TW202341283A - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
TW202341283A
TW202341283A TW111113181A TW111113181A TW202341283A TW 202341283 A TW202341283 A TW 202341283A TW 111113181 A TW111113181 A TW 111113181A TW 111113181 A TW111113181 A TW 111113181A TW 202341283 A TW202341283 A TW 202341283A
Authority
TW
Taiwan
Prior art keywords
silicon
gallium nitride
substrate
silicon carbide
internal connection
Prior art date
Application number
TW111113181A
Other languages
Chinese (zh)
Inventor
曹正翰
蔡佳琪
Original Assignee
環球晶圓股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 環球晶圓股份有限公司 filed Critical 環球晶圓股份有限公司
Priority to TW111113181A priority Critical patent/TW202341283A/en
Priority to CN202211696459.0A priority patent/CN116936509A/en
Publication of TW202341283A publication Critical patent/TW202341283A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/482Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
    • H01L23/4824Pads with extended contours, e.g. grid structure, branch structure, finger structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/482Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
    • H01L23/4827Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0233Structure of the redistribution layers
    • H01L2224/02333Structure of the redistribution layers being a bump
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0237Disposition of the redistribution layers
    • H01L2224/02371Disposition of the redistribution layers connecting the bonding area on a surface of the semiconductor or solid-state body with another surface of the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0237Disposition of the redistribution layers
    • H01L2224/02381Side view

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

A semiconductor device includes a silicon carbide circuit board, a gallium nitride device and a silicon integrated circuit device. The silicon carbide circuit board includes a silicon carbide substrate and a circuit structure located above the silicon carbide substrate. The gallium nitride device includes a sapphire substrate, a gallium nitride component on the sapphire substrate, and a first redistribution structure on the gallium nitride component. The silicon integrated circuit device includes a silicon substrate, a field-effect transistor on the silicon substrate, and a second redistribution structure on the field-effect transistor.

Description

半導體裝置及其製造方法Semiconductor device and manufacturing method thereof

本發明是有關於一種半導體裝置及其製造方法。The present invention relates to a semiconductor device and a manufacturing method thereof.

在積體電路領域中,常使用III-V族化合物半導體來形成多種半導體元件,例如高功率場效電晶體(high power field-effect transistors)、高頻電晶體(high efficiency transistors)或高電子遷移率電晶體(high electron mobility transistors,HEMT)等。高電子遷移率電晶體是一種場效電晶體,其可採用介於不同能隙的兩種材料之間之一接面作為通道,使得所述通道具有高電子遷移率的二維電子氣(2-dimensional electron gas,2DEG)。近年來,由於高電子遷移率電晶體具有高功率效能表現,因此已逐漸受到矚目。In the field of integrated circuits, III-V compound semiconductors are often used to form a variety of semiconductor components, such as high power field-effect transistors, high efficiency transistors or high electron migration High electron mobility transistors (HEMT), etc. High electron mobility transistor is a field effect transistor, which can use one interface between two materials with different energy gaps as a channel, so that the channel has a two-dimensional electron gas with high electron mobility (2 -dimensional electron gas, 2DEG). In recent years, high electron mobility transistors have gradually attracted attention due to their high power efficiency.

一般而言,在製造半導體元件時,半導體元件的效能會被半導體基底的材料所影響。舉例來說,矽的半導體材料具有製程成熟的優點,然而於矽基底上形成III-V族化合物半導體元件(例如氮化鎵半導體元件)時,矽基底中可能會形成寄生通道,進而減少了III-V族化合物半導體元件之效能。此外,氮化鎵半導體元件形成於藍寶石基底上可以有較優秀的效能,然而若於藍寶石基底上形成氮化鎵半導體元件,氮化鎵半導體元件可能會因為藍寶石基底的散熱能力不佳而在長時間使用後出現特性偏移的問題。Generally speaking, when manufacturing semiconductor devices, the performance of the semiconductor device will be affected by the material of the semiconductor substrate. For example, silicon semiconductor material has the advantage of mature manufacturing processes. However, when III-V compound semiconductor devices (such as gallium nitride semiconductor devices) are formed on a silicon substrate, parasitic channels may be formed in the silicon substrate, thereby reducing the risk of III-V compound semiconductor devices (such as gallium nitride semiconductor devices). -Performance of Group V compound semiconductor devices. In addition, gallium nitride semiconductor devices formed on a sapphire substrate can have better performance. However, if the gallium nitride semiconductor device is formed on a sapphire substrate, the gallium nitride semiconductor device may be damaged in the long run due to the poor heat dissipation ability of the sapphire substrate. The problem of characteristic drift occurs after time is used.

本發明提供一種半導體裝置,可以改善半導體裝置中之電路出現寄生電阻的問題,且半導體裝置具有散熱效果佳的優點。The present invention provides a semiconductor device that can improve the problem of parasitic resistance in circuits in the semiconductor device, and the semiconductor device has the advantage of good heat dissipation effect.

本發明提供一種半導體裝置的製造方法,可以改善半導體裝置中之電路出現寄生電阻的問題,且半導體裝置具有散熱效果佳的優點。The present invention provides a manufacturing method of a semiconductor device, which can improve the problem of parasitic resistance in circuits in the semiconductor device, and the semiconductor device has the advantage of good heat dissipation effect.

本發明的至少一實施例提供一種半導體裝置,包括碳化矽電路板、氮化鎵裝置以及矽積體電路裝置。碳化矽電路板包括碳化矽基底以及位於碳化矽基底上方的電路結構。電路結構包括多個第一內部連接端子、多個第二內部連接端子以及多個外部連接端子。外部連接端子被配置成用於連接外部訊號。氮化鎵裝置包括藍寶石基底、位於所述藍寶石基底上的氮化鎵元件以及位於所述氮化鎵元件上的第一重佈線結構。第一重佈線結構電性連接至第一內部連接端子。矽積體電路裝置包括矽基底、位於矽基底上的場效電晶體元件以及位於場效電晶體元件上的第二重佈線結構。第二重佈線結構電性連接至所述第二內部連接端子。At least one embodiment of the present invention provides a semiconductor device, including a silicon carbide circuit board, a gallium nitride device, and a silicon integrated circuit device. A silicon carbide circuit board includes a silicon carbide substrate and a circuit structure located above the silicon carbide substrate. The circuit structure includes a plurality of first internal connection terminals, a plurality of second internal connection terminals and a plurality of external connection terminals. The external connection terminal is configured to connect external signals. The gallium nitride device includes a sapphire substrate, a gallium nitride element located on the sapphire substrate, and a first redistribution structure located on the gallium nitride element. The first rewiring structure is electrically connected to the first internal connection terminal. The silicon integrated circuit device includes a silicon substrate, a field effect transistor element located on the silicon substrate, and a second rewiring structure located on the field effect transistor element. The second rewiring structure is electrically connected to the second internal connection terminal.

