TW202334198A - Vaccine compositions against sars-cov-2 omicron ba.4/ba.5 to prevent infection and treat long-haul covid - Google Patents

Vaccine compositions against sars-cov-2 omicron ba.4/ba.5 to prevent infection and treat long-haul covid Download PDF

Info

Publication number
TW202334198A
TW202334198A TW111137163A TW111137163A TW202334198A TW 202334198 A TW202334198 A TW 202334198A TW 111137163 A TW111137163 A TW 111137163A TW 111137163 A TW111137163 A TW 111137163A TW 202334198 A TW202334198 A TW 202334198A
Authority
TW
Taiwan
Prior art keywords
protein
sars
rbd
omicron
vaccine
Prior art date
Application number
TW111137163A
Other languages
Chinese (zh)
Inventor
長怡 王
彭文君
Original Assignee
聯亞生技開發股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聯亞生技開發股份有限公司 filed Critical 聯亞生技開發股份有限公司
Publication of TW202334198A publication Critical patent/TW202334198A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/10Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55505Inorganic adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55561CpG containing adjuvants; Oligonucleotide containing adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55566Emulsions, e.g. Freund's adjuvant, MF59
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • A61K2039/575Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 humoral response
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/70Multivalent vaccine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • C12N2510/02Cells for production
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein

Abstract

The present disclosure is directed to amino acid sequences from SARS-CoV2 S1-RBD Omicron variants BA.4/BA.5 protein (SEQ ID NO: 11) and N, M and S2 derived Th and CTL epitope peptides (SEQ ID Nos: 17-22) and an idealized pathogen derived artificial Th epitope peptide (SEQ ID NO: 23) to offer effective prevention and treatment of long-haul COVID with specificities against SARS-CoV2 Omicron variants BA.4/BA.5. The disclosed vaccine compositions utilize amino acid sequences for the design and manufacture of optimal SARS-CoV-2 antigenic proteins, Th/CTL peptide immunogen constructs, CHO- derived S1-RBD Omicron variants BA.4/BA.5-scFc protein, and compositions thereof, as vaccines for prevention and treatment of long-haul COVID.

Description

用於避免感染與治療遠程新冠肺炎之針對SARS-CoV-2 OMICRON BA.4/BA.5的疫苗組成物Vaccine composition against SARS-CoV-2 OMICRON BA.4/BA.5 for preventing infection and treating long-term COVID-19

本揭露涉及用於避免感染與治療遠程COVID之針對SARS-CoV-2 Omicron BA.4/BA.5變體的疫苗組合物。The present disclosure relates to vaccine compositions against SARS-CoV-2 Omicron BA.4/BA.5 variants for preventing infection and treating long-term COVID.

SARS是2003年為嚴重急性呼吸系統症候群創建的簡稱,也稱為COVID,是 2020年為冠狀病毒傳染病創建的簡稱。 該疾病最初可能幾乎沒有症狀或沒有症狀,或者可能發展為發燒、咳嗽、呼吸急促、肌肉疼痛與疲倦。併發症可能包括肺炎與急性呼吸窘迫症候群。SARS-CoV-2被稱為嚴重急性呼吸系統症候群冠狀病毒2 (SARS-CoV-2),是指在中國武漢首次發現並導致2019年冠狀病毒傳染病(COVID-19)的冠狀病毒株。SARS is the abbreviation created in 2003 for severe acute respiratory syndrome, also known as COVID, and is the abbreviation created in 2020 for the coronavirus infectious disease. The disease may initially have few or no symptoms, or it may progress to fever, cough, shortness of breath, muscle aches and fatigue. Complications may include pneumonia and acute respiratory distress syndrome. SARS-CoV-2, known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), refers to the strain of coronavirus first discovered in Wuhan, China, that causes the 2019 coronavirus infectious disease (COVID-19).

SARS-CoV-2 Omicron譜系已經席捲全球,從最初的武漢株,具有快速連續優勢亞變體,從BA.1、BA.2,再到現在的BA.4/BA.5,其佔SARS感染病例的90%以上,在傳播性和中和抗體逃逸方面具有壓倒性的優勢。隨附發明人小組(Wang, CY et al  2022a and b)的最新出版物以及連同包含於此的文獻引用,以便於背景參考。The SARS-CoV-2 Omicron lineage has swept the world, starting with the original Wuhan strain, with rapid succession of dominant subvariants, from BA.1, BA.2, and now BA.4/BA.5, which account for 10% of SARS infections More than 90% of cases have overwhelming advantages in transmissibility and neutralizing antibody escape. The most recent publications of the inventor group (Wang, CY et al 2022a and b) are attached together with the literature citations included herein for easy background reference.

雖然追加第三劑的mRNA SARS疫苗可以補償Omicron(BA.1)引起的血清中和抗體的減少(減少20-30倍),當與原始武漢毒株相比,以及住院率和嚴重疾病(80-90%的保護),它對輕度與無症狀感染的保護效果較差(40-50%的保護)。即使在第四次接種後(對18歲及以上的成年人進行第二次追加),以高病毒載量確定的突破性感染也很常見。Although an additional third dose of the mRNA SARS vaccine can compensate for the reduction in serum neutralizing antibodies caused by Omicron (BA.1) (20-30-fold reduction), when compared with the original Wuhan strain, as well as hospitalization rates and severe disease (80 -90% protection), it is less effective at protecting against mild and asymptomatic infections (40-50% protection). Even after the fourth dose (and the second booster for adults 18 years and older), breakthrough infections, identified as high viral loads, are common.

Omicron BA.1與SARS-CoV-2武漢原株相比有嚴重的突變,包括S蛋白中超過35個胺基酸的變化。與S-1受體結合域(S1-RBD,殘基319-541)的2個突變有關,BA.1和BA.2共用12個突變,BA.1與BA.2分別有額外的3個和4個獨特的突變,這使BA.2具有更高的免疫逃避能力。BA.4與BA.5具有相同的棘蛋白。它們與BA.2不同的是,在棘蛋白內的69-70del、L452R、F486V和Q493位的野生型胺基酸有額外的突變,從而使它們比BA.2具有更高的免疫逃避能力。BA.2表現出比BA.1高1.3-1.5倍的傳播性和1.3倍的免疫逃避,此與BA.1免疫血清以1.3至1.4之係數以低效價中和BA.2的發現一致,而且BA.2在BA.1之後可以發生再感染。BA.4/BA.5的傳播性更強,對BA.1/BA.2的免疫和單株抗體具有抗性。Omicron BA.1 has severe mutations compared with the Wuhan original strain of SARS-CoV-2, including more than 35 amino acid changes in the S protein. Related to 2 mutations in the S-1 receptor binding domain (S1-RBD, residues 319-541), 12 mutations are shared between BA.1 and BA.2, with an additional 3 mutations each in BA.1 and BA.2 and 4 unique mutations, which give BA.2 greater immune evasion capabilities. BA.4 and BA.5 have the same spike protein. They differ from BA.2 in that they have additional mutations in the wild-type amino acids at positions 69-70del, L452R, F486V, and Q493 within the spike protein, giving them a higher immune evasion ability than BA.2. BA.2 exhibits 1.3-1.5 times greater transmissibility and 1.3-fold immune evasion than BA.1, consistent with the finding that BA.1 immune sera neutralize BA.2 with a low titer by a factor of 1.3 to 1.4. Moreover, BA.2 can cause reinfection after BA.1. BA.4/BA.5 are more transmissible and resistant to immunity and monoclonal antibodies of BA.1/BA.2.

在雙重接種的成年人中,針對BA.4/BA.5的加強劑(第三劑)誘導的中和效價明顯低於針對BA.1/BA.2的效價。這些都表明,加強型疫苗接種或BA.1/BA.2感染可能無法達到足夠的免疫力來保護人們免受BA.4/BA.5的侵害,而再次感染則很常見。In doubly vaccinated adults, a booster (third dose) against BA.4/BA.5 induced significantly lower neutralizing titers than against BA.1/BA.2. These suggest that booster vaccination or BA.1/BA.2 infection may not achieve sufficient immunity to protect people against BA.4/BA.5, and reinfection is common.

開發成分更新的(特定變體)疫苗已被大力提倡。仍然迫切需要開發疫苗成分,以防止個人感染SARS-CoV-2 Omicron BA.4/BA.5,從而控制疫情,減少由此帶來的痛苦,包括遠程COVID與死亡。The development of (variant-specific) vaccines with newer compositions has been strongly advocated. There remains an urgent need to develop vaccine components to prevent individuals from becoming infected with SARS-CoV-2 Omicron BA.4/BA.5 in order to control the outbreak and reduce the resulting suffering, including long-term COVID-19 and death.

本揭露涉及用於避免感染與治療SARS(COVID)患者之針對SARS-CoV-2 Omicron BA.4/BA.5的疫苗組成物。更具體地而言,該疫苗組成物採用在CHO細胞中生產的融合蛋白作為B細胞免疫原,該融合蛋白在N端包含一個S-RBD BA.4/BA.5,與人IgG的改良樞紐區與Fc片段(CH2與CH3區域)共價連接(第1圖)。疫苗成分中併入了混雜位點定向的SARS-CoV2 Th/CTL抗原決定位胜肽,以向被接種者提供最佳的T細胞免疫力。This disclosure relates to vaccine compositions against SARS-CoV-2 Omicron BA.4/BA.5 for preventing infection and treating SARS (COVID) patients. More specifically, the vaccine composition uses a fusion protein produced in CHO cells as the B cell immunogen, which contains an S-RBD BA.4/BA.5 at the N-terminus with a modified hub of human IgG region is covalently linked to the Fc fragment (CH2 and CH3 regions) (Figure 1). The vaccine ingredients incorporate hybrid site-directed SARS-CoV2 Th/CTL epitope peptides to provide optimal T cell immunity to the vaccinated.

綜上所述,所揭露的疫苗組成物利用SARS-CoV-2 Omicron BA.4/BA.5蛋白的胺基酸序列來設計與製造SARS-CoV-2 M、N與S2蛋白衍生的抗原性Th/CTL抗原決定位胜肽(例如,序列識別號:17-22),CHO衍生的S1-RBD Omicron BA.4 /BA.5-sFc融合蛋白(例如,序列識別號:11)及其配方,作為避免與治療由SARS-CoV2 Omicron BA.4/BA.5引起的COVID的疫苗。In summary, the disclosed vaccine composition utilizes the amino acid sequence of the SARS-CoV-2 Omicron BA.4/BA.5 protein to design and manufacture antigenicity derived from the SARS-CoV-2 M, N and S2 proteins. Th/CTL epitope peptides (e.g., SEQ ID NO: 17-22), CHO-derived S1-RBD Omicron BA.4/BA.5-sFc fusion protein (e.g., SEQ ID NO: 11) and formulations thereof , as a vaccine to avoid and treat COVID caused by SARS-CoV2 Omicron BA.4/BA.5.

本公開涉及針對具有針對Omicron BA.4/BA.5的特異性的SARS-CoV-2 Omicron變體的疫苗組合物,以預防感染和治療那些患有SARS(即COVID)的人。更具體地,疫苗組合物使用在 CHO 細胞中產生的融合蛋白作為其 B 細胞免疫原,該融合蛋白在 N 端包含 S1-RBD BA.4/BA.5 蛋白,該蛋白與鉸鏈區和 Fc 片段 (CH2與CH3區)的人 IgG。還設計和合成了定點 SARS-CoV2 Th/CTL抗原決定位胜肽,用於摻入疫苗製劑中,為接種者提供最佳的 T 細胞免疫。所揭露的疫苗系統利用胺基酸序列來設計與製造SARS-CoV2 M、N與S2-蛋白衍生的Th/CTL抗原決定位胜肽(序列識別號:17-22)與T 輔助細胞(Th)抗原決定位,這些抗原決定位來源於病原體蛋白(例如,序列識別號:23)、CHO衍生的S1-RBD Omicron BA.4/BA.5 sFc 融合蛋白(序列識別號:11),及其製劑作為針對由SARS-CoV 2 Omicron變體引起的 SARS(即 COVID)的疫苗。The present disclosure relates to vaccine compositions against SARS-CoV-2 Omicron variants with specificity for Omicron BA.4/BA.5 to prevent infection and treat those suffering from SARS (i.e., COVID). More specifically, the vaccine composition uses as its B cell immunogen a fusion protein produced in CHO cells that contains the S1-RBD BA.4/BA.5 protein at the N-terminus with the hinge region and Fc fragment (CH2 and CH3 regions) human IgG. Site-directed SARS-CoV2 Th/CTL epitope peptides have also been designed and synthesized for incorporation into vaccine formulations to provide optimal T cell immunity to recipients. The disclosed vaccine system uses amino acid sequences to design and manufacture SARS-CoV2 M, N and S2-protein-derived Th/CTL epitope peptides (Sequence ID: 17-22) and T helper cells (Th) Antigenic epitopes derived from pathogen proteins (e.g., SEQ ID NO: 23), CHO-derived S1-RBD Omicron BA.4/BA.5 sFc fusion proteins (SEQ ID NO: 11), and preparations thereof As a vaccine against SARS (i.e. COVID) caused by the SARS-CoV 2 Omicron variant.

以下更詳細地討論所公開的發明的各個方面。Various aspects of the disclosed invention are discussed in greater detail below.

一般generally

本文使用的章節標題僅用於組織目的,不應解釋為限制所描述的主題。 本申請中引用的所有參考文獻或參考文獻的一部分出於任何目的明確地通過引用整體併入本文。The section headings used in this article are for organizational purposes only and should not be construed as limiting the subject matter described. All references, or portions of references, cited in this application are expressly incorporated by reference in their entirety for any purpose.

除非另有說明,本文中使用的所有技術和科學術語與本發明所屬領域的普通技術人員通常理解的含義相同。除非上下文另有明確說明,否則單數術語“一(a)”、“一(an)”與“該”包括複數指稱。類似地,除非上下文另有明確說明,否則“或”一詞旨在包括“與”。因此,短語“包含A或B”是指包括A或B,或A和B。 還應理解,針對多胜肽給出的所有胺基酸大小與所有分子量或分子量值都是近似值,並且提供描述。儘管與本文所述的方法和材料相似或等效的方法和材料可以用於所公開方法的實踐或測試,但下面描述了合適的方法與材料。本文提及的所有出版物、專利申請、專利和其他參考文獻通過引用整體併入。若有衝突,以本說明書(包括術語解釋)為準。此外,於此揭露之材料、方法和示例僅是說明性的,而不是限制性的。Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The singular terms "a", "an" and "the" include plural referents unless the context clearly dictates otherwise. Similarly, the word "or" is intended to include "and" unless the context clearly indicates otherwise. Thus, the phrase "comprising A or B" means including A or B, or both A and B. It is also understood that all amino acid sizes and all molecular weight or molecular weight values given for polypeptides are approximations and descriptions are provided. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the disclosed methods, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, this manual (including explanation of terms) shall prevail. Furthermore, the materials, methods, and examples disclosed herein are illustrative only and not limiting.

SARS是嚴重急性呼吸系統症候群(Severe Acute Respiratory Syndrome)的縮寫,也被稱為COVID,是冠狀病毒感染疾病(Corona Virus Infectious Disease)的縮寫。該病最初可能沒有什麼症狀,也可能發展為發燒、咳嗽、呼吸急促、肌肉疼痛和疲倦。併發症可能包括肺炎與急性呼吸窘迫症候群。SARS-CoV-2被稱為嚴重急性呼吸系統症候群冠狀病毒2(SARS-CoV-2),是指在中國武漢首次發現的引起2019年冠狀病毒病(COVID-19)的冠狀病毒毒株。SARS is the abbreviation of Severe Acute Respiratory Syndrome, also known as COVID, and is the abbreviation of Corona Virus Infectious Disease. The disease may initially have few symptoms or may progress to fever, cough, shortness of breath, muscle pain and tiredness. Complications may include pneumonia and acute respiratory distress syndrome. SARS-CoV-2, known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), refers to the coronavirus strain that causes coronavirus disease 2019 (COVID-19) first discovered in Wuhan, China.

用於預防for prevention SARS-COV-2 OMICRON VARIANTS BA.4/BA.5SARS-COV-2 OMICRON VARIANTS BA.4/BA.5 感染的蛋白質infectious protein // win 肽疫苗組成合物。Peptide vaccine compositions.

所揭露的疫苗組成物關於用於SARS-CoV-2 Omicron Variants BA.4/BA.5之感染之避免的蛋白質/胜肽疫苗組合物。The disclosed vaccine composition relates to a protein/peptide vaccine composition for the prevention of infection with SARS-CoV-2 Omicron Variants BA.4/BA.5.

1.1. 基於Based on S1S1 受體結合區域的設計蛋白Designer proteins for receptor binding domains

目前在臨床試驗中的大多數疫苗只針對全長的S蛋白來誘導中和抗體反應。與自然SARS-CoV-2感染產生的反應相比,誘導的T細胞反應將是有限的。S1-RBD區域是SARS-CoV-2的一個關鍵組成部分。它是細胞附著所必需的,並且代表了2003年描述的高度相似的SARS-CoV病毒的主要中和域,通過消除潛在的副作用,如抗體依賴性增強 (antibody dependent enhancing, ADE)效應,提供全長S抗原無法實現的安全係數,當疫苗產生的抗體實際上幫助病毒感染的細胞數量比它自己感染的細胞數量多時。在這種情況下,抗體與病毒結合併幫助它比單獨的病毒更容易進入細胞,從而導致比未接種疫苗的人更嚴重的疾病。Most vaccines currently in clinical trials only target the full-length S protein to induce neutralizing antibody responses. The induced T cell response will be limited compared to the response produced by natural SARS-CoV-2 infection. The S1-RBD region is a key component of SARS-CoV-2. It is required for cell attachment and represents the major neutralizing domain of the highly similar SARS-CoV virus described in 2003, providing full-length There is a safety margin that cannot be achieved with the S antigen, when the antibodies produced by the vaccine actually help the virus infect more cells than it can infect on its own. In this case, the antibodies bind to the virus and help it enter cells more easily than the virus alone, causing more severe disease than in unvaccinated people.

由於使用較短受體結合域 (S1-RBD) 聚焦之B細胞疫苗成分的明顯優勢,蛋白質/胜肽疫苗組成物包括基於 S1-受體結合區的設計蛋白,也稱為S1- RBD -sFc融合蛋白,具有特定的 Omicron專一性,例如 BA.4/BA.5。如上所述,S1-RBD-sFc是由SARS-CoV-2的S1-RBD 與人IgG 的單鏈片段結晶區(sFc) 融合而成的重組蛋白。此外,工程化的Fc已被用作許多治療性抗體的解決方案,以最大限度地減少非專一性結合、增加溶解度、產量、熱穩定性與體內半衰期。Due to the clear advantages of using shorter receptor binding domain (S1-RBD) focused B cell vaccine components, protein/peptide vaccine compositions include designer proteins based on the S1-RBD, also known as S1-RBD-sFc Fusion proteins with specific Omicron specificity, such as BA.4/BA.5. As mentioned above, S1-RBD-sFc is a recombinant protein fused by the S1-RBD of SARS-CoV-2 and the single-chain fragment crystallized region (sFc) of human IgG. In addition, engineered Fc has been used as a solution for many therapeutic antibodies to minimize nonspecific binding, increase solubility, yield, thermal stability, and in vivo half-life.

在一些實施例中,疫苗組合物含有SEQ ID NOs:10或11的S1-RBD-sFc融合蛋白。這些S1-RBD-sFc蛋白各自包含各自的S1-RBD蛋白(序列識別號:1或2),其對應于SARS-CoV-2全長S蛋白的331-530個胺基酸殘基,經由來自IgG(序列識別號:4或5)的突變樞紐區與單鏈Fc胜肽(序列識別號:7-9)融合。In some embodiments, the vaccine composition contains the S1-RBD-sFc fusion protein of SEQ ID NOs: 10 or 11. Each of these S1-RBD-sFc proteins contains a respective S1-RBD protein (Sequence Identification Number: 1 or 2), which corresponds to amino acid residues 331-530 of the full-length S protein of SARS-CoV-2 via IgG The mutated hub region of (SEQ ID NO: 4 or 5) is fused to a single-chain Fc peptide (SEQ ID NO: 7-9).

在一些實施例中,序列識別號:10或11及 3A 3B 的S1-RBD序列的第61與195位半胱胺酸C)殘基被突變為丙胺酸(A)殘基,(S-RBD的61與195殘基對應于原武漢株序列識別號:13的全長S蛋白的391與525殘基)。在S1-RBD序列中引入C61A與C195A突變是為了避免在重組蛋白表達中形成雙硫鍵的錯配。融合至單鏈Fc肽(S-RBD Omicron BA.4/BA.5-sFc)之代表Omicron BA.4/BA.5株的S1-RBD Omicron BA.4/BA.5的胺基酸序列為序列識別號:11。 In some embodiments, cysteine C) residues at positions 61 and 195 of the S1-RBD sequence of SEQ ID NO: 10 or 11 and Figures 3A and 3B are mutated to alanine (A) residues, ( Residues 61 and 195 of S-RBD correspond to residues 391 and 525 of the full-length S protein of the original Wuhan strain sequence identification number: 13). The C61A and C195A mutations were introduced into the S1-RBD sequence to avoid mismatching of disulfide bonds during recombinant protein expression. The amino acid sequence of S1-RBD Omicron BA.4/BA.5 representing the Omicron BA.4/BA.5 strain fused to a single-chain Fc peptide (S-RBD Omicron BA.4/BA.5-sFc) is: Serial ID: 11.

疫苗組成物中基於S1受體結合區的設計蛋白的數量可以根據需要或應用而變化。疫苗組成物可包含約1 µg至約1000 µg的基於S1受體結合區的設計蛋白。在一些實施例中,疫苗組成物含有約10 µg至約200 µg基於S1受體結合區的設計蛋白。The amount of designer protein based on the S1 receptor binding region in the vaccine composition can vary depending on the need or application. The vaccine composition may include about 1 µg to about 1000 µg of the designer protein based on the S1 receptor binding region. In some embodiments, the vaccine composition contains about 10 µg to about 200 µg of a designer protein based on the S1 receptor binding region.

2. Th/CTL2.Th/CTL win peptide

僅針對S蛋白的中和反應不太可能提供針對 SARS-CoV-2及其帶有突變B細胞抗原決定位的新興變體的持久保護。持久的細胞反應可以增強最初的中和反應(經由記憶 B 細胞激活),並在抗體效價減弱時提供更長的免疫持續時間。最近的研究表明,在 2-3個月內,>90%的 SARS-CoV-2 感染者對S的IgG反應迅速下降(Long, Q.X., et al., 2020)。相比之下,在2003年SARS爆發後,針對SARS的記憶T細胞已被證明可以持續11-17年(Ng, O.W., et al., 2016; and Le Bert, N., et al., 2020)。S蛋白是引發體液免疫的關鍵抗原,主要包含CD4+抗原決定位(Braun, J., et al., 2020)。需要其他抗原來提高/增強細胞免疫反應以清除 SARS-CoV-2感染。絕大多數報導的SARS-CoV-2蛋白中的 CD8+ T細胞抗原決定位位於ORF1ab、N、M與ORF3a區域;只有3個位於S 中,只有1個CD8+抗原決定位位於S1-RBD中(Ferretti, A.P., et al., 2020)。較小的M與N結構蛋白被成功控制感染的患者的T細胞識別。在對英國近3000人進行的一項研究中發現,與T細胞反應較低的人相比,T細胞數量較多的人對SARS-CoV-2的保護能力更強,這表明T細胞免疫可能發揮關鍵作用在避免COVID-19方面(Wyllie, D., et al., 2020)。Neutralization responses targeting the S protein alone are unlikely to provide durable protection against SARS-CoV-2 and its emerging variants harboring mutated B cell epitopes. A durable cellular response can enhance the initial neutralizing response (via memory B cell activation) and provide a longer duration of immunity as antibody titers wane. Recent studies have shown that within 2-3 months, >90% of SARS-CoV-2-infected individuals have a rapid decline in IgG responses to S (Long, Q.X., et al., 2020). In contrast, SARS-specific memory T cells have been shown to persist for 11–17 years following the 2003 SARS outbreak (Ng, O.W., et al., 2016; and Le Bert, N., et al., 2020 ). S protein is a key antigen that triggers humoral immunity and mainly contains CD4+ epitopes (Braun, J., et al., 2020). Additional antigens are needed to enhance/enhance the cellular immune response to clear SARS-CoV-2 infection. The vast majority of reported CD8+ T cell epitopes in SARS-CoV-2 proteins are located in the ORF1ab, N, M and ORF3a regions; only 3 are located in S, and only 1 CD8+ epitope is located in S1-RBD (Ferretti , A.P., et al., 2020). The smaller M and N structural proteins were recognized by T cells from patients who successfully controlled the infection. In a study of nearly 3,000 people in the UK, it was found that people with higher numbers of T cells were more protected against SARS-CoV-2 than those with lower T-cell responses, suggesting that T-cell immunity may Play a key role in avoiding COVID-19 (Wyllie, D., et al., 2020).

為了提供引發T細胞反應的免疫原,鑑定了來自SARS-CoV與SARS-CoV-2的S、N與M蛋白的高度保守序列的Th/CTL抗原決定位。這些Th/CTL胜肽顯示在 3 與表 4中。每個選定的胜肽都包含Th或CTL抗原決定位,並預先驗證了MHC I或II結合,並表現出良好的可製造性特徵(適合高品質合成的最佳長度)。它們還應該最好地展示刺激普通個體的PBMC的內在能力。這些Th/CTL胜肽經過廣泛的篩選、鑑定、驗證與設計,通過在每個胜肽的N端添加Lys-Lys-Lys尾進行進一步修飾,以提高胜肽的溶解度並豐富用於疫苗製劑的正電荷。五種最終胜肽的設計與序列及其各自的HLA等位基因(alleles)如 3所示。 To provide immunogens that elicit T cell responses, Th/CTL epitopes from highly conserved sequences of the S, N, and M proteins of SARS-CoV and SARS-CoV-2 were identified. These Th/CTL peptides are shown in Tables 3 and 4 . Each selected peptide contains a Th or CTL epitope, is pre-validated for MHC I or II binding, and exhibits good manufacturability characteristics (optimal length for high-quality synthesis). They should also best demonstrate the intrinsic ability to stimulate PBMCs in ordinary individuals. These Th/CTL peptides have undergone extensive screening, identification, validation and design, and are further modified by adding a Lys-Lys-Lys tail to the N-terminus of each peptide to improve the solubility of the peptide and enrich the potential for vaccine formulations. Positive charge. The design and sequences of the five final peptides and their respective HLA alleles are shown in Table 3 .

為了增強免疫反應,可以將專屬胜肽UBITh®1a(序列識別號:23)作為催化劑添加到疫苗組成物的胜肽混合物中。UBITh®1a是一種專有的合成胜肽,具有源自麻疹病毒融合蛋白(MVF)的原始框架序列。該序列被進一步修飾以在序列內顯示回文圖譜(palindromic profile),以允許在該19個胺基酸的短胜肽內容納多個MHC II類結合基序(motif)。Lys-Lys-Lys序列也被添加到這種人工Th胜肽的N末端,以增加其正電荷,從而促進胜肽隨後與高度帶負電荷的CpG寡核苷酸分子結合,通過“電荷中和”形成免疫刺激複合物。在先前的研究中,UBITh®1a與源自自身蛋白的目標“功能性B抗原決定位胜肽”的連接使自身胜肽具有免疫原性,從而破壞了免疫耐受性(Wang,C.Y.,etal,2017)。UBITh®1的Th抗原決定位顯示出這種刺激活性,無論是與目標胜肽共價連接還是作為游離帶電胜肽,與其他設計的目標胜肽一起給藥,這些胜肽通過與CpG1的“電荷中和”效應結合在一起,以引發位點定向的(site-directed)B或CTL反應。已顯示此類免疫刺激複合物可增強伴隨靶免疫原的弱或中等反應(例如,WO2020/132275A1)。In order to enhance the immune response, the proprietary peptide UBITh®1a (SEQ ID NO: 23) can be added as a catalyst to the peptide mixture of the vaccine composition. UBITh®1a is a proprietary synthetic peptide with original framework sequences derived from the measles virus fusion protein (MVF). The sequence was further modified to display a palindromic profile within the sequence, allowing for the accommodation of multiple MHC class II binding motifs within the short 19 amino acid peptide. A Lys-Lys-Lys sequence was also added to the N-terminus of this artificial Th peptide to increase its positive charge, thus facilitating the subsequent binding of the peptide to highly negatively charged CpG oligonucleotide molecules through "charge neutralization" "Formation of immunostimulatory complexes. In previous studies, the linkage of UBITh®1a to the target "functional B epitope peptide" derived from self-protein made the self-peptide immunogenic, thus disrupting immune tolerance (Wang, C.Y., et al. , 2017). The Th epitope of UBITh®1 exhibits this stimulatory activity whether covalently linked to the target peptide or as a free charged peptide administered together with other designed target peptides that interact with CpG1 Charge-neutralizing effects combine to trigger site-directed B or CTL reactions. Such immunostimulatory complexes have been shown to enhance weak or moderate responses accompanying target immunogens (e.g., WO2020/132275A1).

CpG1被設劑以藉由“電荷中和”將合理設計的免疫原聚集在一起,以允許在接種疫苗的宿主中產生平衡的B細胞(中和抗體的誘導)與Th/CTL反應。此外,已知CpG激活TLR-9信號可促進IgA的產生並有利於Th1免疫反應。UBITh®1胜肽因其“抗原決定位簇(cluster)”性質而作為Th胜肽之一被納入,以進一步增強SARS-CoV-2衍生的Th與CTL抗原決定位胜肽的抗病毒活性。UBITh®1的胺基酸序列是序列識別號:23。CpG1的核酸序列是序列識別號:26。CpG1 is engineered to bring together rationally designed immunogens via "charge neutralization" to allow for the generation of balanced B cell (induction of neutralizing antibodies) and Th/CTL responses in the vaccinated host. In addition, activation of TLR-9 signaling by CpG is known to promote IgA production and favor Th1 immune responses. UBITh®1 peptide was included as one of the Th peptides due to its "cluster" properties to further enhance the antiviral activity of SARS-CoV-2-derived Th and CTL epitope peptides. The amino acid sequence of UBITh®1 is SEQ ID NO: 23. The nucleic acid sequence of CpG1 is SEQ ID NO: 26.

鑑於上述,蛋白質/胜肽疫苗組合物可以包含一種或多種Th/CTL胜肽。Th/CTL胜肽可以包括:In view of the above, the protein/peptide vaccine composition may comprise one or more Th/CTL peptides. Th/CTL peptides can include:

a.源自SARS-CoV-2M蛋白的胜肽(例如,序列識別號:21);a. Peptide derived from SARS-CoV-2M protein (for example, sequence identification number: 21);

b.源自SARS-CoV-2N蛋白的胜肽(例如,序列識別號:19);b. Peptide derived from SARS-CoV-2N protein (for example, sequence identification number: 19);

c.源自SARS-Cov-2S蛋白的胜肽(例如,序列識別號:17、18、20、22);及/或c. Peptides derived from SARS-Cov-2S protein (for example, sequence identification numbers: 17, 18, 20, 22); and/or

d. 源自病原體蛋白的人工Th抗原決定位(例如,序列識別號:23)。d. Artificial Th epitopes derived from pathogen proteins (eg, SEQ ID NO: 23).

疫苗組成物可以含有一種或多種Th/CTL胜肽。在某些實施例中,疫苗組成物包含多於一種Th/CTL胜肽的混合物。當存在於混合物中時,與其他一種或多種胜肽相比,每種Th/CTL胜肽可以以任何量或比率存在。例如,Th/CTL胜肽可以等莫耳量、等重量量混合,或者混合物中每種胜肽的量可以不同於混合物中其他胜肽的量。若混合物中存在多於兩種Th/CTL胜肽,則肽胜肽的量可以與混合物中的任何其他胜肽相同或不同。Vaccine compositions may contain one or more Th/CTL peptides. In certain embodiments, vaccine compositions include a mixture of more than one Th/CTL peptide. When present in a mixture, each Th/CTL peptide may be present in any amount or ratio compared to the other peptide or peptides. For example, the Th/CTL peptides can be mixed in equimolar, equal weight amounts, or the amount of each peptide in the mixture can be different from the amount of other peptides in the mixture. If more than two Th/CTL peptides are present in the mixture, the amount of peptide may be the same as or different from any other peptide in the mixture.

存在於疫苗組成物中的Th/CTL胜肽的量可以根據需要或應用而變化。疫苗組成物可含有總量在約0.1 μg至約100 μg之間的Th/CTL胜肽。在一些實施例中,疫苗組成物含有總計約1 μg至約50 μg的Th/CTL胜肽。在某些實施例中,疫苗組成物包含序列識別號:17-22的混合物。這些Th/CTL胜肽可以等莫耳量、等重量量混合,或者混合物中每種胜肽的量可以不同於混合物中其他胜肽的量。在某些實施例中,這些Th/CTL胜肽以等重量的量混合在疫苗組成物中。The amount of Th/CTL peptide present in the vaccine composition can vary depending on the need or application. The vaccine composition may contain a total amount of Th/CTL peptide between about 0.1 μg and about 100 μg. In some embodiments, the vaccine composition contains a total of about 1 μg to about 50 μg of Th/CTL peptides. In certain embodiments, the vaccine composition includes a mixture of SEQ ID NO: 17-22. These Th/CTL peptides can be mixed in equimolar amounts, equal weights, or the amount of each peptide in the mixture can be different from the amount of other peptides in the mixture. In certain embodiments, these Th/CTL peptides are mixed in equal weight amounts in the vaccine composition.

醫藥/疫苗製劑中Th與CTL抗原決定位的存在經由啟動抗原特異性T細胞激活來引發治療對象的免疫反應,這與保護免受SARS-CoV-2感染有關。此外,包含精心挑選的SARS-CoV-2蛋白上的內源性Th抗原決定位及/或CTL抗原決定位的製劑可以產生廣泛的細胞介導免疫,這也使得這些製劑可以有效地治療和保護具有不同基因組成的受試者。The presence of Th and CTL epitopes in pharmaceutical/vaccine formulations triggers an immune response in the treated subject by initiating antigen-specific T cell activation, which is associated with protection from SARS-CoV-2 infection. In addition, formulations containing carefully selected endogenous Th epitopes and/or CTL epitopes on SARS-CoV-2 proteins can generate broad cell-mediated immunity, which also makes these formulations effective in treating and protecting Subjects with different genetic makeup.

在醫藥組成物中包含一種或多種內源性SARS-CoV-2Th/CTL抗原決定位胜肽,S1-RBDOmicronBA.4/BA.5-sFc蛋白使胜肽彼此緊密接觸,從而使抗原決定位由抗原呈現B細胞、巨噬細胞、樹突狀細胞等看見與加工。這些細胞處理抗原並將它們呈現到表面以與B細胞接觸以產生抗體,而T細胞則觸發進一步的T細胞反應以幫助介導殺死病毒感染的細胞。內源性SARS-CoV-2CTL抗原決定位胜肽在N端含有Lys-Lys-Lys(KKK)尾巴。In pharmaceutical compositions containing one or more endogenous SARS-CoV-2 Th/CTL epitope peptides, the S1-RBDOmicronBA.4/BA.5-sFc protein brings the peptides into close contact with each other, thereby making the epitope consist of Antigens are seen and processed by B cells, macrophages, dendritic cells, etc. These cells process the antigens and present them to surfaces for contact with B cells to produce antibodies, while T cells trigger further T cell responses to help mediate the killing of virus-infected cells. The endogenous SARS-CoV-2 CTL epitope peptide contains a Lys-Lys-Lys (KKK) tail at the N-terminus.

序列識別號:17-22、23的內源性SARS-CoVTh/CTL抗原決定位胜肽在用於與CpG寡核苷酸(ODN)配製成免疫刺激複合物的醫藥組成物中時特別有用,因為陽離子KKK尾能夠通過靜電締合與CpGODN相互作用。在胜肽免疫原構建體中使用內源性SARS-CoV-2Th抗原決定位可以增強S1-RBDOmicronBA.4/BA.5B細胞抗原決定位胜肽的免疫原性,從而在感染後促進特異性高效價抗體的產生,針對基於設計原理篩選與選擇的最佳化的S1-RBDB細胞抗原決定位胜肽。The endogenous SARS-CoVTh/CTL epitope peptides of SEQ ID NO: 17-22 and 23 are particularly useful when used in pharmaceutical compositions formulated with CpG oligonucleotides (ODN) into immunostimulatory complexes , because the cationic KKK tail is able to interact with CpGODN through electrostatic association. Use of endogenous SARS-CoV-2 Th epitopes in peptide immunogen constructs enhances the immunogenicity of S1-RBDOmicronBA.4/BA.5B cell epitope peptides, thereby promoting specificity and high efficacy following infection Generation of high-valent antibodies against optimized S1-RBDB cell epitope peptides based on screening and selection based on design principles.

在一些實施例中,醫藥組成物包含一種或多種S1-RBDOmicronBA.4/BA.5sFc融合蛋白(序列識別號:10、11或其任何組合)以及一種或多種含有內源性SARS-CoV-2Th/CTL抗原決定位胜肽(序列識別號:17-22與23,或其任何組合)。In some embodiments, the pharmaceutical composition includes one or more S1-RBDOmicronBA.4/BA.5sFc fusion proteins (SEQ ID NO: 10, 11 or any combination thereof) and one or more S1-RBDOmicronBA.4/BA.5sFc fusion proteins containing endogenous SARS-CoV-2Th /CTL epitope peptide (SEQ ID NO: 17-22 and 23, or any combination thereof).

3.3. 賦形劑Excipients

疫苗組成物也可含有藥學上可接受的賦形劑。Vaccine compositions may also contain pharmaceutically acceptable excipients.

如本文所用,術語“賦形劑”或“賦形劑”是指疫苗組成物中不是(a)基於S1-受體結合區的設計蛋白或(b)Th/CTL胜肽的任何組分 . 賦形劑的實例包括載體、佐劑、抗氧化劑、粘合劑、緩沖劑、填充劑、螯合劑、著色劑、稀釋劑、崩解劑、乳化劑、表面活性劑、溶劑、填充劑、膠凝劑、pH緩衝劑、防腐劑、增溶劑、穩定劑等。 因此,疫苗組成物可以包含藥學。As used herein, the term "excipient" or "excipient" refers to any component of the vaccine composition that is not (a) a designer protein based on the S1-receptor binding region or (b) a Th/CTL peptide. Examples of excipients include carriers, adjuvants, antioxidants, binders, buffers, fillers, chelating agents, colorants, diluents, disintegrants, emulsifiers, surfactants, solvents, fillers, gums Coagulants, pH buffers, preservatives, solubilizers, stabilizers, etc. Therefore, the vaccine composition may contain pharmaceuticals.

疫苗組成物可以含有一種或多種佐劑,其作用是加速、延長或增強對API的免疫反應,而本身不具有任何特異性抗原作用。佐劑可以包括油、油乳劑、鋁鹽、鈣鹽、免疫刺激複合物、細菌和病毒衍生物、病毒體、碳水化合物、細胞因子、聚合物微粒。在某些實施方案中,佐劑可以選自CpG寡核苷酸、明礬(例如磷酸鋁鉀)、磷酸鋁(例如ADJU-PHOS®)、氫氧化鋁(例如ALHYDROGEL®)、磷酸鈣、不完全弗氏佐劑(IFA)、弗氏完全佐劑、MF59、佐劑 65、Lipovant、ISCOM、liposyn、皂苷、角鯊烯、L121、EMULSIGEN®、EmulsIL-6n®、單磷酰脂質 A (MPL)、Quil A、QS21、MONTANIDE® ISA 35、ISA 50V、ISA 50V2、ISA 51、ISA 206、ISA 720、脂質體、磷脂、肽聚醣, 脂多醣 (LPS) 、ASO1、ASO2、ASO3、ASO4、AF03、親脂性磷脂(脂質 A)、γ 菊粉、algammulin、葡聚醣、葡聚醣、葡甘露聚醣、半乳甘露聚醣、果聚醣(levans)、木聚醣(xylans)、二甲基雙十八烷基溴化銨 (dimethyldioctadecylammonium bromide, DDA),以及其他助劑與乳化劑。The vaccine composition may contain one or more adjuvants, which function to accelerate, prolong or enhance the immune response to the API without having any specific antigenic effect. Adjuvants may include oils, oil emulsions, aluminum salts, calcium salts, immunostimulatory complexes, bacterial and viral derivatives, virions, carbohydrates, cytokines, polymeric particles. In certain embodiments, the adjuvant can be selected from the group consisting of CpG oligonucleotides, alum (e.g., potassium aluminum phosphate), aluminum phosphate (e.g., ADJU-PHOS®), aluminum hydroxide (e.g., ALHYDROGEL®), calcium phosphate, incomplete Freund's Adjuvant (IFA), Freund's Complete Adjuvant, MF59, Adjuvant 65, Lipovant, ISCOM, liposyn, saponin, squalene, L121, EMULSIGEN®, EmulsIL-6n®, Monophosphoryl Lipid A (MPL) , Quil A, QS21, MONTANIDE® ISA 35, ISA 50V, ISA 50V2, ISA 51, ISA 206, ISA 720, liposomes, phospholipids, peptidoglycan, lipopolysaccharide (LPS), ASO1, ASO2, ASO3, ASO4, AF03 , lipophilic phospholipids (lipid A), gamma inulin, algammulin, dextran, dextran, glucomannan, galactomannan, fructans (levans), xylans (xylans), dimethyl Dimethyldioctadecylammonium bromide (DDA), as well as other additives and emulsifiers.

