TW202338411A - Phase plate and fabrication method for color-separated laser backlight in display systems - Google Patents

Phase plate and fabrication method for color-separated laser backlight in display systems Download PDF

Info

Publication number
TW202338411A
TW202338411A TW112103286A TW112103286A TW202338411A TW 202338411 A TW202338411 A TW 202338411A TW 112103286 A TW112103286 A TW 112103286A TW 112103286 A TW112103286 A TW 112103286A TW 202338411 A TW202338411 A TW 202338411A
Authority
TW
Taiwan
Prior art keywords
pinholes
exposure mask
photopolymer
examples
collimated light
Prior art date
Application number
TW112103286A
Other languages
Chinese (zh)
Inventor
萬里 遲
偉詩 林
耿瑩
徐簡
Original Assignee
美商元平台技術有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US18/100,698 external-priority patent/US20230244185A1/en
Application filed by 美商元平台技術有限公司 filed Critical 美商元平台技術有限公司
Publication of TW202338411A publication Critical patent/TW202338411A/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0402Recording geometries or arrangements
    • G03H1/0404In-line recording arrangement
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133521Interference filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133621Illuminating devices providing coloured light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • G03H1/024Hologram nature or properties
    • G03H1/0248Volume holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/26Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
    • G03H1/28Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique superimposed holograms only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • G02B2027/0174Head mounted characterised by optical features holographic
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/52RGB geometrical arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/34Colour display without the use of colour mosaic filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0402Recording geometries or arrangements
    • G03H2001/0439Recording geometries or arrangements for recording Holographic Optical Element [HOE]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/26Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
    • G03H1/2645Multiplexing processes, e.g. aperture, shift, or wavefront multiplexing
    • G03H2001/266Wavelength multiplexing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2223/00Optical components
    • G03H2223/12Amplitude mask, e.g. diaphragm, Louver filter
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2223/00Optical components
    • G03H2223/13Phase mask

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Holo Graphy (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

According to examples, a method for phase plate fabrication may be described herein. The method may include providing an interferometer configuration to generate a hologram of a plurality of pinholes. In some examples, the interferometer configuration includes a substrate for photopolymer attachment, a photopolymer having a predetermined thickness, and an exposure mask with a plurality of pinholes. The method may also include exposing the photopolymer with collimated light, via a laser source, through the exposure mask with a plurality of pinholes, wherein the collimated light passes through the exposure mask itself to create a collimated beam, and the plurality of pinholes of the exposure mask to create a spherical wavefront. The collimated beam and the spherical wavefront may help generate the hologram on the photopolymer for use as a phase plate for improved light transmissivity in display systems.

Description

用於顯示系統中分色雷射背光的相位板和製造方法Phase plate and manufacturing method for color separation laser backlight in display system

本專利申請案大致上關於顯示系統,且更尤其關於用於顯示系統中分色雷射背光的相位板及製造方法。 相關申請案之交叉引用 This patent application relates generally to display systems, and more particularly to phase plates and manufacturing methods for dichroic laser backlights in display systems. Cross-references to related applications

本專利申請案主張2022年1月31日申請之美國臨時專利申請案序號63/305,090及2023年1月24日申請之美國非臨時專利申請案序號18/100,698之權益。以上申請案之揭示內容出於所有目的以引用之方式併入本文中。This patent application claims the rights and interests of U.S. Provisional Patent Application No. 63/305,090 filed on January 31, 2022 and U.S. Non-Provisional Patent Application No. 18/100,698 filed on January 24, 2023. The disclosures of the above applications are incorporated herein by reference for all purposes.

隨著最近技術的進步,內容創建及交付的流行以及擴散近年來大大增加。特定而言,互動式內容,諸如虛擬實境(virtual reality;VR)內容、擴增實境(augmented reality;AR)內容、混合實境(mixed reality;MR)內容及真實及/或虛擬環境(例如,「元宇宙」)內且與其相關聯之內容,已經變得對消費者有吸引力。With recent technological advancements, the popularity and proliferation of content creation and delivery has increased significantly in recent years. Specifically, interactive content, such as virtual reality (VR) content, augmented reality (AR) content, mixed reality (MR) content and real and/or virtual environments ( For example, content within and associated with the Metaverse has become attractive to consumers.

為促進此及其他相關內容之遞送,服務提供商已努力提供各種形式之可穿戴顯示系統。一個此類範例可為頭戴式裝置(head-mounted device;HMD),諸如可穿戴頭戴裝置、可穿戴護目鏡或眼鏡。在一些範例中,頭戴式裝置(HMD)可採用第一投影儀及第二投影儀來引導分別地與第一影像及第二影像相關聯之光通過各各別透鏡處之一或多個中間光學組件,以產生「雙眼」或「立體」視覺以供使用者觀看。然而,提供緊密之頭戴式裝置(HMD),具有充分明亮及高解析度影像之輕量化保持恆定挑戰。To facilitate the delivery of this and other related content, service providers have endeavored to offer various forms of wearable display systems. One such example may be a head-mounted device (HMD), such as a wearable headset, wearable goggles, or glasses. In some examples, a head mounted device (HMD) may employ a first projector and a second projector to direct light associated with the first image and the second image, respectively, through one or more respective lenses. The intermediate optical component is used to produce "binocular" or "stereoscopic" vision for the user to view. However, providing compact head-mounted devices (HMDs) with sufficiently bright and high-resolution images that are lightweight remains a constant challenge.

本發明的一態樣為一種用於相位板製造之方法,其包含:提供干涉計配置以產生複數個針孔之全像圖,其中該干涉計配置包含至少一光聚合物及曝光遮罩;藉由使準直光穿過以下項,而經由具有複數個針孔之該曝光遮罩來使該光聚合物曝光於該準直光:該曝光遮罩,其用以產生準直光束;及該複數個針孔,其用以產生球形波前,其中該準直光束及該球形波前產生該複數個針孔之該全像圖;針對額外波長反覆地移位針孔置放以使該光聚合物重複曝光於該準直光。One aspect of the invention is a method for phase plate fabrication, which includes: providing an interferometer configuration to generate a plurality of pinhole holograms, wherein the interferometer configuration includes at least one photopolymer and an exposure mask; The photopolymer is exposed to the collimated light through the exposure mask having a plurality of pinholes by passing the collimated light through: the exposure mask for generating the collimated beam; and The plurality of pinholes used to generate a spherical wavefront, wherein the collimated beam and the spherical wavefront produce the hologram of the plurality of pinholes; pinhole placement is iteratively shifted for additional wavelengths so that the The photopolymer is repeatedly exposed to this collimated light.

在如本發明的所述態樣之方法中,該干涉計配置包含:基板,其用於光聚合物附接;該光聚合物,其具有預定厚度;及該曝光遮罩,其具有該複數個針孔。In a method according to aspects of the invention, the interferometer configuration includes: a substrate for photopolymer attachment; the photopolymer having a predetermined thickness; and the exposure mask having the plurality of A pinhole.

在如本發明的所述態樣之方法中,該準直光為雷射光。In the method according to the aspect of the invention, the collimated light is laser light.

在如本發明的所述態樣之方法中,該曝光遮罩中之該複數個針孔具有週期性結構。In the method according to the aspect of the invention, the plurality of pinholes in the exposure mask have a periodic structure.

在如本發明的所述態樣之方法中,該複數個針孔中之任何兩個針孔具有約18微米間距。In methods according to aspects of the invention, any two pinholes in the plurality of pinholes have a spacing of approximately 18 microns.

在如本發明的所述態樣之方法中,該複數個針孔中之各者具有約1微米直徑。In a method according to aspects of the invention, each of the plurality of pinholes has a diameter of approximately 1 micron.

如本發明的所述態樣之方法進一步包含:選擇距離由該曝光遮罩產生之塔爾伯特(Talbot)自成像平面100微米與200微米之間置放該光聚合物。The method of this aspect of the invention further includes selecting to position the photopolymer between 100 microns and 200 microns from a Talbot self-imaging plane produced by the exposure mask.

如本發明的所述態樣之方法進一步包含:將隨機相位添加至該曝光遮罩中之該複數個針孔中之至少一部分;或使該曝光遮罩中之該針孔中之至少一部分的位置隨機化。The method according to the aspect of the invention further includes: adding a random phase to at least a portion of the plurality of pinholes in the exposure mask; or causing at least a portion of the pinholes in the exposure mask to Position randomization.

在如本發明的所述態樣之方法中,該干涉計配置包含至少兩個曝光遮罩。In a method according to aspects of the invention, the interferometer arrangement includes at least two exposure masks.

本發明的另一態樣為一種用於配置一曝光遮罩之方法,其包含:判定具有用於相位板製造之複數個針孔之曝光遮罩之大小;判定該遮罩區相對於該針孔之相對透射;基於該相對透射而判定該曝光遮罩內之該複數個針孔的大小及位置;及製造具有該複數個針孔之該曝光遮罩。Another aspect of the invention is a method for configuring an exposure mask, which includes: determining the size of an exposure mask having a plurality of pinholes for phase plate fabrication; determining the size of the mask area relative to the pinholes The relative transmission of the holes; determining the size and position of the plurality of pinholes in the exposure mask based on the relative transmission; and manufacturing the exposure mask having the plurality of pinholes.

如本發明的另一態樣所述之方法進一步包含:使用以下表達式判定該相對透射: 其中T為該曝光遮罩與該複數個針孔之間的該相對透射,p為該複數個針孔中之各者之間的距離,且r為各針孔之半徑。 The method according to another aspect of the invention further includes determining the relative transmission using the following expression: Where T is the relative transmission between the exposure mask and the plurality of pinholes, p is the distance between each of the plurality of pinholes, and r is the radius of each pinhole.

在如本發明的另一態樣所述之方法中,該曝光遮罩中之該複數個針孔具有週期性結構。In a method according to another aspect of the present invention, the plurality of pinholes in the exposure mask have a periodic structure.

在如本發明的另一態樣所述之方法中,該複數個針孔中之任何兩個針孔具有約18微米間距。In a method according to another aspect of the invention, any two pinholes in the plurality of pinholes have a spacing of about 18 microns.

在如本發明的另一態樣所述之方法中,該複數個針孔中之各者具有約1微米直徑。In a method according to another aspect of the invention, each of the plurality of pinholes has a diameter of about 1 micron.

如本發明的另一態樣所述之方法進一步包含:將一隨機相位添加至該曝光遮罩中之該複數個針孔中之至少一部分。A method according to another aspect of the invention further includes adding a random phase to at least a portion of the plurality of pinholes in the exposure mask.

