TW202336751A - Memory device and method for manufacturing memory device - Google Patents

Memory device and method for manufacturing memory device Download PDF

Info

Publication number
TW202336751A
TW202336751A TW111149494A TW111149494A TW202336751A TW 202336751 A TW202336751 A TW 202336751A TW 111149494 A TW111149494 A TW 111149494A TW 111149494 A TW111149494 A TW 111149494A TW 202336751 A TW202336751 A TW 202336751A
Authority
TW
Taiwan
Prior art keywords
layer
mentioned
memory device
memory
size
Prior art date
Application number
TW111149494A
Other languages
Chinese (zh)
Inventor
冨岡和広
澤田和也
Original Assignee
日商鎧俠股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022033696A external-priority patent/JP2023128981A/en
Application filed by 日商鎧俠股份有限公司 filed Critical 日商鎧俠股份有限公司
Publication of TW202336751A publication Critical patent/TW202336751A/en

Links

Abstract

According to one embodiment, a memory device includes a memory element provided above a substrate in a first direction perpendicular to a first surface of the substrate; a switching element provided between the substrate and the memory element; and a first layer provided between the memory element and the switching element. The first layer includes at least one selected from the group including boron, carbon, silicon, magnesium, aluminum, scandium, titanium, vanadium, gallium, germanium, yttrium, zirconium, niobium, molybdenum, palladium, silver, hafnium, tantalum, tungsten, iridium, and platinum. The first layer includes an air gap.

Description

記憶裝置及記憶裝置之製造方法Memory device and method of manufacturing memory device

本發明之實施方式係關於一種記憶裝置及記憶裝置之製造方法。Embodiments of the present invention relate to a memory device and a manufacturing method of the memory device.

已知有使用可變電阻元件(例如磁阻效應元件)作為記憶元件之記憶裝置。為了提高記憶裝置之特性,正在推進記憶裝置相關之各種技術之研究及開發。There are known memory devices using variable resistance elements (such as magnetoresistance effect elements) as memory elements. In order to improve the characteristics of memory devices, research and development of various technologies related to memory devices are being promoted.

本發明所欲解決之問題係提供一種減少記憶裝置之不良之記憶裝置及記憶裝置之製造方法。The problem to be solved by the present invention is to provide a memory device and a manufacturing method of the memory device that reduce defects of the memory device.

實施方式之記憶裝置具備:記憶元件,其在相對於基板之第1面垂直之第1方向上,設置於上述基板之上方;開關元件,其設置於上述基板與上述記憶元件之間;及第1層,其設置於上述記憶元件與上述開關元件之間;且上述第1層包含選自包括硼、碳、矽、鎂、鋁、鈧、鈦、釩、鎵、鍺、釔、鋯、鈮、鉬、鈀、銀、鉿、鉭、鎢、銥及鉑之群中之至少一者,上述第1層包含氣隙。The memory device of the embodiment includes: a memory element disposed above the substrate in a first direction perpendicular to the first surface of the substrate; a switching element disposed between the substrate and the memory element; and 1 layer, which is disposed between the above-mentioned memory element and the above-mentioned switching element; and the above-mentioned first layer includes boron, carbon, silicon, magnesium, aluminum, scandium, titanium, vanadium, gallium, germanium, yttrium, zirconium, niobium , molybdenum, palladium, silver, hafnium, tantalum, tungsten, iridium and platinum, and the first layer includes an air gap.

以下,參照圖式對本實施方式進行詳細說明。於以下說明中,對具有相同之功能及構成之要素標註相同之符號。Hereinafter, this embodiment will be described in detail with reference to the drawings. In the following description, elements with the same function and composition are designated by the same symbols.

於以下各實施方式中,有時會對相同之複數個構成要素(例如電路、配線、各種電壓及信號等),在其參照符號之末尾標註用於區分之數字/英文。於末尾標註了附有用於區分之數字/英文之參照符號之構成要素無需相互區分之情形時,可使用省略末尾之數字/英文之記載(參照符號)。In the following embodiments, the same plural components (such as circuits, wirings, various voltages and signals, etc.) may be distinguished by numbers/English characters at the end of the reference symbols. When there is no need to distinguish the constituent elements that are marked with numbers/English reference symbols at the end for differentiation, the description (reference symbol) with the numbers/English reference symbols at the end omitted can be used.

[實施方式] 參照圖1至圖16,對實施方式之記憶裝置進行說明。 [Embodiment] The memory device according to the embodiment will be described with reference to FIGS. 1 to 16 .

(1)構成例 參照圖1至圖7,對實施方式之記憶裝置之構成例進行說明。 (1)Configuration example A structural example of the memory device according to the embodiment will be described with reference to FIGS. 1 to 7 .

(1-a)整體構成 圖1係表示本實施方式之記憶裝置100之構成例之方塊圖。 (1-a) Overall composition FIG. 1 is a block diagram showing a structural example of the memory device 100 according to this embodiment.

如圖1所示,本實施方式之記憶裝置100與記憶裝置100之外部之裝置(以下稱為外部裝置)900連接。As shown in FIG. 1 , the memory device 100 of this embodiment is connected to a device 900 external to the memory device 100 (hereinafter referred to as an external device).

外部裝置900向記憶裝置100發送指令CMD、位址ADR及控制信號CNT。資料DT於記憶裝置100與外部裝置900之間傳輸。於寫入動作時,外部裝置900將記憶裝置100內寫入之資料(以下稱為寫入資料)發送至記憶裝置100。於讀出動作時,外部裝置900從記憶裝置100接收自記憶裝置100中讀出之資料(以下稱為讀出資料)。The external device 900 sends the command CMD, the address ADR and the control signal CNT to the memory device 100 . Data DT is transmitted between the memory device 100 and the external device 900 . During the writing operation, the external device 900 sends the data written in the storage device 100 (hereinafter referred to as the writing data) to the storage device 100 . During the reading operation, the external device 900 receives the data read from the memory device 100 (hereinafter referred to as read data) from the memory device 100 .

本實施方式之記憶裝置100包含:記憶胞陣列110、列控制電路120、行控制電路130、寫入電路140、讀出電路150、電壓產生電路160、輸入輸出電路170及控制電路180。The memory device 100 of this embodiment includes: a memory cell array 110, a column control circuit 120, a row control circuit 130, a writing circuit 140, a reading circuit 150, a voltage generating circuit 160, an input/output circuit 170 and a control circuit 180.

記憶胞陣列110包含複數個記憶胞MC、複數個字元線WL及複數個位元線BL。The memory cell array 110 includes a plurality of memory cells MC, a plurality of word lines WL, and a plurality of bit lines BL.

複數個記憶胞MC之各者分別與記憶胞陣列110內之複數列及複數行配對。各記憶胞MC與複數個字元線WL中對應之1個連接。各記憶胞MC與複數個位元線BL中對應之1個連接。Each of the plurality of memory cells MC is respectively paired with a plurality of columns and a plurality of rows in the memory cell array 110 . Each memory cell MC is connected to a corresponding one of the plurality of word lines WL. Each memory cell MC is connected to a corresponding one of the plurality of bit lines BL.

列控制電路120經由字元線WL與記憶胞陣列110連接。列控制電路120接收位址ADR中之記憶胞陣列110之列位址(或列位址之解碼結果)。列控制電路120基於列位址之解碼結果而控制複數個字元線WL。藉此,列控制電路120將複數個字元線WL(複數列)之各者設定為選擇狀態或非選擇狀態。以下,將設定為選擇狀態之字元線WL稱為選擇字元線WL,將選擇字元線WL以外之字元線WL稱為非選擇字元線WL。The column control circuit 120 is connected to the memory cell array 110 via the word line WL. The column control circuit 120 receives the column address (or the decoding result of the column address) of the memory cell array 110 in the address ADR. The column control circuit 120 controls a plurality of word lines WL based on the decoding result of the column address. Thereby, the column control circuit 120 sets each of the plurality of word lines WL (plural columns) to the selected state or the non-selected state. Hereinafter, the word lines WL set to the selected state are called selected word lines WL, and the word lines WL other than the selected word lines WL are called unselected word lines WL.

行控制電路130經由位元線BL與記憶胞陣列110連接。行控制電路130接收位址ADR中之記憶胞陣列110之行位址(或行位址之解碼結果)。行控制電路130基於行位址之解碼結果而控制複數個位元線BL。藉此,行控制電路130將複數個位元線BL(複數行)之各者設定為選擇狀態或非選擇狀態。以下,將設定為選擇狀態之位元線BL稱為選擇位元線BL,將選擇位元線BL以外之位元線BL稱為非選擇位元線BL。The row control circuit 130 is connected to the memory cell array 110 via the bit line BL. The row control circuit 130 receives the row address (or the decoding result of the row address) of the memory cell array 110 in the address ADR. The row control circuit 130 controls a plurality of bit lines BL based on the decoding result of the row address. Thereby, the row control circuit 130 sets each of the plurality of bit lines BL (plurality of rows) to the selected state or the non-selected state. Hereinafter, the bit lines BL set to the selected state are called selected bit lines BL, and the bit lines BL other than the selected bit lines BL are called non-selected bit lines BL.

寫入電路140係將資料寫入記憶胞MC中。寫入電路140向選擇字元線WL及選擇位元線BL之各者供給用於寫入資料之電壓(或電流)。藉此,將某寫入電壓(或寫入電流)供給至所選擇之記憶胞MC。寫入電路140可將複數個寫入電壓中與寫入資料對應之任一者供給至所選擇之記憶胞MC。例如,複數個寫入電壓(或寫入電流)之各者具有與寫入資料對應之極性(偏壓方向)。例如,寫入電路140包含寫入驅動器(未圖示)及寫入槽(未圖示)等。The writing circuit 140 writes data into the memory cell MC. The write circuit 140 supplies voltage (or current) for writing data to each of the selected word line WL and the selected bit line BL. Thereby, a certain writing voltage (or writing current) is supplied to the selected memory cell MC. The writing circuit 140 may supply any one of the plurality of writing voltages corresponding to the writing data to the selected memory cell MC. For example, each of the plurality of write voltages (or write currents) has a polarity (bias direction) corresponding to the write data. For example, the write circuit 140 includes a write driver (not shown), a write slot (not shown), and the like.

讀出電路150係從記憶胞MC中讀出資料。讀出電路150將從所選擇之記憶胞MC輸出至選擇位元線BL之信號放大。讀出電路150基於放大後之信號對所選擇之記憶胞MC內之資料進行判斷。例如,讀出電路150包含:前置放大器(未圖示)、感測放大器(未圖示)、讀出驅動器(未圖示)及讀出槽(未圖示)等。The readout circuit 150 reads data from the memory cell MC. The readout circuit 150 amplifies the signal output from the selected memory cell MC to the selected bit line BL. The readout circuit 150 determines the data in the selected memory cell MC based on the amplified signal. For example, the readout circuit 150 includes a preamplifier (not shown), a sense amplifier (not shown), a readout driver (not shown), a readout slot (not shown), and the like.

電壓產生電路160使用從外部裝置900供給之電源電壓,產生用於記憶胞陣列110之各種動作之電壓。例如,電壓產生電路160產生寫入動作中所使用之各種電壓。電壓產生電路160將產生之電壓輸出至寫入電路140。例如,電壓產生電路160產生讀出動作中所使用之各種電壓。電壓產生電路160將產生之電壓輸出至讀出電路150。The voltage generating circuit 160 uses the power supply voltage supplied from the external device 900 to generate voltages for various operations of the memory cell array 110 . For example, the voltage generation circuit 160 generates various voltages used in writing operations. The voltage generating circuit 160 outputs the generated voltage to the writing circuit 140 . For example, the voltage generation circuit 160 generates various voltages used in the readout operation. The voltage generation circuit 160 outputs the generated voltage to the readout circuit 150 .

輸入輸出電路170作為如位址ADR、指令CMD、控制信號CNT及資料DT等記憶裝置100與外部裝置900之間之各種信號相關之介面電路發揮功能。輸入輸出電路170將來自外部裝置900之位址ADR傳輸至控制電路180。輸入輸出電路170將來自外部裝置900之指令CMD傳輸至控制電路180。輸入輸出電路170於外部裝置900與控制電路180之間傳輸各種控制信號CNT。輸入輸出電路170將來自外部裝置900之寫入資料DT傳輸至寫入電路140。輸入輸出電路170將來自讀出電路150之資料作為讀出資料DT傳輸至外部裝置900。The input/output circuit 170 functions as an interface circuit related to various signals between the memory device 100 and the external device 900, such as address ADR, command CMD, control signal CNT, and data DT. The input-output circuit 170 transmits the address ADR from the external device 900 to the control circuit 180 . The input/output circuit 170 transmits the command CMD from the external device 900 to the control circuit 180 . The input/output circuit 170 transmits various control signals CNT between the external device 900 and the control circuit 180 . The input/output circuit 170 transmits the write data DT from the external device 900 to the write circuit 140 . The input/output circuit 170 transmits the data from the readout circuit 150 to the external device 900 as readout data DT.

控制電路(亦稱為定序器、狀態機、或內部控制器)180對指令CMD進行解碼。控制電路180基於指令CMD之解碼結果及控制信號CNT,對記憶裝置100內之列控制電路120、行控制電路130、寫入電路140、讀出電路150、電壓產生電路160、及輸入輸出電路170之動作進行控制。例如,控制電路180可對位址ADR進行解碼。控制電路180將位址ADR之解碼結果發送至列控制電路120及行控制電路130等。例如,控制電路180包含暫時記憶指令CMD及位址ADR之暫存器電路(未圖示)。再者,暫存器電路、用於指令CMD之解碼之電路(指令解碼器)、及用於位址ADR之解碼之電路(位址解碼器)亦可設置於控制電路180之外部之記憶裝置100內。Control circuitry (also called a sequencer, state machine, or internal controller) 180 decodes the command CMD. The control circuit 180 controls the column control circuit 120 , the row control circuit 130 , the writing circuit 140 , the reading circuit 150 , the voltage generating circuit 160 and the input/output circuit 170 in the memory device 100 based on the decoding result of the command CMD and the control signal CNT. to control the action. For example, control circuit 180 may decode the address ADR. The control circuit 180 sends the decoding result of the address ADR to the column control circuit 120 and the row control circuit 130 and so on. For example, the control circuit 180 includes a register circuit (not shown) that temporarily stores the command CMD and the address ADR. Furthermore, the register circuit, the circuit for decoding the command CMD (command decoder), and the circuit for decoding the address ADR (address decoder) can also be provided in an external memory device of the control circuit 180 Within 100.

