TW202338394A - Methods and systems for fabrication of ultrasound transducer devices - Google Patents

Methods and systems for fabrication of ultrasound transducer devices Download PDF

Info

Publication number
TW202338394A
TW202338394A TW111110852A TW111110852A TW202338394A TW 202338394 A TW202338394 A TW 202338394A TW 111110852 A TW111110852 A TW 111110852A TW 111110852 A TW111110852 A TW 111110852A TW 202338394 A TW202338394 A TW 202338394A
Authority
TW
Taiwan
Prior art keywords
stabilizing material
ultrasonic sensor
sensor wafer
cases
microns
Prior art date
Application number
TW111110852A
Other languages
Chinese (zh)
Inventor
亮 王
大衛 克雷沃
納瑞許 曼特拉法第
布萊恩 比爾庫蕭
傑森 陶舍
Original Assignee
美商艾克索影像股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商艾克索影像股份有限公司 filed Critical 美商艾克索影像股份有限公司
Priority to TW111110852A priority Critical patent/TW202338394A/en
Publication of TW202338394A publication Critical patent/TW202338394A/en

Links

Abstract

Described herein are methods and systems useful in the fabrication of ultrasound transducer devices. Fabrication of ultrasound transducer devices can comprise manipulation of components having extremely small cross-sectional thicknesses, which can increase the risk of damage to the components. For example, inadvertent application of forces sufficient to damage such components is a significant risk during fabrication steps. As described herein, the risk of damage to an ultrasound transducer device component having a small cross-sectional thickness, such as an ultrasound microelectromechanical system (MEMS) wafer, can be reduced by partially or completely coating or filling all or a portion of the component with a stabilizing material, for example, prior to subjecting the component to forces associated with manipulation of the component during the fabrication process.

Description

用於製造超音波傳感器裝置之方法及系統Methods and systems for manufacturing ultrasonic sensor devices

超音波傳感器之敏感組件可在使用習知方法及系統製造期間受損,例如由於在製程期間不經意彎曲組件。在一些情況中,足夠之超音波傳感器裝置之陣列振膜可在製造期間受損,使得裝置變得不可靠或不可用。在製造期間損壞之傳感器組件之修復可能既耗時又昂貴。在一些情況中,在製造期間損壞之傳感器陣列組件無法修復且單元必須被捨棄以降低製造良率。在一些情況中,在裝置完全組裝及測試之前,無法判定超音波裝置組件在製造期間是否被損壞至必須捨棄超音波傳感器裝置之程度,從而增加單位成本。因此,在諸多情況中,使用既有超音波裝置製造方法及系統之超音波裝置製造商必須承擔具有在製造期間損壞之組件之不可用或不可靠裝置之損失單位成本。因此,期望改良用於製造傳感器裝置之系統及方法。Sensitive components of ultrasonic sensors can be damaged during manufacturing using conventional methods and systems, for example due to inadvertent bending of the components during the manufacturing process. In some cases, sufficient array diaphragms of an ultrasonic sensor device can be damaged during manufacturing, rendering the device unreliable or unusable. Repair of sensor components damaged during manufacturing can be time-consuming and expensive. In some cases, sensor array components damaged during manufacturing cannot be repaired and the units must be discarded reducing manufacturing yield. In some cases, it cannot be determined whether ultrasonic device components have been damaged during manufacturing to the extent that the ultrasonic sensor device must be discarded until the device is fully assembled and tested, thereby increasing unit costs. Therefore, in many cases, ultrasonic device manufacturers using existing ultrasonic device manufacturing methods and systems must bear the lost unit costs of unusable or unreliable devices that have components that are damaged during manufacturing. Therefore, it is desirable to improve systems and methods for fabricating sensor devices.

超音波傳感器裝置之製造可涉及操縱脆弱裝置組件(例如存在斷裂或破損風險之一或多個超音波傳感器裝置組件,例如歸因於對(若干)組件施加機械力)。例如,用於在超音波傳感器裝置之操作期間產生及/或接收超音波能之微機電系統(MEMS)組件可具有使組件易因施加至組件之力而損壞之一或多個橫截面尺寸(例如橫截面厚度)。用於超音波傳感器裝置製造之既有技術可涉及對此等超音波傳感器裝置組件施加力(例如,在製造期間將組件應用於基板、自臨時基板釋放組件及/或將組件自一個位置平移至另一位置期間),其可增加組件之損壞(例如斷裂或破損)風險。實際上,組件在超音波傳感器裝置製造期間之損壞可影響超音波傳感器裝置之功能且可導致產品生產之大量且昂貴總損失。Fabrication of the ultrasonic sensor device may involve manipulation of fragile device components (eg one or more of the ultrasonic sensor device components are at risk of breakage or breakage, eg due to the application of mechanical force to the component(s)). For example, a microelectromechanical system (MEMS) component used to generate and/or receive ultrasonic energy during operation of an ultrasonic sensor device may have one or more cross-sectional dimensions that render the component susceptible to damage due to forces applied to the component ( such as cross-sectional thickness). Existing techniques for ultrasonic sensor device fabrication may involve applying forces to such ultrasonic sensor device components (e.g., applying components to a substrate during fabrication, releasing components from a temporary substrate, and/or translating components from one position to (during another position), which may increase the risk of component damage (such as breakage or breakage). Indeed, damage to components during the manufacture of an ultrasonic sensor device can affect the functionality of the ultrasonic sensor device and can result in substantial and expensive total losses in product production.

如本文中所描述,組件在製造期間之損壞風險可藉由在製造期間機械穩定組件來減小。例如,組件可藉由將穩定材料添加至組件(例如,藉由用穩定材料部分或完全塗佈或填充組件之全部或部分)來機械穩定。在一些情況中,可在涉及組件之實體操縱(諸如組件至結構支撐件(例如載體基板)、自結構支撐件釋放組件及/或將組件附著至一或多個額外裝置組件)之製造步驟之前將穩定材料添加至組件以(例如)降低損壞(例如組件之部分斷裂或破損)風險。As described herein, the risk of component damage during manufacturing can be reduced by mechanically stabilizing the component during manufacturing. For example, a component may be mechanically stabilized by adding a stabilizing material to the component (eg, by partially or completely coating or filling all or part of the component with the stabilizing material). In some cases, manufacturing steps involving physical manipulation of the component, such as the component to a structural support (eg, a carrier substrate), releasing the component from the structural support, and/or attaching the component to one or more additional device components, may be preceded by Stabilizing materials are added to components, for example, to reduce the risk of damage, such as partial breakage or breakage of the component.

在各種態樣中,一種製造超音波傳感器裝置之方法,該方法包括:使複數個腔形成於耦合至載體基板之傳感器晶圓中;使該複數個腔之一或多者之一或多個內表面與穩定材料接觸;及在使該一或多個內表面與該穩定材料接觸之後使該傳感器晶圓與該載體基板解耦合。在一些情況中,該方法包括減小該傳感器晶圓之至少一部分之橫截面厚度。在一些情況中,該傳感器晶圓之該橫截面厚度減小至不超過75微米。在一些情況中,該傳感器晶圓之該橫截面厚度減小至不超過50微米。在一些情況中,減小該傳感器晶圓之至少一部分之該橫截面厚度在使該複數個腔形成於該傳感器晶圓中之前執行。在一些情況中,減小該傳感器晶圓之至少一部分之該橫截面厚度在使該複數個腔形成於該傳感器晶圓中之後執行。在一些情況中,減小該傳感器晶圓之至少一部分之該橫截面厚度在使該一或多個內表面與該穩定材料接觸之後執行。在一些情況中,減小該傳感器晶圓之至少一部分之該橫截面厚度在使該一或多個內表面與該穩定材料接觸之前執行。在一些情況中,該複數個腔使用光微影形成於該傳感器晶圓中。在一些情況中,使該複數個腔形成於該傳感器晶圓中包括在該傳感器晶圓中蝕刻該複數個腔。在一些情況中,減小該傳感器晶圓之至少一部分之該橫截面厚度包括背面研磨該傳感器晶圓之表面。在一些情況中,減小該傳感器晶圓之至少一部分之該橫截面厚度包括蝕刻該傳感器晶圓之腔側壁。在一些情況中,該蝕刻包括濕式蝕刻或電漿蝕刻。在一些情況中,耦合至該載體之該傳感器晶圓包括100微米之橫截面厚度。在一些情況中,耦合至該載體之該傳感器晶圓包括75微米之橫截面厚度。在一些情況中,耦合至該載體之該傳感器晶圓包括50微米之橫截面厚度。在一些情況中,使一或多個內表面與該穩定材料接觸包括旋塗、噴墨沈積、噴霧沈積、物理氣相沈積(PVD)或化學氣相沈積(CVD)之一或多者。在一些情況中,該方法進一步包括聚合該穩定材料。在一些情況中,聚合該穩定材料在使該一或多個內表面與該穩定材料接觸之後執行。在一些情況中,聚合該穩定材料與使該一或多個內表面與該穩定材料接觸同時執行。在一些情況中,聚合該穩定材料包括使該穩定材料暴露於紫外(UV)光。在一些情況中,使一或多個內表面與穩定材料接觸包括用穩定材料填充該一或多個腔直至該穩定材料與該一或多個腔之一或多個腔側壁之高度齊平。在一些情況中,使一或多個內表面與穩定材料接觸包括用穩定材料填充該一或多個腔直至該穩定材料超過該一或多個腔之一或多個腔側壁之該高度。在一些情況中,使一或多個內表面與穩定材料接觸包括用穩定材料填充該一或多個腔直至該穩定材料低於該一或多個腔之一或多個腔側壁之該高度。在一些情況中,該方法進一步包括:將該傳感器晶圓單粒化成包括該複數個腔及該穩定材料之一或多個超音波傳感器晶片;及耦合聲透鏡,該聲透鏡耦合至該穩定材料或該一或多個超音波傳感器晶片之傳感器晶片之一或多者。在一些情況中,該聲透鏡在該一或多個腔之各者上方且跨該一或多個腔之各者延伸。在一些情況中,該聲透鏡由相同於該穩定材料之材料形成。在一些情況中,該聲透鏡由不同於該穩定材料之材料形成。在一些情況中,該聲透鏡由透鏡材料形成,且其中該透鏡材料及該穩定材料具有實質上相同之聲速、聲衰減或聲阻抗之一或多者。在一些情況中,該方法進一步包括將自該傳感器晶圓單粒化之包括該複數個腔及該穩定材料之一或多個超音波傳感器晶片耦合至專用積體電路(ASIC)。在一些情況中,一或多個超音波傳感器晶片藉由覆晶焊接耦合至該ASIC。在一些情況中,該穩定材料具有高於用於將該一或多個超音波傳感器晶片耦合至該ASIC之焊料之回焊溫度之分解溫度。在一些情況中,該方法進一步包括將該ASIC耦合至印刷電路板(PCB)。在一些情況中,該ASIC藉由引線接合或藉由覆晶焊接耦合至該PCB。在一些情況中,該穩定材料具有高於用於將該ASIC耦合至該PCB之焊料之回焊溫度之分解溫度。在一些情況中,該穩定材料包括聚矽氧。在一些情況中,該穩定材料包括選自鐵、鈰及氧化鈦之一或多個熱穩定劑添加劑。在一些情況中,該穩定材料具有高於240℃之分解溫度。在一些情況中,該超音波傳感器裝置包括pMUT傳感器。在一些情況中,該超音波傳感器裝置包括cMUT傳感器。In various aspects, a method of fabricating an ultrasonic sensor device includes: forming a plurality of cavities in a sensor wafer coupled to a carrier substrate; causing one or more of the plurality of cavities to The inner surface is in contact with the stabilizing material; and the sensor wafer is decoupled from the carrier substrate after contacting the one or more inner surfaces with the stabilizing material. In some cases, the method includes reducing a cross-sectional thickness of at least a portion of the sensor wafer. In some cases, the cross-sectional thickness of the sensor wafer is reduced to no more than 75 microns. In some cases, the cross-sectional thickness of the sensor wafer is reduced to no more than 50 microns. In some cases, reducing the cross-sectional thickness of at least a portion of the sensor wafer is performed before causing the cavities to be formed in the sensor wafer. In some cases, reducing the cross-sectional thickness of at least a portion of the sensor wafer is performed after forming the cavities in the sensor wafer. In some cases, reducing the cross-sectional thickness of at least a portion of the sensor wafer is performed after contacting the one or more inner surfaces with the stabilizing material. In some cases, reducing the cross-sectional thickness of at least a portion of the sensor wafer is performed before contacting the one or more inner surfaces with the stabilizing material. In some cases, the plurality of cavities are formed in the sensor wafer using photolithography. In some cases, causing the plurality of cavities to be formed in the sensor wafer includes etching the plurality of cavities in the sensor wafer. In some cases, reducing the cross-sectional thickness of at least a portion of the sensor wafer includes back grinding a surface of the sensor wafer. In some cases, reducing the cross-sectional thickness of at least a portion of the sensor wafer includes etching cavity sidewalls of the sensor wafer. In some cases, the etching includes wet etching or plasma etching. In some cases, the sensor wafer coupled to the carrier includes a cross-sectional thickness of 100 microns. In some cases, the sensor wafer coupled to the carrier includes a cross-sectional thickness of 75 microns. In some cases, the sensor wafer coupled to the carrier includes a cross-sectional thickness of 50 microns. In some cases, contacting the one or more interior surfaces with the stabilizing material includes one or more of spin coating, inkjet deposition, spray deposition, physical vapor deposition (PVD), or chemical vapor deposition (CVD). In some cases, the method further includes polymerizing the stabilizing material. In some cases, polymerizing the stabilizing material is performed after contacting the one or more interior surfaces with the stabilizing material. In some cases, polymerizing the stabilizing material is performed simultaneously with contacting the one or more interior surfaces with the stabilizing material. In some cases, polymerizing the stabilizing material includes exposing the stabilizing material to ultraviolet (UV) light. In some cases, contacting the one or more interior surfaces with the stabilizing material includes filling the one or more cavities with the stabilizing material until the stabilizing material is flush with a height of one or more cavity sidewalls of the one or more cavities. In some cases, contacting the one or more interior surfaces with the stabilizing material includes filling the one or more cavities with the stabilizing material until the stabilizing material exceeds the height of one or more cavity sidewalls of the one or more cavities. In some cases, contacting the one or more interior surfaces with the stabilizing material includes filling the one or more cavities with the stabilizing material until the stabilizing material is below the height of one or more cavity sidewalls of the one or more cavities. In some cases, the method further includes: singulating the sensor wafer into one or more ultrasonic sensor wafers including the plurality of cavities and the stabilizing material; and coupling an acoustic lens to the stabilizing material. or one or more of the one or more ultrasonic sensor chips. In some cases, the acoustic lens extends over and across each of the one or more cavities. In some cases, the acoustic lens is formed from the same material as the stabilizing material. In some cases, the acoustic lens is formed from a different material than the stabilizing material. In some cases, the acoustic lens is formed from a lens material, and wherein the lens material and the stabilizing material have substantially the same one or more of acoustic velocity, acoustic attenuation, or acoustic impedance. In some cases, the method further includes coupling one or more ultrasonic sensor wafers singulated from the sensor wafer including the plurality of cavities and the stabilizing material to an application specific integrated circuit (ASIC). In some cases, one or more ultrasonic sensor dies are coupled to the ASIC via flip-chip soldering. In some cases, the stabilizing material has a decomposition temperature that is higher than the reflow temperature of the solder used to couple the one or more ultrasonic sensor dies to the ASIC. In some cases, the method further includes coupling the ASIC to a printed circuit board (PCB). In some cases, the ASIC is coupled to the PCB by wire bonding or by flip chip soldering. In some cases, the stabilizing material has a decomposition temperature that is higher than the reflow temperature of the solder used to couple the ASIC to the PCB. In some cases, the stabilizing material includes polysiloxane. In some cases, the stabilizing material includes one or more thermal stabilizer additives selected from iron, cerium, and titanium oxide. In some cases, the stable material has a decomposition temperature greater than 240°C. In some cases, the ultrasonic sensor device includes a pMUT sensor. In some cases, the ultrasonic sensor device includes a cMUT sensor.

在各種態樣中,一種超音波傳感器裝置包括:傳感器晶片,其包括複數個腔;穩定材料,其與該複數個腔之一或多者之內表面之至少一部分接觸;聲透鏡,其在該複數個腔上方且跨該複數個腔延伸且由透鏡材料形成,其中該透鏡材料及該穩定材料具有實質上相同之聲速、聲衰減或聲阻抗之一或多者。在一些情況中,傳感器晶片之至少一部分具有至多50微米之橫截面厚度。在一些情況中,該裝置進一步包括專用積體電路(ASIC)及印刷電路板(PCB),其中該ASIC藉由包括焊料之接面耦合至該PCB。在一些情況中,該穩定材料之分解溫度大於該焊料之回焊溫度。在一些情況中,該焊料之該回焊溫度係240℃。在一些情況中,該穩定材料包括選自鐵、鈰及氧化鈦之一或多個熱穩定劑添加劑。在一些情況中,該穩定材料具有低聲衰減。在一些情況中,該聲透鏡由不同於該穩定材料之材料形成。在一些情況中,該透鏡材料具有等於或大於該穩定材料之該分解溫度之分解溫度。在一些情況中,該透鏡材料具有小於該穩定材料之該分解溫度之分解溫度。在一些情況中,該傳感器晶片跨該傳感器晶片之整個長度及寬度具有至多50微米之橫截面厚度。在一些情況中,該超音波傳感器裝置包括pMUT傳感器。在一些情況中,該超音波傳感器裝置包括cMUT傳感器。In various aspects, an ultrasonic sensor device includes: a sensor wafer including a plurality of cavities; a stabilizing material in contact with at least a portion of an interior surface of one or more of the plurality of cavities; and an acoustic lens in the plurality of cavities. Extending over and across the plurality of cavities is a lens material, wherein the lens material and the stabilizing material have substantially the same one or more of sound velocity, sound attenuation, or acoustic impedance. In some cases, at least a portion of the sensor wafer has a cross-sectional thickness of up to 50 microns. In some cases, the device further includes an application specific integrated circuit (ASIC) and a printed circuit board (PCB), wherein the ASIC is coupled to the PCB by a junction including solder. In some cases, the decomposition temperature of the stabilizing material is greater than the reflow temperature of the solder. In some cases, the reflow temperature of the solder is 240°C. In some cases, the stabilizing material includes one or more thermal stabilizer additives selected from iron, cerium, and titanium oxide. In some cases, the stabilizing material has acoustic attenuation. In some cases, the acoustic lens is formed from a different material than the stabilizing material. In some cases, the lens material has a decomposition temperature equal to or greater than the decomposition temperature of the stabilizing material. In some cases, the lens material has a decomposition temperature that is less than the decomposition temperature of the stabilizing material. In some cases, the sensor wafer has a cross-sectional thickness of up to 50 microns across the entire length and width of the sensor wafer. In some cases, the ultrasonic sensor device includes a pMUT sensor. In some cases, the ultrasonic sensor device includes a cMUT sensor.

