驟 124:步驟 126:步驟 128:步驟 130:步驟 132:步驟 134:步驟 136:儀器 138:RF導納量測元件 140:次RF電導量測元件 142:介面 144:磁體 146:方法 148:步驟 150:步驟 L:拓撲區域的最大長度 L N:每一切斷器閘極76與相關的常規引線54之間的間距 L S:將拓撲區域連接至引線接地超導體74的超導段的長度 LO:局部振盪器 Q:拓撲指數 S:相位閘 S 0:相位閘 S 1:相位閘 S 2:相位閘 S 3:相位閘 S 4:相位閘 V P:柱塞電壓 W:半導體線寬度 W C:每一切斷器閘極76的寬度 X:X量子閘 Y:Y量子閘 Z:Z量子閘 10: Quantum computer 12: Qubit register 14A: Qubit 14B: Qubit 14C: Qubit 14D: Qubit 14E: Qubit 14F: Qubit 14G: Qubit 14H: Quantum Bit 16: Bloch sphere 18A: Controller 18B: Controller 20A: Processor 20B: Processor 22A: Computer memory 22B: Computer memory 24A: Program instructions 24B: Instructions 26A: Data 28: Input 30: Output 32: Quantum interface 34: Modulator 36: Demodulator 40: Segment 42: Segment 44: Segment 46: MZM 48: Semiconductor-superconductor heterojunction element 50: Middle segment 52: Probe 54L: Contact 54R: Contact 56: Method 56': Method 58: Mapping stage 58': Mapping stage 60: Refining stage 60': Refining stage 62: Measurement 62': Step 62A: Method 64: Data analysis 64': Step 64A: Method 66 : Measurement 66A: Method 68: Data analysis 68A: Method 70: Verification stage 72: Semiconductor wire 74: Superconductor 75: MZM 76L: Electrostatic cutter gate 76R: Electrostatic cutter gate 78: Electrostatic plunger gate 80: Initial identification phase 82: Step 84: Step 86: Step 88: Step 90: Step 92: Step 94: Step 96: Step 98: Step 100: Step 102: Step 104: Step 106: Step 108: Step 110: Step 112: Step 114: Step 116: Step 118: Step 120: Step 122: Step 124: Step 126: Step 128: Step 130: Step 132: Step 134: Step 136: Instrument 138: RF admittance measurement element 140: times RF conductivity measurement element 142: Interface 144: Magnet 146: Method 148: Step 150: Step L: Maximum length of topological region L N : Spacing between each cutter gate 76 and associated conventional lead 54 L S : Length of the superconducting segment connecting the topological region to the lead-grounded superconductor 74 LO: local oscillator Q: topological index S: phase gate S 0 : phase gate S 1 : phase gate S 2 : phase gate S 3 : phase gate S 4 : Phase gate V P : Plunger voltage W: Semiconductor line width W C : Width of each cutter gate 76 X: X quantum gate Y: Y quantum gate Z: Z quantum gate

第1圖展示例示性量子電腦的態樣。Figure 1 shows what an exemplary quantum computer might look like.

第2圖圖示布洛赫球,其用圖形表示量子電腦的一個量子位元的量子態。Figure 2 illustrates a Bloch sphere, which graphically represents the quantum state of a qubit in a quantum computer.

第3圖展示用於引起量子電腦中的量子閘操作的例示性訊號波形的態樣。Figure 3 shows the appearance of an exemplary signal waveform used to cause a quantum gate operation in a quantum computer.

第4圖展示包含線性四合粒子陣列的例示性量子位元架構的態樣。Figure 4 shows an exemplary qubit architecture including a linear tetrad array.

第5圖展示根據本文的方法評估的例示性半導體-超導體異質接面元件的態樣。Figure 5 shows aspects of an exemplary semiconductor-superconductor heterojunction device evaluated according to the methods of this article.

第6圖展示評估用於拓撲量子電腦的量子位元暫存器中的半導體-超導體異質接面的例示性方法的態樣。Figure 6 shows aspects of an exemplary method for evaluating semiconductor-superconductor heterojunctions in qubit registers for topological quantum computers.

第7圖展示例示性射頻(radio frequency; RF)反射量測測試電路的態樣。Figure 7 shows an exemplary radio frequency (RF) reflection measurement test circuit.

第8圖展示量測半導體-超導體異質接面的RF接面導納的例示性方法的態樣。Figure 8 shows aspects of an exemplary method for measuring the RF junction admittance of a semiconductor-superconductor heterojunction.