在一些實施例中,疫苗組成物包含 ADJU-PHOS® (磷酸鋁)、MONTANIDE™ ISA 51(一種油佐劑組合物,由植物油和甘露醇油酸酯組成,用於生產油包水乳劑)、TWEEN® 80 (也已知為:聚山梨醇酯 80( Polysorbate 80)或聚氧乙烯(20)脫水山梨糖醇單油酸酯(Polyoxyethylene (20) sorbitan monooleate))、CpG 寡核苷酸及/或其任何組合。在其他實施例中,醫藥組成物是水包油包水(即w/o/w)乳液,其中EMULSIGEN或EMULSIGEN D作為佐劑。In some embodiments, the vaccine composition includes ADJU-PHOS® (aluminum phosphate), MONTANIDE™ ISA 51 (an oil adjuvant composition consisting of vegetable oil and mannitol oleate used to produce a water-in-oil emulsion), TWEEN® 80 (also known as: Polysorbate 80 or Polyoxyethylene (20) sorbitan monooleate), CpG oligonucleotides and/or or any combination thereof. In other embodiments, the pharmaceutical composition is a water-in-oil-in-water (i.e., w/o/w) emulsion with EMULSIGEN or EMULSIGEN D as an adjuvant.

在某些實施例中,多抗原決定位蛋白質/胜肽疫苗組成物含有ADJU-PHOS®(磷酸鋁)作為佐劑以改善免疫反應。磷酸鋁通過核苷酸結合寡聚化結構域(NOD)樣受體蛋白3(NLRP3)炎性體途徑作為Th2導向佐劑。此外,它具有促吞噬和儲存效應,具有長期的安全記錄,並且能夠改善許多疫苗製劑中對靶蛋白的免疫反應。In certain embodiments, multi-epitope protein/peptide vaccine compositions contain ADJU-PHOS® (aluminum phosphate) as an adjuvant to improve immune response. Aluminum phosphate acts as a Th2-directed adjuvant through the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome pathway. In addition, it has pro-phagocytic and storage effects, has a long safety record, and is able to improve immune responses to target proteins in many vaccine formulations.

疫苗組合物可以含有pH調節劑及/或緩衝劑,例如鹽酸、磷酸、檸檬酸、乙酸、組胺酸、組胺酸HCl•H 2O、乳酸、氨丁三醇、葡萄糖酸、天冬胺酸、麩胺酸、酒石酸 、琥珀酸、蘋果酸、富馬酸、α-酮戊二酸與精胺酸HCl。 The vaccine composition may contain pH adjusters and/or buffers, such as hydrochloric acid, phosphoric acid, citric acid, acetic acid, histidine, histidine HCl·H 2 O, lactic acid, tromethamine, gluconic acid, asparagine Acid, glutamic acid, tartaric acid, succinic acid, malic acid, fumaric acid, alpha-ketoglutarate and arginine HCl.

疫苗組成物可以含有表面活性劑與乳化劑,例如聚氧乙烯脫水山梨糖醇脂肪酸酯(Polysorbate,TWEEN®)、聚氧乙烯15羥基硬脂酸酯(Macrogol 15 hydroxy stearate,SOLUTOL HS15®)、聚氧乙烯蓖麻油衍生物(Polyoxyethylene castor oil derivatives)(CREMOPHOR® EL、ELP、RH 40)、聚氧乙烯硬脂酸酯(Polyoxyethylene stearates)(MYRJ®)、山梨糖醇酐脂肪酸酯(Sorbitan fatty acid esters) (SPAN®)、聚氧乙烯烷基醚(Polyoxyethylene alkyl ethers) (BRIJ®)與聚氧乙烯壬基酚醚(Polyoxyethylene nonylphenol ether) (NONOXYNOL®)。Vaccine compositions may contain surfactants and emulsifiers, such as polyoxyethylene sorbitan fatty acid ester (Polysorbate, TWEEN®), polyoxyethylene 15 hydroxy stearate (Macrogol 15 hydroxy stearate, SOLUTOL HS15®), Polyoxyethylene castor oil derivatives (CREMOPHOR® EL, ELP, RH 40), Polyoxyethylene stearates (MYRJ®), Sorbitan fatty acid ester (Sorbitan fatty acid ester) acid esters) (SPAN®), Polyoxyethylene alkyl ethers (BRIJ®) and Polyoxyethylene nonylphenol ether (NONOXYNOL®).

疫苗組成物可以包含載體、溶劑或滲透壓保持劑,例如水、醇與食鹽溶液(saline solutions)(例如,氯化鈉)。Vaccine compositions may include carriers, solvents, or osmotic maintainers such as water, alcohols, and saline solutions (eg, sodium chloride).

疫苗組成物可以包含防腐劑,例如烷基/芳基醇(例如苯甲醇、三氯丁醇、2-乙氧基乙醇)、胺基芳基酸酯(amino aryl acid esters)(例如甲基、乙基、丙基丁基對羥基苯甲酸酯與組合)、烷基/芳基酸(例如 、苯甲酸、山梨酸)、雙胍類(如洗必泰(chlorhexidine))、芳香醚(如苯酚、3-甲酚、2-苯氧乙醇)、有機汞(如硫柳汞(thimerosal)、苯汞酸鹽(phenylmercurate salts))。Vaccine compositions may contain preservatives such as alkyl/aryl alcohols (e.g., benzyl alcohol, chlorobutanol, 2-ethoxyethanol), amino aryl acid esters (e.g., methyl, Ethyl, propyl butyl parabens and combinations), alkyl/aryl acids (e.g., benzoic acid, sorbic acid), biguanides (e.g., chlorhexidine), aromatic ethers (e.g., phenol , 3-cresol, 2-phenoxyethanol), organic mercury (such as thimerosal, phenylmercurate salts).

4.4. 配方formula

疫苗組成物可配製成速釋或緩釋製劑。此外,可以配製疫苗組成物以通過免疫原包埋和與微粒共同施用來誘導全身或局部粘膜免疫。這樣的遞送系統很容易由該技術領域中具有通常知識者確定。Vaccine compositions can be formulated as immediate release or sustained release formulations. Additionally, vaccine compositions can be formulated to induce systemic or local mucosal immunity via immunogen entrapment and co-administration with microparticles. Such delivery systems are readily identifiable by those of ordinary skill in the art.

可以將疫苗組成物製備成可注射的,或者作為液體溶液或懸浮液。 也可以在注射前製備含有疫苗組成物的液體載體。 疫苗組合物可以通過任何合適的應用方式,例如,i.d.、i.p.、i.m.、鼻內、口服、皮下等以及在任何合適的遞送裝置中施用。 在某些實施例中,疫苗組成物被配製用於皮下、皮內或肌肉內施用。疫苗組成物也可以製備用於其他給藥方式,包括口服與鼻內應用。Vaccine compositions may be prepared as injectables, or as liquid solutions or suspensions. A liquid carrier containing the vaccine composition can also be prepared prior to injection. Vaccine compositions may be administered by any suitable mode of application, eg, i.d., i.p., i.m., intranasally, orally, subcutaneously, etc., and in any suitable delivery device. In certain embodiments, vaccine compositions are formulated for subcutaneous, intradermal, or intramuscular administration. Vaccine compositions may also be formulated for other modes of administration, including oral and intranasal application.

疫苗組成物也可以配製成合適的劑量單位形式。Vaccine compositions may also be formulated in suitable dosage unit form.

在一些實施例中,疫苗組合物含有約1 μg至約1,000 μg的API(例如,基於S1受體結合區的設計蛋白及/或一種或多種Th/CTL胜肽)。疫苗組成物的有效劑量可以根據許多不同的因素而變化,包括施用方式、目標位點、受試者的生理狀態、受試者是人還是動物、施用的其他藥物以及治療是預防性的還是治療性的。 通常,受試者是人類,但也可以治療非人類哺乳動物。當以多劑量遞送時,疫苗組合物可以方便地分成合適的量/劑量單位形式。給藥劑量將取決於受試者的年齡、體重和一般健康狀況,這在治療領域是眾所周知的。In some embodiments, the vaccine composition contains about 1 μg to about 1,000 μg of API (eg, a designer protein based on the S1 receptor binding region and/or one or more Th/CTL peptides). The effective dose of a vaccine composition can vary based on many different factors, including the mode of administration, the target site, the physiological state of the subject, whether the subject is human or animal, other drugs administered, and whether the treatment is prophylactic or therapeutic sexual. Typically, the subject is a human, but non-human mammals can also be treated. When delivered in multiple doses, the vaccine composition can be conveniently divided into appropriate amounts/dosage unit forms. The dosage administered will depend on the age, weight and general health of the subject, as is well known in the therapeutic field.

在一些實施例中,疫苗組籌物在具有添加劑及/或賦形劑的製劑中包含基於S1受體結合區的設計蛋白和一種或多種Th/CT胜L肽。 在某些實施例中,疫苗組成物在具有添加劑及/或賦形劑的製劑中包含基於S1受體結合區的設計蛋白和多於一種Th/CTL胜肽。含有多於一種Th/CTL肽混合物的疫苗組合物可以協同增強組合物的免疫功效。含有基於S1受體結合區的設計蛋白和一種以上的Th/CTL肽的疫苗組合物在帶有添加劑及/或賦形劑的配方中與只含有設計蛋白或一種Th/CTL胜肽的組成物相比,由於有廣泛的MHC II類覆蓋,在更大的遺傳群體中可以更加有效,從而為疫苗組成物提供更好的免疫反應。In some embodiments, the vaccine composition includes a designer protein based on the S1 receptor binding region and one or more Th/CT winning L peptides in a formulation with additives and/or excipients. In certain embodiments, the vaccine composition includes a designer protein based on the S1 receptor binding region and more than one Th/CTL peptide in a formulation with additives and/or excipients. Vaccine compositions containing more than one Th/CTL peptide mixture may synergistically enhance the immune efficacy of the composition. Vaccine compositions containing designer proteins based on the S1 receptor binding region and more than one Th/CTL peptide in formulations with additives and/or excipients are compared with compositions containing only the designer protein or one Th/CTL peptide In comparison, due to the broad MHC class II coverage, it can be more effective in a larger genetic population, thus providing a better immune response to the vaccine composition.

當疫苗組成物包含基於S1受體結合區的設計蛋白和一種或多種Th/CTL胜肽作為API 時,設計蛋白與Th/CTL胜肽的相對量可以以任何量或比例存在於彼此。例如,設計蛋白與Th/CTL胜肽可以等莫耳量、等重量混合,或者設計蛋白與Th/CTL胜肽的量可以不同。此外,若組成物中存在多於一種Th/CTL胜肽,則設計蛋白與每種Th/CTL胜肽的量可以彼此相同或不同。在一些實施例中,設計蛋白的莫耳量或重量量以大於Th/CTL胜肽的量存在於組合物中。在其他實施例中,設計蛋白的莫耳量或重量量以小於Th/CTL肽的量存在於組成物中。設計蛋白與Th/CTL胜肽的比率(重量:重量)可以根據需要或應用而變化。在一些情況下,設計蛋白與Th/CTL胜肽的比例(w:w)可以是70:30、80:20或90:10。在具體實施例中,設計胜肽與Th/CTL胜肽的比例(w:w)為90:10、88:12或85:15等。在具體實施例中,設計蛋白與Th/CTL胜肽的比例(w:w)是88:12。When the vaccine composition includes a designer protein based on the S1 receptor binding region and one or more Th/CTL peptides as an API, the relative amounts of the designer protein and Th/CTL peptides may be present in any amount or ratio with each other. For example, the designed protein and Th/CTL peptide can be mixed in equimolar amounts and equal weights, or the amounts of the designed protein and Th/CTL peptide can be different. In addition, if more than one Th/CTL peptide is present in the composition, the amounts of the designed protein and each Th/CTL peptide can be the same or different from each other. In some embodiments, a molar or weight amount of the designer protein is present in the composition in an amount greater than the Th/CTL peptide. In other embodiments, the molar or weight amount of the designer protein is present in the composition in an amount less than the Th/CTL peptide. The ratio (wt:wt) of designer protein to Th/CTL peptide can vary depending on the need or application. In some cases, the ratio (w:w) of the designed protein to Th/CTL peptide can be 70:30, 80:20, or 90:10. In specific embodiments, the ratio (w:w) of the designed peptide to Th/CTL peptide is 90:10, 88:12 or 85:15, etc. In a specific embodiment, the ratio (w:w) of the designed protein to Th/CTL peptide is 88:12.

在一些實施例中,疫苗組合物包含一種或多種SEQ ID NO:10、11的基於S1受體結合區的設計蛋白。在其他實施方案中,疫苗組合物包含一種或多種Th/CTL肽。在一些實施方案中,疫苗組合物包含來自SEQ ID NO:10、11之一的基於S1受體結合區的設計蛋白與SEQ ID NO:17-22和23的Th/CTL肽組合。In some embodiments, the vaccine composition comprises one or more S1 receptor binding domain-based designer proteins of SEQ ID NO: 10, 11. In other embodiments, the vaccine composition includes one or more Th/CTL peptides. In some embodiments, the vaccine composition comprises an S1 receptor binding domain-based designer protein from one of SEQ ID NOs: 10, 11 in combination with a Th/CTL peptide of SEQ ID NOs: 17-22 and 23.

在某些實施例中,疫苗組成物包含序列識別號:10、11的基於S1-受體結合區的設計蛋白序列識別號:17-22與23的Th/CTL胜肽中的一種,以及一種或多種更多的佐劑及/或賦形劑。在各種實施例中,疫苗組合物包括序列識別號:10、11的一種或多種基於S1受體結合區的設計蛋白與序列識別號:17-22與23的Th/CTL胜肽,其中Th/CTL胜肽以彼此等重的比例存在,序列識別號:10、11的一種或多種基於S1受體結合區的設計蛋白與Th/CTL胜肽的組合重量的比例(w:w)為88:12。表7-9分別提供了含有20μg/mL、40 μg/mL、60 μg/mL與200 μg/mL的疫苗組成物的具體實施方案,其依據是S1-RBD Omicron BA.4/BA.5-sfc蛋白(序列識別號:11)與序列識別號:17-22與23的Th/CTL胜肽之一的總重量。In some embodiments, the vaccine composition includes one of the S1-receptor binding region-based design proteins of SEQ ID NO: 10 and 11 and one of the Th/CTL peptides of SEQ ID NO: 17-22 and 23. or a variety of more adjuvants and/or excipients. In various embodiments, the vaccine composition includes one or more designed proteins based on the S1 receptor binding region of SEQ ID NO: 10 and 11 and Th/CTL peptides of SEQ ID NO: 17-22 and 23, wherein Th/ CTL peptides exist in an equal weight ratio to each other. The combined weight ratio (w:w) of one or more designed proteins based on the S1 receptor binding region of Sequence ID: 10 and 11 and Th/CTL peptides is 88: 12. Tables 7-9 provide specific embodiments of vaccine compositions containing 20 μg/mL, 40 μg/mL, 60 μg/mL and 200 μg/mL respectively, based on S1-RBD Omicron BA.4/BA.5- The total weight of the sfc protein (SEQ ID NO: 11) and one of the Th/CTL peptides SEQ ID NO: 17-22 and 23.

5.5. 方法method

本揭露也關於製備與使用疫苗組成物及其配方的方法。The present disclosure also relates to methods of making and using vaccine compositions and formulations thereof.

a. 基於S1受體結合區域的設計蛋白與Th/CTL胜肽的製造方法。a. Methods for manufacturing designed proteins and Th/CTL peptides based on the S1 receptor binding region.

所揭露之基於S1-受體結合區的設計蛋白可以根據根據實施例2與3所述的方法製造。此外,所揭露之Th/CTL胜肽可以根據實施例1中描述的方法製造。The disclosed designed protein based on the S1-receptor binding region can be produced according to the method described in Examples 2 and 3. In addition, the disclosed Th/CTL peptides can be produced according to the method described in Example 1.

b. 製造疫苗組成物的方法。b. Methods of manufacturing vaccine compositions.

所揭露的疫苗組成物可以根據實施例5與6中描述的方法製備它們的複合程序。The disclosed vaccine compositions can be prepared according to the methods described in Examples 5 and 6 and their compounding procedures.

c. 使用疫苗組成物之方法。c. Methods of using vaccine compositions.

在預防性應用中,所揭露的蛋白質/胜肽疫苗組合物可施用於易感染或有風險感染SARS-CoV-2及其相關變體的受試者,導致COVID的病毒消除或降低風險、減輕嚴重程度,或延緩疾病的發作。In preventive applications, the disclosed protein/peptide vaccine compositions can be administered to subjects susceptible to or at risk of infection with SARS-CoV-2 and its related variants, resulting in viral elimination or risk reduction or mitigation of COVID. severity, or delaying the onset of disease.

足以完成預防性治療的疫苗組合物的量被定義為預防有效劑量。可以將所揭露的蛋白質/胜肽疫苗組合物以一劑或多劑施用於受試者以產生足夠的免疫反應,從而預防SARS-CoV-2感染。 通常,會監測免疫反應,若免疫反應開始減弱,則會重複給藥。The amount of vaccine composition sufficient to accomplish preventive treatment is defined as the prophylactically effective dose. The disclosed protein/peptide vaccine compositions can be administered to a subject in one or more doses to generate a sufficient immune response to prevent SARS-CoV-2 infection. Typically, the immune response is monitored and the dose is repeated if the immune response begins to wane.

疫苗組合物可配製成速釋或緩釋製劑。此外,可以配製疫苗組合物以通過免疫原包埋和與微粒共同施用來誘導全身或局部粘膜免疫。這樣的遞送系統很容易由該技術領域中具有通常知識者確定。可以將疫苗組合物製備成可注射的,或者作為液體溶液或懸浮液。也可以在注射前製備含有疫苗組合物的液體載體。疫苗組合物可以通過任何合適的應用方式,例如,i.d.、i.p.、i.m.、鼻內、口服、皮下等以及在任何合適的遞送裝置中施用。 在某些實施例中,疫苗組成物被配製用於皮下、皮內或肌肉內施用。疫苗組成物也可以製備用於其他給藥方式,包括口服和鼻內應用。Vaccine compositions can be formulated as immediate release or sustained release formulations. Additionally, vaccine compositions can be formulated to induce systemic or local mucosal immunity via immunogen entrapment and co-administration with microparticles. Such delivery systems are readily identifiable by those of ordinary skill in the art. Vaccine compositions can be prepared as injectables, or as liquid solutions or suspensions. Liquid vehicles containing the vaccine composition can also be prepared prior to injection. Vaccine compositions may be administered by any suitable mode of application, eg, i.d., i.p., i.m., intranasally, orally, subcutaneously, etc., and in any suitable delivery device. In certain embodiments, vaccine compositions are formulated for subcutaneous, intradermal, or intramuscular administration. Vaccine compositions may also be formulated for other modes of administration, including oral and intranasal application.

疫苗組合物的劑量將根據受試者和特定的給藥方式而變化。所需劑量將根據該技術領域中具有通常知識者已知的許多因素而變化,包括但不限於對象的種類與大小。劑量範圍可為設計蛋白和 Th/CTL 肽的總重量的1 μg至1,000 μg。設計蛋白與Th/CTL胜肽的比例(重量:重量)可以根據需要或應用而變化。在一些情況下,設計蛋白與Th/CTL胜肽的比例 (w:w) 可以是 70:30、80:20 或 90:10。在具體實施例中,設計蛋白與Th/CTL胜肽的比例(w:w)為95:5、90:10、88:12或85:15等。在具體實施例中,設計蛋白與Th/CTL胜肽的比例(w:w)為88:12。在具體實施例中,疫苗組成物包含表7-9中所示的組分。The dosage of the vaccine composition will vary depending on the subject and the particular mode of administration. The required dosage will vary depending on many factors known to those of ordinary skill in the art, including, but not limited to, the type and size of the subject. Dosage can range from 1 μg to 1,000 μg based on the total weight of the design protein and Th/CTL peptide. The ratio (weight:weight) of designer protein to Th/CTL peptide can vary depending on the need or application. In some cases, the ratio (w:w) of designer protein to Th/CTL peptide can be 70:30, 80:20, or 90:10. In specific embodiments, the ratio (w:w) of the designed protein to Th/CTL peptide is 95:5, 90:10, 88:12 or 85:15, etc. In a specific embodiment, the ratio (w:w) of the designed protein to Th/CTL peptide is 88:12. In specific embodiments, the vaccine compositions comprise the components shown in Tables 7-9.

疫苗組合物可以在一段時間內以單劑量或多劑量的方式施用。The vaccine composition can be administered in a single dose or in multiple doses over a period of time.

疫苗組成物可以按照特定的劑量表給藥。有效劑量可以從動物模型獲得的劑量反應曲線中推算出來。 在一些實施例中,疫苗組成物以單次給藥方式提供給受試者。 在其他實施例中,疫苗組合物以多次給藥(兩次或多次)提供給受試者。 當以多次給藥方式提供時,兩次給藥之間的持續時間可以根據應用或需要而變化。在一些實施例中,向受試者提供第一劑的疫苗組合物,並在第一劑後約1週至約12週提供第二劑。在某些實施例中,第二劑在第一次給藥後約3週、約4週、約5週、約6週、約7週、約8週、約9週、約10週、約11週或約12週給藥。在一個具體的實施例中,第二劑是在第一次給藥後約4週給藥。Vaccine compositions can be administered according to specific dosage schedules. Effective doses can be extrapolated from dose-response curves obtained in animal models. In some embodiments, the vaccine composition is provided to the subject in a single administration. In other embodiments, the vaccine composition is provided to the subject in multiple administrations (two or more). When provided as multiple doses, the duration between doses may vary depending on the application or need. In some embodiments, the subject is provided with a first dose of the vaccine composition and a second dose is provided about 1 week to about 12 weeks after the first dose. In certain embodiments, the second dose is administered about 3 weeks, about 4 weeks, about 5 weeks, about 6 weeks, about 7 weeks, about 8 weeks, about 9 weeks, about 10 weeks, about Dosing at or about 11 weeks. In a specific embodiment, the second dose is administered approximately 4 weeks after the first dose.

可以在初始疫苗接種方案後向受試者施用追加劑的疫苗組成物以增加對SARS-CoV-2的免疫力。在一些實施例中,在初始疫苗接種方案後約6個月至約10年將疫苗組成物的追加劑施用於受試者。在某些實施例中,疫苗組成物的追加劑在初始疫苗接種方案後或最後一次追加劑後約3個月、約6個月、約1年、約2年、約3年、約4年、約5年、約6年、約7年、約8年、約9年或約10年給藥。A booster dose of the vaccine composition can be administered to the subject after the initial vaccination regimen to increase immunity to SARS-CoV-2. In some embodiments, a booster dose of the vaccine composition is administered to the subject about 6 months to about 10 years after the initial vaccination regimen. In certain embodiments, the booster dose of the vaccine composition is about 3 months, about 6 months, about 1 year, about 2 years, about 3 years, about 4 years after the initial vaccination regimen or the last booster dose. , administered at about 5 years, about 6 years, about 7 years, about 8 years, about 9 years, or about 10 years.

本發明之特定實施例,包括但不限於以下實施例。Specific embodiments of the present invention include, but are not limited to, the following embodiments.

1. 一種融合蛋白,包括一IgG分子之一Fc片段與一生物活性分子,其中該Fc片段為一單鏈Fc(single chain Fc, sFc),其中該Fc片段包括一樞紐區(hinge region),其中該樞紐區為經突變的且不形成雙硫鍵,其中該樞紐區包括擇自由序列識別號:3至5所組成之群組的一胺基酸序列,其中該生物活性分子為來自SARS-CoV2之S蛋白(S1-RBD)的一受體結合區域(receptor binding domain, RBD)(序列識別號:1或2),其中一武漢株(Wuhan)為序列識別號:1,其中一Omicron BA.4/BA.5變體形式為序列識別號:2。1. A fusion protein, comprising an Fc fragment of an IgG molecule and a biologically active molecule, wherein the Fc fragment is a single chain Fc (single chain Fc, sFc), wherein the Fc fragment includes a hinge region, Wherein the hub region is mutated and does not form a disulfide bond, wherein the hub region includes an amino acid sequence selected from the group consisting of sequence identification numbers: 3 to 5, wherein the biologically active molecule is from SARS- A receptor binding domain (RBD) of the S protein (S1-RBD) of CoV2 (sequence identification number: 1 or 2), one of which is the Wuhan strain (Wuhan), the sequence identification number is: 1, one of which is Omicron BA The .4/BA.5 variant has sequence identification number: 2.

2. 如請求項1之融合蛋白,其中該融合蛋白係擇自由序列識別號:10與11所組成之群組。2. The fusion protein of claim 1, wherein the fusion protein is selected from the group consisting of sequence identification numbers: 10 and 11.

3. 如請求項1之融合蛋白,其中該樞紐區包括序列識別號:4之一胺基酸序列。3. The fusion protein of claim 1, wherein the hub region includes an amino acid sequence of sequence identification number: 4.

4. 一種醫藥組成物,包括如請求項1之融合蛋白與一藥學上可接受之載體或賦形劑。4. A pharmaceutical composition, including the fusion protein of claim 1 and a pharmaceutically acceptable carrier or excipient.

5. 一種產生如請求項1之融合蛋白的方法,包括: a)    提供一生物活性分子,其中該生物活性分子為來自SARS-CoV2武漢之S蛋白(S-RBD)的一受體結合區域(RBD)(序列識別號:1)或其Omicron BA.4/BA.5變體之一,其中該S蛋白(S-RBD)之該受體結合區域(RBD)為序列識別號:2, b)    提供一IgG分子之一Fc片段,其中該Fc片段包括一樞紐區,其中該樞紐區藉由一半胱胺酸殘基的取代及/或缺失而突變以形成一經突變的Fc,且該經突變的Fc不形成雙硫鍵,其中該樞紐區包括擇自由序列識別號:3-5所組成之群組的一胺基酸序列,以及 c) 經由該樞紐區結合該生物活性分子與該經突變的Fc。 5. A method for producing the fusion protein of claim 1, comprising: a) Provide a biologically active molecule, wherein the biologically active molecule is a receptor binding domain (RBD) (Sequence Identification Number: 1) of the S protein (S-RBD) from SARS-CoV2 Wuhan or its Omicron BA.4/ One of the BA.5 variants, wherein the receptor binding domain (RBD) of the S protein (S-RBD) is sequence identification number: 2, b) Provide an Fc fragment of an IgG molecule, wherein the Fc fragment includes a hub region, wherein the hub region is mutated by substitution and/or deletion of a cysteine residue to form a mutated Fc, and the The mutated Fc does not form a disulfide bond, wherein the hub region includes an amino acid sequence selected from the group consisting of Sequence Identification Number: 3-5, and c) Binding the biologically active molecule to the mutated Fc via the hub region.

6. 一種融合蛋白,係擇自由序列識別號:11之S1-RBD Omicron BA.4/BA.5變體-sFc所組成之群組。6. A fusion protein selected from the group consisting of S1-RBD Omicron BA.4/BA.5 variant-sFc with sequence identification number: 11.

7. 一種組成物,包括如請求項6之融合蛋白。7. A composition comprising the fusion protein of claim 6.

8. 如請求項7之組成物,更包括一Th/CTL胜肽,其中該Th/CTL胜肽係衍生自SARS-CoV-2 M、N或S蛋白、一病原體蛋白,或其任意之組合,其中該Th/CTL胜肽係擇自由序列識別號:17-23與其任意之組合所組成之群組。8. The composition of claim 7, further comprising a Th/CTL peptide, wherein the Th/CTL peptide is derived from SARS-CoV-2 M, N or S protein, a pathogen protein, or any combination thereof , wherein the Th/CTL peptide is selected from the group consisting of sequence identification numbers: 17-23 and any combination thereof.

9. 如請求項8之組成物,其中該Th/CTL胜肽係擇自由序列識別號:17-23與其任意之組合所組成之群組。9. The composition of claim 8, wherein the Th/CTL peptide is selected from the group consisting of sequence identification numbers: 17-23 and any combination thereof.

10. 一種COVID疫苗組成物,包括: a).   一S-RBD Omicron BA.4/BA.5變體蛋白,係擇自序列識別號:11之群組; b).   一Th/CTL胜肽,係擇自由序列識別號:17-23與其任意之組合所組成之群組; c).   一藥學上可接受之賦形劑,其中該藥學上可接受之賦形劑為一佐劑、緩衝劑、界面活性劑、乳化劑、pH調整劑、食鹽水溶液、防腐劑、溶劑,或其任意之組合。 10. A COVID vaccine composition comprising: a). An S-RBD Omicron BA.4/BA.5 variant protein, selected from the group with sequence identification number: 11; b). A Th/CTL peptide, selected from the group consisting of free sequence identification numbers: 17-23 and any combination thereof; c). A pharmaceutically acceptable excipient, wherein the pharmaceutically acceptable excipient is an adjuvant, buffer, surfactant, emulsifier, pH adjuster, saline solution, preservative, solvent, or any combination thereof.

11. 如請求項10之COVID疫苗組成物,其中於(b)中之該Th/CTL胜肽係擇自由序列識別號:17-23與其任意之組合所組成之群組。11. For the COVID vaccine composition of claim 10, the Th/CTL peptide in (b) is selected from the group consisting of sequence identification numbers: 17-23 and any combination thereof.

12. 如請求項11之COVID疫苗組成物,其中該藥學上可接受之賦形劑為一CpG1寡核苷酸、ALUM(磷酸鋁或氫氧化鋁)、組胺酸、組胺酸HCl•H 2O、精胺酸HCl、TWEEN 80(聚氧乙烯(20)-山梨醇酐單油酸酯(polyoxyethylene (20) sorbitan monooleate))、鹽酸、氯化鈉與在水中之2-苯氧乙醇(2-phenoxyethanol)的一組合。 12. For example, the COVID vaccine composition of claim 11, wherein the pharmaceutically acceptable excipient is a CpG1 oligonucleotide, ALUM (aluminum phosphate or aluminum hydroxide), histidine, histidine HCl·H 2 O, arginine HCl, TWEEN 80 (polyoxyethylene (20) sorbitan monooleate), hydrochloric acid, sodium chloride and 2-phenoxyethanol in water ( 2-phenoxyethanol).

13. 如請求項12之COVID疫苗組成物,其中該藥學上可接受之賦形劑為CpG1(序列識別號:26)。13. For example, the COVID vaccine composition of claim 12, wherein the pharmaceutically acceptable excipient is CpG1 (sequence identification number: 26).

14. 一種避免於一個體中之COVID的方法,包括投予一藥學上有效量之如請求項10之疫苗組成物至該個體。14. A method of preventing COVID in an individual, comprising administering to the individual a pharmaceutically effective amount of the vaccine composition of claim 10.

15. 一種避免於一個體中之COVID的方法,包括投予一藥學上有效量之如請求項11之疫苗組成物至該個體。15. A method of preventing COVID in an individual, comprising administering to the individual a pharmaceutically effective amount of the vaccine composition of claim 11.

16. 一種產生針對SARS-CoV-2 Omicron BA.4/BA.5變體之抗體的方法,包括投予一藥學上有效量之如請求項10之疫苗組成物至一個體。16. A method of generating antibodies against the SARS-CoV-2 Omicron BA.4/BA.5 variant, comprising administering a pharmaceutically effective amount of the vaccine composition of claim 10 to an individual.

17. 一種產生針對SARS-CoV-2 Omicron BA.4/BA.5變體之抗體的方法,包括投予一藥學上有效量之如請求項11之疫苗組成物至一個體。17. A method of generating antibodies against the SARS-CoV-2 Omicron BA.4/BA.5 variant, comprising administering a pharmaceutically effective amount of the vaccine composition of claim 11 to an individual.

18. 一種COVID疫苗組成物,包括於表7-9之任何一個中以所示之量的成分。18. A COVID vaccine composition comprising an ingredient in any of Tables 7-9 in the amounts indicated.

19. 一種細胞株,係以編碼如請求項6之融合蛋白(序列識別號:16)的一cDNA序列轉染。19. A cell strain transfected with a cDNA sequence encoding the fusion protein of claim 6 (sequence identification number: 16).

20. 如請求項19之細胞株,其為一中國倉鼠卵巢(Chinese Hamster Ovary, CHO)細胞株。20. The cell line of claim 19, which is a Chinese Hamster Ovary (CHO) cell line.

21. 如請求項19之細胞株,其中該cDNA序列係擇自由序列識別號:16所組成之群組。21. For example, the cell strain of claim 19, wherein the cDNA sequence is selected from the group consisting of sequence identification number: 16.

實施例Example 11

SARS-CoV2相關胜肽的合成。Synthesis of SARS-CoV2 related peptides.

SARS-CoV-2相關之Th與CTL胜肽作為用於疫苗發展之免疫原,可被以對於血清學檢測、實驗室試驗與田野研究為有用的小規模量來合成,以及以用於醫藥組成物之商業生產之大規模(公斤)量來合成。具有長度從約9至40個胺基酸之SARS-CoV2相關之Th/CTL抗原決定位胜肽的一大組庫(repertoire)被設計並選擇為胜肽免疫原建構物用於疫苗配方。SARS-CoV-2-related Th and CTL peptides serve as immunogens for vaccine development, can be synthesized in small-scale quantities useful for serological testing, laboratory experiments and field studies, and can be used in pharmaceutical compositions It is synthesized in large-scale (kilogram) quantities for commercial production of the substance. A large repertoire of SARS-CoV2-related Th/CTL epitope peptides ranging from approximately 9 to 40 amino acids in length was designed and selected as peptide immunogenic constructs for use in vaccine formulations.

表3與4提供具有已知MHC結合活性之衍生自SARS-CoV-2 M、N與S蛋白之Th/CTL胜肽(序列識別號:17-22)的序列為設計者胜肽(例如,為了較佳之配製,於N端具有KKK為一連接子以增加其正電荷)用於內含於最終SARS-CoV2疫苗配方。為了在疫苗組成物中之T細胞活化,也使用一理想化之人工Th抗原決定位胜肽(序列識別號:23)為一催化劑。Tables 3 and 4 provide the sequences of Th/CTL peptides (SEQ ID NO: 17-22) derived from SARS-CoV-2 M, N and S proteins with known MHC binding activity as designer peptides (e.g., For better formulation, having KKK as a linker at the N-terminus to increase its positive charge) was used for inclusion in the final SARS-CoV2 vaccine formulation. For T cell activation in the vaccine composition, an ideal artificial Th epitope peptide (SEQ ID NO: 23) is also used as a catalyst.

使用F-moc化學藉由Applied BioSystems Models 430A、431及/或433之胜肽合成器小規模來合成可用於免疫原研究或相關血清學測試的所有胜肽。每個胜肽皆為藉由在一固相支持物上的獨立合成產生的,伴隨於N端之F-moc保護與三官能胺基酸的側鏈保護基團。於合成後,胜肽從固體支持物切開,伴隨以90%三氟乙酸(TFA)去除側鏈保護基團。藉由基質輔助雷射脫附/游離飛行時間(Matrix-Assisted Laser Desorption/Ionization-Time-Of-Flight, MALDI-TOF)質譜測定法(Mass Spectrometr)評估合成之胜肽製備物,以確認正確分子量與胺基酸內容。藉由逆向HPLC (Reverse Phase HPLC, RP-HPLC)評估每個合成之胜肽以確認製備物之合成圖譜(synthesis profile)與濃度。儘管對合成過程進行了嚴格控制,包括偶聯效率的逐步監測,但由於在延伸週期中的意外事件,包括胺基酸插入、缺失、取代與過早終止,胜肽類似物也被產生。因此,合成之製備物通常含有多個胜肽類似物,儘管數量很少,但仍與目標胜肽一起。Use F-moc chemistry to synthesize all peptides that can be used in immunogen studies or related serology tests on a small scale using Applied BioSystems Models 430A, 431 and/or 433 peptide synthesizers. Each peptide is produced by independent synthesis on a solid support, accompanied by N-terminal F-moc protection and trifunctional amino acid side chain protecting groups. After synthesis, the peptides were cleaved from the solid support, followed by removal of side chain protecting groups with 90% trifluoroacetic acid (TFA). The synthesized peptide preparation was evaluated by Matrix-Assisted Laser Desorption/Ionization-Time-Of-Flight (MALDI-TOF) mass spectrometry to confirm the correct molecular weight. and amino acid content. Each synthesized peptide was evaluated by reverse phase HPLC (RP-HPLC) to confirm the synthesis profile and concentration of the preparation. Although the synthesis process is tightly controlled, including step-by-step monitoring of coupling efficiency, peptide analogs are generated due to unexpected events during the extension cycle, including amino acid insertions, deletions, substitutions, and premature terminations. Therefore, synthetic preparations often contain multiple peptide analogs, albeit in small amounts, together with the target peptide.

儘管包含了此種非預期的胜肽類似物,但所產生的胜肽製劑還是適合用於免疫學應用與作為胜肽免疫原。通常,此類胜肽類似物經常與純化的胜肽一樣有效,只要開發一個有辨識度的QC程式來監測製造與評估過程兩者,以確保採用這些胜肽的最終產品的可重複性與有效性。在一個訂製的自動胜肽合成儀UBI2003上,以15 mmole到150 mmole的規模進行了數百至數千克量的大規模胜肽合成。Despite the inclusion of such unintended peptide analogs, the resulting peptide preparations are suitable for immunological applications and as peptide immunogens. In general, such peptide analogs are often as effective as the purified peptides, as long as a discernible QC program is developed to monitor both the manufacturing and evaluation processes to ensure that the final product using these peptides is reproducible and effective. sex. On a custom-made automatic peptide synthesizer UBI2003, large-scale peptide synthesis of hundreds to thousands of kilograms was carried out on a scale of 15 mmole to 150 mmole.

對於在用於臨床試驗或商業用途的最終醫藥組合物中的活性成分,胜肽免疫原建構物在淺洗脫梯度下藉由製備型 RP-HPLC來純化,並藉由MALDI-TOF質譜、胺基酸分析與RP-HPLC來表徵純度與身份(identity)。For active ingredients in final pharmaceutical compositions for clinical trials or commercial use, peptide immunogenic constructs are purified by preparative RP-HPLC under a shallow elution gradient and analyzed by MALDI-TOF mass spectrometry, amine Basic acid analysis and RP-HPLC were used to characterize purity and identity.

實施例Example 22

設計、質體建構與 CHO細胞中之S-RBD融合蛋白的表現。Design, plasmid construction, and performance of S-RBD fusion protein in CHO cells.

1. cDNA序列 之設計 1. Design of cDNA sequences

最適化cDNA序列編碼SARS-CoV2-RBD武漢序列識別號:12)與SARS-CoV2-RBD Omicron BA.4/BA.5(序列識別號:13)以用於CHO細胞表現。為了產生S-RBD武漢-scFc (DNA序列識別號:15)、SARS-CoV2-RBD Omicron變體 BA.4/BA.5-sFc(DNA序列識別號:16)融合蛋白,分別將編碼SARS-CoV-2之S-RBD武漢與Omicron BA.4/BA.5(aa331-530)之核酸序列(DNA序列識別號:12與13)融合至免疫球蛋白Fc之單鏈(DNA序列識別號:14)的N端,隨著於第2圖中顯示之質體圖譜。攜帶分別之S-RBD Omicron BA.4/BA.5- sFc蛋白質的基因的質體會轉染進CHO細胞系統並產生分別之S-RBD-sFc融合蛋白(胺基酸序列識別號:11;DNA序列識別號:16)。 Optimized cDNA sequences encoding SARS-CoV2-RBD Wuhan Sequence ID: 12) and SARS-CoV2-RBD Omicron BA.4/BA.5 (Sequence ID: 13) for CHO cell expression. In order to produce S-RBD Wuhan-scFc (DNA sequence identification number: 15) and SARS-CoV2-RBD Omicron variant BA.4/BA.5-sFc (DNA sequence identification number: 16) fusion proteins, the encoding SARS- The nucleic acid sequences of S-RBD Wuhan and Omicron BA.4/BA.5 (aa331-530) of CoV-2 (DNA sequence identification numbers: 12 and 13) are fused to the single strand of immunoglobulin Fc (DNA sequence identification number: 14), along with the plasmid map shown in Figure 2. Plasmids carrying the genes for the respective S-RBD Omicron BA.4/BA.5 -sFc proteins will be transfected into the CHO cell system and produce the respective S-RBD-sFc fusion proteins (amino acid sequence identification number: 11; DNA Serial ID: 16).

由於沒有雙硫鍵形成於樞紐區中,與sFc融合之大蛋白質不會限制對應之S-RBD蛋白的表現。單鏈Fc的結構也具有經由“蛋白A結合與洗脫”純化過程被純化的優點。Since no disulfide bonds are formed in the hub region, large proteins fused to sFc will not limit the performance of the corresponding S-RBD protein. The single-chain Fc structure also has the advantage of being purified via a "Protein A Binding and Elution" purification process.

2.2. 質體建構物與蛋白質表現Plastid constructs and protein expression

a.a. 質體建構物plastid construct

為了表現S-RBD-sFc融合蛋白,於一合適的細胞株中產生編碼這些目標蛋白質脂之分別的cDNA。cDNA片段的N端添加用於蛋白質分泌的前導訊息序列(leader signal sequence),而C端可連接至單鏈Fc (sFc)。將 cDNA 片段插入 pND 表現載體中,其含有用於篩選的新黴素(neomycin)抗性基因與用於基因擴增的dhfr基因。將載體與cDNA片段以PacI/EcoRV限制酶消化,然後連接,產生四個表現載體,每個表現載體對應pS-RBD Omicron BA.4/BA.5-sFc。To express the S-RBD-sFc fusion protein, cDNA encoding each of these target protein lipids is generated in a suitable cell line. The N-terminus of the cDNA fragment is added with a leader signal sequence for protein secretion, while the C-terminus can be connected to a single-stranded Fc (sFc). The cDNA fragment was inserted into the pND expression vector, which contains the neomycin resistance gene for screening and the dhfr gene for gene amplification. The vector and cDNA fragment were digested with PacI/EcoRV restriction enzymes and then ligated to generate four expression vectors, each corresponding to pS-RBD Omicron BA.4/BA.5-sFc.

b.b. 宿主細胞株host cell strain

CHO-S™細胞株(Gibco, A1134601)為一穩定的非整倍體(aneuploidy)細胞株,由成年中國倉鼠的卵巢所建立。宿主細胞系CHO-S™適應於無血清懸浮生長,與FREESTYLE™ MAX試劑相容,達高轉染效率。CHO-S細胞被培養於補充有8 mM麩醯胺酸補充劑(Life Technologies, Cat. 25030081) 與抗凝集試劑(anti-clumping agent)(Gibco, Cat. 0010057DG)的DYNAMIS™培養基(Gibco, Cat. A26175-01)中。CHO-S™ cell line (Gibco, A1134601) is a stable aneuploidy cell line established from the ovaries of adult Chinese hamsters. The host cell line CHO-S™ is adapted to serum-free suspension growth and is compatible with FREESTYLE™ MAX reagent to achieve high transfection efficiency. CHO-S cells were cultured in DYNAMIS™ medium (Gibco, Cat. 0010057DG) supplemented with 8 mM glutamine supplement (Life Technologies, Cat. 25030081) and anti-clumping agent (Gibco, Cat. 0010057DG). Cat. A26175-01).

