TW202341594A - Surface emitting laser, method for fabricating surface emitting laser - Google Patents

Surface emitting laser, method for fabricating surface emitting laser Download PDF

Info

Publication number
TW202341594A
TW202341594A TW111112677A TW111112677A TW202341594A TW 202341594 A TW202341594 A TW 202341594A TW 111112677 A TW111112677 A TW 111112677A TW 111112677 A TW111112677 A TW 111112677A TW 202341594 A TW202341594 A TW 202341594A
Authority
TW
Taiwan
Prior art keywords
iii nitride
group iii
region
substrate
layer
Prior art date
Application number
TW111112677A
Other languages
Chinese (zh)
Inventor
斯林凡斯 甘德羅圖拉
Original Assignee
日商三櫻工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商三櫻工業股份有限公司 filed Critical 日商三櫻工業股份有限公司
Priority to TW111112677A priority Critical patent/TW202341594A/en
Publication of TW202341594A publication Critical patent/TW202341594A/en

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

A vertical cavity surface emitting laser (VCSEL) includes a distributed Bragg reflector (DBR) including a first dielectric layer and a second dielectric layer alternately arranged in a first axial direction; and a semiconductor section including a p-type III nitride region, a III nitride region, and a III nitride active region between the p-type III nitride region and the III nitride region, the p-type III nitride region, the III nitride active region, and the III nitride region being arranged in the first axial direction, the III nitride region including an n-type III nitride region. The semiconductor section includes a monolithic grating having a periodic one-dimensional pattern. The monolithic grating, the III nitride active region, and the distributed Bragg reflector are arranged in the first axial direction to form an optical cavity. The periodic one-dimensional pattern extends in a second axial direction that intersects the first axial direction.

Description

面射型雷射及製造面射型雷射之方法Surface emitting laser and method of manufacturing surface emitting laser

本揭露關於一種面射型雷射及製造面射型雷射之方法。The present disclosure relates to a surface-emitting laser and a method of manufacturing the surface-emitting laser.

面射型雷射也被稱為垂直共振腔面射型雷射(vertical cavity surface emitting laser,VCSEL)。VCSEL包含設置在n側半導體區域與p側半導體區域之間的半導體主動區域、及作用為高反射鏡的二個分散式布拉格反射器(distributed Bragg reflector,DBR)。半導體主動區域設置於二個DBR之間以形成光學腔體。n側及p側區域分別注入載子,即電子及電洞,至主動區域,且該些載子在主動區域重新結合以產生光線。因此,產生的光線會被該些DBR反射許多次以行進在光學腔體中,進而產生同調光線(lasing)。VCSEL之該些DBR其中之一為較低反射率鏡,用以射出雷射光線。 [引用列表] [非專利文獻] Surface emitting laser is also called vertical cavity surface emitting laser (VCSEL). The VCSEL includes a semiconductor active region disposed between the n-side semiconductor region and the p-side semiconductor region, and two distributed Bragg reflectors (DBR) that function as high-reflection mirrors. The semiconductor active region is disposed between the two DBRs to form an optical cavity. The n-side and p-side regions inject carriers, namely electrons and holes, into the active region respectively, and these carriers recombine in the active region to generate light. Therefore, the generated light will be reflected by these DBRs many times to travel in the optical cavity, thereby generating coherent rays (lasing). One of the DBRs in a VCSEL is a lower reflectivity mirror used to emit laser light. [citation list] [Non-patent literature]

[非專利文獻1] 1.  Appl. Phys. Lett. 92, 141102 (2008) [非專利文獻 2] 2.  Apply. Phys. Express, 12, 036504 (2019) [非專利文獻 3] 3.  Appl. Phys. Lett. 105, 031111 (2014) [非專利文獻 4] 4.  J. Vac. Sci. Technol. B 33, 050603 (2015) [非專利文獻 5] 5.  Appl. Phys. Express 12, 044004 (2019) [非專利文獻 6] 6.  Sci. Rep. 8, 10350 (2018) [非專利文獻 7] 7.  Semicond. Sci. Technol. 26, 014017 (2010) [非專利文獻 8] 8.  IEEE Signal Process. Mag. 37, 50-61 (2020) [非專利文獻 9] 9.  IEICE Trans. Electron. E92-C, 194 (2009) [非專利文獻 10] 10.  Phys. Stat. Soli, 215, 1700513 (2018) [非專利文獻 11] 11.  Appl. Phys. Lett. 75, 1515 (1999) [非專利文獻 12] 12.  Soc. Inf. Disp. Int. Symp. Dig. Tech. 44, 832 (2013) [非專利文獻 13] 13.  AIP Adv.3, 072107 (2013) [非專利文獻 14] 14.  Optics Letters, 41, 2608-2611 (2016) [非專利文獻 15] 15.  Phys. Status Solidi A. 215, 1700513 (2018) [非專利文獻 16] 16.  Opt. Express, 27,24717 (2019) [非專利文獻 17] 17.  Appl. Phys. Express, 13, 041003 (2020) [非專利文獻 18] 18.  Appl. Phys. Express,14,031002 (2021) [非專利文獻 19] 19.  Applied Phys. Lett.119, 142103 (2021) [非專利文獻 20] 20.  Crystals, 11 (12) 1563, (2021) [Non-patent document 1] 1. Appl. Phys. Lett. 92, 141102 (2008) [Non-patent document 2] 2. Apply. Phys. Express, 12, 036504 (2019) [Non-patent document 3] 3. Appl. Phys. Lett. 105, 031111 (2014) [Non-patent document 4] 4. J. Vac. Sci. Technol. B 33, 050603 (2015) [Non-patent document 5] 5. Appl. Phys. Express 12, 044004 (2019) [Non-patent document 6] 6. Sci. Rep. 8, 10350 (2018) [Non-patent document 7] 7. Semicond. Sci. Technol. 26, 014017 (2010) [Non-patent document 8] 8. IEEE Signal Process. Mag. 37, 50-61 (2020) [Non-patent document 9] 9. IEICE Trans. Electron. E92-C, 194 (2009) [Non-patent document 10] 10. Phys. Stat. Soli, 215, 1700513 (2018) [Non-patent document 11] 11. Appl. Phys. Lett. 75, 1515 (1999) [Non-patent document 12] 12. Soc. Inf. Disp. Int. Symp. Dig. Tech. 44, 832 (2013) [Non-patent document 13] 13. AIP Adv.3, 072107 (2013) [Non-patent document 14] 14. Optics Letters, 41, 2608-2611 (2016) [Non-patent document 15] 15. Phys. Status Solidi A. 215, 1700513 (2018) [Non-patent document 16] 16. Opt. Express, 27,24717 (2019) [Non-patent document 17] 17. Appl. Phys. Express, 13, 041003 (2020) [Non-patent document 18] 18. Appl. Phys. Express,14,031002 (2021) [Non-patent document 19] 19. Applied Phys. Lett.119, 142103 (2021) [Non-patent document 20] 20. Crystals, 11 (12) 1563, (2021)

[技術問題] 數十年來,VCSEL中反射鏡,即分散式布拉格反射器,之製造在科學社群內一直具挑戰性,尤其是對於III族氮化物材料系統。III族氮化物VCSEL具有上鏡面及下鏡面。III族氮化物裝置層係沉積在基板上以形成n側區域、主動區域及p側區域之半導體積層,接著上鏡面可形成為p側鏡面在半導體積層上,並具有設置於裝置層上之不同介電材料之交替層。下鏡面必須定位來形成腔體,藉由上鏡面及下鏡面設置為彼此相近來達成光學腔體之形成,其結果為基板之去除。另一種不需去除基板來形成下鏡面的方式為利用非專利文獻1中之磊晶DBR、或非專利文獻2中之奈米多孔DBR。再一種形成下鏡面的方式為利用非專利文獻3之介電DBR或非專利文獻4之高對比指數光柵,其係藉由研磨基板直至裝置層或利用雷射剝離(laser lift-off)分離基板來形成。然而,這些方式顯示下鏡面之製造仍為瓶頸挑戰,且各方式相對於優點仍具有某些技術難度。 [Technical Issue] For decades, the fabrication of VCSEL mid-reflectors, known as dispersed Bragg reflectors, has been challenging within the scientific community, especially for III-nitride material systems. Group III nitride VCSEL has an upper mirror surface and a lower mirror surface. Group III nitride device layers are deposited on a substrate to form a semiconductor stack of n-side regions, active regions, and p-side regions. The upper mirror can then be formed as a p-side mirror on the semiconductor stack with different features disposed on the device layer. Alternating layers of dielectric material. The lower mirror surface must be positioned to form a cavity. The formation of the optical cavity is achieved by placing the upper mirror surface and the lower mirror surface close to each other, which results in the removal of the substrate. Another way to form a lower mirror surface without removing the substrate is to use the epitaxial DBR in Non-Patent Document 1 or the nanoporous DBR in Non-Patent Document 2. Another way to form the lower mirror surface is to use the dielectric DBR of Non-Patent Document 3 or the high-contrast index grating of Non-Patent Document 4, by grinding the substrate until the device layer or using laser lift-off to separate the substrate. to form. However, these methods show that the manufacturing of lower mirrors is still a bottleneck challenge, and each method still has certain technical difficulties relative to its advantages.

例如,磊晶DBR之形成為複雜的,且需要耗時的半導體沉積,以及可能易於造成劣化之晶質。介電DBR之形成需要利用複雜的化學機械研磨(chemical mechanical polishing,CMP)來去除基板。在去除製程中使用CMP仍為挑戰的、冗長的,且難以控制,並浪費昂貴的III族氮化物基板。For example, the formation of epitaxial DBR is complex and requires time-consuming semiconductor deposition and crystal quality that may be prone to degradation. The formation of dielectric DBR requires the use of complex chemical mechanical polishing (CMP) to remove the substrate. The use of CMP in the removal process remains challenging, lengthy, difficult to control, and wastes expensive III-nitride substrates.

另一方面,在非專利文獻5及專利文獻6中的彎曲鏡面方式係利用基板的大部分,並涉及半導體基板之研磨及蝕刻來製作n側DBR鏡面。彎曲的DBR鏡面形成在基板後側,因此VCSEL的這種結構不需要造成一些缺點之基板的去除。利用彎曲鏡面提供具有長光學腔體脂VCSEL。On the other hand, the curved mirror method in Non-Patent Document 5 and Patent Document 6 utilizes most of the substrate and involves grinding and etching the semiconductor substrate to produce an n-side DBR mirror. The curved DBR mirror is formed on the back side of the substrate, so this structure of the VCSEL does not require the removal of the substrate, which causes some disadvantages. Curved mirrors are utilized to provide grease VCSELs with long optical cavities.

具體而言,基板首先在厚度上變薄來減少腔體內的吸收損失,而薄化基板係較難控制的製程,且可能因基板必須從初始厚度300至400微米薄化至目標厚度10至30微米來提供具有腔體之VCSEL,而損害晶圓。Specifically, the substrate is first thinned in thickness to reduce the absorption loss in the cavity. Thinning the substrate is a difficult-to-control process, and may be because the substrate must be thinned from an initial thickness of 300 to 400 microns to a target thickness of 10 to 30 microns. microns to provide VCSELs with cavities without damaging the wafer.

再者,另一種方式為提供一種III族氮化物基礎的VCSEL具有單晶高對比指數光柵作為反射鏡面。使用於可見光波長之光柵的製作涉及複雜度、半導體材料的蝕刻。長時間操作下,裝置效能可能劣化而縮短裝置壽命。Furthermore, another approach is to provide a III-nitride based VCSEL with a single crystal high contrast index grating as the reflector. The fabrication of gratings for use at visible wavelengths involves complex, etching of semiconductor materials. Under prolonged operation, device performance may deteriorate and shorten device life.

又,現在製造高對比指數光柵的方法利用電子束(e-beam)微影及蝕刻,其可能損害裝置層。從而,這個製成需要附加的保護層來避免傷害主動區域及之後的裝置層。In addition, current methods of manufacturing high contrast index gratings utilize electron beam (e-beam) lithography and etching, which may damage device layers. Therefore, this fabrication requires additional protective layers to avoid damage to the active area and subsequent device layers.

考量這些缺點,本揭露之目的為提供一種III族氮化物基礎之VCSEL之結構及製造III族氮化物基礎之VCSEL之方法。本揭露之另一目的為提供一種單晶高對比指數之光柵及利用磊晶側向延長成長(epitaxial lateral overgrowth,ELO)來單晶地製造高對比指數光柵的方法。ELO製程及ELO結構可使半導體裝置層具有高晶質,並可避免裝置層在形成光柵中直接面對蝕刻環境。Considering these shortcomings, the purpose of the present disclosure is to provide a structure of a III-nitride-based VCSEL and a method of manufacturing a III-nitride-based VCSEL. Another object of the present disclosure is to provide a single crystal high contrast index grating and a method for manufacturing a single crystal high contrast index grating using epitaxial lateral overgrowth (ELO). The ELO process and ELO structure can make the semiconductor device layer have high crystal quality and prevent the device layer from directly facing the etching environment during the formation of the grating.

[解決手段] 本揭露提供一種VCSEL,其包含:第一分散式布拉格反射器(DBR),其包括在第一軸向上交替地配置之第一介電層及第二介電層;及半導體部分,其包括p型III族氮化物區域、III族氮化物區域、及位在該p型III族氮化物區域及該III族氮化物區域之間的III族氮化物主動區域,該p型III族氮化物區域、該III族氮化物主動區域及該III族氮化物區域配置於該第一軸向,該III族氮化物區域包括n型III族氮化物區域,其中,該半導體部分包括具有週期性一維圖案之單晶光柵,該單晶光柵、該III族氮化物主動區域及該第一分散式布拉格反射器配置於該第一軸向以形成光學腔體,該週期性一維圖案延伸於與第一軸向相交之第二軸向。 [Solution] The present disclosure provides a VCSEL, which includes: a first distributed Bragg reflector (DBR) including first dielectric layers and second dielectric layers alternately arranged in a first axial direction; and a semiconductor portion including p A type III nitride region, a group III nitride region, and a group III nitride active region between the p-type III nitride region and the group III nitride region, the p-type III nitride region, The Group III nitride active region and the Group III nitride region are arranged in the first axial direction, and the Group III nitride region includes an n-type Group III nitride region, wherein the semiconductor portion includes a periodic one-dimensional pattern. Single crystal grating, the single crystal grating, the Group III nitride active region and the first dispersed Bragg reflector are arranged in the first axis to form an optical cavity, and the periodic one-dimensional pattern extends to the first axis to the second axis of intersection.

本揭露亦提供一種製造VCSEL之方法,該方法包含:在基板之一面形成圖案化磊晶側向延長成長(ELO)光罩,其中該基板包括III族氮化物基板、矽基板、藍寶石基板、藍寶石基氮化鎵模板(GaN-on-Sapphire template)、或矽基氮化鎵模板(GaN-on-Silicon template)其中之一,該圖案化磊晶側向延長成長光罩包括光柵圖案及直至該基板之該面之開口;利用該圖案化磊晶側向延長成長光罩在該基板成長III族氮化物,以形成覆蓋該光柵圖案之III族氮化物區域,該光柵圖案被轉印至該III族氮化物區域;成長包括n型III族氮化物區域、III族氮化物主動區域及p型III族氮化物區域之半導體積層;成長該半導體積層後,成長導電層;形成第一分散式布拉格反射器在該導電層上以製作產品,其中該第一分散式布拉格反射器包括交替地配置之第一介電層及第二介電層;及從該產品去除該基板以暴露該圖案化磊晶側向延長成長光罩,其中,該光柵圖案包括沿該基板之該面延伸之週期性一維圖案。 [本揭露之功效] The present disclosure also provides a method for manufacturing a VCSEL. The method includes: forming a patterned epitaxial lateral elongation growth (ELO) mask on one side of a substrate, wherein the substrate includes a Group III nitride substrate, a silicon substrate, a sapphire substrate, and a sapphire substrate. One of the GaN-on-Sapphire template or the GaN-on-Silicon template, the patterned epitaxial lateral extension growth mask includes the grating pattern and up to the The opening on the surface of the substrate; the patterned epitaxial lateral extension growth mask is used to grow Group III nitride on the substrate to form a Group III nitride area covering the grating pattern, and the grating pattern is transferred to the III Group III nitride region; growing a semiconductor stack including an n-type Group III nitride region, a Group III nitride active region, and a p-type Group III nitride region; after growing the semiconductor stack, a conductive layer is grown; forming a first dispersed Bragg reflection disposed on the conductive layer to produce a product, wherein the first distributed Bragg reflector includes alternately arranged first dielectric layers and second dielectric layers; and removing the substrate from the product to expose the patterned epitaxial Laterally elongated growth masks are formed, wherein the grating pattern includes a periodic one-dimensional pattern extending along the surface of the substrate. [Efficacy of this disclosure]

上述發明可提供一種III族氮化物基礎之VCSEL的結構及製造III族氮化物基礎之VCSEL之方法。The above invention can provide a structure of a Group III nitride-based VCSEL and a method of manufacturing a Group III nitride-based VCSEL.

如本文中所使用的,諸如「第一」、「第二」、「第三」、「第四」及「第五」等用語描述了各種元件、組件、區域、層及/或部分,這些元件、組件、區域、層及/或部分不應受這些術語的限制。這些術語僅可用於將一個元素、組件、區域、層或部分與另一個做區分。除非上下文明確指出,否則本文中使用的諸如「第一」、「第二」、「第三」、「第四」及「第五」的用語並不暗示順序或次序。As used herein, terms such as “first”, “second”, “third”, “fourth” and “fifth” describe various elements, components, regions, layers and/or sections. Elements, components, regions, layers and/or sections shall not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another. Terms such as "first," "second," "third," "fourth" and "fifth" used herein do not imply a sequence or order unless otherwise clearly indicated by the context.