如本發明的另一態樣所述之方法進一步包含:使該曝光遮罩中之該針孔中之至少一部分的位置隨機化。A method according to another aspect of the invention further includes randomizing the position of at least a portion of the pinholes in the exposure mask.

本發明的又一態樣為一種用於相位板製造之干涉計配置,該干涉計配置包含:基板;光聚合物,其具有附接至該基板之預定厚度;及曝光遮罩,其具有複數個針孔以藉由使該準直光穿過以下項來將該光聚合物曝光於準直光:該曝光遮罩,其用以產生準直光束;及該複數個針孔,其用以產生球形波前,其中該準直光束及該球形波前產生該複數個針孔之該全像圖;針對額外波長反覆地移位針孔置放以使該光聚合物重複曝光於該準直光。Yet another aspect of the invention is an interferometer arrangement for phase plate fabrication, the interferometer arrangement comprising: a substrate; a photopolymer having a predetermined thickness attached to the substrate; and an exposure mask having a plurality of pinholes to expose the photopolymer to collimated light by passing the collimated light through: the exposure mask for generating the collimated beam; and the plurality of pinholes for Generating a spherical wavefront, wherein the collimated beam and the spherical wavefront produce the hologram of the plurality of pinholes; iteratively shifting pinhole placement for additional wavelengths to repeatedly expose the photopolymer to the collimated Light.

在如本發明的又一態樣所述之干涉計配置中,針對額外波長反覆地移位針孔置放以使該光聚合物重複曝光於該準直光。In an interferometer configuration as described in yet another aspect of the invention, the photopolymer is repeatedly exposed to the collimated light by repeatedly shifting the pinhole placement for additional wavelengths.

在如本發明的又一態樣所述之干涉計配置中,該曝光遮罩中之該複數個針孔具有週期性結構。In an interferometer configuration according to another aspect of the invention, the plurality of pinholes in the exposure mask have a periodic structure.

在如本發明的又一態樣所述之干涉計配置中,該光聚合物置放於遠離由該曝光遮罩產生之塔爾伯特自成像平面100微米與200微米之間。In an interferometer configuration according to yet another aspect of the invention, the photopolymer is placed between 100 microns and 200 microns away from the Talbot self-image plane created by the exposure mask.

出於簡單及說明性目的,藉由主要參考其範例來描述本申請案。在以下描述中,闡述眾多特定細節以便提供對本申請案之透徹理解。然而,將顯而易見的是可在無此等特定細節之情況下實踐本申請案。在其他示例下,未詳細描述所屬技術領域中具有通常知識者容易理解之一些方法及結構,以免不必要地混淆本申請案。如本文中所使用,術語「一(a)」及「一(an)」意欲標示特定元件中之至少一者,術語「包括(includes)」意謂包括但不限於,術語「包括(including)」意謂包括但不限於,且術語「基於」意謂至少部分地基於。For simplicity and illustrative purposes, the present application is described by referring primarily to its examples. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present application. However, it will be apparent that the present application may be practiced without these specific details. In other instances, some methods and structures that are easily understood by those with ordinary skill in the art are not described in detail to avoid unnecessarily confusing the present application. As used herein, the terms "a" and "an" are intended to designate at least one of a specific element, the term "includes" means including but not limited to, and the term "including" ” means including but not limited to, and the term “based on” means based at least in part.

諸如基於VR的頭戴式裝置(HMD)及/或護目鏡裝置之一些顯示系統提供沉浸式立體視覺體驗。然而,在一些習知顯示器中,光透射率(或缺失其)可存在問題。舉例而言,在傳統液晶顯示器(LCD)中,諸如用於此類基於VR之HMD的彼等,大量光可經由形成整體顯示器之各種光學層丟失。在許多方法中,此可稱為LCD之「插座效率(wall-plug efficiency)」。本文所描述之系統及方法可提供用於在諸如基於VR之頭戴式裝置(HMD)之顯示系統中分色雷射背光的相位板解決方案及製造方法。Some display systems, such as VR-based head mounted devices (HMDs) and/or goggle devices, provide an immersive stereoscopic viewing experience. However, in some conventional displays, light transmission (or lack thereof) can be problematic. For example, in traditional liquid crystal displays (LCDs), such as those used in such VR-based HMDs, a large amount of light can be lost through the various optical layers that form the overall display. In many ways, this is called the "wall-plug efficiency" of LCDs. The systems and methods described herein may provide phase plate solutions and manufacturing methods for dichroic laser backlighting in display systems such as VR-based head-mounted devices (HMDs).

圖1說明根據範例之包括近眼顯示器之人工實境系統環境100的方塊圖。如本文中所使用,「近眼顯示器」可指可緊鄰於使用者之眼睛的裝置(例如,光學裝置)。如本文中所使用,「人工實境」可指「元宇宙」或真實及虛擬元件之環境之態樣等等,且可包括與虛擬實境(VR)、擴增實境(AR)及/或混合實境(MR)相關聯之技術之使用。如本文中所使用,「使用者」可指「近眼顯示器」之使用者或穿戴者。Figure 1 illustrates a block diagram of an artificial reality system environment 100 including a near-eye display, according to an example. As used herein, "near-eye display" may refer to a device (eg, an optical device) that may be in close proximity to a user's eyes. As used herein, "artificial reality" may refer to the "metaverse" or the appearance of environments with real and virtual components, etc., and may include those related to virtual reality (VR), augmented reality (AR), and/or Or the use of mixed reality (MR) related technologies. As used herein, "user" may refer to the user or wearer of the "near-eye display."

如圖1中所示,人工實境系統環境100可包括近眼顯示器120、視情況選用之外部成像裝置150及視情況選用之輸入/輸出介面140,其中之各者可耦接至控制台110。在一些示例下,由於控制台110之功能可整合於近眼顯示器120中,因此控制台110可為視情況選用的。在一些範例中,近眼顯示器120可為向使用者呈現內容之頭戴式顯示器(HMD)。As shown in FIG. 1 , the artificial reality system environment 100 may include a near-eye display 120 , an optional external imaging device 150 , and an optional input/output interface 140 , each of which may be coupled to the console 110 . In some examples, the console 110 may be optional because the functionality of the console 110 may be integrated into the near-eye display 120 . In some examples, the near-eye display 120 may be a head-mounted display (HMD) that presents content to the user.

在一些示例下,對於近眼顯示器系統,其可通常合乎需要的為擴展眼動區(eye box)、減小顯示混濁度、改良影像品質(例如,解析度及對比度)、減小實體大小、增加功率效率及增加或擴展視場(field of view;FOV)。如本文中所使用,「視場」(FOV)可指如由使用者所見之影像之角度範圍,其典型地以如由一隻眼睛(對於單目HMD)或兩隻眼睛(對於雙目HMD)觀測到的度為單位來量測。此外,如本文中所使用,「眼動區」可為可安置於使用者之眼睛之前方的二維窗中,從其可觀看來自影像源之顯示影像。In some examples, for near-eye display systems, it may be generally desirable to expand the eye box, reduce display opacity, improve image quality (eg, resolution and contrast), reduce physical size, increase Power efficiency and increased or expanded field of view (FOV). As used herein, "field of view" (FOV) may refer to the angular range of an image as seen by a user, typically as viewed by one eye (for a monocular HMD) or both eyes (for a binocular HMD ) measured in units of observed degrees. Additionally, as used herein, an "eye movement zone" may be a two-dimensional window that may be placed in front of a user's eyes through which a displayed image from an image source may be viewed.

在一些範例中,在近眼顯示系統中,來自周圍環境之光可橫穿波導顯示器之「透視」區(例如,透明基板)以到達使用者之眼睛。舉例而言,在近眼顯示器系統中,所投影影像之光可耦合至波導之透明基板中,在波導內傳播,且在一或多個位置處經耦合或經引導至波導之外,以複製出射光瞳且擴展眼動區。In some examples, in near-eye display systems, light from the surrounding environment can traverse a "see-through" region of the waveguide display (eg, a transparent substrate) to reach the user's eyes. For example, in a near-eye display system, light from a projected image can be coupled into a transparent substrate of a waveguide, propagate within the waveguide, and be coupled or directed out of the waveguide at one or more locations to replicate The ejection pupil expands the eye movement area.

在一些範例中,近眼顯示器120可包括一或多個剛性主體,該一或多個剛性主體可剛性地或非剛性地彼此耦接。在一些範例中,剛性主體之間的剛性耦接可使得經耦接剛性主體充當單個剛性實體,而在其他範例中,剛性主體之間的非剛性耦接可允許剛性主體相對於彼此移動。In some examples, near-eye display 120 may include one or more rigid bodies that may be rigidly or non-rigidly coupled to each other. In some examples, rigid couplings between rigid bodies may cause the coupled rigid bodies to act as a single rigid entity, while in other examples, non-rigid couplings between rigid bodies may allow the rigid bodies to move relative to each other.

在一些範例中,近眼顯示器120可以任何適合之形狀因素實施,包括HMD、一對眼鏡或其他類似可穿戴護目鏡或裝置。下文關於圖2及圖3進一步描述近眼顯示器120之範例。另外,在一些實例中,本文中所描述之功能性可用於HMD或頭戴裝置,其可組合近眼顯示器120外部之環境的影像及人工實境內容(例如,電腦產生之影像)。因此,在一些範例中,近眼顯示器120可用產生及/或覆蓋的數位內容(例如,影像、視訊、聲音等)來擴增在近眼顯示器120外部之實體、真實世界環境的影像,以向使用者呈現擴增實境。In some examples, near-eye display 120 may be implemented in any suitable form factor, including an HMD, a pair of glasses, or other similar wearable goggles or devices. Examples of the near-eye display 120 are further described below with respect to FIGS. 2 and 3 . Additionally, in some examples, the functionality described herein may be used in an HMD or head-mounted device that may combine images of the environment outside near-eye display 120 with artificial reality content (eg, computer-generated images). Therefore, in some examples, the near-eye display 120 may use generated and/or overlaid digital content (e.g., images, videos, sounds, etc.) to augment images of the physical, real-world environment outside the near-eye display 120 to provide users with Present augmented reality.