本發明的至少一實施例提供一種半導體裝置的製造方法,包括:形成電路結構於碳化矽基底上方,其中電路結構包括多個第一內部連接端子、多個第二內部連接端子以及多個外部連接端子,其中外部連接端子被配置成用於連接外部訊號;形成氮化鎵元件層於藍寶石晶圓上;形成第一重佈線層於氮化鎵元件層上;切割藍寶石晶圓以形成多個氮化鎵裝置,每個氮化鎵裝置包括藍寶石基底、第一重佈線結構以及氮化鎵元件;將至少一個氮化鎵裝置電性連接至第一內部連接端子;形成場效電晶體元件層於矽晶圓上;形成第二重佈線層於場效電晶體元件層上;切割矽晶圓以形成多個矽積體電路裝置,每個矽積體電路裝置包括矽基底、第二重佈線結構以及場效電晶體元件;以及將至少一個矽積體電路裝置電性連接至第二內部連接端子。At least one embodiment of the present invention provides a method for manufacturing a semiconductor device, including: forming a circuit structure on a silicon carbide substrate, wherein the circuit structure includes a plurality of first internal connection terminals, a plurality of second internal connection terminals and a plurality of external connections. Terminals, wherein the external connection terminals are configured for connecting external signals; forming a gallium nitride device layer on the sapphire wafer; forming a first rewiring layer on the gallium nitride device layer; cutting the sapphire wafer to form a plurality of nitrogen Gallium nitride devices, each gallium nitride device including a sapphire substrate, a first redistribution structure and a gallium nitride element; electrically connecting at least one gallium nitride device to a first internal connection terminal; forming a field effect transistor element layer on on the silicon wafer; forming a second rewiring layer on the field effect transistor element layer; cutting the silicon wafer to form a plurality of silicon integrated circuit devices, each silicon integrated circuit device including a silicon substrate and a second rewiring structure and a field effect transistor element; and electrically connecting at least one silicon integrated circuit device to the second internal connection terminal.

圖1A至圖2A是依照本發明的一實施例的一種碳化矽電路板的製造方法的上視示意圖。圖1B至圖2B分別是沿著圖1A至圖2A的線a-a’的剖面示意圖。1A to 2A are schematic top views of a method for manufacturing a silicon carbide circuit board according to an embodiment of the present invention. 1B to 2B are schematic cross-sectional views along line a-a’ of FIGS. 1A to 2A respectively.

請參考圖1A與圖1B,提供碳化矽基底100。在本實施例中,碳化矽基底100為經切割的基底。舉例來說,將圓形的碳化矽晶圓切割為矩形的碳化矽基底100,但本發明不以此為限。在其他實施例中,碳化矽基底100包括其他形狀,例如三邊形、五邊形、圓形、橢圓形或其他形狀。此外,在其他實施例中,碳化矽基底100亦可以是未經切割的碳化矽晶圓。在一些實施例中,碳化矽基底100的厚度100t為200微米至700微米。Referring to FIGS. 1A and 1B , a silicon carbide substrate 100 is provided. In this embodiment, the silicon carbide substrate 100 is a cut substrate. For example, a circular silicon carbide wafer is cut into a rectangular silicon carbide substrate 100, but the invention is not limited thereto. In other embodiments, the silicon carbide substrate 100 includes other shapes, such as triangular, pentagonal, circular, elliptical, or other shapes. In addition, in other embodiments, the silicon carbide substrate 100 may also be an uncut silicon carbide wafer. In some embodiments, the silicon carbide substrate 100 has a thickness 100t of 200 microns to 700 microns.

相較於一般印刷電路板所使用之高分子基底材料,碳化矽基底100具有高散熱係數的優點。具體來說,在一些實施例中,碳化矽基底100的散熱係數在室溫(攝氏25度)下介於3.3W/cmK至4.9W/cmK的範圍之間。在本實施例中,由於碳化矽基底100並非用於磊晶製程,因此,碳化矽基底100的品質可以較一般用於磊晶製程之碳化矽晶圓的品質還要低。換句話說,碳化矽基底100的生產成本可以有較一般用於磊晶製程之碳化矽晶圓的生產成本還要低。舉例來說,碳化矽基底100中的缺陷(defect)密度大於9000 cm -2彎曲度(Bow)小於 ±800µm(較佳小於 ±350µm,最佳小於 ±100µm),翹曲度(Warp)小於 ± 900µm(較佳小於 ±450µm,最佳小於 ±100µm),但本發明不以此為限。 Compared with polymer base materials used in general printed circuit boards, the silicon carbide base 100 has the advantage of high heat dissipation coefficient. Specifically, in some embodiments, the heat dissipation coefficient of the silicon carbide substrate 100 ranges from 3.3 W/cmK to 4.9 W/cmK at room temperature (25 degrees Celsius). In this embodiment, since the silicon carbide substrate 100 is not used in the epitaxial process, the quality of the silicon carbide substrate 100 may be lower than the quality of silicon carbide wafers generally used in the epitaxial process. In other words, the production cost of the silicon carbide substrate 100 can be lower than the production cost of silicon carbide wafers generally used in the epitaxial process. For example, the defect density in the silicon carbide substrate 100 is greater than 9000 cm -2 , the bow is less than ±800µm (preferably less than ±350µm, most preferably less than ±100µm), and the warp (Warp) is less than ± 900µm (preferably less than ±450µm, most preferably less than ±100µm), but the present invention is not limited to this.

接著請參考圖2A與圖2B,形成電路結構CS於碳化矽基底100上方,以形成碳化矽電路板10。Next, please refer to FIG. 2A and FIG. 2B to form the circuit structure CS on the silicon carbide substrate 100 to form the silicon carbide circuit board 10 .

電路結構CS包括多個第一內部連接端子(111、112)、多個第二內部連接端子(113、114)以及多個外部連接端子(115、116)。多個第一內部連接端子(111、112)、多個第二內部連接端子(113、114)被配置成用於連接晶片、被動元件或其他半導體裝置中的內部元件,而外部連接端子(115、116)被配置成用於連接外部訊號。換句話說,外部連接端子(115、116)即為碳化矽電路板10的輸入/輸出(Input/ Output)端。在一些實施例中,外部連接端子(115、116)的尺寸大於第一內部連接端子(111、112)的尺寸以及第二內部連接端子(113、114)的尺寸。The circuit structure CS includes a plurality of first internal connection terminals (111, 112), a plurality of second internal connection terminals (113, 114), and a plurality of external connection terminals (115, 116). A plurality of first internal connection terminals (111, 112) and a plurality of second internal connection terminals (113, 114) are configured to connect internal components in wafers, passive components or other semiconductor devices, while external connection terminals (115 , 116) is configured for connecting external signals. In other words, the external connection terminals (115, 116) are the input/output (Input/Output) terminals of the silicon carbide circuit board 10. In some embodiments, the external connection terminals (115, 116) are larger in size than the first internal connection terminals (111, 112) and the second internal connection terminals (113, 114).

在本實施例中,第一內部連接端子(111、112)、多個第二內部連接端子(113、114)以及多個外部連接端子(115、116)彼此之間藉由相應的走線117而電性連接。舉例來說,第一內部連接端子111電性連接至外部連接端子115,第一內部連接端子112電性連接至第二內部連接端子113,且第二內部連接端子114電性連接至外部連接端子116。在本實施例中,第一內部連接端子(111、112)、第二內部連接端子(113、114)、外部連接端子(115、116)以及走線117屬於相同層別。具體來說,形成第一內部連接端子(111、112)、第二內部連接端子(113、114)、外部連接端子(115、116)以及走線117的方法包括於碳化矽電路板10上沉積第一金屬層,接著圖案化前述第一金屬層以形成第一金屬線路層,其中第一金屬線路層包括第一內部連接端子(111、112)、第二內部連接端子(113、114)、外部連接端子(115、116)以及走線117。然而,在其他實施例中,電路結構CS中可以包括一層以上的金屬線路層,而不同的金屬線路層彼此之間藉由絕緣層分開。In this embodiment, the first internal connection terminals (111, 112), the plurality of second internal connection terminals (113, 114) and the plurality of external connection terminals (115, 116) are connected to each other through corresponding wirings 117 And electrical connection. For example, the first internal connection terminal 111 is electrically connected to the external connection terminal 115, the first internal connection terminal 112 is electrically connected to the second internal connection terminal 113, and the second internal connection terminal 114 is electrically connected to the external connection terminal. 116. In this embodiment, the first internal connection terminals (111, 112), the second internal connection terminals (113, 114), the external connection terminals (115, 116) and the traces 117 belong to the same layer. Specifically, the method of forming the first internal connection terminals (111, 112), the second internal connection terminals (113, 114), the external connection terminals (115, 116) and the traces 117 includes depositing on the silicon carbide circuit board 10 The first metal layer is then patterned to form a first metal circuit layer, where the first metal circuit layer includes first internal connection terminals (111, 112), second internal connection terminals (113, 114), External connection terminals (115, 116) and wiring 117. However, in other embodiments, the circuit structure CS may include more than one metal circuit layer, and different metal circuit layers are separated from each other by insulating layers.

