TW202347169A - Sensing signal readout circuit, fingerprint identification device and information processing device controlled by a micro control unit to read out a sensing capacitance value from a capacitance sensing module - Google Patents

Sensing signal readout circuit, fingerprint identification device and information processing device controlled by a micro control unit to read out a sensing capacitance value from a capacitance sensing module Download PDF

Info

Publication number
TW202347169A
TW202347169A TW111118577A TW111118577A TW202347169A TW 202347169 A TW202347169 A TW 202347169A TW 111118577 A TW111118577 A TW 111118577A TW 111118577 A TW111118577 A TW 111118577A TW 202347169 A TW202347169 A TW 202347169A
Authority
TW
Taiwan
Prior art keywords
compensation
sensing
capacitance
capacitors
row
Prior art date
Application number
TW111118577A
Other languages
Chinese (zh)
Other versions
TWI803323B (en
Inventor
李偉江
楊俊
陳飛祥
桑田
Original Assignee
大陸商北京集創北方科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商北京集創北方科技股份有限公司 filed Critical 大陸商北京集創北方科技股份有限公司
Priority to TW111118577A priority Critical patent/TWI803323B/en
Application granted granted Critical
Publication of TWI803323B publication Critical patent/TWI803323B/en
Publication of TW202347169A publication Critical patent/TW202347169A/en

Links

Images

Landscapes

  • Credit Cards Or The Like (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Image Input (AREA)

Abstract

The present invention mainly discloses a sensing signal readout circuit, which is controlled by a micro control unit to read out a sensing capacitance value from a capacitance sensing module, and includes: M*N charge amplifier units and M*N capacitance compensation units, wherein the capacitance compensation unit has a compensation capacitor. The sensing signal readout circuit further includes: M*N compensation signal generating units for generating M*N compensation signals to be respectively transmitted to the M*N compensation capacitors. According to the design of the present invention, each of the compensation signals has a compensation voltage, and the N compensation voltages in each row form a voltage value distribution. According to such design, after the sensing signal readout circuit of the present invention is used to read out the sensing capacitance value from the capacitance sensing module and convert it into a grayscale image, no black edges will appear on both sides of the grayscale image. Therefore, there is no need to use image processing software to perform any repair processing on the grayscale image.

Description

感測信號讀出電路、指紋識別裝置及資訊處理裝置Sensing signal readout circuit, fingerprint identification device and information processing device

本發明為指紋識別之有關技術領域,尤指一種感測信號讀出電路,受控於一微控制單元從而自一電容感測模組讀出感應電容信號。The present invention is in the technical field related to fingerprint identification, and in particular, refers to a sensing signal readout circuit controlled by a microcontrol unit to read out the sensing capacitance signal from a capacitance sensing module.

已知,電容式指紋識別裝置已被廣泛地應用於各式電子產品之中。傳統上,電容式指紋識別裝置通常設置在一移動智能終端(如:智慧型手機)正面或背面。然而,隨著智慧型手機朝向全屏幕化發展,電容式指紋識別裝置和電源鍵共用位置,從而發展成側邊電容式指紋識別裝置。圖1即顯示習知的一種全屏幕智慧型手機的側視圖。如圖1所示,一電容式指紋識別裝置2a設置在該全屏幕智慧型手機1a的側邊。進一步地,圖2為圖1所示之側邊式的電容式指紋識別裝置2a的示意性立體圖。一般而言,該電容式指紋識別裝置2a包括一電容感測模組20a以及一指紋識別電路21a,其中該指紋識別電路21a包括一電路基板210a與一指紋識別晶片211a,且該指紋識別晶片211a內含一感測信號讀取電路及一微控制單元。It is known that capacitive fingerprint recognition devices have been widely used in various electronic products. Traditionally, a capacitive fingerprint recognition device is usually installed on the front or back of a mobile smart terminal (such as a smartphone). However, as smartphones develop toward full-screen devices, capacitive fingerprint recognition devices share the same location as the power button, thus developing into side-side capacitive fingerprint recognition devices. Figure 1 shows a side view of a conventional full-screen smartphone. As shown in Figure 1, a capacitive fingerprint recognition device 2a is provided on the side of the full-screen smart phone 1a. Further, FIG. 2 is a schematic perspective view of the side-type capacitive fingerprint identification device 2a shown in FIG. 1 . Generally speaking, the capacitive fingerprint recognition device 2a includes a capacitive sensing module 20a and a fingerprint recognition circuit 21a, wherein the fingerprint recognition circuit 21a includes a circuit substrate 210a and a fingerprint recognition chip 211a, and the fingerprint recognition chip 211a Contains a sensing signal reading circuit and a micro control unit.

圖3為圖2所示之電容感測模組20a的側剖視圖。如圖2與圖3所示,該電容感測模組20a通常包括一基板201a、設於該基板201a之上的一電容感測器陣列202a、以及一表面覆層203a。進一步地,圖4為圖3所示之電容感測器陣列202a的側剖視圖。如圖4所示,所述電容感測器陣列202a由一表面覆層203a所覆蓋,且包括M×N個第一金屬板M1a。當一手指按壓在該表面覆層203a之上時,所述第一金屬板M1a和該手指之間會形成一感應電容(Cs1, Cs2,……,Csn)。因此,可將所述第一金屬板M1a定義為感測畫素。FIG. 3 is a side cross-sectional view of the capacitive sensing module 20a shown in FIG. 2 . As shown in FIGS. 2 and 3 , the capacitive sensing module 20a generally includes a substrate 201a, a capacitive sensor array 202a disposed on the substrate 201a, and a surface coating 203a. Further, FIG. 4 is a side cross-sectional view of the capacitive sensor array 202a shown in FIG. 3 . As shown in FIG. 4 , the capacitive sensor array 202a is covered by a surface coating 203a and includes M×N first metal plates M1a. When a finger presses on the surface coating 203a, an inductive capacitance (Cs1, Cs2,..., Csn) is formed between the first metal plate M1a and the finger. Therefore, the first metal plate M1a can be defined as a sensing pixel.

圖5為圖2所示之電容感測模組20a的上視圖。請同時參閱圖5、圖2與圖1,隨著智慧型手機越來越輕,設置在手機側邊的電容式指紋識別裝置2a的寬度也被迫縮減,導致其電容感測模組20a的有效識別區域(Active area, AA)越來越小。目前,AA區域的寬度已經從3mm降低至1.5mm甚至更低。FIG. 5 is a top view of the capacitive sensing module 20a shown in FIG. 2 . Please refer to Figure 5, Figure 2 and Figure 1 at the same time. As smart phones become lighter and lighter, the width of the capacitive fingerprint recognition device 2a provided on the side of the phone is also forced to be reduced, resulting in the capacitive sensing module 20a The effective recognition area (Active area, AA) is getting smaller and smaller. Currently, the width of the AA area has been reduced from 3mm to 1.5mm or even lower.

