TW202340745A - 用於紅外線感測系統且具有低可見反射率及透射率抗反射膜之硬化光學窗口 - Google Patents

用於紅外線感測系統且具有低可見反射率及透射率抗反射膜之硬化光學窗口 Download PDF

Info

Publication number
TW202340745A
TW202340745A TW111139403A TW111139403A TW202340745A TW 202340745 A TW202340745 A TW 202340745A TW 111139403 A TW111139403 A TW 111139403A TW 111139403 A TW111139403 A TW 111139403A TW 202340745 A TW202340745 A TW 202340745A
Authority
TW
Taiwan
Prior art keywords
layered film
window
refractive index
equal
less
Prior art date
Application number
TW111139403A
Other languages
English (en)
Inventor
尚登笛 哈特
卡爾威廉 科赫三世
卡洛安東尼 柯西克威廉斯
林琳
羅睿
詹姆士喬瑟夫 布萊斯
尼可拉斯麥可 沃克
Original Assignee
美商康寧公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商康寧公司 filed Critical 美商康寧公司
Publication of TW202340745A publication Critical patent/TW202340745A/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/281Interference filters designed for the infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4813Housing arrangements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Optical Filters (AREA)

Abstract

本發明揭示一種用於感測系統的窗口,該窗口包含基板、包含較高折射率材料與較低折射率材料的交替層的第一分層膜、及包含較高折射率材料與較低折射率材料的交替層的第二分層膜。窗口包含在第一分層膜處藉由Berkovich壓頭硬度試驗量測的、至少8 GPa的最大硬度。第一分層膜及第二分層膜經組態,使得窗口在紅外相關波長範圍內具有有利的抗反射及透射屬性,同時在可見光譜中提供相對低的反射率及透射率,以提供暗外觀及低訊號雜訊。