(1-b)記憶胞陣列 參照圖2至圖5,對本實施方式之記憶裝置100中之記憶胞陣列110之構成例進行說明。 (1-b) Memory cell array Referring to FIGS. 2 to 5 , a structural example of the memory cell array 110 in the memory device 100 of this embodiment will be described.

圖2係表示本實施方式之記憶裝置100之記憶胞陣列110之構成例的等效電路圖。FIG. 2 is an equivalent circuit diagram showing a structural example of the memory cell array 110 of the memory device 100 of this embodiment.

如圖2所示,複數個記憶胞MC於記憶胞陣列110內呈矩陣狀配置。各記憶胞MC與複數個位元線BL(BL<0>、BL<1>、…、BL<i-1>)中對應之1個、及複數個字元線WL(WL<0>、WL<1>、…、WL<j-1>)中對應之1個連接。i及j為2以上之整數。As shown in FIG. 2 , a plurality of memory cells MC are arranged in a matrix in the memory cell array 110 . Each memory cell MC corresponds to one of the plurality of bit lines BL (BL<0>, BL<1>,..., BL<i-1>), and the plurality of word lines WL (WL<0>, One connection corresponding to WL<1>,..., WL<j-1>). i and j are integers above 2.

各記憶胞MC包含記憶元件1及選擇器2。Each memory cell MC includes a memory element 1 and a selector 2 .

記憶元件1例如為可變電阻元件。記憶元件1之電阻狀態根據所供給之電壓(或電流)而改變為複數種電阻狀態(例如低電阻狀態及高電阻狀態)中之任一種電阻狀態。記憶元件1可藉由將該元件1之電阻狀態與資料(例如“0”資料及“1”資料)建立關聯來記憶資料。The memory element 1 is, for example, a variable resistance element. The resistance state of the memory element 1 changes to any one of a plurality of resistance states (such as a low resistance state and a high resistance state) according to the supplied voltage (or current). The memory element 1 can store data by associating the resistance state of the element 1 with data (such as "0" data and "1" data).

選擇器2作為記憶胞MC之選擇元件發揮功能。選擇器2具有如下功能:於將資料寫入對應之記憶元件1中時及從對應之記憶元件1中讀出資料時,控制對記憶元件1之電壓(或電流)之供給。The selector 2 functions as the selecting element of the memory cell MC. The selector 2 has the following function: when writing data into the corresponding memory element 1 and when reading data from the corresponding memory element 1, it controls the supply of voltage (or current) to the memory element 1.

例如,選擇器2為二端子型開關元件。以下,將選擇器2稱為開關元件2。當施加於開關元件2之兩個端子間之電壓未達開關元件2之閾值電壓之情形時,開關元件2改變為斷開狀態(高電阻狀態、非電性導通狀態)。當施加於開關元件2之兩個端子間之電壓為開關元件2之閾值電壓以上之情形時,開關元件2改變為導通狀態(低電阻狀態、電性導通狀態)。無論施加之電壓為何種極性(例如正極性及負極性),二端子型開關元件2均可具有上述功能。For example, the selector 2 is a two-terminal switching element. Hereinafter, the selector 2 is referred to as the switching element 2 . When the voltage applied between the two terminals of the switching element 2 does not reach the threshold voltage of the switching element 2 , the switching element 2 changes to the off state (high resistance state, non-electrical conduction state). When the voltage applied between the two terminals of the switching element 2 is equal to or higher than the threshold voltage of the switching element 2 , the switching element 2 changes to the conductive state (low resistance state, electrical conduction state). Regardless of the polarity of the applied voltage (such as positive polarity and negative polarity), the two-terminal switching element 2 can have the above functions.

開關元件2可根據施加於記憶胞MC之電壓之大小來切換是否於記憶胞MC內流通電流,而不管施加於記憶胞MC內之電壓之極性(記憶胞MC內流動之電流之方向)如何。The switching element 2 can switch whether to flow current in the memory cell MC according to the magnitude of the voltage applied to the memory cell MC, regardless of the polarity of the voltage applied to the memory cell MC (the direction of the current flowing in the memory cell MC).

圖3至圖5係用於說明本實施方式之記憶裝置100之記憶胞陣列110之構成例的圖。圖3係用於說明記憶胞陣列110之構成例之鳥瞰圖。圖4係表示記憶胞陣列110之沿Y方向(Y軸)之截面構造之模式性剖視圖。圖5係表示記憶胞陣列110之沿X方向(X軸)之截面構造之模式性剖視圖。FIGS. 3 to 5 are diagrams for explaining a structural example of the memory cell array 110 of the memory device 100 according to this embodiment. FIG. 3 is a bird's-eye view illustrating a configuration example of the memory cell array 110. FIG. 4 is a schematic cross-sectional view showing the cross-sectional structure of the memory cell array 110 along the Y direction (Y-axis). FIG. 5 is a schematic cross-sectional view showing the cross-sectional structure of the memory cell array 110 along the X direction (X-axis).

如圖3至圖5所示,記憶胞陣列110設置於基板80之上表面之上方。As shown in FIGS. 3 to 5 , the memory cell array 110 is disposed above the upper surface of the substrate 80 .

X方向係相對於基板80之上表面平行之方向。Y方向係相對於基板80之上表面平行,且與X方向交叉之方向。以下,將相對於基板80之上表面平行之面稱為X-Y平面。將垂直於X-Y平面之方向(軸)設為Z方向(Z軸)。將與包含X方向及Z方向之面平行之面稱為X-Z平面。將與包含Y方向及Z方向之面平行之面稱為Y-Z平面。The X direction is parallel to the upper surface of the substrate 80 . The Y direction is parallel to the upper surface of the substrate 80 and crosses the X direction. Hereinafter, the plane parallel to the upper surface of the substrate 80 will be referred to as the X-Y plane. Set the direction (axis) perpendicular to the X-Y plane as the Z direction (Z-axis). The plane parallel to the plane including the X direction and the Z direction is called the X-Z plane. The plane parallel to the plane including the Y direction and the Z direction is called the Y-Z plane.

複數個配線(導電層)50於Z方向上,介隔基板80上之絕緣層81設置於基板80之上表面之上方。複數個配線50沿X方向排列。各配線50沿Y方向延伸。複數個配線50之各者例如作為位元線BL發揮功能。A plurality of wirings (conductive layers) 50 are arranged above the upper surface of the substrate 80 through the insulating layer 81 on the substrate 80 in the Z direction. A plurality of wirings 50 are arranged in the X direction. Each wiring 50 extends in the Y direction. Each of the plurality of wirings 50 functions as a bit line BL, for example.

複數個配線(導電層)51於Z方向上,設置於複數個配線50之上方。複數個配線51沿Y方向排列。各配線51沿X方向延伸。複數個配線51之各者例如作為字元線WL發揮功能。A plurality of wirings (conductive layers) 51 are provided above the plurality of wirings 50 in the Z direction. A plurality of wirings 51 are arranged in the Y direction. Each wiring 51 extends in the X direction. Each of the plurality of wirings 51 functions as a word line WL, for example.

複數個記憶胞MC設置於複數個配線50與複數個配線51之間。複數個記憶胞MC於X-Y平面內呈矩陣狀排列。A plurality of memory cells MC are disposed between a plurality of wirings 50 and a plurality of wirings 51 . A plurality of memory cells MC are arranged in a matrix in the X-Y plane.

排列於Y方向之複數個記憶胞MC在Z方向上設置於1個配線50上。排列於Y方向之複數個記憶胞MC連接於共通之位元線BL。A plurality of memory cells MC arranged in the Y direction are provided on one wiring 50 in the Z direction. A plurality of memory cells MC arranged in the Y direction are connected to a common bit line BL.

排列於X方向之複數個記憶胞MC在Z方向上設置於1個配線51下。排列於X方向之複數個記憶胞MC連接於共通之字元線WL。A plurality of memory cells MC arranged in the X direction are provided under one wiring 51 in the Z direction. A plurality of memory cells MC arranged in the X direction are connected to a common word line WL.

於排列在Y方向之2個記憶胞MC間,設置有Y方向上具有某尺寸(間隔)之空間。於排列在X方向之2個記憶胞MC間,設置有於X方向上具有某尺寸(間隔)之空間。2個記憶胞MC間之Y方向上之間隔與2個記憶胞MC間之X方向上之間隔實質上相同。但是,記憶胞MC間之Y方向上之間隔亦可與記憶胞MC間之X方向上之間隔不同。A space having a certain size (interval) in the Y direction is provided between the two memory cells MC arranged in the Y direction. A space having a certain size (interval) in the X direction is provided between the two memory cells MC arranged in the X direction. The distance between two memory cells MC in the Y direction is substantially the same as the distance between two memory cells MC in the X direction. However, the distance between the memory cells MC in the Y direction may also be different from the distance between the memory cells MC in the X direction.

絕緣層(未圖示)設置於記憶胞MC間。An insulating layer (not shown) is disposed between the memory cells MC.

例如,於記憶胞陣列110具有圖2之電路構成之情形時,開關元件2(選擇器2)於Z方向上設置於記憶元件1之下方。開關元件2設置於記憶元件1與配線50之間。記憶元件1設置於配線51與開關元件2之間。For example, when the memory cell array 110 has the circuit configuration of FIG. 2 , the switching element 2 (selector 2 ) is disposed below the memory element 1 in the Z direction. The switching element 2 is provided between the memory element 1 and the wiring 50 . The memory element 1 is provided between the wiring 51 and the switching element 2 .

如此,各記憶胞MC為記憶元件1與開關元件2之積層體。根據該記憶胞MC,記憶胞陣列110具有積層型記憶胞陣列之構造。In this way, each memory cell MC is a laminate of the memory element 1 and the switching element 2 . According to the memory cell MC, the memory cell array 110 has the structure of a stacked memory cell array.

根據記憶胞陣列110之形成所使用之工藝(例如蝕刻方法),記憶胞MC可能會具有錐形之截面形狀。Depending on the process (eg, etching method) used to form the memory cell array 110, the memory cell MC may have a tapered cross-sectional shape.

於圖4及圖5中,示出了絕緣層81設置於複數個配線50與基板80之間之例。於基板80為半導體基板之情形時,亦可將1個以上之場效電晶體(未圖示)設置於基板80之上表面之半導體區域上。場效電晶體被絕緣層81覆蓋。基板80上之場效電晶體為列控制電路120等電路之構成元件。場效電晶體經由絕緣層81內之接觸插塞(未圖示)及配線(未圖示)與記憶胞陣列110連接。如此,亦可於Z方向上之記憶胞陣列110之下方設置用於控制記憶胞陣列110之動作之電路。再者,若基板80為絕緣性基板,則複數個配線50亦可於無絕緣層81之情況下直接設置於基板80之上表面上。In FIGS. 4 and 5 , an example in which the insulating layer 81 is provided between a plurality of wirings 50 and the substrate 80 is shown. When the substrate 80 is a semiconductor substrate, one or more field effect transistors (not shown) may also be disposed on the semiconductor region on the upper surface of the substrate 80 . The field effect transistor is covered by an insulating layer 81 . The field effect transistor on the substrate 80 is a component of the column control circuit 120 and other circuits. The field effect transistor is connected to the memory cell array 110 through contact plugs (not shown) and wiring (not shown) in the insulating layer 81 . In this way, a circuit for controlling the operation of the memory cell array 110 may also be provided below the memory cell array 110 in the Z direction. Furthermore, if the substrate 80 is an insulating substrate, the plurality of wirings 50 can also be directly disposed on the upper surface of the substrate 80 without the insulating layer 81 .

積層型記憶胞陣列110之電路構成及構造並不限定於圖2至圖5中所示之例。記憶胞陣列110之電路構成及構造可根據記憶元件1及開關元件2相對於位元線BL及字元線WL之連接關係而進行適當變化。例如,具有圖2之電路構成之記憶胞陣列110之構造並不限定於圖3至圖5之例。例如,開關元件2亦可於Z方向上設置於記憶元件1之上方。於該情形時,可將配線51用作位元線BL,將配線50用作字元線WL。The circuit structure and structure of the stacked memory cell array 110 are not limited to the examples shown in FIGS. 2 to 5 . The circuit structure and structure of the memory cell array 110 can be appropriately changed according to the connection relationship between the memory element 1 and the switching element 2 relative to the bit line BL and the word line WL. For example, the structure of the memory cell array 110 having the circuit structure of FIG. 2 is not limited to the examples of FIGS. 3 to 5 . For example, the switching element 2 can also be disposed above the memory element 1 in the Z direction. In this case, the wiring 51 can be used as the bit line BL, and the wiring 50 can be used as the word line WL.

再者,於圖3至圖5中,示出了記憶胞MC具有角柱狀構造之例,但記憶胞MC亦可具有圓柱狀(或橢圓柱狀)之構造。Furthermore, in FIGS. 3 to 5 , an example in which the memory cell MC has a angular prism structure is shown, but the memory cell MC may also have a cylindrical (or elliptical cylindrical) structure.

(1-c)記憶胞 圖6係模式性地表示本實施方式之記憶裝置100中之記憶胞MC之構成例的剖視圖。 (1-c) Memory cell FIG. 6 is a cross-sectional view schematically showing a structural example of memory cells MC in the memory device 100 according to this embodiment.

如圖6所示,於積層體90之記憶胞MC中,記憶元件1及開關元件2排列於Z方向上。如上所述,記憶元件1於Z方向上設置於開關元件2上。As shown in FIG. 6 , in the memory cell MC of the laminated body 90 , the memory element 1 and the switching element 2 are arranged in the Z direction. As described above, the memory element 1 is provided on the switching element 2 in the Z direction.

例如,作為記憶元件1之可變電阻元件為磁阻效應元件。於該情形時,本實施方式之記憶裝置100為如MRAM(Magnetoresistive random access memory,磁阻隨機存取記憶體)之磁性記憶體。For example, the variable resistance element as the memory element 1 is a magnetoresistance effect element. In this case, the memory device 100 of this embodiment is a magnetic memory such as MRAM (Magnetoresistive random access memory).