更詳細地說明,圖6為習知的一個電荷放大器單元的電路拓樸圖。一般而言,整合在圖2所示的指紋識別晶片211a之中的感測信號讀出電路包含複數個電荷放大器單元。如圖6所示,所述電荷放大器單元212a包括:一運算放大器21OPa、一反饋電容CFa、一第一開關S1a、一第二開關S2a、以及一基準電容。值得注意的是,在有手指觸摸的情況下,電荷放大器單元212a自電容感測模組20a讀出的電容值為ΔC,在圖6的電路中以電容Csa表示。同時,圖6還繪出所謂的寄生電容Cpa,其中寄生電容Cpa代表一個第一金屬板M1a的對地寄生電容。To explain in more detail, FIG. 6 is a circuit topology diagram of a conventional charge amplifier unit. Generally speaking, the sensing signal readout circuit integrated in the fingerprint recognition chip 211a shown in FIG. 2 includes a plurality of charge amplifier units. As shown in FIG. 6 , the charge amplifier unit 212a includes: an operational amplifier 21OPa, a feedback capacitor CFa, a first switch S1a, a second switch S2a, and a reference capacitor. It is worth noting that when there is a finger touch, the capacitance value read by the charge amplifier unit 212a from the capacitance sensing module 20a is ΔC, which is represented by the capacitance Csa in the circuit of FIG. 6 . At the same time, FIG. 6 also depicts the so-called parasitic capacitance Cpa, where the parasitic capacitance Cpa represents the parasitic capacitance of a first metal plate M1a to ground.

研究發現,受到邊緣效應的影響,越靠近電容感測模組20a邊緣的感測畫素(第一金屬板M1a)所附帶的寄生電容越大;反之,越靠近電容感測模組20a中心的感測畫素所附帶的寄生電容則越小。若電容感測模組20a包含M×N個感測畫素,則第j列的N個寄生電容的電容值大小可由下式(1)表示: …… …… ………(1) The study found that due to the edge effect, the parasitic capacitance attached to the sensing pixel (first metal plate M1a) closer to the edge of the capacitive sensing module 20a is greater; conversely, the closer to the center of the capacitive sensing module 20a The smaller the parasitic capacitance attached to the sensing pixel is. If the capacitive sensing module 20a includes M×N sensing pixels, the capacitance value of the N parasitic capacitances in the j-th column can be expressed by the following formula (1): ………(1)

同時,由於受邊緣效應影響,越靠近電容感測模組20a邊緣的感測畫素的感應電容Cs的信號量也同樣會比較大。如圖7所示,按第1行至第N行讀出感應電容Cs的信號量之後,可以發現感測數據的灰階強度出現中間低且兩邊高的現象。感測數據如圖8所示,越靠近邊沿,圖像越黑(信號量),最終成為黑邊。因此,若利用此電容感測模組20a感測手指指紋,則讀出的圖像會因為邊沿區域的信號量過大而出現飽和,從而造成圖像失真。At the same time, due to the influence of the edge effect, the signal amount of the sensing capacitance Cs of the sensing pixel closer to the edge of the capacitive sensing module 20a will also be relatively large. As shown in Figure 7, after reading the signal amount of the sensing capacitance Cs from row 1 to row N, it can be found that the gray scale intensity of the sensing data is low in the middle and high on both sides. The sensing data is shown in Figure 8. The closer to the edge, the darker the image (semaphore), and eventually becomes a black border. Therefore, if the capacitive sensing module 20a is used to sense finger prints, the read image will be saturated due to excessive signal volume in the edge area, thereby causing image distortion.

目前的解決方案是將電容感測模組20a最外側的1~2行作為dummy感測畫素,以確保感測數據讀出且轉換成灰階指紋圖像之後不會出現黑邊(即,圖像失真),之後再利用圖像處理軟體對採集到的灰階指紋圖像進行修復。然而,這樣的方式會使動態範圍和信噪比下降,並非理想的解決方案。The current solution is to use the outermost 1~2 rows of the capacitive sensing module 20a as dummy sensing pixels to ensure that no black edges will appear after the sensing data is read out and converted into a grayscale fingerprint image (i.e., Image distortion), and then use image processing software to repair the collected grayscale fingerprint image. However, such an approach will reduce the dynamic range and signal-to-noise ratio and is not an ideal solution.

由上述說明可知,本領域亟需一種新式的感測信號讀出電路。From the above description, it can be seen that a new sensing signal readout circuit is urgently needed in this field.

本發明之主要目的在於提供一種感測信號讀出電路,係受控一微控制單元從而自電容感測模組讀出感測電容值。在利用本發明之感測信號讀出電路自該電容感測模組讀出感測電容值並轉換成一灰階圖像之後,該灰階圖像的兩側不會出現所謂的黑邊,因而不需要再利用圖像處理軟體對該灰階圖像進行任何修復處理。The main purpose of the present invention is to provide a sensing signal readout circuit that is controlled by a microcontrol unit to read out the sensing capacitance value from the capacitance sensing module. After the sensing signal readout circuit of the present invention is used to read out the sensing capacitance value from the capacitance sensing module and convert it into a grayscale image, so-called black edges will not appear on both sides of the grayscale image. Therefore, There is no need to use image processing software to perform any repair processing on the grayscale image.

為達成上述目的,本發明提出所述感測信號讀出電路的一第一實施例,其係受控一微控制單元而自包含M×N個感測畫素的一電容感測模組讀出複數個感測電容值,且包括:M×N個電荷放大器單元以及分別與M×N個所述電荷放大器單元耦接的M×N個電容補償單元,其中所述電容補償單元具有一補償電容;其特徵在於,所述感測信號讀出電路更包括: M×N個補償信號產生單元,用以產生M×N個補償信號以分別傳送至M×N個所述補償電容; 其中,每一列的N個所述補償信號皆具有具有一電壓值分布。 To achieve the above object, the present invention proposes a first embodiment of the sensing signal readout circuit, which is controlled by a microcontrol unit to read from a capacitive sensing module containing M×N sensing pixels. A plurality of sensing capacitance values are generated, and includes: M×N charge amplifier units and M×N capacitance compensation units respectively coupled to the M×N charge amplifier units, wherein the capacitance compensation units have a compensation Capacitor; It is characterized in that the sensing signal readout circuit further includes: M×N compensation signal generating units, used to generate M×N compensation signals to respectively transmit to the M×N compensation capacitors; Wherein, the N compensation signals in each column have a voltage value distribution.

在一實施例中,所述補償信號產生單元為一數位類比轉換器或一非反相放大器。In one embodiment, the compensation signal generating unit is a digital-to-analog converter or a non-inverting amplifier.