從說明、附圖和申請專利範圍,本說明書之主題的其他特徵、態樣與優點將顯得明瞭。參照圖式,表示本揭露之垂直共振腔面射型雷射、製造垂直共振腔面射型雷射之方法、單晶高對比指數光柵及利用磊晶側向延長成長單晶地製造高對比指數光柵的方法之示意圖會詳述如下。為便於理解,於圖式中相同元件係利用相同符號來表示。Other features, aspects, and advantages of the subject matter herein will be apparent from the description, drawings, and claims. Referring to the drawings, the disclosed vertical resonant cavity surface emitting laser, the method of manufacturing the vertical resonant cavity surface emitting laser, the single crystal high contrast index grating and the use of epitaxial lateral extension to grow the single crystal to produce the high contrast index are shown. A schematic diagram of the grating method is detailed below. For ease of understanding, the same components are represented by the same symbols in the drawings.

圖1是表示本揭露之一實施例之垂直共振腔面射型雷射(VCSEL)的示意圖。VCSEL 11包含分散式布拉格反射器(DBR) 13及具有單晶光柵17之半導體部分15。DBR 13包括交替地配置在第一軸向Ax1之第一介電層19及第二介電層21,且第一介電層19之材料與第二介電層21之材料不同。半導體部分15排除用來成長其的基板。VCSEL 11可更包含覆蓋單晶光柵17之部分或全部之介電層18,介電層18可沿單晶光柵17之表面結構延伸,因為其來自用於成長製程之圖案化ELO光罩,詳細說明如下。FIG. 1 is a schematic diagram showing a vertical cavity surface emitting laser (VCSEL) according to an embodiment of the present disclosure. The VCSEL 11 includes a distributed Bragg reflector (DBR) 13 and a semiconductor portion 15 with a single crystal grating 17 . The DBR 13 includes first dielectric layers 19 and second dielectric layers 21 alternately arranged in the first axial direction Ax1, and the materials of the first dielectric layer 19 and the second dielectric layer 21 are different. Semiconductor portion 15 excludes the substrate on which it is grown. The VCSEL 11 may further include a dielectric layer 18 covering part or all of the single crystal grating 17. The dielectric layer 18 may extend along the surface structure of the single crystal grating 17 as it comes from the patterned ELO mask used in the growth process. Details Instructions are as follows.

半導體部分15包括p型III族氮化物區域23、具有n型III族氮化物區域之III族氮化物區域25、及位在p型III族氮化物區域23與III族氮化物區域25之n型III族氮化物區域之間的III族氮化物主動區域27。p型III族氮化物區域23、III族氮化物主動區域27、及III族氮化物區域25之n型III族氮化物區域配置在第一軸向Ax1。單晶光柵17具有週期性一維圖案17a。單晶光柵17、半導體部分15、及DBR 13配置於第一軸向Ax1以形成光學腔體29。單晶光柵17沿III族氮化物區域25之面設置,週期性一維圖案17a在與第一軸向Ax1相交之第二軸向Ax2上延伸。The semiconductor portion 15 includes a p-type Group III nitride region 23, a Group III nitride region 25 having an n-type Group III nitride region, and an n-type Group III nitride region 23 between the p-type Group III nitride region 23 and the Group III nitride region 25. Group III nitride active region 27 between Group III nitride regions. The p-type Group III nitride region 23, the Group III nitride active region 27, and the n-type Group III nitride region 25 are arranged in the first axial direction Ax1. The single crystal grating 17 has a periodic one-dimensional pattern 17a. The single crystal grating 17, the semiconductor part 15, and the DBR 13 are arranged in the first axis Ax1 to form an optical cavity 29. The single crystal grating 17 is arranged along the surface of the group III nitride region 25, and the periodic one-dimensional pattern 17a extends in the second axial direction Ax2 that intersects the first axial direction Ax1.

VCSEL 11更包括陽極電極31及導電層35。導電層35具有內部部分35a及環繞內部部分35a之外部部分35b,並設置於p型III族氮化物區域23。內部部分35a對於從III族氮化物主動區域27來的光是透明的,並可設置於半導體部分15及DBR 13之間。外部部分35b沒有覆蓋DBR 13,可使陽極電極31與外部部分35b接觸。導電層35將陽極電極31與p型III族氮化物區域23連接。導電層35可包括III族氮化物半導體(如p型氮化鎵(GaN))或導電無機材料(如氧化銦錫(ITO))任一者,或兩者。在某些實施例中,DBR 13可設置與導電層35接觸。若需要,半導體部分15可更包括穿隧接面設置於p型III族氮化物區域23與導電層35之間,並具有n型導電性。The VCSEL 11 further includes an anode electrode 31 and a conductive layer 35 . The conductive layer 35 has an inner portion 35a and an outer portion 35b surrounding the inner portion 35a, and is disposed in the p-type Group III nitride region 23. The inner portion 35a is transparent to light from the III-nitride active region 27 and may be disposed between the semiconductor portion 15 and the DBR 13. The outer portion 35b does not cover the DBR 13, allowing the anode electrode 31 to be in contact with the outer portion 35b. The conductive layer 35 connects the anode electrode 31 and the p-type Group III nitride region 23 . The conductive layer 35 may include either a Group III nitride semiconductor (such as p-type gallium nitride (GaN)) or a conductive inorganic material (such as indium tin oxide (ITO)), or both. In some embodiments, DBR 13 may be disposed in contact with conductive layer 35 . If necessary, the semiconductor portion 15 may further include a tunnel junction disposed between the p-type Group III nitride region 23 and the conductive layer 35 and have n-type conductivity.

VCSEL 11包括陰極電極33。陰極電極33電性連接III族氮化物區域25之n型III族氮化物區域。如圖1所示,陰極電極33(33a及33b)設置與III族氮化物區域25之n型III族氮化物區域之前面或背面任一者接觸,或與兩者接觸。VCSEL 11 includes cathode electrode 33 . The cathode electrode 33 is electrically connected to the n-type Group III nitride region of the Group III nitride region 25 . As shown in FIG. 1 , the cathode electrode 33 ( 33 a and 33 b ) is provided in contact with either the front surface or the back surface of the n-type Group III nitride region of the Group III nitride region 25 , or in contact with both.

具體而言,陰極電極33(33a及33b)可設置與III族氮化物區域25之n型III族氮化物區域之前面或背面任一者接觸。Specifically, the cathode electrode 33 (33a and 33b) may be provided in contact with either the front surface or the back surface of the n-type Group III nitride region of the Group III nitride region 25.

在具有台面37之提供有半導體部分15之VCSEL 11中,台面37包括p型III族氮化物區域23、III族氮化物主動區域27、及III族氮化物區域25之n型III族氮化物區域之一部分。台面37位於III族氮化物區域25之n型III族氮化物區域之剩餘部分,且在台面37之底部,台面37被III族氮化物區域25之n型III族氮化物前面25a環繞。陰極電極33a可設置於III族氮化物區域25之n型III族氮化物前面25a。In a VCSEL 11 provided with a semiconductor portion 15 having a mesa 37 , the mesa 37 includes a p-type III-nitride region 23 , a III-nitride active region 27 , and an n-type III-nitride region 25 part of it. Mesa 37 is located in the remainder of the n-type III-nitride region of III-nitride region 25 and at the bottom of mesa 37, mesa 37 is surrounded by n-type III-nitride front face 25a of III-nitride region 25. The cathode electrode 33a may be disposed on the n-type Group III nitride front face 25a of the Group III nitride region 25.

在提供有單晶光柵17之VCSEL 11中,具有未被介電層18覆蓋的環繞部以暴露III族氮化物區域25之n型III族氮化物背面25b之一部分,陰極電極33b可設置於n型III族氮化物背面25b,位在單晶光柵17及介電層18外側。In the VCSEL 11 provided with the single crystal grating 17 having a surrounding portion not covered by the dielectric layer 18 to expose a portion of the n-type III-nitride backside 25b of the III-nitride region 25, the cathode electrode 33b may be disposed at n The type III nitride backside 25b is located outside the single crystal grating 17 and the dielectric layer 18 .

介電層18可包含無圖案化部分18b及圖案化部分18c。圖案化部分18c可覆蓋III族氮化物區域25之背面25b,因此圖案化部分18c具有週期性一維圖案18a相關於週期性一維圖案17a。無圖案化部分18b可由另一介電DBR積層18d取代,藉此單晶光柵17不僅包括延伸於第二軸向Ax2之週期性一維圖案17a,亦包括其他介電DBR積層18d,即包括兩種介電層交替地配置於第一軸向Ax1。Dielectric layer 18 may include unpatterned portions 18b and patterned portions 18c. The patterned portion 18c may cover the backside 25b of the Group III nitride region 25 so that the patterned portion 18c has a periodic one-dimensional pattern 18a relative to the periodic one-dimensional pattern 17a. The unpatterned portion 18b can be replaced by another dielectric DBR buildup 18d, whereby the single crystal grating 17 not only includes the periodic one-dimensional pattern 17a extending in the second axis Ax2, but also includes other dielectric DBR buildup 18d, that is, two The dielectric layers are alternately arranged in the first axial direction Ax1.

腔體29具有總腔體長度Lcav,其可定義為現在之VCSEL 11的單晶光柵17與DBR 13之間的距離,並為1微米以上。總腔體長度Lcav不大於30微米,因VCSEL 11不包括用於成長半導體部分15之基板的任何部分。The cavity 29 has a total cavity length Lcav, which can be defined as the distance between the single crystal grating 17 and the DBR 13 of the current VCSEL 11, and is more than 1 micron. The total cavity length Lcav is not greater than 30 microns, since the VCSEL 11 does not include any part of the substrate for growing the semiconductor portion 15 .

半導體部分15具有導電窗口部分39a及環繞導電窗口部分39a之低導電部分39b。導電窗口部分39a使VCSEL 11具有從陽極電極31至陰極電極33的電性路徑。載子,如電子或電洞,流過電性路徑並在III族氮化物主動區域27中重新結合以產生光,從DBR 13或單晶光柵17其中之一射出。The semiconductor portion 15 has a conductive window portion 39a and a low conductive portion 39b surrounding the conductive window portion 39a. Conductive window portion 39a provides VCSEL 11 with an electrical path from anode electrode 31 to cathode electrode 33. Carriers, such as electrons or holes, flow through the electrical path and recombine in the III-nitride active region 27 to produce light, which is emitted from either the DBR 13 or the single crystal grating 17 .

圖2是表示本揭露之一實施例之製造VCSEL之方法之主要步驟的流程圖。如圖2所示,其提供根據本實施例之範例製造過程之概略描述。首先,在S101中,準備基板。在S102中,磊晶側向延長成長(ELO)光罩形成於基板上,並具有對於週期性一維圖案18b來圖案化的表面,以從ELO光罩製作圖案化ELO光罩。在S103中,III族氮化物沉積於基板及圖案化ELO光罩。圖案化ELO光罩上的沉積可將圖案化ELO光罩之圖案化表面轉印至沉積的III族氮化物。在S104中,沉積的III族氮化物被研磨以取得較平整表面,並調整VCSEL之腔體長度。在S105中,在平坦化表面上,III族氮化物半導體積層被成長,且接著前端製程被實施以形成窗口結構、DBR及電極,藉此製造產品。在S106中,產品被連結至支持工具,且接著基板從產品被分離,例如利用深冷處理(cryogenic treatment)或雷射剝離(laser lift-off),來取得連結至支持工具之裝置積層。分離之基板可以再回收。在S107中,後端製程被應用至裝置積層,且接著在S108中,裝置積層被分離為半導體裝置晶片。FIG. 2 is a flowchart showing the main steps of a method of manufacturing a VCSEL according to an embodiment of the present disclosure. As shown in Figure 2, which provides a schematic description of an example manufacturing process in accordance with this embodiment. First, in S101, a substrate is prepared. In S102, an epitaxial lateral elongation growth (ELO) mask is formed on the substrate and has a surface patterned for the periodic one-dimensional pattern 18b to produce a patterned ELO mask from the ELO mask. In S103, Group III nitride is deposited on the substrate and patterned ELO mask. Deposition on the patterned ELO mask transfers the patterned surface of the patterned ELO mask to the deposited III-nitride. In S104, the deposited Group III nitride is polished to obtain a flatter surface, and the cavity length of the VCSEL is adjusted. In S105, a Group III nitride semiconductor stack is grown on the planarized surface, and then a front-end process is performed to form the window structure, DBR and electrodes, thereby manufacturing the product. In S106, the product is connected to the support tool, and then the substrate is separated from the product, such as by cryogenic treatment or laser lift-off, to obtain the device buildup connected to the support tool. The separated substrates can be recycled. In S107, the back-end process is applied to the device stack-up, and then in S108, the device stack-up is separated into semiconductor device wafers.

本揭露之VCSEL之一實施例詳述如下。在以下敘述中,III族氮化物可例如藉由金屬有機物化學氣相沉積(metal organic chemical vapor deposition,MOCVD)來進行沉積。An embodiment of the VCSEL of the present disclosure is described in detail below. In the following description, the Group III nitride may be deposited, for example, by metal organic chemical vapor deposition (MOCVD).

圖3A、3B、3C及3D表示製造單晶光柵17之步驟。如圖3A及3B所示,準備基板101,基板101可包含III族氮化物基板、藍寶石基氮化鎵模板(GaN-on-Sapphire template)、矽基氮化鎵模板(GaN-on-Silicon template)、矽基板、藍寶石基板、或其他異質(foreign)基板其中之一。III族氮化物基板可包含氮化鎵基材料,如氮化鎵(GaN)。在執行磊晶側向延長成長(ELO)之前,藉由光微影(photolithography)及蝕刻將ELO光罩103形成在基板101之一面。ELO光罩103包括無機介電材料,如二氧化矽。具體而言,將一層無機介電材料沉積在基板101,接著不僅針對ELO亦對於單晶光柵17來圖案化兩次。3A, 3B, 3C and 3D illustrate the steps of manufacturing the single crystal grating 17. As shown in Figures 3A and 3B, a substrate 101 is prepared. The substrate 101 may include a Group III nitride substrate, a GaN-on-Sapphire template, or a GaN-on-Silicon template. ), silicon substrate, sapphire substrate, or one of other foreign substrates. The Group III nitride substrate may include gallium nitride-based materials, such as gallium nitride (GaN). Before performing epitaxial lateral extension (ELO), the ELO mask 103 is formed on one side of the substrate 101 by photolithography and etching. ELO mask 103 includes an inorganic dielectric material, such as silicon dioxide. Specifically, a layer of inorganic dielectric material is deposited on the substrate 101 and then patterned twice not only for the ELO but also for the single crystal grating 17 .

具體而言,如圖3A至3C所示,首先將光微影光罩105(如光阻)形成在無機介電層103上,且無機介電層103經由光阻光罩105被蝕刻來形成具有ELO圖案的ELO光罩107。ELO圖案包括直至基板101的開口107a。在去除光微影光罩105後,將另一光微影光罩109(如光阻)形成在ELO光罩107上,接著將介電層110沉積在光罩109之上。為了提供具有一維圖案之ELO光罩107,介電層110不利用任何光罩1被蝕刻以暴露光罩109之頂部,接著去除光阻光罩109來製作圖案化ELO光罩111。圖案化ELO光罩111包括用於單晶光柵17之圖案18a。Specifically, as shown in FIGS. 3A to 3C , a photolithographic mask 105 (such as a photoresist) is first formed on the inorganic dielectric layer 103 , and the inorganic dielectric layer 103 is formed by etching the photoresist mask 105 ELO mask 107 with ELO pattern. The ELO pattern includes an opening 107a up to the substrate 101. After the photolithography mask 105 is removed, another photolithography mask 109 (eg, photoresist) is formed on the ELO mask 107, and then the dielectric layer 110 is deposited on the photomask 109. To provide an ELO mask 107 with a one-dimensional pattern, the dielectric layer 110 is etched without any mask 1 to expose the top of the mask 109, and the photoresist mask 109 is then removed to create a patterned ELO mask 111. Patterned ELO mask 111 includes pattern 18a for single crystal grating 17.

在本揭露中,第一圖案化係形成ELO圖案,第二圖案化係形成用於單晶光柵17之圖案18a。視需求,第二圖案化亦可在第一圖案化之前執行。In the present disclosure, the first patterning forms the ELO pattern, and the second patterning forms the pattern 18a for the single crystal grating 17. Depending on the requirements, the second patterning can also be performed before the first patterning.

圖4是表示本揭露之一實施例之經由二次圖案化形成之圖案化ELO光罩之平面圖。如圖4所示,圖案化ELO光罩111具有複數彼此分離之圖案化區域111a。各圖案化區域111a係準備來用於VCSEL 11之單晶光柵17,且遠離開口107a。FIG. 4 is a plan view of a patterned ELO mask formed by secondary patterning according to an embodiment of the present disclosure. As shown in FIG. 4 , the patterned ELO mask 111 has a plurality of patterned areas 111 a that are separated from each other. Each patterned area 111a is prepared for the single crystal grating 17 of the VCSEL 11 and is located away from the opening 107a.