<開關元件之構成例> 如圖6所示,開關元件2至少包含可變電阻層(亦稱為選擇器層或開關層)20及2個電極(導電層)21A、21B。可變電阻層20於Z方向上設置於2個電極21A、21B之間。可變電阻層20之電阻狀態(電阻值)會發生變化。可變電阻層20可具有複數種電阻狀態。 <Configuration example of switching element> As shown in FIG. 6 , the switching element 2 includes at least a variable resistance layer (also called a selector layer or a switching layer) 20 and two electrodes (conductive layers) 21A and 21B. The variable resistance layer 20 is provided between the two electrodes 21A and 21B in the Z direction. The resistance state (resistance value) of the variable resistance layer 20 changes. The variable resistance layer 20 may have a plurality of resistance states.

於圖6之例中,電極(以下,亦稱為下部電極)21A於Z方向上設置於可變電阻層20之下方,電極(以下,亦稱為上部電極)21B於Z方向上設置於可變電阻層20之上方。例如,電極21A設置於配線50與可變電阻層20之間。電極21B設置於可變電阻層20與磁阻效應元件1之間。In the example of FIG. 6 , electrode (hereinafter, also referred to as lower electrode) 21A is provided below the variable resistance layer 20 in the Z direction, and electrode (hereinafter, also referred to as upper electrode) 21B is provided below the variable resistance layer 20 in the Z direction. above the variable resistance layer 20 . For example, electrode 21A is provided between wiring 50 and variable resistance layer 20 . The electrode 21B is provided between the variable resistance layer 20 and the magnetoresistive effect element 1 .

開關元件2經由電極21A與配線50連接。開關元件2經由電極21B與磁阻效應元件1連接。The switching element 2 is connected to the wiring 50 via the electrode 21A. The switching element 2 is connected to the magnetoresistive effect element 1 via the electrode 21B.

開關元件2在相對於基板80之表面垂直之方向(例如Z方向)上具有尺寸T2。開關元件2在相對於基板80之表面平行之方向(例如X方向或Y方向)上具有尺寸D2。The switching element 2 has a dimension T2 in a direction perpendicular to the surface of the substrate 80 (for example, the Z direction). The switching element 2 has a dimension D2 in a direction parallel to the surface of the substrate 80 (for example, the X direction or the Y direction).

根據施加於上述開關元件2(記憶胞MC)之電壓,可變電阻層20之電阻狀態成為高電阻狀態(非導通狀態)或低電阻狀態(導通狀態)。於可變電阻層20之電阻狀態為高電阻狀態之情形時,開關元件2斷開。於可變電阻層20之電阻狀態為低電阻狀態之情形時,開關元件2接通。Depending on the voltage applied to the switching element 2 (memory cell MC), the resistance state of the variable resistance layer 20 becomes a high resistance state (non-conducting state) or a low resistance state (conducting state). When the resistance state of the variable resistance layer 20 is a high resistance state, the switching element 2 is turned off. When the resistance state of the variable resistance layer 20 is a low resistance state, the switching element 2 is turned on.

於將記憶胞MC設定為選擇狀態之情形時,開關元件2接通,因此可變電阻層20之電阻狀態成為低電阻狀態。於該情形時,開關元件2將電壓(或電流)供給至記憶元件1。於將記憶胞MC設定為非選擇狀態之情形時,開關元件2斷開,因此可變電阻層20之電阻狀態成為高電阻狀態。於該情形時,開關元件2切斷對記憶元件1之電壓(或電流)供給。When the memory cell MC is set to the selected state, the switching element 2 is turned on, so the resistance state of the variable resistance layer 20 becomes a low resistance state. In this case, the switching element 2 supplies voltage (or current) to the memory element 1 . When the memory cell MC is set to the non-selected state, the switching element 2 is turned off, so the resistance state of the variable resistance layer 20 becomes a high resistance state. In this case, the switching element 2 cuts off the voltage (or current) supply to the memory element 1 .

再者,根據可變電阻層20之材料,可變電阻層20之電阻狀態之變化有時亦取決於開關元件2(記憶胞MC)內流通之電流(例如電流之大小)。Furthermore, depending on the material of the variable resistance layer 20, the change in the resistance state of the variable resistance layer 20 may also depend on the current flowing in the switching element 2 (memory cell MC) (eg, the magnitude of the current).

開關元件2之可變電阻層20包含選自由硼(B)、鋁(Al)、鎵(Ga)、銦(In)、碳(C)、矽(Si)、鍺(Ge)、錫(Sn)、砷(As)、磷(P)及銻(Sb)所組成之群中之至少1種以上之元素。The variable resistance layer 20 of the switching element 2 includes a material selected from the group consisting of boron (B), aluminum (Al), gallium (Ga), indium (In), carbon (C), silicon (Si), germanium (Ge), and tin (Sn). ), at least one element from the group consisting of arsenic (As), phosphorus (P) and antimony (Sb).

開關元件2例如亦可於可變電阻層20內包含含有摻雜劑(雜質)之絕緣體。絕緣體中添加之摻雜劑係有助於絕緣體內之導電之雜質。該開關元件2之可變電阻層20所使用之絕緣體之一例為氧化矽。於可變電阻層20之材料為氧化矽之情形時,氧化矽中添加之摻雜劑為磷或砷。再者,可變電阻層20之氧化矽中添加之摻雜劑之種類並不限定於上述例。For example, the switching element 2 may include an insulator containing a dopant (impurity) in the variable resistance layer 20 . Dopants added to insulators are impurities that help conduct electricity within the insulator. An example of the insulator used in the variable resistance layer 20 of the switching element 2 is silicon oxide. When the material of the variable resistance layer 20 is silicon oxide, the dopant added to the silicon oxide is phosphorus or arsenic. Furthermore, the type of dopant added to the silicon oxide of the variable resistance layer 20 is not limited to the above example.

<磁阻效應元件之構成例> 如圖6所示,磁阻效應元件1包含2個磁性層11、13及非磁性層12。非磁性層12於Z方向上設置於2個磁性層11、13之間。於圖6之例中,複數層11、12、13從配線(例如位元線BL)50側朝向配線(例如字元線WL)51側按照磁性層11、非磁性層12及磁性層13之順序排列於Z方向上。 <Configuration example of magnetoresistance effect element> As shown in FIG. 6 , the magnetoresistive effect element 1 includes two magnetic layers 11 and 13 and a nonmagnetic layer 12 . The nonmagnetic layer 12 is provided between the two magnetic layers 11 and 13 in the Z direction. In the example of FIG. 6 , the plurality of layers 11 , 12 , and 13 are arranged from the wiring (eg, bit line BL) 50 side toward the wiring (eg, word line WL) 51 side according to the order of the magnetic layer 11 , the nonmagnetic layer 12 and the magnetic layer 13 . Arranged in order in the Z direction.

2個磁性層11、13及非磁性層12形成磁穿隧接面。以下,將包含磁穿隧接面之磁阻效應元件1稱為MTJ元件1。將MTJ元件1中之非磁性層12稱為隧道勢壘層。The two magnetic layers 11 and 13 and the non-magnetic layer 12 form a magnetic tunnel junction. Hereinafter, the magnetoresistance effect element 1 including the magnetic tunnel junction will be referred to as the MTJ element 1 . The non-magnetic layer 12 in the MTJ element 1 is called a tunnel barrier layer.

磁性層11、13例如為包含鈷(Co)、鐵(Fe)、及鎳(Ni)中之至少1種元素之強磁性層。又,磁性層11、13亦可進而包含硼(B)。更具體而言,例如磁性層11、13包含鈷鐵硼(CoFeB)或硼化鐵(FeB)。磁性層11、13可為單層膜(例如合金膜),亦可為多層膜(例如人工晶格膜)。隧道勢壘層12例如為包含氧(O)及鎂(Mg)之絕緣層(例如氧化鎂層)。隧道勢壘層12可為單層膜,亦可為多層膜。再者,隧道勢壘層12亦可進而包含氧及鎂以外之元素。The magnetic layers 11 and 13 are, for example, ferromagnetic layers containing at least one element among cobalt (Co), iron (Fe), and nickel (Ni). Moreover, the magnetic layers 11 and 13 may further contain boron (B). More specifically, for example, the magnetic layers 11 and 13 contain cobalt iron boron (CoFeB) or iron boride (FeB). The magnetic layers 11 and 13 may be single-layer films (such as alloy films) or multi-layer films (such as artificial lattice films). The tunnel barrier layer 12 is, for example, an insulating layer (such as a magnesium oxide layer) containing oxygen (O) and magnesium (Mg). The tunnel barrier layer 12 may be a single-layer film or a multi-layer film. Furthermore, the tunnel barrier layer 12 may further include elements other than oxygen and magnesium.

於本實施方式中,MTJ元件1係垂直磁化型磁阻效應元件。In this embodiment, the MTJ element 1 is a perpendicular magnetization type magnetoresistance effect element.

例如,各磁性層11、13具有垂直磁各向異性。各磁性層11、13之易磁化軸方向相對於磁性層11、13之層面(膜面)垂直。各磁性層11、13具有相對於磁性層11、13之層面垂直之磁化。各磁性層11、13之磁化之方向相對於磁性層11、13之排列方向(Z方向)平行。For example, each of the magnetic layers 11 and 13 has perpendicular magnetic anisotropy. The direction of the easy magnetization axis of each magnetic layer 11, 13 is perpendicular to the layer (film surface) of the magnetic layer 11, 13. Each magnetic layer 11, 13 has magnetization perpendicular to the plane of the magnetic layer 11, 13. The direction of magnetization of each magnetic layer 11 and 13 is parallel to the arrangement direction (Z direction) of the magnetic layers 11 and 13 .

2個磁性層11、13中,一磁性層之磁化方向可變,另一磁性層之磁化方向不變。根據一磁性層之磁化方向與另一磁性層之磁化方向之相對關係(磁化排列),MTJ元件1可具有複數種電阻狀態(電阻值)。Among the two magnetic layers 11 and 13, the magnetization direction of one magnetic layer is variable, and the magnetization direction of the other magnetic layer is constant. According to the relative relationship between the magnetization direction of one magnetic layer and the magnetization direction of another magnetic layer (magnetization arrangement), the MTJ element 1 can have a plurality of resistance states (resistance values).

於圖6之例中,磁性層13之磁化方向可變。磁性層11之磁化方向不變(固定狀態)。以下,將磁化方向可變之磁性層13稱為記憶層。以下,將磁化方向不變之磁性層11稱為參考層。再者,有時亦將記憶層13稱為自由層、磁化自由層、或磁化可變層。有時亦將參考層11稱為栓層、固定層、磁化不變層、或磁化固定層。In the example of FIG. 6 , the magnetization direction of the magnetic layer 13 is variable. The magnetization direction of the magnetic layer 11 does not change (fixed state). Hereinafter, the magnetic layer 13 with variable magnetization direction is called a memory layer. Hereinafter, the magnetic layer 11 with a constant magnetization direction is called a reference layer. Furthermore, the memory layer 13 is sometimes also called a free layer, a magnetization free layer, or a magnetization variable layer. The reference layer 11 is sometimes also called a plug layer, a pinned layer, a magnetization-invariant layer, or a magnetization-pinned layer.

於本實施方式中,「參考層(磁性層)之磁化方向不變」、或「參考層(磁性層)之磁化方向為固定狀態」意指:於向MTJ元件1供給用於改變記憶層13之磁化方向之電流或電壓之情形時,供給電流或電壓之前後,參考層11之磁化方向不會因供給之電流或電壓而變化。In this embodiment, "the magnetization direction of the reference layer (magnetic layer) remains unchanged" or "the magnetization direction of the reference layer (magnetic layer) is in a fixed state" means: when supplying the memory layer 13 to the MTJ element 1 In the case of current or voltage in the magnetization direction, before and after supplying current or voltage, the magnetization direction of the reference layer 11 will not change due to the supplied current or voltage.

於記憶層13之磁化方向與參考層11之磁化方向相同之情形時(MTJ元件1之磁化排列狀態為平行排列狀態之情形時),MTJ元件1之電阻狀態為第1電阻狀態。於記憶層13之磁化方向與參考層11之磁化方向不同之情形時(MTJ元件1之磁化排列狀態為反平行排列狀態之情形時),MTJ元件1之電阻狀態為與第1電阻狀態不同之第2電阻狀態。例如,第2電阻狀態(反平行排列狀態)之MTJ元件1之電阻值高於第1電阻狀態(平行排列狀態)之MTJ元件1之電阻值。When the magnetization direction of the memory layer 13 is the same as the magnetization direction of the reference layer 11 (when the magnetization arrangement state of the MTJ element 1 is a parallel arrangement state), the resistance state of the MTJ element 1 is the first resistance state. When the magnetization direction of the memory layer 13 is different from the magnetization direction of the reference layer 11 (when the magnetization arrangement state of the MTJ element 1 is an anti-parallel arrangement state), the resistance state of the MTJ element 1 is different from the first resistance state. 2nd resistance state. For example, the resistance value of the MTJ element 1 in the second resistance state (anti-parallel arrangement state) is higher than the resistance value of the MTJ element 1 in the first resistance state (parallel arrangement state).

以下,關於MTJ元件1之磁化排列狀態,平行排列狀態亦記作P(Parallel,平行)狀態,反平行排列狀態亦記作AP(Anti-Parallel,反平行)。Hereinafter, regarding the magnetization arrangement state of the MTJ element 1, the parallel arrangement state is also referred to as the P (Parallel, parallel) state, and the anti-parallel arrangement state is also referred to as AP (Anti-Parallel, anti-parallel).

再者,根據記憶胞陣列110之電路構成,亦有參考層於Z方向上設置於隧道勢壘層12之上方,記憶層於Z方向上設置於隧道勢壘層12之下方之情形。Furthermore, depending on the circuit structure of the memory cell array 110, there are also situations where the reference layer is disposed above the tunnel barrier layer 12 in the Z direction, and the memory layer is disposed below the tunnel barrier layer 12 in the Z direction.

