TW202338734A - Method and image processor unit for processing image data - Google Patents

Method and image processor unit for processing image data Download PDF

Info

Publication number
TW202338734A
TW202338734A TW111149959A TW111149959A TW202338734A TW 202338734 A TW202338734 A TW 202338734A TW 111149959 A TW111149959 A TW 111149959A TW 111149959 A TW111149959 A TW 111149959A TW 202338734 A TW202338734 A TW 202338734A
Authority
TW
Taiwan
Prior art keywords
frame
motion vector
motion
block
reliability
Prior art date
Application number
TW111149959A
Other languages
Chinese (zh)
Inventor
亞瑪尼 諾哈 艾爾
格雷戈爾 施維奧
Original Assignee
德商夢想芯片技術股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德商夢想芯片技術股份有限公司 filed Critical 德商夢想芯片技術股份有限公司
Publication of TW202338734A publication Critical patent/TW202338734A/en

Links

Images

Classifications

    • G06T5/90
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration by the use of more than one image, e.g. averaging, subtraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/223Analysis of motion using block-matching
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20021Dividing image into blocks, subimages or windows
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • G06T2207/20221Image fusion; Image merging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • H04N19/521Processing of motion vectors for estimating the reliability of the determined motion vectors or motion vector field, e.g. for smoothing the motion vector field or for correcting motion vectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/144Movement detection
    • H04N5/145Movement estimation

Abstract

The invention refers to a method for processing image data (IMGRAW) of an image sensor (4), wherein the image data comprising a burst of frames captured by the image sensor (4) per image, each frame comprising a raw matrix of pixels. The method comprises the steps of: (A) determining motion vectors (MV1...N). wherein each forward motion vector in forward direction represents the displacement of a block in a selected anchor frame of the burst of frames to the best-matching block in an respective alternate frame of the burst of frames and each backward motion vector in backward direction represents the displacement of a block in a respective alternate frame of the burst of frames to the best-matching block in an selected anchor frame of the burst of frames; (B) determining reliability factors for the motion vectors determined in step (A) to assign the reliability of the respective motion vector for a given block by use of the difference between the forward motion vector and the related backward motion vector, wherein the reliability increases with decreasing difference; (C) aligning the frames of the burst of frames for an image, wherein the motion is compensated by use of weighted motion vectors, wherein the motion vectors are weighted with the respective reliability factor determined in step (B).

Description

用於處理影像資料的方法及影像處理器單元Method and image processor unit for processing image data

本發明係關於一種用於處理影像感測器之影像資料的方法,其中影像資料包含每影像的原始像素矩陣,亦即原始影像資料。The present invention relates to a method for processing image data of an image sensor, wherein the image data includes the original pixel matrix of each image, that is, the original image data.

本發明進一步係關於一種用於處理由影像感測器提供之原始影像資料的影像處理器單元,該影像感測器包含提供每影像之原始像素矩陣的感測器陣列。The invention further relates to an image processor unit for processing raw image data provided by an image sensor, the image sensor comprising a sensor array providing a matrix of raw pixels per image.

另外,本發明係關於一種經配置以進行前述方法之步驟的電腦程式。Furthermore, the invention relates to a computer program configured to perform the steps of the aforementioned method.

數位成像器廣泛用於日常消費者產品,諸如智慧型電話、平板電腦、筆記型電腦、攝影機、小汽車及穿戴型裝置中。使用小型成像感測器正變成趨勢以維持體積小、重量輕的產品形式因數以及降低產品成本。即使在使用具有高數目百萬像素的成像感測器時,諸如常見拜耳彩色濾光片陣列的彩色濾光片陣列(colour filter array,CFA)通常用以降低成本。使用彩色濾光片陣列限制或減小空間解析度,此是由於全色彩影像經由取樣不足色彩通道的插入(去馬賽克)產生。Digital imagers are widely used in everyday consumer products such as smartphones, tablets, laptops, cameras, cars and wearable devices. The use of small imaging sensors is becoming a trend to maintain small, lightweight product form factors and reduce product costs. Even when imaging sensors with high numbers of megapixels are used, color filter arrays (CFA), such as the common Bayer color filter array, are often used to reduce costs. The use of color filter arrays limits or reduces spatial resolution because full-color images are produced through the interpolation (demosaicing) of undersampled color channels.

解析度/動態範圍/雜訊限制驅動工程師開發多圖框計算攝影類影像處理管線,該等影像處理管線亦被稱作短脈衝影像信號處理器(burst image signal processor,BISP)且為已知的以解決解析度限制、動態範圍限制及雜訊限制。在BISP中,較佳藉由預定義(例如,可程式化)設定來俘獲圖框短脈衝,且將圖框融合在一起以達成多種目標。Resolution/dynamic range/noise limitations drive engineers to develop multi-frame computational photography image processing pipelines, also known as burst image signal processors (BISPs). To solve resolution limitations, dynamic range limitations and noise limitations. In BISP, frame bursts are captured preferably through predefined (eg, programmable) settings and the frames are blended together to achieve multiple goals.

S. Hasinoff、D. Sharlet、R. Geiss、A. Adams、J. T. Barron、F. Kainz、J. Chen及M. Levoy的「Burst photography for high dynamic range and low-light imaging on mobile cameras」(ACM Transactions on Graphics,第35卷第6號,2016年11月,SIGGRAPH Asia 2016)描述多圖框技術,其經設計以減小雜訊且增大動態範圍。一短脈衝的曝光不足圖框經俘獲,經對準且合併以產生具有高位元深度的單一中間影像,且色調映射此影像以產生高解析度照片。合併方法在空間頻域中對影像圖塊進行操作,該等圖塊在每一空間尺寸上重疊一半。藉由在重疊圖塊之間平滑地混合,在圖塊邊界處視覺上有異議的不連續被避免。另外,訊窗函數必須應用至圖塊以當在DFT域中操作時避免邊緣假影。"Burst photography for high dynamic range and low-light imaging on mobile cameras" by S. Hasinoff, D. Sharlet, R. Geiss, A. Adams, J. T. Barron, F. Kainz, J. Chen, and M. Levoy (ACM Transactions on Graphics, Volume 35, Number 6, November 2016, SIGGRAPH Asia 2016) describes multi-frame technology designed to reduce noise and increase dynamic range. A short pulse of underexposed frames is captured, aligned and combined to produce a single intermediate image with high bit depth, and this image is tone mapped to produce a high-resolution photograph. The merging method operates in the spatial frequency domain on image tiles that overlap by half at each spatial dimension. By blending smoothly between overlapping tiles, visually objectionable discontinuities at tile boundaries are avoided. Additionally, windowing functions must be applied to the tiles to avoid edge artifacts when operating in the DFT domain.

於在此參考中存在之原始影像對準解決方案中,RGGB拜耳原始資料中的每一2×2區塊(四邊形)經平均以產生尺寸縮小的灰階影像(原始CFA資料的1/4解析度)。多尺度(錐體)運動估計對尺寸縮小灰階影像執行。追求區塊匹配用於在每一尺度下進行運動估計,其中L2成本函數在影像錐體的所有層級經最小化,除了在最精細尺度(尺寸縮小灰階影像)處外,其中L1成本函數經最小化。在錐體之所有尺度下的運動估計期間搜尋子像素層級準確性,除了在像素層級準確性經搜尋的最精細尺度處外。此策略有效地限制原始圖框之間的像素移位為2 的倍數。此約束被視為足以用於應用多圖框去噪及高動態範圍(high-dynamic-range,HDR)融合的用途。 In the original image alignment solution present in this reference, each 2×2 block (quad) in the RGGB Bayer raw data is averaged to produce a reduced-size grayscale image (1/4 resolution of the original CFA data Spend). Multi-scale (cone) motion estimation is performed on downsized grayscale images. Pursuing block matching is used for motion estimation at each scale, where the L2 cost function is minimized at all levels of the image cone except at the finest scale (reduced grayscale image), where the L1 cost function is minimized minimize. Subpixel-level accuracy is searched during motion estimation at all scales of the cone except at the finest scale where pixel-level accuracy is searched. This strategy effectively limits the pixel shift between original frames to a multiple of 2. This constraint is considered sufficient for applying multi-frame denoising and high-dynamic-range (HDR) fusion.

B. Wronski、I. Garcia-Dorado、M. Ernst、D. Kelly、M. Krainin、C. K. Liang、M. Levoy及P. Milanfar的「Handheld Multi-Frame Super-Resolution」( ACM Transactions on Graphics,第38卷第4號,文章28,2019年7月,SIGGRAPH 2019)揭示多圖框超級解析度MFSR,其中由正常手抖或手顫抖在子像素尺寸上移位的一短脈衝的原始圖框經融合以產生較高解析度圖框。所俘獲短脈衝的原始(拜耳CFA)影像輸入至演算法。每一圖框與單一基本圖框局部對準。每一像素處每一圖框的貢獻經由核心迴歸來估計,且此等貢獻每色彩通道分離地積聚。核心形狀基於所估計之局部梯度來調整,且樣本貢獻基於穩健性模型來加權,此情形使用對準場及自每一像素周圍之鄰域收集的局部統計資料計算針對每一圖框的每像素權重。最終合併之RGB影像藉由正規化每通道之積聚結果來獲得。合併一短脈衝圖框之此程序具有提升所感知解析度或簡單地使得能夠選擇最佳照片或至零快門滯後使用狀況之應用的效應。提議盧克-卡納德(Lukas-Kanade)光學流影像翹曲的三個反覆之額外步驟,此情形達成子像素層級準確性,此是由於像素層級準確性並不足以用於多圖框超級融合演算法的用途。"Handheld Multi-Frame Super-Resolution" by B. Wronski, I. Garcia-Dorado, M. Ernst, D. Kelly, M. Krainin, C. K. Liang, M. Levoy, and P. Milanfar (ACM Transactions on Graphics, pp. 38 Volume 4, Article 28, July 2019, SIGGRAPH 2019) reveals multi-frame super-resolution MFSR, in which a short pulse of raw frames shifted in sub-pixel dimensions by normal hand shake or hand tremor is fused to produce higher resolution frames. The raw (Bayer CFA) image of the captured short pulse is input to the algorithm. Each frame is locally aligned with a single basic frame. The contribution of each frame at each pixel is estimated via kernel regression, and these contributions are accumulated separately per color channel. The kernel shape is adjusted based on the estimated local gradient, and the sample contributions are weighted based on the robustness model, which is calculated per pixel for each frame using the alignment field and local statistics collected from the neighborhood around each pixel. weight. The final merged RGB image is obtained by normalizing the accumulation results of each channel. This process of incorporating a short pulse frame has the effect of increasing the perceived resolution or simply enabling applications such as being able to select the best photo or to zero shutter lag usage. Propose three iterative additional steps of Lukas-Kanade optical flow image warping, which achieve sub-pixel level accuracy because pixel-level accuracy is not sufficient for multi-frame super The purpose of the fusion algorithm.

最現代數位單一透鏡攝影機(single lens camera,SLR)支援連續或短脈衝拍攝。短脈衝模式經支援以使得能夠選擇最佳照片,或執行複雜的多圖框處理,諸如多圖框超級解析度特徵。短脈衝速率(亦即,在快速交替中獲得圖框的數目)發生變化,但隨著攝影機技術發展增大。The most modern digital single lens cameras (SLR) support continuous or short-pulse shooting. Burst mode is supported to enable selecting the best photo, or performing complex multi-frame processing, such as the multi-frame super-resolution feature. The burst rate (that is, the number of frames obtained in rapid alternation) varies, but has increased as camera technology has evolved.

許多多圖框(短脈衝)處理解決方案之開發中的本質步驟為影像對準。在此步驟中,所俘獲圖框之間的運動或所選擇圖框關於錨定(參考)圖框之運動經估計,且圖框隨後經對準或暫存以補償全域運動及/或局部運動。對準圖框可接著依據所欲特徵以多種方式融合。影像對準可發生於原始彩色濾光片陣列(colour- filter array,CFA)域或全色彩(例如,RGB)域中,可經設計以達成像素層級準確性或子像素層級準確性,且可經定製以擬合於多種運動模型,諸如平移、類似性、仿射及投影運動模型。An essential step in the development of many multi-frame (short pulse) processing solutions is image alignment. In this step, motion between captured frames or motion of a selected frame with respect to an anchored (reference) frame is estimated, and the frames are then aligned or buffered to compensate for global motion and/or local motion. . The aligned frames can then be blended in a variety of ways depending on the desired features. Image alignment can occur in the native color filter array (CFA) domain or the full color (e.g., RGB) domain, can be designed for pixel-level accuracy or sub-pixel level accuracy, and can Customized to fit a variety of motion models, such as translation, similarity, affine, and projective motion models.

由於多圖框處理之目標通常為克服成像感測器限制且提升最終影像品質,因此原始CFA域中圖框的對準(及融合)為較佳的。然而,原始域中的影像對準主要歸因於CFA中,例如標準RGGB拜耳感測器中的 典型色彩取樣不足(50%綠色、25%綠色及25%紅色)提出挑戰。此外,有必要的是對準演算法達成任意精準度/準確性以支援要求像素層級準確性或子像素層級準確性的解決方案。此外,在即時資源約束環境中(如在許多消費者攝影機產品中),所要的是,影像對準歸因於速度、功率及記憶體約束將為計算上低廉的。 Since the goal of multi-frame processing is usually to overcome imaging sensor limitations and improve final image quality, the alignment (and fusion) of frames in the original CFA domain is optimal. However, image alignment in the raw domain poses challenges primarily due to insufficient color sampling (50% green, 25% green, and 25% red) typical of standard RGGB Bayer sensors such as in CFA. Additionally, it is necessary for the alignment algorithm to achieve arbitrary precision/accuracy to support solutions requiring pixel-level accuracy or sub-pixel-level accuracy. Furthermore, in real-time resource constrained environments (as in many consumer camera products), it is desirable that image alignment will be computationally inexpensive due to speed, power, and memory constraints.