第9圖展示藉由分析來自第8圖的方法的資料尋找與半導體-超導體異質接面的未破壞拓撲相一致的參數空間的區域的例示性方法的態樣。Figure 9 shows aspects of an exemplary method of finding a region of parameter space consistent with the unbroken topology of a semiconductor-superconductor heterojunction by analyzing data from the method of Figure 8.

第10圖展示根據第9圖的方法分析映射資料的態樣。Figure 10 shows how mapping data is analyzed according to the method in Figure 9.

第11圖展示例示性次RF電導測試電路的態樣。Figure 11 shows what an exemplary sub-RF conductivity test circuit looks like.

第12圖展示量測半導體-超導體異質接面的次RF電導的例示性方法的態樣。Figure 12 shows aspects of an exemplary method for measuring sub-RF conductance of a semiconductor-superconductor heterojunction.

第13圖展示藉由分析來自第12圖的方法的資料尋找參數空間中的未破壞拓撲相的邊界及半導體-超導體異質接面的拓撲間隙的例示性方法的態樣。Figure 13 shows an aspect of an exemplary method for finding the boundaries of unbroken topological phases in parameter space and the topological gaps of semiconductor-superconductor heterojunctions by analyzing data from the method of Figure 12.

第14圖展示根據第13圖的方法分析精化資料的態樣。Figure 14 shows how the refined data is analyzed according to the method in Figure 13.

第15圖展示半導體-超導體異質接面之1D模型中之半導體線之右端處的平滑勢的效應。Figure 15 shows the effect of the smoothing potential at the right end of the semiconductor line in a 1D model of a semiconductor-superconductor heterojunction.

第16圖展示半導體-超導體異質接面之1D模型中之半導體線之中心處的平滑勢的效應。Figure 16 shows the effect of the smoothing potential at the center of the semiconductor line in a 1D model of a semiconductor-superconductor heterojunction.

第17圖展示對於半導體線之中心有勢凸的半導體-超導體異質接面的1D模型的場/柱塞參數空間的資料分析的結果。Figure 17 shows the results of data analysis in the field/plunger parameter space of a 1D model of a semiconductor-superconductor heterojunction with a potential bulge at the center of the semiconductor wire.

第18圖展示對於半導體-超導體異質接面之極其無序之1D模型的場/柱塞參數空間的資料分析的結果。Figure 18 shows the results of data analysis of the field/plunger parameter space for a highly disordered 1D model of a semiconductor-superconductor heterojunction.

第19圖展示經配置以評估拓撲量子電腦的量子位元暫存器中的半導體-超導體異質接面的例示性儀器的態樣。Figure 19 shows aspects of an exemplary instrument configured to evaluate semiconductor-superconductor heterojunctions in qubit registers of a topological quantum computer.

第20圖展示構建拓撲量子電腦的例示性方法的態樣。Figure 20 shows an example method of building a topological quantum computer.

第21圖展示用於拓撲量子電腦的量子位元暫存器中的半導體-超導體異質接面的另一例示性評估方法的態樣。Figure 21 shows another exemplary evaluation method of a semiconductor-superconductor heterojunction in a qubit register for a topological quantum computer.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic storage information (please note in order of storage institution, date and number) without Overseas storage information (please note in order of storage country, institution, date, and number) without

10:量子電腦 10:Quantum computer

12:量子位元暫存器 12: Qubit register

14A:量子位元 14A: Qubits

14B:量子位元 14B: Qubit

14C:量子位元 14C: Qubit

14D:量子位元 14D: Qubits

14E:量子位元 14E: Qubits

14F:量子位元 14F: Qubit

14G:量子位元 14G: Qubits

14H:量子位元 14H: Qubit

18A:控制器 18A:Controller

20A:處理器 20A: Processor

22A:電腦記憶體 22A:Computer memory

24A:程式指令 24A: Program instructions

26A:資料 26A:Information

28:輸入 28:Input

30:輸出 30:Output

32:量子介面 32:Quantum interface

34:調變器 34:Modulator

36:解調器 36:Demodulator

Claims (20)