例如,MTJ元件1包含導電層(電極)18A、18B。磁性層11、13及隧道勢壘層12於Z方向上設置於2個導電層18A、18B之間。參考層11設置於導電層18A與隧道勢壘層12之間。記憶層13設置於導電層18B與隧道勢壘層12之間。For example, the MTJ element 1 includes conductive layers (electrodes) 18A and 18B. The magnetic layers 11 and 13 and the tunnel barrier layer 12 are provided between the two conductive layers 18A and 18B in the Z direction. The reference layer 11 is provided between the conductive layer 18A and the tunnel barrier layer 12 . The memory layer 13 is disposed between the conductive layer 18B and the tunnel barrier layer 12 .

例如,偏移消除層14亦可設置於MTJ元件1內。於該情形時,偏移消除層14設置於參考層11與導電層18A之間。偏移消除層14係用於減輕參考層11之漏磁場之影響之磁性層。於MTJ元件1包含偏移消除層14之情形時,非磁性層15設置於偏移消除層14與參考層11之間。非磁性層15例如為釕層等金屬層。偏移消除層14經由非磁性層15與參考層11反鐵磁性地耦合。藉此,包含參考層11及偏移消除層14之積層體形成SAF(Synthetic antiferromagnetic,合成反鐵磁)構造。於SAF構造中,偏移消除層14之磁化方向與參考層11之磁化方向相反。藉由SAF構造,參考層11之磁化方向可更加穩定地成為固定狀態。再者,有時亦將形成SAF構造之2個磁性層11、14及非磁性層15之集合稱為參考層。For example, the offset elimination layer 14 can also be disposed in the MTJ element 1 . In this case, the offset cancellation layer 14 is disposed between the reference layer 11 and the conductive layer 18A. The offset elimination layer 14 is a magnetic layer used to reduce the influence of the leakage magnetic field of the reference layer 11 . When the MTJ element 1 includes the offset cancellation layer 14 , the nonmagnetic layer 15 is disposed between the offset cancellation layer 14 and the reference layer 11 . The nonmagnetic layer 15 is, for example, a metal layer such as a ruthenium layer. The offset cancellation layer 14 is antiferromagnetically coupled to the reference layer 11 via the non-magnetic layer 15 . Thereby, the laminate including the reference layer 11 and the offset cancellation layer 14 forms a SAF (Synthetic antiferromagnetic, synthetic antiferromagnetic) structure. In the SAF structure, the magnetization direction of the offset cancellation layer 14 is opposite to the magnetization direction of the reference layer 11 . Through the SAF structure, the magnetization direction of the reference layer 11 can be fixed in a more stable state. Furthermore, the set of the two magnetic layers 11 and 14 and the non-magnetic layer 15 forming the SAF structure is sometimes called a reference layer.

例如,被稱作基底層之非磁性層(未圖示)亦可設置於偏移消除層14與導電層18A之間。基底層係用於改善與基底層相接之磁性層(此處為偏移消除層14)之特性(例如結晶性及磁特性)之層。For example, a non-magnetic layer (not shown) called a base layer may also be provided between the offset elimination layer 14 and the conductive layer 18A. The base layer is a layer used to improve the characteristics (such as crystallinity and magnetic characteristics) of the magnetic layer (here, the offset elimination layer 14) connected to the base layer.

例如,被稱作蓋層之非磁性層(未圖示)亦可設置於記憶層13與導電層18B之間。蓋層係用於改善與蓋層相接之磁性層(此處為記憶層13)之特性(例如結晶性及磁特性)之層。For example, a non-magnetic layer (not shown) called a cap layer may also be disposed between the memory layer 13 and the conductive layer 18B. The cap layer is a layer used to improve the characteristics (such as crystallinity and magnetic properties) of the magnetic layer (here, the memory layer 13) connected to the cap layer.

MTJ元件1於Z方向上具有尺寸T1。例如,尺寸T1為尺寸T2以上。但是,根據記憶元件1之構造,亦存在尺寸T1小於尺寸T2之情形。The MTJ element 1 has a dimension T1 in the Z direction. For example, size T1 is larger than size T2. However, depending on the structure of the memory element 1, the size T1 may be smaller than the size T2.

MTJ元件1具有錐形之截面構造。關於錐形之MTJ元件1之相對於基板80之表面平行之方向(X方向或Y方向)上的尺寸D1a、D1b,MTJ元件1之下部側(配線50側)之尺寸D1b大於MTJ元件1之上部側(配線51側)之尺寸D1a。The MTJ element 1 has a tapered cross-sectional structure. Regarding the dimensions D1a and D1b of the tapered MTJ element 1 in the direction parallel to the surface of the substrate 80 (X direction or Y direction), the dimension D1b of the lower side (wiring 50 side) of the MTJ element 1 is larger than that of the MTJ element 1 Dimension D1a on the upper side (wiring 51 side).

MTJ元件1之上部側之錐度角亦可與MTJ元件1之下部側之錐度角不同。例如,MTJ元件1之上部(例如較隧道勢壘層12更靠上方之部分)側之錐度角大於MTJ元件1之下部(例如較隧道勢壘層12更靠下方之部分)側之錐度角。再者,於本實施方式中,MTJ元件1之錐度角係由MTJ元件1之某一部分之側面與相對於基板80之上表面平行之方向所形成之角度。The taper angle of the upper side of the MTJ element 1 may also be different from the taper angle of the lower side of the MTJ element 1 . For example, the taper angle on the upper side of the MTJ element 1 (eg, the portion above the tunnel barrier layer 12 ) is greater than the taper angle on the lower side of the MTJ element 1 (eg, the portion below the tunnel barrier layer 12 ). Furthermore, in this embodiment, the taper angle of the MTJ element 1 is the angle formed by the side surface of a certain part of the MTJ element 1 and a direction parallel to the upper surface of the substrate 80 .

導電層19設置於MTJ元件1與配線51之間。配線51經由導電層19電性連接於MTJ元件1之電極18B。導電層19例如為鎢層或鉬層。導電層19例如用作形成記憶胞MC時之蝕刻之遮罩層(硬質遮罩)。以下,有時亦將導電層19稱為遮罩層19。The conductive layer 19 is provided between the MTJ element 1 and the wiring 51 . The wiring 51 is electrically connected to the electrode 18B of the MTJ element 1 via the conductive layer 19 . The conductive layer 19 is, for example, a tungsten layer or a molybdenum layer. The conductive layer 19 is used, for example, as a mask layer (hard mask) for etching when forming the memory cell MC. Hereinafter, the conductive layer 19 may also be referred to as the mask layer 19 .

再者,於將導電層19用作MTJ元件1之電極之情形時,亦可不設置導電層18B。Furthermore, when the conductive layer 19 is used as an electrode of the MTJ element 1, the conductive layer 18B does not need to be provided.

導電層19於相對於基板80之表面垂直之方向(此處為Z方向)上具有尺寸Tx。尺寸Tx小於尺寸T1。導電層19之某一部分(例如導電層19之底部)之相對於基板80之表面平行之方向(X方向或Y方向)上之尺寸例如具有與尺寸D1a實質上相同之大小。The conductive layer 19 has a dimension Tx in a direction perpendicular to the surface of the substrate 80 (here, the Z direction). Dimension Tx is smaller than dimension T1. The size of a certain part of the conductive layer 19 (for example, the bottom of the conductive layer 19) in a direction parallel to the surface of the substrate 80 (X direction or Y direction) is, for example, substantially the same size as the size D1a.

於本實施方式之記憶裝置100中,記憶胞MC於MTJ元件1與開關元件2之間包含中間層30。In the memory device 100 of this embodiment, the memory cell MC includes an intermediate layer 30 between the MTJ element 1 and the switching element 2 .

中間層30包含選自硼(B)、碳(C)、矽(Si)、鎂(Mg)、鋁(Al)、鈧(Sc)、鈦(Ti)、釩(V)、鎵(Ga)、鍺(Ge)、釔(Y)、鋯(Zr)、鈮(Nb)、鉬(Mo)、鈀(Pd)、銀(Ag)、鉿(Hf)、鉭(Ta)、鎢(W)、銥(Ir)及鉑(Pt)中之至少1個構件。The intermediate layer 30 contains a material selected from the group consisting of boron (B), carbon (C), silicon (Si), magnesium (Mg), aluminum (Al), scandium (Sc), titanium (Ti), vanadium (V), and gallium (Ga). , germanium (Ge), yttrium (Y), zirconium (Zr), niobium (Nb), molybdenum (Mo), palladium (Pd), silver (Ag), hafnium (Hf), tantalum (Ta), tungsten (W) , at least 1 component of iridium (Ir) and platinum (Pt).

中間層30例如為包含選自上述群組中之構件之層。中間層30亦可為所選擇之構件之化合物層。中間層30之具體之例為氧化矽層或碳化矽層。再者,中間層30亦可為於某種母材中添加選自上述群組中之至少一者而成之層。於該情形時,中間層30於母材內包含複數個粒狀部,該等複數個粒狀部包含選自上述群組中之構件。例如,中間層30亦可為包含選自上述群組中之構件之有機物層。The middle layer 30 is, for example, a layer including components selected from the above-mentioned groups. The intermediate layer 30 may also be a compound layer of a selected component. Specific examples of the intermediate layer 30 are a silicon oxide layer or a silicon carbide layer. Furthermore, the intermediate layer 30 may also be a layer formed by adding at least one selected from the above groups to a certain base material. In this case, the intermediate layer 30 includes a plurality of granular portions in the base material, and the plurality of granular portions include components selected from the above group. For example, the middle layer 30 may also be an organic layer including components selected from the above groups.

中間層30於層內部包含複數個氣隙39。作為更具體之一例,中間層30為多孔層(亦稱為奈米多孔層)。The middle layer 30 includes a plurality of air gaps 39 inside the layer. As a more specific example, the intermediate layer 30 is a porous layer (also called a nanoporous layer).

中間層30於相對於基板80之表面垂直之方向(此處為Z方向)上具有尺寸T3。尺寸T3為尺寸T1以上。尺寸T3大於尺寸Tx。The intermediate layer 30 has a dimension T3 in a direction perpendicular to the surface of the substrate 80 (herein, the Z direction). Size T3 is above size T1. Dimension T3 is larger than dimension Tx.

例如,中間層30之側面實質上相對於Z方向平行,且實質上相對於基板80之上表面垂直。於該情形時,中間層30之下部(配線50側)之尺寸與中間層30之上部(配線51側)之尺寸實質上相同。中間層30於相對於基板80之上表面平行之方向(此處為X方向或Y方向)上具有尺寸D3。中間層30之尺寸D3小於開關元件2之尺寸D2。For example, the side surface of the intermediate layer 30 is substantially parallel to the Z direction, and is substantially perpendicular to the upper surface of the substrate 80 . In this case, the size of the lower part of the intermediate layer 30 (on the wiring 50 side) is substantially the same as the size of the upper part of the intermediate layer 30 (on the wiring 51 side). The intermediate layer 30 has a dimension D3 in a direction parallel to the upper surface of the substrate 80 (herein, the X direction or the Y direction). The size D3 of the intermediate layer 30 is smaller than the size D2 of the switching element 2 .

圖7係表示本實施方式之記憶裝置100中之中間層30之構造之一例的模式圖。FIG. 7 is a schematic diagram showing an example of the structure of the intermediate layer 30 in the memory device 100 of this embodiment.

如圖7所示,中間層30包含複數個粒狀部310。粒狀部310包含上述B、C、Si、Mg、Al、Sc、Ti、V、Ga、Ge、Y、Zr、Nb、Mo、Pd、Ag、Hf、Ta、W、Ir及Pt等構件。粒狀部310不規則地排列於中間層30內。As shown in FIG. 7 , the intermediate layer 30 includes a plurality of granular portions 310 . The granular portion 310 includes the above-described B, C, Si, Mg, Al, Sc, Ti, V, Ga, Ge, Y, Zr, Nb, Mo, Pd, Ag, Hf, Ta, W, Ir, and Pt components. The granular portions 310 are irregularly arranged in the middle layer 30 .

氣隙39設置於粒狀部310間之空間內。氣隙39可具有從中間層30之一端延伸至另一端之隧道狀構造,亦可具有於中間層30之內部由複數個粒狀部310所包圍之封閉空間的構造。The air gap 39 is provided in the space between the granular portions 310 . The air gap 39 may have a tunnel-like structure extending from one end of the middle layer 30 to the other end, or may have a structure of a closed space surrounded by a plurality of granular parts 310 inside the middle layer 30 .

中間層30亦可包含粒狀部311,該粒狀部311包含除粒狀部310之構件以外之構件。粒狀部311不規則地設置於中間層30內。粒狀部311為絕緣體(例如氧化矽或氮化矽)、導電體或有機物。The intermediate layer 30 may also include a granular portion 311 that includes components other than the components of the granular portion 310 . The granular portions 311 are irregularly provided in the intermediate layer 30 . The granular portion 311 is an insulator (such as silicon oxide or silicon nitride), a conductor, or an organic substance.

藉由圖7之構成,中間層30之蝕刻速率高於導電層19之蝕刻速率。With the structure of FIG. 7 , the etching rate of the intermediate layer 30 is higher than the etching rate of the conductive layer 19 .

再者,於圖7中,為了簡化圖式,示出圓形(球形)之粒狀部310、311,但粒狀部310、311之形狀亦可為其他形狀(例如多邊形)。Furthermore, in FIG. 7 , in order to simplify the drawing, circular (spherical) granular portions 310 and 311 are shown, but the shapes of the granular portions 310 and 311 may also be other shapes (eg, polygonal).

回到圖6,絕緣層40連續地設置於導電層19之側面、MTJ元件1之側面及中間層30之側面上。絕緣層40連續地覆蓋導電層19之側面、MTJ元件1之側面及中間層30之側面。導電層19之側面、MTJ元件1之側面及中間層30之側面係與相對於基板80之上表面平行之方向交叉之面。Returning to FIG. 6 , the insulating layer 40 is continuously provided on the side of the conductive layer 19 , the side of the MTJ element 1 and the side of the intermediate layer 30 . The insulating layer 40 continuously covers the side surfaces of the conductive layer 19 , the side surfaces of the MTJ element 1 and the side surfaces of the intermediate layer 30 . The side surfaces of the conductive layer 19 , the side surfaces of the MTJ element 1 and the side surfaces of the intermediate layer 30 are surfaces intersecting with a direction parallel to the upper surface of the substrate 80 .