Description

用於紅外線感測系統且具有低可見反射率及透射率抗反射膜之硬化光學窗口
本申請案根據專利法主張2021年10月20日提交的美國申請序列第63/257814號、2022年5月20日提交的第63/344147號、及2022年9月27日提交的第63/410320號的優先權的權益,其中各者的全部內容以引用之方式併入本文中。
光雷達(「Light detection and ranging,LIDAR」)系統包括電磁輻射發射器及感測器。電磁輻射發射器會發射電磁輻射發射器波束,發射器波束可自物件反射,而感測器會偵測反射的電磁輻射發射器波束。電磁輻射發射器波束是脈衝式的或以其他方式分佈於一輻射範圍內,以偵測視場上的物件。關於物件的資訊可自所偵測的反射電磁輻射發射器波束的性質來解密。物件與電磁輻射發射器波束的距離可自發射電磁輻射發射器波束至偵測反射電磁輻射發射器波束的飛行時間來判定。若物件是移動的,則物件的路徑及速度可自作為時間的函數的所發射電磁輻射發射器波束被反射及偵測的徑向位置上的移動來判定,亦可自都卜勒頻率量測判定。
汽車中的LIDAR系統及其他曝露於環境中的紅外線感測系統,諸如航太或家庭安全應用,需要保護其不受環境及各種損壞源的影響,舉例而言,用覆蓋透鏡或覆蓋玻璃窗。車輛是光雷達系統的另一潛在應用,其中LIDAR系統提供空間映射能力,以致能輔助、半自動駕駛或全自動駕駛。在此類應用中,電磁輻射發射器及感測器安裝於車輛的車頂或車輛的低前部上。考慮將發射具有可見光範圍以外波長(諸如905nm或1550nm)的電磁輻射的電磁輻射發射器用於車輛LIDAR應用。為了保護電磁輻射發射器及感測器不受岩石及其他物件的衝擊,在電磁輻射發射器及感測器與電磁輻射發射器及感測器的視線內的外部環境之間置放一窗口。針對LIDAR系統的其他應用,諸如航太及家庭安全應用,類似地在電磁輻射發射器/感測器與外部環境之間置放一窗口。然而,存在石頭及其他物件衝擊窗口而損壞窗口並導致對窗口造成其他類型的損壞的問題,這會導致窗口散射所發射及所反射電磁輻射發射器波束,從而損害LIDAR系統的效能。
本發明運用一種包括第一分層膜及第二分層膜的窗口來解決這一問題。當安裝於LIDAR系統中時,第一分層膜可背離電磁輻射發射器/感測器並包括嵌入其中的抗劃層,以提供窗口的抗損壞性。因此,岩石及其他物件衝擊窗口不太可能對窗口造成使LIDAR感測器的發射電磁輻射及反射電磁輻射散射的缺陷,從而提高效能。此外,第一分層膜及第二分層膜進一步包括具有不同折射率的材料(包括提供硬度及抗劃性的材料)的交替層,從而交替層的數目及其厚度可經組態,使得窗口在所需波長範圍內(例如,在1400 nm與1600 nm之間的50 nm波長範圍上)具有高透射率及低反射。材料的交替層可經進一步選擇,使得窗口在可見光譜中透射及反射相對低的輻射量,從而為窗口提供美觀的暗外觀,同時減少由可見光引起的、否則可能會影響到LIDAR系統的偵測器的訊號雜訊。
根據本發明的實施例,用於感測系統的窗口包含基板,基板包含第一表面及第二表面,第一表面及第二表面是基板的主表面。窗口包括設置於基板的第一表面上的第一分層膜,第一分層膜包含一或多個較高折射率材料與一或多個較低折射率材料的交替層,其中第一分層膜的一或多個較高折射率材料的折射率高於第一分層膜的一或多個較低折射率材料的折射率。窗口包括設置於基板的第二表面上的第二分層膜,第二分層膜包含一或多個較高折射率材料與一或多個較低折射率材料的交替層,其中第二分層膜的一或多個較高折射率材料的折射率高於第二分層膜的一或多個較低折射率材料的折射率。窗口包含在第一分層膜處藉由Berkovich壓頭硬度測試量測的、至少8 GPa的最大硬度。第一分層膜及第二分層膜的交替層的數量、厚度、數目、及材料經組態,使得窗口具有:以小於或等於15°的入射角入射於第一表面及第二表面上的光在1400 nm與1600 nm之間的50 nm相關波長範圍上計算的、大於90%的平均百分數透射率;以小於或等於15°的角度入射於第一表面及第二表面上的光在1400 nm與1600 nm之間的50 nm相關波長範圍上計算的、小於1%的平均反射率;以及以小於或等於15°的入射角入射於第一表面及第二表面上的光,自400 nm至700 nm計算的、小於5%的平均透射百分數。
根據本發明的另一實施例,用於感測系統的窗口包括基板,基板包含是基板的主表面的第一表面及第二表面。窗口亦包括設置於基板的第一表面上的第一分層膜,第一分層膜包含一或多個較高折射率材料與一或多個較低折射率材料的交替層,其中第一分層膜的一或多個較高折射率材料的折射率高於第一分層膜的一或多個較低折射率材料的折射率。窗口亦包括設置於基板的第二表面上的第二分層膜,第二分層膜包含一或多個較高折射率材料與一或多個較低折射率材料的交替層,其中第二分層膜的一或多個較高折射率材料的折射率高於第二分層膜的一或多個較低折射率材料的折射率。窗口表現出在第一分層膜處藉由Berkovich壓頭硬度測試量測的、至少8 GPa的最大硬度。第一分層膜及第二分層膜的交替層的數量、厚度、數目、及材料經組態,使得窗口具有:以小於或等於15°的角度入射於第一表面及第二表面上的光在1400 nm與1600 nm之間的50 nm相關波長範圍上計算的、小於0.5%的平均反射率;針對第一分層膜上小於或等於60°的入射角,小於或等於45的CIELAB L*值;及在自第一分層膜的一側觀看時,大於或等於-6.0且小於或等於6.0的CIELAB a*值及CIELAB b*值。
根據本發明的另一實施例,用於感測系統的窗口包括基板,基板包含是基板的主表面的第一表面及第二表面。窗口亦包括設置於基板的第一表面上的第一分層膜,第一分層膜包含一或多個較高折射率材料與一或多個較低折射率材料的交替層,其中第一分層膜的一或多個較高折射率材料的折射率高於第一分層膜的一或多個較低折射率材料的折射率。窗口亦包括設置於基板的第二表面上的第二分層膜,第二分層膜包含一或多個較高折射率材料與一或多個較低折射率材料的交替層,其中第二分層膜的一或多個較高折射率材料的折射率高於第二分層膜的一或多個較低折射率材料的折射率,其中第二分層膜的一或多個較高折射率材料包含矽。窗口表現出在第一分層膜處藉由Berkovich壓頭硬度測試量測的、至少8 GPa的最大硬度。第一分層膜及第二分層膜的交替層的數量、厚度、數目、及材料經組態,使得窗口具有:以小於或等於15°的角度入射於第一表面及第二表面上的光在1400 nm與1600 nm之間的50 nm相關波長範圍上計算的、小於1%的平均反射率;及以小於或等於15°的入射角入射於第一表面及第二表面的光在1400 nm與1600 nm之間的50 nm相關波長範圍上計算的、大於90%的平均百分數透射率。
其他特徵及優點將在接下來的詳細描述中闡述,且對熟習此項技術者而言,自該描述或藉由實踐本文所述的實施例(包括接下來的詳細描述、申請專利範圍、以及隨附圖式)而部分將是顯而易見的。
應理解,前述的一般描述及以下的詳細描述僅是例示性的,旨在提供理解申請專利範圍的性質及特徵的概述或架構。包括隨附圖式是為了提供進一步的理解,且納入本說明書並構成本說明書的一部分。隨附圖式圖示一或多個實施例,並與描述內容一起用於解釋各種實施例的原理及操作。
現在將詳細參考LIDAR感測器中使用的窗口的實施例。在可能的情況下,相同的參考數字將在整個圖式中是指相同或相似的部分。本文所述窗口可包括第一分層膜及第二分層膜,分層膜由較高折射率材料與較低折射率材料的交替層構成,並組態為在所需紅外相關波長範圍內提供相對高透射率及低反射率。當窗口安裝於LIDAR系統中時,第一分層膜可背離感測器/電磁輻射發射器並曝露於外部環境中,而第二分層膜可面對感測器/電磁輻射發射器。亦即,當自外部觀看LIDAR系統時,觀測者可看到第一分層膜。由電磁輻射發射器發射的光在穿過基板傳播之前,最初可入射於第二分層膜上。根據本發明,本文所述窗口的第一分層膜可包括一或多個抗刮層,其是相對厚(例如,大於或等於500 nm)的高折射率材料。抗刮層可嵌入第一分層膜內,使得窗口包含在第一分層膜處藉由Berkovich壓頭硬度測試量測的、大於或等於8 GPa(例如,大於或等於10 GPa、大於或等於12 GPa、大於或等於14 GPa)的最大奈米壓痕硬度。這一奈米壓痕硬度有益於提供抗刮性,並提高LIDAR系統的效能。
在諸態樣中,本文所述窗口的第一分層膜及第二分層膜的交替層亦構造成提供紅外光譜中LIDAR系統的操作所需的光學效能屬性。在實施例中,第一分層膜及第二分層膜的交替層的數量、厚度、數目、及材料經組態,使得窗口對以15°或更小的入射角入射於第一表面及第二表面上的光具有在1400 nm至1600 nm的50 nm相關波長範圍上計算的、大於90%(例如,大於或等於95%)的平均百分數透射率。第一分層膜及第二分層膜的交替層的數量、厚度、數目、及材料可經組態,使得窗口對以60度或更小的入射角入射於第一表面及第二表面上的光亦包含在1400 nm至1600 nm的50 nm相關波長範圍上計算的、大於85%(例如,大於或等於90%、大於或等於93%)的平均百分數P偏振透射率及S偏振透射率。
在進一步態樣中,本文所述窗口的第一分層膜及第二分層膜亦可構造成具有相對低可見光反射率及透射率,從而為窗口提供美觀的暗外觀並消除訊號雜訊。在實施例中,舉例而言,第一分層膜及第二分層膜的交替層的數量、厚度、數目、及材料經組態,使得窗口對以15°或更小的入射角入射於第一分層膜上的光具有在400 nm至700 nm計算的、小於5%的平均透射百分數。可見光的此類低透射可藉由將矽層以本文所述量納入第二分層膜中來達成。因此,當自第一分層膜(即,自LIDAR感測器外部)觀看時,在自60度或更小的角度看時,本文所述窗口可表現出小於或等於45(例如,小於或等於40、小於或等於35、小於或等於30)的CIELAB明度L*值。當自第一分層膜觀看時,本文所述窗口亦可表現出大於或等於-6且小於或等於6(例如,大於或等於-5且小於或等於5、大於或等於-4且小於或等於4、大於或等於-3且小於或等於3、大於或等於-2.5且小於或等於2.5)的CIELAB色彩空間a*及b*值。當自第一分層膜的一側觀看時,窗口的感知色彩可為黑色或相對較暗,從而使窗口對外部觀測者而言不那麼明顯。
因此,本文所述窗口對1400 nm至1600 nm的所需相關波長範圍提供持久的抗反射效能,同時提供美觀及效能增強的黑色外觀或暗外觀。本文所述窗口可藉由防止可見光入射於感測器上並改善訊號雜訊比來提高LIDAR感測器相對於某些現存感測器的效能。此外,本文所述窗口可減少對外部觀測者可見的非所需眩光。
除非另有說明,否則本文提供的總反射率、鏡面反射率、及平均反射率值是雙表面反射率值,代表整個窗口的總反射率,包括與窗口中各個材料介面(例如,空氣與分層膜之間、分層膜與基板之間等)相關聯的反射率。除非另有說明,否則紅外線中提供的反射率值是自本文所述第二分層膜的一側(例如,自面對LIDAR系統的感測器及發射器定位的一側)量測的,而可見光中提供的反射率值是自本文所述第一分層膜的一側(例如,自面對LIDAR系統的外部環境定位的一側)量測的。
除非本文另有規定,否則平均透射率及反射率值使用在特定波長範圍內的各種波長處的百分數反射率及透射率值來計算。平均反射率透射率值可藉由量測所需波長範圍內的至少3個反射率及透射率值、並對這些值進行平均來計算。
除非本文另有說明,否則CIELAB色彩空間a*及b*以及明度L*值使用用於具有10度視場標準觀測者的D65照明來量測/模擬。
如本文所使用的,術語「暗外觀」或「黑色外觀」是指自外部表面觀看時窗口的反射外觀。根據本發明的具有暗外觀或黑色外觀的窗口在自60°或更小的角度觀看時包含小於45的CIELAB明度L*值。
除非另有明確說明,否則本文所述的任何方法均不得解譯為要求以特定次序執行其步驟。因此,若一種方法的申請專利範圍沒有實際敘述其步驟應遵循的次序,或在申請專利範圍或實施方式中沒有具體說明步驟將限制於特定次序,則在任何方面都不意欲為推斷次序。這適用於任何可能的非明示解釋依據,包括:關於步驟配置或操作流程的邏輯事項;自語法組織或標點符號中得出的樸素含義;說明書中描述的實施例的數目或類型。
如本文所使用的,當在兩個或兩個以上項目的列表中使用術語「及/或」時,意謂列出項目中之任意一者可單獨採用,或可使用列出項目中之兩個或兩個以上的任何組合。舉例而言,若組合物描述為含有組分A、B及/或C,則組合物可單獨含有A;單獨含有B;單獨含有C;含有A與B的組合;含有A與C的組合;含有B與C的組合;或含有A、B及C的組合。
熟習此項技術者及做出或使用本發明的人員將對本發明進行修改。因此,應理解,圖式中所示的以及上文描述的實施例僅僅是為了說明問題,而不旨在限制根據專利法原則(包括等同原則)解釋的由以下申請專利範圍界定的本發明的範疇。
在本文件中,關係術語,諸如第一及第二、頂部及底部、以及類似者,僅用於區分一實體或行動與另一實體或行動,而不必要求或暗示這些實體或行動之間有任何實際的此類關係或次序。術語「包含(comprises)」、「包含(comprising)」、或其任何其他變化旨在涵蓋非排他性包括,使得包含元件列表的過程、方法、物品、或元件不僅包括這些元件,還可包括未明確列出的或此類過程、方法、物品、或元件所固有的其他元件。以「包含......一」進行的元件在沒有更多限制的情況下,並不排除包含該元件的過程、方法、物品、或元件中其他相同元件的存在。
如本文所使用的,術語「約」意謂量、大小、配方、參數、及其他數量及特性不是亦不需要是精確的,但可為大致的及/或更大或更小的,根據需要,反映容許度、轉換因數、捨入、量測誤差及類似者、以及熟習此項技術者已知的其他因數。當術語「約」用於描述一值或一範圍的端點時,揭示內容應理解為包括所指的具體值或端點。無論說明書中的數值或範圍的端點是否提及「約」,數值或範圍的端點均旨在包括兩個實施例:一個由「約」修改,另一個未由「約」修改。將進一步理解,範圍中之各者的端點既與另一端點有關,亦獨立於另一端點,兩者均有意義。
術語「由……形成」可意謂包含、基本由……組成、或由……組成中之一或多者。舉例而言,由特定材料形成的組件可包含該特定材料、基本由該特定材料組成、或由該特定材料組成。
如本文中亦使用的術語「物品」、「玻璃製品」、「陶瓷製品」、「玻璃陶瓷」、「玻璃元件」、「玻璃陶瓷製品」及「多個玻璃陶瓷製品」可互換使用,且在其最廣泛的意義上,包括全部或部分由玻璃及/或玻璃陶瓷材料製成的任何物件。
如本文中所使用的,術語「經設置」是指經塗佈、沉積、形成或以其他方式提供至表面上的層或子層。經設置的術語可包括與相鄰層/子層直接接觸的層/子層、或由可/可不形成層的中介材料分離開的層/子層。
除非本文另有說明,否則本文所述材料的折射率是在1550 nm處量測的。
現在參考第1圖,車輛10包括一或多個LIDAR系統12。一或多個LIDAR系統12可設置於車輛10上的任何地方或車輛10內部。舉例而言,一或多個LIDAR系統12可設置於車輛10的車頂14及/或車輛10的前部16上。
現在參考第2圖,一或多個LIDAR系統12中之各者包括電磁輻射發射器及感測器18,如本領域已知的,其可封閉於外殼20中。電磁輻射發射器及感測器18發射具有一波長或一波長範圍的電磁輻射22。發射輻射22穿過窗口24離開外殼20,窗口24在所發射電磁輻射的路徑中。若外部環境26中的物件(未圖示)在發射輻射22的路徑中,則發射輻射22將自該物件反射,並作為反射輻射28返回至電磁輻射發射器及感測器18。反射輻射28再次通過窗口24以到達電磁輻射發射器及感測器18。在實施例中,發射輻射22及反射輻射28可包括適合的相關波長範圍內的光。舉例而言,在實施例中,發射輻射22及反射輻射28可大於或等於1400 nm且小於或等於1600 nm(例如,大於或等於1500 nm且小於或等於1600 nm、大於或等於1525 nm且小於或等於1575 nm,大約1550 nm、1550 nm)。除反射輻射28以外的電磁輻射(諸如具有可見光譜、紫外線範圍部分內波長的電磁輻射)亦可與窗口24交互作用。如本文所述,窗口24可包括包含層結構的分層膜,層結構設計成吸收可見光譜中的光,同時亦反射可見光譜中相對低量的光,使得在自外殼20外部觀看時,窗口具有暗外觀或黑色外觀。
「可見光譜」是電磁譜的人眼可見的部分,通常是指具有約380nm或400nm至約700nm範圍內波長的電磁輻射。「紫外線範圍」是電磁譜的具有約10nm與約400nm之間波長的部分。電磁譜的「紅外線範圍」自約700nm開始並延伸至更長的波長。太陽產生的太陽電磁輻射通常稱為「太陽光」,其具有所有這三個範圍內的波長。
現在參考第3圖,用於一或多個LIDAR系統12中之各者的窗口24包括基板30。基板30包括第一表面32及第二表面34。第一表面32及第二表面34是基板30的主表面。第一表面32最靠近外部環境26。第二表面34最靠近電磁輻射發射器及感測器18。發射輻射22在第一表面32之前遇到第二表面34。反射輻射28在第二表面34之前遇到第一表面32。基板30進一步包括設置於基板30的第一表面32上的第一分層膜36及設置於基板30的第二表面34上的第二分層膜38。應理解,本文所述窗口24不限於車輛應用,如本文進一步所述,可用於窗口24將有助於提供改良衝擊及光學效能的任何應用。
根據本發明,基板30可由多種不同材料構成。在實施例中,基板30可由任何類型的玻璃、玻璃陶瓷、陶瓷、或適合的基於聚合物的材料構成。現在將更詳細地描述基板30的各種實例結構及組合物。
在實施例中,基板30包括玻璃組合物或為玻璃製品。舉例而言,基板30可包括硼矽玻璃、鋁矽玻璃、鹼石灰玻璃、化學強化硼矽玻璃、化學強化鋁矽玻璃、或化學強化鹼石灰玻璃。在實施例中,基板30的玻璃組合物能夠藉由離子交換製程進行化學強化。在實施例中,組合物可不含鋰離子。
適合於基板30的鹼鋁矽玻璃組合物包含氧化鋁、至少一個鹼金屬,在實施例中,大於50 mol.%的SiO 2,在其他實施例中,至少58 mol.%的SiO 2,以及仍然在其他實施例中,至少60 mol.%的SiO 2,其中比(Al 2O 3+B 2O 3)/Σ 改質劑(即,改質劑之和)大於1,其中各組分的比以mol.%表示,且改質劑為鹼金屬氧化物。在特定實施例中,這一組合物包含:58~72 mol.%的SiO 2;9~17 mol.%的Al 2O 3;2~12 mol.%的B 2O 3;8~16 mol.%的Na 2O;及0~4 mol.%的K 2O,其中比(Al 2O 3+B 2O 3)/Σ 改質劑(即,改質劑之和)大於1。
用於基板30的另一適合的鹼鋁矽玻璃組合物包含:64~68 mol.%的SiO 2;12~16 mol.%的Na 2O;8~12 mol.%的Al 2O 3;0~3 mol.%的B 2O 3;2~5 mol.%的K 2O;4~6 mol.%的MgO;及0~5 mol.%的CaO,其中:66 mol.%≦SiO 2+B 2O 3+CaO≦69 mol.%;Na 2O+K 2O+B 2O 3+MgO+CaO+SrO>10 mol.%;5 mol.%≦MgO+CaO+SrO≦8 mol.%;(Na 2O+B 2O 3)—Al 2O 3≦2 mol.%;2 mol.%≦Na 2O—Al 2O 3≦6 mol.%;及4 mol.%≦(Na 2O+K 2O)—Al 2O 3≦10 mol.%。
用於基板30的另一適合的鹼鋁矽玻璃組合物包含:2 mol.%或更多的Al 2O 3及/或ZrO 2、或4 mol.%或更多的Al 2O 3及/或ZrO 2
一個實例玻璃組合物包含SiO 2、B 2O 3、及Na 2O,其中(SiO 2+B 2O 3)≧66 mol.%,,且Na 2O≧9 mol.%。在實施例中,組合物包括至少6 wt.%的氧化鋁。在進一步的實施例中,一或多個鹼土氧化物的組合物,諸如鹼土氧化物的含量為至少5 wt.%。在實施中,適合的組合物進一步包含K 2O、MgO、及CaO中之至少一者。在特定實施例中,基板30的組合物包含61~75 mol.%的SiO 2;7~15 mol.%的Al 2O 3;0~12 mol.%的B 2O 3;9~21 mol.%的Na 2O;0~4 mol.%的K 2O;0~7 mol.%的MgO;及0~3 mol.%的CaO。
適用於基板30的另一實例組合物包含:60~70 mol.%的SiO 2;6~14 mol.%的Al 2O 3;0~15 mol.%的B 2O 3;0~15 mol.%的Li 2O;0~20 mol.%的Na 2O;0~10 mol.%的K 2O;0~8 mol.%的MgO;0~10 mol.%的CaO;0~5 mol.%的ZrO 2;0~1 mol.%的SnO 2;0~1 mol.%的CeO 2;小於50 ppm的As 2O 3;及小於50 ppm的Sb 2O 3;其中12 mol.%≦(Li 2O+Na 2O+K 2O)≦20 mol.%且0 mol.%≦(MgO+CaO)≦10 mol.%。
適用於基板30的仍然另一實例玻璃組合物包含:63.5~66.5 mol.%的SiO 2;8~12 mol.%的Al 2O 3;0~3 mol.%的B 2O 3;0~5 mol.%的Li 2O;8~18 mol.%的Na 2O;0~5 mol.%的K 2O;1~7 mol.%的MgO;0~2.5 mol.%的CaO;0~3 mol.%的ZrO 2;0.05~0.25 mol.%的SnO 2;0.05~0.5 mol.%的CeO 2;小於50 ppm的As 2O 3;及小於50 ppm的Sb 2O 3;其中14 mol.%≦(Li 2O+Na 2O+K 2O)≦18 mol.%且2 mol.%≦(MgO+CaO)≦7 mol.%。
基板30可基本是平面的或片狀的,儘管其他實施例可利用彎曲的或其他形狀的或雕刻的基板。基板30的長度及寬度可根據窗口24的所需尺寸而變化。基板30可使用各種方法形成,諸如浮法玻璃法及下拉法,諸如熔融下拉及槽下拉。基板30可在非強化狀態下使用。用於窗口24的適合非強化基板30的市售實例是康寧®玻璃代碼2320,其是鈉鋁矽玻璃基板。
形成基板30的玻璃可改質為具有與第一表面32相連的區域及/或與第二表面34相連的區域,以承受壓縮應力(「compressive stress,CS」)。在這類情況下,承受壓縮應力的區域(多個)自第一表面32及/或第二表面34延伸至壓縮深度(多個)。這一壓縮應力產生進一步建立承受張應力的中心區域,張應力在中心區域的中心處具有最大值,稱為中心張力(central tension or center tension,CT)。中心區域在壓縮深度之間延伸並承受張應力。中心區域的張應力平衡或抵消承受壓縮應力的區域的壓縮應力。如本文所用,術語「壓縮深度」及「depth of compression,DOC」是指基板30內的應力自壓縮應力改變為張應力的深度。在壓縮深度處,應力自正(壓縮)應力轉變為負(張)應力,因此應力具有零值。壓縮深度會保護基板30不受對基板30的第一表面32及/或第二表面34的急劇衝擊所帶來的裂紋傳播的影響,而壓縮應力將裂紋生長及穿透壓縮深度的可能性最小化。在實施例中,壓縮深度各個為至少20 μm。在實施例中,區域內的最大壓縮應力CS的絕對值為至少200 MPa、至少約400 MPa、至少600 MPa、或高達約1000 MPa。
由Douglas Clippinger Allan等人於2012年5月3日提交的題為「量測離子交換玻璃的應力曲線的系統及方法」的美國專利第9140543號中揭示了用於萃取具有承受壓縮應力的區域的基板30的詳細及精確應力曲線(應力作為深度的函數)的兩種方法,並主張對2011年5月25日提交的具有相同標題的美國臨時專利申請案第61/489800號的優先權,該申請案的全部內容以引用之方式併入本文中。
在實施例中,產生承受壓縮應力的基板30的區域(多個)包括使基板30經受離子交換化學回火製程(化學回火通常稱為「化學強化」)。在離子交換化學回火製程中,基板30的第一表面32及第二表面34處或第一表面32及第二表面34附近的離子由通常具有相同價態或氧化態的較大離子所代替或交換。在基板30包含、基本由或由鹼鋁矽玻璃、鹼硼矽玻璃、鹼鋁硼矽玻璃、或鹼矽玻璃組成的實施例中,玻璃的表面層中的離子及較大離子是一價鹼金屬陽離子,諸如Na +(當玻璃中存在Li +時)、K +、Rb +、及Cs +。或者,在第一表面32及第二表面34中、第一表面32及第二表面34處、或第一表面32及第二表面34附近的一價陽離子可用鹼金屬陽離子以外的一價陽離子代替,諸如Ag +或類似物。
在實施例中,離子交換製程藉由將基板30浸入含有待與基板30中的較小離子交換的較大離子的熔融鹽浴中來執行。熟習此項技術者將理解,離子交換製程的參數,包括但不限於電解液成分及溫度、浸泡時間、玻璃在鹽浴(或電解液)中的浸泡次數、多個鹽浴的使用、及諸如退火、洗滌及類似者的額外步驟,通常由基板30的組合物及由強化操作產生的基板30的所需壓縮深度及壓縮應力判定。舉例而言,含鹼金屬玻璃基板的離子交換可藉由浸泡於含有鹽的至少一個熔融浴中來達成,這些鹽包括但不限於較大鹼金屬離子的硝酸鹽、硫酸鹽、及氯化物。在實施例中,熔融鹽浴包含硝酸鉀(0~100 wt%)、硝酸鈉(0~100 wt%)、及硝酸鋰(0~12 wt%),組合的硝酸鉀與硝酸鈉具有88 wt%至100 wt%範圍內的重量百分數。在實施例中,熔融鹽浴的溫度通常在約350℃至約500℃的範圍內,而浸泡時間的範圍自約15分鐘至約40小時,包括自約20分鐘至約10小時。然而,亦可使用與上述不同的溫度及浸泡時間。基板30可經酸洗或以其他方式處理以移除或減少表面裂縫的影響。
在實施例中,基板30包括具有玻璃相及陶瓷相兩者的玻璃陶瓷材料。說明性玻璃陶瓷包括那些玻璃相由矽酸鹽、硼矽酸鹽、鋁矽酸鹽、或硼鋁矽酸鹽形成,而陶瓷相由β-鋰輝石、β-石英、霞石、六方鉀霞石、或三斜霞石形成的材料。「玻璃陶瓷」包括經由控制玻璃結晶產生的材料。適合玻璃陶瓷的實例可包括Li 2O-Al 2O 3-SiO 2系統(即,LAS系統)玻璃陶瓷、MgO-Al 2O 3-SiO 2系統(即,MAS系統)玻璃陶瓷、ZnO×Al 2O 3×nSiO 2(即,ZAS系統)、及/或包括主要晶相的玻璃陶瓷,包括β-石英固溶體、β-鋰輝石、堇青石、及二矽酸鋰。玻璃陶瓷基板可使用化學強化製程來強化。
在實施例中,基板30包括陶瓷材料,諸如無機結晶氧化物、氮化物、碳化物、氧氮化物、碳氮化物、及/或類似物。說明性陶瓷包括那些具有氧化鋁、鈦酸鋁、莫來石、堇青石、鋯英石、尖晶石、鈣鈦礦、鋯土、鈰氧、碳化矽、氮化矽、氧氮化矽鋁、或沸石相的材料。
在實施例中,基板30包括有機或適合的聚合物材料。適合聚合物的實例包括但不限於:包括聚苯乙烯(PS)的熱塑性塑膠(包括苯乙烯共聚物及混合物)、聚碳酸酯(PC)(包括共聚物及混合物)、聚酯(包括共聚物及混合物,包括聚對苯二甲酸乙二醇酯及聚對苯二甲酸乙二醇酯共聚物)、聚烯烴(PO)及環聚烯烴(cyclic-PO)、聚氯乙烯(PVC)、包括聚甲基丙烯酸甲酯(PMMA)的丙烯酸聚合物(包括共聚物及混合物)、熱塑性聚胺酯(TPU)、聚醚醯亞胺(PEI)以及這些聚合物彼此的混合物。其他例示性聚合物包括環氧樹脂、苯乙烯樹脂、酚醛樹脂、三聚氰胺樹脂、及矽氧樹脂。
在實施例中,基板30包括複數個層或子層。基板30的層或子層可為相同的或彼此不同。在實施例中,舉例而言,基板30包含玻璃層壓結構。在實施例中,玻璃層壓結構包含第一玻璃板及第二玻璃板,透過設置於第一玻璃板與第二玻璃板之間的適合的介面層(例如,聚合物介面層)而彼此附接。在實施例中,玻璃層壓結構包含透過例如熔融下拉製程形成的玻璃上玻璃層壓結構。玻璃-聚合物層壓板亦經設想,並在本發明的範疇內。能夠滿足本文所述光學要求的任何材料均可用作基板30。
在實施例中,基板30表現出約30 GPa至約120 GPa範圍內的彈性模數(或楊氏模數)。在一些情況下,基板的彈性模數可在自約30 GPa至約110 GPa、自約30 GPa至約100 GPa、自約30 GPa至約90 GPa、自約30 GPa至約80 GPa、自約30 GPa至約70 GPa、自約40 GPa至約120 GPa、自約50 GPa至約120 GPa、自約60 GPa至約120 GPa、自約70 GPa至約120 GPa、及其間所有範圍及子範圍內。
在實施例中,基板30在可見光波長範圍上表現出約85%或更大、約86%或更大、約87%或更大、約88%或更大、約89%或更大、約90%或更大、約91%或更大或約92%或更大的平均透射率。在實施例中,基板30包含有色組件(例如,有色層或添加劑),並可選擇性地表現出一種色彩,諸如白、黑、紅、藍、綠、黃、橙等。
如第3圖所描繪的,基板30具有界定為第一表面32與第二表面34之間最短直線距離的厚度35。在實施例中,基板30的厚度35在約100 μm與約5 mm之間。在實施例中,基板30可具有範圍自約100 μm至約500 μm(例如,100、200、300、400、或500 μm)的實體厚度35。在其他實施例中,厚度35的範圍自約500 μm至約1000 μm(例如,500、600、700、800、900、或1000 μm)。厚度35可大於約1 mm(例如,約2、3、4、5 mm、6 mm、或7 mm)。在一或多個具體實施例中,厚度35為2 mm或更小或者小於或等於1 mm。
在實施例中,厚度35是均勻的(例如,貫穿整個基板的變化小於1%),使得基板35是以平面片的形式。在實施例中,厚度35是可變厚度,並具有作為基板30上位置的函數的值。出於美觀及/或功能的原因,厚度35可沿其尺寸中之一或多者而變化。舉例而言,與基板30的更多中心區域相比,基板30的邊緣可能更厚。基板30的長度、寬度及實體厚度尺寸亦可根據物品30之施加或使用而變化。