ExpiCHO-S™細胞株(Gibco, Cat. A29127)為一CHO-S細胞株的選殖(clonal)衍生物。ExpiCHO-S™細胞在ExpiCHO™表現培養基(Gibco, Cat. A29100)中適應高密度懸浮培養,無需任何補充。細胞被維持於具有8% CO 2之濕潤氣氛的一37°C培養箱中。 ExpiCHO-S™ cell line (Gibco, Cat. A29127) is a clonal derivative of the CHO-S cell line. ExpiCHO-S™ cells are adapted to high-density suspension culture in ExpiCHO™ Performance Medium (Gibco, Cat. A29100) without any supplementation. Cells were maintained in a 37°C incubator with a humidified atmosphere of 8% CO2 .

c.c. 瞬時表現instantaneous performance (transient expression)(transient expression)

為了瞬時表現,使用EXPIFECTAMINE™ CHO 套組(Gibco, Cat. A29129)將表現載體個別地轉染進ExpiCHO-S細胞中。在轉染後第 1 天,添加 EXPIFECTAMINE™ CHO增強劑與第一次饋料,並將細胞從具有8% CO 2之濕潤氣氛的一37°C培養箱轉移至具有5% CO 2之濕潤氣氛的一32°C培養箱。之後,於轉染後第5天天加第二次饋料,並於轉染後12-14天之後收穫細胞。於收穫細胞培養物之後,藉離心與0.22-µm過濾將上清液澄清。分別藉由蛋白質A層析(Gibco, Cat. 101006)與Ni-NTA層析(Invitrogen, Cat. R90101)來純化含有單鏈Fc與His-標籤的重組蛋白。 For transient expression, expression vectors were individually transfected into ExpiCHO-S cells using the EXPIFECTAMINE™ CHO Kit (Gibco, Cat. A29129). On day 1 post-transfection, add EXPIFECTAMINE™ CHO Enhancer with the first feed and transfer cells from a 37°C incubator with a humidified atmosphere of 8% CO to a humidified atmosphere with 5% CO of a 32°C incubator. Afterwards, a second feed was added on day 5 post-transfection, and cells were harvested 12-14 days post-transfection. After harvesting the cell culture, the supernatant was clarified by centrifugation and 0.22-µm filtration. Recombinant proteins containing single-chain Fc and His-tags were purified by Protein A chromatography (Gibco, Cat. 101006) and Ni-NTA chromatography (Invitrogen, Cat. R90101) respectively.

d.d. 穩定轉染與細胞篩選Stable transfection and cell screening

使用FreeStyle MAX試劑(Gibco, Cat. 16447500)將表現載體轉染進CHO-S細胞中,且之後以含有8 mM L-麩醯胺酸、以1:100稀釋之抗凝集試劑、嘌黴素(puromycin) (InvovoGen, Cat. ant-pr-1)與MTX(Sigma, Cat. M8407)之選擇DYNAMIS™培養基培養。經過2輪選擇階段後,獲得四個穩定的池(pool)(1A、1B、2A、2B)。此外,將細胞選殖體鋪板(plated)在半固體CloneMedia (Molecular Devices, Cat. K8700)中,同時添加檢測抗體,以用於經由高通量系統ClonePixTM2 (CP2)的選殖體篩選與單細胞分離。使用14天葡萄糖簡單饋料批式培養(simple fed-batch culture)在具有8mM麩醯胺酸與抗凝集試劑的DYNAMIS™培養基中篩選經由CP2挑選的選殖體,而無需選擇。 在篩選後,藉由限制性稀釋法(limiting dilution)執行具有高產量之選殖體的單細胞分離,並使用CloneSelect Imager (Molecular Devices)藉由成像確認單株性(monoclonality)。The expression vector was transfected into CHO-S cells using FreeStyle MAX reagent (Gibco, Cat. 16447500), followed by anti-agglutination reagent containing 8 mM L-glutamine diluted 1:100, puromycin. (puromycin) (InvovoGen, Cat. ant-pr-1) and MTX (Sigma, Cat. M8407) were cultured in selected DYNAMIS™ medium. After 2 rounds of selection stages, four stable pools (1A, 1B, 2A, 2B) were obtained. In addition, cell colonies were plated in semi-solid CloneMedia (Molecular Devices, Cat. K8700), and detection antibodies were added for colony screening and single-cell selection via the high-throughput system ClonePixTM2 (CP2). separation. Colonies selected via CP2 were screened without selection using a 14-day glucose simple fed-batch culture in DYNAMIS™ medium with 8mM glutamine and anti-agglutination reagent. After screening, single-cell isolation of selected colonies with high yield was performed by limiting dilution and monoclonality was confirmed by imaging using CloneSelect Imager (Molecular Devices).

e.e. 簡單饋料批式培養Simple feeding batch culture

使用一簡單饋料批式培養以確認表現重組蛋白之CHO-S細胞的生產力。以3 x 10 5個細胞/mL將CHO-S細胞連同30 mL DYNAMIS培養基補充、8 mM麩醯胺酸與以1:100稀釋之抗凝集試劑接種於125-mL搖瓶中。將細胞培養於具有8% CO 2之濕潤氣氛的一37°C培養箱中。於第3與5天添加4 g/L之葡萄糖,並於第7天添加6 g/L之葡萄糖。每日收集培養物以確認細胞密度、存活率(viability)與生產力,直到細胞存活率降至低於50%或達到第14天之培養。 A simple fed batch culture was used to confirm the productivity of CHO-S cells expressing recombinant proteins. Inoculate CHO-S cells in a 125-mL shake flask at 3 Cells were cultured in a 37°C incubator with a humidified atmosphere of 8% CO2 . Add 4 g/L glucose on days 3 and 5, and add 6 g/L glucose on day 7. Cultures were collected daily to confirm cell density, viability, and productivity until cell viability dropped below 50% or day 14 of culture was reached.

f.f. 基因轉錄本gene transcript (transcript)(transcript) 之準確性accuracy

經由CHO-S表現細胞之基因轉錄的準確性係藉由RT-PCR來確認。簡而言之,使用PURELINK™ RNA迷你套組 (Invitrogen Cat. 12183018A)來分離細胞之總。之後,使用Maxima H Minus第一股cDNA合成套組(Thermo Cat. K1652)自總RNA反轉錄第一股cDNA (first strand cDNA)。將重組蛋白之cDNA進行純化並接合進yT&A載體(Yeastern Biotech Co., Ltd Cat.YC203)。最後,藉由DNA定序來確認cDNA序列。The accuracy of gene transcription by CHO-S expressing cells was confirmed by RT-PCR. Briefly, cells were isolated using the PURELINK™ RNA Mini Kit (Invitrogen Cat. 12183018A). Afterwards, the first strand cDNA (first strand cDNA) was reverse transcribed from the total RNA using the Maxima H Minus first strand cDNA synthesis kit (Thermo Cat. K1652). The cDNA of the recombinant protein was purified and ligated into the yT&A vector (Yeastern Biotech Co., Ltd Cat.YC203). Finally, the cDNA sequence was confirmed by DNA sequencing.

g.g. 表現細胞之穩定性Express cell stability

將細胞以1~2 x 10 5個細胞/mL接種並培養於無選擇試劑的一培養基中達60代。在此期間,一旦培養物之細胞密度達1.0 x 10 6個細胞/mL或更高,將細胞培養物以1~2 x 10 5個細胞/mL的細胞密度再次繼代。在培養達60代後,使用葡萄糖簡單饋料批式培養將細胞性能與生產力與剛從LMCB被解凍之細胞比較。細胞中產品生產力之穩定性的標準為於培養60代後效價大於70%。 Cells were seeded at 1~2 x 105 cells/mL and cultured in a medium without selective reagent for 60 passages. During this period, once the cell density of the culture reaches 1.0 x 10 6 cells/mL or higher, the cell culture is passaged again at a cell density of 1 to 2 x 10 5 cells/mL. After 60 passages in culture, cell performance and productivity were compared with cells freshly thawed from LMCB using glucose simple fed batch culture. The standard for the stability of product productivity in cells is that the potency is greater than 70% after 60 generations of culture.

實施例Example 33

sFcf 融合蛋白之純化與生化特性描述。Purification and biochemical characterization of the fusion protein.

1. sFc1. sFc 融合蛋白之純化Purification of fusion protein

從含有所收穫細胞培養物之培養基藉由蛋白質A-瓊脂糖(sepharose)層析來純化所有sFc融合蛋白。藉由一蛋白質A親合管柱來捕捉sFc融合蛋白。在清洗與洗提後,將蛋白質溶液之pH調整至3.5。之後藉由1 M Tris鹼(Tris base)緩衝液,pH 10.8的添加,將蛋白質溶液中和至pH 6.0。融合蛋白之純度藉由聚丙烯醯胺凝膠電泳來確認。根據於280 nm 之一波長的UV吸收來測量蛋白質濃度。All sFc fusion proteins were purified by Protein A-sepharose chromatography from the culture medium containing the harvested cell cultures. The sFc fusion protein is captured via a Protein A affinity column. After washing and elution, the pH of the protein solution was adjusted to 3.5. The protein solution was then neutralized to pH 6.0 by the addition of 1 M Tris base buffer, pH 10.8. The purity of the fusion protein was confirmed by polyacrylamide gel electrophoresis. Protein concentration is measured based on UV absorption at a wavelength of 280 nm.

2.2. 包含Include S1-RBD OmicronS1-RBD Omicron 變體Variants BA.4/BA.5-sFcBA.4/BA.5-sFc 融合蛋白之做為用於Fusion proteins are used for COVIDCOVID 之避免與治療之免疫原的Avoidance and treatment of immunogenic S1-RBD-sFcS1-RBD-sFc 融合蛋白的生化特性描述Description of the biochemical properties of the fusion protein

根據於上方實施例2中所述之方法來製備與純化S-RBD Omicron BA.4/BA.5-sFc蛋白質以使用為高精確度設計疫苗配方中的代表性免疫原融合蛋白以用於免疫原性評估。S-RBD Omicron BA.4/BA.5-sFc proteins were prepared and purified according to the method described in Example 2 above for use in designing representative immunogen fusion proteins in vaccine formulations with high precision for immunization. Originality assessment.

在sFc融合蛋白之純化後,使用考馬斯藍(Coomassie blue)染色藉由SDS-PAGE在非還原與還原條件下,來確認蛋白質的純度)。 5 為顯示S1-RBD-sFc 蛋白質之一高度純化製備物於非還原條件(泳道2)與還原條件(泳道3)下的一影像。 After purification of the sFc fusion protein, the purity of the protein was confirmed by SDS-PAGE under non-reducing and reducing conditions using Coomassie blue staining). Figure 5 is an image showing a highly purified preparation of S1-RBD-sFc protein under non-reducing conditions (lane 2) and reducing conditions (lane 3).

將經純化之蛋白質藉由質譜分析與與醣基化分析來描述特徵。Purified proteins were characterized by mass spectrometry and glycosylation analysis.

a. S-RBD-sFc - LC質量分析與醣基化分析a. S-RBD-sFc - LC mass analysis and glycosylation analysis

i. 醣基化i. Glycosylation

醣蛋白(glycoproteins)可具有兩種類型之醣基化連接(glycosylation linkage):N-連接醣基化(N-linked glycosylation)與O-連接醣基化。N-連接醣基化通常發生在一序列內的一天冬醯胺酸(Asn)殘基上:Asn-Xaa-Ser/Thr,其中Xaa為除了Pro之任何胺基酸殘基,且碳水化合物部分經由天冬醯胺酸之側鏈上的NH 2附著在蛋白質上。O-連接醣基化利用一絲胺酸或蘇胺 酸殘基之側鏈OH基團。 Glycoproteins can have two types of glycosylation linkage: N-linked glycosylation and O-linked glycosylation. N-linked glycosylation usually occurs on asparagine (Asn) residues within a sequence: Asn-Xaa-Ser/Thr, where Xaa is any amino acid residue except Pro, and the carbohydrate moiety Attach to protein via NH 2 on the side chain of asparagine. O-linked glycosylation utilizes side chain OH groups of trace or threonine residues.

S1-RBD-sFc的醣基化位點,藉由胰蛋白酶消化,接著LC-MS與MS/MS進行研究,其顯示S1-RBD-sFc在胺基酸位置13 (N13)的精胺酸殘基上具有一個N-連接醣基化位點,在胺基酸位置211 (S211)與224 (S224)的絲胺酸殘基上具有一個O-連接醣基化位點。The glycosylation site of S1-RBD-sFc was studied by trypsin digestion, followed by LC-MS and MS/MS, which showed that the arginine residue at amino acid position 13 (N13) of S1-RBD-sFc It has an N-linked glycosylation site on the base and an O-linked glycosylation site on the serine residues at amino acid positions 211 (S211) and 224 (S224).

ii. N-醣基化ii. N-glycosylation

藉由質譜(MS)光譜技術分析S1-RBD-sFc的N-連接聚醣(glycan)結構。簡而言之,使用PNGase F以從經純化的蛋白質釋放N-寡醣。之後進一步以2-胺苯甲醯胺(2-aminobenzamide, 2-AB)標示N-聚糖之部分以增強在質譜分析中之聚醣訊號。The N-linked glycan structure of S1-RBD-sFc was analyzed by mass spectrometry (MS) spectroscopy. Briefly, PNGase F was used to release N-oligosaccharides from purified proteins. Then, the N-glycan part was further labeled with 2-aminobenzamide (2-AB) to enhance the glycan signal in mass spectrometry analysis.

iii. O-醣基化iii. O-glycosylation

藉由胰蛋白酶消化與隨後之質譜光譜技術研究S1-RBD-sFc的O-連接聚醣。在胰蛋白酶消化後,收集包含O-連接聚醣之波峰且藉由質譜確認它們的分子量。The O-linked glycans of S1-RBD-sFc were studied by trypsin digestion followed by mass spectrometry. After trypsin digestion, peaks containing O-linked glycans were collected and their molecular weights confirmed by mass spectrometry.

iv. LC質譜分析iv. LC mass spectrometry analysis

藉由LC質譜分析來特徵描述經純化之S1-RBD-sFc蛋白。基於其胺酸序列S1-RBD-sFc蛋白之理論分子量為48,347.04 Da。S1-RBD-sFc蛋白之質譜圖譜(profile),具有一主要波峰於49,984.51 Da。在理論分子量與經由LC質譜分析觀察到之重量之間的差距為1,637.47 Da,其暗示經純化之S1-RBD-sFc蛋白含有N-及/或O-聚醣。Purified S1-RBD-sFc protein was characterized by LC mass spectrometry analysis. The theoretical molecular weight of the S1-RBD-sFc protein based on its amino acid sequence is 48,347.04 Da. The mass spectrum profile of S1-RBD-sFc protein has a main peak at 49,984.51 Da. The difference between the theoretical molecular weight and the observed weight via LC mass spectrometry analysis was 1,637.47 Da, suggesting that the purified S1-RBD-sFc protein contains N- and/or O-glycans.

4 圖解說明藥物基質(drug substance, DS) S1-RBDVoC-sFc的一般製造製程。此製程起始自工作細胞庫 (Working Cell Bank, WCB)以接種細胞種子並在2000 L饋料批式生物反應器中擴大培養物。於細胞培養製程後,收集未處理之原液(bulk),並將其經由無菌過濾來澄清以產生經澄清的原液。為了純化藥物基質,原液經由蛋白質A親和層析、深度過濾(Depth Filtration)與離子交換(Ion-exchange, IEX) 層析,然後是切向流過濾(Tangential Flow Filtration, TFF)以緩衝液交換,以達成經配製的DS。為避免外來病毒污染,經澄清的原液也經過具有溶劑清潔劑處理、蛋白質A層析中的酸滅活與奈過濾(nano-filtration)的製程。最後,在無菌過濾後產生經配製之S1-RBDVoCs-sFc DS濃縮物。 Figure 4 illustrates the general manufacturing process of drug substance ( DS) S1-RBDVoC-sFc. The process begins with a Working Cell Bank (WCB) to seed cells and scale up the culture in a 2000 L fed-batch bioreactor. After the cell culture process, the unprocessed bulk solution is collected and clarified through sterile filtration to produce a clarified bulk solution. In order to purify the drug matrix, the stock solution was subjected to protein A affinity chromatography, depth filtration (Depth Filtration) and ion-exchange (IEX) chromatography, and then tangential flow filtration (Tangential Flow Filtration, TFF) to buffer exchange. to achieve formulated DS. To avoid contamination by foreign viruses, the clarified stock solution also undergoes a process with solvent detergent treatment, acid inactivation in protein A chromatography, and nano-filtration. Finally, the formulated S1-RBDVoCs-sFc DS concentrate was produced after sterile filtration.

實施例Example 44

針對Target SARS-CoV2SARS-CoV2 之設計蛋白質Designer proteins // win 肽的製造的複合製程Composite process for manufacturing peptides .

7 圖解說明針對SARS-CoV2之VoCs的設計多重抗原決定位(multitope) COVID疫苗之製造的複合製程。為了產生疫苗產品,製程為相繼添加胜肽、CpG1、明礬(Alum)佐劑與蛋白質成分於溶液中。首先,將Th/CTL胜肽添加至WFI且之後接著添加CpG1於胜肽溶液中以形成胜肽/CpG1複合物。此後,將蛋白質緩衝液、明礬與NaCl添加到含有胜肽/CpG1/明礬/NaCl之複合物的溶液中。最後,S1-RBDVoCs-sFc蛋白溶液被添加、良好地混合,並調整蛋白質濃度、pH與其他緩衝液條件以達成最終疫苗產品。 Figure 7 illustrates the composite process for the manufacture of a designed multitope COVID vaccine targeting VoCs of SARS-CoV2. In order to produce a vaccine product, the process is to successively add peptide, CpG1, alum (Alum) adjuvant and protein components to the solution. First, Th/CTL peptide is added to WFI and then CpG1 is added to the peptide solution to form a peptide/CpG1 complex. Thereafter, protein buffer, alum and NaCl were added to the solution containing the peptide/CpG1/alum/NaCl complex. Finally, the S1-RBDVoCs-sFc protein solution is added, mixed well, and the protein concentration, pH, and other buffer conditions are adjusted to achieve the final vaccine product.

實施例Example 55

設計蛋白質/胜肽COVID疫苗產品與安慰劑。Designing protein/peptide COVID vaccine products versus placebo.

設計於臨床前、1、2與3期臨床試驗或擴展追加疫苗接種中使用的設計COVID疫苗以激活體液與細胞反應兩者。對於SARS-CoV-2免疫原,COVID疫苗產品結合一CHO-表現之 S1-RBD-sFc融合蛋白(武漢株或Omicron BA.4/BA.5變體)與一合成之T輔助(Th)與胞毒型T淋巴球(cytotoxic T lymphocyte, CTL)抗原決定位胜肽的混合物,其係擇自已知與人類主要組織相容複合體(major histocompatibility complex, MHC)I與II結合的免疫顯性M、S2與N區。疫苗產品之製備係由複合(compounding)、過濾、混合與填充操作所組成。在添加次單元蛋白質S1-RBD-sFc之前,經由一0.22微米膜過濾器來過濾疫苗之個別的成分,包括胜肽溶液(2 µg/mL)、CpG1、一專屬(proprietary)寡核苷酸 (oligonucleotide, ODN)、溶液 (2 µg/mL)、含40 mM 組胺酸、500 mM精胺酸與0.6% Tween 80之10X蛋白質緩衝液、20%氯化鈉儲備溶液。在相繼添加各個成分後,將S1-RBD-sFc融合蛋白與胜肽與上述成分一起配製以形成一蛋白質-胜肽複合物,之後被吸附在磷酸鋁(Adju-Phos®)佐劑上。最後一步是加入含有2-苯氧乙醇防腐劑溶液的注射用水,使最終的藥物產品達到200 μg/mL。將完成之疫苗產品儲存於2至8℃。COVID vaccines are designed to activate both humoral and cellular responses for use in preclinical, Phase 1, 2 and 3 clinical trials or in expanded catch-up vaccinations. For the SARS-CoV-2 immunogen, the COVID vaccine product combines a CHO-expressed S1-RBD-sFc fusion protein (Wuhan strain or Omicron BA.4/BA.5 variant) with a synthetic T helper (Th) and A mixture of cytotoxic T lymphocyte (CTL) epitope peptides selected from immunodominant M-peptides known to bind to human major histocompatibility complex (MHC) I and II , S2 and N areas. The preparation of vaccine products consists of compounding, filtration, mixing and filling operations. Before adding the subunit protein S1-RBD-sFc, filter the individual components of the vaccine through a 0.22 micron membrane filter, including peptide solution (2 µg/mL), CpG1, and a proprietary oligonucleotide ( oligonucleotide, ODN), solution (2 µg/mL), containing 40 mM histidine, 500 mM arginine and 0.6% Tween 80 in 10X protein buffer, 20% sodium chloride stock solution. After each component is added sequentially, the S1-RBD-sFc fusion protein and peptide are formulated together with the above components to form a protein-peptide complex, which is then adsorbed on aluminum phosphate (Adju-Phos®) adjuvant. The final step is to add water for injection containing 2-phenoxyethanol preservative solution to bring the final drug product to 200 μg/mL. Store the completed vaccine product at 2 to 8°C.

於所有試驗中使用之安慰劑為無菌0.9%生理食鹽水(normal saline)。The placebo used in all experiments was sterile 0.9% normal saline.

實施例Example 66

用於used for COVIDCOVID 疫苗之Vaccine BB 細胞或cell or TT 細胞免疫原性之評估的補充方法。Complementary methods for the assessment of cellular immunogenicity.

1.1. 根據according to ELISAELISA 之抗resistance S1-RBDWTS1-RBDWT 結合combine IgGIgG 抗體。antibody.

將96-孔ELISA盤以2 µg/mL重組S1-RBDWT-His蛋白質抗原(100 µL/孔於塗覆緩衝液,0.1 M碳酸鈉,pH 9.6)塗覆並於室溫隔夜培養(16至18小時)。一百μL/孔之連續稀釋血清樣本(從1:20、1:1,000、1:10,000與1:100,000被稀釋,共4個稀釋)以2重複被添加,並將盤於37℃培養1小時。將盤以250 μL清洗緩衝液(PBS-0.05% Tween 20, pH 7.4)清洗六次。經結合之抗體以HRP-rProtein A/G於37℃偵測30分鐘,接著六次清洗。最後添加100 μL/孔之於基質工作溶液(Substrate Working Solution)(含有過氧化氫的檸檬酸鹽緩衝液)製備的TMB(3,3’,5,5’-四甲基聯苯胺(3,3’,5,5’-tetramethylbenzidine))並於黑暗中於37℃培養15分鐘,且藉由添加100 μL/孔之H 2SO 4,1.0 M停止反應。在ELISA讀盤器(Molecular Device, VersaMax)上測量顯色的樣品顏色。使用UBI® EIA效價計算程式計算相關效價。抗S1-RBD抗體程度 被表現為一測試樣本之一終點稀釋的Log10(SoftMax Pro 6.5, 二次擬合曲線(Quadratic fitting curve),截斷值(Cut-off value) 0.248)。 A 96-well ELISA plate was coated with 2 µg/mL recombinant S1-RBDWT-His protein antigen (100 µL/well in coating buffer, 0.1 M sodium carbonate, pH 9.6) and incubated overnight at room temperature (16 to 18 hours). One hundred μL/well of serially diluted serum samples (dilutions from 1:20, 1:1,000, 1:10,000, and 1:100,000, a total of 4 dilutions) were added in 2 replicates, and the plate was incubated at 37°C for 1 hour. . The plate was washed six times with 250 μL of wash buffer (PBS-0.05% Tween 20, pH 7.4). Bound antibodies were probed with HRP-rProtein A/G for 30 minutes at 37°C, followed by six washes. Finally, add 100 μL/well of TMB (3,3',5,5'-tetramethylbenzidine (3, 3',5,5'-tetramethylbenzidine)) and incubated in the dark at 37°C for 15 minutes, and the reaction was stopped by adding 100 μL/well of H 2 SO 4 , 1.0 M. The color of the developed samples was measured on an ELISA reader (Molecular Device, VersaMax). Use the UBI® EIA potency calculator to calculate the relative potency. Anti-S1-RBD antibody levels were expressed as Log10 of one endpoint dilution of one test sample (SoftMax Pro 6.5, Quadratic fitting curve, cut-off value 0.248).

2.2. 根據according to ELISAELISA Of RBDWTRBWT 結合至combine to ACE2ACE2 的抑制。of inhibition.

將96-孔ELISA盤以2 µg/mL ACE2-ECD-Fc antigen(100 µL/孔於塗覆緩衝液中,0.1 M碳酸鈉,pH 9.6)塗覆並於4°C隔夜培養(16至18小時)。使用一自動微孔盤清洗器將盤以清洗緩衝液(具有0.05% Tween 20之磷酸鹽緩衝液(phosphate buffered saline)的25倍溶液,pH 7.0-7.4,250 μL/孔/清洗)清洗六次。額外的結合位點被200 μL/孔的阻斷溶液(5 N HCl、蔗糖、Triton X-100、酪蛋白與Trizma鹼)所阻斷。將免疫血清或一正控制組的一五倍稀釋物(稀釋於含有載體蛋白與防腐劑的一緩衝鹽溶液中)與一1:100稀釋之RBDWT-HRP結合物(conjugate)(辣根過氧化物酶結合之重組蛋白S1-RBD-His (horseradish peroxidase-conjugated recombinant protein S1-RBD-His))混合,於25±2℃培養於30±2分鐘,清洗,並添加TMB基質(3,3’,5,5’-四甲基聯苯胺(3,3’,5,5’-tetramethylbenzidine)稀釋於含有過氧化氫的檸檬酸鹽緩衝液)。藉由停止溶液(經稀釋之硫酸,H 2SO 4,溶液,1.0 M)停止反應,並使用微孔盤讀取儀(VersaMax)於10分鐘內讀取各孔洞於450nm的吸收。用於定量的校準標準範圍為0.16至2.5 μg/mL。具有低於0.16 μg/mL之效價值的樣本被定義為偵測極限的一半。具有效價超過2.5 μg/mL的樣本被進一步稀釋以進行再分析。 96-well ELISA plates were coated with 2 µg/mL ACE2-ECD-Fc antigen (100 µL/well in coating buffer, 0.1 M sodium carbonate, pH 9.6) and incubated overnight at 4°C (16 to 18 hours). Wash the plate six times with wash buffer (25x solution of phosphate buffered saline with 0.05% Tween 20, pH 7.0-7.4, 250 μL/well/wash) using an automated microplate cleaner. . Additional binding sites were blocked with 200 μL/well of blocking solution (5 N HCl, sucrose, Triton X-100, casein, and Trizma base). Immune serum or a five-fold dilution of a positive control group (diluted in a buffered saline solution containing carrier protein and preservatives) was mixed with a 1:100 dilution of RBDWT-HRP conjugate (horseradish peroxidation). Mix the horseradish peroxidase-conjugated recombinant protein S1-RBD-His (horseradish peroxidase-conjugated recombinant protein S1-RBD-His), incubate at 25±2°C for 30±2 minutes, wash, and add TMB matrix (3,3',5,5'-tetramethylbenzidine(3,3',5,5'-tetramethylbenzidine) diluted in citrate buffer containing hydrogen peroxide). The reaction was stopped by stopping the solution (diluted sulfuric acid, H 2 SO 4 , solution, 1.0 M) and the absorbance of each well at 450 nm was read within 10 minutes using a microplate reader (VersaMax). Calibration standards used for quantitation ranged from 0.16 to 2.5 μg/mL. Samples with potency values below 0.16 μg/mL were defined as half the detection limit. Samples with titers above 2.5 μg/mL were further diluted for reanalysis.

3.3. 根據基於based on CPECPE 的活病毒中和測定法之針對live virus neutralization assay for SARS-CoV-2SARS-CoV-2 野生型與變體的病毒中和抗體效價。Virus-neutralizing antibody titers of wild-type versus variants.

中和抗體效價藉由基於CPE的活病毒中和測定法使用以野生型(SARS-CoV-2-Taiwan-CDC#4, 武漢)與 Delta 變體(SARS-CoV-2-Taiwan-CDC#1144, B.1.617.2)挑戰之Vero-E6細胞來測量,其在中央研究院,台灣的一BSL-3實驗室被執行。Vero-E6 (ATCC® CRL-1586)細胞於補充有10%胎牛血清(FBS, Gibco)與1x 青黴素-鏈黴素溶液(Thermo)之DMEM (Hyclone)中在具有5% CO 2之濕潤氣氛於37°C被培養。以1.2×10 4細胞/100 μL/孔來接種96-孔微效價盤。將盤於37℃於一CO 2培養箱隔夜培養。隔日,測試的血清在56°C加熱30分鐘以滅活補體,且之後在DMEM(補充有2% FBS與1x 青黴素/鏈黴素)中稀釋。對稀釋物執行血清之連續2倍稀釋。五十μL之經稀釋的血清與一等體積之病毒(100 TCID50)混合並於37°C培養1小時。於移除隔夜培養物培養基之後,100 μL之血清-病毒混合物以三重複被接種於一在96孔盤中之Vero-E6細胞之鋪滿的一單層(confluent monolayer)上。在於37°C以5% CO 2培養4天之後,將細胞以10%甲醛(formaldehyde)固定,並以0.5%結晶紫(crystal violet)染色溶液於室溫染色20分鐘。個別之孔洞就CPE方面被評分為 ‘感染’或 ‘無感染’的二元结果。SARS-CoV-2病毒專一性中和效價的確認是根據VNT 50效價之原理(病毒誘導的細胞病變效應(cytopathic effects)之≥50%減少)來測量針對SARS-CoV-2病毒的中和抗體效價。血清的病毒中和效價被定義為觀察到細胞病變效應減少 50% 時最高血清稀釋度的倒數(reciprocal),結果藉由Reed與Muench 的方法計算。 Neutralizing antibody titers by CPE-based live virus neutralization assay using wild type (SARS-CoV-2-Taiwan-CDC#4, Wuhan) and Delta variant (SARS-CoV-2-Taiwan-CDC# 1144, B.1.617.2) Challenge Vero-E6 cells were measured, which was performed in a BSL-3 laboratory at Academia Sinica, Taiwan. Vero-E6 (ATCC® CRL-1586) cells were cultured in DMEM (Hyclone) supplemented with 10% fetal bovine serum (FBS, Gibco) and 1x penicillin-streptomycin solution (Thermo) in a humidified atmosphere with 5 % CO Cultured at 37°C. A 96-well microtiter plate was seeded at 1.2×10 4 cells/100 μL/well. Incubate the plate overnight at 37°C in a CO2 incubator. The next day, test sera were heated at 56°C for 30 minutes to inactivate complement and then diluted in DMEM (supplemented with 2% FBS and 1x penicillin/streptomycin). Serial 2-fold dilutions of serum were performed on the dilutions. Fifty μL of diluted serum was mixed with one volume of virus (100 TCID50) and incubated at 37°C for 1 hour. After removing the overnight culture medium, 100 μL of serum-virus mixture was inoculated in triplicates onto a confluent monolayer of Vero-E6 cells in a 96-well plate. After culturing for 4 days at 37°C with 5% CO2 , cells were fixed with 10% formaldehyde and stained with 0.5% crystal violet staining solution for 20 minutes at room temperature. Individual holes were scored with a binary outcome of 'infected' or 'not infected' in terms of CPE. The confirmation of SARS-CoV-2 virus-specific neutralizing titer is based on the principle of VNT 50 titer (≥50% reduction in virus-induced cytopathic effects) to measure neutralization against SARS-CoV-2 virus. and antibody titer. The virus-neutralizing titer of serum was defined as the reciprocal of the highest serum dilution at which a 50% reduction in cytopathic effect was observed, and the results were calculated by the method of Reed and Muench.

4.4. 根據偽病毒pseudovirus (pesudovirus)(pesudovirus) 檢驗之針對Target of inspection Omicron BA.1/BA.2/BA.5Omicron BA.1/BA.2/BA.5 的中和效價。of neutralizing potency.

中和抗體效價係藉由中和檢驗使用以SARS-CoV-2 偽病毒變體挑戰的HEK-293T-ACE2細胞來測量。此研究於中央研究院生醫轉譯研究中心(Biomedical Translation Research Center, BioTReC)RNAi core的一BSL2實驗室執行。人胚腎(HEK-293T/17; ATCC® CRL-11268 TM)細胞獲自美國典型培養物保藏中心(American Type Culture Collection, ATCC)。將細胞培養於補充有10%胎牛血清(Hyclone)與100 U/mL之青黴素-鏈黴素溶液(Gibco)的DMEM (Gibco)中,且之後37°C 在具有5% CO 2之濕潤氣氛中培養。HEK-293T-ACE2細胞是藉由攜帶人ACE2基因的VSV-G偽型慢病毒(pseudotyped lentivirus)的轉導所產生。為了產生SARS-CoV-2偽病毒,使用TransIT-LT1轉染試劑(Mirus Bio),將表現C端截短的野生型武漢-Hu-1株SARS-CoV-2棘蛋白(spike protein)的一質體(pcDNA3.1-nCoV-SΔ18)共轉染進具有包裝與報告質體的HEK-293T/17細胞(分別為pCMVΔ8.91與pLAS2w.FLuc.Ppuro)(BioTReC, Academia Sinica)。藉由改變武漢-Hu-1參考菌株的核苷酸,使用定點誘變(site-directed mutagenesis)來產生Omicron BA.1、BA.2與BA.4/BA.5變體。對於BA.1變體,棘蛋白之突變為A67V、 Δ69-70、 T95I、 G142D/Δ143-145、 Δ211/L212I、 ins214EPE、 G339D、 S371L、 S373P、 S375F、 K417N、 N440K、 G446S、 S477N、 T478K、 E484A、 Q493R、 G496S、 Q498R、 N501Y、 Y505H、 T547K、 D614G、 H655Y、 N679K、 P681H、 N764K、 D796Y、 N856K、 Q954H、 N969K、 L981F。對於BA.2變體,棘蛋白之突變為T19I、 L24S、 Δ25-27、 G142D、 V213G、 G339D、 S371F、 S373P、 S375F、 T376A、 D405N、 R408S、 K417N、 N440K、 S477N、 T478K、 E484A、 Q493R、 Q498R、 N501Y、 Y505H、 D614G、 H655Y、 N679K、 P681H、 N764K、 D796Y、 Q954H、 N969K。對於BA.4/5變體,棘蛋白之突變為T19I、L24S、Δ25-27、Δ69-70、 G142D、V213G、G339D、S371F、S373P、S375F、 T,376A、 D405N、 R408S、 K417N、 N440K、 L452R、 S477N、 T478K、 E484A、 L486V、 Q493、 Q498R、 N501Y、 Y505H、 D614G、 H655Y、 N679K、 N764K、 D796Y、 N856K與Q954H, & L969K。 Neutralizing antibody titers were measured by neutralization assay using HEK-293T-ACE2 cells challenged with SARS-CoV-2 pseudovirus variants. This study was performed in a BSL2 laboratory of the RNAi core of the Biomedical Translation Research Center (BioTReC), Academia Sinica. Human embryonic kidney (HEK-293T/17; ATCC® CRL-11268 TM ) cells were obtained from the American Type Culture Collection (ATCC). Cells were cultured in DMEM (Gibco) supplemented with 10% fetal calf serum (Hyclone) and 100 U/mL penicillin-streptomycin solution (Gibco), and then incubated at 37°C in a humidified atmosphere with 5 % CO culture in. HEK-293T-ACE2 cells are generated by transduction of VSV-G pseudotyped lentivirus carrying the human ACE2 gene. To generate SARS-CoV-2 pseudovirus, TransIT-LT1 transfection reagent (Mirus Bio) was used to generate a C-terminal truncated wild-type Wuhan-Hu-1 strain SARS-CoV-2 spike protein. The plasmid (pcDNA3.1-nCoV-SΔ18) was co-transfected into HEK-293T/17 cells with packaging and reporter plasmids (pCMVΔ8.91 and pLAS2w.FLuc.Ppuro, respectively) (BioTReC, Academia Sinica). Site-directed mutagenesis was used to generate Omicron BA.1, BA.2 and BA.4/BA.5 variants by changing nucleotides in the Wuhan-Hu-1 reference strain. For the BA.1 variant, the mutations in the spike protein are A67V, Δ69-70, T95I, G142D/Δ143-145, Δ211/L212I, ins214EPE, G339D, S371L, S373P, S375F, K417N, N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, Y505H, T547K, D614G, H655Y, N679K, P681H, N764K, D796Y, N856K, Q954H, N969K, L981F. For the BA.2 variant, the mutations in the spike protein are T19I, L24S, Δ25-27, G142D, V213G, G339D, S371F, S373P, S375F, T376A, D405N, R408S, K417N, N440K, S477N, T478K, E484A, Q493R, Q498R, N501Y, Y505H, D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K. For the BA.4/5 variant, the mutations in the spike protein are T19I, L24S, Δ25-27, Δ69-70, G142D, V213G, G339D, S371F, S373P, S375F, T,376A, D405N, R408S, K417N, N440K, L452R, S477N, T478K, E484A, L486V, Q493, Q498R, N501Y, Y505H, D614G, H655Y, N679K, N764K, D796Y, N856K and Q954H, & L969K.

藉由使用TransITR-LT1轉染試劑(Mirus Bio) 將指示的質體遞送到HEK-293T/17細胞中以產生不同的 SARS-CoV-2偽病毒。於72小時轉染後,藉由以4,000 xg離心10 分鐘來移除細胞殘骸,且將上清液收集、過濾(0.45 μm, Pall Corporation)與冷凍於-80°C直至使用。將HEK-293-hACE2 cells (1x104 cells/well)接種於96孔白色艾搜平盤(isoplates)並隔夜培養。測試的血清在56°C加熱30分鐘以滅活補體,且在培養基(補充有1% FBS與100 U/ml青黴素/鏈黴素之DMEM)中稀釋,且之後執行連續2倍稀釋,共8次稀釋。再添加至具有細胞之盤之前,25 μL之經稀釋的血清與一等體積之偽病毒(1,000 TU)混合並於37°C培養1小時。在1小時培養之後,將 50 μL混合物以指定之稀釋係數(factor)添加至具有細胞含有每孔50 μL之DMEM 培養物之盤在接下來的16小時培養中,以50 μL 新鮮培養基(補充有 10% FBS與100 U/ml 青黴素/鏈黴素的 DMEM)來替換培養物培養基。於72小時感染後,將細胞裂解,並使用Bright-Glo TM螢光素酶檢測系統(Luciferase Assay System)(Promega)來測量相對光單位(relative light units, RLU)。藉由Tecan i-control (Infinite 500)來偵測螢光素酶活性。抑制百分比計算為稀釋血清存在下 RLU減少與僅有病毒控制組的RLU值的比值,計算公式如下所示: (RLU 控制組- RLU 血清) / RLU 控制組。藉由 Reed與Muench方法來確認50%保護效價(NT50 titer)。 Different SARS-CoV-2 pseudoviruses were generated by delivering the indicated plasmids into HEK-293T/17 cells using TransITR-LT1 transfection reagent (Mirus Bio). After 72 hours of transfection, cell debris was removed by centrifugation at 4,000 xg for 10 minutes, and the supernatant was collected, filtered (0.45 μm, Pall Corporation) and frozen at -80°C until use. HEK-293-hACE2 cells (1x104 cells/well) were inoculated into 96-well white isoplates and cultured overnight. Test sera were heated at 56°C for 30 minutes to inactivate complement and diluted in culture medium (DMEM supplemented with 1% FBS and 100 U/ml penicillin/streptomycin), and then serial 2-fold dilutions were performed for a total of 8 dilution. Before adding to the plate with cells, 25 μL of diluted serum was mixed with an equal volume of pseudovirus (1,000 TU) and incubated at 37°C for 1 hour. After 1 hour of incubation, 50 μL of the mixture was added to the plate with cells containing 50 μL of DMEM culture per well at the indicated dilution factor. During the next 16 h of culture, 50 μL of fresh medium (supplemented with Replace the culture medium with 10% FBS and 100 U/ml penicillin/streptomycin in DMEM. After 72 hours of infection, cells were lysed and relative light units (RLU) were measured using the Bright-Glo Luciferase Assay System (Promega). Luciferase activity was detected by Tecan i-control (Infinite 500). The percent inhibition was calculated as the ratio of RLU reduction in the presence of diluted serum to the RLU value of the virus-only control group, calculated as follows: (RLU control group - RLU serum ) / RLU control group . The 50% protective titer (NT50 titer) was confirmed by the Reed and Muench method.

5.5. 根據according to ELISPOTELISPOT Of TT 細胞反應。Cellular response.