絕緣層40包含氧化物、氮化物或氮氧化物等。絕緣層40可為單層膜,亦可為積層膜。例如,絕緣層40為氮化矽膜。The insulating layer 40 contains oxide, nitride, oxynitride, or the like. The insulating layer 40 may be a single-layer film or a laminated film. For example, the insulating layer 40 is a silicon nitride film.

絕緣層40具有膜厚Tq。絕緣層40之膜厚Tq係相對於基板80之上表面平行之方向(例如X方向或Y方向)上之絕緣層40之尺寸。於本實施方式中,將絕緣層40之膜厚Tq設為設置於中間層30之側面上之部分之厚度。例如,上述尺寸D2和膜厚Tq之2倍之值與尺寸D3之合計(D3+2×Tq)實質上相等。The insulating layer 40 has a film thickness Tq. The film thickness Tq of the insulating layer 40 is the size of the insulating layer 40 in a direction parallel to the upper surface of the substrate 80 (for example, the X direction or the Y direction). In this embodiment, the film thickness Tq of the insulating layer 40 is set to the thickness of the portion provided on the side surface of the intermediate layer 30 . For example, the value of twice the dimension D2 and the film thickness Tq is substantially equal to the total of the dimensions D3 (D3+2×Tq).

例如,插塞55設置於開關元件2與配線50之間。插塞55設置於絕緣層60內。絕緣層60設置於開關元件2與配線50之間。配線50經由插塞55與開關元件2之下部電極21A電性連接。再者,亦可不設置插塞55,而將開關元件2之下部電極21A直接設置於配線50上。於該情形時,絕緣層60亦未設置於開關元件2與配線50之間。For example, the plug 55 is provided between the switching element 2 and the wiring 50 . The plug 55 is disposed in the insulating layer 60 . The insulating layer 60 is provided between the switching element 2 and the wiring 50 . The wiring 50 is electrically connected to the lower electrode 21A of the switching element 2 via the plug 55 . Furthermore, the plug 55 may not be provided, and the lower electrode 21A of the switching element 2 may be directly provided on the wiring 50 . In this case, the insulating layer 60 is not provided between the switching element 2 and the wiring 50 .

絕緣層61覆蓋記憶胞MC之側面。絕緣層61設置於記憶胞MC間。The insulating layer 61 covers the side surfaces of the memory cells MC. The insulating layer 61 is disposed between the memory cells MC.

於本實施方式中,記憶胞MC之形成步驟中之中間層30之蝕刻速率高於記憶胞MC之其他構成構件(例如磁性層11、13或導電層19)之蝕刻速率。例如,於記憶胞MC之形成步驟中,導電層19沈積時之Z方向上之尺寸(>Tx)大於中間層30沈積時之Z方向上之尺寸(例如尺寸T3)。In this embodiment, the etching rate of the intermediate layer 30 in the formation step of the memory cell MC is higher than the etching rate of other components of the memory cell MC (such as the magnetic layers 11 and 13 or the conductive layer 19 ). For example, in the formation step of the memory cell MC, the Z-direction dimension (>Tx) of the conductive layer 19 when deposited is larger than the Z-direction dimension (eg, dimension T3) of the intermediate layer 30 when deposited.

(2)製造方法 參照圖8至圖13,對本實施方式之記憶裝置100之製造方法進行說明。 (2) Manufacturing method Referring to FIGS. 8 to 13 , a method of manufacturing the memory device 100 of this embodiment will be described.

圖8至圖13係表示本實施方式之記憶裝置100之製造方法之製造步驟的模式性剖視步驟圖。8 to 13 are schematic cross-sectional step views showing the manufacturing steps of the manufacturing method of the memory device 100 according to this embodiment.

如圖8所示,於基板(半導體基板)80上形成列控制電路等記憶裝置100之電路(未圖示)後,於基板80上形成絕緣層81。絕緣層81覆蓋基板80上之電路。As shown in FIG. 8 , after circuits (not shown) of the memory device 100 such as column control circuits are formed on a substrate (semiconductor substrate) 80 , an insulating layer 81 is formed on the substrate 80 . The insulating layer 81 covers the circuit on the substrate 80 .

於絕緣層81上形成複數個導電層50。導電層50係用於形成記憶胞陣列110之配線(例如位元線BL)之層。於導電層50上形成絕緣層60。於作為記憶胞之配置位置之特定位置,在絕緣層60內形成複數個接觸孔。以與導電層50接觸之方式於複數個接觸孔內形成複數個插塞55。A plurality of conductive layers 50 are formed on the insulating layer 81 . The conductive layer 50 is a layer used to form wirings (eg, bit lines BL) of the memory cell array 110 . An insulating layer 60 is formed on the conductive layer 50 . A plurality of contact holes are formed in the insulating layer 60 at specific positions where the memory cells are arranged. A plurality of plugs 55 are formed in a plurality of contact holes in contact with the conductive layer 50 .

於絕緣層60及插塞55上形成積層體90Z。積層體90Z包含記憶胞MC之複數個構成構件。A laminated body 90Z is formed on the insulating layer 60 and the plug 55 . The laminated body 90Z includes a plurality of components of the memory cell MC.

例如,於絕緣層60及插塞55上形成作為上述開關元件2之構成構件之構件2Z。構件2Z至少包含:於Z方向上積層之作為下部電極21A之導電層、作為可變電阻層20之層、及作為上部電極21B之導電層等。構件2Z於Z方向上具有尺寸(厚度)T2。For example, the member 2Z that is a component of the switching element 2 is formed on the insulating layer 60 and the plug 55 . The member 2Z includes at least a conductive layer as the lower electrode 21A, a layer as the variable resistance layer 20, a conductive layer as the upper electrode 21B, and the like that are laminated in the Z direction. The member 2Z has a dimension (thickness) T2 in the Z direction.

於本實施方式中,於構件2Z上形成中間層30Z。中間層30Z於Z方向上具有尺寸(厚度)T3。In this embodiment, the intermediate layer 30Z is formed on the member 2Z. The intermediate layer 30Z has a dimension (thickness) T3 in the Z direction.

中間層30Z包含選自硼(B)、碳(C)、矽(Si)、鎂(Mg)、鋁(Al)、鈧(Sc)、鈦(Ti)、釩(V)、鎵(Ga)、鍺(Ge)、釔(Y)、鋯(Zr)、鈮(Nb)、鉬(Mo)、鈀(Pd)、銀(Ag)、鉿(Hf)、鉭(Ta)、鎢(W)、銥(Ir)及鉑(Pt)等中之一者。The intermediate layer 30Z contains a material selected from the group consisting of boron (B), carbon (C), silicon (Si), magnesium (Mg), aluminum (Al), scandium (Sc), titanium (Ti), vanadium (V), and gallium (Ga). , germanium (Ge), yttrium (Y), zirconium (Zr), niobium (Nb), molybdenum (Mo), palladium (Pd), silver (Ag), hafnium (Hf), tantalum (Ta), tungsten (W) , iridium (Ir), platinum (Pt), etc.

中間層30Z為多孔層。即,於中間層30Z內形成複數個氣隙39及複數個粒狀部(未圖示)。例如,中間層30Z內之氣隙39係使用利用某一構件之腐蝕作用或蝕刻作用之公知之技術而形成。The middle layer 30Z is a porous layer. That is, a plurality of air gaps 39 and a plurality of granular portions (not shown) are formed in the intermediate layer 30Z. For example, the air gap 39 in the intermediate layer 30Z is formed using known techniques that utilize corrosion or etching of a certain component.

於中間層30Z上形成上述記憶元件1之構件1Z。於記憶元件1為MTJ元件之情形時,構件1Z至少包含:於Z方向上積層之作為參考層11之磁性層、作為隧道勢壘層12之非磁性層、作為記憶層13之磁性層及作為電極18A、18B之導電層等。構件1Z亦可進而包含作為偏移消除層14之磁性層、參考層11與偏移消除層14之間之非磁性層、或基底層等。構件1Z於Z方向上具有尺寸(厚度)T1。例如,構件1Z之尺寸T1與中間層30Z之尺寸T3實質上相同。但是,中間層30Z之尺寸T3亦可大於構件1Z之尺寸T1。The component 1Z of the memory element 1 is formed on the intermediate layer 30Z. When the memory element 1 is an MTJ element, the component 1Z at least includes: a magnetic layer as the reference layer 11 , a non-magnetic layer as the tunnel barrier layer 12 , a magnetic layer as the memory layer 13 , and Conductive layers of electrodes 18A and 18B, etc. The member 1Z may further include a magnetic layer as the offset cancellation layer 14, a non-magnetic layer between the reference layer 11 and the offset cancellation layer 14, or a base layer. The member 1Z has a dimension (thickness) T1 in the Z direction. For example, dimension T1 of member 1Z is substantially the same as dimension T3 of intermediate layer 30Z. However, the dimension T3 of the intermediate layer 30Z may also be larger than the dimension T1 of the component 1Z.

複數個遮罩層19Z形成於積層體90Z上。各遮罩層19Z藉由光微影法及蝕刻等形成於記憶胞MC之配置位置。例如,某一遮罩層19Z於Z方向上配置於某一插塞55之上方。A plurality of mask layers 19Z are formed on the laminated body 90Z. Each mask layer 19Z is formed at the arrangement position of the memory cell MC by photolithography, etching, or the like. For example, a certain mask layer 19Z is arranged above a certain plug 55 in the Z direction.

遮罩層19Z於Z方向上具有尺寸(厚度)Tz。例如,遮罩層19Z之尺寸Tz為中間層30Z之尺寸T3以上。於該情形時,遮罩層19Z之尺寸Tz為構件1Z之尺寸T1以上。The mask layer 19Z has a size (thickness) Tz in the Z direction. For example, the size Tz of the mask layer 19Z is larger than the size T3 of the intermediate layer 30Z. In this case, the size Tz of the mask layer 19Z is larger than the size T1 of the member 1Z.

如圖9所示,藉由離子束蝕刻對積層體90X進行加工。例如,離子束IB1從相對於平行於(或垂直於)基板80之上表面之方向傾斜一定角度之方向入射至積層體90X。As shown in FIG. 9 , the laminated body 90X is processed by ion beam etching. For example, the ion beam IB1 is incident on the laminated body 90X from a direction inclined at a certain angle relative to a direction parallel to (or perpendicular to) the upper surface of the substrate 80 .

利用傾斜之離子束IB1對積層體90X進行蝕刻。藉此,抑制因磁性層等導電體之蝕刻而產生之導電性飛散物附著於構件1X之露出之側面。其結果,減少了由附著於構件1X之側面之導電體(以下稱為導電性附著物)引起之磁性層11、13間之短路。The laminated body 90X is etched using the inclined ion beam IB1. Thereby, conductive scattering matter generated due to etching of a conductor such as a magnetic layer is suppressed from adhering to the exposed side surface of the member 1X. As a result, the short circuit between the magnetic layers 11 and 13 caused by the conductor (hereinafter referred to as conductive attachment) attached to the side surface of the member 1X is reduced.

經蝕刻之構件1X之側面根據構成構件1X之各層之蝕刻速率(離子束IB1之入射角)而相對於與基板80之上表面平行(或垂直)之方向傾斜。The side surfaces of the etched member 1X are tilted relative to a direction parallel (or perpendicular) to the upper surface of the substrate 80 according to the etching rate of each layer constituting the member 1X (the incident angle of the ion beam IB1).

其結果,構件1X具有錐形之構造。關於與基板80之表面平行之方向(例如Y方向)上之構件1X之尺寸,構件1X之下部(基板80側之部分)之尺寸D2a大於構件1X之上部(遮罩層19X側之部分)之尺寸D1a。As a result, the member 1X has a tapered structure. Regarding the size of the member 1X in a direction parallel to the surface of the substrate 80 (for example, the Y direction), the size D2a of the lower portion of the member 1X (the portion on the substrate 80 side) is larger than the size D2a of the upper portion of the member 1X (the portion on the mask layer 19X side). Size D1a.

例如,某蝕刻條件下之複數個構成構件(層)之蝕刻速率可能因構成構件而異。為了抑制上述飛散物之附著及去除導電性附著物,對構件1X之下部側進行加工時之離子束IB1之入射角與對構件1X之上部側進行加工時之離子束IB1之入射角不同。其結果,如圖9之例所示,構件1X之上部側之錐度角亦可能與構件1X之下部側之錐度角不同。For example, the etching rates of a plurality of constituent components (layers) under certain etching conditions may vary from component to component. In order to suppress the adhesion of the above-mentioned scattered matter and remove the conductive adhesion matter, the incident angle of the ion beam IB1 when processing the lower side of the member 1X is different from the incident angle of the ion beam IB1 when processing the upper side of the member 1X. As a result, as shown in the example of FIG. 9 , the taper angle of the upper side of the member 1X may be different from the taper angle of the lower side of the member 1X.

如圖10所示,緊隨著構件1Y之形成,對中間層30Y進行加工。藉由與對構件(MTJ元件)1Y之蝕刻相同之條件之離子束蝕刻,對中間層30Y進行蝕刻。經加工之構件1Y作為針對中間層30Y之蝕刻遮罩發揮功能。As shown in Fig. 10, immediately following the formation of the member 1Y, the intermediate layer 30Y is processed. The intermediate layer 30Y is etched by ion beam etching under the same conditions as the etching of the member (MTJ element) 1Y. The processed component 1Y functions as an etching mask for the intermediate layer 30Y.

於本實施方式中,對中間層30Y使用蝕刻速率高於遮罩層19Y之蝕刻速率及構件1Y之複數個構成構件之蝕刻速率的材料。包含複數個氣隙39之中間層30Y之材料係與遮罩層19Y之材料相比密度較低之物質。In this embodiment, a material whose etching rate is higher than the etching rate of the mask layer 19Y and the plurality of constituent components of the component 1Y is used for the intermediate layer 30Y. The material of the middle layer 30Y including the plurality of air gaps 39 is a material with a lower density than the material of the mask layer 19Y.