在一些範例中,近眼顯示器120可包括任何數目個顯示電子件122、顯示光學件124及眼睛追蹤單元130。在一些範例中,近眼顯示器120亦可包括一或多個定位器126、一或多個位置感測器128及慣性量測單元(inertial measurement unit;IMU)132。在一些範例中,近眼顯示器120可省略眼睛追蹤單元130、一或多個定位器126、一或多個位置感測器128及慣性量測單元(IMU)132中之任一者,或可包括額外元件。In some examples, near-eye display 120 may include any number of display electronics 122 , display optics 124 , and eye tracking units 130 . In some examples, the near-eye display 120 may also include one or more locators 126 , one or more position sensors 128 , and an inertial measurement unit (IMU) 132 . In some examples, near-eye display 120 may omit any of eye tracking unit 130 , one or more locators 126 , one or more position sensors 128 , and inertial measurement unit (IMU) 132 , or may include Additional components.

在一些範例中,顯示電子件122可根據從例如視情況選用之控制台110接收之資料向使用者顯示影像或促進向使用者顯示影像。在一些實例中,顯示電子件122可包括一或多個顯示面板。在一些範例中,顯示電子件122可包括任何數目個像素以發射諸如紅色、綠色、藍色、白色或黃色之主要色彩的光。在一些範例中,顯示電子件122可例如使用藉由二維面板產生之立體效應來顯示三維(three-dimensional;3D)影像,以產生對影像深度之主觀感知。In some examples, display electronics 122 may display or facilitate the display of images to the user based on data received from, for example, optional console 110 . In some examples, display electronics 122 may include one or more display panels. In some examples, display electronics 122 may include any number of pixels to emit light in a primary color such as red, green, blue, white, or yellow. In some examples, the display electronics 122 may display a three-dimensional (3D) image using a stereoscopic effect produced by a two-dimensional panel to create a subjective perception of image depth.

在一些範例中,顯示光學件124可以光學方式(例如,使用光波導及/或耦合器)顯示影像內容,或放大從顯示電子件122接收到之影像光,校正與影像光相關聯之光學誤差,及/或向近眼顯示器120之使用者呈現經校正之影像光。在一些範例中,顯示光學件124可包括單個光學元件或各種光學元件之任何數目個組合以及機械耦接件,以維持組合中之光學元件之相對間隔及位向。在一些實例中,顯示光學件124中之一或多個光學元件可具有光學塗層,諸如抗反射塗層、反射塗層、過濾塗層及/或不同光學塗層之組合。In some examples, display optics 124 may display image content optically (eg, using optical waveguides and/or couplers), or amplify image light received from display electronics 122 and correct optical errors associated with the image light. , and/or present the corrected image light to the user of the near-eye display 120 . In some examples, display optics 124 may include a single optical element or any number of combinations of various optical elements and mechanical couplings to maintain relative spacing and orientation of the optical elements in the combination. In some examples, one or more optical elements in display optics 124 may have an optical coating, such as an anti-reflective coating, a reflective coating, a filter coating, and/or a combination of different optical coatings.

在一些範例中,顯示光學件124亦可經設計以校正一或多種類型之光學誤差,諸如二維光學誤差、三維光學誤差或其任何組合。二維誤差之範例可包括桶形失真、枕形失真、縱向色像差及/或橫向色像差。三維誤差之範例可包括球面像差、色像差場曲率及像散。In some examples, display optics 124 may also be designed to correct for one or more types of optical errors, such as two-dimensional optical errors, three-dimensional optical errors, or any combination thereof. Examples of two-dimensional errors may include barrel distortion, pincushion distortion, longitudinal chromatic aberration, and/or lateral chromatic aberration. Examples of three-dimensional errors may include spherical aberration, chromatic aberration, field curvature, and astigmatism.

在一些範例中,一或多個定位器126可為相對於彼此及相對於近眼顯示器120上之參考點位於特定位置中的物件。在一些範例中,視情況選用之控制台110可在由視情況選用之外部成像裝置150擷取之影像中識別一或多個定位器126,以判定人工實境頭戴裝置之位置、位向或兩者。一或多個定位器126可各自為發光二極體(light-emitting diode;LED)、角隅反射器、反射標誌、與供近眼顯示器120操作之環境形成對比的一種類型之光源,或其任何組合。In some examples, one or more locators 126 may be objects that are located in a specific location relative to each other and relative to a reference point on the near-eye display 120 . In some examples, the optional console 110 can identify one or more locators 126 in images captured by the optional external imaging device 150 to determine the position and orientation of the artificial reality headset. Or both. One or more locators 126 may each be a light-emitting diode (LED), a corner reflector, a reflective marker, a type of light source that contrasts with the environment in which the near-eye display 120 operates, or any of these combination.

在一些範例中,外部成像裝置150可包括一或多個攝影機、一或多個視訊攝影機、能夠擷取包括一或多個定位器126之影像的任何其他裝置,或其任何組合。視情況選用之外部成像裝置150可經配置以在視情況選用之外部成像裝置150之視場中偵測從一或多個定位器126發射或反射之光。In some examples, external imaging device 150 may include one or more cameras, one or more video cameras, any other device capable of capturing images including one or more locators 126 , or any combination thereof. Optionally external imaging device 150 may be configured to detect light emitted or reflected from one or more locators 126 within the field of view of optional external imaging device 150 .

在一些範例中,一或多個位置感測器128可回應於近眼顯示器120之運動而產生一或多個量測信號。一或多個位置感測器128之範例可包括任何數目個加速計、陀螺儀、磁力計及/或其他運動偵測或誤差校正感測器或其任何組合。In some examples, one or more position sensors 128 may generate one or more measurement signals in response to movement of the near-eye display 120 . Examples of one or more position sensors 128 may include any number of accelerometers, gyroscopes, magnetometers, and/or other motion detection or error correction sensors or any combination thereof.

在一些範例中,慣性量測單元(IMU)132可為電子裝置,其基於從一或多個位置感測器128接收到之量測信號產生快速校準資料。一或多個位置感測器128可位於慣性量測單元(IMU)132外部、慣性量測單元(IMU)132內部或其任何組合。基於來自一或多個位置感測器128之一或多個量測信號,慣性量測單元(IMU)132可產生快速校準資料,其指示近眼顯示器120之可相對於近眼顯示器120之初始位置的經估計位置。舉例而言,慣性量測單元(IMU)132可隨時間推移對從加速計接收到之量測信號進行積分以估計速度向量,且隨時間推移對速度向量進行積分以判定近眼顯示器120上之參考點的經估計位置。替代地,慣性量測單元(IMU)132可將經取樣量測信號提供至視情況選用之控制台110,從而可判定快速校準資料。In some examples, inertial measurement unit (IMU) 132 may be an electronic device that generates fast calibration data based on measurement signals received from one or more position sensors 128 . One or more position sensors 128 may be external to the IMU 132 , internal to the IMU 132 , or any combination thereof. Based on one or more measurement signals from one or more position sensors 128 , the inertial measurement unit (IMU) 132 may generate fast calibration data that indicates the position of the near-eye display 120 relative to the initial position of the near-eye display 120 Estimated location. For example, the inertial measurement unit (IMU) 132 may integrate measurement signals received from the accelerometer over time to estimate a velocity vector, and integrate the velocity vector over time to determine a reference on the near-eye display 120 The estimated position of the point. Alternatively, the inertial measurement unit (IMU) 132 may provide sampled measurement signals to the optional console 110 so that quick calibration data may be determined.

眼睛追蹤單元130可包括一或多個眼睛追蹤系統。如本文中所使用,「眼睛追蹤」可指判定眼睛之位置或相對位置,包括使用者眼睛之位向、位置及/或凝視。在一些範例中,眼睛追蹤系統可包括擷取眼睛之一或多個影像之成像系統,且可視情況包括光發射器,該光發射器可產生光,該光經引導至眼睛使得由眼睛反射之光可由成像系統擷取。在其他範例中,眼睛追蹤單元130可擷取由微型雷達單元發射之經反射無線電波。與眼睛相關聯之此等資料可用於判定或預測眼睛位置、位向、移動、位置及/或凝視。Eye tracking unit 130 may include one or more eye tracking systems. As used herein, "eye tracking" may refer to determining the position or relative position of the eyes, including the orientation, position, and/or gaze of the user's eyes. In some examples, an eye tracking system can include an imaging system that captures one or more images of the eye, and optionally includes a light emitter that can generate light that is directed to the eye such that it is reflected by the eye. The light can be captured by the imaging system. In other examples, eye tracking unit 130 may capture reflected radio waves emitted by the micro radar unit. Such data associated with the eyes may be used to determine or predict eye position, orientation, movement, location and/or gaze.

在一些範例中,近眼顯示器120可使用眼睛之位向以引入深度線索(例如,使用者的主要視線外部之模糊影像),收集關於虛擬實境(VR)媒體中之使用者互動的啟發(例如,依據經曝光刺激而變化的花費在任何特定個體、物件或圖框上的時間)、部分地基於使用者之眼睛中之至少一者的位向之一些其他功能,或其任何組合。在一些範例中,由於可針對使用者之兩個眼睛判定位向,故眼睛追蹤單元130可能夠判定使用者正看向哪裡或預測任何使用者模式等。In some examples, near-eye display 120 may use eye orientation to introduce depth cues (e.g., blurred images outside the user's primary line of sight) to gather insights about user interactions in virtual reality (VR) media (e.g., , time spent looking at any particular individual, object or frame as a function of the exposure stimulus), some other function based in part on the orientation of at least one of the user's eyes, or any combination thereof. In some examples, since the orientation can be determined for both eyes of the user, the eye tracking unit 130 may be able to determine where the user is looking or predict any user patterns, etc.

在一些範例中,輸入/輸出介面140可為允許使用者將動作請求發送至視情況選用之控制台110之裝置。如本文中所使用,「動作請求」可為執行特定動作之請求。舉例而言,動作請求可為開始或結束應用程式或執行應用程式內之特定動作。輸入/輸出介面140可包括一或多個輸入裝置。範例輸入裝置可包括鍵盤、滑鼠、遊戲控制器、手套、按鈕、觸控螢幕或用於接收動作請求且將接收到之動作請求傳達至視情況選用之控制台110的任何其他合適裝置。在一些實例中,藉由輸入/輸出介面140接收到之動作請求可經傳達至視情況選用的控制台110,從而可執行對應於經請求動作之動作。In some examples, input/output interface 140 may be a device that allows the user to send action requests to optional console 110 . As used herein, an "action request" may be a request to perform a specific action. For example, an action request may be to start or end an application or to perform a specific action within the application. Input/output interface 140 may include one or more input devices. Example input devices may include a keyboard, a mouse, a game controller, a glove, a button, a touch screen, or any other suitable device for receiving action requests and communicating the received action requests to the optional console 110 . In some examples, action requests received via input/output interface 140 may be communicated to optional console 110 so that actions corresponding to the requested actions may be performed.