於T細胞反應之偵測中使用人類周邊血液單核細胞 (peripheral blood mononuclear cells, PBMCs)。對於追加系列第三劑系列擴展研究,人類IFN-γ/IL-4 FluoroSpot PLUS套組(MABTECH)執行ELISpot檢驗。將250,000 PBMCs之可分量(aliquots)接種於各孔洞並分別以10 μg/mL(各刺激物)之RBD-WT+Th/CTL、Th/CTL或Th/CTL池無UBITh1a(CoV2胜肽)下刺激,且在37°C與5% CO 2下單獨在培養基中培養24小時,作為每個盤的負控制組。根據製造商指南執行分析。通過減去負控制組孔洞來計算每百萬個細胞的斑點形成單位(pot-forming unit, SFU)。 Human peripheral blood mononuclear cells (PBMCs) were used in the detection of T cell responses. For the third dose series extension study, the Human IFN-γ/IL-4 FluoroSpot PLUS Kit (MABTECH) performed the ELISpot assay. Aliquots of 250,000 PBMCs were inoculated into each well and inoculated with 10 μg/mL (each stimulus) RBD-WT+Th/CTL, Th/CTL or Th/CTL pool without UBITh1a (CoV2 peptide) Stimulate and incubate in culture medium alone for 24 hours at 37°C with 5% CO as a negative control for each plate. Analyzes were performed according to manufacturer's guidelines. Pot-forming units (SFU) per million cells were calculated by subtracting negative control holes.

6.6. 胞內細胞intracellular 因子染色factor staining (Intracellular cytokine staining, ICS)(Intracellular cytokine staining, ICS) .

使用胞內細胞因子染色與流氏細胞術(flow cytometry)來評估CD4+與CD8+ T細胞反應。PBMCs分別被以 S1-RBD-His重組蛋白加上Th/CTL胜肽池、僅有Th/CTL胜肽池、CoV2胜肽、PMA + Inonmycin(作為正控制組)或單獨培養於培養基中作為負控制組,在37℃與具5% CO 2下6小時。刺激後,清洗細胞並於室溫以活性染料(viability dye)染色20分鐘,之後於室溫進行表面染色 20 分鐘,於室溫以BD cytofix/cytoperm 套組(Catalog # 554714)進行細胞固定與透化(permeabilization)20分鐘,且之後於室溫進行細胞內染色20分鐘。使用IFN-γ、IL-2與IL-4之胞內細胞因子染色來評估CD4+ T細胞反應。使用IFN-γ、IL-2、CD107a與顆粒酶(Granzyme) B之胞內細胞因子染色來評估CD8+ T細胞反應。染色完成後,使用BD FACSDiva軟體在 FACSCanto II 流式細胞儀(BD Biosciences)中分析細胞。 CD4+ and CD8+ T cell responses were assessed using intracellular cytokine staining and flow cytometry. PBMCs were cultured in culture medium with S1-RBD-His recombinant protein plus Th/CTL peptide pool, only Th/CTL peptide pool, CoV2 peptide, PMA + Inonmycin (as positive control group) or alone in culture medium as negative control group. Control group, 6 hours at 37°C with 5% CO2 . After stimulation, cells were washed and stained with viability dye for 20 minutes at room temperature, followed by surface staining for 20 minutes at room temperature. Cells were fixed and permeabilized using BD cytofix/cytoperm kit (Catalog # 554714) at room temperature. permeabilization for 20 minutes, followed by intracellular staining at room temperature for 20 minutes. CD4+ T cell responses were assessed using intracellular cytokine staining for IFN-γ, IL-2, and IL-4. CD8+ T cell responses were assessed using intracellular cytokine staining for IFN-γ, IL-2, CD107a, and Granzyme B. After staining, cells were analyzed in a FACSCanto II flow cytometer (BD Biosciences) using BD FACSDiva software.

7.7. 統計學。Statistics.

對於II期延長追加疫苗接種(extension booster vaccination)研究。幾何平均效價(Geometric Mean Titer, GMT) 的免疫原性結果以95%信心區間(confidence intervals)呈現。使用 SAS® Version 9.4 (SAS Institute, Cary, NC, USA)或 Wilcoxon符號排序檢定(Wilcoxon sign rank test)進行統計分析。Spearman相關性用於評估非常態分佈資料集(data set)之間的單調關係(monotonic relationship)。對於II期主要2-劑系列,試驗設計的樣本數量符合在具有健康成年人疫苗組中之3000名研究參與者的最低安全要求,如美國 FDA與WHO所建議。For the Phase II extension booster vaccination study. Immunogenicity results for geometric mean titer (GMT) are presented as 95% confidence intervals. Statistical analysis was performed using SAS® Version 9.4 (SAS Institute, Cary, NC, USA) or the Wilcoxon sign rank test. Spearman correlation is used to evaluate the monotonic relationship between non-normally distributed data sets. For the Phase II primary 2-dose series, the trial was designed with a sample size that meets the minimum safety requirement of 3,000 study participants in the vaccine group of healthy adults, as recommended by the U.S. FDA and WHO.

實施例Example 77

含有分別之S1-RBD融合蛋白,包括S1-RBD Omicron BA.4/BA.5變體的針對SARS-CoV-2感染的高精準度設計疫苗 。High-precision designed vaccines against SARS-CoV-2 infection containing respective S1-RBD fusion proteins, including S1-RBD Omicron BA.4/BA.5 variants.

1.1. 一般設計。General design.

針對病毒感染的一有效免疫反應取決於體液免疫與細胞免疫兩者。更具體而言,高 精確度設計預防性疫苗的潛力將採用設計免疫原,胜肽或蛋白質,為(1) 經由在涉及病毒對於在目標細胞上之其受體結合之病毒蛋白上之B細胞抗原決定位之使用的中和抗體的誘導;(2) 經由內源性Th與CTL抗原決定位之使用之針對入侵的病毒抗原之包括初級與記憶B細胞與CD8+T 細胞反應的細胞反應的誘導的活性醫藥成分。此類疫苗可與ALHYDROGEL、ADJUPHOS、MONTANIDE ISA、CpG等佐劑與其他賦形劑一起配製,以增強高精確度設計免疫原的免疫原性。 An effective immune response against viral infection depends on both humoral and cellular immunity. More specifically, the potential to design preventive vaccines with high precision would employ engineered immunogens, peptides or proteins that (1) bind to B cells via viral proteins involving the virus to its receptor on target cells. Induction of neutralizing antibodies through the use of epitopes; (2) cellular responses against invading viral antigens including primary and memory B cell and CD8+ T cell responses through the use of endogenous Th and CTL epitopes Induced active pharmaceutical ingredients. Such vaccines can be formulated with adjuvants such as ALHYDROGEL, ADJUPHOS, MONTANIDE ISA, CpG and other excipients to enhance the immunogenicity of high-precision designed immunogens.

2.2. 使用use CHOCHO 細胞表現cell expression S-RBD-sFcS-RBD-sFc 蛋白質(序列識別號:Protein (sequence identification number: 1010 之胺基酸序列與序列識別號:Amino acid sequence and sequence identification number: 1515 之核酸序列)為The nucleic acid sequence) is BB 細胞免疫原的一代表性設計A representative design of cellular immunogens COVID-19COVID-19 疫苗vaccine UB-612UB-612 .

此蛋白質是被設計與製備以表現具有在RBD內之非常碳水化合物結構(very carbohydrate structure)的SARS CoV-2棘(Spike, S)蛋白質上的受體結合區域(RBD),以在免疫時誘導高親和力中和抗體。疫苗也可以使用設計胜肽合併能夠促進宿主專一性Th細胞介導的免疫的內源性SARS-CoV-2 Th與CTL抗原決定位胜肽(序列識別號:17-22、23)的混合物,促進對 SARS-CoV-2之病毒專一性初級與記憶B細胞與CTL的反應,以避免SARS-CoV-2感染。有效的疫苗需要啟動記憶T細胞與B細胞,以便在病毒感染/挑戰時快速回憶。This protein is designed and prepared to express the receptor binding domain (RBD) on the SARS CoV-2 Spike (S) protein with a very carbohydrate structure within the RBD to induce during immunization High affinity neutralizing antibodies. Vaccines can also use designed peptides to incorporate a mixture of endogenous SARS-CoV-2 Th and CTL epitope peptides (SEQ ID NO: 17-22, 23) that can promote host-specific Th cell-mediated immunity. Promote virus-specific primary and memory B cell and CTL responses to SARS-CoV-2 to avoid SARS-CoV-2 infection. An effective vaccine requires priming memory T cells and B cells for rapid recall upon viral infection/challenge.

為了提高所公開的設計免疫原的有效性,採用了兩種代表性的佐劑配方明礬(ALUM) (ALHYDROGEL/CpG、ADJU-PHOS®/CpG與MONTANIDE™ ISA/CpG)來誘導最佳之之抗SARS-CoV-2免疫反應。In order to improve the effectiveness of the disclosed designed immunogens, two representative adjuvant formulations of ALUM (ALHYDROGEL/CpG, ADJU-PHOS®/CpG and MONTANIDE™ ISA/CpG) were used to induce the best Anti-SARS-CoV-2 immune response.

明礬(ADJUPHOS與ALHYDROGEL)被普遍接受為人類疫苗的佐劑。此佐劑藉由提高設計免疫原之抗原呈現細胞(APCs)的吸引與攝入來誘導一Th2反應。MONTANIDE™ ISA 51 是一種油,當與水相設計胜肽/蛋白質免疫原混合時會形成一乳狀液,以引發對SARS-CoV-2的有效免疫反應。CpGs寡核苷酸為TLR9激動劑,其改善抗原呈現與疫苗專一性細胞與體液反應的誘導。通常,帶負電荷的CpG 分子與帶正電荷的設計免疫原結合形成適合抗原呈現的免疫刺激複合物,以進一步增強免疫反應。Alum (ADJUPHOS and ALHYDROGEL) is generally accepted as an adjuvant for human vaccines. This adjuvant induces a Th2 response by enhancing the attraction and uptake of the designed immunogen to antigen-presenting cells (APCs). MONTANIDE™ ISA 51 is an oil that forms an emulsion when mixed with aqueous designed peptide/protein immunogens to elicit an effective immune response against SARS-CoV-2. CpGs oligonucleotides are TLR9 agonists that improve antigen presentation and induction of vaccine-specific cellular and humoral responses. Typically, negatively charged CpG molecules are combined with positively charged designer immunogens to form immunostimulatory complexes suitable for antigen presentation to further enhance immune responses.

相較於使用滅活病毒裂解物或其他特徵較少的免疫原之具有更複雜之免疫原內容之疫苗的弱的或不合適的抗體呈現,根據如於表7中所示的疫苗組成物所製備之所揭露的高精確度設計疫苗(例如UB-612)具有產生高專一性免疫反應的優點。此外,在 COVID-19 疫苗開發中存在與稱為抗體依賴性增強(antibody-dependent enhancement, ADE)的機制相關的潛在缺陷。具體而言,ADE為一種現象,其中病毒對於非中和抗體的結合會增強其進入宿主細胞,有時還會增強其複製。這種導致傳染性與毒力兩者增加的機制已在蚊媒黃病毒、HIV與冠狀病毒中觀察到。所揭露的高精確度疫苗係被設計來藉由監測抗體反應的品質與數量來避免疫苗誘導之疾病增強,由於它們將決定功能結果。Weak or inappropriate antibody presentation compared to vaccines with more complex immunogenic content using inactivated virus lysates or other less characterized immunogens, based on the vaccine compositions as shown in Table 7 The disclosed high-precision designed vaccines (such as UB-612) have the advantage of generating highly specific immune responses. Additionally, there are potential pitfalls in COVID-19 vaccine development related to a mechanism called antibody-dependent enhancement (ADE). Specifically, ADE is a phenomenon in which virus binding to non-neutralizing antibodies enhances its entry into host cells and sometimes its replication. This mechanism leading to increased infectivity and virulence has been observed in mosquito-borne flaviviruses, HIV, and coronaviruses. The disclosed high-precision vaccines are designed to avoid vaccine-induced disease enhancement by monitoring the quality and quantity of antibody responses, as they will determine functional outcomes.

實施例 8與實施例 9 中討論的代表性研究闡述了設計所揭露的高精確度SARS-CoV-2疫苗的方法,這些疫苗是安全的,可以促進抗體之引發,這些抗體能夠(1) 結合至CHO表現之S1- RBD-sFc蛋白;(2) 抑制S1蛋白對固定在微孔表面或細胞表面上過度表現ACE2受體蛋白的ACE2受體的結合,與(3) 在細胞介導的中和試驗中中和病毒介導的細胞病變效應。Representative studies discussed in Examples 8 and 9 illustrate methods for designing the disclosed highly accurate SARS-CoV-2 vaccines that are safe and promote the elicitation of antibodies capable of (1) binding to to the S1-RBD-sFc protein expressed in CHO; (2) inhibit the binding of S1 protein to the ACE2 receptor that overexpresses the ACE2 receptor protein fixed on the microwell surface or the cell surface, and (3) in cell-mediated neutralization and experimentally neutralize virus-mediated cytopathic effects.

實施例Example 88

於UB-612( 一種SARS-CoV-2(武漢)蛋白質-胜肽疫苗)1/2期試驗中所證實之強效追加與長效免疫。 Potent booster and long-lasting immunity demonstrated in the Phase 1/2 trial of UB-612, a SARS-CoV-2 (Wuhan) protein-peptide vaccine.

1.1. 試驗程序與安全性Test procedures and safety

a. 1期試驗之主要與追加第三劑系列a. Main and additional third dose series of Phase 1 trial

1期試驗由6名參與者之哨兵小組(sentinel group)開始,接受低10-μg劑量,若無與疫苗相關的≥3級不良反應,則剩餘14名參與者隨後進行。同樣的程式被擴展到逐步上升之30與100-μg劑量組。在第14天、第28天、第35天、第42天、第56 天、第112天與第196天為所有參與者安排了額外的後續訪問(follow-up visit)。研究參與者安排在追加後第14天與第84天訪問。對要完成7天期間之參與者在每次注射後提供電子日記,以記錄注射部位的所引發之局部反應(疼痛、硬結/腫脹、皮疹/發紅、瘙癢與蜂窩織炎)與所引發的全身反應(17種不同的體質症狀)。使用從無到危及生命的5級(0到4)等級對嚴重程度進行分級。此外,參與者從疫苗接種當天開始每天晚上記錄他們的腋窩溫度,並至後續6天。安全性終點包括於此中期1期延長報告中之追加後上至14天報告的非訴求AEs。The Phase 1 trial began with a sentinel group of 6 participants receiving the low 10-μg dose, followed by the remaining 14 participants if there were no vaccine-related grade ≥3 adverse reactions. The same procedure was extended to the escalating 30- and 100-μg dose groups. Additional follow-up visits were scheduled for all participants on days 14, 28, 35, 42, 56, 112, and 196. Study participants were scheduled to be visited on days 14 and 84 after addition. Participants who completed the 7-day period were provided with an electronic diary after each injection to record local reactions at the injection site (pain, induration/swelling, rash/redness, itching, and cellulitis) and the resulting symptoms. Systemic reactions (17 different constitutional symptoms). Severity is graded using a 5-point (0 to 4) scale from none to life-threatening. In addition, participants recorded their axillary temperatures every evening starting on the day of vaccination and continuing for 6 days. Safety endpoints included non-suggested AEs reported up to 14 days after the add-on in this interim Phase 1 extension report.

b. 2期試驗之主要系列b. Main series of Phase 2 trials

2期試驗的主要安全性終點是評估接受研究干預的所有參與者從第1天到第57天(第二次給藥後28天)的安全性與耐受性。在每次注射之前和之後評估生命體徵。 每次注射後觀察參與者30分鐘的生命體徵變化或任何急性過敏反應。每次注射後,參與者必須在他們的自我評估電子日記中記錄達七天之所引發之局部與全身性AE,而在他們的電子日記中記錄皮膚過敏反應達十四天。安全性終點包括於此中期2期報告中報告的第1天至第57天的非訴求AE。The primary safety endpoint of the Phase 2 trial is to assess the safety and tolerability of all participants receiving the study intervention from Day 1 to Day 57 (28 days after the second dose). Assess vital signs before and after each injection. Participants were observed for 30 minutes after each injection for changes in vital signs or any acute allergic reactions. After each injection, participants were required to record local and systemic AEs in their self-assessment electronic diary for seven days and skin allergic reactions in their electronic diary for fourteen days. Safety endpoints included non-reported AEs from Day 1 to Day 57 reported in this interim Phase 2 report.

2.2. 結果result

a. 試驗群體。a. Experimental group.

i. 1期主要與追加第三劑系列i. Phase 1 main and additional third dose series

開放標籤(open-label) 1期試驗參與者的特徵包括涉及接受了兩劑(28 天)-間隔) 10、30 或 100 μg 的UB-612之在三個劑量組(每個 n = 20)中之60 名健康成年人(年齡 20-55 歲)之196天的主要係列研究;與在主要係列之後的84天延長追加疫苗接種,其中對於10-μg (n = 17)、30-μg (n = 15)與100-μg (n = 18)組,50名參與者被編入在第二次注射後的7.6至 9.6個月之間接受額外的100 μg追加。在這份中期報告中,經追加的參與者被追蹤14天,以評估安全性與免疫原性,隨後監測至追加後的84 天。Characteristics of participants in the open-label Phase 1 trial including those who received two doses (28 days apart) of 10, 30, or 100 μg of UB-612 in three dose groups (n = 20 each) A 196-day main series in 60 healthy adults (age 20-55 years); with an extended booster vaccination 84 days after the main series, including 10-μg (n = 17), 30-μg ( n = 15) and 100-μg (n = 18) groups, 50 participants were enrolled to receive an additional 100-μg boost between 7.6 and 9.6 months after the second injection. In this interim report, additional participants were followed for 14 days to assess safety and immunogenicity, and then for 84 days post-addition.

ii. 2期主要2劑系列ii. Phase 2 main 2-dose series

2期試驗為用隨機雙盲設計。總共3,875名參與者其接受至少一劑 100 μg 疫苗(3,321人接受了UB-612與554人接受了安慰劑以6:1的比例)被編入與包含於安全群體,其中1012名參與者(疫苗871與安慰劑141)被包含在可評估的免疫原性群體中。接受UB-612的參與者的平均年齡為44.9歲(18至83 歲),而安慰劑組參與者的平均年齡為44.4歲(19至84歲)。對於UB-612與安慰劑組兩者,年輕成年人(18 至 65 歲)與年長成年人(≥65 歲)的比例約為80:20。除5人外,所有參與者皆為台灣人。The Phase 2 trial used a randomized double-blind design. A total of 3,875 participants who received at least one dose of 100 μg vaccine (3,321 received UB-612 and 554 received placebo in a 6:1 ratio) were enrolled and included in the safety population, of which 1,012 participants (vaccine 871 versus placebo 141) were included in the evaluable immunogenicity population. The average age of participants who received UB-612 was 44.9 years (range, 18 to 83 years), while the average age of participants in the placebo group was 44.4 years (range, 19 to 84 years). The ratio of younger adults (18 to 65 years) to older adults (≥65 years) was approximately 80:20 for both the UB-612 and placebo groups. Except for 5 people, all participants were Taiwanese.

b. 反應原性(reactogenicity)與安全性。b. Reactogenicity and safety.

i. 1期主要2-劑與追加第三劑系列i. Phase 1 main 2-dose and additional third-dose series

在196天的主要係列中與加強免疫後達14天,既沒有記錄到疫苗相關的嚴重不良事件(SAE,包括3/4級AE),也沒有記錄到在發生率(incidence)或嚴重程度中的劑量限制(dose-limited)增加。所有疫苗接種組中在 7 天內報告的所引發之局部性與全身性AE均為輕度至中度(1/2 級)與短暫性,隨著相較於局部性反應,大部分全身性反應的頻率較低。第一次與第二次疫苗接種後引起的所引發之局部性AE發生率相當,在追加劑後略有增加,最常見的追加後所引發之局部性AE為注射部位的疼痛(60-71%)。每次疫苗接種後引發的全身性AE的發生率相似,最常見的追加後所引發之全身性AE為疲勞(11-33%)。在主要 2 劑疫苗揭種系列與追加期中觀察到的安全性圖譜(safety profile)相似。No vaccine-related serious adverse events (SAEs, including grade 3/4 AEs) were recorded in the 196-day main series and up to 14 days post-boost, nor were they recorded in incidence or severity The dose-limited increase. Local and systemic AEs reported within 7 days in all vaccination groups were mild to moderate (Grade 1/2) and transient, with the majority of systemic AEs compared with local reactions. Reactions are less frequent. The incidence of local AEs caused after the first and second vaccinations was similar, with a slight increase after the additional dose. The most common local AE caused after the additional dose was pain at the injection site (60-71% ). The incidence of systemic AEs was similar after each vaccination, with the most common post-boost systemic AE being fatigue (11-33%). The safety profile observed in the primary 2-dose vaccination series and the booster phase was similar.

ii. 2期主要2劑系列ii. Phase 2 main 2-dose series

並無與疫苗相關的SAE。局部與全身AE皆為輕度和短暫的,並為在幾天內自限性的。總體而言,在1與2劑後,2546 名參與者報告了所引發之局部性AE,其中2386名(72.0%)來自 UB-612,160名(28.9%)來自安慰劑組。這些局部性AE的嚴重程度為輕度(1 級)至中度(2 級),最常見的事件是疫苗組2246名 (67.8%) 參與者中的注射部位疼痛,以及偶發的皮膚過敏反應。There are no vaccine-related SAEs. Both local and systemic AEs were mild, transient, and self-limited within a few days. Overall, 2546 participants reported local AEs after doses 1 and 2, 2386 (72.0%) in the UB-612 group and 160 (28.9%) in the placebo group. The severity of these local AEs ranged from mild (Grade 1) to moderate (Grade 2), with the most common events being injection site pain and occasional allergic skin reactions among 2246 (67.8%) participants in the vaccine group.

介於UB-612疫苗組和安慰劑組之間跨年齡層之所引發的全身性AE的發生率並無顯著差異(P > 0.05)。疫苗組中 38.6%的年長參與者(65-85 歲)報告了所引發之全身性AE,相較於63.3%之總體安全群體。最常見之所引發的全身性AE為於1,488 名(44.9%)之UB-612治療參與者中報告的疲勞/疲倦,並且通常是輕微的。There was no significant difference in the incidence of systemic AEs across age groups between the UB-612 vaccine group and the placebo group (P > 0.05). Systemic AEs were reported in 38.6% of older participants (65-85 years) in the vaccine group, compared with 63.3% in the overall safety group. The most common systemic AE was fatigue/tiredness reported in 1,488 (44.9%) of UB-612-treated participants and was generally mild.

c. 針對活SARS-CoV-2野生型與Delta變體的中和抗體,以及針對假SARS-CoV2野生型與包括Alpha、Beta、Gamma與Omicron的VoC的中和抗體。c. Neutralizing antibodies against live SARS-CoV-2 wild-type and Delta variants, and neutralizing antibodies against pseudo-SARS-CoV-2 wild-type and VoC including Alpha, Beta, Gamma and Omicron.

i. 1期主要2劑與追加第三劑i. Main 2 doses and additional third dose in Phase 1

在第2劑後7.6-9.6個月給予100 μg的追加劑量,在100%的參與者中誘導了針對活的SARS-CoV-2野生型(WT,武漢株)與Delta 變體的強大中和抗體(第8圖)。在 10-、30- 和 100-μg UB-612劑量組中,追加劑引起針對WT之幾何平均50%病毒中和效價(VNT 50)分別為4643、3698與3992(第8A-8D圖),表示相較於主要系列中的峰值反應(2劑後14天,即第42天),分別增加 104、118與37倍(幾何平均倍數增加,GMFI (geometric mean fold increases)),與(b) GMFI分別為465、216與65超過了追加前程度。相較於住院COVID-19病例發病後~1個月收集的一組(panel)人類恢復期血清(human convalescent sera, HCS),追加後中和抗體程度分別高出45.5倍、36.2倍與39.1倍(GMFI)。以WHO參考抗血清標準化並以國際單位(IU/mL)表示的同一活病毒測試中的中和抗體效價相似(第9A-9D圖)。 A booster dose of 100 μg, given 7.6-9.6 months after the second dose, induced robust neutralization against live SARS-CoV-2 wild-type (WT, Wuhan strain) and Delta variants in 100% of participants Antibodies (Figure 8). Boosters resulted in geometric mean 50% virus neutralizing titers (VNT 50 ) of 4643, 3698, and 3992 against WT in the 10-, 30-, and 100-μg UB-612 dose groups, respectively (Figures 8A-8D) , representing 104, 118, and 37-fold increases (geometric mean fold increases, GMFI (GMFI)), respectively, compared to the peak response in the main series (14 days after 2 doses, i.e., day 42), and (b ) GMFI were 465, 216 and 65 respectively, exceeding the pre-addition levels. Compared with a panel of human convalescent sera (HCS) collected ~1 month after the onset of hospitalized COVID-19 cases, the levels of neutralizing antibodies after supplementation were 45.5 times, 36.2 times, and 39.1 times higher respectively. (GMFI). Neutralizing antibody titers in the same live virus test standardized to WHO reference antisera and expressed in international units (IU/mL) were similar (Figures 9A-9D).

追加劑量也誘導了針對活Delta變體的顯著高的 VNT 50效價,達到2854、1646與2358(第9A圖),其代表相對於WT株,對於10-、30-與100-μg組之1.6、2.4與1.7的適度GMFR(即,分別保存~63%、~42%與~60%之中和強度)。 Additional doses also induced significantly higher VNT 50 titers against the live Delta variant, reaching 2854, 1646, and 2358 (Fig. 9A), which represent differences between the 10-, 30-, and 100-μg groups relative to the WT strain. Moderate GMFRs of 1.6, 2.4, and 1.7 (i.e., ~63%, ~42%, and ~60% preservation of neutralization strength, respectively).

對100-μg組(n = 18)追加後14天觀察到的pVNT 50被評估,對於針對偽SARS-CoV-2野生型 (WT)與包含Omicron的其他VoC之其交叉反應中和抗體效價,如於第9B圖所示。相較於野生型之14,171,針對WT、Omicron、Alpha、Gamma 與Beta的pVNT 50分別為12,778、2,325、9,300、13,408與4,974,相對於WT株,GMRF分別為5.5、1.4、1.0與2.6(即分別保持 18.2%、72.7%、105%與38.9%的中和強度)。 pVNT 50 observed 14 days after the boost in the 100-μg group (n = 18) was evaluated for cross-reactive neutralizing antibody titers against pseudo-SARS-CoV-2 wild type (WT) and other VoCs containing Omicron , as shown in Figure 9B. Compared to 14,171 for the wild type, the pVNT 50 for WT, Omicron, Alpha, Gamma and Beta were 12,778, 2,325, 9,300, 13,408 and 4,974 respectively. Compared to the WT strain, the GMRFs were 5.5, 1.4, 1.0 and 2.6 respectively (i.e. Maintaining neutralizing strengths of 18.2%, 72.7%, 105% and 38.9% respectively).

相較於較低劑量的10-與30-μg,主要系列中的中和抗體在100-μg組中持久,與在2劑後14至28天觀察到之針對WT的VNT 50的最高增加有關(第8A-8C圖)。100-μg組中的峰值中和抗體GMT(第42天為108;第56天為103)(第8C圖)接近控制人類恢復期血清(HCS)之組之GMT的102。對於100 μg劑量,基於SARS-CoV-2中和抗體效價在1期第57天的血清轉化 (seroconversion)率為100%,此後在整個監測期間保持為100%。 Neutralizing antibodies in the primary series were durable in the 100-μg group compared with the lower doses of 10- and 30-μg, associated with the highest increase in VNT 50 against WT observed 14 to 28 days after 2 doses (Figures 8A-8C). The peak neutralizing antibody GMT in the 100-μg group (108 on day 42; 103 on day 56) (Figure 8C) was close to the GMT of 102 in the control human convalescent serum (HCS) group. For the 100 μg dose, the seroconversion rate based on SARS-CoV-2 neutralizing antibody titers was 100% on day 57 of Phase 1 and remained 100% thereafter throughout the monitoring period.

在追加前(第255至316天),在100-μg組中的18名參與者(0%)VNT 50效價均未低於檢測極限(LLOQ),這表明誘導的中和效應持續很長期間之時間。使用一階指數模型擬合 (SigmaPlot) 計算來自1期試驗之100-μg組2劑後的抗體持久性,用於第42至196天的抗WT中和VNT 50(r 2= 0.9877,衰減率常數 K el= -0.0037;t 1/2= 0.693/K el)。中和抗體VNT 50GMT緩慢下降,隨著187天之t 1/2(第9C圖)。 Before the boost (days 255 to 316), none of the 18 participants (0%) in the 100-μg group had VNT 50 titers below the limit of detection (LLOQ), indicating that the induced neutralizing effect was long-lasting period of time. Antibody persistence after 2 doses from the 100-μg arm of the Phase 1 trial for anti-WT neutralizing VNT 50 on days 42 to 196 was calculated using first-order exponential model fitting (SigmaPlot) (r 2 = 0.9877, decay rate Constant K el = -0.0037; t 1/2 = 0.693/K el ). Neutralizing antibody VNT 50 GMT decreased slowly with t 1/2 at 187 days (Figure 9C).

我們也以自100-μg UB-612劑量組的1期試驗主要系列的所有血清樣本 (n = 20) 研究了在1期主要疫苗接種階段期間針對Delta與其他VoC的中和作用(第10圖)。結果顯示保留了病毒中和活性,特別是針對Delta B.1.617.2變體,對其而言,相對於野生型武漢株保留了63%的中和活性(1.6之GMFR)。還保留了針對Alpha (B.1.1.7)變體的顯著中和抗體,具有91%保留(1.1之GMFR),Gamma (P.1)變體具有56%保留(1.8之GMFR),而針對Beta B.1.351較弱,具有20%保留(5.1之GMFR)。We also studied the neutralization of Delta versus other VoCs during the Phase 1 main vaccination phase with all serum samples (n = 20) from the main series of the Phase 1 trial in the 100-μg UB-612 dose group (Figure 10 ). The results showed that virus neutralizing activity was retained, especially against the Delta B.1.617.2 variant, for which 63% neutralizing activity (1.6 GMFR) was retained relative to the wild-type Wuhan strain. Significant neutralizing antibodies were also retained against the Alpha (B.1.1.7) variant with 91% retention (GMFR 1.1), the Gamma (P.1) variant with 56% retention (GMFR 1.8), and against Beta B.1.351 is weaker, with 20% retention (GMFR of 5.1).

ii. 2期主要2劑ii. Main 2 doses in Phase 2

於第57天(第二劑後4週),跨所有年齡(18 至85歲)的參與者,抗S1-RBD效價的GMT為518.8(第11A圖)而針對原始野生(WT武漢)株的病毒中和效價為年齡依賴性的,總VNT 50為87.2(第11B圖)。較年輕成年人(18至65歲)具有較高之VNT 50為96.4,其與在20-55歲的1期研究參與者(VNT50 為 103)觀察到可再現地接近(第8C圖),而年長成年人(≥65歲)表現出較低的VNT 50為51.6。進行具有追加第三劑的2期試驗的延長研究。在第2階段中跨所有年齡(18至85歲)的參與者,基於野生型SARS-CoV-2中和抗體效價在第57天(或1劑後第56天)的血清轉化率從年長者的88.6%到年輕成年人的96.4%。 At day 57 (4 weeks after the second dose), across participants of all ages (18 to 85 years), the GMT of anti-S1-RBD titers was 518.8 (Figure 11A) versus the original wild (WT Wuhan) strain The virus neutralizing titer was age-dependent, with a total VNT of 87.2 (Figure 11B). Younger adults (18 to 65 years old) had a higher VNT 50 of 96.4, which was reproducibly close to that observed in Phase 1 study participants 20 to 55 years old (VNT 50 of 103) (Figure 8C), whereas Older adults (≥65 years) showed a lower VNT 50 of 51.6. An extension study of the Phase 2 trial with an additional third dose was conducted. Across participants of all ages (18 to 85 years) in Phase 2, seroconversion rates at day 57 (or day 56 after dose 1) based on wild-type SARS-CoV-2 neutralizing antibody titers from 88.6% among elders to 96.4% among young adults.

在第57天,觀察到大量程度的抗Delta中和抗體。從跨年齡組的疫苗接種者中隨機選擇48份血清樣本之池(n = 39對於18-65歲的年輕成年人;n = 9對於≥65歲的年長成年人)在兩個獨立實驗室接受了特設活病毒檢測分析(ad hoc live virus assay analysis)(中央研究院與加利福尼亞病毒與立克次體病部)。結果是一致的,顯示免疫血清可以中和兩個關鍵的SARS-CoV-2原型,其VNT 50相似:針對於臺灣獲得的武漢WT的329,與針對於美國之USA WA 1/2020的308(第12圖)。相較於USA WA 1/2020變體,針對Alpha B.1.1.7與Delta B.1617.2的VNT 50估計分別為 122與222,代表減少了2.7倍與1.4倍。 On day 57, significant levels of anti-Delta neutralizing antibodies were observed. A pool of 48 serum samples were randomly selected from vaccine recipients across age groups (n = 39 for younger adults 18–65 years; n = 9 for older adults ≥ 65 years) at two independent laboratories Underwent ad hoc live virus assay analysis (Academia Sinica and California Division of Virology and Rickettsial Diseases). The results were consistent, showing that immune sera could neutralize two key SARS-CoV-2 prototypes with similar VNT 50 : 329 against the Wuhan WT obtained in Taiwan, and 308 against the USA WA 1/2020 ( Figure 12). Compared with the USA WA 1/2020 variant, the VNT 50 estimates for Alpha B.1.1.7 and Delta B.1617.2 are 122 and 222 respectively, representing a reduction of 2.7 times and 1.4 times.

d. 針對結合至ACE2受體之S1-RBD的中和抗體。d. Neutralizing antibodies against S1-RBD binding to the ACE2 receptor.

i. 1期主要2劑與追加第三劑系列i. Phase 1 main 2 doses and additional third dose series

針對 S1-RBD:ACE2相互作用的功能性抑制(中和)的 ELISA 結果(圖 13)與VNT 50數據(第8圖)基本一致。100-μg劑量組表現出最高的中和效價(第13C圖),在第112天抗S1-RBD:ACE2定量中和抗體(qNeuAb)程度為6.4 μg/mL,相較於來自20人類恢復期血清(HCS)之1.4 μg/mL增加了4.6倍。追加接種後,抗 S1-RBD:ACE2 qNeuAb程度達到303至521 μg/mL,代表比主要系列疫苗接种後的峰值增加77至168倍;類似地,與追加前程度相比,觀察到顯著的82至579倍增加(第21A-21C圖)。因此,UB-612追加劑可以在接種對像中引發顯著的免疫反應,無論它們的增強前水平有多低。 The ELISA results for functional inhibition (neutralization) of the S1-RBD:ACE2 interaction (Figure 13) are generally consistent with the VNT 50 data (Figure 8). The 100-μg dose group showed the highest neutralizing titer (Figure 13C), with an anti-S1-RBD:ACE2 quantitative neutralizing antibody (qNeuAb) level of 6.4 μg/mL at day 112, compared with the 100-μg dose group from 20 human recovered The 1.4 μg/mL of serum (HCS) increased 4.6 times. After booster vaccination, anti-S1-RBD:ACE2 qNeuAb levels reached 303 to 521 μg/mL, representing a 77- to 168-fold increase over the peak following primary series vaccination; similarly, compared with pre-boost levels, a significant 82-fold increase was observed to a 579-fold increase (Figures 21A-21C). Therefore, a UB-612 booster dose can elicit a significant immune response in vaccinated subjects, regardless of how low their pre-boost levels were.

ELISA上S1-RBD:ACE2結合的中和與VNT50的研究結果有很好的相關性(Spearman’s r = 0.9012)(第13D圖)因此通過細胞病變效應(CPE)測定證實了抗WT VNT 50結果的有效性(第8A-8C圖)。此外,追加後抗S1-RBD:ACE2 qNeuAb程度為303至521 μg/mL(第8A-8C圖),比人類恢復期血清 (HCS) 高216至372倍。這表明相較於在病毒S1-RBD與ACE2受體相互作用的正構(orthosteric)(RBD)位點,HCS中的大多數抗體似乎更多地與變構(allosteric)位點(S1的N或C-末端結構域)結合。 Neutralization of S1-RBD:ACE2 binding in the ELISA correlated well with the VNT50 results (Spearman's r = 0.9012) (Figure 13D) thus confirming the anti-WT VNT50 results by the cytopathic effect (CPE) assay. Effectiveness (Figures 8A-8C). In addition, post-boost anti-S1-RBD:ACE2 qNeuAb levels ranged from 303 to 521 μg/mL (Figures 8A-8C), which were 216 to 372 times higher than human convalescent serum (HCS). This suggests that most antibodies in HCS appear to interact more with the allosteric site (N of S1) than with the orthosteric (RBD) site where the viral S1-RBD interacts with the ACE2 receptor. or C-terminal domain).

e. S1-RBD IgG抗體ELISA反應。e. S1-RBD IgG antibody ELISA reaction.

i. 於1期試驗i. In Phase 1 trial

藉由ELISA測量的S1-RBD結合抗體(第14圖)再次顯示,100-μg接種組在196天的主要系列中引發了最高的免疫反應,第42天的GMT為2,240,其遠遠超過了來自20人類恢復期血清(HCS)之141的GMT。追加疫苗接種後,三個劑量組中之抗S1-RBD GMT於7,154 至 9,863達到峰值(比主要系列期間的峰值增加 3 至 28 倍(GMFIs));同樣,與追加前程度相比,觀察到了37至378倍的顯著增長。S1-RBD binding antibodies measured by ELISA (Figure 14) again showed that the 100-μg vaccination group elicited the highest immune response in the 196-day main series, with a GMT of 2,240 on day 42, which far exceeded GMT from 141 of 20 human convalescent sera (HCS). After booster vaccination, anti-S1-RBD GMT peaked at 7,154 to 9,863 in the three dose groups (a 3- to 28-fold increase (GMFIs) from the peak during the main series); again, compared with pre-boost levels, A significant increase of 37 to 378 times.

f. 根據ELISpot之T細胞反應。f. T cell response according to ELISpot.

i. 1期試驗i. Phase 1 trial

在1期試驗的主要疫苗接種系列中,從接種者收集周邊血液單核細胞(PBMC)以藉由干擾素-γ+ (IFN-γ+)-ELISpot進行評估(第15A-15C圖)。在100-μg劑量組中觀察到最高的抗原專一性反應:在第35天,以S1-RBD+Th/CTL胜肽池刺激後有254個斑點形成單位(SFU)/10 6個PBMC,以Th/CTL胜肽池單獨刺激後有173個(圖 15C),證明 UB-612 疫苗中的 Th/CTL胜肽主要負責T細胞反應。 In the main vaccination series of the Phase 1 trial, peripheral blood mononuclear cells (PBMC) were collected from vaccinees for assessment by interferon-γ+ (IFN-γ+)-ELISpot (Figures 15A-15C). The highest antigen-specific response was observed in the 100-μg dose group: 254 spot-forming units (SFU)/10 6 PBMC after stimulation with S1-RBD+Th/CTL peptide pool on day 35, and There were 173 Th/CTL peptide pools after stimulation alone (Figure 15C), proving that the Th/CTL peptide in the UB-612 vaccine is mainly responsible for T cell responses.

在第196天,100-μg劑量組的IFN-γ+ ELISpot 反應維持在峰值反應的~50%程度,以RBD+Th/CTL胜肽池重新刺激從254個SFU/10 6個細胞減少到121個SFU/10 6個細胞,或僅以 Th/CTL胜肽池重新刺激從173到86.8。這一觀察表明,UB-612疫苗在兩劑疫苗後引起的T細胞反應至少持續了6個月。這與前面提到的中和抗體的持久性是一致的(第8C圖)。 On day 196, the IFN-γ+ ELISpot response in the 100-μg dose group remained at ~50% of the peak response and decreased from 254 SFU/ 10 cells to 121 on restimulation with the RBD+Th/CTL peptide pool. SFU/10 6 cells, or restimulation with Th/CTL peptide pool only from 173 to 86.8. This observation suggests that the T cell response elicited by the UB-612 vaccine persisted for at least 6 months after two doses of the vaccine. This is consistent with the persistence of neutralizing antibodies mentioned earlier (Figure 8C).

ii. 2期試驗ii. Phase 2 trial

在2期試驗中,也觀察到第57天強的IFN-γ+-ELISpot反應:幾何平均值,以S1-RBD+Th/CTL重新刺激為370個(SFU/10 6個細胞),以Th/CTL重新刺激為322個,以Th/CTL胜肽肽池無UBITh1a為181個(第15D圖),其皆遠高於安慰劑組的對應物(p<0.0001)。與IFN-γ相比,IL-4的反應要低得多:分別為13.6、7.5與5.4(第15E圖)。整體ELISpot結果指出,Th/CTL胜肽之內含物是T細胞反應必不可少的且主要負責,而重組蛋白 S1-RBD僅起次要作用。重要的是,T細胞反應的方向主要是 Th1 導向的。UBITh1a像往常一樣起著催化劑的作用,藉由病毒專一性的Th/CTL胜肽池觸發Th1反應。 In the phase 2 trial, a strong IFN-γ+-ELISpot response was also observed on day 57: the geometric mean, with S1-RBD+Th/CTL restimulation was 370 (SFU/10 6 cells), with Th /CTL re-stimulation was 322, and the Th/CTL peptide pool without UBITh1a was 181 (Figure 15D), which were both much higher than the counterparts in the placebo group (p<0.0001). Responses to IL-4 were much lower compared to IFN-γ: 13.6, 7.5, and 5.4, respectively (Figure 15E). The overall ELISpot results indicate that the content of Th/CTL peptide is essential and mainly responsible for the T cell response, while the recombinant protein S1-RBD only plays a minor role. Importantly, the direction of T cell responses is primarily Th1-directed. UBITh1a acts as a catalyst as usual, triggering the Th1 response through a pool of virus-specific Th/CTL peptides.

g. 根據細胞內細胞因子染色(ICS)的CD4+與CD8+ T細胞反應。g. CD4+ versus CD8+ T cell responses based on intracellular cytokine staining (ICS).

i. 2期試驗i. Phase 2 Trial

T細胞反應藉由細胞內細胞因子染色(ICS)被評估(第16圖)。跨三個胜肽再刺激組觀察到IFN-γ與IL-2產生之CD4+ 與CD8+細胞顯著增加;並且,與 ELISpot 的發現一致(第15D-15E圖),檢測到較低的IL-4產生之 CD4+ T 細胞,證實了T細胞反應的Th1優勢。T cell responses were assessed by intracellular cytokine staining (ICS) (Figure 16). Significant increases in IFN-γ and IL-2-producing CD4+ and CD8+ cells were observed across the three peptide restimulation groups; and, consistent with the ELISpot findings (Figures 15D-15E), lower IL-4 production was detected of CD4+ T cells, confirming the Th1 advantage of the T cell response.