在一實施例中,每一列的N個所述補償信號的高準位電壓係滿足以下數學不等式: …… …… 其中,Vc1為傳送至第1行的M個所述補償電容的該補償信號之高準位電壓,Vc2為傳送至第2行的M個所述補償電容的該補償信號之高準位電壓,Vcc為傳送至中間行的M個所述補償電容的該補償信號之高準位電壓,Vcc+1為傳送至中間行的鄰行的M個所述補償電容的該補償信號之高準位電壓,且VcN為傳送至最後一行M個所述補償電容的該補償信號之高準位電壓。 In one embodiment, the high-level voltages of the N compensation signals in each column satisfy the following mathematical inequality: Wherein, Vc1 is the high-level voltage of the compensation signal transmitted to the M compensation capacitors in the first row, and Vc2 is the high-level voltage of the compensation signal transmitted to the M compensation capacitors in the second row, Vcc is the high-level voltage of the compensation signal transmitted to the M compensation capacitors in the middle row, and Vcc+1 is the high-level voltage of the compensation signal transmitted to the M compensation capacitors in the adjacent row of the middle row. , and VcN is the high-level voltage of the compensation signal transmitted to the M compensation capacitors in the last row.

在一實施例中,每一列的N個所述補償電容的係具有一補償電容值分布。In one embodiment, the N compensation capacitors in each column have a compensation capacitance value distribution.

為達成上述目的,本發明同時提出所述感測信號讀出電路的一第二實施例,其受控一微控制單元從而自包含M×N個感測畫素的一電容感測模組讀出複數個感測電容值,且包括:M×N個電荷放大器單元以及分別與M×N個所述電荷放大器單元耦接的M×N個電容補償單元,其中所述電容補償單元具有一補償電容;其特徵在於,所述感測信號讀出電路更包括: M×N個補償信號產生單元,用以產生M×N個補償信號以分別傳送至M×N個所述補償電容; 其中,每一列的N個所述補償電容具有一補償電容值分布。 In order to achieve the above object, the present invention also proposes a second embodiment of the sensing signal readout circuit, which is controlled by a microcontrol unit to read from a capacitive sensing module containing M×N sensing pixels. A plurality of sensing capacitance values are generated, and includes: M×N charge amplifier units and M×N capacitance compensation units respectively coupled to the M×N charge amplifier units, wherein the capacitance compensation units have a compensation Capacitor; It is characterized in that the sensing signal readout circuit further includes: M×N compensation signal generating units, used to generate M×N compensation signals to respectively transmit to the M×N compensation capacitors; Wherein, the N compensation capacitors in each column have a compensation capacitance value distribution.

在一實施例中,所述補償信號產生單元為一數位類比轉換器或一非反相放大器。In one embodiment, the compensation signal generating unit is a digital-to-analog converter or a non-inverting amplifier.

在一實施例中,每一列的N個所述補償電容係滿足以下數學不等式: …… …… ; 其中,CB1為第1行的M個所述補償電容的電容值,CB2為第2行的M個所述補償電容的電容值,CBc為中間行的M個所述補償電容的電容值,CBc+1為傳送至中間行的鄰行的M個所述補償電容的電容值,且CBN最後一行的M個所述補償電容的電容值。 In one embodiment, the N compensation capacitors in each column satisfy the following mathematical inequality: ; Among them, CB1 is the capacitance value of the M compensation capacitors in the first row, CB2 is the capacitance value of the M compensation capacitors in the second row, CBc is the capacitance value of the M compensation capacitors in the middle row, CBc+1 is the capacitance value of the M compensation capacitors in the adjacent rows of the middle row, and the capacitance value of the M compensation capacitors in the last row of CBN.

在一實施例中,各所述補償信號皆具有一補償電壓,且每一列的N個所述補償信號的高準位電壓係滿足以下數學不等式: …… …… ; 其中,Vc1為傳送至第1行的M個所述補償電容的該補償信號之高準位電壓,Vc2為傳送至第2行的M個所述補償電容的該補償信號之高準位電壓,Vcc為傳送至中間行的M個所述補償電容的該補償信號之高準位電壓,Vcc+1為傳送至中間行的鄰行的M個所述補償電容的該補償信號之高準位電壓,且VcN為傳送至最後一行M個所述補償電容的該補償信號之高準位電壓。 In one embodiment, each of the compensation signals has a compensation voltage, and the high-level voltage of the N compensation signals in each column satisfies the following mathematical inequality: ; Wherein, Vc1 is the high-level voltage of the compensation signal transmitted to the M compensation capacitors in the first row, and Vc2 is the high-level voltage of the compensation signal transmitted to the M compensation capacitors in the second row. , Vcc is the high-level voltage of the compensation signal transmitted to the M compensation capacitors in the middle row, Vcc+1 is the high-level voltage of the compensation signal transmitted to the M compensation capacitors in the adjacent row of the middle row voltage, and VcN is the high-level voltage of the compensation signal transmitted to the M compensation capacitors in the last row.

本發明同時提供一種指紋識別裝置,其包括一電容感測模組、一微控制單元以及如前所述本發明之感測信號讀取電路。The present invention also provides a fingerprint identification device, which includes a capacitive sensing module, a micro control unit and the sensing signal reading circuit of the present invention as described above.

本發明同時提供一種資訊處理裝置,其具有如前所述本發明之指紋識別裝置。在一實施例中,該資訊處理裝置是選自於由智慧型手機、智慧型手錶、智慧手環、智慧型電視、平板電腦、筆記型電腦、一體式電腦、門禁裝置、電子式門鎖、自動提款機、和指紋打卡機所組成群組之中的一種電子裝置。The present invention also provides an information processing device, which has the fingerprint identification device of the present invention as described above. In one embodiment, the information processing device is selected from the group consisting of smart phones, smart watches, smart bracelets, smart TVs, tablet computers, notebook computers, all-in-one computers, access control devices, electronic door locks, An electronic device among the group consisting of automatic teller machines and fingerprint punch-in machines.

為使  貴審查委員能進一步瞭解本發明之結構、特徵、目的、與其優點,茲附以圖式及較佳具體實施例之詳細說明如後。In order to enable the review committee to further understand the structure, characteristics, purpose, and advantages of the present invention, drawings and detailed descriptions of preferred embodiments are attached below.

