TW202330923A - Compositions and methods for the prevention and/or treatment of covid-19 - Google Patents

Compositions and methods for the prevention and/or treatment of covid-19 Download PDF

Info

Publication number
TW202330923A
TW202330923A TW111136145A TW111136145A TW202330923A TW 202330923 A TW202330923 A TW 202330923A TW 111136145 A TW111136145 A TW 111136145A TW 111136145 A TW111136145 A TW 111136145A TW 202330923 A TW202330923 A TW 202330923A
Authority
TW
Taiwan
Prior art keywords
nucleic acid
mol
oxy
methyl
bis
Prior art date
Application number
TW111136145A
Other languages
Chinese (zh)
Inventor
艾瑞克 馬爾庫森
朱麥 艾比奧
納塔利亞 馬汀歐洛茲克
有田祐子
Original Assignee
加拿大商普羅維登斯醫療控股公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 加拿大商普羅維登斯醫療控股公司 filed Critical 加拿大商普羅維登斯醫療控股公司
Publication of TW202330923A publication Critical patent/TW202330923A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/215Coronaviridae, e.g. avian infectious bronchitis virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/54Medicinal preparations containing antigens or antibodies characterised by the route of administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/54Medicinal preparations containing antigens or antibodies characterised by the route of administration
    • A61K2039/541Mucosal route
    • A61K2039/543Mucosal route intranasal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/545Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55555Liposomes; Vesicles, e.g. nanoparticles; Spheres, e.g. nanospheres; Polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • A61K2039/572Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 cytotoxic response
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • A61K2039/575Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 humoral response
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/88Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microencapsulation, e.g. using amphiphile liposome vesicle
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/16011Human Immunodeficiency Virus, HIV
    • C12N2740/16041Use of virus, viral particle or viral elements as a vector
    • C12N2740/16043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/16011Human Immunodeficiency Virus, HIV
    • C12N2740/16041Use of virus, viral particle or viral elements as a vector
    • C12N2740/16045Special targeting system for viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/22Vectors comprising a coding region that has been codon optimised for expression in a respective host

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Genetics & Genomics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Communicable Diseases (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Plant Pathology (AREA)
  • Oncology (AREA)
  • Pulmonology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The present disclosure relates to compositions and methods for the preparation, manufacture and therapeutic use of nucleic acid vaccines comprising polynucleotide sequences encoding one or more structural proteins of SARS-CoV-2 and variants for the treatment, mitigation, amelioration and/or prevention of COVID-19.

Description

用於預防及/或治療COVID-19之組成物和方法Compositions and methods for preventing and/or treating COVID-19

本揭露大體上關於核酸疫苗,特定言之編碼SARS-CoV-2之一或多種蛋白質、肽、其片段或變異體之核酸疫苗(例如RNA、mRNA、DNA疫苗)的組成物、調配物方法及/或用途,用於預防、緩解及/或治療及/或預防COVID-19,包括減輕感染及/或症狀之生理效應。 相關申請案之交叉參考 The present disclosure relates generally to nucleic acid vaccines, and specifically to compositions, formulations and methods of nucleic acid vaccines (e.g., RNA, mRNA, DNA vaccines) encoding one or more proteins, peptides, fragments or variants thereof of SARS-CoV-2. /or uses for the prevention, mitigation and/or treatment and/or prevention of COVID-19, including alleviating the physiological effects of infection and/or symptoms. Cross-references to related applications

本申請案主張在2021年9月28日以用於預防及/或治療COVID-19之組成物和方法(Composition and Methods for the Prevention and/or Treatment of COVID-19)為標題申請之加拿大申請案第3,132,191號及在2022年1月21日以用於預防及/或治療COVID-19之組成物和方法為標題申請之第3,146,392號的優先權,將每一該等申請案的內容以其全文引用方式併入。 序列表 This application claims a Canadian application filed on September 28, 2021 with the title Composition and Methods for the Prevention and/or Treatment of COVID-19 No. 3,132,191 and Application No. 3,146,392 titled Compositions and Methods for Preventing and/or Treating COVID-19 filed on January 21, 2022, the contents of each of these applications shall be cited in their entirety. Incorporated by reference. sequence list

本申請案係與電子格式之序列表一起申請。標題為20921007PCTSEQLST.xml之序列表檔案創建於2022年9月8日,且大小為130,296位元組。將序列表之電子格式中的資訊以其全文引用方式併入本文中。This application is filed together with the sequence listing in electronic format. The sequence listing file titled 20921007PCTSEQLST.xml was created on September 8, 2022, and is 130,296 bytes in size. The information in the electronic format of the Sequence Listing is incorporated herein by reference in its entirety.

嚴重急性呼吸道症候群冠狀病毒2 (SARS-CoV-2)為一種新型冠狀病毒株,其於2019年在中國開始感染哺乳動物且已蔓延至大流行。SARS-CoV-2感染會引起2019年冠狀病毒病(稱為「COVID-19」),其以不同方式影響哺乳動物,包括無症狀的個體至具有在輕度症狀至嚴重疾病或死亡範圍內之廣泛症狀的個體。Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus strain that began infecting mammals in China in 2019 and has spread to a pandemic. SARS-CoV-2 infection causes coronavirus disease 2019 (referred to as “COVID-19”), which affects mammals in different ways, ranging from asymptomatic individuals to those with symptoms ranging from mild symptoms to severe illness or death. Individuals with widespread symptoms.

疫苗為提供針對傳染病之預防性保護的有效方式。目前,可用於預防、緩解及/或治療COVID-19的疫苗有限。COVID-19之治療僅限於管理疾病之症狀及/或副作用。因此,仍強烈需要COVID-19疫苗,包括將疫苗遞送至一系列不同目標T細胞的調配物。Vaccines are an effective way to provide preventive protection against infectious diseases. Currently, there are limited vaccines available to prevent, mitigate, and/or treat COVID-19. Treatment for COVID-19 is limited to managing symptoms and/or side effects of the disease. Therefore, there remains a strong need for COVID-19 vaccines, including formulations that deliver vaccines to a range of different target T cells.

本揭露提供核酸疫苗、包含核酸疫苗之組成物及調配物,以及使用其預防冠狀病毒感染以預防、緩解及治療COVID-19的方法。核酸疫苗可包括編碼SARS-CoV-2之至少一種抗原蛋白、其片段或變異體的多核苷酸。SARS-CoV-2抗原蛋白為SARS-CoV-2之結構蛋白。結構蛋白可為刺突蛋白、膜蛋白、核衣殼磷蛋白或包膜蛋白。此等結構蛋白之胺基酸序列的非限制性實例展示於表1中(SEQ ID No:1至6及15至19)。This disclosure provides nucleic acid vaccines, compositions and formulations containing nucleic acid vaccines, and methods of using them to prevent coronavirus infection to prevent, mitigate and treat COVID-19. Nucleic acid vaccines may include polynucleotides encoding at least one antigenic protein of SARS-CoV-2, fragments or variants thereof. SARS-CoV-2 antigen protein is the structural protein of SARS-CoV-2. Structural proteins can be spike proteins, membrane proteins, nucleocapsid phosphoproteins, or envelope proteins. Non-limiting examples of the amino acid sequences of these structural proteins are shown in Table 1 (SEQ ID Nos: 1 to 6 and 15 to 19).

本文提供了用於為個體接種COVID-19疫苗之方法的COVID-19核酸疫苗,其中該核酸疫苗可包括至少一種編碼SARS-CoV-2之至少一種結構蛋白或其片段的多核苷酸。Provided herein are COVID-19 nucleic acid vaccines for use in methods of vaccinating individuals against COVID-19, wherein the nucleic acid vaccines may include at least one polynucleotide encoding at least one structural protein of SARS-CoV-2 or a fragment thereof.

本文提供藉由以產生免疫反應之有效量投予本文所述之核酸疫苗而在個體中誘導免疫反應的方法。免疫反應可為但不限於T細胞反應或B細胞反應。作為非限制性實例,免疫反應可藉由單次投予本文所述之核酸疫苗而產生。作為另一非限制性實例,免疫反應可藉由加強投予本文所述之核酸疫苗而產生。投予醫藥組成物可在個體中產生劑量反應性免疫反應。作為非限制性實例,劑量反應性免疫反應可包含在個體中誘導SARS-CoV-2刺突蛋白特異性IgG、IgG1、IgG2a、IgG2b、IgM及IgA抗體之一或多者。作為另一非限制性實例,劑量反應性免疫反應可包含誘導IL-2+ T細胞、IL-4+ T細胞及IFN-γ+ T細胞之一或多者。在一些實施態樣中,投予醫藥組成物不會在個體中誘導顯著不良反應。Provided herein are methods of inducing an immune response in an individual by administering a nucleic acid vaccine described herein in an amount effective to produce an immune response. The immune response may be, but is not limited to, a T cell response or a B cell response. As a non-limiting example, an immune response can be generated by a single administration of a nucleic acid vaccine described herein. As another non-limiting example, an immune response can be generated by booster administration of a nucleic acid vaccine described herein. Administration of pharmaceutical compositions can produce a dose-responsive immune response in an individual. As a non-limiting example, a dose-responsive immune response may comprise inducing one or more SARS-CoV-2 spike protein-specific IgG, IgGl, IgG2a, IgG2b, IgM and IgA antibodies in an individual. As another non-limiting example, a dose-responsive immune response may include induction of one or more of IL-2+ T cells, IL-4+ T cells, and IFN-γ+ T cells. In some embodiments, administration of the pharmaceutical composition does not induce significant adverse effects in the subject.

本文提供藉由投予本文所述之核酸疫苗來治療及/或預防個體的COVID-19的方法。Provided herein are methods of treating and/or preventing COVID-19 in an individual by administering a nucleic acid vaccine described herein.

本文提供用於治療及預防COVID-19之核酸疫苗的醫藥組成物及調配物。This article provides pharmaceutical compositions and formulations of nucleic acid vaccines for the treatment and prevention of COVID-19.

本文所述之核酸疫苗可在一或多種脂質奈米粒子(LNP)中調配。The nucleic acid vaccines described herein may be formulated in one or more lipid nanoparticles (LNPs).

在一些實施態樣中,LNP包含(a) 50至85莫耳(mol)%之陽離子脂質;(b) 13至49.5莫耳%之非陽離子脂質;及(c) 0.5至2莫耳%之共軛脂質。In some embodiments, the LNPs comprise (a) 50 to 85 mol % cationic lipids; (b) 13 to 49.5 mol % noncationic lipids; and (c) 0.5 to 2 mol % Conjugated lipids.

在一些實施態樣中,LNP包含(a) 50至65莫耳%之陽離子脂質;(b)非陽離子脂質,其包含4至10莫耳%之磷脂和30至40莫耳%之膽固醇;及(c) 0.5至2莫耳%之共軛脂質。In some embodiments, the LNP includes (a) 50 to 65 mol% cationic lipids; (b) noncationic lipids including 4 to 10 mol% phospholipids and 30 to 40 mol% cholesterol; and (c) 0.5 to 2 mol% conjugated lipids.

在一些實施態樣中,LNP包含(a)約30至60莫耳%之陽離子脂質;(b)約0至30莫耳%之非陽離子脂質(c)約18.5至48.5莫耳%之固醇;及(d)約0至10莫耳%之聚乙二醇化脂質。In some embodiments, the LNP includes (a) about 30 to 60 mol% cationic lipids; (b) about 0 to 30 mol% noncationic lipids (c) about 18.5 to 48.5 mol% sterols ; and (d) about 0 to 10 mol% of pegylated lipid.

在一些實施態樣中,LNP包含(a)約35至55莫耳%之陽離子脂質;(b)約5至25莫耳%之非陽離子脂質;(c)約30至40莫耳%之固醇;及(d)約0至10莫耳%之聚乙二醇化脂質。In some embodiments, the LNPs comprise (a) about 35 to 55 mol% cationic lipids; (b) about 5 to 25 mol% noncationic lipids; (c) about 30 to 40 mol% solids. alcohol; and (d) about 0 to 10 mole % of pegylated lipid.

在一些實施態樣中,LNP包含(a)約35至45莫耳%之陽離子脂質;(b)約25至35莫耳%之非陽離子脂質;(c)約20至30莫耳%之固醇;及(d)約0至10莫耳%之聚乙二醇化脂質。In some embodiments, the LNPs comprise (a) about 35 to 45 mol% cationic lipids; (b) about 25 to 35 mol% noncationic lipids; (c) about 20 to 30 mol% solids. alcohol; and (d) about 0 to 10 mole % of pegylated lipid.

在一些實施態樣中,LNP包含(a)約45至65莫耳%之陽離子脂質;(b)約5至10莫耳%之非陽離子脂質;(c)約25至40莫耳%之固醇;及(d)約0.5至10莫耳%之聚乙二醇化脂質。In some embodiments, the LNPs comprise (a) about 45 to 65 mol% cationic lipids; (b) about 5 to 10 mol% noncationic lipids; (c) about 25 to 40 mol% solids. alcohol; and (d) about 0.5 to 10 mol% of PEGylated lipid.

在一些實施態樣中,LNP包含(a)約40至60莫耳%之陽離子脂質;(b)約5至15莫耳%之非陽離子脂質;(c)約35至45莫耳%之固醇;及(d)約0.5至3莫耳%之聚乙二醇化脂質。In some embodiments, the LNPs comprise (a) about 40 to 60 mol% cationic lipids; (b) about 5 to 15 mol% noncationic lipids; (c) about 35 to 45 mol% solids. alcohol; and (d) about 0.5 to 3 mol% of PEGylated lipid.

在一些實施態樣中,LNP包含(a)約30至60莫耳%之陽離子脂質;(b)約0至30莫耳%之非陽離子脂質;(c)約15至50莫耳%之固醇;及(d)約0.01至10莫耳%之聚乙二醇化脂質。In some embodiments, the LNPs comprise (a) about 30 to 60 mol% cationic lipids; (b) about 0 to 30 mol% noncationic lipids; (c) about 15 to 50 mol% solids. alcohol; and (d) about 0.01 to 10 mol% of PEGylated lipid.

在一些實施態樣中,LNP包含(a)約10至75莫耳%之陽離子脂質;(b)約0.5至50莫耳%之非陽離子脂質;(c)約5至60莫耳%之固醇;及(d)約0.1至20莫耳%之聚乙二醇化脂質。In some embodiments, the LNPs comprise (a) about 10 to 75 mol% cationic lipids; (b) about 0.5 to 50 mol% noncationic lipids; (c) about 5 to 60 mol% solids. alcohol; and (d) about 0.1 to 20 mol% of PEGylated lipid.

在一些實施態樣中,LNP包含(a)約50至65莫耳%之陽離子脂質;(b)約3至15莫耳%之非陽離子脂質;(c)約30至40莫耳%之至少一種固醇;及(d)約0.5至2莫耳%之聚乙二醇化脂質。In some embodiments, the LNPs comprise (a) about 50 to 65 mol% of cationic lipids; (b) about 3 to 15 mol% of noncationic lipids; (c) about 30 to 40 mol% of at least a sterol; and (d) about 0.5 to 2 mol% of a pegylated lipid.

在一些實施態樣中,LNP包含(a)約50至85莫耳%之陽離子脂質;(b)約3至15莫耳%之非陽離子脂質;(c)約30至40莫耳%之固醇;及(d)約0.5至2莫耳%之聚乙二醇化脂質。In some embodiments, the LNPs comprise (a) about 50 to 85 mol% cationic lipids; (b) about 3 to 15 mol% noncationic lipids; (c) about 30 to 40 mol% solids. alcohol; and (d) about 0.5 to 2 mol% of PEGylated lipid.

在一些實施態樣中,LNP包含(a)約25至75莫耳%之陽離子脂質;(b)約0.1至15莫耳%之非陽離子脂質;(c)約5至50莫耳%之固醇;及(d)約0.5至20莫耳%之聚乙二醇化脂質。In some embodiments, the LNPs comprise (a) about 25 to 75 mol% cationic lipids; (b) about 0.1 to 15 mol% noncationic lipids; (c) about 5 to 50 mol% solids. alcohol; and (d) about 0.5 to 20 mol% of PEGylated lipid.

在一些實施態樣中,LNP包含(a)約50至65莫耳%之陽離子脂質;(b)約5至10莫耳%之非陽離子脂質;(c)約25至35莫耳%之固醇;及(d)約5至10莫耳%之聚乙二醇化脂質。In some embodiments, the LNPs comprise (a) about 50 to 65 mol% cationic lipids; (b) about 5 to 10 mol% noncationic lipids; (c) about 25 to 35 mol% solids. alcohol; and (d) about 5 to 10 mole % of pegylated lipid.

在一些實施態樣中,LNP包含(a)約20至60莫耳%之陽離子脂質;(b)約5至25莫耳%之非陽離子脂質;(c)約25至55莫耳%之固醇;及(d)約0.5至15莫耳%之聚乙二醇化脂質。In some embodiments, the LNPs comprise (a) about 20 to 60 mol% cationic lipids; (b) about 5 to 25 mol% noncationic lipids; (c) about 25 to 55 mol% solids. alcohol; and (d) about 0.5 to 15 mol% of PEGylated lipid.

在一些實施態樣中,LNP包含(a) 45至55莫耳%之3D-P-DMA;(b) 8至10莫耳%之DSPC;(c) 36至42莫耳%之膽固醇;及(d) 1.4至1.8莫耳%之PEG-DMA。In some embodiments, the LNP includes (a) 45 to 55 mol% 3D-P-DMA; (b) 8 to 10 mol% DSPC; (c) 36 to 42 mol% cholesterol; and (d) 1.4 to 1.8 mol% PEG-DMA.

在一些實施態樣中,LNP包含(a) 49.96莫耳%之3D-P-DMA;(b) 9.97莫耳%之DSPC;(c) 38.44莫耳%之膽固醇;及(d) 1.61%之PEG-DMA。In some embodiments, the LNP includes (a) 49.96 mol% 3D-P-DMA; (b) 9.97 mol% DSPC; (c) 38.44 mol% cholesterol; and (d) 1.61% PEG-DMA.

本文亦提供用於COVID-19之核酸疫苗,其包含約0.2 mg/mL mRNA,其中mRNA包含具有與SEQ ID NO:7至少95%一致之核酸序列的編碼區。在一些實施態樣中,本文所揭示之核酸疫苗的mRNA包含具有如SEQ ID NO:7中所闡述之核酸序列的編碼區。核酸疫苗可調配為3 mL玻璃小瓶中之2 mL填充物。Also provided herein is a nucleic acid vaccine for COVID-19, which includes about 0.2 mg/mL mRNA, wherein the mRNA includes a coding region having a nucleic acid sequence that is at least 95% identical to SEQ ID NO: 7. In some embodiments, the mRNA of the nucleic acid vaccine disclosed herein includes a coding region having the nucleic acid sequence set forth in SEQ ID NO: 7. Nucleic acid vaccines can be formulated as 2 mL filler in 3 mL glass vials.

在一些實施態樣中,向個體投予核酸疫苗包含向個體投予約5 µg至約100 µg mRNA。例如,方法可包含向個體投予約16 µg mRNA。或者,方法可包含向個體投予約40 µg mRNA。或者,方法可包含向個體投予約100 µg mRNA。In some embodiments, administering the nucleic acid vaccine to the individual includes administering about 5 µg to about 100 µg of mRNA to the individual. For example, a method may comprise administering approximately 16 µg of mRNA to an individual. Alternatively, the method may comprise administering about 40 µg of mRNA to the individual. Alternatively, the method may comprise administering about 100 µg of mRNA to the individual.

在一些實施態樣中,向個體投予核酸疫苗包含向個體投予約0.025 mL至約0.5 mL核酸疫苗。例如,方法可包含向個體投予約0.025 mL核酸疫苗、向個體投予約0.05 mL核酸疫苗、向個體投予約0.08 mL核酸疫苗、向個體投予約0.2 mL核酸疫苗或向個體投予約0.5 mL核酸疫苗。In some embodiments, administering the nucleic acid vaccine to the individual includes administering about 0.025 mL to about 0.5 mL of the nucleic acid vaccine to the individual. For example, a method may comprise administering about 0.025 mL of a nucleic acid vaccine to an individual, administering about 0.05 mL of a nucleic acid vaccine to an individual, administering about 0.08 mL of a nucleic acid vaccine to an individual, administering about 0.2 mL of a nucleic acid vaccine to an individual, or administering about 0.5 mL of a nucleic acid vaccine to an individual.

在所提供方法之一些實施態樣中,投予包含向個體肌內(IM)注射核酸疫苗。In some embodiments of the provided methods, administering includes intramuscular (IM) injection of the nucleic acid vaccine into the individual.

核酸疫苗可以第一劑核酸疫苗,接著在約1至約5週後第二劑核酸疫苗的形式向個體投予。在一些實施態樣中,第二劑核酸疫苗在第一劑後約4週投予。The nucleic acid vaccine may be administered to an individual in the form of a first dose of the nucleic acid vaccine, followed by a second dose of the nucleic acid vaccine about 1 to about 5 weeks later. In some embodiments, the second dose of the nucleic acid vaccine is administered approximately 4 weeks after the first dose.

在一些實施態樣中,在接受第一劑核酸疫苗後截至第28天在個體中偵測到抗刺突蛋白IgG抗體。In some embodiments, anti-spike protein IgG antibodies are detected in the individual as of day 28 after receiving the first dose of the nucleic acid vaccine.

在一些實施態樣中,在接受第一劑核酸疫苗後截至第28天在個體中偵測到抗刺突蛋白IgG抗體,且其在接受第二劑核酸疫苗後截至第42天在個體中增強。In some embodiments, anti-spike protein IgG antibodies are detected in the individual as of day 28 after receiving the first dose of the nucleic acid vaccine, and are enhanced in the individual as of day 42 after receiving the second dose of the nucleic acid vaccine .

在一些實施態樣中,相比於來自SARS-CoV-2恢復期患者之血清樣品之抗刺突蛋白IgG抗體的平均值,個體中之抗刺突蛋白IgG抗體增加至高10倍。In some embodiments, anti-spike protein IgG antibodies in an individual are increased up to 10-fold compared to the mean anti-spike protein IgG antibodies in serum samples from SARS-CoV-2 convalescent patients.

在一些實施態樣中,在第一劑核酸疫苗後截至第28天在個體中偵測到SARS-CoV-2中和抗體。In some implementations, SARS-CoV-2 neutralizing antibodies are detected in the individual as of day 28 after the first dose of the nucleic acid vaccine.

在一些實施態樣中,SARS-CoV-2中和抗體在第二劑核酸疫苗後截至第42天在個體中增強。In some embodiments, SARS-CoV-2 neutralizing antibodies increase in the individual by day 42 after the second dose of the nucleic acid vaccine.

因此,本揭露提供用於為個體接種COVID-19疫苗之方法的COVID-19核酸疫苗,其中核酸疫苗包含約0.2 mg/mL mRNA,其中mRNA包含與SEQ ID NO:7具有至少95%一致性之核酸序列,且其中核酸疫苗經調配用於肌內(IM)注射且在脂質奈米粒子(LNP)中調配。Accordingly, the present disclosure provides a COVID-19 nucleic acid vaccine for use in a method of vaccinating an individual against COVID-19, wherein the nucleic acid vaccine contains approximately 0.2 mg/mL mRNA, wherein the mRNA contains at least 95% identity to SEQ ID NO: 7 The nucleic acid sequence, and wherein the nucleic acid vaccine is formulated for intramuscular (IM) injection and is formulated in lipid nanoparticles (LNP).

各種實施態樣之細節闡述於以下實施方式中。其他特徵、目標及優點根據實施方式及申請專利範圍將為顯而易見的。Details of various implementation aspects are set forth in the following description. Other features, objects and advantages will be apparent from the description and scope of the claims.

詳細說明 I.簡介 Detailed description I.Introduction

以下描述闡述例示性組成物、方法、參數及類似者。然而,應認識到此描述並不意欲限制本揭露之範疇,而是替代地經提供作為例示性實施態樣之描述。The following description sets forth exemplary compositions, methods, parameters, and the like. It should be appreciated, however, that this description is not intended to limit the scope of the present disclosure, but is instead provided as a description of illustrative implementations.

本文描述核酸疫苗,特定言之包含編碼SARS-CoV-2之一或多種抗原蛋白、其片段或變異體之多核苷酸之核酸疫苗的多核苷酸(例如mRNA)、組成物、調配物、方法及/或用途,用於預防、緩解及/或治療COVID-19。抗原蛋白可為SARS-CoV-2之結構蛋白。結構蛋白可為刺突(S)蛋白、膜(M)蛋白、核衣殼(N)磷蛋白或包膜(E)蛋白。Described herein are nucleic acid vaccines, specifically polynucleotides (e.g., mRNA), compositions, formulations, and methods of nucleic acid vaccines comprising polynucleotides encoding one or more SARS-CoV-2 antigenic proteins, fragments, or variants thereof. and/or uses for the prevention, mitigation and/or treatment of COVID-19. The antigenic protein may be the structural protein of SARS-CoV-2. Structural proteins may be spike (S) proteins, membrane (M) proteins, nucleocapsid (N) phosphoproteins, or envelope (E) proteins.

在一些實施態樣中,核酸疫苗之至少一種組分為編碼SARS-CoV-2之抗原蛋白或抗原蛋白之片段或變異體中之至少一者的多核苷酸。抗原蛋白可為SARS-CoV-2之結構蛋白。多核苷酸可為RNA多核苷酸,諸如mRNA多核苷酸。In some embodiments, at least one component of the nucleic acid vaccine is a polynucleotide encoding at least one of an antigenic protein of SARS-CoV-2 or a fragment or variant of the antigenic protein. The antigenic protein may be the structural protein of SARS-CoV-2. The polynucleotide can be an RNA polynucleotide, such as an mRNA polynucleotide.

在一些實施態樣中,核酸疫苗包括至少一種編碼SARS-CoV-2之結構蛋白或結構蛋白之片段或變異體中之至少一者的mRNA多核苷酸。In some embodiments, the nucleic acid vaccine includes at least one mRNA polynucleotide encoding at least one of a structural protein of SARS-CoV-2 or a fragment or variant of a structural protein.

在一些實施態樣中,多核苷酸可經設計以編碼來自SARS-CoV-2之一或多種所關注多肽,或其片段或變異體。SARS-CoV-2之此類所關注多肽可包括但不限於完整多肽、複數個多肽或多肽片段或多肽變異體,其獨立地可由來自SARS-CoV-2之多核苷酸的一或多個區域或部分或全部編碼。如本文所用,術語「所關注多肽」係指經選擇以在本文所述之多核苷酸內編碼或其功能受本文所述之多核苷酸影響的任何多肽。本文所述之肽或多肽中之任一者可為具抗原性(亦稱為免疫原性)。In some embodiments, polynucleotides can be designed to encode one or more polypeptides of interest from SARS-CoV-2, or fragments or variants thereof. Such polypeptides of interest for SARS-CoV-2 may include, but are not limited to, intact polypeptides, multiple polypeptides or polypeptide fragments, or polypeptide variants, which independently may be composed of one or more regions of a polynucleotide from SARS-CoV-2 or partially or fully encoded. As used herein, the term "polypeptide of interest" refers to any polypeptide selected to be encoded within a polynucleotide described herein or whose function is affected by a polynucleotide described herein. Any of the peptides or polypeptides described herein may be antigenic (also referred to as immunogenic).

如本文所用,「多肽」意謂最通常藉由肽鍵連接在一起的胺基酸殘基(天然或非天然)之聚合物。如本文所用,該術語係指具有任何尺寸、結構或功能或來源之蛋白質、多肽及肽。在一些實施態樣中,所關注多肽為由如本文所述之多核苷酸編碼的抗原。As used herein, "polypeptide" means a polymer of amino acid residues (natural or non-natural) linked together most commonly by peptide bonds. As used herein, the term refers to proteins, polypeptides and peptides of any size, structure or function or origin. In some embodiments, the polypeptide of interest is an antigen encoded by a polynucleotide as described herein.

在一些實施態樣中,所編碼之多肽小於約50個胺基酸,且該多肽隨後稱為肽。若多肽為肽,則其長度將為至少約2、3、4或至少5個胺基酸殘基。因此,多肽包括基因產物、天然存在之多肽、合成多肽、同源物、直系同源物、旁系同源物、片段及前述各者之其他等效物、變異體及類似物。多肽可為單分子或可為多分子複合物,諸如二聚體、三聚體或四聚體。其亦可包含單鏈或多鏈多肽,諸如抗體或胰島素,且可相關聯或連接。最常在多鏈多肽中發現二硫鍵。術語多肽亦適用於其中一或多個胺基酸殘基為對應天然存在之胺基酸之人工化學類似物的胺基酸聚合物。In some embodiments, the encoded polypeptide is less than about 50 amino acids, and the polypeptide is subsequently referred to as a peptide. If the polypeptide is a peptide, it will be at least about 2, 3, 4, or at least 5 amino acid residues in length. Thus, polypeptides include gene products, naturally occurring polypeptides, synthetic polypeptides, homologs, orthologs, paralogs, fragments and other equivalents, variants and analogs of each of the foregoing. Polypeptides may be single molecules or may be multimolecular complexes, such as dimers, trimers, or tetramers. It may also comprise single or multi-chain polypeptides, such as antibodies or insulin, and may be associated or linked. Disulfide bonds are most commonly found in multi-chain polypeptides. The term polypeptide also applies to amino acid polymers in which one or more of the amino acid residues are artificial chemical analogs of the corresponding naturally occurring amino acids.

術語「多肽變異體」係指胺基酸序列與天然或參考序列不同之分子。相較於天然或參考序列,胺基酸序列變異體可在胺基酸序列內某些位置處具有取代、缺失及/或插入。通常,變異體將與天然或參考序列具有至少約50%一致性(同源性),且更佳地,其將與天然或參考序列至少約80%,或至少約85%,更佳至少約90%,甚至更佳至少約95%一致(同源)。The term "polypeptide variant" refers to molecules whose amino acid sequence differs from the native or reference sequence. Amino acid sequence variants may have substitutions, deletions and/or insertions at certain positions within the amino acid sequence compared to the native or reference sequence. Typically, a variant will have at least about 50% identity (homology) to the native or reference sequence, and more preferably, it will have at least about 80%, or at least about 85%, more preferably at least about 85% identity to the native or reference sequence. 90%, or even better at least about 95% identical (same origin).

在一些實施態樣中,提供「變異體模擬物」。如本文所用,術語「變異體模擬物」為含有將模擬活化序列之一或多個胺基酸之模擬物。例如,麩胺酸酯可充當偶磷基-蘇胺酸及/或偶磷基-絲胺酸之模擬物。或者,變異體模擬物可導致去活化作用或使含有模擬物之產物去活化,例如苯基丙胺酸可充當酪胺酸之去活化取代;或丙胺酸可充當絲胺酸之去活化取代。In some implementations, "variant mimics" are provided. As used herein, the term "variant mimetic" is a mimetic containing one or more amino acids that will mimic the activation sequence. For example, glutamate esters can serve as mimetics of phospho-threonine and/or phospho-serine. Alternatively, a variant mimetic may cause deactivation or deactivate a product containing the mimetic, for example, phenylalanine may act as a deactivating substitution for tyrosine; or alanine may act as a deactivating substitution for serine.

在應用於胺基酸序列時,「同源性」定義為在比對序列且視需要引入空位以達成最大同源性百分比之後,候選胺基酸序列中之殘基與第二序列之胺基酸序列中之殘基之一致性百分比。用於比對之方法及電腦程式為此項技術中熟知的。應理解,同源性視一致性百分比之計算而定,但其值可能由於在計算中引入之空位及罰分而不同。As applied to amino acid sequences, "homology" is defined as the difference between a residue in a candidate amino acid sequence and an amine group in a second sequence after aligning the sequences and introducing gaps if necessary to achieve maximum percent homology. Percent identity of residues in an acid sequence. Methods and computer programs for comparison are well known in the art. It is understood that homology is determined by calculation of percent identity, but its value may vary due to gaps and penalties introduced in the calculation.

當應用於多肽序列時,「同源物」係指與第二物種之第二序列具有基本一致性之其他物種的相應序列。When applied to a polypeptide sequence, "homologue" refers to a corresponding sequence in another species that is substantially identical to a second sequence in a second species.

如本文所用,「類似物」意欲包括多肽變異體,其不同之處在於一或多個胺基酸改變,例如仍維持親本或起始多肽之一或多種特性的胺基酸殘基取代、添加或缺失。As used herein, "analog" is intended to include polypeptide variants that differ by one or more amino acid changes, such as amino acid residue substitutions that maintain one or more properties of the parent or starting polypeptide, added or missing.

在一些實施態樣中,本揭露涵蓋若干類型之基於多肽之組成物,包括變異體及衍生物。此等包括取代型、插入型、缺失型及共價變異體及衍生物。術語「衍生物」與術語「變異體」同義使用,但通常係指相對於參考分子或起始分子以任何方式修飾及/或改變的分子。In some embodiments, the present disclosure encompasses several types of polypeptide-based compositions, including variants and derivatives. These include substitution, insertion, deletion and covalent variants and derivatives. The term "derivative" is used synonymously with the term "variant" but generally refers to a molecule that is modified and/or altered in any way relative to a reference or starting molecule.

例如,可向本文所述之肽序列中(例如在N端或C端處)添加序列標籤或胺基酸,諸如一或多個離胺酸。序列標籤可用於肽純化或定位。離胺酸可用於提高肽溶解性或允許生物素標記。或者,位於肽或蛋白質之胺基酸序列的羧基及胺基端區域的胺基酸殘基可視情況缺失,從而提供截短型序列。或者可視序列之用途而定,例如序列表現為可溶的或與固體載體連接之較大序列的一部分,缺失某些胺基酸(例如C端或N端殘基)。For example, a sequence tag or amino acid, such as one or more lysines, can be added to a peptide sequence described herein (eg, at the N- or C-terminus). Sequence tags can be used for peptide purification or localization. Lysine can be used to increase peptide solubility or allow biotin labeling. Alternatively, amino acid residues located in the carboxyl and amino terminal regions of the amino acid sequence of the peptide or protein can optionally be deleted, thereby providing a truncated sequence. Alternatively, depending on the intended use of the sequence, for example, the sequence appears as part of a larger sequence that is soluble or linked to a solid support, with certain amino acids (eg, C-terminal or N-terminal residues) deleted.

當提及多肽時,「取代型變異體」為將天然或起始序列中之至少一個胺基酸殘基移除且替代其將不同胺基酸插入於同一位置處之變異體。取代可為單取代,其中分子中僅一個胺基酸經取代,或取代可為多取代,其中同一個分子中兩個或更多個胺基酸經取代。When referring to a polypeptide, a "substitutional variant" is one in which at least one amino acid residue in the native or starting sequence is removed and a different amino acid is inserted in its place at the same position. The substitution may be monosubstituted, where only one amino acid in the molecule is substituted, or the substitution may be polysubstituted, where two or more amino acids in the same molecule are substituted.

如本文所用,術語「保守型胺基酸取代」係指用具有類似大小、電荷或極性之不同胺基酸取代通常存在於序列中之胺基酸。保守型取代之實例包括以諸如異白胺酸、纈胺酸及白胺酸之非極性(疏水性)殘基取代另一非極性殘基。類似地,保守型取代之實例包括用一種極性(親水性)殘基取代另一極性殘基,諸如在精胺酸與離胺酸之間、在麩醯胺酸與天冬醯胺酸之間、及在甘胺酸與絲胺酸之間。另外,以諸如離胺酸、精胺酸或組胺酸之鹼性殘基取代另一鹼性殘基,或以一種諸如天冬胺酸或麩胺酸之酸性殘基取代另一酸性殘基為保守型取代之額外實例。非保守型取代之實例包括將諸如異白胺酸、纈胺酸、白胺酸、丙胺酸、甲硫胺酸之非極性(疏水性)胺基酸殘基取代為諸如半胱胺酸、麩醯胺酸、麩胺酸或離胺酸之極性(親水性)殘基及/或將極性殘基取代為非極性殘基。As used herein, the term "conservative amino acid substitution" refers to the substitution of an amino acid normally present in a sequence with a different amino acid of similar size, charge, or polarity. Examples of conservative substitutions include the substitution of a non-polar (hydrophobic) residue such as isoleucine, valine, and leucine for another non-polar residue. Similarly, examples of conservative substitutions include replacing one polar (hydrophilic) residue with another polar residue, such as between arginine and lysine, between glutamic acid and asparagine , and between glycine and serine. In addition, a basic residue such as lysine, arginine or histidine is substituted for another basic residue, or an acidic residue such as aspartic acid or glutamic acid is substituted for another acidic residue. Additional examples of conservative substitutions. Examples of non-conservative substitutions include substitution of non-polar (hydrophobic) amino acid residues such as isoleucine, valine, leucine, alanine, methionine with such as cysteine, gluten Polar (hydrophilic) residues of amino acid, glutamic acid or lysine and/or substitution of polar residues with non-polar residues.

當提及多肽時,「插入型變異體」為將一或多個胺基酸緊鄰天然或起始序列中之特定位置處之胺基酸插入的變異體。「緊鄰(Immediately adjacent)」胺基酸意謂與該胺基酸之α-羧基或α-胺基官能基連接。When referring to a polypeptide, an "insertional variant" is a variant in which one or more amino acids are inserted immediately adjacent to an amino acid at a specific position in the native or starting sequence. "Immediately adjacent" to an amino acid means linked to the alpha-carboxy or alpha-amino functional group of the amino acid.

當提及多肽時,「缺失型變異體(Deletional variants)」為在天然或起始胺基酸序列中移除一或多個胺基酸之變異體。通常,缺失型變異體將在分子之特定區域中具有一或多個胺基酸缺失。When referring to polypeptides, "deletional variants" are variants in which one or more amino acids are removed from the native or starting amino acid sequence. Typically, a deletion variant will have one or more amino acids deleted in a specific region of the molecule.

當提及多肽時,「共價衍生物」包括用有機蛋白質或非蛋白質衍生劑對天然或起始蛋白質之修飾及/或轉譯後修飾。共價修飾在傳統上藉由使蛋白質之所靶向胺基酸殘基與能夠與所選側鏈或末端殘基反應之有機衍生劑反應,或藉由利用在所選重組宿主細胞中起作用的轉譯後修飾機制而引入。所得共價衍生物適用於針對鑑別對生物學活性、免疫分析法或製備抗蛋白質抗體用於重組醣蛋白之免疫親和力純化而言重要之殘基的程式。此類修飾在一般熟習此項技術者之能力範圍內,且在無不當實驗之情況下進行。When referring to polypeptides, "covalent derivatives" include modifications and/or post-translational modifications of the native or starting protein with organic proteinaceous or non-proteinaceous derivatizing agents. Covalent modification has traditionally been accomplished by reacting the targeted amino acid residues of the protein with an organic derivatizing agent capable of reacting with selected side chains or terminal residues, or by utilizing recombinant host cells of choice. introduced by the post-translational modification mechanism. The resulting covalent derivatives are suitable for use in programs directed toward the identification of residues important for biological activity, immunoassays, or the preparation of anti-protein antibodies for immunoaffinity purification of recombinant glycoproteins. Such modifications are within the capabilities of those skilled in the art and can be performed without undue experimentation.

當提及多肽時,「特徵」定義為分子之獨特的基於胺基酸序列之組分。由本文所述之多核苷酸編碼之多肽的特徵包括表面表現、局部構形形狀、摺疊、環、半環、域、半域、位點、末端或其任何組合。When referring to polypeptides, "characteristics" are defined as the unique amino acid sequence-based components of the molecule. Characteristics of the polypeptides encoded by the polynucleotides described herein include surface appearance, local conformational shape, folds, loops, half-rings, domains, half-domains, sites, termini, or any combination thereof.

如本文所用,當提及多肽時,術語「表面表現」係指出現於最外表面上的蛋白質之基於多肽之組分。As used herein, when referring to a polypeptide, the term "surface expression" refers to the polypeptide-based components of a protein that appear on the outermost surface.

如本文所用,當提及多肽時,術語「局部構形形狀」意謂位於可界定蛋白質空間內的基於多肽之蛋白質結構表現。As used herein, when referring to a polypeptide, the term "local conformational shape" means a representation of the polypeptide-based protein structure that is located within a definable protein space.

如本文所用,在提及多肽時,術語「摺疊」係指在能量最小化時所得的胺基酸序列之構形。摺疊可出現於摺疊過程之二級或三級時。二級摺疊之實例包括β摺疊及α螺旋。三級摺疊之實例包括由於能量較高之力的聚集或分離而形成的域及區域。以此方式形成之區域包括疏水性及親水性袋,及其類似物。As used herein, when referring to a polypeptide, the term "folding" refers to the resulting configuration of an amino acid sequence when energy is minimized. Folding can occur at the second or third level of the folding process. Examples of secondary sheets include beta sheets and alpha helices. Examples of tertiary folds include domains and regions formed due to the aggregation or separation of higher energy forces. Regions formed in this manner include hydrophobic and hydrophilic pockets, and the like.

如本文所用,在與多肽構形相關時,術語「轉角」意謂改變肽或多肽之主鏈方向且可涉及一個、兩個、三個、或更多個胺基酸殘基的彎曲。As used herein, the term "turn" when relating to polypeptide conformation means changing the direction of the backbone of a peptide or polypeptide and may involve the bending of one, two, three, or more amino acid residues.

如本文所用,當提及多肽時,術語「環」係指多肽之結構特徵,其可用於反轉肽或多肽的主鏈方向。當在多肽中發現環且僅改變主鏈之方向時,其可包含四個或更多個胺基酸殘基。Oliva等人已鑑別出至少5類蛋白質環( J. Mol Bio.,l266 (4): 814-830; 1997)。環可為開放的或封閉的。閉環或「環狀」環可在橋接部分之間包含2、3、4、5、6、7、8、9、10、或更多個胺基酸。此類橋接部分可包含在具有二硫鍵之多肽中典型的半胱胺酸-半胱胺酸橋(Cys-Cys),或者橋接部分可為非基於蛋白質的,例如本文使用之二溴醯基劑。 As used herein, when referring to a polypeptide, the term "loop" refers to a structural feature of the polypeptide that can be used to reverse the direction of the backbone of the peptide or polypeptide. When a loop is found in a polypeptide and only changes the direction of the backbone, it may contain four or more amino acid residues. Oliva et al. have identified at least five types of protein rings ( J. Mol Bio., 1 266 (4): 814-830; 1997). Rings can be open or closed. Closed or "cyclic" rings can contain 2, 3, 4, 5, 6, 7, 8, 9, 10, or more amino acids between bridging moieties. Such bridging moieties may comprise a cysteine-cysteine bridge (Cys-Cys) typical of polypeptides with disulfide bonds, or the bridging moiety may be non-protein based, such as dibromide as used herein. agent.

如本文所用,當提及多肽時,術語「半環」係指所鑑別環之一部分,其具有衍生該部分之環之至少半數胺基酸殘基。應理解,環可能並非始終含有偶數個胺基酸殘基。因此,在其中環含有或鑑別為包含奇數個胺基酸之彼等情況下,奇數編號之環的半環將包含該環之整數部分或下一整數部分(環之胺基酸數目/2 +/-0.5個胺基酸)。As used herein, when referring to a polypeptide, the term "hemicycle" refers to a portion of an identified ring that has at least half of the amino acid residues of the ring from which the portion is derived. It is understood that a ring may not always contain an even number of amino acid residues. Therefore, in those cases where a ring contains or is identified as containing an odd number of amino acids, the half-ring of the odd-numbered ring will contain either the integer portion of the ring or the next integer portion (number of amino acids in the ring/2 + /-0.5 amino acids).

如本文所用,當提及多肽時,術語「域」係指具有一或多種可鑑別結構或功能特徵或特性(例如結合力、充當蛋白質-蛋白質相互作用位點)的多肽基元。As used herein, when referring to a polypeptide, the term "domain" refers to a polypeptide moiety that has one or more identifiable structural or functional features or properties (e.g., binding capacity, serving as a protein-protein interaction site).

如本文所用,當提及多肽時,術語「半域」意謂所鑑別域之一部分,其具有衍生該部分之域之至少半數胺基酸殘基。應理解,域可能並非始終含有偶數個胺基酸殘基。因此,在其中域含有或鑑別為包含奇數個胺基酸之彼等情況下,奇數編號之域的半域將包含該域之整數部分或下一整數部分(域之胺基酸數目/2+/-0.5個胺基酸)。例如,鑑別為7個胺基酸域的域可產生3個胺基酸或4個胺基酸之半域(7/2=3.5+1-0.5為3或4)。亦應理解,可在域或半域內鑑別子域,此等子域並不完全具有在其所衍生自之域或半域中所鑑別的全部結構或功能特性。亦應理解,包含本文中之任何域類型的胺基酸不必沿著多肽主鏈相連(亦即非相鄰胺基酸可在結構上摺疊以產生域、半域或子域)。As used herein, when referring to a polypeptide, the term "half-domain" means a portion of the identified domain that has at least half of the amino acid residues of the domain from which that portion is derived. It is understood that a domain may not always contain an even number of amino acid residues. Therefore, in those cases where a domain contains or is identified as containing an odd number of amino acids, the half-domain of the odd-numbered domain will contain the integer part of the domain or the next integer part (number of amino acids of the domain/2+ /-0.5 amino acids). For example, a domain identified as a 7 amino acid domain may result in a half domain of 3 amino acids or 4 amino acids (7/2=3.5+1-0.5 for 3 or 4). It will also be understood that subdomains may be identified within a domain or half-domain that do not possess all of the structural or functional properties identified in the domain or half-domain from which they are derived. It will also be understood that the amino acids comprising any of the domain types herein need not be linked along the polypeptide backbone (ie, non-adjacent amino acids may fold structurally to create domains, half-domains, or subdomains).

如本文所用,當提及多肽時,術語「位點」在涉及基於胺基酸之實施態樣時與「胺基酸殘基」及「胺基酸側鏈」同義使用。位點表示可在本文所述之基於多肽之分子內經修飾、操縱、改變、衍生或變化之肽或多肽內的位置。As used herein, when referring to polypeptides, the term "site" is used synonymously with "amino acid residue" and "amino acid side chain" when referring to amino acid-based embodiments. Site refers to a position within a peptide or polypeptide that can be modified, manipulated, altered, derivatized or altered within a polypeptide-based molecule described herein.

如本文所用,當提及多肽時,術語「端(termini)」或「端(terminus)」係指肽或多肽之末端。此類末端並非僅限於肽或多肽之第一或最末位點,而可包括末端區域中之其他胺基酸。本文所述之基於多肽之分子之特徵可在於具有N端(由具有游離胺基(NH2)之胺基酸封端)及C端(由具有游離羧基(COOH)之胺基酸封端)。在一些情況下,本文所述之蛋白質由藉由二硫鍵或藉由非共價力結合在一起之多個多肽鏈組成(多聚體、寡聚物)。此等類別的蛋白質將具有多個N端及C端。或者,多肽之端可經修飾以使得視具體情況,其以基於非多肽之部分(諸如有機共軛體)起始或結束。As used herein, when referring to a polypeptide, the term "termini" or "terminus" refers to the end of the peptide or polypeptide. Such terminal ends are not limited to the first or last position of a peptide or polypeptide, but may include other amino acids in the terminal region. Polypeptide-based molecules described herein may be characterized by having an N-terminus (terminated by an amino acid having a free amine group (NH2)) and a C-terminus (terminated by an amino acid having a free carboxyl group (COOH)). In some cases, the proteins described herein are composed of multiple polypeptide chains held together by disulfide bonds or by non-covalent forces (multimers, oligomers). Proteins of this class will have multiple N-termini and C-termini. Alternatively, the ends of the polypeptide may be modified so that, as the case may be, they begin or end with a non-polypeptide-based moiety, such as an organic conjugate.

一旦任何特徵被鑑定或定義為將由本文所述之多核苷酸編碼之多肽的所需組分,可藉由移動、交換、反轉、缺失、隨機化或複製來執行此等特徵之若干操縱及/或修飾中之任一者。此外,應理解,特徵操縱可產生與本文所述之分子修飾相同的結果。例如,涉及域缺失之操縱將引起分子長度之變化,正如修飾核酸以編碼小於全長分子一樣。Once any feature is identified or defined as a required component of a polypeptide to be encoded by a polynucleotide described herein, several manipulations of such features can be performed by moving, swapping, inverting, deleting, randomizing or duplicating and /or any of the modifications. Furthermore, it is understood that feature manipulation can produce the same results as molecular modifications described herein. For example, manipulations involving domain deletions will result in changes in the length of the molecule, as will modification of a nucleic acid to encode a less than full-length molecule.

在多肽中,術語「修飾」係指相比於20個胺基酸之標準組的修飾。修飾可為各種不同修飾。在一些實施態樣中,該等區域可含有一個、兩個、或更多個(視情況不同的)修飾。In a polypeptide, the term "modification" refers to a modification compared to the standard set of 20 amino acids. The modification can be a variety of different modifications. In some embodiments, these regions may contain one, two, or more (optionally different) modifications.

修飾及操縱可藉由此項技術中已知的方法實現,諸如但不限於定點突變誘發或在化學合成期間之先驗併入。隨後可使用活體外或活體內分析,諸如本文所描述之彼等分析或此項技術中已知的任何其他適合的篩選分析,測試所得經修飾之分子的活性。Modification and manipulation can be accomplished by methods known in the art, such as, but not limited to, site-directed mutagenesis or a priori incorporation during chemical synthesis. The resulting modified molecules can then be tested for activity using in vitro or in vivo assays, such as those described herein or any other suitable screening assay known in the art.

在一些實施態樣中,多肽可包含經由數輪實驗發現之共同序列。如本文所用,「共同」序列為單一序列,其表示允許一或多個位點發生變化之序列集合。In some embodiments, polypeptides may comprise common sequences discovered through several rounds of experiments. As used herein, a "common" sequence is a single sequence that represents a collection of sequences that allow for variation at one or more sites.

如熟習此項技術者認識到,蛋白質片段、功能性蛋白質域及同源蛋白質亦視為在相關多肽之範疇內。例如,本文提供任何蛋白質片段(意謂比參考多肽序列短至少一個胺基酸殘基但另外與參考蛋白質相同的多肽序列。蛋白質片段之長度可含有10、20、30、40、50、60、70、80、90、100、或超過100個胺基酸。在另一實例中,包括約20、約30、約40、約50、或約100個胺基酸或更多個胺基酸之伸長段的任何蛋白質可根據本文所述之核酸疫苗使用,該等胺基酸與本文所述之序列中之任一者約40%、約50%、約60%、約70%、約80%、約85%、約90%、約95%、或約100%一致。在某些實施態樣中,根據本文所述之核酸疫苗使用之多肽包括2、3、4、5、6、7、8、9、10、或更多個如本文提供或參考之任一序列中所示的突變。As those skilled in the art will recognize, protein fragments, functional protein domains and homologous proteins are also considered to be within the scope of related polypeptides. For example, any protein fragment (meaning a polypeptide sequence that is at least one amino acid residue shorter than a reference polypeptide sequence but otherwise identical to the reference protein) is provided herein. The length of the protein fragment may contain 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, or more than 100 amino acids. In another example, about 20, about 30, about 40, about 50, or about 100 amino acids or more amino acids are included. Any protein with an elongated segment that is about 40%, about 50%, about 60%, about 70%, about 80% identical to any of the sequences described herein can be used in accordance with the nucleic acid vaccines described herein. , about 85%, about 90%, about 95%, or about 100% consistent. In certain embodiments, the polypeptides used according to the nucleic acid vaccines described herein include 2, 3, 4, 5, 6, 7, 8, 9, 10, or more mutations as shown in any sequence provided or referenced herein.

因此,本揭露之多核苷酸編碼含有相對於參考序列,詳言之本文所揭示之肽或多肽序列之取代、插入及/或添加、缺失及共價修飾的肽或多肽。多核苷酸亦可含有相對於多核苷酸參考序列之取代、插入及/或添加、缺失及共價修飾。Accordingly, the polynucleotides of the present disclosure encode peptides or polypeptides that contain substitutions, insertions and/or additions, deletions and covalent modifications relative to reference sequences, in particular the peptide or polypeptide sequences disclosed herein. Polynucleotides may also contain substitutions, insertions and/or additions, deletions and covalent modifications relative to the polynucleotide reference sequence.

參考分子(多肽或多核苷酸)可與設計之分子(多肽或多核苷酸)共用某種一致性。如此項技術中已知的術語「一致性」係指兩個或更多個肽、多肽或多核苷酸之序列之間的關係,如藉由比較該等序列所測定。在此項技術中,一致性亦意謂其之間的序列相關性程度,如由兩個或多個胺基酸殘基或核苷之串之間的匹配數所確定。一致性用間隙比對(若存在)量測兩個或更多個序列之較小者之間的一致匹配的百分比,該等間隙比對藉由特定數學模型或電腦程式((例如「演算法」)處理。相關肽之一致性可藉由已知方法容易地計算。此類方法包括但不限於那些在下列中所述者:Computational Molecular Biology, Lesk, A. M.編, Oxford University Press, N.Y., 1988;Biocomputing: Informatics and Genome Projects, Smith, D. W.編, Academic Press, N.Y., 1993;Computer Analysis of Sequence Data, 第1部分, Griffin, A. M.及Griffin, H. G.編, Humana Press, N.J., 1994;Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987;Sequence Analysis Primer, Gribskov, M.及Devereux, J.編, M. Stockton Press, N.Y, 1991;及Carillo等人,SIAM J. Applied Math. 48: 1073;1988)。The reference molecule (polypeptide or polynucleotide) may share some identity with the designed molecule (polypeptide or polynucleotide). The term "identity" as known in the art refers to the relationship between the sequences of two or more peptides, polypeptides or polynucleotides, as determined by comparing such sequences. In this technology, identity also means the degree of sequence relatedness between them, as determined by the number of matches between two or more strings of amino acid residues or nucleosides. Identity measures the percentage of identical matches between the smaller of two or more sequences using gap alignments (if present) that are determined by specific mathematical models or computer programs (such as "algorithms"). ") processing. The identity of related peptides can be readily calculated by known methods. Such methods include, but are not limited to, those described in: Computational Molecular Biology, Lesk, A. M., ed., Oxford University Press, N.Y., 1988 ; Biocomputing: Informatics and Genome Projects, edited by Smith, D. W., Academic Press, N.Y., 1993; Computer Analysis of Sequence Data, Part 1, edited by Griffin, A. M. and Griffin, H. G., Humana Press, N.J., 1994; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M. Stockton Press, N.Y, 1991; and Carillo et al., SIAM J. Applied Math. 48: 1073;1988).

在一些實施態樣中,編碼之多肽變異體可具有與參考多肽相同或類似的活性。或者,變異體相對於參考多肽可具有改變的活性(例如增加或降低)。一般而言,如藉由本文所述及熟習此項技術者已知的序列比對程式及參數所測定,本文所述之特定多核苷酸或多肽之變異體將與特定參考多核苷酸或多肽具有至少約40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%,但小於100%的序列一致性。此類比對工具包括BLAST程式組之彼等工具(Stephen F. Altschul等人,Gapped BLAST and PSLBLAST: a new generation of protein database search programs, Nucleic Acids Res. 1997, 25:3389-3402)。其他工具描述於本文中,特定而言描述於「一致性」之定義中。 II. 本揭露之組成物 SARS-CoV-2 In some embodiments, encoded polypeptide variants may have the same or similar activity as a reference polypeptide. Alternatively, a variant may have altered activity (eg, increased or decreased) relative to a reference polypeptide. In general, variants of a particular polynucleotide or polypeptide described herein will be identical to a particular reference polynucleotide or polypeptide, as determined by sequence alignment programs and parameters described herein and known to those skilled in the art. Have at least about 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95% , 96%, 97%, 98%, 99%, but less than 100% sequence identity. Such comparison tools include those of the BLAST suite of programs (Stephen F. Altschul et al., Gapped BLAST and PSLBLAST: a new generation of protein database search programs, Nucleic Acids Res . 1997, 25:3389-3402). Other tools are described herein, specifically in the definition of "consistency." II. Components of the Disclosure SARS-CoV-2

嚴重急性呼吸道症候群冠狀病毒2 (SARS-CoV-2)為一種新型冠狀病毒株,可引起稱為「COVID-19」之冠狀病毒病2019。COVID-19以不同的方式影響哺乳動物,包括無症狀的個體至具有在輕度症狀至嚴重疾病或死亡範圍內之廣泛症狀的個體。迄今為止,約80%之COVID-19患者具有輕度至中度症狀,而約20%可出現併發症,諸如重度肺炎、急性呼吸窘迫症候群、敗血症以及甚至死亡。隨著醫生及科學家更多地瞭解COVID-19及其如何對身體產生影響,與COVID-19相關的症狀清單不斷變化,但迄今為止公認的一些症狀包括發熱或發冷、咳嗽、呼吸急促或呼吸困難、疲勞、身體酸痛、肌肉酸痛、頭痛、喉嚨痛、充血或流鼻涕、噁心及/或嘔吐、腹瀉以及新的味覺或嗅覺喪失。Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new strain of coronavirus that causes coronavirus disease 2019 known as "COVID-19". COVID-19 affects mammals in different ways, ranging from asymptomatic individuals to individuals with a wide range of symptoms ranging from mild symptoms to severe illness or death. To date, approximately 80% of COVID-19 patients have mild to moderate symptoms, while approximately 20% may develop complications such as severe pneumonia, acute respiratory distress syndrome, sepsis, and even death. The list of symptoms associated with COVID-19 is constantly changing as doctors and scientists learn more about COVID-19 and how it affects the body, but some of the symptoms recognized so far include fever or chills, cough, shortness of breath or breathing Difficulty, fatigue, body aches, muscle aches, headache, sore throat, congestion or runny nose, nausea and/or vomiting, diarrhea, and new loss of taste or smell.

SARS-CoV-2之基因體編碼四種結構蛋白:刺突(S)、包膜(E)、膜(M)及核衣殼(N),及非結構蛋白(命名為nsp1至nsp16)及輔助蛋白。病毒表面刺突蛋白通常為病毒進入細胞之主要介體。SARS-CoV-2刺突經由其受體結合域(RBD)結合至其受體人類ACE2 (hACE2),且藉由人類蛋白酶以蛋白分解方式活化。SARS-CoV-2刺突蛋白之另一特徵為該蛋白在S1-S2邊界處(S1為受體結合單元且S2為膜融合單元)具有功能性弗林蛋白酶切割位點,該位點可預活化許多病毒,包括SARS-CoV-2的進入。SARS-CoV-2刺突已被用作保護性抗原,可在各種疫苗開發策略中引發中和抗體。膜蛋白及包膜蛋白用於病毒組裝。包膜蛋白(E)可形成對病毒致病性重要的同型五聚體陽離子通道,Mandala等人, Nature Structural and Molecular Bio.2020, 27: 1202-1208)。核衣殼蛋白將病毒基因體包裝成螺旋狀核糖核衣殼(RNP),且在病毒自組裝中發揮作用(Chang等人; The SARS coronavirus nucleocapsid protein - Forms and functions; Antiviral Res. 2014; 103:39-50;將其內容以其全文引用方式併入本文中)。此外,SARS-CoV-2中之核衣殼蛋白可調節宿主細胞機制,且可參與病毒生命週期中的調節作用。 The genome of SARS-CoV-2 encodes four structural proteins: spike (S), envelope (E), membrane (M) and nucleocapsid (N), as well as non-structural proteins (named nsp1 to nsp16) and Auxiliary protein. The spike protein on the surface of the virus is usually the main mediator for the virus to enter cells. The SARS-CoV-2 spike binds to its receptor human ACE2 (hACE2) via its receptor binding domain (RBD) and is proteolytically activated by human proteases. Another feature of the SARS-CoV-2 spike protein is that the protein has a functional furin cleavage site at the S1-S2 boundary (S1 is the receptor binding unit and S2 is the membrane fusion unit), which can predict Activates entry of many viruses, including SARS-CoV-2. The SARS-CoV-2 spike has been used as a protective antigen to elicit neutralizing antibodies in various vaccine development strategies. Membrane and envelope proteins are used for virus assembly. Envelope protein (E) can form a homopentameric cation channel that is important for viral pathogenicity, Mandala et al., Nature Structural and Molecular Bio. 2020, 27: 1202-1208). The nucleocapsid protein packages the viral genome into a helical ribonucleocapsid (RNP) and plays a role in viral self-assembly (Chang et al.; The SARS coronavirus nucleocapsid protein - Forms and functions; Antiviral Res . 2014; 103: 39-50; the contents of which are incorporated herein by reference in their entirety). In addition, the nucleocapsid protein in SARS-CoV-2 can regulate host cell mechanisms and participate in the regulation of the virus life cycle.

儘管不希望受理論束縛,但似乎SARS-CoV-2結合至人類受體ACE2 (hACE2)。刺突蛋白中之受體結合域(RBD)似乎為冠狀病毒基因體的最可變部分。有六種RBD胺基酸已被證明對與ACE2受體結合至關重要,且SARS-CoV-2基因體似乎具有RBD,該RBD與人類、雪貂、貓及其他具有高受體同源性之物種的ACE2具有高親和力結合(Anderson等人; The Proximal Origin of SARS-CoV-2; Nature Medicine, 2020; 26(4): 450-452;將其內容以其全文引用方式併入本文中)。 While not wishing to be bound by theory, it appears that SARS-CoV-2 binds to the human receptor ACE2 (hACE2). The receptor-binding domain (RBD) in the spike protein appears to be the most variable part of the coronavirus genome. Six RBD amino acids have been shown to be critical for binding to the ACE2 receptor, and the SARS-CoV-2 genome appears to have an RBD with high receptor homology to humans, ferrets, cats, and others species with high affinity binding to ACE2 (Anderson et al.; The Proximal Origin of SARS-CoV-2; Nature Medicine , 2020; 26(4): 450-452; the contents of which are incorporated herein by reference in their entirety) .

在一些實施態樣中,本文所述之核酸疫苗之多核苷酸編碼結構蛋白之全長多肽,或SARS-CoV-2之結構蛋白的片段或變異體,諸如刺突蛋白、核衣殼蛋白、包膜蛋白或膜蛋白。In some embodiments, the polynucleotides of the nucleic acid vaccines described herein encode full-length polypeptides of structural proteins, or fragments or variants of structural proteins of SARS-CoV-2, such as spike protein, nucleocapsid protein, capsid protein, Membrane protein or membrane protein.

在一些實施態樣中,本文所述之核酸疫苗之多核苷酸編碼SARS-CoV-2之結構蛋白的超過一個片段或變異體,諸如刺突蛋白、核衣殼蛋白、包膜蛋白及/或膜蛋白。In some embodiments, the polynucleotides of the nucleic acid vaccines described herein encode more than one fragment or variant of a structural protein of SARS-CoV-2, such as spike protein, nucleocapsid protein, envelope protein, and/or Membrane Protein.

在一些實施態樣中,本文所述之核酸疫苗之多核苷酸編碼結構蛋白之一的突變變異體,或SARS-CoV-2之結構蛋白之突變變異體的片段。作為非限制性實例,變異體可為SARS-CoV-2之結構蛋白之一的天冬胺酸變為甘胺酸的單一胺基酸變化。In some embodiments, the polynucleotides of the nucleic acid vaccines described herein encode a mutant variant of one of the structural proteins, or a fragment of a mutant variant of the structural protein of SARS-CoV-2. As a non-limiting example, the variant may be a single amino acid change from aspartate to glycine, one of the structural proteins of SARS-CoV-2.

在一些實施態樣中,本文所述之核酸疫苗的多核苷酸編碼刺突蛋白之全長多肽,或SARS-CoV-2之刺突蛋白的片段或變異體。作為非限制性實例,變異體可為SARS-CoV-2之刺突蛋白中天冬胺酸變為甘胺酸之單一胺基酸變化。作為非限制性實例,變異體可為SARS-CoV-2之刺突蛋白中之位置614處天冬胺酸變為甘胺酸(D614G)之單一胺基酸變化(Korber等人; Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus; Cell; 2020, 182(4): 812-827;將其內容以其全文引用方式併入本文中)。 In some embodiments, the polynucleotides of the nucleic acid vaccines described herein encode a full-length polypeptide of the spike protein, or a fragment or variant of the spike protein of SARS-CoV-2. As a non-limiting example, the variant may be a single amino acid change from aspartate to glycine in the spike protein of SARS-CoV-2. As a non-limiting example, a variant may be a single amino acid change from aspartate to glycine (D614G) at position 614 in the spike protein of SARS-CoV-2 (Korber et al.; Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus; Cell ; 2020, 182(4): 812-827; the contents of which are incorporated herein by reference in their entirety).

在一些實施態樣中,本文所述之核酸疫苗可編碼SARS-CoV-2之結構蛋白的一或多種蛋白質、肽、其片段或變異體。SARS-CoV-2之結構蛋白之蛋白質、肽、片段或變異體的非限制性實例提供於表1中。在表中,若已知,則亦提供NCBI參考號。 表1. SARS-CoV-2之結構蛋白序列 序列標識符 (SEQ ID NO) 描述 序列 類型 1 刺突蛋白(NCBI參考號:YP_009724390.1) (「S蛋白」) 蛋白質 2 具有D614G突變之刺突蛋白 蛋白質 3 包膜蛋白(NCBI參考號:YP_009724392.1) 蛋白質 4 膜蛋白(NCBI參考號:YP_009724393.1) 蛋白質 5 核衣殼磷蛋白(NCBI參考號:YP_009724397.2) 蛋白質 6 B.1.351 (南非)變異體刺突蛋白 蛋白質 15 B.1.17 (UK)變異體刺突蛋白 蛋白質 16 具有D614G及L452R突變之刺突蛋白 蛋白質 17 具有L452R突變之B.1.17 (UK)變異體刺突蛋白 蛋白質 18 具有L452R突變之B.1.351 (南非)變異體刺突蛋白 蛋白質 19 P.1 (巴西)變異體刺突蛋白 蛋白質 In some embodiments, the nucleic acid vaccines described herein may encode one or more proteins, peptides, fragments or variants thereof of the structural proteins of SARS-CoV-2. Non-limiting examples of proteins, peptides, fragments or variants of structural proteins of SARS-CoV-2 are provided in Table 1. In the table, if known, the NCBI reference number is also provided. Table 1. Structural protein sequence of SARS-CoV-2 Sequence identifier (SEQ ID NO) describe sequence type 1 Spike protein (NCBI reference number: YP_009724390.1) ("S protein") protein 2 Spike protein with D614G mutation protein 3 Envelope protein (NCBI reference number: YP_009724392.1) protein 4 Membrane protein (NCBI reference number: YP_009724393.1) protein 5 Nucleocapsid phosphoprotein (NCBI reference number: YP_009724397.2) protein 6 B.1.351 (South Africa) variant spike protein protein 15 B.1.17 (UK) variant spike protein protein 16 Spike protein with D614G and L452R mutations protein 17 B.1.17 (UK) variant spike protein with L452R mutation protein 18 B.1.351 (South Africa) variant spike protein with L452R mutation protein 19 P.1 (Brazilian) variant spike protein protein

在一些實施態樣中,本文所述之核酸疫苗可編碼至少一種結構蛋白,該至少一種結構蛋白具有至少75%、80%、85%、90%、95%、96%、97%、98%、99%、或100%的表1中之任一序列或表1中之任一序列之片段或表1中之任一序列之變異體。In some embodiments, the nucleic acid vaccine described herein may encode at least one structural protein having at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% , 99%, or 100% of any sequence in Table 1 or a fragment of any sequence in Table 1 or a variant of any sequence in Table 1.

在一些實施態樣中,核酸疫苗可為當轉譯時產生SARS-CoV-2之結構蛋白之一或多種蛋白質、肽、其片段或變異體的mRNA疫苗。因此,mRNA疫苗之多核苷酸為編碼SARS-CoV-2之結構蛋白之一或多種蛋白質、肽、其片段或變異體的mRNA多核苷酸。In some embodiments, the nucleic acid vaccine can be an mRNA vaccine that, when translated, produces one or more proteins, peptides, fragments, or variants of the structural proteins of SARS-CoV-2. Therefore, the polynucleotide of the mRNA vaccine is an mRNA polynucleotide encoding one or more proteins, peptides, fragments or variants thereof of the structural protein of SARS-CoV-2.

在一個實施態樣中,本文所述之mRNA疫苗的編碼序列可基於來自SARS-CoV-2 Wuhan-Hu-1分離株(Genbank:NM908947.3,完全基因體序列)之基因體的刺突(S)蛋白之編碼序列。在一些實施態樣中,引入自D614至G614之單一胺基酸變化的代碼變化以匹配當前主要流行病毒株的胺基酸。In one embodiment, the coding sequence of the mRNA vaccine described herein may be based on the spike ( S) protein coding sequence. In some embodiments, a code change of a single amino acid change from D614 to G614 is introduced to match the amino acids of the currently prevalent virus strains.

編碼SARS-CoV-2之結構蛋白之蛋白質、肽、片段或變異體之RNA序列的非限制性實例提供於表2中。 表2. SARS-CoV-2之刺突蛋白的序列 序列標識符 (SEQ ID NO) 描述 序列 類型 7 具有D614G突變之刺突蛋白的編碼區 RNA 20 SARS-CoV-2變異體B.1.351 (南非變異體)刺突蛋白之編碼區 RNA 21 M蛋白之編碼區 RNA 22 N及M蛋白之編碼區 RNA 23 N蛋白之編碼區 RNA 24 信號肽且編碼N及M蛋白之編碼區 RNA 25 編碼S蛋白受體結合域(RBD)之序列 RNA 26 編碼具有突變弗林蛋白酶位點之全長S蛋白的序列 RNA 27 編碼具有D614G突變之刺突蛋白的序列 RNA 28 編碼M蛋白之序列 RNA 29 編碼N及M蛋白之序列 RNA 30 編碼N蛋白之序列 RNA 31 具有信號肽且編碼N及M蛋白之序列 RNA 32 編碼SARS-CoV-2變異體B.1.351 (南非變異體)刺突蛋白之序列 RNA Non-limiting examples of RNA sequences encoding proteins, peptides, fragments or variants of structural proteins of SARS-CoV-2 are provided in Table 2. Table 2. Sequence of SARS-CoV-2 spike protein Sequence identifier (SEQ ID NO) describe sequence type 7 Coding region of spike protein with D614G mutation RNA 20 Coding region of spike protein of SARS-CoV-2 variant B.1.351 (South African variant) RNA twenty one M protein coding region RNA twenty two Coding regions of N and M proteins RNA twenty three Coding region of N protein RNA twenty four Signal peptide and coding region encoding N and M proteins RNA 25 Sequence encoding S protein receptor binding domain (RBD) RNA 26 Sequence encoding full-length S protein with mutated furin site RNA 27 Sequence encoding spike protein with D614G mutation RNA 28 Sequence encoding M protein RNA 29 Sequences encoding N and M proteins RNA 30 Sequence encoding N protein RNA 31 Sequences with signal peptide encoding N and M proteins RNA 32 Sequence encoding the spike protein of SARS-CoV-2 variant B.1.351 (South African variant) RNA

在一些實施態樣中,編碼具有SARS-CoV-2之D614G突變之刺突蛋白的mRNA序列包含SEQ ID NO:7或其片段或變異體之編碼區。In some embodiments, the mRNA sequence encoding the spike protein having the D614G mutation of SARS-CoV-2 includes the coding region of SEQ ID NO: 7 or a fragment or variant thereof.

在一些實施態樣中,編碼具有SARS-CoV-2之D614G突變之刺突蛋白的mRNA序列包含SEQ ID NO:27,或其片段或變異體。In some embodiments, the mRNA sequence encoding the spike protein having the D614G mutation of SARS-CoV-2 includes SEQ ID NO: 27, or a fragment or variant thereof.

在一些實施態樣中,核酸疫苗可包含編碼表1中所列之任一序列或其片段或變異體的區域。核酸疫苗可包含雜交或嵌合區,或模擬物或變異體。在一些實施態樣中,核酸疫苗可包含表3中所列之任一多核苷酸序列。 表3. 用於治療或預防COVID-19之核酸疫苗中之例示性序列 序列標識符 (SEQ ID NO) 描述 序列 類型 8 編碼M蛋白之序列 DNA 9 編碼N及M蛋白之序列 DNA 10 編碼N蛋白之序列 DNA 11 具有信號肽且編碼N及M蛋白之序列 DNA 12 編碼SARS-CoV-2變異體B.1.351 (南非變異體)刺突蛋白之序列 DNA 33 SARS-CoV-2變異體B.1.351 (南非變異體)刺突蛋白之編碼區 DNA 34 M蛋白之編碼區 DNA 35 N及M蛋白之編碼區 DNA 36 N蛋白之編碼區 DNA 37 信號肽且編碼N及M蛋白之編碼區 DNA 38 編碼M蛋白之序列 DNA 39 編碼N及M蛋白之序列 DNA 40 編碼N蛋白之序列 DNA 41 具有信號肽且編碼N及M蛋白之序列 DNA 42 編碼具有D614G突變之刺突蛋白的序列 DNA 43 編碼SARS-CoV-2變異體B.1.351 (南非變異體)刺突蛋白之序列 DNA 50 編碼S蛋白受體結合域(RBD)之序列 DNA 51 編碼具有突變弗林蛋白酶位點之S蛋白的序列 DNA In some embodiments, the nucleic acid vaccine may include a region encoding any of the sequences listed in Table 1, or fragments or variants thereof. Nucleic acid vaccines may contain hybrid or chimeric regions, or mimics or variants. In some embodiments, the nucleic acid vaccine may comprise any polynucleotide sequence listed in Table 3. Table 3. Exemplary sequences in nucleic acid vaccines for treating or preventing COVID-19 Sequence identifier (SEQ ID NO) describe sequence type 8 Sequence encoding M protein DNA 9 Sequences encoding N and M proteins DNA 10 Sequence encoding N protein DNA 11 Sequences with signal peptide encoding N and M proteins DNA 12 Sequence encoding the spike protein of SARS-CoV-2 variant B.1.351 (South African variant) DNA 33 Coding region of spike protein of SARS-CoV-2 variant B.1.351 (South African variant) DNA 34 M protein coding region DNA 35 Coding regions of N and M proteins DNA 36 Coding region of N protein DNA 37 Signal peptide and coding region encoding N and M proteins DNA 38 Sequence encoding M protein DNA 39 Sequences encoding N and M proteins DNA 40 Sequence encoding N protein DNA 41 Sequences with signal peptide encoding N and M proteins DNA 42 Sequence encoding spike protein with D614G mutation DNA 43 Sequence encoding the spike protein of SARS-CoV-2 variant B.1.351 (South African variant) DNA 50 Sequence encoding S protein receptor binding domain (RBD) DNA 51 Sequence encoding S protein with mutated furin site DNA

表1至3中提及之任何序列或其變異體亦可用於本文所述之記憶加強疫苗。Any of the sequences mentioned in Tables 1 to 3, or variants thereof, may also be used in the memory booster vaccines described herein.

在一些實施態樣中,本文所述之核酸疫苗編碼與由表1中之胺基酸序列提供之蛋白質至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、或至少99%一致的蛋白質或其片段或變異體。在兩個或更多個多肽序列之情況下,術語「一致」或百分比「一致性」係指相同的兩個或更多個序列。多肽序列之間的百分比一致性可使用此項技術中已知的演算法,諸如BLAST及CLUSTAL進行。In some embodiments, the nucleic acid vaccine described herein encodes at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, or at least 93% of the protein provided by the amino acid sequence in Table 1. , at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the protein or fragment or variant thereof. In the case of two or more polypeptide sequences, the term "identity" or percent "identity" refers to two or more sequences that are identical. Percent identity between polypeptide sequences can be determined using algorithms known in the art, such as BLAST and CLUSTAL.

SARS-CoV-2蛋白或其片段或變異體之序列可獲自任何來源。在一些實施態樣中,SARS-CoV-2蛋白或其片段或變異體之序列來自能夠感染人類個體或有感染人類個體之風險的菌株。Sequences of SARS-CoV-2 proteins or fragments or variants thereof can be obtained from any source. In some embodiments, the sequence of the SARS-CoV-2 protein or fragment or variant thereof is derived from a strain capable of infecting or at risk of infecting human individuals.

在一些實施態樣中,SARS-CoV-2蛋白或其片段或變異體之序列可經修飾或最佳化(諸如密碼子最佳化)以在特定細胞或宿主生物體中表現。In some embodiments, the sequence of a SARS-CoV-2 protein or fragment or variant thereof may be modified or optimized (such as codon optimization) for expression in a particular cell or host organism.

在一些實施態樣中,本文中所述之核酸疫苗可為多價疫苗。多價疫苗可包括編碼SARS-CoV-2之至少兩種不同的一或多種蛋白質、肽、其片段或變異體之多核苷酸。作為非限制性實例,多核苷酸可編碼相同或不同結構蛋白。作為非限制性實例,多核苷酸可編碼相同結構蛋白,但結構蛋白之不同變異體。In some embodiments, the nucleic acid vaccines described herein can be multivalent vaccines. Multivalent vaccines may include polynucleotides encoding at least two different one or more proteins, peptides, fragments or variants thereof of SARS-CoV-2. As a non-limiting example, the polynucleotides may encode the same or different structural proteins. As a non-limiting example, a polynucleotide may encode the same structural protein, but different variants of the structural protein.

在一些實施態樣中,核酸疫苗編碼SARS-CoV-2之全長S蛋白。在一些實施態樣中,核酸疫苗編碼SARS-CoV-2之S蛋白片段。在一些實施態樣中,核酸疫苗編碼SARS-CoV-2之刺突蛋白之受體結合域(RBD)片段。在一些實施態樣中,核酸疫苗編碼SARS-CoV-2之刺突蛋白之變異體。在一些實施態樣中,核酸疫苗編碼SARS-CoV-2之S蛋白序列(例如全長、片段或變異體),其中S蛋白具有突變之弗林蛋白酶切割位點。S蛋白弗林蛋白酶切割位點突變體將移除或禁用S蛋白中之弗林蛋白酶切割位點(例如在S1與S2邊界之間)。在一些病毒包膜蛋白中,發現破壞弗林蛋白酶切割位點會增強表現及穩定性。在一些實施態樣中,核酸疫苗編碼SARS-CoV-2之S蛋白序列(例如全長、片段或變異體),其中S蛋白包括D614G突變。編碼SARS-CoV-2之S蛋白、其片段或變異體的核酸疫苗亦可包括信號肽及/或至少一個連接子(例如GSG連接子)序列且核酸疫苗之一或多個序列可經密碼子最佳化。In some embodiments, the nucleic acid vaccine encodes the full-length S protein of SARS-CoV-2. In some embodiments, the nucleic acid vaccine encodes an S protein fragment of SARS-CoV-2. In some embodiments, the nucleic acid vaccine encodes a receptor binding domain (RBD) fragment of the spike protein of SARS-CoV-2. In some embodiments, the nucleic acid vaccine encodes a variant of the spike protein of SARS-CoV-2. In some embodiments, the nucleic acid vaccine encodes an S protein sequence (eg, full length, fragment, or variant) of SARS-CoV-2, wherein the S protein has a mutated furin cleavage site. S protein furin cleavage site mutants will remove or disable the furin cleavage site in the S protein (eg, between the S1 and S2 boundaries). In some viral envelope proteins, disruption of the furin cleavage site was found to enhance performance and stability. In some embodiments, the nucleic acid vaccine encodes the S protein sequence (eg, full length, fragment, or variant) of SARS-CoV-2, wherein the S protein includes the D614G mutation. Nucleic acid vaccines encoding the S protein of SARS-CoV-2, fragments or variants thereof may also include a signal peptide and/or at least one linker (such as GSG linker) sequence, and one or more sequences of the nucleic acid vaccine may be encoded by codons optimization.

在一些實施態樣中,核酸疫苗編碼SARS-CoV-2之全長M蛋白。在一些實施態樣中,核酸疫苗編碼SARS-CoV-2之M蛋白片段。在一些實施態樣中,核酸疫苗編碼SARS-CoV-2之M蛋白的拓樸域(例如病毒粒子表面或病毒粒子內區域)。在一些實施態樣中,核酸疫苗編碼SARS-CoV-2之M蛋白的跨膜域。在一些實施態樣中,核酸疫苗編碼SARS-CoV-2之M蛋白(例如全長蛋白或片段)之變異體。編碼SARS-CoV-2之M蛋白、其片段或變異體的核酸疫苗亦可包括信號肽及/或至少一個連接子(例如GSG連接子)序列且核酸疫苗之一或多個序列可經密碼子最佳化。In some embodiments, the nucleic acid vaccine encodes the full-length M protein of SARS-CoV-2. In some embodiments, the nucleic acid vaccine encodes an M protein fragment of SARS-CoV-2. In some embodiments, the nucleic acid vaccine encodes a topological domain of the M protein of SARS-CoV-2 (eg, a region on the virion surface or within the virion). In some embodiments, the nucleic acid vaccine encodes the transmembrane domain of the M protein of SARS-CoV-2. In some embodiments, the nucleic acid vaccine encodes a variant of the M protein of SARS-CoV-2 (eg, full-length protein or fragment). Nucleic acid vaccines encoding the M protein of SARS-CoV-2, fragments or variants thereof may also include a signal peptide and/or at least one linker (such as GSG linker) sequence, and one or more sequences of the nucleic acid vaccine may be codon-coded optimization.

在一些實施態樣中,核酸疫苗編碼SARS-CoV-2之全長N蛋白。在一些實施態樣中,核酸疫苗編碼SARS-CoV-2之N蛋白片段。在一些實施態樣中,核酸疫苗編碼SARS-CoV-2之N蛋白的RNA結合域。在一些實施態樣中,核酸疫苗編碼SARS-CoV-2之N蛋白的二聚域。在一些實施態樣中,核酸疫苗編碼SARS-CoV-2之N蛋白(例如全長蛋白或片段)之變異體。編碼SARS-CoV-2之N蛋白、其片段或變異體的核酸疫苗亦可包括信號肽及/或至少一個連接子(例如GSG連接子)序列且核酸疫苗之一或多個序列可經密碼子最佳化。In some embodiments, the nucleic acid vaccine encodes the full-length N protein of SARS-CoV-2. In some embodiments, the nucleic acid vaccine encodes an N protein fragment of SARS-CoV-2. In some embodiments, the nucleic acid vaccine encodes the RNA binding domain of the N protein of SARS-CoV-2. In some embodiments, the nucleic acid vaccine encodes the dimerization domain of the N protein of SARS-CoV-2. In some embodiments, the nucleic acid vaccine encodes a variant of the N protein of SARS-CoV-2 (eg, full-length protein or fragment). Nucleic acid vaccines encoding the N protein of SARS-CoV-2, fragments or variants thereof may also include a signal peptide and/or at least one linker (such as GSG linker) sequence, and one or more sequences of the nucleic acid vaccine may be codon-coded optimization.

在一些實施態樣中,核酸疫苗編碼SARS-CoV-2之全長E蛋白。在一些實施態樣中,核酸疫苗編碼SARS-CoV-2之E蛋白片段。在一些實施態樣中,核酸疫苗編碼SARS-CoV-2之E蛋白的拓樸域(例如病毒粒子表面或病毒粒子內區域)。在一些實施態樣中,核酸疫苗編碼SARS-CoV-2之E蛋白的跨膜域。在一些實施態樣中,核酸疫苗編碼SARS-CoV-2之E蛋白(例如全長蛋白或片段)之變異體。編碼SARS-CoV-2之E蛋白、其片段或變異體的核酸疫苗亦可包括信號肽及/或至少一個連接子(例如GSG連接子)序列且核酸疫苗之一或多個序列可經密碼子最佳化。In some embodiments, the nucleic acid vaccine encodes the full-length E protein of SARS-CoV-2. In some embodiments, the nucleic acid vaccine encodes an E protein fragment of SARS-CoV-2. In some embodiments, the nucleic acid vaccine encodes a topological domain of the E protein of SARS-CoV-2 (eg, a region on the virion surface or within the virion). In some embodiments, the nucleic acid vaccine encodes the transmembrane domain of the E protein of SARS-CoV-2. In some embodiments, the nucleic acid vaccine encodes a variant of the E protein of SARS-CoV-2 (eg, full-length protein or fragment). Nucleic acid vaccines encoding the E protein of SARS-CoV-2, fragments or variants thereof may also include a signal peptide and/or at least one linker (such as a GSG linker) sequence, and one or more sequences of the nucleic acid vaccine may be encoded by codons optimization.