在實施例中,基板30包括可見光吸收、IR透射的材料層。此類材料的實例包括紅外線透射、可見光吸收的壓克力板,諸如那些可自ePlastics商購的商標名Plexiglas® IR acrylic 3143及CYRO的ACRYLITE® IR acrylic 1146。Plexiglas® IR acrylic 3143對具有約700nm或更短波長的電磁輻射具有約0%(至少小於10%、或小於1%)的透射率,但對800nm至約1100nm(包括905nm)範圍內波長的電磁輻射具有約90%(高於85%)的透射率。
在實施例中,基板30表現出約1.45至約1.55範圍內的折射率。在實施例中,基板在1400 nm至1600 nm的整個光譜範圍內表現出大於或等於95%(例如,大於或等於96%、大於或等於97%、大於或等於98%、大於或等於99%、大於或等於99.5%)的平均透射。
現在參考第4圖及第5圖,第一分層膜36及第二分層膜38各個包括一或多個較高折射率材料40與一或多個較低折射率材料42的許多交替層。雖然一或多個較高折射率材料40及一或多個較低折射率材料42中之各者均使用相同的參考數字來標識,但應理解,利用相同的參考數字並不指示層中之各者均是由相同的材料構成或包括相同的結構。在第一分層膜36及第二分層膜38中之各者中,個別較高折射率材料40及較低折射率材料42的層中之不同者可包括不同的組合性質或結構性質。
如本文所使用的,術語「較高折射率」及「較低折射率」是指相對於彼此的折射率值,其中一或多個較高折射率材料40的折射率大於一或多個較低折射率材料42的折射率。在實施例中,一或多個較高折射率材料40具有約1.7至約4.0的折射率。在實施例中,一或多個較低折射率材料42具有約1.3至約1.6的折射率。在實施例中,一或多個較低折射率材料42具有約1.3至約1.7的折射率,而一或多個較高折射率材料40具有約1.9至約3.8的折射率。一或多個較高折射率材料40中之任意者與一或多個較低折射率材料42中之任意者的折射率之差值可為約0.1或更大、0.2或更大、0.3或更大、0.4或更大、0.5或更大、0.6或更大、0.7或更大、0.8或更大、0.9或更大、1.0或更大、1.5或更大、2.0或更大、2.1或更大、2.2或更大、或甚至2.3或更大。由於一或多個較高折射率材料40與一或多個較低折射率材料42的折射率差值,操縱交替層的數量(數目)及其厚度可導致在一波長範圍內的電磁輻射穿過窗口24的選擇線透射,且分開地,導致在一波長範圍內的電磁輻射自第一分層膜36上的選擇線反射率。因此,第一分層膜36(及第二分層膜38,若利用)是具有組態為一或多個較高折射率材料40及一或多個較低折射率材料42的數量、厚度、數目、及材料的函數的預定光學性質的薄膜濾光器。
用作一或多個較低折射率材料42的適合材料的一些實例包括SiO 2、Al 2O 3、GeO 2、SiO、AlO xN y、SiO xN y、Si uAl vO xN y、MgO、MgAl 2O 4、MgF 2、BaF 2、CaF 2、DyF 3、YbF 3、YF 3、及CeF 3。用作一或多個較低折射率材料42的材料的氮含量可最小化(例如,在諸如AlO xN y、SiO xN y、及Si uAl vO xN y的材料中)。
用作一或多個較高折射率材料40的適合材料的一些實例包括Si、無定形矽(a-Si)、SiN x、SiN x:H y、AlN x、Si uAl vO xN y、Ta 2O 5、Nb 2O 5、AlN、Si 3N 4、AlO xN y、SiO xN y、HfO 2、TiO 2、ZrO 2、Y 2O 3、Al 2O 3、MoO 3、及類金剛石碳。較高折射率材料40的材料的氧含量可最小化,特別是在SiN x或AlN x材料中。AlO xN y材料可認為是氧摻雜的AlN x,即,其可具有AlN x晶體結構(例如,纖鋅礦),而不需要具有AlON晶體結構。用作一或多個較高折射率材料40的例示性較佳AlO xN y材料可包含約0原子%至約20原子%的氧、或約5原子%至約15原子%的氧,同時包括30原子%至約50原子%的氮。用作一或多個較高折射率材料40的例示性較佳Si uAl vO xN y可包含約10原子%至約30原子%或約15原子%至約25原子%的矽,約20原子%至約40原子%或約25原子%至約35原子%的鋁,約0原子%至約20原子%或約1原子%至約20原子%的氧,及約30原子%至約50原子%的氮。上述材料可氫化至高達約30%重量。因為一或多個較高折射率材料40與一或多個較低折射率材料42的折射率是相對於彼此的,所以同一材料(諸如Al 2O 3),取決於選擇用於一或多個較低折射率材料42的材料(多個)的折射率,可適用於一或多個較高折射率材料40;或者,取決於選擇用於一或多個較高折射率材料40的材料(多個)的折射率,可適用於一或多個較低折射率材料42。
在實施例中,第一分層膜36的一或多個較低折射率材料42由SiO 2層組成,且第一分層膜36的一或多個較高折射率材料40由SiO xN y或SiN x層組成。在實施例中,第一分層膜36的一或多個較低折射率材料42由SiO 2層組成,且第一分層膜36的一或多個較高折射率材料40由SiN x或SiO xN y層組成,而第二分層膜38的一或多個較低折射率材料42由SiO 2層組成,且第二分層膜38的一或多個較高折射率材料40包含矽層(例如,a-Si)。在實施例中,第一分層膜36的一或多個較低折射率材料42由SiO 2層組成,且第一分層膜36的一或多個較高折射率材料40由SiN x或SiO xN y層組成,而第二分層膜38的一或多個較低折射率材料42由SiO 2層組成,且第二分層膜38的一或多個較高折射率材料40包含非晶矽(a-Si)層及SiN x或SiO xN y層。
第一分層膜36或第二分層膜38中較高折射率材料40與較低折射率材料42的交替層的數量沒有特別限制。在實施例中,第一分層膜36內交替層的數目為7或更多、9或更多、11或更多、13或更多、15或更多、17或更多、19或更多、21或更多、23或更多、25或更多、或51或更多、或81或更多。在實施例中,第二分層膜38內交替層的數量為7或更多、9或更多、11或更多、13或更多、15或更多、17或更多、19或更多、21或更多、23或更多、或25或更多、或51或更多、或81或更多。在實施例中,共同形成窗口24的第一分層膜36及第二分層膜38的交替層的數量,不包括基板30,是14或更多、20或更多、26或更多、32或更多、38或更多、44或更多、50或更多、72或更多、或100或更多。一般而言,第一分層膜36及第二分層膜38內的層的數量越多,對一或多個特定波長或波長範圍越窄地客製窗口24的透射率及反射率性質。
第一分層膜36及第二分層膜38的交替層中之各者具有一厚度。選擇用於交替層中之各者的厚度決定穿過窗口24傳播的光的光路長度,並決定在窗口24的各個材料介面處反射的不同光線之間的相長干涉及相消干涉。因此,交替層中之各者的厚度與一或多個較高折射率材料40及一或多個較低折射率材料42的折射率組合,決定窗口24的反射率及透射率光譜。
參考第3圖、第4圖、及第5圖,反射輻射28在與窗口24交互作用時首先遇到第一分層膜36的終端表面44,而終端表面44可對外部環境26開放。在實施例中,一或多個較低折射率材料42的層提供終端表面44,以更緊密地匹配外部環境26中空氣的折射率,從而減少入射電磁輻射(無論是反射輻射28或其他)自終端表面44的反射。提供終端表面44的一或多個較低折射率材料42的層是第一分層膜36的最遠離基板30的層。同樣,在實施例中,當一或多個較低折射率材料42是SiO 2時,作為一或多個較低折射率材料42的SiO 2層直接設置於基板30的第一表面32上,其通常將包含大莫爾百分數的SiO 2。在不受理論約束的情況下,可認為基板30及一或多個較低折射率材料42的相鄰層兩者中的SiO 2共性允許增加接合強度。
發射輻射22在與窗口24交互作用時首先遇到第二分層膜38的終端表面48。在實施例中,一或多個較低折射率材料42的層提供終端表面48,以更緊密地匹配外殼20內空氣的折射率,從而減少入射的發射輻射22自終端表面48的反射。提供終端表面48的一或多個較低折射率材料42的層是第二分層膜38的最遠離基板30的層。類似地,在實施例中,當一或多個較低折射率材料42是SiO 2時,作為一或多個較低折射率材料42的SiO 2層直接設置於基板30的第二表面34上。
具有相對高折射率的材料可同時具有相對高硬度,從而提供抗刮性及抗衝擊性。既具有高硬度又可為一或多個較高折射率材料40中之一者的實例材料是SiO xN y。既具有高硬度又可為較高折射率材料40的其他實例材料是SiN x、SiN x:H y、及Si 3N 4。已發現,相對厚(例如,大於或等於500 nm)的SiO xN y(或其他適合的較高折射率材料)層可提高窗口24的抗刮性及/或抗損壞性。此類提高的抗刮性及/或抗損壞性在第一分層膜36中可能特別有利,因為其可能更容易遇到來自外部環境26的碎屑的衝擊。因此,在實施例中,第一分層膜36包含具有大於或等於500 nm(例如,大於或等於1000 nm、大於或等於1500 nm、大於或等於2000 nm)厚度的一或多個較高折射率材料40中之一者的一層。此類具有這一500 nm或更大厚度的較高折射率層在本文中描述為「抗刮層」。
在實施例中,抗刮層的厚度及在第一分層膜36內的位置可進行最佳化,以對第一分層膜36(從而對作為整體的窗口24)提供所需硬度及抗刮性位凖。窗口24的不同應用可導致用作對窗口24提供硬度及抗刮性的層的較高折射率材料40之抗刮層的不同所需厚度。舉例而言,保護車輛10上的LIDAR系統12的窗口24可能需要與保護辦公樓上的LIDAR系統12的窗口24不同的較高折射率材料40之抗刮層厚度。在實施例中,用作對窗口24提供硬度及抗刮性的層的較高折射率材料40之抗刮層具有500 nm與50000 nm之間的厚度,諸如500 nm與10000 nm之間,諸如2000 nm與5000 nm之間。在實施例中,這一較高折射率材料40之抗刮層的厚度具有為第一分層膜36的厚度的30%或更多、40%或更多、50%或更多、65%或更多、或85%或更多、或86%或更多的厚度。一般而言,用作對窗口24提供硬度及抗刮性的層的較高折射率材料40之抗刮層將是面對外部環境26的第一分層膜36的部分而非由外殼20保護的第二分層膜38的部分,儘管情況並非總是如此。
如下文將進一步詳述的,第一分層膜36及第二分層膜38的剩餘層的數量、厚度、數目、及材料可經組態,以為窗口24提供所需光學性質(所需波長的透射率及反射率),而幾乎不考慮選擇用於用作對窗口24提供硬度及抗刮性的層的較高折射率材料40之抗刮層的厚度。當材料對目標波長或波長範圍(例如,自1400 nm至1600 nm,1550 nm)的電磁輻射具有相對低或可忽略的光學吸收時,窗口24的光學性質整體上對用作為窗口24提供硬度及抗刮性的層的較高折射率材料40之抗刮層的厚度不敏感。舉例而言,Si 3N 4僅可忽略地吸收700nm至2000nm波長範圍內的電磁輻射。
這一總的不敏感性允許第一分層膜36中較高折射率材料40之抗刮層具有預定的厚度,以滿足指定的硬度或抗刮性要求。舉例而言,用於車輛10的車頂14處利用的窗口24的第一分層膜36可具有與用於車輛10的前部16處利用的窗口24的第一分層膜36不同的硬度及抗刮性要求,因此,較高折射率材料40之抗刮層的厚度亦不同。這可在不顯著改變第一分層膜36整體的透射率及反射率性質的情況下達成。
可量化第一分層膜36的硬度,且因此可量化具有較高折射率材料40之抗刮層的窗口24。在實施例中,在具有較高折射率材料40之抗刮層的第一分層膜36處藉由Berkovich壓頭硬度測試來量測的窗口24的最大硬度可在自50nm至2000nm(自終端表面44量測)、甚至自2000nm至5000nm的一或多個壓痕深度處為約8 GPa或更大、約10 GPa或更大、約12 GPa或更大、約14 GPa或更大、約15 GPa或更大、約16 GPa或更大、或約18 GPa或更大。如本文所用的,「Berkovich壓頭硬度測試」包括藉由用金剛石Berkovich壓頭壓入表面來量測表面上材料的硬度。Berkovich壓頭硬度測試包括用金剛石Berkovich壓頭壓入第一分層膜36的終端表面44,以形成壓痕,壓痕深度在約50nm至約2000nm的範圍內(或第一分層膜36的整個厚度),並自這一壓痕沿整個壓痕深度範圍或這一壓痕深度範圍的一段(例如,自約100nm至約600nm的範圍內)量測最大硬度,通常使用Oliver, W. C. & Pharr, G. M.的 一種使用負載及位移感應壓痕實驗判定硬度及彈性模數的改良技術(J. Mater. Res., Vol. 7, No. 6, 1992, 1564~1583)、及Oliver, W. C. & Pharr, G. M.的 藉由儀器壓痕量測硬度及彈性模數:先進 理解及改良方法(J. Mater. Res., Vol. 19, No. 1, 2004, 3~20)中闡述的方法。這些硬度位凖會改善窗口24對在LIDAR系統12用於其預期目的,諸如與車輛10(見第1圖)一起使用時遇到的沙子、小石頭、碎屑、及其他物件的衝擊損壞的抵抗力。因此,這些硬度位凖會減少或防止衝擊損壞會導致的LIDAR系統12的光學散射及效能降低。
在實施例中,第一分層膜36的至少一部分設置於較高折射率材料40之抗刮層與終端表面44之間。在實施例中,第一分層膜36包含在終端表面44與抗刮層之間的一或多個較低折射率材料42與一或多個較高折射率材料40的複數個交替層。設置於抗刮層與終端表面44之間的交替層的此類堆疊在本文中描述為「光學控制層」。在實施例中,設置於抗刮層與終端表面44之間的光學控制層具有大於或等於500 nm(例如,大於或等於600 nm、大於或等於700 nm、大於或等於800 nm、大於或等於900 nm、大於或等於1000 nm、大於或等於1100 nm、大於或等於1200 nm、大於或等於1300 nm)的組合厚度。光學控制層的數量、組合物、及厚度可經選擇,以在LIDAR感測器12的1400 nm與1600 nm之間的工作波長處提供本文所述的所需抗反射效能屬性。這樣,第二分層膜36可設計成在可見光及/或UV光譜中提供本文所述的所需光學效能特性。
在實施例中,第一分層膜36的厚度46的至少25%(例如,至少26%、至少27%、至少28%、至少29%、至少30%)設置於抗刮層與終端表面44之間。據信,第一分層膜36內抗刮層的此類深度有助於第一分層膜36在第一分層膜36內相對大的深度範圍上具有相對高的奈米壓痕硬度(如藉由Berkovich壓頭硬度測試量測)。在實施例中,第一分層膜36在第一分層膜36內自250 nm深度至2000 nm深度具有大於或等於8 GPa的奈米壓痕硬度。在實施例中,第一分層膜36在第一分層膜36內自1000 nm深度至2000 nm深度具有大於或等於8.5 GPa的奈米壓痕硬度。此類硬度值有助於對具有相對寬的深度範圍的裂縫提供抗刮性及/或抗損壞性。
現在參考第4圖及第5圖,第一分層膜36具有厚度46,而第二分層膜38具有厚度50。假設包括一或多個較高折射率材料40之抗刮層,則第一分層膜36的厚度46可為約1μm或更大,同時仍然提供本文所述的透射率及反射率性質。在實施例中,厚度46在1µm至剛剛超過50µm的範圍內,包括自約1µm至約10µm,以及自約2800nm至約5900nm。約1µm的下限大約是仍能為窗口24提供硬度及抗刮性的最小厚度46。厚度46的上限受限於將第一分層膜36的諸層設置於基板30上所需的成本及時間。此外,厚度46的上限經限制以防止第一分層膜36使基板30翹曲,這取決於基板30的厚度。第二分層膜38的厚度50可為賦予窗口24具有所需透射率及反射率性質所需的任何厚度。在實施例中,第二分層膜38的厚度50在約800nm至約7000nm的範圍內。
在經由透過較高折射率材料40的最大厚度賦予窗口24硬度、抗衝擊性、及抗刮性來解決上述背景中討論的問題的同時,第一分層膜36及第二分層膜的數量、厚度、數目、及材料組態為亦提供1400 nm與1600 nm之間的紅外輻射穿過窗口24的相對高透射率。在實施例中,第一分層膜36及第二分層膜38的交替層的厚度、數目、及材料經組態,使得窗口24對以與第一表面32及第二表面34的法線成15°內的角度入射於第一表面32及第二表面34上的光具有在1400 nm至1600 nm的50 nm相關波長範圍上計算的、大於或等於90%(例如,大於或等於91%、大於或等於92%、大於或等於93%、大於或等於94%、大於或等於95%)的平均百分數透射率。
在實施例中,第一分層膜36及第二分層膜38的交替層的厚度、數目、及材料經組態,使得窗口24對以與第一表面32及第二表面34的法線成15°內的角度入射於第一表面32及第二表面34上的光具有在1400 nm至1600 nm的50 nm相關波長範圍上計算的、小於或等於0.5%(例如,小於或等於0.4%、小於或等於0.3%、小於或等於0.2%、小於或等於0.1%、小於或等於0.08%)的平均反射率。在實施例中,第一分層膜36及第二分層膜38的交替層的數目、厚度、數目、及材料經組態,使得窗口對以與第一表面32及第二表面34的法線成60°內的角度(例如,以0°至60°、0°至50°、0°至40°、0°至30°的入射角)入射於第一表面32及第二表面34上的光具有在1400 nm至1600 nm的50 nm相關波長範圍上計算的、大於85%(例如,大於或等於86%、大於或等於87%、大於或等於88%、大於或等於89%、大於或等於90%、大於或等於91%、大於或等於92%)的平均P偏振透射率及平均S偏振透射率。此處,術語「反射率」界定為在給定波長範圍內自材料(例如,窗口24、基板30、第一分層膜36、第二分層膜38、或其部分)反射的入射光功率的百分數。
在實施例中,第一分層膜36及第二分層膜38的交替層的厚度、數目、及材料經組態,使得窗口24對垂直入射於第一表面32及第二表面34上的光具有在1400 nm至1600 nm的50 nm相關波長範圍上計算的、大於或等於95%(例如,大於或等於95.5%、大於或等於96%、大於或等於96.5%、大於或等於97.5%、大於或等於98%)的平均百分數透射率。此處,術語「透射率」與「透射百分數」可互換使用,是指在特定波長範圍內穿過材料(例如,窗口24、基板30、第一分層膜36、第二分層膜38或其部分)透射的入射光功率的百分數。
在實施例中,第一分層膜36及第二分層膜38的交替層的厚度、數目、及材料經組態,使得窗口24(除滿足本文所述的紅外線中的光學效能要求以外)亦具有所需暗外觀。舉例而言,當自外部環境26(見第1圖)觀看時,針對第一表面32上具有範圍自0°至90°的入射角的光,窗口24可表現出大於或等於-6.0且小於或等於6.0的CIELAB色彩空間a*值。針對第一表面32上具有範圍自0°至90°的入射角的光,窗口24亦可表現出大於或等於-6.0且小於或等於6.0(例如,大於或等於-5.0且小於或等於5.0、大於或等於-4.0且小於或等於4.0、大於或等於-3.0且小於或等於3.0、大於或等於-2.5且小於或等於2.5、大於或等於-2.5且小於或等於0)的CIELAB色彩空間b*值。即使在基板30在整個可見光譜中具有相對高透射率(例如,大於90%)及低反射率(例如,小於或等於22%)的實施例中亦可獲得此類色彩空間值。
在實施例中,第一分層膜36及第二分層膜38的交替層的厚度、數目、及材料經組態,使得在自小於或等於60°的入射角觀看時窗口24具有小於45(例如,小於或等於40、小於或等於35、小於或等於30)的CIELAB明度L*值。在實施例中,第一分層膜36及第二分層膜38的交替層的厚度、數目、及材料經組態,使得針對垂直入射於第一分層膜36上並經反射的光,窗口24具有小於20的CIELAB明度L*值。上述CIELAB色彩空間與明度值的組合代表窗口24自多種入射角具有相對暗的外觀。
窗口24的暗外觀可藉由將矽(例如,作為a-Si)作為一或多個較高折射率材料40中之一者納入第二分層膜38中來達成。除具有相對高折射率(在1550nm處大約為3.8)以外,非晶矽(a-Si)在紫外線範圍及可見光範圍內具有相對高的光學吸收,但在900~1800nm範圍內具有可容許的光學吸收。因此,非晶矽(a-Si)層的厚度及數量、以及第一分層膜36及第二分層膜38的其他層可提供窗口24,窗口24在紫外線範圍及可見光範圍內具有電磁輻射的低百分數透射率(部分歸因於非晶矽在這些波長範圍處的光學吸收),但在紅外線範圍的所需部分中具有高百分數透射率。在實施例中,第二分層膜38包括作為一或多個較高折射率材料40中之一者的一或多個非晶矽(a-Si)層,而第一分層膜36不包括。這樣的結構可能是有益的,因為矽完全位於基板30之後,從而受到外部環境26的保護。結果,本文所述的奈米壓痕硬度值可透過將抗刮層納入第一分層膜36中來獲得,而暗外觀可透過將矽納入第二分層膜38中來獲得。
在實施例中,由矽形成的第二分層膜38的交替層具有大於或等於250 nm(例如、大於或等於300 nm、大於或等於325 nm、大於或等於350 nm、大於或等於375 nm、大於或等於400 nm、大於或等於500 nm)的組合厚度。在實施例中,由矽形成的第二分層膜38的層可具有大於或等於250 nm的組合厚度。在實施例中,第二分層膜中矽層的組合厚度構成第二分層膜50的厚度50的至少35%(例如,至少40%、至少45%、至少50%)。申請者發現,這樣的矽厚度充分吸收可見光,使得窗口24對以與第一表面32及第二表面34的法線成15°內的角度入射於第一表面32及第二表面34上的光具有自400 nm至700 nm計算的、小於5%(例如,小於或等於4.5%、小於或等於4.0%、小於或等於3.5%、小於或等於3.0%、小於或等於2.5%、小於或等於2.0%、小於或等於1.5%、小於或等於1.0%、小於或等於0.9%、小於或等於0.8%、小於或等於0.7%、小於或等於0.6%、小於或等於0.5%、小於或等於0.4%、小於或等於0.3%、小於或等於0.2%、小於或等於0.1%)的平均透射百分數。因此,含有可見光的反射輻射28(見第2圖)的部分不會到達發射器及感測器18,從而改善LIDAR系統12的訊號雜訊比。
在實施例中,第二分層膜36包含由矽形成的兩個或兩個以上層。在實施例中,由矽形成的兩個或兩個以上層中之至少一者包含大於或等於150 nm(例如、大於或等於160 nm、大於或等於170 nm、大於或等於180 nm、大於或等於190 nm、大於或等於200 nm)的厚度。在實施例中,第二分層膜36中由矽形成的兩個或兩個以上層中之至少二者(但少於全部)包含大於或等於150 nm的厚度。在實施例中,第二分層膜38的交替層中之至少七(7)者設置於具有150 nm或更大厚度的矽層中之一者與第二表面34之間。在實施例中,含在包含距離第二表面小於150 nm的厚度的第二分層膜38中的矽層包含小於或等於70 nm(例如,小於或等於65 nm、小於或等於60 nm、小於或等於55 nm、小於或等於50 nm、小於或等於30 nm、小於或等於25奈米、小於或等於20 nm)的厚度。據信,基板30與相對厚矽層之間的此類分離有助於降低可見光譜中的反射率。
在實施例中,第一分層膜36及第二分層膜38的交替層構造成在可見光譜中達成相對低的平均反射率。舉例而言,在實施例中,窗口包含在400 nm至700 nm的波長範圍內計算的、小於或等於10%(例如,小於或等於9%、小於或等於8%、小於或等於7%)的平均反射率。此類低反射率有利地防止窗口24在自外部環境26(見第1圖)觀看時具有有色外觀,並有利於達成本文所述的CIE色彩空間a*及b*值,以及明度L*值。
在實施例中,為了限制窗口的可見光譜中的反射率,第二分層膜38的最近接基板30的矽層是第二分層膜38中最窄的矽層。亦即,在第二分層膜38中一或多個較高折射率材料40是矽的層中,最靠近基板30的層包含最小的厚度。在實施例中,第二分層膜38中最近的矽層包含小於或等於10 nm(例如,小於或等於8 nm、小於或等於7 nm、小於或等於6 nm、小於或等於5 nm、小於或等於4 nm、小於或等於3 nm、小於或等於2 nm)的厚度。申請者發現,此類結構有利地防止第二分層膜38中含矽層誘發有色反射,同時仍然有助於本文所述的相對低可見光透射率值。
在實施例中,第二分層膜38中最靠近基板30的一或多個較高折射率材料40的層不是矽。在實施例中,舉例而言,最靠近基板30的一或多個較高折射率材料40的層可由第一分層膜中使用的相同較高折射率材料(例如,SiN x、SiO xN Y、Si 3N 4)構成。在實施例中,第二分層膜38中最靠近基板30的一或多個較高折射率材料40的層是其中不由矽構成的唯一較高折射率層。在不希望受理論約束的情況下,申請者認為,當將矽納入第二分層膜38中時,這樣的結構可能有助於減少可見光譜中的反射率,特別是當第二分層膜38中含有的矽層包含大於或等於8 nm的厚度時。
第一分層膜36及第二分層膜38的層(即,較高折射率材料40及較低折射率材料42的層)可藉由本領域的任何已知方法來形成,包括離散沉積或連續沉積製程。在一或多個實施例中,層可僅使用連續沉積製程形成,或者,僅使用離散沉積製程形成。 實例
以下實例均為使用電腦輔助模型化的模型化實例,以表明如何組態第一分層膜36及第二分層膜38的層的數量、厚度、數目、及材料,使得窗口24具有作為入射電磁輻射的波長及入射角的函數的所需平均百分數透射率及平均百分數反射率。
材料中之各者的材料折射率及消光係數量測為400 nm至1600 nm的整個光譜範圍內波長的函數。SiO xN y、SiN x、SiO 2、Si、及鋁矽玻璃基板(康寧代碼2320)的折射率及光學吸收度在以下表格A中提供。這些材料在以下實例中之一些中用作較高折射率材料40、較低折射率材料42、及基板30。
表格A
SiO xN y SiN x(1)
波長(nm) n k 波長(nm) n k
250.08 2.2916 0.03163 250.24 2.39286 0.05616
299.12 2.16039 0.00918 299.48 2.24497 0.01248
351.35 2.09475 0.00372 350.31 2.16478 0.00309
400.41 2.06074 0.00255 399.52 2.12156 0.00113
449.46 2.03937 0.00178 450.3 2.09372 0.00047
500.06 2.0243 0.00107 499.45 2.07562 0.00023
550.61 2.01331 0.00054 550.14 2.06238 0.00012
599.52 2.00526 0.00027 600.76 2.05268 0.00007
649.92 1.99882 0.00013 649.74 2.04553 0.00004
700.23 1.99373 0.00006 700.22 2.03978 0.00003
750.42 1.98962 0.00003 750.6 2.03523 0.00002
850.4 1.98335 0.00001 849.48 2.02863 0.00001
949.72 1.97874 0 949.45 2.02401 0.00001
1051.34 1.97502 0 1049.51 2.02068 0
1149.25 1.97203 0 1151.64 2.01816 0
1251.12 1.96931 0 1250.69 2.01629 0
1350.16 1.96691 0 1350.06 2.01482 0
1449.76 1.96465 0 1449.74 2.01365 0
1549.92 1.96247 0 1549.74 2.01269 0
1650.64 1.96033 0 1650.05 2.0119 0
續表格A
SiN x(2) SiO 2(1)
波長(nm) n k 波長(nm) n k
250.24 2.34847 0.04226 250.08 1.51375 0
299.48 2.20179 0.00857 300.7 1.49254 0
350.31 2.12798 0.00214 349.76 1.48096 0
399.52 2.08798 0.0007 400.41 1.47349 0
450.3 2.0622 0.00027 449.46 1.46866 0
499.45 2.04543 0.00012 500.06 1.46516 0
550.14 2.03316 0.00006 550.61 1.46261 0
600.76 2.02416 0.00003 599.52 1.46075 0
649.74 2.01752 0.00002 649.92 1.45927 0
700.22 2.01219 0.00001 700.23 1.45811 0
750.6 2.00795 0.00001 750.42 1.45717 0
849.48 2.00182 0.00001 850.4 1.45579 0
949.45 1.99753 0 949.72 1.45483 0
1049.51 1.99443 0 1051.34 1.45412 0
1151.64 1.99209 0 1149.25 1.45361 0