在本實施例中,電路結構CS還包括保護層120(圖2A省略繪示)。保護層120例如為底漆層,且其用於保護電路結構CS中的走線117。保護層120暴露出第一內部連接端子(111、112)、第二內部連接端子(113、114)以及外部連接端子(115、116)。In this embodiment, the circuit structure CS also includes a protective layer 120 (not shown in FIG. 2A ). The protective layer 120 is, for example, a primer layer, and is used to protect the traces 117 in the circuit structure CS. The protective layer 120 exposes the first internal connection terminals (111, 112), the second internal connection terminals (113, 114), and the external connection terminals (115, 116).

需注意的是,在圖2A與圖2B中,電路結構CS中的電路佈局僅是用於示意,且電路結構CS中的電路佈局可以依照實際需求而進行調整。換句話說,第一內部連接端子(111、112)、第二內部連接端子(113、114)、外部連接端子(115、116)以及走線117的數量以及位置可以依照實際需求而進行調整。It should be noted that in FIGS. 2A and 2B , the circuit layout in the circuit structure CS is only for illustration, and the circuit layout in the circuit structure CS can be adjusted according to actual needs. In other words, the number and position of the first internal connection terminals (111, 112), the second internal connection terminals (113, 114), the external connection terminals (115, 116) and the traces 117 can be adjusted according to actual needs.

圖3A至圖3C是依照本發明的一實施例的一種氮化鎵裝置的製造方法的剖面示意圖。3A to 3C are schematic cross-sectional views of a method for manufacturing a gallium nitride device according to an embodiment of the present invention.

請參考圖3A,提供藍寶石(sapphire)晶圓200。Referring to Figure 3A, a sapphire wafer 200 is provided.

請參考圖3B,形成氮化鎵元件層210於藍寶石晶圓200上。舉例來說,氮化鎵元件層210包括通道層211、第一半導體層212、鈍化層213、多個閘極214以及多個源極/汲極215。Referring to FIG. 3B , a gallium nitride device layer 210 is formed on the sapphire wafer 200 . For example, the gallium nitride device layer 210 includes a channel layer 211, a first semiconductor layer 212, a passivation layer 213, a plurality of gate electrodes 214 and a plurality of source/drain electrodes 215.

在本實施例中,通道層211直接接觸藍寶石晶圓200,但本發明不以此為限。在其他實施例中,通道層211與藍寶石晶圓200之間還夾有其他中間層。在一實施例中,通道層211的材料包括III-V族半導體材料,其可例如是經摻雜或非未經摻雜的GaN。In this embodiment, the channel layer 211 directly contacts the sapphire wafer 200, but the invention is not limited thereto. In other embodiments, other intermediate layers are sandwiched between the channel layer 211 and the sapphire wafer 200 . In one embodiment, the material of the channel layer 211 includes a III-V semiconductor material, which may be, for example, doped or non-doped GaN.

第一半導體層212位於通道層211上。第一半導體層212的材料可例如是經摻雜或非未經摻雜的AlGaN。舉例來說,第一半導體層212的材料包括n-AlGaN。通道層211可與第一半導體層212之間形成異質接面,使得通道層211接近第一半導體層212的區域中形成具有高電子遷移率的二維電子氣(2DEG)。The first semiconductor layer 212 is located on the channel layer 211. The material of the first semiconductor layer 212 may be, for example, doped or non-doped AlGaN. For example, the material of the first semiconductor layer 212 includes n-AlGaN. The channel layer 211 may form a heterojunction with the first semiconductor layer 212 , so that a two-dimensional electron gas (2DEG) with high electron mobility is formed in a region of the channel layer 211 close to the first semiconductor layer 212 .

多個閘極214位於第一半導體層212上方。在本實施例中,閘極214直接接觸第一半導體層212,但本發明不以此為限。在其他實施例中,閘極214與第一半導體層212之間還夾有p-GaN(未繪出)。A plurality of gates 214 are located above the first semiconductor layer 212 . In this embodiment, the gate 214 directly contacts the first semiconductor layer 212, but the invention is not limited thereto. In other embodiments, p-GaN (not shown) is sandwiched between the gate 214 and the first semiconductor layer 212 .

鈍化層213位於閘極214以及第一半導體層212上方。多個源極/汲極215貫穿鈍化層213,並與第一半導體層212接觸。源極/汲極215選擇性地貫穿第一半導體層212,並接觸通道層211中的二維電子氣。The passivation layer 213 is located above the gate 214 and the first semiconductor layer 212 . The plurality of source/drain electrodes 215 penetrates the passivation layer 213 and contacts the first semiconductor layer 212 . The source/drain 215 selectively penetrates the first semiconductor layer 212 and contacts the two-dimensional electron gas in the channel layer 211 .

在本實施例中,氮化鎵元件層210中具有多個氮化鎵元件2101,且每個氮化鎵元件2101包括相應的通道層2111、相應的第一半導體層2121、相應的鈍化層2131、相應的閘極214以及相應的源極/汲極215。In this embodiment, the gallium nitride element layer 210 has multiple gallium nitride elements 2101 , and each gallium nitride element 2101 includes a corresponding channel layer 2111 , a corresponding first semiconductor layer 2121 , and a corresponding passivation layer 2131 , the corresponding gate 214 and the corresponding source/drain 215.

形成第一重佈線層220於氮化鎵元件層210上。第一重佈線層220包括介電結構222以及鑲嵌於介電結構222中的線路結構221。在本實施例中,線路結構221與介電結構222各自可以包括單層或多層結構。當線路結構221包括多層結構時,不同層之間的線路結構221透過導電孔而電性連接。A first redistribution layer 220 is formed on the gallium nitride device layer 210 . The first redistribution layer 220 includes a dielectric structure 222 and a circuit structure 221 embedded in the dielectric structure 222 . In this embodiment, each of the circuit structure 221 and the dielectric structure 222 may include a single-layer or multi-layer structure. When the circuit structure 221 includes a multi-layer structure, the circuit structures 221 between different layers are electrically connected through conductive holes.

請繼續參考圖3B,選擇性地於第一重佈線層220上形成多個連接端子230。連接端子230透過第一重佈線層220而電性連接至氮化鎵元件層210中的閘極214以及源極/汲極215。連接端子230例如包括錫、導電膠或其他類似的結構。Please continue to refer to FIG. 3B , a plurality of connection terminals 230 are selectively formed on the first redistribution layer 220 . The connection terminal 230 is electrically connected to the gate 214 and the source/drain 215 in the gallium nitride device layer 210 through the first redistribution layer 220 . The connection terminals 230 include, for example, tin, conductive glue, or other similar structures.

請參考圖3C,切割藍寶石晶圓200以形成多個氮化鎵裝置20。每個氮化鎵裝置20包括藍寶石基底2001、第一重佈線結構2201以及氮化鎵元件2101。在一些實施例中,每個氮化鎵裝置20選擇性地更包括第一重佈線結構2201上的連接端子230。Referring to FIG. 3C , the sapphire wafer 200 is cut to form a plurality of gallium nitride devices 20 . Each GaN device 20 includes a sapphire substrate 2001, a first redistribution structure 2201, and a GaN element 2101. In some embodiments, each gallium nitride device 20 optionally further includes connection terminals 230 on the first redistribution structure 2201 .