影像對準包括短脈衝圖框中的運動估計。在此項技術中熟知支援全域及局部運動估計以及多種運動模型的範圍為基於像素之解決方案至基於特徵之解決方案的運動估計技術。Image alignment involves motion estimation in short burst frames. Motion estimation techniques that support global and local motion estimation and multiple motion models ranging from pixel-based solutions to feature-based solutions are well known in the art.

L. C. Manikandan及R. K. Selvakumar的「A Study on Block Matching Algorithms for Motion Estimation in Video Coding」(International Journal of Scientific & Engineering Research,第5卷、期號7,2014年7月)描述用於運動估計中的不同區塊匹配演算法。經由窮盡搜尋(強力搜尋)的區塊匹配為計算上相當昂貴的。搜尋之顯著加速可例如經由菱形搜尋或其他快速搜尋演算法來達成。"A Study on Block Matching Algorithms for Motion Estimation in Video Coding" by L. C. Manikandan and R. K. Selvakumar (International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July 2014) describes the different methods used in motion estimation. Block matching algorithm. Block matching via exhaustive search (brute force search) is computationally quite expensive. Significant speedup of searches may be achieved, for example, by diamond searches or other fast search algorithms.

評估R. Yaakob、A. Aryanfar、A. A. Halin及N. Sulaiman的「A Comparison of Different Block Matching Algorithms for Motion Estimation」(The 4th International Conference on Electrical Engineering and Informatics (ICEEI 2013))的用於運動估計之四種不同區塊匹配演算法,即完全搜尋窮盡搜尋(Exhaustive Search,ES)、三步驟搜尋(Three-Step Search,NTSS)、簡單且高效搜尋(Simple and Efficient Search,SES)及自適應十字圖案搜尋(Adaptive Rood Pattern Search,ARPS)。Evaluation of R. Yaakob, A. Aryanfar, A. A. Halin and N. Sulaiman's "A Comparison of Different Block Matching Algorithms for Motion Estimation" (The 4th International Conference on Electrical Engineering and Informatics (ICEEI 2013)) for motion estimation Part 4 Different block matching algorithms, namely Exhaustive Search (ES), Three-Step Search (NTSS), Simple and Efficient Search (SES) and Adaptive Cross Pattern Search (Adaptive Rood Pattern Search, ARPS).

R. Hartley及A. Zisserman的「Multiple View Geometry in Computer Vision」(University Press, Cambridge, 2004)及G. H. Golub及C. F. Van Loan的Matrix Computations(第二版,1989年)各自詳細描述用於處理影像感測器資料的演算法。R. Hartley and A. Zisserman's "Multiple View Geometry in Computer Vision" (University Press, Cambridge, 2004) and G. H. Golub and C. F. Van Loan's Matrix Computations (2nd edition, 1989) each describe in detail the methods used to process image sense. Algorithm for detector data.

本發明之目標為提供一種用於處理影像感測器之影像資料的改良方法及影像處理器單元。The object of the present invention is to provide an improved method and image processor unit for processing image data of an image sensor.

目標藉由包含請求項1之特徵的方法、包含請求項18之特徵的影像處理器單元及包含請求項21之特徵的電腦程式來達成。較佳實施例描述於附屬請求項中。The object is achieved by a method having the features of claim 1 , an image processor unit having the features of claim 18 and a computer program having the features of claim 21 . Preferred embodiments are described in the accompanying claims.

為了達成圖框或其部分(例如,圖框中之區塊)的改良之對準,該方法包含以下步驟: A) 判定運動向量,其中前向方向上之每一前向運動向量表示該短脈衝圖框之一所選擇錨定圖框中一區塊至該短脈衝圖框之一各別替代圖框中之最佳匹配區塊的移位,且後向方向上之每一後向運動向量表示該短脈衝圖框之一各別替代圖框中一區塊至該短脈衝圖框中之一所選擇錨定圖框中之最佳匹配區塊的移位; B) 判定針對在步驟A)中判定之該等運動向量的可靠性因數以利用該前向運動向量與該相關後向運動向量之間的差來為一給定區塊指派該各別運動向量的可靠性,其中該可靠性隨著差降低而增大; C) 對準一影像之該短脈衝圖框的該等圖框,其中該運動利用經加權運動向量來補償,其中該等運動向量藉由步驟B)中判定之該各別可靠性因數來加權。 In order to achieve improved alignment of the frame or parts thereof (e.g., blocks within the frame), the method includes the following steps: A) Determine motion vectors, where each forward motion vector in the forward direction represents a block in the selected anchor frame of one of the burst frames to a respective alternative frame of the burst frame The shift of the best matching block, and each backward motion vector in the backward direction represents one of the short pulse frames respectively replacing a block in the frame to one of the short pulse frames selected The displacement of the best matching block in the anchor frame; B) Determine reliability factors for the motion vectors determined in step A) to assign the respective motion vectors to a given block using the difference between the forward motion vector and the associated backward motion vector The reliability of , where the reliability increases as the difference decreases; C) the frames aligned with the burst frame of an image, wherein the motion is compensated using weighted motion vectors, wherein the motion vectors are weighted by the respective reliability factors determined in step B) .

對準可用以暫存圖框或其部分至相關圖框或其部分中的各別影像位置。圖框指由影像感測器俘獲之完整影像,或完整影像的部分,亦即具有特定完整大小或減小大小的圖框。圖框之對準可例如藉由利用完整圖框或影像之全域運動向量對準完整圖框或完整影像或藉由利用相關區塊之各別局部運動向量來對準圖框的複數個區塊來執行。Alignment can be used to temporarily store a frame or portion thereof to a respective image position within a related frame or portion thereof. A frame refers to a complete image captured by an image sensor, or a portion of a complete image, that is, a frame with a specific full size or reduced size. The frame may be aligned, for example, by aligning the complete frame or the complete image using global motion vectors of the complete frame or image, or by aligning multiple blocks of the frame using respective local motion vectors of the associated blocks. to execute.

舉例而言,針對步驟A)至C)慮及之該等圖框可為由該影像感測器俘獲或能夠由該影像感測器俘獲的一較大圖框中之一所選擇關注區(ROI)。For example, the frames considered for steps A) to C) may be a selected region of interest (one of a larger frame captured or capable of being captured by the image sensor). ROI).

使用經加權運動向量具有藉由對更可靠運動向量進行過度加權且對較不可靠運動向量進行輕度加權來改良運動向量之品質的效應。此含義中之加權亦包括使用僅兩個加權因數零及一來慮及具有高於給定臨限值之可靠性的運動向量且完全忽略具有低於給定臨限值之可靠性的其他運動向量。Using weighted motion vectors has the effect of improving the quality of the motion vectors by over-weighting more reliable motion vectors and lightly weighting less reliable motion vectors. Weighting in this sense also includes using only two weighting factors zero and one to take into account motion vectors with reliability above a given threshold and completely ignoring others with reliability below the given threshold. motion vector.

取決於臨限值之定義,「高於」或「超出」亦可理解為「等於且高於」或替代地「低於」可理解為「等於或低於」。Depending on the definition of the threshold value, "above" or "exceeds" may also be understood as "equal to and above" or alternatively "below" may be understood as "equal to or below".

方法可藉由直接自影像感測器之原始色彩濾光片陣列(colour filter array,CFA)影像資料估計運動來執行。雙向運動估計允許錨定(參考)圖框的自適應選擇。經由不可靠運動之顯式識別的運動估計結果估計、導致改良之穩健性。The method may be performed by estimating motion directly from raw color filter array (CFA) image data of the image sensor. Bidirectional motion estimation allows adaptive selection of anchor (reference) frames. Motion estimation results via explicit identification of unreliable motion estimates, leading to improved robustness.

既不要求反覆操作/最佳化亦不要求多尺度/錐體表示,使得方法可以減小之計算努力及硬體花費來在數位信號處理器或影像資料處理軟體中實施。方法允許以低計算複雜性實施。有可能的是以在數個像素中是線性的複雜性來實施方法。Neither iteration/optimization nor multi-scale/pyramidal representation is required, allowing the method to be implemented in a digital signal processor or image data processing software with reduced computational effort and hardware expense. The method allows implementation with low computational complexity. It is possible to implement the method with a complexity that is linear in several pixels.

運動可以任意準確性,例如像素層級及/或子像素層級準確性來估計。任意準確性下的子像素層級運動估計為在不使用任何反覆或多尺度程序情況下為可達成的。所估計之子像素層級運動向量可用以導出多種運動模型的參數,從而支援全域及/或局部運動。Motion can be estimated with arbitrary accuracy, such as pixel-level and/or sub-pixel-level accuracy. Subpixel-level motion estimation with arbitrary accuracy is achievable without using any iteration or multi-scale procedures. The estimated sub-pixel level motion vectors can be used to derive parameters of various motion models to support global and/or local motion.

方法支援全域運動以及局部運動,及不同運動模型。The method supports global motion and local motion, and different motion models.

方法可經實施以在針對具有最高取樣/最強回應之所選擇色彩通道的原始域中執行真實及直接影像暫存(亦即,對準)。由於CFA中其他色彩通道關於所選擇色彩通道的偏移為已知且固定的,因此彼等色彩通道之暫存隱含地進行而無需任何額外計算努力。Methods may be implemented to perform true and direct image staging (ie, alignment) in the original domain for the selected color channel with the highest sampling/strongest response. Since the offsets of the other color channels in the CFA with respect to the selected color channel are known and fixed, the temporary storage of their color channels is performed implicitly without any additional computational effort.

方法藉助於可靠性準則來顯式地偵測不可靠運動向量。由於前向及後向運動向量的可用性,存在參考圖框之自適應/可變選擇的可能性。The method explicitly detects unreliable motion vectors by means of reliability criteria. Due to the availability of forward and backward motion vectors, there is the possibility of adaptive/variable selection of reference frames.

多個不同運動向量可靠性規則可經應用以獲得針對各別圖框或其部分的至少一個可靠性因數,例如針對區塊的一組可靠性因數,其中該集合之每一可靠性因數由相關可靠性規則獲得,使得集合包括藉由不同預定義可靠性規則獲得的可靠性因數。A plurality of different motion vector reliability rules may be applied to obtain at least one reliability factor for a respective frame or part thereof, such as a set of reliability factors for a block, where each reliability factor of the set is represented by the associated Reliability rules are obtained such that the set includes reliability factors obtained by different predefined reliability rules.

利用第一可靠性規則,倘若該前向運動向量與相關後向運動向量之間的該差超出一預定義臨限值,則可指派經所得之為零(0)之一可靠性因數至一組前向運動向量及相關後向運動向量,例如至針對各別區塊或圖框判定且用於進一步處理的運動向量,使得該等運動向量在該進一步處理中被忽略。針對各別區塊或圖框判定且用於進一步處理的運動向量可為例如僅前向運動向量。Using a first reliability rule, if the difference between the forward motion vector and the associated backward motion vector exceeds a predefined threshold, the resulting reliability factor of zero (0) may be assigned to a A set of forward motion vectors and associated backward motion vectors, eg, to motion vectors determined for respective blocks or frames and used for further processing, such that these motion vectors are ignored in the further processing. The motion vectors determined for individual blocks or frames and used for further processing may be, for example, only forward motion vectors.

利用第一可靠性規則,倘若該前向運動向量與相關後向運動向量之間的該差低於一預定義運動一致性臨限值狀,則可指派為一(1)之一可靠性因數至一組前向運動向量及相關後向運動向量,例如至針對各別區塊或圖框判定且用於進一步處理的運動向量,使得該等運動向量在該進一步處理中被充分慮及。針對各別區塊或圖框判定且用於進一步處理的運動向量可為例如僅前向運動向量。Using a first reliability rule, if the difference between the forward motion vector and the associated backward motion vector is below a predefined motion consistency threshold, a reliability factor of one (1) may be assigned To a set of forward motion vectors and associated backward motion vectors, eg to motion vectors determined for respective blocks or frames and used for further processing, such that these motion vectors are fully taken into account in the further processing. The motion vectors determined for individual blocks or frames and used for further processing may be, for example, only forward motion vectors.

前向運動向量與相關後向運動向量之間的差可判定為藉由例示性公式由最小絕對偏差計算的L1標準絕對差和(sum of absolute difference,SAD): , 其中 表示前向運動向量,且 表示後向運動向量,其中i = 1,2 ……, M,且j = 1,2, ……, N,其中M及N為M × N圖框的大小。 The difference between the forward motion vector and the associated backward motion vector can be determined as the L1 sum of absolute difference (SAD) calculated from the minimum absolute deviation by the illustrative formula: , in represents the forward motion vector, and Represents the backward motion vector, where i = 1,2..., M, and j = 1,2,..., N, where M and N are the sizes of the M × N frame.

利用第二可靠性規則,倘若運動向量之x方向上的x分量或y方向上之y分量中的至少一者的量值等於該區塊匹配搜尋大小,則可指派為零(0)的一可靠性因數至該運動向量。因此,若給定區塊之運動向量的x及/或y分量的量值經修剪至區塊匹配搜尋大小,則運動向量很可能為不可信的。否則,與此第二規則相關之可靠性因數可設定為一(1)。Using a second reliability rule, a motion vector may be assigned a value of zero (0) if the magnitude of at least one of the x component in the x direction or the y component in the y direction is equal to the block matching search size. Reliability factor to this motion vector. Therefore, if the magnitude of the x and/or y components of a given block's motion vector is trimmed to the block match search size, the motion vector is likely to be untrustworthy. Otherwise, the reliability factor associated with this second rule may be set to one (1).