本文中描述用於在裝置製造期間降低超音波傳感器裝置之一或多個組件之損壞風險之方法、系統及裝置。超音波傳感器裝置可包括一或多個組件,其等(例如)在將力(例如法向力及/或剪切力)施加至存在損壞風險(例如,在具有量測為50微米(μm)或更小之橫截面尺寸之一或多個組件之點處)之一或多個組件時易受損壞(例如,經由斷裂或破損)。如本文中所描述,超音波傳感器裝置之一或多個組件之損壞風險可藉由在製造期間機械穩定一或多個組件(或其部分)來減小。例如,可在超音波傳感器裝置製造期間呈現為可使晶圓易受損壞之厚度(例如50微米或更小)之MEMS晶圓可用能夠在製程期間機械穩定MEMS晶圓之材料(例如穩定材料)部分或完全塗佈或填充。Described herein are methods, systems, and devices for reducing the risk of damage to one or more components of an ultrasonic sensor device during device fabrication. The ultrasonic sensor device may include one or more components that, for example, have a diameter measuring 50 micrometers (μm) when applying forces (such as normal and/or shear forces) to areas where there is a risk of damage. or smaller cross-sectional dimensions) one or more components are susceptible to damage (e.g., via breakage or breakage). As described herein, the risk of damage to one or more components of an ultrasonic sensor device can be reduced by mechanically stabilizing the one or more components (or portions thereof) during manufacturing. For example, a MEMS wafer that may exhibit a thickness that may render the wafer susceptible to damage during ultrasonic sensor device fabrication (e.g., 50 microns or less) may be available with a material that can mechanically stabilize the MEMS wafer during processing (e.g., a stabilizing material) Partially or completely coated or filled.

在一些情況中,超音波傳感器裝置之組件之損壞風險可藉由在涉及自固體支撐件釋放組件之製造步驟之前及/或在將大量機械力施加至晶圓之前(例如,在操縱晶圓之前)用能夠機械穩定組件之材料部分或完全塗佈或填充組件來降低,如本文中所描述。在一些情況中,若材料可用於實體抵抗組件彎曲(例如,藉由增加經受力之組件之全部或部分之有效厚度),則材料能夠機械穩定組件(或其部分)。在一些情況中,用於在製造期間機械穩定超音波傳感器裝置之一或多個組件之材料可基於其材料性質(諸如熔點、固化時間、所需固化條件、超音波傳輸率、黏度及/或彈性模數)之一或多者來選擇。在一些情況中,用於形成超音波傳感器裝置之透鏡之材料(其可具有允許材料塗佈至組件之全部或部分上或熔融至組件之一或多個腔中)可用於在製造期間機械穩定超音波傳感器裝置之一或多個組件。使用具有此等性質之材料來機械穩定超音波傳感器裝置之組件(例如MEMS晶圓或其部分)可減小組件之損壞風險,同時避免在裝置之操作期間對超音波傳輸之顯著不利影響。In some cases, the risk of damage to components of an ultrasonic sensor device may be addressed by prior to fabrication steps involving releasing the components from the solid support and/or before applying substantial mechanical forces to the wafer (e.g., prior to manipulating the wafer). ) is reduced by partially or completely coating or filling a component with a material capable of mechanically stabilizing the component, as described herein. In some cases, a material can mechanically stabilize a component (or portion thereof) if it can be used to physically resist bending of the component (eg, by increasing the effective thickness of all or a portion of the component that is subjected to the force). In some cases, the material used to mechanically stabilize one or more components of the ultrasonic sensor device during manufacturing may be based on its material properties such as melting point, cure time, desired cure conditions, ultrasonic transmission rate, viscosity, and/or elastic modulus) to select one or more. In some cases, the material used to form the lens of the ultrasonic sensor device (which may have properties that allow the material to be coated on all or part of the component or fused into one or more cavities of the component) may be used to mechanically stabilize during fabrication One or more components of an ultrasonic sensor device. The use of materials with these properties to mechanically stabilize components of an ultrasonic sensor device (such as MEMS wafers or portions thereof) can reduce the risk of damage to the components while avoiding significant adverse effects on ultrasonic transmission during operation of the device.

在一些情況中,超音波傳感器裝置之製造可包括使裝置之組件相對於組件之橫截面高度、寬度及/或長度更薄(例如,藉由背面研磨及/或蝕刻)。在一些情況中,包括薄橫截面尺寸(例如,具有小於或等於50微米(μm)之橫截面高度、長度及/或寬度)之超音波傳感器裝置之組件可(例如)在製程期間將力施加至組件時(例如,當組件自載體基板釋放,附著至一或多個額外超音波裝置組件,附著至一或多個額外載體基板時)易受損壞。 概述 In some cases, fabrication of ultrasonic sensor devices may include making components of the device thinner relative to the cross-sectional height, width, and/or length of the components (eg, by back grinding and/or etching). In some cases, components including ultrasonic sensor devices with thin cross-sectional dimensions (e.g., having a cross-sectional height, length, and/or width less than or equal to 50 micrometers (μm)) may, for example, apply forces during processing. Vulnerable to damage when attached to the component (eg, when the component is released from the carrier substrate, attached to one or more additional ultrasound device components, attached to one or more additional carrier substrates). Overview

本文中所描述之方法及系統可包括一或多個超音波傳感器裝置100 (例如超音波傳感器)。超音波傳感器裝置100可用於(例如)將超音波能傳輸至目標物質之目標位置及/或自該目標位置接收超音波能以形成目標物質之目標位置之影像。在一些情況中,超音波傳感器可用於(例如)使生物組織成像以判定生物組織或包括生物組織之主體之生理條件。本文中所描述之超音波傳感器裝置可為可攜的(例如,手持的)。在一些情況中,可藉由減小構成超音波傳感器裝置之組件之一或多者之一或多個橫截面尺寸(例如橫截面厚度)來使超音波傳感器裝置之大小變小。在一些情況中,減小超音波傳感器裝置之大小(例如,藉由減小一或多個超音波傳感器裝置組件之橫截面厚度)可使超音波傳感器裝置更易於操縱。在一些情況中,增加超音波傳感器裝置之可操縱性可使超音波傳感器裝置在成像程序期間更易攜帶及/或更易使用。The methods and systems described herein may include one or more ultrasonic sensor devices 100 (eg, ultrasonic sensors). The ultrasonic sensor device 100 may be used, for example, to transmit ultrasonic energy to and/or receive ultrasonic energy from a target location on a target material to form an image of the target location on the target material. In some cases, ultrasonic sensors may be used, for example, to image biological tissue to determine physiological conditions of the biological tissue or a subject including the biological tissue. The ultrasonic sensor devices described herein may be portable (eg, handheld). In some cases, the size of the ultrasonic sensor device can be reduced by reducing one or more cross-sectional dimensions (eg, cross-sectional thickness) of one or more of the components that make up the ultrasonic sensor device. In some cases, reducing the size of the ultrasonic sensor device (eg, by reducing the cross-sectional thickness of one or more ultrasonic sensor device components) may make the ultrasonic sensor device easier to maneuver. In some cases, increasing the maneuverability of the ultrasound sensor device may make the ultrasound sensor device more portable and/or easier to use during imaging procedures.

超音波傳感器裝置100可包括超音波傳感器晶圓102 (例如,如圖1A及圖1B中所展示)。在一些情況中,超音波傳感器晶圓102可包括微機電系統(MEMS)傳感器。在一些情況中,MEMS傳感器可為壓電微機械超音波傳感器(pMUT)。在一些情況中,MEMS傳感器可為電容微機械超音波傳感器(cMUT)。在一些情況中,超音波傳感器晶圓102或其部分之橫截面厚度130可顯著影響在製造期間損壞超音波傳感器晶圓或其部分(例如MEMS傳感器或其部分)之可能性(例如風險)。在諸多情況中,防止在製造期間損壞超音波傳感器晶圓102對保持包括超音波傳感器晶圓102之超音波傳感器裝置100之功能(例如,包括準確性及/或可靠性)而言很重要。Ultrasonic sensor device 100 may include an ultrasonic sensor wafer 102 (eg, as shown in Figures 1A and 1B). In some cases, ultrasonic sensor wafer 102 may include microelectromechanical systems (MEMS) sensors. In some cases, the MEMS sensor may be a piezoelectric micromachined ultrasonic sensor (pMUT). In some cases, the MEMS sensor may be a capacitive micromachined ultrasonic sensor (cMUT). In some cases, the cross-sectional thickness 130 of the ultrasonic sensor wafer 102 or portions thereof can significantly affect the likelihood (eg, risk) of damaging the ultrasonic sensor wafer or portions thereof (eg, a MEMS sensor or portions thereof) during manufacturing. In many cases, preventing damage to the ultrasonic sensor wafer 102 during manufacturing is important to preserve the functionality (eg, including accuracy and/or reliability) of the ultrasonic sensor device 100 including the ultrasonic sensor wafer 102 .

如圖2A及圖2B中所展示,製造超音波傳感器裝置100之方法可包括提供超音波傳感器晶圓102 (例如,具有初始橫截面厚度130)。在一些情況中,超音波傳感器晶圓102可包括金屬背層104。在一些情況中,製造超音波傳感器裝置之方法可包括(例如)使用黏著劑106將超音波晶圓102耦合至固體支撐件108 (例如載體基板108)(例如,如圖2A及圖2B之步驟902中所展示)。在一些情況中,用於將超音波傳感器晶圓102耦合至固體支撐件108之黏著劑可為可去接合黏著劑。使用可去接合黏著劑可促進在製造方法之稍後階段中自固體支撐件108釋放超音波傳感器晶圓102。在一些情況中,製造超音波傳感器裝置100之方法可包括提供已耦合至固體支撐件108 (例如,經由黏著劑106,諸如可去接合黏著劑106)之超音波傳感器晶圓102 (例如,具有初始橫截面厚度130)。固體支撐件(例如載體基板)可包括(例如)玻璃或石英。在一些情況中,超音波傳感器晶圓可包括耦合至金屬背層之矽層。在一些情況中,金屬背層可直接耦合至固體支撐件(例如,在超音波傳感器晶圓之矽層與固體支撐件之間)。在一些情況中,超音波傳感器晶圓或其部分(例如金屬背層)可藉由黏著劑(例如可去接合黏著劑)耦合至固體支撐件。As shown in FIGS. 2A and 2B , a method of manufacturing an ultrasonic sensor device 100 may include providing an ultrasonic sensor wafer 102 (eg, having an initial cross-sectional thickness 130). In some cases, ultrasonic sensor wafer 102 may include a metal back layer 104 . In some cases, methods of fabricating an ultrasonic sensor device may include, for example, coupling ultrasonic wafer 102 to solid support 108 (eg, carrier substrate 108) using adhesive 106 (eg, steps of FIGS. 2A and 2B 902). In some cases, the adhesive used to couple the ultrasonic sensor wafer 102 to the solid support 108 may be a releasable adhesive. The use of a debondable adhesive may facilitate release of the ultrasonic sensor wafer 102 from the solid support 108 during later stages of the manufacturing process. In some cases, methods of fabricating ultrasonic sensor device 100 may include providing ultrasonic sensor wafer 102 (e.g., having Initial cross-section thickness 130). The solid support (eg, carrier substrate) may include, for example, glass or quartz. In some cases, the ultrasonic sensor wafer may include a silicon layer coupled to a metal backing layer. In some cases, the metal backing layer may be directly coupled to the solid support (eg, between the silicon layer and the solid support of the ultrasonic sensor wafer). In some cases, the ultrasonic sensor wafer or portions thereof (eg, metal backing) may be coupled to the solid support via an adhesive (eg, a releasable adhesive).

製造超音波傳感器裝置100之方法可包括減小超音波傳感器晶圓102或其部分之橫截面厚度(例如,自初始橫截面厚度130至經減小橫截面厚度131)。例如,製造超音波傳感器裝置100之方法可包括減小超音波傳感器晶圓102之矽層之厚度,例如自初始橫截面厚度130至經減小橫截面厚度131。減小超音波傳感器晶圓102之橫截面厚度可包括背面研磨超音波傳感器晶圓102或其部分(例如超音波傳感器晶圓102之矽層)。在一些情況中,減小超音波傳感器晶圓102之橫截面厚度可包括使用光微影。在一些情況中,減小超音波傳感器晶圓102之橫截面厚度可包括蝕刻超音波傳感器晶圓102或其部分(例如,使用濕式蝕刻或電漿蝕刻技術)。在一些情況中,減小超音波傳感器晶圓之橫截面厚度可改良超音波傳感器裝置之功能(例如,產生及/或偵測超音波能量波之品質及/或可靠性(例如再現性))。在一些情況中,減小超音波傳感器晶圓102之橫截面厚度可輔助減小超音波傳感器裝置100之總大小。Methods of fabricating the ultrasonic sensor device 100 may include reducing the cross-sectional thickness of the ultrasonic sensor wafer 102 or a portion thereof (eg, from an initial cross-sectional thickness 130 to a reduced cross-sectional thickness 131 ). For example, a method of fabricating the ultrasonic sensor device 100 may include reducing the thickness of the silicon layer of the ultrasonic sensor wafer 102 , such as from an initial cross-sectional thickness 130 to a reduced cross-sectional thickness 131 . Reducing the cross-sectional thickness of the ultrasonic sensor wafer 102 may include back grinding the ultrasonic sensor wafer 102 or portions thereof (eg, the silicon layer of the ultrasonic sensor wafer 102). In some cases, reducing the cross-sectional thickness of the ultrasonic sensor wafer 102 may include using photolithography. In some cases, reducing the cross-sectional thickness of ultrasound sensor wafer 102 may include etching ultrasound sensor wafer 102 or portions thereof (eg, using wet etching or plasma etching techniques). In some cases, reducing the cross-sectional thickness of the ultrasonic sensor wafer may improve the functionality of the ultrasonic sensor device (e.g., the quality and/or reliability (e.g., reproducibility) of generating and/or detecting ultrasonic energy waves) . In some cases, reducing the cross-sectional thickness of the ultrasonic sensor wafer 102 may assist in reducing the overall size of the ultrasonic sensor device 100.