在本實施例中,氮化鎵與藍寶石基底2001之間的晶格匹配度佳,且藍寶石基底2001不容易在製程中產生寄生通道,因此,可以獲得效能較好氮化鎵裝置20。In this embodiment, the lattice matching between the gallium nitride and the sapphire substrate 2001 is good, and the sapphire substrate 2001 is not easy to generate parasitic channels during the manufacturing process. Therefore, the gallium nitride device 20 with better performance can be obtained.

圖4A至圖4C是依照本發明的一實施例的一種矽積體電路裝置的製造方法的剖面示意圖。4A to 4C are schematic cross-sectional views of a manufacturing method of a silicon integrated circuit device according to an embodiment of the present invention.

請參考圖4A,提供矽晶圓300。矽晶圓300例如包括經摻雜或未經摻雜的塊狀矽或絕緣層上半導體(SOI),其中,絕緣層上半導體包括絕緣層以及形成於前述絕緣層上的矽層。Referring to Figure 4A, a silicon wafer 300 is provided. The silicon wafer 300 includes, for example, doped or undoped bulk silicon or semiconductor on insulator (SOI), where the semiconductor on insulator includes an insulating layer and a silicon layer formed on the insulating layer.

請參考圖4B,形成場效電晶體元件層310於矽晶圓300上。在圖4B中,以虛線方框示意場效電晶體元件層310中的場效電晶體元件311,並省略場效電晶體元件311的具體結構。場效電晶體元件層310中可以包括多層的半導體元件以及多層的內連線層。舉例來說,場效電晶體元件層310中可以包括於前端製程(front-end-of-line, FEOL)製造的半導體元件以及於後端製程(bank-end-of-line, BEOL)製造的半導體元件。半導體元件之間可以藉由內連線層而彼此電性連接。Referring to FIG. 4B , a field effect transistor element layer 310 is formed on the silicon wafer 300 . In FIG. 4B , the field effect transistor element 311 in the field effect transistor element layer 310 is illustrated by a dotted box, and the specific structure of the field effect transistor element 311 is omitted. The field effect transistor element layer 310 may include multiple layers of semiconductor elements and multiple layers of interconnect layers. For example, the field effect transistor element layer 310 may include semiconductor elements manufactured in a front-end-of-line (FEOL) process and semiconductor elements manufactured in a back-end-of-line (BEOL) process. Semiconductor components. Semiconductor components can be electrically connected to each other through interconnect layers.

形成第二重佈線層320於場效電晶體元件層310上。第二重佈線層320包括介電結構322以及鑲嵌於介電結構322中的線路結構321。在本實施例中,線路結構321與介電結構322各自可以包括單層或多層結構。當線路結構321包括多層結構時,不同層之間的線路結構321透過導電孔而電性連接。A second redistribution layer 320 is formed on the field effect transistor element layer 310 . The second redistribution layer 320 includes a dielectric structure 322 and a circuit structure 321 embedded in the dielectric structure 322 . In this embodiment, each of the circuit structure 321 and the dielectric structure 322 may include a single-layer or multi-layer structure. When the circuit structure 321 includes a multi-layer structure, the circuit structures 321 between different layers are electrically connected through conductive holes.

請繼續參考圖4B,選擇性地於第二重佈線層320上形成多個連接端子330。連接端子330透過第二重佈線層320而電性連接至場效電晶體元件層310中的場效電晶體元件311。連接端子330例如包括錫、導電膠或其他類似的結構。Please continue to refer to FIG. 4B , a plurality of connection terminals 330 are selectively formed on the second redistribution layer 320 . The connection terminal 330 is electrically connected to the field effect transistor element 311 in the field effect transistor element layer 310 through the second redistribution layer 320 . The connection terminal 330 includes, for example, tin, conductive glue, or other similar structures.

請參考圖4C,切割矽晶圓300以形成多個矽積體電路裝置30。每個矽積體電路裝置30包括矽基底3001、第二重佈線結構3201以及場效電晶體元件311。在本實施例中,經切割的場效電晶體元件層3101中包括多個場效電晶體元件311,且每個矽積體電路裝置30包括多個場效電晶體元件311。在一些實施例中,每個矽積體電路裝置30選擇性地更包括第二重佈線結構3201上的連接端子330。Referring to FIG. 4C , the silicon wafer 300 is cut to form a plurality of silicon integrated circuit devices 30 . Each silicon integrated circuit device 30 includes a silicon substrate 3001, a second rewiring structure 3201 and a field effect transistor element 311. In this embodiment, the cut field effect transistor element layer 3101 includes a plurality of field effect transistor elements 311 , and each silicon integrated circuit device 30 includes a plurality of field effect transistor elements 311 . In some embodiments, each silicon semiconductor circuit device 30 optionally further includes connection terminals 330 on the second redistribution structure 3201 .

在本實施例中,以矽晶圓製作場效電晶體元件,具有黃光製程技術成熟、生產良率高以及成本低的優點。In this embodiment, the silicon wafer is used to manufacture the field effect transistor element, which has the advantages of mature yellow light process technology, high production yield, and low cost.

圖5A至圖7A是依照本發明的一實施例的一種半導體裝置的製造方法的上視示意圖。圖5B至圖7B分別是沿著圖7A至圖7A的線a-a’的剖面示意圖。5A to 7A are schematic top views of a method for manufacturing a semiconductor device according to an embodiment of the present invention. 5B to 7B are schematic cross-sectional views along line a-a’ of FIGS. 7A to 7A respectively.

請參考圖5A與圖5B,將至少一個氮化鎵裝置20電性連接至碳化矽電路板10的第一內部連接端子(111、112)。具體地說,氮化鎵裝置20透過連接端子230而連接至碳化矽電路板10的第一內部連接端子(111、112)。在本實施例中,氮化鎵裝置20的製造方法如圖3A至圖3C所述,但本發明不以此為限。在其他實施例中,亦可使用其他方法製造氮化鎵裝置20。Referring to FIGS. 5A and 5B , at least one gallium nitride device 20 is electrically connected to the first internal connection terminals ( 111 , 112 ) of the silicon carbide circuit board 10 . Specifically, the gallium nitride device 20 is connected to the first internal connection terminals (111, 112) of the silicon carbide circuit board 10 through the connection terminals 230. In this embodiment, the manufacturing method of the gallium nitride device 20 is as shown in FIGS. 3A to 3C , but the invention is not limited thereto. In other embodiments, other methods may be used to fabricate the gallium nitride device 20 .

將至少一個矽積體電路裝置30電性連接至碳化矽電路板10的第二內部連接端子(113、114)。具體地說,矽積體電路裝置30透過連接端子330而連接至碳化矽電路板10的第二內部連接端子(113、114)。在本實施例中,矽積體電路裝置30的製造方法如圖4A至圖4C所述,但本發明不以此為限。在其他實施例中,亦可使用其他方法製造矽積體電路裝置30。At least one silicon integrated circuit device 30 is electrically connected to the second internal connection terminals (113, 114) of the silicon carbide circuit board 10. Specifically, the silicon integrated circuit device 30 is connected to the second internal connection terminals (113, 114) of the silicon carbide circuit board 10 through the connection terminals 330. In this embodiment, the manufacturing method of the silicon integrated circuit device 30 is as shown in FIGS. 4A to 4C , but the invention is not limited thereto. In other embodiments, other methods may be used to manufacture the silicon semiconductor circuit device 30 .

