TW202341662A - Oscillating signal generating circuit and a semiconductor apparatus using the same - Google Patents

Oscillating signal generating circuit and a semiconductor apparatus using the same Download PDF

Info

Publication number
TW202341662A
TW202341662A TW112105550A TW112105550A TW202341662A TW 202341662 A TW202341662 A TW 202341662A TW 112105550 A TW112105550 A TW 112105550A TW 112105550 A TW112105550 A TW 112105550A TW 202341662 A TW202341662 A TW 202341662A
Authority
TW
Taiwan
Prior art keywords
signal
delay
oscillation
circuit
clock
Prior art date
Application number
TW112105550A
Other languages
Chinese (zh)
Inventor
趙善起
徐楊淏
吳益秀
Original Assignee
韓商愛思開海力士有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 韓商愛思開海力士有限公司 filed Critical 韓商愛思開海力士有限公司
Publication of TW202341662A publication Critical patent/TW202341662A/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/22Read-write [R-W] timing or clocking circuits; Read-write [R-W] control signal generators or management 
    • G11C7/222Clock generating, synchronizing or distributing circuits within memory device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/01Shaping pulses
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/13Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals
    • H03K5/133Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals using a chain of active delay devices
    • H03K5/134Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals using a chain of active delay devices with field-effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/081Details of the phase-locked loop provided with an additional controlled phase shifter
    • H03L7/0812Details of the phase-locked loop provided with an additional controlled phase shifter and where no voltage or current controlled oscillator is used
    • H03L7/0814Details of the phase-locked loop provided with an additional controlled phase shifter and where no voltage or current controlled oscillator is used the phase shifting device being digitally controlled
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K2005/00013Delay, i.e. output pulse is delayed after input pulse and pulse length of output pulse is dependent on pulse length of input pulse
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K2005/00013Delay, i.e. output pulse is delayed after input pulse and pulse length of output pulse is dependent on pulse length of input pulse
    • H03K2005/00078Fixed delay

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Pulse Circuits (AREA)
  • Dram (AREA)

Abstract

An oscillating signal generating circuit drives an oscillating signal to a first logic level based on a first control signal, which is generated by delaying the oscillating signal through a clock delaying circuit, and drives the oscillating signal to a second logic level based on a second control signal, which is generated by delaying the oscillating signal by a fixed delay amount.

Description

振盪訊號產生電路及使用其的半導體裝置Oscillation signal generating circuit and semiconductor device using same

多種實施例普遍係關於積體電路技術,更具體地係關於振盪訊號產生電路及使用其的半導體裝置。Various embodiments relate generally to integrated circuit technology, and more specifically to oscillation signal generating circuits and semiconductor devices using the same.

電子設備包括許多電子元件,作為電子設備的計算機系統包括許多半導體裝置,每個半導體裝置通過半導體進行配置。對計算機系統進行配置的半導體裝置可以透過發送和接收時脈訊號和數據而彼此通訊。半導體裝置可以與時脈訊號同步地操作。時脈訊號可以由振盪器、鎖相環電路等中的一個來產生。Electronic equipment includes many electronic components, and a computer system as the electronic equipment includes many semiconductor devices, each of which is configured by a semiconductor. Semiconductor devices that configure computer systems communicate with each other by sending and receiving clock signals and data. Semiconductor devices can operate in synchronization with clock signals. The clock signal may be generated by one of an oscillator, a phase locked loop circuit, etc.

半導體裝置可以透過接收系統時脈訊號而執行多種操作。為了在內部使用系統時脈訊號,半導體裝置可以從系統時脈訊號產生多個內部時脈訊號。多個內部時脈訊號可以通過系統時脈訊號的分頻或通過系統時脈訊號的增頻而產生。多個內部時脈訊號可以通過多個時脈路徑而產生。通常,多個時脈路徑可以被設計為具有相同的元件和相同的結構。然而,多個時脈路徑可能由於製程變化或劣化而具有不同的延遲量。這些不同的延遲量可以導致多個內部時脈訊號之間的相位偏差,其可以減小與多個內部時脈訊號同步地傳輸的訊號的有效窗口或持續時間。因此,每個半導體裝置可以具有用於校正多個內部時脈訊號之間的相位偏差的配置。Semiconductor devices can perform various operations by receiving system clock signals. In order to use the system clock signal internally, the semiconductor device can generate multiple internal clock signals from the system clock signal. Multiple internal clock signals may be generated by dividing the system clock signal or by frequency increasing the system clock signal. Multiple internal clock signals can be generated through multiple clock paths. Often, multiple clock paths can be designed with the same components and the same structure. However, multiple clock paths may have different amounts of delay due to process variations or degradation. These different amounts of delay can result in phase deviations between the multiple internal clock signals, which can reduce the effective window or duration of signals transmitted synchronously with the multiple internal clock signals. Accordingly, each semiconductor device may have a configuration for correcting phase deviations between a plurality of internal clock signals.

本申請要求於2022年4月13日在韓國智慧財產局提交的韓國申請第10-2022-0045797號的優先權,其全部內容通過引用被整體併入本文。This application claims priority from Korean Application No. 10-2022-0045797 filed with the Korean Intellectual Property Office on April 13, 2022, the entire content of which is incorporated herein by reference in its entirety.

在一個實施例中,一種振盪訊號產生電路可以包括第一時脈延遲電路、定時控制電路和振盪驅動器。所述第一時脈延遲電路可以被配置為將振盪訊號進行延遲以產生第一控制訊號。所述定時控制電路可以被配置為將所述振盪訊號延遲固定延遲量以產生第二控制訊號。所述振盪驅動器可以被配置為基於所述第一控制訊號將所述振盪訊號驅動至第一邏輯位準,以及被配置為基於所述第二控制訊號將所述振盪訊號驅動至第二邏輯位準。In one embodiment, an oscillation signal generating circuit may include a first clock delay circuit, a timing control circuit and an oscillation driver. The first clock delay circuit may be configured to delay the oscillation signal to generate the first control signal. The timing control circuit may be configured to delay the oscillation signal by a fixed delay amount to generate a second control signal. The oscillation driver may be configured to drive the oscillation signal to a first logic level based on the first control signal and to drive the oscillation signal to a second logic level based on the second control signal. Accurate.

在一個實施例中,一種振盪訊號產生電路可以包括第一時脈延遲電路、第一定時控制電路、第二定時控制電路和振盪驅動器。所述第一時脈延遲電路可以被配置為將振盪訊號進行延遲。所述第一定時控制電路可以被配置為接收來自所述第一時脈延遲電路的輸出訊號以產生第一控制訊號。所述第二定時控制電路可以被配置為將所述振盪訊號延遲固定延遲量以產生第二控制訊號。所述振盪驅動器可以被配置為基於所述第一控制訊號將所述振盪訊號驅動至第一邏輯位準,以及被配置為基於所述第二控制訊號將所述振盪訊號驅動至第二邏輯位準。In one embodiment, an oscillation signal generating circuit may include a first clock delay circuit, a first timing control circuit, a second timing control circuit and an oscillation driver. The first clock delay circuit may be configured to delay the oscillation signal. The first timing control circuit may be configured to receive an output signal from the first clock delay circuit to generate a first control signal. The second timing control circuit may be configured to delay the oscillation signal by a fixed delay amount to generate a second control signal. The oscillation driver may be configured to drive the oscillation signal to a first logic level based on the first control signal and to drive the oscillation signal to a second logic level based on the second control signal. Accurate.

在一個實施例中,一種振盪訊號產生電路可以包括第一時脈延遲電路、第二時脈延遲電路、選擇電路、定時控制電路和振盪驅動器。所述第一時脈延遲電路可以被配置為將振盪訊號進行延遲。所述第二時脈延遲電路可以被配置為將所述振盪訊號進行延遲。所述選擇電路可以被配置為基於選擇訊號輸出來自所述第一時脈延遲電路的輸出訊號和來自所述第二時脈延遲電路的輸出訊號之一作為第一控制訊號。所述定時控制電路可以被配置為將所述振盪訊號延遲固定延遲量以產生第二控制訊號。所述振盪驅動器可以被配置為基於所述第一控制訊號和所述第二控制訊號產生所述振盪訊號。In one embodiment, an oscillation signal generating circuit may include a first clock delay circuit, a second clock delay circuit, a selection circuit, a timing control circuit and an oscillation driver. The first clock delay circuit may be configured to delay the oscillation signal. The second clock delay circuit may be configured to delay the oscillation signal. The selection circuit may be configured to output one of an output signal from the first clock delay circuit and an output signal from the second clock delay circuit as a first control signal based on a selection signal. The timing control circuit may be configured to delay the oscillation signal by a fixed delay amount to generate a second control signal. The oscillation driver may be configured to generate the oscillation signal based on the first control signal and the second control signal.

在一個實施例中,一種振盪訊號產生電路可以包括第一時脈延遲電路、設置脈衝產生電路、重置脈衝產生電路和振盪驅動器。所述第一時脈延遲電路可以被配置為將振盪訊號進行延遲。所述設置脈衝產生器可以被配置為基於來自所述第一時脈延遲電路的輸出而產生與所述振盪訊號的上升邊緣和下降邊緣之一同步的設置脈衝訊號。所述重置脈衝產生器可以被配置為接收所述設置脈衝訊號以及被配置為產生重置脈衝訊號。所述振盪驅動器可以被配置為基於所述設置脈衝訊號將所述振盪訊號驅動至第一邏輯位準,以及被配置為基於所述重置脈衝訊號將所述振盪訊號驅動至第二邏輯位準。In one embodiment, an oscillation signal generating circuit may include a first clock delay circuit, a set pulse generating circuit, a reset pulse generating circuit and an oscillation driver. The first clock delay circuit may be configured to delay the oscillation signal. The set pulse generator may be configured to generate a set pulse signal synchronized with one of a rising edge and a falling edge of the oscillation signal based on the output from the first clock delay circuit. The reset pulse generator may be configured to receive the set pulse signal and to generate a reset pulse signal. The oscillation driver may be configured to drive the oscillation signal to a first logic level based on the set pulse signal and to drive the oscillation signal to a second logic level based on the reset pulse signal. .

在一個實施例中,一種振盪訊號產生電路可以包括第一時脈延遲電路、第二時脈延遲電路、選擇電路、設置脈衝產生器、重置脈衝產生電路和振盪驅動器。所述第一時脈延遲電路可以被配置為將振盪訊號進行延遲。所述第二時脈延遲電路可以被配置為將所述振盪訊號進行延遲。所述選擇電路可以被配置為基於選擇訊號輸出來自所述第一時脈延遲電路的輸出訊號和來自所述第二時脈延遲電路的輸出訊號之一。所述設置脈衝產生器可以被配置為接收來自所述選擇電路的輸出訊號,以及被配置為產生與所述振盪訊號的上升邊緣和下降邊緣之一同步的設置脈衝訊號。所述重置脈衝產生器可以被配置為基於所述設置脈衝訊號產生重置脈衝訊號。所述振盪驅動器可以被配置為基於所述設置脈衝訊號和所述重置脈衝訊號產生所述振盪訊號。In one embodiment, an oscillation signal generating circuit may include a first clock delay circuit, a second clock delay circuit, a selection circuit, a setting pulse generator, a reset pulse generating circuit and an oscillation driver. The first clock delay circuit may be configured to delay the oscillation signal. The second clock delay circuit may be configured to delay the oscillation signal. The selection circuit may be configured to output one of an output signal from the first clock delay circuit and an output signal from the second clock delay circuit based on a selection signal. The set pulse generator may be configured to receive an output signal from the selection circuit and to generate a set pulse signal synchronized with one of a rising edge and a falling edge of the oscillation signal. The reset pulse generator may be configured to generate a reset pulse signal based on the set pulse signal. The oscillation driver may be configured to generate the oscillation signal based on the set pulse signal and the reset pulse signal.

在一個實施例中,一種半導體裝置可以包括第一時脈延遲電路、第二時脈延遲電路、振盪控制電路和延遲訊息產生電路。所述第一時脈延遲電路可以被配置為將振盪訊號進行延遲以產生第一輸出時脈訊號。所述第二時脈延遲電路可以被配置為基於延遲控制訊號將所述振盪訊號進行延遲以產生第二輸出時脈訊號。所述振盪控制電路可以被配置為基於所述第一輸出時脈訊號和所述第二輸出時脈訊號之一控制所述振盪訊號從第二邏輯位準轉變至第一邏輯位準,以及被配置為基於透過將所述振盪訊號延遲固定延遲量而產生的訊號來控制所述振盪訊號從所述第一邏輯位準轉變至所述第二邏輯位準。所述延遲訊息產生電路可以被配置為基於通過所述第一時脈延遲電路產生的所述振盪訊號和通過所述第二時脈延遲電路產生的所述振盪訊號來產生所述延遲控制訊號。In one embodiment, a semiconductor device may include a first clock delay circuit, a second clock delay circuit, an oscillation control circuit and a delay message generating circuit. The first clock delay circuit may be configured to delay the oscillation signal to generate a first output clock signal. The second clock delay circuit may be configured to delay the oscillation signal based on a delay control signal to generate a second output clock signal. The oscillation control circuit may be configured to control the oscillation signal to transition from a second logic level to a first logic level based on one of the first output clock signal and the second output clock signal, and be Configured to control the transition of the oscillation signal from the first logic level to the second logic level based on a signal generated by delaying the oscillation signal by a fixed delay amount. The delay message generation circuit may be configured to generate the delay control signal based on the oscillation signal generated by the first clock delay circuit and the oscillation signal generated by the second clock delay circuit.

在一個實施例中,一種半導體裝置可以包括第一時脈延遲電路、第二時脈延遲電路、振盪控制電路和延遲訊息產生電路。所述第一時脈延遲電路可以被配置為將振盪訊號進行延遲以產生第一輸出時脈訊號。所述第二時脈延遲電路可以被配置為基於延遲控制訊號將所述振盪訊號進行延遲以產生第二輸出時脈訊號。所述振盪控制電路可以被配置為基於所述第一輸出時脈訊號和所述第二輸出時脈訊號之一產生設置脈衝訊號以控制所述振盪訊號從第二邏輯位準轉變至第一邏輯位準,以及被配置為基於所述設置脈衝訊號產生重置脈衝訊號以控制所述振盪訊號從所述第一邏輯位準轉變至所述第二邏輯位準。所述延遲訊息產生電路可以被配置為基於通過所述第一時脈延遲電路產生的所述振盪訊號和通過所述第二時脈延遲電路產生的所述振盪訊號產生所述延遲控制訊號。In one embodiment, a semiconductor device may include a first clock delay circuit, a second clock delay circuit, an oscillation control circuit and a delay message generating circuit. The first clock delay circuit may be configured to delay the oscillation signal to generate a first output clock signal. The second clock delay circuit may be configured to delay the oscillation signal based on a delay control signal to generate a second output clock signal. The oscillation control circuit may be configured to generate a setting pulse signal based on one of the first output clock signal and the second output clock signal to control the transition of the oscillation signal from the second logic level to the first logic level. level, and is configured to generate a reset pulse signal based on the set pulse signal to control the transition of the oscillation signal from the first logic level to the second logic level. The delay message generation circuit may be configured to generate the delay control signal based on the oscillation signal generated by the first clock delay circuit and the oscillation signal generated by the second clock delay circuit.

圖1是說明根據一個實施例的振盪訊號產生電路100的配置的圖。為了監測時脈訊號傳播通過的時脈延遲電路的延遲量,振盪訊號產生電路100可以通過時脈延遲電路產生振盪訊號ROD。振盪訊號產生電路100可以產生振盪訊號ROD,以使得振盪訊號ROD的上升邊緣和下降邊緣之一符合一致的定時。另一方面,振盪訊號產生電路100可以產生振盪訊號ROD,以使得振盪訊號ROD的上升邊緣和下降邊緣中的另一邊緣符合根據時脈延遲電路的延遲量變化的定時。振盪訊號ROD的上升邊緣可以是振盪訊號ROD從低邏輯位準轉變至高邏輯位準的部分。振盪訊號ROD的下降邊緣可以是振盪訊號ROD從高邏輯位準轉變至低邏輯位準的部分。例如,振盪訊號產生電路100可以根據時脈延遲電路的延遲量產生振盪訊號ROD的下降邊緣,並且可以在產生下降邊緣之後經過固定期間時產生振盪訊號ROD的上升邊緣。在一個實施例中,振盪訊號產生電路100可以根據時脈延遲電路的延遲量產生振盪訊號ROD的上升邊緣,並且可以在產生上升邊緣之後經過固定期間時產生振盪訊號ROD的下降邊緣。振盪訊號產生電路100可以依序地耦接至多個時脈延遲電路,並且可以被配置為產生振盪訊號ROD。振盪訊號產生電路100可以在產生振盪訊號ROD的下降邊緣之後經過固定期間時產生振盪訊號ROD的上升邊緣,因此,振盪訊號ROD的週期可以準確地包括多個時脈延遲電路之中的延遲量偏差,延遲量偏差是時脈延遲電路的實際延遲量與預期延遲量之間的差。FIG. 1 is a diagram illustrating the configuration of an oscillation signal generating circuit 100 according to one embodiment. In order to monitor the delay amount of the clock delay circuit through which the clock signal propagates, the oscillation signal generation circuit 100 can generate the oscillation signal ROD through the clock delay circuit. The oscillation signal generation circuit 100 can generate the oscillation signal ROD such that one of the rising edge and the falling edge of the oscillation signal ROD meets consistent timing. On the other hand, the oscillation signal generation circuit 100 may generate the oscillation signal ROD such that the other one of the rising edge and the falling edge of the oscillation signal ROD meets the timing that changes according to the delay amount of the clock delay circuit. The rising edge of the oscillation signal ROD may be the part where the oscillation signal ROD transitions from a low logic level to a high logic level. The falling edge of the oscillation signal ROD may be the portion where the oscillation signal ROD transitions from a high logic level to a low logic level. For example, the oscillation signal generation circuit 100 can generate the falling edge of the oscillation signal ROD according to the delay amount of the clock delay circuit, and can generate the rising edge of the oscillation signal ROD when a fixed period elapses after generating the falling edge. In one embodiment, the oscillation signal generation circuit 100 can generate the rising edge of the oscillation signal ROD according to the delay amount of the clock delay circuit, and can generate the falling edge of the oscillation signal ROD when a fixed period elapses after generating the rising edge. The oscillation signal generation circuit 100 may be coupled to a plurality of clock delay circuits in sequence, and may be configured to generate the oscillation signal ROD. The oscillation signal generation circuit 100 can generate the rising edge of the oscillation signal ROD after a fixed period has elapsed after generating the falling edge of the oscillation signal ROD. Therefore, the period of the oscillation signal ROD can accurately include the delay amount deviation among the plurality of clock delay circuits. ,The delay deviation is the difference between the actual delay ,and the expected delay of the clock delay circuit.