在一些範例中,視情況選用之控制台110可根據從外部成像裝置150、近眼顯示器120及輸入/輸出介面140中之一或多者接收到之資訊將內容提供至近眼顯示器120以供呈現給使用者。舉例而言,在圖1中所示之範例中,視情況選用之控制台110可包括應用程式商店112、頭戴裝置追蹤模組114、虛擬實境引擎116,及眼睛追蹤模組118。視情況選用之控制台110之一些範例可包括與結合圖1所描述之模組不同的或額外的模組。下文進一步所描述之功能可以與此處所描述之方式不同的方式分佈於視情況選用之控制台110之組件當中。In some examples, optional console 110 may provide content to near-eye display 120 for presentation based on information received from one or more of external imaging device 150 , near-eye display 120 , and input/output interface 140 user. For example, in the example shown in FIG. 1 , optional console 110 may include an app store 112 , a headset tracking module 114 , a virtual reality engine 116 , and an eye tracking module 118 . Some examples of optional consoles 110 may include different or additional modules than those described in conjunction with FIG. 1 . Functionality, described further below, may be distributed among the optional components of console 110 in a manner different from that described herein.

在一些範例中,視情況選用之控制台110可包括處理器及儲存可由該處理器執行之指令之非暫時性電腦可讀取儲存媒體。處理器可包括多個並行執行指令之處理單元。非暫時性電腦可讀取儲存媒體可為任何記憶體,諸如硬碟機、可移除記憶體或固態硬碟(例如,快閃記憶體或動態隨機存取記憶體(dynamic random access memory;DRAM))。在一些範例中,結合圖1描述之視情況選用之控制台110的模組可經編碼為非暫時性電腦可讀取儲存媒體中之指令,該等指令在由處理器執行時使得該處理器執行下文進一步所描述之功能。應瞭解,可或可不需要光學控制台110,或視情況選用之控制台110可與近眼顯示器120整合或分離。In some examples, the optional console 110 may include a processor and a non-transitory computer-readable storage medium that stores instructions executable by the processor. A processor may include multiple processing units that execute instructions in parallel. The non-transitory computer-readable storage medium can be any memory, such as a hard drive, removable memory, or a solid-state drive (e.g., flash memory or dynamic random access memory (DRAM) )). In some examples, modules of the optional console 110 described in conjunction with FIG. 1 may be encoded as instructions in a non-transitory computer-readable storage medium that, when executed by a processor, cause the processor to Perform the functions described further below. It should be understood that the optical console 110 may or may not be required, or the optional console 110 may be integrated with or separate from the near-eye display 120.

在一些實例中,應用程式商店112可儲存用於供視情況選用之控制台110執行之一或多個應用程式。應用程式可包括在由處理器執行時產生用於向使用者呈現之內容的一組指令。應用程式之範例可包括:遊戲應用程式、會議應用程式、視訊回放應用程式或其他合適之應用程式。In some examples, application store 112 may store one or more applications for execution by optional console 110 . An application may include a set of instructions that, when executed by a processor, generate content for presentation to a user. Examples of applications may include: gaming applications, conferencing applications, video playback applications, or other suitable applications.

在一些範例中,頭戴裝置追蹤模組114可使用來自外部成像裝置150之緩慢校準資訊來追蹤近眼顯示器120之移動。舉例而言,頭戴裝置追蹤模組114可使用來自慢速校準資訊之觀測到之定位器及近眼顯示器120的模型來判定近眼顯示器120之參考點的位置。另外,在一些範例中,頭戴裝置追蹤模組114可使用快速校準資訊、慢速校準資訊或其任何組合之部分,以預測近眼顯示器120之未來位置。在一些實例中,頭戴裝置追蹤模組114可將近眼顯示器120之經估計或經預測未來位置提供至虛擬實境引擎116。In some examples, headset tracking module 114 may use slow calibration information from external imaging device 150 to track movement of near-eye display 120 . For example, the headset tracking module 114 may use the observed localizer and the model of the near-eye display 120 from the slow calibration information to determine the location of the reference point of the near-eye display 120 . Additionally, in some examples, headset tracking module 114 may use portions of fast calibration information, slow calibration information, or any combination thereof, to predict the future position of near-eye display 120 . In some examples, headset tracking module 114 may provide the estimated or predicted future position of near-eye display 120 to virtual reality engine 116 .

在一些實例中,虛擬實境引擎116可執行人工實境系統環境100內之應用程式,且從頭戴裝置追蹤模組114接收近眼顯示器120之位置資訊、近眼顯示器120之加速度資訊、近眼顯示器120之速度資訊、近眼顯示器120之經預測未來位置或其任何組合。在一些範例中,虛擬實境引擎116亦可從眼睛追蹤模組118接收經估計眼睛位置及位向資訊。基於接收到之資訊,虛擬實境引擎116可判定提供至近眼顯示器120以供向使用者呈現之內容。In some examples, the virtual reality engine 116 can execute applications within the artificial reality system environment 100 and receive the position information of the near-eye display 120 , the acceleration information of the near-eye display 120 , and the near-eye display 120 from the headset tracking module 114 . Speed information, predicted future position of the near-eye display 120, or any combination thereof. In some examples, virtual reality engine 116 may also receive estimated eye position and orientation information from eye tracking module 118 . Based on the received information, the virtual reality engine 116 may determine content to provide to the near-eye display 120 for presentation to the user.

在一些範例中,眼睛追蹤模組118可從眼睛追蹤單元130接收眼睛追蹤資料,且基於該眼睛追蹤資料來判定使用者之眼睛之位置。在一些範例中,眼睛之位置可包括眼睛相對於近眼顯示器120或其任何元件之位向、位置或此兩者。因此,在此等範例中,由於眼睛之旋轉軸線依據眼睛在其眼窩中之位置而改變,因此判定眼睛在其眼窩中之位置可允許眼睛追蹤模組118更準確地判定眼睛之位向。In some examples, the eye tracking module 118 may receive eye tracking data from the eye tracking unit 130 and determine the position of the user's eyes based on the eye tracking data. In some examples, the position of the eye may include the orientation, position, or both of the eye relative to near-eye display 120 or any components thereof. Therefore, in these examples, since the axis of rotation of the eye changes depending on the position of the eye in its eye socket, determining the position of the eye in its eye socket may allow the eye tracking module 118 to more accurately determine the orientation of the eye.

在一些範例中,可調整顯示系統之投影儀之位置以實現任何數目個設計修改。舉例而言,在一些示例下,投影儀可位於觀看者之眼睛前方(亦即,「前置安裝」置放)。在前置安裝置放中,在一些範例中,顯示系統之投影儀可遠離使用者之眼睛(即,「世界側」)而定位。在一些範例中,頭戴式顯示器(HMD)裝置可利用前置安裝置放以將光朝向使用者之眼睛傳播,以投影影像。In some examples, the position of the display system's projector can be adjusted to implement any number of design modifications. For example, in some examples, the projector may be positioned in front of the viewer's eyes (ie, a "front-mounted" placement). In front-mounted installations, in some examples, the display system's projector may be positioned away from the user's eyes (i.e., "world side"). In some examples, a head-mounted display (HMD) device may utilize a front-mounted arrangement to direct light toward the user's eyes to project images.

圖2說明根據範例之呈頭戴式顯示器(HMD)裝置200之形式之近眼顯示器的透視圖。在一些範例中,HMD裝置200可為虛擬實境(VR)系統、擴增實境(AR)系統、混合實境(MR)系統、使用顯示器或可穿戴物之另一系統或其任何組合之一部分。在一些範例中,HMD裝置200可包括主體220及頭部綁帶230。圖2在透視圖中顯示主體220之底部側223、前側225及左側227。在一些範例中,HMD裝置200亦可包括在頂部/底部/左/右/前部外部上之外部攝影機,諸如右下方攝影機228、左上方攝影機229及前置攝影機231,如所示。在一些範例中,頭部綁帶230可具有可調整或可延伸長度。特定言之,在一些實例中,在HMD裝置200之主體220與頭部綁帶230之間可存在足夠的空間,以允許使用者將HMD裝置200安裝至使用者之頭部上。在一些範例中,HMD裝置200可包括額外、較少及/或不同組件。2 illustrates a perspective view of a near-eye display in the form of a head-mounted display (HMD) device 200, according to an example. In some examples, HMD device 200 may be a virtual reality (VR) system, an augmented reality (AR) system, a mixed reality (MR) system, another system using a display or a wearable, or any combination thereof. part. In some examples, HMD device 200 may include a main body 220 and a head strap 230 . Figure 2 shows the bottom side 223, the front side 225 and the left side 227 of the body 220 in perspective view. In some examples, HMD device 200 may also include external cameras on the top/bottom/left/right/front exterior, such as lower right camera 228, upper left camera 229, and front camera 231, as shown. In some examples, head strap 230 may have an adjustable or extendable length. Specifically, in some examples, there may be sufficient space between the main body 220 of the HMD device 200 and the head strap 230 to allow the user to install the HMD device 200 on the user's head. In some examples, HMD device 200 may include additional, fewer, and/or different components.

在一些範例中,HMD裝置200可向使用者呈現媒體或其他數位內容,包括具有電腦產生之元件之實體、真實世界環境的虛擬及/或擴增視圖。由HMD裝置200呈現之媒體或數位內容之範例可包括影像(例如,二維(two-dimensional;2D)或三維(3D)影像)、視訊(例如,2D或3D視訊)、音訊或其任何組合。在一些範例中,影像及視訊可由圍封於HMD裝置200之主體220中之一或多個顯示器組裝件(圖2中未示)呈現給使用者之各眼睛。In some examples, HMD device 200 may present media or other digital content to a user, including physical, virtual and/or augmented views of a real-world environment with computer-generated elements. Examples of media or digital content presented by HMD device 200 may include images (eg, two-dimensional; 2D) or three-dimensional (3D) images), video (eg, 2D or 3D video), audio, or any combination thereof . In some examples, images and videos may be presented to the user's eyes by one or more display assemblies (not shown in FIG. 2 ) enclosed in the body 220 of the HMD device 200 .