在一些實施態樣中,核酸疫苗編碼SARS-CoV-2之兩種不同結構蛋白。在一些實施態樣中,核酸疫苗編碼SARS-CoV-2之S蛋白、其片段或變異體及SARS-CoV-2之M蛋白、其片段或變異體。在一些實施態樣中,核酸疫苗編碼SARS-CoV-2之S蛋白、其片段或變異體及SARS-CoV-2之N蛋白、其片段或變異體。在一些實施態樣中,核酸疫苗編碼SARS-CoV-2之S蛋白、其片段或變異體及SARS-CoV-2之E蛋白、其片段或變異體。在一些實施態樣中,核酸疫苗編碼SARS-CoV-2之M蛋白、其片段或變異體及SARS-CoV-2之N蛋白、其片段或變異體。在一些實施態樣中,核酸疫苗編碼SARS-CoV-2之M蛋白、其片段或變異體及SARS-CoV-2之E蛋白、其片段或變異體。在一些實施態樣中,核酸疫苗編碼SARS-CoV-2之N蛋白、其片段或變異體及SARS-CoV-2之E蛋白、其片段或變異體。編碼SARS-CoV-2之兩種不同結構蛋白、其片段或變異體的核酸疫苗亦可包括信號肽及/或至少一個連接子(例如GSG連接子)序列且核酸疫苗之一或多個序列可經密碼子最佳化。在一些實施態樣中,編碼核酸疫苗之SARS-CoV-2之兩種不同結構蛋白或其片段或變異體的序列構築為單一多核苷酸。In some embodiments, the nucleic acid vaccine encodes two different structural proteins of SARS-CoV-2. In some embodiments, the nucleic acid vaccine encodes the S protein of SARS-CoV-2, fragments or variants thereof and the M protein of SARS-CoV-2, fragments or variants thereof. In some embodiments, the nucleic acid vaccine encodes the S protein of SARS-CoV-2, fragments or variants thereof and the N protein of SARS-CoV-2, fragments or variants thereof. In some embodiments, the nucleic acid vaccine encodes the S protein of SARS-CoV-2, fragments or variants thereof and the E protein of SARS-CoV-2, fragments or variants thereof. In some embodiments, the nucleic acid vaccine encodes the M protein of SARS-CoV-2, fragments or variants thereof and the N protein of SARS-CoV-2, fragments or variants thereof. In some embodiments, the nucleic acid vaccine encodes the M protein of SARS-CoV-2, fragments or variants thereof and the E protein of SARS-CoV-2, fragments or variants thereof. In some embodiments, the nucleic acid vaccine encodes the N protein of SARS-CoV-2, fragments or variants thereof and the E protein of SARS-CoV-2, fragments or variants thereof. Nucleic acid vaccines encoding two different structural proteins of SARS-CoV-2, fragments or variants thereof may also include signal peptides and/or at least one linker (such as GSG linker) sequence, and one or more sequences of the nucleic acid vaccine may Codon optimized. In some embodiments, the sequences encoding two different structural proteins of SARS-CoV-2 or fragments or variants thereof of the nucleic acid vaccine are constructed as a single polynucleotide.

在一些實施態樣中,核酸疫苗編碼SARS-CoV-2之結構蛋白片段或其變異體之至少三種不同序列。在一些實施態樣中,核酸疫苗編碼SARS-CoV-2之兩種不同S蛋白、片段或變異體序列及SARS-CoV-2之M蛋白、片段或變異體序列。在一些實施態樣中,核酸疫苗編碼SARS-CoV-2之兩種不同S蛋白、片段或變異體序列及SARS-CoV-2之N蛋白、片段或變異體序列。在一些實施態樣中,核酸疫苗編碼SARS-CoV-2之兩種不同S蛋白、片段或變異體序列及SARS-CoV-2之E蛋白、片段或變異體序列。在一些實施態樣中,核酸疫苗編碼SARS-CoV-2之兩種不同M蛋白、片段或變異體序列及SARS-CoV-2之S蛋白、片段或變異體序列。在一些實施態樣中,核酸疫苗編碼SARS-CoV-2之兩種不同N蛋白、片段或變異體序列及SARS-CoV-2之S蛋白、片段或變異體序列。在一些實施態樣中,核酸疫苗編碼SARS-CoV-2之兩種不同E蛋白、片段或變異體序列及SARS-CoV-2之S蛋白、片段或變異體序列。在一些實施態樣中,核酸疫苗編碼SARS-CoV-2之兩種不同M蛋白、片段或變異體序列及SARS-CoV-2之N蛋白、片段或變異體序列。在一些實施態樣中,核酸疫苗編碼SARS-CoV-2之兩種不同M蛋白、片段或變異體序列及SARS-CoV-2之E蛋白、片段或變異體序列。在一些實施態樣中,核酸疫苗編碼SARS-CoV-2之兩種不同N蛋白、片段或變異體序列及SARS-CoV-2之M蛋白、片段或變異體序列。在一些實施態樣中,核酸疫苗編碼SARS-CoV-2之兩種不同N蛋白、片段或變異體序列及SARS-CoV-2之E蛋白、片段或變異體序列。在一些實施態樣中,核酸疫苗編碼SARS-CoV-2之兩種不同E蛋白、片段或變異體序列及SARS-CoV-2之N蛋白、片段或變異體序列。在一些實施態樣中,核酸疫苗編碼SARS-CoV-2之S蛋白、片段或變異體序列,SARS-CoV-2之M蛋白、片段或變異體序列,及SARS-CoV-2之N蛋白、片段或變異體序列。在一些實施態樣中,核酸疫苗編碼SARS-CoV-2之S蛋白、片段或變異體序列,SARS-CoV-2之M蛋白、片段或變異體序列,及SARS-CoV-2之E蛋白、片段或變異體序列。在一些實施態樣中,核酸疫苗編碼SARS-CoV-2之S蛋白、片段或變異體序列,SARS-CoV-2之N蛋白、片段或變異體序列,及SARS-CoV-2之E蛋白、片段或變異體序列。在一些實施態樣中,核酸疫苗編碼SARS-CoV-2之M蛋白、片段或變異體序列,SARS-CoV-2之N蛋白、片段或變異體序列,及SARS-CoV-2之E蛋白、片段或變異體序列。編碼SARS-CoV-2之結構蛋白片段或其變異體之至少三個不同序列的核酸疫苗亦可包括信號肽及/或至少一個連接子(例如GSG連接子)序列,且核酸疫苗之一或多個序列可經密碼子最佳化。 SARS-CoV-2變異體 In some embodiments, the nucleic acid vaccine encodes at least three different sequences of structural protein fragments of SARS-CoV-2 or variants thereof. In some embodiments, the nucleic acid vaccine encodes two different S protein, fragment or variant sequences of SARS-CoV-2 and M protein, fragment or variant sequence of SARS-CoV-2. In some embodiments, the nucleic acid vaccine encodes two different S protein, fragment or variant sequences of SARS-CoV-2 and N protein, fragment or variant sequence of SARS-CoV-2. In some embodiments, the nucleic acid vaccine encodes two different S protein, fragment or variant sequences of SARS-CoV-2 and E protein, fragment or variant sequence of SARS-CoV-2. In some embodiments, the nucleic acid vaccine encodes two different M protein, fragment or variant sequences of SARS-CoV-2 and S protein, fragment or variant sequence of SARS-CoV-2. In some embodiments, the nucleic acid vaccine encodes two different N protein, fragment or variant sequences of SARS-CoV-2 and S protein, fragment or variant sequence of SARS-CoV-2. In some embodiments, the nucleic acid vaccine encodes two different E protein, fragment or variant sequences of SARS-CoV-2 and S protein, fragment or variant sequence of SARS-CoV-2. In some embodiments, the nucleic acid vaccine encodes two different M protein, fragment or variant sequences of SARS-CoV-2 and N protein, fragment or variant sequence of SARS-CoV-2. In some embodiments, the nucleic acid vaccine encodes two different M protein, fragment or variant sequences of SARS-CoV-2 and E protein, fragment or variant sequence of SARS-CoV-2. In some embodiments, the nucleic acid vaccine encodes two different N protein, fragment or variant sequences of SARS-CoV-2 and M protein, fragment or variant sequence of SARS-CoV-2. In some embodiments, the nucleic acid vaccine encodes two different N protein, fragment or variant sequences of SARS-CoV-2 and E protein, fragment or variant sequence of SARS-CoV-2. In some embodiments, the nucleic acid vaccine encodes two different E protein, fragment or variant sequences of SARS-CoV-2 and N protein, fragment or variant sequence of SARS-CoV-2. In some embodiments, the nucleic acid vaccine encodes the S protein, fragment or variant sequence of SARS-CoV-2, the M protein, fragment or variant sequence of SARS-CoV-2, and the N protein of SARS-CoV-2, Fragment or variant sequence. In some embodiments, the nucleic acid vaccine encodes the S protein, fragment or variant sequence of SARS-CoV-2, the M protein, fragment or variant sequence of SARS-CoV-2, and the E protein of SARS-CoV-2, Fragment or variant sequence. In some embodiments, the nucleic acid vaccine encodes the S protein, fragment or variant sequence of SARS-CoV-2, the N protein, fragment or variant sequence of SARS-CoV-2, and the E protein of SARS-CoV-2, Fragment or variant sequence. In some embodiments, the nucleic acid vaccine encodes the M protein, fragment or variant sequence of SARS-CoV-2, the N protein, fragment or variant sequence of SARS-CoV-2, and the E protein of SARS-CoV-2, Fragment or variant sequence. Nucleic acid vaccines encoding at least three different sequences of structural protein fragments of SARS-CoV-2 or variants thereof may also include a signal peptide and/or at least one linker (such as GSG linker) sequence, and one or more of the nucleic acid vaccines Sequences can be codon optimized. SARS-CoV-2 variants

SARS-CoV-2係大冠狀病毒科的成員。已在全球範圍內鑑定出SARS-CoV-2之多種變異體(有時稱為「病毒株」或「譜系」)。本說明書中所用之SARS-CoV-2變異體的命名法與新病毒譜系的PANGO命名法一致(Rambaut, Andrew等人,A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nature microbiology, 2020, 5:: 1403-1407,將其內容以其全文引用方式併入本文中)。可使用Nextstrain之SARS-CoV-2分析使用者介面(nextstrain.org/ncov/global)在線訪問與PANGO SARS-CoV-2譜系或變異體相關的接近即時資料。 SARS-CoV-2 is a member of the Macroviridae family. Multiple variants (sometimes called “strains” or “lineages”) of SARS-CoV-2 have been identified globally. The nomenclature of SARS-CoV-2 variants used in this specification is consistent with the PANGO nomenclature of new virus lineages (Rambaut, Andrew et al., A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nature microbiology , 2020, 5:: 1403-1407, the contents of which are incorporated herein by reference in their entirety). Near-real-time data related to PANGO SARS-CoV-2 lineages or variants can be accessed online using Nextstrain’s SARS-CoV-2 Analysis User Interface (nextstrain.org/ncov/global).

截至本揭露,已鑑定出SARS-CoV-2之多種PANGO譜系變異體,包括以下(括號中的數字代表每個提交的PANGO譜系之病例數: As of this disclosure, multiple PANGO lineage variants of SARS-CoV-2 have been identified, including the following (numbers in parentheses represent the number of cases for each submitted PANGO lineage:

自流行病學角度來看,變異體通常分類為所關注之變異體(VOC)、關注變異體(VOC)及後果嚴重的變異體(VOC)。有關將特定變異體分類為VOI、VOC或VOHC的相關資訊,參見例如cdc.gov/coronavirus/2019-ncov/ cases-updates/variant-surveillance/variant-info.html。From an epidemiological perspective, variants are usually classified into variants of concern (VOC), variants of concern (VOC) and variants with serious consequences (VOC). For information on classifying specific variants as VOI, VOC, or VOHC, see, for example, cdc.gov/coronavirus/2019-ncov/cases-updates/variant-surveillance/variant-info.html.

VOI可具有與受體結合的變化、針對先前感染或疫苗接種產生之抗體的中和作用降低、治療功效降低、潛在診斷影響或傳播性或疾病嚴重程度的預測增加相關的某些遺傳標記。在一些情況下,VOI具有預測會影響傳播、診斷、治療或免疫逃逸,或導致病例比例增加或獨特的爆發群的特定遺傳標記。SARS-CoV-2 VOI包括例如PANGO譜系B.1.1.7 (α)、B.1.351 (β);B.1.427/429 (ε);B.1.526 (ι);B.1.525 (η);B.1.617.1 (κ);B.1.617.2 (δ);B.1.621 (μ);C37 (λ);P.1 (γ)及P.2。VOIs may have certain genetic markers associated with changes in receptor binding, reduced neutralization of antibodies generated in response to previous infection or vaccination, reduced therapeutic efficacy, potential diagnostic impact, or predicted increased transmissibility or disease severity. In some cases, VOIs have specific genetic markers predicted to affect transmission, diagnosis, treatment, or immune evasion, or lead to increased proportions of cases or unique outbreak clusters. SARS-CoV-2 VOI includes, for example, PANGO lineage B.1.1.7 (α), B.1.351 (β); B.1.427/429 (ε); B.1.526 (ι); B.1.525 (η); B .1.617.1 (κ); B.1.617.2 (δ); B.1.621 (μ); C37 (λ); P.1 (γ) and P.2.

VOC可包括有證據表明傳播性增加、疾病更嚴重(住院或死亡增加)、先前感染或疫苗接種期間產生之抗體之中和作用顯著降低、治療或疫苗之有效性降低或診斷檢測失敗的變異體。在某些情況下,VOC具有影響診斷、治療及疫苗的證據;對診斷測試目標的廣泛干擾;對一或多類療法之抗性顯著增加的證據;先前感染或疫苗接種期間產生之抗體之中和作用顯著降低的證據;疫苗誘導之嚴重疾病保護降低的證據;傳播性增加的證據;或疾病嚴重程度增加的證據。SARS-CoV-2 VOC可包括例如PANGO譜系B.1.1.7 (α)、P.1 (γ)、B.1.351 (β)、B.1.427及B.1.429 (ε)、B.1.526 (ι)、B.1.525 (η)、B.1.617.1 (κ)、B.1.617.2 (δ)、B.1.621 (μ)及C37 (λ)。VOCs can include variants with evidence of increased transmissibility, more severe disease (increased hospitalizations or deaths), significantly reduced neutralization by antibodies generated during previous infection or vaccination, reduced effectiveness of treatments or vaccines, or failed diagnostic tests . In some cases, VOCs have evidence of impact on diagnostics, treatments, and vaccines; widespread interference with diagnostic test targets; evidence of significant increased resistance to one or more classes of therapy; evidence of increased resistance to one or more classes of therapy; presence of antibodies generated during previous infection or vaccination and evidence of a significant reduction in efficacy; evidence of reduced vaccine-induced protection against severe disease; evidence of increased transmissibility; or evidence of increased disease severity. SARS-CoV-2 VOCs may include, for example, PANGO lineages B.1.1.7 (α), P.1 (γ), B.1.351 (β), B.1.427 and B.1.429 (ε), B.1.526 (ι ), B.1.525 (η), B.1.617.1 (κ), B.1.617.2 (δ), B.1.621 (μ) and C37 (λ).

VOHC可能有明確的證據表明預防措施或醫療對策(MCM)相對於先前流行的變異體已經顯著降低了有效性。在某些情況下,VOHC對醫療對策(MCM)產生影響,證明診斷失敗,有證據表明疫苗有效性顯著降低、疫苗突破病例數量高得不成比例、疫苗誘導之嚴重疾病保護極低、對多種緊急使用授權(EUA)或批准之治療劑的敏感性顯著降低、臨床疾病更嚴重及住院率增加。VOHC may have clear evidence that preventive measures or medical countermeasures (MCMs) have been significantly reduced in effectiveness relative to previously circulating variants. In some cases, VOHC has impacted medical countermeasures (MCM), demonstrating diagnostic failure, with evidence of significantly reduced vaccine effectiveness, a disproportionately high number of vaccine breakthrough cases, minimal protection against vaccine-induced severe disease, and risk of multiple emergencies. Significantly reduced sensitivity, more severe clinical disease, and increased hospitalization rates for EUA or approved therapeutics.

本文所揭示之核酸疫苗可編碼本文所述之任一SARS-CoV-2變異體的一或多種多肽,例如一或多種蛋白質、肽、其片段或變異體。在一些實施態樣中,本文所揭示之核酸疫苗可編碼SARS-CoV-2 VOI、VOC及/或VOHC之一或多種多肽,例如一或多種蛋白質、肽、其片段或變異體。在一些實施態樣中,核酸疫苗編碼包含稱為D614G之特異性突變的多肽。The nucleic acid vaccines disclosed herein may encode one or more polypeptides of any SARS-CoV-2 variant described herein, such as one or more proteins, peptides, fragments or variants thereof. In some embodiments, the nucleic acid vaccines disclosed herein may encode one or more polypeptides of SARS-CoV-2 VOI, VOC and/or VOHC, such as one or more proteins, peptides, fragments or variants thereof. In some embodiments, the nucleic acid vaccine encodes a polypeptide comprising a specific mutation known as D614G.

在一些實施態樣中,核酸疫苗編碼一或多種多肽,該一或多種多肽包含存在於B.1.526 SARS-CoV-2變異體(亦即ι變異體)之一或多種突變或取代,諸如以下之一或多者:刺突蛋白取代L5F、T95I、D253G、S477N、E484K、D614G及/或A701V;ORF1a取代L3201P、T265I及/或Δ3675/3677;ORF1b取代P314L及/或Q1011H;ORF3a取代P42L、Q57H;ORF8取代T11I;及/或5'UTR取代R81C。In some embodiments, the nucleic acid vaccine encodes one or more polypeptides that comprise one or more mutations or substitutions present in the B.1.526 SARS-CoV-2 variant (i.e., iota variant), such as the following One or more: spike protein replaces L5F, T95I, D253G, S477N, E484K, D614G and/or A701V; ORF1a replaces L3201P, T265I and/or Δ3675/3677; ORF1b replaces P314L and/or Q1011H; ORF3a replaces P42L, Q57H; ORF8 replaces T11I; and/or 5'UTR replaces R81C.

在一些實施態樣中,核酸疫苗編碼一或多種多肽,該一或多種多肽包含存在於B.1.525 SARS-CoV-2變異體(亦即η變異體)之一或多種突變或取代,諸如以下之一或多者:刺突蛋白取代A67V、Δ69/70、Δ144、E484K、D614G、Q677H及/或F888L;ORF1b取代P314F;ORF1a取代T2007I;M蛋白取代I82T;N蛋白取代A12G及/或T205I;及/或5'UTR取代R81C。In some embodiments, the nucleic acid vaccine encodes one or more polypeptides that comprise one or more mutations or substitutions present in the B.1.525 SARS-CoV-2 variant (i.e., n variant), such as the following One or more: spike protein replaces A67V, Δ69/70, Δ144, E484K, D614G, Q677H and/or F888L; ORF1b replaces P314F; ORF1a replaces T2007I; M protein replaces I82T; N protein replaces A12G and/or T205I; and/or 5'UTR replaces R81C.

在一些實施態樣中,核酸疫苗編碼一或多種多肽,該一或多種多肽包含存在於P.2 SARS-CoV-2變異體之一或多種突變或取代,諸如以下之一或多者:刺突蛋白取代E484K、D614G及/或V1176F;ORF1a取代L3468V及/或L3930F;ORF1b取代P314L;N蛋白質取代A119S、R203K、G204R及/或M234I;5'UTR取代R81C。In some embodiments, the nucleic acid vaccine encodes one or more polypeptides that comprise one or more mutations or substitutions present in P.2 SARS-CoV-2 variants, such as one or more of the following: The spike protein replaces E484K, D614G and/or V1176F; ORF1a replaces L3468V and/or L3930F; ORF1b replaces P314L; N protein replaces A119S, R203K, G204R and/or M234I; 5'UTR replaces R81C.

在一些實施態樣中,核酸疫苗編碼一或多種多肽,該一或多種多肽包含存在於B.1.1.7 SARS-CoV-2變異體(亦即α變異體)之一或多種突變或取代,諸如以下之一或多者:刺突蛋白取代Δ69/70、Δ144Y、E484K、S494P、N501Y、A570D、D614G及/或P681H。In some embodiments, the nucleic acid vaccine encodes one or more polypeptides that comprise one or more mutations or substitutions present in the B.1.1.7 SARS-CoV-2 variant (i.e., the alpha variant), Such as one or more of the following: spike protein substitutions Δ69/70, Δ144Y, E484K, S494P, N501Y, A570D, D614G and/or P681H.

在一些實施態樣中,核酸疫苗編碼一或多種多肽,該一或多種多肽包含存在於P.1 SARS-CoV-2變異體(亦即γ變異體)之一或多種突變或取代,諸如以下之一或多者:刺突蛋白取代K417N/T、E484K、N501Y及/或D614G。In some embodiments, the nucleic acid vaccine encodes one or more polypeptides that comprise one or more mutations or substitutions present in the P.1 SARS-CoV-2 variants (i.e., gamma variants), such as the following One or more: Spike protein substitutions K417N/T, E484K, N501Y and/or D614G.

在一些實施態樣中,核酸疫苗編碼一或多種多肽,該一或多種多肽包含存在於B.1.351 SARS-CoV-2變異體(亦即β變異體)之一或多種突變或取代,諸如以下之一或多者:刺突蛋白取代K417N、E484K、N501Y及/或D614G。B.1.351變異體亦稱為南非變異體,因為其首先源於南非。In some embodiments, the nucleic acid vaccine encodes one or more polypeptides that comprise one or more mutations or substitutions present in the B.1.351 SARS-CoV-2 variant (i.e., the beta variant), such as the following One or more: Spike protein substitution K417N, E484K, N501Y and/or D614G. The B.1.351 variant is also known as the South African variant because it first originated in South Africa.

在一些實施態樣中,核酸疫苗編碼一或多種多肽,該一或多種多肽包含存在於B.1.427 SARS-CoV-2變異體之一或多種突變或取代,諸如以下之一或多者:刺突蛋白取代L452R及/或D614G。In some embodiments, the nucleic acid vaccine encodes one or more polypeptides that comprise one or more mutations or substitutions present in B.1.427 SARS-CoV-2 variants, such as one or more of the following: Protein replaces L452R and/or D614G.

在一些實施態樣中,核酸疫苗編碼一或多種多肽,該一或多種多肽包含存在於B.1.429 SARS-CoV-2變異體之一或多種突變或取代,諸如以下之一或多者:刺突蛋白取代S13I、W152C、L452R及/或D614G。In some embodiments, the nucleic acid vaccine encodes one or more polypeptides that comprise one or more mutations or substitutions present in B.1.429 SARS-CoV-2 variants, such as one or more of the following: The spike protein replaces S13I, W152C, L452R and/or D614G.

在一些實施態樣中,核酸疫苗編碼一或多種多肽,該一或多種多肽包含存在於B.1.617.1 SARS-CoV-2變異體之一或多種突變或取代,諸如以下之一或多者:刺突蛋白取代G142D、E154K、L452R、E484Q、D614G、P681R及/或Q1071H。In some embodiments, the nucleic acid vaccine encodes one or more polypeptides that comprise one or more mutations or substitutions present in the B.1.617.1 SARS-CoV-2 variant, such as one or more of the following : Spike protein replaces G142D, E154K, L452R, E484Q, D614G, P681R and/or Q1071H.

在一些實施態樣中,核酸疫苗編碼一或多種多肽,該一或多種多肽包含存在於B.1.617.2 SARS-CoV-2變異體(亦即δ變異體)之一或多種突變或取代,諸如以下之一或多者:刺突蛋白取代T19R、T95I、G142D、Δ156/157、R158G、L452R、T478K、D614G、P681R及/或D950N。在其他實施態樣中,核酸疫苗編碼一或多種多肽,該一或多種多肽包含存在於B.1.617.2 SARS-CoV-2變異體之一或多種突變或取代,諸如以下之一或多者:刺突蛋白取代V70F、A222V、W258L及/或K417N。In some embodiments, the nucleic acid vaccine encodes one or more polypeptides that comprise one or more mutations or substitutions present in the B.1.617.2 SARS-CoV-2 variant (i.e., the delta variant), Such as one or more of the following: spike protein substitutions T19R, T95I, G142D, Δ156/157, R158G, L452R, T478K, D614G, P681R and/or D950N. In other embodiments, the nucleic acid vaccine encodes one or more polypeptides that comprise one or more mutations or substitutions present in the B.1.617.2 SARS-CoV-2 variant, such as one or more of the following : Spike protein replaces V70F, A222V, W258L and/or K417N.

在一些實施態樣中,核酸疫苗編碼一或多種多肽,該一或多種多肽包含存在於B.1.617.3 SARS-CoV-2變異體之一或多種突變或取代,諸如以下之一或多者:刺突蛋白取代T19R、G142D、L452R、E484Q、D614G、P681R及/或D950N。In some embodiments, the nucleic acid vaccine encodes one or more polypeptides that comprise one or more mutations or substitutions present in the B.1.617.3 SARS-CoV-2 variant, such as one or more of the following : Spike protein replaces T19R, G142D, L452R, E484Q, D614G, P681R and/or D950N.

在一些實施態樣中,核酸疫苗編碼包含選自以下之一或多種取代及/或缺失的SARS-CoV-2刺突蛋白,例如蛋白質、肽、片段或變異體:A570D、A67V、A701V、D253G、D614G、E484K、F888L、K417N/T、L452R、L5F、N501Y、P681H、Q677H、S13I、S477N、S494P、T95I、V1176F、W152C、Δ144、Δ144Y及Δ69/70。In some embodiments, the nucleic acid vaccine encodes a SARS-CoV-2 spike protein, such as a protein, peptide, fragment or variant selected from one or more substitutions and/or deletions selected from the following: A570D, A67V, A701V, D253G , D614G, E484K, F888L, K417N/T, L452R, L5F, N501Y, P681H, Q677H, S13I, S477N, S494P, T95I, V1176F, W152C, Δ144, Δ144Y and Δ69/70.

在一些實施態樣中,核酸疫苗編碼包含選自以下之一或多種取代及/或缺失的SARS-CoV-2 ORF1a:L3201P、T265I、T2007I、L3468V、Δ3675-3677及L3930F。In some embodiments, the nucleic acid vaccine encodes SARS-CoV-2 ORF1a selected from one or more substitutions and/or deletions: L3201P, T265I, T2007I, L3468V, Δ3675-3677, and L3930F.

在一些實施態樣中,核酸疫苗編碼包含選自以下之一或多種取代的SARS-CoV-2 ORF1b:P314F、P314L及Q1011H。In some embodiments, the nucleic acid vaccine encodes a SARS-CoV-2 ORF1b selected from one or more substitutions: P314F, P314L, and Q1011H.

在一些實施態樣中,核酸疫苗編碼包含選自以下之一或多種取代的SARS-CoV-2 ORF3a:P42L及Q57H。In some embodiments, the nucleic acid vaccine encodes SARS-CoV-2 ORF3a selected from one or more substitutions: P42L and Q57H.

在一些實施態樣中,核酸疫苗編碼包含T11I取代之SARS-CoV-2 ORF8。In some embodiments, the nucleic acid vaccine encodes a T11I substituted SARS-CoV-2 ORF8.

在一些實施態樣中,核酸疫苗編碼包含R81C取代之SARS-CoV-2 5'UTR。In some embodiments, the nucleic acid vaccine encodes an R81C substituted SARS-CoV-2 5'UTR.

在一些實施態樣中,核酸疫苗編碼包含I82T取代之SARS-CoV-2 M蛋白,例如蛋白質、肽、片段或變異體。In some embodiments, the nucleic acid vaccine encodes a SARS-CoV-2 M protein including an I82T substitution, such as a protein, peptide, fragment or variant.

在一些實施態樣中,核酸疫苗編碼包含選自以下之一或多種取代的SARS-CoV-2 N蛋白,例如蛋白質、肽、片段或變異體:A12G、A119S、R203K、G204R、T205I及M234I。 核酸疫苗之組分 In some embodiments, the nucleic acid vaccine encodes a SARS-CoV-2 N protein, such as a protein, peptide, fragment or variant, selected from one or more of the following substitutions: A12G, A119S, R203K, G204R, T205I and M234I. Components of nucleic acid vaccines

在一些實施態樣中,本文所述之多核苷酸編碼至少一種所關注多肽,例如SARS-CoV-2之一或多種蛋白質、肽、其片段或變異體。本揭露之SARS-CoV-2之蛋白質、肽、其片段或變異體可為野生型,其中其源自感染物或經修飾(例如結構蛋白或其片段及變異體為工程化、設計或人工的)。其可具有本文所述之特徵的任何組合。In some embodiments, a polynucleotide described herein encodes at least one polypeptide of interest, such as one or more proteins, peptides, fragments or variants thereof of SARS-CoV-2. The SARS-CoV-2 proteins, peptides, fragments or variants thereof of the present disclosure may be wild-type, wherein they are derived from infectious agents or modified (for example, the structural proteins or fragments and variants thereof are engineered, designed or artificial ). It may have any combination of features described herein.

在一些實施態樣中,本文所述之核酸疫苗之多核苷酸編碼一或多種所關注肽或多肽。此類肽或多肽為SARS-CoV-2之結構蛋白或其片段或變異體,用於預防、緩解及/或治療COVID-19。作為非限制性實例,此等肽或多肽可充當抗原或抗原分子(亦較佳作為免疫原性分子)。術語「核酸」就其最廣義而言,包括任何包含核苷酸聚合物之化合物及/或物質。此等聚合物通常稱為多核苷酸。In some embodiments, the polynucleotides of the nucleic acid vaccines described herein encode one or more peptides or polypeptides of interest. Such peptides or polypeptides are structural proteins of SARS-CoV-2 or fragments or variants thereof, and are used to prevent, mitigate and/or treat COVID-19. As a non-limiting example, such peptides or polypeptides may serve as antigens or antigenic molecules (also preferably as immunogenic molecules). The term "nucleic acid" in its broadest sense includes any compound and/or substance containing a polymer of nucleotides. Such polymers are often called polynucleotides.

例示性核酸或多核苷酸包括但不限於核糖核酸(RNA)、去氧核糖核酸(DNA)、蘇糖核酸(TNA)、二醇核酸(GNA)、肽核酸(PNA)、鎖核酸(LNA,包括具有β-D-核糖組態之LNA、具有a-L-核糖組態之α-LNA (LNA之非對映異構體)、具有2'-胺基官能化之2'-胺基-LNA及具有2'-胺基官能化之2'-胺基-a-LNA)、乙烯核酸(ENA)、環己烯基核酸(CeNA)或其混雜物或組合。Exemplary nucleic acids or polynucleotides include, but are not limited to, ribonucleic acid (RNA), deoxyribonucleic acid (DNA), threose nucleic acid (TNA), glycol nucleic acid (GNA), peptide nucleic acid (PNA), locked nucleic acid (LNA), Including LNA with β-D-ribose configuration, α-LNA with a-L-ribose configuration (diastereomers of LNA), 2'-amino-LNA with 2'-amino functionalization, and 2'-amino-a-LNA with 2'-amino functionalization), ethylene nucleic acid (ENA), cyclohexenyl nucleic acid (CeNA), or hybrids or combinations thereof.

在一些實施態樣中,活體外轉錄(IVT)酶合成方法可用於製備編碼本揭露之SARS-CoV-2之一或多種蛋白質、肽、其片段或變異體的線性多核苷酸(稱為「IVT多核苷酸」)。In some embodiments, in vitro transcription (IVT) enzyme synthesis methods can be used to prepare linear polynucleotides (referred to as " IVT polynucleotide").

在一些實施態樣中,核酸疫苗可包括「嵌合多核苷酸」,其具有大小及/或編碼蛋白質(例如SARS-CoV-2之結構蛋白質)不同的部分或區域。「嵌合體」為具有兩個或更多個不協調或異質部分或區域的實體。如本文所用,多核苷酸之「部分」或「區域」定義為多核苷酸中任何小於多核苷酸之整個長度的部分。In some embodiments, nucleic acid vaccines may include "chimeric polynucleotides" that have portions or regions that differ in size and/or encode proteins (eg, structural proteins of SARS-CoV-2). A "chimera" is an entity having two or more incongruous or heterogeneous parts or regions. As used herein, a "portion" or "region" of a polynucleotide is defined as any portion of a polynucleotide that is less than the entire length of the polynucleotide.

在一些實施態樣中,核酸疫苗包括長度為約30至約100,000個核苷酸的多核苷酸(例如30至50、30至100、30至250、30至500、30至1,000、30至1,500、30至3,000、30至5,000、30至7,000、30至10,000、30至25,000、30至50,000、30至70,000、100至250、100至500、100至1,000、100至1,500、100至3,000、100至5,000、100至7,000、100至10,000、100至25,000、100至50,000、100至70,000、100至100,000、500至1,000、500至1,500、500至2,000、500至3,000、500至5,000、500至7,000、500至10,000、500至25,000、500至50,000、500至70,000、500至100,000、1,000至1,500、1,000至2,000、1,000至3,000、1,000至5,000、1,000至7,000、1,000至10,000、1,000至25,000、1,000至50,000、1,000至70,000、1,000至100,000、1,500至3,000、1,500至5,000、1,500至7,000、1,500至10,000、1,500至25,000、1,500至50,000、1,500至70,000、1,500至100,000、2,000至3,000、2,000至5,000、2,000至7,000、2,000至10,000、2,000至25,000、2,000至50,000、2,000至70,000、及2,000至100,000個核苷酸)。In some embodiments, nucleic acid vaccines include polynucleotides of about 30 to about 100,000 nucleotides in length (e.g., 30 to 50, 30 to 100, 30 to 250, 30 to 500, 30 to 1,000, 30 to 1,500 , 30 to 3,000, 30 to 5,000, 30 to 7,000, 30 to 10,000, 30 to 25,000, 30 to 50,000, 30 to 70,000, 100 to 250, 100 to 500, 100 to 1,000, 100 to 1,500, 100 to 3,000, 100 to 5,000, 100 to 7,000, 100 to 10,000, 100 to 25,000, 100 to 50,000, 100 to 70,000, 100 to 100,000, 500 to 1,000, 500 to 1,500, 500 to 2,000, 500 to 3,000, 500 to 5,000, 5 00 to 7,000 , 500 to 10,000, 500 to 25,000, 500 to 50,000, 500 to 70,000, 500 to 100,000, 1,000 to 1,500, 1,000 to 2,000, 1,000 to 3,000, 1,000 to 5,000, 1,000 to 7,000, 1,000 to 10,000, 1,000 to 25,000, 1,000 to 50,000, 1,000 to 70,000, 1,000 to 100,000, 1,500 to 3,000, 1,500 to 5,000, 1,500 to 7,000, 1,500 to 10,000, 1,500 to 25,000, 1,500 to 50,000, 1,500 to 70,000, 1 ,500 to 100,000, 2,000 to 3,000, 2,000 to 5,000 , 2,000 to 7,000, 2,000 to 10,000, 2,000 to 25,000, 2,000 to 50,000, 2,000 to 70,000, and 2,000 to 100,000 nucleotides).

在一些實施態樣中,核酸疫苗包括至少一種編碼至少一種所關注肽或多肽之多核苷酸。在另一實施態樣中,多核苷酸可為非編碼的。In some embodiments, a nucleic acid vaccine includes at least one polynucleotide encoding at least one peptide or polypeptide of interest. In another embodiment, the polynucleotide can be non-coding.

在一些實施態樣中,編碼核酸疫苗之多核苷酸之至少一種所關注肽或多肽之區域的長度為大於約30個核苷酸(例如至少或大於約35、40、45、50、55、60、70、80、90、100、120、140、160、180、200、250、300、350、400、450、500、600、700、800、900、1,000、1,100、1,200、1,300、1,400、1,500、1,600、1,700、1,800、1,900、2,000、2,500及3,000、4,000、5,000、6,000、7,000、8,000、9,000、10,000、20,000、30,000、40,000、50,000、60,000、70,000、80,000、90,000、或至多且包括100,000個核苷酸)。如本文所用,此類區域可稱為「編碼區」或「區域編碼」。In some embodiments, the length of at least one peptide or polypeptide of interest of a polynucleotide encoding a nucleic acid vaccine is greater than about 30 nucleotides (e.g., at least or greater than about 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1,000, 1,100, 1,200, 1,300, 1,400, 0 00, 70,000, 80,000, 90,000, or up to and including 100,000 nucleotides). As used herein, such regions may be referred to as "coding regions" or "region codes."

在一些實施態樣中,核酸疫苗之多核苷酸為或充當信使RNA (mRNA)。如本文所用,術語「信使RNA (mRNA)」係指編碼至少一種所關注肽或多肽且能夠轉譯以在活體外、活體內、原位或離體產生編碼之所關注肽或多肽的任何多核苷酸。In some embodiments, the polynucleotide of the nucleic acid vaccine is or acts as messenger RNA (mRNA). As used herein, the term "messenger RNA (mRNA)" refers to any polynucleoside that encodes at least one peptide or polypeptide of interest and is capable of being translated to produce the encoded peptide or polypeptide of interest in vitro, in vivo, in situ, or ex vivo acid.

核酸疫苗之多核苷酸區域之最短長度可為足以編碼二肽、三肽、四肽、五肽、六肽、七肽、八肽、九肽、或十肽之核酸序列之長度。在另一實施態樣中,該長度可足以編碼2至30個胺基酸,例如5至30、10至30、2至25、5至25、10至25、或10至20個胺基酸之肽。該長度可足以編碼至少11、12、13、14、15、17、20、25、或30個胺基酸之肽,或不長於40個胺基酸,例如不長於35、30、25、20、17、15、14、13、12、11、或10個胺基酸之肽。多核苷酸序列可編碼之二肽之實例或包括但不限於肌肽及甲肌肽。The minimum length of the polynucleotide region of the nucleic acid vaccine may be a length sufficient to encode a nucleic acid sequence encoding a dipeptide, tripeptide, tetrapeptide, pentapeptide, hexapeptide, heptapeptide, octapeptide, nonapeptide, or decapeptide. In another embodiment, the length may be sufficient to encode 2 to 30 amino acids, such as 5 to 30, 10 to 30, 2 to 25, 5 to 25, 10 to 25, or 10 to 20 amino acids of peptides. The length may be sufficient to encode a peptide of at least 11, 12, 13, 14, 15, 17, 20, 25, or 30 amino acids, or no longer than 40 amino acids, such as no longer than 35, 30, 25, 20 , 17, 15, 14, 13, 12, 11, or 10 amino acid peptides. Examples of dipeptides that may be encoded by the polynucleotide sequence include, but are not limited to, carnosine and methamphetamine.

用於預防、緩解及/或治療COVID-19之編碼SARS-CoV-2之一或多種蛋白質、肽、其片段或變異體之核酸疫苗之多核苷酸區域的長度可為大於約30個核苷酸。長度可為但不限於至少或大於約30、35、40、45、50、55、60、70、80、90、100、120、140、160、180、200、250、300、350、400、450、500、600、700、800、900、1,000、1,100、1,200、1,300、1,400、1,500、1,600、1,700、1,800、1,900、2,000、2,500及3,000、4,000、5,000、6,000、7,000、8,000、9,000、10,000、20,000、30,000、40,000、50,000、60,000、70,000、80,000、90,000、或至多且包括100,000個核苷酸。在一些實施態樣中,該區域包括約30至約100,000個核苷酸(例如30至50、30至100、30至250、30至500、30至1,000、30至1,500、30至3,000、30至5,000、30至7,000、30至10,000、30至25,000、30至50,000、30至70,000、100至250、100至500、100至1,000、100至1,500、100至3,000、100至5,000、100至7,000、100至10,000、100至25,000、100至50,000、100至70,000、100至100,000、500至1,000、500至1,500、500至2,000、500至3,000、500至5,000、500至7,000、500至10,000、500至25,000、500至50,000、500至70,000、500至100,000、1,000至1,500、1,000至2,000、1,000至3,000、1,000至5,000、1,000至7,000、1,000至10,000、1,000至25,000、1,000至50,000、1,000至70,000、1,000至100,000、1,500至3,000、1,500至5,000、1,500至7,000、1,500至10,000、1,500至25,000、1,500至50,000、1,500至70,000、1,500至100,000、2,000至3,000、2,000至5,000、2,000至7,000、2,000至10,000、2,000至25,000、2,000至50,000、2,000至70,000、及2,000至100,000個核苷酸)。 mRNA組分 The polynucleotide region of a nucleic acid vaccine encoding one or more proteins, peptides, fragments or variants thereof of SARS-CoV-2 for preventing, mitigating and/or treating COVID-19 may be greater than about 30 nucleotides in length acid. The length may be, but is not limited to, at least or greater than about 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1,000, 1,100, 1,200, 1,300, 1,400, 1,500, 1,600, 1,700, 1,800, 1,900, 2,000, 2,500 and 3,000, 4,000, 5,000, 6,000, 7,0 00, 8,000, 9,000, 10,000, 20,000, 30,000, 40,000, 50,000, 60,000, 70,000, 80,000, 90,000, or up to and including 100,000 nucleotides. In some embodiments, the region includes about 30 to about 100,000 nucleotides (e.g., 30 to 50, 30 to 100, 30 to 250, 30 to 500, 30 to 1,000, 30 to 1,500, 30 to 3,000, 30 to 5,000, 30 to 7,000, 30 to 10,000, 30 to 25,000, 30 to 50,000, 30 to 70,000, 100 to 250, 100 to 500, 100 to 1,000, 100 to 1,500, 100 to 3,000, 100 to 5,000, 100 to 7,000 , 100 to 10,000, 100 to 25,000, 100 to 50,000, 100 to 70,000, 100 to 100,000, 500 to 1,000, 500 to 1,500, 500 to 2,000, 500 to 3,000, 500 to 5,000, 500 to 7,000, 500 to 10 ,000,500 to 25,000, 500 to 50,000, 500 to 70,000, 500 to 100,000, 1,000 to 1,500, 1,000 to 2,000, 1,000 to 3,000, 1,000 to 5,000, 1,000 to 7,000, 1,000 to 10,000, 1,000 to 25, 000, 1,000 to 50,000, 1,000 to 70,000 , 1,000 to 100,000, 1,500 to 3,000, 1,500 to 5,000, 1,500 to 7,000, 1,500 to 10,000, 1,500 to 25,000, 1,500 to 50,000, 1,500 to 70,000, 1,500 to 100,000, 2,000 to 3,000, 2,000 to 5,000, 2,000 to 7,000, 2,000 to 10,000, 2,000 to 25,000, 2,000 to 50,000, 2,000 to 70,000, and 2,000 to 100,000 nucleotides). mRNA components

本文所述之核酸疫苗可為mRNA疫苗。mRNA疫苗包括至少一個mRNA分子,其在轉譯時產生至少一種所關注肽或多肽,用於預防、緩解及/或治療COVID-19。一般而言,mRNA分子總體上包括至少編碼區、5'非轉譯區(UTR)、3' UTR、5'端帽及poly-A尾。 mRNA組分:起始密碼子及終止密碼子 The nucleic acid vaccine described herein may be an mRNA vaccine. An mRNA vaccine includes at least one mRNA molecule that, when translated, produces at least one peptide or polypeptide of interest for use in preventing, mitigating, and/or treating COVID-19. Generally speaking, an mRNA molecule generally includes at least a coding region, a 5' untranslated region (UTR), a 3' UTR, a 5' end cap, and a poly-A tail. mRNA components: start codon and stop codon

在一些實施態樣中,mRNA包括起始轉譯之區域。此區域可包括任何轉譯起始序列或信號,包括起始密碼子。作為非限制性實例,該區域包括起始密碼子。在一些實施態樣中,起始密碼子可為「ATG」、「ACG」、「AGG」、「ATA」、「ATT」、「CTG」、「GTG」、「TTG」、「AUG」、「AUA」、「AUU」、「CUG」、「GUG」、或「UUG」。In some embodiments, the mRNA includes a region that initiates translation. This region may include any translation initiation sequence or signal, including the initiation codon. As a non-limiting example, this region includes the start codon. In some implementations, the start codon can be "ATG", "ACG", "AGG", "ATA", "ATT", "CTG", "GTG", "TTG", "AUG", " AUA", "AUU", "CUG", "GUG", or "UUG".

在一些實施態樣中,mRNA包括終止轉譯之區域。此區域可包括任何轉譯終止序列或信號,包括終止密碼子。作為非限制性實例,該區域包括終止密碼子。在一些實施態樣中,終止密碼子可為「TGA」、「TAA」、「TGA」、「TAG」、「UGA」、「UAA」、「UGA」、或「UAG」。In some embodiments, the mRNA includes a region that terminates translation. This region may include any translation termination sequence or signal, including stop codons. As a non-limiting example, this region includes a stop codon. In some implementations, the stop codon can be "TGA", "TAA", "TGA", "TAG", "UGA", "UAA", "UGA", or "UAG".

在一些實施態樣中,起始或終止轉譯之區域的長度可獨立地在3至40,例如5至30、10至20、15、或至少4、或30個、或更少個核苷酸範圍內。另外,除起始及/或終止密碼子以外,此等區域亦可包含一或多個信號及/或限制序列。In some embodiments, the length of the region that initiates or terminates translation can independently range from 3 to 40, such as 5 to 30, 10 to 20, 15, or at least 4, or 30, or less nucleotides. within the range. Additionally, in addition to start and/or stop codons, these regions may also contain one or more signal and/or restriction sequences.

在一些實施態樣中,掩蔽劑可用於掩蔽第一起始密碼子或替代起始密碼子以增加轉譯將在經掩蔽起始密碼子或替代起始密碼子下游之起始密碼子或替代起始密碼子上起始的機率。In some embodiments, a masking agent can be used to mask the first initiation codon or alternative initiation codon to increase translation initiation of the initiation codon or alternative initiation codon downstream of the masked initiation codon or alternative initiation codon. The probability of initiation at a codon.

在一些實施態樣中,可自多核苷酸序列移除起始密碼子以使多核苷酸之轉譯在並非起始密碼子之密碼子上開始。多核苷酸之轉譯可在移除之起始密碼子之後的密碼子上或在下游起始密碼子或替代起始密碼子上開始。移除起始密碼子之多核苷酸序列可進一步包含至少一種用於下游起始密碼子及/或替代起始密碼子之掩蔽劑,以便控制或嘗試控制轉譯之起始、多核苷酸之長度及/或多核苷酸之結構。 mRNA組分:編碼區域 In some embodiments, the initiation codon can be removed from the polynucleotide sequence such that translation of the polynucleotide begins at a codon other than the initiation codon. Translation of the polynucleotide can begin at a codon subsequent to the removed initiation codon or at a downstream initiation codon or an alternative initiation codon. The polynucleotide sequence from which the initiation codon is removed may further comprise at least one masking agent for the downstream initiation codon and/or for the replacement initiation codon in order to control or attempt to control the initiation of translation, the length of the polynucleotide and/or the structure of the polynucleotide. mRNA components: coding region

在一些實施態樣中,核酸疫苗之多核苷酸之編碼區可編碼至少一種所關注肽或多肽。所關注肽或多肽之非限制性實例包括SARS-CoV-2之一或多種蛋白質、肽、其片段或變異體,用於預防、緩解及/或治療COVID-19。 mRNA組分:非轉譯區 In some embodiments, the coding region of the polynucleotide of the nucleic acid vaccine may encode at least one peptide or polypeptide of interest. Non-limiting examples of peptides or polypeptides of interest include one or more proteins, peptides, fragments or variants thereof of SARS-CoV-2 for use in preventing, mitigating and/or treating COVID-19. mRNA components: untranslated region

本文所述之核酸疫苗之多核苷酸可包含一或多個充當或用作非轉譯區(UTR)之區域或部分。基因之野生型UTR經轉錄但未經轉譯。在mRNA中,5 'UTR在轉錄起點處開始且繼續至起始密碼子,但不包括起始密碼子;而3' UTR緊接在終止密碼子之後開始且繼續直至轉錄終止信號。儘管不希望受理論束縛,但UTR可在核酸分子之穩定性及轉譯以及轉譯方面有作用。可利用UTR之變異體,其中一或多個核苷酸被添加或移除至末端,包括A、T、C、或G。The polynucleotides of the nucleic acid vaccines described herein may include one or more regions or portions that serve as or function as untranslated regions (UTRs). The wild-type UTR of the gene is transcribed but not translated. In mRNA, the 5' UTR begins at the start of transcription and continues to but not including the start codon; whereas the 3' UTR begins immediately after the stop codon and continues until the transcription termination signal. While not wishing to be bound by theory, UTRs may play a role in the stability and translation of nucleic acid molecules and translation. Variants of the UTR may be utilized in which one or more nucleotides are added or removed to the terminus, including A, T, C, or G.

在一些實施態樣中,核酸疫苗之多核苷酸之UTR的長度可獨立地在15至1,000個核苷酸範圍內(例如大於30、40、45、50、55、60、70、80、90、100、120、140、160、180、200、250、300、350、400、450、500、600、700、800、及900個核苷酸或至少30、40、45、50、55、60、70、80、90、100、120、140、160、180、200、250、300、350、400、450、500、600、700、800、900、及1,000個核苷酸)。In some embodiments, the length of the UTR of the polynucleotide of the nucleic acid vaccine can independently range from 15 to 1,000 nucleotides (e.g., greater than 30, 40, 45, 50, 55, 60, 70, 80, 90 , 100, 120, 140, 160, 180, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, and 900 nucleotides or at least 30, 40, 45, 50, 55, 60 , 70, 80, 90, 100, 120, 140, 160, 180, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, and 1,000 nucleotides).

野生型5' UTR包括在轉譯起始中起作用的特徵,因為此等5' UTR包括諸如Kozak序列之類的序列,已知該等序列涉及核糖體如何啟動許多基因的轉譯。亦已知5' UTR形成涉及延長因子結合之二級結構。其他非UTR序列(例如內含子或內含子序列之部分)亦可用作可增加蛋白質產量以及多核苷酸含量的區域或子區。Wild-type 5' UTRs include features that play a role in translation initiation because these 5' UTRs include sequences such as the Kozak sequence, which are known to be involved in how ribosomes initiate translation of many genes. The 5' UTR is also known to form secondary structures involved in binding of elongation factors. Other non-UTR sequences, such as introns or portions of intronic sequences, may also be used as regions or subregions that may increase protein yield and polynucleotide content.

已知天然或野生型3' UTR具有嵌入其中之腺苷及尿苷伸長段。此等富AU標籤在周轉率較高之基因中尤其普遍。富3' UTR AU元件(ARE)之引入、移除或修飾可用於調節核酸疫苗之多核苷酸的穩定性。The native or wild-type 3' UTR is known to have adenosine and uridine stretches embedded within it. Such AU-rich tags are particularly prevalent in genes with high turnover rates. The introduction, removal or modification of 3'UTR AU-rich elements (AREs) can be used to modulate the stability of polynucleotides in nucleic acid vaccines.

來自任何基因之UTR可併入至核酸疫苗之多核苷酸的區域中。或者,並非野生型區域之變異體的人工UTR亦可用於核酸疫苗之多核苷酸中。此等UTR或其部分之置放取向可與其所選自之轉錄本中相同,或其取向或位置可變化。如本文所用,術語「改變」在與UTR序列有關時,意謂UTR已相對於參考序列以某種方式進行變化。作為非限制性實例,5'或3' UTR可倒置、縮短伸長,由來自不同親本序列之一或多個其他5' UTR或3' UTR進行。A UTR from any gene can be incorporated into a region of the polynucleotide of a nucleic acid vaccine. Alternatively, artificial UTRs that are not variants of the wild-type region can also be used in the polynucleotides of nucleic acid vaccines. These UTRs, or portions thereof, may be placed in the same orientation as in the transcript from which they are selected, or their orientation or position may vary. As used herein, the term "change" when relating to a UTR sequence means that the UTR has changed in some way relative to the reference sequence. As non-limiting examples, the 5' or 3' UTR may be inverted, shortened or elongated by one or more other 5' UTRs or 3' UTRs from different parent sequences.

在一些實施態樣中,側接區域係選自蛋白質具有共同功能、結構、特性特徵的轉錄本家族。例如,所關注多肽可屬於在特定細胞、組織中或在發育期間之某一時間表現的蛋白質家族。來自任何此等基因之UTR可與相同或不同蛋白質家族子任何其他UTR交換以產生新的多核苷酸。如本文所用,「蛋白質家族」在最廣泛的意義上用於指共用至少一種功能、結構、特徵、定位、起源或表現模式的一組兩種或更多種所關注多肽。In some embodiments, the flanking regions are selected from a family of transcripts whose proteins share common functional, structural, and property characteristics. For example, the polypeptide of interest may belong to a family of proteins expressed in a particular cell, tissue, or at some time during development. The UTR from any of these genes can be exchanged with any other UTR of the same or a different protein family to generate new polynucleotides. As used herein, "protein family" is used in the broadest sense to refer to a group of two or more polypeptides of interest that share at least one function, structure, characteristic, localization, origin, or mode of expression.

本文所揭示之核酸疫苗之多核苷酸可包含具有SEQ ID NO:13 (DNA)或SEQ ID NO:47 (RNA)之序列的5'UTR。在一些實施態樣中,本文所揭示之核酸疫苗之多核苷酸的5' UTR由SEQ ID NO:13 (DNA)或SEQ ID NO:47 (RNA)之核酸序列組成。在一些實施態樣中,5'UTR直接在編碼核酸疫苗之SARS-CoV-2多肽之序列之起始密碼子的5'。在一些實施態樣中,5'UTR與編碼核酸疫苗之SARS-CoV-2多肽之序列之起始密碼子的5'相距1、2、3、4、5、6、或更多個核苷酸;例如1、2、3、4、5、6、或更多個核苷酸之間隔序列將5'UTR與編碼核酸疫苗之SARS-CoV-2多肽之序列之起始密碼子隔開。本文所揭示之核酸疫苗之多核苷酸可包含5'UTR,該5'UTR具有與SEQ ID NO:13 (DNA)或SEQ ID NO:47 (RNA)之核酸序列具有至少80%序列一致性的序列。本文所揭示之核酸疫苗之多核苷酸可包含5'UTR,該5'UTR具有與SEQ ID NO:13 (DNA)或SEQ ID NO:47 (RNA)之核酸序列具有至少85%序列一致性的序列。本文所揭示之核酸疫苗之多核苷酸可包含5'UTR,該5'UTR具有與SEQ ID NO:13 (DNA)或SEQ ID NO:47 (RNA)之核酸序列具有至少90%序列一致性的序列。本文所揭示之核酸疫苗之多核苷酸可包含5'UTR,該5'UTR具有與SEQ ID NO:13 (DNA)或SEQ ID NO:47 (RNA)之核酸序列具有至少91%序列一致性的序列。本文所揭示之核酸疫苗之多核苷酸可包含5'UTR,該5'UTR具有與SEQ ID NO:13 (DNA)或SEQ ID NO:47 (RNA)之核酸序列具有至少92%序列一致性的序列。本文所揭示之核酸疫苗之多核苷酸可包含5'UTR,該5'UTR具有與SEQ ID NO:13 (DNA)或SEQ ID NO:47 (RNA)之核酸序列具有至少93%序列一致性的序列。本文所揭示之核酸疫苗之多核苷酸可包含5'UTR,該5'UTR具有與SEQ ID NO:13 (DNA)或SEQ ID NO:47 (RNA)之核酸序列具有至少94%序列一致性的序列。本文所揭示之核酸疫苗之多核苷酸可包含5'UTR,該5'UTR具有與SEQ ID NO:13 (DNA)或SEQ ID NO:47 (RNA)之核酸序列具有至少95%序列一致性的序列。本文所揭示之核酸疫苗之多核苷酸可包含5'UTR,該5'UTR具有與SEQ ID NO:13 (DNA)或SEQ ID NO:47 (RNA)之核酸序列具有至少96%序列一致性的序列。本文所揭示之核酸疫苗之多核苷酸可包含5'UTR,該5'UTR具有與SEQ ID NO:13 (DNA)或SEQ ID NO:47 (RNA)之核酸序列具有至少97%序列一致性的序列。本文所揭示之核酸疫苗之多核苷酸可包含5'UTR,該5'UTR具有與SEQ ID NO:13 (DNA)或SEQ ID NO:47 (RNA)之核酸序列具有至少98%序列一致性的序列。本文所揭示之核酸疫苗之多核苷酸可包含5'UTR,該5'UTR具有與SEQ ID NO:13 (DNA)或SEQ ID NO:47 (RNA)之核酸序列具有至少99%序列一致性的序列。本文所揭示之核酸疫苗之多核苷酸可包含5'UTR,該5'UTR具有與SEQ ID NO:13 (DNA)或SEQ ID NO:47 (RNA)之核酸序列具有至少100%序列一致性的序列。The polynucleotide of the nucleic acid vaccine disclosed herein may comprise a 5'UTR having the sequence of SEQ ID NO: 13 (DNA) or SEQ ID NO: 47 (RNA). In some embodiments, the 5' UTR of the polynucleotide of the nucleic acid vaccine disclosed herein consists of the nucleic acid sequence of SEQ ID NO: 13 (DNA) or SEQ ID NO: 47 (RNA). In some embodiments, the 5'UTR is directly 5' to the start codon of the sequence encoding the SARS-CoV-2 polypeptide of the nucleic acid vaccine. In some embodiments, the 5' UTR is 1, 2, 3, 4, 5, 6, or more nucleotides away from the 5' start codon of the sequence encoding the SARS-CoV-2 polypeptide of the nucleic acid vaccine acid; for example, 1, 2, 3, 4, 5, 6, or more inter-nucleotide spacer sequences separate the 5'UTR from the start codon of the sequence encoding the SARS-CoV-2 polypeptide of the nucleic acid vaccine. The polynucleotide of the nucleic acid vaccine disclosed herein may comprise a 5'UTR having at least 80% sequence identity with the nucleic acid sequence of SEQ ID NO: 13 (DNA) or SEQ ID NO: 47 (RNA). sequence. The polynucleotide of the nucleic acid vaccine disclosed herein may comprise a 5'UTR having at least 85% sequence identity with the nucleic acid sequence of SEQ ID NO: 13 (DNA) or SEQ ID NO: 47 (RNA). sequence. The polynucleotide of the nucleic acid vaccine disclosed herein may comprise a 5'UTR that has at least 90% sequence identity with the nucleic acid sequence of SEQ ID NO: 13 (DNA) or SEQ ID NO: 47 (RNA). sequence. The polynucleotides of the nucleic acid vaccines disclosed herein may comprise a 5'UTR having at least 91% sequence identity with the nucleic acid sequence of SEQ ID NO: 13 (DNA) or SEQ ID NO: 47 (RNA). sequence. The polynucleotides of the nucleic acid vaccines disclosed herein may comprise a 5'UTR having at least 92% sequence identity with the nucleic acid sequence of SEQ ID NO: 13 (DNA) or SEQ ID NO: 47 (RNA). sequence. The polynucleotide of the nucleic acid vaccine disclosed herein may comprise a 5'UTR having at least 93% sequence identity with the nucleic acid sequence of SEQ ID NO: 13 (DNA) or SEQ ID NO: 47 (RNA). sequence. The polynucleotide of the nucleic acid vaccine disclosed herein may comprise a 5'UTR having at least 94% sequence identity with the nucleic acid sequence of SEQ ID NO: 13 (DNA) or SEQ ID NO: 47 (RNA). sequence. The polynucleotides of the nucleic acid vaccines disclosed herein may comprise a 5'UTR having at least 95% sequence identity with the nucleic acid sequence of SEQ ID NO: 13 (DNA) or SEQ ID NO: 47 (RNA). sequence. The polynucleotide of the nucleic acid vaccine disclosed herein may comprise a 5'UTR having at least 96% sequence identity with the nucleic acid sequence of SEQ ID NO: 13 (DNA) or SEQ ID NO: 47 (RNA). sequence. The polynucleotides of the nucleic acid vaccines disclosed herein may comprise a 5'UTR having at least 97% sequence identity with the nucleic acid sequence of SEQ ID NO: 13 (DNA) or SEQ ID NO: 47 (RNA). sequence. The polynucleotides of the nucleic acid vaccines disclosed herein may comprise a 5'UTR having at least 98% sequence identity with the nucleic acid sequence of SEQ ID NO: 13 (DNA) or SEQ ID NO: 47 (RNA). sequence. The polynucleotides of the nucleic acid vaccines disclosed herein may comprise a 5'UTR having at least 99% sequence identity with the nucleic acid sequence of SEQ ID NO: 13 (DNA) or SEQ ID NO: 47 (RNA). sequence. The polynucleotides of the nucleic acid vaccines disclosed herein may comprise a 5'UTR that has at least 100% sequence identity with the nucleic acid sequence of SEQ ID NO: 13 (DNA) or SEQ ID NO: 47 (RNA). sequence.

本文所揭示之核酸疫苗之多核苷酸可包含具有SEQ ID NO:14 (DNA)或SEQ ID NO:48 (RNA)之序列的3'UTR。在一些實施態樣中,本文所揭示之核酸疫苗之多核苷酸的3' UTR由SEQ ID NO:14 (DNA)或SEQ ID NO:48 (RNA)之核酸序列組成。在一些實施態樣中,3'UTR直接在編碼核酸疫苗之SARS-CoV-2多肽之序列之起始密碼子的3'。在一些實施態樣中,3'UTR與編碼核酸疫苗之SARS-CoV-2多肽之序列之起始密碼子的3'相距1、2、3、4、5、6、或更多個核苷酸;例如1、2、3、4、5、6、或更多個核苷酸之間隔序列將3'UTR與編碼核酸疫苗之SARS-CoV-2多肽之序列之起始密碼子隔開。本文所揭示之核酸疫苗之多核苷酸可包含3'UTR,該3'UTR具有與SEQ ID NO:14 (DNA)或SEQ ID NO:48 (RNA)之核酸序列具有至少80%序列一致性的序列。本文所揭示之核酸疫苗之多核苷酸可包含3'UTR,該3'UTR具有與SEQ ID NO:14 (DNA)或SEQ ID NO:48 (RNA)之核酸序列具有至少85%序列一致性的序列。本文所揭示之核酸疫苗之多核苷酸可包含3'UTR,該3'UTR具有與SEQ ID NO:14 (DNA)或SEQ ID NO:48 (RNA)之核酸序列具有至少90%序列一致性的序列。本文所揭示之核酸疫苗之多核苷酸可包含3'UTR,該3'UTR具有與SEQ ID NO:14 (DNA)或SEQ ID NO:48 (RNA)之核酸序列具有至少91%序列一致性的序列。本文所揭示之核酸疫苗之多核苷酸可包含3'UTR,該3'UTR具有與SEQ ID NO:14 (DNA)或SEQ ID NO:48 (RNA)之核酸序列具有至少92%序列一致性的序列。本文所揭示之核酸疫苗之多核苷酸可包含3'UTR,該3'UTR具有與SEQ ID NO:14 (DNA)或SEQ ID NO:48 (RNA)之核酸序列具有至少93%序列一致性的序列。本文所揭示之核酸疫苗之多核苷酸可包含3'UTR,該3'UTR具有與SEQ ID NO:14 (DNA)或SEQ ID NO:48 (RNA)之核酸序列具有至少94%序列一致性的序列。本文所揭示之核酸疫苗之多核苷酸可包含3'UTR,該3'UTR具有與SEQ ID NO:14 (DNA)或SEQ ID NO:48 (RNA)之核酸序列具有至少95%序列一致性的序列。本文所揭示之核酸疫苗之多核苷酸可包含3'UTR,該3'UTR具有與SEQ ID NO:14 (DNA)或SEQ ID NO:48 (RNA)之核酸序列具有至少96%序列一致性的序列。本文所揭示之核酸疫苗之多核苷酸可包含3'UTR,該3'UTR具有與SEQ ID NO:14 (DNA)或SEQ ID NO:48 (RNA)之核酸序列具有至少97%序列一致性的序列。本文所揭示之核酸疫苗之多核苷酸可包含3'UTR,該3'UTR具有與SEQ ID NO:14 (DNA)或SEQ ID NO:48 (RNA)之核酸序列具有至少98%序列一致性的序列。本文所揭示之核酸疫苗之多核苷酸可包含3'UTR,該3'UTR具有與SEQ ID NO:14 (DNA)或SEQ ID NO:48 (RNA)之核酸序列具有至少99%序列一致性的序列。本文所揭示之核酸疫苗之多核苷酸可包含3'UTR,該3'UTR具有與SEQ ID NO:14 (DNA)或SEQ ID NO:48 (RNA)之核酸序列具有至少100%序列一致性的序列。The polynucleotide of the nucleic acid vaccine disclosed herein may comprise a 3'UTR having the sequence of SEQ ID NO: 14 (DNA) or SEQ ID NO: 48 (RNA). In some embodiments, the 3' UTR of the polynucleotide of the nucleic acid vaccine disclosed herein consists of the nucleic acid sequence of SEQ ID NO: 14 (DNA) or SEQ ID NO: 48 (RNA). In some embodiments, the 3'UTR is directly 3' to the start codon of the sequence encoding the SARS-CoV-2 polypeptide of the nucleic acid vaccine. In some embodiments, the 3' UTR is 1, 2, 3, 4, 5, 6, or more nucleotides away from the 3' start codon of the sequence encoding the SARS-CoV-2 polypeptide of the nucleic acid vaccine. acid; for example, 1, 2, 3, 4, 5, 6, or more inter-nucleotide spacer sequences separate the 3'UTR from the start codon of the sequence encoding the SARS-CoV-2 polypeptide of the nucleic acid vaccine. The polynucleotide of the nucleic acid vaccine disclosed herein may comprise a 3'UTR having at least 80% sequence identity with the nucleic acid sequence of SEQ ID NO: 14 (DNA) or SEQ ID NO: 48 (RNA). sequence. The polynucleotide of the nucleic acid vaccine disclosed herein may comprise a 3'UTR having at least 85% sequence identity with the nucleic acid sequence of SEQ ID NO: 14 (DNA) or SEQ ID NO: 48 (RNA). sequence. The polynucleotide of the nucleic acid vaccine disclosed herein may comprise a 3'UTR having at least 90% sequence identity with the nucleic acid sequence of SEQ ID NO: 14 (DNA) or SEQ ID NO: 48 (RNA). sequence. The polynucleotide of the nucleic acid vaccine disclosed herein may comprise a 3'UTR having at least 91% sequence identity with the nucleic acid sequence of SEQ ID NO: 14 (DNA) or SEQ ID NO: 48 (RNA). sequence. The polynucleotide of the nucleic acid vaccine disclosed herein may comprise a 3'UTR having at least 92% sequence identity with the nucleic acid sequence of SEQ ID NO: 14 (DNA) or SEQ ID NO: 48 (RNA). sequence. The polynucleotides of the nucleic acid vaccines disclosed herein may comprise a 3'UTR that has at least 93% sequence identity with the nucleic acid sequence of SEQ ID NO: 14 (DNA) or SEQ ID NO: 48 (RNA). sequence. The polynucleotide of the nucleic acid vaccine disclosed herein may comprise a 3'UTR having at least 94% sequence identity with the nucleic acid sequence of SEQ ID NO: 14 (DNA) or SEQ ID NO: 48 (RNA). sequence. The polynucleotides of the nucleic acid vaccines disclosed herein may comprise a 3'UTR that has at least 95% sequence identity with the nucleic acid sequence of SEQ ID NO: 14 (DNA) or SEQ ID NO: 48 (RNA). sequence. The polynucleotides of the nucleic acid vaccines disclosed herein may comprise a 3'UTR having at least 96% sequence identity with the nucleic acid sequence of SEQ ID NO: 14 (DNA) or SEQ ID NO: 48 (RNA). sequence. The polynucleotides of the nucleic acid vaccines disclosed herein may comprise a 3'UTR having at least 97% sequence identity with the nucleic acid sequence of SEQ ID NO: 14 (DNA) or SEQ ID NO: 48 (RNA). sequence. The polynucleotide of the nucleic acid vaccine disclosed herein may comprise a 3'UTR having at least 98% sequence identity with the nucleic acid sequence of SEQ ID NO: 14 (DNA) or SEQ ID NO: 48 (RNA). sequence. The polynucleotides of the nucleic acid vaccines disclosed herein may comprise a 3'UTR having at least 99% sequence identity with the nucleic acid sequence of SEQ ID NO: 14 (DNA) or SEQ ID NO: 48 (RNA). sequence. The polynucleotides of the nucleic acid vaccines disclosed herein may comprise a 3'UTR that has at least 100% sequence identity with the nucleic acid sequence of SEQ ID NO: 14 (DNA) or SEQ ID NO: 48 (RNA). sequence.

本文所揭示之核酸疫苗之多核苷酸可包含具有SEQ ID NO:52 (DNA)或SEQ ID NO:53 (RNA)之序列的3'UTR。在一些實施態樣中,本文所揭示之核酸疫苗之多核苷酸的3' UTR由SEQ ID NO:52 (DNA)或SEQ ID NO:53 (RNA)之核酸序列組成。在一些實施態樣中,3'UTR直接在編碼核酸疫苗之SARS-CoV-2多肽之序列之起始密碼子的3'。在一些實施態樣中,3'UTR與編碼核酸疫苗之SARS-CoV-2多肽之序列之起始密碼子的3'相距1、2、3、4、5、6、或更多個核苷酸;例如1、2、3、4、5、6、或更多個核苷酸之間隔序列將3'UTR與編碼核酸疫苗之SARS-CoV-2多肽之序列之起始密碼子隔開。本文所揭示之核酸疫苗之多核苷酸可包含3'UTR,該3'UTR具有與SEQ ID NO:52 (DNA)或SEQ ID NO:53 (RNA)之核酸序列具有至少80%序列一致性的序列。本文所揭示之核酸疫苗之多核苷酸可包含3'UTR,該3'UTR具有與SEQ ID NO:52 (DNA)或SEQ ID NO:53 (RNA)之核酸序列具有至少85%序列一致性的序列。本文所揭示之核酸疫苗之多核苷酸可包含3'UTR,該3'UTR具有與SEQ ID NO:52 (DNA)或SEQ ID NO:53 (RNA)之核酸序列具有至少90%序列一致性的序列。本文所揭示之核酸疫苗之多核苷酸可包含3'UTR,該3'UTR具有與SEQ ID NO:52 (DNA)或SEQ ID NO:53 (RNA)之核酸序列具有至少91%序列一致性的序列。本文所揭示之核酸疫苗之多核苷酸可包含3'UTR,該3'UTR具有與SEQ ID NO:52 (DNA)或SEQ ID NO:53 (RNA)之核酸序列具有至少92%序列一致性的序列。本文所揭示之核酸疫苗之多核苷酸可包含3'UTR,該3'UTR具有與SEQ ID NO:52 (DNA)或SEQ ID NO:53 (RNA)之核酸序列具有至少93%序列一致性的序列。本文所揭示之核酸疫苗之多核苷酸可包含3'UTR,該3'UTR具有與SEQ ID NO:52 (DNA)或SEQ ID NO:53 (RNA)之核酸序列具有至少94%序列一致性的序列。本文所揭示之核酸疫苗之多核苷酸可包含3'UTR,該3'UTR具有與SEQ ID NO:52 (DNA)或SEQ ID NO:53 (RNA)之核酸序列具有至少95%序列一致性的序列。本文所揭示之核酸疫苗之多核苷酸可包含3'UTR,該3'UTR具有與SEQ ID NO:52 (DNA)或SEQ ID NO:53 (RNA)之核酸序列具有至少96%序列一致性的序列。本文所揭示之核酸疫苗之多核苷酸可包含3'UTR,該3'UTR具有與SEQ ID NO:52 (DNA)或SEQ ID NO:53 (RNA)之核酸序列具有至少97%序列一致性的序列。本文所揭示之核酸疫苗之多核苷酸可包含3'UTR,該3'UTR具有與SEQ ID NO:52 (DNA)或SEQ ID NO:53 (RNA)之核酸序列具有至少98%序列一致性的序列。本文所揭示之核酸疫苗之多核苷酸可包含3'UTR,該3'UTR具有與SEQ ID NO:52 (DNA)或SEQ ID NO:53 (RNA)之核酸序列具有至少99%序列一致性的序列。本文所揭示之核酸疫苗之多核苷酸可包含3'UTR,該3'UTR具有與SEQ ID NO:52 (DNA)或SEQ ID NO:53 (RNA)之核酸序列具有至少100%序列一致性的序列。 mRNA組分:Cap及IRES序列 The polynucleotide of the nucleic acid vaccine disclosed herein may comprise a 3'UTR having the sequence of SEQ ID NO: 52 (DNA) or SEQ ID NO: 53 (RNA). In some embodiments, the 3' UTR of the polynucleotide of the nucleic acid vaccine disclosed herein consists of the nucleic acid sequence of SEQ ID NO: 52 (DNA) or SEQ ID NO: 53 (RNA). In some embodiments, the 3'UTR is directly 3' to the start codon of the sequence encoding the SARS-CoV-2 polypeptide of the nucleic acid vaccine. In some embodiments, the 3' UTR is 1, 2, 3, 4, 5, 6, or more nucleotides away from the 3' start codon of the sequence encoding the SARS-CoV-2 polypeptide of the nucleic acid vaccine. acid; for example, 1, 2, 3, 4, 5, 6, or more inter-nucleotide spacer sequences separate the 3'UTR from the start codon of the sequence encoding the SARS-CoV-2 polypeptide of the nucleic acid vaccine. The polynucleotides of the nucleic acid vaccines disclosed herein may comprise a 3'UTR that has at least 80% sequence identity with the nucleic acid sequence of SEQ ID NO: 52 (DNA) or SEQ ID NO: 53 (RNA). sequence. The polynucleotides of the nucleic acid vaccines disclosed herein may comprise a 3'UTR that has at least 85% sequence identity with the nucleic acid sequence of SEQ ID NO: 52 (DNA) or SEQ ID NO: 53 (RNA). sequence. The polynucleotides of the nucleic acid vaccines disclosed herein may comprise a 3'UTR having at least 90% sequence identity with the nucleic acid sequence of SEQ ID NO: 52 (DNA) or SEQ ID NO: 53 (RNA). sequence. The polynucleotides of the nucleic acid vaccines disclosed herein may comprise a 3'UTR having at least 91% sequence identity with the nucleic acid sequence of SEQ ID NO: 52 (DNA) or SEQ ID NO: 53 (RNA). sequence. The polynucleotides of the nucleic acid vaccines disclosed herein may comprise a 3'UTR having at least 92% sequence identity with the nucleic acid sequence of SEQ ID NO: 52 (DNA) or SEQ ID NO: 53 (RNA). sequence. The polynucleotides of the nucleic acid vaccines disclosed herein may comprise a 3'UTR having at least 93% sequence identity with the nucleic acid sequence of SEQ ID NO: 52 (DNA) or SEQ ID NO: 53 (RNA). sequence. The polynucleotides of the nucleic acid vaccines disclosed herein may comprise a 3'UTR having at least 94% sequence identity with the nucleic acid sequence of SEQ ID NO: 52 (DNA) or SEQ ID NO: 53 (RNA). sequence. The polynucleotides of the nucleic acid vaccines disclosed herein may comprise a 3'UTR that has at least 95% sequence identity with the nucleic acid sequence of SEQ ID NO: 52 (DNA) or SEQ ID NO: 53 (RNA). sequence. The polynucleotides of the nucleic acid vaccines disclosed herein may comprise a 3'UTR having at least 96% sequence identity with the nucleic acid sequence of SEQ ID NO: 52 (DNA) or SEQ ID NO: 53 (RNA). sequence. The polynucleotides of the nucleic acid vaccines disclosed herein may comprise a 3'UTR having at least 97% sequence identity with the nucleic acid sequence of SEQ ID NO: 52 (DNA) or SEQ ID NO: 53 (RNA). sequence. The polynucleotides of the nucleic acid vaccines disclosed herein may comprise a 3'UTR having at least 98% sequence identity with the nucleic acid sequence of SEQ ID NO: 52 (DNA) or SEQ ID NO: 53 (RNA). sequence. The polynucleotides of the nucleic acid vaccines disclosed herein may comprise a 3'UTR having at least 99% sequence identity with the nucleic acid sequence of SEQ ID NO: 52 (DNA) or SEQ ID NO: 53 (RNA). sequence. The polynucleotides of the nucleic acid vaccines disclosed herein may comprise a 3'UTR that has at least 100% sequence identity with the nucleic acid sequence of SEQ ID NO: 52 (DNA) or SEQ ID NO: 53 (RNA). sequence. mRNA components: Cap and IRES sequences

在一些實施態樣中,本文所揭示之核酸疫苗之多核苷酸可包含5'端帽結構。天然mRNA之5'端帽結構參與核輸出,增加mRNA穩定性且結合mRNA端帽結合蛋白(CBP),該蛋白經由CBP與poly(A)結合蛋白締合形成成熟環狀mRNA物種而負責mRNA在細胞中的穩定性及轉譯能力。端帽進一步有助於在mRNA剪接期間移除5'近端內含子移除。In some embodiments, the polynucleotides of the nucleic acid vaccines disclosed herein may include a 5' end cap structure. The 5' end cap structure of natural mRNA participates in nuclear export, increases the stability of mRNA, and binds to the mRNA end cap binding protein (CBP). This protein associates with poly(A) binding protein through CBP to form a mature circular mRNA species and is responsible for the expression of mRNA in the nucleus. Stability and translational capacity in cells. End caps further aid in the removal of 5' proximal introns during mRNA splicing.

在一些實施態樣中,核酸疫苗之多核苷酸之5'末端加端帽區可包含單個端帽或形成該端帽之一系列核苷酸。加端帽區之長度可為1至10個,例如2至9、3至8、4至7、1至5、5至10、或至少2個,或10個或更少個核苷酸。在一些實例中,加端帽區可包含1、2、3、4、5、6、7、8、9、或10個核苷酸。在一些實施態樣中,端帽不存在。In some embodiments, the 5' end capping region of the polynucleotide of the nucleic acid vaccine may comprise a single end cap or a series of nucleotides forming the end cap. The length of the capping region may be 1 to 10, such as 2 to 9, 3 to 8, 4 to 7, 1 to 5, 5 to 10, or at least 2, or 10 or less nucleotides. In some examples, the capping region can include 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides. In some implementations, the end cap is absent.

在一些實施態樣中,本文中亦稱為合成端帽類似物、化學端帽、化學端帽類似物或結構性或功能性端帽類似物的端帽類似物可用於核酸疫苗。端帽類似物可為化學(例如非酶)或酶合成的,化學結構與天然(例如內源性、野生型或生理性) 5'-端帽不同,但其保留端帽功能。In some embodiments, end cap analogs, also referred to herein as synthetic end cap analogs, chemical end caps, chemical end cap analogs, or structural or functional end cap analogs, can be used in nucleic acid vaccines. End cap analogs can be chemical (eg, non-enzymatic) or enzymatically synthesized, with a chemical structure that differs from the native (eg, endogenous, wild-type, or physiological) 5'-end cap, but which retains the end cap function.

在一些實施態樣中,核酸疫苗之多核苷酸之5'端端帽可包括內源性端帽或端帽類似物。作為非限制性實例,5'端端帽可包含鳥嘌呤類似物。適用之鳥嘌呤類似物包括但不限於肌苷、N1-甲基-鳥苷(m1G)、2'氟-鳥苷、7-去氮-鳥苷、8-側氧基-鳥苷、2-胺基-鳥苷、LNA-鳥苷及2-疊氮基-鳥苷。In some embodiments, the 5' end cap of the polynucleotide of the nucleic acid vaccine may include an endogenous end cap or an end cap analog. As a non-limiting example, the 5' end cap may comprise a guanine analog. Suitable guanine analogs include, but are not limited to, inosine, N1-methyl-guanosine (m1G), 2'fluoro-guanosine, 7-deaza-guanosine, 8-side oxy-guanosine, 2- Amino-guanosine, LNA-guanosine and 2-azido-guanosine.

熟習此項技術者應瞭解,5'加端帽可經由酶或其他合成方法產生。內源性mRNA分子為5'-端加端帽的,在末端鳥苷端帽殘基與mRNA分子之5'-末端轉錄之有義核苷酸之間產生5'-ppp-5'-三磷酸鍵。此5'-鳥苷酸端帽可接著經甲基化以產生N7-甲基-鳥苷酸殘基。mRNA之5'端之末端及/或前末端轉錄之核苷酸的核糖可視情況亦經2'-O-甲基化。經由水解及切割鳥苷酸端帽結構進行之5'-脫端帽可靶向核酸分子,諸如mRNA分子,以進行降解。Those skilled in the art will appreciate that the 5' end cap can be generated enzymatically or by other synthetic methods. The endogenous mRNA molecule is end-capped at the 5'-end, and 5'-ppp-5'-triple is generated between the terminal guanosine cap residue and the sense nucleotide transcribed at the 5'-end of the mRNA molecule. Phosphate bond. This 5'-guanylate end cap can then be methylated to produce an N7-methyl-guanylate residue. The ribose sugar of the transcribed nucleotide at the 5' end of the mRNA and/or the front end may also be 2'-O-methylated. 5'-decapping via hydrolysis and cleavage of the guanylate cap structure can target nucleic acid molecules, such as mRNA molecules, for degradation.

本文所述之核酸疫苗之多核苷酸,例如mRNA可經修飾以包括不可水解的端帽結構,從而防止脫端帽且因此增加mRNA半衰期。由於端帽結構水解需要切割5'-ppp-5'磷酸二酯鍵,因此可在加端帽反應期間使用經修飾之核苷酸。例如,購自例如New England Biolabs (Ipswich, MA)之痘瘡病毒加端帽酶可根據製造商說明書用於α-硫基-鳥苷核苷酸,以在5'-ppp-5'端帽中產生硫代磷酸酯鍵。可使用額外經修飾鳥苷核苷酸,諸如α-甲基-膦酸酯及硒基-磷酸酯核苷酸。The polynucleotides, eg, mRNA, of the nucleic acid vaccines described herein can be modified to include a non-hydrolyzable end cap structure, thereby preventing decapping and thus increasing the mRNA half-life. Since hydrolysis of the cap structure requires cleavage of the 5'-ppp-5' phosphodiester bond, modified nucleotides can be used during the capping reaction. For example, poxvirus capping enzyme available from, for example, New England Biolabs (Ipswich, MA) can be used with alpha-thio-guanosine nucleotides according to the manufacturer's instructions to cap the 5'-ppp-5' end. Phosphorothioate bonds are produced. Additional modified guanosine nucleotides may be used, such as alpha-methyl-phosphonate and seleno-phosphate nucleotides.

額外修飾包括但不限於糖環之2'-羥基上之mRNA之5'-末端及/或5'前末端核苷酸之核糖的2'-O-甲基化(如上所述)。多個獨特5'-端帽結構可用於產生核酸分子,諸如mRNA分子之5'-端帽。Additional modifications include, but are not limited to, 2'-O-methylation of ribose at the 5'-terminal and/or 5' front-terminal nucleotide of the mRNA on the 2'-hydroxyl group of the sugar ring (as described above). Multiple unique 5'-end cap structures can be used to generate 5'-end caps for nucleic acid molecules, such as mRNA molecules.

在本文中亦稱為合成端帽類似物、化學端帽、化學端帽類似物或結構性或功能性端帽類似物之端帽類似物在其化學結構方面不同於天然(亦即內源性、野生型或生理性) 5'-端帽,同時保留端帽功能。端帽類似物可化學(例如非酶)或酶合成且連接至核酸分子,諸如mRNA分子。End-cap analogs, also referred to herein as synthetic end-cap analogs, chemical end-caps, chemical end-cap analogs, or structural or functional end-cap analogs, differ from natural (i.e., endogenous) end-cap analogs in their chemical structure. , wild-type or physiological) 5'-end cap while retaining end cap function. End cap analogs can be chemically (eg, non-enzymatically) or enzymatically synthesized and attached to nucleic acid molecules, such as mRNA molecules.

例如,抗反向端帽類似物(ARCA)端帽含有兩個由5'-5'-三磷酸基團連接之鳥嘌呤,其中一個鳥嘌呤含有N7甲基以及3'-O-甲基(亦即N7,3'-O-二甲基-鳥苷-5'-三磷酸-5'-鳥苷(m7G-3'mppp-G;其可等效地指定為3' O-Me-m7G(5')ppp(5')G)。另一未修飾之鳥嘌呤的3'-O原子與加端帽核酸分子(例如mRNA)之5'-末端核苷酸連接。N7-及3'-O-甲基化鳥嘌呤提供加端帽核酸分子(例如mRNA)之末端部分。For example, the anti-reverse end-cap analogue (ARCA) end-cap contains two guanines linked by a 5'-5'-triphosphate group, one of which contains an N7 methyl group and a 3'-O-methyl group ( That is, N7,3'-O-dimethyl-guanosine-5'-triphosphate-5'-guanosine (m7G-3'mppp-G; which can be equivalently designated as 3' O-Me-m7G (5')ppp(5')G). Another 3'-O atom of unmodified guanine is connected to the 5'-terminal nucleotide of a capped nucleic acid molecule (such as mRNA). N7- and 3' -O-Methylated guanine provides capping of the terminal portions of nucleic acid molecules (eg, mRNA).

另一例示性端帽為mCAP,其類似於ARCA但在鳥苷上具有2'-O-甲基(亦即N7,2'-O-二甲基-鳥苷-5'-三磷酸-5'-鳥苷、m7Gm-ppp-G)。Another exemplary end cap is mCAP, which is similar to ARCA but has a 2'-O-methyl on the guanosine (i.e., N7,2'-O-dimethyl-guanosine-5'-triphosphate-5 '-Guanosine, m7Gm-ppp-G).