利用第二可靠性規則,可利用該各別運動向量與相鄰區塊之運動向量的差來指派一可靠性因數至一給定區塊的一運動向量。此情形對圖框之運動向量場強加平滑度約束。Using the second reliability rule, a reliability factor can be assigned to a motion vector of a given block using the difference between the respective motion vector and the motion vector of the adjacent block. This situation imposes a smoothness constraint on the frame's motion vector field.

此情形可藉由如下操作來達成:倘若至少該運動向量之x方向上的該x分量之該量值與位於該所選擇區塊之直接及/或間接鄰域中的一組區塊之運動向量之x方向上之x分量的該平均量值之間的差超出一預定義臨限值,或至少該運動向量之y方向上之該y分量的該量值與位於該所選擇區塊之直接及/或間接鄰域中的一組區塊之運動向量的y方向上y分量之該平均量值之間的差超出一預定義臨限值,則指派為零(0)的第三規則可靠性因數至給定區塊的運動向量。This situation can be achieved by: if at least the magnitude of the x-component of the motion vector in the x-direction is consistent with the motion of a set of blocks located in the direct and/or indirect neighborhood of the selected block The difference between the average magnitude of the x-component of the vector in the x-direction exceeds a predefined threshold, or at least the magnitude of the y-component of the motion vector in the y-direction is located between the selected block The third rule of assigning zero (0) if the difference between the average magnitudes of the y-components in the y-direction of the motion vectors of a set of blocks in the direct and/or indirect neighborhood exceeds a predefined threshold Reliability factor to the motion vector of a given block.

在步驟a)中的區塊匹配期間,可計算絕對差和。第四規則可以識別僅高品質運動向量為可靠的目的來實施。第四規則可靠性因數可指派至利用絕對差和(SAD)判定之給定區塊之運動向量,給定區塊之運動向量對應於最佳匹配區塊的運動向量。因此,針對給定區塊在區塊匹配期間估計絕對差和SAD之後,對應於最佳匹配運動向量的SAD值與預定義臨限值相比較,且若該SAD值高於該臨限值,則對應運動向量被視為不可靠的,亦即為零的可靠性因數。否則,運動向量被視為可靠的,使得相關可靠性因數可設定為一。During block matching in step a), the sum of absolute differences can be calculated. The fourth rule can be implemented for the purpose of identifying only high-quality motion vectors. A fourth rule reliability factor may be assigned to the motion vector of a given block corresponding to the motion vector of the best matching block determined using a sum of absolute differences (SAD). Therefore, after estimating the absolute difference and SAD during block matching for a given block, the SAD value corresponding to the best matching motion vector is compared with a predefined threshold value, and if the SAD value is higher than the threshold value, Then the corresponding motion vector is considered unreliable, that is, has a reliability factor of zero. Otherwise, the motion vector is considered reliable, so that the associated reliability factor can be set to one.

倘若對應於該最佳匹配區塊之該運動向量的該絕對差和(SAD)超出一預定義臨限值,則可指派為零(0)的一可靠性因數。在該狀況下,運動向量對於影像之進一步處理被完全忽略。If the sum of absolute differences (SAD) of the motion vector corresponding to the best matching block exceeds a predefined threshold, a reliability factor of zero (0) may be assigned. In this case, motion vectors are completely ignored for further processing of the image.

總可靠性因數可藉由組合指派至給定區塊之運動向量的一組可靠性因數來計算。此情形可簡單地藉由使該組可靠性因數相乘來計算,該等可靠性因數利用相關運動向量的不同規則來判定。The overall reliability factor can be calculated by combining a set of reliability factors assigned to the motion vectors of a given block. This situation can be calculated simply by multiplying the set of reliability factors, which are determined using different rules for the associated motion vectors.

運動向量可例如藉由步驟C)中之各別總可靠性因數來加權。The motion vectors may be weighted, for example, by respective overall reliability factors in step C).

方法可利用用於評估影像之部分的匹配,詳言之區塊匹配的任何適用策略來執行。The method may be performed using any applicable strategy for evaluating matching of portions of an image, in particular block matching.

最佳匹配區塊可例如藉由以下操作來判定:計算一第一圖框中所選擇區塊與一第二圖框中搜尋下之區塊之間的該絕對差和(SAD),搜尋中之多個區塊在該第二圖框中具有彼此不同的相對位置;及判定該最佳匹配區塊為具有最小絕對差和(SAD)的區塊。The best matching block can be determined, for example, by calculating the sum of absolute differences (SAD) between the selected block in a first frame and the searched block in a second frame. Searching The plurality of blocks have different relative positions from each other in the second frame; and the best matching block is determined to be the block with the smallest sum of absolute differences (SAD).

一全域運動向量可藉由自圖框之該組經加權運動向量計算一平均運動向量來判定,該等經加權運動向量各自藉由各別總可靠性因數或針對圖框之給定區塊之運動向量判定的可靠性因數中之至少一者來加權。A global motion vector can be determined by calculating an average motion vector from the set of weighted motion vectors of the frame, each by a respective total reliability factor or for a given block of the frame. The motion vector determination is weighted by at least one of the reliability factors of the motion vector determination.

以子像素層級準確性估計運動可藉由以下步驟來達成: - 利用替代圖框之該各別全域運動向量來對準替代圖框與一所選擇錨定圖框; - 分別針對該替代圖框及錨定圖框中的每一對區塊判定子像素層級前向運動向量; - 藉由自針對該圖框之區塊判定的該組子像素層級前向運動向量計算平均運動向量來判定一全域子像素層級運動向量;及 - 利用針對替代圖框判定之全域子像素層級運動向量來對準該替代圖框與該錨定圖框。 Estimating motion with sub-pixel level accuracy can be achieved by following the following steps: - Align the alternative frame and a selected anchor frame using the respective global motion vectors of the alternative frame; - Determine the sub-pixel level forward motion vector for each pair of blocks in the alternative frame and anchor frame respectively; - determine a global sub-pixel level motion vector by calculating an average motion vector from the set of sub-pixel level forward motion vectors determined for the block of the frame; and - Align the alternative frame and the anchor frame using the global sub-pixel level motion vector determined for the alternative frame.

對於圖框之每一區塊,可判定各別局部子像素層級運動向量。可針對每一局部子像素層級運動向量來判定至少一個可靠性因數,且替代圖框中之區塊可利用針對替代圖框之各別區塊判定的局部子像素層級運動向量來與錨定圖框逐像素對準(亦即,對於圖框之每一區塊逐區塊分離)。For each block of the frame, a separate local sub-pixel level motion vector can be determined. At least one reliability factor can be determined for each local sub-pixel level motion vector, and the blocks in the replacement frame can be compared with the anchor map using the local sub-pixel level motion vectors determined for respective blocks of the replacement frame. Frames are aligned pixel by pixel (i.e., segmented tile by tile for each tile of the frame).

若諸如加速度計/陀螺儀及深度感測器的一些運動相關輔助感測器的資訊為可用的,則運動估計程序可由此資訊支援,且運動向量品質可經進一步改良。較佳地,感測器信號可用於錨定圖框及替代圖框中的每一者。此情形可用以解決例如運動模型對於全域運動為有效的且對於距成像系統並未在相同距離的物件可能並非充分準確的問題。If information from some motion-related auxiliary sensors such as accelerometers/gyros and depth sensors is available, the motion estimation procedure can be supported by this information and the motion vector quality can be further improved. Preferably, the sensor signal may be used for each of the anchor frame and the replacement frame. This situation can be used to solve problems where, for example, the motion model is valid for full range motion and may not be sufficiently accurate for objects that are not at the same distance from the imaging system.

影像感測器可俘獲影像資料,使得提供複數個色彩通道。此情形可能亦包括白色或灰色。Image sensors capture image data to provide multiple color channels. This may also include white or gray.

倘若每一圖框(亦即,影像)包含複數個色彩通道,則運動向量之估計對具有最高資訊密度的所選擇通道,亦即最高取樣色彩通道執行。在拜爾彩色濾光片陣列的狀況下,此色彩通道歸因於圖案R-G-G-B是綠色通道。方法因此包含以下步驟:選擇相較於複數個通道之其他通道之該資訊密度具有最高資訊密度的色彩通道;藉由在所選擇色彩通道中插入遺失像素來對準該選擇色彩通道之圖框的原始像素矩陣;及對此所選擇色彩通道之插入像素繼續進行步驟A)至C)。If each frame (ie, image) contains multiple color channels, then the estimation of motion vectors is performed on the selected channel with the highest information density, ie the highest sampled color channel. In the case of a Bayer color filter array, this color channel is the green channel due to the pattern R-G-G-B. The method therefore includes the following steps: selecting the color channel with the highest information density compared to the information density of the other channels of the plurality of channels; aligning the frame of the selected color channel by inserting missing pixels in the selected color channel Original pixel matrix; and proceed with steps A) to C) for the inserted pixels of this selected color channel.

目標亦藉由用於處理由影像感測器提供之原始影像資料的影像處理器單元來達成。該影像感測器包含提供由影像感測器按影像俘獲之圖框短脈衝的感測器陣列,每一圖框包含每影像的原始像素矩陣、原始像素矩陣。The goal is also achieved by an image processor unit for processing raw image data provided by the image sensor. The image sensor includes a sensor array that provides frame-by-frame short pulses captured by the image sensor. Each frame includes an original pixel matrix for each image, an original pixel matrix.

根據本發明,影像處理器單元經配置以: A) 判定運動向量,其中前向方向上之每一前向運動向量表示該短脈衝圖框之一所選擇錨定圖框中一區塊至該短脈衝圖框之一各別替代圖框中之最佳匹配區塊的移位,且後向方向上之每一後向運動向量表示該短脈衝圖框之一各別替代圖框中一區塊至該短脈衝圖框中之一所選擇錨定圖框中之最佳匹配區塊的移位; B) 判定針對在步驟A)中判定之該等運動向量的可靠性因數以利用該前向運動向量與該相關後向運動向量之間的差來為一給定區塊指派該各別運動向量的可靠性,其中該可靠性隨著差降低而增大;及 C) 對準一影像之該短脈衝圖框的該等圖框,其中該運動利用經加權運動向量來補償,其中該等運動向量藉由步驟B)中判定之該各別可靠性因數來加權。 According to the invention, the image processor unit is configured to: A) Determine motion vectors, where each forward motion vector in the forward direction represents a block in the selected anchor frame of one of the burst frames to a respective alternative frame of the burst frame The shift of the best matching block, and each backward motion vector in the backward direction represents one of the short pulse frames respectively replacing a block in the frame to one of the short pulse frames selected The displacement of the best matching block in the anchor frame; B) Determine reliability factors for the motion vectors determined in step A) to assign the respective motion vectors to a given block using the difference between the forward motion vector and the associated backward motion vector The reliability of , where the reliability increases as the difference decreases; and C) the frames aligned with the burst frame of an image, wherein the motion is compensated using weighted motion vectors, wherein the motion vectors are weighted by the respective reliability factors determined in step B) .

影像處理器單元經配置以藉由執行前述方法步驟來處理影像資料。The image processor unit is configured to process image data by performing the aforementioned method steps.

因此,目標進一步由包含請求項18、19或20中之一者之特徵的影像處理器單元來解決。目標由一種包含指令的電腦程式來進一步解決,在該程式由一處理單元執行時,該程式使得該處理單元進行前述方法的該等步驟。The object is therefore further solved by an image processor unit comprising the features of one of claims 18, 19 or 20. The object is further solved by a computer program containing instructions which, when executed by a processing unit, cause the processing unit to perform the steps of the aforementioned method.

第1圖為包含攝影機2及影像處理器單元3之電子裝置1的例示性方塊圖,該電子裝置1用於處理由攝影機2之影像感測器4提供的原始影像資料IMG RAWFigure 1 is an exemplary block diagram of an electronic device 1 including a camera 2 and an image processor unit 3. The electronic device 1 is used to process raw image data IMG RAW provided by the image sensor 4 of the camera 2.

影像感測器4包含像素陣列,使得原始影像IMG RAW為每影像之原始像素矩陣中的資料集。為了俘獲影像中之色彩,色彩濾光片陣列CFA提供於影像感測器4前方的光學路徑中。攝影機包含光學機械透鏡系統5,例如固定不受控制透鏡。 The image sensor 4 includes a pixel array, so that the original image IMG RAW is a data set in the original pixel matrix of each image. In order to capture the colors in the image, a color filter array CFA is provided in the optical path in front of the image sensor 4 . The camera contains an opto-mechanical lens system 5, such as a fixed uncontrolled lens.

電子裝置1進一步包含機械致動器6。機械致動器6主要出於其他目的,諸如發信至使用者的目的設置於電子裝置中。此是用於發信傳入之新訊息或呼叫的智慧型電話的熟知特徵。The electronic device 1 further includes a mechanical actuator 6 . Mechanical actuators 6 are provided in electronic devices primarily for other purposes, such as signaling to the user. This is a familiar feature of smart phones used to send incoming messages or calls.

就此而言,電子裝置1可為手持型裝置,例如智慧型電話、平板電腦、穿戴型裝置或攝影機或類似者。In this regard, the electronic device 1 may be a handheld device, such as a smartphone, a tablet, a wearable device, a camera, or the like.

影像處理器單元3經配置從而處理來自俘獲影像短脈衝/一個影像之圖框F 1……N之影像感測器4的影像資料IMG RAW。影像處理器單元3經配置以處理所估計運動向量MV且對準所俘獲影像之數個短脈衝的像素矩陣與一個特定對準,且組合影像短脈衝以利用可用於每一像素位置之原始矩陣及所得影像之矩陣的複數個像素來達成所得影像IMG FINThe image processor unit 3 is configured to process image data IMG RAW from the image sensor 4 capturing image bursts/frames F 1...N of an image. The image processor unit 3 is configured to process the estimated motion vector MV and align the pixel matrix of several bursts of the captured image with a specific alignment, and combine the image bursts to utilize the original matrix available for each pixel location and a plurality of pixels of the matrix of the resulting image to achieve the resulting image IMG FIN .