在本實施例中,氮化鎵裝置20與矽積體電路裝置30以倒置的方式接合(例如焊接或共晶接合)於碳化矽電路板10。氮化鎵元件2101位於藍寶石基底2001與碳化矽基底100之間,且場效電晶體元件311位於矽基底3001與碳化矽基底100之間。氮化鎵裝置20與矽積體電路裝置30可以透過碳化矽電路板10上之電路結構CS而彼此電性連接。在本實施例中,氮化鎵裝置20中的氮化鎵元件2101包括高電子移動率晶體電晶體,且所述高電子移動率晶體電晶體透過第一重佈線結構2201、電路結構CS以及第二重佈線結構3201而電性連接至矽積體電路裝置30的場效電晶體元件311。在一些實施例中,矽積體電路裝置30為驅動元件,例如為功率晶片。In this embodiment, the gallium nitride device 20 and the silicon integrated circuit device 30 are bonded (eg, welded or eutectic bonded) to the silicon carbide circuit board 10 in an inverted manner. The gallium nitride element 2101 is located between the sapphire substrate 2001 and the silicon carbide substrate 100 , and the field effect transistor element 311 is located between the silicon substrate 3001 and the silicon carbide substrate 100 . The gallium nitride device 20 and the silicon integrated circuit device 30 can be electrically connected to each other through the circuit structure CS on the silicon carbide circuit board 10 . In this embodiment, the gallium nitride element 2101 in the gallium nitride device 20 includes a high electron mobility crystal transistor, and the high electron mobility crystal transistor passes through the first rewiring structure 2201, the circuit structure CS and the third The double wiring structure 3201 is electrically connected to the field effect transistor element 311 of the silicon integrated circuit device 30 . In some embodiments, the silicon semiconductor circuit device 30 is a driving component, such as a power chip.

在本實施例中,由於電性連接氮化鎵裝置20與矽積體電路裝置30的電路結構CS是直接形成於電阻值較高(例如大於5000 ohm-cm)的碳化矽基底100上方,因此,相對於用跳線的方式連接氮化鎵裝置20與矽積體電路裝置30,本實施例可以改善氮化鎵裝置20與矽積體電路裝置30之間的金屬走線斷線以及產生寄生電阻、寄生電感的問題。In this embodiment, since the circuit structure CS that electrically connects the gallium nitride device 20 and the silicon integrated circuit device 30 is directly formed on the silicon carbide substrate 100 with a high resistance value (for example, greater than 5000 ohm-cm), therefore Compared with using jumpers to connect the gallium nitride device 20 and the silicon integrated circuit device 30, this embodiment can improve the metal trace breakage and parasitic generation between the gallium nitride device 20 and the silicon integrated circuit device 30. Problems with resistance and parasitic inductance.

請參考圖6A與圖6B,形成封裝材料400於碳化矽基底100上方,以包覆藍寶石基底2001以及矽基底3001。在本實施例中,封裝材料400橫向的包覆氮化鎵裝置20與矽積體電路裝置30。在本實施例中,封裝材料400覆蓋藍寶石基底2001的頂面以及矽基底3001的頂面。Referring to FIGS. 6A and 6B , a packaging material 400 is formed above the silicon carbide substrate 100 to cover the sapphire substrate 2001 and the silicon substrate 3001 . In this embodiment, the packaging material 400 laterally covers the gallium nitride device 20 and the silicon integrated circuit device 30 . In this embodiment, the packaging material 400 covers the top surface of the sapphire substrate 2001 and the top surface of the silicon substrate 3001 .

在本實施例中,封裝材料400填入氮化鎵裝置20與碳化矽電路板10之間以及矽積體電路裝置30與碳化矽電路板10之間,並橫向的包覆連接端子230以及連接端子330,但本發明不以此為限。在其他實施例中,先形成其他底部填充材(Underfill)以包覆連接端子230以及連接端子330之後,才形成封裝材料400於碳化矽電路板10上方。In this embodiment, the packaging material 400 is filled between the gallium nitride device 20 and the silicon carbide circuit board 10 and between the silicon integrated circuit device 30 and the silicon carbide circuit board 10 , and laterally covers the connection terminals 230 and the connections. Terminal 330, but the present invention is not limited to this. In other embodiments, other underfill materials (Underfill) are first formed to cover the connection terminals 230 and 330 , and then the packaging material 400 is formed above the silicon carbide circuit board 10 .

請參考圖7A與圖7B,同時研磨封裝材料400、氮化鎵裝置20之藍寶石基底2001以及矽積體電路裝置30之矽基底3001,以減薄氮化鎵裝置20之厚度以及矽積體電路裝置30之厚度,並改善氮化鎵裝置20以及矽積體電路裝置30的散熱問題。在本實施例中,藍寶石基底2001的頂表面2001t與矽基底3001的頂表面3001t共平面。Referring to FIGS. 7A and 7B , the packaging material 400 , the sapphire substrate 2001 of the gallium nitride device 20 and the silicon substrate 3001 of the silicon integrated circuit device 30 are simultaneously ground to reduce the thickness of the gallium nitride device 20 and the silicon integrated circuit. The thickness of the device 30 is improved, and the heat dissipation problem of the gallium nitride device 20 and the silicon integrated circuit device 30 is improved. In this embodiment, the top surface 2001t of the sapphire substrate 2001 is coplanar with the top surface 3001t of the silicon substrate 3001.

圖8A至圖9A是依照本發明的一實施例的一種半導體裝置的製造方法的上視示意圖。圖8B至圖9B分別是沿著圖8A至圖9A的線a-a’的剖面示意圖。在此必須說明的是,圖8A至圖9A的實施例沿用圖5A至圖7A的實施例的元件標號與部分內容,其中採用相同或近似的標號來表示相同或近似的元件,並且省略了相同技術內容的說明。關於省略部分的說明可參考前述實施例,在此不贅述。8A to 9A are schematic top views of a method for manufacturing a semiconductor device according to an embodiment of the present invention. 8B to 9B are schematic cross-sectional views along line a-a' of FIGS. 8A to 9A respectively. It must be noted here that the embodiment of FIGS. 8A to 9A follows the component numbers and part of the content of the embodiment of FIGS. 5A to 7A , where the same or similar numbers are used to represent the same or similar elements, and the same or similar elements are omitted. Description of technical content. For descriptions of omitted parts, reference may be made to the foregoing embodiments and will not be described again here.

請參考圖8A與圖8B,在本實施例中,在將氮化鎵裝置20電性連接至碳化矽電路板10的第一內部連接端子(111、112)之前,研磨氮化鎵裝置20的藍寶石基底2001或用於製備氮化鎵裝置20之藍寶石晶圓。換句話說,直接將已經研磨並減薄的氮化鎵裝置20透過連接端子230連接至碳化矽電路板10的第一內部連接端子(111、112)。Please refer to FIGS. 8A and 8B . In this embodiment, before electrically connecting the gallium nitride device 20 to the first internal connection terminals ( 111 , 112 ) of the silicon carbide circuit board 10 , the gallium nitride device 20 is ground. The sapphire substrate 2001 may be a sapphire wafer used to prepare the gallium nitride device 20 . In other words, the ground and thinned gallium nitride device 20 is directly connected to the first internal connection terminals (111, 112) of the silicon carbide circuit board 10 through the connection terminals 230.