在一些情況中,製造超音波傳感器裝置100之方法可包括將超音波傳感器晶圓102之橫截面厚度自初始橫截面厚度130減小至經減小橫截面厚度131 (例如,如圖2A及圖2B之步驟904及圖4之步驟702中所展示)。在一些情況中,減小橫截面厚度可包括減小超音波傳感器晶圓102之整個寬度及長度之橫截面厚度(例如,如同其中使用背面研磨在腔形成之前減小超音波傳感器晶圓102之橫截面厚度之一些情況,例如,如圖2A及圖2B中所展示)。在一些情況中,減小超音波傳感器晶圓102之橫截面厚度可包括減小超音波傳感器晶圓102之一或多個部分之橫截面厚度(例如,其中在超音波傳感器晶圓102中形成腔之後減小腔側壁之橫截面厚度,例如,如圖4中所展示)。在一些情況中,超音波傳感器晶圓可包括以下橫截面厚度:自20微米(μm)至100微米、自20微米至75微米、自30微米至75微米、自40微米至75微米、自50微米至75微米或自40微米至50微米。在一些情況中,製造超音波傳感器裝置100之方法可包括依以下初始橫截面厚度提供超音波傳感器晶圓102 (例如,耦合至載體基板108):大於100微米、至少100微米、至少75微米、至少50微米、至少40微米、至少30微米或至少20微米。在一些情況中,製造超音波傳感器裝置100之方法可包括將超音波傳感器晶圓102之橫截面厚度減小至1微米至100微米之橫截面厚度(例如經減小橫截面厚度)。在一些情況中,製造超音波傳感器裝置100之方法可包括將超音波傳感器晶圓102之橫截面厚度減小至1微米至50微米之橫截面厚度(例如經減小橫截面厚度)。在一些情況中,減小超音波傳感器晶圓102之橫截面厚度可包括將橫截面厚度減小至自約1微米至約120微米之值。在一些情況中,減小超音波傳感器晶圓102之橫截面厚度可包括將橫截面厚度減小至以下值:自約1微米至約20微米、約1微米至約30微米、約1微米至約40微米、約1微米至約50微米、約1微米至約60微米、約1微米至約75微米、約1微米至約85微米、約1微米至約100微米、約1微米至約110微米、約1微米至約120微米、約20微米至約30微米、約20微米至約40微米、約20微米至約50微米、約20微米至約60微米、約20微米至約75微米、約20微米至約85微米、約20微米至約100微米、約20微米至約110微米、約20微米至約120微米、約30微米至約40微米、約30微米至約50微米、約30微米至約60微米、約30微米至約75微米、約30微米至約85微米、約30微米至約100微米、約30微米至約110微米、約30微米至約120微米、約40微米至約50微米、約40微米至約60微米、約40微米至約75微米、約40微米至約85微米、約40微米至約100微米、約40微米至約110微米、約40微米至約120微米、約50微米至約60微米、約50微米至約75微米、約50微米至約85微米、約50微米至約100微米、約50微米至約110微米、約50微米至約120微米、約60微米至約75微米、約60微米至約85微米、約60微米至約100微米、約60微米至約110微米、約60微米至約120微米、約75微米至約85微米微米、約75微米至約100微米、約75微米至約110微米、約75微米至約120微米、約85微米至約100微米、約85微米至約110微米、約85微米至約120微米、約100微米至約110微米、約100微米至約120微米或約110微米至約120微米。在一些情況中,減小超音波傳感器晶圓102之橫截面厚度可包括將橫截面厚度減小至自以下之值:約1微米、約20微米、約30微米、約40微米、約50微米、約60微米、約75微米、約85微米、約100微米、約110微米或約120微米。在一些情況中,減小超音波傳感器晶圓102之橫截面厚度可包括將橫截面厚度減小至自以下之值:至少約1微米、至少約20微米、至少約30微米、至少約40微米、至少約50微米、至少約60微米、至少約75微米、至少約85微米、至少約100微米、至少約110微米或至少約120微米。在一些情況中,減小超音波傳感器晶圓102之橫截面厚度可包括將橫截面厚度減小至自以下之值:至多約20微米、至多約30微米、至多約40微米、至多約50微米、至多約60微米、至多約75微米、至多約85微米、至多約100微米、至多約110微米或至多約120微米。製造超音波傳感器裝置100之方法可具有相對於超音波傳感器晶圓102可減小至之橫截面厚度之以下容限:±10微米、±5微米、±1微米或該等值之任何兩者之間的值(例如自5微米至10微米、自1微米至10微米或自1微米至5微米之容限)。在一些情況中,減小超音波傳感器晶圓102之橫截面厚度可增加超音波傳感器晶圓102之損壞風險(例如,藉由降低其抵抗扭矩、扭轉或彎曲力之能力,扭矩、扭轉或彎曲力可損壞傳感器晶圓之部分)。In some cases, a method of fabricating the ultrasonic sensor device 100 may include reducing the cross-sectional thickness of the ultrasonic sensor wafer 102 from an initial cross-sectional thickness 130 to a reduced cross-sectional thickness 131 (e.g., as shown in FIGS. 2A and 131 ). shown in step 904 of 2B and step 702 of Figure 4). In some cases, reducing the cross-sectional thickness may include reducing the cross-sectional thickness across the entire width and length of the ultrasonic sensor wafer 102 (eg, as where back grinding is used to reduce the ultrasonic sensor wafer 102 prior to cavity formation. Some cases of cross-sectional thickness, for example, as shown in Figures 2A and 2B). In some cases, reducing the cross-sectional thickness of the ultrasonic sensor wafer 102 may include reducing the cross-sectional thickness of one or more portions of the ultrasonic sensor wafer 102 (e.g., where formed in the ultrasonic sensor wafer 102 The cavity then reduces the cross-sectional thickness of the cavity sidewalls, for example, as shown in Figure 4). In some cases, the ultrasonic sensor wafer may include the following cross-sectional thicknesses: from 20 microns (μm) to 100 microns, from 20 microns to 75 microns, from 30 microns to 75 microns, from 40 microns to 75 microns, from 50 Micron to 75 micron or from 40 micron to 50 micron. In some cases, a method of fabricating the ultrasonic sensor device 100 may include providing the ultrasonic sensor wafer 102 (eg, coupled to the carrier substrate 108) with an initial cross-sectional thickness of: greater than 100 microns, at least 100 microns, at least 75 microns, At least 50 microns, at least 40 microns, at least 30 microns or at least 20 microns. In some cases, methods of fabricating ultrasonic sensor device 100 may include reducing the cross-sectional thickness of ultrasonic sensor wafer 102 to a cross-sectional thickness of 1 micron to 100 microns (eg, reduced cross-sectional thickness). In some cases, methods of fabricating ultrasonic sensor device 100 may include reducing the cross-sectional thickness of ultrasonic sensor wafer 102 to a cross-sectional thickness of 1 micron to 50 microns (eg, reduced cross-sectional thickness). In some cases, reducing the cross-sectional thickness of the ultrasonic sensor wafer 102 may include reducing the cross-sectional thickness to a value from about 1 micron to about 120 microns. In some cases, reducing the cross-sectional thickness of the ultrasonic sensor wafer 102 may include reducing the cross-sectional thickness to from about 1 micron to about 20 microns, from about 1 micron to about 30 microns, from about 1 micron to about 30 microns. About 40 microns, about 1 micron to about 50 microns, about 1 micron to about 60 microns, about 1 micron to about 75 microns, about 1 micron to about 85 microns, about 1 micron to about 100 microns, about 1 micron to about 110 Micron, about 1 micron to about 120 micron, about 20 micron to about 30 micron, about 20 micron to about 40 micron, about 20 micron to about 50 micron, about 20 micron to about 60 micron, about 20 micron to about 75 micron, About 20 microns to about 85 microns, about 20 microns to about 100 microns, about 20 microns to about 110 microns, about 20 microns to about 120 microns, about 30 microns to about 40 microns, about 30 microns to about 50 microns, about 30 Micron to about 60 micron, about 30 micron to about 75 micron, about 30 micron to about 85 micron, about 30 micron to about 100 micron, about 30 micron to about 110 micron, about 30 micron to about 120 micron, about 40 micron to About 50 microns, about 40 microns to about 60 microns, about 40 microns to about 75 microns, about 40 microns to about 85 microns, about 40 microns to about 100 microns, about 40 microns to about 110 microns, about 40 microns to about 120 microns Micron, about 50 micron to about 60 micron, about 50 micron to about 75 micron, about 50 micron to about 85 micron, about 50 micron to about 100 micron, about 50 micron to about 110 micron, about 50 micron to about 120 micron, About 60 microns to about 75 microns, about 60 microns to about 85 microns, about 60 microns to about 100 microns, about 60 microns to about 110 microns, about 60 microns to about 120 microns, about 75 microns to about 85 microns microns, about 75 microns to about 100 microns, about 75 microns to about 110 microns, about 75 microns to about 120 microns, about 85 microns to about 100 microns, about 85 microns to about 110 microns, about 85 microns to about 120 microns, about 100 microns to about 110 microns, from about 100 microns to about 120 microns, or from about 110 microns to about 120 microns. In some cases, reducing the cross-sectional thickness of the ultrasonic sensor wafer 102 may include reducing the cross-sectional thickness to a value from: about 1 micron, about 20 microns, about 30 microns, about 40 microns, about 50 microns. , about 60 microns, about 75 microns, about 85 microns, about 100 microns, about 110 microns or about 120 microns. In some cases, reducing the cross-sectional thickness of the ultrasonic sensor wafer 102 may include reducing the cross-sectional thickness to a value from: at least about 1 micron, at least about 20 microns, at least about 30 microns, at least about 40 microns. , at least about 50 microns, at least about 60 microns, at least about 75 microns, at least about 85 microns, at least about 100 microns, at least about 110 microns, or at least about 120 microns. In some cases, reducing the cross-sectional thickness of the ultrasonic sensor wafer 102 may include reducing the cross-sectional thickness to a value from: up to about 20 microns, up to about 30 microns, up to about 40 microns, up to about 50 microns. , up to about 60 microns, up to about 75 microns, up to about 85 microns, up to about 100 microns, up to about 110 microns, or up to about 120 microns. Methods of fabricating ultrasonic sensor device 100 may have the following tolerances relative to the cross-sectional thickness to which ultrasonic sensor wafer 102 may be reduced: ±10 microns, ±5 microns, ±1 micron, or any two of these values. Values in between (eg, tolerances from 5 microns to 10 microns, from 1 micron to 10 microns, or from 1 micron to 5 microns). In some cases, reducing the cross-sectional thickness of the ultrasonic sensor wafer 102 may increase the risk of damage to the ultrasonic sensor wafer 102 (e.g., by reducing its ability to resist torque, torsion, or bending forces, force may damage parts of the sensor wafer).

在一些情況中,製造超音波傳感器裝置之方法可包括提供包括一或多個腔110之超音波傳感器晶圓。超音波傳感器晶圓102中之腔110可輔助超音波能傳輸至及/或傳輸自超音波傳感器裝置100之超音波傳感器振膜(例如隔膜)。例如,腔110之管腔(其可用具有低聲衰減之材料(諸如穩定材料101)部分或完全填充)可充當超音波能進入或離開超音波傳感器裝置100之遠端(例如,經由聲透鏡114)之導管或路徑。在諸多情況中,提供一或多個此等路徑(例如,依一或多個腔110之形式,其等可各與超音波傳感器裝置100中之pMUT或cMUT傳感器元件空間對準且視情況耦合至該pMUT或cMUT傳感器元件)可允許或改良由超音波傳感器裝置100之傳感器元件產生、偵測及/或傳輸超音波能(例如,與不包括腔之晶圓之使用相比)。(例如,複數個腔(例如)構成陣列)。超音波傳感器晶圓102之腔110可包括內管腔。超音波傳感器晶圓102之腔110可包括複數個內表面。例如,超音波傳感器晶圓102之腔110可包括腔110之底部之內表面及一或多個腔側壁內表面。在一些情況中,超音波傳感器晶圓腔之腔110之底壁可經致動(例如,藉由一或多個壓電致動器,其等可由ASIC及/或電腦系統驅動)以(例如)產生超音波能信號用於傳輸至目標物質。In some cases, methods of fabricating ultrasonic sensor devices may include providing an ultrasonic sensor wafer including one or more cavities 110 . The cavity 110 in the ultrasonic sensor wafer 102 may assist in the transmission of ultrasonic energy to and/or from the ultrasonic sensor diaphragm (eg, diaphragm) of the ultrasonic sensor device 100 . For example, the lumen of cavity 110 (which may be partially or completely filled with a material having low acoustic attenuation, such as stabilizing material 101 ) may serve as the distal end through which ultrasonic energy enters or exits ultrasonic sensor device 100 (e.g., via acoustic lens 114 ) conduit or path. In many cases, one or more such paths are provided (e.g., in the form of one or more cavities 110 ), which may each be spatially aligned with and optionally coupled to a pMUT or cMUT sensor element in the ultrasonic sensor device 100 to the pMUT or cMUT sensor element) may allow or improve the generation, detection and/or transmission of ultrasonic energy by the sensor element of the ultrasonic sensor device 100 (eg, compared to the use of a wafer that does not include a cavity). (For example, a plurality of cavities (eg, form an array). Cavity 110 of ultrasonic sensor wafer 102 may include an inner lumen. The cavity 110 of the ultrasonic sensor wafer 102 may include a plurality of interior surfaces. For example, the cavity 110 of the ultrasonic sensor wafer 102 may include an inner surface of the bottom of the cavity 110 and one or more inner surfaces of the cavity sidewalls. In some cases, the bottom wall of the ultrasonic sensor wafer cavity 110 may be actuated (e.g., by one or more piezoelectric actuators, which may be driven by an ASIC and/or computer system) to (e.g., ) generates ultrasonic energy signals for transmission to target substances.

在一些情況中,製造超音波傳感器裝置100之程序可包括使一或多個腔110形成於超音波傳感器晶圓102中(例如,如圖2A及圖2B之步驟906及圖3之步驟652中所展示)。在一些情況中,複數個腔可形成於超音波傳感器晶圓102中。在一些情況中,複數個腔可依陣列圖案形成於超音波傳感器晶圓102中(例如,其中陣列對應於超音波傳感器晶圓102將在製程期間耦合至之ASIC 116之陣列)。在一些情況中,一或多個腔110可使用光微影形成於超音波傳感器晶圓102或其部分(例如超音波傳感器晶圓102之矽層)中。在一些情況中,光微影可包括使用遮罩或圖案來防止非期望區域暴露於光微影能。在一些情況中,一或多個腔110可藉由(例如)使用濕式蝕刻或電漿蝕刻蝕刻超音波傳感器晶圓102 (例如超音波傳感器晶圓102之矽層)來形成於超音波傳感器晶圓102中。In some cases, the process of fabricating the ultrasonic sensor device 100 may include forming one or more cavities 110 in the ultrasonic sensor wafer 102 (eg, in step 906 of FIGS. 2A and 2B and step 652 of FIG. 3 shown). In some cases, a plurality of cavities may be formed in the ultrasonic sensor wafer 102 . In some cases, a plurality of cavities may be formed in the ultrasonic sensor wafer 102 in an array pattern (eg, where the array corresponds to an array of the ASIC 116 to which the ultrasonic sensor wafer 102 will be coupled during processing). In some cases, one or more cavities 110 may be formed in the ultrasonic sensor wafer 102 or a portion thereof (eg, a silicon layer of the ultrasonic sensor wafer 102 ) using photolithography. In some cases, photolithography may include the use of masks or patterns to prevent undesired areas from being exposed to photolithography energy. In some cases, one or more cavities 110 may be formed in the ultrasonic sensor wafer 102 (e.g., a silicon layer of the ultrasonic sensor wafer 102 ), such as by etching the ultrasonic sensor wafer 102 using wet etching or plasma etching. in wafer 102.

在一些情況中,減小超音波傳感器晶圓或其腔側壁之橫截面厚度(例如高度)可幫助減小超音波傳感器裝置之總大小及/或提高MEMS傳感器陣列之效能。在一些情況中,減小超音波傳感器晶圓之橫截面厚度(例如,在製造期間)可增加超音波傳感器晶圓之損壞(例如斷裂或破損)風險(例如,在其中傳感器晶圓未(例如)由載體基板機械支撐之製程之步驟期間)。在一些情況中,減小超音波傳感器晶圓102之橫截面厚度可增加在超音波傳感器裝置100之製造期間(例如,在晶圓處理期間)斷裂或破損超音波傳感器晶圓或其部分(例如構成傳感器晶圓腔之底壁之傳感器振膜)之可能性。例如,減小超音波傳感器晶圓之橫截面厚度(例如,自100微米或更大之初始橫截面厚度至(例如) 50微米(μm)或更小)可引起晶圓變得更可撓,其可增加超音波傳感器晶圓或其部分(例如構成傳感器晶圓腔之底壁之傳感器振膜)斷裂或破損之可能性,即使經受適度力,諸如與超音波傳感器裝置製造相關聯之力,諸如使傳感器晶圓與載體基板去接合及/或將超音波傳感器晶圓實體轉移至不同基板(例如ASIC)。在一些情況中,在製造期間損壞超音波傳感器晶圓102之風險可取決於晶圓之橫截面厚度與晶圓之寬度或長度之比率。在一些情況中,與第二超音波傳感器晶圓102相比具有更大寬度及/或長度及相同橫截面厚度之第一超音波傳感器晶圓102在製造期間可具有大於第二晶圓之損壞風險。在一些情況中,與第二超音波傳感器晶圓102相比具有相同長度及寬度尺寸及小橫截面厚度之第一超音波傳感器晶圓102在製造期間可具有更大損壞風險。在一些情況中,包括300微米或更小之厚度及6英寸(或更大)之寬度及/或長度之超音波傳感器晶圓102之製造在製造期間(例如,在無支撐處置或操縱晶圓且不添加穩定材料期間)可對晶圓造成顯著損壞風險,同時包括400微米或更小之厚度及8英寸(或更大)之寬度及/或長度之超音波傳感器晶圓102之製造在製造期間(例如,在無支撐處置或操縱晶圓且不添加穩定材料期間)亦可對晶圓造成顯著損壞風險。In some cases, reducing the cross-sectional thickness (eg, height) of the ultrasonic sensor wafer or its cavity sidewalls can help reduce the overall size of the ultrasonic sensor device and/or improve the performance of the MEMS sensor array. In some cases, reducing the cross-sectional thickness of the ultrasonic sensor wafer (e.g., during fabrication) may increase the risk of damage (e.g., fracture or breakage) of the ultrasonic sensor wafer (e.g., where the sensor wafer is not (e.g., ) during the steps of the process that are mechanically supported by a carrier substrate). In some cases, reducing the cross-sectional thickness of the ultrasonic sensor wafer 102 may increase the risk of breakage or breakage of the ultrasonic sensor wafer or portions thereof during fabrication of the ultrasonic sensor device 100 (e.g., during wafer processing) (e.g., during wafer processing). The possibility of the sensor diaphragm forming the bottom wall of the sensor wafer cavity). For example, reducing the cross-sectional thickness of an ultrasonic sensor wafer (e.g., from an initial cross-sectional thickness of 100 microns or greater to, for example, 50 micrometers (μm) or less) can cause the wafer to become more flexible, It can increase the likelihood that the ultrasonic sensor wafer, or portions thereof (such as the sensor diaphragm that forms the bottom wall of the sensor wafer cavity) will fracture or break even when subjected to moderate forces, such as those associated with ultrasonic sensor device manufacturing. Such as debonding the sensor wafer from the carrier substrate and/or physically transferring the ultrasonic sensor wafer to a different substrate (eg, ASIC). In some cases, the risk of damaging the ultrasonic sensor wafer 102 during manufacturing may depend on the ratio of the cross-sectional thickness of the wafer to the width or length of the wafer. In some cases, the first ultrasonic sensor wafer 102 having a greater width and/or length and the same cross-sectional thickness than the second ultrasonic sensor wafer 102 may have greater damage during fabrication than the second wafer. risk. In some cases, the first ultrasonic sensor wafer 102 having the same length and width dimensions and a small cross-sectional thickness may have a greater risk of damage during manufacturing than the second ultrasonic sensor wafer 102 . In some cases, ultrasonic sensor wafers 102 that include a thickness of 300 microns or less and a width and/or length of 6 inches (or greater) are produced during fabrication (e.g., during unsupported handling or manipulation of the wafer). and without the addition of stabilizing materials) may pose a significant risk of damage to the wafer, including the manufacture of ultrasonic sensor wafers 102 with a thickness of 400 microns or less and a width and/or length of 8 inches (or greater). There can also be a significant risk of damage to the wafer during unsupported handling or manipulation of the wafer without the addition of stabilizing materials.

如本文中所描述,損壞超音波傳感器晶圓102之風險(例如,在其中超音波傳感器晶圓102未被機械支撐之製程之步驟期間)可藉由將穩定材料101添加至超音波傳感器晶圓102之全部或部分來降低。例如,穩定材料101可用於塗佈或填充具有小橫截面厚度(例如至多50微米)之超音波傳感器晶圓之表面之全部或部分以降低在製造期間損壞晶圓102之風險。在一些情況中,穩定材料可添加至超音波傳感器晶圓之一或多個腔以(例如)機械穩定晶圓102。例如,穩定材料可用於塗佈超音波傳感器晶圓腔之底面(例如,在晶圓自載體基板釋放之前)以增加晶圓102之機械穩定性,其可幫助抵抗可施加於晶圓102上之力(例如扭矩、扭轉或彎曲力)。將穩定材料添加至腔或其部分(例如腔110之內表面,諸如腔之底部112之內表面)可尤其有益於減小超音波傳感器晶圓102之損壞風險,因為與未減小橫截面厚度之矽超音波傳感器晶圓(例如固體拋光矽晶圓)相比,已減小橫截面厚度之矽超音波傳感器晶圓之部分(例如在製造方法期間形成之腔之底壁)可具有更高損壞(例如破損或斷裂)風險。As described herein, the risk of damaging the ultrasonic sensor wafer 102 (eg, during steps of the process where the ultrasonic sensor wafer 102 is not mechanically supported) can be reduced by adding stabilizing material 101 to the ultrasonic sensor wafer. 102 in whole or in part to reduce. For example, the stabilizing material 101 may be used to coat or fill all or part of the surface of an ultrasonic sensor wafer with a small cross-sectional thickness (eg, up to 50 microns) to reduce the risk of damaging the wafer 102 during manufacturing. In some cases, stabilizing material may be added to one or more cavities of the ultrasonic sensor wafer to, for example, mechanically stabilize the wafer 102 . For example, a stabilizing material may be used to coat the bottom surface of the ultrasonic sensor wafer cavity (e.g., before the wafer is released from the carrier substrate) to increase the mechanical stability of the wafer 102 , which may help resist forces that may be applied to the wafer 102 Force (such as torque, torsion or bending force). Adding stabilizing materials to the cavity or portions thereof (eg, interior surfaces of the cavity 110 , such as the interior surfaces of the cavity bottom 112 ) may be particularly beneficial in reducing the risk of damage to the ultrasonic sensor wafer 102 as compared to not reducing the cross-sectional thickness Portions of a silicon ultrasonic sensor wafer that have reduced cross-sectional thickness, such as the bottom wall of a cavity formed during a manufacturing process, may have higher Risk of damage (such as breakage or breakage).