在分別以S1-RBD+Th/CTL、Th/CTL與Th /CTL池無UBITh1a再刺激後,觀察到表現細胞毒性標誌物CD107a與顆粒酶B的CD8+ T細胞,佔循環CD8+ T細胞的3.5%、2.1%與1.8%。總體而言,UB-612 引發了具有強大CD8+ 細胞毒性T細胞反應的 Th1導向免疫,其將有利於病毒感染的清除,並且再刺激結果指出 包括非棘核衣殼(nucleocapsid)(N)與膜(M)結構蛋白之Th/CTL胜肽,是負責T細胞免疫的主要因素。After restimulation with S1-RBD+Th/CTL, Th/CTL, and Th/CTL pools without UBITh1a, CD8+ T cells expressing cytotoxicity markers CD107a and granzyme B were observed, accounting for 3.5% of circulating CD8+ T cells. , 2.1% and 1.8%. Overall, UB-612 elicited Th1-directed immunity with a robust CD8+ cytotoxic T cell response that would facilitate clearance of viral infection, and restimulation results indicated the inclusion of non-spiny nucleocapsid (N) and membrane (M) Th/CTL peptide of structural protein is the main factor responsible for T cell immunity.

3.3. 結論Conclusion

並未記錄到與疫苗相關的嚴重不良事件(SAE)。最常見的所引發之 AE為注射部位疼痛與疲勞,大多是輕微與短暫的。在這兩項試驗中,UB-612引發了類似於一組之人類恢復期血清之分別的中和抗體效價。最引人注目的發現是:針對包括 Delta與Omicron的SARS-CoV2 VoCs的持久病毒中和抗體與廣泛的T細胞免疫,以及針對Delta與Omicron變體具有高交叉反應中和效價之強的追加記憶免疫。No vaccine-related serious adverse events (SAEs) were recorded. The most common AEs are injection site pain and fatigue, most of which are mild and transient. In both trials, UB-612 elicited neutralizing antibody titers similar to those in a panel of human convalescent sera. The most striking findings are: persistent virus-neutralizing antibodies and broad T-cell immunity against SARS-CoV2 VoCs including Delta and Omicron, as well as strong catch-up with high cross-reactive neutralizing titers against Delta and Omicron variants Memory immunity.

UB-612 具有良好的安全性圖譜、針對VoC的有效追加作用以及持久的B與廣泛的T細胞免疫,值得進一步開發其他COVID-19疫苗的主要免疫與異源追加。UB-612 has a favorable safety profile, effective boosting against VoC, and durable B and broad T cell immunity, and is worthy of further development for primary immunity and heterologous boosting of other COVID-19 vaccines.

特別值得注意的是,五個精確設計的T細胞抗原決定位胜肽代表了來自N、M與S2蛋白的沙比克病毒(Sarbecovirus)區域的Th與CTL抗原決定位胜肽。這些抗原決定位胜肽跨包括Delta與Omicron的所有關注變體為高度保守,並且是混雜的抗原決定位,其允許在廣泛的群體中誘導記憶回憶、T細胞啟動和效應子功能。因此,除了關於UB-612之追加第3劑之有效的抗Delta與抗Omicron作用外,持久而強大的T細胞免疫可針對包括Omicron的所有VoC有效。由於目前批准的COVID疫苗無法識別非棘結構M與N蛋白,UB-612疫苗具有良好的立場來抵禦新的關注變體,如Delta與Omicron,其需要大規模的田野試驗進行評估。Of particular note are the five precisely designed T cell epitopes representing Th and CTL epitopes from the Sarbecovirus regions of the N, M and S2 proteins. These epitope peptides are highly conserved across all variants of interest, including Delta and Omicron, and are promiscuous epitopes that allow induction of memory recall, T cell priming and effector functions in a broad range of populations. Therefore, in addition to the effective anti-Delta and anti-Omicron effects of the additional third dose of UB-612, long-lasting and powerful T cell immunity is effective against all VoCs including Omicron. Since currently approved COVID vaccines do not recognize non-spiny M and N proteins, the UB-612 vaccine is well-positioned to protect against new variants of concern such as Delta and Omicron, which require large-scale field trials to evaluate.

實施例Example 99

UB-612 2期追加疫苗接種相較於那些僅有“棘(Spike)”的COVID疫苗可以更好地保護避免Omicron感染。The UB-612 phase 2 booster vaccine provides better protection against Omicron infection than those with the "Spike" only COVID vaccine.

與實施例8中顯示的針對Delta和Omicron BA.1變體的1期追加疫苗的結果一樣,2期追加的結果肯定了UB-612可以作為一種通用的(泛沙比克病毒)疫苗,以保護抵抗Omicron變體與其他不斷出現的新變體。As with the results for the Phase 1 booster vaccine against Delta and Omicron BA.1 variants shown in Example 8, the Phase 2 booster results confirm that UB-612 can serve as a universal (Pan Sabic virus) vaccine to Protect against Omicron variants and other emerging variants.

除了棘S1-RBD(受限的 ACE2 受體結合域)作為激活 B 細胞(持久中和抗體)的免疫原之外,UB-612在棘S2與非棘(核衣殼N與膜M)結構蛋白上富含五個序列保守、混雜的 Th/CTL抗原決定位,用於促進更全面的 T 細胞(輔助與細胞毒性)記憶免疫。In addition to spine S1-RBD (restricted ACE2 receptor-binding domain) as an immunogen to activate B cells (long-lasting neutralizing antibodies), UB-612 has multiple structural differences between spine S2 and non-spine (nucleocapsid N vs. membrane M). The protein is rich in five sequence conserved and mixed Th/CTL epitopes, which are used to promote more comprehensive T cell (helper and cytotoxic) memory immunity.

由於疫苗設計的獨特性,UB-612與輝瑞BNT及莫德納疫苗一起被列入白宮次世代COVID-19疫苗高峰會7月26日的議程,以展示先鋒疫苗平台。UB-612追加疫苗接種可以引發有效、廣泛識別與持久的B 細胞(中和抗體)與T 細胞(輔助與細胞毒性)記憶免疫,其可以模擬以任何SARS-CoV-2變體的感染。Due to the uniqueness of the vaccine design, UB-612 was included on the agenda of the White House Next Generation COVID-19 Vaccine Summit on July 26, along with the Pfizer BNT and Moderna vaccines, to showcase the Pioneer vaccine platform. UB-612 booster vaccination can induce effective, broadly recognized and durable B cell (neutralizing antibodies) and T cell (helper and cytotoxic) memory immunity, which can simulate infection with any SARS-CoV-2 variant.

1. UB-612 疫苗與採用其他平台技術並僅使用 蛋白作為免疫原的 COVID 疫苗的比較。 1. Comparison of the UB-612 vaccine with COVID vaccines that employ other platform technologies and use only the Spike protein as the immunogen .

最近在英國、美國和台灣批准使用mRNA二價疫苗(莫德納與輝瑞)作為第四劑(第二次追加劑)引起了關注與懷疑。 因此,在對使用即將到來的進口二價mRNA疫苗的關切中,目前是對比當前疫苗在對抗Omicron變體的病毒中和抗體之程度與T 細胞免疫強度方面的表現的時候。The recent approval of the use of the bivalent mRNA vaccine (Modena and Pfizer) as a fourth dose (second booster dose) in the UK, US and Taiwan has aroused concern and skepticism. Therefore, amid concerns about the use of upcoming imported bivalent mRNA vaccines, now is the time to compare the performance of current vaccines in terms of the extent of virus-neutralizing antibodies against Omicron variants and the strength of T-cell immunity.

a. 偽病毒中和活性a. Pseudovirus neutralizing activity

在對未感染者使用每種疫苗進行追加劑注射(第三劑,同源追加)後,藉由“偽病毒中和試驗”測量針對BA.1/BA.2/BA.5變體的UB-612 免疫血清(50%幾何平均 GMT,即pVNT 50/ID 50效價)顯示高於莫德納(mRNA-1273)、輝瑞 (BNT162b2)與NVX-CoV2373;並遠高於MVC-COV1901、AZD1222、CoronaVac與BBIBIP 疫苗(表 10)。以傳染性最強的BA.5 pVNT50為例,中和效價被報導為,UB-612為854,NVX-CoV2373為582,莫德納mRNA-1273為378,輝瑞 BNT162b2為360,CoronaVac為75,AZD1222為43。這些數據表明,UB-612疫苗實現了協同B細胞與T細胞免疫的設計理念,並且第三劑(第一追加劑)已經能夠基本上中和Omicron BA.5 變體,其為台灣目前面臨的一種強大的、占主導地位的SARS-CoV-2變體。UB-612追加劑表現優於AZ疫苗。 UB against the BA.1/BA.2/BA.5 variants was measured by a “pseudovirus neutralization assay” after a booster dose (third dose, homologous booster) of each vaccine in uninfected subjects -612 immune serum (50% geometric mean GMT, i.e. pVNT 50 /ID 50 titer) showed higher than Moderna (mRNA-1273), Pfizer (BNT162b2) and NVX-CoV2373; and much higher than MVC-COV1901, AZD1222 , CoronaVac and BBIBIP vaccines (Table 10). Taking the most infectious BA.5 pVNT50 as an example, the neutralizing titers were reported to be 854 for UB-612, 582 for NVX-CoV2373, 378 for Moderna mRNA-1273, 360 for Pfizer BNT162b2, and 75 for CoronaVac. AZD1222 is 43. These data show that the UB-612 vaccine achieves the design concept of synergistic B cell and T cell immunity, and that the third dose (the first booster dose) has been able to basically neutralize the Omicron BA.5 variant, which is currently facing Taiwan A powerful, dominant SARS-CoV-2 variant. The UB-612 booster dose performed better than the AZ vaccine.

重要需要注意的是,偽病毒檢測是建立在一種僅冠上棘蛋白之人工(偽)病毒上,而活病毒的臨床分離物是在病毒主體上含有棘蛋白與非棘蛋白的實際分離物。目前所有使用僅棘免疫原設計的許可疫苗皆無法識別病毒的非棘蛋白的本體結構。It is important to note that pseudovirus detection is based on an artificial (pseudo)virus with only a spike protein on its crown, while clinical isolates of live viruses are actual isolates that contain spike and non-spike proteins on the main body of the virus. All currently licensed vaccines designed using only spine immunogens are unable to recognize the bulk structure of the virus's non-spike proteins.

非棘蛋白也在病毒進化的過程中發生突變(表 12),當前的僅有棘(Spike-only)疫苗產生的抗體既不能歸巢,也不能誘導 B與T細胞記憶免疫以識別非棘蛋白。因此,對於那些僅有棘蛋白的疫苗,偽病毒與活病毒測定之間會出現數據不一致,除非疫苗抗原被設計為同時考慮棘蛋白與非棘蛋白兩者。不一致在下面得到驗證。Non-Spike proteins also mutate during the evolution of the virus (Table 12). The antibodies produced by the current Spike-only vaccine can neither homing nor induce B and T cell memory immunity to recognize non-Spike proteins. . Therefore, for those vaccines that only have spike proteins, there will be data inconsistencies between pseudovirus and live virus assays, unless the vaccine antigen is designed to account for both spike and non-spike proteins. The inconsistency is verified below.

b. 活病毒中和活性b. Live virus neutralizing activity

在向未感染者接種每種疫苗(第三劑,同源加強)追加劑注射後,藉由“活病毒中和試驗”(50%幾何平均 GMT,即VNT 50/FRNT 50效價)對UB-612(值為670)顯示出比其他疫苗(值為46至106)(mRNA-1273、BNT162b2與AZD1222疫苗)更高的GMT效力,代表6至12倍更高的效價強度(表 10)。 After a booster dose of each vaccine (third dose, homologous booster) was administered to uninfected persons, UB was evaluated by the "live virus neutralization test" (50% geometric mean GMT, i.e., VNT 50 / FRNT 50 titer). -612 (value of 670) showed higher GMT potency than other vaccines (values of 46 to 106) (mRNA-1273, BNT162b2 and AZD1222 vaccines), representing 6 to 12 times higher titer intensity (Table 10) .

對比活病毒與人工偽病毒中和試驗方法(表10與11),只有UB-612疫苗呈現出方法間的一致性,而且UB-612的病毒中和強度在任何一種病毒試驗方法中都優於所有其他EUL上市疫苗。Comparing live virus and artificial pseudovirus neutralization test methods (Tables 10 and 11), only the UB-612 vaccine showed consistency between methods, and the virus neutralization intensity of UB-612 was better than that of any virus test method. All other EUL listed vaccines.

這些品牌疫苗的偽病毒與活病毒檢測之間存在資料差異。注意,以抗BA.1 pVNT50為例(表10),UB-612(值為1,196-2,325)與mRNA-1273/BNT162b2(值為945-1,116)之間的pVNT 50(假病毒中和試驗)差距是小的;而抗BA.1 VNT50的活病毒試驗差距更大,大約相差6-12倍(表11)。 There are data differences between pseudovirus and live virus assays for these brands of vaccines. Note, taking the anti-BA.1 pVNT50 as an example (Table 10), the pVNT50 between UB-612 (value 1,196-2,325) and mRNA-1273/BNT162b2 (value 945-1,116) (pseudovirus neutralization assay) The difference is small; while the difference in the live virus test against BA.1 VNT50 is even larger, about 6-12 times (Table 11).

2. UB-6122.UB-612 卓越的病毒中和活性背後。Behind the superior virus neutralizing activity.

UB-612在偽病毒與活病毒中和強度方面優於其他疫苗可歸因於其識別棘蛋白與非棘蛋白上的靶標(S2、M與N蛋白上的保守和混雜的 Th/CTL抗原決定位),產生引人注目的、廣泛認可的全面T細胞免疫記憶,其應強具有針對BA1、BA.2至 BA.5 的交叉中和抗體之B細胞免疫反應與T細胞免疫,以協同方式反應。The superiority of UB-612 to other vaccines in terms of pseudovirus and live virus neutralization potency can be attributed to its recognition of targets on spike and non-spike proteins (conserved and promiscuous Th/CTL antigen determination on S2, M and N proteins). position), to generate a compelling and widely recognized comprehensive T cell immune memory, which should strengthen the B cell immune response and T cell immunity with cross-neutralizing antibodies against BA1, BA.2 to BA.5, in a synergistic manner reaction.

品牌疫苗的追加劑疫苗接種(第三劑)已經暴露了它們在對抗BA.1活病毒方面的弱點,更不用說對抗BA.2與BA.5。從目前的mRNA疫苗很難在追加劑後產生>100的VNT 50峰值效價來對抗BA.1活病毒來看,可以預測疫苗在中和BA.2與BA.5活病毒方面會進一步減弱。 Top-up vaccinations (third doses) of branded vaccines have exposed their weaknesses against the live BA.1 virus, not to mention BA.2 and BA.5. Judging from the fact that it is difficult for the current mRNA vaccine to produce a VNT 50 peak titer of >100 against the BA.1 live virus after the additional dose, it can be predicted that the vaccine will be further weakened in neutralizing the BA.2 and BA.5 live viruses.

3.3. spine 蛋白與非棘蛋白上的突變位點。Mutation sites on protein and non-spike proteins.

除了Spike蛋白上的30多個突變外,如表12所示,BA.1、BA.2與BA.5變體的非棘蛋白(E、M與N)上也有突變位點,這些突變位點是僅有棘之疫苗無法識別的,即它們對於促進更充分的T細胞免疫具有內在的不足。且,相比之下,藉由針對棘蛋白中較小的S1-RBD蛋白片段和設計的具有保守與混雜之T抗原決定位的T免疫原,UB-612誘導的免疫會比其他疫苗遇到更少的病毒突變體抵抗,從而使Omicron逃避的可能性降低,因為UB-612疫苗誘導的免疫可以表現得更接近感染誘導的免疫的氣息。In addition to the more than 30 mutations on the Spike protein, as shown in Table 12, there are also mutation sites on the non-spike proteins (E, M and N) of the BA.1, BA.2 and BA.5 variants. These mutation sites The point that Echinacea-only vaccines fail to recognize is that they are inherently deficient in promoting more adequate T-cell immunity. And, in contrast, by targeting the smaller S1-RBD protein fragment of spike protein and designing T immunogens with conserved and promiscuous T epitopes, UB-612-induced immunity is better than that encountered by other vaccines. Fewer viral mutants are resistant, making Omicron evasion less likely, as UB-612 vaccine-induced immunity can behave more closely like infection-induced immunity.

上述觀察結果也表明:1)在比較不同疫苗平臺的病毒中和效力時,只有活病毒試驗檢測是真正可靠的;2)人工偽病毒檢測有利於在那些以專注於棘(Spike-focused)的疫苗中進行比較。The above observations also show that: 1) when comparing the virus neutralization efficacy of different vaccine platforms, only live virus test detection is truly reliable; 2) artificial pseudovirus detection is beneficial in those that focus on Spike (Spike-focused). Comparison among vaccines.

4. 一種潛在的泛沙巴 克病毒疫苗。 4. A potential pan- Sabak virus vaccine.

特別值得注意的是,套膜(E)、膜(M)與核衣殼(N)等非棘結構蛋白,關鍵性地參與了宿主細胞干擾素反應與T細胞記憶的誘導。因此,UB-612疫苗所喚起的深刻的T細胞記憶免疫力在長期控制SARS-CoV-2感染方面可以發揮關鍵作用。因此,UB-612作為追加劑可能會使感染者在防止再感染方面潛在受益最大。It is particularly noteworthy that non-spine structural proteins such as the mantle (E), membrane (M) and nucleocapsid (N) are crucially involved in the induction of host cell interferon response and T cell memory. Therefore, the profound T cell memory immunity evoked by the UB-612 vaccine can play a key role in the long-term control of SARS-CoV-2 infection. Therefore, UB-612 as a booster agent may potentially benefit infected patients the most in preventing reinfection.

與其他使用棘(S)蛋白作為唯一的B與T免疫原的疫苗不同,UB-612的組成包括免疫原S1-RBD以觸發B細胞產生中和抗體,以及五個保守的、不可變的混雜抗原決定位(S2x3,N與M蛋白)作為T免疫原(表13)。獨特、合理的疫苗設計使UB-612有可能成為一種泛沙巴甲病毒疫苗。Unlike other vaccines that use spike (S) protein as the only B and T immunogen, UB-612's composition includes the immunogen S1-RBD to trigger B cells to produce neutralizing antibodies, and five conserved, immutable hybrids Antigenic epitopes (S2x3, N and M proteins) were used as T immunogens (Table 13). The unique and rational vaccine design makes UB-612 a possible pan-Sabavirus vaccine.

5. 防止免疫逃逸之强大的T细胞免疫力 5. Powerful T cell immunity that prevents immune evasion .

由於疫苗能夠對保守的、不可變異的抗原決定位產生強烈的T細胞免疫反應,因此能夠防止免疫逃逸。研究不同形式的疫苗所產生的T細胞免疫反應是非常有意義的。如下所述,UB-612作為加強劑(第三劑,同源追加),引起的T細胞免疫程度(SFU/10 6個PBMC細胞)遠遠高於mRNA疫苗(BNT162b2)或腺病毒DNA疫苗(ChAdOx1或AZD1222)。 Because vaccines can generate strong T cell immune responses to conserved, non-mutable epitopes, they can prevent immune escape. It is of great interest to study the T cell immune responses generated by different forms of vaccines. As described below, UB-612, as a booster (third dose, homologous boost), induces a much higher degree of T cell immunity (SFU/10 6 PBMC cells) than either the mRNA vaccine (BNT162b2) or the adenovirus DNA vaccine ( ChAdOx1 or AZD1222).

在追加劑前/追加劑後的SFU單位,分別為3個劑量的ChAd/ChAd/ChAd為38/45,3個劑量的BNT/BNT/BNT為28/82,低於2期延長研究中觀察到的UB-612追加劑的261/374 SFU。這些結果與UB-612具有較強的抗BA.1活病毒中和效價,而BNT162b2與ADZ1222的效價較弱的事實相一致(表11)。一般來說,已知強大的T細胞免疫力對於保護人們抵抗嚴重疾病的侵害和疫苗的長期成功也是至關重要的。The SFU units before and after the booster dose were 38/45 for 3 doses of ChAd/ChAd/ChAd and 28/82 for 3 doses of BNT/BNT/BNT, which were lower than those observed in the phase 2 extension study. To 261/374 SFU of UB-612 supplement. These results are consistent with the fact that UB-612 has strong neutralizing titers against BA.1 live virus, whereas BNT162b2 has weaker potencies with ADZ1222 (Table 11). In general, strong T-cell immunity is also known to be critical for protecting people against severe disease and for the long-term success of vaccines.

6. UB-6126.UB-612 疫苗針對感染的有效性。Effectiveness of vaccines against infection.

雖然現實世界中疫苗對感染的有效程度尚不清楚,但UB-612對ACE2:RBDWT相互作用的強烈阻斷與病毒中和VNT 50(活病毒WT與Delta)與pVNT 50(偽病毒BA.1)之間的正功能關聯,推斷出對COVID-19的臨床療效很可觀。事實上,利用S蛋白結合活性和中和抗體的模型,預測UB-612的2劑主要免疫對武漢/ Delta的臨床療效為70-80%,而追加疫苗接種可能導致對由祖先武漢/ Delta或Omicron株引起的有症狀的COVID-19的療效為95%。 While the extent to which the vaccine is effective against infection in the real world is unknown, the strong blockade of ACE2:RBDWT interaction by UB-612 was associated with virus neutralization of VNT 50 (live virus WT vs. Delta) and pVNT 50 (pseudovirus BA.1 ), inferring that the clinical efficacy against COVID-19 is considerable. In fact, using models of S protein binding activity and neutralizing antibodies, the clinical efficacy of 2 doses of primary immunization with UB-612 against Wuhan/Delta is predicted to be 70-80%, while follow-up vaccination may lead to 70-80% clinical efficacy against ancestral Wuhan/Delta or Efficacy against symptomatic COVID-19 caused by the Omicron strain is 95%.

7. 在臺灣與美國 UB-612 有效性之進行中調查。 7. Ongoing investigation of the effectiveness of UB -612 in Taiwan and the United States.

應該指出的是,在1480名接受了兩或三劑UB-612疫苗的受試者中(臺灣的2期試驗),截至今年3月所設計的2期臨床研究結束時,沒有發生感染病例的報告。It should be noted that among the 1,480 subjects who received two or three doses of the UB-612 vaccine (Phase 2 trial in Taiwan), there were no cases of infection as of the end of the designed Phase 2 clinical study in March this year. report.

此外,在今年5月台灣內Omicron感染迅速升級之際,正在對2期臨床試驗的受試者進行電話採訪,以及在台灣空前的暴發期間,接受兩劑或三劑針對Omicrons的UB-612疫苗的受試者的初始疫苗保護效果估計大於 95%(該試驗正在進行中)。In addition, as Omicron infections rapidly escalated in Taiwan in May this year, telephone interviews are being conducted with participants in the Phase 2 clinical trial, as well as those who received two or three doses of the UB-612 vaccine against Omicron during the unprecedented outbreak in Taiwan. Initial vaccine protection is estimated to be greater than 95% in participants (the trial is ongoing).

此外,保護包括主要Omicron B5的循環亞變體感染的3期臨床療效將等待正在進行的3期試驗的結果,該試驗將 UB-612與批准疫苗在同源與異源追加下進行比較 [ClinicalTrials.gov ID: NCT05293665]。Additionally, Phase 3 clinical efficacy in protecting against infection with circulating subvariants including primary Omicron B5 will await results from an ongoing Phase 3 trial comparing UB-612 to an approved vaccine under homologous versus heterologous boost [ClinicalTrials .gov ID: NCT05293665].

使用mRNA二價疫苗作為第四劑。目前,作為第四劑(第二次追加針)的莫德納二價疫苗mRNA-1273.214(原棘加Omicron BA.1棘)最近獲得了緊急使用批准(Emergency Use Authorization)。據報導,針對BA.5的偽病毒中和效價(pVNT50)為727,比原mRNA-1273疫苗(第四劑)高50-60%,比第三劑mRNA-1273疫苗高90%(表10);均未超過2倍。这种pVNT50的小幅增加已被证明不会导致疫苗效力的提高。另一種含有BA.5的二價疫苗也在9月6日獲得了緊急使用授權;該批准僅基於一項8隻小鼠的研究。Use the mRNA bivalent vaccine as the fourth dose. Currently, Moderna’s bivalent vaccine mRNA-1273.214 (original spine plus Omicron BA.1 spine), which is the fourth dose (second booster shot), recently received Emergency Use Authorization (Emergency Use Authorization). It is reported that the pseudovirus neutralizing titer (pVNT50) against BA.5 is 727, which is 50-60% higher than the original mRNA-1273 vaccine (fourth dose) and 90% higher than the third dose of mRNA-1273 vaccine (Table 10); none of them exceeded 2 times. This small increase in pVNT50 has been shown not to result in an increase in vaccine efficacy. Another bivalent vaccine containing BA.5 also received emergency use authorization on September 6; the approval was based on only an eight-mouse study.

遺憾的是,莫德納並未在6月28日的美國FDA審查會議上提交關鍵的 "活病毒中和效力 "資料。目前,只有抗BA.1活病毒的VNT 50資料,據報導,第三劑後原mRNA-1273的VNT 50為81.0(表11);而二價疫苗mRNA-1273.214第四劑後的抗BA.5活病毒的VNT 50可能更低。 Unfortunately, Moderna did not submit key "live virus neutralizing efficacy" data at the US FDA review meeting on June 28. At present, there is only VNT 50 data for the live virus against BA.1. It is reported that the VNT 50 of the original mRNA-1273 after the third dose is 81.0 (Table 11); while the anti-BA after the fourth dose of the bivalent vaccine mRNA-1273.214. 5The VNT 50 for live viruses may be lower.

根據表10資料對抗偽病毒pVNT50的總體估計,相對於抗BA.1/抗BA.2,對BA.1的中和效力是1.3倍;對BA.5的中和效力是2-3倍以內。若不戴口罩,不經常洗手,不與社會保持適當的距離,很有可能被Omicron BA.5變體再次感染或突破性感染。雖然需要進行全面的疫苗接種與追加針,以防止感染,但問題仍為,人們是否能正確掌握疫苗與劑量方案兩者。According to the overall estimate of anti-pseudovirus pVNT50 based on the data in Table 10, compared with anti-BA.1/anti-BA.2, the neutralizing efficacy against BA.1 is 1.3 times; the neutralizing efficacy against BA.5 is within 2-3 times. . If you do not wear a mask, wash your hands frequently, and maintain appropriate social distance, you are likely to be reinfected or have a breakthrough infection with the Omicron BA.5 variant. While comprehensive vaccinations and booster shots are needed to prevent infection, the question remains whether people are getting both the vaccine and the dosage regimen right.

8.8. 預防遠程Prevent remote COVIDCOVID 的潛在好處。potential benefits.

最後,無論疫苗接種狀態或混合免疫如何,每次再感染都會增加死亡、住院與其他健康危害的風險,包括長期 COVID 的負擔,而目前批准的疫苗免疫對緩解長期 COVID 的益處有限。Finally, regardless of vaccination status or mixed immunity, each reinfection increases the risk of death, hospitalization, and other health harms, including the burden of long COVID, and immunity with currently approved vaccines has limited benefit in mitigating long COVID.

由於發現遠程COVID與產生IFNγ的CD8+T細胞的下降有關,因此,在預防遠程COVID方面,希望有一個能夠引起強大而持久的T細胞免疫力以清除殘留的全身性感染(持續的病毒庫)的疫苗平臺,對此,UB-612可能發揮正向作用。Since long-range COVID was found to be associated with a decline in IFNγ-producing CD8+ T cells, in preventing long-range COVID, it is hoped that a system that can induce strong and long-lasting T cell immunity to clear residual systemic infection (persistent viral reservoir) vaccine platform, for which UB-612 may play a positive role.

實施例Example 1010

預防與治療Prevention and treatment SARS-CoV2SARS-CoV2 感染,清除病毒感染並治療遠程Infections, clear viral infections and treat remotely COVIDCOVID 之泛沙比科Pansabico (Pan-Sarbeco)(Pan-Sarbeco) 疫苗的開發。Vaccine development.

SARS-CoV-2 Omicron株系從最初的武漢株系開始,以快速連續的優勢亞變體,從BA.1、BA.2到目前的BA.4/BA.5,占SARS感染病例的90%以上,在傳播性和中和抗體逃逸方面具有壓倒性優勢,席捲全球。Starting from the original Wuhan strain, the SARS-CoV-2 Omicron strain has evolved in rapid succession with dominant subvariants, from BA.1, BA.2 to the current BA.4/BA.5, accounting for 90% of SARS infection cases. More than %, it has overwhelming advantages in transmissibility and neutralizing antibody escape, sweeping the world.

Omicron BA.1從原SARS-CoV-2武漢株發生了嚴重的變異,包括於S蛋白中之大於35個的胺基酸變化。與2個與 S-1受體結合域(S1-RBD,殘基319-541)的Delta相關的突變相比,BA.1與BA.2共有12個突變,BA.1與BA.2各有3個與4個獨特的,其分別賦予BA.2更高的免疫逃避能力。BA.4與BA.5具有相同的棘蛋白。它們與BA.2的不同之處在於在69-70del、L452R、F486V與野生型胺基酸在棘蛋白內的Q493位處具有額外的突變(表 12),這有助於它們比BA.2更高程度的免疫逃逸。BA.2表現出比BA.1高1.3至1.5倍的傳播率與1.3倍的免疫逃避,這與BA.1免疫血清中和BA.2的結果一致,其效價較低,達1.3至1.4 倍,BA.2再感染可能發生在BA.1之後。BA.4/BA.5更具傳播性,對BA.1/BA.2免疫與單株抗體具有抗性。Omicron BA.1 has undergone severe mutations from the original SARS-CoV-2 Wuhan strain, including more than 35 amino acid changes in the S protein. Compared with the 2 mutations related to Delta of the S-1 receptor binding domain (S1-RBD, residues 319-541), BA.1 and BA.2 have a total of 12 mutations, each of BA.1 and BA.2 There are 3 and 4 unique ones, which respectively give BA.2 higher immune evasion capabilities. BA.4 and BA.5 have the same spike protein. They differ from BA.2 by having additional mutations at 69-70del, L452R, F486V and the wild-type amino acid at position Q493 within the spike protein (Table 12), which contributes to their comparison with BA.2 Higher levels of immune evasion. BA.2 showed 1.3 to 1.5 times higher transmission rate and 1.3 times immune evasion than BA.1, which is consistent with the results of BA.1 immune serum neutralizing BA.2 with a lower titer of 1.3 to 1.4 times, BA.2 reinfection may occur after BA.1. BA.4/BA.5 are more transmissible and resistant to BA.1/BA.2 immunity and monoclonal antibodies.

此外,在 UB-612疫苗接種者進行追加注射後,免疫血清中和活武漢病毒的能力仍然較低,其效價降低(50% 幾何平均 GMT,即 VNT50/FRNT50效價)在10至50倍範圍內(GMFR= ~10至50),如表10所示,這未達到開發泛沙比科疫苗的目標。In addition, after additional injections in UB-612 vaccine recipients, the ability of immune serum to neutralize live Wuhan virus was still low, and its titer was reduced (50% geometric mean GMT, i.e., VNT50/FRNT50 titer) by 10 to 50 times. range (GMFR = ~10 to 50), as shown in Table 10, this falls short of the goal of developing a Pansabiko vaccine.

強烈提倡開發成分更新(變種專一性)疫苗,以滿足這一迫切需要,以防止個人感染 SARS-CoV-2 Omicron BA.4/BA.5以控制爆發並減少由此產生的痛苦 ,包括遠程 COVID 與死亡。The development of compositionally updated (variant specific) vaccines is strongly advocated to address this urgent need to prevent individuals from becoming infected with SARS-CoV-2 Omicron BA.4/BA.5 to control the outbreak and reduce the resulting suffering, including remote COVID-19 with death.

根據如表7至9所示之疫苗組成物所製備之所揭露高精確度設計者疫苗(例如UB-612、UniCoVac-2、UniCoVac-3),與採用滅活病毒裂解液或其他特徵較少的免疫原的免疫原含量較複雜的疫苗的弱或不適當的抗體呈現相比,具有產生高度特異性免疫反應的優勢。此外,在COVID-19疫苗開發中存在與稱為抗體依賴性增強(ADE)的機制相關的潛在缺陷。具體而言,ADE 是一種現象,其中病毒與非中和抗體的結合會增強其進入宿主細胞,有時還會增強其複製。此機制導致傳染性與毒力兩者增加,並已在蚊媒黃病毒、HIV與冠狀病毒中觀察到。所揭露的高精確度疫苗組成物,僅採用S1-RBD-sFc蛋白作為B細胞免疫原,被設計以通過監測抗體反應的品質與和數量來避免疫苗引起的疾病增強,因為它們將決定功能結果 。The disclosed high-precision designer vaccines (such as UB-612, UniCoVac-2, UniCoVac-3) prepared according to the vaccine compositions shown in Tables 7 to 9 have fewer features than the use of inactivated virus lysates or other features The immunogen content of the immunogen has the advantage of generating a highly specific immune response compared to the presentation of weak or inappropriate antibodies in more complex vaccines. Additionally, there are potential pitfalls in COVID-19 vaccine development related to a mechanism called antibody-dependent enhancement (ADE). Specifically, ADE is a phenomenon in which binding of a virus to non-neutralizing antibodies enhances its entry into host cells and sometimes its replication. This mechanism results in increased infectivity and virulence and has been observed in mosquito-borne flaviviruses, HIV, and coronaviruses. The disclosed high-precision vaccine composition, which uses only S1-RBD-sFc protein as the B-cell immunogen, is designed to avoid vaccine-induced disease enhancement by monitoring the quality and quantity of antibody responses, as they will determine functional outcomes. .

除了UB-612與其他使用不同平臺的COVID疫苗相比,採用 "棘"蛋白作為疫苗目標的優勢外,正如在實例9中廣泛討論的那樣,我們的單價UniCoVac 2和二價UniCoVac 3將具有變體特異性(Omicron BA.4/BA.5)成分更新疫苗的額外優勢,滿足COVID疫苗的緊急需求。UniCoVac 2將通過提供高度互補的S1-RBD-Omicron BA.4/BA.5變體專一性sFc來補充現有的 UB-612單價疫苗,該疫苗採用原始株WuHan序列衍生的S1-RBD WuHan-sFc蛋白作為B細胞免疫原作為B細胞免疫原,從而誘導出能有效中和目前流行的BA.4/BA.5變體的中和抗體。In addition to the advantages of UB-612 using the "spike" protein as a vaccine target compared to other COVID vaccines using different platforms, as discussed extensively in Example 9, our monovalent UniCoVac 2 and bivalent UniCoVac 3 will have variable The additional advantage of updated vaccines with body-specific (Omicron BA.4/BA.5) ingredients to meet the urgent need for COVID vaccines. UniCoVac 2 will complement the existing UB-612 monovalent vaccine by providing a highly complementary S1-RBD-Omicron BA.4/BA.5 variant-specific sFc using S1-RBD WuHan-sFc derived from the WuHan sequence of the original strain The protein serves as a B cell immunogen, thereby inducing neutralizing antibodies that can effectively neutralize the currently prevalent BA.4/BA.5 variants.

根據表9製備的組合疫苗使用S1-RBD武漢-sFc(序列識別號:10)與S1-RBD Omicron-BA.4/BA.5-sFc蛋白(序列識別號:11)作為B細胞免疫原將允許產生針對SARS-CoV2的廣譜(broad spectrum)之RBD的互補中和抗體。如此廣泛的中和抗體,加上保守的T細胞免疫所提供的長效免疫記憶,通過加入SARS-CoV Th/CTL胜肽(序列識別號:17-22)與理想化的人工Th胜肽(序列識別號:23)作為T細胞啟動的催化劑,可以開發出最理想的泛沙巴科病毒疫苗組成物,該組成物 (1)由於疫苗平臺的高精確度與次單位性質而具有安全性;(2) 可以促進激發與CHO表現的S1-RBD-sFc蛋白結合的抗體,覆蓋從原始武漢株到最新的Omicron BA4. /BA.5株,並在細胞介導的中和試驗中中和病毒介導的細胞病理學效應;(3) 可以產生Th1傾向的T細胞免疫力,在粘膜接觸後啟動產生IFN-γ的Th細胞,立即抵禦入侵的SARS-CoV-2變體;(4) 可以產生病毒抗原(M.M與S2)專一性的CD8+細胞溶解細胞來清除病毒感染的細胞;以及(5) 由於遠遠增強了免疫記憶的記憶力而提供持久的免疫力,以達到理想的泛沙巴科病毒疫苗的最終目標,防止個人感染SARS-CoV-2 Omicron BA.4 /BA.5,控制SARS-COV2的暴發,並減少由此帶來的痛苦,包括遠程COVID與死亡。The combination vaccine prepared according to Table 9 uses S1-RBD Wuhan-sFc (SEQ ID NO: 10) and S1-RBD Omicron-BA.4/BA.5-sFc protein (SEQ ID NO: 11) as B cell immunogens. Allows the generation of complementary neutralizing antibodies against the broad spectrum of RBD of SARS-CoV2. Such a broad range of neutralizing antibodies, coupled with the long-lasting immune memory provided by conservative T cell immunity, is achieved by adding SARS-CoV Th/CTL peptide (Sequence ID: 17-22) and idealized artificial Th peptide ( SEQ ID NO: 23) As a catalyst for T cell priming, an optimal pan-Sabacovirus vaccine composition can be developed that (1) is safe due to the high precision and sub-unit nature of the vaccine platform; ( 2) Can promote the stimulation of antibodies that bind to the S1-RBD-sFc protein expressed by CHO, covering from the original Wuhan strain to the latest Omicron BA4./BA.5 strain, and neutralize virus-mediated viruses in cell-mediated neutralization experiments induced cytopathological effects; (3) can produce Th1-biased T cell immunity, activate IFN-γ-producing Th cells after mucosal contact, and immediately defend against invading SARS-CoV-2 variants; (4) can produce Viral antigen (M.M and S2)-specific CD8+ cells lyse cells to eliminate virus-infected cells; and (5) provide long-lasting immunity due to far enhanced immune memory to achieve the ideal Pan Sabah The ultimate goal of a viral vaccine is to prevent individuals from becoming infected with SARS-CoV-2 Omicron BA.4/BA.5, control SARS-COV2 outbreaks, and reduce the resulting suffering, including remote COVID and death.