如圖3C所示,藉由MOCVD將III族氮化物成長或沉積在具有圖案化ELO光罩111之基板101上,來形成厚的III族氮化物區域113。III族氮化物區域113的至少一部分可摻雜n型摻雜物,如矽。在本實施例中,III族氮化物區域113可完全覆蓋光柵17。III族氮化物區域113之厚度可大於氮化物區域25之厚度。III族氮化物之ELO區域可包括密度小於10 5/cm 2、10 4/cm 2或10 3/cm 2的缺陷。 As shown in FIG. 3C , III-nitride is grown or deposited on the substrate 101 with the patterned ELO mask 111 by MOCVD to form a thick III-nitride region 113 . At least a portion of the III-nitride region 113 may be doped with an n-type dopant, such as silicon. In this embodiment, the III-nitride region 113 may completely cover the grating 17 . The thickness of Group III nitride region 113 may be greater than the thickness of nitride region 25 . The ELO region of the Group III nitride may include defects with a density less than 10 5 /cm 2 , 10 4 /cm 2 or 10 3 /cm 2 .

如圖3D所示,在接下來的半導體沉積之前,III族氮化物區域113可被加工以取得光學腔體29之所需長度。例如,可研磨或蝕刻III族氮化物區域113來形成平坦化之III族氮化物區域115,而使III族氮化物區域115之研磨後或蝕刻後表面平坦化來準備接下來的磊晶成長。As shown in FIG. 3D , III-nitride region 113 may be processed to obtain the desired length of optical cavity 29 prior to subsequent semiconductor deposition. For example, the III-nitride region 113 may be ground or etched to form a planarized III-nitride region 115, and the polished or etched surface of the III-nitride region 115 may be planarized in preparation for subsequent epitaxial growth.

圖5A、5B及5C表示製造VCSEL 11之步驟。在III族氮化物區域113之平坦化之後,如圖5A所示,包含III族氮化物區域25、III族氮化物主動區域27及p型III族氮化物區域23之半導體積層117被成長。III族氮化物區域25可包含GaN基或AlN基材料摻雜n型摻雜物,以可提供電子至III族氮化物主動區域27,p型III族氮化物區域23可包含GaN基或AlN基材料摻雜p型摻雜物,以可提供電洞至III族氮化物主動區域27。III族氮化物主動區域27可包含GaN基或AlN基材料,如GaN、InGaN、AlN或AlGaN。III族氮化物主動區域27可具有單層或量子井結構,如單量子井(SQW)或多量子井(MQWs)。視需求,可在沉積p型III族氮化物區域23後,再成長埋置的穿隧接面。5A, 5B and 5C illustrate the steps of manufacturing VCSEL 11. After the group III nitride region 113 is planarized, as shown in FIG. 5A , the semiconductor layer 117 including the group III nitride region 25 , the group III nitride active region 27 , and the p-type group III nitride region 23 is grown. The Group III nitride region 25 may include GaN-based or AlN-based materials doped with n-type dopants to provide electrons to the Group III nitride active region 27 , and the p-type Group III nitride region 23 may include GaN-based or AlN-based materials. The material is doped with p-type dopants to provide holes to the III-nitride active region 27 . Group III nitride active region 27 may include GaN-based or AlN-based materials, such as GaN, InGaN, AIN, or AlGaN. III-nitride active region 27 may have a single layer or quantum well structure, such as single quantum wells (SQWs) or multiple quantum wells (MQWs). If required, a buried tunnel junction can be grown after depositing the p-type Group III nitride region 23 .

如圖5B所示,為了從半導體積體117及研磨後的III族氮化物區域115製作半導體窗口區域,光罩119(如光阻)形成在半導體積層117上。離子(如氫原子、n型摻雜物原子及/或p型摻雜物原子)之植入至具有光罩119之半導體積層117可從半導體積體115製作用於半導體部分15之窗口結構117a。窗口結構117a具有半導體窗口區域121及環繞半導體窗口區域121之隔離區域123。As shown in FIG. 5B , in order to create a semiconductor window region from the semiconductor stack 117 and the polished Group III nitride region 115 , a photomask 119 (such as a photoresist) is formed on the semiconductor stack 117 . Implantation of ions (such as hydrogen atoms, n-type dopant atoms, and/or p-type dopant atoms) into the semiconductor stack 117 with the photomask 119 can produce the window structure 117a for the semiconductor portion 15 from the semiconductor stack 115 . The window structure 117a has a semiconductor window area 121 and an isolation area 123 surrounding the semiconductor window area 121.

本實施例之製造VCSEL之方法之前半部分已敘述如上。本實施例之方法的後半部分詳述如下。The first half of the method of manufacturing the VCSEL of this embodiment has been described above. The second half of the method of this embodiment is described in detail below.

在去除光罩119後,如圖5C所示,將導電層125沉積在窗口結構117a,其覆蓋半導體窗口區域121及隔離區域123。導電層125可包括重摻雜III族氮化物半導電層(如GaN或AlGaN)及/或無機層(如氧化銦錫(ITO)),且對於從III族氮化物主動區域27來的光是透明的。After the photomask 119 is removed, as shown in FIG. 5C , the conductive layer 125 is deposited on the window structure 117a, which covers the semiconductor window area 121 and the isolation area 123. The conductive layer 125 may include a heavily doped III-nitride semiconducting layer (such as GaN or AlGaN) and/or an inorganic layer (such as indium tin oxide (ITO)), and is sensitive to light from the III-nitride active region 27 transparent.

圖6A、6B及6C表示製造VCSEL 11之步驟。如圖6A所示,將u(DBR)積層127形成在導電層125上,且具體而言,將第一介電層127a及第二介電層127b交替地沉積以形成該些介電層的配置。6A, 6B and 6C illustrate the steps of manufacturing VCSEL 11. As shown in FIG. 6A , a u(DBR) stack 127 is formed on the conductive layer 125 , and specifically, the first dielectric layer 127 a and the second dielectric layer 127 b are alternately deposited to form the dielectric layers. configuration.

如圖6B所示,將光罩129(如光阻)形成在DBR積層127上。DBR積層127經由光罩129被蝕刻以暴露導電層125之一部分,藉此形成圖案化DBR積層131,亦即DBR 131。DBR 131對位於與圖案化ELO光罩111(17)相關的單晶光柵17,藉此提供具有光學腔體29之實質部分的VCSEL 11。As shown in FIG. 6B , a photomask 129 (eg, photoresist) is formed on the DBR buildup 127 . The DBR buildup 127 is etched through the photomask 129 to expose a portion of the conductive layer 125 , thereby forming a patterned DBR buildup 131 , ie, DBR 131 . DBR 131 is aligned with single crystal grating 17 associated with patterned ELO mask 111 (17), thereby providing VCSEL 11 with a substantial portion of optical cavity 29.

如圖6C所示,將第一電極133,如陽極金屬電極,形成在DBR 127之上以提供產品135。將第一電極133沉積與導電層125之暴露面接觸。As shown in FIG. 6C , a first electrode 133 , such as an anode metal electrode, is formed over the DBR 127 to provide a product 135 . The first electrode 133 is deposited in contact with the exposed surface of the conductive layer 125 .

圖7A、7B及7C表示製造VCSEL 11之步驟。如圖7A所示,產品135被連結至位在第一電極133的支持工具ST。7A, 7B and 7C illustrate the steps of manufacturing VCSEL 11. As shown in FIG. 7A , the product 135 is connected to the support tool ST located on the first electrode 133 .

藉由深冷處理或雷射剝離將基板101從產品135去除,以暴露與單晶光柵17相關的圖案化ELO光罩111,藉此製造VCSEL積層137。VCSEL積層137已具有位在其前側的第一電極133。The VCSEL buildup 137 is produced by removing the substrate 101 from the product 135 by cryogenic processing or laser lift-off to expose the patterned ELO mask 111 associated with the single crystal grating 17 . VCSEL buildup 137 already has a first electrode 133 on its front side.

如圖7B所示,為了形成第二電極,如陰極金屬電極,在VCSEL積層137,圖案化ELO光罩111經由光罩139(如光阻)被加工以藉由光微影及蝕刻在其內形成開口111b。As shown in FIG. 7B , to form a second electrode, such as a cathode metal electrode, in the VCSEL buildup 137 , a patterned ELO mask 111 is processed through a mask 139 (eg, photoresist) to allow photolithography and etching therein. An opening 111b is formed.

如圖7C所示,在去除光罩139後,將第二電極141形成在VCSEL積層137的後側以製造VCSEL,其具有分別在VCSEL 11相對側的第一電極133及第二電極141。第二電極141沉積與III族氮化物區域115之後側接觸。As shown in FIG. 7C , after the photomask 139 is removed, the second electrode 141 is formed on the back side of the VCSEL build-up layer 137 to manufacture a VCSEL, which has a first electrode 133 and a second electrode 141 respectively on opposite sides of the VCSEL 11 . A second electrode 141 is deposited in rear-side contact with the III-nitride region 115 .

上述製程完成一種VCSEL 11之製造。The above process completes the manufacturing of a VCSEL 11.

以下詳述根據本揭露之VCSEL之實施例。圖8A、8B及8C表示製造VCSEL 11之步驟。Embodiments of VCSELs according to the present disclosure are described in detail below. 8A, 8B and 8C illustrate the steps of manufacturing VCSEL 11.

在形成如圖5A所示之半導體積層117後,如圖8A及8B所示,從半導體積層117製作半導體台面143及窗口結構117a以暴露n型III族氮化物區域115。在本實施例中,如圖8A所示,半導體台面143首先藉由光微影及蝕刻經光罩145(如光阻)來形成,接著窗口結構117a如圖5B被形成。如圖8B所示,窗口結構117a具有半導體窗口區域121及環繞半導體窗口區域121的隔離區域123。視需求,窗口結構117a可先被形成,再形成半導體台面143。After forming the semiconductor build-up layer 117 as shown in FIG. 5A , as shown in FIGS. 8A and 8B , a semiconductor mesa 143 and a window structure 117 a are formed from the semiconductor build-up layer 117 to expose the n-type Group III nitride region 115 . In this embodiment, as shown in FIG. 8A , the semiconductor mesa 143 is first formed through a photomask 145 (such as photoresist) by photolithography and etching, and then the window structure 117a is formed as shown in FIG. 5B . As shown in FIG. 8B , the window structure 117a has a semiconductor window region 121 and an isolation region 123 surrounding the semiconductor window region 121 . If required, the window structure 117a may be formed first and then the semiconductor mesa 143 is formed.

如圖8C所示,將導電層125成長在窗口結構117a上,且導電層125覆蓋半導體窗口區域121及隔離區域123並且不成長在n型III族氮化物區域115上。導電層125對於從III族氮化物主動區域27進來的光為透明的。導電層125亦可包含重摻雜III族氮化物半導電層,如GaN或AlGaN,及/或無機層,如氧化銦錫(ITO)。III族氮化物半導體之導電層125可形成在半導體台面143上,例如藉由利用無機光罩或介電光罩147之選擇性成長。As shown in FIG. 8C , the conductive layer 125 is grown on the window structure 117 a, and the conductive layer 125 covers the semiconductor window region 121 and the isolation region 123 and is not grown on the n-type Group III nitride region 115 . Conductive layer 125 is transparent to light coming from III-nitride active region 27 . The conductive layer 125 may also include a heavily doped Group III nitride semiconducting layer, such as GaN or AlGaN, and/or an inorganic layer, such as indium tin oxide (ITO). The conductive layer 125 of the Group III nitride semiconductor may be formed on the semiconductor mesa 143 , for example, by selective growth using an inorganic photomask or a dielectric photomask 147 .

圖9A及9B表示製造VCSEL 11之步驟。如圖9A所示,將DBR積層127形成在導電層125上。經由蝕刻去除DBR積層127之一部分以暴露導電層125之一部分,藉此形成圖案化DBR積層131,即DBR 131。DBR 131對位於與圖案化ELO光罩111(17)相關的單晶光柵17,藉此提供具有光學腔體29之實質部分的VCSEL 11。9A and 9B illustrate the steps of manufacturing VCSEL 11. As shown in FIG. 9A , a DBR buildup layer 127 is formed on the conductive layer 125 . A portion of the DBR build-up layer 127 is removed through etching to expose a portion of the conductive layer 125 , thereby forming a patterned DBR build-up layer 131 , ie, DBR 131 . DBR 131 is aligned with single crystal grating 17 associated with patterned ELO mask 111 (17), thereby providing VCSEL 11 with a substantial portion of optical cavity 29.

如圖9B所示,將第一電極133,如陽極金屬電極,及第二電極141,如陰極金屬電極,分別形成在暴露的導電層125及暴露的n型III族氮化物區域115上,藉此製造產品149。第一電極133及第二電極141皆位於半導體區域(125及115)之前側。具體而言,在台面143上第一電極133沉積與導電層125接觸,第二電極141沉積與n型III族氮化物區域115接觸。As shown in FIG. 9B, a first electrode 133, such as an anode metal electrode, and a second electrode 141, such as a cathode metal electrode, are formed on the exposed conductive layer 125 and the exposed n-type Group III nitride region 115, respectively. This manufactured product 149. The first electrode 133 and the second electrode 141 are both located on the front side of the semiconductor region (125 and 115). Specifically, the first electrode 133 is deposited on the mesa 143 in contact with the conductive layer 125 , and the second electrode 141 is deposited in contact with the n-type Group III nitride region 115 .

圖10A、10B及10C表示製造VCSEL 11之步驟。產品149以與圖6C相同方式被連結至支持工具,而為簡化圖面支持工具在圖9B至10C中被省略。10A, 10B and 10C illustrate the steps of manufacturing VCSEL 11. Product 149 is linked to the support tool in the same manner as in Figure 6C, which is omitted in Figures 9B-10C to simplify the drawing.

如圖10A所示,將基板101從產品149去除以暴露相關於單晶光柵17之圖案化ELO光罩111,藉此製造VCSEL 積層151。VCSEL 積層151已具有第一電極133及第二電極141位在其同一側。As shown in FIG. 10A , substrate 101 is removed from product 149 to expose patterned ELO mask 111 associated with single crystal grating 17 , thereby fabricating VCSEL buildup 151 . The VCSEL stack 151 already has the first electrode 133 and the second electrode 141 on the same side.

如圖10B所示,在具有第一電極133及第二電極141位在其同一側之VCSEL中,圖案化ELO光罩111被保留在III族氮化物區域115之後側。上述製程完成一種VCSEL 11之製造。As shown in FIG. 10B , in a VCSEL with the first electrode 133 and the second electrode 141 on the same side, the patterned ELO mask 111 is retained behind the Group III nitride region 115 . The above process completes the manufacturing of a VCSEL 11.

視需求,如圖10C所示,圖案化ELO光罩111之介電材料可被去除,以暴露從圖案化ELO光罩111轉印至III族氮化物區域115的週期性一維圖案17a。藉此,將單晶光柵17形成在III族氮化物區域115的後側。If desired, as shown in FIG. 10C , the dielectric material of the patterned ELO mask 111 can be removed to expose the periodic one-dimensional pattern 17 a transferred from the patterned ELO mask 111 to the III-nitride region 115 . Thereby, the single crystal grating 17 is formed on the rear side of the group III nitride region 115 .

上述製程完成一種VCSEL 11之製造。The above process completes the manufacturing of a VCSEL 11.

參照圖11至15說明根據本揭露之VCSEL之複數實施例。DBR鏡面13亦可作用如p型電極及n型電極間的鈍化/隔離層。Multiple embodiments of VCSELs according to the present disclosure are described with reference to FIGS. 11 to 15 . The DBR mirror 13 can also serve as a passivation/isolation layer between p-type electrodes and n-type electrodes.

圖11A是表示本揭露之一實施例之VCSEL 11a之平面圖,圖11B是表示沿圖11A之線I-I之剖面圖。FIG. 11A is a plan view of a VCSEL 11a according to an embodiment of the present disclosure, and FIG. 11B is a cross-sectional view along line I-I of FIG. 11A.

一實施例之製程包含以下步驟。 1、沉積ELO介電光罩層在主基板(host substrate),如GaN基板、GaN-on-Sapphire模板、GaN-on-Silicon模板; 2、在ELO光罩中圖案化光柵; 3、在ELO光罩層中形成成長輔助部分,即開口,以暴露主基板101之表面,藉此形成圖案化ELO光罩111; 4、藉由磊晶側向延長成長程序在光罩上成長GaN層,以使側向成長之層至少覆蓋圖案化ELO光罩之光柵圖案,藉此形成磊晶側向延長成長(ELO)氮化物層; 5、藉由研磨或蝕刻來平坦化延長成長之氮化物層以控制光學腔體之長度; 6、藉由繼續成長以下層來形成半導體積層:用於披覆之n-GaN層(例如,約1000奈米(nm)厚)及複數n型接觸層;主動區域(例如,複數InGaN/GaN量子井);AlGaN電子阻擋層(例如,約30 nm);p-GaN層(例如,約200 nm厚);及p +-GaN層(例如,約10 nm厚); 7、執行離子佈植以在半導體積層中定義電性、光學窗口; 8、形成用於p型接觸之透明導電層; 9、沉積介電DBR鏡面積層; 10、沉積接觸金屬電極,並覆晶接合至支持工具(未表示於圖中); 11、當使用模板基板時,利用於非專利文獻16至非專利文獻20所述之深冷處理、或雷射剝離來去除基板,去除基板以使相同基板可重複使用,藉此明顯地降低成本; 12、最後沉積金屬接觸電極在n型側上;及 13、去除圖案化ELO光罩111。 A process of one embodiment includes the following steps. 1. Deposit the ELO dielectric mask layer on the host substrate, such as GaN substrate, GaN-on-Sapphire template, GaN-on-Silicon template; 2. Pattern the grating in the ELO mask; 3. In the ELO A growth auxiliary part, that is, an opening is formed in the mask layer to expose the surface of the main substrate 101, thereby forming a patterned ELO mask 111; 4. Grow the GaN layer on the mask through the epitaxial lateral extension growth process to Make the lateral growth layer at least cover the grating pattern of the patterned ELO mask, thereby forming an epitaxial lateral extension growth (ELO) nitride layer; 5. Planarize the extension growth nitride layer by grinding or etching. Control the length of the optical cavity; 6. Form a semiconductor stack by continuing to grow the following layers: n-GaN layer for coating (for example, about 1000 nanometers (nm) thick) and a plurality of n-type contact layers; active region (e.g., complex InGaN/GaN quantum wells); AlGaN electron blocking layer (e.g., approximately 30 nm thick); p-GaN layer (e.g., approximately 200 nm thick); and p + -GaN layer (e.g., approximately 10 nm thick) ; 7. Perform ion implantation to define electrical and optical windows in the semiconductor buildup; 8. Form transparent conductive layers for p-type contacts; 9. Deposit dielectric DBR mirror area layers; 10. Deposit contact metal electrodes and cover The die is bonded to a supporting tool (not shown in the figure); 11. When using a template substrate, the substrate is removed by cryogenic treatment as described in Non-Patent Documents 16 to 20, or laser lift-off, and the substrate is removed to make The same substrate can be reused, thereby significantly reducing costs; 12. Finally deposit the metal contact electrode on the n-type side; and 13. Remove the patterned ELO mask 111.