一種評估用於一拓撲量子電腦的一量子位元暫存器中的一半導體-超導體異質接面的方法,該方法包括以下步驟: 對該半導體-超導體異質接面之一射頻(RF)接面導納及包含該半導體-超導體異質接面之一非局部電導之一次RF電導中之一或兩者加以量測,以獲取映射資料及精化資料; 藉由分析該映射資料尋找與該半導體-超導體異質接面的一未破壞拓撲相一致的一參數空間的一或多個區域;及 藉由分析該精化資料針對該參數空間的該一或多個區域中之至少一者中尋找該參數空間中之該未破壞拓撲相之一邊界及該半導體-超導體異質接面的一拓撲間隙。 A method for evaluating a semiconductor-superconductor heterojunction in a qubit register for use in a topological quantum computer, the method comprising the following steps: One or both of a radio frequency (RF) junction admittance of the semiconductor-superconductor heterojunction and a primary RF conductance including a non-local conductance of the semiconductor-superconductor heterojunction are measured to obtain mapping data and refine data; Finding one or more regions of a parameter space consistent with an unbroken topology of the semiconductor-superconductor heterojunction by analyzing the mapping data; and Searching for a boundary of the unbroken topological phase in the parameter space and a topological gap of the semiconductor-superconductor heterojunction in at least one of the one or more regions of the parameter space by analyzing the refined data . 如請求項1所述之方法,其中該量測在第一及第二階段中進行,其中在該第一階段中獲取該映射資料,及在該第二階段中獲取該精化資料,且其中該第二階段包含對藉由分析該映射資料找到的該參數空間的該一或多個區域的一子區域的一掃描。The method of claim 1, wherein the measurement is performed in the first and second stages, wherein the mapping data is obtained in the first stage, and the refined data is obtained in the second stage, and wherein The second stage includes a scan of a sub-region of the one or more regions of the parameter space found by analyzing the mapping data. 如請求項2所述之方法,其進一步包括以下步驟:取決於對該映射資料的該分析自該第一階段突然過渡至該第二階段。The method of claim 2, further comprising the step of suddenly transitioning from the first stage to the second stage depending on the analysis of the mapping data. 如請求項2所述之方法,其中該量測在該第一與該第二階段之間交替,以實現對該參數空間的一適應性量測。The method of claim 2, wherein the measurement alternates between the first and the second stages to achieve an adaptive measurement of the parameter space. 如請求項2所述之方法,其中該量測在該第一階段中相比於該第二階段中在磁場及/或閘電壓上有更粗的粒度。The method of claim 2, wherein the measurement in the first stage has coarser granularity in magnetic field and/or gate voltage than in the second stage. 如請求項2所述之方法,其進一步包括以下步驟:在該第一階段與該第二階段之間動態調整一偏壓範圍,從而在偵測到一初始間隙閉合之後執行體間隙提取。The method of claim 2, further comprising the step of dynamically adjusting a bias range between the first phase and the second phase to perform body gap extraction after detecting an initial gap closure. 如請求項1所述之方法,其中該映射資料的該分析之步驟包括以下步驟:對來自該半導體-超導體異質接面的相對端的零偏壓峰資料執行基於密度的叢集。The method of claim 1, wherein the analyzing of the mapping data includes the step of performing density-based clustering on zero-bias peak data from opposite ends of the semiconductor-superconductor heterojunction. 如請求項1所述之方法,其進一步包括以下步驟:藉由檢查該ZBP對於切斷器-閘極電壓的變化的穩定性驗證該一或多個區域中之每一者中的一零偏壓峰(ZBP)。The method of claim 1, further comprising the step of verifying a zero bias in each of the one or more regions by checking the stability of the ZBP to changes in the disconnector-gate voltage. Pressure Peak (ZBP). 如請求項1所述之方法,其中該精化資料的該分析之步驟包括以下步驟:校驗該參數空間的該一或多個區域中之每一者的該邊界處的間隙閉合。The method of claim 1, wherein the step of analyzing the refined data includes the step of verifying gap closure at the boundary of each of the one or more regions of the parameter space. 如請求項1所述之方法,其中該半導體-超導體異質接面是一系列具有類似準備的半導體-超導體異質接面中之一者,該方法進一步包括以下步驟:對該系列中的零偏壓峰資料加以後設分析,以計算在另一類似準備的半導體-超導體異質接面中找到一拓撲區域的一機率。The method of claim 1, wherein the semiconductor-superconductor heterojunction is one of a series of semiconductor-superconductor heterojunctions with similar preparations, the method further includes the following steps: zero biasing the The peak data are subjected to meta-analysis to calculate a probability of finding a topological region in another similarly prepared semiconductor-superconductor heterojunction. 如請求項1所述之方法,其中量測該次RF電導之步驟包括以下步驟:執行局部及非局部電導的量測,其適合於識別及/或提取該半導體超導體異質接面的一能隙。The method of claim 1, wherein the step of measuring the secondary RF conductance includes the following steps: performing local and non-local conductance measurements suitable for identifying and/or extracting an energy gap of the semiconductor superconductor heterojunction . 如請求項1所述之方法,其中該半導體-超導體異質接面包含一半導體線及支援該半導體線的相對端處的導納及電導量測的至少三個端子。The method of claim 1, wherein the semiconductor-superconductor heterojunction includes a semiconductor wire and at least three terminals supporting admittance and conductance measurements at opposite ends of the semiconductor wire. 如請求項1所述之方法,其中該半導體-超導體異質接面包含複數個靜電控制端子。The method of claim 1, wherein the semiconductor-superconductor heterojunction includes a plurality of electrostatic control terminals. 