參考圖1,振盪訊號產生電路100可以包括第一時脈延遲電路111、定時控制電路120和振盪驅動器130。第一時脈延遲電路111可以接收振盪訊號ROD以將振盪訊號ROD進行延遲。第一時脈延遲電路111可以提供延遲的振盪訊號作為第一控制訊號RCS。在正常模式中,第一時脈延遲電路111可以接收第一輸入時脈訊號CLKI1,並且可以將第一輸入時脈訊號CLKI1進行延遲以產生第一輸出時脈訊號CLKO1。在補償模式中,第一時脈延遲電路111可以接收振盪訊號ROD,並且可以將振盪訊號ROD進行延遲以產生第一輸出時脈訊號CLKO1,提供第一輸出時脈訊號CLKO1作為第一控制訊號RCS。第一控制訊號RCS可以基於振盪訊號ROD從第一邏輯位準轉變至第二邏輯位準的邊緣而產生。第一控制訊號RCS可以在振盪訊號ROD從第一邏輯位準轉變至第二邏輯位準之後經過與第一時脈延遲電路111的延遲量相對應的期間時產生。第一邏輯位準可以是低邏輯位準,並且第二邏輯位準可以是高邏輯位準。在一個實施例中,第一邏輯位準可以是高邏輯位準,並且第二邏輯位準可以是低邏輯位準。正常模式可以是第一時脈延遲電路111作為時脈緩衝器操作的模式。補償模式可以是監測由第一時脈延遲電路111引起的延遲量的模式。正常模式和補償模式可以基於賦能訊號OSCEN來確定。當賦能訊號OSCEN為失能時,振盪訊號產生電路100可以在正常模式中操作,並且第一時脈延遲電路111可以將第一輸入時脈訊號CLKI1進行延遲以產生第一輸出時脈訊號CLKO1。當賦能訊號OSCEN被賦能時,振盪訊號產生電路100可以在補償模式中操作,並且第一時脈延遲電路111可以將振盪訊號ROD進行延遲以產生第一輸出時脈訊號CLKO1。第一時脈延遲電路111可以通過依序地串聯耦接的多個反相器或多個邏輯閘來配置。Referring to FIG. 1 , the oscillation signal generation circuit 100 may include a first clock delay circuit 111 , a timing control circuit 120 and an oscillation driver 130 . The first clock delay circuit 111 can receive the oscillation signal ROD to delay the oscillation signal ROD. The first clock delay circuit 111 may provide a delayed oscillation signal as the first control signal RCS. In the normal mode, the first clock delay circuit 111 may receive the first input clock signal CLKI1 and may delay the first input clock signal CLKI1 to generate the first output clock signal CLKO1. In the compensation mode, the first clock delay circuit 111 can receive the oscillation signal ROD, and can delay the oscillation signal ROD to generate the first output clock signal CLKO1, and provide the first output clock signal CLKO1 as the first control signal RCS. . The first control signal RCS may be generated based on an edge of the oscillation signal ROD transitioning from the first logic level to the second logic level. The first control signal RCS may be generated when a period corresponding to the delay amount of the first clock delay circuit 111 passes after the oscillation signal ROD transitions from the first logic level to the second logic level. The first logic level may be a low logic level and the second logic level may be a high logic level. In one embodiment, the first logic level may be a high logic level and the second logic level may be a low logic level. The normal mode may be a mode in which the first clock delay circuit 111 operates as a clock buffer. The compensation mode may be a mode in which the amount of delay caused by the first clock delay circuit 111 is monitored. The normal mode and the compensation mode can be determined based on the enable signal OSCEN. When the enable signal OSCEN is disabled, the oscillation signal generation circuit 100 can operate in the normal mode, and the first clock delay circuit 111 can delay the first input clock signal CLKI1 to generate the first output clock signal CLKO1 . When the enable signal OSCEN is enabled, the oscillation signal generation circuit 100 may operate in the compensation mode, and the first clock delay circuit 111 may delay the oscillation signal ROD to generate the first output clock signal CLKO1. The first clock delay circuit 111 may be configured by a plurality of inverters or a plurality of logic gates coupled in series.

定時控制電路120可以接收振盪訊號ROD。定時控制電路120可以將振盪訊號ROD延遲固定延遲量以產生第二控制訊號FCS。定時控制電路120可以基於振盪訊號ROD從第二邏輯位準轉變至第一邏輯位準的邊緣產生第二控制訊號FCS。定時控制電路120可以在產生振盪訊號ROD從第二邏輯位準轉變至第一邏輯位準的邊緣之後經過與固定延遲量相對應的期間時產生第二控制訊號FCS。定時控制電路120可以包括延遲複製單元(delay replica)121和脈衝產生器122。延遲複製單元121可以接收振盪訊號ROD,並且可以將振盪訊號ROD延遲固定延遲量。延遲複製單元121可以透過對第一時脈延遲電路111建模而實現。因此,在理想情況下,延遲複製單元121可以具有與第一時脈延遲電路111相同的延遲量。脈衝產生器122可以被耦接至延遲複製單元121,並且可以接收來自延遲複製單元121的輸出訊號。脈衝產生器122可以基於來自延遲複製單元121的輸出訊號產生第二控制訊號FCS。The timing control circuit 120 can receive the oscillation signal ROD. The timing control circuit 120 may delay the oscillation signal ROD by a fixed delay amount to generate the second control signal FCS. The timing control circuit 120 may generate the second control signal FCS based on the edge of the oscillation signal ROD transitioning from the second logic level to the first logic level. The timing control circuit 120 may generate the second control signal FCS when a period corresponding to the fixed delay amount elapses after generating an edge in which the oscillation signal ROD transitions from the second logic level to the first logic level. The timing control circuit 120 may include a delay replica unit 121 and a pulse generator 122 . The delay replica unit 121 can receive the oscillation signal ROD, and can delay the oscillation signal ROD by a fixed delay amount. The delay replica unit 121 can be implemented by modeling the first clock delay circuit 111 . Therefore, in an ideal case, the delay replica unit 121 may have the same delay amount as the first clock delay circuit 111 . The pulse generator 122 may be coupled to the delay replica unit 121 and may receive an output signal from the delay replica unit 121 . The pulse generator 122 may generate the second control signal FCS based on the output signal from the delay replica unit 121 .

振盪驅動器130可以接收第一控制訊號RCS和第二控制訊號FCS,並且可以基於第一控制訊號RCS和第二控制訊號FCS產生振盪訊號ROD。振盪驅動器130可以基於第一控制訊號RCS將振盪訊號ROD驅動至第一邏輯位準,並且可以基於第二控制訊號FCS將振盪訊號ROD驅動至第二邏輯位準。振盪驅動器130可以在第一控制訊號RCS被賦能時控制振盪訊號ROD從第二邏輯位準轉變至第一邏輯位準,並且可以在第二控制訊號FCS被賦能時控制振盪訊號ROD從第一邏輯位準轉變至第二邏輯位準。振盪驅動器130可以接收第一電源電壓VH和第二電源電壓VL,並且可以基於第一電源電壓VH和第二電源電壓VL產生振盪訊號ROD。第一電源電壓VH可以具有高於第二電源電壓VL的電壓位準。第一電源電壓VH可以具有足夠高的電壓位準,以被視為高邏輯位準。第二電源電壓VL可以具有足夠低的電壓位準,以被視為低邏輯位準。振盪驅動器130可以基於第一控制訊號RCS將振盪訊號ROD驅動至第二電源電壓VL的電壓位準,並且可以基於第二控制訊號FCS將振盪訊號ROD驅動至第一電源電壓VH的電壓位準。振盪驅動器130還可以接收賦能訊號OSCEN。當賦能訊號OSCEN被賦能時,振盪驅動器130可以被激活,並且可以基於第一控制訊號RCS和第二控制訊號FCS產生振盪訊號ROD。當賦能訊號OSCEN為失能時,振盪驅動器130可以被去激活,並且可以將振盪訊號ROD固定至預定邏輯位準而與第一控制訊號RCS和第二控制訊號FCS無關。例如,振盪驅動器130可以停用振盪訊號ROD。The oscillation driver 130 may receive the first control signal RCS and the second control signal FCS, and may generate the oscillation signal ROD based on the first control signal RCS and the second control signal FCS. The oscillation driver 130 may drive the oscillation signal ROD to a first logic level based on the first control signal RCS, and may drive the oscillation signal ROD to a second logic level based on the second control signal FCS. The oscillation driver 130 can control the oscillation signal ROD to transition from the second logic level to the first logic level when the first control signal RCS is enabled, and can control the oscillation signal ROD to transition from the second logic level to the first logic level when the second control signal FCS is enabled. One logic level transitions to a second logic level. The oscillation driver 130 may receive the first power supply voltage VH and the second power supply voltage VL, and may generate the oscillation signal ROD based on the first power supply voltage VH and the second power voltage VL. The first power supply voltage VH may have a higher voltage level than the second power supply voltage VL. The first power supply voltage VH may have a high enough voltage level to be considered a high logic level. The second supply voltage VL may have a low enough voltage level to be considered a low logic level. The oscillation driver 130 may drive the oscillation signal ROD to a voltage level of the second power supply voltage VL based on the first control signal RCS, and may drive the oscillation signal ROD to a voltage level of the first power supply voltage VH based on the second control signal FCS. The oscillation driver 130 can also receive the enable signal OSCEN. When the enable signal OSCEN is enabled, the oscillation driver 130 may be activated and may generate the oscillation signal ROD based on the first control signal RCS and the second control signal FCS. When the enable signal OSCEN is disabled, the oscillation driver 130 can be deactivated, and the oscillation signal ROD can be fixed to a predetermined logic level regardless of the first control signal RCS and the second control signal FCS. For example, the oscillation driver 130 may disable the oscillation signal ROD.

振盪訊號產生電路100還可以包括第二時脈延遲電路112和選擇電路140。第二時脈延遲電路112可以接收振盪訊號ROD以將振盪訊號ROD進行延遲。在正常模式中,第二時脈延遲電路112可以接收第二輸入時脈訊號CLKI2,並且可以將第二輸入時脈訊號CLKI2進行延遲以產生第二輸出時脈訊號CLKO2。在補償模式中,第二時脈延遲電路112可以接收振盪訊號ROD,將振盪訊號ROD進行延遲以產生第二輸出時脈訊號CLKO2,並且向選擇電路140提供第二輸出時脈訊號CLKO2。當賦能訊號OSCEN為失能時,振盪訊號產生電路100可以在正常模式中操作,並且第二時脈延遲電路112可以將第二輸入時脈訊號CLKI2進行延遲以產生第二輸出時脈訊號CLKO2。當賦能訊號OSCEN被賦能時,振盪訊號產生電路100可以在補償模式中操作,並且第二時脈延遲電路112可以將振盪訊號ROD進行延遲以產生第二輸出時脈訊號CLKO2。第二時脈延遲電路112可以透過順序串聯耦接的多個反相器或多個邏輯閘進行配置。第二時脈延遲電路112可以具有與第一時脈延遲電路111實質上相同的配置。延遲複製單元121可以透過對第一時脈延遲電路111和第二時脈延遲電路112中的至少一個進行建模而實現。The oscillation signal generating circuit 100 may further include a second clock delay circuit 112 and a selection circuit 140. The second clock delay circuit 112 can receive the oscillation signal ROD to delay the oscillation signal ROD. In the normal mode, the second clock delay circuit 112 may receive the second input clock signal CLKI2 and may delay the second input clock signal CLKI2 to generate the second output clock signal CLKO2. In the compensation mode, the second clock delay circuit 112 may receive the oscillation signal ROD, delay the oscillation signal ROD to generate the second output clock signal CLKO2, and provide the second output clock signal CLKO2 to the selection circuit 140. When the enable signal OSCEN is disabled, the oscillation signal generation circuit 100 can operate in the normal mode, and the second clock delay circuit 112 can delay the second input clock signal CLKI2 to generate the second output clock signal CLKO2 . When the enable signal OSCEN is enabled, the oscillation signal generation circuit 100 may operate in the compensation mode, and the second clock delay circuit 112 may delay the oscillation signal ROD to generate the second output clock signal CLKO2. The second clock delay circuit 112 may be configured through a plurality of inverters or a plurality of logic gates coupled in series. The second clock delay circuit 112 may have substantially the same configuration as the first clock delay circuit 111 . The delay replica unit 121 may be implemented by modeling at least one of the first clock delay circuit 111 and the second clock delay circuit 112 .

選擇電路140可以被耦接至第一時脈延遲電路111和第二時脈延遲電路112。選擇電路140可以分別接收來自第一時脈延遲電路111和第二時脈延遲電路112的第一輸出時脈訊號CLKO1和第二輸出時脈訊號CLKO2作為輸出訊號。選擇電路140還可以接收選擇訊號SEL。基於選擇訊號SEL,選擇電路140可以輸出來自第一時脈延遲電路111和第二時脈延遲電路112的輸出訊號之一作為第一控制訊號RCS。在補償模式中,選擇訊號SEL可以是用於依序地監測第一時脈延遲電路111和第二時脈延遲電路112的延遲量的控制訊號。例如,當選擇訊號SEL具有第一邏輯位準時,選擇電路140可以輸出第一輸出時脈訊號CLKO1作為第一控制訊號RCS。當選擇訊號SEL具有第二邏輯位準時,選擇電路140可以輸出第二輸出時脈訊號CLKO2作為第一控制訊號RCS。當第一輸出時脈訊號CLKO1被選擇電路140選中時,振盪訊號產生電路100可以產生反映第一時脈延遲電路111的延遲量的振盪訊號ROD。當第二輸出時脈訊號CLKO2被選擇電路140選中時,振盪訊號產生電路100可以產生反映第二時脈延遲電路112的延遲量的振盪訊號ROD。選擇訊號SEL可以透過任意控制訊號來實現。例如,當賦能訊號OSCEN被賦能並且振盪訊號產生電路100在補償模式中操作時,選擇訊號SEL的初始位準可以處於第一邏輯位準。當對透過耦接至第一時脈延遲電路111而產生的振盪訊號ROD的監測完成時,選擇訊號SEL的邏輯位準可以轉變至第二邏輯位準。選擇訊號SEL可以在賦能訊號OSCEN為失能時進行初始化。The selection circuit 140 may be coupled to the first and second clock delay circuits 111 and 112 . The selection circuit 140 may receive the first output clock signal CLKO1 and the second output clock signal CLKO2 from the first clock delay circuit 111 and the second clock delay circuit 112 respectively as output signals. The selection circuit 140 can also receive the selection signal SEL. Based on the selection signal SEL, the selection circuit 140 may output one of the output signals from the first clock delay circuit 111 and the second clock delay circuit 112 as the first control signal RCS. In the compensation mode, the selection signal SEL may be a control signal for sequentially monitoring the delay amounts of the first clock delay circuit 111 and the second clock delay circuit 112 . For example, when the selection signal SEL has a first logic level, the selection circuit 140 may output the first output clock signal CLKO1 as the first control signal RCS. When the selection signal SEL has the second logic level, the selection circuit 140 may output the second output clock signal CLKO2 as the first control signal RCS. When the first output clock signal CLKO1 is selected by the selection circuit 140, the oscillation signal generation circuit 100 can generate the oscillation signal ROD that reflects the delay amount of the first clock delay circuit 111. When the second output clock signal CLKO2 is selected by the selection circuit 140, the oscillation signal generation circuit 100 can generate the oscillation signal ROD that reflects the delay amount of the second clock delay circuit 112. The selection signal SEL can be realized by any control signal. For example, when the enable signal OSCEN is enabled and the oscillation signal generation circuit 100 operates in the compensation mode, the initial level of the selection signal SEL may be at the first logic level. When the monitoring of the oscillation signal ROD generated by being coupled to the first clock delay circuit 111 is completed, the logic level of the selection signal SEL may transition to the second logic level. The selection signal SEL can be initialized when the enable signal OSCEN is disabled.

圖2是說明圖1所示的脈衝產生器122的圖。參考圖2,脈衝產生器122可以包括第一反相器122-1、延遲器122-2、第二反相器122-3和反及閘122-4。第一反相器122-1可以接收來自延遲複製單元121(參見圖1)的輸出訊號以對來自延遲複製單元121的輸出訊號進行反相和驅動。延遲器122-2可以接收來自第一反相器122-1的輸出以將來自第一反相器122-1的輸出進行延遲。第二反相器122-3可以接收來自延遲器122-2的輸出以對來自延遲器122-2的輸出進行反相和驅動。反及閘122-4可以接收來自第一反相器122-1的輸出和來自第二反相器122-3的輸出以輸出第二控制訊號FCS。當來自延遲複製單元121的輸出從高邏輯位準轉變至低邏輯位準時,脈衝產生器122可以產生具有與延遲器122-2的延遲量相對應的脈衝寬度的低邏輯位準的脈衝訊號作為第二控制訊號FCS。FIG. 2 is a diagram explaining the pulse generator 122 shown in FIG. 1 . Referring to FIG. 2 , the pulse generator 122 may include a first inverter 122-1, a delay 122-2, a second inverter 122-3, and an NAND gate 122-4. The first inverter 122 - 1 may receive an output signal from the delay replica unit 121 (see FIG. 1 ) to invert and drive the output signal from the delay replica unit 121 . Delayer 122-2 may receive the output from first inverter 122-1 to delay the output from first inverter 122-1. Second inverter 122-3 may receive the output from delayer 122-2 to invert and drive the output from delayer 122-2. The NAND gate 122-4 may receive the output from the first inverter 122-1 and the output from the second inverter 122-3 to output the second control signal FCS. When the output from the delay replica unit 121 transitions from a high logic level to a low logic level, the pulse generator 122 may generate a low logic level pulse signal having a pulse width corresponding to the delay amount of the delay device 122-2 as The second control signal FCS.

圖3是說明圖1所示的振盪驅動器130的圖。參考圖3,振盪驅動器130可以包括上拉電晶體131、下拉電晶體132、反及閘133、第一反相器134和第二反相器135。基於第二控制訊號FCS,上拉電晶體131可以將驅動節點DN驅動至第一電源電壓VH。上拉電晶體131可以是P通道MOS電晶體。在一個實施例中,上拉電晶體131可以通過N通道MOS電晶體來實現。上拉電晶體131可以在其源極處接收第一電源電壓VH,並且可以在其汲極處被耦接至驅動節點DN。上拉電晶體131可以在其閘極處接收第二控制訊號FCS。當第二控制訊號FCS被賦能至低邏輯位準時,上拉電晶體131可以將驅動節點DN驅動至第一電源電壓VH。基於第一控制訊號RCS,下拉電晶體132可以將驅動節點DN驅動至第二電源電壓VL。下拉電晶體132可以是N通道MOS電晶體。下拉電晶體132可以在其汲極處被耦接至驅動節點DN,並且可以在其源極處接收第二電源電壓VL。下拉電晶體132可以在其閘極處接收第一控制訊號RCS。當第一控制訊號RCS被賦能至高邏輯位準時,下拉電晶體132可以將驅動節點DN驅動至第二電源電壓VL。反及閘133可以被耦接至驅動節點DN,並且可以接收來自驅動節點DN的訊號。反及閘133可以接收來自驅動節點DN的訊號和賦能訊號OSCEN。當賦能訊號OSCEN被賦能至高邏輯位準時,反及閘133可以對來自驅動節點DN的訊號進行反相和驅動。反及閘133的輸出可以被耦接至閂鎖節點LN。在一個實施例中,振盪驅動器130可以不接收賦能訊號OSCEN,並且反及閘133可以用反相器來替換。第一反相器134可以被耦接在閂鎖節點LN與驅動節點DN之間。第一反相器134可以對來自閂鎖節點LN的訊號進行反相和驅動,並且可以向驅動節點DN輸出反相和驅動的訊號。第一反相器134可以與反及閘133一起形成反相鎖存器,並且可以保持驅動節點DN和閂鎖節點LN的邏輯位準。第二反相器135可以接收來自閂鎖節點LN的訊號,並且可以對來自閂鎖節點LN的訊號進行反相和驅動以輸出振盪訊號ROD。FIG. 3 is a diagram explaining the oscillation driver 130 shown in FIG. 1 . Referring to FIG. 3 , the oscillation driver 130 may include a pull-up transistor 131 , a pull-down transistor 132 , an NAND gate 133 , a first inverter 134 and a second inverter 135 . Based on the second control signal FCS, the pull-up transistor 131 can drive the driving node DN to the first power voltage VH. The pull-up transistor 131 may be a P-channel MOS transistor. In one embodiment, the pull-up transistor 131 may be implemented by an N-channel MOS transistor. The pull-up transistor 131 may receive the first supply voltage VH at its source and may be coupled to the drive node DN at its drain. The pull-up transistor 131 can receive the second control signal FCS at its gate. When the second control signal FCS is enabled to a low logic level, the pull-up transistor 131 can drive the driving node DN to the first power voltage VH. Based on the first control signal RCS, the pull-down transistor 132 can drive the driving node DN to the second power voltage VL. Pull-down transistor 132 may be an N-channel MOS transistor. Pull-down transistor 132 may be coupled to the drive node DN at its drain and may receive the second supply voltage VL at its source. The pull-down transistor 132 can receive the first control signal RCS at its gate. When the first control signal RCS is enabled to a high logic level, the pull-down transistor 132 can drive the driving node DN to the second power voltage VL. NAND gate 133 may be coupled to the driving node DN and may receive a signal from the driving node DN. The NAND gate 133 can receive the signal from the driving node DN and the enabling signal OSCEN. When the enable signal OSCEN is enabled to a high logic level, the NAND gate 133 can invert and drive the signal from the drive node DN. The output of NAND gate 133 may be coupled to latch node LN. In one embodiment, the oscillation driver 130 may not receive the enable signal OSCEN, and the NAND gate 133 may be replaced with an inverter. The first inverter 134 may be coupled between the latch node LN and the drive node DN. The first inverter 134 may invert and drive the signal from the latch node LN, and may output the inverted and driven signal to the driving node DN. The first inverter 134 may form an inversion latch together with the NAND gate 133 and may maintain the logic levels of the drive node DN and the latch node LN. The second inverter 135 may receive the signal from the latch node LN, and may invert and drive the signal from the latch node LN to output the oscillation signal ROD.