藉此,中間層30Y被以較遮罩層19Y快之蝕刻速度進行蝕刻。Thereby, the intermediate layer 30Y is etched at a faster etching speed than the mask layer 19Y.

如圖11所示,藉由使用離子束IB1之蝕刻,以記憶胞MC為單位將中間層30分離。As shown in FIG. 11 , by etching using ion beam IB1 , the intermediate layer 30 is separated in units of memory cells MC.

例如,於中間層30之蝕刻期間,MTJ元件1Y之側面被蝕刻,錐形之MTJ元件1Y之寬度縮小。For example, during the etching of the intermediate layer 30, the side surfaces of the MTJ element 1Y are etched, and the width of the tapered MTJ element 1Y is reduced.

藉由此種利用離子束IB1之蝕刻,形成MTJ元件1。By such etching using the ion beam IB1, the MTJ element 1 is formed.

經蝕刻之中間層30之側面與相對於基板80之上表面垂直之方向(Z方向)實質上平行。基板80之上表面與中間層30之側面所成之角度相對於基板80之上表面實質上垂直。The side surfaces of the etched intermediate layer 30 are substantially parallel to the direction perpendicular to the upper surface of the substrate 80 (Z direction). The angle formed by the upper surface of the substrate 80 and the side surface of the intermediate layer 30 is substantially perpendicular to the upper surface of the substrate 80 .

將構件2Z之上表面作為蝕刻終止層,暫時停止(中斷)對積層體90W之蝕刻。The upper surface of the member 2Z is used as an etching stop layer to temporarily stop (interrupt) the etching of the laminated body 90W.

利用離子束IB1以較MTJ元件1(構件1Z)及中間層30(30Z)慢之蝕刻速度緩慢地對遮罩層19W進行蝕刻。遮罩層19W之Z方向上之尺寸Tw變得小於沈積時之尺寸Tz。The mask layer 19W is etched slowly using the ion beam IB1 at a slower etching speed than the MTJ element 1 (member 1Z) and the intermediate layer 30 (30Z). The Z-direction dimension Tw of the mask layer 19W becomes smaller than the dimension Tz during deposition.

如圖12所示,於經加工之積層體90V中,絕緣層40Z形成於遮罩層19V、MTJ元件1及中間層30上。絕緣層40Z覆蓋MTJ元件1及中間層30之側面。絕緣層40Z例如為氮化矽膜。絕緣層40Z於X方向(或Y方向)上具有厚度Tq。As shown in FIG. 12 , in the processed laminated body 90V, the insulating layer 40Z is formed on the mask layer 19V, the MTJ element 1 and the intermediate layer 30 . The insulating layer 40Z covers the side surfaces of the MTJ element 1 and the intermediate layer 30 . The insulating layer 40Z is, for example, a silicon nitride film. The insulating layer 40Z has a thickness Tq in the X direction (or Y direction).

如圖13所示,於形成絕緣層40Z之後,重新開始加工積層體90U。藉此,對絕緣層40Z及構件2Z進行蝕刻。絕緣層40Z及構件2Z之蝕刻例如藉由反應性離子蝕刻等各向異性蝕刻來執行。但是,絕緣層40Z及構件2Z之蝕刻亦可藉由離子束蝕刻來執行。As shown in FIG. 13 , after the insulating layer 40Z is formed, the processing of the laminated body 90U is restarted. Thereby, the insulating layer 40Z and the member 2Z are etched. The insulating layer 40Z and the member 2Z are etched by, for example, anisotropic etching such as reactive ion etching. However, the etching of the insulating layer 40Z and the structure 2Z can also be performed by ion beam etching.

例如,於藉由反應性離子蝕刻對構件2Z進行蝕刻時,蝕刻氣體之離子種從垂直於基板80之上表面之方向(Z方向)入射至積層體90U。For example, when the member 2Z is etched by reactive ion etching, ion species of the etching gas are incident on the laminate 90U from a direction perpendicular to the upper surface of the substrate 80 (Z direction).

於對構件2Z進行蝕刻時,除遮罩層19及構件2Z之上方之MTJ元件1及中間層30以外,絕緣層40Z作為構件2Z之蝕刻遮罩發揮功能。When the component 2Z is etched, in addition to the mask layer 19 and the MTJ element 1 and the intermediate layer 30 above the component 2Z, the insulating layer 40Z functions as an etching mask for the component 2Z.

藉由蝕刻,以記憶胞MC為單位將構件2Z。藉此,形成複數個開關元件2、遮罩層19、絕緣層40。By etching, the structure is 2Z in units of memory cells MC. Thereby, a plurality of switching elements 2, mask layers 19, and insulating layers 40 are formed.

藉由以上步驟,於基板80之上方形成複數個記憶胞MC。Through the above steps, a plurality of memory cells MC are formed above the substrate 80 .

作為上述積層體90之蝕刻結果,遮罩層19之Z方向上之尺寸Tx變得小於中間層30之Z方向上之尺寸T3及MTJ元件1之Z方向上之尺寸T1。As a result of etching the laminated body 90 , the Z-direction dimension Tx of the mask layer 19 becomes smaller than the Z-direction dimension T3 of the intermediate layer 30 and the Z-direction dimension T1 of the MTJ element 1 .

例如,不去除遮罩層19,而將其用作記憶元件1之上部電極之一部分。但是,亦可於積層體90之加工(記憶胞MC之形成)後去除遮罩層19。For example, the mask layer 19 is not removed but used as a part of the upper electrode of the memory element 1 . However, the mask layer 19 may be removed after the laminate 90 is processed (formation of the memory cells MC).

如圖6所示,絕緣層61以嵌埋於複數個記憶胞MC間之區域之方式形成於絕緣層60及記憶胞MC上。從遮罩層19之上表面上去除絕緣層61,以露出遮罩層19。As shown in FIG. 6 , the insulating layer 61 is formed on the insulating layer 60 and the memory cells MC in a manner that it is embedded in the areas between the plurality of memory cells MC. The insulating layer 61 is removed from the upper surface of the mask layer 19 to expose the mask layer 19 .

其後,如圖3至圖6所示,於絕緣層61及遮罩層19上形成沿X方向分別延伸之複數個配線51。Thereafter, as shown in FIGS. 3 to 6 , a plurality of wirings 51 respectively extending along the X direction are formed on the insulating layer 61 and the mask layer 19 .

藉此,形成本實施方式之記憶裝置100之記憶胞陣列110。Thus, the memory cell array 110 of the memory device 100 of this embodiment is formed.

其後,可基於公知之技術,形成用於連接記憶胞陣列110與下層之電路之各種構成構件。Thereafter, various components for connecting the memory cell array 110 and underlying circuits may be formed based on known techniques.

藉由以上製造步驟,完成本實施方式之記憶裝置100。Through the above manufacturing steps, the memory device 100 of this embodiment is completed.

(3)總結 於具有複數個記憶胞之一般記憶裝置中,在X方向或Y方向上相鄰之複數個記憶胞可能會因記憶胞間之間隔縮小而無法充分地分離,上述記憶胞包含沿Z方向設置於互不相同之高度之記憶元件及選擇器。 (3) Summary In a general memory device with a plurality of memory cells, a plurality of memory cells adjacent in the X direction or the Y direction may not be fully separated due to the narrowing of the distance between the memory cells. The above-mentioned memory cells include those arranged along the Z direction. Memory elements and selectors of different heights.

例如,出於防止由附著物引起之短路之目的而使MTJ元件具有錐形構造之情形時,有MTJ元件之下方之記憶胞間之間隔變得更小,較MTJ元件更靠下方之構件(例如開關元件)之分離變難之趨勢。For example, when the MTJ element has a tapered structure for the purpose of preventing short circuits caused by attachments, the distance between the memory cells below the MTJ element becomes smaller, and the member further below the MTJ element ( For example, switching components) tend to become more difficult to separate.

於本實施方式之記憶裝置(例如MRAM)100中,中間層30設置於記憶元件(例如MTJ元件)1與開關元件(選擇器)2之間。In the memory device (eg MRAM) 100 of this embodiment, the intermediate layer 30 is provided between the memory element (eg MTJ element) 1 and the switching element (selector) 2 .

中間層30之蝕刻速率高於其他構件(例如遮罩層19)之蝕刻速率。藉此,即便中間層30之蝕刻條件與MTJ元件1之蝕刻條件相同,中間層30亦不會成為錐形構造,且中間層30之側面相對於基板80之上表面實質上垂直。The etching rate of the intermediate layer 30 is higher than the etching rate of other components (eg, the mask layer 19 ). Therefore, even if the etching conditions of the intermediate layer 30 are the same as those of the MTJ device 1 , the intermediate layer 30 will not become a tapered structure, and the side surfaces of the intermediate layer 30 are substantially vertical relative to the upper surface of the substrate 80 .

因此,於X方向及Y方向上相鄰之複數個中間層30間產生相對較大之空間。即便為MTJ元件1之側面及中間層30之側面被絕緣層40覆蓋之狀態,亦可於中間層30間形成相對較大之空間。其結果,於本實施方式中,不使X方向及Y方向上之記憶胞MC間之間隔(間距)增加,便能確保用於對MTJ元件1之下方之構件(例如用於構成開關元件2之複數層)進行加工之空間。Therefore, a relatively large space is generated between the plurality of adjacent intermediate layers 30 in the X direction and the Y direction. Even if the side surfaces of the MTJ element 1 and the side surfaces of the intermediate layer 30 are covered by the insulating layer 40 , a relatively large space can be formed between the intermediate layers 30 . As a result, in this embodiment, the distance (pitch) between the memory cells MC in the X direction and the Y direction can be ensured without increasing the distance between the components below the MTJ element 1 (for example, for composing the switching element 2 Multiple layers) space for processing.

因此,於本實施方式中,以記憶胞MC為單位將開關元件2分離,而未產生用於形成開關元件2之構件之加工不良。Therefore, in this embodiment, the switching element 2 is separated in units of memory cells MC without causing processing defects in the components used to form the switching element 2 .

於本實施方式中,即便於錐形之MTJ元件中,MTJ元件1之下部之尺寸大於該MTJ元件1之上部之尺寸之情形時,亦可藉由中間層30之配置及中間層30之蝕刻來確保用於加工MTJ元件1之下方之開關元件2之空間。因此,可對MTJ元件1之側面照射傾斜成足以去除導電性附著物之角度之離子束。In this embodiment, even in a tapered MTJ element, when the size of the lower part of the MTJ element 1 is larger than the size of the upper part of the MTJ element 1 , the arrangement of the intermediate layer 30 and the etching of the intermediate layer 30 can also be used. To ensure space for processing the switching element 2 below the MTJ element 1. Therefore, the side surface of the MTJ element 1 can be irradiated with an ion beam tilted at an angle sufficient to remove conductive deposits.

藉此,本實施方式之記憶裝置100可減少由導電性附著物所致之磁性層11、13間之短路引起之不良。Thereby, the memory device 100 of this embodiment can reduce defects caused by short circuits between the magnetic layers 11 and 13 caused by conductive attachments.

於本實施方式中,藉由配置中間層30來確保記憶胞MC間之空間,從而可增加覆蓋MTJ元件1之絕緣層40之厚度。其結果,本實施方式之記憶裝置100可減少因對開關元件2進行加工時之蝕刻造成之MTJ元件1之損傷。In this embodiment, by arranging the intermediate layer 30 to ensure the space between the memory cells MC, the thickness of the insulating layer 40 covering the MTJ element 1 can be increased. As a result, the memory device 100 of this embodiment can reduce damage to the MTJ element 1 caused by etching during processing of the switching element 2 .

根據開關元件2之構成構件,開關元件2之表面之平坦性可能會劣化。例如,於將氧化矽層用於可變電阻層之情形時,有時會將摻雜劑(例如砷)摻雜在氧化矽層中。於該情形時,開關元件2之表面變粗糙。於MTJ元件1形成於具有粗糙之表面之開關元件2上之情形時,構成MTJ元件1之層受到開關元件2之表面粗糙度之不良影響。其結果,MTJ元件1之特性可能會劣化。Depending on the constituent members of the switching element 2, the flatness of the surface of the switching element 2 may be deteriorated. For example, when a silicon oxide layer is used as a variable resistance layer, a dopant (eg, arsenic) may be doped into the silicon oxide layer. In this case, the surface of the switching element 2 becomes rough. In the case where the MTJ element 1 is formed on the switching element 2 having a rough surface, the layers constituting the MTJ element 1 are adversely affected by the surface roughness of the switching element 2 . As a result, the characteristics of the MTJ element 1 may deteriorate.

於本實施方式之記憶裝置100中,中間層30可減小開關元件2之表面粗糙度。因此,於本實施方式中,可減少構成MTJ元件1之層從下方之開關元件2之粗糙之表面受到之不良影響。In the memory device 100 of this embodiment, the intermediate layer 30 can reduce the surface roughness of the switching element 2 . Therefore, in this embodiment, it is possible to reduce the adverse effects that the layer constituting the MTJ element 1 receives from the rough surface of the switching element 2 below.

其結果,本實施方式之記憶裝置100可提高MTJ元件1之特性。As a result, the memory device 100 of this embodiment can improve the characteristics of the MTJ element 1 .

於本實施方式中,藉由配置中間層30,MTJ元件1與開關元件2之間之距離增大。因此,MTJ元件1與開關元件2之間之熱傳播減少。於中間層30包含金屬之情形時,記憶胞MC之散熱特性因中間層30而提高。其結果,於本實施方式中,MTJ元件1之熱穩定性提高。因此,本實施方式之記憶裝置100之動作可靠性提高。In this embodiment, by disposing the intermediate layer 30 , the distance between the MTJ element 1 and the switching element 2 is increased. Therefore, the heat propagation between the MTJ element 1 and the switching element 2 is reduced. When the middle layer 30 includes metal, the heat dissipation characteristics of the memory cell MC are improved by the middle layer 30 . As a result, in this embodiment, the thermal stability of the MTJ element 1 is improved. Therefore, the operation reliability of the memory device 100 of this embodiment is improved.

如上所述,實施方式之記憶裝置可減少記憶裝置之不良。As mentioned above, the memory device of the embodiment can reduce the defects of the memory device.