儘管端帽類似物允許在活體外轉錄反應對核酸分子伴隨加端帽,但高達20%之轉錄本可保持未加端帽。此連同端帽類似物與內源性5'-端帽結構的結構差異可導致轉譯能力降低及細胞穩定性降低。Although cap analogs allow concomitant capping of nucleic acid molecules in in vitro transcription reactions, up to 20% of transcripts can remain uncapped. This, along with structural differences between end-cap analogues and the endogenous 5'-end cap structure, can lead to reduced translational capacity and reduced cell stability.

在本揭露之例示性態樣中,多核苷酸(例如mRNA)可使用酶在轉錄後加端帽。例如,重組痘瘡病毒加端帽酶及重組2'-O-甲基轉移酶可在mRNA之5'-末端核苷酸與鳥嘌呤端帽核苷酸之間產生典型5'-5'-三磷酸鍵,其中端帽鳥嘌呤含有N7甲基化且mRNA之5'-末端核苷酸含有2'-O-甲基。此類結構稱為Cap 1結構。在一些實施態樣中,相比於例如此項技術中已知的其他5'端帽類似物結構,Cap 1結構提供更高的轉譯能力及細胞穩定性及降低的細胞促炎性細胞介素活化。Cap結構包括 7mG(5')ppp(5')N,pN2p (Cap 0)、7mG(5')ppp(5')N1mpNp (Cap 1)及7mG(5')-ppp(5')N1mpN2mp (Cap 2)。 In illustrative aspects of the present disclosure, polynucleotides (eg, mRNA) can be post-transcriptionally capped using enzymes. For example, recombinant pox virus plus capping enzyme and recombinant 2'-O-methyltransferase can generate a typical 5'-5'-triple between the 5'-terminal nucleotide of the mRNA and the guanine capping nucleotide. Phosphate bond, in which the end-cap guanine contains N7 methylation and the 5'-terminal nucleotide of the mRNA contains 2'-O-methyl. This type of structure is called Cap 1 structure. In some embodiments, the Cap 1 structure provides greater translational capacity and cellular stability and reduced cellular pro-inflammatory cytokines compared to, for example, other 5' end cap analog structures known in the art. activation. Cap structure includes 7mG(5')ppp(5')N,pN2p (Cap 0), 7mG(5')ppp(5')N1mpNp (Cap 1) and 7mG(5')-ppp(5')N1mpN2mp (Cap 2) .

在一個實施態樣中,本文所述之核酸疫苗之多核苷酸包含Cap 1結構。In one embodiment, the polynucleotides of the nucleic acid vaccines described herein comprise the Cap 1 structure.

由於多核苷酸,例如mRNA可在轉錄後加端帽,且由於此過程更高效,因此多達100%的多核苷酸,例如mRNA可經加端帽。此與端帽類似物在活體外轉錄反應過程中連接至mRNA時的約80%形成對比。Because polynucleotides, such as mRNA, can be capped post-transcriptionally, and because this process is more efficient, up to 100% of the polynucleotides, such as mRNA, can be capped. This contrasts with approximately 80% for end-cap analogues when attached to mRNA during in vitro transcription reactions.

在一些實施態樣中,核酸疫苗之多核苷酸可含有內部核糖體進入位點(IRES)序列。雖然不希望受理論束縛,但IRES在不存在5'端帽結構之情況下引發蛋白質合成中發揮重要作用。IRES可充當唯一核糖體結合位點,或可充當mRNA之多個核糖體結合位點之一。 mRNA組分:加尾區 In some embodiments, the polynucleotide of the nucleic acid vaccine may contain an internal ribosome entry site (IRES) sequence. While not wishing to be bound by theory, IRES play an important role in initiating protein synthesis in the absence of a 5' cap structure. An IRES may serve as the sole ribosome binding site or may serve as one of multiple ribosome binding sites on the mRNA. mRNA components: tail region

在一些實施態樣中,核酸疫苗之多核苷酸,例如mRNA包括加尾區。加尾區之非限制性實例包括poly-A序列、poly-C序列及/或polyA-G四聯體。In some embodiments, the polynucleotide of the nucleic acid vaccine, such as mRNA, includes a tailing region. Non-limiting examples of tailing regions include poly-A sequences, poly-C sequences, and/or polyA-G quadruplexes.

在一些實施態樣中,mRNA包括鏈終止核苷。鏈終止核苷之非限制性實例包括2'-O甲基、F及鎖核酸(LNA)。In some embodiments, the mRNA includes chain-terminating nucleosides. Non-limiting examples of chain-terminating nucleosides include 2'-O methyl, F, and locked nucleic acids (LNA).

在一些實施態樣中,核酸疫苗之多核苷酸之加尾區的序列的長度範圍可為不存在至500個核苷酸(例如至少60、70、80、90、120、140、160、180、200、250、300、350、400、450、或500個核苷酸)。若加尾區為poly-A尾,則長度可以poly-A結合蛋白結合的單位或作為poly-A結合蛋白結合的函數來描述。In some embodiments, the length of the sequence of the tailing region of the polynucleotide of the nucleic acid vaccine may range from none to 500 nucleotides (e.g., at least 60, 70, 80, 90, 120, 140, 160, 180 , 200, 250, 300, 350, 400, 450, or 500 nucleotides). If the tailing region is a poly-A tail, the length may be described in units of poly-A binding protein binding or as a function of poly-A binding protein binding.

在一些實施態樣中,poly-A尾亦可在構築體自核輸出之後添加。In some implementations, the poly-A tail can also be added after the construct has been exported from the core.

在一些實施態樣中,可在RNA加工期間將腺嘌呤核苷酸之長鏈(poly-A尾)添加至多核苷酸(諸如mRNA分子)以增加穩定性。緊接在轉錄之後,轉錄本之3'端可經切割以釋放3'羥基。接著,poly-A聚合酶將腺嘌呤核苷酸鏈添加至RNA。稱為聚腺苷酸化之過程添加poly-A尾,該poly-A尾之長度可為例如約80至約250個殘基,包括長度為約80、90、100、110、120、130、140、150、160、170、180、190、200、210、220、230、240、或250個殘基。In some embodiments, long chains of adenine nucleotides (poly-A tails) can be added to polynucleotides, such as mRNA molecules, to increase stability during RNA processing. Immediately following transcription, the 3' end of the transcript can be cleaved to release the 3' hydroxyl group. Next, poly-A polymerase adds the adenine nucleotide strand to the RNA. A process called polyadenylation adds a poly-A tail that can be, for example, about 80 to about 250 residues in length, including lengths of about 80, 90, 100, 110, 120, 130, 140 , 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, or 250 residues.

在一些實施態樣中,poly-A尾(當存在時)之長度為大於30個核苷酸(例如至少或大於約30、35、40、45、50、55、60、70、80、90、100、120、140、160、180、200、250、300、350、400、450、500、600、700、800、900、1,000、1,100、1,200、1,300、1,400、1,500、1,600、1,700、1,800、1,900、2,000、2,500、及3,000個核苷酸)。在一些實施態樣中,其poly-A尾區包括約30至約3,000個核苷酸(例如30至50、30至100、30至250、30至500、30至750、30至1,000、30至1,500、30至2,000、30至2,500、50至100、50至250、50至500、50至750、50至1,000、50至1,500、50至2,000、50至2,500、50至3,000、100至500、100至750、100至1,000、100至1,500、100至2,000、100至2,500、100至3,000、500至750、500至1,000、500至1,500、500至2,000、500至2,500、500至3,000、1,000至1,500、1,000至2,000、1,000至2,500、1,000至3,000、1,500至2,000、1,500至2,500、1,500至3,000、2,000至3,000、2,000至2,500、及2,500至3,000個核苷酸)。In some embodiments, the poly-A tail (when present) is greater than 30 nucleotides in length (e.g., at least or greater than about 30, 35, 40, 45, 50, 55, 60, 70, 80, 90 , 100, 120, 140, 160, 180, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1,000, 1,100, 1,200, 1,300, 1,400, 1,500, 1,600, 1,700, 1,800 , 1,900, 2,000, 2,500, and 3,000 nucleotides). In some embodiments, the poly-A tail region includes about 30 to about 3,000 nucleotides (e.g., 30 to 50, 30 to 100, 30 to 250, 30 to 500, 30 to 750, 30 to 1,000, 30 to 1,500, 30 to 2,000, 30 to 2,500, 50 to 100, 50 to 250, 50 to 500, 50 to 750, 50 to 1,000, 50 to 1,500, 50 to 2,000, 50 to 2,500, 50 to 3,000, 100 to 500 , 100 to 750, 100 to 1,000, 100 to 1,500, 100 to 2,000, 100 to 2,500, 100 to 3,000, 500 to 750, 500 to 1,000, 500 to 1,500, 500 to 2,000, 500 to 2,500, 500 to 3,000, 1,000 to 1,500, 1,000 to 2,000, 1,000 to 2,500, 1,000 to 3,000, 1,500 to 2,000, 1,500 to 2,500, 1,500 to 3,000, 2,000 to 3,000, 2,000 to 2,500, and 2,500 to 3,000 nucleotides).

在一些實施態樣中,poly-A尾之長度為約99個核苷酸(SEQ ID NO:44)。In some embodiments, the poly-A tail is about 99 nucleotides in length (SEQ ID NO: 44).

在一些實施態樣中,poly-A尾係相對於整個多核苷酸的長度或多核苷酸之特定區域的長度設計。此設計可基於編碼區之長度、特定特徵或區域之長度或基於自多核苷酸表現之最終產物之長度。In some embodiments, the poly-A tail is designed relative to the length of the entire polynucleotide or the length of a specific region of the polynucleotide. This design may be based on the length of the coding region, the length of a particular feature or region, or the length of the final product expressed from the polynucleotide.

在此情形下,poly-A尾之長度可比多核苷酸或其特徵大10%、20%、30%、40%、50%、60%、70%、80%、90%、或100%。poly-A尾亦可設計為其所屬之多核苷酸的一部分。在此情形下,poly-A尾可為構築體之總長度、構築體區域或構築體之總長度減去poly-A尾的10%、20%、30%、40%、50%、60%、70%、80%、或90%、或更大。另外,poly-A結合蛋白之工程化結合位點及多核苷酸結合可增強表現。 信號序列 In this case, the length of the poly-A tail may be 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100% greater than the polynucleotide or feature thereof. The poly-A tail can also be designed as part of the polynucleotide to which it belongs. In this case, the poly-A tail can be 10%, 20%, 30%, 40%, 50%, 60% of the total length of the structure, the area of the structure, or the total length of the structure minus the poly-A tail , 70%, 80%, or 90%, or greater. In addition, engineered binding sites and polynucleotide binding of poly-A binding proteins can enhance performance. signal sequence

在一些實施態樣中,核酸疫苗之多核苷酸亦可編碼額外特徵,該等特徵可促進將多肽運輸至治療相關位點。有助於蛋白質運輸之一種此類特徵為信號序列。如本文所用,「信號序列」或「信號肽」分別係長度為約9至200個核苷酸(3至60個胺基酸)的多核苷酸或多肽,其分別併入編碼區之5'末端或編碼之N端多肽。在一些實施態樣中,添加此等序列使得經由一或多種分泌途徑將編碼之多肽運輸至內質網。在轉運蛋白質之後,藉由信號肽酶使一些信號肽自蛋白質上切割。In some embodiments, the polynucleotides of the nucleic acid vaccine may also encode additional features that facilitate transport of the polypeptide to therapeutically relevant sites. One such feature that aids in protein transport is the signal sequence. As used herein, a "signal sequence" or "signal peptide" is a polynucleotide or polypeptide, respectively, of about 9 to 200 nucleotides (3 to 60 amino acids) in length, which is incorporated 5' of the coding region, respectively. terminal or encoded N-terminal polypeptide. In some embodiments, the addition of such sequences allows for transport of the encoded polypeptide to the endoplasmic reticulum via one or more secretory pathways. After transporting the protein, some signal peptides are cleaved from the protein by signal peptidases.

在一些實施態樣中,本文所述之核酸疫苗之多核苷酸包括包含SEQ ID NO:45 (DNA)或SEQ ID NO:49 (RNA)之信號序列。 密碼子最佳化 In some embodiments, the polynucleotides of the nucleic acid vaccines described herein include a signal sequence comprising SEQ ID NO: 45 (DNA) or SEQ ID NO: 49 (RNA). Codon optimization

核酸疫苗之多核苷酸、其區域或部分或子區可經密碼子最佳化。密碼子最佳化方法為此項技術中已知且可適用於努力達成若干目標之一或多者。此等目標包括但不限於匹配目標生物體及宿主生物體中的密碼子頻率以確保正確摺疊;改變GC含量以增加mRNA穩定性或減少二級結構;最大限度地減少可能損害基因構築或表現之串聯重複密碼子或鹼基運行;定製轉錄及轉譯控制區;插入或移除蛋白質運輸序列;移除/添加編碼蛋白質中的轉譯後修飾位點(例如醣基化位點);添加、移除或改組蛋白質域;插入或缺失限制位點;修改核糖體結合位點及mRNA降解位點;調節轉譯速率以允許蛋白質的各個域恰當摺疊;或減少或消除多核苷酸內有問題的二級結構。密碼子最佳化工具、演算法及服務為此項技術中已知,非限制性實例包括但不限於來自GeneArt (Life Technologies)、DNA2.0 (Menlo Park Calif.)及/或專用方法的服務。在一些實施態樣中,ORF序列使用最佳化算法最佳化。各胺基酸之密碼子選擇在表4中給出。 表4. 密碼子選擇 單字母 命名法 胺基酸名稱 密碼子選擇 A 丙胺酸 GCT、GCC、GCA、GCG C 半胱胺酸 TGT、TGC D 天冬胺酸 GAT、GAC E 麩胺酸 GAA、GAG F 苯丙胺酸 TTT、TTC G 甘胺酸 GGT、GGC、GGA、GGG H 組胺酸 CAT、CAC I 異白胺酸 ATT、ATC、ATA K 離胺酸 AAA、AAG L 白胺酸 CTT、CTC、CTA、CTG、TTA、TTG M 甲硫胺酸 ATG N 天冬醯胺 AAT、AAC P 脯胺酸 CCT、CCC、CCA、CCG Q 麩醯胺酸 CAA、CAG R 精胺酸 CGT、CGC、CGA、CGG、AGA、AGG s 絲胺酸 TCT、TCC、TCA、TCG、AGT、AGC Sec 硒半胱胺酸 在硒半胱胺酸插入元件(SECTS)存在下之mRNA中的UGA 終止 終止密碼子 TAA、TAG、TGA T 蘇胺酸 ACT、ACC、AC A、ACG V 纈胺酸 GTT、GTC、GTA、GTG w 色胺酸 TGG γ 酪胺酸 TAT、TAC The polynucleotide of the nucleic acid vaccine, its region or part or sub-region may be codon optimized. Codon optimization methods are known in the art and may be adapted in an effort to achieve one or more of several goals. These goals include, but are not limited to, matching codon frequencies in the target and host organisms to ensure correct folding; altering GC content to increase mRNA stability or reduce secondary structure; minimizing errors that may impair gene architecture or expression. Tandemly repeat codons or base runs; customize transcription and translation control regions; insert or remove protein transport sequences; remove/add post-translational modification sites (such as glycosylation sites) in encoded proteins; add, move Eliminate or shuffle protein domains; insert or delete restriction sites; modify ribosome binding sites and mRNA degradation sites; modulate translation rates to allow proper folding of individual domains of the protein; or reduce or eliminate problematic secondary levels within the polynucleotide. structure. Codon optimization tools, algorithms and services are known in the art, non-limiting examples include but are not limited to services from GeneArt (Life Technologies), DNA2.0 (Menlo Park Calif.) and/or Proprietary Methods . In some implementations, the ORF sequence is optimized using an optimization algorithm. The codon usage for each amino acid is given in Table 4. Table 4. Codon selection single letter nomenclature Amino acid name Codon selection A alanine GCT, GCC, GCA, GCG C cysteine TGT, TGC D aspartic acid GAT, GAC E glutamate GAA, GAG F Phenylalanine TTT, TTC G glycine GGT, GGC, GGA, GGG H Histidine CAT,CAC I isoleucine ATT, ATC, ATA K lysine AAA, AAG L Leucine CTT, CTC, CTA, CTG, TTA, TTG M methionine ATG N asparagine AAT, AAC P proline CCT, CCC, CCA, CCG Q Glutamine CAA, CAG R Arginine CGT, CGC, CGA, CGG, AGA, AGG s Serine TCT, TCC, TCA, TCG, AGT, AGC Sec Selenium Cysteine UGA in mRNA in the presence of selenocysteine insertion element (SETS) terminate stop codon TAA, TAG, TGA T threonine ACT, ACC, AC A, ACG V Valine GTT, GTC, GTA, GTG w Tryptophan TGG γ tyrosine TAT, TAC

在一些實施態樣中,核酸疫苗在密碼子最佳化之後載體化。載體之非限制性實例包括但不限於質體、病毒、黏質體及人工染色體。 修飾 In some embodiments, the nucleic acid vaccine is vectorized after codon optimization. Non-limiting examples of vectors include, but are not limited to, plastids, viruses, myxoplasts, and artificial chromosomes. Modify

本揭露之核酸疫苗(包括mRNA疫苗)可包括一或多種修飾。術語「修飾」或適當時「經修飾」係指對A、G、U或C核糖核苷酸之修飾。一般而言,本文中,此等術語並不意欲指天然存在之5'-末端mRNA端帽部分中的核糖核苷酸修飾。在多肽中,術語「修飾」係指相比於20個胺基酸之標準組的修飾。Nucleic acid vaccines (including mRNA vaccines) of the present disclosure may include one or more modifications. The term "modified" or "modified" as appropriate refers to modification of A, G, U or C ribonucleotides. In general, as used herein, these terms are not intended to refer to ribonucleotide modifications in the naturally occurring 5'-terminal cap portion of the mRNA. In a polypeptide, the term "modification" refers to a modification compared to the standard set of 20 amino acids.

如本文所述,「核苷」定義為含有糖分子(例如戊醣或核糖)或其衍生物與有機鹼(例如嘌呤或嘧啶)或其衍生物(「核鹼基」)之組合的化合物。如本文所述,「核苷酸」定義為包括磷酸基或其他主鏈鍵(核苷間鍵)之核苷。As used herein, "nucleoside" is defined as a compound containing a combination of a sugar molecule (eg, pentose or ribose) or a derivative thereof and an organic base (eg, purine or pyrimidine) or a derivative thereof ("nucleobase"). As used herein, "nucleotide" is defined as a nucleoside that includes a phosphate group or other backbone linkage (internucleoside linkage).

修飾可為各種不同修飾。在一些實施態樣中,編碼區、非轉譯區、側接區及/或末端或加尾區可含有一個、兩個或更多個(視情況不同的)核苷或核苷酸修飾。在一些實施態樣中,本揭露之核酸疫苗包含一或多種修飾,與未修飾之多核苷酸相比,該等修飾使得核酸分子在引入至細胞時對細胞中之降解更具抗性及/或在細胞中更穩定。The modification can be a variety of different modifications. In some embodiments, the coding region, untranslated region, flanking region, and/or terminal or tailing region may contain one, two, or more (optionally different) nucleoside or nucleotide modifications. In some embodiments, the nucleic acid vaccines of the present disclosure include one or more modifications that make the nucleic acid molecule more resistant to degradation in cells when introduced into cells and/or compared to unmodified polynucleotides. Or more stable in cells.

本文所述之核酸疫苗之多核苷酸可包括任何有用的修飾,諸如對糖、核鹼基或核苷間鍵(例如對連接磷酸酯/磷酸二酯鍵/磷酸二酯主鏈)之修飾。嘧啶核鹼基之一或多個原子可例如經視情況經取代之胺基、視情況經取代之硫醇、視情況經取代之烷基(例如甲基或乙基)、視情況經取代之鹵基(例如氯或氟)原子或基團置換或取代。在某些實施態樣中,修飾(例如一或多個修飾)存在於糖及核苷間鍵中之每一者中。根據本揭露之修飾可為核糖核酸(RNA)修飾成去氧核糖核酸(DNA)、蘇糖核酸(TNA)、二醇核酸(GNA)、肽核酸(PNA)、鎖核酸(LNA)或其混雜物。本文描述了額外修飾。The polynucleotides of the nucleic acid vaccines described herein may include any useful modifications, such as modifications to sugars, nucleobases, or internucleoside linkages (eg, to connecting phosphate/phosphodiester linkages/phosphodiester backbones). One or more atoms of the pyrimidine nucleobase may be, for example, optionally substituted amine, optionally substituted thiol, optionally substituted alkyl (such as methyl or ethyl), optionally substituted Halogen (eg chlorine or fluorine) atoms or groups are substituted or substituted. In certain embodiments, modifications (eg, one or more modifications) are present in each of the sugar and the internucleoside linkage. Modifications according to the present disclosure may be ribonucleic acid (RNA) modified into deoxyribonucleic acid (DNA), threose nucleic acid (TNA), glycol nucleic acid (GNA), peptide nucleic acid (PNA), locked nucleic acid (LNA), or mixtures thereof things. This article describes additional modifications.

在一些實施態樣中,修飾包括經2'-O-甲基修飾或經2'-O-甲氧基乙基修飾之核苷酸(分別為2'-OMe及2'-MOE修飾)。In some embodiments, modifications include 2'-O-methyl-modified or 2'-O-methoxyethyl-modified nucleotides (2'-OMe and 2'-MOE modifications, respectively).

在一些實施態樣中,本文所述之核酸疫苗之多核苷酸可包含至少一個本文所述之修飾。In some embodiments, the polynucleotides of the nucleic acid vaccines described herein can comprise at least one modification described herein.

本文所述之核酸疫苗之多核苷酸可包括對糖、核鹼基及/或核苷間鍵之修飾的組合。The polynucleotides of the nucleic acid vaccines described herein may include a combination of modifications to sugars, nucleobases, and/or internucleoside linkages.

可用於本揭露之疫苗的多核苷酸(例如RNA多核苷酸,諸如mRNA多核苷酸)修飾包括但不限於如PCT公開案WO2017070626中所述之任何修飾,將其內容以其全文引用方式併入本文中,包括例如編碼經轉譯多肽之一或多個N-連接醣基化位點之核苷酸(或密碼子)的修飾或缺失。可用於本揭露之疫苗的修飾亦可包含如PCT公開案WO2018200892中所述之任何修飾,將其內容以其全文引用方式併入本文中。本揭露之疫苗可進一步包含如PCT專利申請公開案WO2020255063、WO2020182869、WO2016011222、WO2016011226、WO2016005004、WO2016000792、WO2015176737、WO2015085318、WO2015048744及WO2015034925,以及美國專利申請公開案US20200254086、US20200206362、US20180311336及US20180303929中所述之特徵或修飾;將每一該等內容以其全文引用方式併入本文中。Modifications of polynucleotides (eg, RNA polynucleotides, such as mRNA polynucleotides) that may be used in the vaccines of the present disclosure include, but are not limited to, any modifications as described in PCT Publication WO2017070626, the contents of which are incorporated by reference in their entirety. Included herein are modifications or deletions of, for example, nucleotides (or codons) encoding one or more N-linked glycosylation sites of the translated polypeptide. Modifications useful in the vaccines of the present disclosure may also include any modifications as described in PCT Publication WO2018200892, the contents of which are incorporated herein by reference in their entirety. The vaccine of the present disclosure may further include PCT patent application publications WO2020255063, WO2020182869, WO2016011222, WO2016011226, WO2016005004, WO2016000792, WO2015176737, WO2015085318, WO2015048744 and WO2 015034925, as well as those described in U.S. Patent Application Publications US20200254086, US20200206362, US20180311336, and US20180303929 features or modifications; each such content is incorporated herein by reference in its entirety.

例如,包括本文所述之核酸疫苗之mRNA分子的多核苷酸可包括如下修飾。多核苷酸之核苷間鍵可經部分或完全修飾。多核苷酸可包含對一或多個核鹼基之修飾。多核苷酸可包含5-甲基胞嘧啶替代所有胞嘧啶核鹼基/胞苷核苷酸。此外,多核苷酸可具有對核苷之一或多個糖次單元的一或多種修飾。糖修飾可為一或多種鎖核酸(LNA)或2'-O-甲氧基乙基修飾之(「2'-MOE」)修飾。多核苷酸可設計成具有糖、核鹼基或鍵修飾之圖案化陣列。在一些實施態樣中,多核苷酸可包含使穩定性最大化的修飾。在一些實施態樣中,多核苷酸可完全經2'-MOE-糖修飾。 經修飾之核鹼基 For example, polynucleotides comprising the mRNA molecules of the nucleic acid vaccines described herein may include the following modifications. The internucleoside linkages of a polynucleotide may be partially or completely modified. A polynucleotide may contain modifications to one or more nucleobases. The polynucleotide may contain 5-methylcytosine in place of all cytosine nucleobases/cytidine nucleotides. Additionally, a polynucleotide may have one or more modifications to one or more sugar subunits of the nucleoside. The sugar modification can be one or more locked nucleic acid (LNA) or 2'-O-methoxyethyl modifications ("2'-MOE") modifications. Polynucleotides can be designed into patterned arrays with sugar, nucleobase, or bond modifications. In some embodiments, polynucleotides may contain modifications that maximize stability. In some embodiments, the polynucleotide can be completely modified with 2'-MOE-sugar. modified nucleobase

經修飾之核苷及核苷酸可包括經修飾之核鹼基。見於RNA中之核鹼基之實例包括但不限於腺嘌呤、鳥嘌呤、胞嘧啶及尿嘧啶。見於DNA中之核鹼基之實例包括但不限於腺嘌呤、鳥嘌呤、胞嘧啶及胸腺嘧啶。Modified nucleosides and nucleotides may include modified nucleobases. Examples of nucleobases found in RNA include, but are not limited to, adenine, guanine, cytosine, and uracil. Examples of nucleobases found in DNA include, but are not limited to, adenine, guanine, cytosine, and thymine.

在一些實施態樣中,經修飾之核鹼基為經修飾之尿嘧啶。具有經修飾之尿嘧啶的例示性核鹼基及核苷包括假尿苷(ψ)、吡啶-4-酮核苷、5-氮雜-尿苷、6-氮雜-尿苷、2-硫基-5-氮雜-尿苷、2-硫基-尿苷(s 2U)、4-硫基-尿苷(s 4U)、4-硫基-假尿苷、2-硫基-假尿苷、5-羥基-尿苷(ho 5U)、5-胺基烯丙基-尿苷、5-鹵基-尿苷(例如5-碘-尿苷或5-溴-尿苷)、3-甲基-尿苷(m 3U)、5-甲氧基-尿苷(mo 5U)、尿苷5-氧基乙酸(cmo 5U)、尿苷5-氧基乙酸甲酯(mcmo 5U)、5-羧甲基-尿苷(cm 5U)、1-羧甲基-假尿苷、5-羧甲羥甲基-尿苷(chm 5U)、5-羧甲羥甲基-尿苷甲酯(mchm 5U)、5-甲氧基羰基甲基-尿苷(mcm 5U)、5-甲氧基羰基甲基-2-硫基-尿苷(mcm 5s 2U)、5-胺基甲基-2-硫基-尿苷(nm 5s 2U)、5-甲胺基甲基-尿苷(mnm 5U)、5-甲胺基甲基-2-硫基-尿苷(mnm 5s 2U)、5-甲胺基甲基-2-硒基-尿苷(mnm 5se 2U)、5-胺甲醯基甲基-尿苷(ncm 5U)、5-羧甲基胺基甲基-尿苷(cmnm 5U)、5-羧甲基胺基甲基-2-硫基-尿苷(cmnm 5s 2U)、5-丙炔基-尿苷、1-丙炔基-假尿苷、5-牛磺酸甲基-尿苷(τm 5U)、1-牛磺酸甲基-假尿苷、5-牛磺酸甲基-2-硫基-尿苷(τm 5s 2U)、1-牛磺酸甲基-4-硫基-假尿苷、5-甲基-尿苷(m 5U,亦即具有核鹼基脫氧胸腺嘧啶)、1-甲基假尿苷(m 1ψ)、5-甲基-2-硫基-尿苷(m 5s 2U)、1-甲基-4-硫基-假尿苷(m 1s 4ψ)、4-硫基-1-甲基-假尿苷、3-甲基-假尿苷(m 3ψ)、2-硫基-1-甲基-假尿苷、1-甲基-1-去氮-假尿苷、2-硫基-1-甲基-1-去氮-假尿苷、二氫尿苷(D)、二氫假尿苷、5,6-二氫尿苷、5-甲基-二氫尿苷(m 5D)、2-硫基-二氫尿苷、2-硫基-二氫假尿苷、2-甲氧基-尿苷、2-甲氧基-4-硫基-尿苷、4-甲氧基-假尿苷、4-甲氧基-2-硫基-假尿苷、N1-甲基-假尿苷(亦稱為1-甲基假尿苷(m 1ψ))、3-(3-胺基-3-羧丙基)尿苷(acp 3U)、1-甲基-3-(3-胺基-3-羧丙基)假尿苷(acp 3ψ)、5-(異戊烯基胺基甲基)尿苷(inm 5U)、5-(異戊烯基胺基甲基)-2-硫基-尿苷(inm 5s 2U)、α-硫基-尿苷、2'-O-甲基-尿苷(Um)、5,2'-O-二甲基-尿苷(m 5Um)、2'-O-甲基-假尿苷(ψm)、2-硫基-2'-O-甲基-尿苷(s 2Um)、5-甲氧基羰基甲基-2'-O-甲基-尿苷(mcm 5Um)、5-胺甲醯基甲基-2'-O-甲基-尿苷(ncm 5Um)、5-羧甲基胺基甲基-2'-O-甲基-尿苷(cmnm 5Um)、3,2'-O-二甲基-尿苷(m 3Um)、5-(異戊烯基胺基甲基)-2'-O-甲基-尿苷(inm 5Um)、1-硫基-尿苷、去氧胸苷、2'-F-阿糖-尿苷、2'-F-尿苷、2'-OH-阿糖-尿苷、5-(2-甲氧羰基乙烯基)尿苷、及5-[3-(1-E-丙烯基胺基)尿苷。 In some embodiments, the modified nucleobase is modified uracil. Exemplary nucleobases and nucleosides with modified uracil include pseudouridine (ψ), pyridin-4-one nucleosides, 5-aza-uridine, 6-aza-uridine, 2-sulfide Base-5-aza-uridine, 2-thio-uridine (s 2 U), 4-thio-uridine (s 4 U), 4-thio-pseudouridine, 2-thio- Pseudouridine, 5-hydroxy-uridine (ho 5 U), 5-aminoallyl-uridine, 5-halo-uridine (such as 5-iodo-uridine or 5-bromo-uridine) , 3-methyl-uridine (m 3 U), 5-methoxy-uridine (mo 5 U), uridine 5-oxyacetate (cmo 5 U), uridine 5-oxyacetate methyl ester (mcmo 5 U), 5-carboxymethyl-uridine (cm 5 U), 1-carboxymethyl-pseudouridine, 5-carboxymethylhydroxymethyl-uridine (chm 5 U), 5-carboxymethyl Hydroxymethyl-uridine methyl ester (mchm 5 U), 5-methoxycarbonylmethyl-uridine (mcm 5 U), 5-methoxycarbonylmethyl-2-thio-uridine (mcm 5 s 2 U), 5-aminomethyl-2-thio-uridine (nm 5 s 2 U), 5-methylaminomethyl-uridine (mnm 5 U), 5-methylaminomethyl -2-Thio-uridine (mnm 5 s 2 U), 5-methylaminomethyl-2-seleno-uridine (mnm 5 se 2 U), 5-aminoformylmethyl-uridine (ncm 5 U), 5-carboxymethylaminomethyl-uridine (cmnm 5 U), 5-carboxymethylaminomethyl-2-thio-uridine (cmnm 5 s 2 U), 5 -Proynyl-uridine, 1-propynyl-pseudouridine, 5-taurinemethyl-uridine (τm 5 U), 1-taurinemethyl-pseudouridine, 5-taurine Acid methyl-2-thio-uridine (τm 5 s 2 U), 1-taurine methyl-4-thio-pseudouridine, 5-methyl-uridine (m 5 U, that is With nucleobases deoxythymine), 1-methylpseudouridine (m 1 ψ), 5-methyl-2-thio-uridine (m 5 s 2 U), 1-methyl-4-sulfide Base-pseudouridine (m 1 s 4 ψ), 4-thio-1-methyl-pseudouridine, 3-methyl-pseudouridine (m 3 ψ), 2-thio-1-methyl -pseudouridine, 1-methyl-1-desa-pseudouridine, 2-thio-1-methyl-1-desa-pseudouridine, dihydrouridine (D), dihydropseudouridine Glycoside, 5,6-dihydrouridine, 5-methyl-dihydrouridine (m 5 D), 2-thio-dihydrouridine, 2-thio-dihydropseudouridine, 2-methyl Oxy-uridine, 2-methoxy-4-thio-uridine, 4-methoxy-pseudouridine, 4-methoxy-2-thio-pseudouridine, N1-methyl- Pseudouridine (also known as 1-methylpseudouridine (m 1 ψ)), 3-(3-amino-3-carboxypropyl)uridine (acp 3 U), 1-methyl-3- (3-Amino-3-carboxypropyl)pseudouridine (acp 3 ψ), 5-(prenylaminomethyl)uridine (inm 5 U), 5-(prenylaminomethyl) Methyl)-2-thio-uridine (inm 5 s 2 U), α-thio-uridine, 2'-O-methyl-uridine (Um), 5,2'-O-dimethyl methyl-uridine (m 5 Um), 2'-O-methyl-pseudouridine (ψm), 2-thio-2'-O-methyl-uridine (s 2 Um), 5-methoxy Carbonylmethyl-2'-O-methyl-uridine (mcm 5 Um), 5-carboxymethyl-2'-O-methyl-uridine (ncm 5 Um), 5-carboxymethyl Aminomethyl-2'-O-methyl-uridine (cmnm 5 Um), 3,2'-O-dimethyl-uridine (m 3 Um), 5-(prenylamino Methyl)-2'-O-methyl-uridine (inm 5 Um), 1-thio-uridine, deoxythymidine, 2'-F-arabinose-uridine, 2'-F-uridine Glycosides, 2'-OH-arabinose-uridine, 5-(2-methoxycarbonylvinyl)uridine, and 5-[3-(1-E-propenylamino)uridine.

在一些實施態樣中,經修飾之核鹼基為經修飾之胞嘧啶。具有經修飾之胞嘧啶的例示性核鹼基及核苷包括5-氮雜-胞苷、6-氮雜-胞苷、假異胞苷、3-甲基-胞苷(m 3C)、N4-乙醯基-胞苷(ac 4C)、5-甲醯基-胞苷(f 5C)、N4-甲基-胞苷(m 4C)、5-甲基-胞苷(m 5C)、5-鹵基-胞苷(例如5-碘-胞苷)、5-羥甲基-胞苷(hm 5C)、1-甲基-假異胞苷、吡咯并-胞苷、吡咯并-假異胞苷、2-硫基-胞苷(s 2C)、2-硫基-5-甲基-胞苷、4-硫基-假異胞苷、4-硫基-1-甲基-假異胞苷、4-硫基-1-甲基-1-去氮-假異胞苷、1-甲基-1-去氮-假異胞苷、澤布拉林(zebularine)、5-氮雜-澤布拉林、5-甲基-澤布拉林、5-氮雜-2-硫基-澤布拉林、2-硫基-澤布拉林、2-甲氧基-胞苷、2-甲氧基-5-甲基-胞苷、4-甲氧基-假異胞苷、4-甲氧基-1-甲基-假異胞苷、賴西啶(k 2C)、α-硫基-胞苷、2'-O-甲基-胞苷(Cm)、5,2'-O-二甲基-胞苷(m 5Cm)、N4-乙醯基-2'-O-甲基-胞苷(ac 4Cm)、N4,2'-O-二甲基-胞苷(m 4Cm)、5-甲醯基-2'-O-甲基-胞苷(f 5Cm)、N4,N4,2'-O-三甲基-胞苷(m 4 2Cm)、1-硫基-胞苷、2'-F-阿糖-胞苷、2'-F-胞苷、及2'-OH-阿糖-胞苷。 In some embodiments, the modified nucleobase is modified cytosine. Exemplary nucleobases and nucleosides with modified cytosine include 5-aza-cytidine, 6-aza-cytidine, pseudoisocytidine, 3-methyl-cytidine (m 3 C), N4-acetyl-cytidine (ac 4 C), 5-formyl-cytidine (f 5 C), N4-methyl-cytidine (m 4 C), 5-methyl-cytidine (m 5 C), 5-halo-cytidine (e.g. 5-iodo-cytidine), 5-hydroxymethyl-cytidine (hm 5 C), 1-methyl-pseudo-cytidine, pyrro-cytidine , pyrrolo-pseudoisocytidine, 2-thio-cytidine (s 2 C), 2-thio-5-methyl-cytidine, 4-thio-pseudoisocytidine, 4-thio- 1-Methyl-pseudoisocytidine, 4-thio-1-methyl-1-desa-pseudoisocytidine, 1-methyl-1-desaza-pseudoisocytidine, zebrarine ( zebularine), 5-aza-zebularine, 5-methyl-zebularine, 5-aza-2-thio-zebularine, 2-thio-zebularine, 2- Methoxy-cytidine, 2-methoxy-5-methyl-cytidine, 4-methoxy-pseudoisocytidine, 4-methoxy-1-methyl-pseudoisocytidine, raisin Ridine (k 2 C), α-thio-cytidine, 2'-O-methyl-cytidine (Cm), 5,2'-O-dimethyl-cytidine (m 5 Cm), N4- Acetyl-2'-O-methyl-cytidine (ac 4 Cm), N4,2'-O-dimethyl-cytidine (m 4 Cm), 5-formyl-2'-O- Methyl-cytidine (f 5 Cm), N4,N4,2'-O-trimethyl-cytidine (m 4 2 Cm), 1-thio-cytidine, 2'-F-arabinose-cytidine glycosides, 2'-F-cytidine, and 2'-OH-arabinose-cytidine.

在一些實施態樣中,經修飾之核鹼基為經修飾之腺嘌呤。具有經修飾之腺嘌呤的例示性核鹼基及核苷包括2-胺基-嘌呤、2,6-二胺基嘌呤、2-胺基-6-鹵基-嘌呤(例如2-胺基-6-氯-嘌呤)、6-鹵基-嘌呤(例如6-氯-嘌呤)、2-胺基-6-甲基-嘌呤、8-疊氮基-腺苷、7-去氮-腺嘌呤、7-去氮-8-氮雜-腺嘌呤、7-去氮-2-胺基-嘌呤、7-去氮-8-氮雜-2-胺基-嘌呤、7-去氮-2,6-二胺基嘌呤、7-去氮-8-氮雜-2,6-二胺基嘌呤、1-甲基-腺苷(m 1A)、2-甲基-腺嘌呤(m 2A)、N6-甲基-腺苷(m 6A)、2-甲硫基-N6-甲基-腺苷(ms 2m 6A)、N6-異戊烯基-腺苷(i 6A)、2-甲硫基-N6-異戊烯基-腺苷(ms 2i 6A)、N6-(順式-羥基異戊烯基)腺苷(io 6A)、2-甲硫基-N6-(順式-羥基異戊烯基)腺苷(ms 2io 6A)、N6-甘胺醯基胺基甲醯基-腺苷(g 6A)、N6-蘇胺醯基胺基甲醯基-腺苷(t 6A)、N6-甲基-N6-蘇胺醯基胺基甲醯基-腺苷(m 6t 6A)、2-甲硫基-N6-蘇胺醯基胺基甲醯基-腺苷(ms 2g 6A)、N6,N6-二甲基-腺苷(m 6 2A)、N6-羥基正纈胺醯基胺基甲醯基-腺苷(hn 6A)、2-甲硫基-N6-羥基正纈胺醯基胺基甲醯基-腺苷(ms 2hn 6A)、N6-乙醯基-腺苷(ac 6A)、7-甲基-腺嘌呤、2-甲硫基-腺嘌呤、2-甲氧基-腺嘌呤、α-硫基-腺苷、2'-O-甲基-腺苷(Am)、N6,2'-O-二甲基-腺苷(m 6Am)、N6,N6,2'-O-三甲基-腺苷(m 6 2Am)、1,2'-O-二甲基-腺苷(m 1Am)、2'-O-核糖基腺苷(磷酸)(Ar(p))、2-胺基-N6-甲基-嘌呤、1-硫基-腺苷、8-疊氮基-腺苷、2'-F-阿糖-腺苷、2'-F-腺苷、2'-OH-阿糖-腺苷、及N6-(19-胺基-五氧雜十九烷基酯)-腺苷。 In some embodiments, the modified nucleobase is modified adenine. Exemplary nucleobases and nucleosides with modified adenine include 2-amino-purine, 2,6-diaminopurine, 2-amino-6-halo-purine (e.g., 2-amino- 6-chloro-purine), 6-halo-purine (e.g. 6-chloro-purine), 2-amino-6-methyl-purine, 8-azido-adenosine, 7-deaza-adenine , 7-desaza-8-aza-adenine, 7-desaza-2-amino-purine, 7-desaza-8-aza-2-amino-purine, 7-desaza-2, 6-Diaminopurine, 7-desaza-8-aza-2,6-diaminopurine, 1-methyl-adenosine (m 1 A), 2-methyl-adenine (m 2 A ), N6-methyl-adenosine (m 6 A), 2-methylthio-N6-methyl-adenosine (ms 2 m 6 A), N6-prenyl-adenosine (i 6 A) , 2-methylthio-N6-isopentenyl-adenosine (ms 2 i 6 A), N6-(cis-hydroxyisopentenyl)adenosine (io 6 A), 2-methylthio- N6-(cis-hydroxyisopentenyl)adenosine (ms 2 io 6 A), N6-glycinylamide methanoyl-adenosine (g 6 A), N6-threonylamine acylamine Formyl-adenosine (t 6 A), N6-methyl-N6-threonamide carboxyl-adenosine (m 6 t 6 A), 2-methylthio-N6-threonamide Aminoformyl-adenosine (ms 2 g 6 A), N6, N6-dimethyl-adenosine (m 6 2 A), N6-hydroxyvalamine-methylaminoformyl-adenosine (hn 6 A), 2-Methylthio-N6-hydroxyvalinyl-aminoformyl-adenosine (ms 2 hn 6 A), N6-acetyl-adenosine (ac 6 A), 7-methyl-adenine, 2-methylthio-adenine, 2-methoxy-adenine, α-thio-adenosine, 2'-O-methyl-adenosine (Am), N6, 2'-O-dimethyl-adenosine (m 6 Am), N6,N6,2'-O-trimethyl-adenosine (m 6 2 Am), 1,2'-O-dimethyl- Adenosine (m 1 Am), 2'-O-ribosyladenosine (phosphate) (Ar(p)), 2-amino-N6-methyl-purine, 1-thio-adenosine, 8-azide Nitrogen-adenosine, 2'-F-arabinose-adenosine, 2'-F-adenosine, 2'-OH-arabinose-adenosine, and N6-(19-amino-pentoxa-19 Alkyl ester)-adenosine.

在一些實施態樣中,經修飾之核鹼基為經修飾之鳥嘌呤。具有經修飾之鳥嘌呤的例示性核鹼基及核苷包括肌苷(I)、1-甲基-肌苷(m 1I)、懷俄苷(imG)、甲基懷俄苷(mimG)、4-去甲基-懷俄苷(imG-14)、異懷俄苷(imG2)、懷俄丁苷(yW)、過氧基懷俄丁苷(o 2yW)、羥基懷俄丁苷(OHyW)、欠修飾之羥基懷俄丁苷(OHyW*)、7-去氮-鳥苷、Q核苷(Q)、環氧Q核苷(oQ)、半乳糖基-Q核苷(galQ)、甘露糖基-Q核苷(manQ)、7-氰基-7-去氮-鳥苷(preQ 0)、7-胺基甲基-7-去氮-鳥苷(preQ 1)、古嘌苷(G +)、7-去氮-8-氮雜-鳥苷、6-硫基-鳥苷、6-硫基-7-去氮-鳥苷、6-硫基-7-去氮-8-氮雜-鳥苷、7-甲基-鳥苷(m 7G)、6-硫基-7-甲基-鳥苷、7-甲基-肌苷、6-甲氧基-鳥苷、1-甲基-鳥苷(m 1G)、N2-甲基-鳥苷(m 2G)、N2,N2-二甲基-鳥苷(m 2 2G)、N2,7-二甲基-鳥苷(m 2,7G)、N2,N2,7-二甲基-鳥苷(m 2,2,7G)、8-側氧基-鳥苷、7-甲基-8-側氧基-鳥苷、1-甲基-6-硫基-鳥苷、N2-甲基-6-硫基-鳥苷、N2,N2-二甲基-6-硫基-鳥苷、α-硫基-鳥苷、2'-O-甲基-鳥苷(Gm)、N2-甲基-2'-O-甲基-鳥苷(m 2Gm)、N2,N2-二甲基-2'-O-甲基-鳥苷(m 2 2Gm)、1-甲基-2'-O-甲基-鳥苷(m 1Gm)、N2,7-二甲基-2'-O-甲基-鳥苷(m 2,7Gm)、2'-O-甲基-肌苷(Im)、1,2'-O-二甲基-肌苷(m 1Im)、及2'-O-核糖鳥苷(磷酸)(Gr(p))。 In some embodiments, the modified nucleobase is modified guanine. Exemplary nucleobases and nucleosides with modified guanine include inosine (I), 1-methyl-inosine (m 1 I), Wyosine (imG), methyl Wyosine (mimG) , 4-desmethyl-wyosin (imG-14), iso-wyosin (imG2), wyosin (yW), peroxy-wyosin (o 2 yW), hydroxywyosin (OHyW), unmodified hydroxywyosine (OHyW*), 7-deaza-guanosine, Q nucleoside (Q), epoxy Q nucleoside (oQ), galactosyl-Q nucleoside (galQ ), mannosyl-Q nucleoside (manQ), 7-cyano-7-deaza-guanosine (preQ 0 ), 7-aminomethyl-7-deaza-guanosine (preQ 1 ), ancient Purine (G + ), 7-deaza-8-aza-guanosine, 6-thio-guanosine, 6-thio-7-deaza-guanosine, 6-thio-7-deaza-guanosine -8-aza-guanosine, 7-methyl-guanosine (m 7 G), 6-thio-7-methyl-guanosine, 7-methyl-inosine, 6-methoxy-guanosine Glycoside, 1-methyl-guanosine (m 1 G), N2-methyl-guanosine (m 2 G), N2,N2-dimethyl-guanosine (m 2 2 G), N2,7-di Methyl-guanosine (m 2,7 G), N2,N2,7-dimethyl-guanosine (m 2,2,7 G), 8-side oxy-guanosine, 7-methyl-8 -Pendant oxy-guanosine, 1-methyl-6-thio-guanosine, N2-methyl-6-thio-guanosine, N2,N2-dimethyl-6-thio-guanosine, α-Thio-guanosine, 2'-O-methyl-guanosine (Gm), N2-methyl-2'-O-methyl-guanosine (m 2 Gm), N2,N2-dimethyl -2'-O-methyl-guanosine (m 2 2 Gm), 1-methyl-2'-O-methyl-guanosine (m 1 Gm), N2,7-dimethyl-2'- O-methyl-guanosine (m 2,7 Gm), 2'-O-methyl-inosine (Im), 1,2'-O-dimethyl-inosine (m 1 Im), and 2 '-O-Riboguanosine (phosphate) (Gr(p)).

核苷酸之核鹼基可獨立地選自嘌呤、嘧啶、嘌呤類似物或嘧啶類似物。例如,核鹼基可各自獨立地選自腺嘌呤、胞嘧啶、鳥嘌呤、尿嘧啶或次黃嘌呤。在另一實施態樣中,核鹼基亦可包括例如鹼基之天然存在及合成的衍生物,包括吡唑并[3,4-d]嘧啶、5-甲基胞嘧啶(5-me-C)、5-羥甲基胞嘧啶、黃嘌呤、次黃嘌呤、2-胺基腺嘌呤、腺嘌呤及鳥嘌呤之6-甲基及其他烷基衍生物、腺嘌呤及鳥嘌呤之2-丙基及其他烷基衍生物、2-硫尿嘧啶、2-硫代胸腺嘧啶及2-硫胞嘧啶、5-丙炔基尿嘧啶及胞嘧啶、6-偶氮尿嘧啶、胞嘧啶及胸腺嘧啶、5-尿嘧啶(假尿嘧啶)、4-硫尿嘧啶、8-鹵基(例如8-溴)、8-胺基、8-硫醇、8-硫代烷基、8-羥基及其他8-取代之腺嘌呤及鳥嘌呤、5-鹵基(特定言之5-溴)、5-三氟甲基及其他5-取代之尿嘧啶及胞嘧啶、7-甲基鳥嘌呤及7-甲基腺嘌呤、8-氮雜鳥嘌呤及8-氮雜腺嘌呤、去氮鳥嘌呤、7-去氮鳥嘌呤、3-去氮鳥嘌呤、去氮腺嘌呤、7-去氮腺嘌呤、3-去氮腺嘌呤、吡唑并[3,4-d]嘧啶、咪唑并[1,5-a]1,3,5三𠯤酮、9-去氮嘌呤、咪唑并[4,5-d]吡𠯤、噻唑并[4,5-d]嘧啶、吡𠯤-2-酮、1,2,4-三𠯤、嗒𠯤;及1,3,5三𠯤。The nucleobase of the nucleotide can be independently selected from purine, pyrimidine, purine analogs or pyrimidine analogs. For example, the nucleobases may each independently be selected from adenine, cytosine, guanine, uracil, or hypoxanthine. In another embodiment, nucleobases may also include, for example, naturally occurring and synthetic derivatives of bases, including pyrazolo[3,4-d]pyrimidine, 5-methylcytosine (5-me- C), 5-hydroxymethylcytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2- of adenine and guanine Propyl and other alkyl derivatives, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-propynyluracil and cytosine, 6-azouracil, cytosine and thymus Pyrimidine, 5-uracil (pseudouracil), 4-thiouracil, 8-halogen (e.g. 8-bromo), 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxy and Other 8-substituted adenine and guanine, 5-halogen (specifically 5-bromo), 5-trifluoromethyl and other 5-substituted uracil and cytosine, 7-methylguanine and 7 -Methyladenine, 8-azaguanine and 8-azaadenine, deazaguanine, 7-deazaguanine, 3-deazaguanine, deazaguanine, 7-deazaguanine , 3-deazaadenine, pyrazolo[3,4-d]pyrimidine, imidazo[1,5-a]1,3,5 trioxone, 9-deazapurine, imidazo[4,5 -d]pyridine, thiazolo[4,5-d]pyrimidine, pyridine-2-one, 1,2,4-triphenidate, thiazolo[4,5-d]pyrimidine; and 1,3,5triphenidate.

可在本文所述之多核苷酸中之各種位置引入不同糖修飾、核苷酸修飾及/或核苷間鍵(例如主鏈結構)。一般熟習此項技術者應瞭解,核苷酸類似物或其他修飾可位於多核苷酸之任何位置,使得多核苷酸之功能實質上不降低。本揭露之多核苷酸可含有約1%至約100%經修飾之核苷酸(相對於總核苷酸含量,或相對於一或多種類型之核苷酸,亦即A、G、T/U或C中之任一或多者)或任何中間百分比(例如1%至20%、1%至25%、1%至50%、1%至60%、1%至70%、1%至80%、1%至90%、1%至95%、10%至20%、10%至25%、10%至50%、10%至60%、10%至70%、10%至80%、10%至90%、10%至95%、10%至100%、20%至25%、20%至50%、20%至60%、20%至70%、20%至80%、20%至90%、20%至95%、20%至100%、50%至60%、50%至70%、50%至80%、50%至90%、50%至95%、50%至100%、70%至80%、70%至90%、70%至95%、70%至100%、80%至90%、80%至95%、80%至100%、90%至95%、90%至100%、及95%至100%)。Different sugar modifications, nucleotide modifications, and/or internucleoside linkages (eg, backbone structures) can be introduced at various positions in the polynucleotides described herein. Those skilled in the art will appreciate that nucleotide analogs or other modifications can be located at any position on a polynucleotide such that the function of the polynucleotide is not substantially reduced. The polynucleotides of the present disclosure may contain from about 1% to about 100% modified nucleotides (relative to the total nucleotide content, or relative to one or more types of nucleotides, namely A, G, T/ any one or more of U or C) or any intermediate percentage (such as 1% to 20%, 1% to 25%, 1% to 50%, 1% to 60%, 1% to 70%, 1% to 80%, 1% to 90%, 1% to 95%, 10% to 20%, 10% to 25%, 10% to 50%, 10% to 60%, 10% to 70%, 10% to 80% , 10% to 90%, 10% to 95%, 10% to 100%, 20% to 25%, 20% to 50%, 20% to 60%, 20% to 70%, 20% to 80%, 20 % to 90%, 20% to 95%, 20% to 100%, 50% to 60%, 50% to 70%, 50% to 80%, 50% to 90%, 50% to 95%, 50% to 100%, 70% to 80%, 70% to 90%, 70% to 95%, 70% to 100%, 80% to 90%, 80% to 95%, 80% to 100%, 90% to 95% , 90% to 100%, and 95% to 100%).

在一些實施態樣中,本文所述之核酸疫苗之多核苷酸可經修飾為環狀核酸。多核苷酸之末端可藉由化學試劑或酶連接,從而產生無自由端之環狀多核苷酸。預期環狀多核苷酸比線性對應物更穩定且對外切核酸酶消化具有抗性。環狀多核苷酸可進一步包含關於A、G、T/U或C核糖核苷酸/去氧核糖核苷酸之其他結構及/或化學修飾。In some embodiments, the polynucleotides of the nucleic acid vaccines described herein can be modified into circular nucleic acids. The ends of the polynucleotide can be connected by chemical reagents or enzymes to produce a cyclic polynucleotide without free ends. Circular polynucleotides are expected to be more stable than their linear counterparts and resistant to exonuclease digestion. Cyclic polynucleotides may further comprise other structural and/or chemical modifications regarding A, G, T/U or C ribonucleotides/deoxyribonucleotides.

在一些實施態樣中,多核苷酸為至少50%經修飾,例如至少50%之核苷酸經修飾。在一些實施態樣中,多核苷酸為至少75%經修飾,例如至少75%之核苷酸經修飾。應理解,由於核苷酸(糖、鹼基及磷酸部分,例如鍵)可各自經修飾,因此對核苷酸或核苷之任何部分的任何修飾將構成修飾。In some embodiments, the polynucleotide is at least 50% modified, for example, at least 50% of the nucleotides are modified. In some embodiments, the polynucleotide is at least 75% modified, for example, at least 75% of the nucleotides are modified. It will be understood that since the nucleotides (sugar, base and phosphate moieties, such as bonds) may each be modified, any modification to any portion of the nucleotide or nucleoside will constitute a modification.

在一些實施態樣中,多核苷酸僅在核苷酸之一種組分中至少10%經修飾,其中此類組分為核鹼基、糖或核苷之間的鍵。例如,可對本文所述之多核苷酸之核鹼基、糖或鍵的至少10%、20%、30%、40%、50%、60%、70%、80%、90%、或100%進行修飾。In some embodiments, the polynucleotide is modified in at least 10% of only one component of the nucleotides, where such component is a linkage between nucleobases, sugars, or nucleosides. For example, at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100% of the nucleobases, sugars, or linkages of the polynucleotides described herein may be modified. % modified.

作為非限制性實例,核酸疫苗之多核苷酸之尿嘧啶核苷全部經修飾。該等修飾可相同或不同。在一些實施態樣中,核酸疫苗之多核苷酸之鳥嘌呤核苷全部經修飾。該等修飾可相同或不同。在一些實施態樣中,核酸疫苗之多核苷酸之鳥嘌呤核苷全部經修飾。該等修飾可相同或不同。在一些實施態樣中,核酸疫苗之多核苷酸之胞嘧啶核苷全部經修飾。該等修飾可相同或不同。在一些實施態樣中,核酸疫苗之多核苷酸之腺嘌呤核苷全部經修飾。該等修飾可相同或不同。As a non-limiting example, all uracil nucleosides of the polynucleotide of the nucleic acid vaccine are modified. The modifications may be the same or different. In some embodiments, all guanine nucleotides of the polynucleotide of the nucleic acid vaccine are modified. The modifications may be the same or different. In some embodiments, all guanine nucleotides of the polynucleotide of the nucleic acid vaccine are modified. The modifications may be the same or different. In some embodiments, all cytosine nucleosides of the polynucleotide of the nucleic acid vaccine are modified. The modifications may be the same or different. In some embodiments, all adenine nucleosides of the polynucleotide of the nucleic acid vaccine are modified. The modifications may be the same or different.

在本揭露之一個實施態樣中,核酸疫苗之多核苷酸經修飾以包含N1-甲基-假尿苷核苷酸。 糖修飾 In one embodiment of the present disclosure, the polynucleotide of the nucleic acid vaccine is modified to include N1-methyl-pseudouridine nucleotide. sugar modification

可併入多核苷酸(例如RNA或mRNA,如本文所述)中之經修飾之核苷及核苷酸可在核糖核酸之糖上經修飾。例如,2'羥基(OH)可經多個不同取代基修飾或置換。2'-位置處之例示性取代包括但不限於H、鹵基、視情況經取代之C1-6烷基;視情況經取代之C1-6烷氧基;視情況經取代之C6-10芳氧基;視情況經取代之C3-8環烷基;視情況經取代之C3-8環烷氧基;視情況經取代之C6-10芳氧基;視情況經取代之C6-10芳基-C1-6烷氧基、視情況經取代之C1-12(雜環基)氧基;糖(例如核糖、戊醣或本文所述之任何糖);聚乙二醇(PEG)、-O(CH2CH2O)nCH2CH2OR,其中R為H或視情況經取代之烷基,且n為0至20 (例如0至4、0至8、0至10、0至16、1至4、1至8、1至10、1至16、1至20、2至4、2至8、2至10、2至16、2至20、4至8、4至10、4至16、及4至20)之整數;「鎖」核酸(LNA),其中2'-羥基由C1-6伸烷基或C1-6伸雜烷基橋鍵連接至相同核糖之4'-碳,其中例示性橋鍵包括亞甲基、伸丙基、醚或胺基橋鍵;胺基烷基;胺基烷氧基;胺基;及胺基酸。Modified nucleosides and nucleotides that can be incorporated into polynucleotides (eg, RNA or mRNA, as described herein) can be modified on the sugars of the ribonucleic acid. For example, the 2' hydroxyl group (OH) can be modified or replaced with a number of different substituents. Exemplary substitutions at the 2'-position include, but are not limited to, H, halo, optionally substituted C1-6 alkyl; optionally substituted C1-6 alkoxy; optionally substituted C6-10 aryl Oxy group; optionally substituted C3-8 cycloalkyl; optionally substituted C3-8 cycloalkoxy; optionally substituted C6-10 aryloxy; optionally substituted C6-10 aryl -C1-6 alkoxy, optionally substituted C1-12 (heterocyclyl)oxy; sugar (such as ribose, pentose or any sugar described herein); polyethylene glycol (PEG), -O (CH2CH2O)nCH2CH2OR, where R is H or optionally substituted alkyl, and n is 0 to 20 (e.g., 0 to 4, 0 to 8, 0 to 10, 0 to 16, 1 to 4, 1 to 8, 1 to 10, 1 to 16, 1 to 20, 2 to 4, 2 to 8, 2 to 10, 2 to 16, 2 to 20, 4 to 8, 4 to 10, 4 to 16, and 4 to 20) Integer; "locked" nucleic acid (LNA) in which the 2'-hydroxyl group is linked to the 4'-carbon of the same ribose by a C1-6 alkylene or C1-6 heteroalkylene bridge, where exemplary bridges include methylene base, propyl, ether or amine bridge; aminoalkyl; aminoalkoxy; amine; and amino acid.

在一些實施態樣中,多核苷酸,諸如本文所述之核酸疫苗之mRNA包含至少一個糖修飾。一般而言,RNA包括作為具有氧之5員環之糖基核糖。例示性的非限制性經修飾之核苷酸包括置換核糖中之氧(例如用S、Se或伸烷基,諸如亞甲基或伸乙基);添加雙鍵(例如以用環戊烯基或環己烯基置換核糖);核糖之縮環(例如以形成環丁烷或氧呾之4員環);核糖之擴環(例如以形成具有額外碳或雜原子之6員環或7員環,諸如無水己糖醇、阿卓糖醇(altritol)、甘露糖醇、環己烷基、環己烯基及N-𠰌啉基(亦具有胺基磷酸酯主鏈));多環形式(例如三環及「未鎖定」形式,諸如乙二醇核酸(GNA) (例如R-GNA或S-GNA,其中核糖經連接至磷酸二酯鍵之乙二醇單元置換)、蘇糖核酸(TNA,其中核糖經α-L-蘇糖呋喃糖基-(3'→2')置換)及肽核酸(PNA,其中2-胺基-乙基-甘胺酸鍵置換核糖及磷酸二酯主鏈)。糖基亦可含有一或多個碳,其具有與核糖中之相應碳相反的立體化學構型。因此,如本文所述之多核苷酸分子(包括mRNA)可包括含有例如阿拉伯糖作為糖的核苷酸。In some embodiments, polynucleotides, such as the mRNA of the nucleic acid vaccines described herein, comprise at least one sugar modification. In general, RNA includes the sugar ribose as a 5-membered ring with oxygen. Exemplary non-limiting modified nucleotides include replacing the oxygen in ribose (e.g., with S, Se, or an alkylene group, such as methylene or ethylene); adding a double bond (e.g., with a cyclopentenyl group). or cyclohexenyl replacing ribose); Ring condensation of ribose (for example, to form a 4-membered ring of cyclobutane or oxygen); Ring expansion of ribose (for example, to form a 6- or 7-membered ring with additional carbons or heteroatoms) Rings such as anhydrous hexitol, altritol, mannitol, cyclohexyl, cyclohexenyl and N-𠰌linyl (also with an aminophosphate backbone); polycyclic forms (e.g. tricyclic and "unlocked" forms such as glycol nucleic acid (GNA) (e.g. R-GNA or S-GNA, in which ribose is replaced by a glycol unit linked to a phosphodiester bond), threose nucleic acid ( TNA, in which ribose is replaced by α-L-threose furanosyl-(3'→2')) and peptide nucleic acid (PNA, in which 2-amino-ethyl-glycine bond replaces ribose and phosphodiester) chain). A sugar moiety may also contain one or more carbons that have the opposite stereochemical configuration to the corresponding carbon in ribose. Thus, polynucleotide molecules (including mRNA) as described herein may include molecules containing, for example, arabinose Nucleotides that are sugars.

糖修飾之非限制性實例可包括表5中提供之修飾。本揭露之多核苷酸可具有一或多個攜帶如表5中所提供之修飾的核苷酸。在一些實施態樣中,本文所述之多核苷酸中之每一者攜帶如表5中所提供之修飾中之任一者,或不攜帶如表5中所提供之修飾中之任一者。 表5. 核苷酸糖修飾 Non-limiting examples of sugar modifications may include those provided in Table 5. Polynucleotides of the present disclosure may have one or more nucleotides carrying modifications as provided in Table 5. In some embodiments, each of the polynucleotides described herein carries any of the modifications as provided in Table 5, or does not carry any of the modifications as provided in Table 5 . Table 5. Nucleotide sugar modifications

在一些實施態樣中,多核苷酸之核苷酸之糖的至少一個2'位置(RNA中之OH或DNA中之H)經-OMe取代,稱為2'-OMe。在一些實施態樣中,多核苷酸之核苷酸之糖的至少一個2'位置(RNA中之OH或DNA中之H)經-F取代,稱為2'-F。 核苷間鍵 In some embodiments, at least one 2' position (OH in RNA or H in DNA) of the sugar of the nucleotide of the polynucleotide is substituted with -OMe, referred to as 2'-OMe. In some embodiments, at least one 2' position of the sugar of the nucleotide of the polynucleotide (OH in RNA or H in DNA) is substituted with -F, referred to as 2'-F. internucleoside bond

本揭露之多核苷酸可包括對核苷間鍵(例如對連接磷酸酯/磷酸二酯鍵/磷酸二酯主鏈)之任何修飾。在多核苷酸主鏈之上下文中,片語「磷酸酯」及「磷酸二酯」可互換使用。主鏈磷酸酯基可藉由用不同的取代基置換一或多個氧原子來修飾。此外,經修飾之核苷及核苷酸可包括用如本文所述之另一核苷間鍵全盤置換未經修飾之磷酸酯部分。經修飾之磷酸酯基之實例包括但不限於硫代磷酸酯、甲基磷酸酯、硒代磷酸酯、硼烷磷酸酯(boranophosphate)、硼烷磷酸酯(borano phosphate ester)、氫膦酸酯、胺基磷酸酯、二胺基磷酸酯、烷基或芳基膦酸酯及磷酸三酯。二硫代磷酸酯之兩個非連接氧均經硫置換。磷酸酯連接子亦可藉由用氮(橋接胺基磷酸酯)、硫(橋接硫代磷酸酯)及碳(橋接亞甲基-膦酸酯)置換連接氧而修飾。The polynucleotides of the present disclosure may include any modification to the internucleoside linkages (eg, to the connecting phosphate/phosphodiester linkage/phosphodiester backbone). In the context of a polynucleotide backbone, the phrases "phosphate ester" and "phosphodiester" are used interchangeably. The backbone phosphate group can be modified by replacing one or more oxygen atoms with different substituents. Additionally, modified nucleosides and nucleotides may include a complete replacement of the unmodified phosphate moiety with another internucleoside linkage as described herein. Examples of modified phosphate groups include, but are not limited to, phosphorothioate, methylphosphate, selenophosphate, boranophosphate, borano phosphate ester, hydrophosphonate, Amino phosphates, diamino phosphates, alkyl or aryl phosphonates and phosphate triesters. Both non-attached oxygens of phosphorodithioates are replaced by sulfur. Phosphate linkers can also be modified by replacing the connecting oxygen with nitrogen (bridging aminophosphate), sulfur (bridging phosphorothioate), and carbon (bridging methylene-phosphonate).

提供經α-硫基取代之磷酸酯部分以經由非天然硫代磷酸酯主鏈鍵聯賦予RNA及DNA多核苷酸穩定性。硫代磷酸酯DNA及RNA具有增加的核酸酶抗性,隨後在細胞環境中具有更長的半衰期。預期硫代磷酸酯連接之多核苷酸分子亦經由細胞先天性免疫分子之較弱結合/活化而減少先天性免疫反應。Alpha-thio-substituted phosphate moieties are provided to confer stability to RNA and DNA polynucleotides via non-natural phosphorothioate backbone linkages. Phosphorothioate DNA and RNA have increased nuclease resistance and subsequently have a longer half-life in the cellular environment. Phosphorothioate-linked polynucleotide molecules are also expected to reduce innate immune responses through weaker binding/activation of cellular innate immune molecules.

在特定實施態樣中,經修飾之核苷包括α-硫基-核苷(例如5'-O-(1-硫代磷酸酯)-腺苷、5'-O-(1-硫代磷酸酯)-胞苷(α-硫基-胞苷)、5'-O-(1-硫代磷酸酯)-鳥苷、5'-O-(1-硫代磷酸酯)-尿苷或5'-O-(1-硫代磷酸酯)-假尿苷)。In certain embodiments, modified nucleosides include alpha-thio-nucleosides (e.g., 5'-O-(1-phosphorothioate)-adenosine, 5'-O-(1-phosphorothioate) ester)-cytidine (α-thio-cytidine), 5'-O-(1-phosphorothioate)-guanosine, 5'-O-(1-phosphorothioate)-uridine or 5 '-O-(1-phosphorothioate)-pseudouridine).

在一些實施態樣中,多核苷酸在核苷酸之間包含至少一個硫代磷酸酯鍵或甲基膦酸酯鍵。In some embodiments, a polynucleotide contains at least one phosphorothioate or methylphosphonate linkage between nucleotides.

在一些實施態樣中,多核苷酸包含至少一種5'-( E)-膦酸乙烯酯(5'- E-VP),一種磷酸酯模擬物作為修飾。 In some embodiments, the polynucleotide includes at least one 5'-( E )-vinyl phosphonate (5'- E -VP), a phosphate mimetic, as a modification.

在本揭露之一個實施態樣中,COVID-19之核酸疫苗之多核苷酸(例如mRNA)可經修飾。 價數 In one embodiment of the present disclosure, the polynucleotide (eg, mRNA) of the COVID-19 nucleic acid vaccine can be modified. Price

本揭露之核酸疫苗的價數可變化。「價數」係指核酸疫苗或核酸疫苗之多核苷酸中之抗原組分的數目。核酸疫苗之抗原組分可在相同多核苷酸上或其可在不同多核苷酸上。在一些實施態樣中,核酸疫苗可為單價。在一些實施態樣中,核酸疫苗可為二價。在一些實施態樣中,核酸疫苗可為三價。在一些實施態樣中,核酸疫苗可為多價,其可包含2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、或超過25種抗原或抗原部分,諸如但不限於抗原肽。作為非限制性實例,抗原肽可為SARS-CoV-2之結構蛋白的一或多個片段或變異體。 合成 酶方法 活體外轉錄酶合成 The valence of the nucleic acid vaccines of the present disclosure may vary. "Valence" refers to the number of antigenic components in a nucleic acid vaccine or a polynucleotide of a nucleic acid vaccine. The antigenic components of a nucleic acid vaccine can be on the same polynucleotide or they can be on different polynucleotides. In some implementations, the nucleic acid vaccine can be monovalent. In some embodiments, the nucleic acid vaccine can be bivalent. In some implementations, the nucleic acid vaccine can be trivalent. In some embodiments, the nucleic acid vaccine can be multivalent, which can include 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 , 19, 20, 21, 22, 23, 24, 25, or more than 25 antigens or antigenic portions, such as but not limited to antigenic peptides. As a non-limiting example, the antigenic peptide may be one or more fragments or variants of the structural protein of SARS-CoV-2. synthesis enzymatic method In vitro transcriptase synthesis

可使用活體外轉錄(IVT)系統轉錄編碼本文所述之核酸疫苗之多核苷酸的cDNA。該系統通常包含轉錄緩衝液、核苷酸三磷酸酯(NTP)、核糖核酸酶抑制劑及聚合酶。NTP可內部製造、可選自供應商或可如本文所述地合成。NTP可選自但不限於本文所述之NTP,包括天然及非天然(經修飾) NTP。聚合酶可選自但不限於T7 RNA聚合酶、T3 RNA聚合酶及聚合酶變異體。In vitro transcription (IVT) systems can be used to transcribe cDNA encoding the polynucleotides of the nucleic acid vaccines described herein. The system typically includes transcription buffer, nucleotide triphosphates (NTPs), ribonuclease inhibitors, and polymerases. NTP can be made in-house, selected from a supplier, or synthesized as described herein. The NTP may be selected from, but is not limited to, the NTPs described herein, including natural and non-natural (modified) NTPs. The polymerase may be selected from, but is not limited to, T7 RNA polymerase, T3 RNA polymerase, and polymerase variants.

在一些實施態樣中,使用DNase I酶自IVT反應移除DNA模板。消化之DNA及核苷酸接著在mRNA之oligo dT純化期間移除。此純化方法係基於mRNA之poly-A尾與poly-dT管柱床之親和力。可使用離心,但可能不需要離心來移除消化之DNA及核苷酸。在藉由逆相管柱(例如SDVB)純化以自mRNA移除雙股RNA之後,可利用超濾繼之以一或多個過濾步驟。純化後,可藉由使用PCR來量測殘餘DNA,以確認轉錄為mRNA之區域之外的質體區域的DNA已被移除。在一些實施態樣中,在需要產物濃縮之情況下,可使用透濾方法繼之以一或多個過濾步驟以移除任何生物負荷(例如生物分子或其他生物材料)。In some embodiments, a DNase I enzyme is used to remove the DNA template from the IVT reaction. Digested DNA and nucleotides are then removed during oligo dT purification of mRNA. This purification method is based on the affinity of the poly-A tail of the mRNA to the poly-dT column bed. Centrifugation can be used but may not be necessary to remove digested DNA and nucleotides. After purification by a reverse phase column (eg, SDVB) to remove double-stranded RNA from the mRNA, ultrafiltration can be used followed by one or more filtration steps. After purification, residual DNA can be measured using PCR to confirm that DNA from the plastid region outside of the region transcribed into mRNA has been removed. In some embodiments, where product concentration is desired, diafiltration methods may be used followed by one or more filtration steps to remove any biological burden (eg, biomolecules or other biological material).

任何數目之RNA聚合酶或變異體可用於本文所述之核酸疫苗之多核苷酸的合成。可藉由插入或缺失RNA聚合酶序列之胺基酸來修飾RNA聚合酶。Any number of RNA polymerases or variants may be used in the synthesis of polynucleotides for the nucleic acid vaccines described herein. RNA polymerase can be modified by inserting or deleting amino acids from the RNA polymerase sequence.

可藉由使用聚合酶之酶方法進行多核苷酸或核酸合成反應。聚合酶催化多核苷酸或核酸鏈中之核苷酸之間的磷酸二酯鍵的產生。當前已知的DNA聚合酶可基於胺基酸序列比較及晶體結構分析而分成不同家族。DNA聚合酶I (pol I)或A聚合酶家族,包括大腸桿菌之Klenow片段、芽孢桿菌DNA聚合酶I、水生棲熱菌(Taq) DNA聚合酶以及T7 RNA及DNA聚合酶為此等家族中研究最徹底的家族之一。另一大型家族為DNA聚合酶a (pol a)或B聚合酶家族,包括所有真核複製DNA聚合酶及來自噬菌體T4及RB69之聚合酶。儘管此等聚合酶家族採用類似的催化機制,但其在受質特異性、受質類似物結合效率、引子延伸之程度及速率、DNA合成模式、外切核酸酶活性及對抑制劑之敏感性方面存在差異。 固相化學合成 Polynucleotide or nucleic acid synthesis reactions can be performed by enzymatic methods using polymerases. Polymerase catalyzes the creation of phosphodiester bonds between nucleotides in a polynucleotide or nucleic acid chain. Currently known DNA polymerases can be divided into different families based on amino acid sequence comparison and crystal structure analysis. DNA polymerase I (pol I) or A polymerase family, including the Klenow fragment of Escherichia coli, Bacillus DNA polymerase I, Thermus aquaticus (Taq) DNA polymerase, and T7 RNA and DNA polymerase are among these families One of the most thoroughly studied families. Another large family is the DNA polymerase a (pol a) or B polymerase family, which includes all eukaryotic replicating DNA polymerases and polymerases from bacteriophages T4 and RB69. Although these polymerase families employ similar catalytic mechanisms, they differ in acceptor specificity, acceptor analog binding efficiency, extent and rate of primer extension, DNA synthesis mode, exonuclease activity, and sensitivity to inhibitors. There are differences in aspects. solid phase chemical synthesis

在一些實施態樣中,本文所述之核酸疫苗的多核苷酸可完全或部分使用固相技術製造。多核苷酸或核酸之固相化學合成係一種自動化方法,其中分子固定於固體支撐物上且在反應物溶液中逐步合成。洗掉雜質及過量試劑且在各步驟之後不需要純化。該過程之自動化可在電腦控制的固相合成器上進行。固相合成允許以相對較大規模快速生產多核苷酸或核酸,使一些多核苷酸或核酸具有商業可用性。In some embodiments, the polynucleotides of the nucleic acid vaccines described herein can be produced entirely or partially using solid phase techniques. Solid-phase chemical synthesis of polynucleotides or nucleic acids is an automated method in which molecules are immobilized on a solid support and synthesized stepwise in a solution of reactants. Impurities and excess reagents are washed away and no purification is required after each step. Automation of this process can be performed on a computer-controlled solid-phase synthesizer. Solid-phase synthesis allows the rapid production of polynucleotides or nucleic acids on relatively large scales, making some commercially available.

在一些實施態樣中,使用自動化固相合成,其中鏈沿3'至5'方向合成。核苷之3'端中的羥基經由化學可切割或光可切割連接子繫栓至固體支撐物。活化之核苷單體,諸如2'-去氧核苷(dA、dC、dG及dT)、核糖核苷(A、C、G及U)或化學修飾之核苷依序添加至支撐物結合之核苷。在合成結束時,添加諸如氨或氫氧化銨之類的切割劑以移除所有保護基且自固體支撐物釋放多核苷酸鏈。亦可施加光以切割多核苷酸鏈。產物接著可用高壓液相層析(HPLC)或電泳進一步純化。 液相化學合成 In some embodiments, automated solid-phase synthesis is used, in which strands are synthesized in the 3' to 5' direction. The hydroxyl group in the 3' end of the nucleoside is tethered to the solid support via a chemically or photocleavable linker. Activated nucleoside monomers, such as 2'-deoxynucleosides (dA, dC, dG and dT), ribonucleosides (A, C, G and U) or chemically modified nucleosides are sequentially added to the support for binding of nucleosides. At the end of the synthesis, a cleavage agent such as ammonia or ammonium hydroxide is added to remove all protecting groups and release the polynucleotide strands from the solid support. Light can also be applied to cleave polynucleotide strands. The product can then be further purified using high pressure liquid chromatography (HPLC) or electrophoresis. liquid phase chemical synthesis

藉由依序添加單體建構嵌段來合成本文所述之核酸疫苗之多核苷酸可在液相中進行。共價鍵形成於單體之間或生長鏈之末端官能基與進入單體之間。不參與反應之官能基必須暫時保護。在添加各單體建構嵌段之後,必須在添加下一單體建構嵌段之前純化反應混合物。鏈之一端處之官能基必須脫除保護基才能與下一個單體建構嵌段反應。液相合成為費時且費力的,且無法自動化。儘管有限制,但液相合成仍可用於大規模製備短多核苷酸。由於該系統為同質的,因此不需要大量過量的試劑且就此而言具有成本效益。 定量及純化 Synthesis of the polynucleotides of the nucleic acid vaccines described herein may be performed in liquid phase by the sequential addition of monomer building blocks. Covalent bonds are formed between monomers or between terminal functional groups of a growing chain and incoming monomers. Functional groups that do not participate in the reaction must be temporarily protected. After adding each monomer building block, the reaction mixture must be purified before adding the next monomer building block. The functional group at one end of the chain must be deprotected in order to react with the next monomer to build the block. Liquid-phase synthesis is time-consuming and laborious, and cannot be automated. Despite its limitations, solution-phase synthesis can be used to prepare short polynucleotides on a large scale. Since the system is homogeneous, it does not require large excesses of reagents and is cost-effective in this regard. Quantification and purification

在一些實施態樣中,本文所述之核酸疫苗之多核苷酸可在外泌體中或當衍生自一或多種體液時定量。如本文所用,「體液」包括周邊血液、血清、血漿、腹水、尿液、腦脊髓液(CSF)、痰液、唾液、骨髓、滑液、房水、羊水、耳垢、母乳、支氣管肺泡灌洗液、精液、前列腺液、考氏液(cowper's fluid)或射精前液、汗液、糞便、毛髮、淚液、囊液、胸膜及腹膜液、心包液、淋巴液、食糜、乳糜、膽汁、間質液、月經、膿液、皮脂、嘔吐物、陰道分泌物、黏膜分泌物、糞便水、胰液、竇腔灌洗液、支氣管肺抽出物、囊胚腔液及臍帶血。或者,外泌體可取自選自由以下組成之群的器官:肺、心臟、胰臟、胃、腸、膀胱、腎、卵巢、睾丸、皮膚、結腸、乳房、前列腺、腦、食道、肝及胎盤。In some embodiments, the polynucleotides of the nucleic acid vaccines described herein can be quantified in exosomes or when derived from one or more body fluids. As used herein, "body fluid" includes peripheral blood, serum, plasma, ascites, urine, cerebrospinal fluid (CSF), sputum, saliva, bone marrow, synovial fluid, aqueous humor, amniotic fluid, earwax, breast milk, bronchoalveolar lavage fluid, semen, prostatic fluid, cowper's fluid or pre-ejaculation fluid, sweat, feces, hair, tears, cyst fluid, pleural and peritoneal fluid, pericardial fluid, lymph, chyme, chyle, bile, interstitium fluid, menstrual fluid, pus, sebum, vomitus, vaginal secretions, mucosal secretions, fecal water, pancreatic juice, sinus lavage fluid, bronchopulmonary aspirate, blastocoel fluid and umbilical cord blood. Alternatively, exosomes can be obtained from an organ selected from the group consisting of: lung, heart, pancreas, stomach, intestine, bladder, kidney, ovary, testicle, skin, colon, breast, prostate, brain, esophagus, liver, and placenta.

在外泌體定量方法中,自個體獲得不超過2 mL之樣品,且藉由尺寸排阻層析、密度梯度離心、差速離心、奈米膜超濾、免疫吸附捕獲、親和純化、微流體分離或其組合來分離外泌體。在分析中,多核苷酸之水平或濃度可為所投予構築體之表現量、存在、不存在、截短或改變。該水平與一或多種臨床表型或與人類疾病生物標記的分析具有有利的相關性。該分析可使用構築體特異性探針、細胞計數法、qRT-PCR、即時PCR、PCR、流動式細胞測量術、電泳、質譜法或其組合進行,而外泌體可使用免疫組織化學方法,諸如酶聯免疫吸附分析(ELISA)方法分離。亦可藉由尺寸排阻層析、密度梯度離心、差速離心、奈米膜超濾、免疫吸附捕獲、親和純化、微流體分離或其組合來分離外泌體。In the exosome quantification method, samples of no more than 2 mL are obtained from individuals and separated by size exclusion chromatography, density gradient centrifugation, differential centrifugation, nanomembrane ultrafiltration, immunoadsorption capture, affinity purification, and microfluidic separation. or a combination thereof to isolate exosomes. In an assay, the level or concentration of the polynucleotide can be the expressed amount, presence, absence, truncation, or alteration of the administered construct. This level correlates favorably with analysis of one or more clinical phenotypes or with human disease biomarkers. The analysis can be performed using construct-specific probes, cytometry, qRT-PCR, real-time PCR, PCR, flow cytometry, electrophoresis, mass spectrometry, or a combination thereof, and for exosomes using immunohistochemistry, Separation methods such as enzyme-linked immunosorbent assay (ELISA). Exosomes can also be isolated by size exclusion chromatography, density gradient centrifugation, differential centrifugation, nanomembrane ultrafiltration, immunosorbent capture, affinity purification, microfluidic separation or a combination thereof.

此等方法使研究人員能夠即時監測剩餘或遞送之多核苷酸的水平。此係可能的,因為本文所述之多核苷酸由於結構修飾而不同於內源形式。These methods enable researchers to monitor the levels of remaining or delivered polynucleotides in real time. This is possible because the polynucleotides described herein differ from the endogenous form due to structural modifications.

在一些實施態樣中,可使用諸如但不限於紫外線可見光譜法(UV/Vis)之方法來定量多核苷酸。UV/Vis光譜儀之非限制性實例為NANODROP®光譜儀(ThermoFisher, Waltham, Mass.)。可分析定量之多核苷酸以確定多核苷酸是否可具有合適的大小,檢查多核苷酸未發生降解。多核苷酸降解可藉由諸如但不限於以下之方法檢查:瓊脂糖凝膠電泳;基於HPLC之純化方法,諸如但不限於強陰離子交換HPLC、弱陰離子交換HPLC、逆相HPLC (RP-HPLC)及疏水相互作用HPLC (HIC-HPLC);液相層析-質譜法(LCMS);毛細管電泳(CE);及毛細管凝膠電泳(CGE)。In some embodiments, polynucleotides can be quantified using methods such as, but not limited to, ultraviolet-visible spectroscopy (UV/Vis). A non-limiting example of a UV/Vis spectrometer is the NANODROP® spectrometer (ThermoFisher, Waltham, Mass.). Quantified polynucleotides can be analyzed to determine whether the polynucleotide is of the appropriate size and to check that the polynucleotide has not been degraded. Polynucleotide degradation can be checked by methods such as, but not limited to, agarose gel electrophoresis; HPLC-based purification methods, such as, but not limited to, strong anion exchange HPLC, weak anion exchange HPLC, reverse phase HPLC (RP-HPLC) and hydrophobic interaction HPLC (HIC-HPLC); liquid chromatography-mass spectrometry (LCMS); capillary electrophoresis (CE); and capillary gel electrophoresis (CGE).