1250.69 1.99035 0 1251.12 1.4532 0
1350.06 1.98898 0 1350.16 1.45289 0
1449.74 1.98789 0 1449.76 1.45264 0
1549.74 1.987 0 1549.92 1.45243 0
1650.05 1.98626 0 1650.64 1.45226 0
續表格A
SiO 2(2) 鋁矽玻璃(康寧代碼2320)
波長(nm) n k 波長(nm) n k
250.77 1.52322 0 253.99 1.56564 0.00011
300.01 1.50437 0 299.99 1.54076 0.00001
349.25 1.49356 0 349.99 1.52695 0
400.08 1.48656 0 399.99 1.51948 0
449.31 1.482 0 449.99 1.51361 0
500.09 1.47866 0 499.99 1.51024 0
549.24 1.47627 0 550 1.50798 0
599.93 1.47439 0 600 1.5051 0
650.56 1.47291 0 650 1.50388 0
699.53 1.47175 0 700 1.50256 0
749.99 1.47076 0 750 1.50092 0
850.61 1.46922 0 798 1.50069 0
950.74 1.46804 0 949.7 1.49633 0
1050.4 1.46708 0 1049.7 1.49525 0
1151.16 1.46625 0 1151.1 1.49434 0
1249.17 1.46552 0 1249.7 1.49357 0
1351.18 1.46481 0 1352.3 1.49284 0
1450.39 1.46414 0 1452.1 1.49218 0
1550.21 1.46349 0 1549.0 1.49157 0
1650.63 1.46283 0 1649.8 1.49095 0
接著用這些折射率來計算透射光譜及反射光譜。為方便起見,模型化實例在其描述表格中使用單一折射率值,該折射率值對應於選自約1550nm波長處折射率分散曲線的一點。
實例 1—實例1的窗口24包括鋁矽玻璃(康寧代碼2320)的基板30的第一表面32上方的第一分層膜36。窗口24亦包括基板30的第二表面34上方的第二分層膜38。第一分層膜36包括二十五(25)個作為較低折射率材料42的SiO 2(以上表格A中的SiO 2(1)材料)與作為較高折射率材料40的SiO xN y的交替層。層18是較高折射率材料40之抗刮層,具有2000 nm的厚度。層1~17是光學控制層,具有1398.6 nm的組合厚度,將抗刮層與終端表面44分離開。層18~25是折射率匹配層,將抗刮層與第一表面32分離開,並具有252.1 nm的組合厚度。在這一實例中,抗刮層佔第一分層膜36的厚度的54.78%。
第二分層膜38包括十五(15)個較低折射率材料42與較高折射率材料40的交替層。在這一實例中,較低折射率材料42是SiO 2,而較高折射率材料40是SiO xN y與Si的組合。如所示的,層28,即較高折射率材料40的最近接基板30(這一實例中為層26)的層是SiO xN y,而較高折射率材料40的剩餘層是Si。層30,即最近接基板30的矽層,是最窄的矽層,具有8.1 nm的厚度。矽層的組合厚度為595 nm,佔第二分層膜38的總厚度的46.2%。
實例1中使用的Si材料的折射率及消光係數值在第6圖中示出。如圖所示,這一實例中使用的Si材料的消光係數在700 nm處為0.23,這對應於實例1中矽層的組合厚度的大約1.37%的內部透射率(僅針對矽)。在400 nm處,消光係數為2.2。結果,組合矽層的透射率預計在400 nm處比在700 nm處低得多。
第一分層膜36及第二分層膜38的層的厚度組態為如下第1表中所述,並用於計算第7圖至第13圖中所述的透射率、反射率、CIELAB色彩空間及明度值、以及奈米壓痕硬度值。
第1表
層設計實例1
材料 折射率@1550nm 實體厚度(nm)
媒體 空氣 1
全氟聚醚 1-4 4-8
1 SiO 2 1.45243 122.0
2 SiO xN y 1.96247 29.3
3 SiO 2 1.45243 70.7
4 SiO xN y 1.96247 23.2
5 SiO 2 1.45243 60.3
6 SiO xN y 1.96247 151.5
7 SiO 2 1.45243 51.9
8 SiO xN y 1.96247 31.4
9 SiO 2 1.45243 55.5
10 SiO xN y 1.96247 25.6
11 SiO 2 1.45243 198.6
12 SiO xN y 1.96247 120.4
13 SiO 2 1.45243 170.9
14 SiO xN y 1.96247 129.4
15 SiO 2 1.45243 87.6
16 SiO xN y 1.96247 10.3
17 SiO 2 1.45243 60.0
18 SiO xN y 1.96247 2000
19 SiO 2 1.45243 26.3
20 SiO xN y 1.96247 39.2
21 SiO 2 1.45243 45.9
22 SiO xN y 1.96247 33.6
23 SiO 2 1.45243 61.1
24 SiO xN y 1.96247 21.1
25 SiO 2 1.45243 25.0
基板 鋁矽玻璃(2320) 1.4916 2000000.0
27 SiO 2 1.45243 25.0
28 SiO xN y 1.96247 46.1
29 SiO 2 1.45243 12.8
30 Si 3.77682 8.1
31 SiO 2 1.45243 28.1
32 Si 3.77682 21.6
33 SiO 2 1.45243 8.0
34 Si 3.77682 200.7
35 SiO 2 1.45243 28.8
36 Si 3.77682 161.9
37 SiO 2 1.45243 146.1
38 Si 3.77682 18.0
39 SiO 2 1.45243 167.8
40 Si 3.77682 184.7
41 SiO 2 1.45243 231.1
媒體 空氣 1
第7圖描繪包括第一曲線702、第二曲線704、及第三曲線706的曲線圖,第一曲線702顯示根據實例1的窗口24的在400 nm至1600 nm的整個光譜範圍內垂直入射於窗口24上的光的模型化透射率,第二曲線704顯示在400 nm至1600 nm的整個光譜範圍內垂直入射於第二分層膜38上的光的模型化反射率,第三曲線706顯示在400 nm至1600 nm的整個光譜範圍內垂直入射於第一分層膜36上的光的模型化反射率。如圖所示,第一分層膜36及第二分層膜38的數量、厚度、數目、及材料經組態,從而實例1的窗口24使得1420 nm波長之上垂直入射於窗口24上的光具有大於90%的透射率。在整個可見光譜中,透射率小於2%。如曲線704及706中所示,無論自第一分層膜36或自第二分層膜38觀看,根據實例1的窗口24對1500 nm之上的波長具有小於1%的反射率。在整個可見光譜中,當自第一分層膜36觀看時,根據實例1的窗口具有低於9%的反射率。因此,第7圖中的結果表明,根據實例1的窗口24的功效在本文所述的紅外波長中提供有效的抗反射效能,同時有效防止可見光譜中的透射及反射率。
如第8圖中所揭示的,第一分層膜36及第二分層膜38的數量、厚度、數目、及材料經組態,使得實例1的窗口24對垂直入射於第一表面32或第二表面34上的光在自1500 nm延伸至1600 nm的整個波長範圍內具有高於92.25%的百分數透射率。如第9圖中所揭示的,第一分層膜36及第二分層膜38的數量、厚度、數目、及材料經組態,使得實例1的窗口24對以與第一表面及第二表面的法線成60°內的角度入射於第一表面及第二表面上的光具有在1500 nm至1600 nm的相關波長範圍內計算的、大於87%的平均P偏振透射率及平均S偏振透射率。
如第10圖中所揭示的,第一分層膜36及第二分層膜38的數量、厚度、數目、及材料經組態,使得實例1的窗口24對垂直入射於基板300上的大約1500 nm至1600 nm波長範圍內的光具有自第一分層膜36的終端表面44及第二分層膜38的終端表面48的、低於0.8%的反射率百分數。自終端表面44的反射率與自終端表面48的反射率相當,因為第一分層膜36及第二分層膜38是由在參考波長範圍內具有相對低吸收度的材料構成的。如圖所示,模型化反射率在約1550 nm處達到大約0.1%的最小值,並在1525 nm至1575 nm的整個波長範圍內反射率低於0.25%。
如第11圖中所揭示的,第一分層膜36及第二分層膜38的數量、厚度、數目、及材料經組態,使得實例1的窗口24在整個可見光譜中具有基本小於1.0%的透射率。自400 nm至650 nm,可見光譜中的透射率小於0.2%。針對小於600 nm的波長,可見光譜中的透射率小於0.1%。據信,這些低透射值是部分歸因於第二分層膜38中矽層對可見光的吸收度。
如第12A圖及第12B圖中所揭示的,第一分層膜36及第二分層膜38的數量、厚度、數目、及材料經組態,使得實例1的窗口24在自第一分層膜的終端表面44觀看時具有暗外觀。如第12A圖中所示,針對自終端表面44反射的光,提供用於實例1的模擬CIELAB單表面反射色彩資料。單表面反射光的色彩可使用CIELAB色彩坐標來表徵。色彩空間中的a*軸代表綠-紅色彩組分,其中負a*值對應綠,正a*值對應紅。色彩空間中的b*軸代表藍-黃組分,其中負b*值對應藍,正b*值對應黃。a*值及b*值越接近原點,反射光對觀測者而言色彩越中性。CIELAB a*及b*值是藉由模擬範圍自0°至90°的複數個不同入射角的照明源而產生的。如圖所示,a*值的範圍自約-2.25至約0.4,而b*值的範圍自約-2.2至約1.25。這指示根據實例1的窗口24在自外部環境26(見第1圖)觀看時具有中性外觀。
第12B圖描繪模型化CIELAB明度L*值作為終端表面44上入射角的函數。如圖所示,針對小於或等於60°的入射角,明度L*值小於或等於30。這指示根據實例1的窗口24在自外部環境26(見第1圖)觀看時具有暗外觀。
第13圖揭示根據本文實例1構建的兩個樣品的奈米壓痕硬度量測為深度的函數。硬度值隨著經受本文所述的Berkovich壓頭硬度測試來模擬。第一樣品在50 nm至1000 nm的深度範圍內量測,而第二樣品在50 nm至2000 nm的深度範圍內量測。如第11圖中所描繪的,兩個樣品在大約250 nm的深度處均表現出大於8 GPa的第一最大硬度1104。第二樣品在大約1050 nm的深度處亦表現出大於10 GPA的第二最大硬度1102。在不希望受到理論約束的情況下,據信,由於一旦深度達到1050 nm則由壓頭引起的應力場在抗刮層下方傳播,故最大硬度處於抗刮層之上。如第11圖所示,根據實例1的窗口24在250 nm至2000 nm的整個深度範圍內表現出大於8 GPa的奈米壓痕硬度。根據實例1的窗口24在750 nm至2000 nm的整個深度範圍內亦表現出大於9 GPa的奈米壓痕硬度。這指示這一實例為各種應用提供有利的抗刮性/抗損壞性。
實例 2—實例2的窗口24包括鋁矽玻璃(康寧代碼2320)的基板30的第一表面32上方的第一分層膜36。窗口24亦包括基板30的第二表面34上方的第二分層膜38。第一分層膜36包括二十一(21)個作為較低折射率材料42的SiO 2(表格A的SiO 2(2)材料)與作為較高折射率材料40的SiN x(表格A的SiN x(1)材料)的交替層。層14是較高折射率材料40之抗刮層,具有2000 nm的厚度並由表格A的SiN x(2)材料構成。層1~13是光學控制層,具有1063.9 nm的組合厚度,將抗刮層與終端表面44分離開。層15~21是折射率匹配層,將抗刮層與第一表面32分離開,並具有241.8 nm的組合厚度。在這一實例中,抗刮層佔第一分層膜36厚度的60.5%。
第二分層膜38包括十三(13)個較低折射率材料42與較高折射率材料40的交替層。在這一實例中,較低折射率材料42是SiO 2(表格A的SiO 2(2)材料),而較高折射率材料40是SiN x(表格A的SiN x(1)材料)與Si的組合。如所示的,層24,即較高折射率材料40的最近接基板30的層(這一實例中為層20)是SiN x,而較高折射率材料40的剩餘層是Si。層26,即最近接基板30的矽層,是最窄的矽層,具有8.0 nm的厚度。矽層的組合厚度為414.6 nm,佔第二分層膜38的總厚度的39.49%。
實例2中使用的Si材料的折射率值及消光係數值在第14圖中示出。如圖所示,這一實例中使用的Si材料的消光係數在700 nm處為0.29,這對應於實例2中矽層的組合厚度的大約2.29%的內部透射率(僅針對矽)。在400 nm處,消光係數為2.2。結果,組合矽層的透射率預計在400 nm處比在700 nm處低得多。
第一分層膜36及第二分層膜38的層的厚度組態為如以下第2表中所述,並用於計算第15圖至第20B圖中所述的透射率、反射率、CIELAB色彩空間值及明度值、以及奈米壓痕硬度。
第2表
層設計實例2
材料 折射率@1550nm 實體厚度(nm)
媒體 空氣 1
全氟聚醚 1-4 4-8
1 SiO 2 1.46349 306.6
2 SiN x 2.01269 16.9
3 SiO 2 1.46349 21.7
4 SiN x 2.01269 106.5
5 SiO 2 1.46349 31.6
6 SiN x 2.01269 14.1
7 SiO 2 1.46349 467.8
8 SiN x 2.01269 8.1
9 SiO 2 1.46349 66.8
10 SiN x 2.01269 23.9
11 SiO 2 1.46349 36.4
12 SiN x 2.01269 39.1
13 SiO 2 1.46349 11.2
14 SiN x 1.98699 2000
15 SiO 2 1.46349 22.1
16 SiN x 2.01269 39.6
17 SiO 2 1.46349 44.2
18 SiN x 2.01269 39.1
19 SiO 2 1.46349 50.6
20 SiN x 2.01269 21.2
21 SiO 2 1.46349 25.0
基板 鋁矽玻璃(2320) 1.4916 2000000.0
23 SiO 2 1.46349 25.0
24 SiN x 2.01269 49.0
25 SiO 2 1.46349 12.9
26 Si 3.84504 8.0
27 SiO 2 1.46349 35.6
28 Si 3.84504 18.5
29 SiO 2 1.46349 22.6
30 Si 3.84504 162.4
31 SiO 2 1.46349 98.9
32 Si 3.84504 26.6
33 SiO 2 1.46349 117.7
34 Si 3.84504 199.1
35 SiO 2 1.46349 273.5
媒體 空氣 1
第15圖描繪包括第一曲線1502、第二曲線1504、及第三曲線1506的曲線圖,第一曲線1502顯示根據實例2的窗口24的在400 nm至1600 nm的整個光譜範圍內垂直入射於窗口24上的光的模型化透射率,第二曲線1504顯示在400 nm至1600 nm的整個光譜範圍內垂直入射於第一分層膜36上的光的模型化反射率,第三曲線1506顯示在400 nm至1600 nm的整個光譜範圍內垂直入射於第二分層膜38上的光的模型化反射率。如圖所示,第一分層膜36及第二分層膜38的數量、厚度、數目、及材料經組態,使得1380 nm波長之上垂直入射於窗口24上的光具有大於90%的透射率。在整個可見光譜中,透射率小於2%。如曲線1504及1506中所示,無論自第一分層膜36或自第二分層膜38觀看,根據實例2的窗口24對1500 nm之上波長具有小於1%的反射率。在整個可見光譜中,當自第一分層膜36觀看時,根據實例2的窗口具有低於22%的反射率。因此,第15圖中的結果表明,根據實例2的窗口24的效能在本文所述的紅外波長中提供有效的抗反射效能,同時有效防止可見光譜中的透射及反射率。
如第16圖中所揭示的,第一分層膜36及第二分層膜38的數量、厚度、數目、及材料經組態,使得實例2的窗口24對垂直入射於第一表面32或第二表面34上的光在自1500 nm延伸至1600 nm的整個波長範圍內具有高於99.6%的百分數透射率。如第17圖中所揭示的,第一分層膜36及第二分層膜38的數量、厚度、數目、及材料經組態,使得實例2的窗口24對以與第一表面及第二表面的法線成60°內的角度入射於第一表面及第二表面上的光具有在1500 nm至1600 nm的相關波長範圍內計算的、大於91.75%的平均P偏振透射率及平均S偏振透射率。
如第18圖中所揭示的,第一分層膜36及第二分層膜38的數量、厚度、數目、及材料經組態,使得根據實例2的窗口24對垂直入射於基板300上的光在1500 nm至1600 nm的大致波長範圍內具有自第一分層膜36的終端表面44(及窗口24中的層中之各者)及第二分層膜38的終端表面48的、低於0.4%的百分數反射率。自終端表面44的反射率與自終端表面48的反射率相當,因為第一分層膜36及第二分層膜38是由在參考波長範圍內具有相對低吸收度的材料構成的。如圖所示,模型化反射率在約1550 nm處達到大約0.1%的最小值,並在1510 nm至1600 nm的整個波長範圍內反射率小於0.25%。
如第19圖中所揭示的,第一分層膜36及第二分層膜38的數量、厚度、數目、及材料經組態,使得實例2的窗口24在整個可見光譜內具有基本小於1.0%的透射率。自400 nm至650 nm,可見光譜中的透射率小於0.2%。針對小於550 nm的波長,可見光譜中的透射率小於0.1%。據信,這些低透射值至少部分歸因於第二分層膜38中矽層對可見光的吸收度。
如第20A圖及第20B圖中所揭示的,第一分層膜36及第二分層膜38的數量、厚度、數目、及材料經組態,使得實例2的窗口24在自第一分層膜的終端表面44觀看時具有暗外觀。第20A圖提供用於實例2的對自終端表面44反射的光的模擬CIELAB單表面反射色彩資料。單表面反射光的色彩可使用CIELAB色彩坐標來表徵。色彩空間中的a*軸代表綠-紅色彩組分,其中負a*值對應綠,正a*值對應紅。色彩空間中的b*軸代表藍-黃組分,其中負b*值對應藍,正b*值對應黃。a*值及b*值越接近原點,反射光對觀測者而言色彩越中性。CIELAB a*值及b*值是藉由模擬範圍自0°至90°的複數個不同入射角的照明源來產生的。如圖所示,a*值的範圍自約-2.0至約0.75,而b*值的範圍自約-2.1至約1.3。這指示根據實例2的窗口24在自外部環境26(見第1圖)觀看時具有中性外觀。
第20B圖描繪模型化CIELAB明度L*值作為終端表面44上入射角的函數。如圖所示,針對小於或等於60°的入射角,明度L*值小於或等於35。這指示根據實例2的窗口24在自外部環境26(見第1圖)觀看時具有暗外觀。
實例 3—實例3的窗口24包括鋁矽玻璃(康寧代碼2320)的基板30的第一表面32上方的第一分層膜36。窗口24亦包括基板30的第二表面34上方的第二分層膜38。第一分層膜36包括二十五(25)個作為較低折射率材料42的SiO 2(表格A的SiO 2(1)材料)與作為較高折射率材料40的SiN x(表格A的SiN x(1)材料)的交替層。層18是較高折射率材料40(表格A的SiN x(2)材料)之抗刮層,具有2000 nm的厚度。層1~17是光學控制層,具有1387.5 nm的組合厚度,將抗刮層與終端表面44分離開。層19~25是折射率匹配層,將抗刮層與第一表面32分離開,並具有249.5 nm的組合厚度。在這一實例中,抗刮層佔第一分層膜36的厚度的54.99%。
第二分層膜38包括十五(15)個較低折射率材料42與較高折射率材料40的交替層。在這一實例中,較低折射率材料42是SiO 2(表格A的SiO 2(2)材料),而較高折射率材料40是SiN x(表格A的SiN x(1)材料)與Si的組合。如圖所示,層28,即較高折射率材料40的最近接基板30(這一實例中為層20)的層是SiN x,而較高折射率材料40的剩餘層是Si。層30,即最近接基板30的矽層,是最窄矽層,具有8.0 nm的厚度。矽層的組合厚度為584.28 nm,這佔第二分層膜38的總厚度的46.62%。實例3中使用的矽材料與上述關於實例2的矽材料相同(具有第14圖中描繪的性質)。
第一分層膜36及第二分層膜38的層的厚度組態為如以下第3表中所述,並用於計算第21圖至第26B圖中所述的透射率、反射率、CIELAB色彩空間值及明度值、以及奈米壓痕硬度。
第3表
層設計實例3
材料 折射率 @1550nm 實體厚度 (nm)
媒體 空氣 1
全氟聚醚 1-4 4-8
1 SiO 2 1.46349 119.78
2 SiN x 2.01269 29.73
3 SiO 2 1.46349 69.16
4 SiN x 2.01269 22.78
5 SiO 2 1.46349 60.32
6 SiN x 2.01269 150.89
7 SiO 2 1.46349 48.89
8 SiN x 2.01269 31.45
9 SiO 2 1.46349 55.68
10 SiN x 2.01269 22.98
11 SiO 2 1.46349 200.38
12 SiN x 2.01269 118.3
13 SiO 2 1.46349 172.06
14 SiN x 2.01269 128.14
15 SiO 2 1.46349 88.63
16 SiN x 2.01269 8.99
17 SiO 2 1.46349 59.38
18 SiN x 1.98699 2000
19 SiO 2 1.46349 25.22
20 SiN x 2.01269 43.41
21 SiO 2 1.46349 44.38
22 SiN x 2.01269 34.4
23 SiO 2 1.46349 58.65
24 SiN x 2.01269 18.46
25 SiO 2 1.46349 25
基板 鋁矽玻璃(2320) 1.4916 2000000.0
27 SiO 2 1.46349 25
28 SiN x 2.01269 43.96
29 SiO 2 1.46349 12.55
30 Si 3.84504 8
31 SiO 2 1.46349 27.49
32 Si 3.84504 21.22
33 SiO 2 1.46349 8
34 Si 3.84504 193.55
35 SiO 2 1.46349 28.84
36 Si 3.84504 163.81
37 SiO 2 1.46349 139.55
38 Si 3.84504 18.01
39 SiO 2 1.46349 159.99
40 Si 3.84504 179.69
41 SiO 2 1.46349 223.72
媒體 空氣 1
第21圖描繪包括第一曲線2102、第二曲線2104、及第三曲線2106的曲線圖,第一曲線2102顯示根據實例3的窗口24的在400 nm至1600 nm的整個光譜範圍內垂直入射於窗口24上的光的模型化透射率,第二曲線2104顯示在400 nm至1600 nm的整個光譜範圍內垂直入射於第一分層膜36上的光的模型化反射率,第三曲線2106顯示在400 nm至1600 nm的整個光譜範圍內垂直入射於第二分層膜38上的光的模型化反射率。如圖所示,第一分層膜36及第二分層膜38的數量、厚度、數目、及材料經組態,使得1420 nm波長之上垂直入射於窗口24上的光具有大於90%的透射率。在整個可見光譜中,透射率小於2%。如曲線2104及2106中所示的,無論自第一分層膜36或自第二分層膜38觀看,根據實例3的窗口24對1500 nm之上波長具有小於1%的反射率。在整個可見光譜中,當自第一分層膜36觀看時,根據實例3的窗口具有低於10%的反射率。因此,第21圖中的結果表明,根據實例3的窗口24的效能在本文所述的紅外波長中提供有效的抗反射效能,同時有效防止可見光譜中的透射及反射率。
如第22圖中所揭示的,第一分層膜36及第二分層膜38的數量、厚度、數目、及材料經組態,使得實例3的窗口24對垂直入射於第一表面32或第二表面34上的光在自1500 nm延伸至1600 nm的整個波長範圍內具有高於99.0%的百分數透射率。如第23圖中所揭示的,第一分層膜36及第二分層膜38的數量、厚度、數目、及材料經組態,使得實例3的窗口24對以與第一表面及第二表面的法線成60°內的角度入射於第一表面及第二表面上的光具有在1500 nm至1600 nm的相關波長範圍內計算的、大於88%的平均P偏振透射率及平均S偏振透射率。
如第24圖中所揭示的,第一分層膜36及第二分層膜38的數量、厚度、數目、及材料經組態,使得實例3的窗口24對垂直入射於基板300上的光在1500 nm至1600 nm的大致波長範圍內具有自第一分層膜36的終端表面44(及窗口24中的層中之各者)及第二分層膜38的終端表面48的、低於1.0%的百分數反射率。自終端表面44的反射率與自終端表面48的反射率相當,因為第一分層膜36及第二分層膜38是由在參考波長範圍內具有相對低吸收度的材料構成的。如圖所示,模型化反射率在約1540 nm處達到大約0.1%的最小值,並在1530 nm至1600 nm的整個波長範圍內反射率小於0.2%。
如第25圖中所揭示的,第一分層膜36及第二分層膜38的數量、厚度、數目、及材料經組態,使得實例3的窗口24在整個可見光譜中具有基本小於0.5%的透射率。自400 nm至600 nm,可見光譜中的透射率小於0.1%。據信,這些低透射值是部分歸因於第二分層膜38中矽層對可見光的吸收度。
如第26A圖及第26B圖中所揭示的,第一分層膜36及第二分層膜38的數量、厚度、數目、及材料經組態,使得實例3的窗口24在自第一分層膜的終端表面44觀看時具有暗外觀。第26A圖提供用於實例3的對自終端表面44反射的光的模擬CIELAB單表面反射色彩資料。單表面反射光的色彩可使用CIELAB色彩坐標來表徵。色彩空間中的a*軸代表綠-紅色彩組分,其中負a*值對應綠,正a*值對應紅。色彩空間中的b*軸代表藍-黃組分,其中負b*值對應藍,正b*值對應黃。a*值及b*值越接近原點,反射光線對觀測者而言色彩越中性。CIELAB a*值及b*值是藉由模擬範圍自0°至90°的複數個不同入射角的照明源來產生的。如曲線2602中所示,a*值的範圍自約-2.25至約0.4,而b*值的範圍自約-2.0至約0.5。這指示根據實例3的窗口24在自外部環境26(見第1圖)觀看時具有中性外觀。
第26B圖描繪模型化CIELAB明度L*值作為終端表面44上入射角的函數。如圖所示,針對小於或等於60°的入射角,明度L*值小於或等於30。這指示根據實例3的窗口24在自外部環境26(見第1圖)觀看時具有暗外觀。
實例 4—實例4的窗口24包括鋁矽玻璃(康寧代碼2320)的基板30的第一表面32上方的第一分層膜36。窗口24亦包括基板30的第二表面34上方的第二分層膜38。第一分層膜36包括作為較低折射率材料42的SiO 2(表格A的SiO 2(2)材料)與作為較高折射率材料40的SiN x(表格A的SiN x(1)材料)的二十九(29)個交替層。層20是較高折射率材料40(表格A的SiN x(2)材料)之抗刮層,具有2000 nm的厚度。層1~19是光學控制層,具有1361.8 nm的組合厚度,將抗刮層與終端表面44分離開。層21~29是折射率匹配層,將抗刮層與第一表面32分離開並具有326.0 nm的組合厚度。在這一實例中,抗刮層佔第一分層膜36的厚度的54.23%。
第二分層膜38包括較低折射率材料42與較高折射率材料40的十五(15)個交替層。在這一實例中,較低折射率材料42是SiO 2(表格A的SiO 2(2)材料),而較高折射率材料40是SiN x(表格A的SiN x(1)材料)與Si的組合。如圖所示,層32,即較高折射率材料40的最近接基板30(這一實例中為層20)的層是SiN x,而較高折射率材料40的剩餘層是Si。層34,即最鄰近基板30的矽層,是最窄矽層,具有8.23 nm的厚度。矽層的組合厚度為585 nm,佔第二分層膜38的總厚度的45.41%。實例4中使用的矽材料與上述關於實例2的矽材料相同(具有第14圖中描繪的性質)。
第一分層膜36及第二分層膜38的層的厚度組態為如以下第4表中所述,並用於計算第27圖至第32B圖中所述的透射率、反射率、CIELAB色彩空間值及明度值、以及奈米壓痕硬度。
第4表
層設計實例4
材料 折射率 @1550nm 實體厚度 (nm)
媒體 空氣 1
全氟聚醚 1-4 4-8
1 SiO 2 1.46349 255.23
2 SiN x 2.01269 145.36
3 SiO 2 1.46349 45.77
4 SiN x 2.01269 41.32
5 SiO 2 1.46349 12.73
6 SiN x 2.01269 81.51
7 SiO 2 1.46349 183.2
8 SiN x 2.01269 65.17
9 SiO 2 1.46349 8.32
10 SiN x 2.01269 79.42
11 SiO 2 1.46349 41.57