表格sheet

表1Table 1

SARS-CoV2 Omicron BA.4/BA.5之S1-RBD-scFc融合蛋白的胺基酸序列 序列識別號 序列 類型 1 NITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDL C FTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATV C GPKKS S蛋白 RBD-武漢 2 nitnlcpfDevfnatrfasvyawnrkrisncvadysvlynFaPfFAfkcygvsptklndl cftnvyadsfvirgNevSqiapgqtgniadynyklpddftgcviawnsnKldskvGgnynyRyrlfrksnlkpferdisteiyqagNKpcNgvAgVncyfplQsyGfRptygvgHqpyrvvvlsfellhapatv cgpkks S蛋白 RBD-Omicron BA.4/BA.5 (B.1.1.529.4/ B.1.1.529.5, 南非) 3 EPKSCDKTHTCPPCP 來自人類IgG1之野生型樞紐區 4 EPKS SDKTHT SPP SP 來自人類IgG1之經突變之樞紐區 5 EPKS XDKTHT XPP XP X: Ser, Gly, Thr, Ala, Val, Leu, Ile, Met,及/或deletion. Underlined residues represent sites of mutation in relation to the sequence of wild-type IgG. 來自人類IgG1之經突變之樞紐區 6 APELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY N STYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG Fc胜肽 (野生型) 7 APELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY H STYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG Fc胜肽 Mut. Glycos. (N->H) 8 APELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY A STYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG Fc胜肽 Mut. Glycos. (N->A) 9 APELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY X STYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG Fc胜肽 Mut. Glycos. (N->X) X = N,H,A 10 NITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDL C FTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATV C GPKKS EPKSSDKTHTSPPSP APELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY H STYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG S-RBD-武漢 -sFc融合蛋白 11 nitnlcpfDevfnatrfasvyawnrkrisncvadysvlynFaPfFAfkcygvsptklndl cftnvyadsfvirgNevSqiapgqtgniadynyklpddftgcviawnsnKldskvGgnynyRyrlfrksnlkpferdisteiyqagNKpcNgvAgVncyfplQsyGfRptygvgHqpyrvvvlsfellhapatv cgpkks EPKSSDKTHTSPPSPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY H STYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG S-RBD-Omicron BA.4/BA.5- sFc融合蛋白 Amino acid sequence of S1-RBD-scFc fusion protein of SARS-CoV2 Omicron BA.4/BA.5 serial identification number sequence Type 1 NITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDL C FTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATV C GPKKS S protein RBD-Wuhan 2 nitnlcpfDevfnatrfasvyawnrkrisncvadysvlynFaPfFAfkcygvsptklndl c ftnvyadsfvirgNevSqiapgqtgniadynyklpddftgcviawnsnKldskvGgnynyRyrlfrksnlkpferdisteiyqagNKpcNgvAgVncyfplQsyGfRptygvgHqpyrvvv lsfellhapatv c gpkks S protein RBD-Omicron BA.4/BA.5 (B.1.1.529.4/ B.1.1.529.5, South Africa) 3 EPKSCDKTHTCPPCP Wild-type hub region from human IgG1 4 EPKS S DKTHT S PP S P Mutated hub region from human IgG1 5 EPKS X DKTHT X PP X P Mutated hub region from human IgG1 6 APELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY N STYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCS VMHEALHNHYTQKSLSLSPG Fc peptide (wild type) 7 APELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY H STYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCS VMHEALHNHYTQKSLSLSPG Fc peptide Mut. Glycos. (N->H) 8 APELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY A STYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCS VMHEALHNHYTQKSLSLSPG Fc peptide Mut. Glycos. (N->A) 9 APELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY VMHEALHNHYTQKSLSLSPG Fc peptideMut. Glycos. (N->X) X = N,H,A 10 NITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDL C FTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATV C GPKKS EPKSSDKTHTSPPSP APELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY H STYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVM HEALHNHYTQKSLSLSPG S-RBD-Wuhan-sFc fusion protein 11 nitnlcpfDevfnatrfasvyawnrkrisncvadysvlynFaPfFAfkcygvsptklndl c ftnvyadsfvirgNevSqiapgqtgniadynyklpddftgcviawnsnKldskvGgnynyRyrlfrksnlkpferdisteiyqagNKpcNgvAgVncyfplQsyGfRptygvgHqpyrvvv lsfellhapatv c gpkks EPKSSDKTHTSPPSP APELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY H STYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPV LDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG S-RBD-Omicron BA.4/BA.5- sFc fusion protein

表2Table 2

SARS-CoV2之武漢、Omicron BA.4/BA.5之S1-RBD蛋白與S1-RBDs-scFc融合蛋白的核酸序列 序列識別號 序列 類型 12 AACATCACCAACCTGTGCCCCTTCGGCGAGGTGTTCAACGCCACCAGGTTCGCCTCCGTGTACGCCTGGAACAGGAAGAGGATCTCCAACTGCGTGGCCGACTACTCCGTGCTGTACAACTCCGCCTCCTTCTCCACCTTCAAGTGCTACGGCGTGTCCCCCACCAAGCTGAACGACCTGTGCTTCACCAACGTGTACGCCGACTCCTTCGTGATCAGGGGCGACGAGGTGAGGCAGATCGCCCCCGGCCAGACCGGCAAGATCGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGCGTGATCGCCTGGAACTCCAACAACCTGGACTCCAAGGTGGGCGGCAACTACAACTACCTGTACAGGCTGTTCAGGAAGTCCAACCTGAAGCCCTTCGAGAGGGACATCTCCACCGAGATCTACCAGGCCGGCTCCACCCCCTGCAACGGCGTGGAGGGCTTCAACTGCTACTTCCCCCTGCAGTCCTACGGCTTCCAGCCCACCAACGGCGTGGGCTACCAGCCCTACAGGGTGGTGGTGCTGTCCTTCGAGCTGCTGCACGCCCCCGCCACCGTGTGCGGCCCCAAGAAGTCC S protein RBD (武漢) 13 AACATCACCAACCTGTGCCCCTTCGACGAGGTGTTCAACGCCACCAGGTTCGCCTCCGTGTACGCCTGGAACAGGAAGAGGATCTCCAACTGCGTGGCCGACTACTCCGTGCTGTACAACTTCGCCCCCTTCTTCGCCTTCAAGTGCTACGGCGTGTCCCCCACCAAGCTGAACGACCTGTGCTTCACCAACGTGTACGCCGACTCCTTCGTGATCAGGGGCAACGAGGTGTCGCAGATCGCCCCCGGCCAGACCGGCAACATCGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGCGTGATCGCCTGGAACTCCAACAAGCTGGACTCCAAGGTGGGCGGCAACTACAACTACAGGTACAGGCTGTTCAGGAAGTCCAACCTGAAGCCCTTCGAGAGGGACATCTCCACCGAGATCTACCAGGCCGGCAACAAGCCCTGCAACGGCGTGGCCGGCGTCAACTGCTACTTCCCCCTGCAGTCCTACGGCTTCAGGCCCACCTACGGCGTGGGCCACCAGCCCTACAGGGTGGTGGTGCTGTCCTTCGAGCTGCTGCACGCCCCCGCCACCGTGTGCGGCCCCAAGAAGTCC S蛋白RBD-Omicron BA.4/BA.5 (B.1.1.529.4, B.1.1.529.5,  南非) 14 GCCCCCGAGCTGCTGGGCGGCCCCTCCGTGTTCCTGTTCCCCCCCAAGCCCAAGGACACCCTGATGATCTCCAGGACCCCCGAGGTGACCTGCGTGGTGGTGGACGTGTCCCACGAGGACCCCGAGGTGAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCACAACGCCAAGACCAAGCCCAGGGAGGAGCAGTACCACTCCACCTACAGGGTGGTGTCCGTGCTGACCGTGCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTGTCCAACAAGGCCCTGCCCGCCCCCATCGAGAAGACCATCTCCAAGGCCAAGGGCCAGCCCAGGGAGCCCCAGGTGTACACCCTGCCCCCCTCCAGGGACGAGCTGACCAAGAACCAGGTGTCCCTGACCTGCCTGGTGAAGGGCTTCTACCCCTCCGACATCGCCGTGGAGTGGGAGTCCAACGGCCAGCCCGAGAACAACTACAAGACCACCCCCCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTGTACTCCAAGCTGACCGTGGACAAGTCCAGGTGGCAGCAGGGCAACGTGTTCTCCTGCTCCGTGATGCACGAGGCCCTGCACAACCACTACACCCAGAAGTCCCTGTCCCTGTCCCCCGGC Fc胜肽Mut. Glyco. (N->H) 15 AACATCACCAACCTGTGCCCCTTCGGCGAGGTGTTCAACGCCACCAGGTTCGCCTCCGTGTACGCCTGGAACAGGAAGAGGATCTCCAACTGCGTGGCCGACTACTCCGTGCTGTACAACTCCGCCTCCTTCTCCACCTTCAAGTGCTACGGCGTGTCCCCCACCAAGCTGAACGACCTGTGCTTCACCAACGTGTACGCCGACTCCTTCGTGATCAGGGGCGACGAGGTGAGGCAGATCGCCCCCGGCCAGACCGGCAAGATCGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGCGTGATCGCCTGGAACTCCAACAACCTGGACTCCAAGGTGGGCGGCAACTACAACTACCTGTACAGGCTGTTCAGGAAGTCCAACCTGAAGCCCTTCGAGAGGGACATCTCCACCGAGATCTACCAGGCCGGCTCCACCCCCTGCAACGGCGTGGAGGGCTTCAACTGCTACTTCCCCCTGCAGTCCTACGGCTTCCAGCCCACCAACGGCGTGGGCTACCAGCCCTACAGGGTGGTGGTGCTGTCCTTCGAGCTGCTGCACGCCCCCGCCACCGTGTGCGGCCCCAAGAAGTCC GAGCCCAAGTCCTCCGACAAGACCCACACCTCCCCCCCCTCCCCCGCCCCCGAGCTGCTGGGCGGCCCCTCCGTGTTCCTGTTCCCCCCCAAGCCCAAGGACACCCTGATGATCTCCAGGACCCCCGAGGTGACCTGCGTGGTGGTGGACGTGTCCCACGAGGACCCCGAGGTGAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCACAACGCCAAGACCAAGCCCAGGGAGGAGCAGTAC CAC TCCACCTACAGGGTGGTGTCCGTGCTGACCGTGCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTGTCCAACAAGGCCCTGCCCGCCCCCATCGAGAAGACCATCTCCAAGGCCAAGGGCCAGCCCAGGGAGCCCCAGGTGTACACCCTGCCCCCCTCCAGGGACGAGCTGACCAAGAACCAGGTGTCCCTGACCTGCCTGGTGAAGGGCTTCTACCCCTCCGACATCGCCGTGGAGTGGGAGTCCAACGGCCAGCCCGAGAACAACTACAAGACCACCCCCCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTGTACTCCAAGCTGACCGTGGACAAGTCCAGGTGGCAGCAGGGCAACGTGTTCTCCTGCTCCGTGATGCACGAGGCCCTGCACAACCACTACACCCAGAAGTCCCTGTCCCTGTCCCCCGGC S-RBD-武漢sFc融合蛋白 16 AACATCACCAACCTGTGCCCCTTCGACGAGGTGTTCAACGCCACCAGGTTCGCCTCCGTGTACGCCTGGAACAGGAAGAGGATCTCCAACTGCGTGGCCGACTACTCCGTGCTGTACAACTTCGCCCCCTTCTTCGCCTTCAAGTGCTACGGCGTGTCCCCCACCAAGCTGAACGACCTGTGCTTCACCAACGTGTACGCCGACTCCTTCGTGATCAGGGGCAACGAGGTGTCGCAGATCGCCCCCGGCCAGACCGGCAACATCGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGCGTGATCGCCTGGAACTCCAACAAGCTGGACTCCAAGGTGGGCGGCAACTACAACTACAGGTACAGGCTGTTCAGGAAGTCCAACCTGAAGCCCTTCGAGAGGGACATCTCCACCGAGATCTACCAGGCCGGCAACAAGCCCTGCAACGGCGTGGCCGGCGTCAACTGCTACTTCCCCCTGCAGTCCTACGGCTTCAGGCCCACCTACGGCGTGGGCCACCAGCCCTACAGGGTGGTGGTGCTGTCCTTCGAGCTGCTGCACGCCCCCGCCACCGTGTGCGGCCCCAAGAAGTCC GAGCCCAAGTCCTCCGACAAGACCCACACCTCCCCCCCCTCCCCCGCCCCCGAGCTGCTGGGCGGCCCCTCCGTGTTCCTGTTCCCCCCCAAGCCCAAGGACACCCTGATGATCTCCAGGACCCCCGAGGTGACCTGCGTGGTGGTGGACGTGTCCCACGAGGACCCCGAGGTGAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCACAACGCCAAGACCAAGCCCAGGGAGGAGCAGTAC CAC TCCACCTACAGGGTGGTGTCCGTGCTGACCGTGCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTGTCCAACAAGGCCCTGCCCGCCCCCATCGAGAAGACCATCTCCAAGGCCAAGGGCCAGCCCAGGGAGCCCCAGGTGTACACCCTGCCCCCCTCCAGGGACGAGCTGACCAAGAACCAGGTGTCCCTGACCTGCCTGGTGAAGGGCTTCTACCCCTCCGACATCGCCGTGGAGTGGGAGTCCAACGGCCAGCCCGAGAACAACTACAAGACCACCCCCCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTGTACTCCAAGCTGACCGTGGACAAGTCCAGGTGGCAGCAGGGCAACGTGTTCTCCTGCTCCGTGATGCACGAGGCCCTGCACAACCACTACACCCAGAAGTCCCTGTCCCTGTCCCCCGGC S-RBD-Omicron BA.4/BA.5-sFc融合蛋白 Nucleic acid sequences of SARS-CoV2 Wuhan, Omicron BA.4/BA.5 S1-RBD protein and S1-RBDs-scFc fusion protein serial identification number sequence Type 12 AACATCACCAACCTGTGCCCCTTCGGCGAGGTGTTCAACGCCACCAGGTTCGCCTCCGTGTACGCCTGGAACAGGAAGGATCTCCAACTGCGTGGCCGACTACTCCGTGCTGTACAACTCCGCCTCCTTCTCCACCTTCAAGTGCTACGGCGTGTCCCCCACCAAGCTGAACGACCTGTGCTTCACCAACGTGTACGCCGACTCCTTCGTGATCAGGGGCGACGAGGTGAGGCAGATCGCCCCCGGCCAGACCGGCAAGA TCGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGCGTGATCGCCTGGAACTCCAACAACCTGGACTCCAAGGTGGGCGGCAACTACAACTACCTGTACAGGCTGTTCAGGAAGTCCAACCTGAAGCCCTTCGAGAGGGACATCTCCACCGAGATCTACCAGGCCGGCTCCACCCCCTGCAACGGCGTGGAGGGCTTCAACTGCTACTTCCCCCTGCAGTCCTACGGCTTCCAGCCCACCAACGGCGTGGGCTACCAG CCCTACAGGGTGGTGGTGCTGTCCTTCGAGCTGCTGCACGCCCCCGCCACCGTGTGCGGCCCCAAGAAGTCC S protein RBD (Wuhan) 13 AACATCACCAACCTGTGCCCCTTCGACGAGGTGTTCAACGCCACCAGGTTCGCCTCCGTGTACGCCTGGAACAGGAAGAGGATCTCCAACTGCGTGGCCGACTACTCCGTGCTGTACAACTTCGCCCCCTTCTTCGCCTTCAAGTGCTACGGCGTGTCCCCCACCAAGCTGAACGACCTGTGCTTCACCAACGTGTACGCCGACTCCTTCGTGATCAGGGGCAACGAGGTGTCGCAGATCGCCCCCGGCCAGACCGGCAACAT CGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGCGTGATCGCCTGGAACTCCAACAAGCTGGACTCCAAGGTGGGCGGCAACTACAACTACAGGTACAGGCTGTTCAGGAAGTCCAACCTGAAGCCCTTCGAGAGGGACATCTCCACCGAGATCTACCAGGCCGGCAACAAGCCCTGCAACGGCGTGGCCGGCGTCAACTGCTACTTCCCCCTGCAGTCCTACGGCTTCAGGCCCACCTACGGCGTGGGCCACCAG CCCTACAGGGTGGTGGTGCTGTCCTTCGAGCTGCTGCACGCCCCCGCCACCGTGTGCGGCCCCAAGAAGTCC S protein RBD-Omicron BA.4/BA.5 (B.1.1.529.4, B.1.1.529.5, South Africa) 14 GCCCCCGAGCTGCTGGGCGGCCCCTCCGTGTTCCTGTTCCCCCCCAAGCCCAAGGACACCCTGATGATCTCCAGGACCCCCGAGGTGACCTGCGTGGTGGTGGACGTGTCCCACGAGGACCCCGAGGTGAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCACAACGCCAAGACCAAGCCCAGGGAGGAGCAGTACCACTCCACCTACAGGGTGGTGTCCGTGCTGACCGTGCTGCACCAGGACTGGCTGAACGGCAAGG AGTACAAGTGCAAGGTGTCCAACAAGGCCCTGCCCGCCCCCATCGAGAAGACCATCTCCAAGGCCAAGGGCCAGCCCAGGGAGCCCCAGGTGTACACCCTGCCCCCCTCCAGGGACGAGCTGACCAAGAACCAGGTGTCCCTGACCTGCCTGGTGAAGGGCTTCTACCCCTCCGACATCGCCGTGGAGTGGGAGTCCAACGGCCAGCCCGAGAACAACTACAAGACCACCCCCCCCGTGCTGGACTCCGACGGCTCCTTCTCCTGTACTCCAA GCTGACCGTGGACAAGTCCAGGTGGCAGCAGGGCAACGTGTTCTCCTGCTCCGTGATGCACGAGGCCCTGCACAACCACTACACCCAGAAGTCCCTGTCCCTGTCCCCCGGC Fc peptide Mut. Glyco. (N->H) 15 AACATCACCAACCTGTGCCCCTTCGGCGAGGTGTTCAACGCCACCAGGTTCGCCTCCGTGTACGCCTGGAACAGGAAGAGGATCTCCAACTGCGTGGCCGACTACTCCGTGCTGTACAACTCCGCCTCCTTCTCCACCTTCAAGTGCTACGGCGTGTCCCCCACCAAGCTGAACGACCTGTGCTTCACCAACGTGTACGCCGACTCCTTCGTGATCAGGGGCGACGAGGTGAGGCAGATCGCCCCCGGCCAGACCGGCAAGATCGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGCGTGATCGCCTGGAACTCCAACAACCTGGACTCCAAGGTGGGCGGCAACTACAACTACCTGTACAGGCTGTTCAGGAAGTCCAACCTGAAGCCCTTCGAGAGGGACATCTCCACCGAGATCTACCAGGCCGGCTCCACCCCCTGCAACGGCGTGGAGGGCTTCAACTGCTACTTCCCCCTGCAGTCCTACGGCTTCCAGCCCACCAACGGCGTGGGCTACCAGCCCTACAGGGTGGTGGTGCTGTCCTTCGAGCTGCTGCACGCCCCCGCCACCGTGTGCGGCCCCAAGAAGTCC GAGCCCAAGTCCTCCGACAAGACCCACACCTCCCCCCCCTCCCCC GCCCCCGAGCTGCTGGGCGGCCCCTCCGTGTTCCTGTTCCCCCCCAAGCCCAAGGACACCCTGATGATCTCCAGGACCCCCGAGGTGACCTGCGTGGTGGTGGACGTGTCCCACGAGGACCCCGAGGTGAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCACAACGCCAAGACCAAGCCCAGGGAGGAGCAGTAC CAC TCCACCTACAGGGTGGTGTCCGTGCTGACCGTGCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTGTCCAACAAGGCCCTGCCCGCCCCCATCGAGAAGACCATCTCCAAGGCCAAGGGCCAGCCCAGGGAGCCCCAGGTGTACACCCTGCCCCCCTCCAGGGACGAGCTGACCAAGAACCAGGTGTCCCTGACCTGCCTGGTGAAGGGCTTCTACCCCTCCGACATCGCCGTGGAGTGGGAGTCCAACGGCCAGCCCGAGAACAACTACAAGACCACCCCCCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTGTACTCCAAGCTGACCGTGGACAAGTCCAGGTGGCAGCAGGGCAACGTGTTCTCCTGCTCCGTGATGCACGAGGCCCTGCACAACCACTACACCCAGAAGTCCCTGTCCCTGTCCCCCGGC S-RBD-Wuhan sFc fusion protein 16 AACATCACCAACCTGTGCCCCTTCGACGAGGTGTTCAACGCCACCAGGTTCGCCTCCGTGTACGCCTGGAACAGGAAGAGGATCTCCAACTGCGTGGCCGACTACTCCGTGCTGTACAACTTCGCCCCCTTCTTCGCCTTCAAGTGCTACGGCGTGTCCCCCACCAAGCTGAACGACCTGTGCTTCACCAACGTGTACGCCGACTCCTTCGTGATCAGGGGCAACGAGGTGTCGCAGATCGCCCCCGGCCAGACCGGCAACATCGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGCGTGATCGCCTGGAACTCCAACAAGCTGGACTCCAAGGTGGGCGGCAACTACAACTACAGGTACAGGCTGTTCAGGAAGTCCAACCTGAAGCCCTTCGAGAGGGACATCTCCACCGAGATCTACCAGGCCGGCAACAAGCCCTGCAACGGCGTGGCCGGCGTCAACTGCTACTTCCCCCTGCAGTCCTACGGCTTCAGGCCCACCTACGGCGTGGGCCACCAGCCCTACAGGGTGGTGGTGCTGTCCTTCGAGCTGCTGCACGCCCCCGCCACCGTGTGCGGCCCCAAGAAGTCC GAGCCCAAGTCCTCCGACAAGACCCACACCTCCCCCCCCTCCCCC GCCCCCGAGCTGCTGGGCGGCCCCTCCGTGTTCCTGTTCCCCCCCAAGCCCAAGGACACCCTGATGATCTCCAGGACCCCCGAGGTGACCTGCGTGGTGGTGGACGTGTCCCACGAGGACCCCGAGGTGAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCACAACGCCAAGACCAAGCCCAGGGAGGAGCAGTAC CAC TCCACCTACAGGGTGGTGTCCGTGCTGACCGTGCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTGTCCAACAAGGCCCTGCCCGCCCCCATCGAGAAGACCATCTCCAAGGCCAAGGGCCAGCCCAGGGAGCCCCAGGTGTACACCCTGCCCCCCTCCAGGGACGAGCTGACCAAGAACCAGGTGTCCCTGACCTGCCTGGTGAAGGGCTTCTACCCCTCCGACATCGCCGTGGAGTGGGAGTCCAACGGCCAGCCCGAGAACAACTACAAGACCACCCCCCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTGTACTCCAAGCTGACCGTGGACAAGTCCAGGTGGCAGCAGGGCAACGTGTTCTCCTGCTCCGTGATGCACGAGGCCCTGCACAACCACTACACCCAGAAGTCCCTGTCCCTGTCCCCCGGC S-RBD-Omicron BA.4/BA.5-sFc fusion protein

表3table 3

用於高精確度SARS-CoV-2設計疫苗之包含具有已知MHC I/II 結合的SARS-CoV-2 Th/CTL抗原決定位的胜肽的選擇 SEQ ID NO 位置 抗原決定位之類型 胺基酸序列 MHC I MHC II 17 S 957-984 Th/CTL KKK- QALNTLVKQLSSNFGAIS SVLNDILSRL    QALNTLVKQLSSNFGAI(HLA RB1*04:01)                       SVLNDILSR(HLA-A*11:01; 43.38% 覆蓋) HLA-A*11:01 HLA-DRB1*04:01 18 S 891-917 Th KKK- GAALQIPFAMQMA YRFNGIGVTQNVLY         GAALQIPFAMQMAYRF(HLA-DRA*01:01; HLA-DRB1*07:01)                MA YRFNGIGVTQNVLY (HLA-DRB1*04:01) HLA-DRA*01:01 HLA-DRB1*07:01 HLA-DRB1*04:01 19 N 305-331 Th/CTL KKK- AQFAPSASAFFGMSRIGMEVTPSGTWL    AQFAPSASAFFGMSRIGM(HLA-B*40:01)                      MEVTPSGTWL(HLA-B*40:01; 77.23% coverage) HLA-B*40:01 II 20 S 996-1028 Th/CTL KKK- LITGRLQSLQTYVTQ QLIRAAEIRASANLAATK    LITGRLQSL(HLA-A2)                    QLIRAAEIRASANLAATK(HLA-DRB1*04:01)         RLQSLQTYV(HLA-A*02:01, 69.63% coverage) VQIDR LITGR(HLA-A*31:01; 80.62%覆蓋) HLA-A2 HLA-A*02:01 HLA-A*31:01 HLA-DRB1*04:01 21 M 89-111 Th/CTL KKK- GLMWLSYF I ASFRLFARTRSMWS    GLMWLSYFI(HLA-A*02:01) 100%對MHC I覆蓋             IASFRLFARTRSMWS(MHC II) 65%對MHC II覆蓋 HLA-A*02:01 II 粗體: MHC I, 底線 :MHC II Selection of peptides containing SARS-CoV-2 Th/CTL epitopes with known MHC I/II binding for high-precision SARS-CoV-2 vaccine design SEQ ID NO Location Type of epitope amino acid sequence MHC I MHC II 17 S 957-984 Th/CTL KKK- QALNTLVKQLSSNFGAI S SVLNDILSRL QALNTLVKQLSSNFGAI (HLA RB1*04:01) SVLNDILSR (HLA-A*11:01; 43.38% coverage) HLA-A*11:01 HLA-DRB1*04:01 18 S 891-917 Th KKK- GAALQIPFAMQMA YRFNGIGV TQNVLY GAALQIPFAMQMAYRF (HLA-DRA*01:01; HLA-DRB1*07:01) MA YRFNGIGV TQNVLY (HLA-DRB1*04:01) HLA-DRA*01:01 HLA-DRB1*07:01 HLA-DRB1*04:01 19 N 305-331 Th/CTL KKK- AQFAPSASAFFGMSRIGMEVTPSGTWL AQFAPSASAFFGMSRIGM (HLA-B*40:01) MEVTPSGTWL (HLA-B*40:01; 77.23% coverage) HLA-B*40:01 II 20 S 996-1028 Th/CTL KKK- LITGRLQSLQTYVTQ QLIRAAEIRASANLAATK LITGRLQSL (HLA-A2) QLIRAAEIRASANLAATK (HLA-DRB1*04:01) RLQSLQTYV (HLA-A*02:01, 69.63% coverage) VQIDR LITGR (HLA-A*31:01; 80.62% coverage) HLA-A2 HLA-A*02:01 HLA-A*31:01 HLA-DRB1*04:01 twenty one M 89-111 Th/CTL KKK- GLMWLSYF I ASFRLFARTRSMWS GLMWLSYFI (HLA-A*02:01) 100% coverage of MHC I IASFRLFARTRSMWS (MHC II) 65% coverage of MHC II HLA-A*02:01 II Bold : MHC I, Bottom : MHC II

表4Table 4

在針對 COVID 的 T 細胞疫苗中使用的SARS-CoV-2關注變體 (VoC)的膜 (M)、核衣殼(N)與棘-2(S2)蛋白上的保守Th/CTL抗原決定位 序列識別號:21 序列識別號:19 序列識別號:17 序列識別號:18 序列識別號:20 Wild type & VoCs M protein KKK-SARS-CoV2 M 101-156CTL抗原決定位 N protein KKK-SARS-CoV2 N 305-331Th/CTL抗原決定位s S2 protein b,cKKK-SARS-CoV2 S 957-984(Th/CTL抗原決定位s) S2 Protein KKK-SARS-CoV2  S 891-917(Th抗原決定位) S2 Protein KKK-SARS-CoV2 S 996-1028 (Th/CTL抗原決定位) Wuhan (Original) KKK-GLMWLSYFIASFRLFARTRSMWS KKK-AQFAPSASAFFGMSRIGMEVTPSGTWL KKK-QALNTLVKQLSSNFGAISSVLNDILSRL KKK-GAALQIPFAMQMAYRFNGIGVTQNVLY KKK-LITGRLQSLQTVVTQLIRAAEIRASANLAATK Alpha, Beta, & Gamma KKK-GLMWLSYFIASFRLFARTRSMWS KKK-AQFAPSASAFFGMSRIGMEVTPSGTWL KKK-QALNTLVKQLSSNFGAISSVLNDILSRL KKK-GAALQIPFAMQMAYRFNGIGVTQNVLY KKK-LITGRLQSLQTVVTQLIRAAEIRASANLAATK Delta KKK-GLMWLSYFIASFRLFARTRSMWS KKK-AQFAPSASAFFGMSRIGMEVTPSGTWL KKK-QALNTLVKQLSSNFGAISSVLNDILSRL KKK-GAALQIPFAMQMAYRFNGIGVTQNVLY KKK-LITGRLQSLQTVVTQLIRAAEIRASANLAATK Omicron c(BA.1) KKK-GLMWLSYFIASFRLFARTRSMWS KKK-AQFAPSASAFFGMSRIGMEVTPSGTWL KKK-QALNTLVKQLSS K FGAISSVLNDI F SRL KKK-GAALQIPFAMQMAYRFN GIGVTQNVLY KKK-LITGRLQSLQTVVTQLIRAAEIRASANLAATK Omicron c(BA.2/BA.4/ BA.5) KKK-GLMWLSYFIASFRLFARTRSMWS KKK-AQFAPSASAFFGMSRIGMEVTPSGTWL KKK-QALNTLVKQLSS K FGAISSVLNDI LSRL (序列識別號:22) KKK-GAALQIPFAMQMAYRFN GIGVTQNVLY KKK-LITGRLQSLQTVVTQLIRAAEIRASANLAATK aT 細胞抗原決定位的存在對於誘導 B與T 細胞對病毒抗原的記憶反應至關重要。經HLA結合與T細胞功能測定驗證的SARS-CoV-2 CTL與Th抗原決定位在SARS-CoV-2與SARS-CoV-1病毒之間高度保守,僅在S957-984中觀察到較小的變體間差異。武漢野生型胜肽(M、N與S2x3)用於精確設計針對COVID-19的UB-612 疫苗。使用HLA結合測定法確定SARS-CoV-1 (2003)上的T細胞抗原決定位,用於通過序列比對確定SARS-CoV-2 (2019)中的相應T細胞抗原決定位。 b除了S2棘蛋白上S957-984肽中的N969K(在BA.1至BA.5上)與L981F(在BA.1上),UB-612疫苗的其他四個設計抗原決定位胜肽都沒有與棘蛋白、M與N蛋白蛋白上報告的突變位點相重疊的aa殘基(表12)。 c在S957-984中,Omicron BA.1與 BA.2/BA.4/BA.5之間存在微小的序列差異,以粗體標記。 Conserved Th/CTL epitopes on membrane (M), nucleocapsid (N) and spike-2 (S2) proteins of SARS-CoV-2 variants of concern (VoC) used in T-cell vaccines against COVID Serial ID: 21 Serial ID: 19 Serial ID: 17 Serial ID: 18 Serial ID: 20 Wild types & VoCs M protein KKK-SARS-CoV2 M 101-156 CTL epitope N protein KKK-SARS-CoV2 N 305-331 Th/CTL epitopes S2 protein b,c KKK-SARS-CoV2 S 957-984 (Th/CTL epitopes) S2 Protein KKK-SARS-CoV2 S 891-917 (Th epitope) S2 Protein KKK-SARS-CoV2 S 996-1028 (Th/CTL epitope) Wuhan (original) KKK-GLMWLSYFIASFRLFARTRSMWS KKK-AQFAPSASAFFGMSRIGMEVTPSGTWL KKK-QALNTLVKQLSSNFGAISSVLNDILSRL KKK-GAALQIPFAMQMAYRFNGIGVTQNVLY KKK-LITGRLQSLQTVVTQLIRAAEIRASANLAATK Alpha, Beta, & Gamma KKK-GLMWLSYFIASFRLFARTRSMWS KKK-AQFAPSASAFFGMSRIGMEVTPSGTWL KKK-QALNTLVKQLSSNFGAISSVLNDILSRL KKK-GAALQIPFAMQMAYRFNGIGVTQNVLY KKK-LITGRLQSLQTVVTQLIRAAEIRASANLAATK Delta KKK-GLMWLSYFIASFRLFARTRSMWS KKK-AQFAPSASAFFGMSRIGMEVTPSGTWL KKK-QALNTLVKQLSSNFGAISSVLNDILSRL KKK-GAALQIPFAMQMAYRFNGIGVTQNVLY KKK-LITGRLQSLQTVVTQLIRAAEIRASANLAATK Omicron c (BA.1) KKK-GLMWLSYFIASFRLFARTRSMWS KKK-AQFAPSASAFFGMSRIGMEVTPSGTWL KKK-QALNTLVKQLSS K FGAISSVLNDI F SRL KKK-GAALQIPFAMQMAYRFN GIGVTQNVLY KKK-LITGRLQSLQTVVTQLIRAAEIRASANLAATK Omicron c (BA.2/BA.4/ BA.5) KKK-GLMWLSYFIASFRLFARTRSMWS KKK-AQFAPSASAFFGMSRIGMEVTPSGTWL KKK-QALNTLVKQLSS K FGAISSVLNDI L SRL (Serial ID: 22) KKK-GAALQIPFAMQMAYRFN GIGVTQNVLY KKK-LITGRLQSLQTVVTQLIRAAEIRASANLAATK The presence of a T cell epitope is critical for inducing B and T cell memory responses to viral antigens. SARS-CoV-2 CTL and Th epitopes verified by HLA binding and T cell function assays are highly conserved between SARS-CoV-2 and SARS-CoV-1 viruses, with smaller ones observed only in S957-984 Differences between variants. Wuhan wild-type peptides (M, N and S2x3) are used to precisely design the UB-612 vaccine against COVID-19. An HLA binding assay was used to identify T cell epitopes on SARS-CoV-1 (2003), which was used to determine the corresponding T cell epitopes on SARS-CoV-2 (2019) by sequence alignment. bExcept for N969K (on BA.1 to BA.5) and L981F (on BA.1) in the S957-984 peptide on the S2 spike protein, the other four designed epitope peptides of the UB-612 vaccine are not present. aa residues that overlap with reported mutation sites on spinin, M, and N proteins (Table 12). c In S957-984, there are minor sequence differences between Omicron BA.1 and BA.2/BA.4/BA.5, marked in bold.

表5table 5

包括用於設計SARS CoV免疫原結構的理想化的人工Th抗原決定位之病原體蛋白質衍生的Th抗原決定位的胺基酸序列 序列識別號 描述 序列 23 KKK-MvF5 Th (UBITh®1) KKK-ISITEIKGVIVHRIETILF Amino acid sequences of pathogen protein-derived Th epitopes including idealized artificial Th epitopes used to design SARS CoV immunogenic structures serial identification number describe sequence twenty three KKK-MvF5 Th (UBITh®1) KKK-ISITEIKGVIVHRIETILF

表6Table 6

可選的異源性間隔物與CpG寡核苷酸的例子 序列識別號 描述 序列 / 組成 N/A 天然發生胺基酸 天然發生胺基酸包括: 丙胺酸、精胺酸、天冬醯胺、天冬胺酸、半胱胺酸、麩胺酸、麩醯胺酸、甘胺酸、組胺酸、異亮胺酸、亮胺酸、離胺酸、蛋胺酸、苯丙胺酸、脯胺酸、絲胺酸、蘇胺酸、色胺酸、酪胺酸與纈胺酸 N/A Gly-Gly -GG- N/A Epsilon-N 離胺酸 ε-K 24 Epsilon-N離胺酸-KKK ε-K-KKK 25 KKK-Epsilon-N離胺酸 KKK- ε-K 26 CpG1 5' TCg TCg TTT TgT CgT TTT gTC gTT TTg TCg TT 3' (完全硫代磷酸酯化) Examples of optional heterologous spacers and CpG oligonucleotides serial identification number describe sequence / composition N/A naturally occurring amino acids Naturally occurring amino acids include: alanine, arginine, asparagine, aspartic acid, cysteine, glutamic acid, glutamic acid, glycine, histidine, isoleucine , leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine and valine N/A Gly-Gly -GG- N/A Epsilon-N Lysine ε-K twenty four Epsilon-N Lysine-KKK ε-K-KKK 25 KKK-Epsilon-N lysine KKK-ε-K 26 CpG1 5' TCg TCg TTT TgT CgT TTT gTC gTT TTg TCg TT 3' (completely phosphorothioated)

表7Table 7

UB-612 (武漢) 200 μg/mL之組成 序列識別號 描述 單位 Q'ty/mL 功能 品質等級 10 S1-RBD-sFc(武漢) 176 μg B-免疫原 (GMP) 1 17  Th/CTL胜肽 4 μg T-免疫原 (GMP) 1 18 4 μg 19 4 μg 20 4 μg 21 4 μg 23 4 μg 26  CpG1 4 μg 佐劑 GMP --  ADJU-PHOS 1.6 mg 佐劑 GMP --  組胺酸 4.0 mM 蛋白質緩衝劑 Ph Eur, JP, USP --  組胺酸HCl•H 2O 6.0 mM 蛋白質緩衝劑 Ph Eur, BP, JP -- 精胺酸HCl 50.0 mM 蛋白質緩衝劑 Ph Eur, BP, JP, USP --  TWEEN 80 0.06% (v/v) 界面活性劑/乳化劑 Ph Eur, JP, NF -- 鹽酸 q.s. to pH 5.9~6.0 pH調整劑 Ph Eur, BP, JP, NF --  氯化鈉 9 mg 滲透壓保持劑 Ph Eur, BP, USP --  2-苯氧乙醇 0.5% (v/v) 防腐劑 USP-NF --  注射用水 (q.s.to) 1.0 mL 溶劑 Ph USP 1用於2期與2/3期臨床試驗的材料將按照cGMP製造 UB-612 (Wuhan) 200 μg/mL composition serial identification number describe UnitQ'ty /mL Function Quality level 10 S1-RBD-sFc(Wuhan) 176 μg B-immunogen (GMP) 1 17 Th/CTL peptide 4 μg T-immunogen (GMP) 1 18 4 μg 19 4 μg 20 4 μg twenty one 4 μg twenty three 4 μg 26 CpG1 4 μg Adjuvant GMP -- ADJU-PHOS 1.6 mg Adjuvant GMP -- Histidine 4.0mM protein buffer Ph Eur, JP, USP -- Histidine HCl•H 2 O 6.0mM protein buffer Ph Eur, BP, JP -- Arginine HCl 50.0mM protein buffer Ph Eur, BP, JP, USP -- TWEEN 80 0.06% (v/v) Surfactants/emulsifiers Ph Eur, JP, NF -- hydrochloric acid qs to pH 5.9~6.0 pH adjuster Ph Eur, BP, JP, NF -- sodium chloride 9 mg Osmotic pressure maintaining agent Ph Eur, BP, USP -- 2-phenoxyethanol 0.5% (v/v) Preservatives USP-NF -- water for injection (qsto) 1.0mL Solvent Ph USP 1Materials used in Phase 2 and Phase 2/3 clinical trials will be manufactured in accordance with cGMP

表8Table 8

UniCoVac 2單價 (Omicron BA.4/BA.5) 40 μg/mL之組成 序列識別號 描述 單位 Q'ty/mL 功能 等級 11 S1-RBD-sFc (Omicron) 35.2 μg B-免疫原 (GMP) 1 22 Th/CTL胜肽 0.8 μg T-免疫原 (GMP) 1 18 0.8 μg 19 0.8 μg 20 0.8 μg 21 0.8 μg 23 4.0 μg 26  CpG1 120 μg 佐劑 (GMP) 1 --  鋁膠(Alhydrol gel) 1.2 mg 佐劑 GMP --  組胺酸 4.0 mM 蛋白質緩衝劑 Ph Eur, JP, USP -- 組胺酸HCl•H 2O 6.0 mM 蛋白質緩衝劑 Ph Eur, BP, JP -- 精胺酸HCl 50.0 mM 蛋白質緩衝劑 Ph Eur, BP, JP, USP --  TWEEN 80 0.06% (v/v) 界面活性劑/乳化劑 Ph Eur, JP, NF -- 鹽酸 q.s. to pH 5.9~6.0 pH調整劑 Ph Eur, BP, JP, NF --  氯化鈉 9 mg 滲透壓保持劑 Ph Eur, BP, USP --  2-苯氧乙醇 0.5% (v/v) 防腐劑 USP-NF --  注射用水 (q.s.to) 1.0 mL 溶劑 Ph USP 1用於2期與2/3期臨床試驗的材料將按照cGMP製造 UniCoVac 2 unit price (Omicron BA.4/BA.5) 40 μg/mL composition serial identification number describe UnitQ'ty /mL Function level 11 S1-RBD-sFc (Omicron) 35.2 μg B-immunogen (GMP) 1 twenty two Th/CTL peptide 0.8 μg T-immunogen (GMP) 1 18 0.8 μg 19 0.8 μg 20 0.8 μg twenty one 0.8 μg twenty three 4.0 μg 26 CpG1 120 μg Adjuvant (GMP) 1 -- Alhydrol gel 1.2 mg Adjuvant GMP -- Histidine 4.0mM protein buffer Ph Eur, JP, USP -- Histidine HCl•H 2 O 6.0mM protein buffer Ph Eur, BP, JP -- Arginine HCl 50.0mM protein buffer Ph Eur, BP, JP, USP -- TWEEN 80 0.06% (v/v) Surfactants/emulsifiers Ph Eur, JP, NF -- hydrochloric acid qs to pH 5.9~6.0 pH adjuster Ph Eur, BP, JP, NF -- sodium chloride 9 mg Osmotic pressure maintaining agent Ph Eur, BP, USP -- 2-phenoxyethanol 0.5% (v/v) Preservatives USP-NF -- water for injection (qsto) 1.0mL Solvent Ph USP 1Materials used in Phase 2 and Phase 2/3 clinical trials will be manufactured in accordance with cGMP

表9Table 9

UniCoVac 3雙價 (武漢+Omicron BA.4/BA.5) 40 μg/mL之組成 序列識別號 描述 單位 Q'ty/mL 功能 等級 10+11 (1:1) S1-RBD-sFc(武漢+Omicron BA.4/BA.5) 35.2  μg B-免疫原 (GMP) 1 22 Th/CTL胜肽 0.8 μg T-免疫原 (GMP) 1 18 0.8 μg 19 0.8 μg 20 0.8 μg 21 0.8 μg 23 0.8 μg 26 CpG1 120 μg 佐劑 GMP -- Alhydrol gel 1.2mg 佐劑 GMP -- 組胺酸 4.0 mM 蛋白質緩衝劑 Ph Eur, JP, USP -- 組胺酸HCl•H 2O 6.0 mM 蛋白質緩衝劑 Ph Eur, BP, JP -- 精胺酸 HCl 50.0 mM 蛋白質緩衝劑 Ph Eur, BP, JP, USP -- TWEEN 80 0.06% (v/v) 界面活性劑/乳化劑 Ph Eur, JP, NF -- 鹽酸 q.s. to pH 5.9~6.0 pH調整劑 Ph Eur, BP, JP, NF --  氯化鈉 9 mg 滲透壓保持劑 Ph Eur, BP, USP --  2-苯氧乙醇 0.5% (v/v) 防腐劑 USP-NF 注射用水(q.s.to) 1.0 mL 溶劑 Ph USP 1用於2期與2/3期臨床試驗的材料將按照cGMP製造 Composition of UniCoVac 3 bivalent (Wuhan + Omicron BA.4/BA.5) 40 μg/mL serial identification number describe UnitQ'ty /mL Function level 10+11 (1:1) S1-RBD-sFc(Wuhan+Omicron BA.4/BA.5) 35.2 μg B-immunogen (GMP) 1 twenty two Th/CTL peptide 0.8 μg T-immunogen (GMP) 1 18 0.8 μg 19 0.8 μg 20 0.8 μg twenty one 0.8 μg twenty three 0.8 μg 26 CpG1 120 μg Adjuvant GMP -- Alhydrol gel 1.2mg Adjuvant GMP -- Histidine 4.0mM protein buffer Ph Eur, JP, USP -- Histidine HCl•H 2 O 6.0mM protein buffer Ph Eur, BP, JP -- Arginine HCl 50.0mM protein buffer Ph Eur, BP, JP, USP -- TWEEN 80 0.06% (v/v) Surfactants/emulsifiers Ph Eur, JP, NF -- hydrochloric acid qs to pH 5.9~6.0 pH adjuster Ph Eur, BP, JP, NF -- sodium chloride 9 mg Osmotic pressure maintaining agent Ph Eur, BP, USP -- 2-phenoxyethanol 0.5% (v/v) Preservatives USP-NF water for injection (qsto) 1.0mL Solvent Ph USP 1Materials used in Phase 2 and Phase 2/3 clinical trials will be manufactured in accordance with cGMP

10. 偽病毒中和測定 (pVNT 50/ID 50) 疫苗 s a (同源-追加劑) a 參與者(No.) NeuAb 測定(方法/單位) WT(GMT) b Omicrons BA.1/BA.2/BA.5(GMT) b WT/Omicrons BA.1/BA.2/BA.5(GMFR) UB-612 (Ph-1) (n = 45) PNA/pVNT 50 12,778 2,325/ND/ND 5.5/ND/ND UB-612 (Ph-2) c (n = 41) PNA/pVNT 50 6,254 1,196/985/ND 5.2/6.3/ND UB-612 (Ph-2) c (n = 12) PNA/pVNT 50 11,167 2,314/1,890/854 4.8/5.9/13.0 BNT162b2 (n = 24) PNA/pVNT 50 6,539 1066/776/ND 6.1/8.4/ND BNT162b2 (n = 19) PNA/pVNT 50 4,122 1,116/1,113/360 3.7/3.7/11.5 BNT162b2 (n = 27) PNA/ID 50 5783 900/829/275 6.4/7.0/21.0 NVX-CoV2373 (n = 48) PNA/ID 50 10,862 1,197/ND/582 9.1/ND/18.7 mRNA-1273 (n = 16) PNA/ID 50 4,679 945/780/378 5.0/5.9/12.4 MVC-COV1901 (n = 15) PNA/ID 50 1,280-640 160-80/ND/ND 8.7/ND/ND CoronaVac (n = 40) PNA/pVNT 50 632 122/122/75 5.2/5.2/8.4 AZD1222 (n = 41) PNA/pVNT 50 516 89/76/43 5.8/6.8/12 BBIBIP-CorV (n = 75) PNA/pVNT 50 295 15/ND/ND 20.1/ND/ND 縮寫:PNA = 偽型病毒中和試驗;GMT = 幾何平均效價; GMFR = 相對於WT的幾何平均倍數減少;WT = SARS-CoV-2的野生型毒株;Omicrons = Omicron子變體 BA.1/BA.2/BA.5;ND = 未確認。 pVNT 50& ID 50= 50% 中和GMT偽病毒測定。 a報告了同源追加劑(第三劑)疫苗接種的疫苗。 b在追加第三劑後14或28天測量的針對WT的GMT。 cUB-612 - 當Omicron感染依次由 BA.2與BA.5亞變體主導時,以子集參與者的血清進行偽病毒測定(2期追加延長研究)。 Table 10. Pseudovirus neutralization assay (pVNT 50 /ID 50 ) Vaccine s a (same-boosting dose) a Participant (No.) NeuAb assay (method/unit) WT (GMT) b Omicrons BA.1/BA.2/BA.5 (GMT) b WT/Omicrons BA.1/BA.2/BA.5 (GMFR) UB-612 (Ph-1) (n = 45) PNA/pVNT 50 12,778 2,325/ND/ND 5.5/ND/ND UB-612 (Ph-2) c (n = 41) PNA/pVNT 50 6,254 1,196/985/ND 5.2/6.3/ND UB-612 (Ph-2) c (n = 12) PNA/pVNT 50 11,167 2,314/1,890/854 4.8/5.9/13.0 BNT162b2 (n = 24) PNA/pVNT 50 6,539 1066/776/ND 6.1/8.4/ND BNT162b2 (n = 19) PNA/pVNT 50 4,122 1,116/1,113/360 3.7/3.7/11.5 BNT162b2 (n = 27) PNA/ID 50 5783 900/829/275 6.4/7.0/21.0 NVX-CoV2373 (n = 48) PNA/ID 50 10,862 1,197/ND/582 9.1/ND/18.7 mRNA-1273 (n = 16) PNA/ID 50 4,679 945/780/378 5.0/5.9/12.4 MVC-COV1901 (n = 15) PNA/ID 50 1,280-640 160-80/ND/ND 8.7/ND/ND CoronaVac (n = 40) PNA/pVNT 50 632 122/122/75 5.2/5.2/8.4 AZD1222 (n = 41) PNA/pVNT 50 516 89/76/43 5.8/6.8/12 BBIBIP-CorV (n = 75) PNA/pVNT 50 295 15/ND/ND 20.1/ND/ND Abbreviations: PNA = pseudotyped virus neutralization assay; GMT = geometric mean titer; GMFR = geometric mean fold reduction relative to WT; WT = wild-type strain of SARS-CoV-2; Omicrons = Omicron subvariant BA. 1/BA.2/BA.5; ND = Not Confirmed. pVNT 50 & ID 50 = 50% neutralizing GMT pseudovirus assay. aVaccines reporting a homologous booster (third dose) vaccine. b GMT for WT measured 14 or 28 days after the third dose. c UB-612 - Pseudovirus assay in sera from a subset of participants when Omicron infection was sequentially dominated by BA.2 and BA.5 subvariants (Phase 2 add-on extension study).