本文所述之核酸疫苗之多核苷酸的純化可包括但不限於多核苷酸清理、品質保證及品質控制。清理可藉由此項技術中已知的方法進行,諸如但不限於AGEN-COURT®珠粒(Beckman Coulter Genomics, Danvers, Mass.)、poly-T珠粒、LNA™ oligo-T捕獲探針(EX- IQON® Inc, Vedbaek, Denmark)或基於HPLC之純化方法,諸如但不限於強陰離子交換HPLC、弱陰離子交換HPLC、逆相HPLC (RP-HPLC)及疏水相互作用HPLC (HIC-HPLC)。術語「純化的」當與多核苷酸關聯使用時,諸如「純化的多核苷酸」係指與至少一種污染物分離的多核苷酸。如本文所用,「污染物」為使另一者不合適、不純或較差的任何物質。因此,純化的多核苷酸(例如DNA及RNA)以不同於其在自然界中發現的形式或設定存在,或以與在對其進行處理或純化方法之前存在的形式或設定不同的形式或設定存在。Purification of polynucleotides of nucleic acid vaccines described herein may include, but is not limited to, polynucleotide clean-up, quality assurance, and quality control. Cleanup can be performed by methods known in the art, such as, but not limited to, AGEN-COURT® beads (Beckman Coulter Genomics, Danvers, Mass.), poly-T beads, LNA™ oligo-T capture probes ( EX-IQON® Inc, Vedbaek, Denmark) or HPLC-based purification methods, such as but not limited to strong anion exchange HPLC, weak anion exchange HPLC, reverse phase HPLC (RP-HPLC) and hydrophobic interaction HPLC (HIC-HPLC). The term "purified" when used in connection with a polynucleotide, such as "purified polynucleotide" refers to a polynucleotide that is separated from at least one contaminant. As used herein, a "contaminant" is any substance that renders another unsuitable, impure or inferior. Accordingly, purified polynucleotides (such as DNA and RNA) exist in a form or configuration different from that found in nature or in a form or configuration different from that present before they are subjected to processing or purification methods. .

品質保證及/或品質控制檢查可使用諸如但不限於凝膠電泳、UV吸光度或分析型HPLC之方法進行。 III. 醫藥組成物及遞送 Quality assurance and/or quality control checks may be performed using methods such as, but not limited to, gel electrophoresis, UV absorbance, or analytical HPLC. III. Pharmaceutical Compositions and Delivery

本文所述之核酸疫苗可用作治療劑或預防劑。在一些實施態樣中,本揭露提供醫藥組成物,其包含至少一種醫藥學上可接受之載劑及核酸疫苗,亦即用於COVID-19之核酸疫苗。因此,包含本文所述之核酸疫苗的醫藥組成物可用於預防、緩解及/或治療COVID-19。The nucleic acid vaccines described herein can be used as therapeutic or prophylactic agents. In some embodiments, the present disclosure provides pharmaceutical compositions that include at least one pharmaceutically acceptable carrier and a nucleic acid vaccine, that is, a nucleic acid vaccine for COVID-19. Therefore, pharmaceutical compositions including the nucleic acid vaccines described herein can be used to prevent, mitigate and/or treat COVID-19.

本文提供可與一或多種醫藥學上可接受之賦形劑組合使用的核酸疫苗及其醫藥組成物。醫藥組成物可視情況包含一或多種額外活性物質,例如治療性及/或預防性活性物質。本文所述之核酸疫苗之醫藥組成物可為無菌及/或無熱原質的。Provided herein are nucleic acid vaccines and pharmaceutical compositions thereof that can be used in combination with one or more pharmaceutically acceptable excipients. The pharmaceutical composition may optionally contain one or more additional active substances, for example therapeutic and/or prophylactic active substances. The pharmaceutical compositions of the nucleic acid vaccines described herein may be sterile and/or pyrogen-free.

在一些實施態樣中,向人類、人類患者或個體投予組成物。出於本揭露之目的,片語「活性成分」通常係指如本文所述遞送之核酸疫苗或其中所含之多核苷酸,例如編碼SARS-CoV-2之一或多種蛋白質、肽、其片段或變異體的多核苷酸,用於預防、緩解及/或治療COVID-19。In some embodiments, the compositions are administered to humans, human patients, or individuals. For the purposes of this disclosure, the phrase "active ingredient" generally refers to a nucleic acid vaccine delivered as described herein or a polynucleotide contained therein, e.g., encoding one or more proteins, peptides, fragments thereof of SARS-CoV-2 or variant polynucleotides for preventing, mitigating and/or treating COVID-19.

儘管本文中所提供之醫藥組成物之說明主要針對適用於向人類投予之醫藥組成物,但熟習此項技術者應理解,此類組成物通常適用於向任何其他動物投予,例如向非人類動物,例如非人類哺乳動物投予。應充分理解,為使組成物適用於向各種動物投予,對適用於向人類投予之醫藥組成物進行修改,且一般熟練的獸醫藥理學家可僅用一般實驗(若存在)設計及/或進行此類修改。醫藥組成物之投予所涵蓋的個體包括但不限於人類及/或其他靈長類動物;哺乳動物,包括商業相關之哺乳動物,諸如牛、豬、馬、綿羊、貓、狗、小鼠及/或大鼠;及/或禽類,包括商業相關之禽類,諸如家禽、雞、鴨、鵝及/或火雞。 調配物 Although the descriptions of pharmaceutical compositions provided herein are primarily directed to pharmaceutical compositions suitable for administration to humans, those skilled in the art will understand that such compositions are generally suitable for administration to any other animal, such as to non- Administration to human animals, such as non-human mammals. It is fully understood that pharmaceutical compositions suitable for administration to humans are modified in order to render the compositions suitable for administration to a variety of animals, and that an ordinarily skilled veterinary pharmacologist may use only ordinary experimental design and/or or make such modifications. Individuals covered by the administration of pharmaceutical compositions include, but are not limited to, humans and/or other primates; mammals, including commercially relevant mammals, such as cattle, pigs, horses, sheep, cats, dogs, mice and /or rats; and/or poultry, including commercially relevant poultry such as poultry, chickens, ducks, geese and/or turkeys. Preparations

醫藥調配物可另外包含醫藥學上可接受之賦形劑,其如本文所用,包括但不限於任何及所有適合於所需特定劑型之溶劑、分散介質、稀釋劑或其他液體媒劑、分散或懸浮助劑、表面活性劑、等張劑、增稠或乳化劑、防腐劑及其類似物。用於調配醫藥組成物之各種賦形劑及用於製備該組成物之技術為此項技術中已知(參見Remington: The Science and Practice of Pharmacy, 第21版, A. R. Gennaro, Lippincott, Williams & Wilkins, Baltimore, MD, 2006;以全文引用方式併入本文中)。除非任何習知載劑介質與物質或其衍生物不相容,諸如產生任何不良生物效應或另外以有害方式與醫藥組成物之任何其他組分相互作用,否則本揭露之範疇內可涵蓋使用習知賦形劑介質。Pharmaceutical formulations may additionally contain pharmaceutically acceptable excipients, which as used herein include, but are not limited to, any and all solvents, dispersion media, diluents or other liquid vehicles suitable for the particular dosage form desired, dispersion or Suspension aids, surfactants, isotonic agents, thickening or emulsifiers, preservatives and the like. Various excipients for formulating pharmaceutical compositions and techniques for preparing such compositions are known in the art (see Remington: The Science and Practice of Pharmacy, 21st ed., A. R. Gennaro, Lippincott, Williams & Wilkins , Baltimore, MD, 2006; incorporated herein by reference in its entirety). Unless any conventional carrier medium is incompatible with the substance or its derivatives, such as produces any adverse biological effects or otherwise interacts in a deleterious manner with any other component of the pharmaceutical composition, the use of conventional carrier media is contemplated within the scope of this disclosure. Formulation medium.

本文所描述之醫藥組成物的調配物可藉由藥理學技術中已知或此後研發之任何方法來進行製備。一般而言,此類製備方法包括以下步驟:使活性成分與賦形劑及/或一或多種其他附屬成分結合,且隨後視需要及/或期望地將產物分割、塑形及/或封裝成所需單劑量或多劑量單元。Formulations of the pharmaceutical compositions described herein may be prepared by any method known in the pharmacological art or hereafter developed. Generally, such preparation methods include the steps of combining the active ingredient with an excipient and/or one or more other accessory ingredients, and then dividing, shaping and/or encapsulating the product as necessary and/or desired. Single dose or multiple dose units required.

根據本揭露之醫藥組成物可以批量、以單個單位劑量形式及/或以複數個單個單位劑量形式製備、封裝及/或出售。如本文所用,「單位劑量」為包含預定量之活性成分之醫藥組成物的離散量。活性成分之量通常等於將向個體投予之活性成分之劑量及/或此劑量之適宜分數,諸如此類劑量之一半或三分之一。Pharmaceutical compositions according to the present disclosure may be prepared, packaged, and/or sold in bulk, in single unit dosage form, and/or in a plurality of single unit dosage forms. As used herein, a "unit dose" is a discrete quantity of a pharmaceutical composition containing a predetermined amount of active ingredient. The amount of active ingredient will generally equal the dose of active ingredient to be administered to the individual and/or an appropriate fraction of this dose, such as one-half or one-third of such dose.

根據本揭露之醫藥組成物中活性成分、醫藥學上可接受之賦形劑及/或任何額外成分之相對量將視治療之個體之身分、體型及/或病狀且進一步視組成物投予之途徑而變化。例如,組成物可包含0.1%與100%之間、例如0.5與50%之間、1與30%之間、5與80%之間、至少80% (w/w)的活性成分。The relative amounts of active ingredients, pharmaceutically acceptable excipients, and/or any additional ingredients in pharmaceutical compositions according to the present disclosure will depend on the identity, size, and/or condition of the individual being treated and further upon the administration of the composition. changes along the way. For example, the composition may contain between 0.1% and 100%, such as between 0.5 and 50%, between 1 and 30%, between 5 and 80%, at least 80% (w/w) of the active ingredient.

在一些實施態樣中,本文所述之調配物可含有至少一種核酸疫苗組成物,例如用於COVID-19之核酸疫苗,例如用於COVID-19之一種mRNA疫苗。作為非限制性實例,調配物可含有1、2、3、4、或5種具有不同序列之核酸疫苗組成物,例如1、2、3、4、或5種具有不同序列之mRNA疫苗組成物。在一些實施態樣中,調配物含有至少兩種具有不同序列之核酸疫苗(例如mRNA疫苗)組成物。在一些實施態樣中,調配物含有至少三種具有不同序列之核酸疫苗(例如mRNA疫苗)組成物。在一些實施態樣中,調配物含有至少四種具有不同序列之核酸疫苗(例如mRNA疫苗)組成物。在一些實施態樣中,調配物含有至少五種具有不同序列之核酸疫苗(例如mRNA疫苗)組成物。In some embodiments, the formulations described herein can contain at least one nucleic acid vaccine composition, such as a nucleic acid vaccine for COVID-19, such as an mRNA vaccine for COVID-19. As a non-limiting example, the formulation may contain 1, 2, 3, 4, or 5 nucleic acid vaccine compositions with different sequences, such as 1, 2, 3, 4, or 5 mRNA vaccine compositions with different sequences. . In some embodiments, the formulation contains at least two nucleic acid vaccine (eg, mRNA vaccine) compositions with different sequences. In some embodiments, the formulation contains at least three nucleic acid vaccine (eg, mRNA vaccine) compositions with different sequences. In some embodiments, the formulation contains at least four nucleic acid vaccine (eg, mRNA vaccine) compositions with different sequences. In some embodiments, the formulation contains at least five nucleic acid vaccine (eg, mRNA vaccine) compositions with different sequences.

本揭露之核酸疫苗組成物可使用一或多種賦形劑調配以:(1)增加穩定性;(2)增加細胞轉染;(3)允許持續或延遲釋放(例如自核酸疫苗組成物之儲庫調配物);(4)改變生物分佈(例如使核酸疫苗組成物靶向特定組織或細胞類型);(5)增加活體內編碼蛋白質之轉譯;及/或(6)改變活體內編碼蛋白質之釋放特徵。The nucleic acid vaccine composition of the present disclosure can be formulated using one or more excipients to: (1) increase stability; (2) increase cell transfection; (3) allow sustained or delayed release (e.g., from storage of the nucleic acid vaccine composition library formulations); (4) alter biodistribution (e.g., targeting nucleic acid vaccine compositions to specific tissues or cell types); (5) increase translation of encoded proteins in vivo; and/or (6) alter expression of encoded proteins in vivo Release features.

除傳統賦形劑(諸如任何及所有溶劑、分散介質、稀釋劑或其他液體媒劑)之外,本揭露之分散或懸浮助劑、表面活性劑、等張劑、增稠或乳化劑、防腐劑、賦形劑可包括但不限於類脂質、脂質體、脂質奈米粒子、聚合物、脂複合體、核-殼奈米粒子、肽、蛋白質、經核酸疫苗組成物轉染(例如用於移植至個體中)之細胞、玻尿酸酶、奈米粒子模擬物及其組合。因此,本揭露之調配物可包括一或多種賦形劑,其各自呈在一起增加核酸疫苗組成物之穩定性及/或增加核酸疫苗組成物之細胞轉染的量。另外,本揭露之核酸疫苗組成物可使用自組裝之核酸奈米粒子調配。用於可用於調配本揭露之核酸疫苗組成物之核酸的醫藥學上可接受之載劑、賦形劑及遞送劑揭示於PCT專利申請公開案WO 2013/090648中,將其內容以其全文引用方式併入本文中。 類脂質 In addition to traditional excipients (such as any and all solvents, dispersion media, diluents or other liquid vehicles), the present disclosure includes dispersion or suspension aids, surfactants, isotonic agents, thickening or emulsifiers, preservatives, etc. Agents and excipients may include but are not limited to lipids, liposomes, lipid nanoparticles, polymers, lipoplexes, core-shell nanoparticles, peptides, proteins, nucleic acid vaccine compositions transfected (for example, for Transplanted into an individual) cells, hyaluronidase, nanoparticle mimics, and combinations thereof. Accordingly, the formulations of the present disclosure may include one or more excipients, each taken together to increase the stability of the nucleic acid vaccine composition and/or to increase the amount of cell transfection of the nucleic acid vaccine composition. In addition, the nucleic acid vaccine composition of the present disclosure can be formulated using self-assembled nucleic acid nanoparticles. Pharmaceutically acceptable carriers, excipients and delivery agents for nucleic acids that can be used to formulate the nucleic acid vaccine compositions of the present disclosure are disclosed in PCT Patent Application Publication WO 2013/090648, the content of which is incorporated by reference in its entirety. method is incorporated into this article. lipidoid

本揭露之核酸疫苗組成物可使用一或多種類脂質調配。The nucleic acid vaccine composition of the present disclosure can be formulated using one or more lipids.

已廣泛描述類脂質之合成且含有此等化合物之調配物尤其適合於遞送寡核苷酸或核酸(參見Mahon等人, Bioconjug Chem. 2010, 21:1448-1454;Schroeder等人,J Intern Med.2010, 267:9-21;Akinc等人, Nat Biotechnol.200,8 26:561-569;Love等人, Proc Natl Acad Sci U S A.2010, 107:1864-1869;Siegwart等人, Proc Natl Acad Sci U S A.2011, 108:12996-3001;其內容均以全文引用的方式併入本文中)。 The synthesis of lipidoids has been extensively described and formulations containing these compounds are particularly suitable for delivery of oligonucleotides or nucleic acids (see Mahon et al., Bioconjug Chem . 2010, 21:1448-1454; Schroeder et al., J Intern Med. 2010, 267:9-21; Akinc et al., Nat Biotechnol. 200,8 26:561-569; Love et al., Proc Natl Acad Sci US A. 2010, 107:1864-1869; Siegwart et al., Proc Natl Acad Sci US A. 2011, 108:12996-3001; the contents of which are incorporated herein by reference in full).

儘管此等類脂質已用於在嚙齒動物及非人類靈長類動物中有效地遞送雙股小干擾RNA分子(參見Akinc等人, Nat Biotechnol.2008, 26:561-569;Frank-Kamenetsky等人, Proc Natl Acad Sci U S A.2008, 105:11915-11920;Akinc等人, Mol Ther.2009, 17:872-879;Love等人, Proc Natl Acad Sci U S A.2010, 107:1864-1869;Leuschner等人, Nat Biotechnol.2011, 29:1005-1010;將該等內容以其全文引用方式併入本文中),但本揭露涵蓋其調配物及在遞送至少一種醫藥學上可接受之載劑,包括核酸疫苗中的用途。可製備含有此等類脂質,且因此可在經由局部及/或全身性投予途徑注射類脂質調配物之後有效遞送核酸疫苗組成物的複合物、膠束、脂質體或粒子。含有核酸疫苗組成物之類脂質複合物可藉由各種方式投予,包括但不限於靜脈內(IV)、肌內(IM)、皮下(SC)、實質內(IPa)、鞘內(IT)、或腦室內(ICV)投予。 Although these lipids have been used to effectively deliver double-stranded small interfering RNA molecules in rodents and non-human primates (see Akinc et al., Nat Biotechnol. 2008, 26:561-569; Frank-Kamenetsky et al. , Proc Natl Acad Sci US A. 2008, 105:11915-11920; Akinc et al., Mol Ther. 2009, 17:872-879; Love et al., Proc Natl Acad Sci US A. 2010, 107:1864-1869; Leuschner et al., Nat Biotechnol. 2011, 29:1005-1010; the contents of which are incorporated herein by reference in their entirety), but this disclosure encompasses formulations thereof and delivery of at least one pharmaceutically acceptable carrier , including use in nucleic acid vaccines. Complexes, micelles, liposomes or particles can be prepared that contain such lipids and thus can effectively deliver nucleic acid vaccine compositions following injection of lipid formulations via local and/or systemic routes of administration. Lipid complexes containing nucleic acid vaccine compositions can be administered in various ways, including but not limited to intravenous (IV), intramuscular (IM), subcutaneous (SC), intraparenchymal (IPa), and intrathecal (IT) , or intracerebroventricular (ICV) administration.

核酸之活體內遞送可受許多參數影響,包括但不限於調配物組成、粒子聚乙二醇化之性質、負載程度、多核苷酸與脂質之比及生物物理學參數,諸如但不限於粒度(Akinc等人, Mol Ther.2009, 17:872-879;將其內容以其全文引用方式併入本文中)。例如,聚(乙二醇) (PEG)脂質之錨鏈長度的微小變化可對活體內功效產生顯著影響。可對於具有不同類脂質,包括但不限於五[3-(1-月桂胺基丙醯基)]-三伸乙基四胺鹽酸鹽(TETA-5LAP;亦稱為98N12-5,參見Murugaiah等人, Analytical Biochemistry, 2010, 401:61;將其內容以其全文引用方式併入本文中)、C12-200 (包括衍生物及變異體)及MD1之調配物測試活體內活性。 In vivo delivery of nucleic acids can be affected by many parameters, including, but not limited to, formulation composition, nature of particle PEGylation, degree of loading, polynucleotide to lipid ratio, and biophysical parameters, such as, but not limited to, particle size (Akinc et al., Mol Ther. 2009, 17:872-879; the contents of which are incorporated herein by reference in their entirety). For example, small changes in the length of the anchor chains of poly(ethylene glycol) (PEG) lipids can have significant effects on in vivo efficacy. Available for use with different lipid classes, including but not limited to penta[3-(1-lauraminopropyl)]-triethylenetetramine hydrochloride (TETA-5LAP; also known as 98N12-5, see Murugaiah et al., Analytical Biochemistry , 2010, 401:61; the contents of which are incorporated herein by reference in their entirety), C12-200 (including derivatives and variants), and formulations of MD1 were tested for in vivo activity.

在本文中稱為「98N12-5」之類脂質由Akinc等人, Mol Ther.2009, 17:872-879揭示,且將該文獻之內容以其全文引用方式併入本文中。 The lipid, referred to herein as "98N12-5", was disclosed by Akinc et al., Mol Ther. 2009, 17:872-879, the contents of which are incorporated herein by reference in their entirety.

在本文中稱為「C12-200」之類脂質由Love等人, Proc Natl Acad Sci U S A.2010, 107:1864-1869以及Liu及Huang, Molecular Therapy. 2010, 669-670揭示;將該等文獻之內容均以全文引用方式併入本文中。類脂質調配物可包括除核酸疫苗組成物以外亦包含3或4種或更多種組分之粒子。例如,具有某些類脂質之調配物包括但不限於98N12-5且可含有42%類脂質、48%膽固醇及10% PEG (C14烷基鏈長度)。作為另一實例,具有某些類脂質之調配物包括但不限於C12-200且可含有50%類脂質、10%二硬脂醯磷脂醯膽鹼、38.5%膽固醇及1.5% PEG-DMG。 Lipids, referred to herein as "C12-200", are disclosed by Love et al., Proc Natl Acad Sci US A. 2010, 107:1864-1869 and Liu and Huang, Molecular Therapy . 2010, 669-670; The contents of the documents are incorporated into this article by full-text citation. Lipoid formulations may include particles containing 3 or 4 or more components in addition to the nucleic acid vaccine composition. For example, formulations with certain lipidoids include, but are not limited to, 98N12-5 and may contain 42% lipidoid, 48% cholesterol, and 10% PEG (C14 alkyl chain length). As another example, formulations with certain lipidoids include, but are not limited to, C12-200 and may contain 50% lipidoid, 10% distearylphosphatidylcholine, 38.5% cholesterol, and 1.5% PEG-DMG.

在一些實施態樣中,用類脂質調配之核酸疫苗組成物用於全身性靜脈內投予。例如,最終最佳化靜脈內調配物可使得大於90%之調配物分佈至肝臟,該調配物使用核酸疫苗組成物且包含42% 98N12-5、48%膽固醇及10% PEG-脂質之脂質莫耳組成,具有約7.5:1之總脂質:核酸疫苗組成物的最終重量比及PEG脂質上之C14烷基鏈長度,平均粒度為大致50至60 nm。(參見Akinc等人, Mol Ther.2009, 17:872-879;其內容以其全文引用的方式併入本文中)。在另一實例中,使用C12-200類脂質之靜脈內調配物(參見PCT專利申請公開案WO2010129709,將其內容以其全文引用方式併入本文中)可具有50/10/38.5/1.5之C12-200/二硬脂醯磷脂醯膽鹼/膽固醇/PEG-DMG莫耳比,其中7:1之總脂質:核酸重量比及80 nm之平均粒度可有效遞送核酸疫苗組成物(參見Love等人, Proc Natl Acad Sci U S A.2010, 107:1864-1869,將其內容以其全文引用的方式併入本文中)。 In some embodiments, nucleic acid vaccine compositions formulated with lipidoids are used for systemic intravenous administration. For example, the final optimized intravenous formulation, which uses a nucleic acid vaccine composition and contains 42% 98N12-5, 48% cholesterol, and 10% PEG-lipid, may result in greater than 90% distribution to the liver. composition, having a final weight ratio of total lipid:nucleic acid vaccine composition of approximately 7.5:1 and a C14 alkyl chain length on the PEG lipid, with an average particle size of approximately 50 to 60 nm. (See Akinc et al., Mol Ther. 2009, 17:872-879; the contents of which are incorporated herein by reference in their entirety). In another example, an intravenous formulation using C12-200 lipidoids (see PCT Patent Application Publication WO2010129709, the contents of which are incorporated by reference in its entirety) may have a C12 of 50/10/38.5/1.5 -200/distearylphosphatidylcholine/cholesterol/PEG-DMG molar ratio, where a total lipid:nucleic acid weight ratio of 7:1 and an average particle size of 80 nm can effectively deliver nucleic acid vaccine compositions (see Love et al. , Proc Natl Acad Sci US A. 2010, 107:1864-1869, the contents of which are incorporated herein by reference in their entirety).

在一些實施態樣中,含MD1類脂質之調配物可用於在活體內將核酸疫苗組成物有效遞送至肝細胞。用於肌內或皮下途徑之最佳化類脂質調配物的特性可取決於目標細胞類型及調配物經由細胞外基質擴散至血流中的能力而顯著變化。雖然由於內皮窗孔的大小,可能需要小於150 nm的粒度以用於有效的肝細胞遞送(參見Akinc等人, Mol Ther.2009,17:872-879,將其內容以其全文引用方式併入本文中),但使用類脂質調配之核酸疫苗組成物將調配物遞送至其他細胞類型(包括但不限於內皮細胞、骨髓細胞,肌肉細胞)可能不受類似的大小限制。 In some embodiments, formulations containing MD1 lipidoids can be used to effectively deliver nucleic acid vaccine compositions to hepatocytes in vivo. The properties of optimized lipidoid formulations for the intramuscular or subcutaneous route can vary significantly depending on the target cell type and the ability of the formulation to diffuse through the extracellular matrix into the bloodstream. Although due to the size of endothelial fenestrae, particle sizes less than 150 nm may be required for effective hepatocyte delivery (see Akinc et al., Mol Ther. 2009, 17:872-879, the contents of which are incorporated by reference in their entirety herein), but the use of lipid-formulated nucleic acid vaccine compositions to deliver formulations to other cell types (including but not limited to endothelial cells, bone marrow cells, muscle cells) may not be subject to similar size restrictions.

已報導使用類脂質調配物將siRNA活體內遞送至其他非肝細胞,諸如骨髓細胞及內皮細胞(參見Akinc等人, Nat Biotechnol.2008, 26:561-569;Leuschner等人, Nat Biotechnol.2011, 29:1005-1010;Cho等人 Adv. Funct. Mater.2009, 19:3112-3118; 8 thInternational Judah Folkman Conference, Cambridge, MA 2010年10月8-9日;將每一該等內容以其全文引用的方式併入本文中)。為有效遞送至骨髓細胞,諸如單核球,類脂質調配物可具有類似的組分莫耳比。類脂質與其他組分(包括但不限於二硬脂醯磷脂醯膽鹼、膽固醇及PEG-DMG)之不同比率可用於最佳化核酸疫苗組成物之調配物,以遞送至不同細胞類型,包括但不限於肝細胞、骨髓細胞、肌肉細胞等。例如,組分莫耳比可包括但不限於50% C12-200、10%二硬脂醯磷脂醯膽鹼、38.5%膽固醇及1.5% PEG-DMG (參見Leuschner等人, Nat Biotechnol2011, 29:1005-1010;將其內容以其全文引用方式併入本文中)。使用類脂質調配物經由皮下或肌內遞送將核酸局部遞送至細胞可能不需要全身遞送所需之所有調配物組分,且因此可僅包含類脂質及核酸疫苗組成物。 脂質體 In vivo delivery of siRNA to other non-hepatocytes, such as myeloid cells and endothelial cells, has been reported using lipid-like formulations (see Akinc et al., Nat Biotechnol. 2008, 26:561-569; Leuschner et al., Nat Biotechnol. 2011, 29:1005-1010; Cho et al . Adv. Funct. Mater. 2009, 19:3112-3118; 8th International Judah Folkman Conference, Cambridge, MA, October 8-9, 2010; The full text is incorporated into this article by reference). For efficient delivery to bone marrow cells, such as monocytes, lipidoid formulations may have similar molar ratios of components. Different ratios of lipids to other components, including but not limited to distearylphosphatidylcholine, cholesterol, and PEG-DMG, can be used to optimize the formulation of nucleic acid vaccine compositions for delivery to different cell types, including But it is not limited to liver cells, bone marrow cells, muscle cells, etc. For example, the molar ratio of components may include, but is not limited to, 50% C12-200, 10% distearylphosphatidylcholine, 38.5% cholesterol, and 1.5% PEG-DMG (see Leuschner et al., Nat Biotechnol 2011, 29: 1005-1010; the contents of which are incorporated herein by reference in their entirety). Local delivery of nucleic acids to cells via subcutaneous or intramuscular delivery using lipidoid formulations may not require all formulation components required for systemic delivery, and thus may only include lipidoid and nucleic acid vaccine compositions. liposomes

本揭露之核酸疫苗組成物可使用一或多種脂質體調配。The nucleic acid vaccine composition of the present disclosure can be formulated using one or more liposomes.

在一些實施態樣中,核酸疫苗組成物之醫藥組成物包括脂質體。脂質體為人工製備之囊泡,其可主要由脂質雙層構成,且可用作投予營養物及醫藥調配物之遞送媒劑。脂質體可具有不同尺寸,諸如但不限於直徑可為數百奈米且可含有由狹窄水性隔室分離之一系列同心雙層的多層囊泡(MLV)、直徑可小於50 nm之小單細胞囊泡(SUV)及直徑可在50 nm與500 nm之間的大單層囊泡(LUV)。脂質體設計可包括但不限於調理素或配位體,以便改良脂質體與不健康組織的附著或激活事件,諸如但不限於內吞作用。脂質體可含有低或高pH以便改良醫藥調配物之遞送。In some embodiments, the pharmaceutical composition of the nucleic acid vaccine composition includes liposomes. Liposomes are artificially prepared vesicles that may consist primarily of lipid bilayers and may be used as delivery vehicles for the administration of nutrients and pharmaceutical formulations. Liposomes can be of different sizes, such as, but not limited to, multilamellar vesicles (MLV), which can be hundreds of nanometers in diameter and can contain a series of concentric bilayers separated by narrow aqueous compartments, small single cells, which can be less than 50 nm in diameter. vesicles (SUV) and large unilamellar vesicles (LUV) with diameters between 50 nm and 500 nm. Liposome design may include, but is not limited to, opsonins or ligands to improve liposome attachment to unhealthy tissue or activation events, such as, but not limited to, endocytosis. Liposomes can contain low or high pH to improve delivery of pharmaceutical formulations.

脂質體之形成可取決於物理化學特徵,諸如但不限於包覆之醫藥調配物及脂質體成分;脂質囊泡所分散之介質的性質;所包覆物質之有效濃度及其潛在毒性;在囊泡之應用及/或遞送期間所涉及之任何其他過程;用於預期應用之囊泡的最佳化大小、多分散性及存放期;及批料間再現性及大規模生產安全且高效之脂質體產品的可能性。The formation of liposomes can depend on physicochemical characteristics such as, but not limited to, the coating pharmaceutical formulation and liposome ingredients; the nature of the medium in which the lipid vesicles are dispersed; the effective concentration of the coated substance and its potential toxicity; Any other processes involved during application and/or delivery of the vesicles; Optimization of the size, polydispersity and shelf life of the vesicles for the intended application; and Batch-to-batch reproducibility and large-scale production of safe and efficient lipids product possibilities.

在一些實施態樣中,包含本文所述之核酸疫苗的醫藥組成物可包括但不限於脂質體,諸如由1,2-二油烯基氧基-N,N-二甲基胺基丙烷(DODMA)脂質體形成之脂質體、來自Marina Biotech (Bothell, WA)之DiLa2脂質體、SMARTICLES®/NOV340 (Marina Biotech, Bothell)、1,2-二亞麻仁油醇基氧基-3-二甲基胺基丙烷(DLin-DMA)、2,2-二亞麻仁油基-4-(2-二甲胺基乙基)-[1,3]-二氧雜環戊烷(DLin-KC2-DMA)及MC3 (美國專利申請公開案US20100324120;將其內容以其全文引用方式併入本文中)、中性DOPC (1,2-二油醯基-sn-甘油基-3-磷酸膽鹼)基脂質體(例如siRNA遞送用於卵巢癌(Landen等人 Cancer Biology & Therapy2006, 5(12): 1708-1713);將其內容以其全文引用方式併入本文中)、塗有玻尿酸之脂質體(Quiet Therapeutics, Israel)及可遞送小分子藥物之脂質體,諸如但不限於來自Janssen Biotech, Inc. (Horsham, PA)之DOXIL®。 In some embodiments, pharmaceutical compositions comprising nucleic acid vaccines described herein may include, but are not limited to, liposomes, such as those composed of 1,2-dioleyloxy-N,N-dimethylaminopropane ( Liposomes formed from DODMA) liposomes, DiLa2 liposomes from Marina Biotech (Bothell, WA), SMARTICLES®/NOV340 (Marina Biotech, Bothell), 1,2-dilinoleyloxy-3-dimethyl Aminopropane (DLin-DMA), 2,2-dilinoleyl-4-(2-dimethylaminoethyl)-[1,3]-dioxolane (DLin-KC2- DMA) and MC3 (U.S. Patent Application Publication US20100324120; the contents of which are incorporated herein by reference in their entirety), neutral DOPC (1,2-dioleyl-sn-glyceryl-3-phosphocholine) based liposomes (e.g., siRNA delivery for ovarian cancer (Landen et al. Cancer Biology & Therapy 2006, 5(12): 1708-1713); the contents of which are incorporated herein by reference in their entirety), hyaluronic acid-coated lipids (Quiet Therapeutics, Israel) and liposomes that can deliver small molecule drugs, such as but not limited to DOXIL® from Janssen Biotech, Inc. (Horsham, PA).

在一些實施態樣中,包含本文所述之核酸疫苗的醫藥組成物可包括但不限於脂質體,諸如由合成穩定質體-脂質粒子(SPLP)或穩定核酸脂質粒子(SNALP)形成之脂質體,該等粒子先前已被描述且證明適用於活體外及活體內寡核苷酸遞送(參見Wheeler等人 Gene Therapy. 1999, 6:271-281;Zhang等人 Gene Therapy. 1999, 6:1438-1447;Jeffs等人 Pharm Res. 2005, 22:362-372;Morrissey等人, Nat Biotechnol. 2005, 2:1002-1007;Zimmermann等人, Nature. 2006, 441:111-114;Heyes等人 J Contr Rel. 2005, 107:276-287;Semple等人 Nature Biotech. 2010, 28:172-176;Judge等人 J Clin Invest. 2009, 119:661-673;deFougerolles Hum Gene Ther.2008, 19:125-132;其內容各自以全文併入本文中)。Wheeler等人之原始製造方法為清潔劑透析方法,其隨後由Jeffs等人改良且被稱為自發性囊泡形成方法。除核酸疫苗組成物以外,脂質體調配物可由3至4種脂質組分構成。作為非限制性實例,脂質體可含有但不限於55%膽固醇、20%二硬脂醯磷脂醯膽鹼(DSPC)、10% PEG-S-DSG及15% 1,2-二油烯基氧基-N,N-二甲基胺基丙烷(DODMA),如Jeffs等人所描述。在另一實例中,某些脂質體調配物可含有但不限於48%膽固醇、20% DSPC、2% PEG-c-DMA及30%陽離子脂質,其中陽離子脂質可為1,2-二硬脂氧基-N,N-二甲基胺基丙烷(DSDMA)、DODMA、DLin-DMA或1,2-二亞麻氧基-3-二甲基胺基丙烷(DLenDMA),如Heyes等人所描述。在另一實例中,核酸-脂質粒子可包含占粒子中存在之總脂質之約50莫耳%至約85莫耳%的陽離子脂質;占粒子中存在之總脂質之約13莫耳%至約49.5莫耳%的非陽離子脂質;及占粒子中存在之總脂質之約0.5莫耳%至約2莫耳%的抑制粒子聚集之共軛脂質,如頒予Maclachlan等人之WO2009127060中所述;將其內容以其全文引用方式併入本文中。在另一實例中,核酸-脂質粒子可為頒予Maclachlan等人之US2006008910中所揭示之任何核酸-脂質粒子;將其內容以其全文引用方式併入本文中。作為非限制性實例,核酸-脂質粒子可包含式I之陽離子脂質、非陽離子脂質及抑制粒子聚集之共軛脂質。 In some embodiments, pharmaceutical compositions comprising nucleic acid vaccines described herein may include, but are not limited to, liposomes, such as liposomes formed from synthetic stable plastid-lipid particles (SPLP) or stable nucleic acid lipid particles (SNALP) , these particles have been previously described and demonstrated to be suitable for in vitro and in vivo oligonucleotide delivery (see Wheeler et al. Gene Therapy . 1999, 6:271-281; Zhang et al. Gene Therapy . 1999, 6:1438- 1447; Jeffs et al. Pharm Res . 2005, 22:362-372; Morrissey et al., Nat Biotechnol . 2005, 2:1002-1007; Zimmermann et al., Nature . 2006, 441:111-114; Heyes et al. J Contr Rel . 2005, 107:276-287; Semple et al. Nature Biotech . 2010, 28:172-176; Judge et al. J Clin Invest . 2009, 119:661-673; deFougerolles Hum Gene Ther. 2008, 19:125- 132; the contents of which are each incorporated herein in their entirety). The original fabrication method by Wheeler et al. was the detergent dialysis method, which was subsequently modified by Jeffs et al. and is known as the spontaneous vesicle formation method. In addition to nucleic acid vaccine compositions, liposome formulations can be composed of 3 to 4 lipid components. As a non-limiting example, liposomes may contain, but are not limited to, 55% cholesterol, 20% distearyl phospholipid choline (DSPC), 10% PEG-S-DSG, and 15% 1,2-dioleyloxy -N,N-dimethylaminopropane (DODMA) as described by Jeffs et al. In another example, certain liposome formulations may contain, but are not limited to, 48% cholesterol, 20% DSPC, 2% PEG-c-DMA, and 30% cationic lipid, wherein the cationic lipid may be 1,2-distearyl Oxy-N,N-dimethylaminopropane (DSDMA), DODMA, DLin-DMA or 1,2-dilinoxy-3-dimethylaminopropane (DLenDMA) as described by Heyes et al. . In another example, the nucleic acid-lipid particle may comprise from about 50 mol% to about 85 mol% of the cationic lipid of the total lipids present in the particle; from about 13 mol% to about 49.5 mol% of a noncationic lipid; and about 0.5 mol% to about 2 mol% of a conjugated lipid that inhibits particle aggregation, based on the total lipids present in the particle, as described in WO2009127060 to Maclachlan et al.; Its contents are incorporated herein by reference in their entirety. In another example, the nucleic acid-lipid particle can be any nucleic acid-lipid particle disclosed in US2006008910 to Maclachlan et al.; the contents of which are incorporated herein by reference in their entirety. As non-limiting examples, nucleic acid-lipid particles may include cationic lipids of Formula I, non-cationic lipids, and conjugated lipids that inhibit particle aggregation.

在一些實施態樣中,本揭露之核酸疫苗組成物可在脂質囊泡中調配,該脂質囊泡可在官能化脂質雙層之間具有交聯。In some embodiments, the nucleic acid vaccine compositions of the present disclosure can be formulated in lipid vesicles, which can have cross-links between functionalized lipid bilayers.

在一些實施態樣中,脂質體可含有頒予Bally等人之美國專利第US5595756號中所揭示之糖修飾脂質,將其內容以其全文引用方式併入本文中。脂質可為約10莫耳%之量的神經節苷脂及腦甘脂。In some embodiments, liposomes may contain sugar-modified lipids as disclosed in US Pat. No. 5,595,756 to Bally et al., the contents of which are incorporated herein by reference in their entirety. The lipid may be gangliosides and cerebroglycerides in an amount of about 10 molar %.

在一些實施態樣中,本揭露之核酸疫苗組成物可在包含陽離子脂質之脂質體中調配。脂質體可具有1:1與20:1之間的陽離子脂質中之氮原子與核酸疫苗組成物中之磷酸鹽的莫耳比(N:P比),如PCT專利申請公開案第WO2013006825號中所述,將其內容以其全文引用方式併入本文中。在一些實施態樣中,脂質體可具有大於20:1或小於1:1之N:P比。In some embodiments, the nucleic acid vaccine compositions of the present disclosure can be formulated in liposomes containing cationic lipids. The liposomes may have a molar ratio of nitrogen atoms in the cationic lipid to phosphate in the nucleic acid vaccine composition (N:P ratio) between 1:1 and 20:1, as in PCT Patent Application Publication No. WO2013006825 , the contents of which are incorporated herein by reference in their entirety. In some embodiments, liposomes can have an N:P ratio greater than 20:1 or less than 1:1.

在一些實施態樣中,本揭露之核酸疫苗組成物可在脂質-聚陽離子複合物中調配。脂質-聚陽離子複合物之形成可藉由此項技術中已知及/或如美國公開案第20120178702號中所述之方法實現,將其內容以其全文引用方式併入本文中。作為非限制性實例,聚陽離子可包括陽離子肽或多肽,諸如但不限於聚離胺酸、聚鳥胺酸及/或聚精胺酸,及PCT專利申請公開案第WO2012013326號中所述之陽離子肽;將其內容以其全文引用方式併入本文中。在一些實施態樣中,核酸疫苗組成物可在脂質-聚陽離子複合物中調配,該複合物可進一步包括中性脂質,諸如但不限於膽固醇或二油醯磷脂醯乙醇胺(DOPE)。In some embodiments, the nucleic acid vaccine compositions of the present disclosure can be formulated in lipid-polycation complexes. Formation of lipid-polycation complexes can be accomplished by methods known in the art and/or as described in US Publication No. 20120178702, the contents of which are incorporated herein by reference in their entirety. As non-limiting examples, polycations may include cationic peptides or polypeptides such as, but not limited to, polylysine, polyornithine, and/or polyarginine, and the cations described in PCT Patent Application Publication No. WO2012013326 Peptides; the contents of which are incorporated herein by reference in their entirety. In some embodiments, nucleic acid vaccine compositions can be formulated in lipid-polycation complexes, which can further include neutral lipids such as, but not limited to, cholesterol or dioleyl phospholipid acylylethanolamine (DOPE).

脂質體調配物可受不限於以下之因素影響:陽離子脂質組分之選擇、陽離子脂質飽和度、聚乙二醇化之性質、所有組分之比及生物物理學參數,諸如大小。在Semple等人(Semple等人 Nature Biotech.2010, 28:172-176;將其內容以其全文引用方式併入本文中)之一個實例中,脂質體調配物由57.1%陽離子脂質、7.1%二棕櫚醯磷脂醯膽鹼、34.3%膽固醇及1.4% PEG-c-DMA構成。 Liposome formulations can be affected by factors that are not limited to the selection of cationic lipid components, cationic lipid saturation, nature of PEGylation, ratios of all components, and biophysical parameters such as size. In one example from Semple et al. (Semple et al. Nature Biotech. 2010, 28:172-176; the contents of which are incorporated by reference in their entirety), the liposome formulation consisted of 57.1% cationic lipids, 7.1% dihydrogen It is composed of palmityl phospholipid choline, 34.3% cholesterol and 1.4% PEG-c-DMA.

在一些實施態樣中,醫藥組成物可用以下各者中所揭示之任何兩性脂質體調配:頒予Panzner之PCT專利申請公開案第WO 2008043575及頒予Essler等人(Marina Biotech)之美國專利第US 8,580,297號,將該等內容以其全文引用方式併入本文中。兩性脂質體可包含脂質之混合物,該等脂質包括陽離子兩親分子、陰離子兩親分子及視情況選用之一或多種中性兩親分子。兩性脂質體可包含基於兩親媒性分子之兩性化合物,該等兩親媒性分子之頭基經一或多個兩性基團取代。在一些實施態樣中,醫藥組成物可用包含一或多個具有4至9之等電點之兩性基團的兩性脂質調配,如頒予Essler等人(Marina Biotech)之美國專利申請公開案第US20140227345號中所揭示,將其內容以其全文引用方式併入本文中。 在一些實施態樣中,醫藥組成物可用包含如頒予Panzner等人(Novosom)之美國專利第US7312206號中所揭示之固醇衍生物的脂質體調配,將其內容以其全文引用方式併入本文中。在一些實施態樣中,醫藥組成物可用包含至少一種兩親媒性陽離子脂質、至少一種兩親媒性陰離子脂質及至少一種中性脂質之兩性脂質體,或包含至少一種具有正電荷及負電荷兩者之兩親媒性脂質及至少一種中性脂質之脂質體調配,其中脂質體在pH 4.2及pH 7.5下穩定,如頒予Panzner等人(Novosom)之美國專利第7780983號中所揭示,將其內容以其全文引用方式併入本文中。在一些實施態樣中,醫藥組成物可用能夠囊封本揭露之核酸疫苗組成物的脂質體調配,該等脂質體包含頒予Panzner等人之美國專利申請公開案第US 20110076322號中教示之脂質的血清穩定混合物,將其內容以其全文引用方式併入本文中。脂質混合物包含比率在約0.5至約8範圍內的磷脂醯膽鹼及磷脂醯乙醇胺。脂質混合物亦可包括pH敏感性陰離子及陽離子兩親分子,使得混合物為兩性的,在pH 7.4處帶負電或中性且在pH 4處帶正電。可調節藥物/脂質比以將脂質體靶向至體內的特定器官或其他部位。在一些實施態樣中,負載有本揭露之核酸疫苗組成物作為負荷的脂質體係藉由頒予Panzner等人之美國專利申請公開案第US 20120021042號中所揭示之方法製備,將其內容以其全文引用方式併入本文中。方法包含將聚陰離子活性劑之水溶液及一或多種兩親分子之醇溶液混合且將該混雜物緩衝至酸性pH的步驟,其中一或多種兩親分子易在酸性pH下形成兩性脂質體,從而在囊封活性劑之懸浮液中形成兩性脂質體 脂複合體 In some embodiments, pharmaceutical compositions may be formulated with any of the amphoteric liposomes disclosed in PCT Patent Application Publication No. WO 2008043575 to Panzner and U.S. Patent No. 2 to Essler et al. (Marina Biotech) No. 8,580,297, the contents of which are incorporated herein by reference in their entirety. Amphipathic liposomes may contain a mixture of lipids including cationic amphiphilic molecules, anionic amphiphilic molecules, and optionally one or more neutral amphiphilic molecules. Amphiphilic liposomes may comprise amphipathic compounds based on amphiphilic molecules whose head groups are substituted with one or more amphiphilic groups. In some embodiments, pharmaceutical compositions may be formulated with amphipathic lipids containing one or more amphipathic groups having an isoelectric point of 4 to 9, as described in U.S. Patent Application Publication No. 1 to Essler et al. (Marina Biotech). No. US20140227345, the content of which is incorporated herein by reference in its entirety. In some embodiments, pharmaceutical compositions may be formulated with liposomes containing sterol derivatives as disclosed in U.S. Patent No. 7,312,206 to Panzner et al. (Novosom), the contents of which are incorporated by reference in their entirety. in this article. In some embodiments, the pharmaceutical composition may be an amphoteric liposome comprising at least one amphipathic cationic lipid, at least one amphiphilic anionic lipid, and at least one neutral lipid, or at least one having a positive charge and a negative charge. A liposome formulation of the two amphipathic lipids and at least one neutral lipid, wherein the liposomes are stable at pH 4.2 and pH 7.5, as disclosed in U.S. Patent No. 7780983 issued to Panzner et al. (Novosom), Its contents are incorporated herein by reference in their entirety. In some embodiments, pharmaceutical compositions can be formulated with liposomes capable of encapsulating the nucleic acid vaccine compositions of the present disclosure, such liposomes comprising the lipids taught in U.S. Patent Application Publication No. US 20110076322 to Panzner et al. of serum-stable mixtures, the contents of which are incorporated herein by reference in their entirety. The lipid mixture includes phosphatidyl choline and phosphatidyl ethanolamine in a ratio ranging from about 0.5 to about 8. The lipid mixture may also include pH-sensitive anionic and cationic amphiphilic molecules such that the mixture is amphipathic, negatively or neutrally charged at pH 7.4 and positively charged at pH 4. The drug/lipid ratio can be adjusted to target the liposomes to specific organs or other sites in the body. In some embodiments, the lipid system loaded with the nucleic acid vaccine composition of the present disclosure as a load is prepared by the method disclosed in U.S. Patent Application Publication No. US 20120021042 issued to Panzner et al., the content of which is The full text is incorporated by reference into this article. The method includes the steps of mixing an aqueous solution of a polyanionic active agent and an alcoholic solution of one or more amphiphilic molecules and buffering the mixture to an acidic pH, wherein the one or more amphiphilic molecules are prone to form amphoteric liposomes at an acidic pH, thereby Formation of amphoteric liposomes in suspension encapsulating active agents lipoplex

本揭露之核酸疫苗組成物可使用一或多種脂複合體調配。The nucleic acid vaccine composition of the present disclosure can be formulated using one or more lipoplexes.

在一些實施態樣中,核酸疫苗組成物可調配為脂複合體,諸如但不限於ATUPLEX TM系統、DACC系統、DBTC系統及其他來自Silence Therapeutics (London, United Kingdom)之siRNA-脂複合體技術、來自STEMGENT® (Cambridge, MA)之STEMFECT TM及基於聚伸乙亞胺(PEI)或魚精蛋白之靶向及非靶向核酸遞送(Aleku等人 Cancer Res.2008, 68:9788-9798;Strumberg等人 Int J Clin Pharmacol Ther, 2012, 50:76-78;Santel等人, Gene Ther,2006, 13:1222-1234;Santel等人, Gene Ther.,2006, 13:1360-1370;Gutbier等人, Pulm Pharmacol. Ther.2010, 23:334-344;Kaufmann等人 Microvasc Res., 2010, 80:286-293, Weide等人 J Immunother., 2009, 32:498-507;Weide等人 J Immunother., 2008, 31:180-188;Pascolo., Expert Opin. Biol. Ther. 4:1285-1294;Fotin-Mleczek等人, J. Immunother., 2011, 34:1-15;Song等人, Nature Biotechnol. 2005, 23:709-717;Peer等人, Proc Natl Acad Sci U S A. 2007, 6;104:4095-4100;deFougerolles Hum Gene Ther.2008, 19:125-132;將每一該等內容以其全文引用方式併入本文中)。 脂質奈米粒子(LNP) In some embodiments, the nucleic acid vaccine composition can be formulated as a lipoplex, such as but not limited to ATUPLEX system, DACC system, DBTC system and other siRNA-lipoplex technologies from Silence Therapeutics (London, United Kingdom), STEMFECT TM from STEMGENT® (Cambridge, MA) and targeted and non-targeted nucleic acid delivery based on polyethyleneimine (PEI) or protamine (Aleku et al. Cancer Res. 2008, 68:9788-9798; Strumberg Int J Clin Pharmacol Ther , 2012, 50:76-78; Santel et al., Gene Ther, 2006, 13:1222-1234; Santel et al., Gene Ther ., 2006, 13:1360-1370; Gutbier et al. , Pulm Pharmacol. Ther. 2010, 23:334-344; Kaufmann et al. Microvasc Res ., 2010, 80:286-293, Weide et al . J Immunother ., 2009, 32:498-507; Weide et al. J Immunother. , 2008, 31:180-188; Pascolo., Expert Opin. Biol. Ther . 4:1285-1294; Fotin-Mleczek et al., J. Immunother ., 2011, 34:1-15; Song et al., Nature Biotechnol . 2005, 23:709-717; Peer et al., Proc Natl Acad Sci USA . 2007, 6;104:4095-4100; deFougerolles Hum Gene Ther. 2008, 19:125-132; Attribute each such content to its respective The full text is incorporated into this article by reference). Lipid Nanoparticles (LNP)

在一些實施態樣中,本揭露之核酸疫苗組成物可在脂質奈米粒子(LNP)中調配。一般而言,LNP之特徵可為小固體或半固體粒子,其具有外部脂質層,該外部脂質層具有暴露於非LNP環境之親水性外表面;可為水性(囊泡樣)或非水性(膠束樣)的內部空間;及至少一個疏水性膜間空間。LNP膜可層狀或非層狀的,且可由1、2、3、4、5、或更多個層構成。在一些實施態樣中,LNP可包含進入其內部空間、進入膜間空間、進入其外表面或其任何組合的負荷或有效負載。In some embodiments, the nucleic acid vaccine compositions of the present disclosure can be formulated in lipid nanoparticles (LNPs). In general, LNPs can be characterized as small solid or semi-solid particles that have an external lipid layer with a hydrophilic outer surface exposed to the non-LNP environment; they can be aqueous (vesicle-like) or non-aqueous ( micelle-like) internal space; and at least one hydrophobic intermembrane space. LNP films can be lamellar or non-lamellar, and can be composed of 1, 2, 3, 4, 5, or more layers. In some embodiments, an LNP can contain a load or payload into its interior space, into its intermembrane space, into its exterior surface, or any combination thereof.

適用於本文中之LNP為此項技術中已知且通常包含膽固醇(有助於穩定性及促進膜融合)、磷脂(其為LNP雙層提供結構且亦可幫助內體逃逸)、聚乙二醇(PEG)衍生物(其降低LNP聚集且「保護」LNP免受免疫細胞之非特異性內吞作用)及可離子化的脂質(與帶負電RNA複合且增強內體逃逸),其形成LNP形成組成物。LNPs suitable for use herein are known in the art and typically contain cholesterol (which aids in stability and promotes membrane fusion), phospholipids (which provide structure to the LNP bilayer and also aid in endosomal escape), polyethylene glycol Alcohol (PEG) derivatives (which reduce LNP aggregation and "protect" LNP from non-specific endocytosis by immune cells) and ionizable lipids (which complex with negatively charged RNA and enhance endosomal escape), which form LNP form composition.

可基於所需目標、向性、負荷、尺寸或其他所需特徵或特性選擇LNP之組分。The components of the LNP can be selected based on desired goals, tropism, loading, size, or other desired characteristics or properties.

LNP可為PCT專利申請公開案第WO2012170930號中所述之脂質奈米粒子,將其內容以其全文引用方式併入本文中。The LNPs may be lipid nanoparticles as described in PCT Patent Application Publication No. WO2012170930, the contents of which are incorporated herein by reference in their entirety.

在一些實施態樣中,本揭露之核酸疫苗組成物可在包含至少一種陽離子脂質之LNP中調配。In some embodiments, the nucleic acid vaccine compositions of the present disclosure can be formulated in LNPs including at least one cationic lipid.

在一些實施態樣中,可用於本揭露之調配物的陽離子脂質可選自但不限於以下各者中所述之陽離子脂質:PCT專利申請公開案第WO2012040184號、第WO2011153120號、第WO2011149733號、第WO2011090965號、第WO2011043913號、第WO2011022460號、第WO2012061259號、第WO2012054365號、第WO2012044638號、第WO2010080724號、第WO201021865號及第WO2008103276號,美國專利第7,893,302號、第7,404,969號及第8,283,333號,及美國專利公開案第US20100036115號及第US20120202871號;將每一該等內容以其全文引用方式併入本文中。陽離子脂質亦可選自但不限於以下各者中所述之式A:PCT專利申請公開案第WO2012040184號、第WO2011153120號、第WO2011149733號、第WO2011090965號、第WO2011043913號、第WO2011022460號、第WO2012061259號、第WO2012054365號及第WO2012044638號;將每一該等內容以其全文引用方式併入本文中。或者,陽離子脂質可選自但不限於PCT專利申請案第WO2008103276號之式CLI-CLXXIX、美國專利第7,893,302號之式CLI-CLXXIX、美國專利第7,404,969號之式CLI-CLXXXXII及美國專利公開案第US20100036115號之式I-VI;將每一該等內容以其全文引用方式併入本文中。陽離子脂質可為多價陽離子脂質,諸如頒予Gaucheron等人之美國專利第7,223,887號中所揭示之陽離子脂質,將其內容以其全文引用方式併入本文中。陽離子脂質可具有包括兩個四級胺基之帶正電荷之頭基及包括四條烴鏈之疏水性部分,如頒予Gaucheron等人之美國專利第7,223,887號中所述。陽離子脂質可為可生物降解的,如頒予Maier等人之美國專利申請公開案第US20130195920號中所揭示之可生物降解脂質,將其內容以其全文引用方式併入本文中。陽離子脂質可具有一或多個位於陽離子脂質之脂質部分中的可生物降解基團,如頒予Maier等人之US20130195920的式I-IV中所述。 在一些實施態樣中,陽離子脂質亦可為頒予Manoharan等人之US20130156845及頒予Manoharan等人之US 20130129785、頒予Wasan等人之WO 2012047656、頒予Chen等人之WO 2010144740、頒予Ansell等人之WO 2013086322或頒予Manoharan等人之WO 2012016184中所揭示之陽離子脂質,將每一該等內容以其全文引用方式併入本文中。 In some embodiments, cationic lipids useful in the formulations of the present disclosure may be selected from, but are not limited to, cationic lipids described in PCT Patent Application Publication Nos. WO2012040184, WO2011153120, WO2011149733, Nos. WO2011090965, WO2011043913, WO2011022460, WO2012061259, WO2012054365, WO2012044638, WO2010080724, WO201021865 and WO2008103276 , U.S. Patent Nos. 7,893,302, 7,404,969 and 8,283,333, and U.S. Patent Publication Nos. US20100036115 and US20120202871; each of which is incorporated herein by reference in its entirety. The cationic lipid may also be selected from, but is not limited to, Formula A as described in: PCT Patent Application Publication Nos. WO2012040184, WO2011153120, WO2011149733, WO2011090965, WO2011043913, WO2011022460, WO2012061259 No. WO2012054365 and WO2012044638; each of these contents is incorporated herein by reference in its entirety. Alternatively, the cationic lipid may be selected from, but is not limited to, Formula CLI-CLXXIX in PCT Patent Application No. WO2008103276, Formula CLI-CLXXIX in U.S. Patent No. 7,893,302, Formula CLI-CLXXXXII in U.S. Patent No. 7,404,969, and U.S. Patent Publication No. Formulas I-VI of US20100036115; each such content is incorporated herein by reference in its entirety. The cationic lipid may be a multivalent cationic lipid, such as those disclosed in U.S. Patent No. 7,223,887 to Gaucheron et al., the contents of which are incorporated herein by reference in their entirety. Cationic lipids may have a positively charged head group including two quaternary amine groups and a hydrophobic moiety including four hydrocarbon chains, as described in US Patent No. 7,223,887 to Gaucheron et al. Cationic lipids can be biodegradable, such as those disclosed in US Patent Application Publication No. US20130195920 to Maier et al., the contents of which are incorporated herein by reference in their entirety. The cationic lipid may have one or more biodegradable groups located in the lipid portion of the cationic lipid, as described in Formulas I-IV of US20130195920 to Maier et al. In some embodiments, the cationic lipid can also be US20130156845 to Manoharan et al., US 20130129785 to Manoharan et al., WO 2012047656 to Wasan et al., WO 2010144740 to Chen et al., WO 2010144740 to Ansell. et al., or WO 2012016184 to Manoharan et al., each of which is incorporated herein by reference in its entirety.

作為非限制性實例,陽離子脂質可選自(20Z,23Z)-N,N-二甲基二十九碳-20,23-二烯-10-胺、(17Z,20Z)-N,N-二甲基二十六碳-17,20-二烯-9-胺、(1Z,19Z)-N5N-二甲基二十五碳-l6,19-二烯-8-胺、(13Z,16Z)-N,N-二甲基二十二碳-13,16-二烯-5-胺、(12Z,15Z)-N,N-二甲基二十一碳-12,15-二烯-4-胺、(14Z,17Z)-N,N-二甲基二十三碳-14,17-二烯-6-胺、(15Z,18Z)-N,N-二甲基二十四碳-15,18-二烯-7-胺、(18Z,21Z)-N,N-二甲基二十七碳-18,21-二烯-10-胺、(15Ζ,18Ζ)-Ν,Ν-二甲基二十四碳-15,18-二烯-5-胺、(14Z,17Z)-N,N-二甲基二十三碳-14,17-二烯-4-胺、(19Z,22Z)-N,N-二甲基二十八碳-19,22-二烯-9-胺、(18Z,21Z)-N,N-二甲基二十七碳-18,21-二烯-8-胺、(17Z,20Z)-N,N-二甲基二十六碳-17,20-二烯-7-胺、(16Z,19Z)-N,N-二甲基二十五碳-16,19-二烯-6-胺、(22Z,25Z)-N,N-二甲基三十一碳-22,25-二烯-10-胺、(21Z,24Z)-N,N-二甲基三十碳-21,24-二烯-9-胺、(18Z)-N,N-二甲基二十七碳-18-烯-10-胺、(17Z)-N,N-二甲基二十六碳-17-烯-9-胺、(19Z,22Z)-N,N-二甲基二十八碳-19,22-二烯-7-胺、N,N-二甲基二十七烷-10-胺、(20Z,23Z)-N-乙基-N-甲基二十九碳-20,23-二烯-l0-胺、1-[(11Z,14Z)-l-壬基二十碳-11,14-二烯-l-基]吡咯啶、(20Z)-N,N-二甲基二十七碳-20-烯-l0-胺、(15Z)-N,N-二甲基二十七碳-15-烯-l0-胺、(14Z)-N,N-二甲基二十九碳-14-烯-l0-胺、(17Z)-N,N-二甲基二十九碳-17-烯-l0-胺、(24Z)-N,N-二甲基三十三碳-24-烯-l0-胺、(20Z)-N,N-二甲基二十九碳-20-烯-l0-胺、(22Z)-N,N-二甲基三十一碳-22-烯-l0-胺、(16Z)-N,N-二甲基二十五碳-16-烯-8-胺、(12Z,15Z)-N,N-二甲基-2-壬基二十一碳-12,15-二烯-1-胺、(13Z,16Z)-N,N-二甲基-3-壬基二十二碳-l3,16-二烯-l-胺、N,N-二甲基-l-[(lS,2R)-2-辛基環丙基]十七烷-8-胺、1-[(1S,2R)-2-己基環丙基]-N,N-二甲基十九烷-10-胺、Ν,Ν-二甲基-1-[(1S,2R)-2-辛基環丙基]十九烷-10-胺、N,N-二甲基-21-[(lS,2R)-2-辛基環丙基]二十一烷-l0-胺、Ν,Ν-二甲基-1-[(1S,2S)-2-{[(lR,2R)-2-戊基環丙基]甲基}環丙基]十九烷-10-胺、Ν,Ν-二甲基-1-[(1S,2R)-2-辛基環丙基]十六烷-8-胺、Ν,Ν-二甲基-[(lR,2S)-2-十一基環丙基]十四烷-5-胺、N,N-二甲基-3-{7-[(1S,2R)-2-辛基環丙基]庚基}十二烷-1-胺、1-[(1R,2S)-2-庚基環丙基]-Ν,Ν-二甲基十八烷-9-胺、1-[(1S,2R)-2-癸基環丙基]-N,N-二甲基十五烷-6-胺、N,N-二甲基-l-[(lS,2R)-2-辛基環丙基]十五烷-8-胺、R-N,N-二甲基-1-[(9Z,12Z)-十八碳-9,12-二烯-1-基氧基]-3-(辛氧基)丙-2-胺、S-N,N-二甲基-1-[(9Z,12Z)-十八碳-9,12-二烯-1-基氧基]-3-(辛氧基)丙-2-胺、1-{2-[(9Z,12Z)-十八碳-9,12-二烯-1-基氧基]-1-[(辛氧基)甲基]乙基}吡咯啶、(2S)-N,N-二甲基-1-[(9Z,12Z)-十八碳-9,12-二烯-1-基氧基]-3-[(5Z)-辛-5-烯-1-基氧基]丙-2-胺、1-{2-[(9Z,12Z)-十八碳-9,12-二烯-1-基氧基]-1-[(辛氧基)甲基]乙基}氮雜環丁烷、(2S)-1-(己氧基)-N,N-二甲基-3-[(9Z,12Z)-十八碳-9,12-二烯-1-基氧基]丙-2-胺、(2S)-1-(庚氧基)-N,N-二甲基-3-[(9Z,12Z)-十八碳-9,12-二烯-1-基氧基]丙-2-胺、Ν,Ν-二甲基-1-(壬氧基)-3-[(9Z,12Z)-十八碳-9,12-二烯-1-基氧基]丙-2-胺、Ν,Ν-二甲基-1-[(9Z)-十八碳-9-烯-1-基氧基]-3-(辛氧基)丙-2-胺、(2S)-N,N-二甲基-1-[(6Z,9Z,12Z)-十八碳-6,9,12-三烯-1-基氧基]-3-(辛氧基)丙-2-胺、(2S)-1-[(11Z,14Z)-二十碳-11,14-二烯-1-基氧基]-N,N-二甲基-3-(戊氧基)丙-2-胺、(2S)-1-(己氧基)-3-[(11Z,14Z)-二十碳-11,14-二烯-1-基氧基]-N,N-二甲基丙-2-胺、1-[(11Z,14Z)-二十碳-11,14-二烯-1-基氧基]-Ν,Ν-二甲基-3-(辛氧基)丙-2-胺、1-[(13Z,16Z)-二十二碳-l3,16-二烯-l-基氧基]-N,N-二甲基-3-(辛氧基)丙-2-胺、(2S)-1-[(13Z,16Z)-二十二碳-13,16-二烯-1-基氧基]-3-(己氧基)-N,N-二甲基丙-2-胺、(2S)-1-[(13Z)-二十二碳-13-烯-1-基氧基]-3-(己氧基)-N,N-二甲基丙-2-胺、1-[(13Z)-二十二碳-13-烯-1-基氧基]-N,N-二甲基-3-(辛氧基)丙-2-胺、1-[(9Z)-十六碳-9-烯-1-基氧基]-N,N-二甲基-3-(辛氧基)丙-2-胺、(2R)-N,N-二甲基-H(1-甲基辛基)氧基]-3-[(9Z,12Z)-十八碳-9,12-二烯-1-基氧基]丙-2-胺、(2R)-1-[(3,7-二甲基辛基)氧基]-N,N-二甲基-3-[(9Z,12Z)-十八碳-9,12-二烯-1-基氧基]丙-2-胺、N,N-二甲基-1-(辛氧基)-3-({8-[(1S,2S)-2-{[(1R,2R)-2-戊基環丙基]甲基}環丙基]辛基}氧基)丙-2-胺、N,N-二甲基-1-{[8-(2-辛基環丙基)辛基]氧基}-3-(辛氧基)丙-2-胺、及(1lE,20Z,23Z)-N,N-二甲基二十九碳-l1,20,2-三烯-10-胺,或其醫藥學上可接受之鹽或立體異構體。 脂質奈米粒子(LNP)組成物 As a non-limiting example, the cationic lipid may be selected from the group consisting of (20Z,23Z)-N,N-dimethylecos-20,23-diene-10-amine, (17Z,20Z)-N,N- Dimethylpentadeca-17,20-diene-9-amine, (1Z,19Z)-N5N-dimethylpentadeca-16,19-diene-8-amine, (13Z,16Z )-N,N-dimethyldococ-13,16-diene-5-amine, (12Z,15Z)-N,N-dimethyldococ-12,15-diene- 4-amine, (14Z,17Z)-N,N-dimethyltetracarbon-14,17-diene-6-amine, (15Z,18Z)-N,N-dimethyltetracarbon -15,18-diene-7-amine, (18Z,21Z)-N,N-dimethyl27-18,21-diene-10-amine, (15Z,18Z)-N,N -Dimethylicosac-15,18-diene-5-amine, (14Z,17Z)-N,N-dimethylicosac-14,17-diene-4-amine, ( 19Z,22Z)-N,N-dimethyloctadecanoic-19,22-diene-9-amine, (18Z,21Z)-N,N-dimethyloctadecanoic-18,21- Diene-8-amine, (17Z,20Z)-N,N-dimethylhexadecanoic-17,20-diene-7-amine, (16Z,19Z)-N,N-dimethyldi Pentadecane-16,19-diene-6-amine, (22Z,25Z)-N,N-dimethyltriadenocarbon-22,25-diene-10-amine, (21Z,24Z)- N,N-dimethyltriacona-21,24-diene-9-amine, (18Z)-N,N-dimethyltriacona-18-en-10-amine, (17Z)- N,N-dimethyloctadecanoic-17-en-9-amine, (19Z,22Z)-N,N-dimethyloctadecanoic-19,22-diene-7-amine, N ,N-dimethylheptadecane-10-amine, (20Z,23Z)-N-ethyl-N-methyloctadecane-20,23-diene-l0-amine, 1-[( 11Z,14Z)-l-nonyleicosac-11,14-dien-l-yl]pyrrolidine, (20Z)-N,N-dimethyleicosac-20-en-l0-amine , (15Z)-N,N-dimethylnac-15-en-l0-amine, (14Z)-N,N-dimethylnac-14-en-l0-amine, ( 17Z)-N,N-dimethyltriacon-17-en-l0-amine, (24Z)-N,N-dimethyltriacon-24-ene-l0-amine, (20Z) -N,N-dimethylnonadenocarbon-20-en-l0-amine, (22Z)-N,N-dimethylnonadenocarbon-22-en-l0-amine, (16Z)-N ,N-dimethylpentac-16-en-8-amine, (12Z,15Z)-N,N-dimethyl-2-nonylpentac-12,15-diene-1 -Amine, (13Z,16Z)-N,N-dimethyl-3-nonyldococacan-l3,16-diene-l-amine, N,N-dimethyl-l-[(lS ,2R)-2-octylcyclopropyl]heptadecane-8-amine, 1-[(1S,2R)-2-hexylcyclopropyl]-N,N-dimethylnonadecane-10- Amine, N,N-dimethyl-1-[(1S,2R)-2-octylcyclopropyl]nonadecan-10-amine, N,N-dimethyl-21-[(1S,2R )-2-octylcyclopropyl] unicosan-10-amine, N, N-dimethyl-1-[(1S,2S)-2-{[(1R,2R)-2-pentyl Cyclopropyl]methyl}cyclopropyl]nonadecan-10-amine, N,N-dimethyl-1-[(1S,2R)-2-octylcyclopropyl]hexadecane-8- Amine, N,N-dimethyl-[(lR,2S)-2-undecylcyclopropyl]tetradecane-5-amine, N,N-dimethyl-3-{7-[(1S ,2R)-2-octylcyclopropyl]heptyl}dodecane-1-amine, 1-[(1R,2S)-2-heptylcyclopropyl]-N,N-dimethyloctadecyl Alk-9-amine, 1-[(1S,2R)-2-decylcyclopropyl]-N,N-dimethylpentadecan-6-amine, N,N-dimethyl-l-[ (1S,2R)-2-octylcyclopropyl]pentadecan-8-amine, R-N,N-dimethyl-1-[(9Z,12Z)-octadeca-9,12-diene- 1-yloxy]-3-(octyloxy)propan-2-amine, S-N,N-dimethyl-1-[(9Z,12Z)-octadeca-9,12-diene-1- baseoxy]-3-(octyloxy)propan-2-amine, 1-{2-[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]-1- [(octyloxy)methyl]ethyl}pyrrolidine, (2S)-N,N-dimethyl-1-[(9Z,12Z)-octadeca-9,12-dien-1-yl Oxy]-3-[(5Z)-oct-5-en-1-yloxy]propan-2-amine, 1-{2-[(9Z,12Z)-octadeca-9,12-di En-1-yloxy]-1-[(octyloxy)methyl]ethyl}azetidine, (2S)-1-(hexyloxy)-N,N-dimethyl-3 -[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]propan-2-amine, (2S)-1-(heptyloxy)-N,N-dimethyl -3-[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]propan-2-amine, N,N-dimethyl-1-(nonyloxy)-3 -[(9Z,12Z)-octadecanoic-9,12-dien-1-yloxy]propan-2-amine, N,N-dimethyl-1-[(9Z)-octadecanoic- 9-en-1-yloxy]-3-(octyloxy)propan-2-amine, (2S)-N,N-dimethyl-1-[(6Z,9Z,12Z)-octadecane -6,9,12-trien-1-yloxy]-3-(octyloxy)propan-2-amine, (2S)-1-[(11Z,14Z)-eicosan-11,14 -Dien-1-yloxy]-N,N-dimethyl-3-(pentyloxy)propan-2-amine, (2S)-1-(hexyloxy)-3-[(11Z, 14Z)-Eicosane-11,14-diene-1-yloxy]-N,N-dimethylpropan-2-amine, 1-[(11Z,14Z)-Eicosane-11,14 -Dien-1-yloxy]-N,N-dimethyl-3-(octyloxy)propan-2-amine, 1-[(13Z,16Z)-bicos-13,16- Dien-l-yloxy]-N,N-dimethyl-3-(octyloxy)propan-2-amine, (2S)-1-[(13Z,16Z)-bicos-13 ,16-dien-1-yloxy]-3-(hexyloxy)-N,N-dimethylpropan-2-amine, (2S)-1-[(13Z)-bicos- 13-en-1-yloxy]-3-(hexyloxy)-N,N-dimethylpropan-2-amine, 1-[(13Z)-dococ-13-ene-1- baseoxy]-N,N-dimethyl-3-(octyloxy)propan-2-amine, 1-[(9Z)-hexadecan-9-en-1-yloxy]-N, N-Dimethyl-3-(octyloxy)propan-2-amine, (2R)-N,N-dimethyl-H(1-methyloctyl)oxy]-3-[(9Z, 12Z)-octadeca-9,12-dien-1-yloxy]propan-2-amine, (2R)-1-[(3,7-dimethyloctyl)oxy]-N, N-dimethyl-3-[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]propan-2-amine, N,N-dimethyl-1-(octyloxy) Oxy)-3-({8-[(1S,2S)-2-{[(1R,2R)-2-pentylcyclopropyl]methyl}cyclopropyl]octyl}oxy)propan- 2-amine, N,N-dimethyl-1-{[8-(2-octylcyclopropyl)octyl]oxy}-3-(octyloxy)propan-2-amine, and (11E , 20Z, 23Z)-N,N-dimethyl nonacarbo-l1,20,2-triene-10-amine, or its pharmaceutically acceptable salt or stereoisomer. Lipid Nanoparticle (LNP) Composition

在一些實施態樣中,脂質奈米粒子可由至少一種陽離子脂質、至少一種非陽離子脂質、至少一種固醇、至少一種額外的LNP功能性組分或其任何組合所組成。在一些實施態樣中,脂質奈米粒子可由至少一種陽離子脂質、至少一種非陽離子脂質、至少一種固醇及至少一種額外的LNP功能性組分所組成。在一些實施態樣中,LNP可由至少一種陽離子脂質、至少一種非陽離子脂質及至少一種固醇所組成。在一些實施態樣中,LNP可由至少一種陽離子脂質、至少一種非陽離子脂質及至少一種額外的LNP功能性組分所組成。在一些實施態樣中,LNP可由至少一種非陽離子脂質、至少一種固醇及至少一種額外的LNP功能性組分所組成。在一些實施態樣中,LNP可由至少一種陽離子脂質及至少一種非陽離子脂質所組成。在一些實施態樣中,LNP可由至少一種陽離子脂質及至少一種固醇所組成。在一些實施態樣中,LNP可由至少一種陽離子脂質及至少一種額外的LNP功能性組分所組成。在一些實施態樣中,LNP可由至少一種非陽離子脂質及至少一種固醇所組成。在一些實施態樣中,LNP可由至少一種非陽離子脂質及至少一種額外的LNP功能性組分所組成。在一些實施態樣中,LNP可由至少一種固醇及至少一種額外的LNP功能性組分所組成。在一些實施態樣中,LNP可由至少一種陽離子脂質所組成。在一些實施態樣中,LNP可由至少一種非陽離子脂質所組成。在一些實施態樣中,LNP可由固醇所組成。在一些實施態樣中,LNP可由額外的LNP功能性組分所組成。In some embodiments, lipid nanoparticles can be composed of at least one cationic lipid, at least one non-cationic lipid, at least one sterol, at least one additional LNP functional component, or any combination thereof. In some embodiments, lipid nanoparticles can be composed of at least one cationic lipid, at least one non-cationic lipid, at least one sterol, and at least one additional LNP functional component. In some embodiments, LNP can be composed of at least one cationic lipid, at least one non-cationic lipid, and at least one sterol. In some embodiments, LNP can be composed of at least one cationic lipid, at least one non-cationic lipid, and at least one additional LNP functional component. In some embodiments, LNP can be composed of at least one noncationic lipid, at least one sterol, and at least one additional LNP functional component. In some embodiments, LNP can be composed of at least one cationic lipid and at least one non-cationic lipid. In some embodiments, LNP can be composed of at least one cationic lipid and at least one sterol. In some embodiments, LNP can be composed of at least one cationic lipid and at least one additional LNP functional component. In some embodiments, LNP can be composed of at least one non-cationic lipid and at least one sterol. In some embodiments, LNP can be composed of at least one non-cationic lipid and at least one additional LNP functional component. In some embodiments, LNP can be composed of at least one sterol and at least one additional LNP functional component. In some embodiments, LNPs can be composed of at least one cationic lipid. In some embodiments, the LNP can be composed of at least one non-cationic lipid. In some embodiments, the LNP can be composed of sterols. In some implementations, LNP can be composed of additional LNP functional components.

在一些實施態樣中,至少一種陽離子脂質可包含至少一種可離子化的陽離子脂質、至少一種胺基脂質、至少一種飽和陽離子脂質、至少一種不飽和陽離子脂質、至少一種兩性離子脂質、至少一種多價陽離子脂質或其任何組合中任一者。在一些實施態樣中,LNP可能基本上沒有至少一種陽離子脂質。在一些實施態樣中,LNP可能不含任何量的至少一種陽離子脂質。In some embodiments, the at least one cationic lipid can include at least one ionizable cationic lipid, at least one amine lipid, at least one saturated cationic lipid, at least one unsaturated cationic lipid, at least one zwitterionic lipid, at least one polypeptide cationic lipids or any combination thereof. In some embodiments, the LNP may be substantially free of at least one cationic lipid. In some embodiments, LNPs may not contain any amount of at least one cationic lipid.