第2圖繪示用於處理影像感測器4之原始影像資料IMG RAW之方法的流程圖。原始影像資料IMG RAW包含影像短脈衝,或針對一個影像俘獲的圖框短脈衝F REF、F ALT_1、F ALT_2, …… ,F ALT_N。原始影像資料IMG RAW藉由在分別配置之數位信號處理器上或由對影像處理器執行之軟體自動地執行至少步驟a)至h)來處理。步驟a)至h)包括劃分步驟以便各自對各別圖框執行步驟之類似常式(亦即,步驟a) = {a0), a1), ……aN)};步驟b) = {b0), b1), ……, bN)})的選項。 Figure 2 illustrates a flow chart of a method for processing raw image data IMG RAW of the image sensor 4. The original image data IMG RAW contains image short pulses, or frame short pulses F REF , F ALT_1 , F ALT_2 , ... , F ALT_N captured for an image. The raw image data IMG RAW is processed by automatically performing at least steps a) to h) on a separately configured digital signal processor or by software executing on the image processor. Steps a) to h) include a similar routine for dividing the steps so that they are performed on separate frames (i.e., steps a) = {a0), a1), ...aN)}; step b) = {b0) , b1), …, bN)}) options.

第2圖之流程圖中的基礎假設為,目標為對準圖框F REF, F ALT_1, F ALT_2, …… ,F ALT_N且因此追求全域運動估計。然而,所提議方法可例如藉由以下操作來通用化至局部運動估計:併入使用所估計局部運動的運動分割步驟,或對圖框中之預定義區執行運動估計。 a) 色彩通道插入(Colour Channel Interpolation,CCI) The basic assumption in the flow chart of Figure 2 is that the goal is to align the frame F REF , F ALT_1 , F ALT_2 , ... , F ALT_N and therefore pursue global motion estimation. However, the proposed method can be generalized to local motion estimation, for example by incorporating a motion segmentation step using the estimated local motion, or performing motion estimation for predefined regions in the frame. a) Color Channel Interpolation (CCI)

影像之圖框短脈衝之每一圖框的第一步驟a)或一組步驟a0)、a1)、a2), …… ,aN)經設計用於色彩通道插入CCI。 The first step a) or a set of steps a0), a1), a2), ... , aN) of each frame of the frame pulse of the image is designed for color channel insertion CCI.

在原始CFA資料中,色彩在標準RGGB拜耳感測器中經不足地取樣,例如50%的綠色、25%的藍色及25%的紅色。提議對CFA中具有最高取樣的色彩通道及/或給予更多細節/較高回應的通道執行對準。此通道之實例為標準RGGB拜耳CFA中的綠色通道或RGBW拜耳CFA中的白色通道。然而,如所提及,CFA中之色彩通道通常經不足取樣。因此,影像對準管線中之第一步驟為插入所選擇色彩通道以填充歸因於失去之樣本的間隙。插入僅在失去樣本的地方執行,以便產生全解析度色彩通道資料。可追求諸如雙三次/雙邊插入之細節保存插入。然而,若計算複雜性為關注事項,則諸如雙線性插入的更簡單插入可進行。In the original CFA data, colors are undersampled in standard RGGB Bayer sensors, such as 50% green, 25% blue, and 25% red. It is proposed to perform alignment on the color channel in the CFA that has the highest sampling and/or the channel that gives more detail/higher response. Examples of this channel are the green channel in a standard RGGB Bayer CFA or the white channel in an RGBW Bayer CFA. However, as mentioned, the color channels in CFA are often undersampled. Therefore, the first step in the image alignment pipeline is to insert the selected color channels to fill the gaps due to missing samples. Interpolation is performed only where samples are lost, resulting in full resolution color channel data. Detail-preserving insertions such as bicubic/bilateral insertions can be pursued. However, if computational complexity is a concern, simpler interpolations such as bilinear interpolation can be performed.

運動估計將接著對經插入之全解析度色彩通道執行。由於CFA中之其他色彩通道關於所選擇通道的位置已知曉,因此,運動估計又針對彼等通道隱含地執行而無需額外計算努力。為了簡單,提及的是所選擇插入之全解析度色彩通道為C。錨定(參考)由C 錨定表示,且替代圖框/圖框的關注區(frame region of interest,ROI)由C 替代表示。 b) 色彩通道平滑化(Colour Channel Smoothing,CCS) Motion estimation will then be performed on the interpolated full resolution color channels. Since the positions of the other color channels in the CFA are known with respect to the selected channel, motion estimation is performed implicitly for those channels without additional computational effort. For simplicity, it is mentioned that the full-resolution color channel selected for insertion is C. The anchor (reference) is represented by C anchor , and the frame region of interest (ROI) of the alternative frame/frame is represented by C alternative . b) Color Channel Smoothing (CCS)

接著在步驟b),或常式至各自針對各別圖框的步驟b0)、b1)、b2), ……,bN)的劃分中,執行色彩通道平滑化CCS。 Then in step b), or in the division of the routine into steps b0), b1), b2), ..., bN) for respective frames, color channel smoothing CCS is performed.

此步驟b)經設計為皆針對所選擇色彩通道C 錨定 及C 替代 的低通濾光片。此操作經執行以便使運動估計操作抵抗原始資料中之雜訊強健化。低通濾光藉由運用平滑化濾光片,諸如二維高斯濾光片對C 錨定 及C 替代 進行卷積來達成。平滑化影像由 來表示,其中 F為2維平滑化濾光片,且⨂表示2維卷積運算。 c) 快速前向及後向區塊匹配(Forward and Backward Block Matching,F-B-ME) This step b) is designed to be a low-pass filter both C -anchored and C- substituted for the selected color channel. This operation is performed to harden the motion estimation operation against noise in the original data. Low-pass filtering is achieved by convolving C- anchoring and C- substitution using a smoothing filter, such as a two-dimensional Gaussian filter. Smooth image by and to express, among which And F is a 2-dimensional smoothing filter, and ⨂ represents a 2-dimensional convolution operation. c) Fast forward and backward block matching (Forward and Backward Block Matching, FB-ME)

申請專利範圍)中之以下步驟c)(由步驟A反映)經設計用於關於錨定(參考)圖框(或錨定圖框之ROI)估計替代圖框(包括圖框之替代ROI之選項)的前向及後向方向上的運動向量。The following step c) (reflected by step A) in the patentable scope) is designed to estimate alternative frames (including the option of alternative ROIs of the frame) with respect to the anchor (reference) frame (or the ROI of the anchor frame) ) motion vectors in the forward and backward directions.

區塊匹配(Block matching,BM)為熟知的,且目前為止,最風行之運動估計方法用於各種影像/視訊處理應用中。影像可劃分成例如 M× N個矩形區塊,每一者大小為 L x × L y ,且對於當前(替代)圖框中的每一區塊,搜尋在錨定(參考)圖框中的訊窗中執行以找尋最佳匹配區塊,此情形使某預定義區塊失真量度最小化(例如,所謂移位圖框差(Displaced Frame Difference,DFD))。 Block matching (BM) is well-known and by far the most popular motion estimation method used in various image/video processing applications. The image can be divided into, for example , M × N rectangular blocks, each of size L It is executed in a message window to find the best matching block, which minimizes a predefined block distortion measure (for example, the so-called Displaced Frame Difference (DFD)).

匹配搜尋可在±P個像素內執行,亦即支援± x及± y方向上的高達P個像素,如第3圖中所描繪。 Match searches can be performed within ±P pixels, that is, up to P pixels in the ± x and ± y directions are supported, as depicted in Figure 3.

經由窮盡搜尋(強力搜尋)的區塊匹配BM為計算上相當昂貴的。搜尋之顯著加速可例如經由先前技術中已知的菱形搜尋或其他快速搜尋演算法來達成。Block matching BM via exhaustive search (brute force search) is computationally quite expensive. Significant acceleration of searches may be achieved, for example, via diamond searches or other fast search algorithms known in the art.

運動向量MV藉由找尋最佳匹配來計算,此情形達成搜尋窗中最小區塊失真量度(±P個像素);給定區塊之運動向量MV計算為參考圖框區塊至替代圖框最佳匹配區塊的移位。當然,區塊匹配BM中之隱含基礎假設是在小型區塊內,運動可模型化為平移的。此外,亮度假設為恆定的。雖然此後一假設例如於在不同曝光時間獲得的圖框中可能並未固持,但預處理光度計對準可在區塊匹配BM之前執行以便在亮度恆定假設下找尋運動向量MV。The motion vector MV is calculated by finding the best match, which achieves the minimum block distortion measure (±P pixels) in the search window; the motion vector MV of a given block is calculated as the reference frame block to the substitute frame minimum Shift of the best matching block. Of course, the implicit underlying assumption in block matching BM is that within small blocks, motion can be modeled as translational. Furthermore, the brightness is assumed to be constant. Although this latter assumption may not hold for example in frames acquired at different exposure times, a preprocessing photometer alignment can be performed before block matching BM in order to find the motion vector MV under the assumption of constant brightness.

運動估計管線中之第三步驟c)經設計以執行區塊匹配BM以估計平滑化色彩通道 影像資料之間的運動。區塊匹配在前向方向(朝向 匹配 )及後向方向(朝向 匹配 )兩者上執行。 The third step c) in the motion estimation pipeline is designed to perform block matching BM to estimate the smoothed color channel and Movement between image data. Block matching is in the forward direction (toward the match ) and backward direction (towards match ) are executed on both.

針對運動可靠性估計之雙向區塊匹配BM允許估計各別運動向量的可靠性因數,如關於步驟d)稍後解釋。亦值得一說的是,具有可用之前向及後向運動估計結果兩者可促進後續多圖框融合操作之錨定(參考)圖框的自適應選擇。Bidirectional block matching BM for motion reliability estimation allows estimation of reliability factors for individual motion vectors, as explained later with respect to step d). It is also worth mentioning that having both forward and backward motion estimation results available can facilitate the adaptive selection of anchor (reference) frames for subsequent multi-frame fusion operations.

快速區塊匹配搜尋可藉由使用菱形搜尋策略來達成。在此階段,考慮僅像素層級準確性。因為低的計算複雜性,所使用之區塊匹配/失真準則為錨定圖框中之區塊與替代圖框之搜尋下之區塊之間的絕對差和(SAD)(在前向模式中且在後向模式中反之亦然)。為了加速每一區塊之運動向量MV的判定,待匹配之區塊的僅所選擇像素可用以例如藉由對區塊進行二次取樣來計算移位圖框差DFD。Fast block matching searches can be achieved by using a diamond search strategy. At this stage, only pixel-level accuracy is considered. Due to low computational complexity, the block matching/distortion criterion used is the sum of absolute differences (SAD) between the block in the anchor frame and the block under search of the alternative frame (in forward mode and vice versa in backward mode). In order to speed up the determination of the motion vector MV for each block, only selected pixels of the block to be matched can be used to calculate the shifted frame difference DFD, for example by subsampling the block.

舉例而言,在 xy方向上每隔一個地跳過像素將以為四的因數減小計算量。區塊大小愈大,比較的準確性愈高,但同時向量場之解析度愈低,此情形導致不準確的向量,尤其在之物件邊緣處。為了達成高準確性及解析度,相較於實際區塊大小,較大區域通常用以計算移位圖框差DFD。 For example, skipping every other pixel in the x and y directions will reduce the computational effort by a factor of four. The larger the block size, the more accurate the comparison, but at the same time the resolution of the vector field is lower, which results in inaccurate vectors, especially at the edges of objects. In order to achieve high accuracy and resolution, a larger area than the actual block size is usually used to calculate the shifted frame difference DFD.

為此目的,額外像素可圍繞區塊之邊界被包括,且形成稱作寬區塊的具有大小 WL x × WL y 的放大區域,其中 WL x L x WL y L y For this purpose, additional pixels may be included around the boundaries of the block and form an enlarged area called a wide block with size WLx × WLy , where WLx≥Lx and WLy≥Ly .

若影像劃分成 M× N個矩形區塊,則使區塊(i,j)的運動向量MV由[ u(i,j),v(i,j)]表示,其中i = 1,2, ……,M且j = 1, 2, ……,N。 If the image is divided into M × N rectangular blocks, then the motion vector MV of block (i,j) is represented by [ u(i,j),v(i,j) ], where i = 1,2, ……, M and j = 1, 2, ……, N.

MV的集合 表示替代圖框(在前向模式中)之運動向量場, i= 1,2 …… ,M ,且 j= 1,2,……, N。 d) 運動向量可靠性計算(Motion Vectors Reliability Calculation,MV-R) Collection of MVs Represents the motion vector field of the alternative frame (in forward mode), i = 1,2,… ,M , and j = 1,2,…, N . d) Motion Vectors Reliability Calculation (MV-R)

許多因數可導致運動向量MV的不可靠估計,諸如遮擋、運動模糊、反射(僅列舉幾個)。此外,若 真實運動向量MV之 x及/或 y絕對分量超出匹配BM的搜尋大小P,則所估計之運動向量MV將並非正確的,且超出分量的量值將經修剪為搜尋大小P。因此,在所提議運動估計管線的申請專利範圍)中之第四步驟d)(由步驟B反映)中,有必要的是能夠偵測不可靠運動向量MV,使得不可靠運動向量MV的值在用於找尋圖框全域運動參數(或局部運動,若需要)的後續分析中將經輕度加權,例如經完全排除。 Many factors can lead to unreliable estimates of motion vectors MV, such as occlusions, motion blur, reflections (to name just a few). Furthermore, if the x and/or y absolute components of the true motion vector MV exceed the search size P of the matching BM, the estimated motion vector MV will not be correct and the magnitude of the excess components will be pruned to the search size P. Therefore, in the fourth step d) (reflected by step B) of the proposed motion estimation pipeline), it is necessary to be able to detect the unreliable motion vector MV such that the value of the unreliable motion vector MV is within Subsequent analyzes used to find global motion parameters of the frame (or local motion, if necessary) will be lightly weighted, such as completely excluded.