12 SiN x 2.01269 45.86
13 SiO 2 1.46349 11.7
14 SiN x 2.01269 203.02
15 SiO 2 1.46349 22.08
16 SiN x 2.01269 44.73
17 SiO 2 1.46349 41.83
18 SiN x 2.01269 28.12
19 SiO 2 1.46349 24.82
20 SiN x 1.98699 2000
21 SiO 2 1.46349 18.67
22 SiN x 2.01269 43.78
23 SiO 2 1.46349 43.08
24 SiN x 2.01269 37.09
25 SiO 2 1.46349 50.41
26 SiN x 2.01269 31.2
27 SiO 2 1.46349 61.22
28 SiN x 2.01269 15.53
29 SiO 2 1.46349 25
基板 鋁矽玻璃(2320) 1.4916 2000000.0
31 SiO 2 1.46349 25
32 SiN x 2.01269 58.92
33 SiO 2 1.46349 8.1
34 Si 3.84504 8.23
35 SiO 2 1.46349 23.85
36 Si 3.84504 22.75
37 SiO 2 1.46349 8
38 Si 3.84504 192.06
39 SiO 2 1.46349 27.67
40 Si 3.84504 159.83
41 SiO 2 1.46349 141.65
42 Si 3.84504 19.03
43 SiO 2 1.46349 167.14
44 Si 3.84504 183.1
45 SiO 2 1.46349 243.02
媒體 空氣 1
第27圖描繪包括第一曲線2702、第二曲線2704、及第三曲線2706的曲線圖,第一曲線2702顯示根據實例4的窗口24的在400 nm至1600 nm的整個光譜範圍內垂直入射於窗口24上的光的模型化透射率,第二曲線2704顯示在400 nm至1600 nm的整個光譜範圍內垂直入射於第一分層膜36上的光的模型化反射率,第三曲線2706顯示在400 nm至1600 nm的整個光譜範圍內垂直入射於第二分層膜38上的光的模型化反射率。如所示的,第一分層膜36及第二分層膜38的數量、厚度、數目、及材料經組態,使得1400 nm波長之上垂直入射於窗口24上的光具有大於90%的透射率。在整個可見光譜中,透射率小於1%。如曲線2704及2706中所示,無論自第一分層膜36或自第二分層膜38觀看,根據實例4的窗口24對1500 nm之上波長具有小於1%的反射率。在整個可見光譜中,當自第一分層膜36觀看時,根據實例4的窗口具有小於22%的反射率(針對大於約420 nm的波長,反射率小於10%)。因此,第27圖中的結果表明,根據實例4的窗口24的效能在本文所述的紅外波長中提供有效的抗反射效能,同時有效地防止可見光譜中的透射及反射率。
如第28圖中所揭示的,第一分層膜36及第二分層膜38的數量、厚度、數目、及材料經組態,使得實例4的窗口24對垂直入射於第一表面32或第二表面34上的光在自1500 nm延伸至1600 nm的整個波長範圍內具有高於99.4%的百分數透射率。如第29圖中所揭示的,第一分層膜36及第二分層膜38的數量、厚度、數目、及材料經組態,使得實例4的窗口24對以與第一表面及第二表面的法線成60°內的角度入射於第一表面及第二表面的光具有在1500 nm至1600 nm的相關波長範圍內計算的、大於92.2%的平均P偏振透射率及平均S偏振透射率。在1530 nm與1600 nm的整個波長範圍內,S偏振透射率及P偏振透射率均大於93.5%。在所有實例中,實例4似乎在高入射角下提供最佳抗反射效能,而與偏振無關。
如第30圖中所揭示的,第一分層膜36及第二分層膜38的數量、厚度、數目、及材料經組態,使得根據實例4的窗口24對垂直入射於基板300上的光在1500 nm至1600 nm的大致波長範圍內具有自第一分層膜36的終端表面44(及窗口24中的層中之各者)及第二分層膜38的終端表面48的、低於0.6%的反射率百分數。自終端表面44的反射率與自終端表面48的反射率相當,因為第一分層膜36及第二分層膜38是由在參考波長範圍內具有相對低吸收度的材料構成的。如圖所示,模型化反射率在約1550 nm處達到大約0.08%的最小值,並在1535 nm至1565 nm的整個波長範圍內反射率小於0.1%。
如第31圖中所揭示的,第一分層膜36及第二分層膜38的數量、厚度、數目、及材料經組態,使得實例4的窗口24對整個可見光譜中垂直入射於基板30上的光具有基本小於0.3%的透射率。自400 nm至650 nm,可見光譜中的透射率小於0.1%。據信,這些低透射值是歸因於第二分層膜38中矽層對可見光的吸收度。
如第32A圖及第32B圖中所揭示的,第一分層膜36及第二分層膜38的數量、厚度、數目、及材料經組態,使得實例4的窗口24在自第一分層膜的終端表面44觀看時具有暗外觀。第32A圖提供用於實例4的對自終端表面44反射的光的模擬CIELAB單表面反射色彩資料。單表面反射光的色彩可使用CIELAB色彩坐標來表徵。色彩空間中的a*軸代表綠-紅色彩組分,其中負a*值對應綠,正a*值對應紅。色彩空間中的b*軸代表藍-黃組分,其中負b*值對應藍,正b*值對應黃。a*值及b*值越接近原點,反射光線對觀測者而言色彩越中性。CIELAB a*值及b*值是藉由模擬範圍自0°至90°的複數個不同入射角的照明源來產生的。如曲線3202中所示,a*值的範圍自約-3.15至約1.5,而b*值的範圍自約-4.0至5.6。這指示根據實例4的窗口24在自外部環境26(見第1圖)觀看時具有中性外觀。
第32B圖描繪模型化CIELAB明度L*值作為終端表面44上入射角的函數。如圖所示,針對小於或等於60°的入射角,明度L*值小於或等於42。這指示根據實例4的窗口24在自外部環境26(見第1圖)觀看時具有暗外觀。
實例 5—實例5的窗口24包括鋁矽玻璃(康寧代碼2320)的基板30的第一表面32上方的第一分層膜36。窗口24亦包括基板30的第二表面34上方的第二分層膜38。第一分層膜36包括作為較低折射率材料42的SiO 2(表格A的SiO 2(2)材料)與作為較高折射率材料40的SiN x(表格A的SiN x(1)材料)的二十七(27)個交替層。層18是較高折射率材料40(表格A的SiN x(2)材料)之抗刮層,具有2000 nm的厚度。層1~17是光學控制層,具有1300 nm的組合厚度,將抗刮層與終端表面44分離開。層19~27是折射率匹配層,將抗刮層與第一表面32分離開,並具有376.2 nm的組合厚度。在這一實例中,抗刮層佔第一分層膜36的厚度的54.40%。
第二分層膜38包括較低折射率材料42與較高折射率材料40的十五(15)個交替層。在這一實例中,較低折射率材料42是SiO 2(表格A的SiO 2(2)材料),而較高折射率材料40是SiN x(表格A的SiN x(1)材料)與Si的組合。如圖所示,層30,即較高折射率材料40的最近接基板30的層(這一實例中為層20)是SiN x,而較高折射率材料40的剩餘層是Si。層32,即最近接基板30的矽層,是最窄矽層,具有8.03 nm的厚度。矽層的組合厚度為518.35 nm,佔第二分層膜38的總厚度的36.67%。實例5中使用的矽材料與上述關於實例2的矽材料相同(具有第14圖中描繪的性質)。
第一分層膜36及第二分層膜38的層的厚度組態為如以下第5表中所述,並用於計算第33圖至第38B圖中所述的透射率、反射率、CIELAB色彩空間值及明度值、以及奈米壓痕硬度。
第5表
層設計實例5
材料 折射率 @1550nm 實體厚度 (nm)
媒體 空氣 1
全氟聚醚 1-4 4-8
1 SiO 2 1.46349 122.94
2 SiN x 2.01269 12.24
3 SiO 2 1.46349 98.87
4 SiN x 2.01269 9.68
5 SiO 2 1.46349 41.51
6 SiN x 2.01269 188.3
7 SiO 2 1.46349 10.23
8 SiN x 2.01269 51.36
9 SiO 2 1.46349 24.97
10 SiN x 2.01269 20.38
11 SiO 2 1.46349 149.22
12 SiN x 2.01269 120.78
13 SiO 2 1.46349 175.31
14 SiN x 2.01269 134.41
15 SiO 2 1.46349 64.11
16 SiN x 2.01269 16.25
17 SiO 2 1.46349 59.81
18 SiN x 1.98699 2000
19 SiO 2 1.46349 16.83
20 SiN x 2.01269 63.68
21 SiO 2 1.46349 42.06
22 SiN x 2.01269 42.8
23 SiO 2 1.46349 42.51
24 SiN x 2.01269 28.13
25 SiO 2 1.46349 86.42
26 SiN x 2.01269 18.75
27 SiO 2 1.46349 25
基板 鋁矽玻璃(2320) 1.4916 2000000.0
29 SiO 2 1.46349 25
30 SiN x 2.01269 47.2
31 SiO 2 1.46349 11.19
32 Si 3.84504 8.03
33 SiO 2 1.46349 34.14
34 Si 3.84504 13.78
35 SiO 2 1.46349 26.93
36 Si 3.84504 17.18
37 SiO 2 1.46349 19.94
38 Si 3.84504 250.84
39 SiO 2 1.46349 40.88
40 Si 3.84504 47.06
41 SiO 2 1.46349 482.11
42 Si 3.84504 181.46
43 SiO 2 1.46349 207.8
媒體 空氣 1
第33圖描繪包括第一曲線3302、第二曲線3304、及第三曲線3306的曲線圖,第一曲線3302顯示根據實例5窗口24的在400 nm至1600 nm的整個光譜範圍內垂直入射於窗口24上的光的模型化透射率,第二曲線3304顯示在400 nm至1600 nm的整個光譜範圍內垂直入射於第一分層膜36上的光的模型化反射率,第三曲線3306顯示在400 nm至1600 nm的整個光譜範圍內垂直入射於第二分層膜38上的光的模型化反射率。如所示的,第一分層膜36及第二分層膜38的數量、厚度、數目、及材料經組態,使得1400 nm波長之上垂直入射於窗口24上的光具有大於90%的透射率。在整個可見光譜中,透射率小於5%(其中針對400 nm至630 nm的波長,透射率小於1%)。如曲線3304及3306中所示,無論自第一分層膜36或自第二分層膜38觀看,根據實例5的窗口24對1500 nm之上的波長具有小於1%的反射率。在整個可見光譜中,當自第一分層膜36觀看時,根據實例5的窗口具有低於22%的反射率。因此,第33圖中的結果表明,根據實例5的窗口24的效能在本文所述的紅外波長中提供有效的抗反射效能,同時有效防止可見光譜中的透射及反射率。
如第34圖中所揭示的,第一分層膜36及第二分層膜38的數量、厚度、數目、及材料經組態,使得實例5的窗口24對垂直入射於第一表面32或第二表面34上的光在自1500 nm延伸至1600 nm的整個波長範圍內具有高於99.1%的百分數透射率。如第35圖中所揭示的,第一分層膜36及第二分層膜38的數量、厚度、數目、及材料經組態,使得實例5的窗口24對以與第一表面及第二表面的法線成60°內的角度入射於第一表面及第二表面的光具有在1500 nm至1600 nm的相關波長範圍內計算的、大於91.8%的平均P偏振透射率及平均S偏振透射率。
如第36圖中所揭示的,第一分層膜36及第二分層膜38的數量、厚度、數目、及材料經組態,使得實例5的窗口24對垂直入射於基板300上的光在1500 nm至1600 nm的大致波長範圍內具有自第一分層膜36的終端表面44(及窗口24中的層中之各者)及第二分層膜38的終端表面48的、低於1.0%的百分數反射率。自終端表面44的反射率與自終端表面48的反射率相當,因為第一分層膜36及第二分層膜38是由在參考波長範圍內具有相對低吸收度的材料構成的。如圖所示,模型化反射率在約1545 nm處達到小於0.05%的最小值,並在1530 nm至1565 nm的整個波長範圍內反射率小於0.1%。
如第37圖中所揭示的,第一分層膜36及第二分層膜38的數量、厚度、數目、及材料經組態,使得實例5的窗口24對垂直入射於基板30上的光在整個可見光譜中具有基本小於3%的透射率。自400 nm至650 nm,可見光譜中的透射率小於0.3%。據信,這些低透射值是歸因於第二分層膜38中矽層對可見光的吸收度。
如第38A圖及第38B圖中所揭示的,第一分層膜36及第二分層膜38的數量、厚度、數目、及材料經組態,使得實例5的窗口24在自第一分層膜的終端表面44觀看時具有暗外觀。第38A圖提供用於實例5的對自終端表面44反射的光的模擬CIELAB單表面反射色彩資料。單表面反射光的色彩可使用CIELAB色彩坐標來表徵。色彩空間中的a*軸代表綠-紅色彩組分,其中負a*值對應綠,正a*值對應紅。色彩空間中的b*軸代表藍-黃組分,其中負b*值對應藍,正b*值對應黃。a*值及b*值越接近原點,反射光線對觀測者而言色彩越中性。CIELAB a*值及b*值是藉由模擬範圍自0°至90°的複數個不同入射角的照明源來產生的。如曲線3802中所示,a*值的範圍是約-3.1至約0.5,而b*值的範圍是約-4.5至2.6。這指示根據實例5的窗口24在自外部環境26(見第1圖)觀看時具有中性外觀。
第32B圖描繪模型化CIELAB明度L*值作為終端表面44上入射角的函數。如圖所示,針對小於或等於60°的入射角,明度L*值小於或等於45。這指示根據實例5的窗口24在自外部環境26(見第1圖)觀看時具有暗外觀。
實例6—實例6的窗口24包括鋁矽玻璃(康寧代碼2320)的基板30的第一表面32上方的第一分層膜36。窗口24亦包括基板30的第二表面34上方的第二分層膜38。第一分層膜36包括作為較低折射率材料42的SiO 2與作為較高折射率材料40的SiN x的二十七(27)個交替層。層18是較高折射率材料40之抗刮層,具有2000 nm的厚度。層1~17是光學控制層,具有1818.92 nm的組合厚度,將抗刮層與終端表面44分離開。層19~27是折射率匹配層,將抗刮層與第一表面32分離開,並具有328.77 nm的組合厚度。在這一實例中,抗刮層佔第一分層膜36的厚度的48.21%。
第二分層膜38包括較低折射率材料42與較高折射率材料40的十九(19)個交替層。在這一實例中,較低折射率材料42是SiO 2,而較高折射率材料40是SiN x與Si的組合。如圖所示,層30、層32、及層34,即較高折射率材料40的最近接基板30(這一實例中為第26層)的三個層,是SiN x,而較高折射率材料40的剩餘層是Si。層36,即最近接基板30的Si層,是最窄矽層,具有12.02 nm的厚度。矽層的組合厚度為708.03 nm,佔第二分層膜38的總厚度的27.52%。
實例6中使用的Si材料的折射率及消光係數值在第39圖中示出。如圖所示,這一實例中使用的Si材料的消光係數在700 nm處為約0.37,這對應實例6中矽層的組合厚度的低內部透射率(僅針對矽)。在400 nm處,消光係數為約3.2。結果,組合矽層的透射率預計在400 nm處比在700 nm處尤其低。
第一分層膜36及第二分層膜38的層的厚度組態為如以下第6表中所述,並用於計算第40圖、第41圖、及第42圖中所述的透射率、反射率及CIELAB色彩空間值。
第6表
層設計實例6
材料 折射率 @1550nm 實體厚度 (nm)
媒體 空氣 1
全氟聚醚 1-4 4-8
1 SiO 2 1.45723 92.78
2 SiN x 2.04658 148.69
3 SiO 2 1.45723 12.12
4 SiN x 2.04658 191.47
5 SiO 2 1.45723 19.15
6 SiN x 2.04658 31.76
7 SiO 2 1.45723 184.44
8 SiN x 2.04658 143.06
9 SiO 2 1.45723 21.15
10 SiN x 2.04658 135.82
11 SiO 2 1.45723 170.15
12 SiN x 2.04658 120.48
13 SiO 2 1.45723 181.26
14 SiN x 2.04658 122.22
15 SiO 2 1.45723 198.01
16 SiN x 2.04658 25.39
17 SiO 2 1.45723 20.97
18 SiN x 1.96239 2000.00
19 SiO 2 1.45723 13.77
20 SiN x 2.04658 38.47
21 SiO 2 1.45723 47.84
22 SiN x 2.04658 27.40
23 SiO 2 1.45723 69.47
24 SiN x 2.04658 25.16
25 SiO 2 1.45723 66.80
26 SiN x 2.04658 14.86
27 SiO 2 1.45723 25.00
基板 鋁矽玻璃(2320) 1.4916 2000000.0
29 SiO2 1.45723 25.00
30 SiN 2.04658 18.76
31 SiO2 1.45723 59.84
32 SiN 2.04658 21.13
33 SiO2 1.45723 89.14
34 SiN 2.04658 45.03
35 SiO2 1.45723 12.17
36 Si 3.67147 12.02
37 SiO2 1.45723 18.01
38 Si 3.67147 175.73
39 SiO2 1.45723 448.09
40 Si 3.67147 170.34
41 SiO2 1.45723 460.06
42 Si 3.67147 209.10
43 SiO2 1.45723 111.64
44 Si 3.67147 88.61
45 SiO2 1.45723 99.67
46 Si 3.67147 52.23
47 SiO2 1.45723 456.20
媒體 空氣 1
第40圖描繪包括第一曲線4000、第二曲線4002、及第三曲線4004的曲線圖,第一曲線4000顯示根據實例6的窗口24的在400 nm至1600 nm的整個光譜範圍內以15°的入射角(平均偏振)入射於窗口24上的光的模型化透射率,第二曲線4002顯示窗口24的在400 nm至1600 nm的整個光譜範圍內以60°的入射角(針對S偏振光)的模型化透射率,第三曲線4004顯示窗口24的在400 nm至1600 nm的整個光譜範圍內以60°的入射角(針對P偏振光)的模型化透射率。如圖所示,第一分層膜36及第二分層膜38的數量、厚度、數目、及材料經組態,使得在1500 nm至1575 nm的波長範圍內以15°的入射角入射於窗口24上的光具有大於99.5%的平均透射率。在整個可見光譜內,透射率小於5%(其中針對400 nm至750 nm的波長,透射率小於1%)。此外,如曲線4002及4004中所揭示的,第一分層膜36及第二分層膜38的數量、厚度、數目、及材料經組態,使得實例6的窗口24對以與第一表面及第二表面的法線成60°內的角度入射於第一表面及第二表面上的光具有針對1500 nm至1575 nm的相關波長範圍計算的、大於90%的平均P偏振透射率及平均S偏振透射率。
如第41圖中的曲線4100所揭示的,第一分層膜36及第二分層膜38的數量、厚度、數目、及材料經組態,使得實例6的窗口24對以15°的入射角入射於基板30上的光在1500 nm至1575 nm的大致波長範圍內具有自第一分層膜36的終端表面44(及窗口24中的層中之各者)的、低於0.5%的百分數反射率。如第41圖中的曲線4102中所揭示的,第一分層膜36及第二分層膜38的數量、厚度、數目、及材料經組態,使得實例6的窗口24對以15°的入射角入射於基板30上的光在1500 nm至1575nm的大致範圍內具有自第二分層膜38的終端表面48(及窗口24中的層中之各者)的、低於0.5%的反射率百分數。自終端表面44的反射率與自終端表面48的反射率相當,因為第一分層膜36及第二分層膜38是由在參考波長範圍內具有相對低吸收度的材料構成的。如第41圖中的曲線4100另外顯示的,第一分層膜36及第二分層膜38的數量、厚度、數目、及材料經組態,使得實例6的窗口24對以15°的入射角入射於第一分層膜36上的光在整個可見光譜內具有小於3%的平均透射率。據信,這些低反射率值是歸因於第二分層膜38中矽層對可見光的吸收度。
如第42圖中所揭示的,第一分層膜36及第二分層膜38的數量、厚度、數目、及材料經組態,使得實例6的窗口24在自第一分層膜的終端表面44觀看時具有中性外觀。第42圖提供用於實例6的對在具有標準1964觀測者(描述本文所述的所有CIELAB色彩量測)的D65光源下自終端表面44反射的光的模擬CIELAB單表面反射色彩資料。單表面反射光的色彩可使用CIELAB色彩坐標來表徵。色彩空間中的a*軸代表綠-紅色彩組分,其中負a*值對應綠,正a*值對應紅。色彩空間中的b*軸代表藍-黃組分,其中負b*值對應藍,正b*值對應黃。a*值及b*值越接近原點,反射光線對觀測者而言色彩越中性。CIELAB a值*及b*值是藉由模擬範圍自0°至90°的複數個不同入射角的D65照明源而產生的。如曲線3802中所示,b*值的範圍自約-0.7至約1.25,而a*值自約-1.1至3.1。在0°至55°的整個相關角度範圍內,實例6亦表現出小於或等於30.5的L*值。
在實例1至實例6中,第一分層膜36包括較低折射率材料42與較高折射率材料40的許多交替層,這些層自21個層至29個層不等,厚度範圍自3305.7 nm至4147.69 nm。實例中之各者中第二分層膜38包括較低折射率材料42與較高折射率材料40的許多交替層,這些層自13個層至19個層不等,厚度範圍自1049.9 nm至2572.77 nm。因此,在這些實例中,第一分層膜36比第二分層膜38厚1.5倍以上。這可歸因於第二分層膜38中矽層的相對高折射率。第二分層膜38中之各者中矽的組合厚度的範圍自414.6 nm至708 nm。在第一分層膜36中含有最多層數的實例4似乎在高入射角下達成了卓越的抗反射效能,而與偏振無關。應理解,這些實例是設計用於約1550 nm的特定波長範圍,並設想具有層的不同數目、數量、及材料且可在本段所列範圍之外、但仍在本發明的範疇內的替代性窗口。這些實例並不意謂是限制性的。
實例 7—實例7的窗口24包括鋁矽玻璃(康寧代碼2320)的基板30的第一表面32上方的第一分層膜36。窗口24亦包括基板30的第二表面34上方的第二分層膜38。第一分層膜36包括作為較低折射率材料42的SiO 2與作為較高折射率材料40的SiN x的二十七(27)個交替層。層18是較高折射率材料40之抗刮層,具有2000 nm的厚度。層1~17是光學控制層,具有1825.13 nm的組合厚度,將抗刮層與終端表面44分離開。層19~27是折射率匹配層,將抗刮層與第一表面32分離開,並具有314.7 nm的組合厚度。在這一實例中,抗刮層佔第一分層膜36的厚度的48.31%。
實例7的第二分層膜38包括較低折射率材料42與較高折射率材料40的二十五(25)個交替層。在這一實例中,較低折射率材料42是SiO 2,而較高折射率材料40是SiN x與Si的組合。如圖所示,層30、層32、及層34,即較高折射率材料40的最近接基板30(這一實例中為層26)的三個層,是SiN x,而較高折射率材料40的剩餘層是Si。層36,即最近接基板30的Si層,是最窄Si層,具有12.03 nm的厚度。矽層的組合厚度為1199.18 nm,佔第二分層膜38的總厚度的43.89%。
實例7的第一分層膜36與實例6中的不同之處在於,抗刮層由較高折射率的SiN x材料(具有2.04658的折射率,而實例6中為1.96)形成。據信,這一材料具有更高硬度,因此相對實例6改善了抗刮性。實例7中第二分層膜38與實例6中的不同之處在於,第二分層膜38中使用較低消光係數的矽。與第39圖中表示的材料不同,該Si材料包含在1550 nm處小於0.05(例如,小於0.01、小於0.005)的消光係數。據信,使用這樣的低消光係數材料會提供1550 nm附近的更寬的高透射頻寬,並使系統對波長偏移不那麼敏感。
在實例7中,第一分層膜36及第二分層膜38的層的厚度組態為如以下第7表中所述,並用於計算第43圖至第49圖中所述的透射率、反射率、及CIELAB色彩空間值。
第7表
層設計實例7
材料 折射率 @1550nm 實體厚度 (nm)
媒體 空氣 1
全氟聚醚 1-4 4-8
1 SiO2 1.45723 88.55
2 SiN 2.04658 146.87
3 SiO2 1.45723 10.38
4 SiN 2.04658 190.28
5 SiO2 1.45723 18.30
6 SiN 2.04658 35.57
7 SiO2 1.45723 186.27
8 SiN 2.04658 144.85
9 SiO2 1.45723 25.84
10 SiN 2.04658 141.32
11 SiO2 1.45723 178.34
12 SiN 2.04658 119.35
13 SiO2 1.45723 186.60
14 SiN 2.04658 123.46
15 SiO2 1.45723 183.17
16 SiN 2.04658 25.51
17 SiO2 1.45723 20.47
18 SiN 2.04658 2000.00
19 SiO2 1.45723 27.25
20 SiN 2.04658 30.19
21 SiO2 1.45723 59.41
22 SiN 2.04658 23.71
23 SiO2 1.45723 58.10
24 SiN 2.04658 26.99
25 SiO2 1.45723 50.51
26 SiN 2.04658 13.54
27 SiO2 1.45723 25.00
基板 鋁矽玻璃(2320) 1.4916 2000000.0
29 SiO2 1.45723 25
30 SiN 2.04658 15.85
31 SiO2 1.45723 58.56
32 SiN 2.04658 27.71
33 SiO2 1.45723 56.62
34 SiN 2.04658 58.91
35 SiO2 1.45723 8.06
36 Si 3.47334 12.03
37 SiO2 1.45723 19.98
38 Si 3.47334 231.52
39 SiO2 1.45723 8.15
40 Si 3.47334 101.10
41 SiO2 1.45723 16.55
42 Si 3.47334 81.73
43 SiO2 1.45723 183.54
44 Si 3.47334 250.05
45 SiO2 1.45723 166.42
46 Si 3.47334 109.97
47 SiO2 1.45723 114.51
48 Si 3.47334 47.71
49 SiO2 1.45723 130.54
50 Si 3.47334 176.63
51 SiO2 1.45723 436.72
52 Si 3.47334 188.44
53 SiO2 1.45723 205.41
媒體 空氣 1
第43圖是顯示根據實例7的窗口24對入射於窗口24上的光在400 nm至1600 nm的整個光譜範圍內的模型化透射率的曲線圖。曲線圖顯示以15°的入射角入射於窗口24上的光(平均偏振)及以60°的入射角入射於窗口24上的光(針對S偏振光及P偏振光兩者)的預測效能。如圖所示,第一分層膜36及第二分層膜38的數量、厚度、數目、及材料經組態,使得以15°的入射角入射於窗口24上的光在1500 nm至1575 nm的波長範圍內具有大於99.5%的平均透射率。此外,第一分層膜36及第二分層膜38的數量、厚度、數目、及材料經組態,使得實例6的窗口24對以與第一表面及第二表面的法線成60°內的角度入射於第一表面及第二表面上的光具有在1500 nm至1575nm的相關波長範圍上計算的、大於91%的平均P偏振透射率及平均S偏振透射率。
第44圖是顯示根據實例7的窗口24自終端表面44及終端表面48兩者(例如,自窗口24的內表面及外表面兩者)的模型化反射率的曲線圖。如第44圖中所揭示的,第一分層膜36及第二分層膜38的數量、厚度、數目、及材料經組態,使得實例7的窗口24對以15°的入射角入射於基板30上的光在1500 nm至1575nm的大致波長範圍內具有自第一分層膜36的終端表面44及第二分層膜38的終端表面48(第44圖中曲線重疊)的、低於0.5%的百分數反射率。自終端表面44的反射率與自終端表面48的反射率相當,因為第一分層膜36及第二分層膜38是由在參考波長範圍內具有相對低吸收度的材料構成的。