在一些實施態樣中,至少一種陽離子脂質可選自但不限於下列中至少一者:1,3-雙-(l,2-雙-十四烷氧基-丙基-3-二甲基乙氧基溴化銨)-丙-2-醇((R)-PLC-2))、2-(二壬基胺基)乙-1-醇(17-10)、2-(二-十二烷基胺基)乙-1-醇(17-11)、3-(二-十二烷基胺基)丙-1-醇(17-12)、4-(二-十二烷基胺基)丁-1-醇(17-13)、2-(己基((9Z,12Z)-十八碳-9,12-二烯-1-基)胺基)乙-1-醇(17-2)、2-(壬基((9Z,12Z)-十八碳-9,12-二烯-1-基)胺基)乙-1-醇(17-3)、2-(十二烷基((9Z,12Z)-十八碳-9,12-二烯-1-基)胺基)乙-1-醇(17-4)、2-(((9Z,12Z)-十八碳-9,12-二烯-1-基)(十四烷基)胺基)乙-1-醇(17-5)、2-(((9Z,12Z)-十八碳-9,12-二烯-1-基)(十八烷基)胺基)乙-1-醇(17-6)、2-(二-十四烷基胺基)乙-1-醇(17-7)、2-(二((Z)-十八碳-9-烯-1-基)胺基)乙-1-醇(17-8)、(9Z,12Z)-N-(2-甲氧基乙基)-N-((9Z,12Z)-十八碳-9,12-二烯-1-基)十八碳-9,12-二烯-1-胺(17-9)、N-壬基-N-(2-(哌𠯤-1-基)乙基)壬-1-胺(19-1)、N-十二烷基-N-(2-(哌𠯤-1-基)乙基)十二烷-1-胺(19-2)、(9Z,12Z)-N-((9Z,12Z)-十八碳-9,12-二烯-1-基)-N-(2-(哌𠯤-1-基)乙基)十八碳-9,12-二烯-1-胺(19-3)、N-十二烷基-N-(2-(4-甲基哌𠯤-1-基)乙基)十二烷-1-胺中間物1:2-(二-十二烷基胺基)乙-1-醇(19-4)、N-十二烷基-N-(2-(4-(4-甲氧基苯甲基)哌𠯤-1-基)乙基)十二烷-1-胺(19-5)、(9Z,12Z)-N-(2-(4-十二烷基哌𠯤-1-基)乙基)-N-((9Z,12Z)-十八碳-9,12-二烯-1-基)十八碳-9,12-二烯-1-胺(19-6)、(3-((6Z,9Z,28Z,31Z)-三十七碳-6,9,28,31-四烯-19-基氧基)-N,N-二甲基丙-1-胺) (1-Bl 1)、N-(2-(二-十二烷基胺基)乙基)-N-十二烷基甘胺酸(20-1)、8,8'-((2-(十二烷基(2-羥乙基)胺基)乙基)脲二基)二辛酸二壬酯(20-10)、3-((2-(二-十四烷基胺基)乙基)(十二烷基)胺基)丙-1-醇(20-11)、2-((2-(二-十四烷基胺基)乙基)(十四烷基)胺基)乙-1-醇(20-12)、2-((2-(二((9Z,12Z)-十八碳-9,12-二烯-1-基)胺基)乙基)(十二烷基)胺基)乙-1-醇(20-13)、2-((2-(二((9Z,12Z)-十八碳-9,12-二烯-1-基)胺基)乙基)((9Z,12Z)-十八碳-9,12-二烯-1-基)胺基)乙-1-醇(20-14)、2-((2-(二-十二烷基胺基)乙基)(己基)胺基)乙-1-醇(20-15)、2-((2-(二壬基胺基)乙基)(壬基)胺基)乙-1-醇(20-16)、2-((2-(二-十二烷基胺基)乙基)(壬基)胺基)乙-1-醇(20-17)、2-((2-(二壬基胺基)乙基)(十二烷基)胺基)乙-1-醇(20-18)、2-((2-(二-十二烷基胺基)乙基)胺基)乙-1-醇(20-19)、6-(十二烷基(2-(十二烷基(2-羥乙基)胺基)乙基)胺基)己酸戊酯(20-2)、2-((2-(二-十二烷基胺基)乙基)(十二烷基)胺基)乙-1-醇(20-20)、3-((2-(二-十二烷基胺基)乙基)(十二烷基)胺基)丙-1-醇(20-21)、4-((2-(二-十二烷基胺基)乙基)(十二烷基)胺基)丁-1-醇(20-22)、(Z)-2-((2-(二-十二烷基胺基)乙基)十二碳-6-烯-1-基)胺基)乙-1-醇(20-23)、2-((2-(二-十二烷基胺基)乙基)(十四烷基)胺基)乙-1-醇(20-24)、2-((2-(二-十二烷基胺基)乙基)((9Z,12Z)-十八碳-9,12-二烯-1-基)胺基)乙-1-醇(20-25)、6-((2-(二-十二烷基胺基)乙基)(2-羥乙基)胺基)己酸戊酯(20-3)、6,6'-((2-(十二烷基(2-羥乙基)胺基)乙基)脲二基)二己酸二戊酯(20-4)、6,6'-((2-((6-(庚氧基)-6-側氧基己基)(2羥乙基)胺基)乙基)脲二基)二己酸二庚酯(20-5)、6-((2-(二壬基胺基)乙基)(2-羥乙基)胺基)己酸戊酯(20-6)、6-(十二烷基(2-(十二烷基(2-羥乙基)胺基)乙基)胺基)己酸庚酯(20-7)、8-((2-(二-十二烷基胺基)乙基)(2-羥乙基)胺基)辛酸壬酯(20-8)、l8-((2-(二-十二烷基胺基)乙基)(2-羥乙基)胺基)辛酸十七烷-9-酯(20-9)、1-(2,2-二((9Z,12Z)-十八碳-9,12-二烯-1-基)環丙基)-N,N-二甲基甲胺(21-1)、4-(二甲基胺基)丁酸3,3-二((9Z,12Z)-十八碳-9,12-二烯-1-基)環丁酯(21-2)、3-(二甲基胺基)丙酸3,3-二((9Z,12Z)-十八碳-9,12-二烯-1-基)環戊酯(21-3)、4-(二甲基胺基)丁酸3,3-二((9Z,12Z)-十八碳-9,12-二烯-1-基)環戊酯(21-4)、1-(2,3-二((8Z,11Z)-十七碳-8,11-二烯-1-基)環丙基)-N,N-二甲基甲胺(21-6)、未知的(75-016B)、聚{4-((2-(二甲基胺基)乙基)硫基)四氫-2H-吡喃-2-酮}-r-聚{4-(辛硫基)四氫-2H-吡喃-2-酮}(A7)、(3aR5s,6aS)-N,N-二甲基-2,2-二((9Z,12Z)-十八碳-9,12-二烯基)四氫-3aH-環戊-1,3-二氧呃-5-胺(ALN100)、(3aR,5s,6aS)-N,N-二甲基-2,2-二((9Z,12Z)-十八碳-9,12-二烯基)四氫-3aH-環戊[d][l,3]二氧呃-5-胺(ALN1001)、((3aR,5s,6aS)-N,N-二甲基-2,2-二((9Z,12Z)-十八碳-9,12-二烯基)四氫-3aH-環戊[d][1,3]二氧呃-5-胺)) (ALNY-100)、二肉豆蔻醯基三甲基銨丙烷(胺基脂質6)、Benzamiπdiπ-二烷基-甲酸(BADACA)、N,N-二羥乙基甲基-N-2-(膽固醇氧基羰基胺基)乙基溴化銨(BHEM-Chol)、N,N-雙-(2-羥乙基)-N-甲基-N-(2-膽固醇氧基羰基胺基-乙基)溴化銨(BHEM-Chol1)、2-{4-[(3β)-膽固-5-烯-3-基氧基]丁氧基}-iV?N-二甲基-3-[(9Z,12Z)-十八碳-9,12-二烯-l-基氧基]丙-1-胺(丁基-CLinDMA)、(2JR)-2-{4-[(3β)-膽固-5-烯-3-基氧基]丁氧基}-Λr^二甲基-3-[(9Z,12Z)-十八碳-9,12-二烯-l-基氧基丙-1-胺(丁基-CLinDMA (2R))、(25)-2-{4-[(3β)-膽固-5-烯-3-基氧基]丁氧基}-iVy/V-二甲基-3-[(9Z,12Z)-十八碳-9,12-二烯-l-基氧基]丙-1-胺(丁基-CLinDMA (2S))、1,1'-(2-(4-(2-((2-(雙(2-羥基十二烷基)胺基)乙基)(2-羥基十二烷基)胺基)乙基)哌𠯤-l-基)乙基脲二基)二-十二烷-2-醇(C 12-200)、1,1‘-((2-(4-(2-((2-(雙(2-羥基十二烷基)胺基)乙基)(2-羥基十二烷基)胺基)乙基)哌𠯤-1-基)乙基)脲二基)雙(十二烷-2-醇)(C12-200)、膽固醇基-琥珀醯基矽烷(C2)、雙(十八碳-9,12-二烯酸)(9Z,9'Z,12Z,12'Z)-2-((4-(((3-(二甲基胺基)丙氧基)羰基)氧基)十六醯基)氧基)丙-1,3-二酯(陽離子脂質A2)、十八碳-9,12-二烯酸(9Z,12Z)-3-((4,4-雙(辛氧基)丁醯基)氧基)-2-((((3-(二乙基胺基)丙氧基)羰基)氧基)甲基)丙酯(陽離子脂質A3)、l-(3-膽固醇基)-氧基羰基-胺甲基咪唑(CHIM)、[(2-嗎啉-4-基-乙基胺甲醯基)甲基]-胺甲酸膽固醇酯(Chol-C3N-Mo2)、[(2-嗎啉-4-基-乙基胺甲醯基)-乙基]-胺甲酸膽固醇酯Chol-DMC3N-Mo2[l-甲基-2-(2-嗎啉-4-基-乙基胺甲醯基)-丙基]-胺甲酸膽固醇酯(Chol-C4N-Mo2)、4-(二甲基胺基)丁酸l,17-雙(2-辛基環丙基)十七烷-9-酯(CL)、4-(二甲基胺基)-丁酸三十七碳-6,9,28,31-四烯-19-酯(CL01)、3-(二甲基胺基)丙酸膽固醇酯(CL06)、2-(二甲基胺基)乙酸膽固醇酯(CL08)、N,N-二甲基-2,3-雙(((9Z,12Z)-十八碳-9,12-二烯-1-基)氧基)丙-1-胺(CL-1)、N-甲基-2-(((9Z,12Z)-十八碳-9,12-二烯-1-基)氧基)-N-(2-((((9Z,12Z)-十八碳-9,12-二烯-1-基)氧基)乙基)乙-1-胺(CL-11)、(3R,4R)-3,4-雙(((Z)-十六碳-9-烯-1-基)氧基)-1-甲基吡咯啶(化合物CL-12) (CL-12)、2-(二甲基胺基)-N-((6Z,9Z,28Z,31Z)-三十七碳-6,9,28,31-四烯-19-基)乙醯胺(CL-13)、(9Z,9'Z,12Z,12'Z)-雙(十八碳-9,12-二烯酸)-3-(二甲基胺基)丙-1,2-二酯(CL-14)、(9Z,12Z)-二((9Z,12Z)-十八碳-9,12-二烯-1-基)胺(CL-15)、二-十二烷酸7-羥基7-(4-((1-甲基哌啶-4-羰基)氧基)丁基)十三烷-1,13-二酯(CL15B6)、二-十四烷酸7-羥基7-(4-((1-甲基哌啶-4-羰基)氧基)丁基)十三烷-1,13-二酯(CL15C6)、二棕櫚酸7-羥基7-(4-((1-甲基哌啶-4-羰基)氧基)丁基)十三烷-1,13-二酯(CL15D6)、二油酸7-羥基7-(4-((1-甲基哌啶-4-羰基)氧基)丁基)十三烷-1,13-二酯(CL15H6)、雙(2-(((9Z,12Z)-十八碳-9,12-二烯-1-基)氧基)乙基)胺(CL-16)、(9Z,12Z)-N-甲基-N-(2-(((9Z,12Z)-十八碳-9,12-二烯-1-基)氧基)乙基)十八碳-9,12-二烯-1-胺(CL-17)、(9Z,12Z)-N-(3-(((9Z,12Z)-十八碳-9,12-二烯-1-基)氧基)丙基)十八碳-9,12-二烯-1-胺(CL-18)、二((11Z,14Z)-二十碳-11,14-二烯-1-基)胺甲酸(1-甲基哌啶-3-基)甲酯(CL-19)、N-甲基-N,N-雙(2-((Z)-十六碳-9-烯基氧基)乙基)胺(CL-2)、(13Z,16Z)-N,N-二甲基-4-((9Z,12Z)-十八碳-9,12-二烯-1-基)二十二碳-3,13,16-三烯-1-胺(CL-20)、(S)-2-胺基-3-羥基-N,N-雙(2-(((Z)-十八碳-9-烯-1-基)氧基)乙基)丙醯胺(CL-21)、C2:N,N-二-十六烷基-N'-(3-三乙氧基矽基丙基)琥珀二醯胺(CL3)、反式-1-甲基-3,4-雙((((Z)-十八碳-9-烯-1-基)氧基)甲基)吡咯啶(CL-3)、雙(亞甲基)(9Z,9'Z,12Z,12'Z)-雙(十八碳-9,12-二烯酸)反式-1-甲基吡咯啶-3,4-二酯(CL-4)、二-十四烷酸7-(4-(二異丙基胺基)丁基)-7-羥基十三烷-1,13-二酯(CL4C6)、二棕櫚酸7-(4-(二異丙基胺基)丁基)-7-羥基十三烷-1,13-二酯(CL4D6)、二油酸11-(4-(二異丙基胺基)丁基)-11-羥基二十一烷-1,21-二酯(CL4H10)、二油酸7-(4-(二異丙基胺基)丁基)-7-羥基十三烷-1,13-二酯(CL4H6)、二油酸9-(4-(二異丙基胺基)丁基)-7-羥基十七烷-1,17-二酯(CL4H8)、4-(二甲基胺基)丁酸(6Z,9Z,28Z,31Z)-三十七碳-6,9,28,31-四烯-19-酯(CL-5)、2-(二甲基胺基)-N-(2-(((Z)-十八碳-9-烯-1-基)氧基)乙基)-N-((9Z,12Z)-十八碳-9,12-二烯-1-基)乙醯胺(CL-53)、3-((2-(((Z)-十八碳-9-烯-1-基)氧基)乙基)((9Z,12Z)-十八碳-9,12-二烯-1-基)胺基)丙烷-1-All (CL-54)、1-甲基-3,3-雙((((9Z,12Z)-十八碳-9,12-二烯-1-基)氧基)甲基)氮雜環丁烷(CL-55)、1-甲基-3,3-雙(2-(((9Z,12Z)-十八碳-9,12-二烯-1-基)氧基)乙基)氮雜環丁烷(CL-56)、1-甲基-3,3-雙(2-(((9Z,12Z)-十八碳-9,12-二烯-1-基)氧基)丙基)氮雜環丁烷(CL-57)、2-(3,3-二((9Z,12Z)-十八碳-9,12-二烯-1-基)氮雜環丁烷-1-基)乙-1-醇(CL-58)、2-(3,3-二((9Z,12Z)-十八碳-9,12-二烯-1-基)氮雜環丁烷-1-基)丙-1-醇(CL-59)、3-(二((9Z,12Z)-十八碳-9,12-二烯-1-基)胺基)丙-1-醇(CL-6)、3,3-二((9Z,12Z)-十八碳-9,12-二烯-1-基)氮雜環丁烷-1-甲酸3-(二甲基胺基)丙酯(CL-60)、2-(二((Z)-十八碳-9-烯-1-基)胺基)乙-1-醇(CL-61)、3-(二((Z)-十八碳-9-烯-1-基)胺基)丙-1-醇(CL-62)、(11Z,14Z)-2-((二甲基胺基)甲基)-2-((9Z,12Z)-十八碳-9,12-二烯-1-基)二十碳-11,14-二烯-1-醇(CL-63)、(11Z,14Z)-2-(二甲基胺基)-2-((9Z,12Z)-十八碳-9,12-二烯-1-基)二十碳-11,14-二烯-1-醇(CL-64)、3-(二甲基胺基)-2,2-雙((((9Z,12Z)-十八碳-9,12-二烯-1-基)氧基)甲基)丙-1-醇(CL-65)、(9Z,12Z)-N-(2-(((Z)-十八碳-9-烯-1-基)氧基)乙基)十八碳-9,12-二烯-1-胺(CL-7)、1-甲基-3,3-二((9Z,12Z)-十八碳-9,12-二烯-1-基)氮雜環丁烷(CL-8)、N,2-二甲基-1,3-雙(((9Z,12Z)-十八碳-9,12-二烯-1-基)氧基)丙-2-胺(CL-9)、3-二甲基胺基-2-(膽固-5-烯-3B-氧基丁-4-氧基)-1-(順式,順式-9,12-十八碳二烯氧基)丙烷(CLinDMA)、2-[5′-(膽固-5-烯-3-氧基)-3′-氧雜戊氧基)-3-二甲基-1-(順式,順式-9′,12′-十八碳二烯氧基)丙烷(CpLinDMA)、乙醯基三甲基溴化銨(CTAB)、l^-二花生四烯醯氧基-^TV-二甲基^-丙基-S-胺(DAraDMA)、0,0'-二-十四醯基-N-(α-三甲基銨基乙醯基)二乙醇胺氯化物(DC-6-14)、3β-[N-(N′,N′-二甲基胺基乙烷)胺甲醯基]膽固醇(DC-Chol)、二甲基二-十八烷基銨(DDA)、二甲基二-十八烷基溴化銨(DDA)、N,N-二硬脂醯基-N,N-二甲基溴化銨(DDAB)、l,2-二-二十二碳六烯基氧基-(7V,N-二甲基)-丙基-3-胺(DDocDMA)、N-(2-(二甲基胺基)乙基)-4,5-雙(十二烷硫基)戊醯胺(DEDPA)、3-二甲基胺基-2-(膽固-5-烯-3β-氧基戊-3-oxa-an-5-氧基)-1-(順式,順式-9,12-十八碳二烯氧基)丙烷(DEG-CLinDMA)、1,6-二油醯基三伸乙四醯胺(dio-TETA)、Nl,N19-雙((S,23E,25E,27E,29E)-16-((2E,4E,6E,8E)-3,7-二甲基-9-(2,6,6-三甲基環己-l-烯-l-基)壬-2,4,6,8-四烯醯胺基)-24,28-二甲基-15,22-二側氧基-30-(2,6,6-三甲基環己-l-烯-l-基)-4,7,10-三氧雜-14,21-二氮雜三十碳-23,25,27,29-四烯-l-基)-4,7,10,13,16-五氧雜十九烷-1,19-二醯胺(diVA-PEG-diVA)、DiLin-N-甲基哌𠯤(DL-033)、DiLin-N,N-二甲基甘胺酸(DL-036)、二油醯基-N,N-二甲基甘胺酸(DL-048)、3-((1,3-雙(((9Z,12Z)-十八碳-9,12-二烯醯基)氧基)丙-2-基)胺基)丙酸(DLAPA)、1,2-二次亞麻仁油氧基-3-二甲基胺基丙烷(DLenDMA)、1-亞麻仁油醯基-2-亞麻仁油氧基-3-二甲基胺基丙烷(DLin-2-DMAP)、3-(N,N-二亞麻仁油基胺基)-1,2-丙二醇(DLinAP)、1,2-N,N′-二亞麻仁油基胺甲醯基-3-二甲基胺基丙烷(DLincarbDAP)、1,2-二亞麻仁油醯基胺甲醯基-3-二甲基胺基丙烷(DLinCDAP)、1,2-二亞麻仁油基胺甲醯氧基-3-二甲基胺基丙烷(DLin-C-DAP)、1,2-二亞麻仁油氧基-3-(二甲基胺基)乙醯氧基丙烷(DLin-DAC)、1,2-二亞麻仁油醯基-3-二甲基胺基丙烷(DLinDAP)、1,2-二亞麻仁油氧基-N,N-二甲基胺基丙烷(DLinDMA )、1,2-二亞麻仁油氧基-3-二甲基胺基丙烷(DLinDMA 1)、1,2-二亞麻仁油氧基-3-(2-N,N-二甲基胺基)乙氧基丙烷(DLin-EG-DMA)、二亞麻仁油醯基-4-胺基丁酸(DLinFAB)、2,2-二亞麻仁油基-4-(2-二甲基胺基乙基)-[1,3]-二氧雜環戊烷(DLin-K-C2-DMA)、2,2-二亞麻仁油基-4-二甲基胺甲基-[1,3]-二氧雜環戊烷(DLin-K-DMA)、1,2-二亞麻仁油氧基-3-嗎啉基丙烷(DLin-MA)、4-(二甲基胺基)丁酸(6Z,9Z,28Z,31Z)-三十七碳-6,9,28,31-四烯-19-酯(DLin-MC3-DMA)、l,2-二亞麻仁油氧基-3-(N-甲基哌𠯤基)丙烷(DLinMPZ)、1,2-二亞麻仁油氧基-3-(N-甲基哌𠯤基)丙烷(DLin-MPZ)、二亞麻仁油氧基3-哌啶基丙胺(DLinPip)、1.2二亞麻仁油氧基3-(3'-羥基哌啶基)-丙胺(DLinPip-3OH)、1,2二亞麻仁油氧基3-(4'-羥基哌啶基)-丙胺(DLinPip-4OH)、1,2-二亞麻仁油氧基-3-羥基丙烷(DLinPO)、1,2-二亞麻仁油基硫基-3-二甲基胺基丙烷(DLin-S-DMA)、l,2-二亞麻仁油醯基-3-三甲基胺基丙烷(DLinTAP)、1,2-二亞麻仁油醯基-3-三甲基胺基丙烷鹽酸鹽(DLin-TAP.Cl)、l,2-二亞麻仁油氧基-3-三甲基胺基丙烷(DLinTMA)、1,2-二亞麻仁油氧基-3-三甲基胺基丙烷鹽酸鹽(DLin-TMA.Cl)、3-((1,3-雙(((9Z,12Z.15Z)-十八碳-9,12,15-三烯醯基)氧基)丙-2-基)胺基)丙酸(DLLAPA)、1,2二亞麻仁油氧基3-(N,N-二甲基-丙胺)(DLmDEA)、l,2-二月桂醯基-sn-甘油-3-磷酸乙醇胺(DLPE)、l,2-二月桂醯基-sn-甘油-3-甘油(DLPG)、N,N-二甲基-3,4-二油醯氧基苯甲胺(DMOBA)、二肉豆蔻醯基磷脂醯絲胺酸(DMPS)、N-[l-(2,3-二肉豆蔻氧基)丙基]-N,N-二甲基-N-(2-羥乙基)溴化銨(DMRIE)、1,2-二肉豆蔻氧基丙基-3-二甲基-羥乙基溴化銨(DMRIE1)、l,2-二肉豆蔻醯基-3-三甲基銨丙烷(DMTAP)、3-(N,N-二油醯基胺基)-1,2-丙二醇(DOAP)、3-((1,3-雙(油醯氧基)丙-2-基)胺基)丙酸(DOAPA)、1,2-N,N′-二油醯基胺甲醯基-3-二甲基胺基丙烷(DOcarbDAP)、1,2-二油醯基胺甲醯基-3-二甲基銨-丙烷(DOCDAP)、N,N-二油醯基-N,N-二甲基氯化銨(DODAC)、1,2-二油醯基-3-二甲基銨-丙烷(DODAP)、N,N-二羥乙基Ν,Ν-二-十八烷基氯化銨(DODEAC)、N,N-二甲基-2,3-二油醯氧基丙胺(DODMA)、二油醯基-4-胺基丁酸(DOFAB)、二-十八烷基醯胺基甘胺醯基精胺(DOGS)、1,2-二油醯基-3-甲基-(甲氧基羰基-乙基)銨-丙烷(DOMCAP)、1,2-二油醯基-3-N-吡咯啶-丙烷(DOP5P)、1,2-二油醯基-3-N-吡啶鎓-丙烷溴化物鹽(DOP6P)、1,2-二油醯基-3-二甲基-羥乙基溴化銨(DORI)、1,2-二油醯氧基丙基-3-二甲基-羥乙基溴化銨(DORIE)、1,2-二油醯氧基丙基-3-二甲基-羥丁基溴化銨(DORIE-HB)、1,2-二油醯氧基丙基-3-二甲基-羥丙基溴化銨(DORIE-HP)、1,2-二油醯氧基丙基-3-二甲基-羥戊基溴化銨(DORIE-Hpe)、2,3-二油醯氧基-N-[2(精胺-甲醯胺基)乙基]-N,N-二甲基-1-丙烷銨三氟乙酸鹽(DOSPA)、1,3-二油醯氧基-2-(6-羧基-精胺基)-丙基醯胺(DOSPER)、N-(1-(2,3-二油醯氧基)丙基)-N,N,N-三甲基氯化銨(DOTAP)、1,2-二油醯基-3-三甲基銨-丙烷(DOTAP1)、N-[5'-(2',3'-二油醯基)尿苷]-Ν',Ν',Ν'-三甲基銨甲苯磺酸鹽(DOTAU)、1-[2-(9(Z)-十八碳烯醯氧基)乙基]-2-(8(Z)-十七碳烯基-3-(2-羥乙基)咪唑鎓氯化物(DOTIM)、N-(1-(2,3-二油醯氧基)丙基)-N,N,N-三甲基氯化銨(DOTMA)、二油醯基磷脂醯尿苷磷脂醯膽鹼(DOUPC)、1,2-二植烷氧基(Diphvtanyloxy)-W.N-二甲基)-丁-4-胺(DPan-C2-DMA)、l,2-二植烷氧基(Diphytanyloxy)-3-(iV,7V-二甲基)-丙胺(DPanDMA)、(2-(二甲基胺基)乙基)胺甲酸2,3-雙(十二烷硫基)丙酯(DPDEC)、二棕櫚醯基-4-胺基丁酸(DPFAB)、1,2-二棕櫚氧基丙基-3-二甲基-羥乙基溴化銨(DPRIE)、1,2-二棕櫚醯基-3-三甲基銨丙烷(DPTAP)、1-[2-(十六醯氧基)乙基]-2-十五烷基-3-(2-羥乙基)咪唑鎓氯化物(DPTIM)、3-((1,3-雙(硬脂醯氧基)丙-2-基)胺基)丙酸(DSAPA)、二硬脂醯基二甲基銨(DSDMA)、1,2-二硬脂醯氧基-N,N-二甲基胺基丙烷(DSDMA1)、1,2-二硬脂醯氧基丙基-3-二甲基-羥乙基溴化銨(DSRIE)、l,2-二硬脂醯基-3-三甲基銨丙烷(DSTAP)、二-十四烷基三甲基銨(DTDTMA)、1,2-二油醯基-sn-甘油-3-乙基磷膽鹼(EDOPC)、N2-[N2,N5-雙(3-胺基丙基)-L-ormithyl]-N,N-二-十八烷基-L-麩醯胺酸四氫三氟乙酸鹽(GC33)、膽固-5-烯-3-醇(3P)-,3-[(3-胺基丙基)[4-[(3-胺基丙基)胺基]丁基]胺甲酸酯](GL67)、單油酸甘油酯(GMO)、胍基-二烷基-甲酸(GUADACA)、2-(雙(2-(十四烷醯氧基)乙基)胺基)-N-(2-羥乙基)-N,N-二甲基-2-側氧基乙烷溴化銨(HEDC)、二-十四烷酸2,2'-(三級丁氧基羰基脲二基)雙(乙-2,1-二基)酯(HEDC-BOC-TN)、1-(2-(((3S,10R,13R)-10,13-二甲基-17-((R)-6-甲基庚-2-基)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-十四氫-1H-環戊[a]菲-3-基二硫烷基)乙基)胍(HGT4002)、(15Z,18Z)-N,N-二甲基-6-(9Z,12Z)-十八碳-9,12-二烯-l-基)二十四碳-l5,18-二烯-l-胺(HGT5000)、(15Z,18Z)-N,N-二甲基-6-((9Z,12Z)-十八碳-9,12-二烯-l-基)二十四碳-4,15,18-三烯-l-胺(HGT5001)、組織胺基-膽固醇半琥珀酸鹽(HisChol)、組織胺醯基膽固醇半琥珀酸鹽(Hist-Chol)、HydroSoyPC (HSPC)、咪唑膽固醇酯(ICE)、3-(二-十二烷基胺基)-N1,N1,4-三-十二烷基-1-哌𠯤乙胺(KL10)、N1-[2-(二-十二烷基胺基)乙基]-N1,N4,N4-三-十二烷基-1,4-哌𠯤二乙胺(KL22)、14,25-二-十三烷基-15,18,21,24-四氮雜-三十八烷(KL25)、N,N-二-正十四烷基,N-甲基-N-(2-胍基)乙銨(脂質1)、N,N-二-正十八烷基,N-甲基-N-(2-胍基)乙基氯化銨(脂質2)、(9Z,12Z)-十八碳-9,12-二烯酸3-((4,4-雙(辛氧基)丁醯基)氧基)-2-((((3-(二乙基胺基)丙氧基)羰基)氧基)甲基)丙酯(脂質A)、(9Z,12Z)-十八碳-9,12-二烯酸3-((4,4-雙(辛氧基)丁醯基)氧基)-2-((((3-(二乙基胺基)丙氧基)羰基)氧基)甲基)丙酯(脂質A1)、2,2-二亞麻仁油基-4-二甲基胺基乙基-[l,3]-二氧雜環戊烷(脂質A2)、雙(癸酸)((5-((二甲基胺基)甲基)-l,3-伸苯基)雙(氧基))雙(辛-8,l-二基)酯(脂質B)、9Z,9'Z,12Z,12'Z)-雙(十八碳-9,12-二烯酸)2-((4-(((3-(二甲基胺基)丙氧基)羰基)氧基)十六醯基)氧基)丙烷-l,3-二酯(脂質C)、3-辛基十一烷酸3-(((3-(二甲基胺基)丙氧基)羰基)氧基)-13-(辛醯氧基)十三烷酯(脂質D)、5-(二甲基胺基)戊酸(6Z,16Z)-12-((Z)-癸-4-烯-1-基)二十二碳-6,16-二烯-11-酯(脂質I)、二-十八烷基-(2-羥基-3-丙基胺基)胺基聚離胺酸(脂質T)、(3-((6Z,9Z,28Z,31Z)-三十七碳-6,9,28,31-四烯-19-基氧基)-N,N-二甲基丙-1-胺(MC3醚),在美國臨時申請案第61/384,050號中所述(MC3硫酯)、(4-((6Z,9Z,28Z,31Z)-三十七碳-6,9,28,31-四烯-19-基氧基)-N,N-二甲基丁-1-胺(MC4醚)、3-((2-(((9Z,12Z)-十八碳-9,12-二烯醯基)氧基)乙基)胺基)丙酸(MLAPA)、3-((2-(((9Z,12Z,15Z)-十八碳-9,12,15-三烯醯基)氧基)乙胺基)丙酸(MLLAPA)、單霉菌酸(mon-omycolyl)甘油(MMG)、3-((2-(油醯氧基)乙基)胺基)丙酸(MOAPA)、4-(2-胺基乙基)-嗎啉基-膽固醇半琥珀酸鹽(MoChol)、1,2-二油醯基-3-N-嗎啉-丙烷(MoDO)、甲基吡啶基-二烷基-甲酸(MPDACA)、單棕櫚醯基磷脂醯膽鹼(MPPC)、3-((2-(硬脂醯氧基)乙基)胺基)丙酸(MSAPA)、N1-[2-((lS)-1-[(3-胺基丙基)胺基]-4-[二(3-胺基-丙基)胺基]丁基甲醯胺基)乙基]-3,4-二[油氧基]-苯甲醯胺(MVL5)、2-({8-[(3β)-膽固-5-烯-3-基氧基]辛基}氧基)-N,N-二甲基-3-[(9Z,12Z)-十八碳-9,12-二烯-1-基氧基]丙-1-胺(辛基-CLinDMA)、(2R)-2-({8-[(3β)-膽固-5-烯-3-基氧基]辛基}氧基)-N,N-二甲基-3-[(9Z,12Z)-十八碳-9,12-二烯-1-基氧基]丙-1-胺(辛基-CLinDMA (2R))、磷脂醯膽鹼(PC)、l,3-雙-(l,2-雙-十四烷氧基-丙基-3-二甲基乙氧基溴化銨)-丙-2-醇(PCL-2)、棕櫚醯基-油醯基-正-精胺酸(PONA)、硬脂胺(STA)、2-(((三級丁基二甲基矽基)氧基)甲基)-2-(羥基甲基)丙烷-1,3-二醇(合成實施例1 (A))、(9Z)-十四碳-9-烯酸3-((三級丁基(二甲基)矽基)氧基)-2,2-雙(((9Z)-十四碳-9-烯醯氧基)甲基)丙酯(合成實施例1 (B))、(9Z)-十四碳-9-烯酸3-羥基-2,2-雙(((9Z)-十四碳-9-烯醯氧基)甲基)丙酯(合成實施例1 (C))、(9Z)-十四碳-9-烯酸3-((4-(二甲基胺基)丁醯基)氧基)-2,2-雙(((9Z)-十四碳-9-烯醯氧基)甲基)丙酯(合成實施例1 (D))、3-(5-(雙(2-羥基十二烷基)胺基)戊-2-基)-6-(5-((2-羥基十二烷基)(2-羥基十一烷基)胺基)戊-2-基)-l,4-二㗁烷-2,5-二酮)(標的24)、繭蜜糖6'6'-二山萮酸酯(TDB)、1,1'-(2-(4-(2-((2-(雙(2羥基十二烷基)胺基)乙基)(2-羥基十二烷基)胺基)乙基)哌𠯤-1-基)乙基脲二基)二-十二烷-2-醇(Tech G1)、3-((1,3-雙(((9Z,12Z)-十八碳-9,12-二烯醯基)氧基)-2-((((9Z,12Z)-十八碳-9,12-二烯醯基)氧基)甲基)丙-2-基)胺基)丙酸(TLAPA)、(l-(2,3-亞麻仁油氧基丙氧基)-2-(亞麻仁油氧基)-(7V,Λ/-二甲基)-丙基-3-胺)(TLinDMA)、3-((1,3-雙(((9Z.12Z.15Z)-十八碳-9.12.15-三烯醯基)氧基)-2-((((9Z.12Z.15E)-十八碳-9,12,15-三烯醯基)氧基)甲基)丙-2-基)胺基)丙酸(TLLAPA)、氯化N-(α-三甲基銨基乙醯基)-二-十二烷基-D-麩胺酸(TMAG)、3-((1,3-雙(((Z)-十八碳-9-烯醯基)氧基)-2-((((Z)-十八碳-9-烯醯基)氧基)甲基)丙-2-基)胺基)丙酸(TOAPA)、3-((1,3-雙(硬脂醯氧基)-2-((硬脂醯氧基)甲基)丙-2-基)胺基)丙酸(TSAPA)、1,N19-雙((16E,18E,20E,22E)-17,21-二甲基-15-側氧基-23-(2,6,6-三甲基環己-1-烯-1-基)-4,7,10-三氧雜-14-氮雜二十三碳-16,18,20,22-四烯-1-基)-4,7,10,13,16-五氧雜十九烷-1,19-二醯胺(VA-PEG-VA)、2,2-二亞麻仁油基-4-二甲基胺基乙基-[1,3]-二氧雜環戊烷(XTC),在非專利文獻11中所揭示(YSK05)、1,2-二-γ-次亞麻仁油氧基-N,N-二甲基胺基丙烷(γ-DLenDMA)、a-D-生育酚半琥珀醯基、雙(十八碳-9,12-二烯酸)(9Z,9,Z,12Z,12,Z)-2-((2-(((3-(二甲基胺基)丙氧基)羰基)氧基)十四烷醯基)氧基)丙-1,3-二酯、二辛酸2-(((13Z,16Z)-4-(((3-(二乙基胺基)丙氧基)羰基)氧基)二十二碳-13,16-二烯醯基)氧基)丙-1,3-二酯、二辛酸2-(((13Z,16Z)-4-(((3-(二甲基胺基)丙氧基)羰基)氧基)二十二碳-13,16-二烯醯基)氧基)丙-1,3-二酯、二辛酸2-((4-(((3-(乙基(甲基)胺基)丙氧基)羰基)氧基)十六醯基)氧基)丙-1,3-二酯、雙(癸酸)2-((4-(((3-(乙基(甲基)胺基)丙氧基)羰基)氧基)十六醯基)氧基)丙-1,3-二酯、雙(癸酸)2-((4-(((3-(二乙基胺基)丙氧基)羰基)氧基)十六醯基)氧基)丙-1,3-二酯、二辛酸2-(10-十二烷基-3-乙基-8,14-二側氧基-7,9,13-三氧雜-3-氮雜二十烷-20-基)丙-1,3-二酯、(9Z,9′Z)雙-十四碳-9-烯酸2-(((4-(二甲基胺基)丁醯基)氧基)甲基)-2-((辛醯氧基)甲基)丙-1,3-二酯、雙(十八碳-9,12-二烯酸)(9Z,9'Z,12Z,12'Z)-2-(((1-(環丙基甲基)哌啶-4-羰基)氧基)甲基)丙-1,3-二酯、雙(癸酸)((2-(((1-異丙基哌啶-4-羰基)氧基)甲基)-1,4-伸苯基)雙(氧基))雙(辛-8,1-二基)酯、十二烷酸2-((4-(((3-(乙基(甲基)胺基)丙氧基)羰基)氧基)十六醯基)氧基)丙-1,3-二酯、十二烷酸2-((4-(((3-(二乙基胺基)丙氧基)羰基)氧基)十六醯基)氧基)丙-1,3-二酯、十二烷酸2-((4-(((3-(二甲基胺基)丙氧基)羰基)氧基)十六醯基)氧基)丙-1,3-二酯、二-十四烷酸2-((4-(((3-(乙基(甲基)胺基)丙氧基)羰基)氧基)十六醯基)氧基)丙-1,3-二酯、二-十四烷酸2-((4-(((3-(二甲基胺基)丙氧基)羰基)氧基)十六醯基)氧基)丙-1,3-二酯、二-十四烷酸2-((4-(((3-(二乙基胺基)丙氧基)羰基)氧基)十六醯基)氧基)丙-1,3-二酯、二油酸(Z)-2-((4-(((3-(二甲基胺基)丙氧基)羰基)氧基)十六醯基)氧基)丙-1,3-二酯、雙(十八碳-9,12,15-三烯酸)(9Z,9,Z,12Z,12,Z,15Z,15,Z)-2-((4-(((3-(二甲基胺基)丙氧基)羰基)氧基)十六醯基)氧基)丙-1,3-二酯、雙(十八碳-9,12-二烯酸)(9Z,9,Z,12Z,12,Z)-2-((4-(((3-(二乙基胺基)丙氧基)羰基)氧基)十六醯基)氧基)丙-1,3-二酯、雙(十八碳-9,12-二烯酸)(9Z,9,Z,12Z,12,Z)-2-((4-(((3-(二甲基胺基)丙氧基)羰基)氧基)十六醯基)氧基)丙-1,3-二酯、N,N,N-三甲基-5-側氧基-5-(3-((3-戊基辛醯基)氧基)-2,2-雙(((3-戊基辛醯基)氧基)甲基)丙氧基)戊烷-1-碘化銨、3-戊基辛酸3-((5-(二甲基胺基)戊醯基)氧基)-2,2-雙(((3-戊基辛醯基)氧基)甲基)丙酯、3-二甲基胺基丙基碳酸(9Z,12Z)-二十八碳-19,22-二烯-11-酯、(9Z,9′Z)雙-十四碳-9-烯酸2-(((N,N-二甲基-β-丙胺醯基)氧基]甲基}-2-[(辛醯氧基)甲基)丙-1,3-二酯、8-二甲基二辛二酸ΟΊ,O1-(2-(7-十二烷基-14-甲基-3,9-二側氧基-2,4,8,10-四氧雜-14-氮雜十五烷基)丙-1,3-二基)酯、二辛二酸8-二甲基ΟΊ,01-(2-(((1-甲基吡咯啶-3-羰基)氧基)甲基)丙-1,3-二基)酯、8-甲基辛二酸1-(3-((6,6-雙((2-丙基戊基)氧基)己醯基)氧基)-2-(((1,4-二甲基哌啶-4-羰基)氧基)甲基)丙基)酯、十八碳-9,12-二烯酸(9Z,12Z)-5-(((3-(二甲基胺基)丙氧基)羰基)氧基)-7-辛基十五烷酯、辛酸5-(((3-(二甲基胺基)丙氧基)羰基)氧基)-7-辛基十五烷酯、10-辛基癸二酸1-(3-((6,6-雙((2-丙基戊基)氧基)己醯基)氧基)-2-(((1,4-二甲基哌啶-4-羰基)氧基)甲基)丙基)酯、癸酸3-(((3-(二甲基胺基)丙氧基)羰基)氧基)-5-辛基十三烷酯、8-甲基辛二酸1-(16-(((4,4-雙(辛氧基)丁醯基)氧基)甲基)-9-十二烷基-2-甲基-7,13-二側氧基-6,8,12,14-四氧雜-2-氮雜十七烷-17-基)酯、(9Z,12Z)-十八碳-9,12-二烯酸3-((5-(二甲基胺基)戊醯基)氧基)-2,2-雙(((9Z)-十四碳-9-烯醯氧基)甲基)丙酯、3-戊基辛酸3-((5-(二甲基胺基)戊醯基)氧基)-2,2-雙(((3-戊基辛醯基)氧基)甲基)丙酯、雙(十八碳-9,12-二烯酸)(9Z,9'Z,12Z,12'Z)-2-(((3-(二乙基胺基)丙醯基)氧基)甲基)丙-1,3-二酯、雙(癸酸)((2-(((4-(二甲基胺基)丁醯基)氧基)甲基)-1,4-伸苯基)雙(氧基))雙(辛-8,1-二基)酯、8-甲基辛二酸1-(3-((4,4-雙(辛氧基)丁醯基)氧基)-2-(((1-甲基吡咯啶-3-羰基)氧基)甲基)丙基)酯、1-甲基吡咯啶-3-甲酸3-((4,4-雙(辛氧基)丁醯基)氧基)-2-((棕櫚醯氧基)甲基)丙酯、1-甲基吡咯啶-3-甲酸3-((4,4-雙(辛氧基)丁醯基)氧基)-2-((十四烷醯氧基)甲基)丙酯、9-戊基十四烷酸3-(((3-(二甲基胺基)丙氧基)羰基)氧基)-13-(辛醯氧基)十三烷酯、1-甲基吡咯啶-3-甲酸3-((4,4-雙(辛氧基)丁醯基)氧基)-2-((十二烷醯氧基)甲基)丙酯、9-戊基十四烷酸3-(((3-(二甲基胺基)丙氧基)羰基)氧基)-13-羥基十三烷酯、7-己基十三烷酸3-(((3-(二甲基胺基)丙氧基)羰基)氧基)-13-(辛醯氧基)十三烷酯、二辛酸2-(5-(3-((1-甲基吡咯啶-3-羰基)氧基)-2-((十四烷醯氧基)甲基)丙氧基)-5-側氧基戊基)丙-1,3-二酯、5-庚基十二烷酸3-(((3-(二甲基胺基)丙氧基)羰基)氧基)-13-(辛醯氧基)十三烷酯、二辛酸2-(5-(3-((1-甲基吡咯啶-3-羰基)氧基)-2-((棕櫚醯氧基)甲基)丙氧基)-5-側氧基戊基)丙-1,3-二酯、5-庚基十二烷酸3-(((3-(二甲基胺基)丙氧基)羰基)氧基)-13-羥基十三烷酯、雙(6,6-雙(辛氧基)己酸)2-(((1-甲基吡咯啶-3-羰基)氧基)甲基)丙-1,3-二酯、十八碳-9,12-二烯酸(9Z,12Z)-3-(((3-二甲基胺基)丙氧基)羰基)氧基)-13-(辛醯氧基)十三烷酯、(9Z)-十八碳-9-烯酸3-((5-(二甲基胺基)戊醯基)氧基)-2,2-雙(((9Z)-十四碳-9-烯醯氧基)甲基)丙酯、二辛酸2-(10-十二烷基-3-乙基-8,14-二側氧基-7,9,13-三氧雜-3-氮雜十九烷-19-基)丙-1,3-二酯、雙(癸酸)((2-(((1-甲基哌啶-4-羰基)氧基)甲基)-1,4-伸苯基)雙(氧基))雙(辛-8,1-二基)酯、雙(4,4-雙(辛氧基)丁酸)2-(((3-(二甲基胺基)丙醯基)氧基)甲基)丙-1,3-二酯、十八碳-9,12-二烯酸(9Z,12Z)-2-(((11Z,14Z)-2-((3-(二甲基胺基)丙醯基)氧基)二十碳-11,14-二烯-1-基)氧基)乙酯、雙(4,4-雙(辛氧基)丁酸)2-(((1,3-二甲基吡咯啶-3-羰基)氧基)甲基)丙-1,3-二酯、琥珀酸(13Z,16Z)-4-(((3-(二甲基胺基)丙氧基)羰基)氧基)二十二碳-13,16-二烯-1-酯十七烷-9-酯、3-((3-乙基-10-((9Z,12Z)-十八碳-9,12-二烯-1-基)-8,15-二側氧基-7,9,14-三氧雜-3-氮雜十七烷-17-基)二硫烷基)丙酸2,2-雙(庚氧基)乙酯、雙(4,4-雙(辛氧基)丁酸)2-(((1-甲基吡咯啶-3-羰基)氧基)甲基)丙-1,3-二酯、10-辛基癸二酸1-(3-((1,3-二甲基吡咯啶-3-羰基)氧基)-2-(((9Z,12Z)-十八碳-9,12-二烯醯氧基)甲基)丙基)酯、2,2-雙(庚氧基)乙酸(13Z,16Z)-4-(((3-(二乙基胺基)丙氧基)羰基)氧基)二十二碳-13,16-二烯-1-酯、2,2-雙(庚氧基)乙酸(13Z,16Z)-4-(((2-(二甲基胺基)乙氧基)羰基)氧基)二十二碳-13,16-二烯-1-酯、乙酸(20,23R)-2-甲基-9-[(9Z,12Z)-十八碳-9,12-二烯-1-基]-7-側氧基-6,8,11-三氧雜-2-氮雜二十九碳-20-烯-23-酯、3-(二甲基胺基)丙基碳酸(11Z,14Z)-1-{[(9Z,12R)-12-羥基十八碳-9-烯-1-基]酯、3-(二甲基胺基)丙酸(12Z,15Z)-1-((((9Z,12Z)-十八碳-9,12-二烯-1-基氧基)羰基)氧基)二十一碳-12,15-二烯-3-酯、十八碳-9,12-二烯酸(9Z,12Z)-3-((4,4-雙(辛氧基)丁醯基)氧基)-2-((((3-(二甲基胺基)丙基)胺甲醯基)氧基)甲基)丙酯、9-戊基十四烷酸(12Z,15Z)-3-((4-(二甲基胺基)丁醯基)氧基)二十一碳-12,15-二烯-1-酯、十八碳-9,12-二烯酸(9Z,12Z)-3-((4,4-雙(辛氧基)丁醯基)氧基)-2-(((((1,2,2,6,6-五甲基哌啶-4-基)氧基)羰基)氧基)甲基)丙酯、7-己基十三烷酸(12Z,15Z)-3-((4-(二甲基胺基)丁醯基)氧基)二十一碳-12,15-二烯-1-酯、十八碳-9,12-二烯酸(9Z,12Z)-3-((4,4-雙(辛氧基)丁醯基)氧基)-2-(((((1-甲基哌啶-4-基)甲氧基)羰基)氧基)甲基)丙酯、5-庚基十二烷酸(12Z,15Z)-3-((4-(二甲基胺基)丁醯基)氧基)二十一碳-12,15-二烯-1-酯、十八碳-9,12-二烯酸(9Z,12Z)-3-((4,4-雙(辛氧基)丁醯基)氧基)-2-(((((1-乙基哌啶-4-基)氧基)羰基)氧基)甲基)丙酯、3-辛基十一烷酸(12Z,15Z)-3-((4-(二甲基胺基)丁醯基)氧基)二十一碳-12,15-二烯-1-酯,甲酸鹽、(9Z)-十六碳-9-烯酸3-((5-(二甲基胺基)戊醯基)氧基)-2,2-雙(((9Z)-十四碳-9-烯醯氧基)甲基)丙酯、十八碳-9,12-二烯酸(9Z,12Z)-3-((4,4-雙(辛氧基)丁醯基)氧基)-2-(((((1-甲基氮雜環丁烷-3-基)氧基)羰基)氧基)甲基)丙酯、十八碳-9,12-二烯酸(9Z,12Z)-(12Z,15Z)-3-((3-(二甲基胺基)丙醯基)氧基)二十一碳-12,15-二烯-1-酯、4,4-雙((2-乙基己基)氧基)丁酸2-(((3-(二乙基胺基)丙氧基)羰基)氧基)十四烷酯、十八碳-9,12-二烯酸(9Z,12Z)-3-((4,4-雙(辛氧基)丁醯基)氧基)-2-(((((1-甲基哌啶-4-基)氧基)羰基)氧基)甲基)丙酯、十八碳-9,12-二烯酸(9Z,12Z)-3-((4,4-雙(辛氧基)丁醯基)氧基)-2-(((((1-甲基吡咯啶-3-基)氧基)羰基)氧基)甲基)丙酯、十八碳-9,12-二烯酸(9Z,12Z)-3-(((2-(二甲基胺基)乙氧基)羰基)氧基)十五烷酯、十八碳-9,12-二烯酸(9Z,12Z)-3-((4,4-雙(辛氧基)丁醯基)氧基)-2-((((3-(4-甲基哌𠯤-1-基)丙氧基)羰基)氧基)甲基)丙酯、3-(二甲基胺基)丙基三十烷-11-基碳酸酯三十烷-11-醇、十八碳-9,12-二烯酸(9Z,12Z)-3-((4,4-雙(辛氧基)丁醯基)氧基)-2-((((3-(吡咯啶-1-基)丙氧基)羰基)氧基)甲基)丙酯、十八碳-9,12-二烯酸(9Z,12Z)-3-(((3-(乙基(甲基)胺基)丙氧基)羰基)氧基)十五烷酯、4-((二乙基胺基)甲基)苯甲酸3-((4,4-雙(辛氧基)丁醯基)氧基)-2-(((9Z,12Z)-十八碳-9,12-二烯醯氧基)甲基)丙酯、十八碳-9,12-二烯酸(9Z,12Z)-3-(((3-(二乙基胺基)丙氧基)羰基)氧基)十五烷酯、3-((二甲基胺基)甲基)苯甲酸3-((4,4-雙(辛氧基)丁醯基)氧基)-2-(((9Z,12Z)-十八碳-9,12-二烯醯氧基)甲基)丙酯、十八碳-9,12-二烯酸(9Z,12Z)-3-(((3-(二甲基胺基)丙氧基)羰基)氧基)十五烷酯、1-甲基哌啶-3-甲酸3-((4,4-雙(辛氧基)丁醯基)氧基)-2-(((9Z,12Z)-十八碳-9,12-二烯醯氧基)甲基)丙酯、1-甲基哌啶-4-甲酸3-((4,4-雙(辛氧基)丁醯基)氧基)-2-(((9Z,12Z)-十八碳-9,12-二烯醯氧基)甲基)丙酯、1,4-二甲基哌啶-4-甲酸3-((4,4-雙(辛氧基)丁醯基)氧基)-2-(((9Z,12Z)-十八碳-9,12-二烯醯氧基)甲基)丙酯、(9Z)-十六碳-9-烯酸3-((4-(二甲基胺基)丁醯基)氧基)-2,2-雙(((9Z)-十四碳-9-烯醯氧基)甲基)丙酯、二辛酸2-(10-十二烷基-3-乙基-8,14-二側氧基-7,9,13-三氧雜-3-氮雜十六烷-16-基)丙-1,3-二酯、雙(十八碳-9,12-二烯酸)(9Z,9'Z, 12Z,12'Z)-2-(((4-(哌啶-1-基)丁醯基)氧基)甲基)丙-1,3-二酯、4-甲基嗎啉-2-甲酸3-((4,4-雙(辛氧基)丁醯基)氧基)-2-(((9Z,12Z)-十八碳-9,12-二烯醯氧基)甲基)丙酯、1-甲基吡咯啶-2-甲酸(2R)-3-((4,4-雙(辛氧基)丁醯基)氧基)-2-(((9Z,12Z)-十八碳-9,12-二烯醯氧基)甲基)丙酯、1-甲基吡咯啶-2-甲酸(2S)-3-((4,4-雙(辛氧基)丁醯基)氧基)-2-(((9Z,12Z)-十八碳-9,12-二烯醯氧基)甲基)丙酯、雙(十八碳-9,12-二烯酸)(9Z,9'Z,12Z,12'Z)-2-((((3-(二乙基胺基)丙氧基)羰基)氧基)甲基)-2-(((9Z,12Z)-十八碳-9,12-二烯醯氧基)甲基)丙-1,3-二酯、十八碳-9,12-二烯酸(9Z,12Z)-3-((4,4-雙(辛氧基)丁醯基)氧基)-2-(((((1-乙基哌啶-3-基)甲氧基)羰基)氧基)甲基)丙酯、1-(環丙基甲基)哌啶-4-甲酸3-((4,4-雙(辛氧基)丁醯基)氧基)-2-(((9Z,12Z)-十八碳-9,12-二烯醯氧基)甲基)丙酯、1-異丙基哌啶-4-甲酸3-((4,4-雙(辛氧基)丁醯基)氧基)-2-(((9Z,12Z)-十八碳-9,12-二烯醯氧基)甲基)丙酯、十八碳-9,12-二烯酸(9Z,12Z)-3-((4,4-雙(辛氧基)丁醯基)氧基)-2-(((3-(二甲基胺基)丙醯基)氧基)甲基)丙酯、4-(二甲基胺基)丁基碳酸(6Z,9Z,26Z,29Z)-三十五碳-6,9,26,29-四烯-18-酯、(9Z)-十四碳-9-烯酸3-((6-(二甲基胺基)己醯基)氧基)-2,2-雙(((9Z)-十四碳-9-烯醯氧基)甲基)丙酯、3-(二甲基胺基)丙基碳酸2,5-雙((9Z,12Z)-十八碳-9,12-二烯氧基)苯甲酯、雙(十八碳-9,12-二烯酸)(9Z,9'Z,12Z,12'Z)-2-(((4-(吡咯啶-1-基)丁醯基)氧基)甲基)丙-1,3-二酯、5-庚基十二烷酸3-(((3-(二甲基胺基)丙氧基)羰基)氧基)十五烷酯、乙酸(7R,9Z)-18-({[3-(二甲基胺基)丙氧基]羰基}氧基)二十八碳-9-烯-7-酯、9-戊基十四烷酸3-(((3-(二甲基胺基)丙氧基)羰基)氧基)十五烷酯、十八碳-9,12-二烯酸(9Z,12Z)-3-((6,6-雙(辛氧基)己醯基)氧基)-2-((((3-(二乙基胺基)丙氧基)羰基)氧基)甲基)丙酯、7-己基十三碳-6-烯酸3-(((3-(二甲基胺基)丙氧基)羰基)氧基)十五烷酯、十八碳-9,12-二烯酸(9Z,12Z)-3-(2,2-雙(庚氧基)乙醯氧基)-2-((((2-(二甲基胺基)乙氧基)羰基)氧基)甲基)丙酯、3-辛基十二碳-2-烯酸3-(((3-(二甲基胺基)丙氧基)羰基)氧基)十五烷酯、十八碳-9,12-二烯酸(9Z,12Z)-3-(((3-(二乙基胺基)丙氧基)羰基)氧基)-2-(((5-庚基十二烷醯基)氧基)甲基)丙酯、3-辛基十一烷酸3-(((3-二甲基胺基)丙氧基)羰基)氧基)十五烷酯、十八碳-9,12-二烯酸(9Z,12Z)-3-(((3-(二乙基胺基)丙氧基)羰基)氧基)-2-(((9-戊基十四烷醯基)氧基)甲基)丙酯、二乙酸(7R,9Z,26Z,29R)-18-({[3-(二甲基胺基)丙氧基]羰基}氧基)三十五碳-9,26-二烯-7,29-二酯、8,8-雙((2-丙基戊基)氧基)辛酸3-(((3-(二甲基胺基)丙氧基)羰基)氧基)十五烷酯、十八碳-9,12-二烯酸(9Z,12Z)-3-(((3-(二乙基胺基)丙氧基)羰基)氧基)-2-(((7-己基十三烷醯基)氧基)甲基)丙酯、8,8-雙((2-丙基戊基)氧基)辛酸3-(((3-(乙基(甲基)胺基)丙氧基)羰基)氧基)十五烷酯、十八碳-9,12-二烯酸(9Z,12Z)-3-(((3-(二乙基胺基)丙氧基)羰基)氧基)-2-(((3-辛基十一烷醯基)氧基)甲基)丙酯、8,8-雙((2-丙基戊基)氧基)辛酸3-(((3-(二乙基胺基)丙氧基)羰基)氧基)十五烷酯、8,8-二丁氧基辛酸3-(((3-(二乙基胺基)丙氧基)羰基)氧基)十五烷酯、(9Z)-十四碳-9-烯酸3-((5-(二甲基胺基)戊醯基)氧基)-2,2-雙(((9Z)-十四碳-9-烯醯氧基)甲基)丙酯、3-(二甲基胺基)丙基碳酸(6Z,9Z,26Z,29Z)-三十五碳-6,9,26,29-四烯-18-酯、3-(二甲基胺基)丙酸2,5-雙((9Z,12Z)-十八碳-9,12-二烯-1-基氧基)苯甲酯、雙(十八碳-9,12-二烯酸)(9Z,9'Z,12Z,12'Z)-2-(((3-(4-甲基哌𠯤-1-基)丙醯基)氧基)甲基)丙-1,3-二酯、8,8-雙(辛氧基)辛酸3-(((3-(二乙基胺基)丙氧基)羰基)氧基)十五烷酯、碳酸3-(二甲基胺基)丙基二十八烷-11-酯、4-(二甲基胺基)丁酸2,4-雙((9Z,12Z)-十八碳-9,12-二烯氧基)苯甲酯、十八碳-9,12-二烯酸(9Z,12Z)-3-(((3-(二乙基胺基)丙氧基)羰基)氧基)-2-(((2-庚基十一烷醯基)氧基)甲基)丙酯、6,6-雙((2-乙基己基)氧基)己酸3-(((3-(二乙基胺基)丙氧基)羰基)氧基)十五烷酯、雙(2-庚基十一烷酸)2-((((3-(二甲基胺基)丙氧基)羰基)氧基)甲基)丙-1,3-二酯、6,6-雙(己氧基)己酸3-(((3-(二乙基胺基)丙氧基)羰基)氧基)十五烷酯、4-(二甲基胺基)丁酸4-甲基-2,5-雙((9Z,12Z)-十八碳-9,12-二烯-1-基氧基)苯甲酯、6,6-雙(辛氧基)己酸3-(((3-(二乙基胺基)丙氧基)羰基)氧基)十五烷酯、4-甲基-2,5-雙((9Z,12Z)-十八碳-9,12-二烯氧基)苯甲基碳酸4-(二甲基胺基)丁酯、4,4-雙((2-丙基戊基)氧基)丁酸3-(((3-(二甲基胺基)丙氧基)羰基)氧基)十五烷酯、二辛酸2-(12-十二烷基-3-乙基-8,14-二側氧基-7,9,13-三氧雜-3-氮雜十八烷-18-基)丙-1,3-二酯、二辛酸2-(5-側氧基-5-((3-(((3-(哌啶-1-基)丙氧基)羰基)氧基)十五烷基)氧基)戊基)丙-1,3-二酯、4-甲基-2,5-雙((9Z,12Z)-十八碳-9,12-二烯-1-基氧基)苯甲基碳酸3-(二甲基胺基)丙酯、4,4-雙((2-丙基戊基)氧基)丁酸3-(((3-(乙基(甲基)胺基)丙氧基)羰基)氧基)十五烷酯、二辛酸2-(11-十二烷基-3-乙基-9,15-二側氧基-8,10,14-三氧雜-3-氮雜十九烷-19-基)丙-1,3-二酯、二辛酸2-(10-十二烷基-3-乙基-8,15-二側氧基-7,9,14-三氧雜-3-氮雜十九烷-19-基)丙-1,3-二酯、二辛酸2-(5-((4-((((1-甲基哌啶-4-基)氧基)羰基)氧基)十六烷基)氧基)-5-側氧基戊基)丙-1,3-二酯、二辛酸2-(5-((4-((((1-乙基哌啶-3-基)甲氧基)羰基)氧基)十六烷基)氧基)-5-側氧基戊基)丙-1,3-二酯、二辛酸2-(5-((4-(((((R)-1-甲基吡咯啶-3-基)氧基)羰基)氧基)十六烷基)氧基)-5-側氧基戊基)丙-1,3-二酯、二辛酸2-(5-((4-(((((S)-1-甲基吡咯啶-3-基)氧基)羰基)氧基)十六烷基)氧基)-5-側氧基戊基)丙-1,3-二酯、二辛酸2-(5-側氧基-5-((4-(((S)-吡咯啶-2-羰基)氧基)十六烷基)氧基)戊基)丙-1,3-二酯、二辛酸2-(5-((4-((1,3-二甲基吡咯啶-3-羰基)氧基)十六烷基)氧基)-5-側氧基戊基)丙-1,3-二酯、二辛酸2-(5-((4-((1,4-二甲基哌啶-4-羰基)氧基)十六烷基)氧基)-5-側氧基戊基)丙-1,3-二酯、二碳酸4,4-雙(辛氧基)丁基(3-(二乙基胺基)丙基)十五烷-1,3-二酯、4,4-雙((2-丙基戊基)氧基)丁酸3-(((3-(二乙基胺基)丙氧基)羰基)氧基)十五烷酯、雙(癸酸)((2-((((3-(二乙基胺基)丙氧基)羰基)氧基)甲基)-1,4-伸苯基)雙(氧基))雙(辛-8,1-二基)酯、5-(((3-(二乙基胺基)丙氧基)羰基)氧基)十七烷酸4,4-雙(辛氧基)丁酯、辛酸6-((6,6-雙(辛氧基)己醯基)氧基)-4-(((3-(二乙基胺基)丙氧基)羰基)氧基)己酯、6,6-雙(辛氧基)己酸(12Z,15Z)-3-(((3-(二乙基胺基)丙氧基)羰基)氧基)二十一碳-12,15-二烯-1-酯、6,6-雙(辛氧基)己酸3-(((3-(二乙基胺基)丙氧基)羰基)氧基)十三烷酯、6,6-雙(辛氧基)己酸3-(((3-(二乙基胺基)丙氧基)羰基)氧基)十一烷酯、5-(4,6-二庚基-1,3-二㗁烷-2-基)戊酸3-(((3-(二乙基胺基)丙氧基)羰基)氧基)十五烷酯、6,6-雙(辛氧基)己酸3-((5-(二乙基胺基)戊醯基)氧基)十五烷酯、1,4-二甲基哌啶-4-甲酸1-((6,6-雙(辛氧基)己醯基)氧基)十五烷-3-酯、6,6-雙(辛氧基)己酸3-((3-(1-甲基哌啶-4-基)丙醯基)氧基)十五烷酯、1,3-二甲基吡咯啶-3-甲酸1-((6,6-雙(辛氧基)己醯基)氧基)十五烷-3-酯、4,4-雙((2-乙基己基)氧基)丁酸3-(((3-(二乙基胺基)丙氧基)羰基)氧基)十五烷酯、雙(8-(辛醯氧基)辛酸)2-(((1,3-二甲基吡咯啶-3-羰基)氧基)甲基)丙-1,3-二酯、雙(癸酸)((2-((((3-(二甲基胺基)丙氧基)羰基)氧基)甲基)-1,4-伸苯基)雙(氧基))雙(辛-8,1-二基)酯、吡咯啶-2-甲酸(2R)-1-((6,6-雙(辛氧基)己醯基)氧基)十五烷-3-酯、1-甲基吡咯啶-2-甲酸(2S)-1-((6,6-雙(辛氧基)己醯基)氧基)十五烷-3-酯、1-甲基吡咯啶-2-甲酸(2R)-1-((6,6-雙(辛氧基)己醯基)氧基)十五烷-3-酯、6,6-雙((3-乙基戊基)氧基)己酸3-(((3-(二甲基胺基)丙氧基)羰基)氧基)十五烷酯、6,6-雙((2-丙基戊基)氧基)己酸3-(((3-(二甲基胺基)丙氧基)羰基)氧基)十五烷酯、6,6-雙((2-丙基戊基)氧基)己酸3-(((3-(二乙基胺基)丙氧基)羰基)氧基)十五烷酯、6,6-雙(辛氧基)己酸3-(((2-(二乙基胺基)乙氧基)羰基)氧基)十五烷酯、6,6-雙(辛氧基)己酸3-(((3-嗎啉基丙氧基)羰基)氧基)十五烷酯、6,6-雙(辛氧基)己酸3-((((1-甲基哌啶-4-基)甲氧基)羰基)氧基)十五烷酯、6,6-雙(辛氧基)己酸3-(((3-(4-甲基哌𠯤-1-基)丙氧基)羰基)氧基)十五烷酯、4,4-雙(辛氧基)丁酸3-(((3-(二乙基胺基)丙氧基)羰基)氧基)十五烷酯、(9Z,9′Z)雙-十四碳-9-烯酸2-(((4-(二甲基胺基)丁醯基)氧基)甲基)-2-((十二烷醯氧基)甲基)丙-1,3-二酯、雙(十八碳-9,12-二烯酸)(9Z,9'Z,12Z,12'Z)-2-(((4-(二甲基胺基)丁醯基)氧基)甲基)丙-1,3-二酯、6,6-雙(辛氧基)己酸3-(((4-(二乙基胺基)丁氧基)羰基)氧基)十五烷酯、6,6-雙(辛氧基)己酸3-(((3-(哌𠯤-1-基)丙氧基)羰基)氧基)十五烷酯、6.6-雙(辛氧基)己酸3-(((3-哌啶-1-基)丙氧基)羰基)氧基)十五烷酯、4,4-雙(辛氧基)丁酸3-(((3-(二甲基胺基)丙氧基)羰基)氧基)十五烷酯、雙(十八碳-9,12-二烯酸)(9Z,9'Z,12Z,12'Z)-2-(9-十二烷基-2-甲基-7,12-二側氧基-6,8,13-三氧雜-2-氮雜十四烷-14-基)丙-1,3-二酯、十八碳-9,12-二烯酸(9Z,12Z)-10-十二烷基-3-乙基-14-(2-((9Z,12Z)-十八碳-9,12-二烯醯氧基)乙基)-8,13-二側氧基-7,9-二氧雜-3,14-二氮雜十六烷-16-酯、二辛酸2-((2-(((3-(二乙基胺基)丙氧基)羰基)氧基)十四烷醯基)氧基)丙-1,3-二酯、二辛酸2-(9-十二烷基-2-甲基-7,13-二側氧基-6,8,12-三氧雜-2-氮雜十九烷-19-基)丙-1,3-二酯、(9Z,9′Z)雙-十四碳-9-烯酸2-((癸醯氧基)甲基)-2-(((4-(二甲基胺基)丁醯基)氧基)甲基)丙-1,3-二酯、雙(十八碳-9,12-二烯酸)(9Z,9'Z,12Z,12'Z)-2-(((3-嗎啉基丙醯基)氧基)甲基)丙-1,3-二酯、3-(二甲基胺基)丙基碳酸(6Z,9Z,28Z,31Z)-三十七碳-6,9,28,31-四烯-19-酯、4-(二甲基胺基)丁酸2,5-雙((9Z,12Z)-十八碳-9,12-二烯-1-基氧基)苯甲酯、二辛酸2-(10-十二烷基-3-乙基-8,14-二側氧基-7,9,13-三氧雜-3-氮雜十八烷-18-基)丙-1,3-二酯、雙(十八碳-9,12-二烯酸)(9Z,9'Z,12Z,12'Z)-2-(((1,3-二甲基吡咯啶-3-羰基)氧基)甲基)丙-1,3-二酯、三辛酸((5-((二甲基胺基)甲基)苯-1,2,3-三基)三(氧基))三(癸-10,1-二基)酯、9-二辛基二壬二酸0',0-(((5-((二甲基胺基)甲基)-1,3-伸苯基)雙(氧基))雙(丙-3,1-二基))酯、十八碳-9,12-二烯酸(9Z,12Z)-3-(3-((二甲基胺基)甲基)-5-(3-((3-辛基十一烷醯基)氧基)丙氧基)苯氧基)丙酯、雙(癸酸)((((5-((二甲基胺基)甲基)-1,3-伸苯基)雙(氧基))雙(丙-3,1-二基))雙(氧基))雙(4-側氧基丁-4,1-二基)酯、二辛酸(R)-4-(3-((R)-3,4-雙(辛醯氧基)丁氧基)-5-((二甲基胺基)甲基)苯氧基)丁-1,2-二酯、二辛酸(S)-4-(3-((S)-3,4-雙(辛醯氧基)丁氧基)-5-((二甲基胺基)甲基)苯氧基)丁-1,2-二酯、二辛酸(R)-4-(3-((S)-3,4-雙(辛醯氧基)丁氧基)-5-((二甲基胺基)甲基)苯氧基)丁-1,2-二酯、四辛酸4,4'-((5-((二甲基胺基)甲基)-1,3-伸苯基)雙(氧基))雙(丁-1,2-二基)酯、6,6'-((5-((二甲基胺基)甲基)-1,3-伸苯基)雙(氧基))二己酸二-十二烷酯、5,5'-((5-((二甲基胺基)甲基)-1,3-伸苯基)雙(氧基))二戊酸二((9Z,12Z)-十八碳-9,12-二烯-1-基)酯、雙(癸酸)(((5-((二甲基胺基)甲基)-1,3-伸苯基)雙(亞甲基))雙(氧基))雙(6-側氧基己-6,1-二基)酯、雙(亞甲基)雙(8-(辛醯氧基)辛酸)(5-((二甲基胺基)甲基)-1,3-伸苯基)酯、雙(亞甲基)雙(10-(辛醯氧基)癸酸)(5-((二甲基胺基)甲基)-1,3-伸苯基)酯、二辛酸(((5-((二甲基胺基)甲基)-1,3-伸苯基)雙(亞甲基))雙(氧基))雙(6-側氧基己-6,1-二基)酯、雙(癸酸)(((5-((二甲基胺基)甲基)-1,3-伸苯基)雙(亞甲基))雙(氧基))雙(8-側氧基辛-8,1-二基)酯、雙(十八碳-9,12-二烯酸)(9Z,9'Z,12Z,12'Z)-(((5-((二甲基胺基)甲基)-1,3-伸苯基)雙(亞甲基))雙(氧基))雙(4-側氧基丁-4,1-二基)酯、8-二壬基二辛二酸0',0-((5-((二甲基胺基)甲基)-1,3-伸苯基)雙(亞甲基))酯、雙(10-(辛醯氧基)癸基)二琥珀酸0,0'-((5-((二甲基胺基)甲基)-1,3-伸苯基)雙(亞甲基))酯、二((9Z,12Z)-十八碳-9,12-二烯-1-基)二琥珀酸0,0'-((5-((二甲基胺基)甲基)-1,3-伸苯基)雙(亞甲基))酯、雙(亞甲基)雙(十八碳-9,12-二烯酸)(9Z,9'Z,12Z,12'Z)-(5-((((3-(二乙基胺基)丙氧基)羰基)氧基)甲基)-1,3-伸苯基)酯、十八碳-9,12-二烯酸(9Z,12Z)-4-(3-((二甲基胺基)甲基)-5-(4-(油醯氧基)丁氧基)苯氧基)丁酯、雙(十八碳-9,12,15-三烯酸)(9Z,9'Z,12Z,12'Z,15Z,15'Z)-((5-((二甲基胺基)甲基)-1,3-伸苯基)雙(氧基))雙(丁-4,1-二基)酯、二-十四烷酸((5-((二甲基胺基)甲基)-1,3-伸苯基)雙(氧基))雙(丁-4,1-二基)酯、二油酸(Z)-((5-((二甲基胺基)甲基)-1,3-伸苯基)雙(氧基))雙(丁-4,1-二基)酯、十二烷酸((5-((二甲基胺基)甲基)-1,3-伸苯基)雙(氧基))雙(己-6,1-二基)酯、雙(十八碳-9,12-二烯酸)(9Z,9'Z,12Z,12'Z)-((((5-((二乙基胺基)甲基)-1,3-伸苯基)雙(氧基))雙(乙-2,1-二基))雙(氧基))雙(乙-2,1-二基)酯、8,8'-((5-((二甲基胺基)甲基)-1,3-伸苯基)雙(氧基))二辛酸二癸酯、雙(3-辛基十一烷酸)((5-((二甲基胺基)甲基)-1,3-伸苯基)雙(氧基))雙(丙-3,1-二基)酯、雙(十八碳-9,12-二烯酸)(9Z.9'Z.12Z.12'Z)-((5-((二乙基胺基)甲基-2-甲基-1.3-伸苯基)雙(氧基))雙(丁-4,1-二基)酯、十二烷酸((5-((二甲基胺基)甲基)-1,3-伸苯基)雙(氧基))雙(辛-8,1-二基)酯、雙(癸酸)((5-((二甲基胺基)甲基)-1,3-伸苯基)雙(氧基))雙(辛-8,1-二基)酯、雙(十八碳-9,12-二烯酸)(9Z.9'Z.12Z.12'Z)-((5-((二甲基胺基)甲基-2-甲基-1.3-伸苯基)雙(氧基))雙(丁-4,1-二基)酯、雙(十二碳-8-烯酸)(8Z,8'Z)-((5-((二甲基胺基)甲基)-1,3-伸苯基)雙(氧基))雙(己-6,1-二基)酯、雙(十八碳-9,12-二烯酸)(9Z,9'Z,12Z, 12'Z)-((5-((3-羥基氮雜環丁烷-1-基)甲基)-1,3-伸苯基)雙(氧基))雙(丁-4,1-二基)酯、二辛酸((5-((二甲基胺基)甲基)-1,3-伸苯基)雙(氧基))雙(己-6,1-二基)酯、雙(癸酸)((5-((二甲基胺基)甲基)-1,3-伸苯基)雙(氧基))雙(己-6,1-二基)酯、雙(十八碳-9,12-二烯酸)(9Z.9'Z.12Z.12'Z)-((5-((二甲基胺基)甲基-1.3-伸苯基)雙(氧基))雙(辛-8,1-二基)酯、雙(十八碳-9,12-二烯酸)(9Z,9'Z,12Z,12'Z)-((5-((二甲基胺基)甲基)-1,3-伸苯基)雙(氧基))雙(己-6,1-二基)酯、二己酸((5-((二甲基胺基)甲基)-1,3-伸苯基)雙(氧基))雙(癸-10,1-二基)酯、二辛酸((5-((二甲基胺基)甲基)-1,3-伸苯基)雙(氧基))雙(癸-10,1-二基)酯、二辛酸((5-((二甲基胺基)甲基)-1,3-伸苯基)雙(氧基))雙(辛-8,1-二基)酯、二己酸((5-((二甲基胺基)甲基)-1,3-伸苯基)雙(氧基))雙(辛-8,1-二基)酯、雙(十八碳-9,12-二烯酸)(9Z,9'Z,12Z,12'Z)-((5-((二甲基胺基)甲基)-1,3-伸苯基)雙(氧基))雙(乙-2,1-二基)酯、雙(十八碳-9,12-二烯酸)(9Z,9'Z,12Z,12'Z)-((5-((二甲基胺基)甲基)-1,3-伸苯基)雙(氧基))雙(丙-3,1-二基)酯、雙(十八碳-9,12-二烯酸)(9Z,9'Z,12Z,12'Z)-((5-((二甲基胺基)甲基)-1,3-伸苯基)雙(氧基))雙(丁-4,1-二基)酯、雙(亞甲基)二-十三烷酸(5-((二甲基胺基)甲基)-1,3-伸苯基)酯、雙(亞甲基)雙(十八碳-9,12-二烯酸)(9Z,9'Z,12Z,12'Z)-(5-((二甲基胺基)甲基)-1,3-伸苯基)酯、3-(二甲基胺基)丙酸(2,6-雙((9Z,12Z)-十八碳-9,12-二烯-1-基氧基)吡啶-4-基)甲酯、雙(十八碳-9,12-二烯酸)(9Z,9'Z,12Z,12'Z)-5-(((3-(二甲基胺基)丙醯基)氧基)甲基)-1,3-伸苯酯、1-(3,5-雙((9Z,12Z)-十八碳-9,12-二烯-1-基氧基)苯基)-N,N二甲基甲胺、3-(二甲基胺基)丙酸3,5-雙((9Z,12Z)-十八碳-9,12-二烯-1-基氧基)苯甲酯、1-(3,5-雙(4,4-雙(辛氧基)丁氧基)苯基)-N,N-二甲基甲胺、四辛酸((((5-((二甲基胺基)甲基)-1,3-伸苯基)雙(氧基))雙(丁-4,1-二基))雙(氧基))雙(丙-3,2,1-三基)酯、雙(癸酸)((5-(((4-(二甲基胺基)丁醯基)氧基)甲基)-1,3-伸苯基)雙(氧基))雙(辛-8,1-二基)酯、雙(癸酸)((5-(((3-(二甲基胺基)丙醯基)氧基)甲基)-1,3-伸苯基)雙(氧基))雙(辛-8,1-二基)酯、雙(十八碳-9,12-二烯酸)(9Z,9'Z, 12Z,12'Z)-((5-(3-嗎啉基丙基)-1,3-伸苯基)雙(氧基))雙(丁-4,1-二基)酯、雙(十八碳-9,12-二烯酸)(9Z,9'Z,12Z,12'Z)-((5-(3-(二甲基胺基)丙基)-1,3-伸苯基)雙(氧基))雙(丁-4,1-二基)酯、雙(十八碳-9,12-二烯酸)(9Z,9'Z,12Z,12'Z)-((5-(3-(哌啶-1-基)丙基)-1,3-伸苯基)雙(氧基))雙(丁-4,1-二基)酯、雙(亞甲基)雙(9-戊基十四烷酸)(5-((二甲基胺基)甲基)-1,3-伸苯基)酯、雙(亞甲基)雙(7-己基十三烷酸)(5-((二甲基胺基)甲基)-1,3-伸苯基)酯、雙(亞甲基)雙(5-庚基十二烷酸)(5-((二甲基胺基)甲基)-1,3-伸苯基)酯、雙(3-辛基十一烷酸)((5-((二甲基胺基)甲基)-1,3-伸苯基)雙(氧基))雙(丁-4,1-二基)酯、雙(5-庚基十二烷酸)((5-((二甲基胺基)甲基)-1,3-伸苯基)雙(氧基))雙(丁-4,1-二基)酯、雙(9-戊基十四烷酸)((5-((二甲基胺基)甲基)-1,3-伸苯基)雙(氧基))雙(丁-4,1-二基)酯、雙(7-己基十三烷酸)((5-((二甲基胺基)甲基)-1,3-伸苯基)雙(氧基))雙(丁-4,1-二基)酯、雙(十八碳-9,12-二烯酸)(9Z,9'Z,12Z,12'Z)-((5-(吡咯啶-1-基甲基)-1,3-伸苯基)雙(氧基))雙(丁-4,1-二基)酯、四辛酸(((5-((二甲基胺基)甲基)-1,3-伸苯基)雙(氧基))雙(亞甲基))雙(丙-3,2,1-三基)酯、四辛酸(((5-((二甲基胺基)甲基)-1,3-伸苯基)雙(氧基))雙(丁-4,1-二基))雙(丙-3,2,1-三基)酯、十八碳-9,12-二烯酸(9Z.12Z)-4-(3-((二甲基胺基)甲基-5-(4-((3-辛基十一烷醯基)氧基)丁氧基)苯氧基)丁酯、0,0'-((5-((二甲基胺基)甲基)-1,3-伸苯基)雙(亞甲基))二琥珀酸雙(1,3-雙(辛醯氧基)丙-2-基)酯、雙(亞甲基)雙(6-(((壬氧基)羰基)氧基)己酸)(5-((二甲基胺基)甲基)-1,3-伸苯基)酯、二己酸2-(3-(4-(5-((二甲基胺基)甲基)-2-甲基-3-((9Z,12Z)-十八碳-9,12-二烯-1-基氧基)苯氧基)丁氧基)-3-側氧基丙基)丙-1,3-二酯、3-辛基十一烷酸3-((二甲基胺基)甲基)-5-(((8-(辛醯氧基)辛醯基)氧基)甲基)苯甲酯、三辛酸((5-((二乙基胺基)甲基)苯-1,2,3-三基)三(氧基))三(癸-10,1-二基)酯、1-(3,5-雙((Z)-十八碳-9-烯-1-基氧基)苯基)-N,N-二甲基甲胺、N’-甲基-N’,N”,N”-三((2E.6E)-3.7.11-三甲基十二碳-2.6.10-三烯-1-基丙-1,3-二胺、4-(二甲基胺基)丁酸l,17-雙(2-((2-戊基環丙基)甲基)環丙基)十七烷-9-酯、(7Z)-17-{[4-(二甲基胺基)丁醯基]氧基}二十六碳-7-烯酸乙酯、(Z)-6-(2-(二甲基胺基)-3-(十八碳-9-烯-1-基氧基)丙氧基)己酸甲酯、2-(二-十二烷基胺基)-1-(4-(N-(2-(二壬基胺基)乙基)-N-十二烷基甘胺醯基)哌𠯤-1-基)乙-1-酮、己酸3-((3-(1-(3-((2-(二壬基胺基)乙基)(壬基)胺基)丙醯基)哌啶-4-基)丙基)(壬基)胺基)丙酯、己酸3-((3-(4-(3-((2-(二壬基胺基)乙基)(壬基)胺基)丙醯基)哌𠯤-1-基)-3-側氧基丙基)(壬基)胺基)丙酯、3-((2-(二壬基胺基)乙基)(壬基)胺基)-1-(4-(3-(二壬基胺基)丙基)哌啶-1-基)丙-1-酮、4-((3-(1-(3-((2-(二壬基胺基)乙基)(壬基)胺基)丙醯基)哌啶-4-基)丙基)(壬基)胺基)丁酸戊酯、4-((2-(1-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌啶-4-基)乙基)(壬基)胺基)丁酸戊酯、4-(((1-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)吡咯啶-3-基)甲基)(壬基)胺基)丁酸戊酯、4-((2-(1-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)吡咯啶-3-基)乙基)(壬基)胺基)丁酸戊酯、4-((2-(1-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌啶-3-基)乙基)(壬基)胺基)丁酸戊酯、2-(二-十二烷基胺基)-1-(4-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌𠯤-1-基)乙-1-酮、2-((2-(二壬基胺基)乙基)(壬基)胺基)-1-(3-(2-(二壬基胺基)乙基)哌啶-1-基)乙-1-酮、4,4'-((2-(4-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌𠯤-1-基)-2-側氧基乙基)脲二基)二丁酸二戊酯、4-(壬基(2-(4-(N-壬基-N-(2-(壬基(4-側氧基-4-(戊氧基)丁基)胺基)乙基)甘胺醯基)哌𠯤-1-基)-2-側氧基乙基)胺基)丁酸戊酯、2-((2-(二壬基胺基)乙基)(壬基)胺基)-1-(3-((二壬基胺基)甲基)吡咯啶-1-基)乙-1-酮、2-((2-(二-十二烷基胺基)乙基)(十二烷基)胺基)-1-(4-(二壬基甘胺醯基)哌𠯤-1-基)乙-1-酮、2-((2-(二壬基胺基)乙基)(壬基)胺基)-1-(3-(2-(二壬基胺基)乙基)吡咯啶-1-基)乙-1-酮、4-((3-(4-(3-((2-(二壬基胺基)乙基)(壬基)胺基)丙醯基)哌𠯤-1-基)-3-側氧基丙基)(壬基)胺基)丁酸戊酯、己酸3-((2-(1-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌啶-4-基)乙基)(壬基)胺基)丙酯、5-((2-(1-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌啶-4-基)乙基)(壬基)胺基)戊酸丁酯、2-((2-(二-十二烷基胺基)乙基)(壬基)胺基)-1-(4-(二壬基甘胺醯基)哌𠯤-1-基)乙-1-酮、6-((2-(1-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌啶-4-基)乙基)(壬基)胺基)己酸丙酯、7-((2-(1-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌啶-4-基)乙基)(壬基)胺基)庚酸乙酯、8-((2-(1-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌啶-4-基)乙基)(壬基)胺基)辛酸甲酯、己酸3-((2-(4-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌𠯤-1-基)-2-側氧基乙基)(壬基)胺基)丙酯、5-((2-(4-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌𠯤-1-基)-2-側氧基乙基)(壬基)胺基)戊酸丁酯、6-((2-(4-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌𠯤-2-側氧基乙基)(壬基)胺基)己酸丙酯、7-((2-(4-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌𠯤-1-基)-2-側氧基乙基)(壬基)胺基)庚酸乙酯、3-(二壬基胺基)-1-(4-(3-((2-(二壬基胺基)乙基)(壬基)胺基)丙醯基)哌𠯤-1-基)丙-1-酮、2-((2-(二壬基胺基)乙基)(壬基)胺基)-1-(4-(二-十四烷基甘胺醯基)哌𠯤-1-基)乙-1-酮、2-(二壬基胺基)-1-(4-(2-((2-(二壬基胺基)乙基)(壬基)胺基)乙基)哌啶-1-基)乙-1-酮、2-(二壬基胺基)-l-(4-(N-(2-(二壬基胺基)乙基)-N-十二烷基甘胺醯基)哌𠯤-1-基)乙-1-酮、2-((2-(二壬基胺基)乙基)(壬基)胺基)-1-(4-(2-(二壬基胺基)乙基)哌啶-1-基)乙-1-酮、8-((2-(4-(二壬基甘胺醯基)哌𠯤-1-基)-2-側氧基乙基)(2-((8-甲氧基-8-側氧基辛基)(壬基)胺基)乙基)胺基)辛酸甲酯、8-((2-(二壬基胺基)乙基)(2-(4-(二壬基甘胺醯基)哌𠯤-1-基)-2-側氧基乙基)胺基)辛酸甲酯、8-((2-((2-(4-(二壬基甘胺醯基)哌𠯤-1-基)-2-側氧基乙基)(壬基)胺基)乙基)(壬基)胺基)辛酸甲酯、4-((2-(4-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌𠯤-2-側氧基乙基)(壬基)胺基)丁酸戊酯、8-((2-(4-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌𠯤-1-基)-2-側氧基乙基)(壬基)胺基)辛酸甲酯、2-((2-(二-十二烷基胺基)乙基)(十二烷基)胺基)-1-(5-(二壬基甘胺醯基)-2,5-二氮雜雙環[2.2.1]庚-2-基)乙-1-酮、2-(二壬基胺基)-1-(5-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)-2,5-二氮雜雙環[2.2.1]庚-2-基)乙-1-酮、N1,N1,N2-三((9Z,12Z)-十八碳-9,12-二烯-1-基)-N2-(2-(哌𠯤-1-基)乙基)乙-1,2-二胺、N1,N1,N2-三((Z)-十八碳-9-烯-1-基)-N2-(2-(哌𠯤-1-基)乙基)乙-1,2-二胺、2-(二壬基胺基)-l-(4-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌𠯤-l-基)乙-1-酮、N1,N1,N2-三-十二烷基-N2-(2-(哌𠯤-1-基)乙基)乙-1,2-二胺、N1,N1,N2-三壬基-N2-(2-(哌𠯤-1-基)乙基)乙-1,2-二胺、N1,N1,N2-三己基-N2-(2-(哌𠯤-1-基)乙基)乙-1,2-二胺、N1-(2-(4-(2-(二-十二烷基胺基)乙基)哌𠯤-1-基)乙基)-N1,N2,N2-三((9Z,12Z)-十八碳-9,12-二烯-1-基)乙-1,2-二胺、N1-(2-(4-(2-(二-十二烷基胺基)乙基)哌𠯤-1-基)乙基)-N1,N2,N2-三((Z)-十八碳-9-烯-1-基)乙-1,2-二胺、N1-(2-(4-(2-(二-十四烷基胺基)乙基)哌𠯤-1-基)乙基)-N1,N2,N2-三-十四烷基乙-1,2-二胺、N1-(2-(4-(2-(二-十二烷基胺基)乙基)哌𠯤-1-基)乙基)-N1,N2,N2-三-十四烷基乙-1,2-二胺、N1-(2-(4-(2-(二壬基胺基)乙基)哌𠯤-1-基)乙基)-N1,N2,N2-三-十四烷基乙-1,2-二胺、2-(二-十二烷基胺基)-l-(4-(2-((2-(二-十二烷基胺基)乙基)(十二烷基)胺基)乙基)哌𠯤-1-基)乙-1-酮、N1-(2-(4-(2-(二((9Z,12Z)-十八碳-9,12-二烯-1-基)胺基)乙基)哌𠯤-1-基)乙基)-N1,N2,N2-三-十二烷基乙-1,2-二胺、N1-(2-(4-(2-(二((Z)-十八碳-9-烯-1-基)胺基)乙基)哌𠯤-1-基)乙基)-N1,N2,N2-三-十二烷基乙-1,2-二胺、N1,N1,N2-三-十二烷基-N2-(2-(4-(2-(十二烷基((9Z,12Z)-十八碳-9,12-二烯-1-基)胺基)乙基)哌𠯤-1-基)乙基)乙-1,2-二胺、N1-(2-(4-(2-(二-十四烷基胺基)乙基)哌𠯤-1-基)乙基)-N1,N2,N2-三-十二烷基乙-1,2-二胺、N1-(2-(4-(2-(二((Z)-十二碳-6-烯-l-基)胺基)乙基)哌𠯤-l-基)乙基)-N1,N2,N-三-十二烷基乙-1,2-二胺、(Z)-N1-(2-(4-(2-十二碳-6-烯-l-基(十二烷基)胺基)乙基)哌𠯤-l-基)乙基)-N,N2,N2-三-十二烷基乙-1,2-二胺、N1-(2-(4-(2-(二壬基胺基)乙基)哌𠯤-l-基)乙基)-N1,N2,N2-三-十二烷基乙-1,2-二胺、N1-(2-(4-(2-(二辛基胺基)乙基)哌𠯤-l-基)乙基)-N1,N2,N2-三-十二烷基乙-1,2-二胺、N1-(2-(4-(2-(二己基胺基)乙基)哌𠯤-l-基)乙基)-N1,N2,N2-三-十二烷基乙-1,2-二胺、N1-(2-(4-(2-(二-十四烷基胺基)乙基)哌𠯤-l-基)乙基)-N1,N2,N2-三壬基乙-1,2-二胺、2-((2-(二-十二烷基胺基)乙基)(十二烷基)胺基)-l-(4-(2-(二-十二烷基胺基)乙基)哌𠯤-l-基)乙-1-酮、N1-(2-(4-(2-(二-十二烷基胺基)乙基)哌𠯤-l-基)乙基)-N1,N2,N2-三壬基乙-1,2-二胺、N1-(2-(4-(2-(二壬基胺基)乙基)哌𠯤-l-基)乙基)-N1,N2,N2-三壬基乙-1,2-二胺、N1-(2-(4-(2-(二-十二烷基胺基)乙基)哌𠯤-l-基)乙基)-N1,N2,N2-三己基乙-1,2-二胺、12,12'-((2-(4-(2-((2-(二-十二烷基胺基)乙基)(十二烷基)胺基)乙基)哌𠯤-l-基)乙基)脲二基)二-十二烷酸二甲酯、12-((2-(4-(2-((2-(二-十二烷基胺基)乙基)(十二烷基)胺基)乙基)哌𠯤-l-基)乙基)(十二烷基)胺基)十二烷酸甲酯、6,6'-((2-(4-(2-((2-(二-十二烷基胺基)乙基)(十二烷基)胺基)乙基)哌𠯤-l-基)乙基)脲二基)二己酸二戊酯、6-((2-(4-(2-((2-(二-十四烷基胺基)乙基)(十四烷基)胺基)乙基)哌𠯤-1-基)乙基)(十二烷基)胺基)己酸戊酯、6-((2-(4-(2-((2-(二-十二烷基胺基)乙基)(十二烷基)胺基)乙基)哌𠯤-l-基)乙基)(十二烷基)胺基)己酸戊酯、2-(二-十二烷基胺基)-l-(4-(N-(2-(二-十二烷基胺基)乙基)-N-十二烷基甘胺醯基)哌𠯤-1-基)乙-1-酮、2-(二-十二烷基胺基)-1-(4-(N-(2-(二-十二烷基胺基)乙基)-N-壬基甘胺醯基)哌𠯤-1-基)乙-1-酮、2-(二-十二烷基胺基)-N-(2-(4-(2-(二-十二烷基胺基)乙基)哌𠯤-l-基)乙基)-N-十二烷基乙醯胺、(9Z,9'Z,12Z,12'Z)-雙(十八碳-9,12-二烯酸)((2-((3,S',4R)-3,4-二羥基吡咯啶-l-基)乙醯基)脲二基)雙(乙-2,1-二基)酯、2-胺基-N,N-二-十六烷基-3-(1H-咪唑-5-基)丙醯胺、(2-胺基-N,N-二-十六烷基-3-(1H-咪唑-5-基)丙醯胺、(9Z)-19-[2-(二甲基胺基)乙基]二十七碳-9-烯酸甲酯、8-(2-{9-[2-(二甲基胺基)乙基]十八烷基}環丙基)辛酸甲酯、(9Z)-19-[2-(二甲基胺基)乙基]二十八碳-9-烯酸甲酯、8-(2-{ll-[(二甲基胺基)甲基]十七烷基}環丙基)辛酸乙酯、8-(2-{ll-[(二甲基胺基)甲基]十八烷基}環丙基)辛酸乙酯、3-(((2-(二甲基胺基)乙氧基)羰基)胺基)戊二酸二((9Z,12Z)-十八碳-9,12-二烯-l-基)酯、6-((2-(l-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌啶-4-基)乙基)(十四烷基)胺基)己酸庚酯、8-(2-{ll-[(二甲基胺基)甲基]十九烷基}環丙基)辛酸乙酯、8-((2-(l-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌啶-4-基)乙基)(十四烷基)胺基)辛酸戊酯、8-(2-{ll-[(二甲基胺基)甲基]二十烷基}環丙基)辛酸乙酯、8-(2-{9-[(二甲基胺基)甲基]十五烷基}環丙基)辛酸乙酯、癸酸3-((2-(l-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌啶-4-基)乙基)(十四烷基)胺基)丙酯、6-((2-(4-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌𠯤-l-基)-2-側氧基乙基)(十四烷基)胺基)己酸庚酯、8-(2-{9-[(二甲基胺基)甲基]十六烷基}環丙基)辛酸乙酯、8-((2-(4-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌𠯤-2-側氧基乙基)(十四烷基)胺基)辛酸戊酯、8-(2-{9-[(二甲基胺基)甲基]十七烷基}環丙基)辛酸乙酯、6-(2-(8-(2-(二甲基胺基)-3-(壬氧基)丙氧基)辛基)環丙基)己酸甲酯、(9Z)-21-(二甲基胺基)二十七碳-9-烯酸甲酯、(9Z)-21-{[4-(二甲基胺基)丁醯基]氧基}二十七碳-9-烯酸甲酯、(2R)-N,N-二甲基-1-[(9Z,12Z)-十八碳-9,12-二烯-1-基氧基]十二烷-2-胺、(15Ζ,18Ζ)-Ν,Ν-二甲基二十四碳-15,18-二烯-5-胺、8-(2-{9-[(二甲基胺基)甲基]十八烷基}環丙基)辛酸乙酯、癸酸3-((2-(4-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌𠯤-l-基)-2-側氧基乙基)(十四烷基)胺基)丙酯、4-(2-{ll-[(二甲基胺基)甲基]二十烷基}環丙基)丁酸乙酯、8-(2-{7-[(二甲基胺基)甲基]十六烷基}環丙基)辛酸乙酯、己酸3-((3-(l-(3-((2-(二壬基胺基)乙基)(壬基)胺基)丙醯基)哌啶-4-基)丙基)(壬基)胺基)丙酯、6-(2-{9-[(二甲基胺基)甲基]十五烷基}環丙基)己酸乙酯、己酸3-((3-(4-(3-((2-(二壬基胺基)乙基)(壬基)胺基)丙醯基)哌𠯤-l-基)-3-側氧基丙基)(壬基)胺基)丙酯、6-(2-{9-[(二甲基胺基)甲基]十六烷基}環丙基)己酸乙酯、3-((2-(二壬基胺基)乙基)(壬基)胺基)-l-(4-(3-(二壬基胺基)丙基)哌啶-1-基)丙-1-酮、4-((3-(l-(3-((2-(二壬基胺基)乙基)(壬基)胺基)丙醯基)哌啶-4-基)丙基)(壬基)胺基)丁酸戊酯、6-(2-{9-[(二甲基胺基)甲基]十七烷基}環丙基)己酸乙酯、4-((2-(l-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌啶-4-基)乙基)(壬基)胺基)丁酸戊酯、6-(2-{9-[(二甲基胺基)甲基]十八烷基}環丙基)己酸乙酯、4-(((l-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)吡咯啶-3-基)甲基)(壬基)胺基)丁酸戊酯、(9Z)-21-[(二甲基胺基)甲基]二十七碳-9-烯酸乙酯、4-((2-(l-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)吡咯啶-3-基)乙基)(壬基)胺基)丁酸戊酯、(9Z)-21-[(二甲基胺基)甲基]二十八碳-9-烯酸乙酯、(9Z,9'Z,12Z,12'Z)-雙(十八碳-9,12-二烯酸)((2-((3,S',4R)-3,4-二羥基吡咯啶-l-基)乙醯基)脲二基)雙(乙-2,l-二基)酯、4-((2-(l-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌啶-3-基)乙基)(壬基)胺基)丁酸戊酯、(9Z)-21-[(二甲基胺基)甲基]二十九碳-9-烯酸乙酯、6-(2-(8-(2-(二甲基胺基)-3-(庚氧基)丙氧基)辛基)環丙基)己酸甲酯、(9Z)-21-{[4-(二甲基胺基)丁醯基]氧基}二十八碳-9-烯酸甲酯、(9Z)-21-(二甲基胺基)二十八碳-9-烯酸甲酯、2-(二-十二烷基胺基)-1-(4-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌𠯤-1-基)乙-1-、(2S)-N.N-二甲基-1-[(9Z,12Z)-十八碳-9,12-二烯-1-基氧基]壬-2-胺、(18Z,21Z)-N,N-二甲基二十七碳-18,21-二烯-10-胺、(9Z)-21-[(二甲基胺基)甲基]三十碳-9-烯酸乙酯、(9Z)-19-[(二甲基胺基)甲基]二十五碳-9-烯酸乙酯、(9Z)-19-[(二甲基胺基)甲基]二十六碳-9-烯酸乙酯、(9Z)-19-[(二甲基胺基)甲基]二十七碳-9-烯酸乙酯、(9Z)-19-[(二甲基胺基)甲基]二十八碳-9-烯酸乙酯、(5Z)-17-[(二甲基胺基)甲基]二十六碳-5-烯酸乙酯、(9Z)-17-[(二甲基胺基)甲基]二十六碳-9-烯酸乙酯、2-((2-(二壬基胺基)乙基)(壬基)胺基)-l-(3-(2-(二壬基胺基)乙基)哌啶-l-基)乙-1-酮、(7Z)-17-[(二甲基胺基)甲基]二十三碳-7-烯酸乙酯、4,4'-((2-(4-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌𠯤-l-基)-2-側氧基乙基)脲二基)二丁酸二戊酯、4-(壬基(2-(4-(N-壬基-N-(2-(壬基(4-側氧基-4-(戊氧基)丁基)胺基)乙基)甘胺醯基)哌𠯤-l-基)-2-側氧基乙基)胺基)丁酸戊酯、(7Z)-17-[(二甲基胺基)甲基]二十四碳-7-烯酸乙酯、(7Z)-17-[(二甲基胺基)甲基]二十五碳-7-烯酸乙酯、2-((2-(二壬基胺基)乙基)(壬基)胺基)-l-(3-((二壬基胺基)甲基)吡咯啶-1-基)乙-1-酮、反式-3-[(3}7-二甲基辛基)氧基]-1-甲基-4~[(9Z,12Z)-十八碳-9512-二烯-1-氧基吡咯啶、6-(2-(8-(2-(二甲基胺基)-3-(己氧基)丙氧基)辛基)環丙基)己酸甲酯、(9Z)-21-{[4-(二甲基胺基)丁醯基]氧基}二十九碳-9-烯酸甲酯、(9Z)-21-(二甲基胺基)二十九碳-9-烯酸甲酯、(2S)-N,N-二甲基-1-[(9Z,12Z)-十八碳-9,12-二烯-1-基氧基]十三烷-2-胺、(15Z,18Z)-N,N-二甲基二十四碳-15,18-二烯-7-胺、(7Z)-17-[(二甲基胺基)甲基]二十六碳-7-烯酸乙酯、2-((2-(二壬基胺基)乙基)(壬基)胺基)-l-(3-(2-(二壬基胺基)乙基)吡咯啶-1-基)乙-1-酮、6-(2-{ll-[(二甲基胺基)甲基]二十烷基}環丙基)己酸甲酯、10-(2-{7-[(二甲基胺基)甲基]十六烷基}環丙基)癸酸甲酯、8-(2-{ll-[(二甲基胺基)甲基]十七烷基}環丙基)辛酸甲酯、8-(2-{ll-[(二甲基胺基)甲基]十八烷基}環丙基)辛酸甲酯、8-(2-{ll-[(二甲基胺基)甲基]十九烷基}環丙基)辛酸甲酯、8-(2-{ll-[(二甲基胺基)甲基]二十烷基}環丙基)辛酸甲酯、4-((3-(4-(3-((2-(二壬基胺基)乙基)(壬基)胺基)丙醯基)哌𠯤-l-基)-3-側氧基丙基)(壬基)胺基)丁酸戊酯、8-(2-{9-[(二甲基胺基)甲基]十五烷基}環丙基)辛酸甲酯、8-(2-{9-[(二甲基胺基)甲基]十六烷基}環丙基)辛酸甲酯、己酸3-((2-(l-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌啶-4-基)乙基)(壬基)胺基)丙酯、8-(2-{9-[(二甲基胺基)甲基]十七烷基}環丙基)辛酸甲酯、8-(2-(二甲基胺基)-3-((6-((2-辛基環丙基)甲氧基)-6-側氧基己基)氧基)丙氧基)辛酸甲酯、5-((2-(l-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌啶-4-基)乙基)(壬基)胺基)戊酸丁酯、反式-1-甲基-3-[(12Z)-十八碳-12-烯-1-基氧基]-4-(辛氧基)吡咯啶、(9Z)-21-{[4-(二甲基胺基)丁醯基]氧基}三十碳-9-烯酸甲酯、(9Z)-21-(二甲基胺基)三十碳-9-烯酸甲酯、2-((2-(二-十二烷基胺基)乙基)(壬基)胺基)-1-(4-(二壬基甘胺醯基)哌𠯤-1-基)乙-1-酮步驟1:N-(2-(二-十二烷基胺基)乙基)-N-壬基甘胺酸甲酯、1-((2R,3S,5R)-3-(雙(十六烷氧基)甲氧基)-5-(5-甲基-2,4-二側氧基-3,4-二氫嘧啶-1(2H)-基)四氫呋喃甲磺酸鹽、(Z)-16-(3-(癸氧基)-2-(二甲基胺基)丙氧基)十六碳-7-烯酸甲酯、(2S)-1-[(9Z,12Z)-十八碳-9,12-二烯-1-基氧基]壬-2-胺、(14Z,17Z)-N,N-二甲基二十三碳-14,17-二烯-6-胺、6-((2-(l-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌啶-4-基)乙基)(壬基)胺基)己酸丙酯、7-(2-(二甲基胺基)-3-((6-((2-辛基環丙基)甲氧基)-6-側氧基己基)氧基)丙氧基)庚酸甲酯、(7Z)-19-[(二甲基胺基)甲基]二十八碳-7-烯酸甲酯、(HZ)-19-[(二甲基胺基)甲基]二十八碳-ll-烯酸甲酯、7-((2-(l-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌啶-4-基)乙基)(壬基)胺基)庚酸乙酯、6-(2-(二甲基胺基)-3-((5-甲氧基-5-側氧基戊基)氧基)丙氧基)己酸(2-辛基環丙基)甲酯、8-((2-(l-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌啶-4-基)乙基)(壬基)胺基)辛酸甲酯、(9Z)-21-[(二甲基胺基)甲基]二十七碳-9-烯酸甲酯、6-(2-(二甲基胺基)-3-(4-甲氧基-4-側氧基丁氧基)丙氧基)己酸(2-辛基環丙基)甲酯、(9Z)-21-[(二甲基胺基)甲基]二十八碳-9-烯酸甲酯、己酸3-((2-(4-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌𠯤-l-基)-2-側氧基乙基)(壬基)胺基)丙酯、(Z)-8-(2-(二甲基胺基)-3-((6-側氧基-6-(十一碳-2-烯-l-基氧基)己基)氧基)丙氧基)辛酸甲酯、(9Z)-21-[(二甲基胺基)甲基]二十九碳-9-烯酸甲酯、5-((2-(4-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌𠯤-l-基)-2-側氧基乙基)(壬基)胺基)戊酸丁酯、(Z)-7-(2-(二甲基胺基)-3-((6-側氧基-6-(十一碳-2-烯-l-基氧基)己基)氧基)丙氧基)庚酸甲酯、6-((2-(4-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌𠯤-l-基)-2-側氧基乙基)(壬基)胺基)己酸丙酯、(9Z)-21-[(二甲基胺基)甲基]三十碳-9-烯酸甲酯、(Z)-6-(2-(二甲基胺基)-3-((5-甲氧基-5-側氧基戊基)氧基)丙氧基)己酸十一碳-2-烯-1-酯、(9Z)-19-[(二甲基胺基)甲基]二十五碳-9-烯酸甲酯、7-((2-(4-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌𠯤-l-基)-2-側氧基乙基)(壬基)胺基)庚酸乙酯、(Z)-6-(2-(二甲基胺基)-3-(4-甲氧基-4-側氧基丁氧基)丙氧基)己酸十一碳-2-烯-1-酯、6-(2-(二甲基胺基)-3-((6-((2-辛基環丙基)甲氧基)-6-側氧基己基)氧基)丙氧基)己酸甲酯、(9Z)-19-[(二甲基胺基)甲基]二十六碳-9-烯酸甲酯、3-(二壬基胺基)-l-(4-(3-((2-(二壬基胺基)乙基)(壬基)胺基)丙醯基)哌𠯤-1-基)丙-1-酮、(9Z)-19-[(二甲基胺基)甲基]二十七碳-9-烯酸甲酯、2-((2-(二壬基胺基)乙基)(壬基)胺基)-l-(4-(二-十四烷基甘胺醯基)哌𠯤-1-基)乙-1-酮、(Z)-6-(2-(二甲基胺基)-3-((6-側氧基-6-(十一碳-2-烯-l-基氧基)己基)氧基)丙氧基)己酸甲酯、8-(2-(二甲基胺基)-3-((8-(2-(6-甲氧基-6-側氧基己基)環丙基)辛基)氧基)丙氧基)辛酸甲酯、8-(2-{9-[(二甲基胺基)甲基]十八烷基}環丙基)辛酸甲酯、2-(二壬基胺基)-l-(4-(2-((2-(二壬基胺基)乙基)(壬基)胺基)乙基)哌啶-1-基)乙-1-酮、反式-l-甲基-3-[(9Z)-十八碳-9-烯-l-基氧基]-4-(辛氧基)吡咯啶、(9Z)-19-{[4-(二甲基胺基)丁醯基]氧基}二十五碳-9-烯酸甲酯、(9Z)-19-(二甲基胺基)二十五碳-9-烯酸甲酯、(Z)-16-(2-(二甲基胺基)-3-(壬氧基)丙氧基)十六碳-7-烯酸甲酯、(2S)-1-[(9Z,12Z)-十八碳-9,12-二烯-1-基氧基]癸-2-胺、(12Z,15Z)-N,N-二甲基二十一碳-12,15-二烯-4-胺、7-(2-(二甲基胺基)-3-((8-(2-(6-甲氧基-6-側氧基己基)環丙基)辛基)氧基)丙氧基)庚酸甲酯、(9Z)-19-[(二甲基胺基)甲基]二十八碳-9-烯酸甲酯、2-((2-(二壬基胺基)乙基)(壬基)胺基)-l-(4-(2-(二壬基胺基)乙基)哌啶-l-基)乙-1-酮、8-((2-(4-(二壬基甘胺醯基)哌𠯤-l-基)-2-側氧基乙基)(2-((8-甲氧基-8-側氧基辛基)(壬基)胺基)乙基)胺基)辛酸甲酯、6-(2-(8-(2-(二甲基胺基)-3-((5-甲氧基-5-側氧基戊基)氧基)丙氧基)辛基)環丙基)己酸甲酯、8-{2-[ll-(二甲基胺基)十七烷基]環丙基}辛酸乙酯、8-((2-(二壬基胺基)乙基)(2-(4-(二壬基甘胺醯基)哌𠯤-l-基)-2-側氧基乙基)胺基)辛酸甲酯、6-(2-(8-(2-(二甲基胺基)-3-(4-甲氧基-4-側氧基丁氧基)丙氧基)辛基)環丙基)己酸甲酯、8-{2-[ll-(二甲基胺基)十八烷基]環丙基}辛酸乙酯、8-((2-((2-(4-(二壬基甘胺醯基)哌𠯤-l-基)-2-側氧基乙基)(壬基)胺基)乙基)(壬基)胺基)辛酸甲酯、8-{2-[ll-(二甲基胺基)十九烷基]環丙基}辛酸乙酯、(Z)-16-(2-(二甲基胺基)-3-((8-甲氧基-8-側氧基辛基)氧基)丙氧基)十六碳-7-烯酸甲酯、4-((2-(4-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌𠯤-l-基)-2-側氧基乙基)(壬基)胺基)丁酸戊酯、8-{2-[ll-(二甲基胺基)二十烷基]環丙基}辛酸乙酯、(Z)-16-(2-(二甲基胺基)-3-((7-甲氧基-7-側氧基庚基)氧基)丙氧基)十六碳-7-烯酸甲酯、8-((2-(4-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌𠯤-l-基)-2-側氧基乙基)(壬基)胺基)辛酸甲酯、8-{2-[9-(二甲基胺基)十五烷基]環丙基}辛酸乙酯、(Z)-16-(2-(二甲基胺基)-3-((5-甲氧基-5-側氧基戊基)氧基)丙氧基)十六碳-7-烯酸甲酯、(11E,20Z,23Z)-N,N-二甲基二十九碳-11,20,23-三烯-10-胺、N,N-二甲基-1-[(1S,2R)-2-辛基環丙基]十五烷-8-胺、8-{2-[9-(二甲基胺基)十六烷基]環丙基}辛酸乙酯、2-((2-(二-十二烷基胺基)乙基)(十二烷基)胺基)-l-(5-(二壬基甘胺醯基)-2,5-二氮雜雙環[2.2.1]庚-2-基)乙-1-酮3、(Z)-16-(2-(二甲基胺基)-3-(4-甲氧基-4-側氧基丁氧基)丙氧基)十六碳-7-烯酸甲酯、6-(2-(8-(2-(二甲基胺基)-3-((6-甲氧基-6-側氧基己基)氧基)丙氧基)辛基)環丙基)己酸甲酯、8-{2-[9-(二甲基胺基)十七烷基]環丙基}辛酸乙酯、2-(二壬基胺基)-l-(5-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)-2,5-二氮雜雙環[2.2.1]庚-2-基)乙-1-酮、1-[(1S,2R)-2-癸基環丙基]-N,N-二甲基十五烷-6-胺、N1,N1,N2-三((9Z,12Z)-十八碳-9,12-二烯-l-基)-N2-(2-(哌𠯤-l-基)乙基)乙-1,2-二胺、8-{2-[9-(二甲基胺基)十八烷基]環丙基}辛酸乙酯、1-[(1R,2S)-2-庚基環丙基]-Ν,Ν-二甲基十八烷-9-胺、(Z)-16-(2-(二甲基胺基)-3-((6-甲氧基-6-側氧基己基)氧基)丙氧基)十六碳-7-烯酸甲酯、N1,N1,N2-三((Z)-十八碳-9-烯-l-基)-N2-(2-(哌𠯤-l-基)乙基)乙-l,2-二胺、N,N-二甲基-3-{7-[(1S,2R)-2-辛基環丙基]庚基}十二烷-1-胺、8-(2-(二甲基胺基)-3-((8-(2-((2-戊基環丙基)甲基)環丙基)辛基)氧基)丙氧基)辛酸甲酯、4-{2-[ll-(二甲基胺基)二十烷基]環丙基}丁酸乙酯、反式-1-甲基-3-[((9Z,12Z)-十八碳-9,12-二烯基)氧基]-4-辛氧基-吡咯啶、(9Z)-19-(二甲基胺基)二十六碳-9-烯酸甲酯、(9Z)-19-{[4-(二甲基胺基)丁醯基]氧基}二十六碳-9-烯酸甲酯、(Z)-16-(2-(二甲基胺基)-3-(庚氧基)丙氧基)十六碳-7-烯酸甲酯、(2R)-1-[(9Z,12Z)-十八碳-9,12-二烯-1-基氧基]十二烷-2-胺、(13Z,16Z)-N,N-二甲基二十二碳-13,16-二烯-5-胺、Ν,Ν-二甲基-1-[(1R,2S)-2-十一烷基環丙基]十四烷-5-胺、7-(2-(二甲基胺基)-3-((8-(2-((2-戊基環丙基)甲基)環丙基)辛基)氧基)丙氧基)庚酸甲酯、8-{2-[7-(二甲基胺基)十六烷基]環丙基}辛酸乙酯、2-(二-十二烷基胺基)-N-十二烷基-N-(2-(哌𠯤-l-基)乙基)乙醯胺、Ν,Ν-二甲基-1-[(1S,2R)-2-辛基環丙基]十六烷-8-胺、N1-(2-(哌𠯤-l-基)乙基)-N1,N2,N2-三-十四烷基乙-l,2-二胺、6-(2-(二甲基胺基)-3-((8-(2-((2-戊基環丙基)甲基)環丙基)辛基)氧基)丙氧基)己酸甲酯、6-{2-[9-(二甲基胺基)十五烷基]環丙基}己酸乙酯、Ν,Ν-二甲基-1-[(1S,2S)-2-{[(1R,2R)-2-戊基環丙基]甲基}環丙基]十九烷-10-胺、NN1,N2-三-十二烷基-N2-(2-(哌𠯤-l-基)乙基)乙-l,2-二胺、5-(2-(二甲基胺基)-3-((8-(2-((2-戊基環丙基)甲基)環丙基)辛基)氧基)丙氧基)戊酸甲酯、6-{2-[9-(二甲基胺基)十六烷基]環丙基}己酸乙酯、N,N-二甲基-21-[(1S,2R)-2-辛基環丙基]二十一烷-10-胺、NNN2-三壬基-N2-(2-(哌𠯤-l-基)乙基)乙-l,2-二胺、4-(2-(二甲基胺基)-3-((8-(2-((2-戊基環丙基)甲基)環丙基)辛基)氧基)丙氧基)丁酸甲酯、6-{2-[9-(二甲基胺基)十七烷基]環丙基}己酸乙酯、Ν,Ν-二甲基-1-[(1S,2R)-2-辛基環丙基]十九烷-10-胺、N1,N1,N2-三己基-N2-(2-(哌𠯤-l-基)乙基)乙-l,2-二胺、8-(2-(二甲基胺基)-3-((9Z,12Z)-十八碳-9,12-二烯-l-基氧基)丙氧基)辛酸甲酯、6-{2-[9-(二甲基胺基)十八烷基]環丙基}己酸乙酯、N1-(2-(4-(2-(二-十二烷基胺基)乙基)哌𠯤-l-基)乙基)-N1,N2,N2-三-((9Z,12Z)-十八碳-9,12-二烯-l-基)乙-1,2-二胺、7-(2-(二甲基胺基)-3-((9Z,12Z)-十八碳-9,12-二烯-1-基氧基)丙氧基)庚酸甲酯、(9Z)-21-(二甲基胺基)二十七碳-9-烯酸乙酯、1-[(1S,2R)-2-己基環丙基]-N,N-二甲基十九烷-10-胺、9-{[4-(二甲基胺基)丁醯基]氧基}十八烷二酸1-甲酯18-[(2Z)-壬-2-烯-1-]酯、N1-(2-(4-(2-(二-十二烷基胺基)乙基)哌𠯤-l-基)乙基)-N1,N2,N2-三-((Z)-十八碳-9-烯-l-基)乙-l,2-二胺、N,N-二甲基-1-[(1S,2R)-2-辛基環丙基]十七烷-8-胺、6-(2-(二甲基胺基)-3-((9Z,12Z)-十八碳-9,12-二烯-1-基氧基)丙氧基)己酸甲酯、(9Z)-21-(二甲基胺基)二十八碳-9-烯酸乙酯、(9Z)-19-{[4-(二甲基胺基)丁醯基]氧基}二十七碳-9-烯二酸二甲酯、N1-(2-(4-(2-(二-十四烷基胺基)乙基)哌𠯤-l-基)乙基)-N1,N2,N2-三-十四烷基乙-1,2-二胺、5-(2-(二甲基胺基)-3-((9Z,12Z)-十八碳-9,l2-二烯-l-基氧基)丙氧基)戊酸甲酯、8-{[4-(二甲基胺基)丁醯基]氧基}-15-(2-辛基環丙基)十五烷酸乙酯、(9Z)-21-(二甲基胺基)二十九碳-9-烯酸乙酯、(13Z,16Z)-N,N-二甲基-3-壬基二十二碳-13,16-二烯-1-胺、N1-(2-(4-(2-(二-十二烷基胺基)乙基)哌𠯤-l-基)乙基)-N1,N2,N2-三-十四烷基乙-1,2-二胺、9-{[4-(二甲基胺基)丁醯基]氧基}-16-(2-辛基環丙基)十六烷酸甲酯、4-(2-(二甲基胺基)-3-((9Z,12Z)-十八碳-9,12-二烯-1-基氧基)丙氧基)丁酸甲酯、(9Z)-21-(二甲基胺基)三十碳-9-烯酸乙酯、(12Z,15Z)-N,N-二甲基-2-壬基二十一碳-12,15-二烯-1-胺、8-(2-(二甲基胺基)-3-((8-(2-辛基環丙基)辛基)氧基)丙氧基)辛酸甲酯、(9Z)-19-(二甲基胺基)二十五碳-9-烯酸乙酯、(18Z,21Z)-8-{[4-(二甲基胺基)丁醯基]氧基}二十七碳-18,21-二烯酸乙酯、(16Z)-N,N-二甲基二十五碳-16-烯-8-胺、(9Z)-19-{[4-(二甲基胺基)丁醯基]氧基}二十七碳-9-烯酸甲酯、(9Z)-19-(二甲基胺基)二十七碳-9-烯酸甲酯、2-(二-十二烷基胺基)-l-(4-(2-((2-(二-十二烷基胺基)乙基)(十二烷基)胺基)乙基)哌𠯤-l-基)乙-1-酮、(Z)-16-(2-(二甲基胺基)-3-(己氧基)丙氧基)十六碳-7-烯酸甲酯、(2S)-1-[(9Z,12Z)-十八碳-9,12-二烯-1-基氧基]十二烷-2-胺、(16Z,19Z)-N,N-二甲基二十五碳-16,19-二烯-8-胺、N1-(2-(4-(2-(二壬基胺基)乙基)哌𠯤-l-基)乙基)-N1,N2^V2-三-十四烷基乙-l,2-二胺、7-(2-(二甲基胺基)-3-((8-(2-辛基環丙基)辛基)氧基)丙氧基)庚酸甲酯、(19Z,22Z)-9-{[4-(二甲基胺基)丁醯基]氧基}二十八碳-19,22-二烯酸甲酯、(9Z)-19-(二甲基胺基)二十六碳-9-烯酸乙酯、(22Z)-N,N-二甲基三十一碳-22-烯-10-胺、N1-(2-(4-(2-(二((Z)-十八碳-9-烯-l-基)胺基)乙基)哌𠯤-l-基)乙基)- !^^-三-十二烷基乙-1,2-二胺、5-(2-(二甲基胺基)-3-((8-(2-辛基環丙基)辛基)氧基)丙氧基)戊酸甲酯、(9Z)-19-(二甲基胺基)二十七碳-9-烯酸乙酯、12-{[4-(二甲基胺基)丁醯基]氧基}二十一烷酸(2-丁基環丙基)甲酯、(20Z)-N,N-二甲基二十九碳-20-烯-10-胺、N1,N1,N2-三-十二烷基-N2-(2-(4-(2-(十二烷基((9Z,12Z)-十八碳-9,12-二烯基)胺基)乙基)哌𠯤-1-基)乙基)乙-1,2-二胺、4-(2-(二甲基胺基)-3-((8-(2-辛基環丙基)辛基)氧基)丙氧基)丁酸甲酯、(9Z)-19-(二甲基胺基)二十八碳-9-烯酸乙酯、8-{[4-(二甲基胺基)丁醯基]氧基}十七烷酸(2-辛基環丙基)甲酯、(24Z)-N,N-二甲基三十三碳-24-烯-10-胺、N1-(2-(4-(2-(二-十四烷基胺基)乙基)哌𠯤-l-基)乙基)-N1,N2,N2-三-十二烷基乙-1,2-二胺、(5Z)-17-(二甲基胺基)二十六碳-5-烯酸乙酯、(Z)-8-(2-(二甲基胺基)-3-(十八碳-9-烯-l-基氧基)丙氧基)辛酸甲酯、(2Z)-12-{[4-(二甲基胺基)丁醯基]氧基}二十一烷酸庚-2-烯-l-酯、(17Z)-N,N-二甲基二十九碳-17-烯-10-胺、N1-(2-(4-(2-(二((Z)-十二碳-6-烯-l-基)胺基)乙基)哌𠯤-l-基)乙基)-N1,N2,N2-三-十二烷基乙-1,2-二胺、(9Z)-17-(二甲基胺基)二十六碳-9-烯酸乙酯、(Z)-7-(2-(二甲基胺基)-3-(十八碳-9-烯-1-基氧基)丙氧基)庚酸甲酯、(2Z)- 8-{[4-(二甲基胺基)丁醯基]氧基}十七烷酸十一碳-2-烯-l-酯、(14Z)-N,N-二甲基二十九碳-14-烯-10-胺、(7Z)-17-(二甲基胺基)二十三碳-7-烯酸乙酯、(Z)-N1-(2-(4-(2-十二碳-6-烯-l-基(十二烷基)胺基)乙基)哌𠯤-N!^^-三-十二烷基乙-1,2-二胺、(Z)-5-(2-(二甲基胺基)-3-(十八碳-9-烯-1-基氧基)丙氧基)戊酸甲酯、10-{[4-(二甲基胺基)丁醯基]氧基}十九烷酸(2-己基環丙基)甲酯、(15Z)-N,N-二甲基二十七碳-15-烯-10-胺、(7Z)-17-(二甲基胺基)二十四碳-7-烯酸乙酯、(Z)-4-(2-(二甲基胺基)-3-(十八碳-9-烯-1-基氧基)丙氧基)丁酸甲酯、(2Z)- 10-{[4-(二甲基胺基)丁醯基]氧基}十九烷酸壬-2-烯-l-酯、(20Z)-N,N-二甲基二十七碳-20-烯-10-胺、N1-(2-(4-(2-(二辛基胺基)乙基)哌𠯤-l-基)乙基)-N1,N2^V2-三-十二烷基乙-l,2-二胺、6-(2-(二甲基胺基)-3-((8-(2-辛基環丙基)辛基)氧基)丙氧基)己酸甲酯、6-[2-(9-{[4-(二甲基胺基)丁醯基]氧基}十八烷基)環丙基]己酸乙酯、(7Z)-17-(二甲基胺基)二十五碳-7-烯酸乙酯、1-[(11Z,14Z)-1-壬基二十碳-11,14-二烯-1-基]吡咯啶、(7Z)-17-(二甲基胺基)二十六碳-7-烯酸乙酯、(20Z,23Z)-N-乙基-N-甲基二十九碳-20,23-二烯-10-胺、N,N-二甲基二十七烷-10-胺、6-{2-[ll-(二甲基胺基)二十烷基]環丙基}己酸甲酯、6-[2-(ll-{[4-(二甲基胺基)丁醯基]氧基}二十烷基)環丙基]己酸甲酯、6-(3-(癸氧基)-2-(二甲基胺基)丙氧基)己酸(2-辛基環丙基)甲酯、8-{2-[9-(二甲基胺基)十八烷基]環丙基}辛酸甲酯、8-[2-(9-{[4-(二甲基胺基)丁醯基]氧基}十八烷基)環丙基]辛酸甲酯、7-(2-(8-(2-(二甲基胺基)-3-(辛氧基)丙氧基)辛基)環丙基)庚酸甲酯、8-((2-羥乙基)(十四烷基)胺基)辛酸十七烷-9-酯代表性、2-((2-(二-十二烷基胺基)乙基)(十二烷基)胺基)-l-(4-(2-(二-十二烷基胺基)乙基)哌𠯤-1-基)乙-1-酮、(2S)-1-[(9Z,12Z)-十八碳-9,12-二烯-1-基氧基]十一烷-2-胺、(17Z,20Z)-N,N-二甲基二十六碳-17,20-二烯-9-胺、(18Z)-4-(二甲基胺基)丁酸二十七碳-18-烯-10-酯、(2S)-1-({6-[3B))-膽固-5-烯-3-基氧基]己基}氧基)-N,N-二甲基-3-[(9Z)-十八碳-9-烯-1-基氧基]丙-2-胺、10-{2-[7-(二甲基胺基)十六烷基]環丙基}癸酸甲酯、10-[2-(7-{[4-(二甲基胺基)丁醯基]氧基}十六烷基)環丙基]癸酸甲酯、(2S)-N,N-二甲基-1-({8-[(lR,2R)-2-{[(lS,2S)-2-戊基環丙基]甲基}環丙基]辛基}氧基)十三烷-2-胺、6-(2-(二甲基胺基)-3-(壬氧基)丙氧基)己酸(2-辛基環丙基)甲酯、(19Z,22Z)-N,N-二甲基二十八碳-19,22-二烯-7-胺、二壬基甘胺酸4-((N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)氧基)戊-2-酯、3-羥基丁-2-基N-(2-(二壬基胺基)乙基)-N-壬基、8,8'-(26,28-二甲基-ll,24,30,43-四氧雜-10,25,29,44-四氧雜-19,35-二氮雜五十三烷-19,35-二基)二辛酸二(十七烷-9-基)酯、8,8'-(26,27-二甲基-ll,24,29,42-四氧雜-10,25,28,43-四氧雜-19,34-二氮雜五十二烷-19,34-二基)二辛酸二(十七烷-9-基)酯、8,8'-(ll,24,29,42-四氧雜-10,25,28,43-四氧雜-19,34-二氮雜五十二烷-19,34-二基)二辛酸二(十七烷-9-基)酯、8,8'-((哌𠯤-l,4-二基雙(5-氧雜戊-5,l-二基))雙((8-(壬氧基)-8-側氧基辛基)脲二基))二辛酸二(十七烷-9-基)酯、15,18-二甲基-9,24-雙(8-(壬氧基)-8-側氧基辛基)-14,19-二側氧基-9,15,18,24-四氮雜三十二烷二酸二(十七烷-9-基)酯、15,19-二甲基-9,25-雙(8-(壬氧基)-8-側氧基辛基)-14,20-二側氧基-9,15,19,25-四氮雜三十三烷二酸二(十七烷-9-基)酯、15,18-二乙基-9,24-雙(8-(壬氧基)-8-側氧基辛基)-14,19-二側氧基-9,15,18,24-四氮雜三十二烷二酸二(十七烷-9-基)酯、N,N-二甲基-3-{[(9Z,12Z)-十八碳-9,12-二烯-1-基氧基]甲基}十二烷-1-胺、8-[2-(ll-{[4-(二甲基胺基)丁醯基]氧基}十八烷基)環丙基]辛酸甲酯、8-{2-[ll-(二甲基胺基)十七烷基]環丙基}辛酸甲酯(化合物18)、8-((2-羥乙基)(8-(壬氧基)-8-側氧基辛基)胺基)辛酸十七烷-9-酯、6-(2-(二甲基胺基)-3-(庚氧基)丙氧基)己酸(2-辛基環丙基)甲酯、(17Z)-N,N-二甲基二十六碳-17-烯-9-胺、N1-(2-(4-(2-(二-十二烷基胺基)乙基)哌𠯤-l-基)乙基)-N1^V2,N2-三己基乙-1,2-二胺、N,N-二甲基-2-{[(9Z,12Z)-十八碳-9,12-二烯-1-基氧基]甲基}十一烷-1-胺、8-{2-[ll-(二甲基胺基)十八烷基]環丙基}辛酸甲酯、6-(2-(二甲基胺基)-3-(己氧基)丙氧基)己酸(2-辛基環丙基)甲酯、(18Z)-N,N-二甲基二十七碳-18-烯-10-胺、十四烷酸2-((2-(二壬基胺基)乙基)(壬基)胺基)乙酯、壬酸2-((2-(二壬基胺基)乙基)(壬基)胺基)乙酯、N-(2-(二壬基胺基)乙基)-N-壬基甘胺酸十四烷酯、N-(2-(二壬基胺基)乙基)-N-壬基甘胺酸酯、4-(2-((2-(二壬基胺基)乙基)(壬基)胺基)乙醯胺基)丁基戊酸壬酯、l,l'-(哌𠯤-l,4-二基)雙(5-(二癸基胺基)戊-1-酮、2-((2-(二壬基胺基)乙基)(壬基)胺基)-N-十四烷基乙醯胺、N-癸基-2-((2-(二壬基胺基)乙基)(壬基)胺基)、N1-(3-(3-(二壬基胺基)丙氧基)丙基)-N1,N2,N2-三-壬基乙-l,2-二胺、N1-(2-(二壬基胺基)乙基)-N\N8,N8-三壬基辛-l,8-二胺、8-[2-(ll-{[4-(二甲基胺基)丁醯基]氧基}十九烷基)環丙基]辛酸甲酯、8-{2-[ll-(二甲基胺基)十九烷基]環丙基}辛酸甲酯、(Z)-6-(3-(癸氧基)-2-(二甲基胺基)丙氧基)己酸十一碳-2-烯-l-酯、(2R,12Z,15Z)-N,N-二甲基-1-(十一烷氧基)二十一碳-12,15-二烯-2-胺、(21Z,24Z)-N,N-二甲基三十碳-21,24-二烯-9-胺、2-(二壬基胺基)-N-(4-(2-((2-(二壬基胺基)乙基)(壬基)胺基)-N-甲基乙醯胺基)丁基)-N-甲基乙醯胺、癸酸7,10-二甲基-13,16-二壬基-6,ll-二側氧基-4-十四烷基-4,7,10,13,16-五氮雜二十五烷酯、2-(二壬基胺基)-N-(2-(2-((2-(二壬基胺基)乙基)(壬基)胺基)-N-乙基乙醯胺基)乙基)-N-乙基乙醯胺、2-(二壬基胺基)-N-(3-(2-((2-(二壬基胺基)乙基)(壬基)胺基)-N-甲基乙醯胺基)丙基)-N-甲基乙醯胺、2-((2-(二((Z)-壬-3-烯-l-基)胺基)乙基)((Z)-壬-3-烯-l-基)胺基)-N-(2-(2-(二壬基胺基)-N-甲基乙醯胺基)乙基)-N-甲基乙醯胺、2-(二壬基胺基)-N-(2-(2-((2-(二壬基胺基)乙基)(壬基)胺基)乙醯胺基)乙基)乙醯胺、8,1l-二甲基-5,14,17-三壬基-7,12-二側氧基-5,8,l1,14,17-五氮雜二十六烷酸戊酯、2-((2-(二壬基胺基)乙基)(壬基)胺基)-N-甲基-N-(2-(甲基胺基)乙基)乙醯胺、2-(二壬基胺基)-N-(2-(2-((2-(二壬基胺基)乙基)(壬基)胺基)-N-甲基乙醯胺基)乙基)-N-甲基乙醯胺、2-(二壬基胺基)-N-甲基-N-(2-(甲基胺基)乙基)乙醯胺、甘胺酸2-((N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)氧基)乙基二壬酯、甘胺酸2-羥乙基二壬酯、8-[2-(ll-{[4-(二甲基胺基)丁醯基]氧基}二十烷基)環丙基]辛酸甲酯、8-{2-[ll-(二甲基胺基)二十烷基]環丙基}辛酸甲酯、(Z)-6-(2-(二甲基胺基)-3-(壬氧基)丙氧基)己酸十一碳-2-烯-l-酯、(2R,12Z,15Z)-1-(十六烷氧基)-N,N-二甲基二十一碳-12,15-二烯-2-胺、(22Z,25Z)-N,N-二甲基三十一碳-22,25-二烯-10-胺、4-(二癸基胺基丁酸) l,l-(哌𠯤-l,4-二基)雙(4-(二癸基胺基)丁-l-酮)三級丁酯、5-(4-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌𠯤-l-基)-5-側氧基戊酸庚酯5-(庚氧基)-5-側氧基戊酸、5-(4-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌𠯤-l-基)-5-側氧基戊酸庚酯5-(庚氧基)-5-側氧基戊酸、壬酸(Z)-4-((2-(4-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌𠯤-l-基)-2-側氧基乙基)(十四烷基)胺基)丁-2-烯-1-酯、壬酸(Z)-4-羥基丁-2-烯-1-酯、癸酸(Z)-3-((2-(4-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌𠯤-l-基)-2-側氧基乙基)(十四碳-9-烯-1-基)胺基)丙酯、甲磺酸(Z)-十四碳-9-烯-l-酯、8-[2-(9-{[4-(二甲基胺基)丁醯基]氧基}十五烷基)環丙基]辛酸甲酯、8-{2-[9-(二甲基胺基)十五烷基]環丙基}辛酸甲酯、6-(2-(二甲基胺基)-3-(庚氧基)丙氧基)己酸(Z)-十一碳-2-烯-l-酯、(2R,12Z,15Z)-1-(己氧基)-N,N-二甲基二十一碳-12,15-二烯-2-胺、(16Z,19Z)-N,N-二甲基二十五碳-16,19-二烯-6-胺、8-((2-(4-(N-(2-(二((Z)-壬-3-烯-l-基)胺基)乙基)-N-((Z)-壬-3-烯-l-基)甘胺醯基)哌𠯤-l-基)-2-側氧基乙基)(壬基)胺基)辛酸甲酯、4-(壬基甘胺醯基)哌𠯤-1-甲酸三級丁酯、(Z)-癸-3-烯酸3-((2-(4-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌𠯤-l-基)-2-側氧基乙基)(十四烷基)胺基)丙酯、(Z)-癸-3-烯-l-醇、2-((2-(二((Z)-壬-3-烯-l-基)胺基)乙基)((Z)-壬-3-烯-l-基)胺基)-l-(4-(二壬基甘胺醯基)哌𠯤-1-基)乙-1-酮(Z)-1-溴壬-4-烯、辛酸3-((2-(4-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌𠯤-側氧基乙基)(十二烷基)胺基)丙酯、甘胺酸三級丁基十二烷酯、S-4-((2-(4-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌𠯤-l-基)-2-側氧基乙基)(壬基)胺基)丁硫代戊酯、3-甲基己酸3-((2-(l-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌啶-^基)乙基)(壬基)胺基)丙酯、三級丁基4-(2-((3-((3-甲基己醯基)氧基)丙基)(壬基)胺基)乙基)哌啶-l-、己酸3-((2-(l-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌啶-4-基)乙基)(壬基)胺基)-2-甲基丙酯、3-甲基己酸3-((2-(4-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌𠯤-側氧基乙基)(壬基)胺基)丙酯、己酸3-((2-(4-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌𠯤-側氧基乙基)(壬基)胺基)-2-甲基丙酯、8-[2-(9-{[4-(二甲基胺基)丁醯基]氧基}十六烷基)環丙基]辛酸甲酯、8-{2-[9-(二甲基胺基)十六烷基]環丙基}辛酸甲酯、(Z)- 6-(2-(二甲基胺基)-3-(己氧基)丙氧基)己酸十一碳-2-烯-l-酯、(2R,12Z,15Z)-1-(癸氧基)-N,N-二甲基二十一碳-l2,15-二烯-2-胺、(17Z,20Z)-N,N-二甲基二十六碳-17,20-二烯-7-胺、1-(二壬基甘胺醯基)哌啶-4-甲酸2-((2-(二壬基胺基)乙基)(壬基)胺基)乙酯、4-(2-((2-(二壬基胺基)乙基)(壬基)胺基)乙基)環己烷-1,4-二甲酸l-(2-(二壬基胺基)乙基)酯、2-(二壬基胺基)乙-1-醇、12-((2-(l-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)吡咯啶-3-基)乙基)(十四烷基)胺基)十二烷酸甲酯、3-(2-((12-甲氧基-12-側氧基十二烷基)(十四烷基)胺基)乙基)吡咯啶-l-甲酸三級丁酯、癸酸3-((2-(l-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)吡咯啶-3-基)乙基)(十四烷基)胺基)丙酯、3-(2-((3-(癸醯氧基)丙基)(十四烷基)胺基)乙基)吡咯啶-l-甲酸三級丁酯、6-((2-(l-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)吡咯啶-3-基)乙基)(十四烷基)胺基)己酸庚酯、3-(2-((6-(庚氧基)-6-側氧基己基)(十四烷基)胺基)乙基)吡咯啶-1-甲酸三級丁酯、8-((2-(l-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)吡咯啶-3-基)乙基)(十四烷基)胺基)辛酸戊酯、3-(2-(十四烷基胺基)乙基)吡咯啶-l-甲酸三級丁酯、12-((2-(l-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌啶-3-基)乙基)(十四烷基)胺基)十二烷酸甲酯、3-(2-((12-甲氧基-12-側氧基十二烷基)(十四烷基)胺基)乙基)哌啶-l-甲酸丁酯、癸酸3-((2-(l-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌啶-3-基)乙基)(十四烷基)胺基)丙酯、6-((2-(l-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌啶-3-基)乙基)(十四烷基)胺基)己酸庚酯、8-((2-(l-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌啶-3-基)乙基)(十四烷基)胺基)辛酸戊酯、6-((2-(4-(2-((2-(二-十二烷基胺基)乙基)(十二烷基)胺基)乙基)哌𠯤-l-基)乙基)(十二烷基)胺基)己酸戊酯步驟1:6-溴己酸戊酯、8-[2-(9-{[4-(二甲基胺基)丁醯基]氧基}十七烷基)環丙基]辛酸甲酯、8-{2-[9-(二甲基胺基)十七烷基]環丙基}辛酸甲酯、(2S,12Z,15Z)-N,N-二甲基-1-(辛氧基)二十一碳-12,15-二烯-2-胺、6-(2-(二甲基胺基)-3-(辛氧基)丙氧基)己酸(2-辛基環丙基)甲酯、(18Z,21Z)-N,N-二甲基二十七碳-18,21-二烯-8-胺、反式-1-甲基-3,4-雙(((Z)-十六碳-9-烯醯氧基)甲基)吡咯啶、(Z)-4-((2-(4-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌𠯤-l-基)-2-側氧基乙基)(十四烷基)胺基)丁酸壬-2-烯-l-酯、反式-1-甲基-3,4-雙(((9Z,12Z)-十八碳-9,12-二烯醯氧基)甲基)吡咯啶、12-((2-(4-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌𠯤-l-基)-2-側氧基乙基)(十四烷基)胺基)十二烷酸甲酯、(7Z)-17-[2-(二甲基胺基)乙基]二十六碳-7-烯酸乙酯、反式-1-甲基-3,4-雙(((Z)-十八碳-9-烯醯氧基)甲基)吡咯啶、6-(2-{]11-^2-(二甲基胺基)乙基]二十烷基}環丙基)己酸甲酯、12-((2-(l-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌啶-4-基)乙基)(十四烷基)胺基)十二烷酸甲酯、10-(2-V-^2-(二甲基胺基)乙基]十六烷基}環丙基)癸酸甲酯、8-(2-{111-;2-(二甲基胺基)乙基]十七烷基}環丙基)辛酸甲酯、甘胺酸2-(l-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌啶-4-基)乙基二壬酯、4-(2-((二壬基甘胺醯基)氧基)乙基)哌啶-1-甲酸三級丁酯、8-(2-{lLl-;2-(二甲基胺基)乙基]十八烷基}環丙基)辛酸甲酯、8-(2-{l11- "2-(二甲基胺基)乙基]十九烷基}環丙基)辛酸甲酯、l,-(哌𠯤-l,4-二基)雙(2-(二壬基胺基)乙-1-酮)、8-[2-{]11-^2-(二甲基胺基)乙基]二十烷基}環丙基)辛酸甲酯、8-(2-{9-[2-(二甲基胺基)乙基]十五烷基}環丙基)辛酸甲酯、(7Z)-19-{[4-(二甲基胺基)丁醯基]氧基}二十八碳-7-烯酸甲酯、(7Z)-19-(二甲基胺基)二十八碳-7-烯酸甲酯、順式-1-甲基-3-[(9Z,12Z)-十八碳-9,12-二烯-1-基氧基]-4-(辛氧基)吡咯啶、2-(二-十二烷基胺基)-l-(4-(N-(2-(二-十二烷基胺基)乙基)-N-十二烷基甘胺醯基)哌𠯤-l-基)乙-1-酮、(Z)-6-(2-(二甲基胺基)-3-(辛氧基)丙氧基)己酸十一碳-2-烯-l-酯、(2SN,N-二甲基-1-[(9Z,12Z)-十八碳-9,12-二烯-1-基氧基]癸-2-胺(化合物11)、(19Z,22Z)-N,N-二甲基二十八碳-19,22-二烯-9-胺、8-(2-{9-[2-(二甲基胺基)乙基]十六烷基}環丙基)辛酸甲酯、碳酸5-((2-(4-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌𠯤-側氧基乙基)(壬基)胺基)戊基甲酯、8-(2-{9-[2-(二甲基胺基)乙基]十七烷基}環丙基)辛酸甲酯、(7Z)-19-[2-(二甲基胺基)乙基]二十八碳-7-烯酸甲酯、(Z)-4-((2-(4-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)哌𠯤-l-基)-2-側氧基乙基)(壬基)胺基)丁酸戊-2-烯-l-酯、(1lZ)-19-[2-(二甲基胺基)乙基]二十八碳-l1-烯酸甲酯、(9Z)-21-[2-(二甲基胺基)乙基]二十七碳-9-烯酸甲酯、(9Z)-21-[2-(二甲基胺基)乙基]二十八碳-9-烯酸甲酯、(9Z)-21-[2-(二甲基胺基)乙基]二十九碳-9-烯酸甲酯、甘胺酸2-(l-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)吡咯啶-3-基)乙基二壬酯、(9Z)-21-[2-(二甲基胺基)乙基]三十碳-9-烯酸甲酯、甘胺酸(l-(N-(2-(二壬基胺基)乙基)-N-壬基甘胺醯基)吡咯啶-3-基)甲基二壬酯、(9Z)-19-[2-(二甲基胺基)乙基]二十五碳-9-烯酸甲酯、(9Z)-19-[2-(二甲基胺基)乙基]二十六碳-9-烯酸甲酯、6-(2-(8-(3-(癸氧基)-2-(二甲基胺基)丙氧基)辛基)環丙基)己酸甲酯、(1lZ)-19-{[4-(二甲基胺基)丁醯基]氧基}二十八碳-l1-烯酸甲酯、(1lZ)-19-(二甲基胺基)二十八碳-l1-烯酸甲酯、(2S)-N,N-二甲基-1-[(9Z,12Z)-十八碳-9,12-二烯-1-基氧基]十二烷-2-胺、(14Z,17Z)-N,N-二甲基二十三碳-14,17-二烯-4-胺、甲基二((9Z,12Z)-十八碳-9,12-二烯基)胺、(9Z)-19-{[4-(二甲基胺基)丁醯基]氧基}二十八碳-9-烯酸甲酯、(9Z)-19-(二甲基胺基)二十八碳-9-烯酸甲酯、(Z)-17-(2-(二甲基胺基)-3-(辛氧基)丙氧基)十七碳-8-烯酸甲酯、(3R,4R)-3,4-雙((Z)-十六碳-9-烯基氧基)-1-甲基吡咯啶、(2S)-N,N-二甲基-1-[(9Z,12Z)-十八碳-9,12-二烯-1-基氧基]十一烷-2-胺、(20Z,23Z)-4-(二甲基胺基)丁酸二十九碳-20,23-二烯-10-酯、(20Z,23Z)-N,N-二甲基二十九碳-20,23-二烯-10-胺、3-((6Z,9Z,28Z,31Z)-三十七碳-6,9,28,31-四烯-19-基氧基)-N,N-二甲基丙-l-胺、3-((6Z,9Z,28Z,31Z)-三十七碳-6,9,28,31-四烯-19-基氧基)-N,N-二甲基丙-1-胺、(6Z,9Z,28Z,31Z)-4-(二甲基胺基)丁酸三十七碳-6,9,28,31-四烯-19-酯、5-(二甲基胺基)戊酸(6Z,16Z)-12-((Z)-癸-4-烯基)二十二碳-6,16-二烯-l1-酯、(6Z,16Z)-5-(二甲基胺基)戊酸12-((Z)-癸-4-烯基)二十二碳-6,16-二烯-l1-酯、(6Z,16Z)-5-(二甲基胺基)戊酸12-((Z)-癸-4-烯基)二十二碳-6,16-二烯-11-酯、L-精胺酸-α-(2,3-二月桂醯氧基)丙基醯胺、L-離胺酸-α-(2,3-二月桂醯氧基)丙基醯胺、2,3-二油醯氧基丙胺、2,3-二硬脂醯氧基丙胺、2,3-二月桂醯氧基丙胺、二亞麻仁油基甲基4-(二甲基胺基)丙醚)、二亞麻仁油基甲基4-(二甲基胺基)丁醚)及2,2-二亞麻仁油基-4-(2-二甲基胺基乙基)-[l,3]-二氧雜環戊烷。In some embodiments, at least one cationic lipid may be selected from, but is not limited to, at least one of the following: 1,3-bis-(l,2-bis-tetradecyloxy-propyl-3-dimethyl Ethoxylammonium bromide)-propan-2-ol ((R)-PLC-2)), 2-(dinonylamino)ethan-1-ol (17-10), 2-(di-deca) Dialkylamino)ethane-1-ol (17-11), 3-(di-dodecylamine)propan-1-ol (17-12), 4-(di-dodecylamine yl)butan-1-ol (17-13), 2-(hexyl((9Z,12Z)-octadeca-9,12-dien-1-yl)amino)ethan-1-ol (17- 2), 2-(nonyl((9Z,12Z)-octadeca-9,12-dien-1-yl)amino)ethan-1-ol (17-3), 2-(dodecane ((9Z,12Z)-octadeca-9,12-dien-1-yl)amino)ethan-1-ol (17-4), 2-(((9Z,12Z)-octadecanoic acid) -9,12-dien-1-yl)(tetradecyl)amino)ethan-1-ol (17-5), 2-(((9Z,12Z)-octadecane-9,12- Dien-1-yl)(octadecyl)amino)ethan-1-ol (17-6), 2-(ditetradecylamine)ethan-1-ol (17-7), 2-(Di((Z)-octadec-9-en-1-yl)amino)ethan-1-ol (17-8), (9Z,12Z)-N-(2-methoxyethane base)-N-((9Z,12Z)-octadeca-9,12-diene-1-yl)octadeca-9,12-diene-1-amine (17-9), N-nonane Base-N-(2-(piperidine-1-yl)ethyl)non-1-amine (19-1), N-dodecyl-N-(2-(piperidine-1-yl)ethyl) yl)dodecane-1-amine (19-2), (9Z,12Z)-N-((9Z,12Z)-octadecan-9,12-dien-1-yl)-N-(2 -(Piper-1-yl)ethyl)octadecy-9,12-diene-1-amine (19-3), N-dodecyl-N-(2-(4-methylpiper 𠯤-1-yl)ethyl)dodecyl-1-amine intermediate 1: 2-(di-dodecylamine)ethan-1-ol (19-4), N-dodecyl- N-(2-(4-(4-methoxybenzyl)piperidine-1-yl)ethyl)dodecane-1-amine (19-5), (9Z,12Z)-N-( 2-(4-Dodecylpiperidine-1-yl)ethyl)-N-((9Z,12Z)-octadecanoic-9,12-dien-1-yl)octadecanoic-9, 12-diene-1-amine (19-6), (3-((6Z,9Z,28Z,31Z)-trioctacarbon-6,9,28,31-tetraen-19-yloxy) -N,N-dimethylpropan-1-amine) (1-Bl 1), N-(2-(di-dodecylamine)ethyl)-N-dodecylglycine ( 20-1), 8,8'-((2-(Dodecyl(2-hydroxyethyl)amino)ethyl)ureadiyl)dioctanoic acid dinonyl ester (20-10), 3-( (2-(di-tetradecylamine)ethyl)(dodecyl)amino)propan-1-ol (20-11), 2-((2-(ditetradecylamine) Base)ethyl)(tetradecyl)amino)ethan-1-ol (20-12), 2-((2-(bis((9Z,12Z)-octadeca-9,12-diene) -1-yl)amino)ethyl)(dodecyl)amino)ethan-1-ol (20-13), 2-((2-(bis((9Z,12Z)-octadecane- 9,12-dien-1-yl)amino)ethyl)((9Z,12Z)-octadeca-9,12-dien-1-yl)amino)ethan-1-ol (20- 14), 2-((2-(di-dodecylamine)ethyl)(hexyl)amino)ethan-1-ol (20-15), 2-((2-(dinonylamine) ethyl)(nonyl)amino)ethan-1-ol (20-16), 2-((2-(di-dodecylamine)ethyl)(nonyl)amino)ethyl -1-ol (20-17), 2-((2-(dinonylamino)ethyl)(dodecyl)amino)ethan-1-ol (20-18), 2-(( 2-(di-dodecylamine)ethyl)amino)ethan-1-ol (20-19), 6-(dodecyl(2-(dodecyl(2-hydroxyethyl) )Amino)ethyl)amino)pentylhexanoate (20-2), 2-((2-(di-dodecylamine)ethyl)(dodecyl)amino)ethyl- 1-ol (20-20), 3-((2-(di-dodecylamine)ethyl)(dodecyl)amino)propan-1-ol (20-21), 4- ((2-(di-dodecylamine)ethyl)(dodecyl)amino)butan-1-ol (20-22), (Z)-2-((2-(di- Dodecylamine)ethyl)dodec-6-en-1-yl)amino)ethan-1-ol (20-23), 2-((2-(di-dodecylamine Base)ethyl)(tetradecyl)amino)ethan-1-ol(20-24), 2-((2-(di-dodecylamine)ethyl)((9Z,12Z) -Octadec-9,12-dien-1-yl)amino)ethan-1-ol (20-25), 6-((2-(di-dodecylamine)ethyl)( 2-Hydroxyethyl)amino)pentylhexanoate (20-3), 6,6'-((2-(dodecyl(2-hydroxyethyl)amino)ethyl)ureadiyl) Dipentyl dicaproate (20-4), 6,6'-((2-((6-(heptyloxy)-6-side oxyhexyl)(2hydroxyethyl)amino)ethyl) Ureadiyl)diheptyl dihexanoate (20-5), 6-((2-(dinonylamino)ethyl)(2-hydroxyethyl)amino)pentylhexanoate (20-6 ), 6-(Dodecyl(2-(Dodecyl(2-hydroxyethyl)amino)ethyl)amino)heptylhexanoate (20-7), 8-((2-( Di-dodecylamine)ethyl)(2-hydroxyethyl)amino)octanoic acid nonyl ester (20-8), l8-((2-(di-dodecylamine)ethyl) (2-Hydroxyethyl)amino)octadecan-9-octanoate (20-9), 1-(2,2-di((9Z,12Z)-octadecan-9,12-diene- 1-yl)cyclopropyl)-N,N-dimethylmethylamine (21-1), 4-(dimethylamino)butanoic acid 3,3-bis((9Z,12Z)-octadecane -9,12-dien-1-yl)cyclobutyl ester (21-2), 3-(dimethylamino)propionic acid 3,3-bis((9Z,12Z)-octadecane-9, 12-Dien-1-yl)cyclopentyl ester (21-3), 4-(dimethylamino)butyric acid 3,3-bis((9Z,12Z)-octadeca-9,12-di En-1-yl)cyclopentyl ester (21-4), 1-(2,3-di((8Z,11Z)-heptadecan-8,11-dien-1-yl)cyclopropyl)- N,N-dimethylmethylamine (21-6), unknown (75-016B), poly{4-((2-(dimethylamino)ethyl)thio)tetrahydro-2H-pyridine Pyran-2-one}-r-poly{4-(octylthio)tetrahydro-2H-pyran-2-one}(A7), (3aR5s,6aS)-N,N-dimethyl-2, 2-Di((9Z,12Z)-octadeca-9,12-dienyl)tetrahydro-3aH-cyclopent-1,3-dioxon-5-amine (ALN100), (3aR,5s, 6aS)-N,N-dimethyl-2,2-bis((9Z,12Z)-octadeca-9,12-dienyl)tetrahydro-3aH-cyclopenta[d][l,3] Dioxyer-5-amine (ALN1001), ((3aR,5s,6aS)-N,N-dimethyl-2,2-bis((9Z,12Z)-octadeca-9,12-diene (ALNY-100), tetrahydro-3aH-cyclopenta[d][1,3]dioxon-5-amine)) (ALNY-100), dimyristyltrimethylammonium propane (amine lipid 6), Benzamiπdiπ -Dialkyl-formic acid (BAADACA), N,N-dihydroxyethylmethyl-N-2-(cholesteryloxycarbonylamino)ethylammonium bromide (BHEM-Chol), N,N-bis- (2-Hydroxyethyl)-N-methyl-N-(2-cholesteryloxycarbonylamino-ethyl)ammonium bromide (BHEM-Chol1), 2-{4-[(3β)-cholesterol- 5-en-3-yloxy]butoxy}-iV?N-dimethyl-3-[(9Z,12Z)-octadeca-9,12-dien-l-yloxy]propan -1-amine (butyl-CLinDMA), (2JR)-2-{4-[(3β)-cholest-5-en-3-yloxy]butoxy}-Λr^dimethyl-3 -[(9Z,12Z)-octadeca-9,12-diene-l-yloxypropan-1-amine (butyl-CLinDMA (2R)), (25)-2-{4-[( 3β)-Cholesterol-5-en-3-yloxy]butoxy}-iVy/V-dimethyl-3-[(9Z,12Z)-octadeca-9,12-diene-l -yloxy]propan-1-amine (butyl-CLinDMA (2S)), 1,1'-(2-(4-(2-((2-(bis(2-hydroxydodecyl))amine Base)ethyl)(2-hydroxydodecyl)amino)ethyl)piperidine-l-yl)ethylureadiyl)di-dodecan-2-ol (C 12-200), 1 ,1'-((2-(4-(2-((2-(bis(2-hydroxydodecyl)amino)ethyl)(2-hydroxydodecyl)amino)ethyl) Piperanyl-1-yl)ethyl)ureadiyl)bis(dodecan-2-ol)(C12-200), cholesteryl-succinylsilane (C2), bis(octadecane-9,12 -Dienoic acid)(9Z,9'Z,12Z,12'Z)-2-((4-(((3-(dimethylamino)propoxy)carbonyl)oxy)hexadecanyl )oxy)propane-1,3-diester (cationic lipid A2), octadeca-9,12-dienoic acid (9Z,12Z)-3-((4,4-bis(octyloxy)butyryl) )oxy)-2-((((3-(diethylamino)propoxy)carbonyl)oxy)methyl)propyl ester (cationic lipid A3), l-(3-cholesteryl)-oxy Carbonyl-aminomethylimidazole (CHIM), [(2-morpholin-4-yl-ethylaminemethyl)methyl]-cholesterylcarbamic acid ester (Chol-C3N-Mo2), [(2-methyl Cholin-4-yl-ethylamineformyl)-ethyl]-carbamic acid cholesteryl ester Chol-DMC3N-Mo2[l-methyl-2-(2-morpholin-4-yl-ethylamineformyl) Cholesteryl)-propyl]-carbamic acid ester (Chol-C4N-Mo2), 4-(dimethylamino)butyric acid 1,17-bis(2-octylcyclopropyl)heptadecan-9- Ester (CL), 4-(dimethylamino)-butanoic acid 6,9,28,31-tetraene-19-ester (CL01), 3-(dimethylamino)propane Cholesteryl acid ester (CL06), 2-(dimethylamino)cholesteryl acetate (CL08), N,N-dimethyl-2,3-bis(((9Z,12Z)-octadecacarbon-9, 12-dien-1-yl)oxy)propan-1-amine (CL-1), N-methyl-2-(((9Z,12Z)-octadeca-9,12-diene-1) -yl)oxy)-N-(2-((((9Z,12Z)-octadeca-9,12-dien-1-yl)oxy)ethyl)ethyl-1-amine (CL- 11), (3R,4R)-3,4-bis(((Z)-hexadec-9-en-1-yl)oxy)-1-methylpyrrolidine (compound CL-12) (CL -12), 2-(dimethylamino)-N-((6Z,9Z,28Z,31Z)-37-6,9,28,31-tetraen-19-yl)acetamide (CL-13), (9Z,9'Z,12Z,12'Z)-bis(octadeca-9,12-dienoic acid)-3-(dimethylamino)propan-1,2- Diester (CL-14), (9Z,12Z)-bis((9Z,12Z)-octadeca-9,12-dien-1-yl)amine (CL-15), di-dodecanoic acid 7-Hydroxy 7-(4-((1-methylpiperidin-4-carbonyl)oxy)butyl)tridecane-1,13-diester (CL15B6), 7-hydroxyditetradecanoate 7-(4-((1-methylpiperidine-4-carbonyl)oxy)butyl)tridecane-1,13-diester (CL15C6), dipalmitic acid 7-hydroxy 7-(4-( (1-methylpiperidine-4-carbonyl)oxy)butyl)tridecane-1,13-diester (CL15D6), dioleic acid 7-hydroxy 7-(4-((1-methylpiperdine) Bis(2-(((9Z,12Z)-octadeca-9,12-diene-1)bis(2-(((9Z,12Z)-octadeca-9,12-diene) -yl)oxy)ethyl)amine (CL-16), (9Z,12Z)-N-methyl-N-(2-(((9Z,12Z)-octadeca-9,12-diene) -1-yl)oxy)ethyl)octadeca-9,12-diene-1-amine (CL-17), (9Z,12Z)-N-(3-(((9Z,12Z)- Octadeca-9,12-diene-1-yl)oxy)propyl)octadec-9,12-diene-1-amine (CL-18), bis((11Z,14Z)-di Decacarbon-11,14-dien-1-yl)carbamic acid (1-methylpiperidin-3-yl)methyl ester (CL-19), N-methyl-N,N-bis(2-( (Z)-Hexadecacarbon-9-alkenyloxy)ethyl)amine (CL-2), (13Z,16Z)-N,N-dimethyl-4-((9Z,12Z)-octadeca Carbon-9,12-diene-1-yl)dococ-3,13,16-triene-1-amine (CL-20), (S)-2-amino-3-hydroxy-N ,N-bis(2-(((Z)-octadec-9-en-1-yl)oxy)ethyl)propanamide (CL-21), C2:N,N-di-hexadecan Alkyl-N'-(3-triethoxysilylpropyl)succinimide (CL3), trans-1-methyl-3,4-bis(((Z)-octadecacarbon- 9-en-1-yl)oxy)methyl)pyrrolidine (CL-3), bis(methylene)(9Z,9'Z,12Z,12'Z)-bis(octadecacarbon-9, 12-Dienoic acid) trans-1-methylpyrrolidine-3,4-diester (CL-4), ditetradecanoic acid 7-(4-(diisopropylamino)butyl) -7-Hydroxytridecane-1,13-diester (CL4C6), dipalmitic acid 7-(4-(diisopropylamino)butyl)-7-hydroxytridecane-1,13-di Ester (CL4D6), dioleic acid 11-(4-(diisopropylamino)butyl)-11-hydroxyhexadecane-1,21-diester (CL4H10), dioleic acid 7-(4 -(Diisopropylamino)butyl)-7-hydroxytridecane-1,13-diester (CL4H6), dioleic acid 9-(4-(diisopropylamino)butyl)- 7-Hydroxyheptadecane-1,17-diester (CL4H8), 4-(dimethylamino)butyric acid (6Z, 9Z, 28Z, 31Z)-trioctadecane-6,9,28,31 -Tetraene-19-ester (CL-5), 2-(dimethylamino)-N-(2-(((Z)-octadec-9-en-1-yl)oxy)ethyl base)-N-((9Z,12Z)-octadeca-9,12-dien-1-yl)acetamide (CL-53), 3-((2-(((Z)-octadeca) Carbo-9-en-1-yl)oxy)ethyl) ((9Z,12Z)-octadeca-9,12-dien-1-yl)amino)propane-1-All (CL-54 ), 1-methyl-3,3-bis((((9Z,12Z)-octadeca-9,12-dien-1-yl)oxy)methyl)azetidine (CL- 55), 1-methyl-3,3-bis(2-(((9Z,12Z)-octadeca-9,12-dien-1-yl)oxy)ethyl)azetidine (CL-56), 1-methyl-3,3-bis(2-(((9Z,12Z)-octadeca-9,12-dien-1-yl)oxy)propyl)aza Cyclobutane (CL-57), 2-(3,3-bis((9Z,12Z)-octadeca-9,12-dien-1-yl)azetidin-1-yl)ethane -1-ol (CL-58), 2-(3,3-bis((9Z,12Z)-octadeca-9,12-dien-1-yl)azetidin-1-yl) Propan-1-ol (CL-59), 3-(bis((9Z,12Z)-octadeca-9,12-dien-1-yl)amino)propan-1-ol (CL-6) , 3-(dimethylamino)propyl 3,3-bis((9Z,12Z)-octadeca-9,12-dien-1-yl)azetidine-1-carboxylate (CL -60), 2-(bis((Z)-octadec-9-en-1-yl)amino)ethan-1-ol (CL-61), 3-(bis((Z)-octadeca-9-en-1-yl)amino) Carbo-9-en-1-yl)amino)propan-1-ol (CL-62), (11Z,14Z)-2-((dimethylamino)methyl)-2-((9Z, 12Z)-octadeca-9,12-dien-1-yl)eicos-11,14-dien-1-ol (CL-63), (11Z,14Z)-2-(dimethyl Amino)-2-((9Z,12Z)-octadeca-9,12-dien-1-yl)eicosac-11,14-dien-1-ol (CL-64), 3- (Dimethylamino)-2,2-bis((((9Z,12Z)-octadeca-9,12-dien-1-yl)oxy)methyl)propan-1-ol (CL -65), (9Z,12Z)-N-(2-(((Z)-octadec-9-en-1-yl)oxy)ethyl)octadec-9,12-diene- 1-amine (CL-7), 1-methyl-3,3-bis((9Z,12Z)-octadeca-9,12-dien-1-yl)azetidine (CL-8 ), N,2-dimethyl-1,3-bis(((9Z,12Z)-octadeca-9,12-dien-1-yl)oxy)propan-2-amine (CL-9 ), 3-dimethylamino-2-(cholest-5-ene-3B-oxybut-4-oxy)-1-(cis,cis-9,12-octadecadiene Oxy)propane (CLinDMA), 2-[5′-(cholest-5-en-3-oxy)-3′-oxopentyloxy)-3-dimethyl-1-(cis, cis-9′,12′-octadecadienyloxy)propane (CpLinDMA), acetyltrimethylammonium bromide (CTAB), l^-diarachidonyloxy-^TV-di Methyl^-propyl-S-amine (DAraDMA), 0,0'-di-tetradecanoyl-N-(α-trimethylammonioacetyl)diethanolamine chloride (DC-6-14 ), 3β-[N-(N′,N′-dimethylaminoethane)aminomethanoyl]cholesterol (DC-Chol), dimethyldioctadecyl ammonium (DDA), dimethyl Di-octadecyl ammonium bromide (DDA), N,N-distearyl-N,N-dimethylammonium bromide (DDAB), l,2-di-docosahexaene Oxy-(7V,N-dimethyl)-propyl-3-amine (DDocDMA), N-(2-(dimethylamino)ethyl)-4,5-bis(dodecylsulfide) yl) pentylamine (DEDPA), 3-dimethylamino-2-(cholestero-5-ene-3β-oxypentan-3-oxa-an-5-oxy)-1-(cis , cis-9,12-octadecadienyloxy)propane (DEG-CLinDMA), 1,6-dioleyltriethylenetetraamide (dio-TETA), Nl,N19-bis(( S,23E,25E,27E,29E)-16-((2E,4E,6E,8E)-3,7-dimethyl-9-(2,6,6-trimethylcyclohex-l-ene -l-yl)nonan-2,4,6,8-tetraenylamide)-24,28-dimethyl-15,22-bisoxy-30-(2,6,6-trimethyl cyclohex-l-en-l-yl)-4,7,10-trioxa-14,21-diazatriaconta-23,25,27,29-tetraen-l-yl)- 4,7,10,13,16-pentaoxanonadecane-1,19-diamide (diVA-PEG-diVA), DiLin-N-methylpiperdine (DL-033), DiLin-N, N-dimethylglycine (DL-036), dioleyl-N,N-dimethylglycine (DL-048), 3-((1,3-bis(((9Z,12Z )-octadeca-9,12-dienyl)oxy)propan-2-yl)amino)propionic acid (DLAPA), 1,2-dilinoxy-3-dimethyl Aminopropane (DLenDMA), 1-linoleyl-2-linoleoxy-3-dimethylaminopropane (DLin-2-DMAP), 3-(N,N-dilinolein methylamino)-1,2-propanediol (DLinAP), 1,2-N,N'-dilinoleylaminemethanoyl-3-dimethylaminopropane (DLincarbDAP), 1,2-dilincarbDAP Linseed oil acylaminoformyl-3-dimethylaminopropane (DLinCDAP), 1,2-dilinseed oil acylaminoformyloxy-3-dimethylaminopropane (DLin-C- DAP), 1,2-dilinoleoxy-3-(dimethylamino)acetyloxypropane (DLin-DAC), 1,2-dilinoleyloxy-3-dimethyl Aminopropane (DLinDAP), 1,2-dilinoleoxy-N,N-dimethylaminopropane (DLinDMA), 1,2-dilinoleoxy-3-dimethylaminopropane Propane (DLinDMA 1), 1,2-dilinoleoxy-3-(2-N,N-dimethylamino)ethoxypropane (DLin-EG-DMA), dilinoleyl -4-Aminobutyric acid (DLinFAB), 2,2-dilinoleyl-4-(2-dimethylaminoethyl)-[1,3]-dioxolane (DLin- K-C2-DMA), 2,2-dilinoleyl-4-dimethylaminomethyl-[1,3]-dioxolane (DLin-K-DMA), 1,2- Dilinoleoxy-3-morpholinylpropane (DLin-MA), 4-(dimethylamino)butyric acid (6Z, 9Z, 28Z, 31Z) - 37 carbons - 6, 9, 28 , 31-tetraen-19-ester (DLin-MC3-DMA), l,2-dilinoleoxy-3-(N-methylpiperbenzoyl)propane (DLinMPZ), 1,2-dilinoleyl Dilinoleoxy-3-(N-methylpiperidinyl)propane (DLin-MPZ), Dilinoleoxy-3-piperidylpropylamine (DLinPip), 1.2 Dilinoleoxy-3-(3 '-Hydroxypiperidinyl)-propylamine (DLinPip-3OH), 1,2-dilinoleyloxy 3-(4'-hydroxypiperidinyl)-propylamine (DLinPip-4OH), 1,2-dilinoleoxy Oloxy-3-hydroxypropane (DLinPO), 1,2-dilinoleylthio-3-dimethylaminopropane (DLin-S-DMA), l,2-dilinoleylthiopropane -3-Trimethylaminopropane (DLinTAP), 1,2-Dilinoleyl-3-trimethylaminopropane hydrochloride (DLin-TAP.Cl), 1,2-Dilinolein Oloxy-3-trimethylaminopropane (DLinTMA), 1,2-dilinoleoxy-3-trimethylaminopropane hydrochloride (DLin-TMA.Cl), 3-(( 1,3-bis(((9Z,12Z.15Z)-octadeca-9,12,15-trienyl)oxy)propan-2-yl)amino)propionic acid (DLLAPA), 1, 2 Dilinoleoxy 3-(N,N-dimethyl-propylamine) (DLmDEA), l,2-dilauryl-sn-glycerol-3-phosphoethanolamine (DLPE), l,2-di Lauryl-sn-glycerol-3-glycerol (DLPG), N,N-dimethyl-3,4-dioleyloxybenzylamine (DMOBA), dimyristyl phospholipid serine ( DMPS), N-[l-(2,3-dimyristyloxy)propyl]-N,N-dimethyl-N-(2-hydroxyethyl)ammonium bromide (DMRIE), 1,2 -Dimyristyloxypropyl-3-dimethyl-hydroxyethylammonium bromide (DMRIE1), l,2-dimyristyl-3-trimethylammonium propane (DMTAP), 3-(N ,N-dioleylamine)-1,2-propanediol (DOAP), 3-((1,3-bis(oleyloxy)propan-2-yl)amino)propionic acid (DOAPA), 1,2-N,N′-dioleylaminemethyl-3-dimethylaminopropane (DOcarbDAP), 1,2-dioleylaminemethyl-3-dimethylammonium- Propane (DOCDAP), N,N-dioleyl-N,N-dimethylammonium chloride (DODAC), 1,2-dioleyl-3-dimethylammonium-propane (DODAP), N ,N-dihydroxyethyl N,N-dioctadecyl ammonium chloride (DODEAC), N,N-dimethyl-2,3-dioleoxypropylamine (DODMA), dioleyl -4-Aminobutyric acid (DOFAB), dioctadecylglycinolspermine (DOGS), 1,2-dioleyl-3-methyl-(methoxycarbonyl- Ethyl ammonium-propane (DOMCAP), 1,2-dioleyl-3-N-pyrrolidine-propane (DOP5P), 1,2-dioleyl-3-N-pyridinium-propane bromide Salt (DOP6P), 1,2-dioleyl-3-dimethyl-hydroxyethylammonium bromide (DORI), 1,2-dioleyloxypropyl-3-dimethyl-hydroxyethyl 1,2-dioleyloxypropyl-3-dimethyl-hydroxybutylammonium bromide (DORIE-HB), 1,2-dioleyloxypropyl- 3-dimethyl-hydroxypropylammonium bromide (DORIE-HP), 1,2-dioleyloxypropyl-3-dimethyl-hydroxypentylammonium bromide (DORIE-Hpe), 2, 3-Dioleyloxy-N-[2(spermine-formamide)ethyl]-N,N-dimethyl-1-propane ammonium trifluoroacetate (DOSPA), 1,3-di Olyloxy-2-(6-carboxy-sperminyl)-propylamide (DOSPER), N-(1-(2,3-dioleyloxy)propyl)-N,N,N -Trimethylammonium chloride (DOTAP), 1,2-dioleyl-3-trimethylammonium-propane (DOTAP1), N-[5'-(2',3'-dioleyl) Uridine]-N',N',N'-trimethylammonium tosylate (DOTAU), 1-[2-(9(Z)-octadecenyloxy)ethyl]-2- (8(Z)-Heptadecenyl-3-(2-hydroxyethyl)imidazolium chloride (DOTIM), N-(1-(2,3-dioleyloxy)propyl)-N ,N,N-trimethylammonium chloride (DOTMA), dioleyl phospholipid acyluridine phosphatidyl choline (DOUPC), 1,2-diphvtanyloxy (Diphvtanyloxy)-W.N-dimethyl) -Butan-4-amine (DPan-C2-DMA), l,2-diphytanyloxy (Diphytanyloxy)-3-(iV,7V-dimethyl)-propylamine (DPanDMA), (2-(dimethyl 2,3-bis(dodecylthio)propyl amino)ethyl)carbamate (DPDEC), dipalmitoyl-4-aminobutyric acid (DPFAB), 1,2-dipalmitoxy Propyl-3-dimethyl-hydroxyethylammonium bromide (DPRIE), 1,2-dipalmitoyl-3-trimethylammonium propane (DPTAP), 1-[2-(hexadecanoyloxy )ethyl]-2-pentadecyl-3-(2-hydroxyethyl)imidazolium chloride (DPTIM), 3-((1,3-bis(stearyloxy)propan-2-yl) )Amino)propionic acid (DSAPA), distearyldimethylammonium (DSDMA), 1,2-distearyloxy-N,N-dimethylaminopropane (DSDMA1), 1, 2-Distearyloxypropyl-3-dimethyl-hydroxyethylammonium bromide (DSRIE), l,2-distearyloxypropyl-3-trimethylammonium propane (DSTAP), di- Tetradecyltrimethylammonium (DTDTMA), 1,2-dioleyl-sn-glycerol-3-ethylphosphocholine (EDOPC), N2-[N2,N5-bis(3-aminopropane) base)-L-ormithyl]-N,N-di-octadecyl-L-glutamic acid tetrahydrotrifluoroacetate (GC33), cholesterol-5-en-3-ol (3P)-, 3-[(3-Aminopropyl)[4-[(3-aminopropyl)amino]butyl]carbamate] (GL67), glyceryl monooleate (GMO), guanidino- Dialkyl-formic acid (GUADACA), 2-(bis(2-(tetradecanoyloxy)ethyl)amino)-N-(2-hydroxyethyl)-N,N-dimethyl-2 -Pendant oxyethyl ammonium bromide (HEDC), 2,2'-(tertiary butoxycarbonylureadiyl)bis(ethyl-2,1-diyl)ditetradecanoate (HEDC- BOC-TN), 1-(2-(((3S,10R,13R)-10,13-dimethyl-17-((R)-6-methylhept-2-yl)-2,3, 4,7,8,9,10,11,12,13,14,15,16,17-Tetradecahydro-1H-cyclopenta[a]phenanthrene-3-yldisulfanyl)ethyl)guanidine ( HGT4002), (15Z,18Z)-N,N-dimethyl-6-(9Z,12Z)-octadeca-9,12-diene-l-yl) tetracos-l5,18-di En-l-amine (HGT5000), (15Z,18Z)-N,N-dimethyl-6-((9Z,12Z)-octadeca-9,12-diene-l-yl) twenty-four Carbon-4,15,18-triene-l-amine (HGT5001), Histamine-Cholesterol Hemisuccinate (HisChol), Histamine-Cholesterol Hemisuccinate (Hist-Chol), HydroSoyPC (HSPC) , imidazole cholesteryl ester (ICE), 3-(di-dodecylamine)-N1,N1,4-tri-dodecyl-1-piperbenzoethylamine (KL10), N1-[2-( Di-dodecylamine)ethyl]-N1,N4,N4-tri-dodecyl-1,4-piperamide diethylamine (KL22), 14,25-di-tridecyl- 15,18,21,24-tetraaza-trioctadecane (KL25), N,N-di-n-tetradecyl, N-methyl-N-(2-guanidino)ethylammonium (lipid 1 ), N,N-di-n-octadecyl, N-methyl-N-(2-guanidino)ethylammonium chloride (lipid 2), (9Z,12Z)-octadecyl-9,12 -Dienoic acid 3-((4,4-bis(octyloxy)butyl)oxy)-2-((((3-(diethylamino)propyloxy)carbonyl)oxy)methyl )propyl ester (lipid A), (9Z,12Z)-octadeca-9,12-dienoic acid 3-((4,4-bis(octyloxy)butyl)oxy)-2-(((( (3-(diethylamino)propoxy)carbonyl)oxy)methyl)propyl ester (lipid A1), 2,2-dilinoleyl-4-dimethylaminoethyl-[ l,3]-dioxolane (lipid A2), bis(decanoic acid)((5-((dimethylamino)methyl)-l,3-phenylene)bis(oxy) )bis(octadecy-8,l-diyl)ester (lipid B), 9Z,9'Z,12Z,12'Z)-bis(octadeca-9,12-dienoic acid) 2-((4 -(((3-(dimethylamino)propoxy)carbonyl)oxy)hexadecanoyl)oxy)propane-1,3-diester (lipid C), 3-octylundecane Acid 3-(((3-(dimethylamino)propoxy)carbonyl)oxy)-13-(octanoyloxy)tridecyl ester (lipid D), 5-(dimethylamino) )Valerate (6Z,16Z)-12-((Z)-dec-4-en-1-yl)dococ-6,16-diene-11-ester (lipid I), dioctadecanoate Alkyl-(2-hydroxy-3-propylamino)amino polyionine (lipid T), (3-((6Z,9Z,28Z,31Z)-trioctadecane-6,9,28 ,31-tetraen-19-yloxy)-N,N-dimethylpropan-1-amine (MC3 ether), as described in U.S. Provisional Application No. 61/384,050 (MC3 thioester), ( 4-((6Z,9Z,28Z,31Z)-Hexadecanoic-6,9,28,31-tetraen-19-yloxy)-N,N-dimethylbutan-1-amine (MC4 Ether), 3-((2-(((9Z,12Z)-octadeca-9,12-dienyl)oxy)ethyl)amino)propionic acid (MLAPA), 3-((2 -(((9Z,12Z,15Z)-octadeca-9,12,15-trienyl)oxy)ethylamino)propionic acid (MLLAPA), monomycolic acid (mon-omycolyl)glycerol (MMG ), 3-((2-(Oleyloxy)ethyl)amino)propionic acid (MOAPA), 4-(2-aminoethyl)-morpholino-cholesterol hemisuccinate (MoChol), 1,2-dioleyl-3-N-morpholine-propane (MoDO), methylpyridinyl-dialkyl-carboxylic acid (MPDACA), monopalmitoyl phosphatidylcholine (MPPC), 3-( (2-(stearyloxy)ethyl)amino)propionic acid (MSAPA), N1-[2-((lS)-1-[(3-aminopropyl)amino]-4-[ Bis(3-amino-propyl)amino]butylformamide)ethyl]-3,4-bis[oleoxy]-benzamide (MVL5), 2-({8-[(3β )-Cholesterol-5-en-3-yloxy]octyl}oxy)-N,N-dimethyl-3-[(9Z,12Z)-octadeca-9,12-diene- 1-yloxy]propan-1-amine (octyl-CLinDMA), (2R)-2-({8-[(3β)-cholest-5-en-3-yloxy]octyl}oxy yl)-N,N-dimethyl-3-[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]propan-1-amine (octyl-CLinDMA (2R) ), phosphatidylcholine (PC), l,3-bis-(l,2-bis-tetradecyloxy-propyl-3-dimethylethoxylammonium bromide)-propan-2-ol (PCL-2), palmityl-oleyl-n-arginine (PONA), stearylamine (STA), 2-(((tertiary butyldimethylsilyl)oxy)methyl )-2-(hydroxymethyl)propane-1,3-diol (Synthesis Example 1 (A)), (9Z)-tetradec-9-enoic acid 3-((tertiary butyl(dimethyl (Si)oxy)-2,2-bis(((9Z)-tetradec-9-enyloxy)methyl)propyl ester (Synthetic Example 1 (B)), (9Z)- Tetradec-9-enoic acid 3-hydroxy-2,2-bis(((9Z)-tetradec-9-enyloxy)methyl)propyl ester (Synthetic Example 1 (C)), ( 9Z)-tetradec-9-enoic acid 3-((4-(dimethylamino)butyl)oxy)-2,2-bis(((9Z)-tetradec-9-enoic acid) methyl)propyl ester (Synthetic Example 1 (D)), 3-(5-(bis(2-hydroxydodecyl)amino)pentan-2-yl)-6-(5-(( 2-Hydroxydodecyl)(2-hydroxyundecanyl)amino)pentan-2-yl)-l,4-dimethane-2,5-dione) (Target 24), cocoon honey 6'6'-Dibehenate (TDB), 1,1'-(2-(4-(2-((2-(Bis(2hydroxydodecyl)amino)ethyl))(2 -Hydroxydodecyl)amino)ethyl)piperidine-1-yl)ethylureadiyl)di-dodecan-2-ol (Tech G1), 3-((1,3-bis( ((9Z,12Z)-octadeca-9,12-dienyl)oxy)-2-(((9Z,12Z)-octadeca-9,12-dienyl)oxy )Methyl)prop-2-yl)amino)propionic acid (TLAPA), (l-(2,3-linseed oiloxypropoxy)-2-(linseed oiloxy)-(7V, Λ/-dimethyl)-propyl-3-amine) (TLinDMA), 3-((1,3-bis(((9Z.12Z.15Z))-octadeca-9.12.15-trienyl) )oxy)-2-((((9Z.12Z.15E)-octadeca-9,12,15-trienyl)oxy)methyl)propan-2-yl)amino)propionic acid (TLLAPA), N-(α-trimethylammonioacetyl)-di-dodecyl-D-glutamic