(4)變化例 參照圖14至圖16,對實施方式之記憶裝置之變化例進行說明。 (4) Variations Modification examples of the memory device of the embodiment will be described with reference to FIGS. 14 to 16 .

圖14、圖15及圖16分別示出了實施方式之記憶裝置100之變化例的記憶胞MC之截面構造。FIG. 14 , FIG. 15 and FIG. 16 respectively show the cross-sectional structure of the memory cell MC of a variation of the memory device 100 of the embodiment.

如圖14所示,中間層30A亦可不為多孔層,只要是能夠確保蝕刻速率大於硬質遮罩(或記憶元件之構成構件)之蝕刻速率之構件即可。於該情形時,中間層30A不包含氣隙。As shown in FIG. 14 , the intermediate layer 30A does not need to be a porous layer, as long as it can ensure that the etching rate is greater than the etching rate of the hard mask (or the component of the memory element). In this case, the middle layer 30A does not include an air gap.

不包含氣隙之中間層(非多孔層之中間層)30A係包含選自硼(B)、矽(Si)、鎂(Mg)、鋁(Al)、鈧(Sc)、鈦(Ti)、釩(V)、鎵(Ga)、鍺(Ge)、釔(Y)、鋯(Zr)、鈮(Nb)、鉬(Mo)、鈀(Pd)、銀(Ag)、鉿(Hf)、銥(Ir)及鉑(Pt)中之至少1個構件之層(膜)。The intermediate layer 30A that does not contain air gaps (the intermediate layer of the non-porous layer) contains boron (B), silicon (Si), magnesium (Mg), aluminum (Al), scandium (Sc), titanium (Ti), Vanadium (V), gallium (Ga), germanium (Ge), yttrium (Y), zirconium (Zr), niobium (Nb), molybdenum (Mo), palladium (Pd), silver (Ag), hafnium (Hf), A layer (film) consisting of at least one component of iridium (Ir) and platinum (Pt).

與上述例相同,中間層30A之Z方向上之尺寸大於MTJ元件1之Z方向上之尺寸。又,中間層30A之Z方向上之尺寸大於導電層19之Z方向上之尺寸。Similar to the above example, the size of the intermediate layer 30A in the Z direction is larger than the size of the MTJ element 1 in the Z direction. In addition, the size of the intermediate layer 30A in the Z direction is larger than the size of the conductive layer 19 in the Z direction.

如圖15所示,中間層30B亦可包含複數層301、302。例如,層301之材料與層302之材料不同。作為一例,層301、302之中,一層301為包含氣隙39之多孔層。層301、302之中,另一層302不包含氣隙。As shown in FIG. 15 , the intermediate layer 30B may also include a plurality of layers 301 and 302 . For example, the material of layer 301 is different from the material of layer 302. As an example, among the layers 301 and 302, one layer 301 is a porous layer including air gaps 39. Among the layers 301 and 302, the other layer 302 does not contain an air gap.

層302設置於導電層18A與多孔層301之間。藉此,磁性層14(及導電層18A)之基底之平坦性提高。其結果,MTJ元件1之特性提高。Layer 302 is provided between conductive layer 18A and porous layer 301. Thereby, the flatness of the base of the magnetic layer 14 (and the conductive layer 18A) is improved. As a result, the characteristics of the MTJ element 1 are improved.

例如,理想的是層302之Z方向上之尺寸(膜厚)小於導電層19之Z方向上之尺寸及層301之Z方向上之尺寸。關於MTJ元件1之蝕刻條件,理想的是層302之蝕刻速率小於導電層19之蝕刻速率。For example, it is desirable that the Z-direction size (film thickness) of layer 302 is smaller than the Z-direction size of conductive layer 19 and the Z-direction size of layer 301 . Regarding the etching conditions of the MTJ element 1, it is ideal that the etching rate of the layer 302 is smaller than the etching rate of the conductive layer 19.

作為層301之材料之一例,層301例如包含選自硼、碳、矽、鎂、鋁、鈧、鈦、釩、鎵、鍺、釔、鋯、鈮、鉬、鈀、銀、鉿、鉭、鎢、銥及鉑等中之一者。As an example of the material of the layer 301, the layer 301 includes, for example, a material selected from the group consisting of boron, carbon, silicon, magnesium, aluminum, scandium, titanium, vanadium, gallium, germanium, yttrium, zirconium, niobium, molybdenum, palladium, silver, hafnium, tantalum, One of tungsten, iridium and platinum.

層302由MRAM之記憶胞MC內之電極(導電層)所使用之公知之材料構成。Layer 302 is composed of well-known materials used for electrodes (conductive layers) in memory cells MC of MRAM.

於對記憶胞進行加工時之某蝕刻條件下,包含複數層301、302之中間層30B整體之蝕刻速率高於導電層(硬質遮罩)19之蝕刻速率。因此,對層301、302進行蝕刻後,導電層19會殘存於MTJ元件1上。Under certain etching conditions when processing memory cells, the etching rate of the entire intermediate layer 30B including the plurality of layers 301 and 302 is higher than the etching rate of the conductive layer (hard mask) 19 . Therefore, after the layers 301 and 302 are etched, the conductive layer 19 will remain on the MTJ element 1 .

於圖15中,示出了中間層30B包含兩層301、302之例。但是,中間層30B亦可包含3層以上。In FIG. 15 , an example in which the intermediate layer 30B includes two layers 301 and 302 is shown. However, the intermediate layer 30B may include three or more layers.

如圖16所示,中間層30C亦可為於粒狀部310間之空間內設置有絕緣體315代替氣隙之層。例如,絕緣體315為氧化矽、碳化矽或有機物。As shown in FIG. 16 , the intermediate layer 30C may also be a layer in which an insulator 315 is provided in the space between the granular portions 310 instead of the air gap. For example, the insulator 315 is silicon oxide, silicon carbide or organic matter.

中間層30C進而包含複數個孔319。The middle layer 30C further includes a plurality of holes 319 .

圖14、圖15及圖16之變化例之記憶裝置可獲得與上述實施方式之記憶裝置之效果相同之效果。The memory device of the modified example of FIG. 14 , FIG. 15 and FIG. 16 can achieve the same effect as the memory device of the above embodiment.

(5)其他 於上述實施方式中,例示有MRAM作為本實施方式之記憶裝置100。但是,本實施方式之記憶裝置100亦可為MRAM以外之記憶裝置,只要是於記憶胞MC內之記憶元件1與選擇器(開關元件)2之間設置有中間層30之裝置即可。 (5)Others In the above embodiment, MRAM is exemplified as the memory device 100 of this embodiment. However, the memory device 100 of this embodiment can also be a memory device other than MRAM, as long as it is a device in which an intermediate layer 30 is provided between the memory element 1 and the selector (switching element) 2 in the memory cell MC.

例如,實施方式之記憶裝置100亦可為使用可變電阻元件(例如過渡金屬氧化物元件)作為記憶元件之記憶裝置(例如,如ReRAM(Resistance Random Access Memory,電阻式隨機存取記憶體)等電阻變化記憶體)、使用相變元件作為記憶元件之記憶裝置(例如,如PCRAM(Phase Change Random Access Memory,相變隨機存取記憶體)等相變記憶體)、或使用鐵電元件作為記憶元件之記憶裝置(例如,如FeRAM(Ferroelectric Random Access Memory,鐵電隨機存取記憶體)等鐵電式隨機存取記憶體)。For example, the memory device 100 of the embodiment can also be a memory device that uses variable resistance elements (such as transition metal oxide elements) as memory elements (such as ReRAM (Resistance Random Access Memory, resistive random access memory), etc. Resistance change memory), memory devices that use phase change elements as memory elements (for example, phase change memories such as PCRAM (Phase Change Random Access Memory, phase change random access memory)), or use ferroelectric elements as memory Memory devices of components (for example, ferroelectric random access memories such as FeRAM (Ferroelectric Random Access Memory, ferroelectric random access memory)).

本實施方式之記憶裝置100即便為MRAM以外之記憶裝置,亦可獲得上述實施方式中所說明之效果。Even if the memory device 100 of this embodiment is a memory device other than MRAM, the effects described in the above embodiment can be obtained.

對本發明之若干實施方式進行了說明,但該等實施方式係作為示例提出,並不意圖限定發明之範圍。該等新穎之實施方式能夠以其他各種形態實施,並且可於不脫離發明之主旨之範圍內進行各種省略、替換、變更。該等實施方式或其變化包含於發明之範圍或主旨中,並且包含於申請專利範圍中記載之發明及與其等同之範圍中。 [相關申請之引用] Several embodiments of the present invention have been described, but these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, substitutions, and changes can be made without departing from the gist of the invention. These embodiments or variations thereof are included in the scope or gist of the invention, and are included in the scope of the invention described in the patent application and its equivalents. [Citations of related applications]

本申請享受以日本專利申請2022-033696號(申請日:2022年3月4日)及美國專利申請17/884790(申請日:2022年8月10日)為基礎申請之優先權。本申請藉由參照該基礎申請而包含基礎申請之全部內容。This application enjoys the priority of applications based on Japanese Patent Application No. 2022-033696 (filing date: March 4, 2022) and US Patent Application No. 17/884790 (filing date: August 10, 2022). This application incorporates the entire contents of the basic application by reference to the basic application.

1:記憶元件 1X:構件 1Y:構件 1Z:構件 2:選擇器 2Z:構件 11, 13:磁性層 12:隧道勢壘層 14:偏移消除層 15:非磁性層 18A, 18B:導電層 19:導電層 19V:遮罩層 19W:遮罩層 19X:遮罩層 19Y:遮罩層 19Z:遮罩層 20:可變電阻層 21A, 21B:電極(導電層) 30:中間層 30A:中間層 30B:中間層 30C:中間層 30Y:中間層 30Z:中間層 39:氣隙 40:絕緣層 40Z:絕緣層 50:配線 51:配線(導電層) 55:插塞 60:絕緣層 61:絕緣層 80:基板 81:絕緣層 90:積層體 90U:積層體 90V:積層體 90W:積層體 90X:積層體 100:記憶裝置 110:記憶胞陣列 120:列控制電路 130:行控制電路 140:寫入電路 150:讀出電路 160:電壓產生電路 170:輸入輸出電路 180:控制電路 301,302:層 310:粒狀部 311:粒狀部 315:絕緣體 319:孔 900:外部裝置 ADR:位址 BL(BL<0>, BL<1>, …, BL<i-1>):位元線 CMD:指令 CNT:控制信號 D1a:尺寸 D1b:尺寸 D2:尺寸 D3:尺寸 DT:資料 IB1:離子束 MC:記憶胞 T1:尺寸 T2:尺寸 T3:尺寸 Tq:膜厚 Tx:尺寸 Tz:尺寸(厚度) Tw:尺寸 WL(WL<0>, WL<1>, …, WL<j-1>):字元線 X:方向 Y:方向 Z:方向 1: Memory component 1X:Component 1Y: Component 1Z: Component 2: Selector 2Z: Component 11, 13: Magnetic layer 12: Tunnel barrier layer 14:Offset elimination layer 15: Non-magnetic layer 18A, 18B: Conductive layer 19:Conductive layer 19V: Mask layer 19W: Mask layer 19X: Mask layer 19Y: Mask layer 19Z: Mask layer 20: Variable resistance layer 21A, 21B: Electrode (conductive layer) 30:Middle layer 30A: middle layer 30B:Middle layer 30C: middle layer 30Y: middle layer 30Z: middle layer 39:Air gap 40:Insulation layer 40Z: Insulation layer 50:Wiring 51: Wiring (conductive layer) 55:Plug 60:Insulation layer 61: Insulation layer 80:Substrate 81:Insulation layer 90:Laminated body 90U:Laminated body 90V:Laminated body 90W:Laminated body 90X:Laminated body 100:Memory device 110: Memory cell array 120: Column control circuit 130: Row control circuit 140:Writing circuit 150: Readout circuit 160: Voltage generating circuit 170: Input and output circuit 180:Control circuit 301,302:layer 310: Granular part 311: Granular part 315:Insulator 319:hole 900:External device ADR: address BL(BL<0>, BL<1>, …, BL<i-1>): bit line CMD: command CNT: control signal D1a: size D1b: size D2: size D3: size DT:data IB1: Ion beam MC: memory cell T1: size T2: size T3: size Tq: film thickness Tx: size Tz: size (thickness) Tw: size WL(WL<0>, WL<1>, …, WL<j-1>): character line X: direction Y: direction Z: direction

圖1係表示實施方式之記憶裝置之構成例之方塊圖。  圖2係表示實施方式之記憶裝置之記憶胞陣列之構成例的圖。  圖3係表示實施方式之記憶裝置之記憶胞陣列之構成例的鳥瞰圖。  圖4係表示實施方式之記憶裝置之記憶胞陣列之構成例的剖視圖。  圖5係表示實施方式之記憶裝置之記憶胞陣列之構成例的剖視圖。  圖6係表示實施方式之記憶裝置之記憶胞之構成例的剖視圖。  圖7係用於說明實施方式之記憶裝置之記憶胞之構成例的圖。  圖8係表示實施方式之記憶裝置之製造方法之一步驟的剖視步驟圖。  圖9係表示實施方式之記憶裝置之製造方法之一步驟的剖視步驟圖。  圖10係表示實施方式之記憶裝置之製造方法之一步驟的剖視步驟圖。  圖11係表示實施方式之記憶裝置之製造方法之一步驟的剖視步驟圖。  圖12係表示實施方式之記憶裝置之製造方法之一步驟的剖視步驟圖。  圖13係表示實施方式之記憶裝置之製造方法之一步驟的剖視步驟圖。  圖14係表示實施方式之記憶裝置之變化例之剖視圖。  圖15係表示實施方式之記憶裝置之變化例之剖視圖。  圖16係表示實施方式之記憶裝置之變化例之剖視圖。FIG. 1 is a block diagram showing an example of the configuration of the memory device according to the embodiment. 2 is a diagram showing an example of the structure of a memory cell array of the memory device according to the embodiment. 3 is a bird's-eye view showing an example of the structure of a memory cell array of the memory device according to the embodiment. 4 is a cross-sectional view showing an example of the structure of a memory cell array of the memory device according to the embodiment. 5 is a cross-sectional view showing an example of the structure of a memory cell array of the memory device according to the embodiment. 6 is a cross-sectional view showing an example of the structure of a memory cell of the memory device according to the embodiment. 7 is a diagram illustrating an example of the structure of a memory cell of the memory device according to the embodiment. 8 is a cross-sectional step diagram showing one step of the manufacturing method of the memory device according to the embodiment. 9 is a cross-sectional step diagram showing one step of the manufacturing method of the memory device according to the embodiment. 10 is a cross-sectional step diagram showing one step of the manufacturing method of the memory device according to the embodiment. 11 is a cross-sectional step diagram showing one step of the manufacturing method of the memory device according to the embodiment. 12 is a cross-sectional step diagram showing one step of the manufacturing method of the memory device according to the embodiment. 13 is a cross-sectional step diagram showing one step of the manufacturing method of the memory device according to the embodiment. 14 is a cross-sectional view showing a variation of the memory device according to the embodiment. 15 is a cross-sectional view showing a variation of the memory device according to the embodiment. 16 is a cross-sectional view showing a variation of the memory device according to the embodiment.