圖9為具有本發明之一種指紋識別裝置的一智慧型手機的側視圖。並且,圖10為本發明之一種指紋識別裝置的示意性立體圖。如圖9與圖10所示,本發明之指紋識別裝置2應用在一智慧型手機1之中,從而作為一側邊式的電容式指紋識別裝置,且包括:一電容感測模組20與一指紋識別電路21,其中該指紋識別電路21包括一電路基板210與一指紋識別晶片211,且該指紋識別晶片211內含一感測信號讀取電路及一微控制單元。進一步地,圖11為圖10所示之電容感測模組20的示意性側剖視圖。如圖10與圖11所示,該電容感測模組20包括:一基板201、設於該基板201之上的一電容感測器陣列202、以及覆於該電容感測器陣列202之上的一表面覆層(Passivation)203。Figure 9 is a side view of a smart phone equipped with a fingerprint identification device of the present invention. Moreover, FIG. 10 is a schematic perspective view of a fingerprint identification device according to the present invention. As shown in Figures 9 and 10, the fingerprint identification device 2 of the present invention is applied in a smart phone 1, thereby serving as a side-type capacitive fingerprint identification device, and includes: a capacitive sensing module 20 and A fingerprint identification circuit 21, wherein the fingerprint identification circuit 21 includes a circuit substrate 210 and a fingerprint identification chip 211, and the fingerprint identification chip 211 contains a sensing signal reading circuit and a micro control unit. Further, FIG. 11 is a schematic side cross-sectional view of the capacitive sensing module 20 shown in FIG. 10 . As shown in FIGS. 10 and 11 , the capacitive sensing module 20 includes: a substrate 201 , a capacitive sensor array 202 disposed on the substrate 201 , and covering the capacitive sensor array 202 A surface coating (Passivation) 203.

圖12為圖11所示之電容感測器陣列202的側剖視圖,且圖13為圖11所示之基板201與電容感測器陣列202的上視圖。如圖12與圖13所示,在該電容感測器陣列202之中,M×N個第一金屬板M1係作為M×N個感測畫素,其中,M和N皆為正整數。依此設計,當一手指按壓在該表面覆層203之上時,所述第一金屬板M1和該手指之間會形成一感應電容(Cs1, Cs2,……,Csn)。因此,M×N個第一金屬板M1即為該電容感測模組20所具有之M×N個感測畫素。FIG. 12 is a side cross-sectional view of the capacitive sensor array 202 shown in FIG. 11 , and FIG. 13 is a top view of the substrate 201 and the capacitive sensor array 202 shown in FIG. 11 . As shown in FIGS. 12 and 13 , in the capacitive sensor array 202 , M×N first metal plates M1 serve as M×N sensing pixels, where M and N are both positive integers. According to this design, when a finger presses on the surface coating 203, an inductive capacitance (Cs1, Cs2,..., Csn) will be formed between the first metal plate M1 and the finger. Therefore, the M×N first metal plates M1 are the M×N sensing pixels of the capacitive sensing module 20 .

更詳細地說明,圖10所示之指紋識別電路21包括一感測信號讀取電路和一微控制單元。在可行的實施例中,所述感測信號讀取電路和所述微控制單元整合成為如圖10所示之指紋識別晶片211,其中,該感測信號讀取電路包括M×N個電荷放大器單元以及與該M×N個電荷放大器單元分別耦接的M×N個電容補償單元。圖14即顯示一個電荷放大器單元與一個電容補償單元的第一電路拓樸圖。如圖14所示,所述電荷放大器單元212包括:一運算放大器21OP、一反饋電容CF、一第一開關SW1、以及一第二開關SW2。另一方面,所述電容補償單元213包括:一補償電容CB、一第三開關SW3、以及一第四開關SW4。To explain in more detail, the fingerprint identification circuit 21 shown in FIG. 10 includes a sensing signal reading circuit and a micro control unit. In a feasible embodiment, the sensing signal reading circuit and the micro control unit are integrated into a fingerprint recognition chip 211 as shown in Figure 10, where the sensing signal reading circuit includes M×N charge amplifiers unit and M×N capacitance compensation units respectively coupled to the M×N charge amplifier units. FIG. 14 shows a first circuit topology diagram of a charge amplifier unit and a capacitance compensation unit. As shown in FIG. 14 , the charge amplifier unit 212 includes: an operational amplifier 21OP, a feedback capacitor CF, a first switch SW1, and a second switch SW2. On the other hand, the capacitance compensation unit 213 includes: a compensation capacitor CB, a third switch SW3, and a fourth switch SW4.

如圖14與圖13所示,所述感測信號讀出電路更包括:M×N個補償信號產生單元214,係用以產生M×N個補償信號以分別傳送至M×N個所述補償電容CB。依據本發明之設計,各所述補償信號皆具有一補償電壓Vc,且每一列的N個所述補償電壓Vc係具有一電壓值分布。As shown in FIG. 14 and FIG. 13 , the sensing signal readout circuit further includes: M×N compensation signal generating units 214, which are used to generate M×N compensation signals to be respectively transmitted to the M×N Compensation capacitor CB. According to the design of the present invention, each of the compensation signals has a compensation voltage Vc, and the N compensation voltages Vc of each column have a voltage value distribution.

同時,圖14還繪出所謂的寄生電容Cp,其中所述寄生電容Cp代表一個第一金屬板M1的對地寄生電容。實務經驗發現,越靠近電容感測模組20邊緣的感測畫素(第一金屬板M1)所附帶的寄生電容越大;反之,越靠近電容感測模組20中心的感測畫素所附帶的寄生電容則越小。同時,受到邊緣效應的影響,越靠近電容感測模組20邊緣的感測畫素的感應電容Cs的信號量也同樣會比較大。如圖7所示,按第1行至第N行讀出感應電容Cs的信號量之後,可以發現感測數據的灰階強度出現中間低且兩邊高的現象,最終會在採集的灰階圖像的兩側形成黑邊。At the same time, FIG. 14 also depicts the so-called parasitic capacitance Cp, where the parasitic capacitance Cp represents the parasitic capacitance of a first metal plate M1 to ground. Practical experience has found that the parasitic capacitance attached to the sensing pixel (first metal plate M1) closer to the edge of the capacitive sensing module 20 is greater; conversely, the sensing pixel closer to the center of the capacitive sensing module 20 has a larger parasitic capacitance. The attached parasitic capacitance is smaller. At the same time, due to the influence of the edge effect, the signal amount of the sensing capacitance Cs of the sensing pixel closer to the edge of the capacitive sensing module 20 will also be relatively large. As shown in Figure 7, after reading the signal amount of the sensing capacitance Cs from the 1st to the Nth row, it can be found that the grayscale intensity of the sensing data is low in the middle and high on both sides. Finally, it will appear in the collected grayscale image. Black borders form on both sides of the image.

依據圖14的電路圖可以推算出,△Vc=△V STIM((Cf+CB)∕CB)+△V STIM(Cp∕CB)。其中,△V STIM為激勵電壓的變化量、Cf為反饋電容的電容值、CB為補償電容的電容值、Cp為寄生電容的電容值,且△Vc為補償信號的高準位電壓的變化量。亦即,在固定反饋電容CF和補償電容CB的物理量的情況下,可以確定△Vc和寄生電容Cp之間的關係。因此,根據不同的寄生電容(Cp1,…Cpc,…CpN)選擇不同補償電壓(Vc1,…Vcc,…VcN),便能夠實現黑邊補償(消除)。 According to the circuit diagram in Figure 14, it can be deduced that △Vc=△V STIM ((Cf+CB)∕CB)+△V STIM (Cp∕CB). Among them, △V STIM is the change in the excitation voltage, Cf is the capacitance value of the feedback capacitor, CB is the capacitance value of the compensation capacitor, Cp is the capacitance value of the parasitic capacitor, and △Vc is the change in the high-level voltage of the compensation signal . That is, with the physical quantities of the feedback capacitance CF and the compensation capacitance CB fixed, the relationship between ΔVc and the parasitic capacitance Cp can be determined. Therefore, black edge compensation (elimination) can be achieved by selecting different compensation voltages (Vc1,...Vcc,...VcN) according to different parasitic capacitances (Cp1,...Cpc,...CpN).