acid chloride (TMAG), 3-((1,3-bis(((Z )-Octadec-9-enyl)oxy)-2-((((Z)-octadec-9-enyl)oxy)methyl)prop-2-yl)amine) Propionic acid (TOAPA), 3-((1,3-bis(stearyloxy)-2-((stearyloxy)methyl)propan-2-yl)amino)propionic acid (TSAPA) , 1,N19-bis((16E,18E,20E,22E)-17,21-dimethyl-15-side oxy-23-(2,6,6-trimethylcyclohex-1-ene- 1-yl)-4,7,10-trioxa-14-aza-16,18,20,22-tetraen-1-yl)-4,7,10,13,16- Pentaoxanonadecane-1,19-diamide (VA-PEG-VA), 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxy Heterocyclopentane (XTC), disclosed in Non-patent Document 11 (YSK05), 1,2-di-γ-linoleoxy-N,N-dimethylaminopropane (γ-DLenDMA) , a-D-tocopherol hemisuccinyl, bis(octadeca-9,12-dienoic acid)(9Z,9,Z,12Z,12,Z)-2-((2-(((3-( Dimethylamino)propoxy)carbonyl)oxy)tetradecyl)oxy)propan-1,3-diester, dioctanoic acid 2-(((13Z,16Z)-4-(((( 3-(diethylamino)propoxy)carbonyl)oxy)dococanoic-13,16-dienyl)oxy)propan-1,3-diester, dioctanoic acid 2-(( (13Z,16Z)-4-(((3-(dimethylamino)propoxy)carbonyl)oxy)dococ-13,16-dienyl)oxy)propan-1, 3-Diester, dioctanoic acid 2-((4-(((3-(ethyl(methyl)amino)propoxy)carbonyl)oxy)hexadecanyl)oxy)propan-1,3 -Diesester, bis(decanoic acid) 2-((4-(((3-(ethyl(methyl)amino)propoxy)carbonyl)oxy)hexadecanoyl)oxy)propan-1 ,3-diester, bis(decanoic acid)2-((4-(((3-(diethylamino)propyloxy)carbonyl)oxy)hexadecanyl)oxy)propyl-1, 3-Diester, dioctanoic acid 2-(10-dodecyl-3-ethyl-8,14-bisoxy-7,9,13-trioxa-3-azaeicosane-20 -yl)propane-1,3-diester, (9Z,9′Z)bis-tetradec-9-enoic acid 2-(((4-(dimethylamino)butyl)oxy)methyl )-2-((octyloxy)methyl)propane-1,3-diester, bis(octadeca-9,12-dienoic acid)(9Z,9'Z,12Z,12'Z) -2-(((1-(cyclopropylmethyl)piperidine-4-carbonyl)oxy)methyl)propan-1,3-diester, bis(decanoic acid)((2-(((1 -Isopropylpiperidine-4-carbonyl)oxy)methyl)-1,4-phenylene)bis(oxy))bis(oct-8,1-diyl)ester, dodecanoic acid 2 -((4-(((3-(ethyl(methyl)amino)propoxy)carbonyl)oxy)hexadecanoyl)oxy)propan-1,3-diester, dodecanoic acid 2-((4-(((3-(diethylamino)propoxy)carbonyl)oxy)hexadecyl)oxy)propan-1,3-diester, dodecanoic acid 2- ((4-(((3-(Dimethylamino)propoxy)carbonyl)oxy)hexadecyl)oxy)propan-1,3-diester, ditetradecanoic acid 2- ((4-(((3-(ethyl(methyl)amino)propoxy)carbonyl)oxy)hexadecanoyl)oxy)propan-1,3-diester, ditetradecane Acid 2-((4-(((3-(dimethylamino)propoxy)carbonyl)oxy)hexadecanoyl)oxy)propan-1,3-diester, ditetradecane Acid 2-((4-(((3-(diethylamino)propoxy)carbonyl)oxy)hexadecanoyl)oxy)propan-1,3-diester, dioleic acid (Z )-2-((4-(((3-(dimethylamino)propoxy)carbonyl)oxy)hexadecanoyl)oxy)propan-1,3-diester, bis(octadecyl) Carbon-9,12,15-trienoic acid)(9Z,9,Z,12Z,12,Z,15Z,15,Z)-2-((4-(((3-(dimethylamino)) Propoxy)carbonyl)oxy)hexadecyl)oxy)propyl-1,3-diester, bis(octadeca-9,12-dienoic acid)(9Z,9,Z,12Z,12 ,Z)-2-((4-(((3-(diethylamino)propoxy)carbonyl)oxy)hexadecanoyl)oxy)propan-1,3-diester, bis( Octadeca-9,12-dienoic acid)(9Z,9,Z,12Z,12,Z)-2-((4-(((3-(dimethylamino)propoxy)carbonyl)) Oxy)hexadecanoyl)oxy)propane-1,3-diester, N,N,N-trimethyl-5-side oxy-5-(3-((3-pentyloctanoyl)oxy) base)-2,2-bis(((3-pentyloctyl)oxy)methyl)propoxy)pentane-1-ammonium iodide, 3-pentyloctanoic acid 3-((5-(dimethyl) Amino)pentyl)oxy)-2,2-bis(((3-pentyloctyl)oxy)methyl)propyl ester, 3-dimethylaminopropyl carbonate (9Z,12Z) -Octoc-19,22-diene-11-ester, (9Z,9′Z)bis-tetradec-9-enoic acid 2-(((N,N-dimethyl-β-propylamine acyl)oxy]methyl}-2-[(octyloxy)methyl)propane-1,3-diester, 8-dimethyldiosuberate ΟΊ,O1-(2-(7- Dodecyl-14-methyl-3,9-dioxy-2,4,8,10-tetraoxa-14-azapentadecyl)propan-1,3-diyl) ester , 8-dimethylΟΊ,01-(2-(((1-methylpyrrolidine-3-carbonyl)oxy)methyl)propan-1,3-diyl) diosuberate, 8- Methyl suberic acid 1-(3-((6,6-bis((2-propylpentyl)oxy)hexyl)oxy)-2-(((1,4-dimethylpiperanoic acid) Biridin-4-carbonyl)oxy)methyl)propyl) ester, octadeca-9,12-dienoic acid (9Z,12Z)-5-(((3-(dimethylamino)propyloxy) Carbonyl)oxy)-7-octylpentadecyl ester, 5-(((3-(dimethylamino)propyloxy)carbonyl)oxy)-7-octylpentadecyl octanoate , 10-octylsebacic acid 1-(3-((6,6-bis((2-propylpentyl)oxy)hexyl)oxy)-2-(((1,4-di Methylpiperidine-4-carbonyl)oxy)methyl)propyl)ester, 3-(((3-(dimethylamino)propyloxy)carbonyl)oxy)-5-octyl decanoate Tridecyl ester, 8-methylsuberic acid 1-(16-((4,4-bis(octyloxy)butyl)oxy)methyl)-9-dodecyl-2-methyl -7,13-dilateral oxy-6,8,12,14-tetraoxa-2-azaheptadecane-17-yl) ester, (9Z,12Z)-octadecacarbon-9,12- Dienoic acid 3-((5-(dimethylamino)pentylyl)oxy)-2,2-bis(((9Z)-tetradec-9-enyloxy)methyl)propane Ester, 3-pentyloctanoic acid 3-((5-(dimethylamino)pentylyl)oxy)-2,2-bis((3-pentyloctanoyl)oxy)methyl)propyl ester , bis(octadeca-9,12-dienoic acid)(9Z,9'Z,12Z,12'Z)-2-(((3-(diethylamino)propyl)oxy) Methyl)propane-1,3-diester, bis(decanoic acid)((2-(((4-(dimethylamino)butyl)oxy)methyl)-1,4-phenylene) Bis(oxy))bis(oct-8,1-diyl)ester, 8-methylsuberic acid 1-(3-((4,4-bis(octyloxy)butyl)oxy)oxy)-2 -(((1-methylpyrrolidine-3-carbonyl)oxy)methyl)propyl) ester, 1-methylpyrrolidine-3-carboxylic acid 3-((4,4-bis(octyloxy)) Butylyl)oxy)-2-((palmityloxy)methyl)propyl ester, 1-methylpyrrolidine-3-carboxylic acid 3-((4,4-bis(octyloxy)butyl)oxy) -2-((tetradecanoyloxy)methyl)propyl ester, 9-pentyltetradecanoate 3-(((3-(dimethylamino)propoxy)carbonyl)oxy)- 13-(octyloxy)tridecyl ester, 1-methylpyrrolidine-3-carboxylic acid 3-((4,4-bis(octyloxy)butyl)oxy)-2-(dodecane Cyloxy)methyl)propyl ester, 9-pentyltetradecanoate 3-(((3-(dimethylamino)propyloxy)carbonyl)oxy)-13-hydroxytridecyl ester, 7-Hexyltridecanoic acid 3-(((3-(dimethylamino)propoxy)carbonyl)oxy)-13-(octyloxy)tridecanoic acid ester, dioctanoic acid 2-(5 -(3-((1-methylpyrrolidin-3-carbonyl)oxy)-2-((tetradecanoyloxy)methyl)propoxy)-5-pentyloxypentyl)propyl- 1,3-diester, 5-heptyldodecanoic acid 3-(((3-(dimethylamino)propoxy)carbonyl)oxy)-13-(octyloxy)tridecane Ester, dioctanoic acid 2-(5-(3-((1-methylpyrrolidine-3-carbonyl)oxy)-2-((palmitoyloxy)methyl)propoxy)-5-side oxygen Pentyl)propyl-1,3-diester, 5-heptyldodecanoic acid 3-(((3-(dimethylamino)propoxy)carbonyl)oxy)-13-hydroxytridecanoic acid Alkyl ester, bis(6,6-bis(octyloxy)hexanoic acid) 2-(((1-methylpyrrolidine-3-carbonyl)oxy)methyl)propan-1,3-diester, Octacarbon-9,12-dienoic acid (9Z,12Z)-3-(((3-dimethylamino)propoxy)carbonyl)oxy)-13-(octanoyloxy)tridecane Ester, (9Z)-Octadec-9-enoic acid 3-((5-(dimethylamino)pentyl)oxy)-2,2-bis((9Z)-tetradecano- 9-enyloxy)methyl)propyl ester, 2-(10-dodecyl-3-ethyl-8,14-bisoxy-7,9,13-trioxa-3 dioctanoate -Azanonadecan-19-yl)propan-1,3-diester, bis(decanoic acid)((2-(((1-methylpiperidin-4-carbonyl)oxy)methyl)- 1,4-phenylene)bis(oxy))bis(oct-8,1-diyl) ester, bis(4,4-bis(octyloxy)butyrate) 2-(((3-( Dimethylamino)propyl)oxy)methyl)propyl-1,3-diester, octadeca-9,12-dienoic acid (9Z,12Z)-2-(((11Z,14Z )-2-((3-(dimethylamino)propyl)oxy)eicosan-11,14-dien-1-yl)oxy)ethyl ester, bis(4,4-bis (Octyloxy)butyrate) 2-(((1,3-dimethylpyrrolidine-3-carbonyl)oxy)methyl)propane-1,3-diester, succinic acid (13Z,16Z)- 4-(((3-(dimethylamino)propoxy)carbonyl)oxy)dococane-13,16-diene-1-ester heptadecan-9-ester, 3-(( 3-Ethyl-10-((9Z,12Z)-octadeca-9,12-dien-1-yl)-8,15-bisoxy-7,9,14-trioxa-3 -Azaheptadecan-17-yl)disulfanyl)propionic acid 2,2-bis(heptyloxy)ethyl ester, bis(4,4-bis(octyloxy)butyric acid) 2-(( (1-methylpyrrolidine-3-carbonyl)oxy)methyl)propane-1,3-diester, 10-octylsebacic acid 1-(3-((1,3-dimethylpyrrolidine) -3-carbonyl)oxy)-2-(((9Z,12Z)-octadeca-9,12-dienyloxy)methyl)propyl) ester, 2,2-bis(heptyloxy) )acetic acid (13Z,16Z)-4-(((3-(diethylamino)propoxy)carbonyl)oxy)dococane-13,16-diene-1-ester, 2,2 -Bis(heptyloxy)acetic acid (13Z,16Z)-4-(((2-(dimethylamino)ethoxy)carbonyl)oxy)dococane-13,16-diene-1 -Ester, acetic acid (20,23R)-2-methyl-9-[(9Z,12Z)-octadeca-9,12-dien-1-yl]-7-side oxy-6,8, 11-Trioxa-2-aza-20-ene-23-ester, 3-(dimethylamino)propyl carbonate (11Z,14Z)-1-{[(9Z,12R) -12-hydroxyoctadeca-9-en-1-yl] ester, 3-(dimethylamino)propionic acid (12Z,15Z)-1-(((9Z,12Z)-octadeca- 9,12-diene-1-yloxy)carbonyl)oxy)octadecanoic-12,15-diene-3-ester, octadeca-9,12-dienoic acid (9Z,12Z) -3-((4,4-bis(octyloxy)butyl)oxy)-2-((((3-(dimethylamino)propyl)aminoformyl)oxy)methyl) Propyl ester, 9-pentyltetradecanoate (12Z,15Z)-3-((4-(dimethylamino)butyl)oxy)ecosan-12,15-diene-1-ester , Octadeca-9,12-dienoic acid (9Z,12Z)-3-((4,4-bis(octyloxy)butyl)oxy)-2-((((1,2,2 ,6,6-pentamethylpiperidin-4-yl)oxy)carbonyl)oxy)methyl)propyl ester, 7-hexyltridecanoic acid (12Z,15Z)-3-((4-(di Methylamino)butyl)oxy)octadecanoic-12,15-diene-1-ester, octadeca-9,12-dienoic acid (9Z,12Z)-3-((4,4 -Bis(octyloxy)butyl)oxy)-2-(((((1-methylpiperidin-4-yl)methoxy)carbonyl)oxy)methyl)propyl ester, 5-heptyl Dodecanoic acid (12Z,15Z)-3-((4-(dimethylamino)butyl)oxy)octadecanoic acid-12,15-diene-1-ester, octadecanoic acid-9, 12-dienoic acid(9Z,12Z)-3-((4,4-bis(octyloxy)butyl)oxy)-2-((((1-ethylpiperidin-4-yl)oxy) base)carbonyl)oxy)methyl)propyl ester, 3-octyl undecanoic acid (12Z,15Z)-3-((4-(dimethylamino)butyl)oxy)octane- 12,15-diene-1-ester, formate, (9Z)-hexadec-9-enoic acid 3-((5-(dimethylamino)pentyl)oxy)-2, 2-bis(((9Z)-tetradec-9-enyloxy)methyl)propyl ester, octadeca-9,12-dienoic acid (9Z,12Z)-3-((4,4 -Bis(octyloxy)butyl)oxy)-2-(((((1-methylazetidin-3-yl)oxy)carbonyl)oxy)methyl)propyl ester, Carbon-9,12-dienoic acid (9Z,12Z)-(12Z,15Z)-3-((3-(dimethylamino)propyl)oxy)octane-12,15- Diene-1-ester, 4,4-bis((2-ethylhexyl)oxy)butyrate 2-(((3-(diethylamino)propoxy)carbonyl)oxy)tetradecane Alkyl ester, octadeca-9,12-dienoic acid (9Z,12Z)-3-((4,4-bis(octyloxy)butyl)oxy)-2-((((1-methyl Piperidin-4-yl)oxy)carbonyl)oxy)methyl)propyl ester, octadeca-9,12-dienoic acid (9Z,12Z)-3-((4,4-bis(octyl) Oxy)butyl)oxy)-2-(((((1-methylpyrrolidin-3-yl)oxy)carbonyl)oxy)methyl)propyl ester, octadeca-9,12-di (9Z,12Z)-3-(((2-(dimethylamino)ethoxy)carbonyl)oxy)pentadecyl ester, octadecyl-9,12-dienoic acid (9Z, 12Z)-3-((4,4-bis(octyloxy)butyl)oxy)-2-((((3-(4-methylpiperidine-1-yl)propoxy)carbonyl)oxy methyl)propyl ester, 3-(dimethylamino)propyltriacontan-11-yl carbonate triacontan-11-ol, octadeca-9,12-dienoic acid (9Z, 12Z)-3-((4,4-bis(octyloxy)butyl)oxy)-2-((((3-(pyrrolidin-1-yl)propoxy)carbonyl)oxy)methyl )propyl ester, octadeca-9,12-dienoic acid (9Z,12Z)-3-(((3-(ethyl(methyl)amino)propoxy)carbonyl)oxy)pentadecane Ester, 4-((diethylamino)methyl)benzoic acid 3-((4,4-bis(octyloxy)butyl)oxy)-2-(((9Z,12Z)-octadecane -9,12-Dienyloxy)methyl)propyl ester, octadeca-9,12-dienoic acid (9Z,12Z)-3-(((3-(diethylamino)propoxy) Carbonyl)oxy)pentadecyl ester, 3-((dimethylamino)methyl)benzoic acid 3-((4,4-bis(octyloxy)butyl)oxy)-2-( ((9Z,12Z)-octadeca-9,12-dienoyloxy)methyl)propyl ester, octadeca-9,12-dienoic acid (9Z,12Z)-3-(((3 -(Dimethylamino)propoxy)carbonyl)oxy)pentadecyl ester, 1-methylpiperidine-3-carboxylic acid 3-((4,4-bis(octyloxy)butyl)oxy) )-2-(((9Z,12Z)-octadeca-9,12-dienyloxy)methyl)propyl ester, 1-methylpiperidine-4-carboxylic acid 3-((4,4- Bis(octyloxy)butyloxy)-2-(((9Z,12Z)-octadeca-9,12-dienyloxy)methyl)propyl ester, 1,4-dimethylpiper 3-((4,4-bis(octyloxy)butylyl)oxy)-2-(((9Z,12Z)-octadecanoic acid-9,12-dienyloxy)methyl yl)propyl ester, (9Z)-hexadeca-9-enoic acid 3-((4-(dimethylamino)butyl)oxy)-2,2-bis(((9Z)-tetradecacarbonate) -9-enyloxy)methyl)propyl ester, dioctanoic acid 2-(10-dodecyl-3-ethyl-8,14-bisoxy-7,9,13-trioxa- 3-Azahexadecane-16-yl)propane-1,3-diester, bis(octadeca-9,12-dienoic acid)(9Z,9'Z, 12Z,12'Z)-2 -(((4-(piperidin-1-yl)butyl)oxy)methyl)propane-1,3-diester, 4-methylmorpholine-2-carboxylic acid 3-((4,4-bis (Octyloxy)butyl)oxy)-2-(((9Z,12Z)-octadeca-9,12-dienyloxy)methyl)propyl ester, 1-methylpyrrolidine-2- Formic acid (2R)-3-((4,4-bis(octyloxy)butylyl)oxy)-2-(((9Z,12Z)-octadecanoic acid-9,12-dienyloxy)methane yl)propyl ester, 1-methylpyrrolidine-2-carboxylic acid (2S)-3-((4,4-bis(octyloxy)butyl)oxy)-2-(((9Z,12Z)-ten Octacarbon-9,12-dienoyloxy)methyl)propyl ester, bis(octacarbon-9,12-dienoic acid)(9Z,9'Z,12Z,12'Z)-2-( (((3-(diethylamino)propoxy)carbonyl)oxy)methyl)-2-(((9Z,12Z)-octadeca-9,12-dienyloxy)methyl base) propane-1,3-diester, octadecanoic acid (9Z,12Z)-3-((4,4-bis(octyloxy)butyl)oxy)-2- (((((1-ethylpiperidin-3-yl)methoxy)carbonyl)oxy)methyl)propyl ester, 1-(cyclopropylmethyl)piperidine-4-carboxylic acid 3-(( 4,4-bis(octyloxy)butyloxy)-2-(((9Z,12Z)-octadeca-9,12-dienyloxy)methyl)propyl ester, 1-isopropyl Piperidine-4-carboxylic acid 3-((4,4-bis(octyloxy)butyl)oxy)-2-(((9Z,12Z)-octadecanoic acid-9,12-dienyloxy) )Methyl)propyl ester, octadeca-9,12-dienoic acid (9Z,12Z)-3-((4,4-bis(octyloxy)butyl)oxy)-2-(((3 -(Dimethylamino)propyl)oxy)methyl)propyl ester, 4-(dimethylamino)butyl carbonate (6Z, 9Z, 26Z, 29Z) - tripentacarbon-6, 9,26,29-tetraen-18-ester, (9Z)-tetradec-9-enoic acid 3-((6-(dimethylamino)hexyl)oxy)-2,2- Bis(((9Z)-tetradecacarbon-9-enyloxy)methyl)propyl ester, 3-(dimethylamino)propyl carbonate 2,5-bis((9Z,12Z)-octadecanate Carbon-9,12-dieneoxy)benzyl ester, bis(octadeca-9,12-dienoic acid)(9Z,9'Z,12Z,12'Z)-2-(((4- (pyrrolidin-1-yl)butyl)oxy)methyl)propyl-1,3-diester, 5-heptyldodecanoic acid 3-(((3-(dimethylamino)propoxy) )carbonyl)oxy)pentadecyl acetate, (7R,9Z)-18-({[3-(dimethylamino)propoxy]carbonyl}oxy)octadecane-9-ene- 7-ester, 9-pentyltetradecanoate 3-(((3-(dimethylamino)propoxy)carbonyl)oxy)pentadecyl ester, octadeca-9,12-diene Acid (9Z,12Z)-3-((6,6-bis(octyloxy)hexyl)oxy)-2-(((3-(diethylamino)propoxy)carbonyl) Oxy)methyl)propyl ester, 7-hexyltrideca-6-enoate 3-(((3-(dimethylamino)propoxy)carbonyl)oxy)pentadecyl ester, octadecyl Carbon-9,12-dienoic acid (9Z,12Z)-3-(2,2-bis(heptyloxy)acetyloxy)-2-((((2-(dimethylamino)ethyl) Oxy)carbonyl)oxy)methyl)propyl ester, 3-octyldodeca-2-enoic acid 3-(((3-(dimethylamino)propoxy)carbonyl)oxy)deca Pentaalkyl ester, octadeca-9,12-dienoic acid (9Z,12Z)-3-(((3-(diethylamino)propoxy)carbonyl)oxy)-2-(((( 5-heptyldodecyl)oxy)methyl)propyl ester, 3-octylundecanoate 3-(((3-dimethylamino)propoxy)carbonyl)oxy)deca Pentaalkyl ester, octadeca-9,12-dienoic acid (9Z,12Z)-3-(((3-(diethylamino)propoxy)carbonyl)oxy)-2-(((( 9-Pentyltetradecyl)oxy)methyl)propyl ester, (7R,9Z,26Z,29R)-18-({[3-(dimethylamino)propoxy]carbonyl diacetate }oxy)tripentacarbon-9,26-diene-7,29-diester, 8,8-bis((2-propylpentyl)oxy)octanoic acid 3-(((3-(di Methylamino)propoxy)carbonyl)oxy)pentadecyl ester, octadecyl-9,12-dienoic acid (9Z,12Z)-3-(((3-(diethylamino) Propoxy)carbonyl)oxy)-2-(((7-hexyltridecyl)oxy)methyl)propyl ester, 8,8-bis((2-propylpentyl)oxy) 3-(((3-(ethyl(methyl)amino)propoxy)carbonyl)oxy)pentadecyl octanoate, octadeca-9,12-dienoic acid (9Z,12Z)-3 -(((3-(diethylamino)propoxy)carbonyl)oxy)-2-(((3-octylundecanyl)oxy)methyl)propyl ester, 8,8 - 3-(((3-(diethylamino)propyloxy)carbonyl)oxy)pentadecyl bis((2-propylpentyl)oxy)octanoate, 8,8-dibutoxy 3-(((3-(diethylamino)propoxy)carbonyl)oxy)pentadecyl octanoate, (9Z)-tetradec-9-enoic acid 3-((5-(di Methylamino)pentyl)oxy)-2,2-bis(((9Z)-tetradec-9-enyloxy)methyl)propyl ester, 3-(dimethylamino) Propyl carbonate (6Z, 9Z, 26Z, 29Z)-tripentacarbon-6,9,26,29-tetraene-18-ester, 3-(dimethylamino)propionic acid 2,5-bis( (9Z,12Z)-octadeca-9,12-dien-1-yloxy)benzyl ester, bis(octadeca-9,12-dienoic acid) (9Z,9'Z,12Z, 12'Z)-2-(((3-(4-methylpiperidine-1-yl)propyl)oxy)methyl)propan-1,3-diester, 8,8-bis(octyl) Oxy)octanoic acid 3-(((3-(diethylamino)propoxy)carbonyl)oxy)pentadecyl ester, 3-(dimethylamino)propyloctadecane-11 carbonate -Ester, 2,4-bis((9Z,12Z)-octadeca-9,12-dienyloxy)benzyl 4-(dimethylamino)butyrate, octadeca-9,12 -Dienoic acid (9Z,12Z)-3-(((3-(diethylamino)propoxy)carbonyl)oxy)-2-(((2-heptylundecanyl)oxy) methyl)propyl ester, 6,6-bis((2-ethylhexyl)oxy)hexanoic acid 3-(((3-(diethylamino)propoxy)carbonyl)oxy)deca Pentaalkyl ester, bis(2-heptylundecanoic acid) 2-((((3-(dimethylamino)propoxy)carbonyl)oxy)methyl)propan-1,3-diester , 6,6-bis(hexyloxy)hexanoate 3-(((3-(diethylamino)propoxy)carbonyl)oxy)pentadecyl ester, 4-(dimethylamino) 4-Methyl-2,5-bis((9Z,12Z)-octadeca-9,12-dien-1-yloxy)benzyl butyrate, 6,6-bis(octyloxy) 3-(((3-(diethylamino)propyloxy)carbonyl)oxy)pentadecyl hexanoate, 4-methyl-2,5-bis((9Z,12Z)-octadecane -9,12-Dienyloxy)benzylcarbonate 4-(dimethylamino)butyl ester, 4,4-bis((2-propylpentyl)oxy)butyrate 3-((( 3-(Dimethylamino)propoxy)carbonyl)oxy)pentadecyl ester, 2-(12-dodecyl-3-ethyl-8,14-bis-pentyloxy-7 dioctanoate) ,9,13-trioxa-3-azaoctadecan-18-yl)propan-1,3-diester, dioctanoic acid 2-(5-side oxy-5-((3-((( 3-(piperidin-1-yl)propoxy)carbonyl)oxy)pentadecyl)oxy)pentyl)propan-1,3-diester, 4-methyl-2,5-bis( (9Z,12Z)-octadeca-9,12-dien-1-yloxy)benzylcarbonate 3-(dimethylamino)propyl ester, 4,4-bis((2-propyl) Pentyl)oxy)butyrate 3-(((3-(ethyl(methyl)amino)propoxy)carbonyl)oxy)pentadecyl ester, 2-(11-dodecyl dioctanoate) -3-Ethyl-9,15-bisoxy-8,10,14-trioxa-3-azanonadecan-19-yl)propan-1,3-diester, dioctanoic acid 2- (10-Dodecyl-3-ethyl-8,15-bisoxy-7,9,14-trioxa-3-azanonadecan-19-yl)propan-1,3- Diester, dioctanoic acid 2-(5-((4-((((1-methylpiperidin-4-yl)oxy)carbonyl)oxy)hexadecyl)oxy)-5-side oxygen Pentyl)propane-1,3-diester, dioctanoic acid 2-(5-((4-(((1-ethylpiperidin-3-yl)methoxy)carbonyl)oxy)hexadecanoic acid Alkyl)oxy)-5-Pendant oxypentyl)propane-1,3-diester, dioctanoic acid 2-(5-((4-((((R)-1-methylpyrrolidine- 3-yl)oxy)carbonyl)oxy)hexadecyl)oxy)-5-pentyloxypentyl)propane-1,3-diester, dioctanoic acid 2-(5-((4-( ((((S)-1-methylpyrrolidin-3-yl)oxy)carbonyl)oxy)hexadecyl)oxy)-5-pentyloxypentyl)propan-1,3-di Ester, dioctanoic acid 2-(5-side oxy-5-((4-((S)-pyrrolidine-2-carbonyl)oxy)hexadecyl)oxy)pentyl)propyl-1, 3-diester, dioctanoic acid 2-(5-((4-((1,3-dimethylpyrrolidine-3-carbonyl)oxy)hexadecyl)oxy)-5-pentanoxypentanyl yl)propane-1,3-diester, dioctanoic acid 2-(5-((4-((1,4-dimethylpiperidin-4-carbonyl)oxy)hexadecyl)oxy)- 5-Pendantoxypentyl)propyl-1,3-diester, 4,4-bis(octyloxy)butyl(3-(diethylamino)propyl)pentadecan-1 dicarbonate, 3-Diester, 4,4-bis((2-propylpentyl)oxy)butyrate 3-(((3-(diethylamino)propoxy)carbonyl)oxy)pentadecane Ester, bis(decanoic acid)((2-((((3-(diethylamino)propoxy)carbonyl)oxy)methyl)-1,4-phenylene)bis(oxy) ) bis(oct-8,1-diyl) ester, 5-(((3-(diethylamino)propoxy)carbonyl)oxy)heptadecanoic acid 4,4-bis(octyloxy) )butyl ester, octanoic acid 6-((6,6-bis(octyloxy)hexyl)oxy)-4-(((3-(diethylamino)propyloxy)carbonyl)oxy) Hexyl ester, 6,6-bis(octyloxy)hexanoate (12Z,15Z)-3-(((3-(diethylamino)propoxy)carbonyl)oxy)octane-12 ,15-diene-1-ester, 6,6-bis(octyloxy)hexanoate 3-(((3-(diethylamino)propoxy)carbonyl)oxy)tridecyl ester, 6,6-Bis(octyloxy)hexanoate, 3-(((3-(diethylamino)propoxy)carbonyl)oxy)undecyl ester, 5-(4,6-diheptyl -1,3-Diethane-2-yl)pentanoate 3-(((3-(diethylamino)propyloxy)carbonyl)oxy)pentadecyl ester, 6,6-bis(octyl) Oxy)hexanoate 3-((5-(diethylamino)pentyl)oxy)pentadecyl ester, 1,4-dimethylpiperidine-4-carboxylic acid 1-((6,6 -Bis(octyloxy)hexyl)oxy)pentadecan-3-ester, 6,6-bis(octyloxy)hexanoic acid 3-((3-(1-methylpiperidine-4-) 1-((6,6-bis(octyloxy)hexyl)oxy)pentadecyl ester, 1,3-dimethylpyrrolidine-3-carboxylate Alk-3-ester, 4,4-bis((2-ethylhexyl)oxy)butyrate 3-(((3-(diethylamino)propoxy)carbonyl)oxy)pentadecane Ester, bis(8-(octanoyloxy)octanoic acid) 2-(((1,3-dimethylpyrrolidine-3-carbonyl)oxy)methyl)propan-1,3-diester, bis( Decanoic acid) ((2-((((3-(dimethylamino)propoxy)carbonyl)oxy)methyl)-1,4-phenylene)bis(oxy))bis(octyl) -8,1-diyl) ester, pyrrolidine-2-carboxylic acid (2R)-1-((6,6-bis(octyloxy)hexyl)oxy)pentadecan-3-ester, 1 -Methylpyrrolidine-2-carboxylic acid (2S)-1-((6,6-bis(octyloxy)hexyl)oxy)pentadecan-3-ester, 1-methylpyrrolidine-2 -Formic acid (2R)-1-((6,6-bis(octyloxy)hexyl)oxy)pentadecan-3-ester, 6,6-bis((3-ethylpentyl)oxy 3-(((3-(dimethylamino)propyloxy)carbonyl)oxy)pentadecyl hexanoate, 6,6-bis((2-propylpentyl)oxy)hexyl 3-(((3-(dimethylamino)propoxy)carbonyl)oxy)pentadecyl acid ester, 6,6-bis((2-propylpentyl)oxy)hexanoic acid 3- (((3-(diethylamino)propoxy)carbonyl)oxy)pentadecyl ester, 6,6-bis(octyloxy)hexanoate 3-(((2-(diethylamine) ethoxy)carbonyl)oxy)pentadecyl ester, 6,6-bis(octyloxy)hexanoate 3-(((3-morpholinylpropoxy)carbonyl)oxy)pentadecane Ester, 6,6-bis(octyloxy)hexanoate 3-((((1-methylpiperidin-4-yl)methoxy)carbonyl)oxy)pentadecyl ester, 6,6-bis (Octyloxy)hexanoic acid 3-(((3-(4-methylpiperidine-1-yl)propoxy)carbonyl)oxy)pentadecyl ester, 4,4-bis(octyloxy) 3-(((3-(diethylamino)propyloxy)carbonyl)oxy)pentadecyl butyrate, (9Z,9′Z)bis-tetradec-9-enoic acid 2-( ((4-(dimethylamino)butyl)oxy)methyl)-2-((dodecyloxy)methyl)propan-1,3-diester, bis(octadecanoic-9) ,12-dienoic acid)(9Z,9'Z,12Z,12'Z)-2-(((4-(dimethylamino)butyl)oxy)methyl)propan-1,3-di Ester, 6,6-bis(octyloxy)hexanoate 3-(((4-(diethylamino)butoxy)carbonyl)oxy)pentadecyl ester, 6,6-bis(octyloxy) 3-(((3-(pipienyl)-1-yl)propoxy)carbonyl)oxy)pentadecyl hexanoate, 6.6-bis(octyloxy)hexanoic acid 3-(((3- Piperidin-1-yl)propoxy)carbonyl)oxy)pentadecyl ester, 4,4-bis(octyloxy)butyrate 3-(((3-(dimethylamino)propoxy) )carbonyl)oxy)pentadecyl ester, bis(octadeca-9,12-dienoic acid)(9Z,9'Z,12Z,12'Z)-2-(9-dodecyl-2 -Methyl-7,12-bisoxy-6,8,13-trioxa-2-azatetradecan-14-yl)propan-1,3-diester, octadecane-9, 12-dienoic acid (9Z,12Z)-10-dodecyl-3-ethyl-14-(2-((9Z,12Z)-octadecanoic acid-9,12-dienoyloxy)ethyl base)-8,13-dilateral oxy-7,9-dioxa-3,14-diazahexadecane-16-ester, dioctanoic acid 2-((2-(((3-(di Ethylamino)propoxy)carbonyl)oxy)tetradecyl)oxy)propan-1,3-diester, dioctanoic acid 2-(9-dodecyl-2-methyl-7 ,13-dilateral oxy-6,8,12-trioxa-2-azanonadecan-19-yl)propan-1,3-diester, (9Z,9′Z)bis-tetradecane Carbon-9-enoic acid 2-((decyloxy)methyl)-2-(((4-(dimethylamino)butyl)oxy)methyl)propane-1,3-diester, Bis(octadeca-9,12-dienoic acid)(9Z,9'Z,12Z,12'Z)-2-(((3-morpholinopropyl)oxy)methyl)propan- 1,3-diester, 3-(dimethylamino)propyl carbonate (6Z, 9Z, 28Z, 31Z)-37-6,9,28,31-tetraene-19-ester, 4 -(Dimethylamino)butyric acid 2,5-bis((9Z,12Z)-octadeca-9,12-dien-1-yloxy)benzyl ester, dioctanoic acid 2-(10- Dodecyl-3-ethyl-8,14-bisoxy-7,9,13-trioxa-3-azaoctadecan-18-yl)propan-1,3-diester, Bis(octadeca-9,12-dienoic acid)(9Z,9'Z,12Z,12'Z)-2-(((1,3-dimethylpyrrolidine-3-carbonyl)oxy) Methyl)propane-1,3-diester, trioctanoic acid ((5-((dimethylamino)methyl)benzene-1,2,3-triyl)tris(oxy))tris(dec- 10,1-diyl) ester, 9-dioctyldizelaic acid 0',0-(((5-((dimethylamino)methyl)-1,3-phenylene)bis( Oxygen)) bis(prop-3,1-diyl)) ester, octadeca-9,12-dienoic acid (9Z,12Z)-3-(3-((dimethylamino)methyl) )-5-(3-((3-octylundecanyl)oxy)propoxy)phenoxy)propyl ester, bis(decanoic acid)(((5-((dimethylamine base)methyl)-1,3-phenylene)bis(oxy))bis(prop-3,1-diyl))bis(oxy))bis(4-side oxybutyl-4,1 -Diyl) ester, dicaprylic acid (R)-4-(3-((R)-3,4-bis(octanoyloxy)butoxy)-5-((dimethylamino)methyl )phenoxy)butan-1,2-diester, dioctanoic acid (S)-4-(3-((S)-3,4-bis(octanoyloxy)butoxy)-5-(( Dimethylamino)methyl)phenoxy)butan-1,2-diester, (R)-4-(3-((S)-3,4-bis(octyloxy)butanyl dioctanoate) Oxy)-5-((dimethylamino)methyl)phenoxy)butan-1,2-diester, tetraoctanoic acid 4,4'-((5-((dimethylamino)methyl) base)-1,3-phenylene)bis(oxy))bis(but-1,2-diyl)ester, 6,6'-((5-((dimethylamino)methyl) -1,3-phenylene)bis(oxy)dihexanoate di-dodecyl ester, 5,5'-((5-((dimethylamino)methyl)-1,3- Phenylene)bis(oxy)dipentanoate bis((9Z,12Z)-octadeca-9,12-dien-1-yl) ester, bis(decanoic acid)(((5-(( Dimethylamino)methyl)-1,3-phenylene)bis(methylene))bis(oxy))bis(6-side oxyhexyl-6,1-diyl) ester, bis (Methylene)bis(8-(octanoyloxy)octanoic acid)(5-((dimethylamino)methyl)-1,3-phenylene) ester, bis(methylene)bis( 10-(Octyloxy)decanoic acid)(5-((dimethylamino)methyl)-1,3-phenylene) ester, dioctanoic acid (((5-((dimethylamino) )Methyl)-1,3-phenylene)bis(methylene))bis(oxy))bis(6-side oxyhexyl-6,1-diyl) ester, bis(decanoic acid)( ((5-((dimethylamino)methyl)-1,3-phenylene)bis(methylene))bis(oxy))bis(8-pentoxyoctyl-8,1- Diyl) ester, bis(octadeca-9,12-dienoic acid)(9Z,9'Z,12Z,12'Z)-(((5-((dimethylamino)methyl)- 1,3-phenylene)bis(methylene))bis(oxy))bis(4-side oxybut-4,1-diyl) ester, 8-dinonyldiosuberic acid 0' ,0-((5-((dimethylamino)methyl)-1,3-phenylene)bis(methylene)) ester, bis(10-(octyloxy)decyl)bis 0,0'-((5-((dimethylamino)methyl)-1,3-phenylene)bis(methylene)) succinate, bis((9Z,12Z)-eightadecane Carbon-9,12-dien-1-yl)disuccinic acid 0,0'-((5-((dimethylamino)methyl)-1,3-phenylene)bis(methylene) )) ester, bis(methylene)bis(octadeca-9,12-dienoic acid)(9Z,9'Z,12Z,12'Z)-(5-((((3-(diethyl Amino)propoxy)carbonyl)oxy)methyl)-1,3-phenylene) ester, octadeca-9,12-dienoic acid (9Z,12Z)-4-(3-( (Dimethylamino)methyl)-5-(4-(oleyloxy)butoxy)phenoxy)butyl ester, bis(octadeca-9,12,15-trienoic acid)( 9Z,9'Z,12Z,12'Z,15Z,15'Z)-((5-((dimethylamino)methyl)-1,3-phenylene)bis(oxy))bis (But-4,1-diyl) ester, ditetradecanoate ((5-((dimethylamino)methyl)-1,3-phenylene)bis(oxy))bis( Butyl-4,1-diyl) ester, dioleic acid (Z)-((5-((dimethylamino)methyl)-1,3-phenylene)bis(oxy))bis( Butyl-4,1-diyl) ester, dodecanoic acid ((5-((dimethylamino)methyl)-1,3-phenylene)bis(oxy))bis(hexane-6 ,1-diyl) ester, bis(octadeca-9,12-dienoic acid)(9Z,9'Z,12Z,12'Z)-((((5-((diethylamino) Methyl)-1,3-phenylene)bis(oxy))bis(ethyl-2,1-diyl))bis(oxy))bis(ethyl-2,1-diyl) ester, 8 ,8'-((5-((dimethylamino)methyl)-1,3-phenylene)bis(oxy))dioctanoic acid didecyl ester, bis(3-octylundecanoic acid) )((5-((dimethylamino)methyl)-1,3-phenylene)bis(oxy))bis(propan-3,1-diyl) ester, bis(octadeca- 9,12-dienoic acid)(9Z.9'Z.12Z.12'Z)-((5-((diethylamino)methyl-2-methyl-1.3-phenylene)bis( Oxygen)) bis(but-4,1-diyl)ester, dodecanoic acid ((5-((dimethylamino)methyl)-1,3-phenylene)bis(oxy) ) bis(oct-8,1-diyl)ester, bis(decanoic acid)((5-((dimethylamino)methyl)-1,3-phenylene)bis(oxy))bis (Octa-8,1-diyl) ester, bis(octadeca-9,12-dienoic acid) (9Z.9'Z.12Z.12'Z)-((5-((dimethylamine methyl)methyl-2-methyl-1.3-phenyl)bis(oxy))bis(but-4,1-diyl)ester, bis(dodeca-8-enoic acid)(8Z,8 'Z)-((5-((dimethylamino)methyl)-1,3-phenylene)bis(oxy))bis(hex-6,1-diyl) ester, bis(deca Octacarbon-9,12-dienoic acid)(9Z,9'Z,12Z, 12'Z)-((5-((3-hydroxyazetidin-1-yl)methyl)-1, 3-phenylene)bis(oxy)bis(but-4,1-diyl)ester, dioctanoic acid ((5-((dimethylamino)methyl)-1,3-phenylene) )Bis(oxy))bis(hex-6,1-diyl)ester, bis(decanoic acid)((5-((dimethylamino)methyl)-1,3-phenylene)bis (Oxy)) bis(hexane-6,1-diyl) ester, bis(octadeca-9,12-dienoic acid)(9Z.9'Z.12Z.12'Z)-((5- ((dimethylamino)methyl-1.3-phenylene)bis(oxy))bis(oct-8,1-diyl) ester, bis(octadeca-9,12-dienoic acid) (9Z,9'Z,12Z,12'Z)-((5-((dimethylamino)methyl)-1,3-phenylene)bis(oxy))bis(hexane-6, 1-Diyl) ester, dicaproate ((5-((dimethylamino)methyl)-1,3-phenylene)bis(oxy))bis(dec-10,1-diyl ) ester, dioctanoic acid ((5-((dimethylamino)methyl)-1,3-phenylene)bis(oxy))bis(dec-10,1-diyl) ester, dioctanoic acid ((5-((dimethylamino)methyl)-1,3-phenylene)bis(oxy))bis(oct-8,1-diyl)ester, dicaproic acid ((5- ((dimethylamino)methyl)-1,3-phenylene)bis(oxy))bis(oct-8,1-diyl) ester, bis(octadeca-9,12-di Enoic acid)(9Z,9'Z,12Z,12'Z)-((5-((dimethylamino)methyl)-1,3-phenylene)bis(oxy))bis(ethyl) -2,1-diyl) ester, bis(octadeca-9,12-dienoic acid)(9Z,9'Z,12Z,12'Z)-((5-((dimethylamino) Methyl)-1,3-phenylene)bis(oxy))bis(prop-3,1-diyl)ester, bis(octadeca-9,12-dienoic acid)(9Z,9' Z,12Z,12'Z)-((5-((dimethylamino)methyl)-1,3-phenylene)bis(oxy))bis(but-4,1-diyl) Ester, bis(methylene)tridecanoic acid (5-((dimethylamino)methyl)-1,3-phenylene) ester, bis(methylene)bis(octadecanoic acid) -9,12-dienoic acid)(9Z,9'Z,12Z,12'Z)-(5-((dimethylamino)methyl)-1,3-phenylene) ester, 3- (Dimethylamino)propionic acid (2,6-bis((9Z,12Z)-octadeca-9,12-dien-1-yloxy)pyridin-4-yl)methyl ester, bis( Octadeca-9,12-dienoic acid)(9Z,9'Z,12Z,12'Z)-5-(((3-(dimethylamino)propyl)oxy)methyl) -1,3-phenylene ester, 1-(3,5-bis((9Z,12Z)-octadeca-9,12-dien-1-yloxy)phenyl)-N,N dimethyl methylamine, 3-(dimethylamino)propionic acid 3,5-bis((9Z,12Z)-octadeca-9,12-dien-1-yloxy)benzyl ester, 1- (3,5-bis(4,4-bis(octyloxy)butoxy)phenyl)-N,N-dimethylmethylamine, tetraoctanoic acid (((5-((dimethylamino )Methyl)-1,3-phenylene)bis(oxy))bis(but-4,1-diyl))bis(oxy))bis(propylene-3,2,1-triyl) Ester, bis(decanoic acid)((5-(((4-(dimethylamino)butyl)oxy)methyl)-1,3-phenylene)bis(oxy))bis(octyl- 8,1-diyl)ester, bis(decanoic acid)((5-(((3-(dimethylamino)propyl)oxy)methyl)-1,3-phenylene)bis (Oxy)) bis(octyl-8,1-diyl) ester, bis(octadeca-9,12-dienoic acid)(9Z,9'Z, 12Z,12'Z)-((5- (3-morpholinopropyl)-1,3-phenylene)bis(oxy))bis(but-4,1-diyl)ester, bis(octadeca-9,12-dienoic acid) )(9Z,9'Z,12Z,12'Z)-((5-(3-(dimethylamino)propyl)-1,3-phenylene)bis(oxy))bis(butyl) -4,1-diyl) ester, bis(octadeca-9,12-dienoic acid)(9Z,9'Z,12Z,12'Z)-((5-(3-(piperidine-1) -(yl)propyl)-1,3-phenylene)bis(oxy))bis(but-4,1-diyl)ester, bis(methylene)bis(9-pentyltetradecanoic acid) )(5-((dimethylamino)methyl)-1,3-phenylene) ester, bis(methylene)bis(7-hexyltridecanoic acid)(5-((dimethyl Amino)methyl)-1,3-phenyl)ester, bis(methylene)bis(5-heptyldodecanoic acid)(5-((dimethylamino)methyl)-1 ,3-phenylene) ester, bis(3-octylundecanoic acid)((5-((dimethylamino)methyl)-1,3-phenylene)bis(oxy)) Bis(but-4,1-diyl)ester, bis(5-heptyldodecanoic acid)((5-((dimethylamino)methyl)-1,3-phenylene)bis( Oxygen))bis(but-4,1-diyl)ester,bis(9-pentyltetradecanoic acid)((5-((dimethylamino)methyl)-1,3-phenylene Bis(oxy))bis(but-4,1-diyl)ester, bis(7-hexyltridecanoic acid)((5-((dimethylamino)methyl)-1,3 -Phenylene)bis(oxy))bis(but-4,1-diyl)ester, bis(octadeca-9,12-dienoic acid)(9Z,9'Z,12Z,12'Z )-((5-(pyrrolidin-1-ylmethyl)-1,3-phenylene)bis(oxy))bis(but-4,1-diyl)ester, tetracaprylic acid (((5 -((dimethylamino)methyl)-1,3-phenylene)bis(oxy))bis(methylene))bis(prop-3,2,1-triyl)ester,tetrakis Caprylic acid (((5-((dimethylamino)methyl)-1,3-phenylene)bis(oxy))bis(but-4,1-diyl))bis(propane-3, 2,1-triyl) ester, octadeca-9,12-dienoic acid (9Z.12Z)-4-(3-((dimethylamino)methyl-5-(4-((3 -Octylundecanyl)oxy)butoxy)phenoxy)butyl ester, 0,0'-((5-((dimethylamino)methyl)-1,3-phenylene) Bis(1,3-bis(octyloxy)propan-2-yl)bis(methylene)disuccinate, bis(methylene)bis(6-((nonyloxy) Carbonyl)oxy)hexanoic acid) (5-((dimethylamino)methyl)-1,3-phenylene) ester, dihexanoic acid 2-(3-(4-(5-((dimethylamino)methyl) Methylamino)methyl)-2-methyl-3-((9Z,12Z)-octadeca-9,12-dien-1-yloxy)phenoxy)butoxy)-3 -Pendant oxypropyl)propan-1,3-diester, 3-octylundecanoic acid 3-((dimethylamino)methyl)-5-(((8-(octyloxy) )octyl)oxy)methyl)benzyl ester, trioctanoate ((5-((diethylamino)methyl)benzene-1,2,3-triyl)tris(oxy))tris(decane) -10,1-diyl)ester, 1-(3,5-bis((Z)-octadec-9-en-1-yloxy)phenyl)-N,N-dimethylmethylamine , N'-Methyl-N',N",N"-tris((2E.6E)-3.7.11-trimethyldodeca-2.6.10-trien-1-ylpropan-1,3 -Diamine, 4-(dimethylamino)butyric acid 1,17-bis(2-((2-pentylcyclopropyl)methyl)cyclopropyl)heptadecane-9-ester, (7Z )-17-{[4-(Dimethylamino)butyl]oxy}ethyl hexadecanoate, (Z)-6-(2-(dimethylamino)-3 -(Octadec-9-en-1-yloxy)propoxy)hexanoic acid methyl ester, 2-(di-dodecylamine)-1-(4-(N-(2-( Dinonylamino)ethyl)-N-dodecylglycinyl)piperidin-1-yl)ethan-1-one, hexanoic acid 3-((3-(1-(3-((( 2-(Dinonylamino)ethyl)(nonyl)amino)propyl)piperidin-4-yl)propyl)(nonyl)amino)propyl ester, hexanoic acid 3-((3 -(4-(3-((2-(Dinonylamino)ethyl)(nonyl)amino)propyl)piperidine-1-yl)-3-side oxypropyl)(nonyl base)amino)propyl ester, 3-((2-(dinonylamino)ethyl)(nonyl)amino)-1-(4-(3-(dinonylamino)propyl) Piperidin-1-yl)propan-1-one, 4-((3-(1-(3-((2-(dinonylamino)ethyl)(nonyl)amino)propanyl) Piperidin-4-yl)propyl)(nonyl)amino)butyric acid pentyl ester, 4-((2-(1-(N-(2-(dinonylamino)ethyl))-N- Nonylglycinyl)piperidin-4-yl)ethyl)(nonyl)amino)butyric acid pentyl ester, 4-(((1-(N-(2-(dinonylamino)ethyl) base)-N-nonylglycinyl)pyrrolidin-3-yl)methyl)(nonyl)amino)butyric acid pentyl ester, 4-((2-(1-(N-(2-( Dinonylamino)ethyl)-N-nonylglycinyl)pyrrolidin-3-yl)ethyl)(nonyl)amino)butyric acid pentyl ester, 4-((2-(1- (N-(2-(Dinonylamino)ethyl)-N-nonylglycinyl)piperidin-3-yl)ethyl)(nonyl)amino)butyric acid pentyl ester, 2- (Di-dodecylamine)-1-(4-(N-(2-(dinonylamino)ethyl)-N-nonylglycinyl)pipienyl-1-yl)ethyl -1-one, 2-((2-(dinonylamino)ethyl)(nonyl)amino)-1-(3-(2-(dinonylamino)ethyl)piperidine- 1-yl)ethan-1-one, 4,4'-((2-(4-(N-(2-(dinonylamino)ethyl)-N-nonylglycinyl)piperone) -1-yl)-2-Pendant oxyethyl)ureadiyl)dibutyrate dipyl ester, 4-(nonyl(2-(4-(N-nonyl-N-(2-(nonyl) (4-Pendantoxy-4-(Pentyloxy)butyl)amino)ethyl)glyminyl)piperidine-1-yl)-2-Pendantoxyethyl)amino)butyric acid pentyl Ester, 2-((2-(dinonylamino)ethyl)(nonyl)amino)-1-(3-((dinonylamino)methyl)pyrrolidin-1-yl)ethyl -1-one, 2-((2-(di-dodecylamine)ethyl)(dodecyl)amine)-1-(4-(dinonylglycinyl)piperaniline) -1-yl)ethan-1-one, 2-((2-(dinonylamino)ethyl)(nonyl)amino)-1-(3-(2-(dinonylamino) Ethyl)pyrrolidin-1-yl)ethan-1-one, 4-((3-(4-(3-((2-(dinonylamino)ethyl)(nonyl)amino)propanyl) Carboxyl)piperidine-1-yl)-3-side oxypropyl)(nonyl)amino)butyric acid pentyl ester, hexanoic acid 3-((2-(1-(N-(2-(di) Nonylamino)ethyl)-N-nonylglycinyl)piperidin-4-yl)ethyl)(nonyl)amino)propyl ester, 5-((2-(1-(N- (2-(Dinonylamino)ethyl)-N-nonylglycinyl)piperidin-4-yl)ethyl)(nonyl)amino)valerate butyl ester, 2-((2 -(Di-dodecylamine)ethyl)(nonyl)amino)-1-(4-(dinonylglycinyl)piperidin-1-yl)ethan-1-one, 6 -((2-(1-(N-(2-(dinonylamino)ethyl)-N-nonylglycinyl)piperidin-4-yl)ethyl)(nonyl)amine )Propyl hexanoate, 7-((2-(1-(N-(2-(dinonylamino)ethyl)-N-nonylglycinyl)piperidin-4-yl)ethyl )(nonyl)amino)ethyl heptanoate, 8-((2-(1-(N-(2-(dinonylamino)ethyl))-N-nonylglycinyl)piperidine -4-yl)ethyl)(nonyl)amino)octanoic acid methyl ester, hexanoic acid 3-((2-(4-(N-(2-(dinonylamino)ethyl))-N-nonan Glyceryl)piperidin-1-yl)-2-side oxyethyl)(nonyl)amino)propyl ester, 5-((2-(4-(N-(2-(dinonyl) (Amino)ethyl)-N-nonylglycinyl)piperidine-1-yl)-2-side oxyethyl)(nonyl)amino)butyl valerate, 6-((2 -(4-(N-(2-(Dinonylamino)ethyl)-N-nonylglycinyl)piperamide-2-pentoxyethyl)(nonyl)amino)hexanoic acid Propyl ester, 7-((2-(4-(N-(2-(dinonylamino)ethyl)-N-nonylglycinyl)piperidine-1-yl)-2-side oxygen Ethyl)(nonyl)amino)heptanoate, 3-(dinonylamino)-1-(4-(3-((2-(dinonylamino)ethyl)(nonanyl) Base)amino)propionyl)piperidine-1-yl)propan-1-one, 2-((2-(dinonylamino)ethyl)(nonyl)amino)-1-(4 -(Di-tetradecylglycinyl)piperidin-1-yl)ethan-1-one, 2-(dinonylamino)-1-(4-(2-((2-(di Nonylamino)ethyl)(nonyl)amino)ethyl)piperidin-1-yl)ethan-1-one, 2-(dinonylamino)-l-(4-(N-( 2-(Dinonylamino)ethyl)-N-dodecylglycinyl)piperidine-1-yl)ethan-1-one, 2-((2-(Dinonylamino) Ethyl)(nonyl)amino)-1-(4-(2-(dinonylamino)ethyl)piperidin-1-yl)ethan-1-one, 8-((2-(4 -(Dinonylglycinyl)piperidin-1-yl)-2-Pendantoxyethyl)(2-((8-Methoxy-8-Pendantoxyoctyl)(nonyl)amine Methyl)ethyl)amino)octanoate, 8-(((2-(dinonylamino)ethyl)(2-(4-(dinonylglycinyl)piperidine-1-yl) -2-Pendant oxyethyl)amino)octanoic acid methyl ester, 8-((2-((2-(4-(dinonylglycinol))piperidine-1-yl)-2-Pendant oxy Ethyl)(nonyl)amino)ethyl)(nonyl)amino)octanoic acid methyl ester, 4-((2-(4-(N-(2-(dinonylamino)ethyl) -N-Nonylglycinyl)piperidine-2-side oxyethyl)(nonyl)amino)butyric acid pentyl ester, 8-((2-(4-(N-(2-(di Nonylamino)ethyl)-N-nonylglycinyl)piperidine-1-yl)-2-side oxyethyl)(nonyl)amino)octanoic acid methyl ester, 2-((2 -(Di-dodecylamine)ethyl)(dodecyl)amine)-1-(5-(dinonylglycinyl)-2,5-diazabicyclo[2.2. 1]Hept-2-yl)ethan-1-one, 2-(dinonylamino)-1-(5-(N-(2-(dinonylamino)ethyl)-N-nonyl Glycinyl)-2,5-diazabicyclo[2.2.1]hept-2-yl)ethan-1-one, N1,N1,N2-tris((9Z,12Z)-octadecane-9 ,12-dien-1-yl)-N2-(2-(piperidine-1-yl)ethyl)ethyl-1,2-diamine, N1,N1,N2-tris((Z)-eightadecane Carbo-9-en-1-yl)-N2-(2-(piperidine-1-yl)ethyl)ethyl-1,2-diamine, 2-(dinonylamino)-l-(4 -(N-(2-(Dinonylamino)ethyl)-N-nonylglycinyl)piperidine-l-yl)ethan-1-one, N1,N1,N2-tri-dodecane Alkyl-N2-(2-(piperidine-1-yl)ethyl)ethyl-1,2-diamine, N1,N1,N2-trinonyl-N2-(2-(piperidine-1-yl) )ethyl)ethyl)ethyl-1,2-diamine, N1,N1,N2-trihexyl-N2-(2-(piperbenz-1-yl)ethyl)ethyl-1,2-diamine, N1-( 2-(4-(2-(Di-dodecylamine)ethyl)piperidine-1-yl)ethyl)-N1,N2,N2-tris((9Z,12Z)-octadecacarbon- 9,12-dien-1-yl)ethyl-1,2-diamine, N1-(2-(4-(2-(di-dodecylamine)ethyl)piperaniline-1-yl) )ethyl)-N1,N2,N2-tris((Z)-octadec-9-en-1-yl)ethyl-1,2-diamine, N1-(2-(4-(2-( Ditetradecylamine-1,2-diamine, N1-(2-( 4-(2-(di-dodecylamine)ethyl)piperidine-1-yl)ethyl)-N1,N2,N2-tri-tetradecylethyl-1,2-diamine, N1-(2-(4-(2-(dinonylamino)ethyl)piperidine-1-yl)ethyl)-N1,N2,N2-tri-tetradecylethyl-1,2- Diamine, 2-(di-dodecylamine)-l-(4-(2-((2-(di-dodecylamine)ethyl)(dodecyl)amine)) Ethyl) piperazine-1-yl) ethan-1-one, N1-(2-(4-(2-(bis((9Z,12Z))-octadeca-9,12-dien-1-yl) )Amino)ethyl)piperidin-1-yl)ethyl)-N1,N2,N2-tri-dodecylethyl-1,2-diamine, N1-(2-(4-(2- (Di((Z)-Octadec-9-en-1-yl)amino)ethyl)piperidine-1-yl)ethyl)-N1,N2,N2-tri-dodecylethyl- 1,2-Diamine, N1,N1,N2-tri-dodecyl-N2-(2-(4-(2-(dodecyl((9Z,12Z))-octadecyl-9,12 -Dien-1-yl)amino)ethyl)piperidine-1-yl)ethyl)ethyl-1,2-diamine, N1-(2-(4-(2-(ditetradecane) (Amino)ethyl)piperidin-1-yl)ethyl)-N1,N2,N2-tri-dodecylethyl-1,2-diamine, N1-(2-(4-(2- (Di((Z)-dodeca-6-en-l-yl)amino)ethyl)piperidine-l-yl)ethyl)-N1,N2,N-tri-dodecylethyl- 1,2-Diamine, (Z)-N1-(2-(4-(2-dodeca-6-en-l-yl(dodecyl)amino)ethyl)piperamide-l- ethyl)-N,N2,N2-tri-dodecylethyl-1,2-diamine, N1-(2-(4-(2-(dinonylamino)ethyl)piperaniline) -l-yl)ethyl)-N1,N2,N2-tri-dodecylethyl-1,2-diamine, N1-(2-(4-(2-(dioctylamine)ethyl) )Piper-1-yl)ethyl)-N1,N2,N2-tri-dodecylethane-1,2-diamine, N1-(2-(4-(2-(dihexylamino) Ethyl)piperidine-l-yl)ethyl)-N1,N2,N2-tri-dodecylethyl-1,2-diamine, N1-(2-(4-(2-(二-十) Tetraalkylamino)ethyl)piperidine-l-yl)ethyl)-N1,N2,N2-trinonylethane-1,2-diamine, 2-((2-(di-dodecane methylamino)ethyl)(dodecyl)amino)-l-(4-(2-(di-dodecylamine)ethyl)piperamide-l-yl)ethan-1-one , N1-(2-(4-(2-(di-dodecylamine)ethyl)piperidine-l-yl)ethyl)-N1,N2,N2-trinonylethyl-1,2 -Diamine, N1-(2-(4-(2-(dinonylamino)ethyl)pipienyl-l-yl)ethyl)-N1,N2,N2-trinonylethyl-1,2 -Diamine, N1-(2-(4-(2-(di-dodecylamine)ethyl)piperidine-l-yl)ethyl)-N1,N2,N2-trihexylethane-1 ,2-diamine, 12,12'-((2-(4-(2-((2-(di-dodecylamine)ethyl)(dodecyl)amino)ethyl) Dimethyl piperazine-l-yl)ethyl)ureadiyl)di-dodecanoate, 12-((2-(4-(2-((2-(di-dodecylamine)) Ethyl)(dodecyl)amino)ethyl)piperidine-l-yl)ethyl)(dodecyl)amino)methyl dodecanoate, 6,6'-((2- (4-(2-((2-(di-dodecylamino)ethyl)(dodecyl)amino)ethyl)piperidine-l-yl)ethyl)ureadiyl)diyl Dipentyl hexanoate, 6-((2-(4-(2-((2-(di-tetradecylamino)ethyl)(tetradecyl)amino)ethyl)piperidine- 1-yl)ethyl)(dodecyl)amino)pentylhexanoate, 6-((2-(4-(2-((2-(di-dodecyl)amino)ethyl) (Dodecyl)amino)ethyl)piperidine-l-yl)ethyl)(dodecyl)amino)pentylhexanoate, 2-(di-dodecylamine)-l -(4-(N-(2-(di-dodecylamine)ethyl)-N-dodecylglycinyl)piperidine-1-yl)ethan-1-one, 2- (Di-dodecylamine)-1-(4-(N-(2-(di-dodecylamine)ethyl)-N-nonylglycinyl)piperamide-1- ethyl)ethanol-1-one, 2-(di-dodecylamine)-N-(2-(4-(2-(di-dodecylamine)ethyl)ethyl)piperidine-l- ethyl)-N-dodecyl acetamide, (9Z,9'Z,12Z,12'Z)-bis(octadeca-9,12-dienoic acid)((2-(( 3,S',4R)-3,4-Dihydroxypyrrolidin-l-yl)acetyl)ureadiyl)bis(ethyl-2,1-diyl)ester, 2-amino-N,N -Di-hexadecyl-3-(1H-imidazol-5-yl)propanamide, (2-amino-N,N-di-hexadecyl-3-(1H-imidazol-5-yl) )Propanamide, (9Z)-19-[2-(dimethylamino)ethyl]octadeca-9-enoic acid methyl ester, 8-(2-{9-[2-(dimethyl) methylamino)ethyl]octadecyl}cyclopropyl)octanoic acid methyl ester, (9Z)-19-[2-(dimethylamino)ethyl]octadecyl-9-enoic acid methyl ester , 8-(2-{ll-[(dimethylamino)methyl]heptadecyl}cyclopropyl)octanoic acid ethyl ester, 8-(2-{ll-[(dimethylamino)methyl] Ethyl]octadecyl}cyclopropyl)octanoate, 3-(((2-(dimethylamino)ethoxy)carbonyl)amino)glutarate di((9Z,12Z)-decanoate Octacarbon-9,12-dien-l-yl) ester, 6-((2-(l-(N-(2-(dinonylamino)ethyl))-N-nonylglycinyl) )piperidin-4-yl)ethyl)(tetradecyl)amino)heptylhexanoate, 8-(2-{ll-[(dimethylamino)methyl]nonadecyl}cyclo Propyl)ethyl octanoate, 8-((2-(l-(N-(2-(dinonylamino)ethyl)-N-nonylglycinyl)piperidin-4-yl)ethyl)ethyl ethyl)(tetradecyl)amino)octanoate, 8-(2-{ll-[(dimethylamino)methyl]eicosyl}cyclopropyl)octanoate, 8-( 2-{9-[(Dimethylamino)methyl]pentadecyl}cyclopropyl)octanoic acid ethyl ester, decanoic acid 3-((2-(l-(N-(2-(dinonyl) Amino)ethyl)-N-nonylglycinyl)piperidin-4-yl)ethyl)(tetradecyl)amino)propyl ester, 6-((2-(4-(N- (2-(Dinonylamino)ethyl)-N-nonylglycinyl)piperbenzoic acid Heptyl ester, ethyl 8-(2-{9-[(dimethylamino)methyl]hexadecyl}cyclopropyl)octanoate, 8-((2-(4-(N-(2- (Dinonylamino)ethyl)-N-nonylglycinyl)piperidine-2-side oxyethyl)(tetradecyl)amino)pentyl octanoate, 8-(2-{ 9-[(Dimethylamino)methyl]heptadecyl}cyclopropyl)octanoic acid ethyl ester, 6-(2-(8-(2-(dimethylamino)-3-(nonyloxy) (9Z)-21-(dimethylamino)octyl)cyclopropyl)hexanoic acid methyl ester, (9Z)-21-{ [4-(Dimethylamino)butyl]oxy}hexadeca-9-enoic acid methyl ester, (2R)-N,N-dimethyl-1-[(9Z,12Z)-octadecanoate Carbon-9,12-dien-1-yloxy]dodecane-2-amine, (15Z,18Z)-N,N-dimethyltetradecano-15,18-diene-5- Amine, ethyl 8-(2-{9-[(dimethylamino)methyl]octadecyl}cyclopropyl)octanoate, decanoic acid 3-((2-(4-(N-(2 -(Dinonylamino)ethyl)-N-nonylglycinyl)piperidine-l-yl)-2-side oxyethyl)(tetradecyl)amino)propyl ester, 4 -(2-{ll-[(dimethylamino)methyl]eicosyl}cyclopropyl)butyric acid ethyl ester, 8-(2-{7-[(dimethylamino)methyl ]Hexadecyl}cyclopropyl)octanoic acid ethyl ester, hexanoic acid 3-((3-(l-(3-((2-(dinonylamino)ethyl)(nonyl)amino)propanyl) acyl)piperidin-4-yl)propyl)(nonyl)amino)propyl ester, 6-(2-{9-[(dimethylamino)methyl]pentadecyl}cyclopropyl )Ethyl hexanoate, 3-((3-(4-(3-((2-(dinonylamino)ethyl)(nonyl)amino)propyl)piperate-l- base)-3-Pendant oxypropyl)(nonyl)amino)propyl ester, 6-(2-{9-[(dimethylamino)methyl]hexadecyl}cyclopropyl)hexyl Ethyl acid ester, 3-((2-(dinonylamino)ethyl)(nonyl)amino)-l-(4-(3-(dinonylamino)propyl)piperidine-1 -yl)propan-1-one, 4-((3-(l-(3-((2-(dinonylamino)ethyl)(nonyl)amino)propanyl)piperidine-4 -Ethyl)propyl)(nonyl)amino)butyrate, ethyl 6-(2-{9-[(dimethylamino)methyl]heptadecyl}cyclopropyl)hexanoate , 4-((2-(l-(N-(2-(dinonylamino)ethyl)-N-nonylglycinyl)piperidin-4-yl)ethyl)(nonyl) Amino)butyric acid pentyl ester, 6-(2-{9-[(dimethylamino)methyl]octadecyl}cyclopropyl)hexanoic acid ethyl ester, 4-(((l-(N -(2-(Dinonylamino)ethyl)-N-nonylglycinyl)pyrrolidin-3-yl)methyl)(nonyl)amino)butyric acid pentyl ester, (9Z)- 21-[(Dimethylamino)methyl]ethyl heptacos-9-enoate, 4-((2-(l-(N-(2-(dinonylamino)ethyl)) -N-Nonylglycinyl)pyrrolidin-3-yl)ethyl)(nonyl)amino)butyric acid pentyl ester, (9Z)-21-[(dimethylamino)methyl]di Ethyl octadeca-9-enoate, (9Z,9'Z,12Z,12'Z)-bis(octadeca-9,12-dienoic acid) ((2-((3,S', 4R)-3,4-dihydroxypyrrolidin-l-yl)acetyl)ureadiyl)bis(ethyl-2,l-diyl)ester, 4-((2-(l-(N-( 2-(Dinonylamino)ethyl)-N-nonylglycinyl)piperidin-3-yl)ethyl)(nonyl)amino)butyric acid pentyl ester, (9Z)-21- [(Dimethylamino)methyl]ethyl 9-ethyl ester, 6-(2-(8-(2-(dimethylamino))-3-(heptyloxy)propyl Oxy)octyl)cyclopropyl)hexanoic acid methyl ester, (9Z)-21-{[4-(dimethylamino)butyl]oxy}octacarbon-9-enoic acid methyl ester, ( 9Z)-21-(dimethylamino)octadecanoic-9-enoic acid methyl ester, 2-(di-dodecylamine)-1-(4-(N-(2-(di Nonylamino)ethyl)-N-nonylglycinyl)piperidine-1-yl)ethyl)ethyl)-(2S)-N.N-dimethyl-1-[(9Z,12Z)-ten Octacarbon-9,12-diene-1-yloxy]nonan-2-amine, (18Z,21Z)-N,N-dimethylheptacarbon-18,21-diene-10-amine , (9Z)-21-[(dimethylamino)methyl]triaconta-9-enoic acid ethyl ester, (9Z)-19-[(dimethylamino)methyl]pentadecacarbonate -Ethyl 9-enoate, (9Z)-19-[(dimethylamino)methyl]ethyl 9-enoate, (9Z)-19-[(dimethylamino) )methyl]ethyl octadeca-9-enoate, (9Z)-19-[(dimethylamino)methyl]octadeca-9-enoate ethyl ester, (5Z)-17 -[(Dimethylamino)methyl]icosac-5-enoic acid ethyl ester, (9Z)-17-[(dimethylamino)methyl]icosac-9-enoic acid Ethyl ester, 2-((2-(dinonylamino)ethyl)(nonyl)amino)-l-(3-(2-(dinonylamino)ethyl)piperidine-l- ethyl)ethan-1-one, (7Z)-17-[(dimethylamino)methyl]ethyl tricos-7-enoate, 4,4'-((2-(4-( N-(2-(dinonylamino)ethyl)-N-nonylglycinyl)piperamide-l-yl)-2-side oxyethyl)ureadiyl)dibutyrate dipentyl Ester, 4-(nonyl(2-(4-(N-nonyl-N-(2-(nonyl(4-sideoxy-4-(pentoxy)butyl)amino)ethyl) Glycinyl) piperazine-l-yl)-2-side oxyethyl) amino) butyric acid pentyl ester, (7Z)-17-[(dimethylamino)methyl] 24-carbon -Ethyl 7-enoate, (7Z)-17-[(dimethylamino)methyl]pentazoic-7-enoic acid ethyl ester, 2-((2-(dinonylamino) Ethyl)(nonyl)amino)-l-(3-((dinonyl)amino)methyl)pyrrolidin-1-yl)ethan-1-one, trans-3-[(3}7 -Dimethyloctyl)oxy]-1-methyl-4~[(9Z,12Z)-octadeca-9512-diene-1-oxypyrrolidine, 6-(2-(8-( 2-(Dimethylamino)-3-(hexyloxy)propoxy)octyl)cyclopropyl)hexanoic acid methyl ester, (9Z)-21-{[4-(dimethylamino) Butyl]oxy}nonadenocarbon-9-enoic acid methyl ester, (9Z)-21-(dimethylamino) nonacos-9-enoic acid methyl ester, (2S)-N,N- Dimethyl-1-[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]tridecane-2-amine, (15Z,18Z)-N,N-dimethyl Hexacarbon-15,18-diene-7-amine, (7Z)-17-[(dimethylamino)methyl]icosac-7-enoic acid ethyl ester, 2-(( 2-(Dinonylamino)ethyl)(nonyl)amine)-l-(3-(2-(dinonylamino)ethyl)pyrrolidin-1-yl)ethan-1-one , 6-(2-{ll-[(dimethylamino)methyl]eicosyl}cyclopropyl)hexanoic acid methyl ester, 10-(2-{7-[(dimethylamino) Methyl]hexadecyl}cyclopropyl)decanoate, methyl 8-(2-{ll-[(dimethylamino)methyl]heptadecyl}cyclopropyl)octanoate, 8 -(2-{ll-[(dimethylamino)methyl]octadecyl}cyclopropyl)octanoic acid methyl ester, 8-(2-{ll-[(dimethylamino)methyl] Methyl nonadecyl}cyclopropyl)octanoate, 8-(2-{ll-[(dimethylamino)methyl]eicosyl}cyclopropyl)octanoate, methyl ester, 4-((3 -(4-(3-((2-(Dinonylamino)ethyl)(nonyl)amino)propyl)piperidine-l-yl)-3-side oxypropyl)(nonyl) Amino)butyric acid pentyl ester, 8-(2-{9-[(dimethylamino)methyl]pentadecyl}cyclopropyl)octanoic acid methyl ester, 8-(2-{9- [(Dimethylamino)methyl]hexadecyl}cyclopropyl)octanoic acid methyl ester, hexanoic acid 3-((2-(l-(N-(2-(dinonylamino)ethyl) )-N-Nonylglycinyl)piperidin-4-yl)ethyl)(nonyl)amino)propyl ester, 8-(2-{9-[(dimethylamino)methyl] Heptadecyl}cyclopropyl)octanoic acid methyl ester, 8-(2-(dimethylamino)-3-((6-((2-octylcyclopropyl)methoxy)-6-side Oxyhexyl)oxy)propoxy)octanoic acid methyl ester, 5-((2-(l-(N-(2-(dinonylamino)ethyl)-N-nonylglycinyl) Piperidin-4-yl)ethyl)(nonyl)amino)butylvalerate, trans-1-methyl-3-[(12Z)-octadec-12-en-1-yloxy ]-4-(octyloxy)pyrrolidine, (9Z)-21-{[4-(dimethylamino)butyl]oxy}triacontacarbon-9-enoic acid methyl ester, (9Z)-21 -(Dimethylamino)triacontacarbon-9-enoic acid methyl ester, 2-((2-(di-dodecylamine)ethyl)(nonyl)amino)-1-(4 -(Dinonylglycinyl)piperidin-1-yl)ethan-1-one Step 1: N-(2-(di-dodecylamine)ethyl)-N-nonylglyamine Acid methyl ester, 1-((2R,3S,5R)-3-(bis(hexadecyloxy)methoxy)-5-(5-methyl-2,4-bisoxy-3, 4-Dihydropyrimidine-1(2H)-yl)tetrahydrofuran methanesulfonate, (Z)-16-(3-(decyloxy)-2-(dimethylamino)propoxy)hexadecane -7-Methyl enoate, (2S)-1-[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]nonan-2-amine, (14Z,17Z)- N,N-Dimethyltricoc-14,17-diene-6-amine, 6-((2-(l-(N-(2-(dinonylamino)ethyl))-N -Nonylglycinyl)piperidin-4-yl)ethyl)(nonyl)amino)propylhexanoate, 7-(2-(dimethylamino)-3-((6-( (2-octylcyclopropyl)methoxy)-6-side oxyhexyl)oxy)propoxy)heptanoate methyl ester, (7Z)-19-[(dimethylamino)methyl] Methyl octadecanoate, (HZ)-19-[(dimethylamino)methyl]octadecanoate-ll-enoate, 7-((2-(l- (N-(2-(Dinonylamino)ethyl)-N-nonylglycinyl)piperidin-4-yl)ethyl)(nonyl)amino)heptanoate, 6- (2-(dimethylamino)-3-((5-methoxy-5-pentyloxypentyl)oxy)propoxy)hexanoic acid (2-octylcyclopropyl)methyl ester, 8-((2-(l-(N-(2-(dinonylamino)ethyl)-N-nonylglycinyl)piperidin-4-yl)ethyl)(nonyl)amine methyl)octanoate, (9Z)-21-[(dimethylamino)methyl]heptacos-9-enoic acid methyl ester, 6-(2-(dimethylamino)-3- (2-octylcyclopropyl)methyl (4-methoxy-4-sideoxybutoxy)propoxy)hexanoate, (9Z)-21-[(dimethylamino)methyl ] Methyl octadecanoic acid, 3-((2-(4-(N-(2-(dinonylamino)ethyl))-N-nonylglycinyl) Piperane-1-yl)-2-side oxyethyl)(nonyl)amino)propyl ester, (Z)-8-(2-(dimethylamino)-3-((6-side Oxy-6-(undec-2-en-l-yloxy)hexyl)oxy)propoxy)octanoic acid methyl ester, (9Z)-21-[(dimethylamino)methyl] Methyl nonaenoate, 5-((2-(4-(N-(2-(dinonylamino)ethyl)-N-nonylglycinyl)piperone- l-yl)-2-Pendant oxyethyl)(nonyl)amino)valerate butyl ester, (Z)-7-(2-(dimethylamino)-3-((6-Pendant oxy) Methyl-6-(undec-2-en-l-yloxy)hexyl)oxy)propoxy)heptanoate, 6-((2-(4-(N-(2-(di Nonylamino)ethyl)-N-nonylglycinyl)piperidine-l-yl)-2-side oxyethyl)(nonyl)amino)propylhexanoate, (9Z)- 21-[(Dimethylamino)methyl]tricoc-9-enoic acid methyl ester, (Z)-6-(2-(dimethylamino)-3-((5-methoxy) -5-Pendant oxypentyl)oxy)propoxy)hexanoate undec-2-en-1-ester, (9Z)-19-[(dimethylamino)methyl]twenty-five Carbon-9-enoic acid methyl ester, 7-((2-(4-(N-(2-(dinonylamino)ethyl)-N-nonylglycinyl)pipienyl)-l-yl )-2-Pendant oxyethyl)(nonyl)amino)ethyl heptanoate, (Z)-6-(2-(dimethylamino)-3-(4-methoxy-4- Pendant oxybutoxy)propoxy)hexanoate undec-2-en-1-ester, 6-(2-(dimethylamino)-3-((6-((2-octyl) Cyclopropyl)methoxy)-6-side oxyhexyl)oxy)propoxy)hexanoic acid methyl ester, (9Z)-19-[(dimethylamino)methyl]hexadecan- 9-Methyl enoate, 3-(dinonylamino)-l-(4-(3-((2-(dinonylamino)ethyl)(nonyl)amino)propyl) Piperan-1-yl)propan-1-one, (9Z)-19-[(dimethylamino)methyl]heptacos-9-enoic acid methyl ester, 2-((2-(di Nonylamino)ethyl)(nonyl)amino)-l-(4-(ditetradecylglycinyl)piperidin-1-yl)ethan-1-one, (Z)- 6-(2-(dimethylamino)-3-((6-sideoxy-6-(undec-2-en-l-yloxy)hexyl)oxy)propoxy)hexyl Acid methyl ester, 8-(2-(dimethylamino)-3-((8-(2-(6-methoxy-6-side oxyhexyl)cyclopropyl)octyl)oxy) Propoxy)octanoic acid methyl ester, 8-(2-{9-[(dimethylamino)methyl]octadecyl}cyclopropyl)octanoic acid methyl ester, 2-(dinonylamino)- l-(4-(2-((2-(dinonylamino)ethyl)(nonyl)amino)ethyl)piperidin-1-yl)ethan-1-one, trans-l- Methyl-3-[(9Z)-octadec-9-en-l-yloxy]-4-(octyloxy)pyrrolidine, (9Z)-19-{[4-(dimethylamine methyl)butyl]oxy}pentadeca-9-enoate methyl ester, (9Z)-19-(dimethylamino)pentadeca-9-enoate methyl ester, (Z)-16- (2-(Dimethylamino)-3-(nonyloxy)propoxy)hexadecanoic acid methyl ester, (2S)-1-[(9Z,12Z)-octadecanoic acid- 9,12-diene-1-yloxy]decyl-2-amine, (12Z,15Z)-N,N-dimethyleicosanoid-12,15-diene-4-amine, 7- (2-(dimethylamino)-3-((8-(2-(6-methoxy-6-pentoxyhexyl)cyclopropyl)octyl)oxy)propoxy)heptanoic acid Methyl ester, (9Z)-19-[(dimethylamino)methyl]octacarbon-9-enoic acid methyl ester, 2-((2-(dinonylamino)ethyl)(nonan base)amino)-l-(4-(2-(dinonylamino)ethyl)piperidin-l-yl)ethan-1-one, 8-((2-(4-(dinonyl) Glyminyl)piperidine-l-yl)-2-side oxyethyl) (2-((8-methoxy-8-side oxyoctyl)(nonyl)amino)ethyl) Amino)octanoic acid methyl ester, 6-(2-(8-(2-(dimethylamino)-3-((5-methoxy-5-sideoxypentyl)oxy)propoxy) )octyl)cyclopropyl)hexanoic acid methyl ester, 8-{2-[ll-(dimethylamino)heptadecyl]cyclopropyl}octanoic acid ethyl ester, 8-((2-(dionon methylamino)ethyl)(2-(4-(dinonylglycinyl)piperidine-l-yl)-2-side oxyethyl)amino)octanoate, 6-(2- (8-(2-(Dimethylamino)-3-(4-methoxy-4-sideoxybutoxy)propoxy)octyl)cyclopropyl)hexanoic acid methyl ester, 8- {2-[ll-(dimethylamino)octadecyl]cyclopropyl}octanoic acid ethyl ester, 8-((2-((2-(4-(dinonylglycinyl)piperazol) -l-yl)-2-Pendant oxyethyl)(nonyl)amino)ethyl)(nonyl)amino)octanoic acid methyl ester, 8-{2-[ll-(dimethylamino) Nonadecyl]cyclopropyl}octanoic acid ethyl ester, (Z)-16-(2-(dimethylamino)-3-((8-methoxy-8-side oxyoctyl)oxy) )propoxy)hexadeca-7-enoic acid methyl ester, 4-((2-(4-(N-(2-(dinonylamino)ethyl))-N-nonylglycinyl )Penyl-1-yl)-2-side oxyethyl)(nonyl)amino)butyric acid pentyl ester, 8-{2-[ll-(dimethylamino)eicosanyl] ring Propyl}octanoic acid ethyl ester, (Z)-16-(2-(dimethylamino)-3-((7-methoxy-7-pentyloxyheptyl)oxy)propoxy)ten Hexacarbon-7-enoic acid methyl ester, 8-((2-(4-(N-(2-(dinonylamino)ethyl)-N-nonylglycinyl)piperone-l- methyl)-2-Pendant oxyethyl)(nonyl)amino)octanoate, 8-{2-[9-(dimethylamino)pentadecyl]cyclopropyl}octanoic acid ethyl ester, (Z)-16-(2-(dimethylamino)-3-((5-methoxy-5-pentyloxypentyl)oxy)propoxy)hexadec-7-enoic acid Methyl ester, (11E,20Z,23Z)-N,N-dimethylnac-11,20,23-triene-10-amine, N,N-dimethyl-1-[(1S, 2R)-2-octylcyclopropyl]pentadecan-8-amine, 8-{2-[9-(dimethylamino)hexadecyl]cyclopropyl}octanoic acid ethyl ester, 2-( (2-(Di-dodecylamine)ethyl)(dodecyl)amine)-l-(5-(dinonylglycinyl)-2,5-diazabicyclo[ 2.2.1]Hept-2-yl)ethan-1-one 3, (Z)-16-(2-(dimethylamino)-3-(4-methoxy-4-sideoxybutoxy) methyl)propoxy)hexadecyl-7-enoate, 6-(2-(8-(2-(dimethylamino)-3-((6-methoxy-6-side oxygen) Methylhexyl)oxy)propyloxy)octyl)cyclopropyl)hexanoate, ethyl 8-{2-[9-(dimethylamino)heptadecyl]cyclopropyl}octanoate, 2-(Dinonylamino)-l-(5-(N-(2-(Dinonylamino)ethyl)-N-nonylglycinyl)-2,5-diazabicyclo [2.2.1]Hept-2-yl)ethan-1-one, 1-[(1S,2R)-2-decylcyclopropyl]-N,N-dimethylpentadecan-6-amine, N1,N1,N2-tris((9Z,12Z)-octadeca-9,12-diene-l-yl)-N2-(2-(piperidine-l-yl)ethyl)ethyl-1, 2-Diamine, 8-{2-[9-(Dimethylamino)octadecyl]cyclopropyl}octanoic acid ethyl ester, 1-[(1R,2S)-2-heptylcyclopropyl] -N,N-dimethyloctadecane-9-amine, (Z)-16-(2-(dimethylamino)-3-((6-methoxy-6-side oxyhexyl)) Oxy)propoxy)hexadec-7-enoic acid methyl ester, N1,N1,N2-tris((Z)-octadec-9-en-l-yl)-N2-(2-(piperate) 𠯤-l-yl)ethyl)ethyl-l,2-diamine, N,N-dimethyl-3-{7-[(1S,2R)-2-octylcyclopropyl]heptyl}ten Dialkyl-1-amine, 8-(2-(dimethylamino)-3-((8-(2-((2-pentylcyclopropyl)methyl)cyclopropyl)octyl)oxy methyl)propoxy)octanoate, ethyl 4-{2-[ll-(dimethylamino)eicosyl]cyclopropyl}butyrate, trans-1-methyl-3-[ ((9Z,12Z)-octadecanoic-9,12-dienyl)oxy]-4-octyloxy-pyrrolidine, (9Z)-19-(dimethylamino)octadecanoic- 9-enoic acid methyl ester, (9Z)-19-{[4-(dimethylamino)butyl]oxy}hexadeca-9-enoic acid methyl ester, (Z)-16-(2- (Dimethylamino)-3-(heptyloxy)propoxy)hexadeca-7-enoic acid methyl ester, (2R)-1-[(9Z,12Z)-octadeca-9,12 -Dien-1-yloxy]dodecane-2-amine, (13Z,16Z)-N,N-dimethyldococ-13,16-diene-5-amine, N,N -Dimethyl-1-[(1R,2S)-2-Undecylcyclopropyl]tetradecan-5-amine, 7-(2-(dimethylamino)-3-((8 -(2-((2-pentylcyclopropyl)methyl)cyclopropyl)octyl)oxy)propoxy)heptanoate methyl ester, 8-{2-[7-(dimethylamino )Hexadecyl]cyclopropyl}octanoic acid ethyl ester, 2-(di-dodecylamine)-N-dodecyl-N-(2-(piperidine-l-yl)ethyl) Acetamide, N,N-dimethyl-1-[(1S,2R)-2-octylcyclopropyl]hexadecan-8-amine, N1-(2-(piperidine-l-yl) Ethyl)-N1,N2,N2-tri-tetradecylethane-l,2-diamine, 6-(2-(dimethylamino)-3-((8-(2-((2 -Pentylcyclopropyl)methyl)cyclopropyl)octyl)oxy)propyloxy)hexanoic acid methyl ester, 6-{2-[9-(dimethylamino)pentadecyl]cyclo Propyl}ethyl hexanoate, N,N-dimethyl-1-[(1S,2S)-2-{[(1R,2R)-2-pentylcyclopropyl]methyl}cyclopropyl] Nonadecan-10-amine, NN1,N2-tri-dodecyl-N2-(2-(piperidine-l-yl)ethyl)ethyl-l,2-diamine, 5-(2-( Dimethylamino)-3-((8-(2-((2-pentylcyclopropyl)methyl)cyclopropyl)octyl)oxy)propoxy)valerate methyl ester, 6- {2-[9-(Dimethylamino)hexadecyl]cyclopropyl}hexanoic acid ethyl ester, N,N-dimethyl-21-[(1S,2R)-2-octylcyclopropyl base] hecosan-10-amine, NNN2-trinonyl-N2-(2-(piperidine-l-yl)ethyl)ethyl-1,2-diamine, 4-(2-(dimethyl methylamino)-3-((8-(2-((2-pentylcyclopropyl)methyl)cyclopropyl)octyl)oxy)propoxy)butyric acid methyl ester, 6-{2 -[9-(Dimethylamino)heptadecyl]cyclopropyl}hexanoic acid ethyl ester, N,N-dimethyl-1-[(1S,2R)-2-octylcyclopropyl] Nonadecan-10-amine, N1,N1,N2-trihexyl-N2-(2-(piperidine-l-yl)ethyl)ethyl-l,2-diamine, 8-(2-(dimethyl methylamino)-3-((9Z,12Z)-octadeca-9,12-diene-l-yloxy)propoxy)octanoic acid methyl ester, 6-{2-[9-(dimethyl Amino)octadecyl]cyclopropyl}hexanoic acid ethyl ester, N1-(2-(4-(2-(di-dodecylamine)ethyl)piperidine-l-yl)ethyl base)-N1,N2,N2-tri-((9Z,12Z)-octadeca-9,12-diene-l-yl)ethane-1,2-diamine, 7-(2-(dimethyl methylamino)-3-((9Z,12Z)-octadeca-9,12-dien-1-yloxy)propoxy)heptanoate, (9Z)-21-(dimethyl Amino) Ethyl heptadecanoic acid, 1-[(1S,2R)-2-hexylcyclopropyl]-N,N-dimethylnonadecan-10-amine, 9-{ [4-(Dimethylamino)butyl]oxy}octadecanedioic acid 1-methyl ester 18-[(2Z)-non-2-en-1-] ester, N1-(2-(4- (2-(Di-dodecylamine)ethyl)piperidine-l-yl)ethyl)-N1,N2,N2-tri-((Z)-octadec-9-ene-l- base)ethyl-l,2-diamine, N,N-dimethyl-1-[(1S,2R)-2-octylcyclopropyl]heptadecane-8-amine, 6-(2-( Dimethylamino)-3-((9Z,12Z)-octadeca-9,12-dien-1-yloxy)propoxy)hexanoic acid methyl ester, (9Z)-21-(di Methylamino)octadecanoic-9-enoic acid ethyl ester, (9Z)-19-{[4-(dimethylamino)butyl]oxy}octadecanoic-9-enoic acid di Methyl ester, N1-(2-(4-(2-(di-tetradecylamine)ethyl)piperidine-l-yl)ethyl)-N1,N2,N2-tri-tetradecyl Ethyl-1,2-diamine, 5-(2-(dimethylamino)-3-((9Z,12Z)-octadeca-9,l2-dien-l-yloxy)propoxy ethyl)pentanoate, 8-{[4-(dimethylamino)butyl]oxy}-15-(2-octylcyclopropyl)pentadecanoate ethyl ester, (9Z)-21- (Dimethylamino)icos-9-enoic acid ethyl ester, (13Z,16Z)-N,N-dimethyl-3-nonyldococ-13,16-diene-1 -Amine, N1-(2-(4-(2-(di-dodecylamine)ethyl)piperidine-l-yl)ethyl)-N1,N2,N2-tri-tetradecyl Ethyl-1,2-diamine, 9-{[4-(dimethylamino)butyl]oxy}-16-(2-octylcyclopropyl)hexadecanoic acid methyl ester, 4-(2 -(Dimethylamino)-3-((9Z,12Z)-octadeca-9,12-dien-1-yloxy)propoxy)butyric acid methyl ester, (9Z)-21- (Dimethylamino)triacontacarbon-9-enoic acid ethyl ester, (12Z,15Z)-N,N-dimethyl-2-nonylenoicanoate-12,15-diene-1- Amine, methyl 8-(2-(dimethylamino)-3-((8-(2-octylcyclopropyl)octyl)oxy)propoxy)octanoate, (9Z)-19- (Dimethylamino)pentadeca-9-enoic acid ethyl ester, (18Z,21Z)-8-{[4-(dimethylamino)butyl]oxy}pentadeca-18, 21-Ethyl dienoate, (16Z)-N,N-dimethylpentadeca-16-en-8-amine, (9Z)-19-{[4-(dimethylamino)butanyl ]Oxy}Heptacos-9-enoic acid methyl ester, (9Z)-19-(dimethylamino) heptacos-9-enoic acid methyl ester, 2-(di-dodecyl Amino)-l-(4-(2-((2-(di-dodecylamino)ethyl)(dodecyl)amino)ethyl)piperidine-l-yl)ethyl- 1-one, (Z)-16-(2-(dimethylamino)-3-(hexyloxy)propoxy)hexadecan-7-enoic acid methyl ester, (2S)-1-[ (9Z,12Z)-Octadecan-9,12-dien-1-yloxy]dodecane-2-amine, (16Z,19Z)-N,N-dimethyloctadecanoic-16 , 19-diene-8-amine, N1-(2-(4-(2-(dinonylamino)ethyl)piperidine-l-yl)ethyl)-N1,N2^V2-tri- Tetradecylethane-l,2-diamine, 7-(2-(dimethylamino)-3-((8-(2-octylcyclopropyl)octyl)oxy)propoxy )Heptanoic acid methyl ester, (19Z,22Z)-9-{[4-(dimethylamino)butyl]oxy}octacarbon-19,22-dienoic acid methyl ester, (9Z)-19 -(Dimethylamino)ethyl hexadecanoate, (22Z)-N,N-dimethyltriadenodec-22-en-10-amine, N1-(2-( 4-(2-(bis((Z)-octadec-9-en-l-yl)amino)ethyl)piperidine-l-yl)ethyl)-!^^-tri-dodecane Ethyl-1,2-diamine, 5-(2-(dimethylamino)-3-((8-(2-octylcyclopropyl)octyl)oxy)propoxy)valeric acid Methyl ester, (9Z)-19-(dimethylamino)heptacos-9-enoic acid ethyl ester, 12-{[4-(dimethylamino)butyl]oxy}hexadecane (2-Butylcyclopropyl)methyl acid ester, (20Z)-N,N-dimethylnonacos-20-en-10-amine, N1,N1,N2-tri-dodecyl- N2-(2-(4-(2-(Dodecyl((9Z,12Z)-octadeca-9,12-dienyl)amino)ethyl)piperidine-1-yl)ethyl )ethyl-1,2-diamine, 4-(2-(dimethylamino)-3-((8-(2-octylcyclopropyl)octyl)oxy)propoxy)butyric acid Methyl ester, (9Z)-19-(dimethylamino)octadecanoic acid ethyl ester, 8-{[4-(dimethylamino)butyl]oxy}heptadecanoic acid (2-octylcyclopropyl)methyl ester, (24Z)-N,N-dimethyltritriadeca-24-en-10-amine, N1-(2-(4-(2-(di- Tetradecylamine)ethyl)piperidine-l-yl)ethyl)-N1,N2,N2-tri-dodecylethyl-1,2-diamine, (5Z)-17-(diamine Methylamino)ethyl hexadecanoate, (Z)-8-(2-(dimethylamino)-3-(octadec-9-en-l-yloxy) )propoxy)octanoic acid methyl ester, (2Z)-12-{[4-(dimethylamino)butyl]oxy}heptan-2-en-1-eester, (17Z)- N,N-dimethyldecoc-17-en-10-amine, N1-(2-(4-(2-(di((Z))-dodeca-6-en-l-yl) Amino)ethyl)piperidine-l-yl)ethyl)-N1,N2,N2-tri-dodecylethyl-1,2-diamine, (9Z)-17-(dimethylamino )Ethyl hexadecanoate, (Z)-7-(2-(dimethylamino)-3-(octadec-9-en-1-yloxy)propoxy )Methyl heptanoate, (2Z)-8-{[4-(dimethylamino)butyl]oxy}heptadecanoate undec-2-en-l-ester, (14Z)-N, N-Dimethylococ-14-en-10-amine, (7Z)-17-(dimethylamino)ococ-7-enoic acid ethyl ester, (Z)-N1-( 2-(4-(2-Dodeca-6-en-l-yl(dodecyl)amino)ethyl)piper-N!^^-tri-dodecylethyl-1,2 -Diamine, (Z)-5-(2-(dimethylamino)-3-(octadec-9-en-1-yloxy)propoxy)valerate methyl ester, 10-{ [4-(Dimethylamino)butyl]oxy}nonadecanoate (2-hexylcyclopropyl)methyl ester, (15Z)-N,N-dimethylheptacos-15-ene- 10-amine, (7Z)-17-(dimethylamino)ethyl tetracos-7-enoate, (Z)-4-(2-(dimethylamino)-3-(decaenoate) Methyl octacarbon-9-en-1-yloxy)propoxy)butyrate, (2Z)-10-{[4-(dimethylamino)butyl]oxy}nonadecanoate non- 2-en-l-ester, (20Z)-N,N-dimethyl heptadeca-20-en-10-amine, N1-(2-(4-(2-(dioctylamine)) Ethyl)piperidine-l-yl)ethyl)-N1,N2^V2-tri-dodecylethane-l,2-diamine, 6-(2-(dimethylamino)-3- ((8-(2-octylcyclopropyl)octyl)oxy)propoxy)hexanoic acid methyl ester, 6-[2-(9-{[4-(dimethylamino)butyl]oxy Ethyl}octadecyl)cyclopropyl]hexanoate, (7Z)-17-(dimethylamino)pentadeca-7-enoic acid ethyl ester, 1-[(11Z,14Z)- 1-Nonyleicosac-11,14-dien-1-yl]pyrrolidine, (7Z)-17-(dimethylamino)eicosac-7-enoic acid ethyl ester, (20Z, 23Z)-N-ethyl-N-methylnac-20,23-diene-10-amine, N,N-dimethylheptadecane-10-amine, 6-{2-[ ll-(dimethylamino)eicosyl]cyclopropyl}hexanoic acid methyl ester, 6-[2-(ll-{[4-(dimethylamino)butyl]oxy}eicosane methyl)cyclopropyl]hexanoate, 6-(3-(decyloxy)-2-(dimethylamino)propoxy)hexanoate (2-octylcyclopropyl)methyl ester, 8 -{2-[9-(Dimethylamino)octadecyl]cyclopropyl}octanoic acid methyl ester, 8-[2-(9-{[4-(dimethylamino)butyl]oxy] }Octadecyl)cyclopropyl]octanoic acid methyl ester, 7-(2-(8-(2-(dimethylamino)-3-(octyloxy)propoxy)octyl)cyclopropyl ) Methyl heptanoate, representative 8-((2-hydroxyethyl)(tetradecyl)amino)heptadecan-9-octanoate, 2-((2-(di-dodecylamine) Base)ethyl)(dodecyl)amino)-l-(4-(2-(di-dodecylamine)ethyl)piperidine-1-yl)ethan-1-one, ( 2S)-1-[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]undecane-2-amine, (17Z,20Z)-N,N-dimethyl Hexadecanoic-17,20-diene-9-amine, (18Z)-4-(dimethylamino)butyric acid heptococ-18-en-10-ester, (2S)-1- ({6-[3B))-Cholester-5-en-3-yloxy]hexyl}oxy)-N,N-dimethyl-3-[(9Z)-octadec-9-ene -1-yloxy]propan-2-amine, 10-{2-[7-(dimethylamino)hexadecyl]cyclopropyl}decanoic acid methyl ester, 10-[2-(7- {[4-(Dimethylamino)butyl]oxy}hexadecyl)cyclopropyl]decanoic acid methyl ester, (2S)-N,N-dimethyl-1-({8-[( lR,2R)-2-{[(lS,2S)-2-pentylcyclopropyl]methyl}cyclopropyl]octyl}oxy)tridecane-2-amine, 6-(2-( Dimethylamino)-3-(nonyloxy)propoxy)hexanoate (2-octylcyclopropyl)methyl ester, (19Z,22Z)-N,N-dimethyloctadecanoic acid- 19,22-Dien-7-amine, dinonylglycine 4-((N-(2-(dinonylamino)ethyl)-N-nonylglycinyl)oxy)pentyl -2-ester, 3-hydroxybut-2-yl N-(2-(dinonylamino)ethyl)-N-nonyl, 8,8'-(26,28-dimethyl-ll, 24,30,43-tetraoxa-10,25,29,44-tetraoxa-19,35-diazapentatriane-19,35-diyl)dioctanoic acid di(heptadecane-9) -yl) ester, 8,8'-(26,27-dimethyl-ll,24,29,42-tetraoxa-10,25,28,43-tetraoxa-19,34-diaza Pentadecane-19,34-diyl)dioctanoate di(heptadecan-9-yl) ester, 8,8'-(ll,24,29,42-tetraxa-10,25,28, 43-tetraoxa-19,34-diazapentadecane-19,34-diyl)dioctanoic acid di(heptadecyl-9-yl) ester, 8,8'-((piperate-1 ,4-diylbis(5-oxopent-5,l-diyl))bis((8-(nonyloxy)-8-pentoxyoctyl)ureadiyl))dioctanoic acid di(decayl) Heptacan-9-yl) ester, 15,18-dimethyl-9,24-bis(8-(nonyloxy)-8-pentoxyoctyl)-14,19-dimethyl-9 ,15,18,24-tetraazatriaconanedioic acid di(heptadecan-9-yl) ester, 15,19-dimethyl-9,25-bis(8-(nonyloxy)- 8-Pendant oxyoctyl)-14,20-di-Pendant oxy-9,15,19,25-tetraazatriacontandioic acid di(heptadecan-9-yl) ester, 15,18 -Diethyl-9,24-bis(8-(nonyloxy)-8-pentanoxyoctyl)-14,19-bis-bisoxy-9,15,18,24-tetraaza30 Di(heptadecan-9-yl) dialkanedioate, N,N-dimethyl-3-{[(9Z,12Z)-octadecan-9,12-dien-1-yloxy ]Methyl}dodecan-1-amine, 8-[2-(ll-{[4-(dimethylamino)butyl]oxy}octadecyl)cyclopropyl]octanoic acid methyl ester, 8 -{2-[ll-(dimethylamino)heptadecyl]cyclopropyl}octanoic acid methyl ester (compound 18), 8-((2-hydroxyethyl)(8-(nonyloxy)- 8-Pendant oxyoctyl)amino)octanoic acid heptadecan-9-ester, 6-(2-(dimethylamino)-3-(heptyloxy)propoxy)hexanoic acid (2-octanoic acid) cyclopropyl)methyl ester, (17Z)-N,N-dimethylhexadecanoic-17-en-9-amine, N1-(2-(4-(2-(di-dodecyl) Amino)ethyl)piperidine-l-yl)ethyl)-N1^V2,N2-trihexylethane-1,2-diamine, N,N-dimethyl-2-{[(9Z,12Z )-octadeca-9,12-dien-1-yloxy]methyl}undecan-1-amine, 8-{2-[ll-(dimethylamino)octadecyl] Cyclopropyl}octanoic acid methyl ester, 6-(2-(dimethylamino)-3-(hexyloxy)propoxy)hexanoic acid (2-octylcyclopropyl)methyl ester, (18Z)- N,N-dimethylheptadecanoic-18-en-10-amine, 2-((2-(dinonylamino)ethyl)(nonyl)amino)ethyl tetradecanoate, Nonanoic acid 2-((2-(dinonylamino)ethyl)(nonyl)amino)ethyl ester, N-(2-(dinonylamino)ethyl)-N-nonylglyamine Tetradecyl acid ester, N-(2-(dinonylamino)ethyl)-N-nonylglycinate, 4-(2-((2-(dinonylamino)ethyl) (Nonyl)amino)acetylamino)butylvalerate nonyl ester, l,l'-(piperidine-l,4-diyl)bis(5-(didecylamine)pentan-1- Ketone, 2-((2-(dinonylamino)ethyl)(nonyl)amine)-N-tetradecylacetamide, N-decyl-2-((2-(dinonyl) methylamino)ethyl)(nonyl)amino), N1-(3-(3-(dinonylamino)propoxy)propyl)-N1,N2,N2-tri-nonylethyl- l,2-diamine, N1-(2-(dinonylamino)ethyl)-N\N8,N8-trinonyloctyl-l,8-diamine, 8-[2-(ll-{ [4-(Dimethylamino)butyl]oxy}nonadecyl)cyclopropyl]octanoic acid methyl ester, 8-{2-[ll-(dimethylamino)nonadecyl]cyclopropyl Methyl}octanoate, (Z)-6-(3-(decyloxy)-2-(dimethylamino)propoxy)hexanoate undec-2-ene-l-ester, (2R ,12Z,15Z)-N,N-dimethyl-1-(undecyloxy)ecosan-12,15-diene-2-amine, (21Z,24Z)-N,N-di Methyl triadecacarbon-21,24-diene-9-amine, 2-(dinonylamino)-N-(4-(2-((2-(dinonylamino)ethyl))( Nonyl)amino)-N-methylacetamide)butyl)-N-methylacetamide, decanoic acid 7,10-dimethyl-13,16-dinonyl-6,ll- Bilateral oxy-4-tetradecyl-4,7,10,13,16-pentaazapentadecyl ester, 2-(dinonylamino)-N-(2-(2-( (2-(Dinonylamino)ethyl)(nonyl)amino)-N-ethylacetamide)ethyl)-N-ethylacetamide, 2-(dinonylamino) )-N-(3-(2-((2-(dinonylamino)ethyl)(nonyl)amino)-N-methylacetamide)propyl)-N-methylethyl Amide, 2-((2-(bis((Z)-non-3-en-l-yl)amino)ethyl)((Z)-non-3-en-l-yl)amino) -N-(2-(2-(dinonylamino)-N-methylacetamide)ethyl)-N-methylacetamide, 2-(dinonylamino)-N- (2-(2-((2-(Dinonylamino)ethyl)(nonyl)amino)acetamido)ethyl)acetamide, 8,1l-dimethyl-5,14 ,17-trinonyl-7,12-di-pentanoxy-5,8,l1,14,17-pentaazahexadecanoic acid pentyl ester, 2-((2-(dinonylamino) Ethyl)(nonyl)amino)-N-methyl-N-(2-(methylamino)ethyl)acetamide, 2-(dinonylamino)-N-(2-( 2-((2-(Dinonylamino)ethyl)(nonyl)amino)-N-methylacetamide)ethyl)-N-methylacetamide, 2-(dinonyl) methylamino)-N-methyl-N-(2-(methylamino)ethyl)acetamide, glycine 2-((N-(2-(dinonylamino)ethyl) -N-Nonylglycinyl)oxy)ethyldinonyl ester, 2-hydroxyethyldinonyl glycinate, 8-[2-(ll-{[4-(dimethylamino) Butyl]oxy}eicosyl)cyclopropyl]octanoic acid methyl ester, 8-{2-[ll-(dimethylamino)eicosyl]cyclopropyl}octanoic acid methyl ester, (Z)- 6-(2-(dimethylamino)-3-(nonyloxy)propoxy)hexanoate undec-2-en-l-ester, (2R,12Z,15Z)-1-(dec Hexaalkoxy)-N,N-dimethyltriacontan-12,15-diene-2-amine, (22Z,25Z)-N,N-dimethyltriacontan-22,25 -Dien-10-amine, 4-(didecylaminobutyric acid) l,l-(pipiperidine-l,4-diyl)bis(4-(ddecylamino)butan-l-one )Tertiary butyl ester, 5-(4-(N-(2-(dinonylamino)ethyl)-N-nonylglycinyl)piperamide-l-yl)-5-side oxygen group Heptyl valerate 5-(heptyloxy)-5-side oxyvalerate, 5-(4-(N-(2-(dinonylamino)ethyl)-N-nonylglycinyl) )piperidine-l-yl)-5-pentyloxypentanoic acid heptyl ester 5-(heptyloxy)-5-pentyloxypentanoic acid, nonanoic acid (Z)-4-((2-(4-( N-(2-(dinonylamino)ethyl)-N-nonylglycinyl)piperamide-l-yl)-2-side oxyethyl)(tetradecyl)amine) But-2-ene-1-ester, nonanoic acid (Z)-4-hydroxybut-2-ene-1-ester, decanoic acid (Z)-3-((2-(4-(N-(2- (Dinonylamino)ethyl)-N-nonylglycininyl)piperidine-1-yl)-2-pentanoxyethyl)(tetradec-9-en-1-yl)amine methyl)propyl ester, (Z)-tetradec-9-ene-l-methanesulfonate, 8-[2-(9-{[4-(dimethylamino)butyl]oxy}pentadecane Alkyl)cyclopropyl]octanoic acid methyl ester, 8-{2-[9-(dimethylamino)pentadecyl]cyclopropyl}octanoic acid methyl ester, 6-(2-(dimethylamino) )-3-(heptyloxy)propoxy)hexanoic acid (Z)-undec-2-en-l-ester, (2R,12Z,15Z)-1-(hexyloxy)-N,N -Dimethyleicos-12,15-diene-2-amine, (16Z,19Z)-N,N-dimethyleicos-16,19-diene-6-amine, 8 -((2-(4-(N-(2-(bis((Z)-non-3-en-l-yl)amino)ethyl))-N-((Z)-non-3-ene -l-yl)glyminyl)piperidine-l-yl)-2-side oxyethyl)(nonyl)amino)octanoic acid methyl ester, 4-(nonylglycinyl)piperidine- 1-tertiary butylcarboxylate, (Z)-dec-3-enoic acid 3-((2-(4-(N-(2-(dinonylamino)ethyl))-N-nonylglyamine Enyl)piperidine-l-yl)-2-side oxyethyl)(tetradecyl)amino)propyl ester, (Z)-dec-3-en-l-ol, 2-((2 -(Di((Z)-non-3-en-l-yl)amino)ethyl)((Z)-non-3-en-l-yl)amino)-l-(4-(di Nonylglycinyl)piperidin-1-yl)ethan-1-one(Z)-1-bromonon-4-ene, octanoic acid 3-((2-(4-(N-(2-(di Nonylamino)ethyl)-N-nonylglycinyl)piperamide-side oxyethyl)(dodecyl)amino)propyl ester, glycine tertiary butyldodecyl ester , S-4-((2-(4-(N-(2-(dinonylamino)ethyl)-N-nonylglycinyl)pipienyl-l-yl)-2-side oxygen Ethyl)(nonyl)amino)butylthiopentyl ester, 3-methylhexanoic acid 3-((2-(l-(N-(2-(dinonylamino)ethyl)-N -Nonylglycinyl)piperidinyl)ethyl)(nonyl)amino)propyl ester, tertiary butyl 4-(2-((3-((3-methylhexyl)) Oxy)propyl)(nonyl)amino)ethyl)piperidine-l-, hexanoic acid 3-((2-(l-(N-(2-(dinonylamino)ethyl)- N-nonylglycinyl)piperidin-4-yl)ethyl)(nonyl)amino)-2-methylpropyl ester, 3-methylhexanoic acid 3-((2-(4-( N-(2-(dinonylamino)ethyl)-N-nonylglycinyl)piperamide-pentoxyethyl)(nonyl)amino)propyl ester, hexanoic acid 3-(( 2-(4-(N-(2-(Dinonylamino)ethyl)-N-nonylglycinyl)piperamide-pentoxyethyl)(nonyl)amino)-2- Methyl propyl ester, 8-[2-(9-{[4-(dimethylamino)butyl]oxy}hexadecyl)cyclopropyl]octanoic acid methyl ester, 8-{2-[9- (Dimethylamino)hexadecyl]cyclopropyl}octanoic acid methyl ester, (Z)-6-(2-(dimethylamino)-3-(hexyloxy)propoxy)hexanoic acid Undec-2-ene-l-ester, (2R,12Z,15Z)-1-(decyloxy)-N,N-dimethyleco-12,15-diene-2-amine , (17Z,20Z)-N,N-dimethylhexadecanoic acid 17,20-diene-7-amine, 1-(dinonylglycinyl)piperidine-4-carboxylic acid 2-( (2-(Dinonylamino)ethyl)(nonyl)amino)ethyl ester, 4-(2-((2-(dinonylamino)ethyl)(nonyl)amino)ethyl base) cyclohexane-1,4-dicarboxylic acid l-(2-(dinonylamino)ethyl) ester, 2-(dinonylamino)ethan-1-ol, 12-((2- (l-(N-(2-(dinonylamino)ethyl)-N-nonylglycinyl)pyrrolidin-3-yl)ethyl)(tetradecyl)amino)dodecyl Methyl alkanoate, tertiary butyl 3-(2-((12-methoxy-12-side oxydodecyl)(tetradecyl)amino)ethyl)pyrrolidine-l-carboxylate , Decanoic acid 3-((2-(l-(N-(2-(dinonylamino)ethyl)-N-nonylglycinyl)pyrrolidin-3-yl)ethyl)(decanoic acid Tetraalkyl)amino)propyl ester, tertiary butyl 3-(2-((3-(decyloxy)propyl)(tetradecyl)amino)ethyl)pyrrolidine-l-carboxylate , 6-((2-(l-(N-(2-(dinonylamino)ethyl)-N-nonylglycinyl)pyrrolidin-3-yl)ethyl)(tetradecane Heptyl)amino)hexanoate, 3-(2-((6-(heptyloxy)-6-side oxyhexyl)(tetradecyl)amino)ethyl)pyrrolidine-1-carboxylic acid Tertiary butyl ester, 8-((2-(l-(N-(2-(dinonylamino)ethyl)-N-nonylglycinyl)pyrrolidin-3-yl)ethyl) (Tetradecylamino)octanoic acid amyl ester, 3-(2-(tetradecyllamino)ethyl)pyrrolidine-l-carboxylic acid tertiary butyl ester, 12-((2-(l-( Methyl N-(2-(dinonylamino)ethyl)-N-nonylglycinyl)piperidin-3-yl)ethyl)(tetradecyl)amino)dodecanoate , 3-(2-((12-methoxy-12-side oxydodecyl)(tetradecyl)amino)ethyl)piperidine-1-carboxylic acid butyl ester, decanoic acid 3-( (2-(l-(N-(2-(dinonylamino)ethyl)-N-nonylglycinyl)piperidin-3-yl)ethyl)(tetradecyl)amine )propyl ester, 6-((2-(l-(N-(2-(dinonylamino)ethyl)-N-nonylglycinyl)piperidin-3-yl)ethyl)( Tetradecyl)amino)heptylhexanoate, 8-((2-(l-(N-(2-(dinonylamino)ethyl))-N-nonylglycinyl)piperidine -3-yl)ethyl)(tetradecyl)amino)pentyl octanoate, 6-((2-(4-(2-((2-(di-dodecylamine)ethyl)) (Dodecyl)amino)ethyl)piperidine-l-yl)ethyl)(dodecyl)amino)pentylhexanoate Step 1: 6-bromohexanoic acid pentyl ester, 8-[2 -(9-{[4-(Dimethylamino)butyl]oxy}heptadecyl)cyclopropyl]octanoic acid methyl ester, 8-{2-[9-(dimethylamino)heptadecanyl) Alkyl]cyclopropyl}octanoic acid methyl ester, (2S,12Z,15Z)-N,N-dimethyl-1-(octyloxy)octanoate-12,15-diene-2-amine, 6-(2-(Dimethylamino)-3-(octyloxy)propoxy)hexanoate (2-octylcyclopropyl)methyl ester, (18Z,21Z)-N,N-dimethyl Hexadecanoic-18,21-diene-8-amine, trans-1-methyl-3,4-bis(((Z)-hexadecanoic-9-enyloxy)methyl) Pyrrolidine, (Z)-4-((2-(4-(N-(2-(dinonylamino)ethyl)-N-nonylglycinyl)pipero-l-yl)- 2-Pendant oxyethyl)(tetradecyl)amino)butyrate non-2-en-l-ester, trans-1-methyl-3,4-bis(((9Z,12Z)- Octadeca-9,12-dienyloxy)methyl)pyrrolidine, 12-((2-(4-(N-(2-(dinonylamino)ethyl))-N-nonyl Glycinyl) piperazine-l-yl)-2-side oxyethyl) (tetradecyl) amino) methyl dodecanoate, (7Z)-17-[2-(dimethyl Amino)ethyl]ethyl hexadecanoate, trans-1-methyl-3,4-bis(((Z)-octadeca-9-enyloxy)methyl )pyrrolidine, 6-(2-{]11-^2-(dimethylamino)ethyl]eicosyl}cyclopropyl)hexanoic acid methyl ester, 12-((2-(l-( Methyl N-(2-(dinonylamino)ethyl)-N-nonylglycinyl)piperidin-4-yl)ethyl)(tetradecyl)amino)dodecanoate , 10-(2-V-^2-(dimethylamino)ethyl]hexadecyl}cyclopropyl)decanoic acid methyl ester, 8-(2-{111-;2-(dimethyl Amino)ethyl]heptadecyl}cyclopropyl)octanoic acid methyl ester, glycine 2-(l-(N-(2-(dinonylamino)ethyl)-N-nonylglycine Dihydryl)piperidin-4-yl)ethyldinonyl ester, 4-(2-((dinonylglycinyl)oxy)ethyl)piperidin-1-carboxylic acid tertiary butyl ester, 8- (2-{lLl-;2-(Dimethylamino)ethyl]octadecyl}cyclopropyl)octanoic acid methyl ester, 8-(2-{l11- "2-(dimethylamino) Ethyl]nonadecyl}cyclopropyl)octanoic acid methyl ester, l,-(piperidine-l,4-diyl)bis(2-(dinonylamino)ethyl-1-one), 8- [2-{]11-^2-(dimethylamino)ethyl]eicosyl}cyclopropyl)octanoic acid methyl ester, 8-(2-{9-[2-(dimethylamino) )ethyl]pentadecyl}cyclopropyl)octanoic acid methyl ester, (7Z)-19-{[4-(dimethylamino)butyl]oxy}octadecanoic acid methyl ester , (7Z)-19-(dimethylamino)octadecanoic acid methyl ester, cis-1-methyl-3-[(9Z,12Z)-octadecacarbon-9,12 -Dien-1-yloxy]-4-(octyloxy)pyrrolidine, 2-(di-dodecylamine)-l-(4-(N-(2-(di-dodecylamine) Alkylamino)ethyl)-N-dodecylglycinyl)piperidine-l-yl)ethan-1-one, (Z)-6-(2-(dimethylamino)- 3-(octyloxy)propoxy)hexanoate undec-2-en-l-ester, (2SN,N-dimethyl-1-[(9Z,12Z)-octadeca-9,12 -Dien-1-yloxy]dec-2-amine (compound 11), (19Z,22Z)-N,N-dimethyloctadecanoic-19,22-diene-9-amine, 8 -(2-{9-[2-(Dimethylamino)ethyl]hexadecyl}cyclopropyl)octanoic acid methyl ester, 5-(2-(4-(N-(2-( Dinonylamino)ethyl)-N-nonylglycinyl)pipiperidine-side oxyethyl)(nonyl)amino)pentyl methyl ester, 8-(2-{9-[2 -(Dimethylamino)ethyl]heptadecyl}cyclopropyl)octanoic acid methyl ester, (7Z)-19-[2-(dimethylamino)ethyl]octadecanoic acid-7- Methyl alkenoate, (Z)-4-((2-(4-(N-(2-(dinonylamino)ethyl)-N-nonylglycinyl)pipienyl)-l-yl )-2-Pendant oxyethyl)(nonyl)amino)butyric acid pent-2-en-l-ester, (1lZ)-19-[2-(dimethylamino)ethyl]20 Methyl octa-11-enoate, (9Z)-21-[2-(dimethylamino)ethyl] methyl 27-9-enoate, (9Z)-21-[2- (Dimethylamino)ethyl]octacos-9-enoic acid methyl ester, (9Z)-21-[2-(dimethylamino)ethyl]octacos-9-enoic acid Methyl ester, glycine 2-(l-(N-(2-(dinonylamino)ethyl)-N-nonylglycinyl)pyrrolidin-3-yl)ethyldinonyl ester, (9Z)-21-[2-(Dimethylamino)ethyl]triacontane-9-enoic acid methyl ester, glycine (l-(N-(2-(dinonylamino)ethyl) (9Z)-19-[2-(dimethylamino)ethyl]pentadecacarbon-9 -Methyl enoate, (9Z)-19-[2-(dimethylamino)ethyl]icosac-9-enoic acid methyl ester, 6-(2-(8-(3-(decane) Oxy)-2-(dimethylamino)propoxy)octyl)cyclopropyl)hexanoic acid methyl ester, (1lZ)-19-{[4-(dimethylamino)butyl]oxy } Methyl octadeca-l1-enoate, (1lZ)-19-(dimethylamino) methyl octadeca-l1-enoate, (2S)-N,N-dimethyl- 1-[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]dodecane-2-amine, (14Z,17Z)-N,N-dimethyltetrasan Carbon-14,17-diene-4-amine, methylbis((9Z,12Z)-octadeca-9,12-dieneyl)amine, (9Z)-19-{[4-(dimethyl methylamino)butyl]oxy}octacarbon-9-enoic acid methyl ester, (9Z)-19-(dimethylamino)octacarbon-9-enoic acid methyl ester, (Z)- 17-(2-(Dimethylamino)-3-(octyloxy)propoxy)heptadecan-8-enoic acid methyl ester, (3R,4R)-3,4-bis((Z) -Hexadecacarbon-9-alkenyloxy)-1-methylpyrrolidine, (2S)-N,N-dimethyl-1-[(9Z,12Z)-octadecanoic-9,12-di En-1-yloxy]undecane-2-amine, (20Z,23Z)-4-(dimethylamino)butyric acid 29-20,23-diene-10-ester, (20Z,23Z)-4-(dimethylamino)butyric acid 20Z,23Z)-N,N-dimethyl 29-20,23-diene-10-amine, 3-((6Z,9Z,28Z,31Z)-37-6,9, 28,31-tetraen-19-yloxy)-N,N-dimethylpropan-l-amine, 3-((6Z,9Z,28Z,31Z)-trioctacarbon-6,9,28 ,31-tetraen-19-yloxy)-N,N-dimethylpropan-1-amine, (6Z,9Z,28Z,31Z)-4-(dimethylamino)butyric acid thirty-seven Carbon-6,9,28,31-tetraene-19-ester, 5-(dimethylamino)valerate (6Z,16Z)-12-((Z)-dec-4-enyl)econyl Dicarbon-6,16-diene-l1-ester, (6Z,16Z)-5-(dimethylamino)pentanoic acid 12-((Z)-dec-4-enyl)icosan- 6,16-diene-l1-ester, (6Z,16Z)-5-(dimethylamino)pentanoate 12-((Z)-dec-4-enyl)dococ-6,16 -Diene-11-ester, L-arginine-α-(2,3-dilauryloxy)propylamide, L-lysine-α-(2,3-dilauryloxy) )propylamide, 2,3-dioleyloxypropylamine, 2,3-distearyloxypropylamine, 2,3-dilauryloxypropylamine, dilinoleylmethyl 4-( Dimethylamino)propyl ether), dilinoleylmethyl 4-(dimethylamino)butyl ether) and 2,2-dilinoleyl-4-(2-dimethylamino) Ethyl)-[l,3]-dioxolane.