在一些情況中,超音波傳感器晶圓102之一或多個表面可(例如)在超音波傳感器晶圓102 (其可具有50微米或更小、40微米或更小、30微米或更小或20微米或更小之橫截面厚度)與固體支撐件108解耦合之前與穩定材料101接觸(例如,用穩定材料101部分或完全塗佈)(例如,如圖2A及圖2B之步驟908及圖4之步驟704中所展示)。例如,製造超音波傳感器裝置100之方法可包括使超音波傳感器晶圓102之腔110 (例如複數個腔110)之一或多個內表面與穩定材料101接觸(例如,在使晶圓102與固體支撐件108解耦合之前)。在一些情況中,使(例如,腔110之)一或多個內表面與穩定材料接觸包括用穩定材料填充一或多個腔直至穩定材料與一或多個腔之一或多個腔側壁之高度齊平。在一些情況中,使(例如,腔110之)一或多個內表面與穩定材料接觸包括用穩定材料填充一或多個腔直至穩定材料超過一或多個腔之一或多個腔側壁之高度。在一些情況中,使(例如,腔110之)一或多個內表面與穩定材料接觸包括用穩定材料填充一或多個腔直至穩定材料低於一或多個腔之一或多個腔側壁之高度。在一些情況中,使超音波傳感器晶圓102之一或多個表面與穩定材料101接觸可減小超音波傳感器晶圓102之損壞風險(例如,由在晶圓102自固體支撐件108釋放之後的製造步驟期間施加至晶圓102之力導致)。在一些情況中,超音波傳感器晶圓102之腔110之底壁之內表面可用穩定材料101完全塗佈。在一些情況中,超音波傳感器晶圓102之腔110可用穩定材料101部分填充(例如,使得穩定材料101覆蓋超音波傳感器晶圓102之底壁之整個內表面但不接觸一或多個腔側壁111之整個高度,例如,如圖2A及圖2B中所展示)。在一些情況中,超音波傳感器晶圓102之腔110可用穩定材料101完全填充(例如,使得穩定材料101覆蓋超音波傳感器晶圓102之底壁之整個內表面且將腔填充至高達腔側壁111之頂部,例如,使得穩定材料101接觸腔110之一或多個腔側壁111之整個高度)。在一些情況中,超音波傳感器晶圓102之腔110可用穩定材料101過填充(例如,使得穩定材料101完全填充腔110且覆蓋超音波傳感器晶圓102之一或多個腔側壁111之頂部,例如,如圖3中所展示)。例如,在一或多個腔110 (例如腔110之陣列)形成於超音波傳感器晶圓102中(例如,藉由使用光微影圖案之光微影)之前,耦合至固體支撐件108之超音波傳感器晶圓102可將橫截面厚度減小(例如,藉由背面研磨)至(例如) 50微米或更小之橫截面厚度,例如,如圖3中所展示。在一些情況中,可在使一或多個腔側壁111之橫截面厚度呈現為經減小厚度(例如50微米或更小)之後添加穩定材料101來部分或完全填充腔110之一或多者,例如,如圖3中所展示。在一些情況中,可添加額外穩定材料101 (例如,具有高分解溫度)超過腔側壁111之厚度(例如,如圖3中所展示)以(例如)形成透鏡。在一些情況中,具有添加穩定材料101之超音波傳感器晶圓102可與固體支撐件108解耦合,且在一些情況中,超音波傳感器晶圓102可單粒化(例如,藉由用鋸或雷射切割或分割)。在一些情況中,在穩定材料101經添加(且(例如)隨後固化以允許凝固)之後,用穩定材料101部分或完全填充之腔110之一或多個腔側壁111可減小橫截面厚度,例如,如圖4之步驟702中所展示。例如,在蝕刻一或多個腔側壁111以減小腔側壁111之橫截面厚度(例如,至50微米或更小之橫截面厚度)之前,形成於耦合至固體支撐件108之超音波傳感器晶圓102中之一或多個腔110可用穩定材料101部分(或完全)填充。在一些情況中,可添加額外穩定材料101 (例如,具有高分解溫度)來完全填充一或多個腔110或延伸超過一或多個腔側壁111 (例如,以形成透鏡,例如,如圖2B及圖4中所展示)。在一些情況中,穩定材料101可在添加至超音波傳感器晶圓102之一或多個表面直至穩定材料101具有以下橫截面厚度時輔助降低超音波傳感器晶圓102之損壞風險:小於5微米、至少5微米、至少10微米、至少20微米、至少30微米、至少40微米、至少50微米、超過50微米、自5微米至50微米、自20微米至50微米、自20微米至40微米或自20微米至30微米(例如,其中橫截面厚度在穩定材料凝固之後量測)。In some cases, one or more surfaces of the ultrasonic sensor wafer 102 may, for example, be located on the ultrasonic sensor wafer 102 (which may be 50 microns or less, 40 microns or less, 30 microns or less, or A cross-sectional thickness of 20 microns or less) is contacted with (e.g., partially or fully coated with the stabilizing material 101) prior to decoupling from the solid support 108 (e.g., step 908 and FIG. 2B of FIGS. 2A and 2B shown in step 704 of 4). For example, a method of fabricating ultrasonic sensor device 100 may include contacting one or more interior surfaces of cavities 110 (eg, cavities 110 ) of ultrasonic sensor wafer 102 with stabilizing material 101 (e.g., before contacting wafer 102 with (before solid support 108 is decoupled). In some cases, contacting one or more interior surfaces (eg, of cavity 110) with the stabilizing material includes filling the one or more cavities with the stabilizing material until the stabilizing material contacts one or more of the cavity sidewalls of the one or more cavities. Flush height. In some cases, contacting one or more interior surfaces (eg, of cavity 110) with the stabilizing material includes filling the one or more cavities with the stabilizing material until the stabilizing material exceeds one or more of the cavity sidewalls. high. In some cases, contacting one or more interior surfaces (eg, of cavity 110 ) with the stabilizing material includes filling the one or more cavities with the stabilizing material until the stabilizing material is below one or more of the cavity sidewalls the height. In some cases, contacting one or more surfaces of the ultrasonic sensor wafer 102 with the stabilizing material 101 may reduce the risk of damage to the ultrasonic sensor wafer 102 (e.g., caused by releasing the wafer 102 from the solid support 108 (caused by forces applied to wafer 102 during the manufacturing steps). In some cases, the interior surface of the bottom wall of the cavity 110 of the ultrasonic sensor wafer 102 may be completely coated with the stabilizing material 101 . In some cases, the cavity 110 of the ultrasonic sensor wafer 102 may be partially filled with the stabilizing material 101 (e.g., such that the stabilizing material 101 covers the entire interior surface of the bottom wall of the ultrasonic sensor wafer 102 but does not contact one or more of the cavity sidewalls) 111, for example, as shown in Figures 2A and 2B). In some cases, the cavity 110 of the ultrasonic sensor wafer 102 may be completely filled with the stabilizing material 101 (e.g., such that the stabilizing material 101 covers the entire interior surface of the bottom wall of the ultrasonic sensor wafer 102 and fills the cavity up to the cavity sidewalls 111 (e.g., such that the stabilizing material 101 contacts the entire height of one or more of the cavity side walls 111 of the cavity 110). In some cases, the cavity 110 of the ultrasonic sensor wafer 102 may be overfilled with the stabilizing material 101 (e.g., such that the stabilizing material 101 completely fills the cavity 110 and covers the top of one or more cavity sidewalls 111 of the ultrasonic sensor wafer 102, For example, as shown in Figure 3). For example, before one or more cavities 110 (eg, an array of cavities 110) are formed in the ultrasonic sensor wafer 102 (eg, by photolithography using a photolithographic pattern), ultrasonic sensors coupled to the solid support 108 The sonic sensor wafer 102 may have its cross-sectional thickness reduced (eg, by back grinding) to, for example, a cross-sectional thickness of 50 microns or less, for example, as shown in FIG. 3 . In some cases, the stabilizing material 101 may be added to partially or completely fill one or more of the cavities 110 after rendering the cross-sectional thickness of the one or more cavity sidewalls 111 to a reduced thickness (eg, 50 microns or less). , for example, as shown in Figure 3. In some cases, additional stabilizing material 101 (eg, having a high decomposition temperature) may be added beyond the thickness of cavity sidewalls 111 (eg, as shown in Figure 3) to, for example, form a lens. In some cases, the ultrasonic sensor wafer 102 with added stabilizing material 101 can be decoupled from the solid support 108 , and in some cases, the ultrasonic sensor wafer 102 can be singulated (e.g., by using a saw or laser cutting or segmenting). In some cases, one or more of the cavity sidewalls 111 of the cavity 110 partially or completely filled with the stabilizing material 101 may have a reduced cross-sectional thickness after the stabilizing material 101 is added (and, for example, subsequently cured to allow setting). For example, as shown in step 702 of Figure 4. For example, an ultrasonic sensor crystal coupled to solid support 108 may be formed before etching one or more of the cavity sidewalls 111 to reduce the cross-sectional thickness of the cavity sidewalls 111 (eg, to a cross-sectional thickness of 50 microns or less). One or more cavities 110 in circle 102 may be partially (or completely) filled with stabilizing material 101 . In some cases, additional stabilizing material 101 (e.g., having a high decomposition temperature) may be added to completely fill one or more cavities 110 or extend beyond one or more cavity sidewalls 111 (e.g., to form a lens, e.g., as shown in Figure 2B and shown in Figure 4). In some cases, the stabilizing material 101 can help reduce the risk of damage to the ultrasonic sensor wafer 102 when added to one or more surfaces of the ultrasonic sensor wafer 102 until the stabilizing material 101 has a cross-sectional thickness of: less than 5 microns, At least 5 microns, at least 10 microns, at least 20 microns, at least 30 microns, at least 40 microns, at least 50 microns, over 50 microns, from 5 microns to 50 microns, from 20 microns to 50 microns, from 20 microns to 40 microns or from 20 microns to 30 microns (eg, where the cross-sectional thickness is measured after solidification of the stabilizing material).

在一些情況中,使超音波之一或多個表面(例如腔110之一或多個內表面)與穩定材料101接觸可包括將穩定材料101旋塗至一或多個表面上。在一些情況中,穩定材料101之旋塗可在真空條件下執行以(例如)減少或消除氣泡形成。在一些情況中,使超音波之一或多個表面(例如腔110之一或多個內表面)與穩定材料101接觸可包括將穩定材料101噴墨沈積至一或多個表面上。在一些情況中,噴墨沈積可在真空條件下執行以(例如)減少或消除氣泡形成。在一些情況中,使超音波之一或多個表面(例如腔110之一或多個內表面)與穩定材料101接觸可包括將穩定材料101噴霧沈積至一或多個表面上。在一些情況中,使超音波之一或多個表面(例如腔110之一或多個內表面)與穩定材料101接觸可包括將穩定材料101化學氣相沈積(CVD)至一或多個表面上。在一些情況中,使超音波之一或多個表面(例如腔110之一或多個內表面)與穩定材料101接觸可包括將穩定材料101物理氣相沈積(PVD)至一或多個表面上。在一些情況中,遮罩或圖案可用於確保穩定材料101沈積於期望表面上及/或確保穩定材料101不沈積於非期望表面上。在一些情況中,可允許穩定材料101在其添加至超音波傳感器晶圓102之一或多個表面之後凝固。在一些情況中,可在將穩定材料101添加至超音波傳感器晶圓102之一或多個表面之後主動引起穩定材料101凝固(例如,藉由固化,例如使用暴露於紫外(UV)光)。確保穩定材料101在沈積(例如,藉由在真空下沈積穩定材料101及/或使用諸如噴霧沈積、CVD或PVD之技術)之後不含氣泡可確保經沈積穩定材料101之聲性質不負面影響超音波能在超音波傳感器裝置100操作期間傳輸穿過穩定材料101。In some cases, ultrasonically contacting one or more surfaces (eg, one or more interior surfaces of cavity 110 ) with stabilizing material 101 may include spin coating stabilizing material 101 onto the one or more surfaces. In some cases, spin coating of stabilizing material 101 may be performed under vacuum conditions, for example, to reduce or eliminate bubble formation. In some cases, ultrasonically contacting one or more surfaces (eg, one or more interior surfaces of cavity 110 ) with stabilizing material 101 may include inkjet deposition of stabilizing material 101 onto the one or more surfaces. In some cases, inkjet deposition may be performed under vacuum conditions to, for example, reduce or eliminate bubble formation. In some cases, ultrasonically contacting one or more surfaces (eg, one or more interior surfaces of cavity 110 ) with stabilizing material 101 may include spray depositing stabilizing material 101 onto the one or more surfaces. In some cases, ultrasonically contacting one or more surfaces (eg, one or more interior surfaces of cavity 110 ) with stabilizing material 101 may include chemical vapor deposition (CVD) of stabilizing material 101 onto the one or more surfaces. superior. In some cases, ultrasonically contacting one or more surfaces (eg, one or more interior surfaces of cavity 110 ) with stabilizing material 101 may include physical vapor deposition (PVD) of stabilizing material 101 onto the one or more surfaces. superior. In some cases, a mask or pattern may be used to ensure that the stabilizing material 101 is deposited on a desired surface and/or to ensure that the stabilizing material 101 is not deposited on an undesired surface. In some cases, the stabilizing material 101 may be allowed to solidify after it is added to one or more surfaces of the ultrasonic sensor wafer 102 . In some cases, the stabilizing material 101 may be actively caused to solidify (eg, by curing, eg, using exposure to ultraviolet (UV) light) after the stabilizing material 101 is added to one or more surfaces of the ultrasonic sensor wafer 102 . Ensuring that the stabilizing material 101 does not contain air bubbles after deposition (e.g., by depositing the stabilizing material 101 under vacuum and/or using techniques such as spray deposition, CVD, or PVD) ensures that the acoustic properties of the deposited stabilizing material 101 do not negatively impact the ultrasonic Sonic energy is transmitted through the stabilizing material 101 during operation of the ultrasonic sensor device 100 .

在一些情況中,額外穩定材料101可經添加至超音波傳感器晶圓102以覆蓋超音波傳感器晶圓102之一或多個表面及/或在穩定材料101之初始沈積之後凝固之穩定材料101之部分,例如,如圖4中所展示。在一些情況中,聲透鏡114可由相同於穩定材料101之材料形成。例如,添加至超音波傳感器晶圓102之一或多個表面及/或在穩定材料101之初始沈積之後凝固之穩定材料101之部分之穩定材料101可形成為聲透鏡114。在一些情況中,聲透鏡114可耦合至自超音波傳感器晶圓單粒化之超音波傳感器晶片(例如,包括複數個腔)及/或(例如自超音波傳感器晶圓單粒化之包括複數個腔之超音波傳感器晶片之)穩定材料101之一或多者。在一些情況中,聲透鏡114可跨超音波傳感器晶圓或超音波傳感器晶片之一或多個腔(例如,跨該一或多個腔且在該一或多個腔上方)延伸。In some cases, additional stabilizing material 101 may be added to ultrasonic sensor wafer 102 to cover one or more surfaces of ultrasonic sensor wafer 102 and/or to solidify after initial deposition of stabilizing material 101 . part, for example, as shown in Figure 4. In some cases, acoustic lens 114 may be formed from the same material as stabilizing material 101 . For example, acoustic lens 114 may be formed from stabilizing material 101 added to one or more surfaces of ultrasonic sensor wafer 102 and/or portions of stabilizing material 101 that solidify after initial deposition of stabilizing material 101 . In some cases, the acoustic lens 114 may be coupled to an ultrasonic sensor wafer singulated from an ultrasonic sensor wafer (e.g., including a plurality of cavities) and/or (e.g., singulated from an ultrasonic sensor wafer including a plurality of cavities). One or more of the stabilizing materials 101 of the ultrasonic sensor chip of each cavity. In some cases, the acoustic lens 114 may extend across the ultrasonic sensor wafer or one or more cavities of the ultrasonic sensor wafer (eg, across and over the one or more cavities).

在一些情況中,在使超音波傳感器晶圓102與穩定材料101接觸之後,超音波傳感器晶圓102可與固體支撐件108解耦合(例如,如圖2A及圖2B之步驟910及圖3之步驟654中所展示)。在一些情況中,使超音波傳感器晶圓102與固體支撐件108解耦合可包括使可去接合黏著劑去接合。在一些情況中,超音波傳感器晶圓102可使用鋸或藉由雷射分割來單粒化(例如,單粒化成一或多個超音波傳感器晶片,例如包括形成於晶圓中之複數個腔及穩定材料之一或多個超音波傳感器晶片)。In some cases, after bringing the ultrasonic sensor wafer 102 into contact with the stabilizing material 101, the ultrasonic sensor wafer 102 may be decoupled from the solid support 108 (eg, step 910 of Figures 2A and 2B and Figure 3 shown in step 654). In some cases, decoupling the ultrasonic sensor wafer 102 from the solid support 108 may include debonding the releasable adhesive. In some cases, the ultrasonic sensor wafer 102 may be singulated using a saw or by laser singulation (e.g., singulated into one or more ultrasonic sensor wafers, e.g., including a plurality of cavities formed in the wafer). and one or more ultrasonic sensor chips of stabilizing material).

製造超音波傳感器裝置100之方法可包括組裝包括穩定材料101之超音波傳感器晶片102與超音波傳感器裝置100之一或多個額外組件(例如,如圖2A之步驟912及圖2B之步驟914中所展示)。超音波傳感器晶圓102 (或其部分,諸如超音波傳感器晶片,其可為超音波傳感器晶圓之單粒化部分)可耦合至專用電路(ASIC) 116。如圖2A中所展示,超音波傳感器晶圓102可耦合至ASIC 116之金屬層117之導體。在一些情況中,ASIC 116之金屬層117可藉由接線126耦合至PCB 120之金屬層121之導體,接線126可焊接至金屬層之各者。在一些情況中,非導電黏晶材料118可安置於ASIC 116與PCB 120之間,如圖2A中所展示。在一些情況中,超音波傳感器晶圓102 (或其部分,諸如超音波傳感器晶片)可藉由覆晶焊接耦合至ASIC 116。如圖2B中所展示,超音波傳感器晶圓102可耦合至ASIC 116之金屬層117之導體,ASIC 116可包括矽穿孔(TSV)連接122。在一些情況中,TSV連接122可藉由諸如覆晶焊料124 (例如,其可位於安置於ASIC與PCB之間的非導電底膠層119中)之接面耦合至PCB 120之金屬層121之導體,如圖2B中所展示。Methods of manufacturing the ultrasonic sensor device 100 may include assembling the ultrasonic sensor wafer 102 including the stabilizing material 101 and one or more additional components of the ultrasonic sensor device 100 (e.g., in step 912 of FIG. 2A and step 914 of FIG. 2B shown). The ultrasonic sensor wafer 102 (or a portion thereof, such as an ultrasonic sensor wafer, which may be a singulated portion of the ultrasonic sensor wafer) may be coupled to an application specific circuit (ASIC) 116 . As shown in FIG. 2A , ultrasonic sensor wafer 102 may be coupled to the conductors of metal layer 117 of ASIC 116 . In some cases, metal layer 117 of ASIC 116 may be coupled to conductors of metal layer 121 of PCB 120 by wires 126 , which may be soldered to each of the metal layers. In some cases, non-conductive die attach material 118 may be disposed between ASIC 116 and PCB 120, as shown in Figure 2A. In some cases, ultrasonic sensor wafer 102 (or portions thereof, such as ultrasonic sensor wafers) may be coupled to ASIC 116 via flip-chip soldering. As shown in FIG. 2B , ultrasonic sensor wafer 102 may be coupled to conductors of metal layer 117 of ASIC 116 , which may include through silicon through silicon (TSV) connections 122 . In some cases, TSV connection 122 may be coupled to metal layer 121 of PCB 120 through a junction such as flip-chip solder 124 (eg, which may be located in non-conductive adhesive layer 119 disposed between the ASIC and the PCB). conductor, as shown in Figure 2B.