故而,為了補償(消除)黑邊,本發明令所述補償信號產生單元214為一數位類比轉換器(DAC)或一非反相放大器,並控制每一列的N個所述補償信號產生單元214產生N個所述補償信號,其中所述N個補償信號的高準位電壓係滿足以下數學不等式(I): …… …… …………(I) Therefore, in order to compensate (eliminate) the black edges, the present invention makes the compensation signal generation unit 214 be a digital-to-analog converter (DAC) or a non-inverting amplifier, and controls N compensation signal generation units 214 in each column. N compensation signals are generated, wherein the high-level voltages of the N compensation signals satisfy the following mathematical inequality (I): …………(I)

於數學不等式(I)之中,如圖13與圖14所示,Vc1為傳送至第1行的M個所述補償電容CB的該補償信號之高準位電壓,Vc2為傳送至第2行的M個所述補償電容CB的該補償信號之高準位電壓,Vcc為傳送至中間行的M個所述補償電容CB的該補償信號之高準位電壓,Vcc+1為傳送至中間行的鄰行的M個所述補償電容CB的該補償信號之高準位電壓,且VcN為傳送至最後一行M個所述補償電容CB的該補償信號之高準位電壓。從而,在滿足數學不等式(I)的情況下,每一列的N個所述補償信號之高準位電壓具有如圖15所示之電壓值分布。In the mathematical inequality (I), as shown in Figure 13 and Figure 14, Vc1 is the high-level voltage of the compensation signal transmitted to the M compensation capacitors CB in the first row, and Vc2 is transmitted to the second row The high-level voltage of the compensation signal of the M compensation capacitors CB, Vcc is the high-level voltage of the compensation signal transmitted to the M compensation capacitors CB of the middle row, and Vcc+1 is the high-level voltage of the compensation signal transmitted to the middle row. The high-level voltage of the compensation signal of the M compensation capacitors CB in the adjacent row, and VcN is the high-level voltage of the compensation signal transmitted to the M compensation capacitors CB in the last row. Therefore, when mathematical inequality (I) is satisfied, the high-level voltages of the N compensation signals in each column have a voltage value distribution as shown in FIG. 15 .

依據圖8的採集灰階圖像可知,黑邊通常為第1~3行以及倒數第1~3行的感測畫素。因此,應用本發明時,可以只選擇對電容感測模組20的第1~3行以及倒數第1~3行的感測畫素進行黑邊補償,就可以消除圖8的採集灰階圖像所帶有的黑邊。另外,由於黑邊具對稱性,因此也可以對接近的補償電壓Vc進行合併,以降低晶片面積。According to the collected grayscale image in Figure 8, it can be seen that the black edges are usually the sensing pixels in the 1st to 3rd rows and the 1st to 3rd rows from the bottom. Therefore, when applying the present invention, you can only choose to perform black edge compensation on the sensing pixels in the 1st to 3rd rows and the 1st to 3rd rows from the bottom of the capacitive sensing module 20, thereby eliminating the grayscale image collected in Figure 8. The image has black edges. In addition, since the black edges are symmetrical, close compensation voltages Vc can also be combined to reduce the chip area.

進一步地,圖16顯示一個電荷放大器單元與一個電容補償單元的第二電路拓樸圖。如圖16所示,在可行的實施例中,所述電容補償單元213還會更包含一第五開關SW5以及一偏置電壓VDDA。因此,可以依據圖16的電路圖推算出如下數學式: Further, FIG. 16 shows a second circuit topology diagram of a charge amplifier unit and a capacitance compensation unit. As shown in FIG. 16 , in a feasible embodiment, the capacitance compensation unit 213 further includes a fifth switch SW5 and a bias voltage VDDA. Therefore, the following mathematical formula can be deduced based on the circuit diagram in Figure 16:

其中,V STIM為激勵電壓、Cs為感應電容的電容值、CF為反饋電容的電容值、CB為補償電容的電容值、Cp為寄生電容的電容值,V DDA為偏置電壓,且Vc為補償信號的高準位電壓。亦即,在固定反饋電容CF、補償電容CB以及偏置電壓VDDA的物理量的情況下,可以確定補償信號的高準位電壓Vc和寄生電容Cp之間的關係。因此,根據不同的寄生電容(Cp1,…Cpc,…CpN)選擇不同補償電壓(Vc1,…Vcc,…VcN),便能夠實現黑邊補償(消除)。故而,為了補償(消除)黑邊,本發明令所述補償信號產生單元214可以為一數位類比轉換器(DAC)或一非反相放大器,並控制每一列的N個所述補償信號產生單元214產生N個所述補償信號,且所述N個補償信號的高準位電壓係滿足如上所示數學不等式(I)。 Among them, V STIM is the excitation voltage, Cs is the capacitance value of the sensing capacitor, CF is the capacitance value of the feedback capacitor, CB is the capacitance value of the compensation capacitor, Cp is the capacitance value of the parasitic capacitor, V DDA is the bias voltage, and Vc is The high level voltage of the compensation signal. That is, when the physical quantities of the feedback capacitor CF, the compensation capacitor CB, and the bias voltage VDDA are fixed, the relationship between the high-level voltage Vc of the compensation signal and the parasitic capacitance Cp can be determined. Therefore, black edge compensation (elimination) can be achieved by selecting different compensation voltages (Vc1,...Vcc,...VcN) according to different parasitic capacitances (Cp1,...Cpc,...CpN). Therefore, in order to compensate (eliminate) the black edges, the present invention allows the compensation signal generation unit 214 to be a digital-to-analog converter (DAC) or a non-inverting amplifier, and controls N compensation signal generation units in each column. 214 generates N compensation signals, and the high-level voltages of the N compensation signals satisfy mathematical inequality (I) as shown above.