在一些實施態樣中,至少一種非陽離子脂質包含至少一種磷脂、至少一種融合性脂質(fusogenic lipid)、至少一種陰離子脂質、至少一種輔助者脂質(helper lipid)、至少一種中性脂質或其任何組合。在一些實施態樣中,LNP可能基本上沒有至少一種非陽離子脂質。在一些實施態樣中,LNP可能不含任何量的至少一種非陽離子脂質。In some embodiments, the at least one non-cationic lipid includes at least one phospholipid, at least one fusogenic lipid, at least one anionic lipid, at least one helper lipid, at least one neutral lipid, or any of these combination. In some embodiments, the LNP may be substantially free of at least one non-cationic lipid. In some embodiments, the LNP may not contain any amount of at least one non-cationic lipid.

在一些實施態樣中,至少一種非陽離子脂質可選自但不限於下列中至少一者:1,2-二-O-十八碳烯基-sn-甘油-3-磷膽鹼(18:0二醚PC)、DSPC,但是每尾具有3個不飽和雙鍵(18:3 PC)、醯基肉鹼(AC)、1-十六烷基-sn-甘油-3-磷膽鹼(C16 Lyso PC)、N-油醯基-SPM (C18:l)、N-二十四烷基SPM (C24:0)、N-nervacylC (C24:l)、胺甲醯基]膽固醇(Cet-P)、膽固醇半琥珀酸酯(CHEMS)、膽固醇(Chol)、膽固醇半十二烷二甲酸(Chol-C12)、12-膽固醇氧基羰基胺基十二烷酸(Chol-C13N)、膽固醇半草酸酯(Chol-C2)、膽固醇半丙二酸酯(Chol-C3)、N-(膽固醇基-氧基羰基)甘胺酸(Chol-C3N)、膽固醇半戊二酸酯(Chol-C5)、膽固醇半己二酸酯(Chol-C6)、膽固醇半庚二酸酯(Chol-C7)、膽固醇半辛二酸酯(Chol-C8)、心磷脂(Cardiolipid)(CL)、l,2-雙(二十三烷-10,12-二醯基)-sn-甘油-3-磷膽鹼(DC8-9PC)、磷酸二-十六酯(dicetylphosphate)(DCP)、磷酸二-十六酯(dihexadecylphosphate)(DCP1)、1,2-二棕櫚醯基甘油-3-半琥珀酸酯(DGSucc)、短鏈雙正十七烷醯基磷脂醯膽鹼(DHPC)、二-十六烷醯基磷酸乙醇胺(DHPE)、1,2-二亞麻仁油醯基-sn-甘油-3-磷膽鹼(DLPC)、l,2-二月桂醯基-sn-甘油-3-PE (DLPE)、二肉豆蔻醯基甘油半琥珀酸酯(DMGS)、二肉豆蔻醯基磷脂醯膽鹼(DMPC)、二肉豆蔻醯基磷酸乙醇胺(DMPE)、二肉豆蔻醯基磷脂醯甘油(DMPG)、二油氧基苯甲醇(DOBA)、1,2-二油醯基甘油基-3-半琥珀酸酯(DOGHEMS)、N-[2~(2-{2-[2-(2,3-雙-十八碳-9-烯氧基-丙氧基)-乙氧基]-乙氧基}-乙氧基)-乙基]-3-(3,4,5-三羥基-6-羥基甲基-四氫吡喃-2-基硫烷基)-丙醯胺(DOGP4αMan)、二油醯基磷脂醯膽鹼(DOPC)、二油醯基磷脂醯乙醇胺(DOPE)、二油醯基-磷脂醯乙醇胺4-(N-順丁烯二醯亞胺基甲基)-環己烷-1-甲酸酯(DOPE-mal)、二油醯基磷脂醯甘油(DOPG)、1,2-二油醯基-sn-甘油-3-(磷酸-L-絲胺酸)(DOPS)、非細胞融合性磷脂(DPhPE)、二棕櫚醯基磷脂醯膽鹼(DPPC)、二棕櫚醯基磷脂醯乙醇胺(DPPE)、二棕櫚醯基磷脂醯甘油(DPPG)、二棕櫚醯基磷脂醯絲胺酸(DPPS)、二硬脂醯基磷脂醯膽鹼(DSPC)、二硬脂醯基-磷脂醯-乙醇胺(DSPE)、二硬脂醯基磷酸乙醇胺咪唑(DSPEI)、1,2-二-十一烷醯基-sn-甘油-磷膽鹼(DUPC)、蛋磷脂醯膽鹼(EPC)、N-組織胺醯基膽固醇胺甲酸酯(HCChol)、組織胺二硬脂醯基甘油(HDSG)、N-組織胺醯基膽固醇半琥珀酸酯(HistChol)、1,2-二棕櫚醯基甘油-半琥珀酸酯-Nα-組織胺醯基-半琥珀酸酯(HistSuccDG)、N-(5'-羥基-3'-氧基戊基)-10-12-二十五烷二基醯胺(h-Pegi-PCDA)、2-[l-己氧基乙基]-2-去乙烯基(devinyl)焦脫鎂葉綠酸酯(pyropheophorbide)-a (HPPH)、氫化大豆磷脂醯膽鹼(HSPC)、1,2-二棕櫚醯基甘油-Oα-組織胺醯基-Nα-半琥珀酸酯(IsohistsuccDG)、甘露糖化(mannosialized)二棕櫚醯基磷脂醯乙醇胺(ManDOG)、l,2-二油醯基-sn-甘油-3-磷酸乙醇胺-N-[4-(對順丁烯二醯亞胺基甲基)環己烷-甲醯胺](MCC-PE)、1,2-二植烷醯基-sn-甘油-3-磷酸乙醇胺(ME 16.0 PE)、1-肉豆蔻醯基-2-羥基-sn-甘油-磷膽鹼(MHPC)、athiol-反應性順丁烯二醯亞胺頭端基脂質,例如1,2-二油醯基-sn-甘油-3-磷酸乙醇胺-N-[4-(對順丁烯二醯亞胺基苯基)丁醯胺(MPB-PE)、二十四烯酸(NA)、膽酸鈉(NaChol)、l,2-二油醯基-sn-甘油-3-[磷酸乙醇胺-N-十二烷醯基(NC12-DOPE)、以WO2008042973A2中的合成實施例所定義(ND98),「式1之N-戊二醯基磷脂醯乙醇胺」(NG-PE)、N-羥基磺基琥珀醯亞胺(NHS-'x')、「以式1涵蓋之N~(共)-二甲酸衍生之磷脂醯乙醇胺」(NωPE-'x')、油酸(OA)、1-油醯基-2-膽固醇基半琥珀醯基-sn-甘油-3-磷膽鹼(OChemsPC)、磷脂酸(PA)、磷脂醯乙醇胺脂質(PE)、與聚乙二醇(PEG)共軛之PE脂質。PEG-PE的一個實例可為聚乙二醇-二硬脂醯基磷脂醯乙醇胺脂質(PEG-PE)、磷脂醯甘油(PG)、部分氫化之大豆磷脂醯膽鹼(PHSPC)、磷脂醯肌醇脂質(PI)、磷脂醯肌醇-4-磷酸鹽(PIP)、棕櫚醯基油醯基磷脂醯膽鹼(POPC)、磷脂醯乙醇胺(POPE)、棕櫚醯基油醯基磷脂醯甘油(POPG)、磷脂醯絲胺酸(PS)、麗絲胺若丹明(lissamine rhodamine) B-磷脂醯乙醇胺脂質(Rh-PE)、磷脂(SIOO)之經純化之大豆衍生混合物、磷脂醯膽鹼(SM)、18-1-反式PE,1-硬脂醯基-2-油醯基-磷脂醯乙醇胺(SOPE)、大豆磷脂醯膽鹼(SPC)、神經髓磷脂(SPM)、α.α'-繭蜜糖6,6'-二山萮酸酯(TDB)、l,2-二反油醯基-sn-甘油-3-磷酸乙醇胺(反式DOPE)、磷酸((23S,5R)-3-(雙(十六烷氧基)甲氧基)-5-(5-甲基-2,4-二側氧基-3,4-二氫嘧啶-1(2/-/)-基)四氫呋喃-2-基)甲基甲酯、1,2-二花生四烯醯基-sn-甘油-3-磷膽鹼、1,2-二花生四烯醯基-sn-甘油-3-磷酸乙醇胺、1,2-二-二十二碳六烯醯基-sn-甘油-3-磷膽鹼、1,2-二-二十二碳六烯醯基-sn-甘油-3-磷酸乙醇胺、1,2-二次亞麻油醯基-sn-甘油-3-磷膽鹼、1,2-二次亞麻油醯基-sn-甘油-3-磷酸乙醇胺、1,2-二亞麻仁油醯基-sn-甘油-3-磷酸乙醇胺、1,2-二油醯基-sn-甘油-3-磷酸乙醇胺、1,2-二硬脂醯基-sn-甘油-3-磷酸乙醇胺、16-O-單甲基PE,16-O-二甲基PE及二油醯基磷脂醯乙醇胺。In some embodiments, at least one non-cationic lipid can be selected from, but is not limited to, at least one of the following: 1,2-di-O-octadecenyl-sn-glycero-3-phosphocholine (18: 0 diether PC), DSPC, but each tail has 3 unsaturated double bonds (18:3 PC), acylcarnitine (AC), 1-hexadecyl-sn-glycero-3-phosphocholine ( C16 Lyso PC), N-oleyl-SPM (C18:l), N-tetradecylSPM (C24:0), N-nervacylC (C24:l), aminomethanoyl]cholesterol (Cet- P), Cholesterol hemisuccinate (CHEMS), Cholesterol (Chol), Cholesterol hemidicarboxylic acid (Chol-C12), 12-cholesteryloxycarbonylaminododecanoic acid (Chol-C13N), Cholesterol hemisuccinate Oxalate (Chol-C2), Cholesterol hemimalonate (Chol-C3), N-(cholesteryl-oxycarbonyl)glycine (Chol-C3N), Cholesterol hemiglutarate (Chol-C5 ), Cholesterol hemisuberate (Chol-C6), Cholesterol hemisuberate (Chol-C7), Cholesterol hemisuberate (Chol-C8), Cardiolipid (CL), l,2 -Bis(tricosyl-10,12-dicyl)-sn-glycero-3-phosphocholine (DC8-9PC), dicetylphosphate (DCP), dicetylphosphate Dihexadecylphosphate (DCP1), 1,2-dipalmitoylglycerol-3-hemisuccinate (DGSucc), short-chain dihexadecylphosphatidylcholine (DHPC), dihexadecane Phosphoethanolamine (DHPE), 1,2-dilinoleyl-sn-glycerol-3-phosphocholine (DLPC), l,2-dilauryl-sn-glycerol-3-PE (DLPE ), dimyristyl glyceryl hemisuccinate (DMGS), dimyristyl phosphatidylcholine (DMPC), dimyristyl phosphoethanolamine (DMPE), dimyristyl phospholipidyl glycerol (DMPG) ), dioleoxybenzyl alcohol (DOBA), 1,2-dioleylglyceryl-3-hemisuccinate (DOGHEMS), N-[2~(2-{2-[2-(2, 3-bis-octadecy-9-alkenyloxy-propoxy)-ethoxy]-ethoxy}-ethoxy)-ethyl]-3-(3,4,5-trihydroxy- 6-Hydroxymethyl-tetrahydropyran-2-ylsulfanyl)-propylamide (DOGP4αMan), dioleylphosphatidylcholine (DOPC), dioleylphosphatidylcholine (DOPE), dioleylphosphatidylethanolamine (DOPE), Oleoyl-phosphatidyl ethanolamine 4-(N-maleyl iminomethyl)-cyclohexane-1-carboxylate (DOPE-mal), dioleyl phospholipid glycerol (DOPG), 1,2-dioleyl-sn-glycerol-3-(phospho-L-serine) (DOPS), non-cell-fusogenic phospholipid (DPhPE), dipalmitoyl phosphatidylcholine (DPPC), Palmitoyl Phosphatidyl Ethanolamine (DPPE), Dipalmityl Phosphatidyl Glycerol (DPPG), Dipalmityl Phosphatidyl Serine (DPPS), Distearyl Phosphatidyl Choline (DSPC), Distearyl Dyl-phosphatidyl-ethanolamine (DSPE), distearyl-phosphoethanolamine imidazole (DSPEI), 1,2-di-undecanoyl-sn-glycerol-phosphocholine (DUPC), egg phosphatidylcholine Alkali (EPC), N-histamine cholesteryl carbamate (HCChol), histamine distearyl glycerol (HDSG), N-histamine acyl cholesterol hemisuccinate (HistChol), 1,2 -Dipalmitoylglycerol-hemisuccinate-Nα-histamine-hemisuccinate (HistSuccDG), N-(5'-hydroxy-3'-oxypentyl)-10-12-20 Pentakanediylamide (h-Pegi-PCDA), 2-[l-hexyloxyethyl]-2-devinyl pyropheophorbide-a (HPPH), Hydrogenated soybean phosphatidylcholine (HSPC), 1,2-dipalmitoylglycerol-Oα-histamine-Nα-hemisuccinate (IsohistsuccDG), mannosialized dipalmitoylphosphatidylglycerolamine ( ManDOG), l,2-dioleyl-sn-glycerol-3-phosphoethanolamine-N-[4-(p-maleyl iminomethyl)cyclohexane-methamide] (MCC- PE), 1,2-diphytanyl-sn-glycero-3-phosphoethanolamine (ME 16.0 PE), 1-myristyl-2-hydroxy-sn-glycero-phosphocholine (MHPC), athiol -Reactive maleimide head-terminal lipids, such as 1,2-dioleyl-sn-glycerol-3-phosphoethanolamine-N-[4-(p-maleimidebenzene (MPB-PE), tetracosenoic acid (NA), sodium cholate (NaChol), l,2-dioleyl-sn-glycerol-3-[phosphoethanolamine-N-dodecane Alkyl group (NC12-DOPE), as defined in the synthesis example (ND98) in WO2008042973A2, "N-glutaryl phosphatidyl ethanolamine of formula 1" (NG-PE), N-hydroxysulfosuccinyl acyl Amine (NHS-'x'), "N~(co)-dicarboxylic acid-derived phosphatidylethanolamines covered by formula 1" (NωPE-'x'), oleic acid (OA), 1-oleyl-2 -Cholesterol semisuccinyl-sn-glycerol-3-phosphocholine (OChemsPC), phosphatidic acid (PA), phosphatidylethanolamine lipid (PE), PE lipid conjugated with polyethylene glycol (PEG). An example of PEG-PE may be polyethylene glycol-distearyl phospholipid ethanolamine lipid (PEG-PE), phosphatidylglycerol (PG), partially hydrogenated soybean phosphatidylcholine (PHSPC), phosphatidylcholine Alcohol lipid (PI), phosphatidyl inositol-4-phosphate (PIP), palmityl oleyl phosphatidylcholine (POPC), phospholipid ethanolamine (POPE), palmityl oleyl phospholipid glycerol ( POPG), phosphatidyl serine (PS), lissamine rhodamine (lissamine rhodamine) B-phosphatidyl ethanolamine lipid (Rh-PE), purified soybean-derived mixture of phospholipid (SIOO), phosphatidylcholine (SM), 18-1-trans PE, 1-stearyl-2-oleyl-phosphatidylethanolamine (SOPE), soybean phosphatidylcholine (SPC), neural myelin (SPM), α. α'-Coconidyl 6,6'-disbehenate (TDB), l,2-ditearyl-sn-glycero-3-phosphoethanolamine (trans-DOPE), phosphoric acid ((23S,5R )-3-(bis(hexadecyloxy)methoxy)-5-(5-methyl-2,4-dihydropyrimidine-1(2/-/) -Tetrahydrofuran-2-yl)methyl methyl ester, 1,2-diarachidonyl-sn-glycerol-3-phosphocholine, 1,2-diarachidonyl-sn-glycerol- 3-Phosphoethanolamine, 1,2-di-docosahexaenyl-sn-glycerol-3-phosphocholine, 1,2-di-docosahexaenyl-sn-glycerol-3 -Phosphoethanolamine, 1,2-bislinoleyl-sn-glycerol-3-phosphocholine, 1,2-bislinoleyl-sn-glycerol-3-phosphoethanolamine, 1,2-di Linseed oil acyl-sn-glycero-3-phosphoethanolamine, 1,2-dioleyl-sn-glycero-3-phosphoethanolamine, 1,2-distearyl-sn-glycerol-3-phosphate Ethanolamine, 16-O-monomethylPE, 16-O-dimethylPE and dioleyl phospholipid ethanolamine.