圖5A展示製造包括穩定材料101之超音波傳感器裝置100之方法500之流程圖。方法500可包括步驟502:提供耦合至固體支撐件108之第一組件(例如超音波傳感器晶圓102)。接著,一或多個構件(例如,包括一或多個腔110)可使用光微影形成於第一組件上,如步驟504中所展示。穩定材料101可施加至第一組件之一或多個表面,如步驟506中所展示。如步驟508中所展示,第一組件可自固體支撐件108釋放(例如,解耦合)。方法500亦可包括在將穩定材料施加至第一組件且使第一組件與固體支撐件解耦合之後將第一組件耦合至第二組件(例如ASIC),如步驟510中所展示。FIG. 5A shows a flow diagram of a method 500 of manufacturing an ultrasonic sensor device 100 including a stabilizing material 101 . Method 500 may include step 502 of providing a first component (eg, ultrasonic sensor wafer 102 ) coupled to solid support 108 . Next, one or more features (eg, including one or more cavities 110 ) may be formed on the first component using photolithography, as shown in step 504 . Stabilizing material 101 may be applied to one or more surfaces of the first component, as shown in step 506 . As shown in step 508, the first component may be released (eg, decoupled) from the solid support 108. Method 500 may also include coupling the first component to a second component (eg, an ASIC) after applying the stabilizing material to the first component and decoupling the first component from the solid support, as shown in step 510 .

圖5B展示製造包括穩定材料101之超音波傳感器裝置100之方法501之流程圖。方法501可包括步驟503:提供耦合至固體支撐件108之第一組件(例如超音波傳感器晶圓102)。接著,一或多個構件(例如,包括一或多個腔110)可使用光微影形成於第一組件上,如步驟505中所展示。穩定材料101可用於填充第一組件之一或多個腔,如步驟507中所展示。如步驟509中所展示,第一組件可自固體支撐件108釋放(例如,解耦合)。如步驟511中所展示,方法亦可包括在將穩定材料施加至第一組件且使第一組件與固體支撐件解耦合之後將第一組件耦合至第二組件(例如ASIC)。5B shows a flow diagram of a method 501 of manufacturing an ultrasonic sensor device 100 including a stabilizing material 101. Method 501 may include step 503 of providing a first component (eg, ultrasonic sensor wafer 102 ) coupled to solid support 108 . Next, one or more features (eg, including one or more cavities 110 ) may be formed on the first component using photolithography, as shown in step 505 . The stabilizing material 101 may be used to fill one or more cavities of the first component, as shown in step 507 . As shown in step 509, the first component may be released (eg, decoupled) from the solid support 108. As shown in step 511, the method may also include coupling the first component to a second component (eg, an ASIC) after applying the stabilizing material to the first component and decoupling the first component from the solid support.

圖6展示製造包括穩定材料101之超音波傳感器裝置100之方法600之流程圖。方法600可包括步驟602:提供耦合至固體支撐件108之第一組件(例如超音波傳感器晶圓102)。第一組件可經蝕刻或經受背面研磨以達成第一組件之所要橫截面厚度,如步驟604中所展示。穩定材料101可用於填充第一組件之一或多個腔,如步驟606中所展示。如步驟608中所展示,第一組件可自固體支撐件108釋放(例如,解耦合)。如步驟610中所展示,方法亦可包括在將穩定材料施加至第一組件且使第一組件與固體支撐件解耦合之後將第一組件耦合至第二組件(例如ASIC)。 超音波傳感器裝置 FIG. 6 shows a flow diagram of a method 600 of manufacturing an ultrasonic sensor device 100 including a stabilizing material 101 . Method 600 may include step 602 of providing a first component (eg, ultrasonic sensor wafer 102 ) coupled to solid support 108 . The first component may be etched or subjected to back grinding to achieve a desired cross-sectional thickness of the first component, as shown in step 604. The stabilizing material 101 may be used to fill one or more cavities of the first component, as shown in step 606. As shown in step 608, the first component may be released (eg, decoupled) from the solid support 108. As shown in step 610, the method may also include coupling the first component to a second component (eg, an ASIC) after applying the stabilizing material to the first component and decoupling the first component from the solid support. Ultrasonic sensor device

超音波傳感器裝置可包括一或多個超音波傳感器。在諸多情況中,超音波系統或裝置之一或多個超音波傳感器(例如,及一或多個其他內部組件,諸如MEMS陣列、超音波傳感器晶圓(例如MEMS晶圓)、ASIC及/或處理器)可位於超音波系統或裝置之內部隔間(例如內部空間)內。在一些情況中,超音波系統之內部隔間或空間可由外障壁環繞(例如,空間包圍),外障壁可包括外殼及聲透鏡114。在一些情況中,超音波系統之內部隔間或空間可由環繞(例如空間包圍)其之外障壁界定。在一些情況中,本文中所描述之系統、裝置或方法可包括壓電微機械超音波傳感器(pMUT)。在一些情況中,本文中所描述之系統、裝置或方法可包括一或多個電容微機械超音波傳感器(cMUT)。壓電微機械超音波傳感器(pMUT)可形成於諸如半導體晶圓(例如印刷電路板PCB)之基板上。建構於半導體基板上之pMUT元件可提供比具有更龐大壓電材料之龐大習知傳感器小之輪廓大小。在一些情況中,pMUT亦可製造更便宜及/或可允許傳感器與超音波裝置或系統之額外電子器件之間的更不複雜且更高效能互連。The ultrasonic sensor device may include one or more ultrasonic sensors. In many cases, an ultrasound system or device includes one or more ultrasound sensors (e.g., and one or more other internal components, such as a MEMS array, an ultrasound sensor wafer (e.g., a MEMS wafer), an ASIC, and/or The processor) may be located within an internal compartment (eg, interior space) of the ultrasound system or device. In some cases, the internal compartment or space of the ultrasound system may be surrounded (eg, enclosed by the space) by an outer barrier, which may include a housing and acoustic lens 114 . In some cases, an internal compartment or space of an ultrasound system may be defined by an external barrier surrounding (eg, space surrounding) it. In some cases, the systems, devices, or methods described herein may include piezoelectric micromachined ultrasonic sensors (pMUTs). In some cases, the systems, devices, or methods described herein may include one or more capacitive micromachined ultrasonic sensors (cMUTs). Piezoelectric micromachined ultrasonic sensors (pMUTs) may be formed on a substrate such as a semiconductor wafer (eg, a printed circuit board (PCB)). pMUT devices constructed on semiconductor substrates can provide a smaller profile than bulky conventional sensors with bulkier piezoelectric materials. In some cases, pMUTs may also be cheaper to manufacture and/or may allow for less complex and higher performance interconnections between the sensors and additional electronics of the ultrasound device or system.

微機械超音波傳感器(MUT)(其等可包含pMUT及/或cMUT)可包含隔膜(例如(例如)在隔膜邊緣處附著至成像裝置(例如超音波探針)之內部之一或多個部分之薄膜)。相比而言,傳統龐大壓電(PZT)元件通常由單塊固體材料組成。此等傳統PZT超音波系統及裝置可製造昂貴,例如因為依適當間隔切割及安裝構成PZT超音波系統及裝置之PZT或陶瓷材料需要高精度。另外,傳統PZT超音波系統及裝置可具有顯著高於PZT系統及裝置之傳輸/接收電子器件之阻抗之傳感器阻抗,其可負面影響效能。Micromachined ultrasound sensors (MUTs), which may include pMUTs and/or cMUTs, may include a diaphragm, such as, for example, attached to one or more portions of the interior of an imaging device, such as an ultrasound probe, at the edge of the diaphragm. film). In comparison, traditional bulk piezoelectric (PZT) elements are typically composed of a single piece of solid material. These conventional PZT ultrasound systems and devices can be expensive to manufacture, for example because of the high precision required to cut and install the PZT or ceramic materials that make up the PZT ultrasound systems and devices at appropriate intervals. Additionally, traditional PZT ultrasound systems and devices can have sensor impedances that are significantly higher than the impedance of the transmit/receive electronics of PZT systems and devices, which can negatively impact performance.

在一些情況中,一或多個傳感器元件可經組態以依特定頻率或頻寬傳輸及/或接收信號(例如,其中頻寬與中心頻率相關聯)。在一些情況中,一或多個傳感器元件可經進一步組態以依額外中心頻率及頻寬傳輸及/或接收信號。此等多頻率傳感器元件可指稱多模態元件,且可在一些實施例中用於擴展成像系統或裝置100之頻寬。傳感器元件或像素可經組態以依適合中心頻率(例如自0.1百萬赫(MHz)至100 MHz)發射(例如傳輸)及/或接收超音波能(例如超音波波形、圖案或壓力波)。在一些情況中,傳感器或像素可經組態以依以下中心頻率傳輸或接收超音波能:0.1 MHz至1 MHz、0.1 MHz至1.8 MHz、0.1 MHz至3.5 MHz、0.1 MHz至5.1 MHz、0.1 MHz至10 MHz、0.1 MHz至25 MHz、0.1 MHz至50 MHz、0.1 MHz至100 MHz、1 MHz至1.8 MHz、1 MHz至3.5 MHz、1 MHz至5.1 MHz、1 MHz至10 MHz、1 MHz至25 MHz、1 MHz至50 MHz、1 MHz至100 MHz、1.8 MHz至3.5 MHz、1.8 MHz至5.1 MHz、1.8 MHz至10 MHz、1.8 MHz至25 MHz、1.8 MHz至50 MHz、1.8 MHz至100 MHz、3.5 MHz至5.1 MHz、3.5 MHz至10 MHz、3.5 MHz至25 MHz、3.5 MHz至50 MHz、3.5 MHz至100 MHz、5.1 MHz至10 MHz、5.1 MHz至25 MHz、5.1 MHz至50 MHz、5.1 MHz至100 MHz、10 MHz至25 MHz、10 MHz至50 MHz、10 MHz至100 MHz、25 MHz至50 MHz、25 MHz至100 MHz或50 MHz至100 MHz。在一些情況中,傳感器或像素可經組態以依以下中心頻率傳輸或接收超音波能:0.1 MHz、1 MHz、1.8 MHz、3.5 MHz、5.1 MHz、10 MHz、25 MHz、50 MHz或100 MHz。在一些情況中,傳感器或像素可經組態以依至少以下中心頻率傳輸或接收超音波能:0.1 MHz、1 MHz、1.8 MHz、3.5 MHz、5.1 MHz、10 MHz、25 MHz、50 MHz或100 MHz。在一些情況中,傳感器或像素可經組態以依至多以下中心頻率傳輸或接收超音波能:0.1 MHz、1 MHz、1.8 MHz、3.5 MHz、5.1 MHz、10 MHz、25 MHz、50 MHz或100 MHz。 接面 In some cases, one or more sensor elements may be configured to transmit and/or receive signals at a specific frequency or bandwidth (eg, where the bandwidth is associated with a center frequency). In some cases, one or more sensor elements may be further configured to transmit and/or receive signals at additional center frequencies and bandwidths. Such multi-frequency sensor elements may be referred to as multi-modal elements and may be used in some embodiments to extend the bandwidth of the imaging system or device 100. Sensor elements or pixels may be configured to emit (e.g., transmit) and/or receive ultrasonic energy (e.g., ultrasonic waveforms, patterns, or pressure waves) at a suitable center frequency (e.g., from 0.1 megahertz (MHz) to 100 MHz) . In some cases, the sensor or pixel may be configured to transmit or receive ultrasonic energy at the following center frequencies: 0.1 MHz to 1 MHz, 0.1 MHz to 1.8 MHz, 0.1 MHz to 3.5 MHz, 0.1 MHz to 5.1 MHz, 0.1 MHz to 10 MHz, 0.1 MHz to 25 MHz, 0.1 MHz to 50 MHz, 0.1 MHz to 100 MHz, 1 MHz to 1.8 MHz, 1 MHz to 3.5 MHz, 1 MHz to 5.1 MHz, 1 MHz to 10 MHz, 1 MHz to 25 MHz, 1 MHz to 50 MHz, 1 MHz to 100 MHz, 1.8 MHz to 3.5 MHz, 1.8 MHz to 5.1 MHz, 1.8 MHz to 10 MHz, 1.8 MHz to 25 MHz, 1.8 MHz to 50 MHz, 1.8 MHz to 100 MHz, 3.5 MHz to 5.1 MHz, 3.5 MHz to 10 MHz, 3.5 MHz to 25 MHz, 3.5 MHz to 50 MHz, 3.5 MHz to 100 MHz, 5.1 MHz to 10 MHz, 5.1 MHz to 25 MHz, 5.1 MHz to 50 MHz, 5.1 MHz to 100 MHz, 10 MHz to 25 MHz, 10 MHz to 50 MHz, 10 MHz to 100 MHz, 25 MHz to 50 MHz, 25 MHz to 100 MHz or 50 MHz to 100 MHz. In some cases, the sensor or pixel may be configured to transmit or receive ultrasonic energy at the following center frequencies: 0.1 MHz, 1 MHz, 1.8 MHz, 3.5 MHz, 5.1 MHz, 10 MHz, 25 MHz, 50 MHz, or 100 MHz . In some cases, the sensor or pixel may be configured to transmit or receive ultrasonic energy at at least the following center frequencies: 0.1 MHz, 1 MHz, 1.8 MHz, 3.5 MHz, 5.1 MHz, 10 MHz, 25 MHz, 50 MHz, or 100 MHz. In some cases, the sensor or pixel may be configured to transmit or receive ultrasonic energy at up to the following center frequencies: 0.1 MHz, 1 MHz, 1.8 MHz, 3.5 MHz, 5.1 MHz, 10 MHz, 25 MHz, 50 MHz, or 100 MHz. junction

超音波傳感器裝置之第一組件(例如印刷電路板或其部分)可藉由接面耦合至超音波傳感器裝置之一或多個第二組件。在一些情況中,接面可提供第一組件與一或多個第二組件之間的電連接。例如,在一些情況中,接面可電耦合第一組件與一或多個第二組件。耦合超音波裝置之第一組件及超音波裝置之一或多個第二組件之接面可導電(例如,其中接面包括導體)。例如,接面可包括導電材料。在一些情況中,接面可實體結合及/或穩定第一組件與第二組件之間的接頭。A first component of the ultrasonic sensor device, such as a printed circuit board or portion thereof, may be coupled to one or more second components of the ultrasonic sensor device via a joint. In some cases, a junction may provide an electrical connection between a first component and one or more second components. For example, in some cases, a junction may electrically couple a first component and one or more second components. The junction coupling the first component of the ultrasound device and one or more second components of the ultrasound device may be electrically conductive (eg, where the junction includes a conductor). For example, the junction may include conductive material. In some cases, the interface may physically join and/or stabilize the joint between the first component and the second component.

超音波傳感器裝置之接面可包括一或多個導線(例如一或多個接線)。在一些情況中,接線之第一端可耦合至ASIC之端子且接線之第二端可耦合至印刷電路板(PCB)。在一些情況中,接線可經由焊接耦合至超音波傳感器裝置之一或多個其他組件(例如ASIC及/或PCB)。在一些情況中,導線可包括導體。例如,導線可包括銅線、金線、銀線、鋁線或其等之合金(例如鎂鋁線或矽鋁線)。在一些情況中,導線可經塗佈(例如鍍鈀線)及/或摻雜(例如,其中導線摻雜有鈹)。The interface of the ultrasonic sensor device may include one or more conductors (eg, one or more wires). In some cases, a first end of the wire can be coupled to a terminal of the ASIC and a second end of the wire can be coupled to a printed circuit board (PCB). In some cases, the wiring may be coupled to one or more other components of the ultrasonic sensor device (eg, ASIC and/or PCB) via soldering. In some cases, wires may include conductors. For example, the conductive wires may include copper wires, gold wires, silver wires, aluminum wires, or alloys thereof (eg, magnesium aluminum wires or silicon aluminum wires). In some cases, the wires may be coated (eg, palladium-plated wires) and/or doped (eg, where the wires are doped with beryllium).

超音波傳感器裝置可包括一或多個「矽穿孔(TSV)」連接。在一些情況中,TSV連接可將ASIC電耦合至PCB。在一些情況中,TSV可經由諸如覆晶焊接之焊接方法耦合至超音波傳感器裝置之一或多個額外組件。TSV連接可包括自晶圓(例如(例如)積體電路之矽晶圓,諸如ASIC晶圓)之第一(例如遠端)表面通至晶圓之第二(例如近端)表面之導電材料。在一些情況中,接面可包括焊料(例如,在(例如)TSV連接或接線連接之一或多個焊接點處)。Ultrasonic sensor devices may include one or more "through silicon through (TSV)" connections. In some cases, TSV connections can electrically couple the ASIC to the PCB. In some cases, the TSV may be coupled to one or more additional components of the ultrasonic sensor device via soldering methods such as flip-chip soldering. The TSV connections may include conductive material from a first (eg, distal) surface of a wafer (eg, a silicon wafer of an integrated circuit, such as an ASIC wafer) to a second (eg, proximal) surface of the wafer. . In some cases, the junction may include solder (eg, at one or more solder points, such as a TSV connection or wire connection).