在一些範例中,HMD裝置200可包括各種感測器(圖中未示),諸如深度感測器、運動感測器、位置感測器及/或眼睛追蹤感測器。此等感測器中之一些可出於感測目的使用任何數目個結構化或非結構化之光圖案。在一些實例中,HMD裝置200可包括用於與控制台110通信之輸入/輸出介面140,如關於圖1所描述。在一些範例中,HMD裝置200可包括虛擬實境引擎(圖中未示),但類似於關於圖1所描述之虛擬實境引擎116,其可在HMD裝置200內執行應用程式,且從各種感測器接收HMD裝置200之深度資訊、位置資訊、加速度資訊、速度資訊、經預測未來位置或其任何組合。In some examples, the HMD device 200 may include various sensors (not shown), such as depth sensors, motion sensors, position sensors, and/or eye tracking sensors. Some of these sensors may use any number of structured or unstructured light patterns for sensing purposes. In some examples, HMD device 200 may include input/output interface 140 for communicating with console 110, as described with respect to FIG. 1 . In some examples, the HMD device 200 may include a virtual reality engine (not shown), but similar to the virtual reality engine 116 described with respect to FIG. 1 , which may execute applications within the HMD device 200 and select from various The sensor receives depth information, position information, acceleration information, speed information, predicted future position or any combination thereof of the HMD device 200 .

在一些範例中,由虛擬實境引擎116接收到之資訊可用於產生至一或多個顯示組裝件之信號(例如,顯示指令)。在一些範例中,HMD裝置200可包括定位器(圖中未示),但類似於圖1中所描述之虛擬定位器126,該等定位器可相對於彼此且相對於參考點位於HMD裝置200之主體220上之固定位置中。定位器中之各者可發射可由外部成像裝置偵測之光。此對於頭部追蹤或其他移動/定向之目的可能適用。應瞭解,除了此類定位器以外或代替此類定位器,亦可使用其他元件或組件。In some examples, information received by virtual reality engine 116 may be used to generate signals (eg, display commands) to one or more display assemblies. In some examples, the HMD device 200 may include locators (not shown), but similar to the virtual locators 126 described in FIG. 1 , the locators may be positioned on the HMD device 200 relative to each other and relative to a reference point. in a fixed position on the main body 220. Each of the locators can emit light detectable by an external imaging device. This may be suitable for head tracking or other movement/orientation purposes. It is understood that other elements or components may be used in addition to or in place of such locators.

應瞭解,在一些範例中,安裝於顯示系統中之投影儀可置放成靠近及/或更接近於使用者之眼睛(亦即,「眼睛側」)。在一些範例中,且如本文中所論述,用於形狀像眼鏡之顯示系統之投影儀可安裝或定位於眼鏡之鏡腿(亦即,透鏡側之頂部遠角)中。應瞭解,在一些示例下,利用後置安裝之投影儀置放可幫助減小顯示系統所需之任何所需外殼的大小或體積,此亦可促使顯著改良使用者的使用者體驗。It should be understood that in some examples, the projector installed in the display system may be positioned close to and/or closer to the user's eyes (ie, "eye side"). In some examples, and as discussed herein, a projector for a display system shaped like eyeglasses may be mounted or positioned in the temple (ie, the top far corner of the lens side) of the eyeglasses. It will be appreciated that in some instances, utilizing rear-mounted projector placement can help reduce the size or volume of any required housing required for the display system, which can also result in significantly improved user experience for the user.

如上文所提及,光透射率(或缺失其)可在一些顯示系統中呈現問題,諸如基於VR之頭戴式裝置(HMD)及/或護目鏡裝置。低光透射率可限制亮度且最小化使用者所要沉浸式視覺體驗。因此,本文所描述之系統及方法可幫助改良此類顯示器中之LCD的「插座效率」。As mentioned above, light transmittance (or lack thereof) can present problems in some display systems, such as VR-based head mounted devices (HMDs) and/or goggle devices. Low light transmittance limits brightness and minimizes the immersive visual experience desired by users. Therefore, the systems and methods described herein can help improve the "socket efficiency" of LCDs in such displays.

圖3A至圖3D說明根據範例之具有雷射背光之分色液晶顯示器(LCD)的橫截面視圖。圖3A說明形成LCD堆疊300A之各種層。如所示,LCD堆疊可包括白色LED 302背光,其經由任何數目個光學組件透射光,諸如光導板(light guide plate;LGP)303、一或多個偏光器312、304、薄膜電晶體(thin film transistor;TFT)306、液晶(liquid crystal;LC)層308、彩色濾光片(color filter;CF)310等。如所描繪,當光314穿過LCD堆疊時,此等層中之各者可以某種方式減小穿過其之光的量,如由百分比所指示。當計算時,實際上在結束時由包含LGP、偏光器及TFT之LCD堆疊之至少部分透射的光的量可僅為光之小部分。藉由一些估計,光透射率可大致為0.0945透射率(9.45%)或小於10%。3A-3D illustrate cross-sectional views of a dichroic liquid crystal display (LCD) with a laser backlight, according to an example. Figure 3A illustrates the various layers forming LCD stack 300A. As shown, the LCD stack may include a white LED 302 backlight that transmits light via any number of optical components, such as a light guide plate (LGP) 303, one or more polarizers 312, 304, thin film transistors film transistor; TFT) 306, liquid crystal (liquid crystal; LC) layer 308, color filter (color filter; CF) 310, etc. As depicted, when light 314 passes through the LCD stack, each of these layers may reduce the amount of light passing through it in some manner, as indicated by a percentage. When calculated, the amount of light that is at least partially transmitted by the LCD stack including LGP, polarizer and TFT may actually be only a small fraction of the light at the end. By some estimates, the light transmittance can be approximately 0.0945 transmittance (9.45%) or less than 10%.

因此,本文中所描述之系統及方法之主要目標中之一者改良LCD堆疊中之光透射率及提供AR/VR HMD中之增加的亮度、視力及較高品質影像。幫助使光損耗最小化之一種方法可為使用替代光源或配置。Accordingly, one of the primary goals of the systems and methods described herein is to improve light transmission in LCD stacks and provide increased brightness, vision, and higher quality images in AR/VR HMDs. One way to help minimize light loss may be to use alternative light sources or configurations.

圖3B說明根據範例之具有雷射背光之分色液晶顯示器(LCD)的橫截面視圖。在此,並非圖3A之白色LED及LGP,LCD堆疊300B使用包括例如RBG雷射322、光柵光導(light guide;LG)323及微透鏡陣列(micro lens array;MLS)325之雷射背光配置。在此範例中,LCD堆疊300B之此部分之光324之透射率可估計為僅低於大致0.1575(15.75%)或約16%,其表示顯著改良。圖3C說明根據範例之具有使用MLA之雷射背光之分色液晶顯示器(LCD)348的近視橫截面視圖。在此,微透鏡陣列(MLA)346可使光束350聚焦通過孔徑,因此增強整體透射。可經由波導344將來自光源342之光提供至色彩選擇性微透鏡陣列(MLA)346。3B illustrates a cross-sectional view of a dichroic liquid crystal display (LCD) with a laser backlight, according to an example. Here, instead of the white LED and LGP of FIG. 3A , the LCD stack 300B uses a laser backlight configuration including, for example, an RBG laser 322 , a light guide (LG) 323 and a micro lens array (MLS) 325 . In this example, the transmittance of light 324 for this portion of LCD stack 300B can be estimated to be only less than approximately 0.1575 (15.75%), or about 16%, which represents a significant improvement. 3C illustrates a close-up cross-sectional view of a dichroic liquid crystal display (LCD) 348 with a laser backlight using MLA, according to an example. Here, microlens array (MLA) 346 can focus beam 350 through the aperture, thereby enhancing overall transmission. Light from light source 342 may be provided to color selective microlens array (MLA) 346 via waveguide 344.

另外,圖3D說明根據另一範例之具有使用相位板之雷射背光之分色液晶顯示器(LCD)的橫截面視圖。在此,並非圖3B之微透鏡陣列(MLA),LCD堆疊300D使用包括例如RBG雷射322、光柵光導(LG)323及相位板335之雷射背光配置。藉由一些計算,圖3B之MLA可具有小於50%透射率,但圖3D中之相位板之透射率可大於60%。因此,使用相位板之LCD堆疊300C之此部分之光透射率可估計為大於0.2268(22.68%)或約22%,其表示甚至更顯著改良。以許多方法,相位板之使用亦可使光束聚焦通過孔徑,籍此相較於MLA層以甚至更大效率增強整體透射。Additionally, FIG. 3D illustrates a cross-sectional view of a dichroic liquid crystal display (LCD) with a laser backlight using a phase plate according to another example. Here, instead of the microlens array (MLA) of FIG. 3B , the LCD stack 300D uses a laser backlight configuration including, for example, an RBG laser 322 , a grating light guide (LG) 323 and a phase plate 335 . With some calculations, the MLA in Figure 3B can have a transmittance of less than 50%, but the phase plate in Figure 3D can have a transmittance of greater than 60%. Therefore, the light transmittance of this portion of the LCD stack 300C using the phase plate can be estimated to be greater than 0.2268 (22.68%) or about 22%, which represents an even more significant improvement. In many ways, the use of a phase plate can also focus the beam through an aperture, thereby enhancing the overall transmission with even greater efficiency than an MLA layer.

為了使相位板幫助提供改良透射,可存在最佳化此等結果之若干參數。圖4A至圖4D說明根據範例之具有擁有相位板之雷射背光之分色液晶顯示器(LCD)的橫截面像素級視圖。舉例而言,圖4A中之圖式400A顯示藉由相位板404調整源光402。如本文中所提及,相位板404可改變穿過相位板之偏振光之分量之相對相位且亦聚焦該光。因此,經調整光406可聚焦於經選擇像素408上,使得藍光分量聚焦於藍色子像素上,紅光分量聚焦於紅色子像素上,且綠光分量聚焦於綠色子像素上。在此,可存在以大致18微米(µm)(例如,在10 µm至25 µm之範圍內)之寬度所量測的紅色、綠色及藍色像素(例如,像素410),其中與色彩中之各者相關聯之孔中之各者可為大致3.5微米(例如,在2 µm至5 µm之範圍內)。為了使此配置以高效率操作,可需要光在大致40度下以圓錐類形狀穿過,如所示。此外,在一些範例中,總高度可在200 µm至500 µm之範圍內。使用此等參數,具有使用相位板之雷射背光之LCD可針對與三個色彩(紅色、綠色及藍色)中之各者相關聯之波長提供設計回應,如具有像素422、像素基板405及相位板404之圖4B、圖4C及圖4D之視圖400B、400C及400D中所示。In order for the phase plate to help provide improved transmission, there may be several parameters that optimize these results. 4A-4D illustrate cross-sectional pixel-level views of a dichroic liquid crystal display (LCD) with a laser backlight having a phase plate, according to an example. For example, diagram 400A in FIG. 4A shows source light 402 being adjusted by phase plate 404. As mentioned herein, phase plate 404 can change the relative phase of components of polarized light passing through the phase plate and also focus this light. Accordingly, the adjusted light 406 may be focused on the selected pixel 408 such that the blue light component is focused on the blue subpixel, the red light component is focused on the red subpixel, and the green light component is focused on the green subpixel. Here, there may be red, green, and blue pixels (eg, pixel 410) measuring approximately 18 micrometers (µm) in width (eg, in the range of 10 µm to 25 µm), with Each of the associated pores may be approximately 3.5 microns (eg, in the range of 2 µm to 5 µm). In order for this configuration to operate at high efficiency, it may be necessary for the light to pass through in a cone-like shape at approximately 40 degrees, as shown. Additionally, in some examples, the overall height can range from 200 µm to 500 µm. Using these parameters, an LCD with a laser backlight using a phase plate can provide design responses for the wavelengths associated with each of the three colors (red, green, and blue), such as having a pixel 422, a pixel substrate 405, and Phase plate 404 is shown in views 400B, 400C and 400D of Figures 4B, 4C and 4D.