圖4A和圖4B是說明根據一個實施例的振盪訊號產生電路100的操作的時序圖。將在下文參考圖1至圖4B描述振盪訊號產生電路100的操作。參考圖4A,當賦能訊號OSCEN被賦能時,選擇訊號SEL可以具有第一邏輯位準,並且振盪訊號產生電路100可以通過第一時脈延遲電路111產生振盪訊號ROD。為了便於描述,通過連接至第一時脈延遲電路111產生的振盪訊號ROD可以被稱為第一振盪訊號ROD1。第一時脈延遲電路111可以將第一振盪訊號ROD1進行延遲以產生第一輸出時脈訊號CLKO1。選擇電路140可以提供第一輸出時脈訊號CLKO1作為第一控制訊號RCS。在第一振盪訊號ROD1從低邏輯位準轉變至高邏輯位準之後,第一控制訊號RCS可以被延遲與第一時脈延遲電路111的延遲量TD1相對應的期間,以被賦能至高邏輯位準。第一控制訊號RCS可以在與第一振盪訊號ROD1的高位準脈衝部分相對應的期間保持被賦能。基於第一控制訊號RCS,振盪驅動器130可以將驅動節點DN驅動至第二電源電壓VL,以控制第一振盪訊號ROD1從高邏輯位準轉變至低邏輯位準。反及閘133和第一反相器134可以將第一振盪訊號ROD1的邏輯位準保持在低邏輯位準。在定時控制電路120之中,延遲複製單元121可以將第一振盪訊號ROD1進行延遲,並且脈衝產生器122可以基於來自延遲複製單元121的輸出而產生轉變至低邏輯位準的第二控制訊號FCS。在第一振盪訊號ROD1從高邏輯位準轉變至低邏輯位準之後,第二控制訊號FCS可以被延遲與延遲複製單元121的延遲量TDR相對應的期間和與脈衝產生器122的延遲量α相對應的期間,以被賦能至低邏輯位準。基於第二控制訊號FCS,振盪驅動器130可以將驅動節點DN驅動至第一電源電壓VH以控制第一振盪訊號ROD1從低邏輯位準轉變至高邏輯位準。反及閘133和第一反相器134可以將第一振盪訊號ROD1的邏輯位準保持在高邏輯位準。因此,第一振盪訊號ROD1的高位準脈衝部分可以對應於第一時脈延遲電路111的延遲量TD1,並且第一振盪訊號ROD1的低位準脈衝部分可以對應於延遲複製單元121的延遲量TDR和脈衝產生器122的延遲量α之總和TDR+α。4A and 4B are timing diagrams illustrating the operation of the oscillation signal generation circuit 100 according to one embodiment. The operation of the oscillation signal generating circuit 100 will be described below with reference to FIGS. 1 to 4B. Referring to FIG. 4A , when the enable signal OSCEN is enabled, the selection signal SEL may have a first logic level, and the oscillation signal generation circuit 100 may generate the oscillation signal ROD through the first clock delay circuit 111 . For convenience of description, the oscillation signal ROD generated by being connected to the first clock delay circuit 111 may be called the first oscillation signal ROD1. The first clock delay circuit 111 may delay the first oscillation signal ROD1 to generate the first output clock signal CLKO1. The selection circuit 140 may provide the first output clock signal CLKO1 as the first control signal RCS. After the first oscillation signal ROD1 transitions from a low logic level to a high logic level, the first control signal RCS may be delayed by a period corresponding to the delay amount TD1 of the first clock delay circuit 111 to be enabled to a high logic level. Accurate. The first control signal RCS may remain enabled during a period corresponding to the high-level pulse portion of the first oscillation signal ROD1. Based on the first control signal RCS, the oscillation driver 130 can drive the driving node DN to the second power supply voltage VL to control the first oscillation signal ROD1 to change from a high logic level to a low logic level. The NAND gate 133 and the first inverter 134 can maintain the logic level of the first oscillation signal ROD1 at a low logic level. In the timing control circuit 120, the delay replica unit 121 may delay the first oscillation signal ROD1, and the pulse generator 122 may generate a second control signal FCS that transitions to a low logic level based on the output from the delay replica unit 121. . After the first oscillation signal ROD1 transitions from a high logic level to a low logic level, the second control signal FCS may be delayed by a period corresponding to the delay amount TDR of the delay replica unit 121 and the delay amount α of the pulse generator 122 corresponding period to be enabled to a low logic level. Based on the second control signal FCS, the oscillation driver 130 can drive the driving node DN to the first power supply voltage VH to control the first oscillation signal ROD1 to transition from a low logic level to a high logic level. The NAND gate 133 and the first inverter 134 can maintain the logic level of the first oscillation signal ROD1 at a high logic level. Therefore, the high-level pulse part of the first oscillation signal ROD1 may correspond to the delay amount TD1 of the first clock delay circuit 111 , and the low-level pulse part of the first oscillation signal ROD1 may correspond to the delay amount TDR of the delay replica unit 121 and The sum of the delay amounts α of the pulse generator 122 is TDR+α.

在通過連接至第一時脈延遲電路111而產生振盪訊號ROD之後,選擇訊號SEL可以改變至具有第二邏輯位準,並且振盪訊號產生電路100可以產生通過第二時脈延遲電路112的振盪訊號ROD。為了便於描述,通過連接至第二時脈延遲電路112而產生的振盪訊號ROD可以被稱為第二振盪訊號ROD2。第二時脈延遲電路112可以將第二振盪訊號ROD2進行延遲以產生第二輸出時脈訊號CLKO2。選擇電路140可以提供第二輸出時脈訊號CLKO2作為第一控制訊號RCS。在第二振盪訊號ROD2從低邏輯位準轉變至高邏輯位準之後,第一控制訊號RCS可以被延遲與第二時脈延遲電路112的延遲量TD2相對應的期間,以被賦能至高邏輯位準。第一控制訊號RCS可以在與第二振盪訊號ROD2的高位準脈衝部分相對應的期間保持被賦能。基於第一控制訊號RCS,振盪驅動器130可以將驅動節點DN驅動至第二電源電壓VL以控制第二振盪訊號ROD2從高邏輯位準轉變至低邏輯位準。反及閘133和第一反相器134可以將第二振盪訊號ROD2的邏輯位準保持在低邏輯位準。在定時控制電路120之中,延遲複製單元121可以將第二振盪訊號ROD2進行延遲,並且脈衝產生器122可以基於來自延遲複製單元121的輸出而產生轉變至低邏輯位準的第二控制訊號FCS。在第二振盪訊號ROD2從高邏輯位準轉變至低邏輯位準之後,第二控制訊號FCS可以被延遲與延遲複製單元121的延遲量TDR相對應的期間和與脈衝產生器122的延遲量α相對應的期間,以被賦能至低邏輯位準。基於第二控制訊號FCS,振盪驅動器130可以將驅動節點DN驅動至第一電源電壓VH以控制第二振盪訊號ROD2從低邏輯位準轉變至高邏輯位準。反及閘133和第一反相器134可以將第二振盪訊號ROD2的邏輯位準保持在高邏輯位準。因此,第二振盪訊號ROD2的高位準脈衝部分可以對應於第二時脈延遲電路112的延遲量TD2,並且第二振盪訊號ROD2的低位準脈衝部分可以對應於延遲複製單元121的延遲量TDR和脈衝產生器122的延遲量α之總和TDR+α。After the oscillation signal ROD is generated by being connected to the first clock delay circuit 111 , the selection signal SEL may be changed to have a second logic level, and the oscillation signal generation circuit 100 may generate an oscillation signal through the second clock delay circuit 112 ROD. For convenience of description, the oscillation signal ROD generated by being connected to the second clock delay circuit 112 may be referred to as the second oscillation signal ROD2. The second clock delay circuit 112 may delay the second oscillation signal ROD2 to generate the second output clock signal CLKO2. The selection circuit 140 may provide the second output clock signal CLKO2 as the first control signal RCS. After the second oscillation signal ROD2 transitions from a low logic level to a high logic level, the first control signal RCS may be delayed for a period corresponding to the delay amount TD2 of the second clock delay circuit 112 to be enabled to a high logic level. Accurate. The first control signal RCS may remain enabled during a period corresponding to the high-level pulse portion of the second oscillation signal ROD2. Based on the first control signal RCS, the oscillation driver 130 can drive the driving node DN to the second power supply voltage VL to control the second oscillation signal ROD2 to transition from a high logic level to a low logic level. The NAND gate 133 and the first inverter 134 can maintain the logic level of the second oscillation signal ROD2 at a low logic level. In the timing control circuit 120, the delay replica unit 121 may delay the second oscillation signal ROD2, and the pulse generator 122 may generate the second control signal FCS that transitions to a low logic level based on the output from the delay replica unit 121. . After the second oscillation signal ROD2 transitions from a high logic level to a low logic level, the second control signal FCS may be delayed by a period corresponding to the delay amount TDR of the delay replica unit 121 and the delay amount α of the pulse generator 122 corresponding period to be enabled to a low logic level. Based on the second control signal FCS, the oscillation driver 130 can drive the driving node DN to the first power supply voltage VH to control the second oscillation signal ROD2 to transition from a low logic level to a high logic level. The NAND gate 133 and the first inverter 134 can maintain the logic level of the second oscillation signal ROD2 at a high logic level. Therefore, the high-level pulse part of the second oscillation signal ROD2 may correspond to the delay amount TD2 of the second clock delay circuit 112 , and the low-level pulse part of the second oscillation signal ROD2 may correspond to the delay amount TDR of the delay replica unit 121 and The sum of the delay amounts α of the pulse generator 122 is TDR+α.

當將第一振盪訊號ROD1與第二振盪訊號ROD2互相進行比較時,第一振盪訊號ROD1和第二振盪訊號ROD2的高位準脈衝部分可以分別基於第一時脈延遲電路111的延遲量TD1和第二時脈延遲電路112的延遲量TD2而變化,而第一振盪訊號ROD1和第二振盪訊號ROD2的低位準脈衝部分中的每一個可以與延遲複製單元121和脈衝產生器122的延遲量之總和TDR+α相同。因此,轉變至低邏輯位準的第一振盪訊號ROD1和第二振盪訊號ROD2中的每一個與轉變至高邏輯位準的第一振盪訊號ROD1和第二振盪訊號ROD2中的每一個之間的期間可以是一致的,與第一時脈延遲電路111和第二時脈延遲電路112之間的延遲量偏差無關。通常,半導體裝置可以與時脈訊號的上升邊緣和下降邊緣中的至少一個同步。例如,當半導體裝置與時脈訊號的上升邊緣同步時,下降邊緣的定時可能沒有比上升邊緣的定時重要。振盪訊號產生電路100可以用於振盪訊號ROD,將轉變至低邏輯位準的振盪訊號ROD與轉變至高邏輯位準的振盪訊號ROD之間的期間設置為是一致的,不包括第一輸出時脈訊號CLKO1和第二輸出時脈訊號CLKO2的下降邊緣之間的定時偏差。另一方面,振盪訊號產生電路100可以用於振盪訊號ROD,將轉變至高邏輯位準的振盪訊號ROD與轉變至低邏輯位準的振盪訊號ROD之間的期間設置為根據第一時脈延遲電路111和第二時脈延遲電路112的延遲量是可變的,以僅包括第一輸出時脈訊號CLKO1和第二輸出時脈訊號CLKO2的上升邊緣之間的定時偏差。When the first oscillation signal ROD1 and the second oscillation signal ROD2 are compared with each other, the high-level pulse parts of the first oscillation signal ROD1 and the second oscillation signal ROD2 may be based on the delay amount TD1 and the second clock delay circuit 111 respectively. The delay amount TD2 of the two clock delay circuit 112 changes, and each of the low-level pulse parts of the first oscillation signal ROD1 and the second oscillation signal ROD2 can be equal to the sum of the delay amounts of the delay replica unit 121 and the pulse generator 122 TDR+α is the same. Therefore, the period between each of the first oscillation signal ROD1 and the second oscillation signal ROD2 transitioning to a low logic level and each of the first oscillation signal ROD1 and the second oscillation signal ROD2 transitioning to a high logic level It may be consistent regardless of the delay amount deviation between the first clock delay circuit 111 and the second clock delay circuit 112 . Typically, a semiconductor device can be synchronized to at least one of a rising edge and a falling edge of a clock signal. For example, when a semiconductor device is synchronized to the rising edge of a clock signal, the timing of the falling edge may be less important than the timing of the rising edge. The oscillation signal generation circuit 100 can be used for the oscillation signal ROD, and the period between the oscillation signal ROD that transitions to a low logic level and the oscillation signal ROD that transitions to a high logic level is set to be consistent, excluding the first output clock. The timing deviation between the falling edge of signal CLKO1 and the second output clock signal CLKO2. On the other hand, the oscillation signal generation circuit 100 can be used for the oscillation signal ROD, and the period between the oscillation signal ROD that transitions to a high logic level and the oscillation signal ROD that transitions to a low logic level is set according to the first clock delay circuit The delay amount of 111 and the second clock delay circuit 112 is variable to include only the timing deviation between the rising edges of the first output clock signal CLKO1 and the second output clock signal CLKO2.

參考圖4B,當第一時脈延遲電路111透過多個反相器來實現時,路徑A(利用點線說明的)可以是用於產生第一輸出時脈訊號CLKO1的下降邊緣和振盪訊號ROD的上升邊緣的路徑,而路徑B(利用交替的長劃線和短劃線說明的)可以是用於產生第一輸出時脈訊號CLKO1的上升邊緣和振盪訊號ROD的下降邊緣的路徑。可能出現路徑A之中的電晶體損壞而路徑B之中沒有電晶體損壞的情況。在這個情況下,如圖4B所示,根據現有技術而產生的第一振盪訊號ROD1’可以具有相對短的高位準部分和相對長的低位準部分。另一方面,根據一個實施例,振盪訊號產生電路100可以產生通過包括延遲複製單元121的定時控制電路120之第一振盪訊號ROD1的上升邊緣。第二時脈延遲電路112可能不損壞,因此,根據現有技術而產生的第二振盪訊號ROD2’可以具有基本相同的持續時間的高位準部分和低位準部分。另一方面,根據一個實施例,振盪訊號產生電路100可以產生通過包括延遲複製單元121的定時控制電路120之第二振盪訊號ROD2的上升邊緣。因此,根據一個實施例,即使當第一時脈延遲電路111損壞時,第一振盪訊號ROD1和第二振盪訊號ROD2的週期也可以彼此基本相同。即,即使當由於第一時脈延遲電路111和第二時脈延遲電路112而在下降邊緣之間出現定時偏差時,振盪訊號產生電路100可以不包括振盪訊號ROD的下降邊緣之間的定時偏差,而僅包括振盪訊號ROD的上升邊緣之間的定時偏差。因此,振盪訊號產生電路100可以準確地檢測由於第一時脈延遲電路111和第二時脈延遲電路112的上升邊緣之間的定時偏差,以有效地校正第一時脈延遲電路111和第二時脈延遲電路112的相位偏差。Referring to FIG. 4B , when the first clock delay circuit 111 is implemented through multiple inverters, path A (illustrated with dotted lines) may be used to generate the falling edge of the first output clock signal CLKO1 and the oscillation signal ROD. path B (illustrated by alternating long and dash lines) may be a path for generating the rising edge of the first output clock signal CLKO1 and the falling edge of the oscillation signal ROD. It may happen that the transistor in path A is damaged but no transistor in path B is damaged. In this case, as shown in FIG. 4B , the first oscillation signal ROD1' generated according to the prior art may have a relatively short high level part and a relatively long low level part. On the other hand, according to one embodiment, the oscillation signal generation circuit 100 may generate the rising edge of the first oscillation signal ROD1 through the timing control circuit 120 including the delay replica unit 121 . The second clock delay circuit 112 may not be damaged, so the second oscillation signal ROD2' generated according to the prior art may have a high level part and a low level part of substantially the same duration. On the other hand, according to one embodiment, the oscillation signal generation circuit 100 may generate the rising edge of the second oscillation signal ROD2 through the timing control circuit 120 including the delay replica unit 121 . Therefore, according to one embodiment, even when the first clock delay circuit 111 is damaged, the periods of the first oscillation signal ROD1 and the second oscillation signal ROD2 may be substantially the same as each other. That is, even when a timing deviation occurs between falling edges due to the first clock delay circuit 111 and the second clock delay circuit 112, the oscillation signal generation circuit 100 may not include the timing deviation between the falling edges of the oscillation signal ROD. , and only includes the timing deviation between the rising edges of the oscillation signal ROD. Therefore, the oscillation signal generating circuit 100 can accurately detect the timing deviation between the rising edges of the first clock delay circuit 111 and the second clock delay circuit 112 to effectively correct the first clock delay circuit 111 and the second clock delay circuit 112 . Phase deviation of clock delay circuit 112.

圖5是說明根據一個實施例的振盪訊號產生電路200的配置的圖。參考圖5,振盪訊號產生電路200可以包括第一時脈延遲電路211、第一定時控制電路250、第二定時控制電路220和振盪驅動器230。第二定時控制電路220可以包括延遲複製單元221和第一脈衝產生器222。第一時脈延遲電路211、第二定時控制電路220和振盪驅動器230可以是分別與圖1所示的第一時脈延遲電路111、定時控制電路120和振盪驅動器130基本相同的元件,因此將省略對相同元件的描述。第一定時控制電路250可以接收來自第一時脈延遲電路211的輸出訊號以基於來自第一時脈延遲電路211的輸出訊號產生第一控制訊號RCS。第一定時控制電路250可以基於振盪訊號ROD從第二邏輯位準轉變至第一邏輯位準的邊緣而產生第一控制訊號RCS。第一定時控制電路250可以包括第二脈衝產生器251。第二脈衝產生器251可以接收第一輸出時脈訊號CLKO1,以基於第一輸出時脈訊號CLKO1產生第一控制訊號RCS。振盪訊號產生電路200還可以包括第二時脈延遲電路212和選擇電路240。第二時脈延遲電路212和選擇電路240可以是分別與圖1所示的第二時脈延遲電路112和選擇電路140基本相同的元件。第一定時控制電路250可以基於來自選擇電路240的輸出訊號241產生第一控制訊號RCS。振盪訊號產生電路100(參見圖1)可以提供透過第一時脈延遲電路111和第二時脈延遲電路112之一進行延遲的振盪訊號ROD作為第一控制訊號RCS。圖5的振盪訊號產生電路200可以從透過第一時脈延遲電路211和第二時脈延遲電路212之一進行延遲的振盪訊號ROD而產生脈衝型的第一控制訊號RCS,第一控制訊號RCS類似於第二控制訊號FCS。FIG. 5 is a diagram illustrating the configuration of the oscillation signal generating circuit 200 according to one embodiment. Referring to FIG. 5 , the oscillation signal generation circuit 200 may include a first clock delay circuit 211 , a first timing control circuit 250 , a second timing control circuit 220 and an oscillation driver 230 . The second timing control circuit 220 may include a delay replica unit 221 and a first pulse generator 222. The first clock delay circuit 211, the second timing control circuit 220 and the oscillation driver 230 may be substantially the same components as the first clock delay circuit 111, the timing control circuit 120 and the oscillation driver 130 shown in FIG. 1, respectively, and therefore will Description of the same elements is omitted. The first timing control circuit 250 may receive the output signal from the first clock delay circuit 211 to generate the first control signal RCS based on the output signal from the first clock delay circuit 211 . The first timing control circuit 250 may generate the first control signal RCS based on an edge of the oscillation signal ROD transitioning from the second logic level to the first logic level. The first timing control circuit 250 may include a second pulse generator 251. The second pulse generator 251 may receive the first output clock signal CLKO1 to generate the first control signal RCS based on the first output clock signal CLKO1. The oscillation signal generating circuit 200 may also include a second clock delay circuit 212 and a selection circuit 240. The second clock delay circuit 212 and the selection circuit 240 may be substantially the same components as the second clock delay circuit 112 and the selection circuit 140 shown in FIG. 1 , respectively. The first timing control circuit 250 may generate the first control signal RCS based on the output signal 241 from the selection circuit 240 . The oscillation signal generation circuit 100 (see FIG. 1 ) may provide the oscillation signal ROD delayed through one of the first clock delay circuit 111 and the second clock delay circuit 112 as the first control signal RCS. The oscillation signal generation circuit 200 of FIG. 5 can generate a pulse-type first control signal RCS from the oscillation signal ROD delayed through one of the first clock delay circuit 211 and the second clock delay circuit 212. The first control signal RCS Similar to the second control signal FCS.