較佳地,多個不同運動可靠性規則經應用以估計指派至針對給定圖框或其部分(例如,區塊)之運動向量的各別可靠性因數。指派至給定圖框或其部分之一個共同運動向量的可靠性因數集合中的可靠性因數可經組合以達成指派至給定圖框,亦即完整圖框、區塊或類似者之運動向量的總可靠性因數。 運動可靠性規則#1: Preferably, a plurality of different motion reliability rules are applied to estimate respective reliability factors assigned to motion vectors for a given frame or part thereof (eg, a block). The reliability factors in the set of reliability factors assigned to a common motion vector for a given frame or a part thereof may be combined to achieve a motion vector assigned to a given frame, ie, a complete frame, a block, or the like. the overall reliability factor. Sports Reliability Rule #1:

如較早所提及,在第三步驟c)中,執行前向及後向運動估計。理想地,在區塊匹配BM之後,前向運動向量MV應與後向運動向量MV相反;亦即,前向及後向運動向量之各別 xy分量應為零。假定如下事實:不可靠運動估計(歸因於場景中的遮擋、飽和像素、運動模糊、陰影、反射及其他局部變化)之偵測可藉由計算前向運動向量MV與後向運動向量MV之間的差來檢查,且若差並非為零亦非極小值,則該給定區塊之運動向量MV被宣告為不可靠的。 As mentioned earlier, in the third step c), forward and backward motion estimation are performed. Ideally, after block matching BM, the forward motion vector MV should be opposite to the backward motion vector MV; that is, the respective x and y components of the forward and backward motion vectors should be zero. Assume the following fact: unreliable motion estimation (due to occlusions, saturated pixels, motion blur, shadows, reflections and other local changes in the scene) can be detected by calculating the difference between the forward motion vector MV and the backward motion vector MV If the difference is neither zero nor a minimum value, the motion vector MV of the given block is declared unreliable.

數學上,此情形可公式表達如下。 - 對於給定區塊(i,j),使[ u 前向 (i,j), v 前向 (i,j)]表示前向MV,且使[ u 後向 (i,j), v 後向 (i,j)]表示後向MV。 -彼等兩個MV之間的L1距離經計算且與預定義臨限值 T MV 進行比較,且若該L1距離超出臨限值,則該區塊 之二元可靠性因數設定為零(0),否則設定為一(1)。在像素層級準確性狀況下且為了確保高品質運動向量, T MV 可設定為零(0)。 否則 ( i,j)  = 1 區塊(i, j)之第一規則可靠性因數由 R 1(i,j) 來表示。 運動可靠性規則#2: Mathematically, this situation can be expressed as follows. - For a given block (i,j), let [ u forward (i, j), v forward (i, j)] represent forward MV, and let [ u backward (i, j), v Backward (i,j)] represents backward MV. -The L1 distance between their two MVs is calculated and compared with the predefined threshold value TMV , and if the L1 distance exceeds the threshold value, the block The binary reliability factor is set to zero (0), otherwise it is set to one (1). In the case of pixel-level accuracy and to ensure high quality motion vectors, T MV can be set to zero (0). Otherwise ( i, j ) = 1 The first rule reliability factor of block (i, j) is represented by R 1 (i, j) . Sports Reliability Rule #2:

如較早所介紹,對於給定區塊,若運動向量MV之 x及/或 y分量的量值等於(修剪為)區塊匹配BM搜尋大小P,則最可能的是給定區塊是不可靠的。因此,額外運動向量MV二元可靠性因數R 2(i,j)計算如下。 若 (i,j)= 0 否則 (i,j)= 1 區塊(i, j)之第二規則可靠性因數由 (i,j)來表示。 運動可靠性規則#3: As introduced earlier, for a given block, if the magnitude of the x and/or y components of the motion vector MV is equal to (pruned to) the block matching BM search size P, then it is most likely that the given block is not reliable. Therefore, the additional motion vector MV binary reliability factor R 2 (i,j) is calculated as follows. like or (i,j) = 0 otherwise (i,j) = 1 The second rule reliability factor of block (i, j) is given by (i,j) to represent. Sports Reliability Rule #3:

上文呈現之兩個可靠性量度進一步由第三可靠性規則來補充,此情形隱含地對圖框之運動向量場強加平滑度約束。對於給定區塊(i,j),若對應運動向量MV顯著地不同於小型訊窗中相鄰區塊的運動向量MV,則該運動向量MV被視為不可靠的。The two reliability measures presented above are further supplemented by a third reliability rule, which implicitly imposes a smoothness constraint on the motion vector field of the frame. For a given block (i, j), if the corresponding motion vector MV is significantly different from the motion vector MV of the adjacent block in the small window, the motion vector MV is considered unreliable.

數學上,此情形以公式表達如下 若 否則 (i,j)= 1 其中 u 平均 v 平均 為例如考慮中之區塊的3×3區塊鄰域中相鄰區塊的運動向量MV之平均 xy分量。且 T u T v 為控制運動向量MV平滑度約束之強度的可調諧參數。 運動可靠性規則#4: Mathematically, this situation is expressed as follows: or Otherwise (i,j) = 1 where umean and vmean are , for example, the average x and y components of the motion vectors MV of adjacent blocks in the 3×3 block neighborhood of the block under consideration. And T u and T v are tunable parameters that control the strength of the smoothness constraint of the motion vector MV. Sports Reliability Rule #4:

前述三個可靠性量度由第四可靠性規則來進一步補充,其用途為識別僅高品質運動向量MV估計為可靠的。為了達成此情形,在針對給定區塊的區塊匹配期間估計絕對差和SAD之後,對應於最佳匹配運動向量MV的絕對差和SAD值與預定義臨限值相比較,且若該SAD值高於該臨限值,則對應運動向量MV被視為不可靠的,亦即第四規則可靠性因數 R 4(i,j) = 0。否則,對應運動向量MV被視為可靠的,亦即第四規則可靠因數 ( i,j) = 1。 組合成總可靠因數: The aforementioned three reliability measures are further supplemented by a fourth reliability rule whose purpose is to identify only high-quality motion vector MV estimates as reliable. To achieve this, after estimating the absolute difference and SAD during block matching for a given block, the absolute difference and SAD values corresponding to the best matching motion vector MV are compared with a predefined threshold value, and if the SAD If the value is higher than the threshold value, the corresponding motion vector MV is considered unreliable, that is, the fourth rule reliability factor R 4 (i,j) = 0. Otherwise, the corresponding motion vector MV is considered reliable, that is, the fourth rule reliability factor ( i,j ) = 1. Combined to form the total reliability factor:

對於給定區塊(i,j),總運動向量MV二元可靠性接著計算如下: 其中R MV(i,j)表示為指派至給定區塊之運動向量的總可靠因數。倘若可靠因數R 1(i,j)、R 2(i,j)、R 3(i,j)、R 4(i,j)由數位零或一值設定為開-關狀態,則一旦可靠因數R 1(i,j)、R 2(i,j)、R 3(i,j)、R 4(i,j)中的至少一者為零,總可靠因數R MV(i,j)為零。此情形可簡單地利用邏輯AND閘來實施。 e) 像素層級全域運動參數 For a given block (i,j), the total motion vector MV binary reliability is then calculated as follows: where R MV (i,j) represents the total reliability factor of the motion vector assigned to a given block. If the reliability factors R 1 (i,j), R 2 (i,j), R 3 (i,j), R 4 (i,j) are set to the on-off state by digital zero or one value, then once they are reliable At least one of the factors R 1 (i,j), R 2 (i,j), R 3 (i,j), R 4 (i,j) is zero, the total reliability factor R MV (i,j) is zero. This situation can simply be implemented using a logical AND gate. e) Pixel-level global motion parameters

在以下內容中,解釋用於計算像素層級全域運動參數的選項。詳言之,強調與選擇相關的兩個重要運動估計。 1) 運動模型 In the following, the options for calculating global motion parameters at the pixel level are explained. In detail, two important motion estimates related to selection are highlighted. 1) Motion model

雖然平移運動向量MV由區塊匹配BM策略來計算,但此並不意謂圖框之全域運動需要模型化為平移運動。舉例而言,仿射運動模型可針對整個圖框來假設,且其參數可自可靠平移運動向量來計算。因此,視所選擇之運動模型而定,全域運動參數的偏差將是如下,如簡單地描述。 2) 運動準確性 Although the translational motion vector MV is calculated by the block matching BM strategy, this does not mean that the global motion of the frame needs to be modeled as a translational motion. For example, an affine motion model can be assumed for the entire frame, and its parameters can be calculated from reliable translational motion vectors. Therefore, depending on the chosen motion model, the deviation of the global motion parameters will be as follows, as briefly described. 2) Movement accuracy

依據目標應用,運動估計可以考慮到之像素層級準確性或子像素層級準確性執行。若區塊匹配BM將以子像素準確性執行,則區塊匹配BM可為計算上更複雜的。因此,像素層級準確性情況下的區塊匹配BM較佳經執行,繼之以任意子像素準確性情況下運動估計的非反覆性非插入步驟。即,任意子像素準確性情況下的運動向量MV經計算,同時仍保持總體計算複雜性為低的。Depending on the target application, motion estimation can be performed taking into account pixel-level accuracy or sub-pixel-level accuracy. The block matching BM can be computationally more complex if it will be performed with sub-pixel accuracy. Therefore, block matching BM with pixel-level accuracy is preferably performed, followed by a non-recurrent non-interpolation step of motion estimation with arbitrary sub-pixel accuracy. That is, the motion vector MV is calculated with arbitrary sub-pixel accuracy while still keeping the overall computational complexity low.

由於區塊匹配BM已經執行以計算錨定圖框及替代圖框的像素層級運動向量MV,且在繪示於第2圖中之所提議運動估計管線的第五步驟e)中又已計算了對應可靠性,因此計算替代圖框關於錨定圖框(或反之亦然,若需要)的全域運動參數。Since the block matching BM has been performed to calculate the pixel-level motion vector MV of the anchor frame and the replacement frame, and has been calculated again in the fifth step e) of the proposed motion estimation pipeline illustrated in Figure 2 Corresponding reliability, the global motion parameters of the surrogate frame with respect to the anchor frame (or vice versa, if necessary) are thus calculated.

使可靠運動向量的集合由Ω MV 來表示,其中 ,其中 Let the set of reliable motion vectors be represented by Ω MV , where ,in

錨定圖框與替代圖框之間的全域強健平移/移位自Ω MV 中的可靠運動向量MV計算。一個可能的強健估計為所有彼等可靠運動向量MV的平均值,例如中間值,如下文所繪示。此運算之結果為由[ u 全域 , v 全域 ]表示的全域運動向量MV。 u 全域 = 中間值 v 全域 = 中間值 f) 包括子像素層級全域運動參數之計算的替代圖框對準 The global robust translation/shift between the anchor frame and the alternative frame is calculated from the reliable motion vector MV in Ω MV . One possible robust estimate is the average of all their reliable motion vectors MV, eg the median, as shown below. The result of this operation is the global motion vector MV represented by [ u global , v global ]. uuniversal = median value and vuniversal = median value f) Alternative frame alignment including calculation of global motion parameters at sub-pixel level

子像素準確性對於各種子圖框處理特徵,諸如多圖框超級解析度的操作為關鍵的。任意準確性對於達成高品質影像暫存且藉此達成高品質後續多圖框處理為本質的。為了達成此目標,在所提議運動估計管線之申請專利範圍)中的第六步驟f) (由步驟C反映)中,非反覆無插入方法類似於在先前技術之以上描述中參考的S. Chan等人之「Subpixel Motion Estimation Without Interpolation」中描述的方法使用。對準是基於泰勒近似。Subpixel accuracy is critical for various subframe processing features, such as multiframe super-resolution operations. Any accuracy is essential to achieve high-quality image staging and thereby high-quality subsequent multi-frame processing. To achieve this goal, in the sixth step f) (reflected by step C) in the proposed motion estimation pipeline patent application), a non-iterative non-instrumentation method is similar to that of S. Chan referred to in the above description of the prior art. The method described in "Subpixel Motion Estimation Without Interpolation" by et al. was used. Alignment is based on Taylor approximation.