在本實施例中,在將矽積體電路裝置30電性連接至碳化矽電路板10的第二內部連接端子(113、114)之前,研磨矽積體電路裝置30的矽基底3001或用於製備矽積體電路裝置30之矽晶圓。換句話說,直接將已經研磨並減薄的矽積體電路裝置30透過連接端子330連接至碳化矽電路板10的第二內部連接端子(113、114)。In this embodiment, before electrically connecting the silicon integrated circuit device 30 to the second internal connection terminals (113, 114) of the silicon carbide circuit board 10, the silicon substrate 3001 of the silicon integrated circuit device 30 is ground or used. A silicon wafer for the silicon integrated circuit device 30 is prepared. In other words, the ground and thinned silicon integrated circuit device 30 is directly connected to the second internal connection terminals (113, 114) of the silicon carbide circuit board 10 through the connection terminals 330.

在本實施例中,由於是先進行研磨製程,接著才將氮化鎵裝置20與矽積體電路裝置30電性連接至碳化矽電路板10,因此,可以改善研磨製程產生的應力對氮化鎵裝置20與碳化矽電路板10之間的接點或矽積體電路裝置30與碳化矽電路板10之間的接點所造成的負面影響。在本實施例中,藍寶石基底2001的頂表面2001t與矽基底3001的頂表面3001t可以共平面也可以不共平面。In this embodiment, since the grinding process is performed first, and then the gallium nitride device 20 and the silicon integrated circuit device 30 are electrically connected to the silicon carbide circuit board 10, the impact of the stress generated by the grinding process on the nitride circuit board 10 can be improved. The negative impact caused by the contact between the gallium device 20 and the silicon carbide circuit board 10 or the contact between the silicon integrated circuit device 30 and the silicon carbide circuit board 10 . In this embodiment, the top surface 2001t of the sapphire substrate 2001 and the top surface 3001t of the silicon substrate 3001 may or may not be coplanar.

請參考圖9A與圖9B,形成封裝材料400於碳化矽基底100上方,以包覆藍寶石基底2001以及矽基底3001。在本實施例中,封裝材料400橫向的包覆氮化鎵裝置20與矽積體電路裝置30。在本實施例中,封裝材料400覆蓋藍寶石基底2001的頂面2001t以及矽基底3001的頂面3001t。Referring to FIGS. 9A and 9B , a packaging material 400 is formed above the silicon carbide substrate 100 to cover the sapphire substrate 2001 and the silicon substrate 3001 . In this embodiment, the packaging material 400 laterally covers the gallium nitride device 20 and the silicon integrated circuit device 30 . In this embodiment, the packaging material 400 covers the top surface 2001t of the sapphire substrate 2001 and the top surface 3001t of the silicon substrate 3001.

在本實施例中,封裝材料400填入氮化鎵裝置20與碳化矽電路板10之間以及矽積體電路裝置30與碳化矽電路板10之間,並橫向的包覆連接端子230以及連接端子330,但本發明不以此為限。在其他實施例中,先形成其他底部填充材以包覆連接端子230以及連接端子330之後,才形成封裝材料400於碳化矽電路板10上方。In this embodiment, the packaging material 400 is filled between the gallium nitride device 20 and the silicon carbide circuit board 10 and between the silicon integrated circuit device 30 and the silicon carbide circuit board 10 , and laterally covers the connection terminals 230 and the connections. Terminal 330, but the present invention is not limited to this. In other embodiments, other underfill materials are first formed to cover the connection terminals 230 and 330 , and then the encapsulation material 400 is formed above the silicon carbide circuit board 10 .

圖10至圖11是依照本發明的一實施例的一種半導體裝置的製造方法的上視示意圖。10 to 11 are schematic top views of a method for manufacturing a semiconductor device according to an embodiment of the present invention.

請參考圖10,在本實施例中,形成多個電路結構於碳化矽基底100a上方,其中碳化矽基底100a為碳化矽晶圓。在本實施例中,每個電路結構的具體結構與說明可以參考圖1A至圖2A的實施例,與此不再贅述。Please refer to FIG. 10. In this embodiment, multiple circuit structures are formed above the silicon carbide substrate 100a, where the silicon carbide substrate 100a is a silicon carbide wafer. In this embodiment, the specific structure and description of each circuit structure can be referred to the embodiments of FIG. 1A to FIG. 2A , and will not be described again.

接著將多個氮化鎵裝置20電性連接至電路結構的第一內部連接端子,並將多個矽積體電路裝置30電性連接至電路結構的第二內部連接端子。在本實施例中,例如藉由巨量轉移(Mass transfer)技術將氮化鎵裝置20與矽積體電路裝置30轉移至碳化矽基底100a上方。Then, the plurality of gallium nitride devices 20 are electrically connected to the first internal connection terminals of the circuit structure, and the plurality of silicon integrated circuit devices 30 are electrically connected to the second internal connection terminals of the circuit structure. In this embodiment, the gallium nitride device 20 and the silicon integrated circuit device 30 are transferred to the silicon carbide substrate 100 a by, for example, mass transfer technology.

接著請參考圖11,對碳化矽基底100a執行切割製程,以形成多個碳化矽電路板10。每個碳化矽電路板10上設置有對應的一個氮化鎵裝置20與對應的一個矽積體電路裝置30。Next, referring to FIG. 11 , a cutting process is performed on the silicon carbide substrate 100 a to form a plurality of silicon carbide circuit boards 10 . Each silicon carbide circuit board 10 is provided with a corresponding gallium nitride device 20 and a corresponding silicon integrated circuit device 30 .

在一些實施例中,在執行切割製程之前,先用封裝材料(圖10與圖11省略繪示)將氮化鎵裝置20與矽積體電路裝置30封裝於碳化矽基底100a上方,藉此避免切割製程對氮化鎵裝置20與矽積體電路裝置30造成損傷。此外,在一些實施例中,在執行切割製程之前,對氮化鎵裝置20與矽積體電路裝置30執行研磨製程,以減小氮化鎵裝置20的厚度與矽積體電路裝置30的厚度。In some embodiments, before performing the cutting process, the gallium nitride device 20 and the silicon integrated circuit device 30 are packaged on the silicon carbide substrate 100a with a packaging material (not shown in FIGS. 10 and 11 ), thereby avoiding The cutting process causes damage to the gallium nitride device 20 and the silicon integrated circuit device 30 . In addition, in some embodiments, before performing the cutting process, a grinding process is performed on the gallium nitride device 20 and the silicon integrated circuit device 30 to reduce the thickness of the gallium nitride device 20 and the silicon integrated circuit device 30 .

圖12是依照本發明的一實施例的一種半導體裝置的電路圖。圖12例如為前述任一實施例的半導體裝置的電路圖。FIG. 12 is a circuit diagram of a semiconductor device according to an embodiment of the present invention. FIG. 12 is, for example, a circuit diagram of a semiconductor device according to any of the aforementioned embodiments.

請參考圖12,半導體裝置包括矽積體電路裝置30以及氮化鎵裝置20。半導體裝置的外部連接端子(115a、115b)為輸入端,且連接至矽積體電路裝置30。半導體裝置的外部連接端子(116a、116b)為輸出端,且連接至氮化鎵裝置20。氮化鎵裝置20為高電子遷移率電晶體,且矽積體電路裝置30可以作為驅動裝置以控制氮化鎵裝置20的閘極的電位。Referring to FIG. 12 , the semiconductor device includes a silicon integrated circuit device 30 and a gallium nitride device 20 . The external connection terminals (115a, 115b) of the semiconductor device are input terminals and are connected to the silicon integrated circuit device 30. The external connection terminals (116a, 116b) of the semiconductor device are output terminals and are connected to the gallium nitride device 20. The gallium nitride device 20 is a high electron mobility transistor, and the silicon integrated circuit device 30 can be used as a driving device to control the potential of the gate of the gallium nitride device 20 .