由前述說明可知,無論感測信號讀出電路具有如圖14或圖16所示之電荷放大器單元212及電容補償單元213,本發明之技術方案都可以在感測信號讀出電路自一電容感測模組20讀出感測電容值的過程中提供補償。最終,利用本發明之感測信號讀出電路自該電容感測模組讀出感測電容值並轉換成一灰階圖像之後,該灰階圖像的兩側不會出現所謂的黑邊,因而不需要再利用圖像處理軟體對該灰階圖像進行任何修復處理。It can be seen from the foregoing description that regardless of whether the sensing signal readout circuit has the charge amplifier unit 212 and the capacitance compensation unit 213 as shown in Figure 14 or Figure 16, the technical solution of the present invention can be used in the sensing signal readout circuit from a capacitive inductor. The measurement module 20 provides compensation during the process of reading the sensing capacitance value. Finally, after the sensing signal readout circuit of the present invention is used to read out the sensing capacitance value from the capacitance sensing module and convert it into a grayscale image, so-called black edges will not appear on both sides of the grayscale image. Therefore, there is no need to use image processing software to perform any repair processing on the grayscale image.

進一步地,圖17顯示補償電容的補償電容值分布曲線圖。在可行的實施例中,無論感測信號讀出電路具有如圖14或圖16所示之電荷放大器單元212、電容補償單元213以及補償信號產生單元214,可以通過變更電容的上極板和下極板的面積之方式,使每一列的N個所述補償電容CB具有如圖17所示之補償電容值分布。如此設計,可以進一步提高對於兩側第1~3行的電容感測量的補償,確保外側補償多,而中間補償低。Further, FIG. 17 shows the compensation capacitance value distribution curve of the compensation capacitor. In a feasible embodiment, whether the sensing signal readout circuit has the charge amplifier unit 212, the capacitance compensation unit 213 and the compensation signal generation unit 214 as shown in Figure 14 or Figure 16, it can be achieved by changing the upper plate and lower plate of the capacitor. The area of the plate is such that the N compensation capacitors CB in each column have a compensation capacitance value distribution as shown in Figure 17. Such a design can further improve the compensation for the capacitance measurement of rows 1 to 3 on both sides, ensuring that the outer compensation is more and the middle compensation is low.

如此,上述已完整且清楚地說明本發明之一種感測信號讀出電路;並且,經由上述可得知本發明具有下列優點:In this way, the above has completely and clearly described a sensing signal readout circuit of the present invention; and from the above, it can be seen that the present invention has the following advantages:

(1)本發明揭示一種感測信號讀出電路,係受控一微控制單元從而自電容感測模組讀出感測電容值。在利用本發明之感測信號讀出電路自該電容感測模組讀出感測電容值並轉換成一灰階圖像之後,該灰階圖像的兩側不會出現所謂的黑邊,因而不需要再利用圖像處理軟體對該灰階圖像進行任何修復處理。(1) The present invention discloses a sensing signal readout circuit that is controlled by a microcontrol unit to read out the sensing capacitance value from the capacitance sensing module. After the sensing signal readout circuit of the present invention is used to read out the sensing capacitance value from the capacitance sensing module and convert it into a grayscale image, so-called black edges will not appear on both sides of the grayscale image. Therefore, There is no need to use image processing software to perform any repair processing on the grayscale image.

(2)本發明同時提供一種指紋識別裝置,其包括一電容感測模組、一微控制單元以及如前所述本發明之感測信號讀取電路。(2) The present invention also provides a fingerprint identification device, which includes a capacitive sensing module, a micro control unit and the sensing signal reading circuit of the present invention as described above.

(3)本發明同時提供一種資訊處理裝置,其具有如前所述本發明之指紋識別裝置。並且,該資訊處理裝置是選自於由智慧型手機、智慧型手錶、智慧手環、智慧型電視、平板電腦、筆記型電腦、一體式電腦、門禁裝置、電子式門鎖、自動提款機、和指紋打卡機所組成群組之中的一種電子裝置。(3) The present invention also provides an information processing device, which has the fingerprint identification device of the present invention as described above. Moreover, the information processing device is selected from the group consisting of smart phones, smart watches, smart bracelets, smart TVs, tablet computers, notebook computers, all-in-one computers, access control devices, electronic door locks, and ATM machines. , and an electronic device in the group consisting of fingerprint punch-in machines.

必須加以強調的是,前述本案所揭示者乃為較佳實施例,舉凡局部之變更或修飾而源於本案之技術思想而為熟習該項技藝之人所易於推知者,俱不脫本案之專利權範疇。It must be emphasized that the foregoing disclosed in this case are preferred embodiments. Any partial changes or modifications derived from the technical ideas of this case and easily inferred by those familiar with the art do not deviate from the patent of this case. category of rights.

綜上所陳,本案無論目的、手段與功效,皆顯示其迥異於習知技術,且其首先發明合於實用,確實符合發明之專利要件,懇請  貴審查委員明察,並早日賜予專利俾嘉惠社會,是為至禱。To sum up, regardless of the purpose, means and effects of this case, it shows that it is completely different from the conventional technology, and that the invention is practical first, and indeed meets the patent requirements for inventions. I sincerely ask the review committee to take a clear look and grant the patent as soon as possible for your benefit. Society is a prayer for the Supreme Being.

1a:全屏幕智慧型手機 2a:電容式指紋識別裝置 20a:電容感測模組 201a:基板 202a:電容感測模組 203a:表面覆層 21a:指紋識別電路 210a:電路基板 211a:指紋識別晶片 212a:電荷放大器單元 21OPa:運算放大器 M1a:第一金屬板 CFa:反饋電容 Cpa:寄生電容 Csa:感應電容 SW1a:第一開關 SW2a:第二開關 1:全屏幕智慧型手機 2:指紋識別裝置 20:電容感測模組 201:基板 202:電容感測模組 203:表面覆層 21:指紋識別電路 210:電路基板 211:指紋識別晶片 212:電荷放大器單元 21OP:運算放大器 213:電容補償單元 214:補償信號產生單元 M1:第一金屬板 CF:反饋電容 CB:補償電容 Cp:寄生電容 Cs:感應電容 Cs1~Csn:感應電容 SW1:第一開關 SW2:第二開關 SW3:第三開關 SW4:第四開關 SW5:第五開關 1a: Full screen smartphone 2a: Capacitive fingerprint recognition device 20a: Capacitive sensing module 201a:Substrate 202a: Capacitive sensing module 203a: Surface coating 21a: Fingerprint recognition circuit 210a: Circuit substrate 211a: Fingerprint recognition chip 212a: Charge amplifier unit 21OPa: Operational amplifier M1a: first metal plate CFa: feedback capacitor Cpa: parasitic capacitance Csa: sensing capacitance SW1a: first switch SW2a: Second switch 1: Full screen smartphone 2:Fingerprint identification device 20: Capacitive sensing module 201:Substrate 202: Capacitive sensing module 203: Surface coating 21:Fingerprint recognition circuit 210:Circuit substrate 211:Fingerprint recognition chip 212: Charge amplifier unit 21OP: Operational amplifier 213: Capacitor compensation unit 214: Compensation signal generation unit M1: First Metal Plate CF: feedback capacitor CB: compensation capacitor Cp: parasitic capacitance Cs: sensing capacitance Cs1~Csn: Inductive capacitance SW1: first switch SW2: Second switch SW3: The third switch SW4: The fourth switch SW5: The fifth switch