圖6是說明圖5所示的第二脈衝產生器251的圖。參考圖6,第二脈衝產生器251可以包括第一反相器251-1、延遲器251-2、第二反相器251-3和反或閘251-4。第一反相器251-1可以接收來自選擇電路240的輸出訊號241,以對來自選擇電路240的輸出訊號241進行反相和驅動。延遲器251-2可以接收來自第一反相器251-1的輸出以將來自第一反相器251-1的輸出進行延遲。第二反相器251-3可以接收來自延遲器251-2的輸出以對來自延遲器251-2的輸出進行反相和驅動。反或閘251-4可以接收來自第一反相器251-1的輸出和來自第二反相器251-3的輸出以輸出第一控制訊號RCS。當來自選擇電路240的輸出訊號241從低邏輯位準轉變至高邏輯位準時,第二脈衝產生器251可以產生具有與延遲器251-2的延遲量相對應的脈衝寬度的高邏輯位準的脈衝訊號作為第一控制訊號RCS。FIG. 6 is a diagram explaining the second pulse generator 251 shown in FIG. 5 . Referring to FIG. 6 , the second pulse generator 251 may include a first inverter 251-1, a delayer 251-2, a second inverter 251-3, and an inverse-OR gate 251-4. The first inverter 251-1 can receive the output signal 241 from the selection circuit 240 to invert and drive the output signal 241 from the selection circuit 240. The delayer 251-2 may receive the output from the first inverter 251-1 to delay the output from the first inverter 251-1. The second inverter 251-3 may receive the output from the delayer 251-2 to invert and drive the output from the delayer 251-2. The NOR gate 251-4 may receive the output from the first inverter 251-1 and the output from the second inverter 251-3 to output the first control signal RCS. When the output signal 241 from the selection circuit 240 transitions from a low logic level to a high logic level, the second pulse generator 251 may generate a high logic level pulse having a pulse width corresponding to the delay amount of the delay device 251-2 signal as the first control signal RCS.

圖7是說明根據一個實施例的圖6所示的振盪訊號產生電路200的操作的時序圖。將在下文參考圖6和圖7描述振盪訊號產生電路200的操作。當賦能訊號OSCEN被賦能時,選擇訊號SEL可以具有第一邏輯位準,並且振盪訊號產生電路200可以產生通過第一時脈延遲電路211的振盪訊號ROD。第一時脈延遲電路211可以將振盪訊號ROD進行延遲以產生第一輸出時脈訊號CLKO1。選擇電路240可以將作為輸出訊號241的第一輸出時脈訊號CLKO1提供給第一定時控制電路250。第一定時控制電路250可以在振盪訊號ROD從低邏輯位準轉變至高邏輯位準之後經過與第一時脈延遲電路211的延遲量TD1相對應的期間時產生被賦能至高邏輯位準的第一控制訊號RCS。第一控制訊號RCS可以透過第二脈衝產生器251以脈衝形式被賦能。基於第一控制訊號RCS,振盪驅動器230可以控制振盪訊號ROD從高邏輯位準轉變至低邏輯位準。在第二定時控制電路220之中,延遲複製單元221可以將振盪訊號ROD進行延遲,並且第一脈衝產生器222可以基於來自延遲複製單元221的輸出產生轉變至低邏輯位準的第二控制訊號FCS。在振盪訊號ROD從高邏輯位準轉變至低邏輯位準之後,第二控制訊號FCS可以被延遲與延遲複製單元221的延遲量TDR相對應的期間和與第一脈衝產生器222的延遲量α相對應的期間,以被賦能至低邏輯位準。基於第二控制訊號FCS,振盪驅動器230可以控制振盪訊號ROD從低邏輯位準轉變至高邏輯位準。因此,振盪訊號ROD的高位準脈衝部分可以對應於第一時脈延遲電路211的延遲量TD1,並且振盪訊號ROD的低位準脈衝部分可以對應於延遲複製單元221的延遲量TDR和第一脈衝產生器222的延遲量α之總和TDR+α。如圖1所示,當將來自第一時脈延遲電路111和第二時脈延遲電路112的輸出訊號直接作為第一控制訊號RCS而提供時,對延遲複製單元121的延遲量TDR的設置可能存在限制。當延遲複製單元121的延遲量TDR小於第一時脈延遲電路111或第二時脈延遲電路112的延遲量時,可能出現第二控制訊號FCS在第一控制訊號RCS為失能之前被賦能的情況。當第一控制訊號RCS和第二控制訊號FCS的賦能部分彼此重疊時,振盪驅動器130可能難以正常地驅動振盪訊號ROD。然而,第一定時控制電路250(參見圖5)可以產生具有與第二控制訊號FCS相同的脈衝形式的振盪訊號ROD,因此可以基於設置的限制而去除或減少延遲複製單元221的延遲量TDR。FIG. 7 is a timing diagram illustrating the operation of the oscillation signal generating circuit 200 shown in FIG. 6 according to one embodiment. The operation of the oscillation signal generating circuit 200 will be described below with reference to FIGS. 6 and 7 . When the enable signal OSCEN is enabled, the selection signal SEL may have a first logic level, and the oscillation signal generation circuit 200 may generate the oscillation signal ROD through the first clock delay circuit 211 . The first clock delay circuit 211 may delay the oscillation signal ROD to generate the first output clock signal CLKO1. The selection circuit 240 may provide the first output clock signal CLKO1 as the output signal 241 to the first timing control circuit 250 . The first timing control circuit 250 may generate a third signal that is enabled to a high logic level after a period corresponding to the delay amount TD1 of the first clock delay circuit 211 after the oscillation signal ROD transitions from a low logic level to a high logic level. A control signal RCS. The first control signal RCS can be generated in the form of pulses through the second pulse generator 251 . Based on the first control signal RCS, the oscillation driver 230 can control the oscillation signal ROD to change from a high logic level to a low logic level. In the second timing control circuit 220 , the delay replica unit 221 may delay the oscillation signal ROD, and the first pulse generator 222 may generate a second control signal that transitions to a low logic level based on the output from the delay replica unit 221 FCS. After the oscillation signal ROD transitions from a high logic level to a low logic level, the second control signal FCS may be delayed by a period corresponding to the delay amount TDR of the delay replica unit 221 and the delay amount α of the first pulse generator 222 corresponding period to be enabled to a low logic level. Based on the second control signal FCS, the oscillation driver 230 can control the oscillation signal ROD to change from a low logic level to a high logic level. Therefore, the high-level pulse part of the oscillation signal ROD may correspond to the delay amount TD1 of the first clock delay circuit 211 , and the low-level pulse part of the oscillation signal ROD may correspond to the delay amount TDR of the delay replica unit 221 and the first pulse generation The sum of the delay amounts α of the device 222 is TDR+α. As shown in FIG. 1 , when the output signals from the first clock delay circuit 111 and the second clock delay circuit 112 are directly provided as the first control signal RCS, it is possible to set the delay amount TDR of the delay replica unit 121 There are limitations. When the delay amount TDR of the delay replica unit 121 is smaller than the delay amount of the first clock delay circuit 111 or the second clock delay circuit 112, the second control signal FCS may be enabled before the first control signal RCS is disabled. situation. When the enabling portions of the first control signal RCS and the second control signal FCS overlap each other, it may be difficult for the oscillation driver 130 to drive the oscillation signal ROD normally. However, the first timing control circuit 250 (see FIG. 5 ) may generate the oscillation signal ROD having the same pulse form as the second control signal FCS, so the delay amount TDR of the delay replica unit 221 may be removed or reduced based on the set limit.

圖8是說明根據一個實施例的振盪訊號產生電路300的配置的圖。參考圖8,振盪訊號產生電路300可以包括第一時脈延遲電路311、設置脈衝產生器320、重置脈衝產生器330和振盪驅動器340。第一時脈延遲電路311可以是與圖1所示的第一時脈延遲電路111基本相同的元件,因此將省略對第一時脈延遲電路311的描述。設置脈衝產生器320可以接收來自第一時脈延遲電路311的輸出訊號,並且可以基於來自第一時脈延遲電路311的輸出訊號產生設置脈衝訊號SET。設置脈衝產生器320可以基於來自第一時脈延遲電路311的輸出訊號產生與振盪訊號ROD的上升邊緣和下降邊緣之一同步的設置脈衝訊號SET。例如,設置脈衝產生器320可以接收來自第一時脈延遲電路311的輸出訊號,以基於振盪訊號ROD從第一邏輯位準轉變至第二邏輯位準的邊緣產生設置脈衝訊號SET。設置脈衝產生器320可以在產生振盪訊號ROD的邊緣之後經過與第一時脈延遲電路311的延遲量相對應的期間時產生設置脈衝訊號SET。重置脈衝產生器330可以接收來自設置脈衝產生器320的設置脈衝訊號SET。重置脈衝產生器330可以基於設置脈衝訊號SET產生重置脈衝訊號RST。重置脈衝產生器330可以在設置脈衝訊號SET為失能時賦能重置脈衝訊號RST。FIG. 8 is a diagram illustrating the configuration of the oscillation signal generation circuit 300 according to one embodiment. Referring to FIG. 8 , the oscillation signal generation circuit 300 may include a first clock delay circuit 311 , a set pulse generator 320 , a reset pulse generator 330 and an oscillation driver 340 . The first clock delay circuit 311 may be substantially the same element as the first clock delay circuit 111 shown in FIG. 1 , and therefore the description of the first clock delay circuit 311 will be omitted. The setting pulse generator 320 may receive the output signal from the first clock delay circuit 311 and may generate the setting pulse signal SET based on the output signal from the first clock delay circuit 311 . The set pulse generator 320 may generate the set pulse signal SET synchronized with one of the rising edge and the falling edge of the oscillation signal ROD based on the output signal from the first clock delay circuit 311. For example, the setting pulse generator 320 may receive the output signal from the first clock delay circuit 311 to generate the setting pulse signal SET based on the edge of the oscillation signal ROD transitioning from the first logic level to the second logic level. The setting pulse generator 320 may generate the setting pulse signal SET when a period corresponding to the delay amount of the first clock delay circuit 311 elapses after generating the edge of the oscillation signal ROD. The reset pulse generator 330 may receive the set pulse signal SET from the set pulse generator 320. The reset pulse generator 330 may generate the reset pulse signal RST based on the set pulse signal SET. The reset pulse generator 330 can enable the reset pulse signal RST when the setting pulse signal SET is disabled.

振盪驅動器340可以接收設置脈衝訊號SET和重置脈衝訊號RST,並且可以基於設置脈衝訊號SET和重置脈衝訊號RST產生振盪訊號ROD。振盪驅動器340可以基於設置脈衝訊號SET將振盪訊號ROD驅動至第一邏輯位準,並且可以基於重置脈衝訊號RST將振盪訊號ROD驅動至第二邏輯位準。振盪驅動器340可以在設置脈衝訊號SET被賦能時控制振盪訊號ROD從第二邏輯位準轉變至第一邏輯位準,以及在重置脈衝訊號RST被賦能時控制振盪訊號ROD從第一邏輯位準轉變至第二邏輯位準。振盪驅動器340可以接收第一電源電壓VH和第二電源電壓VL,並且可以基於第一電源電壓VH和第二電源電壓VL產生振盪訊號ROD。振盪驅動器340可以基於設置脈衝訊號SET將振盪訊號ROD驅動至第二電源電壓VL的電壓位準,並且可以基於重置脈衝訊號RST將振盪訊號ROD驅動至第一電源電壓VH的電壓位準。振盪驅動器340還可以接收賦能訊號OSCEN。當賦能訊號OSCEN被賦能時,振盪驅動器340可以被激活,以基於設置脈衝訊號SET和重置脈衝訊號RST產生振盪訊號ROD。當賦能訊號OSCEN為失能時,振盪驅動器340可以被去激活,以將振盪訊號ROD固定至預定邏輯位準而與設置脈衝訊號SET和重置脈衝訊號RST無關。除了振盪驅動器340接收設置脈衝訊號SET而不是第一控制訊號RCS以及接收重置脈衝訊號RST而不是第二控制訊號FCS以外,振盪驅動器340可以具有與圖3所示的振盪驅動器130基本相同的配置。The oscillation driver 340 may receive the set pulse signal SET and the reset pulse signal RST, and may generate the oscillation signal ROD based on the set pulse signal SET and the reset pulse signal RST. The oscillation driver 340 may drive the oscillation signal ROD to a first logic level based on the set pulse signal SET, and may drive the oscillation signal ROD to a second logic level based on the reset pulse signal RST. The oscillation driver 340 can control the oscillation signal ROD to change from the second logic level to the first logic level when the set pulse signal SET is enabled, and control the oscillation signal ROD to change from the first logic level to the first logic level when the reset pulse signal RST is enabled. level transition to the second logic level. The oscillation driver 340 may receive the first power supply voltage VH and the second power supply voltage VL, and may generate the oscillation signal ROD based on the first power supply voltage VH and the second power voltage VL. The oscillation driver 340 may drive the oscillation signal ROD to the voltage level of the second power supply voltage VL based on the set pulse signal SET, and may drive the oscillation signal ROD to the voltage level of the first power supply voltage VH based on the reset pulse signal RST. The oscillation driver 340 can also receive the enable signal OSCEN. When the enable signal OSCEN is enabled, the oscillation driver 340 may be activated to generate the oscillation signal ROD based on the set pulse signal SET and the reset pulse signal RST. When the enable signal OSCEN is disabled, the oscillation driver 340 can be deactivated to fix the oscillation signal ROD to a predetermined logic level regardless of the set pulse signal SET and the reset pulse signal RST. The oscillation driver 340 may have substantially the same configuration as the oscillation driver 130 shown in FIG. 3 except that the oscillation driver 340 receives the set pulse signal SET instead of the first control signal RCS and the reset pulse signal RST instead of the second control signal FCS. .

振盪訊號產生電路300還可以包括第二時脈延遲電路312和選擇電路350。第二時脈延遲電路312和選擇電路350可以分別是與圖1所示的第二時脈延遲電路112和選擇電路140基本相同的元件,因此將省略對相同元件的描述。當振盪訊號產生電路300包括選擇電路350時,設置脈衝產生器320可以接收來自選擇電路350的輸出訊號351,並且可以基於來自選擇電路350的輸出訊號351產生設置脈衝訊號SET。根據振盪訊號產生電路300,用於產生設置脈衝訊號SET的定時可以取決於第一時脈延遲電路311和第二時脈延遲電路312的延遲量,而用於賦能重置脈衝訊號RST的定時可以與用於失能設置脈衝訊號SET的定時一致。因此,振盪訊號產生電路300可以產生振盪訊號ROD,其中僅包括由於第一時脈延遲電路311和第二時脈延遲電路312的上升邊緣之間的定時偏差,其中不包括由於第一時脈延遲電路311和第二時脈延遲電路312的下降邊緣之間的定時偏差。The oscillation signal generating circuit 300 may also include a second clock delay circuit 312 and a selection circuit 350. The second clock delay circuit 312 and the selection circuit 350 may be substantially the same elements as the second clock delay circuit 112 and the selection circuit 140 shown in FIG. 1 , respectively, and therefore descriptions of the same elements will be omitted. When the oscillation signal generation circuit 300 includes the selection circuit 350 , the setting pulse generator 320 may receive the output signal 351 from the selection circuit 350 , and may generate the setting pulse signal SET based on the output signal 351 from the selection circuit 350 . According to the oscillation signal generation circuit 300, the timing for generating the set pulse signal SET may depend on the delay amount of the first clock delay circuit 311 and the second clock delay circuit 312, and the timing for enabling the reset pulse signal RST The timing for the disabling setting pulse signal SET may be consistent. Therefore, the oscillation signal generation circuit 300 can generate the oscillation signal ROD, which only includes the timing deviation between the rising edges of the first clock delay circuit 311 and the second clock delay circuit 312, and does not include the timing deviation due to the first clock delay. Timing offset between the falling edges of circuit 311 and second clock delay circuit 312.

圖9是說明圖8所示的設置脈衝產生器320的圖。參考圖9,設置脈衝產生器320可以包括第一反相器321、延遲器322、第二反相器323和反或閘324。第一反相器321可以接收來自選擇電路350的輸出訊號351以對來自選擇電路350的輸出訊號351進行反相和驅動。延遲器322可以接收來自第一反相器321的輸出以將來自第一反相器321的輸出進行延遲。第二反相器323可以接收來自延遲器322的輸出以對來自延遲器322的輸出進行反相和驅動。反或閘324可以接收來自第一反相器321的輸出和來自第二反相器323的輸出以輸出設置脈衝訊號SET。當來自選擇電路350的輸出訊號351從高邏輯位準轉變至低邏輯位準時,設置脈衝產生器320可以產生具有與延遲器322的延遲量相對應的脈衝寬度的高邏輯位準的脈衝訊號作為設置脈衝訊號SET。FIG. 9 is a diagram illustrating the installation pulse generator 320 shown in FIG. 8 . Referring to FIG. 9 , the set pulse generator 320 may include a first inverter 321 , a delay 322 , a second inverter 323 and an inverse-OR gate 324 . The first inverter 321 may receive the output signal 351 from the selection circuit 350 to invert and drive the output signal 351 from the selection circuit 350 . The delayer 322 may receive the output from the first inverter 321 to delay the output from the first inverter 321 . The second inverter 323 may receive the output from the delayer 322 to invert and drive the output from the delayer 322 . The NOR gate 324 may receive the output from the first inverter 321 and the output from the second inverter 323 to output the setting pulse signal SET. When the output signal 351 from the selection circuit 350 transitions from a high logic level to a low logic level, the pulse generator 320 is set to generate a high logic level pulse signal with a pulse width corresponding to the delay amount of the delayer 322 as Set the pulse signal SET.

圖10是說明圖8所示的重置脈衝產生器330的圖。參考圖10,重置脈衝產生器330可以包括第一反相器331、延遲器332、第二反相器333和反及閘334。第一反相器331可以接收設置脈衝訊號SET以對設置脈衝訊號SET進行反相和驅動。延遲器332可以接收來自第一反相器331的輸出以將來自第一反相器331的輸出進行延遲。第二反相器333可以接收來自延遲器332的輸出以對來自延遲器332的輸出進行反相和驅動。反及閘334可以接收來自第一反相器331的輸出和來自第二反相器333的輸出以輸出重置脈衝訊號RST。當設置脈衝訊號SET從高邏輯位準轉變至低邏輯位準時,重置脈衝產生器330可以產生具有與延遲器332的延遲量相對應的脈衝寬度的低邏輯位準的脈衝訊號作為重置脈衝訊號RST。FIG. 10 is a diagram illustrating the reset pulse generator 330 shown in FIG. 8 . Referring to FIG. 10 , the reset pulse generator 330 may include a first inverter 331 , a delay 332 , a second inverter 333 and an NAND gate 334 . The first inverter 331 may receive the setting pulse signal SET to invert and drive the setting pulse signal SET. The delayer 332 may receive the output from the first inverter 331 to delay the output from the first inverter 331 . The second inverter 333 may receive the output from the delayer 332 to invert and drive the output from the delayer 332 . The NAND gate 334 may receive the output from the first inverter 331 and the output from the second inverter 333 to output the reset pulse signal RST. When the set pulse signal SET transitions from a high logic level to a low logic level, the reset pulse generator 330 may generate a low logic level pulse signal having a pulse width corresponding to the delay amount of the delay 332 as a reset pulse. Signal RST.

圖11是說明根據一個實施例的振盪訊號產生電路300的操作的時序圖。參考圖8至圖11,當賦能訊號OSCEN被賦能時,選擇訊號SEL可以具有第一邏輯位準,並且振盪訊號產生電路300可以產生通過第一時脈延遲電路311的振盪訊號ROD。第一時脈延遲電路311可以將振盪訊號ROD進行延遲以產生第一輸出時脈訊號CLKO1。選擇電路350可以向設置脈衝產生器320提供第一輸出時脈訊號CLKO1。設置脈衝產生器320可以在振盪訊號ROD從低邏輯位準轉變至高邏輯位準之後經過與第一時脈延遲電路311的延遲量TD1相對應的期間時產生被賦能至高邏輯位準的設置脈衝訊號SET。基於設置脈衝訊號SET,振盪驅動器340可以控制振盪訊號ROD從高邏輯位準轉變至低邏輯位準。重置脈衝產生器330可以在設置脈衝訊號SET為失能時產生被賦能至低邏輯位準的重置脈衝訊號RST。基於重置脈衝訊號RST,振盪驅動器340可以控制振盪訊號ROD從低邏輯位準轉變至高邏輯位準。因此,振盪訊號ROD的高位準脈衝部分可以對應於第一時脈延遲電路311的延遲量TD1,以及振盪訊號ROD的低位準脈衝部分可以對應於設置脈衝訊號SET的脈衝寬度。FIG. 11 is a timing diagram illustrating the operation of the oscillation signal generation circuit 300 according to one embodiment. Referring to FIGS. 8 to 11 , when the enable signal OSCEN is enabled, the selection signal SEL may have a first logic level, and the oscillation signal generation circuit 300 may generate the oscillation signal ROD through the first clock delay circuit 311 . The first clock delay circuit 311 may delay the oscillation signal ROD to generate the first output clock signal CLKO1. The selection circuit 350 may provide the first output clock signal CLKO1 to the setting pulse generator 320 . The setting pulse generator 320 may generate a setting pulse enabled to a high logic level when a period corresponding to the delay amount TD1 of the first clock delay circuit 311 passes after the oscillation signal ROD transitions from a low logic level to a high logic level. Signal SET. Based on the setting pulse signal SET, the oscillation driver 340 can control the oscillation signal ROD to change from a high logic level to a low logic level. The reset pulse generator 330 may generate the reset pulse signal RST that is enabled to a low logic level when the setting pulse signal SET is disabled. Based on the reset pulse signal RST, the oscillation driver 340 can control the oscillation signal ROD to change from a low logic level to a high logic level. Therefore, the high-level pulse part of the oscillation signal ROD may correspond to the delay amount TD1 of the first clock delay circuit 311 , and the low-level pulse part of the oscillation signal ROD may correspond to the pulse width of the setting pulse signal SET.