單晶光柵17,如n-GaN或非故意摻雜(UID)-GaN,設置在III族氮化物區域25之表面上,其係藉由磊晶側向延長成長技術覆蓋圖案化ELO光罩111。因此,III族氮化物具有GaN光柵,其係從圖案化ELO光罩111轉印而來。在藉由研磨(可用來調整腔體長度及/或平坦化III族氮化物區域)形成III族氮化物區域25後,可藉由MOCVD成長III族氮化物區域23及27 。III族氮化物區域23及27,其等為延續的裝置層,包含未摻雜主動區域及p型層,各具有銦(In)、鎵(Ga)及/或鋁(Al)之合金、及氮(N)。A single crystal grating 17, such as n-GaN or unintentionally doped (UID)-GaN, is disposed on the surface of the III-nitride region 25, which covers the patterned ELO mask 111 by epitaxial lateral extension growth technology. . Therefore, the III-nitride has a GaN grating, which is transferred from the patterned ELO mask 111 . After the III-nitride region 25 is formed by grinding (which can be used to adjust the cavity length and/or planarize the III-nitride region), the III-nitride regions 23 and 27 can be grown by MOCVD. Group III nitride regions 23 and 27, which are continuous device layers, include undoped active regions and p-type layers, each having an alloy of indium (In), gallium (Ga), and/or aluminum (Al), and Nitrogen (N).

圖12A是表示本揭露之一實施例之VCSEL 11b之平面圖,圖12B是表示沿圖12A之線II-II之剖面圖。FIG. 12A is a plan view of a VCSEL 11b according to an embodiment of the present disclosure, and FIG. 12B is a cross-sectional view along line II-II of FIG. 12A.

一實施例之製程包含以下步驟。 1、形成週期性配置之介電層的DBR鏡面積層(18d)在主機板(101)上,如GaN基板、GaN-on-Sapphire模板、GaN-on-Silicon模板; 2、沉積分離的介電層(18c)在DBR鏡面積層(18d)上; 3、在分離的介電層(18c)中形成用於單晶光柵圖案之光柵圖案; 4、在分離的介電層(18c)及DBR鏡面積層(18d)中形成成長輔助部分,即開口,以暴露主基板101之表面,藉此形成圖案化ELO光罩111; 5、藉由磊晶側向延長成長程序在光罩上成長GaN層,以使側向成長之層至少覆蓋光柵圖案,藉此形成ELO氮化物層; 6、藉由研磨或蝕刻來平坦化ELO氮化物層(113)以控制光學腔體之長度; 7、藉由繼續成長以下層來形成半導體積層:用於披覆之n-GaN層(例如,約1000nm厚)及複數n型接觸層;主動區域(例如,複數InGaN/GaN量子井);AlGaN電子阻擋層(例如,約30 nm);p-GaN層(例如,約200 nm厚);及p +-GaN層(例如,約10 nm厚); 8、執行離子佈植以在半導體積層中定義電性、光學窗口; 9、沉積用於p型接觸之透明導電層(35); 10、沉積介電DBR鏡面積層(13); 11、沉積接觸金屬電極(31),並覆晶接合至支持工具(未表示於圖中); 12、當使用模板基板時,利用於非專利文獻16至非專利文獻20所述之深冷處理、或雷射剝離來去除基板(101),去除基板以使相同基板可重複使用,藉此明顯地降低成本;及 13、最後沉積金屬接觸電極(33b)在n型側上。 A process of one embodiment includes the following steps. 1. Form the DBR mirror area layer (18d) of the periodically configured dielectric layer on the motherboard (101), such as GaN substrate, GaN-on-Sapphire template, GaN-on-Silicon template; 2. Deposit the separated dielectric Layer (18c) on the DBR mirror surface layer (18d); 3. Form the grating pattern for the single crystal grating pattern in the separate dielectric layer (18c); 4. Form the grating pattern on the separate dielectric layer (18c) and the DBR mirror surface A growth auxiliary part, that is, an opening is formed in the build-up layer (18d) to expose the surface of the main substrate 101, thereby forming a patterned ELO mask 111; 5. Grow the GaN layer on the mask through the epitaxial lateral extension growth process. So that the lateral growth layer at least covers the grating pattern, thereby forming the ELO nitride layer; 6. Planarize the ELO nitride layer (113) by grinding or etching to control the length of the optical cavity; 7. By continuing The following layers are grown to form a semiconductor stack: an n-GaN layer for cladding (e.g., about 1000 nm thick) and a plurality of n-type contact layers; an active region (e.g., a plurality of InGaN/GaN quantum wells); an AlGaN electron blocking layer (e.g., a plurality of InGaN/GaN quantum wells) , approximately 30 nm); p-GaN layer (e.g., approximately 200 nm thick); and p + -GaN layer (e.g., approximately 10 nm thick); 8. Perform ion implantation to define electrical, optical properties in the semiconductor stack Window; 9. Deposit a transparent conductive layer for p-type contact (35); 10. Deposit a dielectric DBR mirror area layer (13); 11. Deposit a contact metal electrode (31) and flip-chip bond it to a supporting tool (not shown) in the figure); 12. When a template substrate is used, the substrate (101) is removed by cryogenic treatment or laser lift-off as described in Non-Patent Documents 16 to 20, and the substrate is removed so that the same substrate can be reused. , thereby significantly reducing costs; and 13. Finally deposit a metal contact electrode (33b) on the n-type side.

單晶光柵17,如n-GaN或UID-GaN,設置在III族氮化物區域25之表面上,其係藉由磊晶側向延長成長技術覆蓋圖案化ELO光罩111。因此,III族氮化物具有GaN光柵,其係從圖案化ELO光罩111轉印而來,且圖案化ELO光罩111具有附加的DBR鏡面(18d)。附加的DBR鏡面(18d)鄰設於其上之GaN光柵(17a)以與光柵(17a)連接,藉此設置為單一鏡面。在藉由研磨(可用來調整腔體長度及/或平坦化III族氮化物區域)形成III族氮化物區域25後,可藉由MOCVD成長III族氮化物區域23及27 。III族氮化物區域23及27,其等為延續的裝置層,分別包含未摻雜主動區域及p型層,各具有銦(In)、鎵(Ga)及/或鋁(Al)之合金、及氮(N)。A single crystal grating 17, such as n-GaN or UID-GaN, is disposed on the surface of the Group III nitride region 25, which covers the patterned ELO mask 111 through epitaxial lateral extension growth technology. Therefore, the III-nitride has a GaN grating that is transferred from the patterned ELO mask 111 with an additional DBR mirror (18d). The additional DBR mirror (18d) is located adjacent to the GaN grating (17a) to connect with the grating (17a), thereby forming a single mirror. After the III-nitride region 25 is formed by grinding (which can be used to adjust the cavity length and/or planarize the III-nitride region), the III-nitride regions 23 and 27 can be grown by MOCVD. Group III nitride regions 23 and 27, which are continuous device layers, respectively include an undoped active region and a p-type layer, each having an alloy of indium (In), gallium (Ga) and/or aluminum (Al), and nitrogen (N).

週期性一維圖案17a及附加的DBR鏡面(18d)係連接來在不需複雜度下,強化反射率。附加的DBR鏡面(18d)設置與週期性一維圖案17a接觸,且介電層具有週期性一維圖案18a。Periodic one-dimensional patterns 17a and additional DBR mirrors (18d) are connected to enhance reflectivity without complexity. An additional DBR mirror (18d) is placed in contact with the periodic one-dimensional pattern 17a, and the dielectric layer has the periodic one-dimensional pattern 18a.

圖13A是表示本揭露之一實施例之VCSEL 11c之平面圖。圖13B是表示沿圖13A之線III-III之剖面圖。FIG. 13A is a plan view of a VCSEL 11c according to an embodiment of the present disclosure. Fig. 13B is a cross-sectional view taken along line III-III of Fig. 13A.

一實施例之製程包含以下步驟。 1、沉積ELO介電光罩層在主基板,如GaN基板、GaN-on-Sapphire模板、GaN-on-Silicon模板; 2、在ELO光罩層上圖案化光柵; 3、在ELO光罩層中形成成長輔助部分,即開口,以暴露主基板101之表面,藉此形成圖案化ELO光罩111; 4、藉由磊晶側向延長成長程序在ELO光罩上成長GaN層,以使側向成長之層至少覆蓋光柵圖案,藉此ELO氮化物層; 5、藉由研磨或蝕刻來平坦化ELO氮化物層以控制光學腔體之長度; 6、藉由繼續成長以下層來形成半導體積層:用於披覆之n-GaN層(例如,約1000 nm厚)及複數n型接觸層;主動區域(例如,複數InGaN/GaN量子井);AlGaN電子阻擋層(例如,約30 nm);p-GaN層(例如,約200 nm厚);及p +-GaN層(例如,約10 nm厚); 7、從半導體積層製作台面以在半導體積層中形成n-GaN接觸區域; 8、執行離子佈植以在半導體積層中定義電性、光學窗口; 9、沉積用於p型接觸之透明導電層(35); 10、沉積介電DBR鏡面積層(13)(可用為p型側墊及n型側墊間的隔離); 11、沉積接觸金屬電極(31及33a),並覆晶接合至支持工具(未表示於圖中); 12、當使用模板基板時,利用於非專利文獻16至非專利文獻20所述之深冷處理、或雷射剝離來去除基板101,去除基板以使相同基板可重複使用,藉此明顯地降低成本;及 13、去除圖案化ELO光罩111以暴露III族氮化物區域25,其後側具有單晶光柵17之週期性一維圖案17a。 A process of one embodiment includes the following steps. 1. Deposit the ELO dielectric mask layer on the main substrate, such as GaN substrate, GaN-on-Sapphire template, GaN-on-Silicon template; 2. Pattern the grating on the ELO mask layer; 3. Pattern the ELO mask layer A growth auxiliary part, that is, an opening is formed in the main substrate 101 to expose the surface of the main substrate 101, thereby forming a patterned ELO mask 111; 4. Grow the GaN layer on the ELO mask through the epitaxial lateral extension growth process, so that the side Cover at least the grating pattern to the growing layer, whereby the ELO nitride layer; 5. Planarize the ELO nitride layer by grinding or etching to control the length of the optical cavity; 6. Form the semiconductor stack by continuing to grow the following layers : n-GaN layer (e.g., approximately 1000 nm thick) and multiple n-type contact layers for coating; active region (e.g., multiple InGaN/GaN quantum wells); AlGaN electron blocking layer (e.g., approximately 30 nm); p-GaN layer (e.g., about 200 nm thick); and p + -GaN layer (e.g., about 10 nm thick); 7. Make a mesa from the semiconductor build-up to form an n-GaN contact region in the semiconductor build-up; 8. Execute Ion implantation to define electrical and optical windows in the semiconductor buildup; 9. Deposition of a transparent conductive layer for p-type contact (35); 10. Deposition of a dielectric DBR mirror area layer (13) (can be used as a p-type side pad and Isolation between n-type side pads); 11. Deposit contact metal electrodes (31 and 33a) and flip-chip bond them to the supporting tool (not shown in the figure); 12. When using a template substrate, use non-patent document 16 To remove the substrate 101 by cryogenic treatment or laser lift-off as described in Non-Patent Document 20, the substrate is removed so that the same substrate can be reused, thereby significantly reducing costs; and 13. Remove the patterned ELO mask 111 to expose III The group nitride region 25 has a periodic one-dimensional pattern 17a of the single crystal grating 17 on its rear side.

介電DBR鏡面13位在導電層35上,其係設置在台面37之頂部,且從陽極電極31延伸至陰極電極33a以覆蓋台面37之頂面及側面。另一介電材料膜45可位在介電DBR鏡面13上,並從陽極電極31延伸至陰極電極33a。介電DBR鏡面13及另一介電材料膜45(若有)係作為鈍化膜。台面37可使陽極電極31及陰極電極33a位在VCSEL 11c之相同側,VCSEL 11c可以覆晶接合方式設置。The dielectric DBR mirror 13 is located on the conductive layer 35 , is disposed on the top of the mesa 37 , and extends from the anode electrode 31 to the cathode electrode 33 a to cover the top and side surfaces of the mesa 37 . Another dielectric material film 45 may be located on the dielectric DBR mirror 13 and extend from the anode electrode 31 to the cathode electrode 33a. The dielectric DBR mirror 13 and another dielectric material film 45 (if any) serve as passivation films. The mesa 37 can position the anode electrode 31 and the cathode electrode 33a on the same side of the VCSEL 11c, and the VCSEL 11c can be disposed in a flip-chip bonding manner.

單晶光柵17,如n-GaN或UID-GaN,設置在III族氮化物區域25之表面上,其係藉由磊晶側向延長成長技術覆蓋圖案化ELO光罩111。成長之III族氮化物具有GaN光柵,其係從圖案化ELO光罩111轉印而來。在藉由研磨(可用來調整腔體長度及/或平坦化III族氮化物區域)形成III族氮化物區域25後,可藉由MOCVD成長III族氮化物區域23及27。III族氮化物區域23及27,其等為延續的裝置層,分別包含未摻雜主動區域及p型層,各具有銦(In)、鎵(Ga)及/或鋁(Al)之合金、及氮(N)。A single crystal grating 17, such as n-GaN or UID-GaN, is disposed on the surface of the Group III nitride region 25, which covers the patterned ELO mask 111 through epitaxial lateral extension growth technology. The grown III-nitride has a GaN grating, which is transferred from the patterned ELO mask 111 . After the III-nitride region 25 is formed by grinding (which can be used to adjust the cavity length and/or planarize the III-nitride region), the III-nitride regions 23 and 27 can be grown by MOCVD. Group III nitride regions 23 and 27, which are continuous device layers, respectively include an undoped active region and a p-type layer, each having an alloy of indium (In), gallium (Ga) and/or aluminum (Al), and nitrogen (N).

圖14A是表示本揭露之一實施例之VCSEL 11d之平面圖,圖14B是表示沿圖14A之線IV-IV之剖面圖。FIG. 14A is a plan view of the VCSEL 11d according to an embodiment of the present disclosure, and FIG. 14B is a cross-sectional view along line IV-IV of FIG. 14A.

一實施例之製程包含以下步驟。 1、形成週期性配置之介電層的DBR鏡面積層(18d)在主機板(101)上,如GaN基板、GaN-on-Sapphire模板、GaN-on-Silicon模板; 2、沉積分離的介電層(18c)在DBR鏡面積層(18d)上; 3、在分離的介電層(18c)中形成單晶光柵圖案; 4、在分離的介電層(18c)及DBR鏡面積層(18d)中形成成長輔助部分,即開口,以暴露主基板101之表面,藉此形成圖案化ELO光罩111; 5、藉由磊晶側向延長成長程序在光罩上成長GaN層,以使側向成長之層至少覆蓋光柵圖案,藉此形成ELO氮化物層; 6、藉由研磨或蝕刻來平坦化ELO氮化物層(113)以控制光學腔體之長度; 7、藉由繼續成長以下層來形成半導體積層:用於披覆之n-GaN層(例如,約1000nm厚)及複數n型接觸層;主動區域(例如,複數InGaN/GaN量子井);AlGaN電子阻擋層(例如,約30 nm);p-GaN層(例如,約200 nm厚);及p +-GaN層(例如,約10 nm厚); 8、從半導體積層製作台面以在半導體積層中形成接觸n-GaN區域; 9、執行離子佈植以在半導體積層中定義電性、光學窗口; 10、沉積用於p型接觸之透明導電層(35); 11、沉積介電DBR鏡面積層(13)(可用為p型側墊及n型側墊間的隔離); 12、沉積接觸金屬電極(31及33a),並覆晶接合至支持工具(未表示於圖中); 13、當使用模板基板時,利用於非專利文獻16至非專利文獻20所述之深冷處理、或雷射剝離來去除基板(101),去除基板以使相同基板可重複使用,藉此明顯地降低成本。 A process of one embodiment includes the following steps. 1. Form the DBR mirror area layer (18d) of the periodically configured dielectric layer on the motherboard (101), such as GaN substrate, GaN-on-Sapphire template, GaN-on-Silicon template; 2. Deposit the separated dielectric Layer (18c) on the DBR mirror area layer (18d); 3. Forming a single crystal grating pattern in the separated dielectric layer (18c); 4. In the separated dielectric layer (18c) and the DBR mirror area layer (18d) Form the growth auxiliary part, that is, the opening to expose the surface of the main substrate 101, thereby forming the patterned ELO mask 111; 5. Grow the GaN layer on the mask through the epitaxial lateral extension growth process to allow lateral growth. The layer at least covers the grating pattern, thereby forming the ELO nitride layer; 6. Planarize the ELO nitride layer (113) by grinding or etching to control the length of the optical cavity; 7. Form by continuing to grow the following layers Semiconductor build-up: n-GaN layer for coating (for example, about 1000nm thick) and a plurality of n-type contact layers; active region (for example, a plurality of InGaN/GaN quantum wells); AlGaN electron blocking layer (for example, about 30 nm) ; p-GaN layer (e.g., about 200 nm thick); and p + -GaN layer (e.g., about 10 nm thick); 8. Making a mesa from the semiconductor build-up to form a contact n-GaN region in the semiconductor build-up; 9. Perform ion implantation to define electrical and optical windows in the semiconductor buildup; 10. Deposit transparent conductive layer for p-type contact (35); 11. Deposit dielectric DBR mirror area layer (13) (can be used as p-type side pad and isolation between n-type side pads); 12. Deposit contact metal electrodes (31 and 33a) and flip-chip bond them to the support tool (not shown in the figure); 13. When using a template substrate, use non-patent literature 16 to non-patent document 20 to remove the substrate (101) by cryogenic treatment or laser lift-off. The substrate is removed so that the same substrate can be reused, thereby significantly reducing costs.