圖1為顯示習知的一種全屏幕智慧型手機的側視圖; 圖2為圖1所示之側邊式的電容式指紋識別裝置的示意性立體圖; 圖3為圖2所示之電容感測模組的側剖視圖。 圖4為圖3所示之電容感測器陣列的側剖視圖; 圖5為圖2所示之電容感測模組的上視圖; 圖6為習知的一個電荷放大器單元的電路拓樸圖; 圖7為依列自電容感測模組所讀出的感測數據的曲線圖; 圖8為自電容感測模組所讀出的感測數據的灰階圖像; 圖9為具有本發明之一種指紋識別裝置的一智慧型手機的側視圖; 圖10為本發明之一種指紋識別裝置的示意性立體圖; 圖11為圖10所示之電容感測模組的示意性側剖視圖; 圖12為圖11所示之電容感測器陣列202的側剖視圖; 圖13為圖11所示之基板與電容感測器陣列的上視圖; 圖14為一個電荷放大器單元與一個電容補償單元的第一電路拓樸圖; 圖15為補償電壓的電壓值分布曲線圖; 圖16為電荷放大器單元與電容補償單元的第二電路拓樸圖;以及 圖17為補償電壓的電壓值分布曲線圖。 Figure 1 is a side view showing a conventional full-screen smartphone; Figure 2 is a schematic three-dimensional view of the side-type capacitive fingerprint recognition device shown in Figure 1; FIG. 3 is a side cross-sectional view of the capacitive sensing module shown in FIG. 2 . Figure 4 is a side cross-sectional view of the capacitive sensor array shown in Figure 3; Figure 5 is a top view of the capacitive sensing module shown in Figure 2; Figure 6 is a circuit topology diagram of a conventional charge amplifier unit; Figure 7 is a graph of sensing data read from the capacitive sensing module in sequence; Figure 8 is a grayscale image of the sensing data read out by the self-capacitance sensing module; Figure 9 is a side view of a smartphone equipped with a fingerprint identification device of the present invention; Figure 10 is a schematic three-dimensional view of a fingerprint identification device according to the present invention; Figure 11 is a schematic side cross-sectional view of the capacitive sensing module shown in Figure 10; Figure 12 is a side cross-sectional view of the capacitive sensor array 202 shown in Figure 11; Figure 13 is a top view of the substrate and capacitive sensor array shown in Figure 11; Figure 14 is a first circuit topology diagram of a charge amplifier unit and a capacitance compensation unit; Figure 15 is the voltage value distribution curve of the compensation voltage; Figure 16 is a second circuit topology diagram of the charge amplifier unit and capacitance compensation unit; and Figure 17 is a voltage value distribution curve diagram of the compensation voltage.

212:電荷放大器單元 212: Charge amplifier unit

21OP:運算放大器 21OP: Operational amplifier

213:電容補償單元 213: Capacitor compensation unit

214:補償信號產生單元 214: Compensation signal generation unit

M1:第一金屬板 M1: First Metal Plate

CF:反饋電容 CF: feedback capacitor

CB:補償電容 CB: compensation capacitor

Cp:寄生電容 Cp: parasitic capacitance

Cs:感應電容 Cs: sensing capacitance

SW1:第一開關 SW1: first switch

SW2:第二開關 SW2: Second switch

SW3:第三開關 SW3: The third switch

SW4:第四開關 SW4: The fourth switch

Claims (10)