首先,替代圖框基於所估計之全域像素層級運動向量MV與參考圖框對準。使 B 替代 ( i,j)及 B 錨定 ( i,j)分別表示全域對準之後的替代圖框及錨定圖框中的第( i,j)區塊,且(i,j) Ω MV 。對準之替代圖框之子像素運動估計可接著計算如下: 1. 對於每一 B 替代 (i,j) B 錨定 ( i,j)區塊對,自像素層級前向運動向量 [u 子像素 ( i,j), v 子像素 (i,j)]可計算為等式之以下體系的解算 2. 為了導出替代圖框之全域子像素層級運動估計,全域強健子像素層級運動向量MV可自Ω MV 中的子像素層級運動向量MV來計算。一個可能的強健估計為所有子像素層級運動向量MV的中間值,如下文所繪示。此運算之結果為由[ u 全域 , 子像素 , v 全域 , 子像素 ]表示的全域子像素層級運動向量MV。 u 全域 , 子像素 = 中間值 v 全域 , 子像素 = 中間值 First, the replacement frame is aligned with the reference frame based on the estimated global pixel-level motion vector MV. Let B substitute ( i,j ) and B anchor ( i,j ) represent the (i, j)th block in the replacement frame and anchor frame after global alignment respectively, and (i,j ) ΩMV . The sub-pixel motion estimate of the aligned replacement frame can then be calculated as follows: 1. For each B replacement (i,j) and B anchor ( i,j ) block pair, the pixel-level forward motion vector [u sub Pixel ( i,j ), v sub-pixel (i,j)] can be calculated as the solution of the following system of equations 2. In order to derive the global sub-pixel level motion estimate of the replacement frame, the global robust sub-pixel level motion vector MV can be calculated from the sub-pixel level motion vector MV in Ω MV . One possible robust estimate is the median of all sub-pixel level motion vectors MV, as shown below. The result of this operation is the global sub-pixel level motion vector MV represented by [ u global , subpixel , v global , subpixel ]. u global , subpixel = middle value v global , subpixel = middle value

總全域子像素層級運動向量( u 全域 , ,v 全域 , )可接著計算如下 ( u 全域 , ,v 全域 , )=( u 全域 , v 全域 )+( u 全域 , 子像素 , v 全域 , 子像素 ) The total global sub-pixel level motion vector ( u global , total , v global , total ) can then be calculated as follows ( u global , total , v global , total ) = ( u global , v global ) + ( u global , sub-pixel , v Global , sub-pixel )

在全域子像素層級運動向量MV已經估計之後,替代圖框F ALT_k可與錨定圖框F REF對準。對準誤差信號預期為在運動向量MV並非可靠(亦即, (i,j) = 1)且對於後續多圖框處理為極有用資訊(與 R MV 耦接)的區域中預期為高的。 After the global sub-pixel level motion vector MV has been estimated, the replacement frame FALT_k may be aligned with the anchor frame F REF . The alignment error signal expected to be at the motion vector MV is not reliable (i.e., (i,j ) = 1) and is expected to be high in the region where it is extremely useful information (coupled with R MV ) for subsequent multi-frame processing.

在此點上,出於圖示運動估計管線之步驟的目的,所估計運動向量場的一個實例針對關於錨定圖框具有ΔX = -0.25及ΔY = 4的地面真值全域移位的替代圖框呈現於第4圖至第6圖中。At this point, for the purpose of illustrating the steps of the motion estimation pipeline, one example of the estimated motion vector field is for a surrogate map with ground truth global displacements of ΔX = -0.25 and ΔY = 4 with respect to the anchor frame. The frames are presented in Figures 4 to 6.

局部變化因為例如如所俘獲影像中之物件,即場景中在右側移動的小汽車連同其陰影以及樹葉運動及其他反光及小的變化存在於場景中。Local changes occur because, for example, objects in the captured image, that is, a car moving on the right side of the scene, along with its shadows and movement of leaves and other reflections and small changes, are present in the scene.

第4圖呈現無任何可靠性檢查情況下以圖框之水平X方向及垂直Y方向之像素層級準確性的所估計運動向量場。此是 L x= L y= WL x= WL y = 32且搜尋大小P = 6個像素情況下的區塊運動估計之結果。在一些區域中,例如在約(40, 5)至(55, 15)的X,Y區段中,存在運動向量的高不規則性。 Figure 4 presents the estimated motion vector field with pixel-level accuracy in the horizontal X-direction and vertical Y-direction of the frame without any reliability checks. This is the result of block motion estimation for L x = L y = WL x = WL y = 32 and search size P = 6 pixels. In some areas, such as in the X,Y segment from about (40, 5) to (55, 15), there is high irregularity in the motion vectors.

第5圖呈現具有圖框之水平X方向及垂直Y方向之像素層級準確性分量的所估計加權運動向量場。忽略不可靠之運動向量。繪示在排除總可靠性因數為零之運動向量MV之後的可靠本端運動向量MV。整個圖框之全域像素層級運動向量MV的計算結果為ΔX = 0及ΔY = 4。Figure 5 presents the estimated weighted motion vector field with pixel-level accuracy components for the horizontal X-direction and vertical Y-direction of the frame. Ignore unreliable motion vectors. Shown is the reliable local motion vector MV after excluding the motion vector MV with an overall reliability factor of zero. The calculation results of the global pixel level motion vector MV of the entire frame are ΔX = 0 and ΔY = 4.

第6圖呈現具有圖框之水平X方向及垂直Y方向之子像素層級準確性的所估計加權運動向量場。再者,忽略不可靠之運動向量。子像素層級運動向量MV添加至第5圖中之像素層級運動向量MV以獲得總的子像素層級運動向量MV。圖框之全域子像素層級運動向量MV的計算結果為ΔX = -0.25且ΔY = 4。Figure 6 presents the estimated weighted motion vector field with sub-pixel level accuracy in the horizontal X-direction and vertical Y-direction of the frame. Furthermore, unreliable motion vectors are ignored. The sub-pixel level motion vector MV is added to the pixel level motion vector MV in Figure 5 to obtain the total sub-pixel level motion vector MV. The calculation results of the global sub-pixel level motion vector MV of the frame are ΔX = -0.25 and ΔY = 4.

前述例示性實施例是基於平移運動模型。然而,方法不限於平移運動模型,且可適用於其他更高階模型,詳言之非平移運動模型。The aforementioned exemplary embodiments are based on a translational motion model. However, the method is not limited to translational motion models and can be applied to other higher order models, in particular non-translational motion models.

為了詳細闡述此態樣,吾人假設仿射模型經選擇用於全域運動。仿射模型可接著表達為 To elaborate on this aspect, we assume that an affine model is chosen for global motion. The affine model can then be expressed as

參數 t x t y 分別俘獲 x方向及 y方向上的二維平移。旋轉由參數 a 1 a 2 a 3a 4來俘獲,其中縮放由縮放參數 a 1 a 4來俘獲,且其中剪切由剪切參數 a 2 a 3來俘獲。存在各種方式,一種方式可自已計算之平移運動向量來導出仿射運動模型的六個參數。一種例示性方法在下文中解釋。 1. 替代全域基於所計算之全域像素層級運動向量MV對準替代圖框,逐區塊對準基於局部像素層級運動向量MV來追求,繼之以運動向量MV的逐區塊子像素層級估計。此情形引起新的子像素層級運動向量場。 2.所計算之運動向量的可靠性以類似方式(使用針對規則#1至#3的恰當臨限值)計算以便識別在上文提及之步驟1中達成的運動向量場中的可靠運動向量MV。 3. 使多個可靠運動向量MV為Q,其中一個運動向量指派至各別區塊,且反之亦然,一個區塊準確地是關於一個運動向量。對於彼等Q個區塊,可形成此等式體系: 其中 X = ,且A為Q個2×6矩陣的堆疊,且彼等矩陣中之每一者具有項 。 b為Q 2×1矩陣的堆疊,且彼等矩陣中之每一者具有項 。 藉由計算A之偽逆數來解算 X,吾人獲得全域仿射運動模型參數。 The parameters t x and t y capture the two-dimensional translation in the x and y directions respectively. Rotation is captured by parameters a 1 , a 2 , a 3 and a 4 , where scaling is captured by scaling parameters a 1 and a 4 , and where shear is captured by shear parameters a 2 and a 3 . There are various ways, one way is to derive the six parameters of the affine motion model from the calculated translational motion vectors. An exemplary approach is explained below. 1. Instead of global alignment of the replacement frame based on the calculated global pixel-level motion vector MV, block-by-block alignment is pursued based on the local pixel-level motion vector MV, followed by block-by-block sub-pixel level estimation of the motion vector MV. This situation induces a new sub-pixel level motion vector field. 2. The reliability of the calculated motion vectors is calculated in a similar manner (using appropriate thresholds for rules #1 to #3) in order to identify reliable motion vectors in the motion vector field achieved in step 1 mentioned above MV. 3. Let multiple reliable motion vectors MV be Q, one of which is assigned to each block, and vice versa, one block is exactly related to one motion vector. For those Q blocks, this equation system can be formed: where X = , and A is a stack of Q 2×6 matrices, each of which has entries . b is a stack of Q 2×1 matrices, and each of these matrices has entries . By computing the pseudoinverse of A to solve for X , we obtain the global affine motion model parameters.

值得一說的是,在此點處,運動模型對於全域運動為有效的且對於距成像系統並未處於相同距離的物件並非充分準確的。若諸如加速度計/陀螺儀及深度感測器的一些運動相關輔助感測器的資訊對於錨定圖框及替代圖框中的每一者為可用的,則運動估計程序可由此資訊支援,且運動向量品質可經進一步改良。It is worth saying that at this point the motion model is valid for full range motion and is not sufficiently accurate for objects that are not at the same distance from the imaging system. If information from some motion-related auxiliary sensors such as accelerometers/gyros and depth sensors is available for each of the anchor frame and the replacement frame, the motion estimation procedure may be supported by this information, and Motion vector quality can be further improved.

第7圖繪示適用於支援非平移變換,諸如類似性、仿射且投影(2D單應性)變換之較高階運動模型的方法之示意圖,該等變換描述於在關於先前技術之描述的第一部分中參考之R. Hartley及A. Zisserman的「Multiple View Geometry in Computer Vision」(劍橋大學出版社,2004年)中。應注意,繪示於第7圖中之方法亦支援平移運動模型,如稍後將描述。Figure 7 shows a schematic diagram of a method suitable for higher order motion models that support non-translational transformations such as similarity, affine and projective (2D homography) transformations, which transformations are described in Section 1 of the description of the prior art. Reference is made in part to "Multiple View Geometry in Computer Vision" by R. Hartley and A. Zisserman (Cambridge University Press, 2004). It should be noted that the method illustrated in Figure 7 also supports translational motion models, as will be described later.

如第7圖中所描繪,在估計像素層級運動向量場及運動向量MV的可靠性地圖之後,子像素細化在參考圖框/圖框ROI與錨定圖框/圖框ROI之間在區塊基礎上執行而無任何顯式中間對準。結果為接著變換為2D對應清單的子像素層級運動向量MV場。對應接著用以估計全域運動模型參數。一旦運動參數經計算,便可執行圖框之對準。As depicted in Figure 7, after estimating the pixel-level motion vector field and the reliability map of the motion vector MV, sub-pixel refinement is performed between the reference frame/frame ROI and the anchor frame/frame ROI. Performed on a block basis without any explicit intermediate alignment. The result is a sub-pixel level motion vector MV field which is then transformed into a 2D correspondence list. The correspondence is then used to estimate the global motion model parameters. Once the motion parameters are calculated, frame alignment can be performed.

步驟a)至d)對應於上文參看第2圖描述的例示性方法。以前步驟e)經修改、表示為步驟i),且經設計用於利用在步驟d)中導出之可靠性因數及在步驟b1), b2),……bN)中導出之替代圖框或替代圖框之關注區ROI的經插入且平滑化之低通濾光的原始CFA資料進行基於區塊的子像素層級細化BB-ME。Steps a) to d) correspond to the exemplary method described above with reference to Figure 2. The previous step e) is modified, denoted as step i), and is designed to make use of the reliability factors derived in step d) and the alternative frames or alternatives derived in steps b1), b2), ... bN) Block-based sub-pixel level refinement BB-ME is performed on the inserted and smoothed low-pass filtered raw CFA data of the ROI of the frame.

此步驟繼之以經設計用於二維對應的步驟j)及經設計用於變換矩陣計算的步驟k)。步驟k)之結果為經估計的運動參數。This step is followed by step j) designed for two-dimensional correspondence and step k) designed for transformation matrix calculation. The result of step k) is the estimated motion parameters.

如較早所描述,步驟a),亦即劃分步驟a0)、a1)、a2、……、aN)之輸出為針對每一圖框或圖框之關注區ROI的 C r C a 。步驟b),亦即劃分步驟b0)、b1)、b2), ……, bN)的輸出為每一相關 C r C a 。步驟c)之輸出為前向運動向量場 i =1,2 ……, M j=1,2 ,……, N 及後向運動向量場 i =1,2 ……,M j =1,2 , ……,N。來自步驟d)的輸出為 M× N二元運動向量可靠性映射 As described earlier, the output of step a), that is, the dividing steps a0), a1), a2, ..., aN) are C r and C a for each frame or region of interest ROI of the frame. Step b), that is, the output of dividing steps b0), b1), b2), ..., bN) is the output of each relevant C r and C a and . The output of step c) is the forward motion vector field , i = 1,2 …, M and j= 1,2 ,…, N ; and backward motion vector field , i = 1,2 …,M and j = 1,2 ,…,N . The output from step d) is an M × N binary motion vector reliability map .

在此步驟i)中,基於區塊之子像素細化僅針對可靠運動向量來追求。執行非顯式全域中間對準。因此,對於參考圖框中之每一區塊 B r ,替代圖框中之匹配區塊 B a 基於運動向量MV 來識別, 。接著,對於每一區塊對,子像素運動向量藉由解算章節(3.7)中之等式體系來計算。結果為子像素層級前向運動向量場 。使運動向量場 相加,獲得總子像素層級運動向量場 ,其中 In this step i), block-based sub-pixel refinement is pursued only for reliable motion vectors. Perform non-explicit global intermediate alignment. Therefore, for each block B r in the reference frame, the matching block B a in the replacement frame is based on the motion vector MV to identify, . Then, for each block pair, the sub-pixel motion vector is calculated by solving the system of equations in Section (3.7). The result is a sub-pixel level forward motion vector field . Let the motion vector field and Add up to obtain the total sub-pixel level motion vector field ,in .

如較早所提及,Ω R 表示可靠運動向量的集合。使Ω R 中可靠運動向量的數目由 Q表示。對於可靠運動向量 Q對對應 構建如下,其中 k =1,2,…… , Q 其中每一源點[ S x , S y ]定義為 且對應目的地點[ S x , S y ]定義為 As mentioned earlier, Ω R represents the set of reliable motion vectors. Let the number of reliable motion vectors in Ω R be represented by Q. For reliable motion vectors , Q pair corresponds to It is constructed as follows, where k =1, 2,… , Q : where each source point [ S x , S y ] is defined as And the corresponding destination point [ S x , S y ] is defined as

當然此處的隱含假設為,參考圖框/圖框ROI朝向替代(當前)圖框/圖框ROI匹配。Of course the implicit assumption here is that the reference frame/frame ROI matches towards the alternative (current) frame/frame ROI.