超音波傳感器裝置之接面可包括焊料。焊料可用於穩定或連接接面之一或多個其他組件(例如接線、TSV及/或ASIC或PCB之金屬層)。焊料可具有回焊溫度。在一些情況中,焊料可在其溫度達到回焊溫度時自固相熔化至液相或半液相。在一些情況中,用於製造超音波傳感器裝置之方法可包括使超音波傳感器裝置之全部或部分達到等於焊料之回焊溫度之溫度(例如,以熔化焊料用於施加至接面)。在一些情況中,用於製造超音波傳感器裝置之方法可包括使超音波傳感器裝置及/或其組件之一者、複數者或全部維持實質上等於或低於回焊溫度之(若干)溫度(例如,不超過回焊溫度之溫度)。在一些情況中,焊料之回焊溫度可高達240℃。 穩定材料 The interface of the ultrasonic sensor device may include solder. Solder may be used to stabilize or connect one or more other components of the interface (such as wires, TSVs, and/or metal layers of the ASIC or PCB). The solder can have a reflow temperature. In some cases, the solder may melt from the solid phase to the liquid or semi-liquid phase when its temperature reaches the reflow temperature. In some cases, methods for fabricating an ultrasonic sensor device may include bringing all or a portion of the ultrasonic sensor device to a temperature equal to the reflow temperature of the solder (eg, to melt the solder for application to the junction). In some cases, methods for fabricating an ultrasonic sensor device may include maintaining one, plural, or all of the ultrasonic sensor device and/or components thereof at a temperature(s) substantially equal to or lower than the reflow temperature ( For example, a temperature that does not exceed the reflow temperature). In some cases, the reflow temperature of the solder can be as high as 240°C. stable material

如本文中所描述,在製造期間持續發生之超音波裝置組件損壞可藉由指定用於製造超音波傳感器裝置100之材料、方法及/或步驟順序來大幅減少。例如,將材料(例如穩定材料101)添加(例如,部分或完全塗佈或填充)至超音波傳感器晶圓102之一或多個表面或腔(例如,在將超音波傳感器晶圓102自其耦合之固體支撐件移除之前)可實質上降低在製造期間損壞超音波傳感器晶圓102之可能性及/或程度。在一些情況中,超音波傳感器晶圓102之全部或部分可達到(例如,減小至)所要橫截面厚度(例如,經由研磨),經蝕刻以包括所要表面架構(例如,使用(若干)微影技術來產生傳感器腔110),且在自固體支撐件108移除晶圓102之前與能夠穩定超音波傳感器晶圓102之材料(例如穩定材料101)接觸(例如,部分或完全塗佈或填充)。例如,超音波傳感器晶圓102可經蝕刻以包括可在修改傳感器晶圓102之厚度(例如,將腔壁薄化至所要厚度,例如經由微影)之前用能夠穩定經處理陣列之材料部分填充之所要架構(例如,包括複數個腔110)。As described herein, ongoing damage to ultrasonic device components during manufacturing can be significantly reduced by specifying the materials, methods, and/or sequence of steps used to fabricate the ultrasonic sensor device 100. For example, a material (e.g., stabilizing material 101) is added (e.g., partially or completely coated or filled) to one or more surfaces or cavities of ultrasonic sensor wafer 102 (e.g., after removing ultrasonic sensor wafer 102 from it). prior to removal of the coupled solid support) may substantially reduce the likelihood and/or extent of damage to the ultrasonic sensor wafer 102 during manufacturing. In some cases, all or a portion of the ultrasonic sensor wafer 102 may be brought to (eg, reduced to) a desired cross-sectional thickness (eg, via grinding), etched to include the desired surface architecture (eg, using micron(s)). imaging technique to create the sensor cavity 110) and contact (e.g., partially or completely coated or filled) with a material capable of stabilizing the ultrasonic sensor wafer 102 (e.g., the stabilizing material 101) prior to removing the wafer 102 from the solid support 108 ). For example, the ultrasonic sensor wafer 102 may be etched to include portions that may be filled with a material capable of stabilizing the processed array prior to modifying the thickness of the sensor wafer 102 (e.g., thinning the cavity walls to a desired thickness, such as via lithography) The desired structure (for example, including a plurality of cavities 110).

在一些情況中,穩定材料101可為能夠流動至組件之表面或構件上或流入至組件之表面或構件中之材料。例如,穩定材料可熔化及施加至組件之表面(例如組件之腔110之內表面,諸如超音波傳感器晶圓102中之腔110之底壁112之內表面或腔側壁111之表面)且允許其在組件經受製程之操縱步驟之前凝結(例如硬化或乾燥)。在一些情況中,穩定材料可為在組件經受製程之操縱步驟之前施加至組件之表面(例如組件之腔之內表面)且固化(例如,使用紫外光)之可流動材料。在一些情況中,例如,若超音波傳感器晶圓102之全部或部分(例如,穩定材料101添加至其)具有經減小橫截面厚度(例如50微米或更小、40微米或更小、30微米或更小或20微米或更小之橫截面厚度),則將穩定材料添加至超音波傳感器晶圓102之全部或部分可減小超音波傳感器晶圓102之損壞風險(例如,由於超音波傳感器晶圓102在超音波傳感器裝置100製造期間經歷之力)。In some cases, the stabilizing material 101 may be a material that is capable of flowing onto or into surfaces or features of the component. For example, the stabilizing material may be melted and applied to a surface of the component (eg, an interior surface of a cavity 110 of the component, such as an interior surface of the bottom wall 112 of the cavity 110 or the surface of the cavity sidewalls 111 in the ultrasonic sensor wafer 102 ) and allow it to Sets (such as hardening or drying) before the component is subjected to the manipulation steps of the process. In some cases, the stabilizing material may be a flowable material that is applied to a surface of the component (eg, an interior surface of a cavity of the component) and cured (eg, using ultraviolet light) before the component is subjected to the manipulation steps of the process. In some cases, for example, if all or a portion of the ultrasonic sensor wafer 102 (eg, to which the stabilizing material 101 is added) has a reduced cross-sectional thickness (eg, 50 microns or less, 40 microns or less, 30 microns or less or a cross-sectional thickness of 20 microns or less), adding the stabilizing material to all or a portion of the ultrasonic sensor wafer 102 may reduce the risk of damage to the ultrasonic sensor wafer 102 (e.g., due to ultrasonic waves). forces that sensor wafer 102 experiences during fabrication of ultrasonic sensor device 100).

在一些情況中,穩定材料101可滿足或超過用於超音波傳感器裝置100中之聲透鏡114之聲要求。在一些情況中,穩定材料101可具有高於或實質上相同於用於形成聲透鏡114之材料之聲速之聲速。在一些情況中,穩定材料101可具有小於或實質上相同於用於形成聲透鏡114之材料之聲衰減之聲衰減。在一些情況中,穩定材料101可具有小於或實質上相同於聲透鏡114之聲阻抗之聲阻抗。在一些情況中,穩定材料101可用於形成本文中所描述之超音波傳感器裝置100之聲透鏡114。In some cases, the stabilizing material 101 may meet or exceed the acoustic requirements for the acoustic lens 114 used in the ultrasonic sensor device 100. In some cases, stabilizing material 101 may have a speed of sound that is higher than or substantially the same as the speed of sound of the material used to form acoustic lens 114 . In some cases, the stabilizing material 101 may have an acoustic attenuation that is less than or substantially the same as the acoustic attenuation of the material used to form the acoustic lens 114 . In some cases, the stabilizing material 101 may have an acoustic impedance that is less than or substantially the same as the acoustic impedance of the acoustic lens 114 . In some cases, the stabilizing material 101 may be used to form the acoustic lens 114 of the ultrasonic sensor device 100 described herein.

穩定材料101可包括單體。在一些情況中,穩定材料101可包括聚矽氧(例如聚矽氧基單體)。在一些情況中,穩定材料101可包括聚合物。在一些情況中,穩定材料101之單體可經聚合成聚合物。在一些情況中,聚合穩定材料101可包括交聯構成穩定材料101之分子(例如單體)之全部或部分。在一些情況中,穩定材料101之單體可藉由使穩定材料101暴露於紫外(UV)光(例如具有自315奈米至430奈米之波長之光)來聚合。在一些情況中,穩定材料101可使用聚合劑或觸媒(例如UV活化鉑觸媒)來聚合。例如,在一些情況中,穩定材料101可藉由混合穩定材料101與聚合引發劑來聚合。在一些情況中,聚合穩定材料101可部分或完全固化穩定材料(例如,其中凝固或引起穩定材料101自液態部分或完全轉變至固態或自半固態部分或完全轉變至固態)。在一些情況中,聚合穩定材料101可與使超音波傳感器晶圓102 (或其部分)與穩定材料101接觸同時執行。在一些情況中,聚合穩定材料101可在使超音波傳感器晶圓102 (或其部分)與穩定材料101接觸之後執行。Stabilizing material 101 may include monomers. In some cases, stabilizing material 101 may include polysiloxane (eg, polysiloxane-based monomer). In some cases, stabilizing material 101 may include polymers. In some cases, the monomers of stabilizing material 101 may be polymerized into polymers. In some cases, polymeric stabilizing material 101 may include cross-linking all or part of the molecules (eg, monomers) that make up stabilizing material 101 . In some cases, the monomers of stabilizing material 101 can be polymerized by exposing stabilizing material 101 to ultraviolet (UV) light (eg, light having wavelengths from 315 nanometers to 430 nanometers). In some cases, stabilizing material 101 may be polymerized using a polymerizing agent or catalyst (eg, UV-activated platinum catalyst). For example, in some cases, stabilizing material 101 can be polymerized by mixing stabilizing material 101 with a polymerization initiator. In some cases, the polymeric stabilizing material 101 may partially or fully solidify the stabilizing material (eg, where solidification or causes a partial or complete transition of the stabilizing material 101 from a liquid state to a solid state or from a semi-solid state to a solid state). In some cases, polymerizing the stabilizing material 101 may be performed simultaneously with contacting the ultrasonic sensor wafer 102 (or a portion thereof) with the stabilizing material 101 . In some cases, polymerizing the stabilizing material 101 may be performed after contacting the ultrasonic sensor wafer 102 (or a portion thereof) with the stabilizing material 101 .

在一些情況中,穩定材料101可在固化時間內經受固化或聚合程序(例如,包括暴露於UV光)。固化時間可取決於經固化(或聚合)之穩定材料101之組合物及/或量。例如,包括使穩定材料101暴露於紫外光之固化條件可包括使穩定材料101暴露於紫外光達1小時或更少、30分鐘或更少、15分鐘或更少、10分鐘或更少、5分鐘或更少、4分鐘或更少、3分鐘或更少、2分鐘或更少、1分鐘或更少、45秒或更少、30秒或更少、15秒或更少、10秒或更少、5秒或更少或1秒或更少。在一些情況中,固化或聚合穩定材料101可包括升高穩定材料101之溫度。在一些情況中,升高穩定材料101之溫度可為有利固化條件,例如,因為在一些情況中,固化或聚合程序可在高溫處更快執行。在一些情況中,固化或聚合穩定材料101可以以下溫度執行:自100℃至18℃、自80°C至20°C、自80°C至25°C、自80°C至35°C、自80°C至45°C、自80°C至55°C、自80°C至65°C、自60°C至20°C、自60°C至25°C、自60°C至35°C或自60°C至45°C。在一些情況中,固化或聚合穩定材料101可包括在聚合或固化之步驟期間增加穩定材料101之環境中之濕度(例如,超過環境濕度)以(例如)提高固化或聚合之速度。在一些情況中,固化或聚合穩定材料可包括在聚合或固化之步驟期間減少穩定材料101之環境中之氧含量(例如,超過環境氧合)以(例如)提高固化或聚合之速度。In some cases, the stabilizing material 101 may be subjected to a curing or polymerization process (eg, including exposure to UV light) during a curing time. The curing time may depend on the composition and/or amount of cured (or polymerized) stabilizing material 101 . For example, curing conditions that include exposing stabilizing material 101 to UV light may include exposing stabilizing material 101 to UV light for 1 hour or less, 30 minutes or less, 15 minutes or less, 10 minutes or less, 5 minutes or less, 4 minutes or less, 3 minutes or less, 2 minutes or less, 1 minute or less, 45 seconds or less, 30 seconds or less, 15 seconds or less, 10 seconds or less, 5 seconds or less, or 1 second or less. In some cases, curing or polymerizing the stabilizing material 101 may include increasing the temperature of the stabilizing material 101 . In some cases, increasing the temperature of the stabilizing material 101 may be a favorable curing condition, for example, because in some cases the curing or polymerization process may be performed faster at higher temperatures. In some cases, curing or polymerizing the stabilizing material 101 can be performed at temperatures from 100°C to 18°C, from 80°C to 20°C, from 80°C to 25°C, from 80°C to 35°C, From 80°C to 45°C, from 80°C to 55°C, from 80°C to 65°C, from 60°C to 20°C, from 60°C to 25°C, from 60°C to 35°C or from 60°C to 45°C. In some cases, curing or polymerizing the stabilizing material 101 may include increasing the humidity in the environment of the stabilizing material 101 (eg, exceeding ambient humidity) during the step of polymerizing or curing, for example, to increase the rate of curing or polymerization. In some cases, curing or polymerizing the stabilizing material may include reducing the oxygen content (eg, exceeding ambient oxygenation) of the environment of the stabilizing material 101 during the step of polymerizing or curing, for example, to increase the rate of curing or polymerization.

在一些情況中,聚合穩定材料101之步驟(例如,其中穩定材料101暴露於UV光)可在使超音波傳感器晶圓102之一或多個內表面(例如超音波傳感器晶圓102之腔110之一或多個表面)與穩定材料101 (例如,其中穩定材料101包括單體,諸如聚矽氧基單體)接觸之後執行。在一些情況中,聚合穩定材料101之步驟(例如,其中穩定材料101暴露於UV光)可在使超音波晶圓102之一或多個內表面(例如超音波傳感器晶圓102之腔110之一或多個表面)與穩定材料101 (例如,其中穩定材料101包括單體,諸如聚矽氧基單體)接觸之步驟期間執行。In some cases, the step of polymerizing the stabilizing material 101 (e.g., wherein the stabilizing material 101 is exposed to UV light) may be performed on one or more interior surfaces of the ultrasonic sensor wafer 102 (e.g., the cavity 110 of the ultrasonic sensor wafer 102 One or more surfaces) are in contact with the stabilizing material 101 (eg, where the stabilizing material 101 includes a monomer, such as a polysiloxy-based monomer). In some cases, the step of polymerizing the stabilizing material 101 (e.g., in which the stabilizing material 101 is exposed to UV light) may be performed before exposing one or more interior surfaces of the ultrasonic wafer 102 (e.g., the cavity 110 of the ultrasonic sensor wafer 102 One or more surfaces) are brought into contact with the stabilizing material 101 (eg, where the stabilizing material 101 includes a monomer, such as a polysiloxy-based monomer).

穩定材料101可包括聚矽氧。在一些情況中,穩定材料101可包括一或多個添加劑(例如熱穩定添加劑)。在一些情況中,包括一或多個添加劑(例如一或多個熱穩定添加劑)之穩定材料101可具有較高分解溫度。在一些情況中,可藉由將一或多個添加劑(例如熱穩定劑添加劑)添加至穩定材料101來使穩定材料之分解溫度升高高達10°C、高達20°C、高達30°C、高達40°C、高達50°C、高達60°C、高達70°C、高達80°C、高達90°C、高達100°C、高達110°C或高達120°C。在一些情況中,包括一或多個添加劑(例如熱穩定添加劑)之穩定材料101具有以下分解溫度:高達180℃、高達200°C、高達210°C、高達220°C、高達230°C、高達240°C、高達250°C、高達260°C、高達270°C、高達280°C或超過280°C。在一些情況中,包括一或多個添加劑(例如熱穩定添加劑)之穩定材料101具有以下分解溫度:高於180℃、高於200°C、高於210°C、高於220°C、高於230°C、高於240°C、高於250°C、高於260°C、高於270°C或高於280°C。可用於穩定材料101中之一些熱穩定添加劑包含鐵、鈰及氧化鈦。在一些情況中,熱穩定添加劑可具有10微米或更小之粒徑。Stabilizing material 101 may include polysiloxane. In some cases, stabilizing material 101 may include one or more additives (eg, thermal stabilizing additives). In some cases, stabilizing material 101 including one or more additives (eg, one or more thermal stabilizing additives) may have a higher decomposition temperature. In some cases, the decomposition temperature of the stabilizing material 101 can be increased by up to 10°C, up to 20°C, up to 30°C, Up to 40°C, up to 50°C, up to 60°C, up to 70°C, up to 80°C, up to 90°C, up to 100°C, up to 110°C or up to 120°C. In some cases, the stabilizing material 101 including one or more additives (eg, thermal stabilizing additives) has the following decomposition temperatures: up to 180°C, up to 200°C, up to 210°C, up to 220°C, up to 230°C, Up to 240°C, up to 250°C, up to 260°C, up to 270°C, up to 280°C or above 280°C. In some cases, the stabilizing material 101 including one or more additives (eg, thermal stabilizing additives) has the following decomposition temperatures: above 180°C, above 200°C, above 210°C, above 220°C, high At 230°C, above 240°C, above 250°C, above 260°C, above 270°C, or above 280°C. Some thermal stabilizing additives that can be used in stabilizing material 101 include iron, cerium and titanium oxide. In some cases, the thermal stabilizing additive may have a particle size of 10 microns or less.

在諸多情況中,用於形成既有超音波傳感器裝置中之聲透鏡之材料具有低於焊料回焊溫度之分解溫度。在諸多情況中,具有高於(例如,用於製造超音波傳感器裝置100之焊料之)焊料回焊溫度之分解溫度之穩定材料101可用於本文中所描述之方法及系統中。在一些情況中,使用具有高於焊料回焊溫度之分解溫度之穩定材料101可降低穩定材料在將穩定材料添加至超音波傳感器晶圓之後由超音波傳感器裝置製造步驟負面影響(例如,相對於聲清晰度及/或熔化)之風險。例如,在將穩定材料101添加至超音波傳感器晶圓102之後使用具有高於用於將ASIC耦合至PCB之焊料之回焊溫度之分解溫度之穩定材料101可防止穩定材料101在製造期間添加熱來將ASIC耦合至PCB時熔化或退降。In many cases, the materials used to form the acoustic lenses in existing ultrasonic sensor devices have decomposition temperatures below the solder reflow temperature. In many cases, stable materials 101 that have a decomposition temperature above the solder reflow temperature (eg, of the solder used to fabricate ultrasonic sensor device 100) may be used in the methods and systems described herein. In some cases, using a stabilizing material 101 that has a decomposition temperature higher than the solder reflow temperature may reduce the negative impact of the stabilizing material by the ultrasonic sensor device fabrication steps after the stabilizing material is added to the ultrasonic sensor wafer (e.g., relative to sound intelligibility and/or melting). For example, using a stabilizing material 101 with a decomposition temperature higher than the reflow temperature of the solder used to couple the ASIC to the PCB after adding the stabilizing material 101 to the ultrasonic sensor wafer 102 may prevent the stabilizing material 101 from adding heat during manufacturing. to melt or degrade when coupling the ASIC to the PCB.