若在同一片晶圓上製作矽積體電路裝置30以及氮化鎵裝置20,會因為製程複雜而導致生產成本高以及生產良率差的問題。本實施例的矽積體電路裝置30以及氮化鎵裝置20是在不同的晶圓上分別製造,再藉由碳化矽電路板及其上方之電路而彼此電性連接,藉此降低生產成本以及並提高生產良率。If the silicon integrated circuit device 30 and the gallium nitride device 20 are fabricated on the same wafer, the production cost will be high and the production yield will be poor due to the complicated manufacturing process. The silicon integrated circuit device 30 and the gallium nitride device 20 in this embodiment are manufactured separately on different wafers, and are electrically connected to each other through the silicon carbide circuit board and the circuit above it, thereby reducing production costs and and improve production yield.

10:碳化矽電路板 20:氮化鎵裝置 30:矽積體電路裝置 100,100a:碳化矽基底 111,112:第一內部連接端子 113,114:第二內部連接端子 115,116:外部連接端子 117:走線 120:保護層 200:藍寶石晶圓 2001:藍寶石基底 2001t,3001t:頂表面 210:氮化鎵元件層 2101:氮化鎵元件 211,2111:通道層 212,2121:第一半導體層 213,2131:鈍化層 214:閘極 215:源極/汲極 220:第一重佈線層 2201:第一重佈線結構 221:線路結構 222:介電結構 230:連接端子 300:矽晶圓 3001:矽基底 310:場效電晶體元件層 3101:經切割的場效電晶體元件層 311:場效電晶體元件 320:第二重佈線層 3201:第二重佈線結構 321:線路結構 322:介電結構 330:連接端子 400:封裝材料 CS:電路結構 10: Silicon carbide circuit board 20:GaN device 30:Silicon integrated circuit device 100,100a: Silicon carbide substrate 111,112: First internal connection terminal 113,114: Second internal connection terminal 115,116: External connection terminals 117: Routing 120:Protective layer 200: Sapphire wafer 2001: Sapphire substrate 2001t, 3001t: top surface 210:GaN component layer 2101:GaN components 211,2111: Channel layer 212,2121: first semiconductor layer 213,2131: Passivation layer 214: Gate 215: Source/Drain 220: First rewiring layer 2201: First rewiring structure 221: Line structure 222:Dielectric structure 230:Connection terminal 300:Silicon wafer 3001:Silicon substrate 310: Field effect transistor element layer 3101: Cut field effect transistor element layer 311: Field effect transistor element 320: Second rewiring layer 3201: Second rewiring structure 321: Line structure 322:Dielectric structure 330:Connection terminal 400:Packaging materials CS:Circuit structure

圖1A至圖2A是依照本發明的一實施例的一種碳化矽電路板的製造方法的上視示意圖。 圖1B至圖2B分別是沿著圖1A至圖2A的線a-a’的剖面示意圖。 圖3A至圖3C是依照本發明的一實施例的一種氮化鎵裝置的製造方法的剖面示意圖。 圖4A至圖4C是依照本發明的一實施例的一種矽積體電路裝置的製造方法的剖面示意圖。 圖5A至圖7A是依照本發明的一實施例的一種半導體裝置的製造方法的上視示意圖。 圖5B至圖7B分別是沿著圖7A至圖7A的線a-a’的剖面示意圖。 圖8A至圖9A是依照本發明的一實施例的一種半導體裝置的製造方法的上視示意圖。 圖8B至圖9B分別是沿著圖8A至圖9A的線a-a’的剖面示意圖。 圖10至圖11是依照本發明的一實施例的一種半導體裝置的製造方法的上視示意圖。 圖12是依照本發明的一實施例的一種半導體裝置的電路圖。 1A to 2A are schematic top views of a method for manufacturing a silicon carbide circuit board according to an embodiment of the present invention. 1B to 2B are schematic cross-sectional views along line a-a’ of FIGS. 1A to 2A respectively. 3A to 3C are schematic cross-sectional views of a method for manufacturing a gallium nitride device according to an embodiment of the present invention. 4A to 4C are schematic cross-sectional views of a manufacturing method of a silicon integrated circuit device according to an embodiment of the present invention. 5A to 7A are schematic top views of a method for manufacturing a semiconductor device according to an embodiment of the present invention. 5B to 7B are schematic cross-sectional views along line a-a’ of FIGS. 7A to 7A respectively. 8A to 9A are schematic top views of a method for manufacturing a semiconductor device according to an embodiment of the present invention. 8B to 9B are schematic cross-sectional views along line a-a' of FIGS. 8A to 9A respectively. 10 to 11 are schematic top views of a method for manufacturing a semiconductor device according to an embodiment of the present invention. FIG. 12 is a circuit diagram of a semiconductor device according to an embodiment of the present invention.

10:碳化矽電路板 10: Silicon carbide circuit board

20:氮化鎵裝置 20:GaN device

30:矽積體電路裝置 30:Silicon integrated circuit device

100:碳化矽基底 100: Silicon carbide substrate

2001:藍寶石基底 2001: Sapphire substrate

2001t,3001t:頂表面 2001t, 3001t: top surface

2101:氮化鎵元件 2101:GaN components

2201:第一重佈線結構 2201: First rewiring structure

230:連接端子 230:Connection terminal

3001:矽基底 3001:Silicon substrate

3101:經切割的場效電晶體元件層 3101: Cut field effect transistor element layer

311:場效電晶體元件 311: Field effect transistor element

3201:第二重佈線結構 3201: Second rewiring structure

330:連接端子 330:Connection terminal

400:封裝材料 400:Packaging materials

Claims (11)