表11 活病毒中和測定 (VNT 50/FRNT 50/ID 50) 疫苗 a (同源-追加劑) a 參與者(No.) NeuAb 分析(方法/單位) WT(GMT) b Omicrons BA.1/BA.2(GMT) b WT/Omicrons BA.1/BA.2(GMFR) UB-612 (n = 15) MNA/VNT 50 6,159 670/485 9.2/12.7 mRNA-1273 (n = 20) FRNT/ID 50 1659 81.0/ND 20.5/ND BNT162b2 (n = 20) FRNT/ID 50 640 46.2/ND 13.3/ND BNT162b2 (n = 30) PRNT/VNT 50 673 106/ND 6.3/ND AZD1222 (n = 41) FRNT/FRNT 50 723 57.0/ND 12.7/ND 縮寫:MNA = 微量中和測定;PRNT = 斑塊減少中和試驗; FRNT = 焦點減少中和測試;GMT = 幾何平均效價;GMFR = 相對於WT的幾何平均倍數減少;WT = SARS-CoV-2的野生型毒株;Omicrons = Omicron 子變體 BA.1/BA.2;ND = 未確認。pVNT 50& ID 50= 50%中和GMT,藉由活病毒檢測;VNT 50、ID 50與FRNT 50= 50%中和GMT,藉由活病毒檢測。 a報告了同源追加劑(第三劑)疫苗接種的疫苗。 b 在追加第三劑後14或28天測量的針對WT的GMT。 Table 11 Live virus neutralization assay (VNT 50 /FRNT 50 /ID 50 ) Vaccinea (same - boosting dose) a Participant (No.) NeuAb analysis (method/unit) WT (GMT) b Omicrons BA.1/BA.2 (GMT) b WT/Omicrons BA.1/BA.2 (GMFR) UB-612 (n = 15) MNA/VNT 50 6,159 670/485 9.2/12.7 mRNA-1273 (n = 20) FRNT/ID 50 1659 81.0/ND 20.5/ND BNT162b2 (n = 20) FRNT/ID 50 640 46.2/ND 13.3/ND BNT162b2 (n = 30) PRNT/VNT 50 673 106/ND 6.3/ND AZD1222 (n = 41) FRNT/FRNT 50 723 57.0/ND 12.7/ND Abbreviations: MNA = microneutralization assay; PRNT = plaque reduction neutralization test; FRNT = focal reduction neutralization test; GMT = geometric mean titer; GMFR = geometric mean fold reduction relative to WT; WT = SARS-CoV- Wild-type strain of 2; Omicrons = Omicron subvariant BA.1/BA.2; ND = not confirmed. pVNT 50 & ID 50 = 50% neutralized GMT, by live virus detection; VNT 50 , ID 50 and FRNT 50 = 50% neutralized GMT, by live virus detection. aVaccines reporting a homologous booster (third dose) vaccine. b GMT for WT measured 14 or 28 days after the third additional dose.

12 SARS-CoV-2 (S) 及非及包膜 (E) 、膜 (M) 與核衣殼 (N) 蛋白上的突變位點 VoC b, (S1-RBD殘基於319-541) E M N Delta T19R, G142D, Δ156-157, R158G, L452R, T478K, D614G, P681R, & D950N T9I I82T D63G, R203M, & D377Y Omicron (BA.1) A67V, Δ69-70, T95I, G142D, Δ143, Y144del, Δ145, Δ211, L212I, +214EPE, G339D, R346K, S371L, S373P, S375F, K417N, N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, Y505H, T547K, D614G, H655Y, N679K, N764K, D796Y, N856K, and Q954H, L969K, & L981F T9I D3G, Q19E, & A63T P13L, Δ31-33, R203K, & G204R Omicron (BA.2) T19I, L24S, Δ25-27, G142D, V213G, G339D, S371F, S373P, S375F, T,376A, D405N, R408S, K417N, N440K, S477N, T478K, E484A, Q493R, Q498R, N501Y, Y505H, D614G, H655Y, N679K, N764K, D796Y, N856K, Q954H, & L969K T9I Q19E& A63T P13L, Δ31-33, R203K, G204R, & S413R Omicron (BA. 4) T19I, L24S, Δ25-27, Δ69-70, G142D, V213G, G339D, S371F, S373P, S375F, T,376A, D405N, R408S, K417N, N440K, L452R, S477N, T478K, E484A, L486V, Q493, Q498R, N501Y, Y505H, D614G, H655Y, N679K, N764K, D796Y, N856K, and Q954H, & L969K T9I Q19E& A63T P13L, Δ31-33, P151S, R203K, G204R, & S413R Omicron (BA.5) T19I, L24S, Δ25-27, Δ69-70, G142D, V213G, G339D, S371F, S373P, S375F, T,376A, D405N, R408S, K417N, N440K, L452R, S477N, T478K, E484A, L486V, Q493, Q498R, N501Y, Y505H, D614G, H655Y, N679K, N764K, D796Y, N856K, and Q954H, & L969K T9I D3N, Q19E, & A63T P13L, Δ31-33, R203K, G204R, & S413R a報告的棘、E、M與N蛋白突變位點。 bOmicron BA.4與BA.5在棘蛋白上具有相同的突變位點譜,與 BA.2的相關性高於 BA.1。在 BA.2、BA.4與BA.5中,S、E、M與N蛋白突變位點的變異間差異用紅色標記。 c. 除了S2棘蛋白上S 957-984胜肽中的N969K(在BA.1至BA.5上)與L981F(在BA.1上),UB-612疫苗的其他四個設計抗原決定位肽(如下表1B)都沒有與棘蛋白、M與N蛋白上的報告突變位點重疊的aa-殘基。 Table 12 Mutation sites on SARS-CoV-2 spine (S) and non-envelope (E) , membrane (M) and nucleocapsid (N) proteins VoC b, Spiny (S1-RBD residues based on 319-541) E M N Delta T19R, G142D, Δ156-157, R158G, L452R , T478K , D614G, P681R , & D950N T9I I82T D63G, R203M, & D377Y Omicron (BA.1) A67V, Δ69-70, T95I, G142D , Δ143, Y144del, Δ145, Δ211, L212I, +214EPE, G339D, R346K, S371L, S373P , S375F , K417N , N440K , G446S, S477N , T47 8K, E484A , Q493R , G496S , Q498R , N501Y , Y505H , T547K , D614G , H655Y , N679K , N764K , D796Y , N856K , and Q954H , L969K , & L981F T9I D3G, Q19E , & A63T P13L , Δ31-33, R203K , & G204R Omicron (BA.2) T19I, L24S, Δ25-27, G142D , V213G, G339D, S371F, S373P , S375F , T,376A, D405N, R408S, K417N , N440K , S477N, T478K , E484A , Q493R , Q498R , N501Y , Y505H , D614G , H655Y , N679K , N764K , D796Y , N856K , Q954H , & L969K T9I Q19E & A63T P13L , Δ31-33, R203K , G204R , & S413R Omicron (BA. 4) T19I, L24S, Δ25-27, Δ69-70, G142D , V213G, G339D, S371F, S373P , S375F , T,376A, D405N, R408S, K417N , N440K , L452R, S477N , T478K , E484A , L486V, Q493, Q498R , N501Y , Y505H , D614G , H655Y , N679K , N764K , D796Y , N856K , and Q954H , & L969K T9I Q19E & A63T P13L , Δ31-33, P151S, R203K , G204R , & S413R Omicron (BA.5) T19I, L24S, Δ25-27, Δ69-70, G142D , V213G, G339D, S371F, S373P , S375F , T,376A, D405N, R408S, K417N , N440K , L452R, S477N , T478K , E484A , L486V, Q493, Q498R , N501Y , Y505H , D614G , H655Y , N679K , N764K , D796Y , N856K , and Q954H , & L969K T9I D3N, Q19E , & A63T P13L , Δ31-33, R203K , G204R , & S413R aReported mutation sites of spine, E, M and N proteins. b Omicron BA.4 and BA.5 have the same mutation site spectrum on the spike protein, and are more related to BA.2 than to BA.1. In BA.2, BA.4 and BA.5, the differences between the mutation sites of S, E, M and N proteins are marked in red. c . In addition to N969K (on BA.1 to BA.5) and L981F (on BA.1) in the S 957-984 peptide on S2 spike protein, the other four designed epitope peptides of UB-612 vaccine (Table 1B below) There are no aa-residues that overlap with the reporter mutation sites on the Spinin, M, and N proteins.

序列sequence 序列識別號serial identification number 描述describe 序列sequence 1 1 S蛋白 RBD-武漢 S protein RBD-Wuhan NITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDL C FTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATV C GPKKS NITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDL C FTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATV C GPKKS 2 2 S蛋白 RBD-Omicron BA.4/BA.5 (B.1.1.529.4/ B.1.1.529.5,南非) S protein RBD-Omicron BA.4/BA.5 (B.1.1.529.4/ B.1.1.529.5, South Africa) nitnlcpfDevfnatrfasvyawnrkrisncvadysvlynFaPfFAfkcygvsptklndl cftnvyadsfvirgNevSqiapgqtgniadynyklpddftgcviawnsnKldskvGgnynyRyrlfrksnlkpferdisteiyqagNKpcNgvAgVncyfplQsyGfRptygvgHqpyrvvvlsfellhapatv cgpkks nitnlcpfDevfnatrfasvyawnrkrisncvadysvlynFaPfFAfkcygvsptklndl c ftnvyadsfvirgNevSqiapgqtgniadynyklpddftgcviawnsnKldskvGgnynyRyrlfrksnlkpferdisteiyqagNKpcNgvAgVncyfplQsyGfRptygvgHqpyrvvv lsfellhapatv c gpkks 3 3 來自人類IgG1之野生型樞紐區 Wild-type hub region from human IgG1 EPKSCDKTHTCPPCP EPKSCDKTHTCPPCP 4 4 來自人類IgG1之經突變樞紐區 Mutated hub region from human IgG1 EPKS SDKTHT SPP SP EPKS S DKTHT S PP S P 5 5 來自人類IgG1之經突變樞紐區 Mutated hub region from human IgG1 EPKS XDKTHT XPP XP X: Ser, Gly, Thr, Ala, Val, Leu, Ile, Met,及/或缺失。底線殘基代表相對於野生型IgG之序列之突變位點。 EPKS X DKTHT X PP X P X : Ser, Gly, Thr, Ala, Val, Leu, Ile, Met, and/or missing. Underlined residues represent mutation sites relative to the sequence of wild-type IgG. 6 6 Fc胜肽 (野生型) Fc peptide (Wild type) APELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY N STYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG APELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY N STYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCS VMHEALHNHYTQKSLSLSPG 7 7 Fc胜肽 Mut. Glycos. (N->H) Fc peptide Mut. Glycos. (N->H) APELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY H STYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG APELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY H STYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCS VMHEALHNHYTQKSLSLSPG 8 8 Fc胜肽 Mut. Glycos. (N->A) Fc peptide Mut. Glycos. (N->A) APELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY A STYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG APELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY A STYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCS VMHEALHNHYTQKSLSLSPG 9 9 Fc胜肽 Mut. Glycos. (N->X) X = N,H,A Fc peptide Mut. Glycos. (N->X) X = N,H,A APELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY X STYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG APELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY VMHEALHNHYTQKSLSLSPG 10 10 S-RBD-武漢 -sFc融合蛋白 S-RBD-Wuhan -sFc fusion protein NITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDL C FTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATV C GPKKS EPKSSDKTHTSPPSP APELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY H STYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG NITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDL C FTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATV C GPKKS EPKSSDKTHTSPPSP APELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY H STYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVM HEALHNHYTQKSLSLSPG 11 11 S-RBD-Omicron BA.4/BA.5- sFc融合蛋白 S-RBD-Omicron BA.4/BA.5- sFc fusion protein nitnlcpfDevfnatrfasvyawnrkrisncvadysvlynFaPfFAfkcygvsptklndl cftnvyadsfvirgNevSqiapgqtgniadynyklpddftgcviawnsnKldskvGgnynyRyrlfrksnlkpferdisteiyqagNKpcNgvAgVncyfplQsyGfRptygvgHqpyrvvvlsfellhapatv cgpkks EPKSSDKTHTSPPSPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY H STYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG nitnlcpfDevfnatrfasvyawnrkrisncvadysvlynFaPfFAfkcygvsptklndl c ftnvyadsfvirgNevSqiapgqtgniadynyklpddftgcviawnsnKldskvGgnynyRyrlfrksnlkpferdisteiyqagNKpcNgvAgVncyfplQsyGfRptygvgHqpyrvvv lsfellhapatv c gpkks EPKSSDKTHTSPPSP APELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY H STYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPV LDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG 12 12 S蛋白RBD (武漢) S protein RBD (Wuhan) AACATCACCAACCTGTGCCCCTTCGGCGAGGTGTTCAACGCCACCAGGTTCGCCTCCGTGTACGCCTGGAACAGGAAGAGGATCTCCAACTGCGTGGCCGACTACTCCGTGCTGTACAACTCCGCCTCCTTCTCCACCTTCAAGTGCTACGGCGTGTCCCCCACCAAGCTGAACGACCTGTGCTTCACCAACGTGTACGCCGACTCCTTCGTGATCAGGGGCGACGAGGTGAGGCAGATCGCCCCCGGCCAGACCGGCAAGATCGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGCGTGATCGCCTGGAACTCCAACAACCTGGACTCCAAGGTGGGCGGCAACTACAACTACCTGTACAGGCTGTTCAGGAAGTCCAACCTGAAGCCCTTCGAGAGGGACATCTCCACCGAGATCTACCAGGCCGGCTCCACCCCCTGCAACGGCGTGGAGGGCTTCAACTGCTACTTCCCCCTGCAGTCCTACGGCTTCCAGCCCACCAACGGCGTGGGCTACCAGCCCTACAGGGTGGTGGTGCTGTCCTTCGAGCTGCTGCACGCCCCCGCCACCGTGTGCGGCCCCAAGAAGTCC AACATCACCAACCTGTGCCCCTTCGGCGAGGTGTTCAACGCCACCAGGTTCGCCTCCGTGTACGCCTGGAACAGGAAGGATCTCCAACTGCGTGGCCGACTACTCCGTGCTGTACAACTCCGCCTCCTTCTCCACCTTCAAGTGCTACGGCGTGTCCCCCACCAAGCTGAACGACCTGTGCTTCACCAACGTGTACGCCGACTCCTTCGTGATCAGGGGCGACGAGGTGAGGCAGATCGCCCCCGGCCAGACCGGCAAGA TCGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGCGTGATCGCCTGGAACTCCAACAACCTGGACTCCAAGGTGGGCGGCAACTACAACTACCTGTACAGGCTGTTCAGGAAGTCCAACCTGAAGCCCTTCGAGAGGGACATCTCCACCGAGATCTACCAGGCCGGCTCCACCCCCTGCAACGGCGTGGAGGGCTTCAACTGCTACTTCCCCCTGCAGTCCTACGGCTTCCAGCCCACCAACGGCGTGGGCTACCAG CCCTACAGGGTGGTGGTGCTGTCCTTCGAGCTGCTGCACGCCCCCGCCACCGTGTGCGGCCCCAAGAAGTCC 13 13 S蛋白RBD-Omicron BA.4/BA.5 (B.1.1.529.4, B.1.1.529.5,  南非) S protein RBD-Omicron BA.4/BA.5 (B.1.1.529.4, B.1.1.529.5, South Africa) AACATCACCAACCTGTGCCCCTTCGACGAGGTGTTCAACGCCACCAGGTTCGCCTCCGTGTACGCCTGGAACAGGAAGAGGATCTCCAACTGCGTGGCCGACTACTCCGTGCTGTACAACTTCGCCCCCTTCTTCGCCTTCAAGTGCTACGGCGTGTCCCCCACCAAGCTGAACGACCTGTGCTTCACCAACGTGTACGCCGACTCCTTCGTGATCAGGGGCAACGAGGTGTCGCAGATCGCCCCCGGCCAGACCGGCAACATCGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGCGTGATCGCCTGGAACTCCAACAAGCTGGACTCCAAGGTGGGCGGCAACTACAACTACAGGTACAGGCTGTTCAGGAAGTCCAACCTGAAGCCCTTCGAGAGGGACATCTCCACCGAGATCTACCAGGCCGGCAACAAGCCCTGCAACGGCGTGGCCGGCGTCAACTGCTACTTCCCCCTGCAGTCCTACGGCTTCAGGCCCACCTACGGCGTGGGCCACCAGCCCTACAGGGTGGTGGTGCTGTCCTTCGAGCTGCTGCACGCCCCCGCCACCGTGTGCGGCCCCAAGAAGTCC AACATCACCAACCTGTGCCCCTTCGACGAGGTGTTCAACGCCACCAGGTTCGCCTCCGTGTACGCCTGGAACAGGAAGAGGATCTCCAACTGCGTGGCCGACTACTCCGTGCTGTACAACTTCGCCCCCTTCTTCGCCTTCAAGTGCTACGGCGTGTCCCCCACCAAGCTGAACGACCTGTGCTTCACCAACGTGTACGCCGACTCCTTCGTGATCAGGGGCAACGAGGTGTCGCAGATCGCCCCCGGCCAGACCGGCAACAT CGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGCGTGATCGCCTGGAACTCCAACAAGCTGGACTCCAAGGTGGGCGGCAACTACAACTACAGGTACAGGCTGTTCAGGAAGTCCAACCTGAAGCCCTTCGAGAGGGACATCTCCACCGAGATCTACCAGGCCGGCAACAAGCCCTGCAACGGCGTGGCCGGCGTCAACTGCTACTTCCCCCTGCAGTCCTACGGCTTCAGGCCCACCTACGGCGTGGGCCACCAG CCCTACAGGGTGGTGGTGCTGTCCTTCGAGCTGCTGCACGCCCCCGCCACCGTGTGCGGCCCCAAGAAGTCC 14 14 Fc胜肽Mut. Glyco. (N->H) Fc peptide Mut. Glyco. (N->H) GCCCCCGAGCTGCTGGGCGGCCCCTCCGTGTTCCTGTTCCCCCCCAAGCCCAAGGACACCCTGATGATCTCCAGGACCCCCGAGGTGACCTGCGTGGTGGTGGACGTGTCCCACGAGGACCCCGAGGTGAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCACAACGCCAAGACCAAGCCCAGGGAGGAGCAGTACCACTCCACCTACAGGGTGGTGTCCGTGCTGACCGTGCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTGTCCAACAAGGCCCTGCCCGCCCCCATCGAGAAGACCATCTCCAAGGCCAAGGGCCAGCCCAGGGAGCCCCAGGTGTACACCCTGCCCCCCTCCAGGGACGAGCTGACCAAGAACCAGGTGTCCCTGACCTGCCTGGTGAAGGGCTTCTACCCCTCCGACATCGCCGTGGAGTGGGAGTCCAACGGCCAGCCCGAGAACAACTACAAGACCACCCCCCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTGTACTCCAAGCTGACCGTGGACAAGTCCAGGTGGCAGCAGGGCAACGTGTTCTCCTGCTCCGTGATGCACGAGGCCCTGCACAACCACTACACCCAGAAGTCCCTGTCCCTGTCCCCCGGC GCCCCCGAGCTGCTGGGCGGCCCCTCCGTGTTCCTGTTCCCCCCCAAGCCCAAGGACACCCTGATGATCTCCAGGACCCCCGAGGTGACCTGCGTGGTGGTGGACGTGTCCCACGAGGACCCCGAGGTGAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCACAACGCCAAGACCAAGCCCAGGGAGGAGCAGTACCACTCCACCTACAGGGTGGTGTCCGTGCTGACCGTGCTGCACCAGGACTGGCTGAACGGCAAGG AGTACAAGTGCAAGGTGTCCAACAAGGCCCTGCCCGCCCCCATCGAGAAGACCATCTCCAAGGCCAAGGGCCAGCCCAGGGAGCCCCAGGTGTACACCCTGCCCCCCTCCAGGGACGAGCTGACCAAGAACCAGGTGTCCCTGACCTGCCTGGTGAAGGGCTTCTACCCCTCCGACATCGCCGTGGAGTGGGAGTCCAACGGCCAGCCCGAGAACAACTACAAGACCACCCCCCCCGTGCTGGACTCCGACGGCTCCTTCTCCTGTACTCCAA GCTGACCGTGGACAAGTCCAGGTGGCAGCAGGGCAACGTGTTCTCCTGCTCCGTGATGCACGAGGCCCTGCACAACCACTACACCCAGAAGTCCCTGTCCCTGTCCCCCGGC 15 15 S-RBD-武漢sFc融合蛋白 S-RBD-Wuhan sFc fusion protein AACATCACCAACCTGTGCCCCTTCGGCGAGGTGTTCAACGCCACCAGGTTCGCCTCCGTGTACGCCTGGAACAGGAAGAGGATCTCCAACTGCGTGGCCGACTACTCCGTGCTGTACAACTCCGCCTCCTTCTCCACCTTCAAGTGCTACGGCGTGTCCCCCACCAAGCTGAACGACCTGTGCTTCACCAACGTGTACGCCGACTCCTTCGTGATCAGGGGCGACGAGGTGAGGCAGATCGCCCCCGGCCAGACCGGCAAGATCGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGCGTGATCGCCTGGAACTCCAACAACCTGGACTCCAAGGTGGGCGGCAACTACAACTACCTGTACAGGCTGTTCAGGAAGTCCAACCTGAAGCCCTTCGAGAGGGACATCTCCACCGAGATCTACCAGGCCGGCTCCACCCCCTGCAACGGCGTGGAGGGCTTCAACTGCTACTTCCCCCTGCAGTCCTACGGCTTCCAGCCCACCAACGGCGTGGGCTACCAGCCCTACAGGGTGGTGGTGCTGTCCTTCGAGCTGCTGCACGCCCCCGCCACCGTGTGCGGCCCCAAGAAGTCC GAGCCCAAGTCCTCCGACAAGACCCACACCTCCCCCCCCTCCCCCGCCCCCGAGCTGCTGGGCGGCCCCTCCGTGTTCCTGTTCCCCCCCAAGCCCAAGGACACCCTGATGATCTCCAGGACCCCCGAGGTGACCTGCGTGGTGGTGGACGTGTCCCACGAGGACCCCGAGGTGAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCACAACGCCAAGACCAAGCCCAGGGAGGAGCAGTAC CAC TCCACCTACAGGGTGGTGTCCGTGCTGACCGTGCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTGTCCAACAAGGCCCTGCCCGCCCCCATCGAGAAGACCATCTCCAAGGCCAAGGGCCAGCCCAGGGAGCCCCAGGTGTACACCCTGCCCCCCTCCAGGGACGAGCTGACCAAGAACCAGGTGTCCCTGACCTGCCTGGTGAAGGGCTTCTACCCCTCCGACATCGCCGTGGAGTGGGAGTCCAACGGCCAGCCCGAGAACAACTACAAGACCACCCCCCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTGTACTCCAAGCTGACCGTGGACAAGTCCAGGTGGCAGCAGGGCAACGTGTTCTCCTGCTCCGTGATGCACGAGGCCCTGCACAACCACTACACCCAGAAGTCCCTGTCCCTGTCCCCCGGC AACATCACCAACCTGTGCCCCTTCGGCGAGGTGTTCAACGCCACCAGGTTCGCCTCCGTGTACGCCTGGAACAGGAAGGATCTCCAACTGCGTGGCCGACTACTCCGTGCTGTACAACTCCGCCTCCTTCTCCACCTTCAAGTGCTACGGCGTGTCCCCCACCAAGCTGAACGACCTGTGCTTCACCAACGTGTACGCCGACTCCTTCGTGATCAGGGGCGACGAGGTGAGGCAGATCGCCCCCGGCCAGACCGGCAAGA TCGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGCGTGATCGCCTGGAACTCCAACAACCTGGACTCCAAGGTGGGCGGCAACTACAACTACCTGTACAGGCTGTTCAGGAAGTCCAACCTGAAGCCCTTCGAGAGGGACATCTCCACCGAGATCTACCAGGCCGGCTCCACCCCCTGCAACGGCGTGGAGGGCTTCAACTGCTACTTCCCCCTGCAGTCCTACGGCTTCCAGCCCACCAACGGCGTGGGCTACCAG CCCTACAGGGTGGTGGTGCTGTCCTTCGAGCTGCTGCACGCCCCCGCCACCGTGTGCGGCCCCAAGAAGTCC GAGCCCAAGTCCTCCGACAAGACCCACACCTCCCCCCCCTCCCCCCGCCCCCGAGCTGCTGGGCGGCCCCTCCGTGTTCCTGTTCCCCCCCAAGCCCAAGGACACCCTGATGATCTCCAGGACCCCCGAGGTGACCTGCGTGGTGGTGGACGTGTCCCACGAGGACCCCGAGGTGAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCACAACGCCAAGACCAAGCCCAGGGAGGAGCAGTAC CAC TCCACCTACAGGGTGGTGTCCGTGCTGACCGTGCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTGTCCAACAAGGCCCTGCCCGCCCCCATCGAGAAGACCATCTCCAAGGCCAAGGGCCAGCCCAGGGAGCCCCAGGTGTACACCCTGCCCCCCTCCAGGGACGAGCTGACCAAGAACCAGGTGTCCCTGACCTGCCTGGTGAAGGGCTTCTACCCTCCGACATCGCCGTGGAGTGGGAGTCCAACGGCC AGCCCGAGAACAACTACAAGACCACCCCCCCCGTGCTGGACTCCGACGGCTCCTTCTCCTGTACTCCAAGCTGACCGTGGACAAGTCCAGGTGGCAGCAGGGCAACGTGTTTCCTGCTCCGTGATGCACGAGGCCCTGCACAACCACTACACCCAGAAGTCCCTGTCCCTGTCCCCCGGC 16 16 S-RBD-Omicron BA.4/BA.5-sFc融合蛋白 S-RBD-Omicron BA.4/BA.5-sFc fusion protein AACATCACCAACCTGTGCCCCTTCGACGAGGTGTTCAACGCCACCAGGTTCGCCTCCGTGTACGCCTGGAACAGGAAGAGGATCTCCAACTGCGTGGCCGACTACTCCGTGCTGTACAACTTCGCCCCCTTCTTCGCCTTCAAGTGCTACGGCGTGTCCCCCACCAAGCTGAACGACCTGTGCTTCACCAACGTGTACGCCGACTCCTTCGTGATCAGGGGCAACGAGGTGTCGCAGATCGCCCCCGGCCAGACCGGCAACATCGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGCGTGATCGCCTGGAACTCCAACAAGCTGGACTCCAAGGTGGGCGGCAACTACAACTACAGGTACAGGCTGTTCAGGAAGTCCAACCTGAAGCCCTTCGAGAGGGACATCTCCACCGAGATCTACCAGGCCGGCAACAAGCCCTGCAACGGCGTGGCCGGCGTCAACTGCTACTTCCCCCTGCAGTCCTACGGCTTCAGGCCCACCTACGGCGTGGGCCACCAGCCCTACAGGGTGGTGGTGCTGTCCTTCGAGCTGCTGCACGCCCCCGCCACCGTGTGCGGCCCCAAGAAGTCC GAGCCCAAGTCCTCCGACAAGACCCACACCTCCCCCCCCTCCCCCGCCCCCGAGCTGCTGGGCGGCCCCTCCGTGTTCCTGTTCCCCCCCAAGCCCAAGGACACCCTGATGATCTCCAGGACCCCCGAGGTGACCTGCGTGGTGGTGGACGTGTCCCACGAGGACCCCGAGGTGAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCACAACGCCAAGACCAAGCCCAGGGAGGAGCAGTAC CAC TCCACCTACAGGGTGGTGTCCGTGCTGACCGTGCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTGTCCAACAAGGCCCTGCCCGCCCCCATCGAGAAGACCATCTCCAAGGCCAAGGGCCAGCCCAGGGAGCCCCAGGTGTACACCCTGCCCCCCTCCAGGGACGAGCTGACCAAGAACCAGGTGTCCCTGACCTGCCTGGTGAAGGGCTTCTACCCCTCCGACATCGCCGTGGAGTGGGAGTCCAACGGCCAGCCCGAGAACAACTACAAGACCACCCCCCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTGTACTCCAAGCTGACCGTGGACAAGTCCAGGTGGCAGCAGGGCAACGTGTTCTCCTGCTCCGTGATGCACGAGGCCCTGCACAACCACTACACCCAGAAGTCCCTGTCCCTGTCCCCCGGC AACATCACCAACCTGTGCCCCTTCGACGAGGTGTTCAACGCCACCAGGTTCGCCTCCGTGTACGCCTGGAACAGGAAGAGGATCTCCAACTGCGTGGCCGACTACTCCGTGCTGTACAACTTCGCCCCCTTCTTCGCCTTCAAGTGCTACGGCGTGTCCCCCACCAAGCTGAACGACCTGTGCTTCACCAACGTGTACGCCGACTCCTTCGTGATCAGGGGCAACGAGGTGTCGCAGATCGCCCCCGGCCAGACCGGCAACAT CGCCGACTACAACTACAAGCTGCCCGACGACTTCACCGGCTGCGTGATCGCCTGGAACTCCAACAAGCTGGACTCCAAGGTGGGCGGCAACTACAACTACAGGTACAGGCTGTTCAGGAAGTCCAACCTGAAGCCCTTCGAGAGGGACATCTCCACCGAGATCTACCAGGCCGGCAACAAGCCCTGCAACGGCGTGGCCGGCGTCAACTGCTACTTCCCCCTGCAGTCCTACGGCTTCAGGCCCACCTACGGCGTGGGCCACCAG CCCTACAGGGTGGTGGTGCTGTCCTTCGAGCTGCTGCACGCCCCCGCCACCGTGTGCGGCCCCAAGAAGTCC GAGCCCAAGTCCTCCGACAAGACCCACACCTCCCCCCCCTCCCCCGCCCCCGAGCTGCTGGGCGGCCCCTCCGTGTTCCTGTTCCCCCCCAAGCCCAAGGACACCCTGATGATCTCCAGGACCCCCGAGGTGACCTGCGTGGTGGTGGACGTGTCCCACGAGGACCCCGAGGTGAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCACAACGCCAAGACCAAGCCCAGGGAGGAGCAGTAC CAC TCCACCTACAGGGTGGTGTCCGTGCTGACCGTGCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTGTCCAACAAGGCCCTGCCCGCCCCCATCGAGAAGACCATCTCCAAGGCCAAGGGCCAGCCCAGGGAGCCCCAGGTGTACACCCTGCCCCCCTCCAGGGACGAGCTGACCAAGAACCAGGTGTCCCTGACCTGCCTGGTGAAGGGCTTCTACCCTCCGACATCGCCGTGGAGTGGGAGTCCAACGGCC AGCCCGAGAACAACTACAAGACCACCCCCCCCGTGCTGGACTCCGACGGCTCCTTCTCCTGTACTCCAAGCTGACCGTGGACAAGTCCAGGTGGCAGCAGGGCAACGTGTTTCCTGCTCCGTGATGCACGAGGCCCTGCACAACCACTACACCCAGAAGTCCCTGTCCCTGTCCCCCGGC 17 17 KKK-SARS-CoV2 S 957-984(Th/CTL胜肽) KKK-SARS-CoV2 S 957-984 (Th/CTL peptide) KKK-QALNTLVKQLSSNFGAISSVLNDILSRL     KKK-QALNTLVKQLSSNFGAISSVLNDILSRL ​ 18 18 KKK-SARS-CoV2 S 891-917(Th胜肽) KKK-SARS-CoV2 S 891-917 (Th peptide) KKK-GAALQIPFAMQMAYRFNGIGVTQNVLY        KKK-GAALQIPFAMQMAYRFNGIGVTQNVLY ​ 19 19 KKK-SARS-CoV2 N 305-331(Th/CTL胜肽) KKK-SARS-CoV2 N 305-331 (Th/CTL peptide) KKK-AQFAPSASAFFGMSRIGMEVTPSGTWL    KKK-AQFAPSASAFFGMSRIGMEVTPSGTWL ​ 20 20 KKK-SARS-CoV2 S 996-1028(Th/CTL胜肽) KKK-SARS-CoV2 S 996-1028 (Th/CTL peptide) KKK-LITGRLQSLQTYVTQQLIRAAEIRASANLAATK     KKK-LITGRLQSLQTYVTQQLIRAAEIRASANLAATK ​ 21 twenty one KKK-SARS-CoV2 M 89-111(Th/CTL胜肽) KKK-SARS-CoV2 M 89-111 (Th/CTL peptide) KKK-GLMWLSYFIASFRLFARTRSMWS    KKK-GLMWLSYFIASFRLFARTRSMWS ​ 22 twenty two KKK-SARS-CoV2 S 957-984(Omicron BA.2/BA.4/ BA.5 Th/CTL胜肽) KKK-SARS-CoV2 S 957-984 (Omicron BA.2/BA.4/ BA.5 Th/CTL peptide) KKK-QALNTLVKQLSS KFGAISSVLNDI LSRL KKK-QALNTLVKQLSS K FGAISSVLNDI L SRL 23 twenty three KKK-MvF5 Th (UBITh®1) KKK-MvF5 Th (UBITh®1) KKK-ISITEIKGVIVHRIETILF KKK-ISITEIKGVIVHRIETILF