圖12是說明根據一個實施例的半導體裝置400的配置的圖。參考圖12,半導體裝置400可以包括至少兩個時脈延遲電路、振盪控制電路430和延遲訊息產生電路440。圖12說明四個時脈延遲電路,但是時脈延遲電路的數量不限於此。半導體裝置400可以包括第一時脈延遲電路至第四時脈延遲電路411、412、413和414。第一時脈延遲電路411可以接收第一相位時脈訊號ICLK和振盪訊號ROD以產生第一輸出時脈訊號ICLKO。第一時脈延遲電路411可以在正常模式中將第一相位時脈訊號ICLK進行延遲以產生第一輸出時脈訊號ICLKO,並且可以在補償模式中將振盪訊號ROD進行延遲以產生第一輸出時脈訊號ICLKO。第一時脈延遲電路411可以具有固定延遲量。在一個實施例中,第一時脈延遲電路411可以具有可變的延遲量。第一時脈延遲電路411還可以接收賦能訊號OSCEN。當賦能訊號OSCEN為失能時,第一時脈延遲電路411可以將第一相位時脈訊號ICLK進行延遲以產生第一輸出時脈訊號ICLKO。當賦能訊號OSCEN被賦能時,第一時脈延遲電路411可以將振盪訊號ROD進行延遲以產生第一輸出時脈訊號ICLKO。FIG. 12 is a diagram illustrating the configuration of a semiconductor device 400 according to one embodiment. Referring to FIG. 12 , the semiconductor device 400 may include at least two clock delay circuits, an oscillation control circuit 430 and a delay message generation circuit 440 . FIG. 12 illustrates four clock delay circuits, but the number of clock delay circuits is not limited thereto. The semiconductor device 400 may include first to fourth clock delay circuits 411, 412, 413, and 414. The first clock delay circuit 411 may receive the first phase clock signal ICLK and the oscillation signal ROD to generate the first output clock signal ICLKO. The first clock delay circuit 411 may delay the first phase clock signal ICLK to generate the first output clock signal ICLKO in the normal mode, and may delay the oscillation signal ROD in the compensation mode to generate the first output clock signal. Pulse signal ICLKO. The first clock delay circuit 411 may have a fixed delay amount. In one embodiment, the first clock delay circuit 411 may have a variable delay amount. The first clock delay circuit 411 can also receive the enable signal OSCEN. When the enable signal OSCEN is disabled, the first clock delay circuit 411 may delay the first phase clock signal ICLK to generate the first output clock signal ICLKO. When the enable signal OSCEN is enabled, the first clock delay circuit 411 may delay the oscillation signal ROD to generate the first output clock signal ICLKO.

第二時脈延遲電路412可以接收第二相位時脈訊號QCLK和振盪訊號ROD以產生第二輸出時脈訊號QCLKO。第二時脈延遲電路412可以在正常模式中將第二相位時脈訊號QCLK進行延遲以產生第二輸出時脈訊號QCLKO,並且可以在補償模式中將振盪訊號ROD進行延遲以產生第二輸出時脈訊號QCLKO。第二時脈延遲電路412可以接收第一延遲控制訊號DQC。第二時脈延遲電路412的延遲量可以基於第一延遲控制訊號DQC而改變。第二時脈延遲電路412還可以接收賦能訊號OSCEN。當賦能訊號OSCEN為失能時,第二時脈延遲電路412可以將第二相位時脈訊號QCLK進行延遲以產生第二輸出時脈訊號QCLKO。當賦能訊號OSCEN被賦能時,第二時脈延遲電路412可以將振盪訊號ROD進行延遲以產生第二輸出時脈訊號QCLKO。The second clock delay circuit 412 may receive the second phase clock signal QCLK and the oscillation signal ROD to generate the second output clock signal QCLKO. The second clock delay circuit 412 may delay the second phase clock signal QCLK in the normal mode to generate the second output clock signal QCLKO, and may delay the oscillation signal ROD in the compensation mode to generate the second output clock signal. Pulse signal QCLKO. The second clock delay circuit 412 may receive the first delay control signal DQC. The delay amount of the second clock delay circuit 412 may be changed based on the first delay control signal DQC. The second clock delay circuit 412 can also receive the enable signal OSCEN. When the enable signal OSCEN is disabled, the second clock delay circuit 412 may delay the second phase clock signal QCLK to generate the second output clock signal QCLKO. When the enable signal OSCEN is enabled, the second clock delay circuit 412 may delay the oscillation signal ROD to generate the second output clock signal QCLKO.

第三時脈延遲電路413可以接收第三相位時脈訊號IBCLK和振盪訊號ROD以產生第三輸出時脈訊號IBCLKO。第三時脈延遲電路413可以在正常模式中將第三相位時脈訊號IBCLK進行延遲以產生第三輸出時脈訊號IBCLKO,並且可以在補償模式中將振盪訊號ROD進行延遲以產生第三輸出時脈訊號IBCLKO。第三時脈延遲電路413可以接收第二延遲控制訊號DIBC。第三時脈延遲電路413的延遲量可以基於第二延遲控制訊號DIBC而改變。第三時脈延遲電路413還可以接收賦能訊號OSCEN。當賦能訊號OSCEN為失能時,第三時脈延遲電路413可以將第三相位時脈訊號IBCLK進行延遲以產生第三輸出時脈訊號IBCLKO。當賦能訊號OSCEN被賦能時,第三時脈延遲電路413可以將振盪訊號ROD進行延遲以產生第三輸出時脈訊號IBCLKO。The third clock delay circuit 413 may receive the third phase clock signal IBCLK and the oscillation signal ROD to generate the third output clock signal IBCLKO. The third clock delay circuit 413 may delay the third phase clock signal IBCLK to generate the third output clock signal IBCLKO in the normal mode, and may delay the oscillation signal ROD in the compensation mode to generate the third output clock signal. Pulse signal IBCLKO. The third clock delay circuit 413 may receive the second delay control signal DIBC. The delay amount of the third clock delay circuit 413 may be changed based on the second delay control signal DIBC. The third clock delay circuit 413 can also receive the enable signal OSCEN. When the enable signal OSCEN is disabled, the third clock delay circuit 413 may delay the third phase clock signal IBCLK to generate the third output clock signal IBCLKO. When the enable signal OSCEN is enabled, the third clock delay circuit 413 may delay the oscillation signal ROD to generate the third output clock signal IBCLKO.

第四時脈延遲電路414可以接收第四相位時脈訊號QBCLK和振盪訊號ROD以產生第四輸出時脈訊號QBCLKO。第四時脈延遲電路414可以在正常模式中將第四相位時脈訊號QBCLK進行延遲以產生第四輸出時脈訊號QBCLKO,並且可以在補償模式中將振盪訊號ROD進行延遲以產生第四輸出時脈訊號QBCLKO。第四時脈延遲電路414可以接收第三延遲控制訊號DQBC。第四時脈延遲電路414的延遲量可以基於第三延遲控制訊號DQBC而改變。第四時脈延遲電路414還可以接收賦能訊號OSCEN。當賦能訊號OSCEN為失能時,第四時脈延遲電路414可以將第四相位時脈訊號QBCLK進行延遲以產生第四輸出時脈訊號QBCLKO。當賦能訊號OSCEN被賦能時,第四時脈延遲電路414可以將振盪訊號ROD進行延遲以產生第四輸出時脈訊號QBCLKO。The fourth clock delay circuit 414 may receive the fourth phase clock signal QBCLK and the oscillation signal ROD to generate the fourth output clock signal QBCLKO. The fourth clock delay circuit 414 may delay the fourth phase clock signal QBCLK in the normal mode to generate the fourth output clock signal QBCLKO, and may delay the oscillation signal ROD in the compensation mode to generate the fourth output clock signal. Pulse signal QBCLKO. The fourth clock delay circuit 414 may receive the third delay control signal DQBC. The delay amount of the fourth clock delay circuit 414 may be changed based on the third delay control signal DQBC. The fourth clock delay circuit 414 can also receive the enable signal OSCEN. When the enable signal OSCEN is disabled, the fourth clock delay circuit 414 may delay the fourth phase clock signal QBCLK to generate the fourth output clock signal QBCLKO. When the enable signal OSCEN is enabled, the fourth clock delay circuit 414 may delay the oscillation signal ROD to generate the fourth output clock signal QBCLKO.

第一相位時脈訊號至第四相位時脈訊號ICLK、QCLK、IBCLK和QBCLK彼此之間可以依序地具有預定相位差。例如,第一相位時脈訊號ICLK相對於第二相位時脈訊號QCLK可以具有90°的超前相位,以及第二相位時脈訊號QCLK相對於第三相位時脈訊號IBCLK可以具有90°的超前相位。第三相位時脈訊號IBCLK相對於第四相位時脈訊號QBCLK可以具有90°的超前相位,以及第四相位時脈訊號QBCLK相對於第一相位時脈訊號ICLK可以具有90°的超前相位。半導體裝置400還可以包括多相時脈訊號產生電路420。基於時脈訊號對CLK和CLKB,多相時脈訊號產生電路420可以產生第一相位時脈訊號至第四相位時脈訊號ICLK、QCLK、IBCLK和QBCLK。多相時脈訊號產生電路420可以包括:任意時脈產生電路,其被配置為透過對時脈訊號對CLK和CLKB的相位進行校正或透過對時脈訊號對CLK和CLKB進行分頻產生具有相位差的多個相位時脈訊號。例如,多相時脈訊號產生電路420可以包括延遲鎖相環電路、鎖相環電路、相位插值電路和分頻電路中的至少一個。The first to fourth phase clock signals ICLK, QCLK, IBCLK and QBCLK may have a predetermined phase difference among each other in sequence. For example, the first phase clock signal ICLK may have a leading phase of 90° relative to the second phase clock signal QCLK, and the second phase clock signal QCLK may have a leading phase of 90° relative to the third phase clock signal IBCLK. . The third phase clock signal IBCLK may have a leading phase of 90° relative to the fourth phase clock signal QBCLK, and the fourth phase clock signal QBCLK may have a leading phase of 90° relative to the first phase clock signal ICLK. The semiconductor device 400 may further include a multi-phase clock signal generating circuit 420 . Based on the pair of clock signals CLK and CLKB, the multi-phase clock signal generating circuit 420 can generate the first to fourth phase clock signals ICLK, QCLK, IBCLK and QBCLK. The multi-phase clock signal generation circuit 420 may include: any clock generation circuit configured to correct the phases of CLK and CLKB by correcting the clock signal or by dividing the clock signal by frequency dividing CLK and CLKB to generate a phase with Different phase clock signals. For example, the multi-phase clock signal generating circuit 420 may include at least one of a delay locked loop circuit, a phase locked loop circuit, a phase interpolation circuit and a frequency dividing circuit.

第一時脈延遲電路至第四時脈延遲電路411、412、413和414可以具有基本相同的配置,並且可以具有理想的相同的延遲量。然而,由於局部製程變化和劣化,第一時脈延遲電路至第四時脈延遲電路411、412、413和414的真實延遲量可以彼此不同。當第一時脈延遲電路至第四時脈延遲電路411、412、413和414的延遲量彼此不同時,難以將從第一相位時脈訊號至第四相位時脈訊號ICLK、QCLK、IBCLK和QBCLK產生的第一輸出時脈訊號至第四輸出時脈訊號ICLKO、QCLKO、IBCLKO和QBCLKO之間的相位差保持在90°,因此將減小與第一輸出時脈訊號至第四輸出時脈訊號ICLKO、QCLKO、IBCLKO和QBCLKO同步的訊號的有效窗口或持續時間。為了補償第一時脈延遲電路至第四時脈延遲電路411、412、413和414之中的延遲量偏差,半導體裝置400可以在補償模式中操作。在補償模式中,半導體裝置400可以監測第一時脈延遲電路至第四時脈延遲電路411、412、413和414的延遲量以改變至少第二時脈延遲電路至第四時脈延遲電路412、413和414的延遲量。例如,第一時脈延遲電路411可以是參考延遲電路,並且第一時脈延遲電路411的延遲量可以是參考延遲量。半導體裝置400可以將第二時脈延遲電路至第四時脈延遲電路412、413和414的延遲量中的每一個與第一時脈延遲電路411的延遲量進行比較,以將第二時脈延遲電路至第四時脈延遲電路412、413和414的每個延遲量設置為與第一時脈延遲電路411的延遲量相同,從而校正第一時脈延遲電路至第四時脈延遲電路411、412、413和414之中的延遲量偏差。為了校正第一時脈延遲電路至第四時脈延遲電路411、412、413和414之中的延遲量偏差,半導體裝置400可以包括振盪控制電路430和延遲訊息產生電路440。The first to fourth clock delay circuits 411, 412, 413, and 414 may have substantially the same configuration, and may ideally have the same delay amount. However, due to local process variations and degradations, the actual delay amounts of the first to fourth clock delay circuits 411, 412, 413, and 414 may differ from each other. When the delay amounts of the first to fourth clock delay circuits 411, 412, 413 and 414 are different from each other, it is difficult to obtain the first to fourth phase clock signals ICLK, QCLK, IBCLK and The phase difference between the first output clock signal to the fourth output clock signal ICLKO, QCLKO, IBCLKO and QBCLKO generated by QBCLK is maintained at 90°, so the phase difference between the first output clock signal to the fourth output clock signal will be reduced. The valid window or duration of the signal synchronized by signals ICLKO, QCLKO, IBCLKO and QBCLKO. In order to compensate for the delay amount deviation among the first to fourth clock delay circuits 411, 412, 413, and 414, the semiconductor device 400 may operate in a compensation mode. In the compensation mode, the semiconductor device 400 may monitor delay amounts of the first to fourth clock delay circuits 411 , 412 , 413 and 414 to change at least the second to fourth clock delay circuits 412 , 413 and 414 delay amount. For example, the first clock delay circuit 411 may be a reference delay circuit, and the delay amount of the first clock delay circuit 411 may be the reference delay amount. The semiconductor device 400 may compare each of the delay amounts of the second to fourth clock delay circuits 412, 413, and 414 with the delay amount of the first clock delay circuit 411 to compare the second to fourth clock delay circuits 412, 413, and 414. Each delay amount of the delay circuit to the fourth clock delay circuit 412, 413 and 414 is set to be the same as the delay amount of the first clock delay circuit 411, thereby correcting the first to fourth clock delay circuit 411 Delay deviation among , 412, 413 and 414. In order to correct the delay amount deviation among the first to fourth clock delay circuits 411, 412, 413, and 414, the semiconductor device 400 may include an oscillation control circuit 430 and a delay message generation circuit 440.

振盪控制電路430可以分別從第一時脈延遲電路至第四時脈延遲電路411、412、413和414接收第一輸出時脈訊號至第四輸出時脈訊號ICLKO、QCLKO、IBCLKO和QBCLKO。振盪控制電路430可以依序地耦接至第一時脈延遲電路至第四時脈延遲電路411、412、413和414,並且可以根據第一時脈延遲電路至第四時脈延遲電路411、412、413和414的延遲量產生振盪訊號ROD。振盪控制電路430可以選擇第一輸出時脈訊號至第四輸出時脈訊號ICLKO、QCLKO、IBCLKO和QBCLKO中的一個,並且可以基於選中的輸出時脈訊號產生振盪訊號ROD。在一個實施例中,基於第一輸出時脈訊號至第四輸出時脈訊號ICLKO、QCLKO、IBCLKO和QBCLKO中的一個,振盪控制電路430可以控制振盪訊號ROD從第二邏輯位準轉變至第一邏輯位準。基於透過將振盪訊號ROD延遲固定延遲量而產生的訊號,振盪控制電路430可以控制振盪訊號ROD從第一邏輯位準轉變至第二邏輯位準。在一個實施例中,振盪控制電路430可以基於第一輸出時脈訊號至第四輸出時脈訊號ICLKO、QCLKO、IBCLKO和QBCLKO中的一個產生設置脈衝訊號SET,以控制振盪訊號ROD從第二邏輯位準轉變至第一邏輯位準。振盪控制電路430可以基於設置脈衝訊號SET產生重置脈衝訊號RST,以控制振盪訊號ROD從第一邏輯位準轉變至第二邏輯位準。振盪控制電路430可以接收賦能訊號OSCEN。振盪控制電路430可以基於賦能訊號OSCEN而被激活。當賦能訊號OSCEN被賦能時,振盪控制電路430可以被耦接至第一時脈延遲電路至第四時脈延遲電路411、412、413和414中的一個以產生振盪訊號ROD。圖1、圖5和圖8中分別示出的振盪訊號產生電路100、振盪訊號產生電路200和振盪訊號產生電路300之中的元件的至少一部分可以被用作振盪控制電路430。當振盪訊號產生電路100(參見圖1)被用作振盪控制電路430時,振盪控制電路430可以包括選擇電路140、定時控制電路120和振盪驅動器130。當振盪訊號產生電路200(參見圖5)被用作振盪控制電路430時,振盪控制電路430可以包括選擇電路240、第一定時控制電路250、第二定時控制電路220和振盪驅動器230。當振盪訊號產生電路300(參見圖8)被用作振盪控制電路430時,振盪控制電路430可以包括選擇電路350、設置脈衝產生器320、重置脈衝產生器330和振盪驅動器340。然而,所提供的用於控制選擇電路140、選擇電路240和選擇電路350的選擇訊號SEL可以被修改為包括用於選擇第一輸出時脈訊號至第四輸出時脈訊號ICLKO、QCLKO、IBCLKO和QBCLKO中的一個的多位元。The oscillation control circuit 430 may receive the first to fourth output clock signals ICLKO, QCLKO, IBCLKO and QBCLKO from the first to fourth clock delay circuits 411, 412, 413 and 414 respectively. The oscillation control circuit 430 may be coupled to the first to fourth clock delay circuits 411, 412, 413, and 414 in sequence, and may be configured according to the first to fourth clock delay circuits 411, 411, 412, and 414. The delay amounts of 412, 413 and 414 generate the oscillation signal ROD. The oscillation control circuit 430 may select one of the first to fourth output clock signals ICLKO, QCLKO, IBCLKO, and QBCLKO, and may generate the oscillation signal ROD based on the selected output clock signal. In one embodiment, based on one of the first to fourth output clock signals ICLKO, QCLKO, IBCLKO and QBCLKO, the oscillation control circuit 430 may control the oscillation signal ROD to transition from the second logic level to the first Logic level. Based on the signal generated by delaying the oscillation signal ROD by a fixed delay amount, the oscillation control circuit 430 can control the oscillation signal ROD to change from the first logic level to the second logic level. In one embodiment, the oscillation control circuit 430 may generate the setting pulse signal SET based on one of the first to fourth output clock signals ICLKO, QCLKO, IBCLKO and QBCLKO to control the oscillation signal ROD from the second logic level transition to the first logic level. The oscillation control circuit 430 may generate the reset pulse signal RST based on the set pulse signal SET to control the oscillation signal ROD to change from the first logic level to the second logic level. The oscillation control circuit 430 can receive the enable signal OSCEN. The oscillation control circuit 430 may be activated based on the enable signal OSCEN. When the enable signal OSCEN is enabled, the oscillation control circuit 430 may be coupled to one of the first to fourth clock delay circuits 411, 412, 413 and 414 to generate the oscillation signal ROD. At least part of the components in the oscillation signal generation circuit 100 , the oscillation signal generation circuit 200 and the oscillation signal generation circuit 300 respectively shown in FIGS. 1 , 5 and 8 may be used as the oscillation control circuit 430 . When the oscillation signal generation circuit 100 (see FIG. 1 ) is used as the oscillation control circuit 430, the oscillation control circuit 430 may include a selection circuit 140, a timing control circuit 120 and an oscillation driver 130. When the oscillation signal generation circuit 200 (see FIG. 5 ) is used as the oscillation control circuit 430 , the oscillation control circuit 430 may include a selection circuit 240 , a first timing control circuit 250 , a second timing control circuit 220 and an oscillation driver 230 . When the oscillation signal generation circuit 300 (see FIG. 8 ) is used as the oscillation control circuit 430 , the oscillation control circuit 430 may include a selection circuit 350 , a set pulse generator 320 , a reset pulse generator 330 and an oscillation driver 340 . However, the selection signal SEL provided for controlling the selection circuit 140, the selection circuit 240 and the selection circuit 350 may be modified to include selection of the first to fourth output clock signals ICLKO, QCLKO, IBCLKO and Multiple bits of one of the QBCLKOs.