第45圖是顯示根據實例7的窗口24在350 nm至1600 nm的波長範圍上的模型化透射率的曲線圖。如第45圖中所揭示的,第一分層膜36及第二分層膜38的數量、厚度、數目、及材料經組態,使得實例7的窗口24對以15°的入射角入射於第一分層膜36上的光在整個可見光譜中具有低於5%的平均透射率(平均偏振)。第46圖是顯示根據實例7的窗口24在350 nm至1600 nm的波長範圍上的模型化反射率的曲線圖。如第46圖中所揭示的,第一分層膜36及第二分層膜38的數量、厚度、數目、及材料經組態,使得實例7的窗口24表現出對以15°的入射角(平均偏振)入射於第一分層膜36上的光(對於來自窗口24外部的光)在整個可見光譜內的、小於5%的平均反射率。第47圖是根據實例7的窗口24的模型化雙表面透射率的曲線圖。如圖所示,第一分層膜36及第二分層膜38的數量、厚度、數目、及材料經組態,使得實例7的窗口24表現出對窗口24上具有15°的入射角的光在400 nm至650 nm的波長範圍上的、小於0.1%的平均透射率。實際上,窗口24在400 nm至700 nm的整個波長範圍內表現出小於1%的透射率(及在400 nm至650 nm的整個波長範圍內表現出小於0.1%的透射率)。
如第48圖中所揭示的,第一分層膜36及第二分層膜38的數量、厚度、數目、及材料經組態,使得實例7的窗口24在自第一分層膜的終端表面44觀看時具有中性外觀。第48圖提供用於實例7的對在具有標準1964觀測者(其描繪本文描述的所有CIELAB色彩量測)的D65照明下自終端表面44反射的光的模擬CIELAB單表面反射色彩資料。單表面反射光的色彩可使用CIELAB色彩坐標來表徵。如圖所示,b*值的範圍自約-1.0至約0.6,而a*值的範圍自約-1.5至3.6。第49圖提供在具有1964標準觀測者的D65照明下自終端表面44反射的光的模型化L*值。實例7在0°至60°的入射角的整個範圍內亦表現出小於或等於35的L*值(及在0°至50°的入射角的整個範圍內L*值小於或等於25)。
本發明的態樣(1)涉及一種用於感測系統的窗口,其包含:包含第一表面及第二表面的基板,第一表面及第二表面是基板的主表面;設置於基板的第一表面上的第一分層膜,第一分層膜包含一或多個較高折射率材料與一或多個較低折射率材料的交替層,其中第一分層膜的一或多個較高折射率材料的折射率高於第一分層膜的一或多個較低折射率材料的折射率;設置於基板的第二表面上的第二分層膜,第二分層膜包含一或多個較高折射率材料與一或多個較低折射率材料的交替層,其中第二分層膜的一或多個較高折射率材料的折射率高於第二分層膜的一或多個較低折射率材料的折射率;及在第一分層膜處藉由Berkovich壓頭硬度測試量測的、至少8 GPa的最大硬度,其中第一分層膜及第二分層膜的交替層的數量、厚度、數目、及材料經組態,使得窗口具有:以小於或等於15°的入射角入射於第一表面及第二表面上的光在1400 nm與1600 nm之間的50 nm相關波長範圍上計算的、大於90%的平均百分數透射率;以小於或等於15°的角度入射於第一表面及第二表面上的光在1400 nm與1600 nm之間的50 nm相關波長範圍上計算的、小於1%的平均反射率;及以小於或等於15°的入射角入射於第一表面及第二表面上的光自400 nm至700 nm計算的、小於5%的平均透射百分數。
本發明的態樣(2)涉及根據態樣(1)的窗口,其中第一分層膜及第二分層膜的交替層的數量、厚度、數目、及材料經組態,使得窗口對以小於或等於60°的入射角入射於第一表面及第二表面上的光具有在1400 nm至1600 nm之間的50 nm相關波長範圍上計算的、大於85%的平均P偏振透射率及平均S偏振透射率。
本發明的態樣(3)涉及根據態樣(2)的窗口,其中以小於或等於60°的入射角入射於第一表面及第二表面上的光在1400 nm與1600 nm之間的50 nm相關波長範圍上計算的平均P偏振透射率及平均S偏振透射率大於92%。
本發明的態樣(4)涉及根據態樣(1)至態樣(3)中之任意者的窗口,其中第一分層膜及第二分層膜的交替層的數量、厚度、數目、及材料經組態,使得窗口在第一分層膜上的入射角小於或等於60°時具有小於或等於45的CIELAB L*值。
本發明的態樣(5)涉及根據態樣(4)的窗口,其中針對第一分層膜上的小於或等於60°的入射角,CIELAB L*值小於或等於30。
本發明的態樣(6)涉及根據態樣(1)至態樣(5)中之任意者的窗口,其中第一分層膜及第二分層膜的交替層的數量、厚度、數目、及材料經組態,使得窗口在自第一分層膜的一側觀看時具有大於或等於-6.0且小於或等於6.0的CIELAB a*值及b*值。
本發明的態樣(7)涉及根據態樣(1)至態樣(5)中之任意者的窗口,其中第一分層膜及第二分層膜的交替層的數量、厚度、數目、及材料經組態,使得窗口對垂直入射於第一分層膜上的光具有在整個可見光譜內計算的、小於或等於10%的平均反射率。
本發明的態樣(8)涉及根據態樣(1)至態樣(7)中之任意者的窗口,其中第一分層膜及第二分層膜的交替層的數量、厚度、數目、及材料經組態,使得窗口對垂直入射於第一表面及第二表面上的光具有在1400 nm與1600 nm之間的50 nm相關波長範圍上計算的、大於95%的平均百分數透射率。
本發明的態樣(9)涉及根據態樣(1)至態樣(5)中之任意者的窗口,其中基板是玻璃基板。
本發明的態樣(10)涉及根據態樣(9)的窗口,其中基板具有與承受壓縮應力的第一表面相連的區域,且壓縮應力的最大值的絕對值為至少600 MPa。
本發明的態樣(11)涉及根據態樣(1)至態樣(10)中之任意者的窗口,其中基板具有約100 μm與約5 mm之間的厚度。
本發明的態樣(12)涉及根據態樣(1)至態樣(11)中之任意者的窗口,其中用於具有1550 nm的波長的電磁輻射的基板的折射率為約1.45至約1.55。
本發明的態樣(13)涉及根據態樣(1)至態樣(12)中之任意者的窗口,其中一或多個較高折射率材料的折射率為約1.7至約4.0,且其中一或多個較低折射率材料的折射率為約1.3至約1.6。
本發明的態樣(14)涉及根據態樣(1)至態樣(13)中之任意者的窗口,其中一或多個較高折射率材料中之任一者與一或多個較低折射率材料中之任一者的折射率之差值為約0.5或更大。
本發明的態樣(15)涉及根據態樣(1)至態樣(14)中之任意者的窗口,其中最遠離基板的第一分層膜的交替層中之一者形成窗口的終端表面材料,窗口的終端表面材料包含較低折射率材料。
本發明的態樣(16)涉及根據態樣(15)的窗口,其中第一分層膜包含由一或多個較高折射率材料中之一者形成並具有大於或等於500 nm的厚度的抗刮層。
本發明的態樣(17)涉及根據態樣(16)的窗口,其中抗刮層的厚度大於或等於1500 nm且小於或等於5000 nm。
本發明的態樣(18)涉及根據態樣(17)的窗口,其中抗刮層藉由第一分層膜的一或多個較低折射率材料與一或多個較高折射率材料的複數個交替層與終端表面分離開。
本發明的態樣(19)涉及根據態樣(18)的窗口,其中抗刮層與終端表面分離開至少1000 nm。
本發明的態樣(20)涉及根據態樣(1)至態樣(19)中之任意者的窗口,其中第二分層膜的一或多個較高折射率材料包含矽。
本發明的態樣(21)涉及根據態樣(20)的窗口,其中第二分層膜包含兩個或兩個以上的矽層。
本發明的態樣(22)涉及根據態樣(21)的窗口,其中第二分層膜的最近接基板的矽層包含兩個或兩個以上矽層中之最小厚度。
本發明的態樣(23)涉及根據態樣(21)的窗口,其中含在第二分層膜中的矽層的組合厚度大於或等於250 nm。
本發明的態樣(24)涉及根據態樣(22)的窗口,其中組合厚度大於或等於500 nm。
本發明的態樣(25)涉及根據態樣(21)至態樣(24)中之任意者的窗口,其中第二分層膜中一或多個較高折射率材料的層不是矽。
本發明的態樣(26)涉及根據態樣(1)至態樣(25)中之任意者的窗口,其中第一分層膜處藉由Berkovich壓頭硬度試驗量測的最大硬度為至少10 GPa。
本發明的態樣(27)涉及根據態樣(1)至態樣(26)中之任意者的窗口,其中第一分層膜處藉由Berkovich壓頭硬度測試量測的硬度在300 nm至2000 nm的深度範圍上為至少8 GPa。
本發明的態樣(28)涉及根據態樣(1)至態樣(27)中之任意者的窗口,其中第一分層膜處藉由Berkovich壓頭硬度測試量測的硬度在750 nm至2000 nm的深度範圍上為至少9 GPa。
本發明的態樣(29)涉及一種用於感測系統的窗口,其包含:包含第一表面及第二表面的基板,第一表面及第一表面是基板的主表面;設置於基板的第一表面上的第一分層膜,第一分層膜包含一或多個較高折射率材料與一或多個較低折射率材料的交替層,其中第一分層膜的一或多個較高折射率材料的折射率高於第一分層膜的一或多個較低折射率材料的折射率;設置於基板的第二表面上的第二分層膜,第二分層膜包含一或多個較高折射率材料與一或多個較低折射率材料的交替層,其中第二分層膜的一或多個較高折射率材料的折射率高於第二分層膜的一或多個較低折射率材料的折射率;及第一分層膜處藉由Berkovich壓頭硬度試驗量測的、至少8 GPa的最大硬度,其中第一分層膜及第二分層膜的交替層的數量、厚度、數目、及材料經組態,使得窗口具有:以小於或等於15°的角度入射於第一表面及第二表面上的光在1400 nm與1600 nm之間的50 nm相關波長範圍上計算的、小於0.5%平均反射率;針對第一分層膜上小於或等於60°的入射角,小於或等於45的CIELAB L*值;及在自第一分層膜的一側觀看時,大於或等於-6.0且小於或等於6.0的CIELAB a*值及b*值。
本發明的態樣(30)涉及根據態樣(29)的窗口,其中針對第一分層膜上小於或等於60°的入射角,CIELAB L*值小於或等於30。
本發明的態樣(31)涉及根據態樣(29)至態樣(30)中之任意者的窗口,其中第一分層膜及第二分層膜的交替層的數量、厚度、數目、及材料經組態,使得窗口對以小於或等於15°的入射角入射於第一表面及第二表面上的光具有在1400 nm與1600 nm之間的50 nm相關波長範圍上計算的、大於95%的平均百分數透射率。
本發明的態樣(32)涉及根據態樣(29)至態樣(31)中之任意者的窗口,其中第一分層膜及第二分層膜的交替層的數量、厚度、數目、及材料經組態,使得窗口對以小於或等於15°的入射角入射於第一表面及第二表面上的光具有自400 nm至700 nm計算的、小於5%的平均透射百分數。
本發明的態樣(33)涉及根據態樣(29)至態樣(32)中之任意者的窗口,其中第一分層膜及第二分層膜的交替層的數量、厚度、數目、及材料經組態,使得窗口對以小於或等於60°的入射角入射於第一表面及第二表面上的光具有在1400 nm與1600 nm之間的50 nm相關相關波長範圍上計算的、大於85%的平均P偏振透射率及平均S偏振透射度。
本發明的態樣(34)涉及根據態樣(33)的窗口,其中以小於或等於60°的入射角入射於第一表面及第二表面上的光在1400 nm與1600 nm之間的50 nm相關波長範圍上計算的平均P偏振透射率及平均S偏振透射度大於92%。
本發明的態樣(35)涉及根據態樣(29)至態樣(34)中之任意者的窗口,其中第一分層膜及第二分層膜的交替層的數量、厚度、數目、及材料經組態,使得窗口對垂直入射於第一分層膜上的光具有在整個可見光譜內計算的、小於或等於10%的平均反射率。
本發明的態樣(36)涉及根據態樣(29)至態樣(35)中之任意者的窗口,其中第一分層膜及第二分層膜的交替層的數量、厚度、數目、及材料經組態,使得窗口對垂直入射於第一表面及第二表面上的光具有在1400 nm與1600 nm之間的50 nm相關波長範圍上計算的、大於95%的平均百分數透射率。
本發明的態樣(37)涉及根據態樣(29)至態樣(36)中之任意者的窗口,其中分層膜處藉由Berkovich壓頭硬度試驗量測的最大硬度為至少10 GPa。
本發明的態樣(38)涉及根據態樣(29)至態樣(37)中之任意者的窗口,其中第一分層膜處藉由Berkovich壓頭硬度試驗量測的硬度在300 nm至2000 nm的深度範圍上為至少8 GPa。
本發明的態樣(39)涉及根據態樣(29)至態樣(38)中之任意者的窗口,其中:最遠離基板的第一分層膜的交替層中之一者形成窗口的終端表面材料,窗口的終端表面材料包含較低折射率材料,第一分層膜包含由一或多個較高折射率材料中之一者形成的抗刮層,抗刮層具有大於或等於1500 nm且小於或等於5000 nm的厚度。
本發明的態樣(40)涉及根據態樣(39)的窗口,其中:抗刮層藉由第一分層膜的一或多個較低折射率材料與一或多個較高折射率材料的複數個交替層與終端表面分離開,且抗刮層與終端表面分離開至少1000 nm。
本發明的態樣(41)涉及根據態樣(29)至態樣(40)中之任意者的窗口,其中第二分層膜的一或多個較高折射率材料包含矽。
本發明的態樣(42)涉及根據態樣(41)的窗口,其中第二分層膜包含兩個或兩個以上矽層。
本發明的態樣(43)涉及根據態樣(43)的窗口,其中最近接基板的第二分層膜的矽層包含兩個或兩個以上矽層中之最小厚度。
本發明的態樣(44)涉及根據態樣(43)的窗口,其中含在第二分層膜中的矽層的組合厚度大於或等於250 nm。
本發明的態樣(45)涉及根據態樣(44)的窗口,其中組合厚度大於或等於500 nm。
本發明的態樣(46)涉及根據態樣(42)至態樣(45)中之任意者的窗口,其中第二分層膜中一或多個較高折射率材料的層不是矽。
本發明的態樣(47)涉及一種用於感測系統的窗口,其包含:包含第一表面及第二表面的基板,第一表面及該第二表面是基板的主表面;設置於基板的第一表面上的第一分層膜,第一分層膜包含一或多個較高折射率材料與一或多個較低折射率材料的交替層,其中第一分層膜的一或多個較高折射率材料的折射率高於第一分層膜的一或多個較低折射率材料的折射率;設置於基板的第二表面上的第二分層膜,第二分層膜包含一或多個較高折射率材料與一或多個較低折射率材料的交替層,其中第二分層膜的一或多個較高折射率材料的折射率高於第二分層膜的一或多個較低折射率材料的折射率,其中第一分層膜的一或多個較高折射率材料包含矽;及在第一分層膜處藉由Berkovich壓頭硬度試驗量測的、至少8 GPa的最大硬度,其中第一分層膜及第二分層膜的交替層的數量、厚度、數目、及材料經組態,使得窗口具有:以小於或等於15°的角度入射於第一表面及第二表面上的光在1400 nm與1600 nm之間的50 nm相關波長範圍上計算的、小於1%的平均反射率;及以小於或等於15°的入射角入射於第一表面及第二表面上的光在1400 nm與1600 nm之間的50 nm相關波長範圍上計算的、大於90%的平均百分數透射率。
本發明的態樣(48)涉及根據態樣(47)的窗口,其中第一分層膜及第二分層膜的交替層的數量、厚度、數目、及材料經組態,使得窗口對以小於或等於15°的入射角入射於第一表面及第二表面上的光具有自400 nm至700 nm計算的、小於5%的平均透射百分數。
本發明的態樣(49)涉及根據態樣(47)至態樣(48)中之任意者的窗口,其中第一分層膜及第二分層膜的交替層的數量、厚度、數目、及材料經組態,使得窗口對以小於或等於60°的入射角入射於第一表面及第二表面上的光具有在1400 nm與1600 nm之間的50 nm相關相關波長範圍上計算的、大於85%的平均P偏振透射率及平均S偏振透射率。
本發明的態樣(50)涉及根據態樣(49)的窗口,其中以小於或等於60°的入射角入射於第一表面及第二表面上的光在1400 nm與1600 nm之間的50 nm相關波長範圍上計算的平均P偏振透射率及平均S偏振透射度大於92%。
本發明的態樣(51)涉及根據態樣(47)至態樣(50)中之任意者的窗口,其中第一分層膜及第二分層膜的交替層的數量、厚度、數目、及材料經組態,使得針對第一分層膜上小於或等於60°的入射角,窗口具有小於或等於45的CIELAB L*值。
本發明的態樣(52)涉及根據態樣(51)的窗口,其中針對第一分層膜上小於或等於60°的入射角,CIELAB L*值小於或等於30。
本發明的態樣(53)涉及根據態樣(47)至態樣(52)中之任意者的窗口,其中第一分層膜及第二分層膜的交替層的數量、厚度、數目、及材料經組態,使得在自第一分層膜的一側觀看時,窗口具有大於或等於-6且小於或等於6的CIELAB a*值及b*值。
本發明的態樣(54)涉及根據態樣(47)至態樣(53)中之任意者的窗口,其中第一分層膜及第二分層膜的交替層的數量、厚度、數目、及材料經組態,使得窗口對垂直入射於第一分層膜上的光具有在整個可見光譜上計算的、小於或等於10%的平均反射率。
本發明的態樣(55)涉及根據態樣(47)至態樣(54)中之任意者的窗口,其中:最遠離基板的第一分層膜的交替層中之一者形成窗口的終端表面材料,窗口的終端表面材料包含較低折射率材料,第一分層膜包含由一或多個較高折射率材料中之一者形成的抗刮層,抗刮層具有大於或等於1500 nm且小於或等於5000 nm的厚度。
本發明的態樣(56)涉及根據態樣(55)的窗口,其中:抗刮層藉由第一分層膜的一或多個較低折射率材料與一或多個較高折射率材料的複數個交替層與終端表面分離開,且抗刮層與終端表面分離開至少1000 nm。
本發明的態樣(57)涉及根據態樣(47)至態樣(56)中之任意者的窗口,其中第二分層膜包含兩個或兩個以上矽層。
本發明的態樣(58)涉及根據態樣(57)的窗口,其中最近接基板的第二分層膜的矽層包含兩個或兩個以上矽層中之最小厚度。
本發明的態樣(59)涉及根據態樣(57)的窗口,其中含在第二分層膜中的矽層的組合厚度大於或等於250 nm。
本發明的態樣(60)涉及根據態樣(59)的窗口,其中組合厚度大於或等於500 nm。
本發明的態樣(61)涉及根據態樣(57)至態樣(60)中之任意者的窗口,其中第二分層膜中一或多個折射率較高材料的層不是矽。
本發明的態樣(62)涉及根據態樣(61)的窗口,其中第二分層膜中一或多個較高折射率材料的不是矽的層為最近接基板的一或多個較高折射率材料的層。
對熟習此項技術者將顯而易見的是,可進行各種修改及變化而不脫離申請專利範圍的精神或範疇。
10:車輛 12:LIDAR系統 14:車頂 16:前部 18:電磁輻射發射器及感測器 20:外殼 22:發射輻射 24:窗口 26:外部環境 28:反射輻射 30:基板 32:第一表面 34:第二表面 35:厚度 36:第一分層膜 38:第二分層膜 40:較高折射率材料 42:較低折射率材料 44:終端表面 46:厚度 48:終端表面 50:厚度 702:第一曲線 704:第二曲線 706:第三曲線 1102:第二最大硬度 1104:第一最大硬度 1502:第一曲線 1504:第二曲線 1506:第三曲線 2102:第一曲線 2104:第二曲線 2106:第三曲線 2702:第一曲線 2704:第二曲線 2706:第三曲線 3302:第一曲線 3304:第二曲線 3306:第三曲線 4000:第一曲線 4002:第二曲線 4004:第三曲線 4100,4102:曲線 III,IV,V:區域
第1圖是根據本發明的一或多個實施例的外部環境中的車輛的側視圖,圖示車輛的車頂上的LIDAR系統及車輛的前部上的另一LIDAR系統;
第2圖是根據本發明的一或多個實施例的第1圖的LIDAR系統中之一者的示意圖,圖示一外殼中的電磁輻射發射器及感測器,該電磁輻射發射器及感測器發射電磁輻射,電磁輻射穿過窗口離開外殼並作為反射輻射穿過窗口返回;
第3圖是根據本發明的一或多個實施例的在第2圖的區域III處截取的第2圖的窗口的橫截面圖,圖示包括基板的窗口,窗口在基板的第一表面上方具有分層膜,並在基板的第二表面上方具有第二分層膜;
第4圖是根據本發明的一或多個實施例的在第3圖的區域IV處截取的第3圖的窗口的橫截面圖,圖示包括一或多個較高折射率材料與一或多個較低折射率材料的交替層的分層膜,其中一或多個較低折射率材料的一層提供最靠近外部環境的終端表面;
第5圖是根據本發明的一或多個實施例的在第3圖的區域V處截取的第3圖的窗口的橫截面圖,圖示包括一或多個較高折射率材料與一或多個較低折射率材料的交替層的第二分層膜,其中一或多個較低折射率材料的一層提供最靠近電磁輻射發射器及感測器的終端表面;
第6圖是根據本發明的一或多個實施例的包含設置於玻璃基板上的第一分層膜及第二分層膜的第一實例窗口的第二分層膜中使用的矽材料的折射率及消光係數作為波長的函數的曲線圖;
第7圖是根據本發明的一或多個實施例的垂直入射於第一實例窗口上的光在400 nm至1600 nm的整個波長範圍內按照模型化反射率及透射率的雙表面可見光至紅外線效能的曲線圖;
第8圖是根據本發明的一或多個實施例的垂直入射於實例窗口的第一分層膜上的光在1500 nm至1600 nm的紅外相關波長範圍內的模型化雙表面透射率的曲線圖;
第9圖是根據本發明的一或多個實施例的以60度入射角入射於第一實例窗口的第一分層膜上的s偏振光及p偏振光在1500 nm至1600 nm的紅外相關波長範圍內的模型化雙表面透射率的曲線圖;
第10圖是根據本發明的一或多個實施例的入射於第一實例窗口的第一分層膜及第二分層膜上的光在1500 nm至1600 nm的紅外相關波長範圍內的模型化雙表面反射率的曲線圖;
第11圖是根據本發明的一或多個實施例的垂直入射於第一實例窗口的第一分層膜上的光在可見光譜中的模型化雙表面透射率的曲線圖;
第12A圖是根據本發明的一或多個實施例的以複數個入射角入射於第一實例窗口的第一分層膜上的光的CIELAB色彩空間值a*及b*的曲線圖;
第12B圖是根據本發明的一或多個實施例的以複數個入射角入射於第一實例窗口的第一分層膜上的光的CIELAB明度值L*的曲線圖;
第13圖是根據本發明的一或多個實施例的根據第一實例窗口構建的兩個樣品的奈米壓痕硬度作為進入第一分層膜的深度的函數的曲線圖;
第14圖是根據本發明的一或多個實施例的包含設置於玻璃基板上的第一分層膜及第二分層膜的第二實例窗口的第二分層膜中使用的矽材料的折射率及消光係數作為波長的函數的曲線圖;
第15圖是根據本發明的一或多個實施例的垂直入射於第二實例窗口上的光在400 nm至1600 nm的整個波長範圍內按照模型化反射率及透射率的雙表面可見光至紅外線效能的曲線圖;
第16圖是根據本發明的一或多個實施例的垂直入射於第二實例窗口的第一分層膜上的光在1500 nm至1600 nm的紅外相關波長範圍內的模型化雙表面透射率的曲線圖;
第17圖是根據本發明的一或多個實施例的以60度的入射角入射於第二實例窗口的第一分層膜上的s偏振光及p偏振光在1500 nm至1600 nm的紅外相關波長範圍內的模型化雙表面透射率的曲線圖;
第18圖是根據本發明的一或多個實施例的垂直入射於第二實例窗口的第一分層膜及第二分層膜上的光在1500 nm至1600 nm的紅外相關波長範圍內的模型化雙表面反射率的曲線圖;
第19圖是根據本發明的一或多個實施例的垂直入射於第二實例窗口的第一分層膜上的光在可見光譜中的模型化雙表面透射率的曲線圖;
第20A圖是根據本發明的一或多個實施例的以複數個入射角入射於第二實例窗口的第一分層膜上的光的CIELAB色彩空間值a*及b*的曲線圖;
第20B圖是根據本發明的一或多個實施例的以複數個入射角入射於第二實例窗口的第一分層膜上的光的CIELAB明度值L*的曲線圖;
第21圖是根據本發明的一或多個實施例的垂直入射於包含第一分層膜及第二分層膜的第三實例窗口上的光在400 nm至1600 nm的整個波長範圍內的雙表面可見光至紅外線效能的曲線圖;
第22圖是根據本發明的一或多個實施例的垂直入射於第三實例窗口的第一分層膜上的光在1500 nm至1600 nm的紅外相關波長範圍內的模型化雙表面透射率的曲線圖;
第23圖是根據本發明的一或多個實施例的以60度入射角入射於第三實例窗口的第一分層膜上的s偏振光及p偏振光在1500 nm至1600 nm的紅外相關波長範圍內的模型化雙表面透射率的曲線圖;
第24圖是根據本發明的一或多個實施例的垂直入射於第三實例窗口的第一分層膜及第二分層膜上的光在1500 nm至1600 nm的紅外相關波長範圍上的模型化雙表面反射率的曲線圖;
第25圖是根據本發明的一或多個實施例的垂直入射於第三實例窗口的第一分層膜上的光在可見光譜中的模型化雙表面透射率的曲線圖;
第26A圖是根據本發明的一或多個實施例的以複數個入射角入射於第三實例窗口的第一分層膜上的光的CIELAB色彩空間值a*及b*的曲線圖;
第26B圖是根據本發明的一或多個實施例的以複數個入射角入射於第三實例窗口的第一分層膜上的光的CIELAB明度值L*的曲線圖;
第27圖是根據本發明的一或多個實施例的垂直入射於包含第一分層膜及第二分層膜的第四實例窗口上的光在400 nm至1600 nm的整個相關波長範圍內按照模型化反射率及透射率的可見光至紅外線效能的曲線圖;
第28圖是根據本發明的一或多個實施例的垂直入射於第一第四實例窗口的第一分層膜上的光在1500 nm至1600 nm的紅外相關波長範圍內的模型化雙表面透射率的曲線圖;
第29圖是根據本發明的一或多個實施例的以60度的入射角入射於第四實例窗口的第一分層膜上的s偏振光及p偏振光在1500 nm至1600 nm的紅外相關波長範圍內的模型化雙表面透射率的曲線圖;
第30圖是根據本發明的一或多個實施例的垂直入射於第四實例窗口的第一分層膜及第二分層膜上的光在1500 nm至1600 nm的紅外相關波長範圍內的模型化雙表面反射率的曲線圖;
第31圖是根據本發明的一或多個實施例的垂直入射於第四實例窗口的第一分層膜上的光在可見光譜中的模型化雙表面透射率的曲線圖;
第32A圖是根據本發明的一或多個實施例的以複數個入射角入射於第四實例窗口的第一分層膜上的光的CIELAB色彩空間值a*及b*的曲線圖;
第32B圖是根據本發明的一或多個實施例的以複數個入射角入射於第四實例窗口的第一分層膜上的光的CIELAB明度值L*的曲線圖;
第33圖是根據本發明的一或多個實施例的垂直入射於包含第一分層膜及第二分層膜的第五實例窗口上的光在400 nm至1600 nm的整個波長範圍內按照模型化反射率及透射率的雙表面可見光至紅外線效能的曲線圖;
第34圖是根據本發明的一或多個實施例的垂直入射於第五實例窗口的第一分層膜上的光在1500 nm至1600 nm的紅外相關波長範圍內的模型化雙表面透射率的曲線圖;
第35圖是根據本發明的一或多個實施例的以60度入射角入射於第五實例窗口的第一分層膜上的s偏振光及p偏振光在1500 nm至1600 nm的紅外相關波長範圍內的模型化雙表面透射率的曲線圖;
第36圖是根據本發明的一或多個實施例的垂直入射於第五實例窗口的第一分層膜及第二分層膜上的光在1500 nm至1600 nm的紅外相關波長範圍上的模型化雙表面反射率的曲線圖;
第37圖是根據本發明的一或多個實施例的垂直入射於第五實例窗口的第一分層膜上的光在可見光譜中的模型化雙表面透射率的曲線圖;
第38A圖是根據本發明的一或多個實施例的以複數個入射角入射於第五實例窗口的第一分層膜上的光的CIELAB色彩空間值a*及b*的曲線圖;
第38B圖是根據本發明的一或多個實施例的以複數個入射角入射於第五實例窗口的第一分層膜上的光的CIELAB明度值L*的曲線圖;
第39圖是根據本發明的一或多個實施例的包含設置於玻璃基板上的第一分層膜及第二分層膜的第六實例窗口的第二分層膜中使用的矽材料的折射率及消光係數作為波長的函數的曲線圖;
第40圖是根據本發明的一或多個實施例的入射於包含第一分層膜及第二分層膜的第六實例窗口上的光在400 nm至1600 nm的整個波長範圍內按照模型化透射率的雙表面可見光至紅外線效能的曲線圖;
第41圖是根據本發明的一或多個實施例的入射於包含第一分層膜及第二分層膜的第六實例窗口上的光在400 nm至1600 nm的整個波長範圍內按照模型化反射率的雙表面可見光至紅外線效能的曲線圖;
第42圖是根據本發明的一或多個實施例的以複數個入射角入射於第六實例窗口的第一分層膜上的光的CIELAB色彩空間值a*及b*的曲線圖;
第43圖是根據本發明的一或多個實施例的入射於包含第一分層膜及第二分層膜的第七實例窗口上的光在1500 nm至1600 nm的整個波長範圍內按照模型化透射率的雙表面紅外線效能的曲線圖;
第44圖是根據本發明的一或多個實施例的入射於包含第一分層膜及第二分層膜的第七實例窗口上的光在1500 nm至1600 nm的整個波長範圍內按照模型化反射率的雙表面紅外線效能的曲線圖;
第45圖是根據本發明的一或多個實施例的入射於包含第一分層膜及第二分層膜的第七實例窗口上的光在350 nm至1600 nm的整個波長範圍內按照模型化透射率的雙表面可見光至紅外線效能的曲線圖;
第46圖是根據本發明的一或多個實施例的入射於包含第一分層膜及第二分層膜的第七實例窗口上的光在350 nm至1600 nm的整個波長範圍內按照模型化反射率的雙表面可見光至紅外線效能的曲線圖;
第47圖是根據本發明的一或多個實施例的入射於包含第一分層膜及第二分層膜的第七實例窗口上的光在400 nm至700 nm的整個波長範圍內按照模型化透射率表示的雙表面可見光效能的曲線圖;
第48圖是根據本發明的一或多個實施例的以複數個入射角入射於第七實例窗口的第一分層膜上的光的CIELAB色彩空間值a*及b*的曲線圖;且
第49圖是根據本發明的一或多個實施例的以複數個入射角入射於第七實例窗口的第一分層膜上的光的CIELAB明度值L*的曲線圖。
國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無
22:發射輻射
24:窗口
26:外部環境
28:反射輻射
30:基板
32:第一表面
34:第二表面
35:厚度
36:第一分層膜
38:第二分層膜
44:終端表面
48:終端表面
IV,V:區域