2D對應集合 接著用以估計基礎全域運動模型的參數,如以下內容中所描述。 2D correspondence set This is then used to estimate the parameters of the underlying global motion model, as described below.

假定參考圖框/圖框ROI及替代圖框/圖框ROI的所構建數對對應 ,運動模型參數經由直接線性變換(direct linear transform,DLT)來估計。直接線性變換更詳細地描述於G. H. Golub及C. F. Van Loan的Matrix Computations,1989年第二版以及R. Hartley及A. Zisserman的「Multiple View Geometry in Computer Vision」(劍橋大學出版社,2004年)中。追求隨機取樣一致性(RANdom SAmple Consensus,RANSAC)演算法,該演算法描述於M. A. Fischler及R. C. Bolles的「Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography,」(Communications of the ACM, 24(6):381-395, 1981)中,其中在每一RANSAC反覆中,DLT代數系統自隨機選擇的八(8)對對應形成,且俘獲運動模型參數的變換由單一值分解(singular value decomposition,SVD)來估計。此更詳細地描述於G. H. Golub及C. F. Van Loan的Matrix Computations(1989年第二版)中。 Assume that the constructed number pairs of the reference frame/frame ROI and the alternative frame/frame ROI correspond , the motion model parameters are estimated via direct linear transform (DLT). Direct linear transformations are described in more detail in GH Golub and CF Van Loan, Matrix Computations, 2nd ed. 1989, and R. Hartley and A. Zisserman, "Multiple View Geometry in Computer Vision" (Cambridge University Press, 2004) . Pursue the random sampling consensus (RANdom SAmple Consensus, RANSAC) algorithm, which is described in "Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography," (Communications of the ACM, 24(6):381-395, 1981), where in each RANSAC iteration, the DLT algebraic system is formed from eight (8) randomly selected pairs of correspondences, and the transformation of the captured motion model parameters is decomposed by a single value ( singular value decomposition, SVD) to estimate. This is described in more detail in GH Golub and CF Van Loan, Matrix Computations (2nd ed. 1989).

同質影像點座標自源至目的地之2D變換定義如下 = T 運動 其中3×3變換矩陣 T 運動俘獲運動模型參數,且 T 運動 = ,其中 x 9 =1。 The 2D transformation of homogeneous image point coordinates from source to destination is defined as follows = T movement Among them, the 3×3 transformation matrix T motion captures the motion model parameters, and T motion = , where x 9 =1.

在以下內容中,描述不同運動模型。 1. 純粹平移運動模型: In the following, different motion models are described. 1. Pure translational motion model:

對於給定對的對應,平移運動模型可由下式表示 = T 運動 其中 t x t y 分別表示x及y方向上的平移。平移模型參數( t x , t y )可自Q個對應對的集合估計為 For a given pair of correspondences, the translational motion model can be expressed by = T movement Among them, t x and t y represent the translation in the x and y directions respectively. The translation model parameters ( t x , t y ) can be estimated from the set of Q corresponding pairs as

此處追求平均運算,此是由於僅可靠運動向量包括於可靠對應對的構建中。實例中之平均值為均值,且詳言之為算術均值。然而,中間值、平方或立方均值、對數均值、經修剪或加權的平均值及類似者為適用的。 2. 類似性變換運動模型:(平移+旋轉+縮放) An averaging operation is pursued here since only reliable motion vectors are included in the construction of reliable correspondence pairs. The average value in the example is the mean, and specifically the arithmetic mean. However, medians, squared or cubed means, logarithmic means, trimmed or weighted means, and the like are applicable. 2. Similarity transformation motion model: (translation + rotation + scaling)

對於給定對的對應,類似性變換運動模型可由下式表示 = T 運動 其中 θ為旋轉角度,且 s為x/y座標的縮放因數。等式之對應DLT體系可定義為 其依據多對對應及運動模型參數撰寫為 For a given pair of correspondences, the similarity transformation motion model can be expressed by = T movement where θ is the rotation angle, and s is the scaling factor for the x/y coordinates. The corresponding DLT system of the equation can be defined as It is written based on multiple pairs of correspondences and motion model parameters as

未知運動模型參數向量 X 4×1可藉由運用SVD解析DLT體系來估計: 3. 剛性變換運動模型:(平移+旋轉) The unknown motion model parameter vector X 4×1 can be estimated by using SVD to analyze the DLT system: 3. Rigid transformation motion model: (translation + rotation)

估計幾乎與類似性變換中的程序相同,且唯一差異為進行變換縮放不變性的額外約束: 4. 仿射變換運動模型:(變換+旋轉+縮放+剪切) The estimation is almost identical to the procedure in the similarity transformation, with the only difference being the additional constraint for transformation scaling invariance: 4. Affine transformation motion model: (transformation + rotation + scaling + shearing)

對於給定對的對應,仿射變換運動模型可由下式表示 = T 運動 其中 t x t y 分別表示x及y方向上的平移。且參數 abcd為縮放、旋轉及剪切的組合。等式之對應DLT體系可定義為 其依據多對對應及運動模型參數撰寫為 其中 , 未知運動模型參數向量 X 6×1可藉由運用SVD解算DLT體系來估計: 5. 投影(2D單應性)變換運動模型: For a given pair of correspondences, the affine transformation motion model can be expressed by = T movement Among them, t x and t y represent the translation in the x and y directions respectively. And parameters a , b , c and d are combinations of scaling, rotation and shearing. The corresponding DLT system of the equation can be defined as It is written based on multiple pairs of correspondences and motion model parameters as in , the unknown motion model parameter vector X 6×1 can be estimated by using SVD to solve the DLT system: 5. Projection (2D homography) transformation motion model:

對於給定對的對應,投影(2D單應性)變換運動模型可由下式表示 等式之DLT體系可定義為 其依據多對對應及運動模型參數撰寫為 未知運動模型參數向量 X 9×l可藉由運用SVD解算DLT體系來估計,其中 V的最後一行表示 X 9×l,如下所繪示。 [U,S,V]=SVD (A 2Q×9 ) X 9×l= V 的最後行 For a given pair of correspondences, the projection (2D homography) transformation motion model can be expressed by The DLT system of equations can be defined as It is written based on multiple pairs of correspondences and motion model parameters as , The unknown motion model parameter vector X 9×l can be estimated by using SVD to solve the DLT system, where the last row of V represents X 9×l as shown below. [U,S,V]=SVD (A 2Q×9 ) X 9×l = last row of V

1:電子裝置 2:攝影機 3:影像處理器單元 4:影像感測器 5:光學機械透鏡系統 6:機械致動器 c)~h):步驟 a1)~a2):步驟 b1)~b2):步驟 CFA:色彩濾光片陣列 IMG RAW:原始影像資料 IMG FIN:所得影像 F REF:圖框 F ALT_1:圖框 F ALT_2:圖框 F ALT_N:圖框 1: Electronic device 2: Camera 3: Image processor unit 4: Image sensor 5: Optical mechanical lens system 6: Mechanical actuator c)~h): Steps a1)~a2): Steps b1)~b2) :Step CFA:Color filter array IMG RAW :Original image data IMG FIN :Resulted image F REF :Frame F ALT_1 :Frame F ALT_2 :Frame F ALT_N :Frame

在以下內容中,本發明藉由以下諸圖藉助於例示性實施例來解釋。其繪示:In the following, the invention is explained by means of exemplary embodiments by means of the following figures. It shows:

第1圖-包含攝影機、影像處理器單元及機械致動器的電子裝置之方塊圖;Figure 1 - Block diagram of an electronic device including a camera, image processor unit and mechanical actuator;

第2圖-用於處理影像感測器之影像資料之方法的流程圖;Figure 2 - Flowchart of a method for processing image data from an image sensor;

第3圖-關於參考(錨定)圖框及替代圖框在替代圖框中之搜尋窗內巨型區塊移位之區塊匹配的示意性圖;Figure 3 - Schematic diagram of block matching for giant block shifting within the search window of the reference (anchored) frame and the substitute frame;

第4圖-像素層級準確性下圖框的例示性經估計運動向量場;Figure 4 - Illustrative estimated motion vector field for a frame with pixel-level accuracy;

第5圖-具有忽略不可靠運動向量之經加權運動向量的根據第4圖之圖框的例示性經估計運動向量場;Figure 5 - An exemplary estimated motion vector field according to the frame of Figure 4 with weighted motion vectors ignoring unreliable motion vectors;

第6圖-具有子像素層級準確性之加權運動向量的根據第5圖之圖框的例示性估計運動向量場Figure 6 - Illustrative estimated motion vector field from the frame of Figure 5 with weighted motion vectors with sub-pixel level accuracy

第7圖-適合於更高階運動模型之方法的示意圖。Figure 7 - Schematic representation of methods suitable for higher order motion models.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic storage information (please note in order of storage institution, date and number) without Overseas storage information (please note in order of storage country, institution, date, and number) without

c)~h):步驟 c)~h): steps

a1)~a2):步驟 a1)~a2): steps

b1)~b2):步驟 b1)~b2): steps

FREF:圖框 F REF : picture frame

FALT_1:圖框 F ALT_1 : Picture frame

FALT_2:圖框 F ALT_2 : Picture frame

FALT_N:圖框 F ALT_N : Picture frame

Claims (22)