因此,本文所描述之系統及方法可提供用於顯示系統中分色雷射背光之相位板製造方法,諸如基於VR之頭戴式裝置(HMD)。具體言之,本文中所描述之相位板製造方法可使用干涉計設置以製作針孔之全像圖。本文中所描述之相位板製造方法亦可針對其他波長用經移位針孔重複該製程何次數。本文中所描述之相位板製造方法亦可播放具有共軛物光束之全像圖以產生所要照明圖案。亦可考慮或提供其他各種範例。Accordingly, the systems and methods described herein may provide phase plate manufacturing methods for dichroic laser backlights in display systems, such as VR-based head-mounted devices (HMDs). Specifically, the phase plate fabrication methods described herein can use an interferometer setup to create a hologram of a pinhole. The phase plate fabrication method described herein can also repeat the process any number of times with shifted pinholes for other wavelengths. The phase plate fabrication methods described herein can also play holograms with conjugate beams to produce desired illumination patterns. Various other examples may also be considered or provided.

圖5說明根據範例之用於產生相位板製造之針孔之全像圖的干涉計配置500。如所示,干涉計配置500可包括光聚合物508可附接至其之基板510。在一些範例中,光聚合物508可為3 µm或大於3 µm(或通常<50 µm)。具有針孔506之遮罩504亦可設置於距光聚合物508大致200 µm至500 µm之距離處。在相位板製造方法之此步驟中,準直雷射光507可來源於配置500之底部且作為準直光束穿過1%遮罩。應瞭解,光可穿過1 µm針孔506以產生球形波前。在一些範例中,準直光束可在光聚合物層處干涉球形波前。此干擾可幫助在用作如上文所描述之顯示器中之相位板的光聚合物上形成所要全像圖圖案。應瞭解,1 µm針孔可產生40°度之半峰全寬(full width at half maximum;FWHM)圓錐角: Sin (FFOV/2) =波長/針孔直徑,             (1) 其中FFOV表示全視場。另外,在此步驟期間,曝光時間可取決於雷射功率在0.5秒至6秒之間變化。在大多數情況下,10mW/cm 2雷射可用於大致1秒。 Figure 5 illustrates an interferometer configuration 500 for generating a hologram of a pinhole for phase plate fabrication, according to an example. As shown, interferometer configuration 500 can include a substrate 510 to which photopolymer 508 can be attached. In some examples, photopolymer 508 may be 3 µm or greater (or typically <50 µm). Mask 504 with pinholes 506 may also be positioned at a distance of approximately 200 µm to 500 µm from photopolymer 508 . In this step of the phase plate manufacturing method, collimated laser light 507 may originate from the bottom of configuration 500 and pass through the 1% mask as a collimated beam. It should be understood that light can pass through the 1 µm pinhole 506 to create a spherical wavefront. In some examples, the collimated beam can interfere with a spherical wavefront at the photopolymer layer. This interference can help form the desired hologram pattern on the photopolymer used as a phase plate in a display as described above. It should be understood that a 1 µm pinhole can produce a 40° full width at half maximum (FWHM) cone angle: Sin (FFOV/2) = wavelength/pinhole diameter, (1) where FFOV means full view. field. Additionally, during this step, the exposure time can vary between 0.5 and 6 seconds depending on the laser power. In most cases, a 10mW/ cm2 laser can be used for approximately 1 second.

如上文所提及,此製程可針對其他波長用經移位針孔重複。在一些範例中,取決於厚度(例如,3 µm至50 µm)及光聚合物性質(例如,索引動態),配置500可用以將不同波長回應暴露於不同光聚合物。換言之,紅色雷射可用以曝光,接著移位針孔且使用綠色雷射,且接著再次移位針孔以用於藍色雷射等。取決於執行多少次曝光,光聚合物之厚度可變化。舉例而言,待執行之曝光愈多,光聚合物應愈厚。此通常由於材料之索引動態對於較厚材料可通常更高。額外曝光之一個原因為擷取超過一個波長,如上文所描述。在RBG範例中,製程涉及多工三個波長之回應。在一些範例中,可能需要具有離軸曝光或其他變化。在此等情境中,製程可涉及額外光束轉向,例如同樣以任何數目個不同角度曝光。As mentioned above, this process can be repeated with shifted pinholes for other wavelengths. In some examples, configuration 500 may be used to expose different wavelength responses to different photopolymers, depending on thickness (eg, 3 µm to 50 µm) and photopolymer properties (eg, indexing dynamics). In other words, a red laser can be used for exposure, then the pinhole is shifted and a green laser is used, and then the pinhole is shifted again for a blue laser, and so on. Depending on how many exposures are performed, the thickness of the photopolymer can vary. For example, the more exposures to be performed, the thicker the photopolymer should be. This is usually due to the fact that the index dynamics of the material can usually be higher for thicker materials. One reason for extra exposure is capturing more than one wavelength, as described above. In the RBG example, the process involves multiplexing responses at three wavelengths. In some paradigms, it may be necessary to have off-axis exposure or other changes. In these situations, the process may involve additional beam steering, such as exposure at any number of different angles as well.

在一些範例中,亦可提供超過一個光聚合物層。舉例而言,可使用三個膜。舉例而言,在曝光此等膜(紅色、綠色及藍色)中之各者之後,可使用任何數目個層壓處理技術將此等膜中之各者層壓於彼此上以同樣形成單數組件。In some examples, more than one photopolymer layer may be provided. For example, three membranes can be used. For example, after exposing each of the films (red, green, and blue), each of the films can be laminated to each other using any number of lamination processes to also form a singular component .

圖6說明根據範例之使用具有共軛物光束之相位板以在液晶顯示器(LCD)608處產生照明圖案的配置600。如所示,從以上製造,形成之相位板可用於配置600中。具體言之,配置600可用共軛物光束定位相位板及全像圖以產生用於LCD之所需照明圖案。因此,RGB光602可穿過透明基板、具有針孔之光聚合物604且達到作為液晶顯示器(LCD)608上之經調整光606。應瞭解,在一些範例中,相位板與TFT(例如,LCD之第1表面)之間的位置應與曝光距離(200 µm至500 µm)相對相同,如圖5中所示。然而,亦可考慮或提供其他各種範例。6 illustrates a configuration 600 using a phase plate with a conjugate beam to produce an illumination pattern at a liquid crystal display (LCD) 608, according to an example. As shown, the phase plate formed from the above can be used in configuration 600. Specifically, configuration 600 may position the phase plate and hologram with conjugate beams to produce the desired illumination pattern for the LCD. Thus, RGB light 602 can pass through the transparent substrate, photopolymer 604 with pinholes, and arrive as modulated light 606 on a liquid crystal display (LCD) 608 . It should be understood that in some examples, the position between the phase plate and the TFT (eg, the first surface of the LCD) should be relatively the same as the exposure distance (200 µm to 500 µm), as shown in Figure 5. However, various other examples may also be considered or provided.

圖7A至圖7B說明根據範例之用於相位板製造之曝光遮罩的視圖700A至視圖700B。如上文所描述,曝光遮罩702可包括複數個針孔710,如圖7A中所示。在一些範例中,此等針孔中之各者可具有大致1 µm之直徑706。在整個遮罩上方亦可存在圖案化,且在一些範例中,針孔710可間隔開18 µm間隔之距離704。在一些範例中,遮罩亦可例如用鉻塗佈。遮罩702之大小可在5 x 5 cm至8 x 8 cm之範圍內,或任何其他相關大小或尺寸(參見下文以用於計算)。亦應瞭解,針孔710之實際形狀不必為完全圓形。亦可提供略微橢圓形針孔。應瞭解,針孔可經配置有100%光透射,而遮罩之鉻(其他部分)可經配置有0.4%光透射。亦即,在實際操作中,孔透射很可能低於100%,且因此鉻透射可相應地按比例調整。7A-7B illustrate views 700A-700B of an exposure mask for phase plate fabrication, according to an example. As described above, exposure mask 702 may include a plurality of pinholes 710, as shown in Figure 7A. In some examples, each of the pinholes may have a diameter 706 of approximately 1 μm. Patterning may also be present over the entire mask, and in some examples, pinholes 710 may be spaced apart by a distance 704 of 18 µm spacing. In some examples, the mask may also be coated with chrome, for example. Mask 702 may range in size from 5 x 5 cm to 8 x 8 cm, or any other relevant size or dimensions (see below for calculations). It should also be understood that the actual shape of pinhole 710 need not be completely circular. Slightly oval pinholes are also available. It should be understood that the pinholes can be configured to have 100% light transmission, while the chrome (other parts) of the mask can be configured to have 0.4% light transmission. That is, in actual operation, the hole transmission is likely to be less than 100%, and therefore the chromium transmission can be scaled accordingly.

圖7B說明根據範例之用於曝光遮罩尺寸之潛在計算700B。如所示,對於具有半徑r(針孔直徑706的1/2)之針孔及針孔p = 18 µm之間的距離704的給定遮罩,可使用以下表達式計算: (2) 其中T為相對於針孔(白色)之遮罩區(黑色)的相對透射,且arcsin (λ/2r) = 20°導致2r = 1.3 µm對於450 nm具有20°角度。如所示,亦可提供其他計算。最終,此等計算可用以最大化干擾曝光之邊緣對比度,該邊緣對比度具有準直波前與球形波前之間的約相同光/區域。 Figure 7B illustrates a potential calculation 700B for exposure mask size according to an example. As shown, for a given mask with a pinhole of radius r (1/2 the pinhole diameter 706 ) and a distance 704 between pinholes p = 18 µm, the following expression can be used to calculate: (2) where T is the relative transmission of the masked area (black) relative to the pinhole (white), and arcsin (λ/2r) = 20° results in 2r = 1.3 µm with a 20° angle for 450 nm. Other calculations are available as shown. Ultimately, these calculations can be used to maximize edge contrast for interference exposures with approximately the same light/area between collimated and spherical wavefronts.