Claims (62)

  1. 一種用於一感測系統的窗口,其包含: 一基板,包含一第一表面及一第二表面,該第一表面及該第二表面是該基板的主表面; 一第一分層膜,設置於該基板的該第一表面上,該第一分層膜包含一或多個較高折射率材料與一或多個較低折射率材料的多個交替層,其中該第一分層膜的該一或多個較高折射率材料的折射率高於該第一分層膜的該一或多個較低折射率材料的折射率; 一第二分層膜,設置於該基板的該第二表面上,該第二分層膜包含一或多個較高折射率材料與一或多個較低折射率材料的多個交替層,其中該第二分層膜的該一或多個較高折射率材料的折射率高於該第二分層膜的該一或多個較低折射率材料的折射率;及 一最大硬度,在該第一分層膜處藉由Berkovich壓頭硬度測試來量測,為至少8 GPa, 其中該第一分層膜及該第二分層膜的該些交替層的數量、厚度、數目、及材料經組態,使得該窗口具有: 以小於或等於15°的入射角入射於該第一表面及該第二表面上的光在1400 nm與1600 nm之間的一50 nm相關波長範圍上計算的、大於90%的一平均百分數透射率; 以小於或等於15°的角度入射於該第一表面及該第二表面上的光在1400 nm與1600 nm之間的該50 nm相關波長範圍上計算的、小於1%的一平均反射率;及 以小於或等於15°的入射角入射於該第一表面及該第二表面上的光的自400 nm至700 nm計算的、小於5%的一平均透射百分數。
  2. 如請求項1所述之窗口,其中該第一分層膜及該第二分層膜的該些交替層的數量、厚度、數目、及材料經組態,使得該窗口對以小於或等於60°的入射角入射於該第一表面及該第二表面上的光具有在1400 nm與1600 nm之間的該50 nm相關波長範圍上計算的、大於85%的一平均P偏振透射率及一平均S偏振透射率。
  3. 如請求項2所述之窗口,其中以小於或等於60°的入射角入射於該第一表面及該第二表面上的光在1400 nm與1600 nm之間的該50 nm相關波長範圍上計算的該平均P偏振透射率及該平均S偏振透射率大於92%。
  4. 如請求項1至3中任一項所述之窗口,其中該第一分層膜及該第二分層膜的該些交替層的數量、厚度、數目、及材料經組態,使得針對該第一分層膜上小於或等於60°的入射角,該窗口具有小於或等於45的一CIELAB L*值。
  5. 如請求項4所述之窗口,其中針對該第一分層膜上小於或等於60°的入射角,該CIELAB L*值小於或等於30。
  6. 如請求項1至3中任一項所述之窗口,其中該第一分層膜及該第二分層膜的該些交替層的數量、厚度、數目、及材料經組態,使得在自該第一分層膜的一側觀看時,該窗口具有大於或等於-6.0且小於或等於6.0的CIELAB a*及b*值。
  7. 如請求項1至3中任一項所述之窗口,其中該第一分層膜及該第二分層膜的該些交替層的數量、厚度、數目、及材料經組態,使得該窗口對垂直入射於該第一分層膜上的光具有在整個可見光譜上計算的、小於或等於10%的一平均反射率。
  8. 如請求項1至3中任一項所述之窗口,其中該第一分層膜及該第二分層膜的該些交替層的數量、厚度、數目、及材料經組態,使得該窗口對垂直入射於該第一表面及該第二表面上的光具有在1400 nm與1600 nm之間的該50 nm相關波長範圍上計算的、大於95%的一平均百分數透射率。
  9. 如請求項1至3中任一項所述之窗口,其中該基板是一玻璃基板。
  10. 如請求項9所述之窗口,其中該基板具有與該第一表面相連的一區域,該區域承受壓縮應力,且該壓縮應力的一最大值的絕對值為至少600 MPa。
  11. 如請求項1至3中任一項所述之窗口,其中該基板具有在約100 μm與約5 mm之間的一厚度。
  12. 如請求項1至3中任一項所述之窗口,其中該基板對具有1550nm的一波長的電磁輻射的折射率為約1.45至約1.55。
  13. 如請求項1至3中任一項所述之窗口,其中該一或多個較高折射率材料的折射率為約1.7至約4.0,且其中該一或多個較低折射率材料的折射率為約1.3至約1.6。
  14. 如請求項1至3中任一項所述之窗口,其中該一或多個較高折射率材料中之任一者與該一或多個較低折射率材料中之任一者的一折射率差值為約0.5或更大。
  15. 如請求項1至3中任一項所述之窗口,其中最遠離該基板的該第一分層膜的該些交替層中之一者形成該窗口的一終端表面材料,該窗口的該終端表面材料包含該較低折射率材料。
  16. 如請求項3所述之窗口,其中第一分層膜包含由該一或多個較高折射率材料中之一者形成並具有大於或等於500 nm的一厚度的一抗刮層。
  17. 如請求項16所述之窗口,其中該抗刮層的該厚度大於或等於1500 nm且小於或等於5000 nm。
  18. 如請求項17所述之窗口,其中該抗刮層藉由該第一分層膜的該一或多個較低折射率材料與該一或多個較高折射率材料的複數個交替層與該終端表面分離開。
  19. 如請求項18所述之窗口,其中該抗刮層與該終端表面分離開至少1000 nm。
  20. 如請求項1至3中任一項所述之窗口,其中該第二分層膜的該一或多個較高折射率材料包含矽。
  21. 如請求項20所述之窗口,其中該第二分層膜包含兩個或兩個以上矽層。
  22. 如請求項21所述之窗口,其中最近接該基板的該第二分層膜的一矽層包含該兩個或兩個以上矽層中之最小厚度。
  23. 如請求項21所述之窗口,其中含在該第二分層膜中的該些矽層的一組合厚度大於或等於250 nm。
  24. 如請求項22所述之窗口,其中該組合厚度大於或等於500 nm。
  25. 如請求項22所述之窗口,其中該第二分層膜中該一或多個較高折射率材料的一層不是矽。
  26. 如請求項1至3中任一項所述之窗口,其中該第一分層膜處藉由Berkovich壓頭硬度測試量測的該最大硬度為至少10 GPa。
  27. 如請求項1至3中任一項所述之窗口,其中該第一分層膜處藉由Berkovich壓頭硬度測試量測的一硬度在300 nm至2000 nm的一深度範圍上為至少8 GPa。
  28. 如請求項1至3中任一項所述之窗口,其中該第一分層膜處藉由Berkovich壓頭硬度測試量測的一硬度在750 nm至2000 nm的一深度範圍上為至少9 GPa。
  29. 一種用於一感測系統的窗口,其包含: 一基板,包含第一表面及第二表面,該第一表面及該第二表面是該基板的主表面; 第一分層膜,設置於該基板的該第一表面上,該第一分層膜包含一或多個較高折射率材料與一或多個較低折射率材料的多個交替層,其中該第一分層膜的該一或多個較高折射率材料的折射率高於該第一分層膜的該一或多個較低折射率材料的折射率; 第二分層膜,設置於該基板的該第二表面上,該第二分層膜包含一或多個較高折射率材料與一或多個較低折射率材料的多個交替層,其中該第二分層膜的該一或多個較高折射率材料的折射率高於該第二分層膜的該一或多個較低折射率材料的折射率;及 一最大硬度,在該第一分層膜處藉由Berkovich壓頭硬度試驗量測,為至少8 GPa, 其中該第一分層膜及該第二分層膜的該些交替層的數量、厚度、數目、及材料經組態,使得該窗口具有: 以小於或等於15°的角度入射於該第一表面及該第二表面上的光在1400 nm與1600 nm之間的一50 nm相關波長範圍上計算的、小於0.5%的一平均反射率; 針對該第一分層膜上小於或等於60°的入射角,小於或等於45的一CIELAB L*值;及 在自該第一分層膜的一側觀看時,大於或等於-6.0且小於或等於6.0的CIELAB a*值及b*值。
  30. 如請求項29所述之窗口,其中針對該第一分層膜上小於或等於60°的入射角,該CIELAB L*值小於或等於30。
  31. 如請求項29至30中任一項所述之窗口,其中該第一分層膜及該第二分層膜的該些交替層的數量、厚度、數目、及材料經組態,使得該窗口對以小於或等於15°的入射角入射於該第一表面及該第二表面上的光具有在1400 nm與1600 nm之間的該50 nm相關波長範圍上計算的、大於95%的一平均百分數透射率。
  32. 如請求項29至30中任一項所述之窗口,其中該第一分層膜及該第二分層膜的交替層的數量、厚度、數目、及材料經組態,使得該窗口對以小於或等於15°的入射角入射於該第一表面及該第二表面上的光具有自400 nm至700 nm計算的、小於5%的一平均透射百分數。
  33. 如請求項29至30中任一項所述之窗口,其中該第一分層膜及該第二分層膜的交替層的數量、厚度、數目、及材料經組態,使得該窗口對以小於或等於60°的入射角入射於該第一表面及該第二表面上的光具有在1400 nm與1600 nm之間的該50 nm相關波長範圍上計算的、大於85%的一平均P偏振透射率及一平均S偏振透射度。
  34. 如請求項33所述之窗口,其中以小於或等於60°的入射角入射於該第一表面及該第二表面上的光在1400 nm與1600 nm之間的該50 nm相關波長範圍上計算的該平均P偏振透射率及該平均S偏振透射度大於92%。
  35. 如請求項29至30中任一項所述之窗口,其中該第一分層膜及該第二分層膜的交替層的數量、厚度、數目、及材料經組態,使得該窗口對垂直入射於該第一分層膜上的光具有在整個可見光譜上計算的、小於或等於10%的一平均反射率。
  36. 如請求項29至30中任一項所述之窗口,其中該第一分層膜及該第二分層膜的交替層的數量、厚度、數目、及材料經組態,使得該窗口對垂直入射於該第一表面及該第二表面上的光具有在1400 nm與1600 nm之間的該50 nm相關波長範圍上計算的、大於95%的一平均百分數透射率。
  37. 如請求項29至30中任一項所述之窗口,其中該分層膜處藉由Berkovich壓頭硬度試驗量測的該最大硬度為至少10 GPa。
  38. 如請求項29至30中任一項所述之窗口,其中該第一分層膜處藉由Berkovich壓頭硬度測試量測的一硬度在300 nm至2000 nm的一深度範圍上為至少8 GPa。
  39. 如請求項29至30中任一項所述之窗口,其中: 最遠離該基板的該第一分層膜的該些交替層中之一者形成該窗口的一終端表面材料,該窗口的該終端表面材料包含該較低折射率材料, 該第一分層膜包含由該一或多個較高折射率材料中之一者形成並具有大於或等於1500 nm且小於或等於5000 nm的一厚度的一抗刮層。
  40. 如請求項39所述之窗口,其中: 該抗刮層藉由該第一分層膜的該一或多個較低折射率材料與該一或多個較高折射率材料的複數個交替層與該終端表面分離開,且 該抗刮層與該終端表面分離開至少1000 nm。
  41. 如請求項29至30中任一項所述之窗口,其中該第二分層膜的該一或多個較高折射率材料包含矽。
  42. 如請求項41所述之窗口,其中該第二分層膜包含兩個或兩個以上矽層。
  43. 如請求項42所述之窗口,其中最近接該基板的該第二分層膜的一矽層包含該兩個或兩個以上矽層中之最小厚度。
  44. 如請求項43所述之窗口,其中含在該第二分層膜中的該些矽層的一組合厚度大於或等於250 nm。
  45. 如請求項44所述之窗口,其中該組合厚度大於或等於500 nm。
  46. 如請求項44所述之窗口,其中該第二分層膜中該一或多個較高折射率材料的一層不是矽。
  47. 一種用於一感測系統的窗口,其包含: 一基板,包含一第一表面及一第二表面,該第一表面及該第二表面是該基板的主表面; 一第一分層膜,設置於該基板的該第一表面上,該第一分層膜包含一或多個較高折射率材料與一或多個較低折射率材料的多個交替層,其中該第一分層膜的該一或多個較高折射率材料的折射率高於該第一分層膜的該一或多個較低折射率材料的折射率; 一第二分層膜,設置於該基板的該第二表面上,該第二分層膜包含一或多個較高折射率材料與一或多個較低折射率材料的多個交替層,其中該第二分層膜的該一或多個較高折射率材料的折射率高於該第二分層膜的該一或多個較低折射率材料的折射率,其中該第二分層膜的該一或多個較高折射率材料包含矽;及 一最大硬度,在該第一分層膜處藉由Berkovich壓頭硬度試驗量測,為至少8 GPa, 其中該第一分層膜及該第二分層膜的該些交替層的數量、厚度、數目、及材料經組態,使得該窗口具有: 以小於或等於15°的角度入射於該第一表面及該第二表面上的光在1400 nm與1600 nm之間的一50 nm相關波長範圍上計算的、小於1%的一平均反射率;及 以小於或等於15°的入射角入射於該第一表面及該第二表面上的光在1400 nm與1600 nm之間的該50 nm相關波長範圍上計算的、大於90%的一平均百分數透射率。
  48. 如請求項47所述之窗口,其中該第一分層膜及該第二分層膜的該些交替層的數量、厚度、數目、及材料經組態,使得該窗口對以小於或等於15°的入射角入射於該第一表面及該第二表面上的光具有自400 nm至700 nm計算的、小於5%的一平均透射百分數。
  49. 如請求項47至48中任一項所述之窗口,其中該第一分層膜及該第二分層膜的該些交替層的數量、厚度、數目、及材料經組態,使得該窗口對以小於或等於60°的入射角入射於該第一表面及該第二表面上的光具有在1400 nm與1600 nm之間的該50 nm相關波長範圍上計算的、大於85%的一平均P偏振透射率及一平均S偏振透射度。
  50. 如請求項49所述之窗口,其中以小於或等於60°的入射角入射於該第一表面及該第二表面上的光在1400 nm與1600 nm之間的該50 nm相關波長範圍上計算的該平均P偏振透射率及該平均S偏振透射度大於92%。
  51. 如請求項47至48中任一項所述之窗口,其中該第一分層膜及該第二分層膜的交替層的數量、厚度、數目、及材料經組態,使得針對該第一分層膜上小於或等於60°的入射角,該窗口具有小於或等於45的一CIELAB L*值。
  52. 如請求項51所述之窗口,其中針對該第一分層膜上小於或等於60°的入射角,該CIELAB L*值小於或等於30。
  53. 如請求項47至48中任一項所述之窗口,其中該第一分層膜及該第二分層膜的該些交替層的數量、厚度、數目、及材料經組態,使得在自該第一分層膜的一側觀看時,該窗口具有大於或等於-6且小於或等於6的CIELAB a*值及b*值。
  54. 如請求項47至48中任一項所述之窗口,其中該第一分層膜及該第二分層膜的交替層的數量、厚度、數目、及材料經組態,使得該窗口對垂直入射於該第一分層膜上的光具有在整個可見光譜上計算的、小於或等於10%的一平均反射率。
  55. 如請求項47至48中任一項所述之窗口,其中: 最遠離該基板的該第一分層膜的該些交替層中之一者形成該窗口的一終端表面材料,該窗口的該終端表面材料包含該較低折射率材料, 該第一分層膜包含由該一或多個較高折射率材料中之一者形成並具有大於或等於1500 nm且小於或等於5000 nm的一厚度的一抗刮層。
  56. 如請求項55所述之窗口,其中: 該抗刮層藉由該第一分層膜的該一或多個較低折射率材料與該一或多個較高折射率材料的複數個交替層與該終端表面分離開,且 該抗刮層與該終端表面分離開至少1000 nm。
  57. 如請求項47至48中任一項所述之窗口,其中該第二分層膜包含兩個或兩個以上矽層。
  58. 如請求項57所述之窗口,其中最近接該基板的該第二分層膜的一矽層包含該兩個或兩個以上矽層中之最小厚度。
  59. 如請求項57所述之窗口,其中含在該第二分層膜中的該些矽層的一組合厚度大於或等於250 nm。
  60. 如請求項59所述之窗口,其中該組合厚度大於或等於500 nm。
  61. 如請求項59所述之窗口,其中該第二分層膜中該一或多個較高折射率材料的一層不是矽。
  62. 如請求項61所述之窗口,其中該第二分層膜中該一或多個較高折射率材料的不是矽的該層是最近接該基板的該一或多個較高折射率材料的該層。
TW111139403A 2021-10-20 2022-10-18 用於紅外線感測系統且具有低可見反射率及透射率抗反射膜之硬化光學窗口 TW202340745A (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US202163257814P 2021-10-20 2021-10-20
US63/257,814 2021-10-20
US202263344147P 2022-05-20 2022-05-20
US63/344,147 2022-05-20
US202263410320P 2022-09-27 2022-09-27
US63/410,320 2022-09-27