延遲訊息產生電路440可以被耦接至振盪控制電路430,並且可以被配置為接收振盪訊號ROD。基於振盪訊號ROD,延遲訊息產生電路440可以產生第一延遲控制訊號DQC、第二延遲控制訊號DIBC和第三延遲控制訊號DQBC。延遲訊息產生電路440可以產生用於第一時脈延遲電路至第四時脈延遲電路411、412、413和414中的每一個的延遲訊息。例如,延遲訊息產生電路440可以被耦接至第一時脈延遲電路411,並且可以被配置為基於從第一輸出時脈訊號ICLKO產生的振盪訊號ROD而產生第一延遲訊息。延遲訊息產生電路440可以被耦接至第二時脈延遲電路412,並且可以被配置為基於從第二輸出時脈訊號QCLKO產生的振盪訊號ROD而產生第二延遲訊息。延遲訊息產生電路440可以被耦接至第三時脈延遲電路413,並且可以被配置為基於從第三輸出時脈訊號IBCLKO產生的振盪訊號ROD而產生第三延遲訊息。延遲訊息產生電路440可以被耦接至第四時脈延遲電路414,並且可以被配置為基於從第四輸出時脈訊號QBCLK產生的振盪訊號ROD而產生第四延遲訊息。延遲訊息產生電路440可以將第一延遲訊息與第二延遲訊息至第四延遲訊息進行比較和操作運算,並且可以根據比較和操作運算的結果分別產生第一延遲控制訊號至第三延遲控制訊號DQC、DIBC和DQBC。延遲訊息產生電路440可以對第二延遲訊息與第一延遲訊息進行比較和操作運算以產生第一延遲控制訊號DQC,並且可以向第二時脈延遲電路412提供第一延遲控制訊號DQC。第一延遲控制訊號DQC可以基於第二延遲訊息與第一延遲訊息之間的差異而產生,並且第二時脈延遲電路412的延遲量可以基於第一延遲控制訊號DQC而變為與第一時脈延遲電路411的延遲量基本相同。延遲訊息產生電路440可以對第三延遲訊息與第一延遲訊息進行比較和操作運算以產生第二延遲控制訊號DIBC,並且可以向第三時脈延遲電路413提供第二延遲控制訊號DIBC。第二延遲控制訊號DIBC可以基於第三延遲訊息與第一延遲訊息之間的差異而產生,並且第三時脈延遲電路413的延遲量可以基於第二延遲控制訊號DIBC而變為與第一時脈延遲電路411的延遲量基本相同。延遲訊息產生電路440可以對第四延遲訊息與第一延遲訊息進行比較和操作運算以產生第三延遲控制訊號DQBC,並且可以向第四時脈延遲電路414提供第三延遲控制訊號DQBC。第三延遲控制訊號DQBC可以基於第四延遲訊息與第一延遲訊息之間的差異而產生,並且第四時脈延遲電路414的延遲量可以基於第三延遲控制訊號DQBC而變為與第一時脈延遲電路411的延遲量基本相同。第一延遲控制訊號至第三延遲控制訊號DQC、DIBC和DQBC可以是每個具有多位元的數位訊號,並且可以是具有多種電壓位準的類比訊號。The delay message generation circuit 440 may be coupled to the oscillation control circuit 430 and may be configured to receive the oscillation signal ROD. Based on the oscillation signal ROD, the delay message generation circuit 440 can generate the first delay control signal DQC, the second delay control signal DIBC and the third delay control signal DQBC. The delay message generation circuit 440 may generate a delay message for each of the first to fourth clock delay circuits 411, 412, 413 and 414. For example, the delay message generation circuit 440 may be coupled to the first clock delay circuit 411 and may be configured to generate the first delay message based on the oscillation signal ROD generated from the first output clock signal ICLKO. The delay message generation circuit 440 may be coupled to the second clock delay circuit 412 and may be configured to generate the second delay message based on the oscillation signal ROD generated from the second output clock signal QCLKO. The delay message generation circuit 440 may be coupled to the third clock delay circuit 413, and may be configured to generate the third delay message based on the oscillation signal ROD generated from the third output clock signal IBCLKO. The delay message generation circuit 440 may be coupled to the fourth clock delay circuit 414 and may be configured to generate the fourth delay message based on the oscillation signal ROD generated from the fourth output clock signal QBCLK. The delay message generation circuit 440 can compare and operate the first delay message and the second delay message to the fourth delay message, and can generate the first delay control signal to the third delay control signal DQC respectively according to the results of the comparison and operation operation. , DIBC and DQBC. The delay message generation circuit 440 can compare and operate the second delay message and the first delay message to generate the first delay control signal DQC, and can provide the first delay control signal DQC to the second clock delay circuit 412 . The first delay control signal DQC may be generated based on the difference between the second delay information and the first delay information, and the delay amount of the second clock delay circuit 412 may become the same as the first clock based on the first delay control signal DQC. The delay amount of the pulse delay circuit 411 is basically the same. The delay message generation circuit 440 can compare and operate the third delay message and the first delay message to generate the second delay control signal DIBC, and can provide the second delay control signal DIBC to the third clock delay circuit 413 . The second delay control signal DIBC may be generated based on the difference between the third delay information and the first delay information, and the delay amount of the third clock delay circuit 413 may become the same as the first clock based on the second delay control signal DIBC. The delay amount of the pulse delay circuit 411 is basically the same. The delay message generation circuit 440 may compare and operate the fourth delay message and the first delay message to generate a third delay control signal DQBC, and may provide the third delay control signal DQBC to the fourth clock delay circuit 414 . The third delay control signal DQBC may be generated based on the difference between the fourth delay message and the first delay message, and the delay amount of the fourth clock delay circuit 414 may become the same as the first clock based on the third delay control signal DQBC. The delay amount of the pulse delay circuit 411 is basically the same. The first to third delay control signals DQC, DIBC and DQBC may be digital signals each having multiple bits, and may be analog signals having multiple voltage levels.

圖13是說明圖12所示的第一時脈延遲電路至第四時脈延遲電路411、412、413和414中的每一個與振盪控制電路430之間的連接關係的圖。參考圖13,第一時脈延遲電路411可以包括第一開關411-1和固定延遲線411-2。基於賦能訊號OSCEN,第一開關411-1可以向固定延遲線411-2提供第一相位時脈訊號ICLK和振盪訊號ROD之一。第一開關411-1可以在賦能訊號OSCEN為失能時向固定延遲線411-2提供第一相位時脈訊號ICLK,並且可以在賦能訊號OSCEN被賦能時向固定延遲線411-2提供振盪訊號ROD。固定延遲線411-2可以具有固定延遲量。固定延遲線411-2可以將來自第一開關411-1的輸出訊號進行延遲以輸出第一輸出時脈訊號ICLKO。在一個實施例中,固定延遲線411-2可以被可變延遲線替換。FIG. 13 is a diagram illustrating the connection relationship between each of the first to fourth clock delay circuits 411, 412, 413, and 414 shown in FIG. 12 and the oscillation control circuit 430. Referring to FIG. 13, the first clock delay circuit 411 may include a first switch 411-1 and a fixed delay line 411-2. Based on the enable signal OSCEN, the first switch 411-1 can provide one of the first phase clock signal ICLK and the oscillation signal ROD to the fixed delay line 411-2. The first switch 411-1 can provide the first phase clock signal ICLK to the fixed delay line 411-2 when the enable signal OSCEN is disabled, and can provide the first phase clock signal ICLK to the fixed delay line 411-2 when the enable signal OSCEN is enabled. Provide oscillation signal ROD. The fixed delay line 411-2 may have a fixed delay amount. The fixed delay line 411-2 can delay the output signal from the first switch 411-1 to output the first output clock signal ICLKO. In one embodiment, fixed delay line 411-2 may be replaced by a variable delay line.

第二時脈延遲電路412可以包括第二開關412-1和可變延遲線412-2。基於賦能訊號OSCEN,第二開關412-1可以向可變延遲線412-2提供第二相位時脈訊號QCLK和振盪訊號ROD之一。第二開關412-1可以在賦能訊號OSCEN為失能時向可變延遲線412-2提供第二相位時脈訊號QCLK,並且可以在賦能訊號OSCEN被賦能時向可變延遲線412-2提供振盪訊號ROD。可變延遲線412-2可以接收第一延遲控制訊號DQC。可變延遲線412-2的延遲量可以基於第一延遲控制訊號DQC而變化。可變延遲線412-2可以對來自第二開關412-1的輸出訊號進行可變的延遲以輸出第二輸出時脈訊號QCLKO。The second clock delay circuit 412 may include a second switch 412-1 and a variable delay line 412-2. Based on the enable signal OSCEN, the second switch 412-1 can provide one of the second phase clock signal QCLK and the oscillation signal ROD to the variable delay line 412-2. The second switch 412-1 can provide the second phase clock signal QCLK to the variable delay line 412-2 when the enable signal OSCEN is disabled, and can provide the second phase clock signal QCLK to the variable delay line 412 when the enable signal OSCEN is enabled. -2 provides the oscillation signal ROD. The variable delay line 412-2 can receive the first delay control signal DQC. The delay amount of the variable delay line 412-2 may vary based on the first delay control signal DQC. The variable delay line 412-2 can variably delay the output signal from the second switch 412-1 to output the second output clock signal QCLKO.

第三時脈延遲電路413可以包括第三開關413-1和可變延遲線413-2。基於賦能訊號OSCEN,第三開關413-1可以向可變延遲線413-2提供第三相位時脈訊號IBCLK和振盪訊號ROD之一。第三開關413-1可以在賦能訊號OSCEN為失能時向可變延遲線413-2提供第三相位時脈訊號IBCLK,並且可以在賦能訊號OSCEN被賦能時向可變延遲線413-2提供振盪訊號ROD。可變延遲線413-2可以接收第二延遲控制訊號DIBC。可變延遲線413-2的延遲量可以基於第二延遲控制訊號DIBC而變化。可變延遲線413-2可以對來自第三開關413-1的輸出訊號進行可變的延遲以輸出第三輸出時脈訊號IBCLKO。The third clock delay circuit 413 may include a third switch 413-1 and a variable delay line 413-2. Based on the enable signal OSCEN, the third switch 413-1 can provide one of the third phase clock signal IBCLK and the oscillation signal ROD to the variable delay line 413-2. The third switch 413-1 can provide the third phase clock signal IBCLK to the variable delay line 413-2 when the enable signal OSCEN is disabled, and can provide the third phase clock signal IBCLK to the variable delay line 413 when the enable signal OSCEN is enabled. -2 provides the oscillation signal ROD. The variable delay line 413-2 can receive the second delay control signal DIBC. The delay amount of the variable delay line 413-2 may vary based on the second delay control signal DIBC. The variable delay line 413-2 can variably delay the output signal from the third switch 413-1 to output the third output clock signal IBCLKO.

第四時脈延遲電路414可以包括第四開關414-1和可變延遲線414-2。基於賦能訊號OSCEN,第四開關414-1可以向可變延遲線414-2提供第四相位時脈訊號QBCLK和振盪訊號ROD之一。第四開關414-1可以在賦能訊號OSCEN為失能時向可變延遲線414-2提供第四相位時脈訊號QBCLK,並且可以在賦能訊號OSCEN被賦能時向可變延遲線414-2提供振盪訊號ROD。可變延遲線414-2可以接收第三延遲控制訊號DQBC。可變延遲線414-2的延遲量可以基於第三延遲控制訊號DQBC而變化。可變延遲線414-2可以對來自第四開關414-1的輸出訊號進行可變的延遲以輸出第四輸出時脈訊號QBCLKO。The fourth clock delay circuit 414 may include a fourth switch 414-1 and a variable delay line 414-2. Based on the enable signal OSCEN, the fourth switch 414-1 can provide one of the fourth phase clock signal QBCLK and the oscillation signal ROD to the variable delay line 414-2. The fourth switch 414-1 can provide the fourth phase clock signal QBCLK to the variable delay line 414-2 when the enable signal OSCEN is disabled, and can provide the fourth phase clock signal QBCLK to the variable delay line 414 when the enable signal OSCEN is enabled. -2 provides the oscillation signal ROD. The variable delay line 414-2 can receive the third delay control signal DQBC. The delay amount of the variable delay line 414-2 may vary based on the third delay control signal DQBC. The variable delay line 414-2 can variably delay the output signal from the fourth switch 414-1 to output the fourth output clock signal QBCLKO.

振盪控制電路430可以包括圖1和圖5所示的振盪訊號產生電路100和振盪訊號產生電路200中的每一個中所包括的元件的至少一部分。振盪控制電路430可以包括選擇電路510、第二定時控制電路520和振盪驅動器530。選擇電路510可以接收第一輸出時脈訊號至第四輸出時脈訊號ICLKO、QCLKO、IBCLKO和QBCLKO,以基於選擇訊號SEL輸出第一輸出時脈訊號至第四輸出時脈訊號ICLKO、QCLKO、IBCLKO和QBCLKO中的一個。選擇電路510可以提供第一輸出時脈訊號至第四輸出時脈訊號ICLKO、QCLKO、IBCLKO和QBCLKO中的一個作為第一控制訊號RCS。振盪控制電路430還可以包括第一定時控制電路540。基於來自選擇電路510的輸出訊號,第一定時控制電路540可以產生被賦能的脈衝形式的第一控制訊號RCS。第一定時控制電路540可以基於振盪訊號ROD從第二邏輯位準轉變至第一邏輯位準的邊緣產生第一控制訊號RCS。第一定時控制電路540可以在振盪訊號ROD從第二邏輯位準轉變至第一邏輯位準之後經過與第一時脈延遲電路至第四時脈延遲電路411、412、413和414中的一個的延遲量相對應的期間時賦能第一控制訊號RCS。第一定時控制電路540可以包括脈衝產生器541,其被配置為基於來自選擇電路510的輸出訊號產生第一控制訊號RCS。第二定時控制電路520可以接收振盪訊號ROD,並且可以將振盪訊號ROD延遲固定延遲量以產生第二控制訊號FCS。基於振盪訊號ROD,第二定時控制電路520可以產生被賦能的脈衝形式的第二控制訊號FCS。第二定時控制電路520可以基於振盪訊號ROD從第一邏輯位準轉變至第二邏輯位準的邊緣產生第二控制訊號FCS。第二定時控制電路520可以在振盪訊號ROD從第一邏輯位準轉變至第二邏輯位準之後經過與固定延遲量相對應的期間時賦能第二控制訊號FCS。第二定時控制電路520可以包括延遲複製單元521和脈衝產生器522。延遲複製單元521可以接收振盪訊號ROD,並且可以將振盪訊號ROD延遲固定延遲量。脈衝產生器522可以基於來自延遲複製單元521的輸出訊號產生第二控制訊號FCS。振盪驅動器530可以接收第一控制訊號RCS和第二控制訊號FCS,並且可以基於第一控制訊號RCS和第二控制訊號FCS產生振盪訊號ROD。基於第一控制訊號RCS,振盪驅動器530可以控制振盪訊號ROD從第二邏輯位準轉變至第一邏輯位準。基於第二控制訊號FCS,振盪驅動器530可以控制振盪訊號ROD從第一邏輯位準轉變至第二邏輯位準。振盪訊號ROD可以被反饋至第一時脈延遲電路至第四時脈延遲電路411、412、413和414,並且可以被提供給第二定時控制電路520和延遲訊息產生電路440。The oscillation control circuit 430 may include at least a part of elements included in each of the oscillation signal generation circuit 100 and the oscillation signal generation circuit 200 shown in FIGS. 1 and 5 . The oscillation control circuit 430 may include a selection circuit 510, a second timing control circuit 520, and an oscillation driver 530. The selection circuit 510 may receive the first to fourth output clock signals ICLKO, QCLKO, IBCLKO and QBCLKO to output the first to fourth output clock signals ICLKO, QCLKO, IBCLKO based on the selection signal SEL. and one of QBCLKO. The selection circuit 510 may provide one of the first to fourth output clock signals ICLKO, QCLKO, IBCLKO and QBCLKO as the first control signal RCS. The oscillation control circuit 430 may also include a first timing control circuit 540. Based on the output signal from the selection circuit 510, the first timing control circuit 540 may generate the first control signal RCS in the form of an enabled pulse. The first timing control circuit 540 may generate the first control signal RCS based on the edge of the oscillation signal ROD transitioning from the second logic level to the first logic level. The first timing control circuit 540 may pass through one of the first to fourth clock delay circuits 411, 412, 413 and 414 after the oscillation signal ROD transitions from the second logic level to the first logic level. The first control signal RCS is enabled during a period corresponding to the delay amount. The first timing control circuit 540 may include a pulse generator 541 configured to generate the first control signal RCS based on the output signal from the selection circuit 510 . The second timing control circuit 520 may receive the oscillation signal ROD, and may delay the oscillation signal ROD by a fixed delay amount to generate the second control signal FCS. Based on the oscillation signal ROD, the second timing control circuit 520 may generate the second control signal FCS in the form of an enabled pulse. The second timing control circuit 520 may generate the second control signal FCS based on the edge of the oscillation signal ROD transitioning from the first logic level to the second logic level. The second timing control circuit 520 may enable the second control signal FCS when a period corresponding to the fixed delay amount passes after the oscillation signal ROD transitions from the first logic level to the second logic level. The second timing control circuit 520 may include a delay replica unit 521 and a pulse generator 522. The delay replica unit 521 can receive the oscillation signal ROD, and can delay the oscillation signal ROD by a fixed delay amount. The pulse generator 522 may generate the second control signal FCS based on the output signal from the delay copy unit 521 . The oscillation driver 530 may receive the first control signal RCS and the second control signal FCS, and may generate the oscillation signal ROD based on the first control signal RCS and the second control signal FCS. Based on the first control signal RCS, the oscillation driver 530 can control the oscillation signal ROD to change from the second logic level to the first logic level. Based on the second control signal FCS, the oscillation driver 530 can control the oscillation signal ROD to change from the first logic level to the second logic level. The oscillation signal ROD may be fed back to the first to fourth clock delay circuits 411, 412, 413, and 414, and may be provided to the second timing control circuit 520 and the delay message generation circuit 440.

圖14是說明圖12所示的第一時脈延遲電路至第四時脈延遲電路411、412、413和414中的每一個與振盪控制電路430之間的連接關係的圖。參考圖14,振盪控制電路430可以包括選擇電路610、設置脈衝產生器620、重置脈衝產生器630和振盪驅動器640。選擇電路610可以接收第一輸出時脈訊號至第四輸出時脈訊號ICLKO、QCLKO、IBCLKO和QBCLKO,並且可以基於選擇訊號SEL輸出第一輸出時脈訊號至第四輸出時脈訊號ICLKO、QCLKO、IBCLKO和QBCLKO中的一個。設置脈衝產生器620可以接收來自選擇電路610的輸出訊號。設置脈衝產生器620可以基於來自選擇電路610的輸出訊號產生設置脈衝訊號SET。設置脈衝產生器620可以產生與振盪訊號ROD的上升邊緣和下降邊緣之一同步的設置脈衝訊號SET。例如,設置脈衝產生器620可以產生與振盪訊號ROD的上升邊緣同步的設置脈衝訊號SET。設置脈衝產生器620可以在振盪訊號ROD從低邏輯位準轉變至高邏輯位準之後經過與第一時脈延遲電路至第四時脈延遲電路411、412、413和414中的一個的延遲量相對應的期間時賦能設置脈衝訊號SET。重置脈衝產生器630可以接收設置脈衝訊號SET,並且可以基於設置脈衝訊號SET產生重置脈衝訊號RST。重置脈衝產生器630可以在設置脈衝訊號SET為失能時賦能重置脈衝訊號RST。振盪驅動器640可以接收設置脈衝訊號SET和重置脈衝訊號RST,並且可以基於設置脈衝訊號SET和重置脈衝訊號RST產生振盪訊號ROD。基於設置脈衝訊號SET,振盪驅動器640可以控制振盪訊號ROD從第二邏輯位準轉變至第一邏輯位準。基於重置脈衝訊號RST,振盪驅動器640可以控制振盪訊號ROD從第一邏輯位準轉變至第二邏輯位準。振盪訊號ROD可以被反饋至第一時脈延遲電路至第四時脈延遲電路411、412、413和414,並且可以被提供給延遲訊息產生電路440。FIG. 14 is a diagram illustrating the connection relationship between each of the first to fourth clock delay circuits 411, 412, 413, and 414 shown in FIG. 12 and the oscillation control circuit 430. Referring to FIG. 14 , the oscillation control circuit 430 may include a selection circuit 610 , a set pulse generator 620 , a reset pulse generator 630 and an oscillation driver 640 . The selection circuit 610 may receive the first to fourth output clock signals ICLKO, QCLKO, IBCLKO and QBCLKO, and may output the first to fourth output clock signals ICLKO, QCLKO, based on the selection signal SEL. One of IBCLKO and QBCLKO. The pulse generator 620 is configured to receive an output signal from the selection circuit 610 . The set pulse generator 620 may generate the set pulse signal SET based on the output signal from the selection circuit 610 . The setting pulse generator 620 may generate the setting pulse signal SET synchronized with one of the rising edge and the falling edge of the oscillation signal ROD. For example, the set pulse generator 620 may generate the set pulse signal SET synchronized with the rising edge of the oscillation signal ROD. The pulse generator 620 is configured to undergo a delay amount equal to one of the first to fourth clock delay circuits 411, 412, 413 and 414 after the oscillation signal ROD transitions from a low logic level to a high logic level. The setting pulse signal SET is enabled during the corresponding period. The reset pulse generator 630 may receive the set pulse signal SET, and may generate the reset pulse signal RST based on the set pulse signal SET. The reset pulse generator 630 can enable the reset pulse signal RST when the setting pulse signal SET is disabled. The oscillation driver 640 may receive the set pulse signal SET and the reset pulse signal RST, and may generate the oscillation signal ROD based on the set pulse signal SET and the reset pulse signal RST. Based on the setting pulse signal SET, the oscillation driver 640 can control the oscillation signal ROD to change from the second logic level to the first logic level. Based on the reset pulse signal RST, the oscillation driver 640 can control the oscillation signal ROD to change from the first logic level to the second logic level. The oscillation signal ROD may be fed back to the first to fourth clock delay circuits 411, 412, 413, and 414, and may be provided to the delay message generation circuit 440.