without

1 ,圖解說明根據本揭露的各種實施例的單鏈融合蛋白的設計。具體來說,此圖圖解說明瞭融合蛋白的一般結構,此融合蛋白在N端包括一個S-RBD Omicron BA.4/BA.5(序列識別號:2),其與人IgG的樞紐區(序列識別號:4)及Fc片段(CH2和CH3區域)(序列識別號:7或8)共價連接。 2 ,圖解說明pZD/S-RBD Omicron BA.4/BA.5-sFc質體的總體圖。根據本發明的一個實施例,pZD/S-RBD Omicron BA.4/BA.5-sFc質體編碼了S-RBD Omicron BA.4/BA.5-sFc融合蛋白。 3A ,圖解說明S1-RBD Omicron BA.4/BA.5-sFc(序列識別號:11)的胺基酸序列、結構與功能。 3B 包括S1-RBD Omicron BA.4/BA.5-sFc融合蛋白中的六個雙硫鍵的配對。 4 ,圖解說明說明了藥物基質(DS)S1-RBD Omicron BA.4/BA.5-sFc(序列識別號:11)的一般製造過程。該過程從工作細胞庫 (WCB) 開始,以接種細胞種子並在2000 L饋料批式生物反應器中擴大培養物。在細胞培養程序之後,未處理的原液被收集並通過無菌過濾澄清以產生澄清原液。為純化藥物基質 (DS),將原料藥通過蛋白 A 親和層析、深度過濾與離子交換 (IEX) 層析,然後進行切向流過濾(TFF) 進行緩衝液交換,以達到配製的藥物基質。 為避免外源病毒污染,澄清後的原液要經過溶劑清潔劑處理、蛋白質A層析酸滅活和奈濾處理。最後,在無菌過濾後生產配製的S1-RBD Omicron BA.4/BA.5-sFc DS濃縮物。 5 ,圖解說明通過SDS-PAGE以非還原和還原形式兩者對本發明的代表性設計S1-RBD-scFc蛋白進行的生化特徵描述。 6 。圖解說明於此揭露之蛋白/胜肽疫苗成分的示意圖。該疫苗組合物包含一個S1-RBD Omicron BA.4/BA.5-sFc融合蛋白(序列識別號:11)作為主要的B細胞免疫原,五個合成的Th/CTL胜肽(序列識別號:17-22)為I類與II類MHC分子,來源於SARS-CoV-2 Omicron BA.4/BA.5 M、N與S2蛋白,以及UBITh®1a胜肽(序列識別號:23)作為T細胞啟動的催化劑。這些成分與CpG1(序列識別號: 26)混合,後者通過雙極相互作用與帶正(設計)電荷的胜肽結合,也作為佐劑,然後與明礬佐劑結合,構成疫苗組合物。 7 ,圖解說明了針對 SARS-CoV2之 Omicron BA.4/BA.5的設計COVID 疫苗(或命名為 單價 UniCoVac Omicron)之製造的複合過程。 為了生產疫苗組合物,依次添加胜肽、CpG1、明礬佐劑,最後是蛋白質組分。具體而言,將設計Th/CTL胜肽添加到WFI中,然後在混合物中添加 CpG1以形成胜肽/CpG1複合物。此後,將蛋白質緩衝液、明礬與氯化鈉添加到現在含有胜肽/CpG1/明礬/氯化鈉的溶液中。最後,將 S1-RBD Omicron BA.4/BA.5-sFc蛋白溶液添加到溶液混合物中以達成最終的疫苗組合物。 8A 8D 。圖表顯示在 1 期試驗中初次接種 2 劑疫苗和追加第三劑疫苗後針對活SARS-CoV-2野生型的病毒中和效價 (VNT50)。在為期196天的1期試驗的UB-612主要2劑疫苗系列中,60 名參與者參加了10-μg、30-μg 與100-μg 劑量組(每組 n = 20),其中50名參與者參加了延長研究,並接受了於 100-μg 的追加第3劑(n = 17為10-μg的;n = 15為30-μg的,n = 18為100-μg 劑量組)。測量抑制50%活SARS-CoV-2野生型(WT,武漢株)的病毒中和抗體幾何平均效價(GMT,95% CI),並表示為10-μg( 8A )、30-μg( 8B )與 100-μg( 8C )劑量組的 VNT 50 8D圖說明了100-μg 劑量組,對於三個劑量組的研究參與者,VNT 50數據記錄在第0天(第1次給藥前)、第14天(第1次給藥後14天)、第28天(第1次給藥後1個月;給藥前第2劑)、第42天(第2劑後14天)、第56天(第2劑後1個月)、第112天(第2劑後3個月)、第196天(第2劑後6個月),第255至316天(第3劑前,追加劑前)與第269至330天(追加劑後 14 天)。單個參與者的效價由圓圈顯示。水平虛線表示量化下限 (LLOQ)。HCS:控制組中的人類恢復期血清樣本(n = 20)。 9A 9C 。圖表顯示了 UB-612 追加第三劑在 1 期試驗中產生的針對 SARS-CoV2 野生型、Delta、Omicron與其他關注變體的有效中和效價。進行了為期 196 天的 1 期試驗的主要 2 劑系列(第 0 天與第 28 天)與在平均第286天(第 255-316 天)施用的 100 μg 的延長追加第3劑。 9A 提供了 100-μg 組參與者在追加後14天觀察到的VNT 50效價。追加後14天觀察到的 VNT 50效價對活 SARS-CoV-2野生型(WT)達到3992,對活 Delta達到2358。在較低的30-與10-μg劑量組中觀察到類似的高抗WT與抗Delta VNT 50程度。 9B 提供了追加後 14 天觀察到的針對偽SARS-CoV-2野生型(WT)與針對包括Omicron的偽SARS-CoV-2變體的 pVNT 50效價。 9C圖提供了2劑後的抗體持久性(1 期試驗):基於第42-196天的一階指數模型擬合(first-order exponential model fitting) (SigmaPlot),抗WT 中和 VNT 50效價緩慢衰減,半衰期為187天(R 2= 0.9877;衰減率常數K el= -0.0037;半衰期 = 0.693/K el)。此圖顯示,病毒中和抗體在WT活病毒的顯示下是持久性的。 10 。條形圖顯示在100μg UB-612劑量組的1期試驗的主要系列中觀察到的針對不同SARS-CoV-2變體的病毒中和pVNT 50效價。在1期試驗的主要2劑疫苗接種系列中,接種者接受了兩個100 μg的UB-612劑量,選擇了二十個之第56天免疫血清樣本(n = 20),用於測量針對關注變異體(VoCs)的比較中和抗體活性。pVNT 50效價藉由偽病毒-螢光素酶試驗(體外活病毒微中和)進行評估。該研究在中研院RNAi核心設施的BSL2實驗室進行。 11A 11B 。圖表顯示抗 S1-RBD IgG 抗體和對 SARS-CoV-2 野生型武漢株的病毒中和反應。 11A 提供了在 100 μg 的UB-612的2期研究中,跨年齡組第 1、29與57 天的抗 S1-RBD IgG 反應的基於ELISA的平均 GMT(n = 871,所有;n = 731為18-65 歲;n = 140為 65-85 歲)。誤差條(The error bars)代表95% CI,虛線表示ELISA測定的限制。 11B 提供了跨年齡組在第1天與第57天對SARS-CoV-2-TCDC#4(武漢野生型)病毒的50%病毒中和反應(VNT 50) 的GMT。GMTs值通過微量中和CPE測定法測量。誤差條代表 95% CI,虛線表示微量中和測定的限制。在18-65歲的較年輕成年人中,96.4的VNT50基本上是可重複的,如在100 μg疫苗劑量的疫苗接種者(20-55歲)的1期試驗中的第56天所見,其中VNT 50估計為103 ( 8C )。 12A 12B 。圖表顯示了2期試驗主要2劑系列中針對 SARS-CoV-2變體的中和抗體效價(VNT 50)。 12A 提供了在第57天免疫血清中針對活SARS-CoV-2病毒變體的50%病毒中和效價 (VNT 50)的測量值,該血清從48名(n = 39為18-65 歲的年輕成年人;n = 9為≥65歲的年長成年人)在2期試驗中接受兩次UB-612疫苗劑量的疫苗接種者中隨機選擇。活的野生型武漢 SARS-CoV-2-TCDC#4與US WA 1/2020,以及 WHO 列出的兩種 VoC(B.1.1.7 與B.1.617.2 譜系)被用於 CPE 檢測。VNT 50值標記在每列的頂部,並用水平條顯示的95%信心區間(CI) 排列。 12B 通過雙樣本t檢驗提供了VNT 50針對每個變體與野生型、武漢與US WA 1/2020相比的倍數變化(減少)(** p<0.01;****p<0.0001 )。相對於從進行 CPE 測定的兩個不同地理位置分離的兩種武漢野生型,2.7 倍與1.4 倍的降低也代表了 37%與72% 的中和效價保留。中研院:台灣中央研究院;CDPH:美國加利福尼亞州公共衛生部(CDPH)。 13A 13D 。圖表顯示根據 ELISA之在主要2劑疫苗接種與追加第3劑後針對S1-RBD:ACE2結合的抑制效價。在為期 196 天的 1 期試驗(60名參與者)的主要2劑疫苗系列中和在追加第三劑的延長研究中,測量了基於 ELISA 的 S1-RBD:ACE2 結合效價。10-μg( 13A )、30-μg( 13B )與 100-μg( 13C )劑量組(每個劑量組n = 20)的參與者接受了兩次分配的疫苗劑量,間隔28天,並且在6個月內對50名參與者進行了一次 100 μg 的追加第三劑(10-μg 劑量為n = 17,30-μg 劑量為n = 15,100-μg 劑量組為n = 18組)。 在指定的時間點收集血清樣品以通過ELISA測量對S1-RBD與ACE2結合的抑制效價。水平虛線表示量化下限 (LLOQ)。 13D 說明了S1-RBD:ACE2結合抑制與VNT 50之間的良好相關性。 繪製了所有主要/追加接種參與者(10-、30-與100-μg劑量組)的數據。第0天參與者的數據點被排除在相關性分析之外。藉由非參數Spearman相關方法分析相關性。 14A 14D 。圖表顯示了在主要2劑疫苗接種與追加第三劑之後之藉由ELISA的抗S1-RBD IgG結合效價。在為期196天的1期試驗(60名參與者)的主要2劑疫苗系列中,以及在追加第三劑的延長研究中,測量了基於ELISA的抗 S1-RBD 抗體結合效價。10-μg( 14A )、30-μg( 14B )與 100-μg( 14C )劑量組(每個劑量組n = 20)的參與者,間隔28天接受了兩次分配的疫苗劑量,並且在6個月內對50名參與者進行了一次100 μg的追加第三劑(10-μg劑量為n = 17,30-μg 劑量為n = 15,100-μg 劑量組為n = 18組)。在指定的時間點收集血清樣品,用於藉由ELISA 測量抗 S1-RBD 抗體結合,表現為幾何平均效價GMT與95% CI。水平虛線表示量化下限(LLOQ)。 14D 說明抗S1-RBD抗體結合與VNT 50之間的良好相關性。 繪製了所有主要/追加接種參與者(10-、30-與100-μg劑量組)的數據。第 0 天參與者的數據點被排除在相關性分析之外。藉由非參數Spearman相關方法分析相關性。 15A 圖至第 15E 。圖表顯示了在用設劑胜肽抗原重新刺激PBMC後,藉由IFN-γ與IL-4 ELISpot測量的UB-612誘導的持久、穩健的Th1為主的細胞反應。在為期196天的1期試驗中,在第0天與第28天使用兩劑UB-612,藉由IFN-γ ELISpot以在 10-μg( 15A )、30-μg( 15B )或 100-μg( 15C )劑量組(每個 n = 20)中之來自年輕成年人(20 至 55 歲)的 PBMC 細胞來測量疫苗誘導的T細胞反應。在2期試驗研究中,參與者(年輕成年人,>18 至 <65 歲)接受了兩劑 10​​0 μg 的 UB-612(n = 88)或鹽水安慰劑(n = 12),通過 IFN-γ ELISpot( 15D )與 IL-4 ELISpot( 15E )於第57天以設計抗原蛋白/胜肽重新刺激的疫苗接種者之PBMC中的T細胞反應。顯示的是在以S1-RBD+Th/CTL胜肽池、Th/CTL胜肽池或CoV2 T胜肽(無 UBITh1a 的 Th/CTL胜肽池)刺激後,每 1×10 6PBMC個之斑點形成單位(SFU)產生IFN-γ與IL-4。使用雙樣本t檢驗進行統計分析 (**** p<0.0001)。 16A-16C 。圖表顯示在2期主要2劑疫苗接種系列中,以設計胜肽抗原重新刺激PBMCs後,藉由IFN-γ與IL-4細胞內染色(ICS)測量的UB-612誘導的Th1為主的T細胞反應(CD4與CD8)。在2期試驗中,研究參與者(>18至65歲的年輕成年人以100 μg接受2劑(間隔28天)的UB-612(n = 88)或生理鹽水安慰劑(n = 12)。在第1天與第57天(第二次注射後4週)收穫的他們的PBMCs以設計的抗原蛋白/胜肽重新刺激,藉由細胞內染色(ICS)評估T細胞反應。產生指示性細胞因子的CD4+與CD8+T細胞的頻率對S1-RBD+Th/CTL胜肽池( 16A )、Th/CTL胜肽池( 16B )與CoV2 T胜肽(Th/CTL胜肽池沒有UBITh1a)的刺激( 16C )的反應。使用Mann-Whitney t檢驗進行統計分析。(* p<0.05; ** p<0.01; ***p<0.001; **** p<0.0001) 。 [引用文獻] 1.    Braun, J., Loyal, L., Frentsch, M., et al. SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19. Nature. 2020;587(7833):270-274. 2.    Ferretti, A.P., Kula, T., Wang, Y., et al. Unbiased Screens Show CD8(+) T Cells of COVID-19 Patients Recognize Shared Epitopes in SARS-CoV-2 that Largely Reside outside the Spike Protein. Immunity. 2020;53(5):1095-1107 e3. 3.    Le Bert, N., Tan, A.T., Kunasegaran, K., et al. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature. 2020;584(7821):457-462. 4.    Long, Q.X., Tang, X.J., Shi, Q.L., et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat Med. 2020;26(8):1200-1204. 5.    Ng, O.W., Chia, A., Tan, A.T., et al. Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection. Vaccine. 2016;34(17):2008-2014. 6.    Wang, C.Y., Wang, P.N., Chiu, M.J., et al. UB-311, a novel UBITh® amyloid β胜肽vaccine for mild Alzheimer's disease. Alzheimers Dement (N Y). 2017;3(2):262-272. 7.    Wang, C.Y. Artificial promiscuous t helper cell抗原決定位s as immune stimulators for synthetic胜肽immunogens. WO2020/132275A1. International Publication date on June 25th, 2020 (Priority Data: 62/782,253 on December 19th, 2018). 8.    Wang, C.Y., Lin, F., Ding, S., et al. Designer胜肽and proteins for the detection, prevention and treatment of coronavirus disease, 2019 (COVID 19). WO2021/168305A1. International Publication date on August 26th, 2021 (Priority Data: 62/978,596 on February 19th, 2020; 62/990,382 on March 16th, 2020, 63/027,290 on May 19th 2020; and 63/118,596 on November 25th, 2020). 9.    Wang, C.Y., Hwang, K.P., Kuo, H.K., et al. A multitope SARS-CoV-2 vaccine provides long-lasting B cell and T cell immunity against Delta and Omicron variants. 2022a. J. Clinical Invest. 2022:312(10):e157707. https://doi.org/10.1172/JCI157707 and https://www.jci.org/articles/view/157707/sd/1  . 10.  Wang, C.Y., Peng, W.J. et al. UB-612 Multitope Vaccine targeting both Spike and Non-Spike Proteins of SARS-CoV-2 Provides Broad and Durable Immune Responses. 2022b. MedRxiv https://www.medrxiv.org/conten(https://www.medrxiv.org/content/10.1101/2022.08.26.22279232v1) . 11.  Wyllie, D., Mulchandani, R., Jones, H.E., et al. SARS-CoV-2 responsive T cell numbers are associated with protection from COVID-19: A prospective cohort study in keyworkers. medRxiv. 2020:2020.11.02.20222778. Figure 1 , illustrates the design of a single-chain fusion protein according to various embodiments of the present disclosure. Specifically, this figure illustrates the general structure of a fusion protein that includes an S-RBD Omicron BA.4/BA.5 (SEQ ID NO: 2) at the N-terminus, which interacts with the hub region of human IgG ( SEQ ID NO: 4) and the Fc fragment (CH2 and CH3 regions) (SEQ ID NO: 7 or 8) are covalently linked. Figure 2 , schematically illustrates the overall view of the pZD/S-RBD Omicron BA.4/BA.5-sFc plasmid. According to one embodiment of the present invention, the pZD/S-RBD Omicron BA.4/BA.5-sFc plasmid encodes the S-RBD Omicron BA.4/BA.5-sFc fusion protein. Figure 3A illustrates the amino acid sequence, structure and function of S1-RBD Omicron BA.4/BA.5-sFc (SEQ ID NO: 11). Figure 3B includes the pairing of six disulfide bonds in the S1-RBD Omicron BA.4/BA.5-sFc fusion protein. Figure 4. Schematic illustration illustrating the general manufacturing process of drug matrix (DS) S1-RBD Omicron BA.4/BA.5-sFc (SEQ ID NO: 11). The process begins with a working cell bank (WCB) to seed cells and scale up the culture in a 2000 L fed-batch bioreactor. After the cell culture procedure, the unprocessed stock solution was collected and clarified by sterile filtration to produce a clear stock solution. To purify the drug matrix (DS), the drug substance is passed through protein A affinity chromatography, depth filtration and ion exchange (IEX) chromatography, followed by tangential flow filtration (TFF) for buffer exchange to achieve the formulated drug matrix. To avoid exogenous virus contamination, the clarified stock solution must be treated with solvent detergent, protein A chromatographic acid inactivation, and nanofiltration. Finally, the formulated S1-RBD Omicron BA.4/BA.5-sFc DS concentrate is produced after sterile filtration. Figure 5 , schematically illustrates the biochemical characterization by SDS-PAGE of a representative engineered S1- RBD -scFc protein of the invention in both non-reduced and reduced forms. Picture 6 . Schematic diagram illustrating the composition of the protein/peptide vaccine disclosed herein. The vaccine composition contains an S1-RBD Omicron BA.4/BA.5-sFc fusion protein (SEQ ID NO: 11) as the main B cell immunogen, and five synthetic Th/CTL peptides (SEQ ID NO: 17-22) are class I and class II MHC molecules, derived from SARS-CoV-2 Omicron BA.4/BA.5 M, N and S2 proteins, and UBITh®1a peptide (sequence identification number: 23) as T Catalyst for cell initiation. These ingredients are mixed with CpG1 (SEQ ID NO: 26), which binds to a positively charged peptide via bipolar interactions and also acts as an adjuvant, and is then combined with an alum adjuvant to form the vaccine composition. Figure 7 schematically illustrates the composite process for the manufacture of the designed COVID vaccine against SARS-CoV2 Omicron BA.4/BA.5 (or named UniCoVac Omicron ). To produce the vaccine composition, the peptide, CpG1, alum adjuvant, and finally the protein component are added sequentially. Specifically, the designed Th/CTL peptide was added to WFI, and then CpG1 was added to the mixture to form the peptide/CpG1 complex. Thereafter, protein buffer, alum and sodium chloride were added to the solution now containing peptide/CpG1/alum/sodium chloride. Finally, the S1-RBD Omicron BA.4/BA.5-sFc protein solution was added to the solution mixture to achieve the final vaccine composition. Figures 8A to 8D . Graph showing virus neutralizing titers (VNT50) against live SARS-CoV-2 wild type after an initial 2 doses of vaccine and a third booster dose in a Phase 1 trial. In the UB-612 primary 2-dose vaccine series of the 196-day Phase 1 trial, 50 of the 60 participants enrolled in the 10-μg, 30-μg, and 100-μg dose groups (n = 20 per group) Participants were enrolled in the extension study and received a third booster dose at 100-μg (n = 17 for the 10-μg dose; n = 15 for the 30-μg dose; n = 18 for the 100-μg dose group). Virus-neutralizing antibody geometric mean titers (GMT, 95% CI) that inhibited 50% of live SARS-CoV-2 wild-type (WT, Wuhan strain) were measured and expressed as 10-μg (Figure 8A ) , 30-μg ( Panel 8B ) VNT 50 for the 100-μg (Panel 8C ) dose group . Figure 8D illustrates the 100-μg dose group. For study participants in the three dose groups, VNT 50 data were recorded on Day 0 (before the first dose), Day 14 (14 days after the first dose). ), day 28 (1 month after the first dose; before the second dose), day 42 (14 days after the second dose), day 56 (1 month after the second dose), Day 112 (3 months after the 2nd dose), Day 196 (6 months after the 2nd dose), Days 255 to 316 (before the 3rd dose, before the booster dose) and Days 269 to 330 (after the booster dose) 14 days). Valence for individual participants is shown by circles. The horizontal dashed line represents the lower limit of quantification (LLOQ). HCS: Human convalescent serum samples in the control group (n = 20). Figures 9A to 9C . Chart showing effective neutralizing titers against SARS-CoV2 wild-type, Delta, Omicron, and other variants of concern generated by a third dose of UB-612 in a Phase 1 trial. A 196-day phase 1 trial was conducted with a main 2-dose series (days 0 and 28) with an extended booster 3rd dose of 100 mcg administered on a mean day 286 (days 255-316). Figure 9A provides the VNT 50 titers observed for participants in the 100-μg group 14 days post-boost. The VNT 50 titers observed 14 days after the boost reached 3992 for live SARS-CoV-2 wild type (WT) and 2358 for live Delta. Similar high levels of anti-WT and anti-Delta VNT 50 were observed in the lower 30- and 10-μg dose groups. Figure 9B provides the observed pVNT 50 titers against pseudo-SARS-CoV-2 wild type (WT) and against pseudo-SARS-CoV-2 variants including Omicron 14 days after the spike. Figure 9C provides antibody persistence after 2 doses (Phase 1 trial): anti-WT neutralizing VNT 50 efficacy based on first-order exponential model fitting (SigmaPlot) from days 42-196 The valency decays slowly, with a half-life of 187 days (R 2 = 0.9877; decay rate constant K el = -0.0037; half-life = 0.693/K el ). This figure shows that virus-neutralizing antibodies are persistent in the presence of WT live virus. Picture 10 . Bar graph showing virus-neutralizing pVNT 50 titers observed against different SARS-CoV-2 variants in the main series of the Phase 1 trial at the 100 μg UB-612 dose group. In the main 2-dose vaccination series of the Phase 1 trial, in which vaccinees received two 100 μg doses of UB-612, twenty of the day 56 immune serum samples (n = 20) were selected to measure response to concern. Comparative neutralizing antibody activity of variants (VoCs). pVNT 50 titers were assessed by pseudovirus-luciferase assay (microneutralization of viable virus in vitro). The research was conducted in the BSL2 laboratory of the RNAi Core Facility of Academia Sinica. Figures 11A and 11B . Graph showing anti-S1-RBD IgG antibodies and virus neutralizing responses to the wild-type Wuhan strain of SARS-CoV-2. Figure 11A provides mean ELISA -based GMT of anti-S1-RBD IgG responses across age groups at days 1, 29, and 57 in a Phase 2 study of 100 μg of UB-612 (n = 871, all; n = 731 for 18-65 years old; n = 140 for 65-85 years old). The error bars represent 95% CI, and the dashed line represents the limit of the ELISA assay. Figure 11B provides the GMT of the 50% virus neutralizing response (VNT 50 ) to SARS -CoV-2-TCDC#4 (Wuhan wild type) virus at day 1 and day 57 across age groups. GMTs values are measured by microneutralization CPE assay. Error bars represent 95% CI and dashed lines indicate limits of microneutralization assay. In younger adults 18-65 years, the VNT50 of 96.4 was largely reproducible, as seen on Day 56 of the Phase 1 trial in vaccine recipients (20-55 years) at the 100 μg vaccine dose, where VNT 50 is estimated to be 103 (Figure 8C ) . Figures 12A and 12B . Graph showing neutralizing antibody titers ( VNT50 ) against SARS-CoV-2 variants in the primary 2-dose series of the Phase 2 trial. Figure 12A provides measurements of 50% virus neutralizing titers ( VNT50 ) against live SARS-CoV-2 virus variants in immune sera from 48 (n = 39 to 18- Younger adults 65 years of age; n = 9 for older adults ≥65 years of age) were randomly selected among vaccinees who received two doses of UB-612 vaccine in the Phase 2 trial. Live wild-type Wuhan SARS-CoV-2-TCDC#4 and US WA 1/2020, as well as two VoCs listed by WHO (B.1.1.7 and B.1.617.2 lineages) were used for CPE detection. VNT 50 values are marked at the top of each column and arranged with 95% confidence intervals (CI) shown as horizontal bars. Figure 12B provides the fold change (reduction) of VNT 50 for each variant compared to wild type, Wuhan vs. US WA 1/2020 by two-sample t-test (** p < 0.01; **** p < 0.0001 ). The 2.7-fold and 1.4-fold reductions also represent 37% and 72% retention of neutralizing titers relative to the two Wuhan wild types isolated from the two different geographical locations where CPE assays were performed. Academia Sinica: Academia Sinica, Taiwan; CDPH: California Department of Public Health (CDPH), United States. Figures 13A to 13D . Graph showing inhibitory potency against S1-RBD:ACE2 binding after the main 2 doses of vaccination and the additional 3rd dose according to ELISA. ELISA-based S1-RBD:ACE2 binding titers were measured in the main 2-dose vaccine series of a 196-day Phase 1 trial (60 participants) and in an extension study with an additional third dose. Participants in the 10-μg (Figure 13A ) , 30-μg (Figure 13B), and 100-μg (Figure 13C ) dose groups ( n = 20 per dose group ) received two allocated vaccine doses separated by 28 days and an additional third dose of 100 μg was administered to 50 participants over 6 months (n = 17 for the 10-μg dose, n = 15 for the 30-μg dose, and n = 100-μg dose = 18 groups). Serum samples were collected at designated time points to measure the inhibitory potency on S1-RBD binding to ACE2 by ELISA. The horizontal dashed line represents the lower limit of quantification (LLOQ). Figure 13D illustrates the good correlation between S1-RBD: ACE2 binding inhibition and VNT50 . Data are plotted for all primary/boost vaccinated participants (10-, 30-, and 100-μg dose groups). Data points for participants on Day 0 were excluded from the correlation analysis. Correlation was analyzed by non-parametric Spearman correlation method. Figures 14A to 14D . Graph showing anti-S1-RBD IgG binding titers by ELISA after primary 2 doses of vaccination and an additional third dose. ELISA-based anti-S1-RBD antibody binding titers were measured in the main 2-dose vaccine series of the 196-day Phase 1 trial (60 participants) and in an extension study with an additional third dose. Participants in the 10-μg (Figure 14A ) , 30-μg (Figure 14B), and 100-μg (Figure 14C ) dose groups ( n = 20 per dose group ) received two doses 28 days apart. vaccine dose, and a booster third dose of 100 μg was given to 50 participants over 6 months (n = 17 for the 10-μg dose, n = 15 for the 30-μg dose, and n = 100-μg dose = 18 groups). Serum samples were collected at indicated time points for measurement of anti-S1-RBD antibody binding by ELISA, expressed as geometric mean titer GMT with 95% CI. The horizontal dashed line represents the lower limit of quantification (LLOQ). Figure 14D illustrates the good correlation between anti-S1- RBD antibody binding and VNT50 . Data are plotted for all primary/boost vaccinated participants (10-, 30-, and 100-μg dose groups). Data points for Day 0 participants were excluded from correlation analyses. Correlation was analyzed by non-parametric Spearman correlation method. Figures 15A to 15E . Graph showing the long-lasting, robust Th1-dominated cellular response induced by UB-612 as measured by IFN-γ and IL-4 ELISpot after restimulation of PBMCs with designated peptide antigens. In a 196-day Phase 1 trial, two doses of UB-612 were administered on days 0 and 28, administered by IFN-γ ELISpot at 10-μg (Figure 15A ) , 30-μg ( Figure 15B ) Vaccine-induced T cell responses were measured on PBMC cells from young adults (20 to 55 years old) in 100-μg (Figure 15C ) dose groups (n = 20 each). In a phase 2 pilot study, participants (young adults, >18 to <65 years) received two doses of 100 μg of UB-612 (n = 88) or saline placebo (n = 12) via IFN-γ ELISpot ( Figure 15D ) and IL-4 ELISpot ( Figure 15E ) T cell responses in PBMC of vaccine recipients restimulated with designed antigenic proteins/peptides on day 57. Shown are spots per 1×10 6 PBMC after stimulation with S1-RBD+Th/CTL peptide pool, Th/CTL peptide pool, or CoV2 T peptide (Th/CTL peptide pool without UBITh1a) Forming units (SFU) produce IFN-γ and IL-4. Statistical analysis was performed using two-sample t-test (**** p<0.0001). Figures 16A -16C . Graph showing UB-612-induced Th1-dominated T cells as measured by IFN-γ and IL-4 intracellular staining (ICS) after restimulation of PBMCs with designed peptide antigens in the Phase 2 main 2-dose vaccination series. Cellular response (CD4 vs. CD8). In the Phase 2 trial, study participants (young adults >18 to 65 years of age) received 2 doses (28 days apart) of UB-612 (n = 88) or saline placebo (n = 12) at 100 mcg. Their PBMCs harvested on days 1 and 57 (4 weeks after the second injection) were restimulated with designed antigenic proteins/peptides, and T cell responses were assessed by intracellular staining (ICS). Indicator cells were produced The frequency of CD4+ and CD8+ T cells of factors affects the S1-RBD+Th/CTL peptide pool (Figure 16A ) , the Th/CTL peptide pool ( Figure 16B ) and the CoV2 T peptide (Th/ CTL peptide pool Responses to stimulation ( Figure 16C ) without UBITh1a). Statistical analysis was performed using Mann-Whitney t test. (* p<0.05; ** p<0.01;***p<0.001; **** p<0.0001) . [Citations] 1. Braun, J., Loyal, L., Frentsch, M., et al. SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19. Nature. 2020;587( 7833):270-274. 2. Ferretti, AP, Kula, T., Wang, Y., et al. Unbiased Screens Show CD8(+) T Cells of COVID-19 Patients Recognize Shared Epitopes in SARS-CoV-2 that Largely Reside outside the Spike Protein. Immunity. 2020;53(5):1095-1107 e3. 3. Le Bert, N., Tan, AT, Kunasegaran, K., et al. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature. 2020;584(7821):457-462. 4. Long, QX, Tang, XJ, Shi, QL, et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat Med. 2020;26(8):1200-1204. 5. Ng, OW, Chia, A., Tan, AT, et al. Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection. Vaccine. 2016;34(17):2008-2014. 6. Wang, CY, Wang, PN, Chiu, MJ, et al. UB-311, a novel UBITh® amyloid beta peptide vaccine for mild Alzheimer's disease. Alzheimers Dement (NY). 2017;3(2):262-272. 7. Wang, CY Artificial promiscuous t helper cell epitopes as immune stimulators for synthetic peptide immunogens. WO2020/132275A1. International Publication date on June 25th, 2020 (Priority Data: 62/782,253 on December 19th, 2018). 8. Wang, CY, Lin, F., Ding, S., et al. Designer peptides and proteins for the detection, prevention and treatment of coronavirus disease, 2019 (COVID 19). WO2021/168305A1. International Publication date on August 26th, 2021 (Priority Data: 62/978,596 on February 19th, 2020; 62/990,382 on March 16th, 2020, 63/027,290 on May 19th 2020; and 63/118,596 on November 25th, 2020). 9. Wang, CY, Hwang, KP, Kuo, HK, et al. A multitope SARS-CoV-2 vaccine provides long-lasting B cell and T cell immunity against Delta and Omicron variants. 2022a. J. Clinical Invest. 2022:312(10):e157707. https://doi.org/10.1172/JCI157707 and https://www.jci.org/articles/view/157707/sd /1 . 10. Wang, CY, Peng, WJ et al. UB-612 Multitope Vaccine targeting both Spike and Non-Spike Proteins of SARS-CoV-2 Provides Broad and Durable Immune Responses. 2022b. MedRxiv https://www. medrxiv.org/conten(https://www.medrxiv.org/content/10.1101/2022.08.26.22279232v1) . 11. Wyllie, D., Mulchandani, R., Jones, HE, et al. SARS-CoV-2 responsive T cell numbers are associated with protection from COVID-19: A prospective cohort study in keyworkers. medRxiv. 2020:2020.11.02.20222778.

TW202334198A_111137163_SEQL.xmlTW202334198A_111137163_SEQL.xml

Claims (21)

一種融合蛋白,包括一IgG分子之一Fc片段與一生物活性分子,其中該Fc片段為一單鏈Fc(single chain Fc, sFc),其中該Fc片段包括一樞紐區(hinge region),其中該樞紐區為經突變的且不形成雙硫鍵,其中該樞紐區包括擇自由序列識別號:3至5所組成之群組的一胺基酸序列,其中該生物活性分子為來自SARS-CoV2之S蛋白(S1-RBD)的一受體結合區域(receptor binding domain, RBD)(序列識別號:1或2),其中一武漢株(Wuhan)為序列識別號:1,其中一Omicron BA.4/BA.5變體形式為序列識別號:2。A fusion protein comprising an Fc fragment of an IgG molecule and a biologically active molecule, wherein the Fc fragment is a single chain Fc (single chain Fc, sFc), wherein the Fc fragment includes a hinge region, wherein the The hub region is mutated and does not form a disulfide bond, wherein the hub region includes an amino acid sequence selected from the group consisting of sequence identification numbers: 3 to 5, wherein the biologically active molecule is from SARS-CoV2 A receptor binding domain (RBD) of the S protein (S1-RBD) (sequence identification number: 1 or 2), one of which is the Wuhan strain (Wuhan), one of which is the sequence identification number: 1, one of which is Omicron BA.4 The /BA.5 variant is Sequence ID: 2. 如請求項1之融合蛋白,其中該融合蛋白係擇自由序列識別號:10與11所組成之群組。Such as the fusion protein of claim 1, wherein the fusion protein is selected from the group consisting of sequence identification numbers: 10 and 11. 如請求項1之融合蛋白,其中該樞紐區包括序列識別號:4之一胺基酸序列。Such as the fusion protein of claim 1, wherein the hub region includes an amino acid sequence of sequence identification number: 4. 一種醫藥組成物,包括如請求項1之融合蛋白與一藥學上可接受之載體或賦形劑。A pharmaceutical composition including the fusion protein of claim 1 and a pharmaceutically acceptable carrier or excipient. 一種產生如請求項1之融合蛋白的方法,包括: a) 提供一生物活性分子,其中該生物活性分子為來自SARS-CoV2武漢之S蛋白(S-RBD)的一受體結合區域(RBD)(序列識別號:1)或其Omicron BA.4/BA.5變體之一,其中該S蛋白(S-RBD)之該受體結合區域(RBD)為序列識別號:2, b) 提供一IgG分子之一Fc片段,其中該Fc片段包括一樞紐區,其中該樞紐區藉由一半胱胺酸殘基的取代及/或缺失而突變以形成一經突變的Fc,且該經突變的Fc不形成雙硫鍵,其中該樞紐區包括擇自由序列識別號:3-5所組成之群組的一胺基酸序列,以及 c) 經由該樞紐區結合該生物活性分子與該經突變的Fc。 A method of producing a fusion protein as claimed in claim 1, comprising: a) Provide a biologically active molecule, wherein the biologically active molecule is a receptor binding domain (RBD) (Sequence Identification Number: 1) of the S protein (S-RBD) from SARS-CoV2 Wuhan or its Omicron BA.4/ One of the BA.5 variants, wherein the receptor binding domain (RBD) of the S protein (S-RBD) is sequence identification number: 2, b) providing an Fc fragment of an IgG molecule, wherein the Fc fragment includes a hub region, wherein the hub region is mutated by substitution and/or deletion of a cysteine residue to form a mutated Fc, and the The mutated Fc does not form a disulfide bond, wherein the hub region includes an amino acid sequence selected from the group consisting of Sequence Identification Number: 3-5, and c) Binding the biologically active molecule to the mutated Fc via the hub region. 一種融合蛋白,係擇自由序列識別號:11之S1-RBD Omicron BA.4/BA.5變體-sFc所組成之群組。A fusion protein is selected from the group consisting of S1-RBD Omicron BA.4/BA.5 variant-sFc with sequence identification number: 11. 一種組成物,包括如請求項6之融合蛋白。A composition including the fusion protein of claim 6. 如請求項7之組成物,更包括一Th/CTL胜肽,其中該Th/CTL胜肽係衍生自SARS-CoV-2 M、N或S蛋白、一病原體蛋白,或其任意之組合,其中該Th/CTL胜肽係擇自由序列識別號:17-23與其任意之組合所組成之群組。The composition of claim 7 further includes a Th/CTL peptide, wherein the Th/CTL peptide is derived from SARS-CoV-2 M, N or S protein, a pathogen protein, or any combination thereof, wherein The Th/CTL peptide is selected from the group consisting of sequence identification numbers: 17-23 and any combination thereof. 如請求項8之組成物,其中該Th/CTL胜肽係擇自由序列識別號:17-23與其任意之組合所組成之群組。Such as the composition of claim 8, wherein the Th/CTL peptide is selected from the group consisting of sequence identification numbers: 17-23 and any combination thereof. 一種COVID疫苗組成物,包括: a). 一S-RBD Omicron BA.4/BA.5變體蛋白,係擇自序列識別號:11之群組; b). 一Th/CTL胜肽,係擇自由序列識別號:17-23與其任意之組合所組成之群組; c). 一藥學上可接受之賦形劑,其中該藥學上可接受之賦形劑為一佐劑、緩衝劑、界面活性劑、乳化劑、pH調整劑、食鹽水溶液、防腐劑、溶劑,或其任意之組合。 A COVID vaccine composition including: a). An S-RBD Omicron BA.4/BA.5 variant protein, selected from the group with sequence identification number: 11; b). A Th/CTL peptide, selected from the group consisting of free sequence identification numbers: 17-23 and any combination thereof; c). A pharmaceutically acceptable excipient, wherein the pharmaceutically acceptable excipient is an adjuvant, buffer, surfactant, emulsifier, pH adjuster, saline solution, preservative, solvent, or any combination thereof. 如請求項10之COVID疫苗組成物,其中於(b)中之該Th/CTL胜肽係擇自由序列識別號:17-23與其任意之組合所組成之群組。For example, the COVID vaccine composition of claim 10, wherein the Th/CTL peptide in (b) is selected from the group consisting of sequence identification numbers: 17-23 and any combination thereof. 如請求項11之COVID疫苗組成物,其中該藥學上可接受之賦形劑為一CpG1寡核苷酸、ALUM(磷酸鋁或氫氧化鋁)、組胺酸、組胺酸HCl•H 2O、精胺酸HCl、TWEEN 80(聚氧乙烯(20)-山梨醇酐單油酸酯(polyoxyethylene (20) sorbitan monooleate))、鹽酸、氯化鈉與在水中之2-苯氧乙醇(2-phenoxyethanol)的一組合。 For example, the COVID vaccine composition of claim 11, wherein the pharmaceutically acceptable excipient is a CpG1 oligonucleotide, ALUM (aluminum phosphate or aluminum hydroxide), histidine, histidine HCl·H 2 O , Arginine HCl, TWEEN 80 (polyoxyethylene (20) sorbitan monooleate), hydrochloric acid, sodium chloride and 2-phenoxyethanol (2- phenoxyethanol). 如請求項12之COVID疫苗組成物,其中該藥學上可接受之賦形劑為CpG1(序列識別號:26)。For example, the COVID vaccine composition of claim 12, wherein the pharmaceutically acceptable excipient is CpG1 (sequence identification number: 26). 一種避免於一個體中之COVID的方法,包括投予一藥學上有效量之如請求項10之疫苗組成物至該個體。A method of preventing COVID in an individual comprising administering to the individual a pharmaceutically effective amount of the vaccine composition of claim 10. 一種避免於一個體中之COVID的方法,包括投予一藥學上有效量之如請求項11之疫苗組成物至該個體。A method of preventing COVID in an individual comprising administering to the individual a pharmaceutically effective amount of the vaccine composition of claim 11. 一種產生針對SARS-CoV-2 Omicron BA.4/BA.5變體之抗體的方法,包括投予一藥學上有效量之如請求項10之疫苗組成物至一個體。A method of generating antibodies against the SARS-CoV-2 Omicron BA.4/BA.5 variant, comprising administering a pharmaceutically effective amount of the vaccine composition of claim 10 to an individual. 一種產生針對SARS-CoV-2 Omicron BA.4/BA.5變體之抗體的方法,包括投予一藥學上有效量之如請求項11之疫苗組成物至一個體。A method of generating antibodies against the SARS-CoV-2 Omicron BA.4/BA.5 variant, comprising administering a pharmaceutically effective amount of the vaccine composition of claim 11 to an individual. 一種COVID疫苗組成物,包括於表7-9之任何一個中以所示之量的成分。A COVID vaccine composition including an ingredient in any of Tables 7-9 in the amounts indicated. 一種細胞株,係以編碼如請求項6之融合蛋白(序列識別號:16)的一cDNA序列轉染。A cell strain is transfected with a cDNA sequence encoding the fusion protein of claim 6 (SEQ ID NO: 16). 如請求項19之細胞株,其為一中國倉鼠卵巢(Chinese Hamster Ovary, CHO)細胞株。For example, the cell line of claim 19 is a Chinese Hamster Ovary (CHO) cell line. 如請求項19之細胞株,其中該cDNA序列係擇自由序列識別號:16所組成之群組。Such as the cell strain of claim 19, wherein the cDNA sequence is selected from the group consisting of sequence identification number: 16.
TW111137163A 2021-10-12 2022-09-30 Vaccine compositions against sars-cov-2 omicron ba.4/ba.5 to prevent infection and treat long-haul covid TW202334198A (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US202163254679P 2021-10-12 2021-10-12
US63/254,679 2021-10-12
US202163283677P 2021-11-29 2021-11-29
US63/283,677 2021-11-29
US202163289393P 2021-12-14 2021-12-14
US63/289,393 2021-12-14
US202263308599P 2022-02-10 2022-02-10
US63/308,599 2022-02-10

Publications (1)

Publication Number Publication Date
TW202334198A true TW202334198A (en) 2023-09-01

Family

ID=85988945

Family Applications (2)

Application Number Title Priority Date Filing Date
TW111137163A TW202334198A (en) 2021-10-12 2022-09-30 Vaccine compositions against sars-cov-2 omicron ba.4/ba.5 to prevent infection and treat long-haul covid
TW111138552A TW202328210A (en) 2021-10-12 2022-10-12 Vaccine compositions against sars-cov-2 variants of concern to prevent infection and treat long-haul covid

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW111138552A TW202328210A (en) 2021-10-12 2022-10-12 Vaccine compositions against sars-cov-2 variants of concern to prevent infection and treat long-haul covid

Country Status (3)

Country Link
CN (1) CN116217736A (en)
TW (2) TW202334198A (en)
WO (1) WO2023064708A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023094713A2 (en) * 2021-11-29 2023-06-01 BioNTech SE Coronavirus vaccine
WO2024002985A1 (en) 2022-06-26 2024-01-04 BioNTech SE Coronavirus vaccine
CN117070535B (en) * 2023-10-17 2024-01-26 中国医学科学院医学生物学研究所 Novel coronavirus mutant broad-spectrum vaccine with humoral immunity and cellular immunity functions

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0614780D0 (en) * 2006-07-25 2006-09-06 Ucb Sa Biological products
AU2021222039A1 (en) * 2020-02-19 2022-09-29 United Biomedical, Inc. Designer peptides and proteins for the detection, prevention and treatment of Coronavirus Disease, 2019 (COVID-19)
CN113234170A (en) * 2021-04-13 2021-08-10 武汉大学 Novel coronavirus mutant strain S protein and subunit vaccine thereof

Also Published As

Publication number Publication date
TW202328210A (en) 2023-07-16
WO2023064708A1 (en) 2023-04-20
CN116217736A (en) 2023-06-06

Similar Documents

Publication Publication Date Title
AU2022203422B2 (en) Zika Vaccines And Immunogenic Compositions, And Methods Of Using The Same
TW202334198A (en) Vaccine compositions against sars-cov-2 omicron ba.4/ba.5 to prevent infection and treat long-haul covid
US10144766B2 (en) Cytotoxic T Lymphocyte inducing immunogens for prevention treatment and diagnosis of dengue virus infection
US20150150960A1 (en) Protection against dengue virus and prevention of severe dengue disease
KR101989978B1 (en) Vesicular stomatitis virus for prime boost vaccines
AU2018375173B2 (en) Zika vaccines and immunogenic compositions, and methods of using the same
AU2014214590A1 (en) Combination vaccine for respiratory syncytial virus and influenza
US10117923B2 (en) Production of an immunogen using a plant virus
Mingxiao et al. Immunogenicity of plasmids encoding P12A and 3C of FMDV and swine IL-18
US11253587B2 (en) Vaccine compositions for the treatment of coronavirus
US20190284230A1 (en) Assembled glycoproteins
WO2012178196A2 (en) Protection against dengue virus and prevention of severe dengue disease
Ge et al. Fusion expression of major antigenic segment of JEV E protein-hsp70 and the identification of domain acting as adjuvant in hsp70
CN117062843A (en) Vaccine compositions against SARS-CoV-2 variants for preventing infection and treating long-term new coronapneumonia
US11344614B2 (en) Pharmaceutical compositions comprising dengue virus-specific multiple HLA-binding T cell epitopes
US20220233682A1 (en) Vaccine compositions for the treatment of coronavirus
JP2024503482A (en) Replication-competent adenovirus type 4 SARS-COV-2 vaccines and their use
TW202345912A (en) Composition comprising antigen and dna and use thereof
CN116457011A (en) Vaccine composition for treating coronavirus
CA3227009A1 (en) Recombinant antigen for the induction of immune response against the zika virus
Lucy Kuo et al. A Novel SARS-CoV-2 Multitope Protein/Peptide Vaccine Candidate is Highly
US20150274784A1 (en) Production of an Immunogen Using a Plant Virus