一種用於處理一影像感測器(4)之影像資料(IMG RAW)的方法,其中該影像資料包含由該影像感測器(4)按影像俘獲之一短脈衝圖框,每一圖框包含一原始像素矩陣; 其中: A) 判定運動向量(MV 1……N),其中前向方向上之每一前向運動向量表示該短脈衝圖框之一所選擇錨定圖框中一區塊至該短脈衝圖框之一各別替代圖框中之最佳匹配區塊的移位,且後向方向上之每一後向運動向量表示該短脈衝圖框之一各別替代圖框中一區塊至該短脈衝圖框中之一所選擇錨定圖框中之最佳匹配區塊的移位; B) 判定針對在步驟A)中判定之該等運動向量的可靠性因數以利用該前向運動向量與該相關後向運動向量之間的差來為一給定區塊指派該各別運動向量的可靠性,其中該可靠性隨著差降低而增大; C) 對準一影像之該短脈衝圖框的該等圖框,其中該運動利用經加權運動向量來補償,其中該等運動向量藉由步驟B)中判定之該各別可靠性因數來加權。 A method for processing image data (IMG RAW ) of an image sensor (4), wherein the image data includes a short pulse frame captured by the image sensor (4), each frame Contains an original pixel matrix; where: A) Determine motion vectors (MV 1...N ), where each forward motion vector in the forward direction represents an area in the anchor frame selected by one of the short pulse frames block to the best matching block in one of the burst frames' respective replacement frames, and each backward motion vector in the backward direction represents one of the burst frame's respective replacement frames The shift from a block to the best matching block in one of the selected anchor frames in the short pulse frame; B) Determine the reliability factors for the motion vectors determined in step A) and Utilizing a difference between the forward motion vector and the associated backward motion vector to assign a reliability to the respective motion vector for a given block, wherein the reliability increases as the difference decreases; C) Alignment The frames of the burst frame of an image, wherein the motion is compensated using weighted motion vectors, wherein the motion vectors are weighted by the respective reliability factors determined in step B). 如請求項1所述之方法,其中倘若該前向運動向量與該相關後向運動向量之間的該差超出一預定義臨限值,則指派為零(0)之一可靠性因數至一組前向運動向量及相關後向運動向量,使得該等運動向量在進一步處理中被忽略。The method of claim 1, wherein if the difference between the forward motion vector and the associated backward motion vector exceeds a predefined threshold, assigning a reliability factor of zero (0) to a A set of forward motion vectors and associated backward motion vectors such that these motion vectors are ignored in further processing. 如請求項1或2所述之方法,其中倘若該前向運動向量與該相關後向運動向量之間的該差低於一預定義運動一致性臨限值(T MC),則指派為一(1)之一可靠性因數至一組前向運動向量及相關後向運動向量,使得該等運動向量在該進一步處理中被慮及。 The method of claim 1 or 2, wherein if the difference between the forward motion vector and the associated backward motion vector is lower than a predefined motion consistency threshold (T MC ), then assigning a (1) a reliability factor to a set of forward motion vectors and associated backward motion vectors such that these motion vectors are taken into account in the further processing. 如請求項1至3中任一項所述之方法,其中該前向運動向量與相關後向運動向量之間的該差是由最小絕對偏差 計算的L1標準絕對差和(SAD),其中 表示該前向運動向量且 表示該後向運動向量,其中i = 1,2 ……, M且j = 1,2, ……N,其中M及N為該M × N圖框的大小。 The method of any one of claims 1 to 3, wherein the difference between the forward motion vector and the associated backward motion vector is determined by the minimum absolute deviation Calculated L1 sum of standard absolute differences (SAD), where represents the forward motion vector and represents the backward motion vector, where i = 1,2..., M and j = 1,2,...N, where M and N are the sizes of the M × N frame. 如前述請求項中任一項所述之方法,其中倘若一運動向量之x方向上之x分量或y方向上之y分量中的至少一者的量值等於該區塊匹配搜尋大小(P),則指派為零(0)的一可靠性因數至該運動向量。The method according to any one of the preceding claims, wherein if the magnitude of at least one of the x component in the x direction or the y component in the y direction of a motion vector is equal to the block matching search size (P) , then assign a reliability factor of zero (0) to the motion vector. 如前述請求項中任一項所述之方法,其中利用該各別運動向量與相鄰區塊之該等運動向量之間的該差來指派一可靠性因數至一給定區塊的一運動向量。A method as claimed in any one of the preceding claims, wherein the difference between the respective motion vector and the motion vectors of adjacent blocks is used to assign a reliability factor to a motion of a given block vector. 如請求項6所述之方法,其中倘若至少該運動向量之x方向上的該x分量之該量值與位於該所選擇區塊之直接及/或間接鄰域中的一組區塊之該等運動向量之x方向上該等x分量的平均量值之間的差超出一預定義臨限值(T U),或至少該運動向量之y方向上之該y分量的該量值與位於該所選擇區塊之直接及/或間接鄰域中的一組區塊之該等運動向量的y方向上該等y分量之平均量值之間的差超出一預定義臨限值(T V),則指派為零(0)的該可靠性因數至一給定區塊的該運動向量。 The method of claim 6, wherein if at least the magnitude of the x component in the x direction of the motion vector is consistent with the magnitude of a set of blocks located in the direct and/or indirect neighborhood of the selected block The difference between the average magnitudes of the x-components in the x-direction of the motion vector exceeds a predefined threshold value ( TU ), or at least the magnitude of the y-component in the y-direction of the motion vector is the same as that in the y-direction of the motion vector. The difference between the average magnitudes of the y-components in the y-direction of the motion vectors of a set of blocks in the direct and/or indirect neighborhood of the selected block exceeds a predefined threshold value (T V ), assign the reliability factor of zero (0) to the motion vector of a given block. 如前述請求項中任一項所述之方法,其中在步驟A)中之該區塊匹配期間計算該絕對差和,及利用對應於該最佳匹配區塊之該運動向量的該絕對差和(SAD)來為一給定區塊之該運動向量指派一可靠性因數。The method according to any one of the preceding claims, wherein the sum of absolute differences is calculated during the block matching in step A), and the sum of absolute differences corresponding to the motion vector of the best matching block is used (SAD) to assign a reliability factor to the motion vector of a given block. 如請求項8所述之方法,其中倘若對應於該最佳匹配區塊之該運動向量的該絕對差和(SAD)超出一預定義臨限值,則指派為零(0)的一可靠性因數。The method of claim 8, wherein if the sum of absolute differences (SAD) of the motion vector corresponding to the best matching block exceeds a predefined threshold, a reliability of zero (0) is assigned factor. 如前述請求項中任一項所述之方法,其中一總可靠性因數藉由組合指派至一給定區塊之一運動向量的一組可靠性因數,例如藉由使指派至一相關運動向量之該組該等可靠性因數相乘來計算。A method as claimed in any one of the preceding claims, wherein an overall reliability factor is obtained by combining a set of reliability factors assigned to a motion vector of a given block, for example by Calculated by multiplying the set of reliability factors. 如請求項8所述之方法,其中該等運動向量藉由步驟C)中的該各別總可靠性因數(R MV(i, j))來加權。 The method of claim 8, wherein the motion vectors are weighted by the respective overall reliability factors (R MV (i, j)) in step C). 如前述請求項中任一項所述之方法,其中針對步驟a)至c)慮及之該等圖框是由該影像感測器(4)俘獲或能夠由該影像感測器(4)俘獲之一較大圖框中的一所選擇關注區(ROI)。The method according to any one of the preceding claims, wherein the frames considered for steps a) to c) are captured by the image sensor (4) or can be captured by the image sensor (4) Capture a selected region of interest (ROI) within a larger frame. 如前述請求項中任一項所述之方法,其中該最佳匹配區塊藉由以下操作來判定:計算一第一圖框中之該所選擇區塊與一第二圖框中搜尋下的該區塊之間的該絕對差和(SAD)及判定該最佳匹配區塊為具有最小絕對差和(SAD)的該區塊,搜尋下之多個區塊在該第二圖框中具有彼此不同的相對位置。The method according to any one of the preceding claims, wherein the best matching block is determined by calculating the selected block in a first frame and the searched block in a second frame. The sum of absolute differences (SAD) between the blocks and the best matching block is determined to be the block with the smallest sum of absolute differences (SAD), and the multiple blocks under search have in the second frame different relative positions to each other. 如前述請求項中任一項所述之方法,其中藉由自該圖框之該組經加權運動向量計算一平均運動向量來判定一圖框的一全域運動向量,該等經加權運動向量藉由該各別總可靠性因數或針對該圖框之給定區塊之該等運動向量判定的可靠性因數中之至少一者來加權。A method as claimed in any one of the preceding claims, wherein a global motion vector of a frame is determined by calculating an average motion vector from the set of weighted motion vectors of the frame, the weighted motion vectors being Weighted by at least one of the respective overall reliability factors or the reliability factors of the motion vector decisions for a given block of the frame. 如請求項14所述之方法,其中 - 利用一替代圖框之該各別全域運動向量來對準該替代圖框與一所選擇錨定圖框,及 - 分別針對該替代圖框及錨定圖框中的每一對區塊判定子像素層級前向運動向量, - 藉由自針對該圖框之該等區塊判定的該組子像素層級前向運動向量計算一平均運動向量而判定一全域子像素層級運動向量,及 - 利用針對該替代圖框判定之該全域子像素層級運動向量來對準該替代圖框與該錨定圖框。 A method as described in claim 14, wherein - aligning a substitute frame with a selected anchor frame using the respective global motion vectors of the substitute frame, and - Determine the sub-pixel level forward motion vector for each pair of blocks in the replacement frame and anchor frame respectively, - determine a global sub-pixel level motion vector by calculating an average motion vector from the set of sub-pixel level forward motion vectors determined for the blocks of the frame, and - Align the alternative frame and the anchor frame using the global sub-pixel level motion vector determined for the alternative frame. 如前述請求項中任一項所述之方法,其中 - 針對一圖框之每一區塊判定一各別局部子像素層級運動向量,及針對每一局部子像素層級運動向量判定至少一個可靠性因數,及 - 利用針對該替代圖框之該等各別區塊判定的該等局部子像素層級運動向量來逐像素對準該替代圖框中之該等區塊與該錨定圖框。 A method as described in any of the preceding claims, wherein - Determine a respective local sub-pixel level motion vector for each block of a frame, and determine at least one reliability factor for each local sub-pixel level motion vector, and - Aligning the blocks in the substitute frame to the anchor frame on a pixel-by-pixel basis using the local sub-pixel level motion vectors determined for the respective blocks of the substitute frame. 如前述請求項中任一項所述之方法,其中利用輔助感測器之感測器信號,較佳利用由一加速度計、一陀螺儀及/或光學深度感測器量測的該影像感測器(4)之加速度來估計區塊的該運動。The method according to any one of the preceding claims, wherein the sensor signal of the auxiliary sensor is used, preferably the image sensor measured by an accelerometer, a gyroscope and/or an optical depth sensor. The motion of the block is estimated using the acceleration of the detector (4). 如前述請求項中任一項所述之方法,其中每一圖框包含複數個色彩通道,其中選擇相較於該複數個通道之該等其他通道之該資訊密度具有該最高資訊密度的該等色彩通道,亦即,最高取樣色彩通道;藉由在該所選擇色彩通道中插入遺失像素來對準該所選擇色彩通道的該圖框之該原始像素矩陣;及對此所選擇色彩通道之該插入像素繼續進行該等步驟A)至C)。The method as claimed in any one of the preceding claims, wherein each frame includes a plurality of color channels, wherein those having the highest information density compared to the information density of the other channels of the plurality of channels are selected. the color channel, that is, the highest sampled color channel; the original pixel matrix of the frame for the selected color channel aligned by inserting missing pixels in the selected color channel; and the original pixel matrix for the selected color channel Inserting pixels continues with steps A) to C). 一種用於處理由一影像感測器(4)提供之原始影像資料(IMG RAW)的影像處理器單元(3),該影像感測器(4)包含提供按影像由該影像感測器(4)俘獲之一短脈衝圖框的一感測器陣列,每一圖框包含每影像的一原始像素矩陣一原始像素矩陣,其中該影像處理器單元(3)經配置以: A) 判定運動向量(MV 1……N),其中前向方向上之每一前向運動向量表示該短脈衝圖框之一所選擇錨定圖框中一區塊至該短脈衝圖框之一各別替代圖框中之最佳匹配區塊的移位,且後向方向上之每一後向運動向量表示該短脈衝圖框之一各別替代圖框中一區塊至該短脈衝圖框中之一所選擇錨定圖框中之最佳匹配區塊的移位; B) 判定針對在步驟A)中判定之該等運動向量的可靠性因數以利用該前向運動向量與該相關後向運動向量之間的差來為一給定區塊指派該各別運動向量的可靠性,其中該可靠性隨著差降低而增大;及 C) 對準一影像之該短脈衝圖框的該等圖框,其中該運動利用經加權運動向量來補償,其中該等運動向量藉由步驟B)中判定之該各別可靠性因數來加權。 An image processor unit (3) for processing raw image data (IMG RAW ) provided by an image sensor (4). The image sensor (4) includes an image provided by the image sensor (4). 4) A sensor array capturing a short pulse frame, each frame containing a raw pixel matrix of each image, wherein the image processor unit (3) is configured to: A) determine motion Vector (MV 1...N ), where each forward motion vector in the forward direction represents a respective replacement of a block in the anchor frame selected by one of the short pulse frames to one of the short pulse frames The displacement of the best matching block in the frame, and each backward motion vector in the backward direction represents that one of the short pulse frames respectively replaces a block in the frame to the short pulse frame a shift of the best matching block in a selected anchor frame; B) determining reliability factors for the motion vectors determined in step A) to utilize the forward motion vector with the associated backward motion The difference between vectors to assign a reliability to the respective motion vector for a given block, where the reliability increases as the difference decreases; and C) the burst frames aligned to an image Frame, wherein the motion is compensated using weighted motion vectors, wherein the motion vectors are weighted by the respective reliability factors determined in step B). 如請求項19所述之影像處理器單元(3),其中該影像處理器單元(3)包含或連接至至少一個輔助感測器,較佳一加速度計、一陀螺儀及/或光學深度感測器,其中該影像處理器單元(3)經調適以利用該至少一個輔助感測器的信號來估計區塊之運動。The image processor unit (3) of claim 19, wherein the image processor unit (3) includes or is connected to at least one auxiliary sensor, preferably an accelerometer, a gyroscope and/or an optical depth sensor. sensor, wherein the image processor unit (3) is adapted to estimate the motion of the block using the signal of the at least one auxiliary sensor. 如請求項19或20所述之影像處理器單元(3),其中該影像處理器單元(3)經配置用於藉由執行如請求項1至17中任一項之該步驟來處理影像資料。The image processor unit (3) of claim 19 or 20, wherein the image processor unit (3) is configured to process image data by performing the step of any one of claims 1 to 17 . 一種包含指令的電腦程式,在該程式由一處理單元執行時,該程式使得該處理單元進行請求項1至18中之一者的該方法之該等步驟。A computer program comprising instructions which, when executed by a processing unit, cause the processing unit to perform the steps of the method of one of claims 1 to 18.
TW111149959A 2022-03-17 2022-12-26 Method and image processor unit for processing image data TW202338734A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
WOPCT/EP2022/057016 2022-03-17
PCT/EP2022/057016 WO2023174546A1 (en) 2022-03-17 2022-03-17 Method and image processor unit for processing image data

Publications (1)

Publication Number Publication Date
TW202338734A true TW202338734A (en) 2023-10-01

Family

ID=80978767

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111149959A TW202338734A (en) 2022-03-17 2022-12-26 Method and image processor unit for processing image data

Country Status (2)

Country Link
TW (1) TW202338734A (en)
WO (1) WO2023174546A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007504700A (en) * 2003-09-02 2007-03-01 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Temporal interpolation of pixels based on occlusion detection
US9426414B2 (en) * 2007-12-10 2016-08-23 Qualcomm Incorporated Reference selection for video interpolation or extrapolation
EP2227012A1 (en) * 2009-03-05 2010-09-08 Sony Corporation Method and system for providing reliable motion vectors

Also Published As

Publication number Publication date
WO2023174546A1 (en) 2023-09-21

Similar Documents

Publication Publication Date Title
US10600157B2 (en) Motion blur simulation
EP2881915B1 (en) Techniques for disparity estimation using camera arrays for high dynamic range imaging
US7548659B2 (en) Video enhancement
US8508605B2 (en) Method and apparatus for image stabilization
JP4623111B2 (en) Image processing apparatus, image processing method, and program
US8290212B2 (en) Super-resolving moving vehicles in an unregistered set of video frames
US9055217B2 (en) Image compositing apparatus, image compositing method and program recording device
US20140078347A1 (en) Systems and Methods for Reducing Noise in Video Streams
KR100938195B1 (en) Method for distance estimation and apparatus for the same using a stereo matching
EP2704423A1 (en) Image processing apparatus, image processing method, and image processing program
CN110248048B (en) Video jitter detection method and device
AU2011205087B2 (en) Multi-hypothesis projection-based shift estimation
US20100067818A1 (en) System and method for high quality image and video upscaling
Cho et al. Affine motion based CMOS distortion analysis and CMOS digital image stabilization
JPWO2010095460A1 (en) Image processing system, image processing method, and image processing program
US20220358619A1 (en) Automatic dolly zoom image processing device
CN112384945A (en) Super-resolution using natural handheld motion applied to user devices
US20230016350A1 (en) Configurable keypoint descriptor generation
US20200053378A1 (en) Autofocusing images using motion detection
CN107251089B (en) Image processing method for motion detection and compensation
TW202338734A (en) Method and image processor unit for processing image data
US11810266B2 (en) Pattern radius adjustment for keypoint descriptor generation
US10547863B1 (en) Image statistics for motion detection
Rzeszutek et al. A framework for estimating relative depth in video
JP2009042900A (en) Imaging device and image selection device