1:記憶元件 1: Memory component

2:選擇器 2: Selector

11,13:磁性層 11,13: Magnetic layer

12:隧道勢壘層 12: Tunnel barrier layer

14:偏移消除層 14:Offset elimination layer

15:非磁性層 15: Non-magnetic layer

18A,18B:導電層 18A, 18B: conductive layer

19:導電層 19:Conductive layer

20:可變電阻層 20: Variable resistance layer

21A,21B:電極(導電層) 21A, 21B: Electrode (conductive layer)

30:中間層 30:Middle layer

39:氣隙 39:Air gap

40:絕緣層 40:Insulation layer

50:配線 50:Wiring

51:配線(導電層) 51: Wiring (conductive layer)

55:插塞 55:Plug

60:絕緣層 60:Insulation layer

61:絕緣層 61: Insulation layer

80:基板 80:Substrate

81:絕緣層 81:Insulation layer

90:積層體 90:Laminated body

D1a:尺寸 D1a: size

D1b:尺寸 D1b: size

D2:尺寸 D2: size

D3:尺寸 D3: size

MC:記憶胞 MC: memory cell

T1:尺寸 T1: size

T2:尺寸 T2: size

T3:尺寸 T3: size

Tq:膜厚 Tq: film thickness

Tx:尺寸 Tx: size

X:方向 X: direction

Y:方向 Y: direction

Z:方向 Z: direction

Claims (19)

一種記憶裝置,其具備:  記憶元件,其在相對於基板之第1面垂直之第1方向上,設置於上述基板之上方;  開關元件,其設置於上述基板與上述記憶元件之間;及  第1層,其設置於上述記憶元件與上述開關元件之間;且  上述第1層包含選自包括硼、碳、矽、鎂、鋁、鈧、鈦、釩、鎵、鍺、釔、鋯、鈮、鉬、鈀、銀、鉿、鉭、鎢、銥及鉑之群中之至少一者,上述第1層包含氣隙。A memory device, which is provided with: a memory element, which is arranged above the above-mentioned substrate in a first direction perpendicular to the first surface of the substrate; a switching element, which is arranged between the above-mentioned substrate and the above-mentioned memory element; and 1 layer, which is disposed between the above-mentioned memory element and the above-mentioned switching element; and The above-mentioned first layer includes boron, carbon, silicon, magnesium, aluminum, scandium, titanium, vanadium, gallium, germanium, yttrium, zirconium, niobium , molybdenum, palladium, silver, hafnium, tantalum, tungsten, iridium and platinum, and the first layer includes an air gap. 如請求項1之記憶裝置,其進而具備第1導電層,  該第1導電層於上述第1方向上設置於上述記憶元件之上方,  上述第1層之上述第1方向上之尺寸大於上述第1導電層之上述第1方向上之尺寸。The memory device of claim 1 further includes a first conductive layer, the first conductive layer is disposed above the memory element in the first direction, and the size of the first layer in the first direction is larger than the above-mentioned first layer. 1. The size of the conductive layer in the above-mentioned first direction. 如請求項2之記憶裝置,其中  上述第1導電層係鎢層或鉬層。Such as the memory device of claim 2, wherein the above-mentioned first conductive layer is a tungsten layer or a molybdenum layer. 如請求項2之記憶裝置,其中  上述第1層之蝕刻速率高於上述第1導電層之蝕刻速率。Such as the memory device of claim 2, wherein the etching rate of the above-mentioned first layer is higher than the etching rate of the above-mentioned first conductive layer. 如請求項1之記憶裝置,其中  上述第1層之上述第1方向上之尺寸為上述記憶元件之上述第1方向上之尺寸以上。The memory device of claim 1, wherein the size of the first layer in the first direction is greater than the size of the memory element in the first direction. 如請求項1之記憶裝置,其中  上述記憶元件之下部之尺寸大於上述記憶元件之上部之尺寸。Such as the memory device of claim 1, wherein the size of the lower part of the above-mentioned memory element is larger than the size of the upper part of the above-mentioned memory element. 如請求項1之記憶裝置,其中  上述第1層之側面相對於上述第1方向平行。The memory device of claim 1, wherein the side surface of the first layer is parallel to the first direction. 如請求項1之記憶裝置,其進而具備:  第1導電層,其於上述第1方向上設置於上述記憶元件之上方;及  第1絕緣層,其連續設置於上述第1導電層之側面上、上述記憶元件之側面上及上述第1層之側面上。The memory device of claim 1 further includes: a first conductive layer, which is disposed above the memory element in the first direction; and a first insulating layer, which is continuously disposed on the side of the first conductive layer , on the side of the above-mentioned memory element and on the side of the above-mentioned first layer. 一種記憶裝置,其具備:  記憶元件,其在相對於基板之第1面垂直之第1方向上,設置於上述基板之上方;  開關元件,其設置於上述基板與上述記憶元件之間;及  第1層,其設置於上述記憶元件與上述開關元件之間;且  上述第1層包含選自包括硼、矽、鎂、鋁、鈧、鈦、釩、鎵、鍺、釔、鋯、鈮、鉬、鈀、銀、鉿、銥及鉑之群中之至少一者。A memory device, which is provided with: a memory element, which is arranged above the above-mentioned substrate in a first direction perpendicular to the first surface of the substrate; a switching element, which is arranged between the above-mentioned substrate and the above-mentioned memory element; and 1 layer, which is disposed between the above-mentioned memory element and the above-mentioned switching element; and The above-mentioned first layer includes boron, silicon, magnesium, aluminum, scandium, titanium, vanadium, gallium, germanium, yttrium, zirconium, niobium, molybdenum , at least one of the group consisting of palladium, silver, hafnium, iridium and platinum. 如請求項9之記憶裝置,其進而具備第1導電層,  該第1導電層於上述第1方向上設置於上述記憶元件之上方,  上述第1層之上述第1方向上之尺寸大於上述第1導電層之上述第1方向上之尺寸。The memory device of claim 9 further includes a first conductive layer, which is disposed above the memory element in the first direction, and the size of the first layer in the first direction is larger than the first conductive layer. 1. The size of the conductive layer in the above-mentioned first direction. 如請求項10之記憶裝置,其中  上述第1層之蝕刻速率高於上述第1導電層之蝕刻速率。The memory device of claim 10, wherein the etching rate of the first layer is higher than the etching rate of the first conductive layer. 一種記憶裝置之製造方法,其包含如下步驟:  於基板之上方形成包含第1構件、第2構件及第1層之積層體,上述第1構件於相對於上述基板之表面垂直之第1方向上位於上述基板之上方,上述第2構件於上述第1方向上位於上述第1構件之上方,上述第1層設置於上述第1構件與上述第2構件之間;  於上述第1方向上,在上述積層體之上方形成遮罩層;  基於上述遮罩層之形狀,對上述第2構件及上述第1層進行蝕刻,由上述第2構件形成記憶元件;  於經蝕刻之上述第2構件及上述第1層上形成第1絕緣層;及  對上述第1構件進行蝕刻,由上述第1構件形成開關元件;且  上述第1層包含選自包括硼、碳、矽、鎂、鋁、鈧、鈦、釩、鎵、鍺、釔、鋯、鈮、鉬、鈀、銀、鉿、鉭、鎢、銥及鉑之群中之至少一者;  上述第1層包含氣隙。A method of manufacturing a memory device, which includes the following steps: forming a laminate including a first member, a second member and a first layer on a substrate, the first member being in a first direction perpendicular to the surface of the substrate Located above the above-mentioned substrate, the above-mentioned second member is located above the above-mentioned first member in the above-mentioned first direction, and the above-mentioned first layer is provided between the above-mentioned first member and the above-mentioned second member; In the above-mentioned first direction, in A mask layer is formed on the above-mentioned laminated body; Based on the shape of the above-mentioned mask layer, the above-mentioned second member and the above-mentioned first layer are etched to form a memory element from the above-mentioned second member; On the etched above-mentioned second member and the above-mentioned A first insulating layer is formed on the first layer; and the above-mentioned first component is etched to form a switching element from the above-mentioned first component; and the above-mentioned first layer contains a material selected from the group consisting of boron, carbon, silicon, magnesium, aluminum, scandium, and titanium. , at least one of the group consisting of vanadium, gallium, germanium, yttrium, zirconium, niobium, molybdenum, palladium, silver, hafnium, tantalum, tungsten, iridium and platinum; The above-mentioned first layer includes an air gap. 如請求項12之記憶裝置之製造方法,其中  上述第1層之蝕刻速率高於上述遮罩層之蝕刻速率。The method of manufacturing a memory device of claim 12, wherein the etching rate of the first layer is higher than the etching rate of the mask layer. 如請求項12之記憶裝置之製造方法,其中  上述遮罩層為鎢層或鉬層。The manufacturing method of the memory device of claim 12, wherein the above-mentioned mask layer is a tungsten layer or a molybdenum layer. 如請求項12之記憶裝置之製造方法,其中  對上述第1構件進行蝕刻前之上述遮罩層之上述第1方向上之第1尺寸大於上述第1層之上述第1方向上之第2尺寸,  對上述第2構件進行蝕刻後之上述遮罩層之上述第1方向上之第3尺寸小於上述第2尺寸。The manufacturing method of a memory device as claimed in claim 12, wherein the first dimension of the mask layer in the first direction before etching the first member is greater than the second dimension of the first layer in the first direction. , The third dimension of the mask layer in the first direction after etching the second member is smaller than the second dimension. 如請求項12之記憶裝置之製造方法,其中  上述第1層之上述第1方向上之尺寸為上述記憶元件之上述第1方向上之尺寸以上。The method of manufacturing a memory device according to claim 12, wherein the size of the first layer in the first direction is greater than the size of the memory element in the first direction. 如請求項12之記憶裝置之製造方法,其中  上述記憶元件之上部之尺寸大於上述記憶元件之下部之尺寸。The manufacturing method of the memory device of claim 12, wherein the size of the upper part of the above-mentioned memory element is larger than the size of the lower part of the above-mentioned memory element. 如請求項12之記憶裝置之製造方法,其中  經蝕刻之上述第1層之側面相對於上述第1方向平行。The manufacturing method of a memory device as claimed in claim 12, wherein the side surfaces of the etched first layer are parallel to the first direction. 如請求項12之記憶裝置之製造方法,其中上述第2構件及上述第1層之蝕刻係利用離子束執行,  上述離子束從相對於上述基板之表面傾斜之方向照射至上述積層體。The method of manufacturing a memory device according to claim 12, wherein the etching of the second member and the first layer is performed using an ion beam, and the ion beam is irradiated to the laminated body from a direction inclined with respect to the surface of the substrate.
TW111149494A 2022-03-04 2022-12-22 Memory device and method for manufacturing memory device TW202336751A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022033696A JP2023128981A (en) 2022-03-04 2022-03-04 Memory device and method for manufacturing memory device
JP2022-033696 2022-03-04
US17/884,790 2022-08-10
US17/884,790 US20230284537A1 (en) 2022-03-04 2022-08-10 Memory device and method for manufacturing memory device

Publications (1)

Publication Number Publication Date
TW202336751A true TW202336751A (en) 2023-09-16

Family

ID=88927349

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111149494A TW202336751A (en) 2022-03-04 2022-12-22 Memory device and method for manufacturing memory device

Country Status (1)

Country Link
TW (1) TW202336751A (en)

Similar Documents

Publication Publication Date Title
US20170117027A1 (en) Top pinned sot-mram architecture with in-stack selector
US8213216B2 (en) Shared bit line and source line resistive sense memory structure
US8514608B2 (en) Bipolar select device for resistive sense memory
US20190096461A1 (en) Memory device
US20070091673A1 (en) Semiconductor memory device
US8203875B2 (en) Anti-parallel diode structure and method of fabrication
US10707269B2 (en) Semiconductor storage device
KR20140095792A (en) Memory device using spin hall effect and methods of manufacturing and operating the same
JP5555685B2 (en) Magnetic stack and memory cell and method of manufacturing the cell
US20200083288A1 (en) Magnetic memory
US10854252B2 (en) Magnetic storage device with a stack of magnetic layers including iron (Fe) and cobalt (co)
WO2003010772A1 (en) Non orthogonal mram device
CN115811926A (en) Storage device
US20220028441A1 (en) Magnetoresistive memory device and method of manufacturing magnetoresistive memory device
TWI702743B (en) Magnetic storage device
CN116709785A (en) Memory device and method of manufacturing the same
US11316095B2 (en) Magnetic device which improves write error rate while maintaining retention properties
TW202336751A (en) Memory device and method for manufacturing memory device
US20230284537A1 (en) Memory device and method for manufacturing memory device
US7787289B2 (en) MRAM design with local write conductors of reduced cross-sectional area
US20230298647A1 (en) Memory device
US20220302373A1 (en) Magnetic memory device and manufacturing method of magnetic memory device
US20220293850A1 (en) Magnetoresistance memory device and method of manufacturing magnetoresistance memory device
JP2006196683A (en) Magnetoresistive effect element and magnetic memory
CN115084355A (en) Magnetic memory device and method for manufacturing magnetic memory device