介電DBR鏡面13位在導電層35上,其係設置在台面37之頂部,且從陽極電極31延伸至陰極電極33a以覆蓋台面37之頂面及側面。另一介電材料膜45可位在介電DBR鏡面13上,並從陽極電極31延伸至陰極電極33a。介電DBR鏡面13及另一介電材料膜45(若有)係作為鈍化膜。台面37可使陽極電極31及陰極電極33a位在VCSEL 11d之相同側,VCSEL 11d可以覆晶接合方式設置。The dielectric DBR mirror 13 is located on the conductive layer 35 , is disposed on the top of the mesa 37 , and extends from the anode electrode 31 to the cathode electrode 33 a to cover the top and side surfaces of the mesa 37 . Another dielectric material film 45 may be located on the dielectric DBR mirror 13 and extend from the anode electrode 31 to the cathode electrode 33a. The dielectric DBR mirror 13 and another dielectric material film 45 (if any) serve as passivation films. The mesa 37 can position the anode electrode 31 and the cathode electrode 33a on the same side of the VCSEL 11d, and the VCSEL 11d can be disposed in a flip-chip bonding manner.

單晶光柵17,如n-GaN或UID-GaN,設置在III族氮化物區域25之表面上,其係藉由磊晶側向延長成長技術覆蓋圖案化ELO光罩111。成長之III族氮化物具有GaN光柵,其係從圖案化ELO光罩111轉印而來,且圖案化ELO光罩111具有附加的DBR鏡面(18d)。附加的DBR鏡面(18d)鄰設於其上之GaN光柵(17a)以與光柵(17a)連接,藉此設置為單一鏡面。週期性一維圖案17a及附加的DBR鏡面(18d)係連接來在不需複雜度下,強化反射率。附加的DBR鏡面(18d)設置與週期性一維圖案17a接觸,且介電層具有週期性一維圖案18a。在藉由研磨(可用來調整腔體長度及/或平坦化III族氮化物區域)形成III族氮化物區域25後,可藉由MOCVD成長III族氮化物區域23及27。III族氮化物區域23及27,其等為延續的裝置層,分別包含未摻雜主動區域及p型層,各具有銦(In)、鎵(Ga)及/或鋁(Al)之合金、及氮(N)。A single crystal grating 17, such as n-GaN or UID-GaN, is disposed on the surface of the Group III nitride region 25, which covers the patterned ELO mask 111 through epitaxial lateral extension growth technology. The grown III-nitride has a GaN grating that is transferred from the patterned ELO mask 111 with an additional DBR mirror (18d). The additional DBR mirror (18d) is located adjacent to the GaN grating (17a) to connect with the grating (17a), thereby forming a single mirror. Periodic one-dimensional patterns 17a and additional DBR mirrors (18d) are connected to enhance reflectivity without complexity. An additional DBR mirror (18d) is placed in contact with the periodic one-dimensional pattern 17a, and the dielectric layer has the periodic one-dimensional pattern 18a. After the III-nitride region 25 is formed by grinding (which can be used to adjust the cavity length and/or planarize the III-nitride region), the III-nitride regions 23 and 27 can be grown by MOCVD. Group III nitride regions 23 and 27, which are continuous device layers, respectively include an undoped active region and a p-type layer, each having an alloy of indium (In), gallium (Ga) and/or aluminum (Al), and nitrogen (N).

圖15A是表示本揭露之一實施例之VCSEL 11e之平面圖。圖15B是表示沿圖15A之線V-V之剖面圖。FIG. 15A is a plan view of a VCSEL 11e according to an embodiment of the present disclosure. Fig. 15B is a cross-sectional view taken along line V-V in Fig. 15A.

一實施例之製程包含以下步驟。 1、沉積ELO介電光罩層在主基板,如GaN基板、GaN-on-Sapphire模板、GaN-on-Silicon模板; 2、在ELO光罩上圖案化光柵; 3、在主基板形成成長輔助部分; 4、藉由磊晶側向延長成長程序在光罩上成長GaN層,以使側向成長之層至少覆蓋光柵圖案,藉此ELO氮化物層; 5、藉由研磨或蝕刻來平坦化ELO氮化物層以控制光學腔體之長度; 6、藉由繼續成長以下層來形成半導體積層:用於披覆之n-GaN層(例如,約1000 nm厚)及複數n型接觸層;主動區域(例如,複數InGaN/GaN或InGaN/InGaN量子井);AlGaN電子阻擋層(例如,約30 nm);p-GaN層(例如,約200 nm厚);及包括p ++-GaN層(例如,約10 nm厚)及n ++-GaN層(例如,約10 nm厚)之埋置的穿隧接面(51); 7、從半導體積層製作台面以在半導體積層中形成接觸n-GaN區域; 8、執行離子佈植以在半導體積層中定義電性、光學窗口; 9、沉積用於p型接觸之透明導電層(35); 10、沉積介電DBR鏡面積層(13)及鈍化層45; 11、沉積接觸金屬電極(31),並覆晶接合至支持工具(未表示於圖中); 12、當使用模板基板時,利用於非專利文獻16至非專利文獻20所述之深冷處理、或雷射剝離來去除基板(101),去除基板以使相同基板可重複使用,藉此明顯地降低成本。 A process of one embodiment includes the following steps. 1. Deposit the ELO dielectric mask layer on the main substrate, such as GaN substrate, GaN-on-Sapphire template, GaN-on-Silicon template; 2. Pattern the grating on the ELO mask; 3. Form growth auxiliary on the main substrate Part; 4. Grow the GaN layer on the mask through the epitaxial lateral extension growth process, so that the lateral growth layer at least covers the grating pattern, thereby ELO nitride layer; 5. Planarize by grinding or etching ELO nitride layer to control the length of the optical cavity; 6. Form a semiconductor stack by continuing to grow the following layers: an n-GaN layer for capping (for example, about 1000 nm thick) and a plurality of n-type contact layers; active region (e.g., complex InGaN/GaN or InGaN/InGaN quantum wells); AlGaN electron blocking layer (e.g., approximately 30 nm); p-GaN layer (e.g., approximately 200 nm thick); and includes a p ++ -GaN layer ( For example, about 10 nm thick) and a buried tunnel junction (51) of the n ++ -GaN layer (for example, about 10 nm thick); 7. Fabricating a mesa from the semiconductor build-up to form a contact n- in the semiconductor build-up GaN area; 8. Perform ion implantation to define electrical and optical windows in the semiconductor buildup; 9. Deposit transparent conductive layer for p-type contact (35); 10. Deposit dielectric DBR mirror area layer (13) and passivation Layer 45; 11. Deposit the contact metal electrode (31) and flip-chip bond it to the supporting tool (not shown in the figure); 12. When using a template substrate, use the methods described in Non-Patent Documents 16 to 20 Cryogenic treatment, or laser lift-off to remove the substrate (101), removes the substrate so that the same substrate can be reused, thereby significantly reducing costs.

VCSEL 11e更包括埋置的穿隧接面51設置在p型III族氮化物區域23及DBR 13之間。埋置的穿隧接面51包括重摻雜p型III族氮化物,如p ++-GaN,及重摻雜n型III族氮化物,如n ++-GaN。在某些實施例中,p ++-GaN層沉積在p型III族氮化物區域23上,接著n ++-GaN層沉積在p ++-GaN層上以形成穿隧接面。n ++-GaN層沉積與n型導電層35。於穿隧接面,III族氮化物之導電型被改變為另一導電型。反向偏壓被施加至穿隧接面,因此載子藉由穿隧通過接面。 The VCSEL 11e further includes a buried tunnel junction 51 disposed between the p-type Group III nitride region 23 and the DBR 13 . Buried tunnel junction 51 includes heavily doped p-type Group III nitride, such as p ++ -GaN, and heavily doped n-type Group III nitride, such as n ++ -GaN. In certain embodiments, a p ++ -GaN layer is deposited on p-type Group III nitride region 23, followed by an n ++ -GaN layer being deposited on the p ++ -GaN layer to form a tunnel junction. n ++ -GaN layer is deposited with n-type conductive layer 35. At the tunnel junction, the conductivity type of the III-nitride is changed to another conductivity type. Reverse bias is applied to the tunnel junction, so carriers tunnel across the junction.

本實施例之穿隧接面51可應用至上述實施例之VCSEL 11a至11d的任一者。包括穿隧接面可改善VCSEL的效能並減緩ITO吸收。The tunnel junction 51 of this embodiment can be applied to any of the VCSELs 11a to 11d of the above embodiments. Including tunnel junctions improves VCSEL performance and slows down ITO absorption.

介電DBR鏡面13位在設於台面37之頂部的導電層35上。介電材料膜45或介電DBR鏡面13從陽極電極31延伸至陰極電極33a以覆蓋台面37之頂面及側面,並作為鈍化膜。台面37可使陽極電極31及陰極電極33a位在VCSEL 11e之相同側,VCSEL 11e可以覆晶接合方式設置。The dielectric DBR mirror 13 is located on the conductive layer 35 provided on the top of the mesa 37 . The dielectric material film 45 or the dielectric DBR mirror 13 extends from the anode electrode 31 to the cathode electrode 33a to cover the top and side surfaces of the mesa 37 and serves as a passivation film. The mesa 37 can position the anode electrode 31 and the cathode electrode 33a on the same side of the VCSEL 11e, and the VCSEL 11e can be disposed in a flip-chip bonding manner.

單晶光柵17,如n-GaN或UID-GaN,設置在III族氮化物區域25之表面上,其係藉由磊晶側向延長成長技術覆蓋圖案化ELO光罩111。成長之III族氮化物具有GaN光柵,其係從圖案化ELO光罩111轉印而來。在藉由研磨(可用來調整腔體長度及/或平坦化III族氮化物區域)形成III族氮化物區域25後,可藉由MOCVD成長III族氮化物區域23及27 。III族氮化物區域23及27,其等為延續的裝置層,分別包含未摻雜主動區域及p型層,各具有銦(In)、鎵(Ga)及/或鋁(Al)之合金、及氮(N)。A single crystal grating 17, such as n-GaN or UID-GaN, is disposed on the surface of the Group III nitride region 25, which covers the patterned ELO mask 111 through epitaxial lateral extension growth technology. The grown III-nitride has a GaN grating, which is transferred from the patterned ELO mask 111 . After the III-nitride region 25 is formed by grinding (which can be used to adjust the cavity length and/or planarize the III-nitride region), the III-nitride regions 23 and 27 can be grown by MOCVD. Group III nitride regions 23 and 27, which are continuous device layers, respectively include an undoped active region and a p-type layer, each having an alloy of indium (In), gallium (Ga) and/or aluminum (Al), and nitrogen (N).

以下說明關於本揭露之VCSEL之某些技術用語之技術解釋。The following describes technical explanations of certain technical terms regarding the VCSEL of the present disclosure.

主基板及ELO光罩Main substrate and ELO mask

在某些實施例中,藉由ELO將GaN基層113成長於具有由二氧化矽(SiO 2)組成之圖案化ELO光罩111的主基板101,GaN基層113不聚合(coalesce)於二氧化矽。圖案化ELO光罩111可由條狀開口107a組成,圖案化ELO光罩111之二氧化矽條紋定義該些開口107a間的距離,以可成長高品質之III族氮化物半導體層,並因可避免相鄰半導體層間的聚結,而可避免基板101在磊晶成長時之曲折或彎曲。藉此,可提供降低缺陷密度(如錯位(dislocation)及疊層缺陷(stacking fault))之VCSEL。再者,這些技術可與異質基板(如藍寶石、SiC、LiAlO 2、Si等)一起使用,只要其能成長ELO GaN基層。 In some embodiments, the GaN base layer 113 is grown by ELO on the main substrate 101 having a patterned ELO mask 111 composed of silicon dioxide (SiO 2 ), and the GaN base layer 113 does not coalesce with the silicon dioxide. . The patterned ELO mask 111 can be composed of strip-shaped openings 107a. The silicon dioxide stripes of the patterned ELO mask 111 define the distance between the openings 107a, so that a high-quality Group III nitride semiconductor layer can be grown and can avoid The coalescence between adjacent semiconductor layers can prevent the substrate 101 from twisting or bending during epitaxial growth. Thereby, a VCSEL with reduced defect density (such as dislocation and stacking faults) can be provided. Furthermore, these techniques can be used with heterogeneous substrates (such as sapphire, SiC, LiAlO 2 , Si, etc.) as long as they can grow ELO GaN base layers.

在ELO光罩頂部之圖案化光柵Patterned grating on top of ELO mask

光柵可形成在圖案化ELO光罩。例如,奈米壓印(nano-imprinting)相比於其他技術,如電子束微影(E-beam lithography)或全像術(holography),係商業上可接受的技術。Gratings can be formed on patterned ELO masks. For example, nano-imprinting is a commercially acceptable technology compared to other technologies, such as E-beam lithography or holography.

光柵可藉由先沉積光敏材料於ELO光罩上,接著將欲使用的光柵圖案施加至光敏材料來形成。另一方面,奈米壓印、電子束或全像術亦可使用來印刷欲使用的光柵圖案。接著,欲使用的光柵圖案被轉印製光阻材料。例如,光柵圖案係數,如高度(H)、週期(P)及寬度(W),可利用要素H/P及W/P被定義如圖3D所示。當具有約波長375 nm之週期P,其H/P約0.27與W/P約0.35時,n-GaN光柵反射率繪測之橫向電場(TE)模態繪測在光波長405 nm可大於99%。在轉印光柵圖案至光阻後,沉積介電材料,例如二氧化矽,來將光阻完全埋置,且執行蝕刻,如反應式離子蝕刻,來暴露下層的光阻。接著,光阻之化學剝離將光柵圖案保留在ELO光罩上,藉此形成圖案化ELO光罩。The grating can be formed by first depositing a photosensitive material on the ELO mask and then applying the desired grating pattern to the photosensitive material. On the other hand, nanoimprinting, electron beam or holography can also be used to print the desired grating pattern. Next, the grating pattern to be used is transferred to the photoresist material. For example, grating pattern coefficients, such as height (H), period (P) and width (W), can be defined using elements H/P and W/P as shown in Figure 3D. When it has a period P of about 375 nm, its H/P is about 0.27 and W/P is about 0.35, the transverse electric field (TE) mode mapping of the n-GaN grating reflectance mapping can be greater than 99 at the optical wavelength of 405 nm. %. After transferring the grating pattern to the photoresist, a dielectric material, such as silicon dioxide, is deposited to completely bury the photoresist, and an etching, such as reactive ion etching, is performed to expose the underlying photoresist. Next, the photoresist is chemically stripped to retain the grating pattern on the ELO mask, thereby forming a patterned ELO mask.

形成光柵於具有DBR鏡面結構之ELO光罩上Form grating on ELO mask with DBR mirror structure

光柵可藉由先將光敏材料沉積在ELO光罩上(在某些實施例中,DBR鏡面可做為ELO光罩),接著施加欲使用的光柵圖案至光敏材料來形成。另一方面,奈米壓印、電子束或全像術亦可使用來印刷欲使用的光柵圖案。接著,欲使用的光柵圖案被轉印製光阻材料。例如,光柵圖案係數,如高度(H)、週期(P)及寬度(W),可利用要素H/P及W/P來定義。The grating can be formed by first depositing the photosensitive material on the ELO mask (in some embodiments, the DBR mirror can be used as the ELO mask), and then applying the desired grating pattern to the photosensitive material. On the other hand, nanoimprinting, electron beam or holography can also be used to print the desired grating pattern. Next, the grating pattern to be used is transferred to the photoresist material. For example, grating pattern coefficients such as height (H), period (P), and width (W) can be defined using the elements H/P and W/P.

當光柵圖案被轉印至光阻上,將介面材料,例如二氧化矽,沉積在圖案之上以將其完全埋置,且執行蝕刻,如反應式離子蝕刻,來暴露下層的光阻。接著,光阻之化學剝離將光柵圖案保留在位於DBR結構頂部之二氧化矽層中。When the grating pattern is transferred to the photoresist, an interface material, such as silicon dioxide, is deposited over the pattern to completely bury it, and an etch, such as reactive ion etching, is performed to expose the underlying photoresist. Next, chemical lift-off of the photoresist leaves the grating pattern in the silicon dioxide layer on top of the DBR structure.