雖然已經在上面描述了特定實施例,但是本發明所屬技術領域中具有通常知識者應理解所描述的實施例僅是示例。因此,振盪訊號產生電路及使用其的半導體裝置不應基於所描述的實施例而進行限制。相反,本文描述的振盪訊號產生電路及使用其的半導體裝置,在結合上面的描述和附圖時,應該僅由隨附申請專利範圍而進行限制。Although specific embodiments have been described above, those of ordinary skill in the art to which this invention pertains will understand that the described embodiments are only examples. Therefore, the oscillation signal generating circuit and the semiconductor device using the same should not be limited based on the described embodiments. On the contrary, the oscillation signal generating circuit and the semiconductor device using the same described herein, when combined with the above description and drawings, should be limited only by the scope of the accompanying claims.

100:振盪訊號產生電路 111:第一時脈延遲電路 112:第二時脈延遲電路 120:定時控制電路 121:延遲複製單元 122:脈衝產生器 122-1:第一反相器 122-2:延遲器 122-3:第二反相器 122-4:反及閘 130:振盪驅動器 131:上拉電晶體 132:下拉電晶體 133:反及閘 134:第一反相器 135:第二反相器 140:選擇電路 200:振盪訊號產生電路 211:第一時脈延遲電路 212:第二時脈延遲電路 220:第二定時控制電路 221:延遲複製單元 222:第一脈衝產生器 230:振盪驅動器 240:選擇電路 241:輸出訊號 250:第一定時控制電路 251:第二脈衝產生器 251-1:第一反相器 251-2:延遲器 251-3:第二反相器 251-4:反或閘 300:振盪訊號產生電路 311:第一時脈延遲電路 312:第二時脈延遲電路 320:設置脈衝產生器 321:第一反相器 322:延遲器 323:第二反相器 324:反或閘 330:重置脈衝產生器 331:第一反相器 332:延遲器 333:第二反相器 334:反及閘 340:振盪驅動器 350:選擇電路 351:輸出訊號 400:半導體裝置 411:第一時脈延遲電路 411-1:第一開關 411-2:固定延遲線 412:第二時脈延遲電路 412-1:第二開關 412-2:可變延遲線 413:第三時脈延遲電路 413-1:第三開關 413-2:可變延遲線 414:第四時脈延遲電路 414-1:第四開關 414-2:可變延遲線 420:多相時脈訊號產生電路 430:振盪控制電路 440:延遲訊息產生電路 510:選擇電路 520:第二定時控制電路 521:延遲複製單元 522:脈衝產生器 530:振盪驅動器 540:第一定時控制電路 541:脈衝產生器 610:選擇電路 620:設置脈衝產生器 630:重置脈衝產生器 640:振盪驅動器 A:路徑 B:路徑 CLK:時脈訊號對 CLKB:時脈訊號對 CLKI1:第一輸入時脈訊號 CLKI2:第二輸入時脈訊號 CLKO1:第一輸出時脈訊號 CLKO2:第二輸出時脈訊號 DIBC:第二延遲控制訊號 DN:驅動節點 DQBC:第三延遲控制訊號 DQC:第一延遲控制訊號 FCS:第二控制訊號 IBCLK:第三相位時脈訊號 IBCLKO:第三輸出時脈訊號 ICLK:第一相位時脈訊號 ICLKO:第一輸出時脈訊號 LN:閂鎖節點 OSCEN:賦能訊號 QBCLK:第四相位時脈訊號 QBCLKO:第四輸出時脈訊號 QCLK:第二相位時脈訊號 QCLKO:第二輸出時脈訊號 RCS:第一控制訊號 ROD:振盪訊號 ROD1:第一振盪訊號 ROD1’:第一振盪訊號 ROD2:第二振盪訊號 ROD2’:第二振盪訊號 RST:重置脈衝訊號 SEL:選擇訊號 SET:設置脈衝訊號 TD1:延遲量 TD2:延遲量 TDR:延遲量 TDR+α:總和 VH:第一電源電壓 VL:第二電源電壓 α:延遲量 100: Oscillation signal generation circuit 111: First clock delay circuit 112: Second clock delay circuit 120: Timing control circuit 121: Delayed replication unit 122:Pulse generator 122-1: First inverter 122-2: Delay 122-3: Second inverter 122-4:Reverse gate 130: Oscillation driver 131:Pull-up transistor 132: Pull-down transistor 133: Anti-and gate 134: First inverter 135: Second inverter 140:Select circuit 200: Oscillation signal generation circuit 211: First clock delay circuit 212: Second clock delay circuit 220: Second timing control circuit 221: Delayed replication unit 222: First pulse generator 230: Oscillation driver 240: Select circuit 241:Output signal 250: First timing control circuit 251: Second pulse generator 251-1: First inverter 251-2: Delay 251-3: Second inverter 251-4:Reverse OR gate 300: Oscillation signal generation circuit 311: First clock delay circuit 312: Second clock delay circuit 320: Set pulse generator 321: First inverter 322:Delayer 323: Second inverter 324:Reverse OR gate 330:Reset pulse generator 331: First inverter 332:Delayer 333: Second inverter 334: Anti-and gate 340: Oscillation driver 350:Select circuit 351:Output signal 400:Semiconductor device 411: First clock delay circuit 411-1: First switch 411-2: Fixed delay line 412: Second clock delay circuit 412-1: Second switch 412-2: Variable delay line 413: Third clock delay circuit 413-1:Third switch 413-2: Variable delay line 414: Fourth clock delay circuit 414-1: The fourth switch 414-2: Variable delay line 420: Polyphase clock signal generation circuit 430: Oscillation control circuit 440: Delayed message generation circuit 510: Select circuit 520: Second timing control circuit 521: Delayed replication unit 522: Pulse generator 530: Oscillation driver 540: First timing control circuit 541:Pulse generator 610: Select circuit 620: Set pulse generator 630:Reset pulse generator 640: Oscillation driver A:Path B:Path CLK: clock signal pair CLKB: clock signal pair CLKI1: first input clock signal CLKI2: second input clock signal CLKO1: The first output clock signal CLKO2: The second output clock signal DIBC: second delay control signal DN: driver node DQBC: third delay control signal DQC: first delay control signal FCS: second control signal IBCLK: third phase clock signal IBCLKO: The third output clock signal ICLK: first phase clock signal ICLKO: first output clock signal LN: latch node OSCEN: Empowerment Signal QBCLK: fourth phase clock signal QBCLKO: The fourth output clock signal QCLK: second phase clock signal QCLKO: second output clock signal RCS: first control signal ROD: oscillation signal ROD1: the first oscillation signal ROD1’: the first oscillation signal ROD2: The second oscillation signal ROD2’: the second oscillation signal RST: reset pulse signal SEL: select signal SET: Set pulse signal TD1: Delay amount TD2: Delay amount TDR: amount of delay TDR+α:sum VH: first power supply voltage VL: second power supply voltage α: delay amount

圖1是說明根據一個實施例的振盪訊號產生電路的配置的圖。 圖2是說明圖1所示的脈衝產生器的圖。 圖3是說明圖1所示的振盪驅動器的圖。 圖4A和圖4B是說明根據一個實施例的振盪訊號產生電路的操作的時序圖。 圖5是說明根據一個實施例的振盪訊號產生電路的配置的圖。 圖6是說明圖5所示的脈衝產生器的圖。 圖7是說明根據一個實施例的振盪訊號產生電路的操作的時序圖。 圖8是說明根據一個實施例的振盪訊號產生電路的配置的圖。 圖9是說明圖8所示的設置脈衝產生器的圖。 圖10是說明圖8所示的重置脈衝產生器的圖。 圖11是說明根據一個實施例的振盪訊號產生電路的操作的時序圖。 圖12是說明根據一個實施例的半導體裝置的配置的圖。 圖13是說明圖12所示的時脈延遲電路與振盪控制電路之間的連接關係的圖。 圖14是說明圖12所示的時脈延遲電路與振盪控制電路之間的連接關係的圖。 FIG. 1 is a diagram illustrating the configuration of an oscillation signal generating circuit according to one embodiment. FIG. 2 is a diagram explaining the pulse generator shown in FIG. 1 . FIG. 3 is a diagram explaining the oscillation driver shown in FIG. 1 . 4A and 4B are timing diagrams illustrating the operation of the oscillation signal generating circuit according to one embodiment. FIG. 5 is a diagram illustrating the configuration of an oscillation signal generating circuit according to one embodiment. FIG. 6 is a diagram explaining the pulse generator shown in FIG. 5 . FIG. 7 is a timing diagram illustrating the operation of the oscillation signal generating circuit according to one embodiment. FIG. 8 is a diagram illustrating the configuration of an oscillation signal generating circuit according to one embodiment. FIG. 9 is a diagram illustrating the installation of the pulse generator shown in FIG. 8 . FIG. 10 is a diagram explaining the reset pulse generator shown in FIG. 8 . FIG. 11 is a timing diagram illustrating the operation of the oscillation signal generating circuit according to one embodiment. FIG. 12 is a diagram illustrating the configuration of a semiconductor device according to one embodiment. FIG. 13 is a diagram explaining the connection relationship between the clock delay circuit and the oscillation control circuit shown in FIG. 12 . FIG. 14 is a diagram explaining the connection relationship between the clock delay circuit and the oscillation control circuit shown in FIG. 12 .

100:振盪訊號產生電路 100: Oscillation signal generation circuit

111:第一時脈延遲電路 111: First clock delay circuit

112:第二時脈延遲電路 112: Second clock delay circuit

120:定時控制電路 120: Timing control circuit

121:延遲複製單元 121: Delayed replication unit

122:脈衝產生器 122:Pulse generator

130:振盪驅動器 130: Oscillation driver

140:選擇電路 140:Select circuit

CLKI1:第一輸入時脈訊號 CLKI1: first input clock signal

CLKI2:第二輸入時脈訊號 CLKI2: second input clock signal

CLKO1:第一輸出時脈訊號 CLKO1: The first output clock signal

CLKO2:第二輸出時脈訊號 CLKO2: The second output clock signal

FCS:第二控制訊號 FCS: second control signal

OSCEN:賦能訊號 OSCEN: Empowerment Signal

RCS:第一控制訊號 RCS: first control signal

ROD:振盪訊號 ROD: oscillation signal

SEL:選擇訊號 SEL: select signal

VH:第一電源電壓 VH: first power supply voltage

VL:第二電源電壓 VL: second power supply voltage

Claims (39)