穩定材料101可展現低聲衰減(例如,在添加至矽基晶圓或其部分且固化之後)。例如,穩定材料101可具有約0.10分貝每毫米(dB/mm)至約50.0 dB/mm之聲衰減。在一些情況中,穩定材料101可具有以下聲衰減:約0.10 dB/mm至約0.25 dB/mm、約0.10 dB/mm至約0.50 dB/mm、約0.10 dB/mm至約0.75 dB/mm、約0.10 dB/mm至約1.00 dB/mm、約0.10 dB/mm至約5.00 dB/mm、約0.10 dB/mm至約10 dB/mm、約0.10 dB/mm至約15.0 dB/mm、約0.10 dB/mm至約20.0 dB/mm、約0.10 dB/mm至約25.0 dB/mm、約0.10 dB/mm至約30.0 dB/mm、約0.10 dB/mm至約50.0 dB/mm、約0.25 dB/mm至約0.50 dB/mm、約0.25 dB/mm至約0.75 dB/mm、約0.25 dB/mm至約1.00 dB/mm、約0.25 dB/mm至約5.00 dB/mm、約0.25 dB/mm至約10.0 dB/mm、約0.25 dB/mm至約15.0 dB/mm、約0.25 dB/mm至約20.0 dB/mm、約0.25 dB/mm至約25.0 dB/mm、約0.25 dB/mm至約30.0 dB/mm、約0.25 dB/mm至約50.0 dB/mm、約0.50 dB/mm至約0.75 dB/mm、約0.50 dB/mm至約1.00 dB/mm、約0.50 dB/mm至約5.00 dB/mm、約0.50 dB/mm至約10.0 dB/mm、約0.50 dB/mm至約15 dB/mm、約0.50 dB/mm至約20.0 dB/mm、約0.50 dB/mm至約25.0 dB/mm、約0.50 dB/mm至約30.0 dB/mm、約0.50 dB/mm至約50.0 dB/mm、約0.75 dB/mm至約1.00 dB/mm、約0.75 dB/mm至約5.00 dB/mm、約0.75 dB/mm至約10.0 dB/mm、約0.75 dB/mm至約15.0 dB/mm、約0.75 dB/mm至約20.0 dB/mm、約0.75 dB/mm至約25.0 dB/mm、約0.75 dB/mm至約30.0 dB/mm、約0.75 dB/mm至約50.0 dB/mm、約1.00 dB/mm至約5.00 dB/mm、約1.00 dB/mm至約10.0 dB/mm、約1.00 dB/mm至約15.0 dB/mm、約1.00 dB/mm至約20.0 dB/mm、約1.00 dB/mm至約25.0 dB/mm、約1.00 dB/mm至約30.0 dB/mm、約1.00 dB/mm至約50.0 dB/mm、約5.00 dB/mm至約10.0 dB/mm、約5.00 dB/mm至約15.0 dB/mm、約5.00 dB/mm至約20.0 dB/mm、約5.00 dB/mm至約25.0 dB/mm、約5.00 dB/mm至約30.0 dB/mm、約5.00 dB/mm至約50.0 dB/mm、約10.0 dB/mm至約15.0 dB/mm、約10.0 dB/mm至約20.0 dB/mm、約10.0 dB/mm至約25.0 dB/mm、約10.0 dB/mm至約30.0 dB/mm、約10.0 dB/mm至約50.0 dB/mm、約15.0 dB/mm至約20.0 dB/mm、約15.0 dB/mm至約25.0 dB/mm、約15.0 dB/mm至約30.0 dB/mm、約15.0 dB/mm至約50.0 dB/mm、約20.0 dB/mm至約25.0 dB/mm、約20.0 dB/mm至約30.0 dB/mm、約20.0 dB/mm至約50.0 dB/mm、約25.0 dB/mm至約30.0 dB/mm、約25.0 dB/mm至約50.0 dB/mm或約30.0 dB/mm至約50.0 dB/mm。在一些情況中,穩定材料101可具有以下聲衰減:約0.10 dB/mm、約0.25 dB/mm、約0.50 dB/mm、約0.75 dB/mm、約1.00 dB/mm、約5.00 dB/mm、約10.0 dB/mm、約15.0 dB/mm、約20.0 dB/mm、約25.0 dB/mm、約30.0 dB/mm或約50.0 dB/mm。在一些情況中,穩定材料101可具有以下聲衰減:至少約0.10 dB/mm、至少約0.25 dB/mm、至少約0.50 dB/mm、至少約0.75 dB/mm、至少約1.00 dB/mm、至少約5.00 dB/mm、至少約10.0 dB/mm、至少約15.0 dB/mm、至少約20.0 dB/mm、至少約25.0 dB/mm、至少約30.0 dB/mm或至少約50.0 dB/mm。在一些情況中,穩定材料101可具有以下聲衰減:至多約0.10 dB/mm、至多約0.25 dB/mm、約0.50 dB/mm、約0.75 dB/mm、約1.00 dB/mm、約5.00 dB/mm、約10.0 dB/mm、約15.0 dB/mm、約20.0 dB/mm、約25.0 dB/mm、約30.0 dB/mm或約50.0 dB/mm。具有低聲衰減之穩定材料101 (例如,在添加至矽基晶圓或其部分之至少一部分之後)可改良聲(例如超音波)能量波(例如)在超音波傳感器裝置100之操作期間傳輸穿過穩定材料101。 應用 The stabilizing material 101 may exhibit acoustic attenuation (eg, after addition to a silicon-based wafer or portion thereof and curing). For example, the stabilizing material 101 may have a sound attenuation of about 0.10 decibels per millimeter (dB/mm) to about 50.0 dB/mm. In some cases, the stabilizing material 101 may have a sound attenuation of about 0.10 dB/mm to about 0.25 dB/mm, about 0.10 dB/mm to about 0.50 dB/mm, about 0.10 dB/mm to about 0.75 dB/mm, About 0.10 dB/mm to about 1.00 dB/mm, about 0.10 dB/mm to about 5.00 dB/mm, about 0.10 dB/mm to about 10 dB/mm, about 0.10 dB/mm to about 15.0 dB/mm, about 0.10 dB/mm to about 20.0 dB/mm, about 0.10 dB/mm to about 25.0 dB/mm, about 0.10 dB/mm to about 30.0 dB/mm, about 0.10 dB/mm to about 50.0 dB/mm, about 0.25 dB/ mm to about 0.50 dB/mm, about 0.25 dB/mm to about 0.75 dB/mm, about 0.25 dB/mm to about 1.00 dB/mm, about 0.25 dB/mm to about 5.00 dB/mm, about 0.25 dB/mm to About 10.0 dB/mm, about 0.25 dB/mm to about 15.0 dB/mm, about 0.25 dB/mm to about 20.0 dB/mm, about 0.25 dB/mm to about 25.0 dB/mm, about 0.25 dB/mm to about 30.0 dB/mm, about 0.25 dB/mm to about 50.0 dB/mm, about 0.50 dB/mm to about 0.75 dB/mm, about 0.50 dB/mm to about 1.00 dB/mm, about 0.50 dB/mm to about 5.00 dB/ mm, about 0.50 dB/mm to about 10.0 dB/mm, about 0.50 dB/mm to about 15 dB/mm, about 0.50 dB/mm to about 20.0 dB/mm, about 0.50 dB/mm to about 25.0 dB/mm, About 0.50 dB/mm to about 30.0 dB/mm, about 0.50 dB/mm to about 50.0 dB/mm, about 0.75 dB/mm to about 1.00 dB/mm, about 0.75 dB/mm to about 5.00 dB/mm, about 0.75 dB/mm to about 10.0 dB/mm, about 0.75 dB/mm to about 15.0 dB/mm, about 0.75 dB/mm to about 20.0 dB/mm, about 0.75 dB/mm to about 25.0 dB/mm, about 0.75 dB/ mm to about 30.0 dB/mm, about 0.75 dB/mm to about 50.0 dB/mm, about 1.00 dB/mm to about 5.00 dB/mm, about 1.00 dB/mm to about 10.0 dB/mm, about 1.00 dB/mm to About 15.0 dB/mm, about 1.00 dB/mm to about 20.0 dB/mm, about 1.00 dB/mm to about 25.0 dB/mm, about 1.00 dB/mm to about 30.0 dB/mm, about 1.00 dB/mm to about 50.0 dB/mm, about 5.00 dB/mm to about 10.0 dB/mm, about 5.00 dB/mm to about 15.0 dB/mm, about 5.00 dB/mm to about 20.0 dB/mm, about 5.00 dB/mm to about 25.0 dB/ mm, about 5.00 dB/mm to about 30.0 dB/mm, about 5.00 dB/mm to about 50.0 dB/mm, about 10.0 dB/mm to about 15.0 dB/mm, about 10.0 dB/mm to about 20.0 dB/mm, About 10.0 dB/mm to about 25.0 dB/mm, about 10.0 dB/mm to about 30.0 dB/mm, about 10.0 dB/mm to about 50.0 dB/mm, about 15.0 dB/mm to about 20.0 dB/mm, about 15.0 dB/mm to about 25.0 dB/mm, about 15.0 dB/mm to about 30.0 dB/mm, about 15.0 dB/mm to about 50.0 dB/mm, about 20.0 dB/mm to about 25.0 dB/mm, about 20.0 dB/ mm to approximately 30.0 dB/mm, approximately 20.0 dB/mm to approximately 50.0 dB/mm, approximately 25.0 dB/mm to approximately 30.0 dB/mm, approximately 25.0 dB/mm to approximately 50.0 dB/mm, or approximately 30.0 dB/mm to approximately About 50.0 dB/mm. In some cases, the stabilizing material 101 may have the following sound attenuation: about 0.10 dB/mm, about 0.25 dB/mm, about 0.50 dB/mm, about 0.75 dB/mm, about 1.00 dB/mm, about 5.00 dB/mm, About 10.0 dB/mm, about 15.0 dB/mm, about 20.0 dB/mm, about 25.0 dB/mm, about 30.0 dB/mm or about 50.0 dB/mm. In some cases, the stabilizing material 101 can have a sound attenuation of: at least about 0.10 dB/mm, at least about 0.25 dB/mm, at least about 0.50 dB/mm, at least about 0.75 dB/mm, at least about 1.00 dB/mm, at least About 5.00 dB/mm, at least about 10.0 dB/mm, at least about 15.0 dB/mm, at least about 20.0 dB/mm, at least about 25.0 dB/mm, at least about 30.0 dB/mm, or at least about 50.0 dB/mm. In some cases, the stabilizing material 101 can have the following sound attenuation: up to about 0.10 dB/mm, up to about 0.25 dB/mm, about 0.50 dB/mm, about 0.75 dB/mm, about 1.00 dB/mm, about 5.00 dB/mm. mm, approximately 10.0 dB/mm, approximately 15.0 dB/mm, approximately 20.0 dB/mm, approximately 25.0 dB/mm, approximately 30.0 dB/mm, or approximately 50.0 dB/mm. Stable material 101 with acoustic attenuation (e.g., after addition to at least a portion of a silicon-based wafer or portion thereof) may improve the transmission of acoustic (e.g., ultrasonic) energy waves, e.g., during operation of ultrasonic sensor device 100 . Overstabilized Materials 101. Application

在一些情況中,本文中所描述之成像系統或裝置100可用於(例如非侵入性)醫療成像、碎石術、用於治療干預之局部組織加熱、高強度聚焦超音波(HIFU)手術及/或管道(或揚聲器及麥克風陣列)中之非醫療用途流量量測。在一些情況中,本文中所描述之成像系統或裝置可用於(例如)使用多普勒(Doppler)模式成像來判定動脈及/或靜脈中之流體流(例如血流)之方向及/或速度。在一些情況中,本文中所描述之成像系統或裝置可用於量測組織硬度。In some cases, the imaging system or device 100 described herein may be used for (eg, non-invasive) medical imaging, lithotripsy, localized tissue heating for therapeutic intervention, high-intensity focused ultrasound (HIFU) surgery, and/or or flow measurement in pipes (or loudspeaker and microphone arrays) for non-medical purposes. In some cases, the imaging systems or devices described herein may be used, for example, to determine the direction and/or velocity of fluid flow (eg, blood flow) in arteries and/or veins using Doppler mode imaging. . In some cases, the imaging systems or devices described herein can be used to measure tissue stiffness.

在一些情況中,本文中所描述之成像系統或裝置100可經組態以執行一維成像(例如A掃描成像)。在一些情況中,本文中所描述之成像系統或裝置100可經組態以執行二維成像(例如B掃描成像)。在一些情況中,本文中所描述之成像系統或裝置100可經組態以執行三維成像(例如C掃描成像)。在一些情況中,本文中所描述之成像系統或裝置100可經組態以執行多普勒成像。在一些情況中,本文中所描述之成像系統或裝置100可切換至不同模式(例如,在模式之間),包含線性模式或扇區模式。在一些情況中,成像系統或裝置100可在程式控制下(例如,藉由使用者)電子組態。In some cases, the imaging system or device 100 described herein may be configured to perform one-dimensional imaging (eg, A-scan imaging). In some cases, the imaging system or device 100 described herein may be configured to perform two-dimensional imaging (eg, B-scan imaging). In some cases, the imaging system or device 100 described herein may be configured to perform three-dimensional imaging (eg, C-scan imaging). In some cases, the imaging system or device 100 described herein may be configured to perform Doppler imaging. In some cases, the imaging system or device 100 described herein may switch to different modes (eg, between modes), including linear mode or sector mode. In some cases, imaging system or device 100 may be configured electronically under program control (eg, by a user).

在諸多情況中,成像系統或裝置100 (例如成像系統或裝置100之探針)可為可攜的。例如,成像系統或裝置100可包括(例如,在外殼內收容)手持殼體,其可收容一或多個傳感器元件、像素或陣列、ASIC、控制電路系統及/或運算裝置。在一些情況中,成像系統或裝置100可包括電池。 一些界定 In many cases, the imaging system or device 100 (eg, the probe of the imaging system or device 100) may be portable. For example, imaging system or device 100 may include (eg, housed within a housing) a handheld housing that may house one or more sensor elements, pixels or arrays, ASICs, control circuitry, and/or computing devices. In some cases, imaging system or device 100 may include a battery. some definitions

除非另有界定,否則本文中所使用之全部技術術語具有相同於本發明所屬技術之一般技術者通常所理解之含義之含義。Unless otherwise defined, all technical terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.

如本說明書及附屬申請專利範圍中所使用,單數形式「一」及「該」包含複數個指涉物,除非內文另有明確規定。除非另有說明,否則本文中「或」之任何參考意欲涵蓋「及/或」。As used in this specification and appended claims, the singular forms "a", "a" and "the" include plural referents unless the context clearly dictates otherwise. Unless otherwise stated, any reference to "or" herein is intended to include "and/or".

本說明書中參考「一些實施例」、「進一步實施例」或「特定實施例」意謂結合實施例所描述之特定特徵、結構或特性包含於至少一個實施例中。因此,在本說明書中各處出現之片語「在一些實施例中」或「在進一步實施例中」或「在特定實施例中」未必全部係指相同實施例。此外,可在一或多個實施例中依任何適合方式組合特定特徵、結構或特性。Reference in this specification to "some embodiments," "further embodiments," or "particular embodiments" means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, appearances of the phrases "in some embodiments" or "in further embodiments" or "in particular embodiments" appearing variously throughout this specification are not necessarily all referring to the same embodiment. Additionally, particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.

儘管本文中已展示及描述本發明之較佳實施例,但熟習技術者將明白,此等實施例僅供例示。熟習技術者現可在不背離本發明之情況下想到諸多變動、改變及替代。應理解,可在實踐本發明時採用本文中所描述之本發明之實施例之各種替代。Although preferred embodiments of the present invention have been shown and described herein, those skilled in the art will understand that these embodiments are illustrative only. Many modifications, changes and substitutions will now occur to those skilled in the art without departing from the present invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention.

100:超音波傳感器裝置 101:穩定材料 102:超音波傳感器晶圓 104:金屬背層 106:黏著劑 108:固體支撐件/載體基板 110:腔 111:腔側壁 112:底壁 114:聲透鏡 116:專用積體電路(ASIC) 117:金屬層 118:非導電黏晶材料 119:非導電底膠層 120:印刷電路板(PCB) 121:金屬層 122:矽穿孔(TSV)連接 124:覆晶焊料 126:接線 130:初始橫截面厚度 131:經減小橫截面厚度 500:方法 501:方法 502:步驟 503:步驟 504:步驟 505:步驟 506:步驟 507:步驟 508:步驟 509:步驟 510:步驟 511:步驟 600:方法 602:步驟 604:步驟 606:步驟 608:步驟 610:步驟 652:步驟 654:步驟 702:步驟 704:步驟 902:步驟 904:步驟 906:步驟 908:步驟 910:步驟 912:步驟 914:步驟 100: Ultrasonic sensor device 101: Stable materials 102: Ultrasonic sensor wafer 104:Metal back layer 106:Adhesive 108: Solid support/carrier substrate 110: cavity 111: Cavity side wall 112: Bottom wall 114:Acoustic lens 116:Application Specific Integrated Circuit (ASIC) 117:Metal layer 118: Non-conductive crystal bonding material 119: Non-conductive primer layer 120: Printed circuit board (PCB) 121:Metal layer 122: Through silicon (TSV) connection 124: Flip chip solder 126:Wiring 130: Initial cross-section thickness 131: Reduced cross-sectional thickness 500:Method 501:Method 502: Step 503: Step 504: Step 505: Step 506: Step 507:Step 508:Step 509: Step 510: Steps 511: Steps 600:Method 602: Step 604: Step 606: Step 608: Step 610: Steps 652:Step 654:Step 702: Step 704: Step 902: Step 904: Step 906:Step 908:Step 910: Steps 912: Steps 914: Steps

將藉由參考闡述繪示性實施例之以下詳細描述及附圖來獲得本發明之特徵及優點之較佳理解,其中:A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description and the accompanying drawings which illustrate illustrative embodiments, in which:

圖1A及圖1B各展示根據實施例之示意圖,其展示超音波傳感器裝置之部分。Figures 1A and 1B each show a schematic diagram showing a portion of an ultrasonic sensor device, according to an embodiment.

圖2A展示根據實施例之用於製造超音波傳感器裝置之例示性步驟之示意流程圖。Figure 2A shows a schematic flow diagram of exemplary steps for fabricating an ultrasonic sensor device according to an embodiment.

圖2B展示根據實施例之用於製造超音波傳感器裝置之例示性步驟之示意流程圖。Figure 2B shows a schematic flow diagram of exemplary steps for fabricating an ultrasonic sensor device according to an embodiment.

圖3展示根據實施例之用於製造超音波傳感器裝置之例示性步驟之示意流程圖。Figure 3 shows a schematic flow diagram of exemplary steps for fabricating an ultrasonic sensor device according to an embodiment.