一種其經配置以評估用於一拓撲量子電腦的一量子位元暫存器中的一半導體-超導體異質接面的儀器,該儀器包括: 一控制器,其具有一處理器及在操作中耦接至該處理器的電腦記憶體,該控制器經配置以: 對該半導體-超導體異質接面之一射頻(RF)接面導納及包含該半導體-超導體異質接面之一非局部電導之一次RF電導中之一或兩者加以量測,以獲取映射資料及精化資料; 藉由分析該映射資料尋找與該半導體-超導體異質接面的一未破壞拓撲相一致的一參數空間的一或多個區域;及 藉由分析該精化資料針對該參數空間的該一或多個區域中之至少一者尋找該參數空間中之該未破壞拓撲相之一邊界及該半導體超導體異質接面的一拓撲間隙。 An instrument configured to evaluate a semiconductor-superconductor heterojunction in a qubit register for a topological quantum computer, the instrument comprising: A controller having a processor and computer memory operatively coupled to the processor, the controller configured to: One or both of a radio frequency (RF) junction admittance of the semiconductor-superconductor heterojunction and a primary RF conductance including a non-local conductance of the semiconductor-superconductor heterojunction are measured to obtain mapping data and refine data; Finding one or more regions of a parameter space consistent with an unbroken topology of the semiconductor-superconductor heterojunction by analyzing the mapping data; and A boundary of the unbroken topological phase in the parameter space and a topological gap of the semiconductor superconductor heterojunction are found by analyzing the refined data for at least one of the one or more regions of the parameter space. 如請求項14所述之儀器,其中該儀器在操作中耦接至一RF導納量測元件及/或一次RF電導量測元件。The instrument of claim 14, wherein the instrument is coupled to an RF admittance measuring element and/or a primary RF conductance measuring element during operation. 一種用於構建一拓撲量子電腦的方法,該方法包括以下步驟: 製造一半導體-超導體異質接面,其具有經配置以支援電子導納測試的至少三個端子; 對該半導體-超導體異質接面之一射頻(RF)接面導納及包含該半導體-超導體異質接面之一非局部電導之一次RF電導中之一或兩者加以量測,以獲取映射資料及精化資料; 藉由分析該映射資料尋找與該半導體-超導體異質接面的一未破壞拓撲相一致的一參數空間的一或多個區域; 藉由分析該精化資料針對該參數空間的該一或多個區域中之至少一者尋找該參數空間中之該未破壞拓撲相之一邊界及該半導體-超導體異質接面的一拓撲間隙;及 在該拓撲量子電腦的一量子位元暫存器中加入該半導體-超導體異質接面,其限制條件為找到的該邊界及拓撲間隙在各別的預定範圍內。 A method for building a topological quantum computer, the method includes the following steps: Fabricating a semiconductor-superconductor heterojunction having at least three terminals configured to support electronic admittance testing; One or both of a radio frequency (RF) junction admittance of the semiconductor-superconductor heterojunction and a primary RF conductance including a non-local conductance of the semiconductor-superconductor heterojunction are measured to obtain mapping data and refine data; Searching for one or more regions of a parameter space consistent with an unbroken topology of the semiconductor-superconductor heterojunction by analyzing the mapping data; searching for a boundary of the unbroken topological phase in the parameter space and a topological gap of the semiconductor-superconductor heterojunction by analyzing the refined data for at least one of the one or more regions of the parameter space; and The semiconductor-superconductor heterojunction is added to a qubit register of the topological quantum computer, and the restriction condition is that the found boundary and topological gap are within respective predetermined ranges. 如請求項16所述之方法,其中對該參數空間中的該邊界加以特性化的一或多個值用作處理該量子位元暫存器中的該半導體-超導體異質接面的調諧參數。The method of claim 16, wherein one or more values characterizing the boundary in the parameter space are used as tuning parameters for processing the semiconductor-superconductor heterojunction in the qubit register. 如請求項16所述之方法,其中在具有一額外的接地端子的一四合粒子量子位元元件中佈置該半導體-超導體異質接面,且其中同時對穿過調諧為一拓撲狀態的相對區域的傳輸加以量測。The method of claim 16, wherein the semiconductor-superconductor heterojunction is arranged in a quadrupole qubit element with an additional ground terminal, and wherein simultaneously crossing opposing regions tuned to a topological state The transmission is measured. 如請求項16所述之方法,其中在一六合粒子量子位元元件中佈置該半導體-超導體異質接面。The method of claim 16, wherein the semiconductor-superconductor heterojunction is arranged in a hexagonal particle qubit element. 如請求項16所述之方法,其中具有在該方法中用作一接地端子的一原生端子的一四合粒子或六合粒子量子位元元件中佈置該半導體-超導體異質接面,其中穿過該元件的一電流路徑用於使個別的量子位元接地,從而執行類3端子的量測。The method of claim 16, wherein the semiconductor-superconductor heterojunction is disposed in a quad- or hexa-particle qubit element with a native terminal serving as a ground terminal in the method, with the semiconductor-superconductor heterojunction passing through the A current path through the element is used to ground individual qubits to perform Class 3 terminal measurements.
TW111150105A 2022-02-15 2022-12-27 Pre-screening and tuning heterojunctions for topological quantum computer TW202347185A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/651,222 2022-02-15
US17/651,222 US11808796B2 (en) 2021-03-16 2022-02-15 Pre-screening and tuning heterojunctions for topological quantum computer