應瞭解,以上製程可經歷可稱為「塔爾伯特(Talbot)影像平面」問題之事物。簡而言之,當準直光穿過週期性針孔結構時,稱為「塔爾伯特自成像平面」之現象可在遠離針孔遮罩之若干距離處出現。換言之,當平面波入射於週期性繞射光柵上時,光柵之影像可在遠離光柵平面之有規律的距離處重複。在此情境中,有規律的距離可稱為塔爾伯特長度,且經重複影像可稱為「自影像」或「塔爾伯特影像」。It should be understood that the above process can experience what may be called the "Talbot image plane" problem. In short, when collimated light passes through a periodic pinhole structure, a phenomenon called the "Talbot self-image plane" can occur at some distance away from the pinhole mask. In other words, when a plane wave is incident on a periodic diffraction grating, the image of the grating can be repeated at regular distances away from the grating plane. In this context, the regular distance can be called the Talbot length, and the repeated image can be called a "self-image" or a "Talbot image."

為了避免參考光束干擾塔爾伯特平面(針孔之複製),本文中所描述之系統及方法可提供以下解決方案中之至少一者:(1)使干擾平面遠離塔爾伯特平面移位100 µm至200 µm(例如,在500 µm處之塔爾伯特平面,接著將光聚合物置放在600 µm至700 µm處);(2)將隨機相位添加至針孔以破壞週期性相位;(3)使1 µm針孔位置按雙µm偏移隨機化以避免週期性圖案;及/或(4)使用遮罩中之兩個或更多個,其中各遮罩增加改變塔爾伯特距離之週期。In order to prevent the reference beam from interfering with the Talbot plane (replication of the pinhole), the systems and methods described in this article can provide at least one of the following solutions: (1) Shift the interference plane away from the Talbot plane 100 µm to 200 µm (e.g., Talbot plane at 500 µm, then place photopolymer at 600 µm to 700 µm); (2) add random phase to the pinhole to destroy the periodic phase; (3) Randomize the 1 µm pinhole locations by a double µm offset to avoid periodic patterns; and/or (4) Use two or more of the masks, where each mask increases the change in Talbot The period of distance.

除上文所描述之方法、製程及/或技術之外,可存在產生相位遮罩以用於相位板解決方案以用於顯示系統中之改良光透射的任何數目個方法。此等可包括光微影(二進位或灰度級)、奈米壓印、超-或奈米結構(例如,奈米柱)或其他類似方法、製程及/或技術。取決於成本、速度及易用性,此等及/或其他方法、製程及/或技術可併入至本文中所描述之系統及方法中。In addition to the methods, processes, and/or techniques described above, there may be any number of ways to generate phase masks for use in phase plate solutions for improved light transmission in display systems. These may include photolithography (binary or grayscale), nanoimprinting, ultra- or nanostructures (eg, nanopillars) or other similar methods, processes and/or technologies. Depending on cost, speed, and ease of use, these and/or other methods, processes, and/or techniques may be incorporated into the systems and methods described herein.

在前述描述中,描述各種發明性範例,包括裝置、系統、方法及其類似者。出於解釋之目的,闡述特定細節以便提供對本揭示之範例之透徹理解。然而,顯然是各種實例可在無此等特定細節之情況下實踐。舉例而言,裝置、系統、結構、組裝件、方法及其他組件可以方塊圖形式顯示為組件,以免以不必要之細節混淆範例。在其他示例下,可在無必要細節之情況下顯示眾所周知的裝置、製程、系統、結構及技術,以免混淆範例。In the foregoing description, various inventive examples are described, including devices, systems, methods, and the like. For purposes of explanation, specific details are set forth in order to provide a thorough understanding of the disclosed examples. However, it is understood that various examples may be practiced without such specific details. For example, devices, systems, structures, assemblies, methods, and other components may be shown as components in block diagram form so as not to obscure the examples with unnecessary detail. In other instances, well-known devices, processes, systems, structures, and techniques may be shown without necessary detail to avoid obscuring the examples.

圖式及描述並不意欲為限定性的。已用於本揭示中之術語及表述用作描述之術語且不為限制性的,且在使用此類術語及表述時不欲排除所顯示及描述之特徵的任何等效者或其部分。字語「範例(example)」在本文中用以意謂「充當範例、示例或說明」。不必將本文中描述為『範例』之任何具體實例或設計理解為比其他具體實例或設計較佳或優於其他具體實例或設計。The drawings and descriptions are not intended to be limiting. The terms and expressions have been used in this disclosure as terms of description and not of limitation, and the use of such terms and expressions is not intended to exclude any equivalents of the features shown and described, or portions thereof. The word "example" is used herein to mean "serving as an example, example, or illustration." Any specific example or design described herein as an "example" is not necessarily to be construed as being better or superior to other specific examples or designs.

儘管如本文所描述之方法及系統可主要針對數位內容(諸如視訊或互動式媒體),但應瞭解如本文中所描述之方法及系統亦可用於其他類型之內容或情境。如本文中所描述之方法及系統的其他應用程式或使用亦可包括社交網路連接、營銷、基於內容之推薦引擎及/或其他類型之知識或資料驅動系統。Although the methods and systems as described herein may be primarily targeted at digital content (such as video or interactive media), it is understood that the methods and systems as described herein may also be used with other types of content or contexts. Other applications or uses of methods and systems as described herein may also include social network connectivity, marketing, content-based recommendation engines, and/or other types of knowledge or data-driven systems.

100:人工實境系統環境 110:控制台 112:應用程式商店 114:頭戴裝置追蹤模組 116:虛擬實境引擎 118:眼睛追蹤模組 120:近眼顯示器 122:顯示電子件 124:顯示光學件 126:定位器 128:位置感測器 130:眼睛追蹤單元 132:慣性量測單元 140:輸入/輸出介面 150:外部成像裝置 200:頭戴式顯示器裝置 220:主體 223:底部側 225:前側 227:左側 228:右下方攝影機 229:左上方攝影機 230:頭部綁帶 231:前置攝影機 300A:LCD堆疊 300B:LCD堆疊 300C:LCD堆疊 300D:LCD堆疊 302:白色LED 303:光導板 304:偏光器 306:薄膜電晶體 308:液晶層 310:彩色濾光片 312:偏光器 314:光 322:RBG雷射 323:光柵光導 324:光 325:微透鏡陣列 335:相位板 342:光源 344:波導 346:微透鏡陣列 348:分色液晶顯示器 350:光束 400A:圖式 400B:視圖 400C:視圖 400D:視圖 402:源光 404:相位板 405:像素基板 406:光 408:像素 410:像素 422:像素 500:干涉計配置 502:源光 504:遮罩 506:針孔 507:準直雷射光 508:光聚合物 510:基板 600:配置 602:RGB光 604:光聚合物 606:經調整光 608:液晶顯示器 700A:視圖 700B:視圖 702:曝光遮罩 704:距離 706:直徑 710:針孔 r:半徑 100: Artificial reality system environment 110:Console 112: App Store 114:Head mounted device tracking module 116:Virtual Reality Engine 118: Eye tracking module 120: Near-eye display 122: Display electronics 124: Display optics 126:Locator 128: Position sensor 130: Eye tracking unit 132:Inertial measurement unit 140:Input/output interface 150:External imaging device 200:Head mounted display device 220:Subject 223: Bottom side 225:Front side 227:Left 228:Lower right camera 229:Upper left camera 230:Head strap 231:Front camera 300A: LCD stack 300B:LCD stack 300C: LCD stack 300D: LCD stack 302:White LED 303:Light guide plate 304:Polarizer 306:Thin film transistor 308: Liquid crystal layer 310: Color filter 312:Polarizer 314:Light 322:RBG laser 323:Grating light guide 324:Light 325:Microlens array 335: Phase plate 342:Light source 344:Waveguide 346:Microlens array 348: Color separation LCD display 350:Beam 400A: Schema 400B:View 400C:View 400D:View 402:Source light 404: Phase plate 405: Pixel substrate 406:Light 408:pixel 410: pixels 422: pixels 500:Interferometer configuration 502: Source light 504: Mask 506: Pinhole 507:Collimated laser light 508:Photopolymer 510:Substrate 600:Configuration 602:RGB light 604:Photopolymer 606: Adjusted light 608:LCD display 700A:View 700B:View 702: Exposure mask 704:Distance 706:Diameter 710: Pinhole r:radius

本揭示之特徵藉助於範例說明且不限於以下圖式,在該等圖式中,相同數字指示相同元件。所屬技術領域中具有通常知識者將從以下易於認識到,可在不脫離本文中所描述之原理的情況下採用圖中所說明之結構及方法之替代性範例。 [圖1]說明根據範例之包括近眼顯示器之人工實境系統環境的方塊圖。 [圖2]說明根據範例之呈頭戴式顯示器(HMD)裝置之形式之近眼顯示器的透視圖。 [圖3A]至[圖3D]說明根據範例之具有雷射背光之分色液晶顯示器(LCD)的橫截面視圖。 [圖4A]至[圖4D]說明根據範例之具有擁有相位板之雷射背光之分色液晶顯示器(LCD)的橫截面像素級視圖。 [圖5]說明根據範例之用於產生相位板製造之針孔之全像圖的干涉計配置。 [圖6]說明根據範例之使用具有共軛物光束之相位板以在液晶顯示器(LCD)處產生照明圖案的配置。 [圖7A]至[圖7B]說明根據範例之用於相位板製造之曝光遮罩的視圖。 Features of the present disclosure are illustrated by means of examples and are not limited to the following drawings in which like numerals refer to like elements. Those of ordinary skill in the art will readily recognize from the following that alternative examples of the structures and methods illustrated in the figures may be employed without departing from the principles described herein. [Figure 1] A block diagram illustrating an artificial reality system environment including a near-eye display according to an example. [Fig. 2] A perspective view illustrating a near-eye display in the form of a head-mounted display (HMD) device according to an example. [FIG. 3A] to [FIG. 3D] illustrate cross-sectional views of a dichroic liquid crystal display (LCD) with laser backlight according to an example. [FIG. 4A] to [FIG. 4D] illustrate cross-sectional pixel-level views of a dichroic liquid crystal display (LCD) with a laser backlight having a phase plate, according to an example. [FIG. 5] illustrates an interferometer configuration for generating a hologram of a pinhole for phase plate fabrication, according to an example. [FIG. 6] illustrates a configuration using a phase plate with a conjugate beam to generate an illumination pattern at a liquid crystal display (LCD) according to an example. [FIG. 7A] to [FIG. 7B] illustrate views of an exposure mask used for phase plate manufacturing according to an example.