圖4展示根據實施例之用於製造超音波傳感器裝置之例示性步驟之示意流程圖。Figure 4 shows a schematic flow diagram of exemplary steps for fabricating an ultrasonic sensor device according to an embodiment.

圖5A展示根據實施例之用於製造超音波傳感器裝置之例示性方法之流程圖。Figure 5A shows a flow diagram of an exemplary method for manufacturing an ultrasonic sensor device, according to an embodiment.

圖5B展示根據實施例之用於製造超音波傳感器裝置之例示性方法之流程圖。Figure 5B shows a flow diagram of an exemplary method for fabricating an ultrasonic sensor device, according to an embodiment.

圖6展示根據實施例之用於製造超音波傳感器裝置之例示性方法之流程圖。Figure 6 shows a flow diagram of an exemplary method for fabricating an ultrasonic sensor device, according to an embodiment.

100:超音波傳感器裝置 100: Ultrasonic sensor device

101:穩定材料 101: Stable materials

102:超音波傳感器晶圓 102: Ultrasonic sensor wafer

104:金屬背層 104:Metal back layer

106:黏著劑 106:Adhesive

108:固體支撐件/載體基板 108: Solid support/carrier substrate

110:腔 110: cavity

111:腔側壁 111: Cavity side wall

112:底壁 112: Bottom wall

114:聲透鏡 114:Acoustic lens

116:專用積體電路(ASIC) 116:Application Specific Integrated Circuit (ASIC)

117:金屬層 117:Metal layer

118:非導電黏晶材料 118: Non-conductive crystal bonding material

120:印刷電路板(PCB) 120: Printed circuit board (PCB)

121:金屬層 121:Metal layer

126:接線 126:Wiring

130:初始橫截面厚度 130: Initial cross-section thickness

131:經減小橫截面厚度 131: Reduced cross-sectional thickness

902:步驟 902: Step

904:步驟 904: Step

906:步驟 906:Step

908:步驟 908:Step

910:步驟 910: Steps

912:步驟 912: Steps

Claims (53)

一種製造超音波傳感器裝置之方法,該方法包括: 使複數個腔形成於耦合至載體基板之傳感器晶圓中; 使該複數個腔之一或多者之一或多個內表面與穩定材料接觸;及 在使該一或多個內表面與該穩定材料接觸之後使該傳感器晶圓與該載體基板解耦合。 A method of manufacturing an ultrasonic sensor device, the method comprising: causing a plurality of cavities to be formed in the sensor wafer coupled to the carrier substrate; bringing one or more interior surfaces of one or more of the plurality of cavities into contact with a stabilizing material; and The sensor wafer is decoupled from the carrier substrate after contacting the one or more inner surfaces with the stabilizing material. 如請求項1之方法,其進一步包括減小該傳感器晶圓之至少一部分之橫截面厚度。The method of claim 1, further comprising reducing a cross-sectional thickness of at least a portion of the sensor wafer. 如請求項2之方法,其中該傳感器晶圓之該橫截面厚度經減小至不超過75微米。The method of claim 2, wherein the cross-sectional thickness of the sensor wafer is reduced to no more than 75 microns. 如請求項2之方法,其中該傳感器晶圓之該橫截面厚度經減小至不超過50微米。The method of claim 2, wherein the cross-sectional thickness of the sensor wafer is reduced to no more than 50 microns. 如請求項2之方法,其中減小該傳感器晶圓之至少一部分之該橫截面厚度係在使該複數個腔形成於該傳感器晶圓中之前執行。The method of claim 2, wherein reducing the cross-sectional thickness of at least a portion of the sensor wafer is performed before causing the plurality of cavities to be formed in the sensor wafer. 如請求項2之方法,其中減小該傳感器晶圓之至少一部分之該橫截面厚度係在使該複數個腔形成於該傳感器晶圓中之後執行。The method of claim 2, wherein reducing the cross-sectional thickness of at least a portion of the sensor wafer is performed after causing the plurality of cavities to be formed in the sensor wafer. 如請求項2之方法,其中減小該傳感器晶圓之至少一部分之該橫截面厚度係在使該一或多個內表面與該穩定材料接觸之後執行。The method of claim 2, wherein reducing the cross-sectional thickness of at least a portion of the sensor wafer is performed after contacting the one or more inner surfaces with the stabilizing material. 如請求項2之方法,其中減小該傳感器晶圓之至少一部分之該橫截面厚度係在使該一或多個內表面與該穩定材料接觸之前執行。The method of claim 2, wherein reducing the cross-sectional thickness of at least a portion of the sensor wafer is performed prior to contacting the one or more inner surfaces with the stabilizing material. 如請求項1之方法,其中該複數個腔係使用光微影形成於該傳感器晶圓中。The method of claim 1, wherein the plurality of cavities are formed in the sensor wafer using photolithography. 如請求項1之方法,其中使該複數個腔形成於該傳感器晶圓中包括在該傳感器晶圓中蝕刻該複數個腔。The method of claim 1, wherein forming the plurality of cavities in the sensor wafer includes etching the plurality of cavities in the sensor wafer. 如請求項2之方法,其中減小該傳感器晶圓之至少一部分之該橫截面厚度包括背面研磨該傳感器晶圓之表面。The method of claim 2, wherein reducing the cross-sectional thickness of at least a portion of the sensor wafer includes back grinding a surface of the sensor wafer. 如請求項2之方法,其中減小該傳感器晶圓之至少一部分之該橫截面厚度包括蝕刻該傳感器晶圓之腔側壁。The method of claim 2, wherein reducing the cross-sectional thickness of at least a portion of the sensor wafer includes etching a cavity sidewall of the sensor wafer. 如請求項8或請求項12之方法,其中該蝕刻包括濕式蝕刻或電漿蝕刻。The method of claim 8 or claim 12, wherein the etching includes wet etching or plasma etching. 如請求項1之方法,其中耦合至該載體之該傳感器晶圓包括100微米之橫截面厚度。The method of claim 1, wherein the sensor wafer coupled to the carrier includes a cross-sectional thickness of 100 microns. 如請求項1之方法,其中耦合至該載體之該傳感器晶圓包括75微米之橫截面厚度。The method of claim 1, wherein the sensor wafer coupled to the carrier includes a cross-sectional thickness of 75 microns. 如請求項15之方法,其中耦合至該載體之該傳感器晶圓包括50微米之橫截面厚度。The method of claim 15, wherein the sensor wafer coupled to the carrier includes a cross-sectional thickness of 50 microns. 如請求項1之方法,其中使一或多個內表面與該穩定材料接觸包括旋塗、噴墨沈積、噴霧沈積、物理氣相沈積(PVD)或化學氣相沈積(CVD)之一或多者。The method of claim 1, wherein contacting the one or more inner surfaces with the stabilizing material includes one or more of spin coating, inkjet deposition, spray deposition, physical vapor deposition (PVD) or chemical vapor deposition (CVD). By. 如請求項1之方法,其進一步包括聚合該穩定材料。The method of claim 1, further comprising polymerizing the stabilizing material. 如請求項18之方法,其中聚合該穩定材料係在使該一或多個內表面與該穩定材料接觸之後執行。The method of claim 18, wherein polymerizing the stabilizing material is performed after contacting the one or more inner surfaces with the stabilizing material. 如請求項18之方法,其中聚合該穩定材料係與使該一或多個內表面與該穩定材料接觸同時執行。The method of claim 18, wherein polymerizing the stabilizing material is performed simultaneously with contacting the one or more inner surfaces with the stabilizing material. 如請求項18之方法,其中聚合該穩定材料包括使該穩定材料暴露於紫外(UV)光。The method of claim 18, wherein polymerizing the stabilizing material includes exposing the stabilizing material to ultraviolet (UV) light. 如請求項1之方法,其中使一或多個內表面與穩定材料接觸包括用穩定材料填充該一或多個腔直至該穩定材料與該一或多個腔之一或多個腔側壁之高度齊平。The method of claim 1, wherein contacting the one or more interior surfaces with the stabilizing material includes filling the one or more cavities with the stabilizing material up to a level between the stabilizing material and one or more cavity sidewalls of the one or more cavities. Flush. 如請求項1之方法,其中使一或多個內表面與穩定材料接觸包括用穩定材料填充該一或多個腔直至該穩定材料超過該一或多個腔之一或多個腔側壁之該高度。The method of claim 1, wherein contacting the one or more interior surfaces with the stabilizing material includes filling the one or more cavities with the stabilizing material until the stabilizing material exceeds the one or more cavity sidewalls of the one or more cavities. high. 如請求項1之方法,其中使一或多個內表面與穩定材料接觸包括用穩定材料填充該一或多個腔直至該穩定材料低於該一或多個腔之一或多個腔側壁之該高度。The method of claim 1, wherein contacting the one or more interior surfaces with the stabilizing material includes filling the one or more cavities with the stabilizing material until the stabilizing material is below one or more cavity sidewalls of the one or more cavities. the height. 如請求項1之方法,其進一步包括:將該傳感器晶圓單粒化成包括該複數個腔及該穩定材料之一或多個超音波傳感器晶片;及耦合聲透鏡,該聲透鏡耦合至該穩定材料或該一或多個超音波傳感器晶片之傳感器晶片之一或多者。The method of claim 1, further comprising: singulating the sensor wafer into one or more ultrasonic sensor wafers including the plurality of cavities and the stabilizing material; and coupling an acoustic lens to the stabilizing material. material or one or more of the sensor chips of the one or more ultrasonic sensor chips. 如請求項25之方法,其中該聲透鏡在該一或多個腔之各者上方且跨該一或多個腔之各者延伸。The method of claim 25, wherein the acoustic lens extends over and across each of the one or more cavities. 如請求項25之方法,其中該聲透鏡係由相同於該穩定材料之材料形成。The method of claim 25, wherein the acoustic lens is formed of the same material as the stabilizing material. 如請求項25之方法,其中該聲透鏡係由不同於該穩定材料之材料形成。The method of claim 25, wherein the acoustic lens is formed of a material different from the stabilizing material. 如請求項25之方法,其中該聲透鏡係由透鏡材料形成,且其中該透鏡材料及該穩定材料具有實質上相同之聲速、聲衰減或聲阻抗之一或多者。The method of claim 25, wherein the acoustic lens is formed from a lens material, and wherein the lens material and the stabilizing material have substantially the same one or more of acoustic velocity, acoustic attenuation, or acoustic impedance. 如請求項1之方法,其進一步包括將自該傳感器晶圓單粒化之包括該複數個腔及該穩定材料之一或多個超音波傳感器晶片耦合至專用積體電路(ASIC)。The method of claim 1, further comprising coupling one or more ultrasonic sensor wafers singulated from the sensor wafer including the plurality of cavities and the stabilizing material to an application specific integrated circuit (ASIC). 如請求項30之方法,其中一或多個超音波傳感器晶片藉由覆晶焊接耦合至該ASIC。The method of claim 30, wherein the one or more ultrasonic sensor chips are coupled to the ASIC by flip chip soldering. 如請求項31之方法,其中該穩定材料具有高於用於將該一或多個超音波傳感器晶片耦合至該ASIC之焊料之回焊溫度之分解溫度。The method of claim 31, wherein the stabilizing material has a decomposition temperature higher than a reflow temperature of solder used to couple the one or more ultrasonic sensor chips to the ASIC. 如請求項30之方法,其進一步包括將該ASIC耦合至印刷電路板(PCB)。The method of claim 30, further comprising coupling the ASIC to a printed circuit board (PCB). 如請求項33之方法,其中該ASIC藉由引線接合或藉由覆晶焊接耦合至該PCB。The method of claim 33, wherein the ASIC is coupled to the PCB by wire bonding or by flip chip soldering. 如請求項33之方法,其中該穩定材料具有高於用於將該ASIC耦合至該PCB之焊料之回焊溫度之分解溫度。The method of claim 33, wherein the stabilizing material has a decomposition temperature higher than a reflow temperature of solder used to couple the ASIC to the PCB. 如請求項1之方法,其中該穩定材料包括聚矽氧。The method of claim 1, wherein the stabilizing material includes polysiloxane. 如請求項36之方法,其中該穩定材料包括選自鐵、鈰及氧化鈦之一或多個熱穩定劑添加劑。The method of claim 36, wherein the stabilizing material includes one or more heat stabilizer additives selected from the group consisting of iron, cerium and titanium oxide. 如請求項1之方法,其中該穩定材料具有高於240℃之分解溫度。The method of claim 1, wherein the stable material has a decomposition temperature higher than 240°C. 如請求項1之方法,其中該超音波傳感器裝置包括pMUT傳感器。The method of claim 1, wherein the ultrasonic sensor device includes a pMUT sensor. 如請求項1之方法,其中該超音波傳感器裝置包括cMUT傳感器。The method of claim 1, wherein the ultrasonic sensor device includes a cMUT sensor. 一種超音波傳感器裝置,其包括: 傳感器晶片,其包括複數個腔; 穩定材料,其與該複數個腔之一或多者之內表面之至少一部分接觸; 聲透鏡,其在該複數個腔上方且跨該複數個腔延伸且由透鏡材料形成, 其中該透鏡材料及該穩定材料具有實質上相同之聲速、聲衰減或聲阻抗之一或多者。 An ultrasonic sensor device including: a sensor chip including a plurality of cavities; a stabilizing material in contact with at least a portion of the interior surface of one or more of the plurality of cavities; an acoustic lens extending over and across the plurality of cavities and formed from a lens material, The lens material and the stabilizing material have substantially the same one or more of sound velocity, sound attenuation or sound impedance. 如請求項41之裝置,其中傳感器晶片之至少一部分具有至多50微米之橫截面厚度。The device of claim 41, wherein at least a portion of the sensor wafer has a cross-sectional thickness of at most 50 microns. 如請求項41之裝置,其進一步包括專用積體電路(ASIC)及印刷電路板(PCB),其中該ASIC係藉由包括焊料之接面耦合至該PCB。The device of claim 41, further comprising an application specific integrated circuit (ASIC) and a printed circuit board (PCB), wherein the ASIC is coupled to the PCB by a junction including solder. 如請求項43之裝置,其中該穩定材料之分解溫度大於該焊料之回焊溫度。The device of claim 43, wherein the decomposition temperature of the stabilizing material is greater than the reflow temperature of the solder. 如請求項43之裝置,其中該焊料之該回焊溫度係240℃。The device of claim 43, wherein the reflow temperature of the solder is 240°C. 如請求項41之裝置,其中該穩定材料包括選自鐵、鈰及氧化鈦之一或多種熱穩定劑添加劑。The device of claim 41, wherein the stabilizing material includes one or more thermal stabilizer additives selected from the group consisting of iron, cerium and titanium oxide. 如請求項41之裝置,其中該穩定材料具有低聲衰減。The device of claim 41, wherein the stabilizing material has acoustic attenuation. 如請求項41之裝置,其中該聲透鏡係由不同於該穩定材料之材料形成。The device of claim 41, wherein the acoustic lens is formed of a material different from the stabilizing material. 如請求項41之裝置,其中該透鏡材料具有等於或大於該穩定材料之該分解溫度之分解溫度。The device of claim 41, wherein the lens material has a decomposition temperature equal to or greater than the decomposition temperature of the stabilizing material. 如請求項41之裝置,其中該透鏡材料具有低於該穩定材料之該分解溫度之分解溫度。The device of claim 41, wherein the lens material has a decomposition temperature lower than the decomposition temperature of the stabilizing material. 如請求項41之裝置,其中該傳感器晶片跨該傳感器晶片之整個長度及寬度具有至多50微米之橫截面厚度。The device of claim 41, wherein the sensor wafer has a cross-sectional thickness of at most 50 microns across the entire length and width of the sensor wafer. 如請求項41之裝置,其中該超音波傳感器裝置包括pMUT傳感器。The device of claim 41, wherein the ultrasonic sensor device includes a pMUT sensor. 如請求項41之裝置,其中該超音波傳感器裝置包括cMUT傳感器。The device of claim 41, wherein the ultrasonic sensor device includes a cMUT sensor.
TW111110852A 2022-03-23 2022-03-23 Methods and systems for fabrication of ultrasound transducer devices TW202338394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111110852A TW202338394A (en) 2022-03-23 2022-03-23 Methods and systems for fabrication of ultrasound transducer devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111110852A TW202338394A (en) 2022-03-23 2022-03-23 Methods and systems for fabrication of ultrasound transducer devices

Publications (1)

Publication Number Publication Date
TW202338394A true TW202338394A (en) 2023-10-01

Family

ID=89856182

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111110852A TW202338394A (en) 2022-03-23 2022-03-23 Methods and systems for fabrication of ultrasound transducer devices

Country Status (1)

Country Link
TW (1) TW202338394A (en)

Similar Documents

Publication Publication Date Title
JP6931014B2 (en) Ultrasonic matching layer and oscillator
US6758094B2 (en) Ultrasonic transducer wafer having variable acoustic impedance
JP4660087B2 (en) Backing material for ultra-fine processed ultrasonic transducer device
US11450800B2 (en) Film with piezoelectric polymer region
US6669644B2 (en) Micro-machined ultrasonic transducer (MUT) substrate that limits the lateral propagation of acoustic energy
JP2009515439A (en) Array ultrasonic transducer
US10338034B2 (en) Transducer device comprising an insulating film between a through wiring line and a semiconductor substrate
JP6869983B2 (en) Probe assemblies and systems, including modular devices and cable assemblies
JP2007513563A (en) Apparatus and method for mounting an IC mounted sensor with a high attenuation backing
US20230303389A1 (en) Methods and systems for fabrication of ultrasound transducer devices
TW202338394A (en) Methods and systems for fabrication of ultrasound transducer devices
KR20180077153A (en) Array connector and method of manufacturing the same
WO2023182988A1 (en) Methods and systems for fabrication of ultrasound transducer devices
US20130020907A1 (en) Wire bond free connection of high frequency piezoelectric ultrasound transducer arrays
TW202040701A (en) Packaging structures and packaging methods for ultrasound-on-chip devices
JP7330262B2 (en) Non-rectangular transducer array and related devices, systems and methods
JP4638854B2 (en) Manufacturing method of ultrasonic probe
Krings et al. Acoustic Properties of Stretchable Liquid Metal‐Elastomer Composites for Matching Layers in Wearable Ultrasonic Transducer Arrays
JP2007202953A (en) Backing material, and production method of backing material, and ultrasound probe
KR102359155B1 (en) Hybrid ultrasound prove array and method of manufacturing the same
JP2007208896A (en) Acoustic matching layer, manufacturing method of same, and ultrasonic probe
JP2010213766A (en) Ultrasonic probe and ultrasonic diagnosis apparatus
Lee et al. Development of Flex-to-Rigid Capacitive Micromachined Ultrasound Transducer (CMUT) with Bending Modulation
JPH08101083A (en) Insertion tube mounting piezoelectric oscillator module
Liu et al. Micromachined high-frequency ultrasound 2-dimensional array transducer