一種振盪訊號產生電路,包括: 一第一時脈延遲電路,被配置成將一振盪訊號進行延遲以產生一第一控制訊號; 一定時控制電路,被配置成將該振盪訊號延遲一固定延遲量以產生一第二控制訊號;以及 一振盪驅動器,被配置成:基於該第一控制訊號將該振盪訊號驅動至一第一邏輯位準,以及基於該第二控制訊號將該振盪訊號驅動至一第二邏輯位準。 An oscillation signal generating circuit includes: a first clock delay circuit configured to delay an oscillation signal to generate a first control signal; a timing control circuit configured to delay the oscillation signal by a fixed delay amount to generate a second control signal; and An oscillation driver configured to: drive the oscillation signal to a first logic level based on the first control signal, and drive the oscillation signal to a second logic level based on the second control signal. 如請求項1所述的振盪訊號產生電路,其中,該定時控制電路包括: 一延遲複製單元,被配置成將該振盪訊號延遲該固定延遲量;以及 一第一脈衝產生器,被配置成:接收來自該延遲複製單元的輸出訊號,以及基於該振盪訊號從該第二邏輯位準轉變至該第一邏輯位準的邊緣產生該第二控制訊號。 The oscillation signal generation circuit as claimed in claim 1, wherein the timing control circuit includes: a delay replica unit configured to delay the oscillation signal by the fixed delay amount; and A first pulse generator is configured to receive an output signal from the delay replica unit and generate the second control signal based on an edge of the oscillation signal transitioning from the second logic level to the first logic level. 如請求項2所述的振盪訊號產生電路,其中,該延遲複製單元是透過對該第一時脈延遲電路建模而設計的。The oscillation signal generating circuit of claim 2, wherein the delay replicating unit is designed by modeling the first clock delay circuit. 如請求項1所述的振盪訊號產生電路,還包括一第二脈衝產生器,被配置成接收來自該第一時脈延遲電路的輸出訊號,以基於該振盪訊號從該第一邏輯位準轉變至該第二邏輯位準的邊緣產生該第一控制訊號。The oscillation signal generation circuit of claim 1, further comprising a second pulse generator configured to receive an output signal from the first clock delay circuit to change the oscillation signal from the first logic level based on The edge to the second logic level generates the first control signal. 如請求項1所述的振盪訊號產生電路,還包括: 一第二時脈延遲電路,被配置成將該振盪訊號進行延遲;以及 一選擇電路,被配置成:基於一選擇訊號輸出來自該第一時脈延遲電路的輸出訊號和來自該第二時脈延遲電路的輸出訊號之一作為該第一控制訊號。 The oscillation signal generating circuit as described in claim 1 also includes: a second clock delay circuit configured to delay the oscillation signal; and A selection circuit is configured to output one of the output signal from the first clock delay circuit and the output signal from the second clock delay circuit as the first control signal based on a selection signal. 如請求項5所述的振盪訊號產生電路,還包括一第二脈衝產生器,被配置成接收來自該選擇電路的輸出訊號,以基於該振盪訊號從該第一邏輯位準轉變至該第二邏輯位準的邊緣產生該第一控制訊號。The oscillation signal generating circuit of claim 5, further comprising a second pulse generator configured to receive an output signal from the selection circuit to change from the first logic level to the second based on the oscillation signal. The edge of the logic level generates the first control signal. 一種振盪訊號產生電路,包括: 一第一時脈延遲電路,被配置成將一振盪訊號進行延遲; 一第一定時控制電路,被配置成接收來自該第一時脈延遲電路的輸出訊號以產生一第一控制訊號; 一第二定時控制電路,被配置成將該振盪訊號延遲一固定延遲量以產生一第二控制訊號;以及 一振盪驅動器,被配置成:基於該第一控制訊號將該振盪訊號驅動至一第一邏輯位準,以及基於該第二控制訊號將該振盪訊號驅動至一第二邏輯位準。 An oscillation signal generating circuit includes: a first clock delay circuit configured to delay an oscillation signal; a first timing control circuit configured to receive an output signal from the first clock delay circuit to generate a first control signal; a second timing control circuit configured to delay the oscillation signal by a fixed delay amount to generate a second control signal; and An oscillation driver configured to: drive the oscillation signal to a first logic level based on the first control signal, and drive the oscillation signal to a second logic level based on the second control signal. 如請求項7所述的振盪訊號產生電路,其中,該第一定時控制電路包括一第一脈衝產生器,被配置成接收來自該第一時脈延遲電路的輸出訊號,以及基於該振盪訊號從該第一邏輯位準轉變至該第二邏輯位準的邊緣產生該第一控制訊號。The oscillation signal generation circuit of claim 7, wherein the first timing control circuit includes a first pulse generator configured to receive an output signal from the first clock delay circuit, and based on the oscillation signal from The edge of the first logic level transitioning to the second logic level generates the first control signal. 如請求項7所述的振盪訊號產生電路,其中,該第二定時控制電路包括: 一延遲複製單元,被配置成將該振盪訊號延遲該固定延遲量;以及 一第二脈衝產生器,被配置成:接收來自該延遲複製單元的輸出訊號,以及基於該振盪訊號從該第二邏輯位準轉變至該第一邏輯位準的邊緣產生該第二控制訊號。 The oscillation signal generating circuit of claim 7, wherein the second timing control circuit includes: a delay replica unit configured to delay the oscillation signal by the fixed delay amount; and A second pulse generator is configured to receive an output signal from the delay replica unit and generate the second control signal based on an edge of the oscillation signal transitioning from the second logic level to the first logic level. 如請求項9所述的振盪訊號產生電路,其中,該延遲複製單元是透過對該第一時脈延遲電路建模而設計的。The oscillation signal generating circuit of claim 9, wherein the delay replicating unit is designed by modeling the first clock delay circuit. 如請求項7所述的振盪訊號產生電路,還包括: 一第二時脈延遲電路,被配置成將該振盪訊號進行延遲;以及 一選擇電路,被配置成基於一選擇訊號選擇性地輸出來自該第一時脈延遲電路的輸出訊號和來自該第二時脈延遲電路的輸出訊號之一, 其中,該第一定時控制電路被配置成基於來自該選擇電路的該輸出訊號產生該第一控制訊號。 The oscillation signal generating circuit as described in claim 7 also includes: a second clock delay circuit configured to delay the oscillation signal; and a selection circuit configured to selectively output one of the output signal from the first clock delay circuit and the output signal from the second clock delay circuit based on a selection signal, Wherein, the first timing control circuit is configured to generate the first control signal based on the output signal from the selection circuit. 一種振盪訊號產生電路,包括: 一第一時脈延遲電路,被配置成將一振盪訊號進行延遲; 一第二時脈延遲電路,被配置成將該振盪訊號進行延遲; 一選擇電路,被配置成:基於一選擇訊號輸出來自該第一時脈延遲電路的輸出訊號和來自該第二時脈延遲電路的輸出訊號之一作為一第一控制訊號; 一定時控制電路,被配置成將該振盪訊號延遲一固定延遲量以產生一第二控制訊號;以及 一振盪驅動器,被配置成基於該第一控制訊號和該第二控制訊號產生該振盪訊號。 An oscillation signal generating circuit includes: a first clock delay circuit configured to delay an oscillation signal; a second clock delay circuit configured to delay the oscillation signal; a selection circuit configured to: output one of the output signal from the first clock delay circuit and the output signal from the second clock delay circuit as a first control signal based on a selection signal; a timing control circuit configured to delay the oscillation signal by a fixed delay amount to generate a second control signal; and An oscillation driver is configured to generate the oscillation signal based on the first control signal and the second control signal. 如請求項12所述的振盪訊號產生電路,其中,該定時控制電路包括: 一延遲複製單元,被配置成將該振盪訊號延遲該固定延遲量;以及 一第一脈衝產生器,被配置成:接收來自該延遲複製單元的輸出訊號,以及基於該振盪訊號從一第二邏輯位準轉變至一第一邏輯位準的邊緣產生該第二控制訊號。 The oscillation signal generation circuit as claimed in claim 12, wherein the timing control circuit includes: a delay replica unit configured to delay the oscillation signal by the fixed delay amount; and A first pulse generator is configured to receive an output signal from the delay replica unit and generate the second control signal based on an edge of the oscillation signal transitioning from a second logic level to a first logic level. 如請求項13所述的振盪訊號產生電路,其中,該延遲複製單元是透過對該第一時脈延遲電路和該第二時脈延遲電路中的至少一個建模而設計的。The oscillation signal generation circuit of claim 13, wherein the delay replica unit is designed by modeling at least one of the first clock delay circuit and the second clock delay circuit. 如請求項13所述的振盪訊號產生電路,還包括一第二脈衝產生器,被配置成接收來自該選擇電路的輸出訊號,以基於該振盪訊號從該第一邏輯位準轉變至該第二邏輯位準的邊緣產生該第一控制訊號。The oscillation signal generating circuit of claim 13, further comprising a second pulse generator configured to receive an output signal from the selection circuit to change the oscillation signal from the first logic level to the second The edge of the logic level generates the first control signal. 如請求項12所述的振盪訊號產生電路,其中,該振盪驅動器被配置成:基於該第一控制訊號將該振盪訊號驅動至一第一邏輯位準,以及基於該第二控制訊號將該振盪訊號驅動至一第二邏輯位準。The oscillation signal generation circuit of claim 12, wherein the oscillation driver is configured to: drive the oscillation signal to a first logic level based on the first control signal, and drive the oscillation signal based on the second control signal. The signal is driven to a second logic level. 一種振盪訊號產生電路,包括: 一第一時脈延遲電路,被配置成將一振盪訊號進行延遲; 一設置脈衝產生器,被配置成:基於來自該第一時脈延遲電路的輸出產生與該振盪訊號的上升邊緣和下降邊緣之一同步的一設置脈衝訊號; 一重置脈衝產生器,被配置成:接收該設置脈衝訊號以及產生一重置脈衝訊號;以及 一振盪驅動器,被配置成:基於該設置脈衝訊號將該振盪訊號驅動至一第一邏輯位準,以及基於該重置脈衝訊號將該振盪訊號驅動至一第二邏輯位準。 An oscillation signal generating circuit includes: a first clock delay circuit configured to delay an oscillation signal; a setting pulse generator configured to: generate a setting pulse signal synchronized with one of the rising edge and the falling edge of the oscillation signal based on the output from the first clock delay circuit; a reset pulse generator configured to: receive the set pulse signal and generate a reset pulse signal; and An oscillation driver is configured to: drive the oscillation signal to a first logic level based on the set pulse signal, and drive the oscillation signal to a second logic level based on the reset pulse signal. 如請求項17所述的振盪訊號產生電路,其中,當該設置脈衝訊號為失能時,該重置脈衝訊號被賦能。The oscillation signal generating circuit of claim 17, wherein when the setting pulse signal is disabled, the reset pulse signal is enabled. 如請求項17所述的振盪訊號產生電路,還包括: 一第二時脈延遲電路,被配置成將該振盪訊號進行延遲;以及 一選擇電路,被配置成:基於一選擇訊號選擇性地輸出來自該第一時脈延遲電路的輸出訊號和來自該第二時脈延遲電路的輸出訊號之一, 其中,該設置脈衝產生器被配置成基於來自該選擇電路的該輸出訊號產生該設置脈衝訊號。 The oscillation signal generating circuit as described in claim 17 also includes: a second clock delay circuit configured to delay the oscillation signal; and a selection circuit configured to selectively output one of the output signal from the first clock delay circuit and the output signal from the second clock delay circuit based on a selection signal, Wherein, the setting pulse generator is configured to generate the setting pulse signal based on the output signal from the selection circuit. 一種振盪訊號產生電路,包括: 一第一時脈延遲電路,被配置成將一振盪訊號進行延遲; 一第二時脈延遲電路,被配置成將該振盪訊號進行延遲; 一選擇電路,被配置成:基於一選擇訊號輸出來自該第一時脈延遲電路的輸出訊號和來自該第二時脈延遲電路的輸出訊號之一; 一設置脈衝產生器,被配置成:接收來自該選擇電路的該輸出訊號,以及產生與該振盪訊號的上升邊緣和下降邊緣之一同步的一設置脈衝訊號; 一重置脈衝產生器,被配置成基於該設置脈衝訊號產生一重置脈衝訊號;以及 一振盪驅動器,被配置成基於該設置脈衝訊號和該重置脈衝訊號產生該振盪訊號。 An oscillation signal generating circuit includes: a first clock delay circuit configured to delay an oscillation signal; a second clock delay circuit configured to delay the oscillation signal; a selection circuit configured to: output one of an output signal from the first clock delay circuit and an output signal from the second clock delay circuit based on a selection signal; a setting pulse generator configured to: receive the output signal from the selection circuit and generate a setting pulse signal synchronized with one of the rising edge and falling edge of the oscillation signal; a reset pulse generator configured to generate a reset pulse signal based on the setting pulse signal; and An oscillation driver is configured to generate the oscillation signal based on the set pulse signal and the reset pulse signal. 如請求項20所述的振盪訊號產生電路,其中,當該設置脈衝訊號為失能時,該重置脈衝訊號被賦能。The oscillation signal generating circuit of claim 20, wherein when the setting pulse signal is disabled, the reset pulse signal is enabled. 如請求項20所述的振盪訊號產生電路,其中,該振盪驅動器被配置成基於該設置脈衝訊號將該振盪訊號驅動至一第一邏輯位準,以及基於該重置脈衝訊號將該振盪訊號驅動至一第二邏輯位準。The oscillation signal generation circuit of claim 20, wherein the oscillation driver is configured to drive the oscillation signal to a first logic level based on the set pulse signal, and drive the oscillation signal based on the reset pulse signal to a second logic level. 一種半導體裝置,包括: 一第一時脈延遲電路,被配置成將一振盪訊號進行延遲以產生一第一輸出時脈訊號; 一第二時脈延遲電路,被配置成基於一延遲控制訊號將該振盪訊號進行延遲以產生一第二輸出時脈訊號; 一振盪控制電路,被配置成:基於該第一輸出時脈訊號和該第二輸出時脈訊號之一來控制該振盪訊號從一第二邏輯位準轉變至一第一邏輯位準,以及基於透過將該振盪訊號延遲一固定延遲量而產生的訊號來控制該振盪訊號從該第一邏輯位準轉變至該第二邏輯位準;以及 一延遲訊息產生電路,被配置成:基於通過該第一時脈延遲電路產生的該振盪訊號和通過該第二時脈延遲電路產生的該振盪訊號來產生該延遲控制訊號。 A semiconductor device including: a first clock delay circuit configured to delay an oscillation signal to generate a first output clock signal; a second clock delay circuit configured to delay the oscillation signal based on a delay control signal to generate a second output clock signal; An oscillation control circuit configured to: control the oscillation signal to transition from a second logic level to a first logic level based on one of the first output clock signal and the second output clock signal, and based on Control the transition of the oscillation signal from the first logic level to the second logic level by delaying the oscillation signal by a signal generated by a fixed delay amount; and A delay message generating circuit is configured to generate the delay control signal based on the oscillation signal generated by the first clock delay circuit and the oscillation signal generated by the second clock delay circuit. 如請求項23所述的半導體裝置,其中,該第一時脈延遲電路被配置成在正常模式中將一第一相位時脈訊號進行延遲以產生該第一輸出時脈訊號,以及在補償模式中將該振盪訊號進行延遲以產生該第一輸出時脈訊號。The semiconductor device of claim 23, wherein the first clock delay circuit is configured to delay a first phase clock signal to generate the first output clock signal in the normal mode, and in the compensation mode The oscillation signal is delayed to generate the first output clock signal. 如請求項24所述的半導體裝置,其中,該第二時脈延遲電路被配置成在該正常模式中將一第二相位時脈訊號進行延遲以產生該第二輸出時脈訊號,以及在該補償模式中將該振盪訊號進行延遲以產生該第二輸出時脈訊號。The semiconductor device of claim 24, wherein the second clock delay circuit is configured to delay a second phase clock signal to generate the second output clock signal in the normal mode, and in the normal mode In the compensation mode, the oscillation signal is delayed to generate the second output clock signal. 如請求項23所述的半導體裝置,其中,該振盪控制電路包括: 一選擇電路,被配置成基於一選擇訊號輸出該第一輸出時脈訊號和該第二輸出時脈訊號之一作為一第一控制訊號; 一定時控制電路,被配置成將該振盪訊號延遲該固定延遲量以產生一第二控制訊號;以及 一振盪驅動器,被配置成:基於該第一控制訊號控制該振盪訊號從該第二邏輯位準轉變至該第一邏輯位準,以及基於該第二控制訊號控制該振盪訊號從該第一邏輯位準轉變至該第二邏輯位準。 The semiconductor device according to claim 23, wherein the oscillation control circuit includes: a selection circuit configured to output one of the first output clock signal and the second output clock signal as a first control signal based on a selection signal; a timing control circuit configured to delay the oscillation signal by the fixed delay amount to generate a second control signal; and An oscillation driver configured to: control the oscillation signal to transition from the second logic level to the first logic level based on the first control signal, and control the oscillation signal to transition from the first logic level to the first logic level based on the second control signal. level transition to the second logic level. 如請求項26所述的半導體裝置,其中,該定時控制電路包括: 一延遲複製單元,被配置成將該振盪訊號延遲該固定延遲量;以及 一第一脈衝產生器,被配置成:接收來自該延遲複製單元的輸出訊號,以及基於該振盪訊號從該第二邏輯位準轉變至該第一邏輯位準的邊緣產生該第二控制訊號。 The semiconductor device of claim 26, wherein the timing control circuit includes: a delay replica unit configured to delay the oscillation signal by the fixed delay amount; and A first pulse generator is configured to receive an output signal from the delay replica unit and generate the second control signal based on an edge of the oscillation signal transitioning from the second logic level to the first logic level. 如請求項27所述的半導體裝置,其中,該延遲複製單元是透過對該第一時脈延遲電路和該第二時脈延遲電路中的至少一個建模而設計的。The semiconductor device of claim 27, wherein the delay replication unit is designed by modeling at least one of the first clock delay circuit and the second clock delay circuit. 如請求項26所述的半導體裝置,還包括一第二脈衝產生器,被配置成基於來自該選擇電路的輸出訊號、基於該振盪訊號從該第一邏輯位準轉變至該第二邏輯位準的邊緣產生該第一控制訊號。The semiconductor device of claim 26, further comprising a second pulse generator configured to transition from the first logic level to the second logic level based on the oscillation signal based on the output signal from the selection circuit. The edge of generates the first control signal. 如請求項23所述的半導體裝置,其中,該振盪控制電路包括: 一選擇電路,被配置成基於一選擇訊號輸出該第一輸出時脈訊號和該第二輸出時脈訊號之一; 一第一定時控制電路,被配置成基於來自該選擇電路的輸出訊號產生一第一控制訊號; 一第二定時控制電路,被配置成將該振盪訊號延遲該固定延遲量以產生一第二控制訊號;以及 一振盪驅動器,被配置成:基於該第一控制訊號控制該振盪訊號從該第二邏輯位準轉變至該第一邏輯位準,以及基於該第二控制訊號控制該振盪訊號從該第一邏輯位準轉變至該第二邏輯位準。 The semiconductor device according to claim 23, wherein the oscillation control circuit includes: a selection circuit configured to output one of the first output clock signal and the second output clock signal based on a selection signal; a first timing control circuit configured to generate a first control signal based on the output signal from the selection circuit; a second timing control circuit configured to delay the oscillation signal by the fixed delay amount to generate a second control signal; and An oscillation driver configured to: control the oscillation signal to transition from the second logic level to the first logic level based on the first control signal, and control the oscillation signal to transition from the first logic level to the first logic level based on the second control signal. level transition to the second logic level. 如請求項30所述的半導體裝置,其中,該第一定時控制電路包括一第一脈衝產生器,被配置成接收來自該第一時脈延遲電路的輸出訊號,以及基於該振盪訊號從該第一邏輯位準轉變至該第二邏輯位準的邊緣產生該第一控制訊號。The semiconductor device of claim 30, wherein the first timing control circuit includes a first pulse generator configured to receive an output signal from the first clock delay circuit, and to receive an output signal from the first clock delay circuit based on the oscillation signal. An edge that transitions from a logic level to the second logic level generates the first control signal. 如請求項30所述的半導體裝置,其中,該第二定時控制電路包括: 一延遲複製單元,被配置成將該振盪訊號延遲該固定延遲量;以及 一第二脈衝產生器,被配置成:接收來自該延遲複製單元的輸出訊號,以及基於該振盪訊號從該第二邏輯位準轉變至該第一邏輯位準的邊緣產生該第二控制訊號。 The semiconductor device of claim 30, wherein the second timing control circuit includes: a delay replica unit configured to delay the oscillation signal by the fixed delay amount; and A second pulse generator is configured to receive an output signal from the delay replica unit and generate the second control signal based on an edge of the oscillation signal transitioning from the second logic level to the first logic level. 如請求項32所述的半導體裝置,其中,該延遲複製單元是透過對該第一時脈延遲電路和該第二時脈延遲電路中的至少一個建模而設計的。The semiconductor device of claim 32, wherein the delay replication unit is designed by modeling at least one of the first clock delay circuit and the second clock delay circuit. 一種半導體裝置,包括: 一第一時脈延遲電路,被配置成將一振盪訊號進行延遲以產生一第一輸出時脈訊號; 一第二時脈延遲電路,被配置成基於一延遲控制訊號將該振盪訊號進行延遲以產生一第二輸出時脈訊號; 一振盪控制電路,被配置成:基於該第一輸出時脈訊號和該第二輸出時脈訊號之一產生一設置脈衝訊號以控制該振盪訊號從一第二邏輯位準轉變至一第一邏輯位準,以及基於該設置脈衝訊號產生一重置脈衝訊號以控制該振盪訊號從該第一邏輯位準轉變至該第二邏輯位準;以及 一延遲訊息產生電路,被配置成基於通過該第一時脈延遲電路產生的該振盪訊號和通過該第二時脈延遲電路產生的該振盪訊號來產生該延遲控制訊號。 A semiconductor device including: a first clock delay circuit configured to delay an oscillation signal to generate a first output clock signal; a second clock delay circuit configured to delay the oscillation signal based on a delay control signal to generate a second output clock signal; An oscillation control circuit configured to: generate a setting pulse signal based on one of the first output clock signal and the second output clock signal to control the oscillation signal to change from a second logic level to a first logic level level, and generate a reset pulse signal based on the set pulse signal to control the oscillation signal to change from the first logic level to the second logic level; and A delay message generating circuit is configured to generate the delay control signal based on the oscillation signal generated by the first clock delay circuit and the oscillation signal generated by the second clock delay circuit. 如請求項34所述的半導體裝置,其中,該第一時脈延遲電路被配置成在正常模式中將一第一相位時脈訊號進行延遲並且產生該第一輸出時脈訊號,以及在補償模式中將該振盪訊號進行延遲並且產生該第一輸出時脈訊號。The semiconductor device of claim 34, wherein the first clock delay circuit is configured to delay a first phase clock signal and generate the first output clock signal in the normal mode, and in the compensation mode The oscillation signal is delayed and the first output clock signal is generated. 如請求項35所述的半導體裝置,其中,該第二時脈延遲電路被配置成在該正常模式中將該第二相位時脈訊號進行延遲以產生該第二輸出時脈訊號,以及在該補償模式中將該振盪訊號進行延遲以產生該第二輸出時脈訊號。The semiconductor device of claim 35, wherein the second clock delay circuit is configured to delay the second phase clock signal to generate the second output clock signal in the normal mode, and in the normal mode In the compensation mode, the oscillation signal is delayed to generate the second output clock signal. 如請求項34所述的半導體裝置,其中,該振盪控制電路包括: 一選擇電路,被配置成基於一選擇訊號輸出該第一輸出時脈訊號和該第二輸出時脈訊號之一; 一設置脈衝產生器,被配置成:接收來自該選擇電路的輸出訊號,以及產生與該振盪訊號的上升邊緣和下降邊緣之一同步的一設置脈衝訊號; 一重置脈衝產生器,被配置成基於該設置脈衝訊號產生一重置脈衝訊號;以及 一振盪驅動器,被配置成基於該設置脈衝訊號和該重置脈衝訊號產生該振盪訊號。 The semiconductor device according to claim 34, wherein the oscillation control circuit includes: a selection circuit configured to output one of the first output clock signal and the second output clock signal based on a selection signal; a setting pulse generator configured to: receive an output signal from the selection circuit and generate a setting pulse signal synchronized with one of the rising edge and the falling edge of the oscillation signal; a reset pulse generator configured to generate a reset pulse signal based on the setting pulse signal; and An oscillation driver is configured to generate the oscillation signal based on the set pulse signal and the reset pulse signal. 如請求項37所述的半導體裝置,其中,當該設置脈衝訊號為失能時,該重置脈衝訊號被賦能。The semiconductor device of claim 37, wherein when the setting pulse signal is disabled, the reset pulse signal is enabled. 如請求項37所述的半導體裝置,其中,該振盪驅動器被配置成基於該設置脈衝訊號將該振盪訊號驅動至該第一邏輯位準,以及基於該重置脈衝訊號將該振盪訊號驅動至該第二邏輯位準。The semiconductor device of claim 37, wherein the oscillation driver is configured to drive the oscillation signal to the first logic level based on the set pulse signal, and drive the oscillation signal to the first logic level based on the reset pulse signal. Second logic level.
TW112105550A 2022-04-13 2023-02-16 Oscillating signal generating circuit and a semiconductor apparatus using the same TW202341662A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0045797 2022-04-13
KR1020220045797A KR20230146858A (en) 2022-04-13 2022-04-13 Oscillating signal generating circuit and a semiconductor apparatus using the same

Publications (1)

Publication Number Publication Date
TW202341662A true TW202341662A (en) 2023-10-16

Family

ID=88191609

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112105550A TW202341662A (en) 2022-04-13 2023-02-16 Oscillating signal generating circuit and a semiconductor apparatus using the same

Country Status (5)

Country Link
US (1) US20230336166A1 (en)
KR (1) KR20230146858A (en)
CN (1) CN116913338A (en)
DE (1) DE102023104287A1 (en)
TW (1) TW202341662A (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3540589B2 (en) * 1998-02-02 2004-07-07 株式会社東芝 Clock multiplication circuit
JP4371598B2 (en) * 2001-03-16 2009-11-25 株式会社東芝 Multiplication clock generation circuit
US6958658B2 (en) * 2003-03-25 2005-10-25 Intel Corporation Circuit and method for generating a clock signal
US7705687B1 (en) * 2006-12-21 2010-04-27 Marvell International, Ltd. Digital ring oscillator
US7973576B2 (en) * 2008-05-21 2011-07-05 Mediatek Inc. Voltage controlled oscillators and phase-frequency locked loop circuit using the same
US9503059B1 (en) * 2015-09-30 2016-11-22 Integrated Device Technology, Inc. Integrated circuit devices having oscillator circuits therein that support fixed frequency generation over process-voltage-temperature (PVT) variations
US20240007093A1 (en) * 2022-06-30 2024-01-04 Microchip Technology Incorporated Reducing duty cycle mismatch of clock signals for clock tracking circuits

Also Published As

Publication number Publication date
DE102023104287A1 (en) 2023-10-19
KR20230146858A (en) 2023-10-20
CN116913338A (en) 2023-10-20
US20230336166A1 (en) 2023-10-19

Similar Documents

Publication Publication Date Title
US6111446A (en) Integrated circuit data latch driver circuit
US6987408B2 (en) Digital delay locked loop and control method thereof
US6157229A (en) Skew compensation device
KR100881715B1 (en) Delay locked loop and operation method of the same
JP5231045B2 (en) Clock skew controller and integrated circuit having the same
KR100631166B1 (en) Register controlled delay locked loop with reduced delay locking time
US6433597B2 (en) Delay locked loop with reduced noise response
TW200531445A (en) Delay locked loop in semiconductor memory device and its clock locking method
US10193539B1 (en) High speed data synchronization
TW200307397A (en) Digital DLL apparatus for correcting duty cycle and method thereof
TW200945788A (en) Delayed locked loop circuit
TW202112071A (en) Delay line, a delay locked loop circuit and a semiconductor apparatus using the delay line and the delay locked loop circuit
US20160142060A1 (en) Delay locked loop circuit and operation method thereof
JP6785625B2 (en) Clock data recovery circuit phase detector
KR100929655B1 (en) Duty cycle correction circuit and delay locked loop circuit
TW202341662A (en) Oscillating signal generating circuit and a semiconductor apparatus using the same
JP3945894B2 (en) Semiconductor device and signal input state detection circuit
TW202314431A (en) Semiconductor apparatus including a clock path and semiconductor system
US7616030B2 (en) Semiconductor device and operation method thereof
US7026859B2 (en) Control circuit for delay locked loop
KR100541543B1 (en) Semiconductor memory device which can be tested using a tester supplying a clock signal slower than an internal clock signal of the semiconductor device
US11469747B1 (en) Shift register and electronic device including the same
TWI407437B (en) Semiconductor memory device and method for driving the semiconductor memory device
KR100792379B1 (en) Delay locked loop that is capable of multi frequency operation and method for dividing frequency of the same
KR100232018B1 (en) Clock phase correction circuit