500:干涉計配置 500:Interferometer configuration

502:源光 502: Source light

504:遮罩 504: Mask

506:針孔 506: Pinhole

507:準直雷射光 507:Collimated laser light

508:光聚合物 508:Photopolymer

510:基板 510:Substrate

Claims (20)

一種用於相位板製造之方法,其包含: 提供干涉計配置以產生複數個針孔之全像圖,其中該干涉計配置包含至少一光聚合物及曝光遮罩; 藉由使準直光穿過以下項,而經由具有複數個針孔之該曝光遮罩來使該光聚合物曝光於該準直光: 該曝光遮罩,其用以產生準直光束;及 該複數個針孔,其用以產生球形波前,其中該準直光束及該球形波前產生該複數個針孔之該全像圖;及 針對額外波長反覆地移位針孔置放以使該光聚合物重複曝光於該準直光。 A method for phase plate manufacturing, which includes: An interferometer configuration is provided to generate a hologram of a plurality of pinholes, wherein the interferometer configuration includes at least one photopolymer and an exposure mask; The photopolymer is exposed to the collimated light through the exposure mask having a plurality of pinholes by passing the collimated light through: the exposure mask used to produce a collimated light beam; and the plurality of pinholes for generating a spherical wavefront, wherein the collimated beam and the spherical wavefront generate the hologram of the plurality of pinholes; and The photopolymer is repeatedly exposed to the collimated light by repeatedly shifting the pinhole placement for additional wavelengths. 如請求項1之方法,其中該干涉計配置包含: 基板,其用於光聚合物附接; 該光聚合物,其具有預定厚度;及 該曝光遮罩,其具有該複數個針孔。 Such as the method of claim 1, wherein the interferometer configuration includes: a substrate for photopolymer attachment; The photopolymer has a predetermined thickness; and The exposure mask has the plurality of pinholes. 如請求項1之方法,其中該準直光為雷射光。The method of claim 1, wherein the collimated light is laser light. 如請求項1之方法,其中該曝光遮罩中之該複數個針孔具有週期性結構。The method of claim 1, wherein the plurality of pinholes in the exposure mask have a periodic structure. 如請求項4之方法,其中該複數個針孔中之任何兩個針孔具有約18微米間距。The method of claim 4, wherein any two pinholes in the plurality of pinholes have a spacing of about 18 microns. 如請求項1之方法,其中該複數個針孔中之各者具有約1微米直徑。The method of claim 1, wherein each of the plurality of pinholes has a diameter of about 1 micron. 如請求項1之方法,其進一步包含: 選擇距離由該曝光遮罩產生之塔爾伯特(Talbot)自成像平面100微米與200微米之間置放該光聚合物。 For example, the method of request item 1 further includes: The photopolymer was selected to be placed between 100 microns and 200 microns from the Talbot self-image plane produced by the exposure mask. 如請求項7之方法,其進一步包含: 將隨機相位添加至該曝光遮罩中之該複數個針孔中之至少一部分;或 使該曝光遮罩中之該針孔中之至少一部分的位置隨機化。 For example, the method of request item 7 further includes: Add a random phase to at least a portion of the plurality of pinholes in the exposure mask; or The position of at least a portion of the pinholes in the exposure mask is randomized. 如請求項1之方法,其中該干涉計配置包含至少兩個曝光遮罩。The method of claim 1, wherein the interferometer configuration includes at least two exposure masks. 一種用於配置一曝光遮罩之方法,其包含: 判定具有用於相位板製造之複數個針孔之曝光遮罩之大小; 判定該遮罩區相對於該針孔之相對透射; 基於該相對透射而判定該曝光遮罩內之該複數個針孔的大小及位置;及 製造具有該複數個針孔之該曝光遮罩。 A method for configuring an exposure mask, which includes: Determine the size of an exposure mask with multiple pinholes for phase plate manufacturing; Determine the relative transmission of the mask area relative to the pinhole; Determine the size and location of the plurality of pinholes in the exposure mask based on the relative transmission; and The exposure mask having the plurality of pinholes is manufactured. 如請求項10之方法,其進一步包含: 使用以下表達式判定該相對透射: 其中T為該曝光遮罩與該複數個針孔之間的該相對透射,p為該複數個針孔中之各者之間的距離,且r為各針孔之半徑。 The method of claim 10, further comprising: determining the relative transmission using the following expression: Where T is the relative transmission between the exposure mask and the plurality of pinholes, p is the distance between each of the plurality of pinholes, and r is the radius of each pinhole. 如請求項10之方法,其中該曝光遮罩中之該複數個針孔具有週期性結構。The method of claim 10, wherein the plurality of pinholes in the exposure mask have a periodic structure. 如請求項12之方法,其中該複數個針孔中之任何兩個針孔具有約18微米間距。The method of claim 12, wherein any two pinholes in the plurality of pinholes have a spacing of about 18 microns. 如請求項10之方法,其中該複數個針孔中之各者具有約1微米直徑。The method of claim 10, wherein each of the plurality of pinholes has a diameter of approximately 1 micron. 如請求項10之方法,其進一步包含: 將一隨機相位添加至該曝光遮罩中之該複數個針孔中之至少一部分。 For example, the method of request item 10 further includes: A random phase is added to at least a portion of the plurality of pinholes in the exposure mask. 如請求項10之方法,其進一步包含: 使該曝光遮罩中之該針孔中之至少一部分的位置隨機化。 For example, the method of request item 10 further includes: The position of at least a portion of the pinholes in the exposure mask is randomized. 一種用於相位板製造之干涉計配置,該干涉計配置包含: 基板; 光聚合物,其具有附接至該基板之預定厚度;及 曝光遮罩,其具有複數個針孔以藉由使該準直光穿過以下項來將該光聚合物曝光於準直光: 該曝光遮罩,其用以產生準直光束;及 該複數個針孔,其用以產生球形波前,其中該準直光束及該球形波前產生該複數個針孔之該全像圖; 針對額外波長反覆地移位針孔置放以使該光聚合物重複曝光於該準直光。 An interferometer configuration for phase plate manufacturing, the interferometer configuration includes: substrate; A photopolymer having a predetermined thickness attached to the substrate; and An exposure mask having a plurality of pinholes for exposing the photopolymer to collimated light by passing the collimated light through: the exposure mask used to produce a collimated light beam; and The plurality of pinholes are used to generate a spherical wavefront, wherein the collimated beam and the spherical wavefront generate the hologram of the plurality of pinholes; The photopolymer is repeatedly exposed to the collimated light by repeatedly shifting the pinhole placement for additional wavelengths. 如請求項17之干涉計配置,其中針對額外波長反覆地移位針孔置放以使該光聚合物重複曝光於該準直光。The interferometer configuration of claim 17, wherein the pinhole placement is iteratively shifted for additional wavelengths to repeatedly expose the photopolymer to the collimated light. 如請求項17之干涉計配置,其中該曝光遮罩中之該複數個針孔具有週期性結構。The interferometer configuration of claim 17, wherein the plurality of pinholes in the exposure mask have a periodic structure. 如請求項17之干涉計配置,其中該光聚合物置放於距離由該曝光遮罩產生之塔爾伯特自成像平面100微米與200微米之間。The interferometer configuration of claim 17, wherein the photopolymer is positioned between 100 microns and 200 microns from the Talbot self-image plane produced by the exposure mask.
TW112103286A 2022-01-31 2023-01-31 Phase plate and fabrication method for color-separated laser backlight in display systems TW202338411A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202263305090P 2022-01-31 2022-01-31
US63/305,090 2022-01-31
US18/100,698 2023-01-24
US18/100,698 US20230244185A1 (en) 2022-01-31 2023-01-24 Phase plate and fabrication method for color-separated laser backlight in display systems

Publications (1)

Publication Number Publication Date
TW202338411A true TW202338411A (en) 2023-10-01

Family

ID=85415307

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112103286A TW202338411A (en) 2022-01-31 2023-01-31 Phase plate and fabrication method for color-separated laser backlight in display systems

Country Status (2)

Country Link
TW (1) TW202338411A (en)
WO (1) WO2023147166A1 (en)

Also Published As

Publication number Publication date
WO2023147166A1 (en) 2023-08-03

Similar Documents

Publication Publication Date Title
US10983341B2 (en) Eye tracking based on polarization volume grating
KR20180012057A (en) See-through type display apparatus
JP2019532676A5 (en)
JP2019532676A (en) Display system and display method
TW202016604A (en) Optical transmitting module and head mounted display device
US20230213772A1 (en) Display systems with collection optics for disparity sensing detectors
US20240061246A1 (en) Light field directional backlighting based three-dimensional (3d) pupil steering
US11366298B1 (en) Eye tracking based on telecentric polarization sensitive grating
WO2023158742A1 (en) Display systems with waveguide configuration to mitigate rainbow effect
US20230209032A1 (en) Detection, analysis and correction of disparities in a display system utilizing disparity sensing port
WO2023133192A1 (en) Display systems with gratings oriented to reduce appearances of ghost images
US11960088B2 (en) Waveguide configurations in a head-mounted display (HMD) for improved field of view (FOV)
US20230084541A1 (en) Compact imaging optics using spatially located, free form optical components for distortion compensation and image clarity enhancement
JP2010243787A (en) Video display and head-mounted display
TW202338411A (en) Phase plate and fabrication method for color-separated laser backlight in display systems
US20230244185A1 (en) Phase plate and fabrication method for color-separated laser backlight in display systems
WO2023147162A1 (en) Phase plate and fabrication method for color-separated laser backlight in display systems
US11927758B1 (en) Multi-laser illuminated mixed waveguide display with volume Bragg grating (VBG) and mirror
US20230258937A1 (en) Hybrid waveguide to maximize coverage in field of view (fov)
US20230314846A1 (en) Configurable multifunctional display panel
US20230314716A1 (en) Emission of particular wavelength bands utilizing directed wavelength emission components in a display system
US20230236415A1 (en) Image generation and delivery in a display system utilizing a two-dimensional (2d) field of view expander
US20230168506A1 (en) High efficiency optical assembly with folded optical path
US20230064097A1 (en) Diffractive optical element (doe) on an imaging sensor to reduce and minimize flare
EP4330757A1 (en) Waveguide configurations in a head-mounted display (hmd) for improved field of view (fov)