一種感測信號讀出電路,係受控一微控制單元而自包含M×N個感測畫素的一電容感測模組讀出複數個感測電容值,且包括:M×N個電荷放大器單元以及分別與M×N個所述電荷放大器單元耦接的M×N個電容補償單元,其中M和N皆為正整數,且所述電容補償單元具有一補償電容;其特徵在於,所述感測信號讀出電路更包括: M×N個補償信號產生單元,用以產生M×N個補償信號以分別傳送至M×N個所述補償電容; 其中,每一列的N個所述補償信號具有一電壓值分布。 A sensing signal readout circuit is controlled by a microcontrol unit to read out a plurality of sensing capacitance values from a capacitive sensing module containing M×N sensing pixels, and includes: M×N charges Amplifier units and M×N capacitance compensation units respectively coupled to M×N charge amplifier units, where M and N are both positive integers, and the capacitance compensation unit has a compensation capacitor; characterized in that, The sensing signal readout circuit further includes: M×N compensation signal generating units, used to generate M×N compensation signals to respectively transmit to the M×N compensation capacitors; Wherein, the N compensation signals in each column have a voltage value distribution. 如請求項1所述之感測信號讀出電路,其中,所述補償信號產生單元為一數位類比轉換器或一非反相放大器。The sensing signal readout circuit of claim 1, wherein the compensation signal generating unit is a digital-to-analog converter or a non-inverting amplifier. 如請求項1所述之感測信號讀出電路,其中,每一列的N個所述補償信號的高準位電壓係滿足以下數學不等式: …… …… ; 其中,Vc1為傳送至第1行的M個所述補償電容的該補償信號之高準位電壓,Vc2為傳送至第2行的M個所述補償電容的該補償信號之高準位電壓,Vcc為傳送至中間行的M個所述補償電容的該補償信號之高準位電壓,Vcc+1為傳送至中間行的鄰行的M個所述補償電容的該補償信號之高準位電壓,且VcN為傳送至最後一行M個所述補償電容的該補償信號之高準位電壓。 The sensing signal readout circuit as described in claim 1, wherein the high-level voltages of the N compensation signals in each column satisfy the following mathematical inequality: ; Wherein, Vc1 is the high-level voltage of the compensation signal transmitted to the M compensation capacitors in the first row, and Vc2 is the high-level voltage of the compensation signal transmitted to the M compensation capacitors in the second row. , Vcc is the high-level voltage of the compensation signal transmitted to the M compensation capacitors in the middle row, Vcc+1 is the high-level voltage of the compensation signal transmitted to the M compensation capacitors in the adjacent row of the middle row voltage, and VcN is the high-level voltage of the compensation signal transmitted to the M compensation capacitors in the last row. 如請求項1所述之感測信號讀出電路,其中,每一列的N個所述補償電容的係具有一補償電容值分布。The sensing signal readout circuit of claim 1, wherein the N compensation capacitors in each column have a compensation capacitance value distribution. 一種感測信號讀出電路,係受控一微控制單元從而自包含M×N個感測畫素的一電容感測模組讀出複數個感測電容值,且包括:M×N個電荷放大器單元以及分別與M×N個所述電荷放大器單元耦接的M×N個電容補償單元,其中M和N皆為正整數,且所述電容補償單元具有一補償電容;其特徵在於,所述感測信號讀出電路更包括: M×N個補償信號產生單元,用以產生M×N個補償信號以分別傳送至M×N個所述補償電容; 其中,每一列的N個所述補償電容具有一補償電容值分布。 A sensing signal readout circuit is controlled by a microcontrol unit to read out a plurality of sensing capacitance values from a capacitive sensing module containing M×N sensing pixels, and includes: M×N charges Amplifier units and M×N capacitance compensation units respectively coupled to M×N charge amplifier units, where M and N are both positive integers, and the capacitance compensation unit has a compensation capacitor; characterized in that, The sensing signal readout circuit further includes: M×N compensation signal generating units, used to generate M×N compensation signals to respectively transmit to the M×N compensation capacitors; Wherein, the N compensation capacitors in each column have a compensation capacitance value distribution. 如請求項5所述之感測信號讀出電路,其中,所述補償信號產生單元為一數位類比轉換器或一非反相放大器。The sensing signal readout circuit of claim 5, wherein the compensation signal generating unit is a digital-to-analog converter or a non-inverting amplifier. 如請求項5所述之感測信號讀出電路,其中,每一列的N個所述補償電容係滿足以下數學不等式: …… …… ; 其中,CB1為第1行的M個所述補償電容的電容值,CB2為第2行的M個所述補償電容的電容值,CBc為中間行的M個所述補償電容的電容值,CBc+1為傳送至中間行的鄰行的M個所述補償電容CB的電容值,且CBN最後一行的M個所述補償電容的電容值。 The sensing signal readout circuit as described in claim 5, wherein the N compensation capacitors in each column satisfy the following mathematical inequality: ; Among them, CB1 is the capacitance value of the M compensation capacitors in the first row, CB2 is the capacitance value of the M compensation capacitors in the second row, CBc is the capacitance value of the M compensation capacitors in the middle row, CBc+1 is the capacitance value of the M compensation capacitors CB transmitted to the adjacent row of the middle row, and the capacitance value of the M compensation capacitors in the last row of CBN. 如請求項5所述之感測信號讀出電路,其中,每一列的N個所述補償信號的高準位電壓係滿足以下數學不等式: …… …… ; 其中,Vc1為傳送至第1行的M個所述補償電容的該補償信號之高準位電壓,Vc2為傳送至第2行的M個所述補償電容的該補償信號之高準位電壓,Vcc為傳送至中間行的M個所述補償電容的該補償信號之高準位電壓,Vcc+1為傳送至中間行的鄰行的M個所述補償電容的該補償信號之高準位電壓,且VcN為傳送至最後一行M個所述補償電容的該補償信號之高準位電壓。 The sensing signal readout circuit of claim 5, wherein the high-level voltages of the N compensation signals in each column satisfy the following mathematical inequality: ; Wherein, Vc1 is the high-level voltage of the compensation signal transmitted to the M compensation capacitors in the first row, and Vc2 is the high-level voltage of the compensation signal transmitted to the M compensation capacitors in the second row. , Vcc is the high-level voltage of the compensation signal transmitted to the M compensation capacitors in the middle row, Vcc+1 is the high-level voltage of the compensation signal transmitted to the M compensation capacitors in the adjacent row of the middle row voltage, and VcN is the high-level voltage of the compensation signal transmitted to the M compensation capacitors in the last row. 一種指紋識別裝置,其包括一電容感測模組、一微控制單元以及如請求項1至請求項4任一項所述之感測信號讀取電路。A fingerprint identification device includes a capacitive sensing module, a microcontrol unit and a sensing signal reading circuit as described in any one of claims 1 to 4. 一種資訊處理裝置,其具有如請求項9所述之指紋識別裝置。An information processing device having a fingerprint identification device as described in claim 9.
TW111118577A 2022-05-18 2022-05-18 Sensing signal readout circuit, fingerprint identification device and information processing device TWI803323B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111118577A TWI803323B (en) 2022-05-18 2022-05-18 Sensing signal readout circuit, fingerprint identification device and information processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111118577A TWI803323B (en) 2022-05-18 2022-05-18 Sensing signal readout circuit, fingerprint identification device and information processing device

Publications (2)

Publication Number Publication Date
TWI803323B TWI803323B (en) 2023-05-21
TW202347169A true TW202347169A (en) 2023-12-01

Family

ID=87424599

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111118577A TWI803323B (en) 2022-05-18 2022-05-18 Sensing signal readout circuit, fingerprint identification device and information processing device

Country Status (1)

Country Link
TW (1) TWI803323B (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110112128A (en) * 2010-04-06 2011-10-12 삼성전자주식회사 Method and apparatus for parasitic capacitance compensation in touch panel
CN105631442A (en) * 2016-03-07 2016-06-01 南昌欧菲生物识别技术有限公司 Fingerprint identification device and electronic device comprising same

Also Published As

Publication number Publication date
TWI803323B (en) 2023-05-21

Similar Documents

Publication Publication Date Title
US10049255B2 (en) Finger biometric sensing device including series coupled error compensation and drive signal nulling circuitry and related methods
US9684812B2 (en) Fingerprint sensing device with common mode suppression
CN107924259B (en) Active matrix capacitive fingerprint sensor with 1-TFT pixel architecture for display integration
EP3123395B1 (en) Capacitive fingerprint sensor with improved sensing element
CN102214051B (en) The method and apparatus of compensate for parasitic capacitance in touch panel
US20160171274A1 (en) Finger biometric sensing device including drive signal nulling circuitry and related methods
US10325131B2 (en) Active matrix capacitive fingerprint sensor for display integration based on charge sensing by a 2-TFT pixel architecture
US20150015537A1 (en) Fingerprint sensing system and method
US20100013789A1 (en) Touch control liquid crystal display array substrate and a liquid crystal display
CN109564485A (en) Touch sensor panel with the configuration of multi-power domain chip
CN110210349B (en) Fingerprint sensor and mobile terminal
US11144742B2 (en) Fingerprint sensor and terminal device
US10564785B2 (en) Device and method for sensing biological feature
CN110287901B (en) Ultrasonic sensor and electronic device
US20180046277A1 (en) Display substrate, touch panel and display apparatus
US10162995B2 (en) Capacitive image sensor with noise reduction feature and method operating the same
US11714510B2 (en) Capacitance detection circuit, touch control chip and electronic device
TW202347169A (en) Sensing signal readout circuit, fingerprint identification device and information processing device controlled by a micro control unit to read out a sensing capacitance value from a capacitance sensing module
Lee et al. In-cell capacitive touch panel structures and their readout circuits
CN112379542B (en) Display substrate and display device
US11651612B2 (en) Fingerprint sensing apparatus
CN115206254A (en) Display device, display control method and electronic equipment
TWI817508B (en) Capacitive sensing modules, fingerprint identification devices and information processing devices
CN108200774B (en) Pressure detection device, pressure detection method and electronic terminal
CN108140108A (en) For the driver with pipeline Scan Architecture to be used to carry out the fingerprint identification device of capacitance sensing