III族氮化物層之成長Growth of Group III Nitride Layer

接著,III族氮化物區域113藉由MOCVD來成長。III族氮化物區域在已成長之III族氮化物底部具有光柵的形狀,如圖3C所示。將III族氮化物區域113研磨或蝕刻至期望的厚度以形成平坦化的III族氮化物區域115。在藉由研磨或蝕刻調整III族氮化物區域113之厚度後,將III族氮化物積層117成長在其上。Next, the Group III nitride region 113 is grown by MOCVD. The III-nitride region has a grating shape at the bottom of the grown III-nitride, as shown in FIG. 3C. Group III nitride region 113 is ground or etched to a desired thickness to form planarized Group III nitride region 115 . After adjusting the thickness of the III-nitride region 113 by grinding or etching, the III-nitride stack 117 is grown thereon.

三甲基鎵(TMGa)、三甲基銦(TMIn)、三乙鋁(TMAl)被用來作為III族元素源,且氨氣(NH 3)被用來作為原料氣以供給氮氣。氫氣(H 2)及/或氮氣(N 2)被用來作為載體氣體。甲矽烷(SiH 4)及雙(環戊二烯)鎂(Bis(cyclopentadienyl)magnesium,Cp 2Mg)分別被用來作為n型及p型摻雜物。 Trimethylgallium (TMGa), trimethylindium (TMIn), and triethylaluminum (TMAl) are used as Group III element sources, and ammonia gas (NH 3 ) is used as a raw material gas to supply nitrogen. Hydrogen (H 2 ) and/or nitrogen (N 2 ) are used as carrier gases. SiH 4 and Bis (cyclopentadienyl) magnesium (Cp 2 Mg) are used as n-type and p-type dopants respectively.

壓力通常可設定為50至760托(Torr)。III族氮化物基半導體層一般在700至1250 ℃的溫度範圍成長。Pressure can typically be set from 50 to 760 Torr. Group III nitride-based semiconductor layers generally grow in the temperature range of 700 to 1250°C.

例示性之成長係數包括如下:TMG可為約12 sccm;NH 3可為約8 slm;載體氣體可為約3 slm;SiH 4可為約1.0 sccm;及V族/III族比例可約7700。 Exemplary growth coefficients include the following: TMG can be about 12 sccm; NH3 can be about 8 slm; carrier gas can be about 3 slm; SiH4 can be about 1.0 sccm; and the Group V/III ratio can be about 7700.

在某些實施例中,成長壓力可在50至760 Torr範圍內,且成長壓力較佳為100至300 Torr範圍內,以取得大寬度的島狀III族氮化物基半導體區域;成長溫度可在900至1200 ℃的溫度範圍內;V族/III族比例可在50至30000的範圍內,且較佳為3000至10000;TMG可在2至20 sccm的範圍內;NH 3可在3至10 slm的範圍內;及載體氣體可以只有氫氣,或氫氣及氮氣兩者。在成長約2至8小時後,ELG GaN基層具有約8至50微米厚度及約20至150微米寬度,且已成長之ELG GaN基層沿ELO光罩雙向地側向延伸以提供磊晶側向延長成長低缺陷晶體區域(翼部)。 In some embodiments, the growth pressure can be in the range of 50 to 760 Torr, and the growth pressure is preferably in the range of 100 to 300 Torr to obtain a large width of island-shaped Group III nitride-based semiconductor region; the growth temperature can be in Within the temperature range of 900 to 1200 ℃; the Group V/III ratio can be in the range of 50 to 30000, and preferably 3000 to 10000; TMG can be in the range of 2 to 20 sccm; NH3 can be in the range of 3 to 10 within the range of slm; and the carrier gas can be hydrogen only, or both hydrogen and nitrogen. After about 2 to 8 hours of growth, the ELG GaN base layer has a thickness of about 8 to 50 microns and a width of about 20 to 150 microns, and the grown ELG GaN base layer extends laterally in both directions along the ELO mask to provide epitaxial lateral extension. Grow low-defect crystal regions (wings).

離子佈植ion implantation

離子佈植係藉由在窗口外側損害GaN基層,來在GaN基層形成電性、光學窗口,且受損害的GaN基材料不再具有導電性。本方法可保持表面平坦,並可在窗口區域與損害區域間提供些微的折射率導引(index guiding)。然而,損害區域可能增加腔體內的光學損失,並傾向於具有吸收值高於窗口區域之未佈植材料。重離子,如鋁(Al)、硼(B)等,可被用於離子佈植程序。Ion implantation forms electrical and optical windows in the GaN base layer by damaging the GaN base layer outside the window, and the damaged GaN base material is no longer conductive. This method keeps the surface flat and provides slight index guiding between the window area and the damaged area. However, damaged areas may increase optical losses within the cavity and tend to have higher absorption values than unimplanted material in the window areas. Heavy ions, such as aluminum (Al), boron (B), etc., can be used in ion implantation procedures.

透明導電層Transparent conductive layer

ITO可作為一般使用的透明電流分布(current spreading)層。VCSEL包含ITO可能造成額外的吸收,但額外的吸收可藉由使電磁波之強度在ITO層附近較低來減少。另一種方式,如穿隧接面,亦可被使用來分布電流並使光學吸收較低。ITO can be used as a commonly used transparent current spreading layer. VCSEL containing ITO may cause additional absorption, but the additional absorption can be reduced by making the intensity of electromagnetic waves lower near the ITO layer. Alternative approaches, such as tunnel junctions, can also be used to distribute current and achieve lower optical absorption.

穿隧接面tunnel junction

穿隧接面提供使用ITO外另一方案。穿隧接面可經由n型半導體讓電洞注入至裝置的p型側。其可藉由在反向偏壓下利用在高摻雜n型區域及高摻雜p型區域間的接面,使電子從p型區域的空乏帶穿隧至n型區域的導帶來達成。Tunnel junctions provide an alternative to using ITO. The tunnel junction allows holes to be injected into the p-type side of the device through the n-type semiconductor. It can be achieved by utilizing the junction between the highly doped n-type region and the highly doped p-type region under reverse bias, allowing electrons to tunnel from the depletion band of the p-type region to the conduction band of the n-type region. .

分散式布拉格反射器(DBR)Distributed Bragg Reflector (DBR)

傳統上,VCSEL使用磊晶DBR,具有AlN/GaN雙層或AlInN/GaN雙層任一者、或介電DBR鏡面。選擇DBR設計的主要考量涉及了製造之容易度,DBR鏡面包括交替的介電層結合在一起,以在VCSEL之共振腔的頂部形成反射鏡面。例如,SiO 2/Ta 2O 5介電層的結合可被用來作為介電DBR鏡面。 Traditionally, VCSELs use epitaxial DBR, with either an AlN/GaN double layer or an AlInN/GaN double layer, or a dielectric DBR mirror. The primary consideration in choosing a DBR design involves ease of fabrication. A DBR mirror consists of alternating dielectric layers joined together to form a reflective mirror on top of the VCSEL's resonant cavity. For example, a combination of SiO 2 /Ta 2 O 5 dielectric layers can be used as a dielectric DBR mirror.

單晶磊晶GaN光柵Single crystal epitaxial GaN grating

VCSEL之重要部分為反射器。通常,介電DBR被用來作為鏡面。然而,就考量電性注入或熱管理而言,用於VCSEL之共振腔之鏡面的至少一側應以較佳的其他方案來取代。在本揭露之VCSEL中,單晶光柵係被使用,其形成在GaN的磊晶側向延長成長翼部,作為許多DBR鏡面之一者的替代方案。The important part of VCSEL is the reflector. Typically, dielectric DBR is used as a mirror. However, in terms of electrical injection or thermal management considerations, at least one side of the mirror used in the resonant cavity of the VCSEL should be replaced with other better solutions. In the VCSEL of the present disclosure, a single crystal grating system is used, which is formed on the epitaxial lateral extension of GaN as an alternative to one of the many DBR mirrors.

單晶磊晶GaN光柵具有週期性結構,如配置在GaN表面的GaN凹部或GaN凸部,其排列的高度(H)、寬度(W)及週期(P)相當於VCSEL之波長。當光垂直射在光柵,其依據波長及光柵之週期繞射為不同方向。藉由適當地選擇光柵週期及填充因子如W/P及H/P,可將所有的光能反射。Single crystal epitaxial GaN gratings have a periodic structure, such as GaN concave parts or GaN convex parts arranged on the GaN surface. The height (H), width (W) and period (P) of their arrangement are equivalent to the wavelength of the VCSEL. When light hits the grating vertically, it is diffracted in different directions depending on the wavelength and the period of the grating. By appropriately choosing the grating period and fill factors such as W/P and H/P, all light energy can be reflected.

有許多選擇可作為光柵之示例,但本揭露提供獨特的方式來例示裝置上的次波長光柵,且此種方式可避免裝置層在製造過程中暴露至任何的蝕刻環境。There are many options for exemplifying gratings, but this disclosure provides a unique way to exemplify subwavelength gratings on a device that avoids exposure of device layers to any etching environment during fabrication.

金屬墊metal pad

金屬,如金(Au)、鋁(Al)、鎳(Ni)、鉑(Pd)、鈦(Ti)等,可用來作為金屬墊之材料。金屬層可藉由濺鍍、蒸鍍或電鍍來形成。Metals, such as gold (Au), aluminum (Al), nickel (Ni), platinum (Pd), titanium (Ti), etc., can be used as the material of the metal pad. The metal layer can be formed by sputtering, evaporation or electroplating.

本揭露關於一種改善的製造方法例示用於III族氮化物VCSEL之單晶光柵。具體而言,本揭露包含一種VCSEL,其具有單晶GaN光柵作為操作於可見光或紫外光波長之VCSEL之反射鏡其中之一。本揭露之新穎及進步特徵係通過磊晶側向延長成長來整合光柵。本揭露可避免裝置層在製造過程暴露至物理性蝕刻。在物理性蝕刻中,半導體裝置層被重離子(如鋁或硼)轟擊,以形成預期的光柵形狀。此製程最終因離子轟擊而增加了該些層的電阻,且可能引入漏電流路徑。除此之外,此作法可能損害裝置主動區域或相鄰的磊晶層。本揭露詳述之製程係期望能藉由消除複雜程序來提供在裝置效能上明顯的改善,並減少製造成本。本揭露簡化了操作於VCSEL之許多波長之光柵的製造。本揭露可應用於如非專利文獻7至非專利文獻15,例如用於資料通訊之雷射發出之可見光、雷射成像偵測與測距(LiDar)、生化及環境感測、科學儀器、全像資料儲存、及擴充/虛擬顯示與照明。由於解理刻面(cleaved facet)或蝕刻刻面(etched facet)對於雷射操作並非必要的,本揭露與其他光電元件(如矽光子)混和整合係有益的。The present disclosure illustrates an improved fabrication method for single crystal gratings for III-nitride VCSELs. Specifically, the present disclosure includes a VCSEL having a single crystal GaN grating as one of the mirrors of the VCSEL operating at visible or ultraviolet wavelengths. A novel and progressive feature of the present disclosure is the integration of gratings through epitaxial lateral extension growth. The disclosure prevents device layers from being exposed to physical etching during the manufacturing process. In physical etching, semiconductor device layers are bombarded with heavy ions (such as aluminum or boron) to form the desired grating shape. This process ultimately increases the resistance of these layers due to ion bombardment and may introduce leakage current paths. In addition, this approach may damage the active area of the device or adjacent epitaxial layers. The process detailed in this disclosure is expected to provide significant improvements in device performance and reduce manufacturing costs by eliminating complex processes. The present disclosure simplifies the fabrication of gratings operating at many wavelengths of VCSELs. The present disclosure can be applied to non-patent documents 7 to 15, such as visible light emitted by lasers for data communication, laser imaging detection and ranging (LiDar), biochemical and environmental sensing, scientific instruments, comprehensive Like data storage, and extended/virtual display and lighting. Since cleaved facets or etched facets are not necessary for laser operation, the present disclosure is beneficial for hybrid integration with other optoelectronic devices, such as silicon photonics.

使用單晶磊晶光柵具有以下優點。Using single crystal epitaxial gratings has the following advantages.

使用足夠長之腔體且沒有過多的繞射損失。經由兩個反射鏡定義VCSEL腔體,本揭露提出使用n-GaN作為光柵布局,並設計光柵圖案鄰近於主動區域,亦即在p型側會較複雜且可能損害裝置層。Use a sufficiently long cavity without excessive diffraction losses. Defining the VCSEL cavity through two mirrors, this disclosure proposes to use n-GaN as the grating layout, and design the grating pattern adjacent to the active area, that is, it will be more complicated on the p-type side and may damage the device layer.

因為足夠長的腔體及/或在氮化物層上的接點布局,而有較佳的熱管理。Better thermal management due to sufficiently long cavities and/or contact layout on the nitride layer.

光柵通常設置在裝置的p-GaN側,以可能損害的風險使製程較為簡單,另一方面在n型側之光柵形成需要去除基板,則較為複雜、冗長的,且無法使用於所有的III族氮化物晶面。The grating is usually placed on the p-GaN side of the device, which makes the process simpler without the risk of possible damage. On the other hand, the formation of the grating on the n-type side requires removal of the substrate, which is more complex, lengthy, and cannot be used for all III groups. Nitride crystal planes.

N型側光柵通常在將裝置層從基板去除後形成,但在本揭露中,光柵係在形成裝置層前形成。The N-side grating is usually formed after removing the device layer from the substrate, but in this disclosure, the grating is formed before forming the device layer.

在本揭露中,將光柵設計為被形成在主基板或設置在基板之上的材料中的任一者,因此可避免在雷射剝離中裝置層的損害。In the present disclosure, the grating is designed to be formed on either the main substrate or a material disposed over the substrate, so damage to the device layer during laser lift-off can be avoided.

可形成在頂部平面之上的介電DBR來改善其反射率。A dielectric DBR can be formed above the top plane to improve its reflectivity.

模板基板,稱為異質基板,如GaN/Sapphire或GaN/Si,可被用來例示光柵。Template substrates, called heterogeneous substrates such as GaN/Sapphire or GaN/Si, can be used to instantiate gratings.

當模板基板被使用,雷射剝離即可被使用。在習知技術中,模板基板的使用可能損害裝置層,但於本揭露中利用ELO方法可降低損害,即ELO光罩可對於裝置層作用如保護層。When the template substrate is used, laser lift-off can be used. In the conventional technology, the use of a template substrate may damage the device layer, but in the present disclosure, the ELO method is used to reduce the damage, that is, the ELO mask can act as a protective layer for the device layer.

在本揭露中,於n型側之光柵可經由設計ELO光罩的協助來實現。再者,對於幾乎所有GaN基板之晶向,在非專利文獻16至非專利文獻20中,基板之去除已被驗證,且對異質基板施加雷射剝離係可輕易使用的。高品質及大尺寸之GaN基板非常昂貴,使用ELO技術可解鎖在VCSEL之製作中使用異質基板。In the present disclosure, the grating on the n-type side can be realized with the help of designing an ELO mask. Furthermore, for almost all crystallographic directions of GaN substrates, the removal of the substrate has been verified in Non-Patent Document 16 to Non-Patent Document 20, and laser lift-off can be easily applied to foreign substrates. High-quality and large-size GaN substrates are very expensive. Using ELO technology can unlock the use of heterogeneous substrates in the production of VCSELs.

設計操作在可見光波長之光柵係繁瑣、複雜且需謹慎的。電子束微影及全像術通常較佳於奈米壓印。在奈米壓印中,施加額外的力量至裝置層以壓印圖案,可能造成裝置層的損害或斷裂。在本揭露中,奈米壓印形成光柵圖案係執行在厚的主機板或ELO光罩的任一者,因此可使用任何存在的科技來印刷光柵。Designing gratings that operate at visible wavelengths is tedious, complex, and requires caution. Electron beam lithography and holography are generally preferred over nanoimprinting. In nanoimprinting, applying additional force to the device layer to imprint the pattern may cause damage or breakage of the device layer. In the present disclosure, nanoimprinting to form grating patterns is performed on either a thick motherboard or an ELO mask, so any existing technology can be used to print gratings.

光柵之形成Formation of grating

在n型側上之光柵表面可利用複數方式來形成,包括但不限於,形成光柵圖案在具有ELO光罩之主基板。主基板可包括GaN基板、GaN/Sapphire模板或GaN/Si模板。 取得光柵之程序詳述如下。The grating surface on the n-type side can be formed using a number of methods, including, but not limited to, forming a grating pattern on a master substrate with an ELO mask. The master substrate may include a GaN substrate, a GaN/Sapphire template, or a GaN/Si template. The procedure for obtaining the raster is detailed below.

設置薄介電膜,例如約100 nm於主基板上; 塗布光阻(PR)材料或奈米壓印輔助材料於薄介電膜上; 轉印光柵圖案至材料上; 利用介電材料將圖案埋置; 藉由蝕刻暴露PR材料或奈米壓印輔助材料; 藉由去除PR材料或奈米壓印輔助材料,來在ELO光罩保留預期的光柵圖案。 Set a thin dielectric film, such as about 100 nm, on the main substrate; Coating photoresist (PR) material or nanoimprint auxiliary material on the thin dielectric film; Transfer raster patterns to materials; Use dielectric materials to bury patterns; Expose PR material or nanoimprint auxiliary material by etching; Retain the desired grating pattern on the ELO mask by removing the PR material or nanoimprint auxiliary material.

取得具有光柵圖案之ELO光罩的程序已參照圖式進行描述。The procedure for obtaining an ELO mask with a grating pattern has been described with reference to the drawings.

為輔助半導體側向成長,位在ELO光罩下方的III族氮化物材料係被暴露在例如條紋或其他形狀之開口。To assist lateral semiconductor growth, the III-nitride material beneath the ELO mask is exposed through openings such as stripes or other shapes.