Publications (1)

Publication Number Publication Date
TW202347185A true TW202347185A (en) 2023-12-01

Family

ID=90039352

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111150105A TW202347185A (en) 2022-02-15 2022-12-27 Pre-screening and tuning heterojunctions for topological quantum computer

Country Status (1)

Country Link
TW (1) TW202347185A (en)

Similar Documents

Publication Publication Date Title
US11151470B2 (en) Pre-screening and tuning heterojunctions for topological quantum computer
Mukhopadhyay et al. A 2× 2 quantum dot array with controllable inter-dot tunnel couplings
Larsen et al. Semiconductor-nanowire-based superconducting qubit
Dai et al. Helical edge and surface states in HgTe quantum wells and bulk insulators
Pikulin et al. Protocol to identify a topological superconducting phase in a three-terminal device
US8315969B2 (en) Estimating a quantum state of a quantum mechanical system
Yang et al. Spin transport in ferromagnet-InSb nanowire quantum devices
Hart et al. Current-phase relations of InAs nanowire Josephson junctions: From interacting to multimode regimes
Grajcar et al. Possible implementation of adiabatic quantum algorithm with superconducting flux qubits
Wu et al. Quantum Monte Carlo study of strange correlator in interacting topological insulators
Val’kov et al. Topological superconductivity and Majorana states in low-dimensional systems
Wang et al. Parametric exploration of zero-energy modes in three-terminal InSb-Al nanowire devices
Han et al. Variable and orbital-dependent spin-orbit field orientations in an InSb double quantum dot characterized via dispersive gate sensing
TW202347185A (en) Pre-screening and tuning heterojunctions for topological quantum computer
US11808796B2 (en) Pre-screening and tuning heterojunctions for topological quantum computer
KR20230156728A (en) Preliminary inspection and tuning of heterojunctions for topological quantum computers.
Lee Supercurrent and Andreev bound states in multi-terminal Josephson junctions
Prosko et al. Flux-tunable hybridization in a double quantum dot interferometer
Somoroff Quantum Computing with Fluxonium: Digital and Analog Directions
Hollmann Relaxation and decoherence of a 28Si/SiGe spin qubit with large valley splitting
Cheng et al. Machine learning detecting Majorana Zero Mode from Zero Bias Peak measurements
Metcalfe A new microwave resonator readout scheme for superconducting qubits
Trepanier Tunable nonlinear superconducting metamaterials: Experiment and simulation
Malinowski et al. Quantum capacitance of a superconducting subgap state in an electrostatically floating dot-island
Johnson Optimization of superconducting flux qubit readout using near-quantum-limited amplifiers