一種半導體裝置,包括: 碳化矽電路板,包括: 碳化矽基底;以及 電路結構,位於所述碳化矽基底上方,且包括多個第一內部連接端子、多個第二內部連接端子以及多個外部連接端子,其中所述外部連接端子被配置成用於連接外部訊號; 氮化鎵裝置,包括: 藍寶石基底; 氮化鎵元件,位於所述藍寶石基底上;以及 第一重佈線結構,位於所述氮化鎵元件上,且電性連接至所述第一內部連接端子;以及 矽積體電路裝置,包括: 矽基底; 場效電晶體元件,位於所述矽基底上;以及 第二重佈線結構,位於所述場效電晶體元件上,且電性連接至所述第二內部連接端子。 A semiconductor device including: Silicon carbide circuit boards, including: Silicon carbide substrate; and a circuit structure located above the silicon carbide substrate and including a plurality of first internal connection terminals, a plurality of second internal connection terminals and a plurality of external connection terminals, wherein the external connection terminals are configured to connect external signals; Gallium nitride devices, including: sapphire base; a gallium nitride component located on the sapphire substrate; and A first redistribution structure is located on the gallium nitride component and is electrically connected to the first internal connection terminal; and Silicon integrated circuit devices, including: silicon substrate; A field effect transistor element located on the silicon substrate; and A second rewiring structure is located on the field effect transistor element and is electrically connected to the second internal connection terminal. 如請求項1所述的半導體裝置,其中所述氮化鎵元件包括高電子移動率晶體電晶體,且所述高電子移動率晶體電晶體透過所述第一重佈線結構、所述電路結構以及所述第二重佈線結構而電性連接至所述場效電晶體元件。The semiconductor device of claim 1, wherein the gallium nitride element includes a high electron mobility crystal transistor, and the high electron mobility crystal transistor passes through the first rewiring structure, the circuit structure and The second redistribution structure is electrically connected to the field effect transistor element. 如請求項1所述的半導體裝置,其中所述氮化鎵元件位於所述藍寶石基底與所述碳化矽基底之間,且所述場效電晶體元件位於所述矽基底與所述碳化矽基底之間,其中所述藍寶石基底的頂表面與所述矽基底的頂表面共平面。The semiconductor device according to claim 1, wherein the gallium nitride element is located between the sapphire substrate and the silicon carbide substrate, and the field effect transistor element is located between the silicon substrate and the silicon carbide substrate. wherein the top surface of the sapphire substrate is coplanar with the top surface of the silicon substrate. 如請求項1所述的半導體裝置,其中所述碳化矽基底的厚度為200微米至700微米。The semiconductor device according to claim 1, wherein the silicon carbide substrate has a thickness of 200 microns to 700 microns. 如請求項1所述的半導體裝置,其中所述外部連接端子的尺寸大於所述第一內部連接端子的尺寸以及所述第二內部連接端子的尺寸。The semiconductor device according to claim 1, wherein the size of the external connection terminal is larger than the size of the first internal connection terminal and the size of the second internal connection terminal. 一種半導體裝置的製造方法,包括: 形成電路結構於碳化矽基底上方,其中所述電路結構包括多個第一內部連接端子、多個第二內部連接端子以及多個外部連接端子,其中所述外部連接端子被配置成用於連接外部訊號; 形成氮化鎵元件層於藍寶石晶圓上; 形成第一重佈線層於所述氮化鎵元件層上; 切割所述藍寶石晶圓以形成多個氮化鎵裝置,每個所述氮化鎵裝置包括藍寶石基底、第一重佈線結構以及氮化鎵元件; 將至少一個所述氮化鎵裝置電性連接至所述第一內部連接端子; 形成場效電晶體元件層於矽晶圓上; 形成第二重佈線層於所述場效電晶體元件層上; 切割所述矽晶圓以形成多個矽積體電路裝置,每個所述矽積體電路裝置包括矽基底、第二重佈線結構以及場效電晶體元件;以及 將至少一個所述矽積體電路裝置電性連接至所述第二內部連接端子。 A method of manufacturing a semiconductor device, including: A circuit structure is formed above the silicon carbide substrate, wherein the circuit structure includes a plurality of first internal connection terminals, a plurality of second internal connection terminals and a plurality of external connection terminals, wherein the external connection terminals are configured to connect external signal; Forming a gallium nitride device layer on the sapphire wafer; Forming a first redistribution layer on the gallium nitride component layer; cutting the sapphire wafer to form a plurality of gallium nitride devices, each of the gallium nitride devices including a sapphire substrate, a first redistribution structure, and a gallium nitride element; electrically connecting at least one of the gallium nitride devices to the first internal connection terminal; Forming a field effect transistor element layer on the silicon wafer; Forming a second rewiring layer on the field effect transistor element layer; dicing the silicon wafer to form a plurality of silicon integrated circuit devices, each of the silicon integrated circuit devices including a silicon substrate, a second redistribution structure, and a field effect transistor element; and At least one of the silicon integrated circuit devices is electrically connected to the second internal connection terminal. 如請求項6所述的半導體裝置的製造方法,更包括: 在將至少一個所述氮化鎵裝置電性連接至所述第一內部連接端子之後以及在將至少一個所述矽積體電路裝置電性連接至所述第二內部連接端子之後,同時研磨所述藍寶石基底以及所述矽基底。 The manufacturing method of a semiconductor device as claimed in claim 6, further comprising: After electrically connecting at least one of the gallium nitride devices to the first internal connection terminals and after electrically connecting at least one of the silicon integrated circuit devices to the second internal connection terminals, grinding the The sapphire substrate and the silicon substrate. 如請求項6所述的半導體裝置的製造方法,更包括: 在將至少一個所述氮化鎵裝置電性連接至所述第一內部連接端子之前,研磨所述藍寶石基底或所述藍寶石晶圓;以及 在將至少一個所述矽積體電路裝置電性連接至所述第二內部連接端子之前,研磨所述矽基底或所述矽晶圓。 The manufacturing method of a semiconductor device as claimed in claim 6, further comprising: grinding the sapphire substrate or the sapphire wafer before electrically connecting at least one of the gallium nitride devices to the first internal connection terminal; and Before electrically connecting at least one of the silicon integrated circuit devices to the second internal connection terminal, the silicon substrate or the silicon wafer is ground. 如請求項6所述的半導體裝置的製造方法,更包括: 形成一封裝材料於所述碳化矽基底上方,以包覆所述藍寶石基底以及所述矽基底。 The manufacturing method of a semiconductor device as claimed in claim 6, further comprising: A packaging material is formed above the silicon carbide substrate to cover the sapphire substrate and the silicon substrate. 如請求項6所述的半導體裝置的製造方法,更包括: 在形成電路結構於碳化矽基底上方之前,切割碳化矽晶圓以形成所述碳化矽基底。 The manufacturing method of a semiconductor device as claimed in claim 6, further comprising: Before forming a circuit structure on the silicon carbide substrate, the silicon carbide wafer is cut to form the silicon carbide substrate. 如請求項6所述的半導體裝置的製造方法,更包括: 在將至少一個所述氮化鎵裝置電性連接至所述第一內部連接端子之後以及在將至少一個所述矽積體電路裝置電性連接至所述第二內部連接端子之後,對所述碳化矽基底執行切割製程,其中所述碳化矽基底為碳化矽晶圓。 The manufacturing method of a semiconductor device as claimed in claim 6, further comprising: After electrically connecting at least one of the gallium nitride devices to the first internal connection terminals and after electrically connecting at least one of the silicon semiconductor circuit devices to the second internal connection terminals, the The silicon carbide substrate performs a cutting process, wherein the silicon carbide substrate is a silicon carbide wafer.
TW111113181A 2022-04-07 2022-04-07 Semiconductor device and manufacturing method thereof TW202341283A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW111113181A TW202341283A (en) 2022-04-07 2022-04-07 Semiconductor device and manufacturing method thereof
CN202211696459.0A CN116936509A (en) 2022-04-07 2022-12-28 Semiconductor device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111113181A TW202341283A (en) 2022-04-07 2022-04-07 Semiconductor device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
TW202341283A true TW202341283A (en) 2023-10-16

Family

ID=88383324

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111113181A TW202341283A (en) 2022-04-07 2022-04-07 Semiconductor device and manufacturing method thereof

Country Status (2)

Country Link
CN (1) CN116936509A (en)
TW (1) TW202341283A (en)

Also Published As

Publication number Publication date
CN116936509A (en) 2023-10-24

Similar Documents

Publication Publication Date Title
TWI809368B (en) Rf amplifier devices and methods of manufacturing
US9142503B2 (en) III-nitride rectifier package
US11791331B2 (en) Integrated circuit structures including backside vias
US20220084950A1 (en) Packaging for rf transistor amplifiers
JP2012523695A (en) Bumped self-separating GaN transistor chip with electrically isolated backside
US20230369068A1 (en) Chip package structure with ring dam
US20220384391A1 (en) Chip package structure with ring structure
US8853707B2 (en) High voltage cascoded III-nitride rectifier package with etched leadframe
JPWO2018061711A1 (en) Semiconductor device and manufacturing method
WO2011105056A1 (en) Electronic device and method for manufacturing electronic device
CN116598290A (en) Cascade power of common source and common grid and preparation method thereof
US20220384286A1 (en) Chip package structure with heat conductive layer
TW202341283A (en) Semiconductor device and manufacturing method thereof
US10068780B2 (en) Lead frame connected with heterojunction semiconductor body
US11728419B2 (en) High electron mobility transistor
US11948927B2 (en) Semiconductor die with improved thermal insulation between a power portion and a peripheral portion, method of manufacturing, and package housing the die
US20230197638A1 (en) Hermetic barrier surrounding a plurality of dies
US10741644B2 (en) Semiconductor devices with via structure and package structures comprising the same
CN115881541A (en) Method for manufacturing semiconductor device
JPH11307577A (en) Semiconductor device