該程序從提供主基板(較佳為GaN基板)開始。GaN基板具有較少的錯位密度(10 5至10 6缺陷每cm -2)。替代方案可利用模板基板,如GaN-on-Silicon及GaN-on-Sapphire。主基板,如GaN基板、GaN-on-Sapphire模板或GaN-on-Silicon模板,係被用作為ELO種晶層。利用這些模板基板可改善III族氮化物裝置之良率,因此減少製作成本。非專利文獻15至非專利文獻20提出使用ELO方法來形成用於光學裝置(如邊射型雷射、微發光二極體(micro-LED)及VCSEL)之低缺陷磊晶層。 The process begins by providing a master substrate, preferably a GaN substrate. GaN substrates have less dislocation density (10 5 to 10 6 defects per cm -2 ). Alternatives can utilize template substrates such as GaN-on-Silicon and GaN-on-Sapphire. The main substrate, such as GaN substrate, GaN-on-Sapphire template or GaN-on-Silicon template, is used as the ELO seed layer. Utilizing these template substrates can improve the yield of Group III nitride devices, thereby reducing manufacturing costs. Non-patent literature 15 to non-patent literature 20 propose using the ELO method to form low-defect epitaxial layers for optical devices such as edge-emitting lasers, micro-LEDs and VCSELs.

在上述實施例的第一態樣,一種垂直共振腔面射型雷射(VCSEL),其包含:第一分散式布拉格反射器(DBR),其包括在第一軸向上交替地配置之第一介電層及第二介電層;及半導體部分,其包括p型III族氮化物區域、III族氮化物區域、及位在該p型III族氮化物區域及該III族氮化物區域之間的III族氮化物主動區域,該p型III族氮化物區域、該III族氮化物主動區域及該III族氮化物區域配置於該第一軸向,該III族氮化物區域包括n型III族氮化物區域,其中,該半導體部分包括具有週期性一維圖案之單晶光柵,該單晶光柵、該III族氮化物主動區域及該第一分散式布拉格反射器配置於該第一軸向以形成光學腔體,該週期性一維圖案延伸於與第一軸向相交之第二軸向。In a first aspect of the above embodiment, a vertical resonant cavity surface-emitting laser (VCSEL) includes: a first distributed Bragg reflector (DBR), which includes first distributed Bragg reflectors alternately arranged in a first axis direction. a dielectric layer and a second dielectric layer; and a semiconductor portion including a p-type Group III nitride region, a Group III nitride region, and between the p-type Group III nitride region and the Group III nitride region The Group III nitride active region, the p-type Group III nitride region, the Group III nitride active region and the Group III nitride region are arranged in the first axial direction, and the Group III nitride region includes an n-type Group III nitride The nitride region, wherein the semiconductor part includes a single crystal grating with a periodic one-dimensional pattern, the single crystal grating, the III nitride active region and the first distributed Bragg reflector are arranged in the first axis direction and An optical cavity is formed, and the periodic one-dimensional pattern extends in a second axis intersecting the first axis.

在上述實施例的第二態樣,如第一態樣所述的VCSEL,更包含設置於該半導體部分之介電層,該介電層延伸於該單晶光柵以覆蓋該週期性一維圖案。In a second aspect of the above embodiment, the VCSEL as described in the first aspect further includes a dielectric layer disposed on the semiconductor part, and the dielectric layer extends on the single crystal grating to cover the periodic one-dimensional pattern. .

在上述實施例的第三態樣,如第二態樣所述的VCSEL,更包含第二分散式布拉格反射器,其中該介電層設置於該第二分散式布拉格反射器與該半導體部分之間,其中該第二分散式布拉格反射器包括在該第一軸向上交替地配置之第三介電層及第四介電層,及其中該第二分散式布拉格反射器與該週期性一維圖案彼此連接來構成單一反射器。In a third aspect of the above embodiment, the VCSEL as described in the second aspect further includes a second distributed Bragg reflector, wherein the dielectric layer is disposed between the second distributed Bragg reflector and the semiconductor part. time, wherein the second distributed Bragg reflector includes third dielectric layers and fourth dielectric layers alternately arranged in the first axial direction, and wherein the second distributed Bragg reflector and the periodic one-dimensional The patterns are connected to each other to form a single reflector.

在上述實施例的第四態樣,如第一態樣至第三態樣任一者所述的VCSEL,更包含:導電層,其設置於該半導體部分,該導電層之一部分設置於該第一分散式布拉格反射器與該半導體部分之間;及第一電極,其設置於該導電層上並位於該第一分散式布拉格反射器外側,該第一電極設置與該導電層接觸。In a fourth aspect of the above embodiment, the VCSEL as described in any one of the first to third aspects further includes: a conductive layer disposed on the semiconductor part, and a part of the conductive layer is disposed on the third between a distributed Bragg reflector and the semiconductor part; and a first electrode disposed on the conductive layer and located outside the first distributed Bragg reflector, the first electrode being disposed in contact with the conductive layer.

在上述實施例的第五態樣,如第四態樣所述的VCSEL,更包含第二電極,其中該III族氮化物區域具有第一面、及位在該第一面之相對側之第二面,及其中該單晶光柵形成在該第一面,且該第二電極設置在該第二面。In a fifth aspect of the above embodiment, the VCSEL of the fourth aspect further includes a second electrode, wherein the group III nitride region has a first surface, and a third electrode located on an opposite side of the first surface. Two sides, wherein the single crystal grating is formed on the first side, and the second electrode is disposed on the second side.

在上述實施例的第六態樣,如第四態樣所述的VCSEL,更包含第二電極,其中該III族氮化物區域具有第一面、及位在該第一面之相對側之第二面,及其中該單晶光柵形成在該第一面,且該第二電極設置在該第一面。In a sixth aspect of the above embodiment, the VCSEL of the fourth aspect further includes a second electrode, wherein the group III nitride region has a first surface and a third electrode located on an opposite side of the first surface. Two sides, wherein the single crystal grating is formed on the first side, and the second electrode is disposed on the first side.

在上述實施例的第七態樣,如第一至第六態樣任一者所述的VCSEL,其中該光學腔體之總腔體長度係1微米以上。In a seventh aspect of the above embodiment, the VCSEL as described in any one of the first to sixth aspects, wherein the total cavity length of the optical cavity is more than 1 micron.

在上述實施例的第八態樣,如第一至第七態樣任一者所述的VCSEL,其中該單晶光柵與該第一分散式布拉格反射器之間的距離係不大於30微米。In an eighth aspect of the above embodiment, the VCSEL as described in any one of the first to seventh aspects, wherein the distance between the single crystal grating and the first distributed Bragg reflector is no more than 30 microns.

在上述實施例的第九態樣,一種製造垂直共振腔面射型雷射(VCSEL)之方法,該方法包含:在基板之一面形成圖案化磊晶側向延長成長(ELO)光罩,其中該基板包括III族氮化物基板、矽基板、藍寶石基板、藍寶石基氮化鎵模板、或矽基氮化鎵模板其中之一,該圖案化磊晶側向延長成長光罩包括光柵圖案及直至該基板之該面之開口;利用該圖案化磊晶側向延長成長光罩在該基板成長III族氮化物,以形成覆蓋該光柵圖案之III族氮化物區域,該光柵圖案被轉印至該III族氮化物區域;成長包括n型III族氮化物區域、III族氮化物主動區域及p型III族氮化物區域之半導體積層;成長該半導體積層後,成長導電層;形成第一分散式布拉格反射器(DBR)在該導電層上以製作產品,其中該第一分散式布拉格反射器包括交替地配置之第一介電層及第二介電層;及從該產品去除該基板以暴露該圖案化磊晶側向延長成長光罩,其中,該光柵圖案包括沿該基板之該面延伸之週期性一維圖案。In a ninth aspect of the above embodiment, a method of manufacturing a vertical cavity surface emitting laser (VCSEL) includes: forming a patterned epitaxial lateral elongation growth (ELO) mask on one side of a substrate, wherein The substrate includes one of a Group III nitride substrate, a silicon substrate, a sapphire substrate, a sapphire-based gallium nitride template, or a silicon-based gallium nitride template. The patterned epitaxial lateral extension growth mask includes a grating pattern and up to the The opening on the surface of the substrate; the patterned epitaxial lateral extension growth mask is used to grow Group III nitride on the substrate to form a Group III nitride area covering the grating pattern, and the grating pattern is transferred to the III Group III nitride region; growing a semiconductor stack including an n-type Group III nitride region, a Group III nitride active region, and a p-type Group III nitride region; after growing the semiconductor stack, a conductive layer is grown; forming a first dispersed Bragg reflection (DBR) on the conductive layer to produce a product, wherein the first distributed Bragg reflector includes alternately configured first dielectric layers and second dielectric layers; and removing the substrate from the product to expose the pattern The epitaxial wafer is laterally extended into a growth mask, wherein the grating pattern includes a periodic one-dimensional pattern extending along the surface of the substrate.

在上述實施例的第十態樣,如第九態樣所述的方法,更包含在形成該第一分散式布拉格反射器之後及去除該基板之前,在該導電層上形成第一金屬電極。In a tenth aspect of the above-mentioned embodiment, the method described in the ninth aspect further includes forming a first metal electrode on the conductive layer after forming the first distributed Bragg reflector and before removing the substrate.

在上述實施例的第十一態樣,如第九或第十態樣所述的方法,更包含在成長該半導體積層之前,藉由研磨或蝕刻至少其中之一平面化該III族氮化物區域。In an eleventh aspect of the above embodiment, the method as described in the ninth or tenth aspect further includes planarizing the group III nitride region by at least one of grinding or etching before growing the semiconductor layer. .

在上述實施例的第十二態樣,如第九至第十一態樣任一者所述的方法,更包含:在成長該導電層之前,藉由蝕刻從該半導體積層製作台面,以形成該半導體積層之蝕刻面,其中該台面包括該III族氮化物主動區域;及在該半導體積層之該蝕刻面形成第二電極。In a twelfth aspect of the above embodiment, the method as described in any one of the ninth to eleventh aspects further includes: before growing the conductive layer, making a mesa from the semiconductor layer by etching to form The etched surface of the semiconductor stack, wherein the mesa includes the Group III nitride active region; and a second electrode is formed on the etched surface of the semiconductor stack.

在上述實施例的第十三態樣,如第九至第十一態樣任一者所述的方法,更包含:在去除該基板之後,去除該圖案化磊晶側向延長成長光罩之一部分以暴露該III族氮化物區域;及在該III族氮化物區域之暴露面形成第二金屬電極。In a thirteenth aspect of the above embodiment, the method described in any one of the ninth to eleventh aspects further includes: after removing the substrate, removing the patterned epitaxial lateral extension growth mask A portion is used to expose the Group III nitride region; and a second metal electrode is formed on the exposed surface of the Group III nitride region.

在上述實施例的第十四態樣,如第九至第十二態樣任一者所述的方法,更包含在去除該基板之後,去除該圖案化磊晶側向延長成長光罩。In a fourteenth aspect of the above embodiment, the method described in any one of the ninth to twelfth aspects further includes removing the patterned epitaxial lateral extension growth mask after removing the substrate.

在上述實施例的第十五態樣,如第九至第十三態樣任一者所述的方法,其中該圖案化磊晶側向延長成長光罩更包括第二分散式布拉格反射器,該第二分散式布拉格反射器具有在該基板之該面交替地配置之第三介電層及第四介電層。In a fifteenth aspect of the above embodiment, the method as described in any one of the ninth to thirteenth aspects, wherein the patterned epitaxial lateral extension growth mask further includes a second dispersed Bragg reflector, The second distributed Bragg reflector has third dielectric layers and fourth dielectric layers alternately arranged on the surface of the substrate.

使用於此且未另外定義,「實質上」及「大約」等用語係用於描述及敘述小變化。當結合於一事件或情況,該用語可包含事件或情況發生精確的當下、以及事件或情況發生至一接近的近似點。例如,當結合於一數值,該用語可包含一變化範圍小於或等於該數值之±10%,如小於或等於±5%、小於或等於±4%、小於或等於±3%、小於或等於±2%、小於或等於±1%、小於或等於±0.5%、小於或等於±0.1%、或小於或等於±0.05%。As used herein and not otherwise defined, the terms "substantially" and "approximately" are used to describe and describe small changes. When used in connection with an event or situation, the term may include the precise moment at which the event or situation occurs, as well as the event or situation occurring to a close approximation. For example, when combined with a numerical value, the term may include a range of variation less than or equal to ±10% of the numerical value, such as less than or equal to ±5%, less than or equal to ±4%, less than or equal to ±3%, less than or equal to ±2%, less than or equal to ±1%, less than or equal to ±0.5%, less than or equal to ±0.1%, or less than or equal to ±0.05%.

以上概述了數個實施例的部件、使得在本揭露所屬技術領域中具有通常知識者可以更理解本揭露實施例的概念。在本揭露所屬技術領域中具有通常知識者應該理解、可以使用本揭露實施例作為基礎、來設計或修改其他製程和結構、以實現與在此所介紹的實施例相同的目的及/或達到相同的好處。在本揭露所屬技術領域中具有通常知識者也應該理解、這些等效的結構並不背離本揭露的精神和範圍、並且在不背離本揭露的精神和範圍的情況下、在此可以做出各種改變、取代和其他選擇。因此、本揭露之保護範圍當視後附之申請專利範圍所界定為準。The components of several embodiments are summarized above so that those with ordinary skill in the technical field to which this disclosure belongs can better understand the concepts of the embodiments of this disclosure. It should be understood by those of ordinary skill in the art that the embodiments of the present disclosure can be used as a basis to design or modify other processes and structures to achieve the same purposes and/or achieve the same results as the embodiments introduced herein. benefits. Those of ordinary skill in the technical field to which the present disclosure belongs should also understand that these equivalent structures do not deviate from the spirit and scope of the present disclosure, and that various modifications can be made herein without departing from the spirit and scope of the present disclosure. Changes, Substitutions and Alternatives. Therefore, the protection scope of the present disclosure shall be determined by the appended patent application scope.

11、11a~11e:VCSEL 13:分散式布拉格反射器(DBR) 15:半導體部分 17:單晶光柵 17a、18a:週期性一維圖案 17b、18b:無圖案化部分 17c、18c:圖案化部分 18d:介電DBR積層 19:第一介電層 21:第二介電層 23:p型III族氮化物區域 25:n型III族氮化物區域 25a:前面 25b:背面 27:III族氮化物主動區域 29:光學腔體 31:陽極電極 33、33a、33b:陰極電極 35:導電層 35a:內部部分 35b:外部部分 37:台面 39a:導電窗口部分 39b:低導電部分 L CAV:總腔體長度 Ax1、Ax2:軸向 S101~S108:步驟 11. 11a~11e: VCSEL 13: Distributed Bragg reflector (DBR) 15: Semiconductor part 17: Single crystal grating 17a, 18a: Periodic one-dimensional pattern 17b, 18b: Unpatterned part 17c, 18c: Patterned part 18d: Dielectric DBR buildup 19: First dielectric layer 21: Second dielectric layer 23: p-type Group III nitride region 25: n-type Group III nitride region 25a: front side 25b: back side 27: Group III nitride Active area 29: Optical cavity 31: Anode electrodes 33, 33a, 33b: Cathode electrode 35: Conductive layer 35a: Inner part 35b: Outer part 37: Mesa 39a: Conductive window part 39b: Low conductive part L CAV : Total cavity Length Ax1, Ax2: Axial S101~S108: Steps