Publications (1)

Publication Number Publication Date
TW202340745A true TW202340745A (zh) 2023-10-16

Family

ID=84245900

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111139403A TW202340745A (zh) 2021-10-20 2022-10-18 用於紅外線感測系統且具有低可見反射率及透射率抗反射膜之硬化光學窗口

Country Status (2)

Country Link
TW (1) TW202340745A (zh)
WO (1) WO2023069262A1 (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5398133A (en) * 1993-10-27 1995-03-14 Industrial Technology Research Institute High endurance near-infrared optical window
US9140543B1 (en) 2011-05-25 2015-09-22 Corning Incorporated Systems and methods for measuring the stress profile of ion-exchanged glass
TWI821234B (zh) * 2018-01-09 2023-11-11 美商康寧公司 具光改變特徵之塗覆製品及用於製造彼等之方法
KR20220016884A (ko) * 2019-06-05 2022-02-10 코닝 인코포레이티드 적외선 센싱 시스템용 반사-방지, 반사 및 흡수층을 갖는 강화된 광학 윈도우

Also Published As

Publication number Publication date
WO2023069262A1 (en) 2023-04-27

Similar Documents

Publication Publication Date Title
TWI783998B (zh) 反射的、著色的或顏色偏移的抗刮塗層和製品
CN213210525U (zh) 用于传感系统的视窗和lidar系统
CN213210526U (zh) 用于感测系统的窗口
US11906699B2 (en) Inorganic oxide articles with thin, durable anti reflective structures
US20240036236A1 (en) Cover glass articles for camera lens and sensor protection and apparatus with the same
CN111247458B (zh) 混合梯度干涉硬涂层
CN114442202B (zh) 混合梯度干涉硬涂层
WO2023278224A1 (en) Articles with thin, durable anti‑reflection coatings with extended infrared transmission
TW202402137A (zh) 用於紅外線感測器之具高硬度及抗反射性質之蓋物件
TW202340745A (zh) 用於紅外線感測系統且具有低可見反射率及透射率抗反射膜之硬化光學窗口
WO2024074137A1 (en) Hardened optical windows with anti-reflective films having low visible reflectance and transmission for infrared sensing systems
CN118140164A (zh) 用于红外线感测系统且具有低可见反射率及透射率抗反射膜的硬化光学窗口
WO2023091305A1 (en) Hardened optical windows with anti-reflective films having low reflectance and high transmission in multiple spectral ranges
TW202348579A (zh) 用於光檢測及測距(lidar)應用之耐用光學窗
TW202403338A (zh) 用於紅外線感測系統的積層窗