[圖1]是表示本揭露之一實施例之垂直共振腔面射型雷射(VCSEL)的示意圖。 [圖2]是表示本揭露之一實施例之製造VCSEL之方法之主要步驟的流程圖。 [圖3A]是表示本揭露之一實施例之製造單晶光柵之步驟圖。 [圖3B]是表示本揭露之一實施例之製造單晶光柵之步驟圖。 [圖3C]是表示本揭露之一實施例之製造單晶光柵之步驟圖。 [圖3D]是表示本揭露之一實施例之製造單晶光柵之步驟圖。 [圖4]是表示本揭露之一實施例之經由二次圖案化形成之圖案化ELO光罩之平面圖。 [圖5A]是表示本揭露之一實施例之製造VCSEL之主要步驟圖。 [圖5B]是表示本揭露之一實施例之製造VCSEL之主要步驟圖。 [圖5C]是表示本揭露之一實施例之製造VCSEL之主要步驟圖。 [圖6A]是表示本揭露之一實施例之製造VCSEL之主要步驟圖。 [圖6B]是表示本揭露之一實施例之製造VCSEL之主要步驟圖。 [圖6C]是表示本揭露之一實施例之製造VCSEL之主要步驟圖。 [圖7A]是表示本揭露之一實施例之製造VCSEL之主要步驟圖。 [圖7B]是表示本揭露之一實施例之製造VCSEL之主要步驟圖。 [圖7C]是表示本揭露之一實施例之製造VCSEL之主要步驟圖。 [圖8A]是表示本揭露之一實施例之製造VCSEL之主要步驟圖。 [圖8B]是表示本揭露之一實施例之製造VCSEL之主要步驟圖。 [圖8C]是表示本揭露之一實施例之製造VCSEL之主要步驟圖。 [圖9A]是表示本揭露之一實施例之製造VCSEL之主要步驟圖。 [圖9B]是表示本揭露之一實施例之製造VCSEL之主要步驟圖。 [圖10A]是表示本揭露之一實施例之製造VCSEL之主要步驟圖。 [圖10B]是表示本揭露之一實施例之製造VCSEL之主要步驟圖。 [圖10C]是表示本揭露之一實施例之製造VCSEL之主要步驟圖。 [圖11A]是表示本揭露之一實施例之VCSEL之平面圖。 [圖11B]是表示沿圖11A之線I-I之剖面圖。 [圖12A]是表示本揭露之一實施例之VCSEL之平面圖。 [圖12B]是表示沿圖12A之線II-II之剖面圖。 [圖13A]是表示本揭露之一實施例之VCSEL之平面圖。 [圖13B]是表示沿圖13A之線III-III之剖面圖。 [圖14A]是表示本揭露之一實施例之VCSEL之平面圖。 [圖14B]是表示沿圖14A之線IV-IV之剖面圖。 [圖15A]是表示本揭露之一實施例之VCSEL之平面圖。 [圖15B]是表示沿圖15A之線V-V之剖面圖。 [Fig. 1] is a schematic diagram showing a vertical cavity surface emitting laser (VCSEL) according to an embodiment of the present disclosure. [Fig. 2] is a flow chart showing the main steps of a method of manufacturing a VCSEL according to an embodiment of the present disclosure. [Fig. 3A] is a diagram showing the steps of manufacturing a single crystal grating according to an embodiment of the present disclosure. [Fig. 3B] is a diagram illustrating the steps of manufacturing a single crystal grating according to an embodiment of the present disclosure. [Fig. 3C] is a diagram showing the steps of manufacturing a single crystal grating according to an embodiment of the present disclosure. [Fig. 3D] is a diagram showing the steps of manufacturing a single crystal grating according to an embodiment of the present disclosure. [Fig. 4] is a plan view of a patterned ELO mask formed by secondary patterning according to an embodiment of the present disclosure. [Fig. 5A] is a diagram showing the main steps of manufacturing a VCSEL according to an embodiment of the present disclosure. [Fig. 5B] is a diagram showing the main steps of manufacturing a VCSEL according to an embodiment of the present disclosure. [Fig. 5C] is a diagram showing the main steps of manufacturing a VCSEL according to an embodiment of the present disclosure. [Fig. 6A] is a diagram showing the main steps of manufacturing a VCSEL according to an embodiment of the present disclosure. [Fig. 6B] is a diagram showing the main steps of manufacturing a VCSEL according to an embodiment of the present disclosure. [Fig. 6C] is a diagram showing the main steps of manufacturing a VCSEL according to an embodiment of the present disclosure. [Fig. 7A] is a diagram showing the main steps of manufacturing a VCSEL according to an embodiment of the present disclosure. [Fig. 7B] is a diagram showing the main steps of manufacturing a VCSEL according to an embodiment of the present disclosure. [Fig. 7C] is a diagram showing the main steps of manufacturing a VCSEL according to an embodiment of the present disclosure. [Fig. 8A] is a diagram showing the main steps of manufacturing a VCSEL according to an embodiment of the present disclosure. [Fig. 8B] is a diagram showing the main steps of manufacturing a VCSEL according to an embodiment of the present disclosure. [Fig. 8C] is a diagram showing the main steps of manufacturing a VCSEL according to an embodiment of the present disclosure. [Fig. 9A] is a diagram showing the main steps of manufacturing a VCSEL according to an embodiment of the present disclosure. [Fig. 9B] is a diagram showing the main steps of manufacturing a VCSEL according to an embodiment of the present disclosure. [Fig. 10A] is a diagram showing the main steps of manufacturing a VCSEL according to an embodiment of the present disclosure. [Fig. 10B] is a diagram showing the main steps of manufacturing a VCSEL according to an embodiment of the present disclosure. [Fig. 10C] is a diagram showing the main steps of manufacturing a VCSEL according to an embodiment of the present disclosure. [Fig. 11A] is a plan view showing a VCSEL according to an embodiment of the present disclosure. [Fig. 11B] is a cross-sectional view taken along line I-I in Fig. 11A. [Fig. 12A] is a plan view showing a VCSEL according to an embodiment of the present disclosure. [Fig. 12B] is a cross-sectional view taken along line II-II in Fig. 12A. [Fig. 13A] is a plan view showing a VCSEL according to an embodiment of the present disclosure. [Fig. 13B] is a cross-sectional view taken along line III-III in Fig. 13A. [Fig. 14A] is a plan view showing a VCSEL according to an embodiment of the present disclosure. [Fig. 14B] is a cross-sectional view taken along line IV-IV in Fig. 14A. [Fig. 15A] is a plan view showing a VCSEL according to an embodiment of the present disclosure. [Fig. 15B] is a cross-sectional view taken along line V-V in Fig. 15A.

11:VCSEL 11:VCSEL

13:分散式布拉格反射器(DBR) 13: Distributed Bragg Reflector (DBR)

15:半導體部分 15:Semiconductor part

17:單晶光柵 17:Single crystal grating

17a、18a:週期性一維圖案 17a, 18a: Periodic one-dimensional pattern

17b、18b:無圖案化部分 17b, 18b: Unpatterned part

17c、18c:圖案化部分 17c, 18c: Patterned part

18d:介電DBR積層 18d: Dielectric DBR laminate

19:第一介電層 19: First dielectric layer

21:第二介電層 21: Second dielectric layer

23:p型III族氮化物區域 23: p-type III nitride region

25:n型III族氮化物區域 25: n-type III nitride region

25a:前面 25a: front

25b:背面 25b: Back

27:III族氮化物主動區域 27: Group III nitride active region

29:光學腔體 29: Optical cavity

31:陽極電極 31: Anode electrode

33、33a、33b:陰極電極 33, 33a, 33b: cathode electrode

35:導電層 35: Conductive layer

35a:內部部分 35a: Internal part

35b:外部部分 35b:External part

37:台面 37: Countertop

39a:導電窗口部分 39a: Conductive window part

39b:低導電部分 39b: Low conductive part

LCAV:總腔體長度 L CAV : total cavity length

Ax1、Ax2:軸向 Ax1, Ax2: axial direction

Claims (15)

一種垂直共振腔面射型雷射,其包含: 第一分散式布拉格反射器,其包括在第一軸向上交替地配置之第一介電層及第二介電層;及 半導體部分,其包括p型III族氮化物區域、III族氮化物區域、及位在該p型III族氮化物區域及該III族氮化物區域之間的III族氮化物主動區域,該p型III族氮化物區域、該III族氮化物主動區域及該III族氮化物區域配置於該第一軸向,該III族氮化物區域包括n型III族氮化物區域, 其中,該半導體部分包括具有週期性一維圖案之單晶光柵,該單晶光柵、該III族氮化物主動區域及該第一分散式布拉格反射器配置於該第一軸向以形成光學腔體,該週期性一維圖案延伸於與第一軸向相交之第二軸向。 A vertical resonant cavity surface-emitting laser, which includes: A first distributed Bragg reflector including first dielectric layers and second dielectric layers alternately arranged in the first axis; and A semiconductor part including a p-type Group III nitride region, a Group III nitride region, and a Group III nitride active region between the p-type Group III nitride region and the Group III nitride region, the p-type Group III nitride region The Group III nitride region, the Group III nitride active region and the Group III nitride region are arranged in the first axial direction, and the Group III nitride region includes an n-type Group III nitride region, Wherein, the semiconductor part includes a single crystal grating with a periodic one-dimensional pattern, and the single crystal grating, the III-nitride active region and the first distributed Bragg reflector are arranged in the first axis to form an optical cavity. , the periodic one-dimensional pattern extends in the second axial direction that intersects the first axial direction. 如請求項1所述的垂直共振腔面射型雷射,更包含設置於該半導體部分之介電層,該介電層延伸於該單晶光柵以覆蓋該週期性一維圖案。The vertical resonant cavity surface-emitting laser according to claim 1 further includes a dielectric layer disposed on the semiconductor part, and the dielectric layer extends on the single crystal grating to cover the periodic one-dimensional pattern. 如請求項2所述的垂直共振腔面射型雷射,更包含第二分散式布拉格反射器,其中: 該介電層設置於該第二分散式布拉格反射器與該半導體部分之間, 該第二分散式布拉格反射器包括在該第一軸向上交替地配置之第三介電層及第四介電層,及 該第二分散式布拉格反射器與該週期性一維圖案彼此連接來構成單一反射器。 The vertical resonant cavity surface-emitting laser as described in claim 2 further includes a second dispersed Bragg reflector, wherein: the dielectric layer is disposed between the second distributed Bragg reflector and the semiconductor portion, The second distributed Bragg reflector includes third dielectric layers and fourth dielectric layers alternately arranged in the first axis direction, and The second dispersed Bragg reflector and the periodic one-dimensional pattern are connected to each other to form a single reflector. 如請求項1~3任一項所述的垂直共振腔面射型雷射,更包含: 導電層,其設置於該半導體部分,該導電層之一部分設置於該第一分散式布拉格反射器與該半導體部分之間;及 第一電極,其設置於該導電層上並位於該第一分散式布拉格反射器外側,該第一電極設置與該導電層接觸。 The vertical resonant cavity surface-emitting laser as described in any one of claims 1 to 3, further includes: A conductive layer is provided on the semiconductor part, a part of the conductive layer is provided between the first distributed Bragg reflector and the semiconductor part; and A first electrode is disposed on the conductive layer and located outside the first distributed Bragg reflector. The first electrode is disposed in contact with the conductive layer. 如請求項4所述的垂直共振腔面射型雷射,更包含第二電極,其中: 該III族氮化物區域具有第一面、及位在該第一面之相對側之第二面,及 該單晶光柵形成在該第一面,且該第二電極設置在該第二面。 The vertical resonant cavity surface-emitting laser as described in claim 4 further includes a second electrode, wherein: The Group III nitride region has a first side and a second side opposite the first side, and The single crystal grating is formed on the first surface, and the second electrode is disposed on the second surface. 如請求項4所述的垂直共振腔面射型雷射,更包含第二電極,其中: 該III族氮化物區域具有第一面、及位在該第一面之相對側之第二面,及 該單晶光柵形成在該第一面,且該第二電極設置在該第一面。 The vertical resonant cavity surface-emitting laser as described in claim 4 further includes a second electrode, wherein: The Group III nitride region has a first side and a second side opposite the first side, and The single crystal grating is formed on the first surface, and the second electrode is disposed on the first surface. 如請求項1~3任一項所述的垂直共振腔面射型雷射,其中該光學腔體之總腔體長度係1微米以上。The vertical resonant cavity surface-emitting laser according to any one of claims 1 to 3, wherein the total cavity length of the optical cavity is more than 1 micron. 如請求項1~3任一項所述的垂直共振腔面射型雷射,其中該單晶光柵與該第一分散式布拉格反射器之間的距離係不大於30微米。The vertical resonant cavity surface-emitting laser according to any one of claims 1 to 3, wherein the distance between the single crystal grating and the first dispersed Bragg reflector is no more than 30 microns. 一種製造垂直共振腔面射型雷射之方法,該方法包含: 在基板之一面形成圖案化磊晶側向延長成長光罩,其中該基板包括III族氮化物基板、矽基板、藍寶石基板、藍寶石基氮化鎵模板、或矽基氮化鎵模板其中之一,該圖案化磊晶側向延長成長光罩包括光柵圖案及直至該基板之該面之開口; 利用該圖案化磊晶側向延長成長光罩在該基板成長III族氮化物,以形成覆蓋該光柵圖案之III族氮化物區域,該光柵圖案被轉印至該III族氮化物區域; 成長包括n型III族氮化物區域、III族氮化物主動區域及p型III族氮化物區域之半導體積層; 成長該半導體積層後,成長導電層; 形成第一分散式布拉格反射器在該導電層上以製作產品,其中該第一分散式布拉格反射器包括交替地配置之第一介電層及第二介電層;及 從該產品去除該基板以暴露該圖案化磊晶側向延長成長光罩, 其中,該光柵圖案包括沿該基板之該面延伸之週期性一維圖案。 A method of manufacturing a vertical resonant cavity surface-emitting laser, which method includes: Forming a patterned epitaxial lateral extension growth mask on one side of the substrate, wherein the substrate includes one of a Group III nitride substrate, a silicon substrate, a sapphire substrate, a sapphire-based gallium nitride template, or a silicon-based gallium nitride template, The patterned epitaxial lateral extension growth mask includes a grating pattern and an opening up to the surface of the substrate; Using the patterned epitaxial lateral extension growth mask to grow Group III nitride on the substrate to form a Group III nitride region covering the grating pattern, and the grating pattern is transferred to the Group III nitride region; Growth of semiconductor stacks including n-type Group III nitride region, Group III nitride active region, and p-type Group III nitride region; After growing the semiconductor layer, a conductive layer is grown; Forming a first distributed Bragg reflector on the conductive layer to produce a product, wherein the first distributed Bragg reflector includes first dielectric layers and second dielectric layers that are alternately arranged; and Remove the substrate from the product to expose the patterned epitaxial lateral extension growth mask, Wherein, the grating pattern includes a periodic one-dimensional pattern extending along the surface of the substrate. 如請求項9所述的方法,更包含:在形成該第一分散式布拉格反射器之後及去除該基板之前,在該導電層上形成第一金屬電極。The method of claim 9, further comprising: forming a first metal electrode on the conductive layer after forming the first distributed Bragg reflector and before removing the substrate. 如請求項9或10所述的方法,更包含:在成長該半導體積層之前,藉由研磨或蝕刻至少其中之一平面化該III族氮化物區域。The method of claim 9 or 10, further comprising: planarizing the Group III nitride region by at least one of grinding or etching before growing the semiconductor stack. 如請求項9或10所述的方法,更包含: 在成長該導電層之前,藉由蝕刻從該半導體積層製作台面,以形成該半導體積層之蝕刻面,其中該台面包括該III族氮化物主動區域;及 在該半導體積層之該蝕刻面形成第二電極。 The method described in request item 9 or 10 further includes: Before growing the conductive layer, creating a mesa from the semiconductor buildup by etching to form an etched surface of the semiconductor buildup, wherein the mesa includes the Group III nitride active region; and A second electrode is formed on the etched surface of the semiconductor stack. 如請求項9或10所述的方法,更包含: 在去除該基板之後,去除該圖案化磊晶側向延長成長光罩之一部分以暴露該III族氮化物區域;及 在該III族氮化物區域之暴露面形成第二金屬電極。 The method described in request item 9 or 10 further includes: After removing the substrate, removing a portion of the patterned epitaxial lateral extension growth mask to expose the III-nitride region; and A second metal electrode is formed on the exposed surface of the Group III nitride region. 如請求項9或10所述的方法,更包含:在去除該基板之後,去除該圖案化磊晶側向延長成長光罩。The method of claim 9 or 10 further includes: after removing the substrate, removing the patterned epitaxial lateral extension growth mask. 如請求項9或10所述的方法,其中該圖案化磊晶側向延長成長光罩更包括第二分散式布拉格反射器,該第二分散式布拉格反射器具有在該基板之該面交替地配置之第三介電層及第四介電層。The method of claim 9 or 10, wherein the patterned epitaxial lateral extension growth mask further includes a second dispersed Bragg reflector, the second dispersed Bragg reflector having alternating The third dielectric layer and the fourth dielectric layer are configured.
TW111112677A 2022-03-31 2022-03-31 Surface emitting laser, method for fabricating surface emitting laser TW202341594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111112677A TW202341594A (en) 2022-03-31 2022-03-31 Surface emitting laser, method for fabricating surface emitting laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111112677A TW202341594A (en) 2022-03-31 2022-03-31 Surface emitting laser, method for fabricating surface emitting laser

Publications (1)

Publication Number Publication Date
TW202341594A true TW202341594A (en) 2023-10-16

Family

ID=89856119

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111112677A TW202341594A (en) 2022-03-31 2022-03-31 Surface emitting laser, method for fabricating surface emitting laser

Country Status (1)

Country Link
TW (1) TW202341594A (en)

Similar Documents

Publication Publication Date Title
US9525100B2 (en) Nano-structured light-emitting devices
US6967981B2 (en) Nitride based semiconductor structures with highly reflective mirrors
EP1326290B1 (en) Method of fabricating semiconductor structures
US8455894B1 (en) Photonic-crystal light emitting diode and method of manufacture
US8354679B1 (en) Microcavity light emitting diode method of manufacture
EP1755203B1 (en) Nitride semiconductor vertical cavity surface emitting laser
JP4975204B2 (en) Method for assembling AlxGayInzN structure
US7724793B2 (en) Nitride semiconductor laser element and fabrication method thereof
US8093607B2 (en) Optoelectronic semiconductor component
US20100295088A1 (en) Textured-surface light emitting diode and method of manufacture
US8012780B2 (en) Method of fabricating semiconductor laser
KR20000076604A (en) WAFER BONDED AlxGayInzN STRUCTURES
US20070096127A1 (en) Semiconductor micro-cavity light emitting diode
Song et al. A vertical injection blue light emitting diode in substrate separated InGaN heterostructures
US20240079856A1 (en) Method of fabricating a resonant cavity and distributed bragg reflector mirrors for a vertical cavity surface emitting laser on a wing of an epitaxial lateral overgrowth region
JP2011077326A (en) Semiconductor laser integrated element and method for manufacturing the same
KR20230028782A (en) Transfer process for realizing semiconductor devices
US6456638B1 (en) High-power short-wavelength semiconductor light emitting device having active layer with increased indium content
CN115868090A (en) Photonic crystal surface emitting laser element
US9397479B2 (en) Silicon DBR structure-integrated light element, and preparation method
KR20090016438A (en) Laser lift-off led with improved light extraction
TW202341594A (en) Surface emitting laser, method for fabricating surface emitting laser
WO2023188405A1 (en) Surface emitting laser, method for fabricating surface emitting laser
US20230402564A1 (en) Method of transferring a pattern to an epitaxial layer of a light emitting device
WO2023233541A1 (en) Surface emitting laser, method for fabricating surface emitting laser