在一些實施態樣中,LNP包含在國際專利公開案第WO2018118102號(將其內容以其全文引用方式併入本文中)中所述之陽離子脂質中至少一者,諸如但不限於ATX-2、ATX-43、ATX-57、ATX-58、ATX-61、ATX-63、ATX-64、ATX-81、ATX-82、ATX-83、ATX-84、ATX-86、ATX-87及ATX-88。製造該等陽離子脂質之方法亦提供於國際專利公開案第WO2018118102號中,且將其內容以其全文引用方式併入本文中。作為非限制性實例,在LNP中的陽離子脂質為ATX-88。作為非限制性實例,LNP包含約20至60%之ATX-2、ATX-43、ATX-57、ATX-58、ATX-61、ATX-63、ATX-64、ATX-81、ATX-82、ATX-83、ATX-84、ATX-86、ATX-87或ATX-88;約5至25%之非陽離子脂質;約25至55%之固醇;及約0.5至15%之經PEG修飾之脂質。In some embodiments, the LNP includes at least one of the cationic lipids described in International Patent Publication No. WO2018118102, the contents of which are incorporated herein by reference in its entirety, such as, but not limited to, ATX-2, ATX-43, ATX-57, ATX-58, ATX-61, ATX-63, ATX-64, ATX-81, ATX-82, ATX-83, ATX-84, ATX-86, ATX-87 and ATX- 88. Methods for making such cationic lipids are also provided in International Patent Publication No. WO2018118102, the contents of which are incorporated herein by reference in their entirety. As a non-limiting example, the cationic lipid in LNP is ATX-88. As a non-limiting example, LNP contains about 20 to 60% ATX-2, ATX-43, ATX-57, ATX-58, ATX-61, ATX-63, ATX-64, ATX-81, ATX-82, ATX-83, ATX-84, ATX-86, ATX-87, or ATX-88; about 5 to 25% noncationic lipids; about 25 to 55% sterols; and about 0.5 to 15% PEG-modified Lipids.

在一些實施態樣中,LNP包含在國際專利公開案第WO2018119163號(將其內容以其全文引用方式併入本文中)中所述之陽離子脂質中至少一者,諸如但不限於ATX-0002、ATX-0043、ATX-0057、ATX-0061、ATX-0063、ATX-0058、ATX-0081、ATX-0082、ATX-0083、ATX-0084、ATX-0085、ATX-0086、ATX-0087、ATX-0088、ATX-0091、ATX-0092、ATX-0093、ATX-0094、ATX-0095、ATX-0096、ATX-0097、ATX-0098、ATX-0100、ATX-0101、ATX-0102、ATX-0106、ATX-0107、ATX-0108、ATX-0109、ATX-0110、ATX-0111、ATX-0114、ATX-0115、ATX-0117、ATX-0118、ATX-0121、ATX-0122、ATX-0123、ATX-0124、ATX-0125、ATX-0126、ATX-0129、ATX-0132及ATX-0134。製造該等陽離子脂質之方法亦提供於國際專利公開案第WO2018119163號中,且將其內容以其全文引用方式併入本文中。作為非限制性實例,在LNP中的陽離子脂質為ATX-88。作為非限制性實例,LNP包含約20至60%之ATX-0002、ATX-0043、ATX-0057、ATX-0061、ATX-0063、ATX-0058、ATX-0081、ATX-0082、ATX-0083、ATX-0084、ATX-0085、ATX-0086、ATX-0087、ATX-0088、ATX-0091、ATX-0092、ATX-0093、ATX-0094、ATX-0095、ATX-0096、ATX-0097、ATX-0098、ATX-0100、ATX-0101、ATX-0102、ATX-0106、ATX-0107、ATX-0108、ATX-0109、ATX-0110、ATX-0111、ATX-0114、ATX-0115、ATX-0117、ATX-0118、ATX-0121、ATX-0122、ATX-0123、ATX-0124、ATX-0125、ATX-0126、ATX-0129、ATX-0132或ATX-0134;約5至25%之非陽離子脂質;約25至55%之固醇;及約0.5至15%之經PEG修飾之脂質。In some embodiments, the LNP includes at least one of the cationic lipids described in International Patent Publication No. WO2018119163 (the contents of which are incorporated herein by reference in its entirety), such as, but not limited to, ATX-0002, ATX-0043, ATX-0057, ATX-0061, ATX-0063, ATX-0058, ATX-0081, ATX-0082, ATX-0083, ATX-0084, ATX-0085, ATX-0086, ATX-0087, ATX- 0088, ATX-0091, ATX-0092, ATX-0093, ATX-0094, ATX-0095, ATX-0096, ATX-0097, ATX-0098, ATX-0100, ATX-0101, ATX-0102, ATX-0106, ATX-0107, ATX-0108, ATX-0109, ATX-0110, ATX-0111, ATX-0114, ATX-0115, ATX-0117, ATX-0118, ATX-0121, ATX-0122, ATX-0123, ATX- 0124, ATX-0125, ATX-0126, ATX-0129, ATX-0132 and ATX-0134. Methods for making such cationic lipids are also provided in International Patent Publication No. WO2018119163, the contents of which are incorporated herein by reference in their entirety. As a non-limiting example, the cationic lipid in LNP is ATX-88. As a non-limiting example, the LNP contains about 20 to 60% of ATX-0002, ATX-0043, ATX-0057, ATX-0061, ATX-0063, ATX-0058, ATX-0081, ATX-0082, ATX-0083, ATX-0084, ATX-0085, ATX-0086, ATX-0087, ATX-0088, ATX-0091, ATX-0092, ATX-0093, ATX-0094, ATX-0095, ATX-0096, ATX-0097, ATX- 0098, ATX-0100, ATX-0101, ATX-0102, ATX-0106, ATX-0107, ATX-0108, ATX-0109, ATX-0110, ATX-0111, ATX-0114, ATX-0115, ATX-0117, ATX-0118, ATX-0121, ATX-0122, ATX-0123, ATX-0124, ATX-0125, ATX-0126, ATX-0129, ATX-0132 or ATX-0134; approximately 5 to 25% non-cationic lipids; About 25 to 55% sterols; and about 0.5 to 15% PEG-modified lipids.

在一些實施態樣中,LNP包含在國際專利公開案第WO2012019168、WO2012045082、WO2012135805、WO2012158736、WO2013039857、WO2013039861、WO2013052523、WO2013090186、WO2013090648、WO2013096709、WO2013101690、WO2013106496、WO2013130161、WO2013151663、WO2013151664、WO2013151665、WO2013151666、WO2013151667、WO2013151668、WO2013151669、WO2013151670、WO2013151671、WO2013151672、WO2013151736、WO2014028429、WO2014081507、WO2014093574、WO2014093924、WO2014113089、WO2014144039、WO2014144711、WO2014144767、WO2014152027、WO2014152030、WO2014152031、WO2014152211、WO2014152540、WO2014158795、WO2014159813、WO2014164253、WO2015006747、WO2015034925、WO2015034928、WO2015038892、WO2015048744、WO2015051169、WO2015051173、WO2015051214、WO2015058069、WO2015085318、WO2015089511、WO2015105926、WO2015164674、WO2015196118、WO2015196128、WO2015196130、WO2015199952、WO2016011222、WO2016011226、WO2016011306、WO2016014846、WO2016022914、WO2016036902、WO2016077123、WO2016077125、WO2016100812、WO2016118724、WO2016118725、WO2016164762、WO2016176330、WO2016201377、WO2017004143、WO2017015457、WO2017015463、WO2017015630、WO2017019935、WO2017020026、WO2017031232、WO2017049074、WO2017049245、WO2017049275、WO2017049286、WO2017062513、WO2017070601、WO2017070613、WO2017070616、WO2017070618、WO2017070620、WO2017070622、WO2017070623、WO2017070624、WO2017070626、WO2017075531、WO2017099823、WO2017106799、WO2017112865、WO2017112943、WO2017117528、WO2017120612、WO2017127750、WO2017180917、WO2017201317、WO2017201325、WO2017201328、WO2017201332、WO2017201333、WO2017201340、WO2017201342、WO2017201346、WO2017201347、WO2017201348、WO2017201349、WO2017201350、WO2017201352、WO2017214175、WO2017218704、WO2017223135、WO2017223176、WO2018053209、WO2018075980、WO2018078053、WO2018081459、WO2018081480、WO2018081638、WO2018089540、WO2018089851、WO2018107026、WO2018107088、WO2018144082、WO2018144775、WO2018144778、WO2018151816、WO2018157009、WO2018170245、WO2018170256、WO2018170260、WO2018170270、WO2018170306、WO2018170336、WO2018170347、WO2018175783、WO2018187590、WO2018191657、WO2018191719、WO2018200737、WO2018200943、WO2018213731、WO2018213789、WO2018231990、WO2018232006、WO2018232120、WO2018232355、WO2018232357、WO2019018765、WO2019023179、WO2019036000、WO2019036008、WO2019036028、WO2019036030、WO2019036670、WO2019036682、WO2019046809、WO2019055807、WO2019089818、WO2019089828、WO2019103993、WO2019104152、WO2019104160、WO2019104195、WO2019136241、WO2019143910、WO2019148101、WO2019152557、WO2019200171、WO2019226650、WO2020023390、WO2020047201、WO2020056147、WO2020056155、WO2020056239、WO2020056304、WO2020056370、WO2020061284、WO2020061295、WO2020061317、WO2020061332、WO2020061367、WO2020061426、WO2020061457、WO202006242、WO2020069169、WO2020081938、WO2020097291、WO2020097409、WO2020146805、WO2020160397、WO2020160430、WO2020185811、WO2020190750、WO2020227510、WO2020227537、WO2020227615、WO2020227642、WO2020227690、WO2020243561、WO2020263883、WO2020263985、WO2021022173、WO2021026358、WO2021030701、WO2021050864、WO2021050986、WO2021055833、WO2021055835、WO2021055849、WO2021076805、WO2021076811、WO2021142280、WO2021154763、WO2021155243、WO2021155267、WO2021155274、WO2021159040及WO2021159130中所述之陽離子脂質中至少一者。作為非限制性實例,LNP包含約20至60%之陽離子脂質;約5至25%之非陽離子脂質;約25至55%之固醇;及約0.5至15%之經PEG修飾之脂質。In some embodiments, the LNP is included in International Patent Publications Nos. WO2012019168, WO2012045082, WO2012135805, WO2012158736, WO2013039857, WO2013039861, WO2013052523, WO2013090186, WO2013090648, WO2013096709, WO2013101690, WO2013106496, WO2013130161, WO2013151663, WO2013151664, WO2013151665, WO2013151666, WO2013151667 , WO2013151668, WO2013151669, WO2013151670, WO2013151671, WO2013151672, WO2013151736, WO2014028429, WO2014081507, WO2014093574, WO2014093924, WO2 014113089, WO2014144039, WO2014144711, WO2014144767, WO2014152027, WO2014152030, WO2014152031, WO2014152211, WO2014152540, WO2014158795, WO201415 9813, WO2014164253, WO2015006747, WO2015034925, WO2015034928 , WO2015038892, WO2015048744, WO2015051169, WO2015051173, WO2015051214, WO2015058069, WO2015085318, WO2015089511, WO2015105926, WO2015164674, WO2 015196118, WO2015196128, WO2015196130, WO2015199952, WO2016011222, WO2016011226, WO2016011306, WO2016014846, WO2016022914, WO2016036902, WO201607 7123, WO2016077125, WO2016100812, WO2016118724, WO2016118725 , WO2016164762, WO2016176330, WO2016201377, WO2017004143, WO2017015457, WO2017015463, WO2017015630, WO2017019935, WO2017020026, WO2017031232, WO2 017049074, WO2017049245, WO2017049275, WO2017049286, WO2017062513, WO2017070601, WO2017070613, WO2017070616, WO2017070618, WO2017070620, WO201707 0622, WO2017070623, WO2017070624, WO2017070626, WO2017075531 , WO2017099823, WO2017106799, WO2017112865, WO2017112943, WO2017117528, WO2017120612, WO2017127750, WO2017180917, WO2017201317, WO2017201325, WO2 017201328, WO2017201332, WO2017201333, WO2017201340, WO2017201342, WO2017201346, WO2017201347, WO2017201348, WO2017201349, WO2017201350, WO201720 1352, WO2017214175, WO2017218704, WO2017223135, WO2017223176 , WO2018053209, WO2018075980, WO2018078053, WO2018081459, WO2018081480, WO2018081638, WO2018089540, WO2018089851, WO2018107026, WO2018107088, WO2 018144082, WO2018144775, WO2018144778, WO2018151816, WO2018157009, WO2018170245, WO2018170256, WO2018170260, WO2018170270, WO2018170306, WO201817 0336, WO2018170347, WO2018175783, WO2018187590, WO2018191657 , WO2018191719, WO2018200737, WO2018200943, WO2018213731, WO2018213789, WO2018231990, WO2018232006, WO2018232120, WO2018232355, WO2018232357, WO2 019018765, WO2019023179, WO2019036000, WO2019036008, WO2019036028, WO2019036030, WO2019036670, WO2019036682, WO2019046809, WO2019055807, WO201908 9818, WO2019089828, WO2019103993, WO2019104152, WO2019104160 , WO2019104195, WO2019136241, WO2019143910, WO2019148101, WO2019152557, WO2019200171, WO2019226650, WO2020023390, WO2020047201, WO2020056147, WO2 020056155, WO2020056239, WO2020056304, WO2020056370, WO2020061284, WO2020061295, WO2020061317, WO2020061332, WO2020061367, WO2020061426, WO202006 1457, WO202006242, WO2020069169, WO2020081938, WO2020097291 , WO2020097409, WO2020146805, WO2020160397, WO2020160430, WO2020185811, WO2020190750, WO2020227510, WO2020227537, WO2020227615, WO2020227642, WO2 020227690, WO2020243561, WO2020263883, WO2020263985, WO2021022173, WO2021026358, WO2021030701, WO2021050864, WO2021050986, WO2021055833, WO202105 5835, WO2021055849, WO2021076805, WO2021076811, WO2021142280 , at least one of the cationic lipids described in WO2021154763, WO2021155243, WO2021155267, WO2021155274, WO2021159040 and WO2021159130. As a non-limiting example, LNPs include about 20 to 60% cationic lipids; about 5 to 25% noncationic lipids; about 25 to 55% sterols; and about 0.5 to 15% PEG-modified lipids.

在一些實施態樣中,LNP包含可離子化的脂質或脂質樣材料。作為非限制性實例,可離子化的脂質可為C12-200、CKK-E12、5A2-SC8、BAMEA-016B或7C1。其他可離子化的脂質為此項技術中已知且可用於本文中。In some embodiments, the LNPs comprise ionizable lipids or lipid-like materials. As non-limiting examples, the ionizable lipid may be C12-200, CKK-E12, 5A2-SC8, BAMEA-016B or 7C1. Other ionizable lipids are known in the art and can be used herein.

在一些實施態樣中,LNP包含磷脂。作為非限制性實例,磷脂(輔助者)可為DOPE、DSPC、DOTAP或DOTMA。In some embodiments, the LNP includes phospholipids. As non-limiting examples, the phospholipid (helper) may be DOPE, DSPC, DOTAP or DOTMA.

在一些實施態樣中,LNP包含PEG衍生物。作為非限制性實例,PEG衍生物可為經脂質錨定的,諸如PEG為C14-PEG2000、C14-PEG1000、C14-PEG3000、C14-PEG5000、C12-PEG1000、C12-PEG2000、C12-PEG3000、C12-PEG5000、C16-PEG1000、C16-PEG2000、C16-PEG3000、C16-PEG5000、C18-PEG1000、C18-PEG2000、C18-PEG3000或C18-PEG5000。In some embodiments, the LNPs comprise PEG derivatives. As non-limiting examples, PEG derivatives may be lipid-anchored, such as PEGs are C14-PEG2000, C14-PEG1000, C14-PEG3000, C14-PEG5000, C12-PEG1000, C12-PEG2000, C12-PEG3000, C12- PEG5000, C16-PEG1000, C16-PEG2000, C16-PEG3000, C16-PEG5000, C18-PEG1000, C18-PEG2000, C18-PEG3000 or C18-PEG5000.

在一些實施態樣中,至少一種固醇包含至少一種膽固醇或膽固醇衍生物。在一些實施態樣中,LNP可能基本上沒有至少一種固醇。在一些實施態樣中,LNP可能不含任何量的至少一種固醇。In some embodiments, at least one sterol includes at least one cholesterol or cholesterol derivative. In some implementations, the LNP may be substantially free of at least one sterol. In some embodiments, the LNP may not contain any amount of at least one sterol.

在一些實施態樣中,至少一種額外的LNP功能性組分包含至少一種減少粒子聚集之組分、至少一種減少LNP自個體內循環而清除之組分、至少一種增加LNP穿過黏液層的能力之組分、至少一種降低個體對投予之LNP的免疫反應之組分、至少一種修飾LNP的膜流動性之組分、至少一種促成LNP穩定性之組分或其任何組合。在一些實施態樣中,LNP可能基本上沒有至少一種額外的LNP功能性組分。在一些實施態樣中,LNP可能不含任何量的至少一種額外的LNP功能性組分。In some embodiments, the at least one additional LNP functional component includes at least one component that reduces particle aggregation, at least one component that reduces clearance of LNP from circulation within the body, and at least one component that increases the ability of LNP to cross the mucus layer at least one component that reduces an individual's immune response to administered LNP, at least one component that modifies the membrane fluidity of the LNP, at least one component that contributes to the stability of the LNP, or any combination thereof. In some implementations, the LNP may be substantially free of at least one additional LNP functional component. In some embodiments, the LNP may not contain any amount of at least one additional LNP functional component.

在一些實施態樣中,額外的LNP功能性組分可由聚合物所組成。在一些實施態樣中,包含額外的LNP功能性組分之聚合物可由至少一種聚乙二醇(PEG)、至少一種聚丙二醇(PPG)、聚(2-㗁唑啉)(POZ)、至少一種聚醯胺(ATTA)、至少一種陽離子聚合物或其任何組合所組成。In some embodiments, additional LNP functional components may be composed of polymers. In some embodiments, polymers containing additional LNP functional components can be composed of at least one polyethylene glycol (PEG), at least one polypropylene glycol (PPG), poly(2-oxazoline) (POZ), at least Composed of a polyamide (ATTA), at least one cationic polymer, or any combination thereof.

在一些實施態樣中,聚合物部分(例如PEG)之平均分子量可介於500與20,000道耳頓之間。在一些實施態樣中,聚合物之分子量可為約500至20,000、1,000至20,000、1,500至20,000、2,000至20,000、2,500至20,000、3,000至20,000、3,500至20,000、4,000至20,000、4,500至20,000、5,000至20,000、5,500至20,000、6,000至20,000、6,500至20,000、7,000至20,000、7,500至20,000、8,000至20,000、8,500至20,000、9,000至20,000、9,500至20,000、10,000至20,000、10,500至20,000、11,000至20,000、11,500至20,000、12,000至20,000、12,500至20,000、13,000至20,000、13,500至20,000、14,000至20,000、14,500至20,000、15,000至20,000、15,500至20,000、16,000至20,000、16,500至20,000、17,000至20,000、17,500至20,000、18,000至20,000、18,500至20,000、19,000至20,000、19,500至20,000、500至19,500、1,000至19,500、1,500至19,500、2,000至19,500、2,500至19,500、3,000至19,500、3,500至19,500、4,000至19,500、4,500至19,500、5,000至19,500、5,500至19,500、6,000至19,500、6,500至19,500、7,000至19,500、7,500至19,500、8,000至19,500、8,500至19,500、9,000至19,500、9,500至19,500、10,000至19,500、10,500至19,500、11,000至19,500、11,500至19,500、12,000至19,500、12,500至19,500、13,000至19,500、13,500至19,500、14,000至19,500、14,500至19,500、15,000至19,500、15,500至19,500、16,000至19,500、16,500至19,500、17,000至19,500、17,500至19,500、18,000至19,500、18,500至19,500、19,000至19,500、1,500至19,000、2,000至19,000、2,500至19,000、3,000至19,000、3,500至19,000、4,000至19,000、4,500至19,000、5,000至19,000、5,500至19,000、6,000至19,000、6,500至19,000、7,000至19,000、7,500至19,000、8,000至19,000、8,500至19,000、9,000至19,000、9,500至19,000、10,000至19,000、10,500至19,000、11,000至19,000、11,500至19,000、12,000至19,000、12,500至19,000、13,000至19,000、13,500至19,000、14,000至19,000、14,500至19,000、15,000至19,000、15,500至19,000、16,000至19,000、16,500至19,000、17,000至19,000、17,500至19,000、18,000至19,000、18,500至19,000、1,500至18,500、2,000至18,500、2,500至18,500、3,000至18,500、3,500至18,500、4,000至18,500、4,500至18,500、5,000至18,500、5,500至18,500、6,000至18,500、6,500至18,500、7,000至18,500、7,500至18,500、8,000至18,500、8,500至18,500、9,000至18,500、9,500至18,500、10,000至18,500、10,500至18,500、11,000至18,500、11,500至18,500、12,000至18,500、12,500至18,500、13,000至18,500、13,500至18,500、14,000至18,500、14,500至18,500、15,000至18,500、15,500至18,500、16,000至18,500、16,500至18,500、17,000至18,500、17,500至18,500、18,000至18,500、1,500至18,000、2,000至18,000、2,500至18,000、3,000至18,000、3,500至18,000、4,000至18,000、4,500至18,000、5,000至18,000、5,500至18,000、6,000至18,000、6,500至18,000、7,000至18,000、7,500至18,000、8,000至18,000、8,500至18,000、9,000至18,000、9,500至18,000、10,000至18,000、10,500至18,000、11,000至18,000、11,500至18,000、12,000至18,000、12,500至18,000、13,000至18,000、13,500至18,000、14,000至18,000、14,500至18,000、15,000至18,000、15,500至18,000、16,000至18,000、16,500至18,000、17,000至18,000、17,500至18,000、1,500至17,500、2,000至17,500、2,500至17,500、3,000至17,500、3,500至17,500、4,000至17,500、4,500至17,500、5,000至17,500、5,500至17,500、6,000至17,500、6,500至17,500、7,000至17,500、7,500至17,500、8,000至17,500、8,500至17,500、9,000至17,500、9,500至17,500、10,000至17,500、10,500至17,500、11,000至17,500、11,500至17,500、12,000至17,500、12,500至17,500、13,000至17,500、13,500至17,500、14,000至17,500、14,500至17,500、15,000至17,500、15,500至17,500、16,000至17,500、16,500至17,500、17,000至17,500、1,500至17,000、2,000至17,000、2,500至17,000、3,000至17,000、3,500至17,000、4,000至17,000、4,500至17,000、5,000至17,000、5,500至17,000、6,000至17,000、6,500至17,000、7,000至17,000、7,500至17,000、8,000至17,000、8,500至17,000、9,000至17,000、9,500至17,000、10,000至17,000、10,500至17,000、11,000至17,000、11,500至17,000、12,000至17,000、12,500至17,000、13,000至17,000、13,500至17,000、14,000至17,000、14,500至17,000、15,000至17,000、15,500至17,000、16,000至17,000、16,500至17,000、1,500至16,500、2,000至16,500、2,500至16,500、3,000至16,500、3,500至16,500、4,000至16,500、4,500至16,500、5,000至16,500、5,500至16,500、6,000至16,500、6,500至16,500、7,000至16,500、7,500至16,500、8,000至16,500、8,500至16,500、9,000至16,500、9,500至16,500、10,000至16,500、10,500至16,500、11,000至16,500、11,500至16,500、12,000至16,500、12,500至16,500、13,000至16,500、13,500至16,500、14,000至16,500、14,500至16,500、15,000至16,500、15,500至16,500、16,000至16,500、1,500至16,000、2,000至16,000、2,500至16,000、3,000至16,000、3,500至16,000、4,000至16,000、4,500至16,000、5,000至16,000、5,500至16,000、6,000至16,000、6,500至16,000、7,000至16,000、7,500至16,000、8,000至16,000、8,500至16,000、9,000至16,000、9,500至16,000、10,000至16,000、10,500至16,000、11,000至16,000、11,500至16,000、12,000至16,000、12,500至16,000、13,000至16,000、13,500至16,000、14,000至16,000、14,500至16,000、15,000至16,000、15,500至16,000、1,500至15,500、2,000至15,500、2,500至15,500、3,000至15,500、3,500至15,500、4,000至15,500、4,500至15,500、5,000至15,500、5,500至15,500、6,000至15,500、6,500至15,500、7,000至15,500、7,500至15,500、8,000至15,500、8,500至15,500、9,000至15,500、9,500至15,500、10,000至15,500、10,500至15,500、11,000至15,500、11,500至15,500、12,000至15,500、12,500至15,500、13,000至15,500、13,500至15,500、14,000至15,500、14,500至15,500、15,000至15,500、1,500至15,000、2,000至15,000、2,500至15,000、3,000至15,000、3,500至15,000、4,000至15,000、4,500至15,000、5,000至15,000、5,500至15,000、6,000至15,000、6,500至15,000、7,000至15,000、7,500至15,000、8,000至15,000、8,500至15,000、9,000至15,000、9,500至15,000、10,000至15,000、10,500至15,000、11,000至15,000、11,500至15,000、12,000至15,000、12,500至15,000、13,000至15,000、13,500至15,000、14,000至15,000、14,500至15,000、1,500至14,500、2,000至14,500、2,500至14,500、3,000至14,500、3,500至14,500、4,000至14,500、4,500至14,500、5,000至14,500、5,500至14,500、6,000至14,500、6,500至14,500、7,000至14,500、7,500至14,500、8,000至14,500、8,500至14,500、9,000至14,500、9,500至14,500、10,000至14,500、10,500至14,500、11,000至14,500、11,500至14,500、12,000至14,500、12,500至14,500、13,000至14,500、13,500至14,500、14,000至14,500、1,500至14,000、2,000至14,000、2,500至14,000、3,000至14,000、3,500至14,000、4,000至14,000、4,500至14,000、5,000至14,000、5,500至14,000、6,000至14,000、6,500至14,000、7,000至14,000、7,500至14,000、8,000至14,000、8,500至14,000、9,000至14,000、9,500至14,000、10,000至14,000、10,500至14,000、11,000至14,000、11,500至14,000、12,000至14,000、12,500至14,000、13,000至14,000、13,500至14,000、1,500至13,500、2,000至13,500、2,500至13,500、3,000至13,500、3,500至13,500、4,000至13,500、4,500至13,500、5,000至13,500、5,500至13,500、6,000至13,500、6,500至13,500、7,000至13,500、7,500至13,500、8,000至13,500、8,500至13,500、9,000至13,500、9,500至13,500、10,000至13,500、10,500至13,500、11,000至13,500、11,500至13,500、12,000至13,500、12,500至13,500、13,000至13,500、1,500至13,000、2,000至13,000、2,500至13,000、3,000至13,000、3,500至13,000、4,000至13,000、4,500至13,000、5,000至13,000、5,500至13,000、6,000至13,000、6,500至13,000、7,000至13,000、7,500至13,000、8,000至13,000、8,500至13,000、9,000至13,000、9,500至13,000、10,000至13,000、10,500至13,000、11,000至13,000、11,500至13,000、12,000至13,000、12,500至13,000、1,500至12,500、2,000至12,500、2,500至12,500、3,000至12,500、3,500至12,500、4,000至12,500、4,500至12,500、5,000至12,500、5,500至12,500、6,000至12,500、6,500至12,500、7,000至12,500、7,500至12,500、8,000至12,500、8,500至12,500、9,000至12,500、9,500至12,500、10,000至12,500、10,500至12,500、11,000至12,500、11,500至12,500、12,000至12,500、1,500至12,000、2,000至12,000、2,500至12,000、3,000至12,000、3,500至12,000、4,000至12,000、4,500至12,000、5,000至12,000、5,500至12,000、6,000至12,000、6,500至12,000、7,000至12,000、7,500至12,000、8,000至12,000、8,500至12,000、9,000至12,000、9,500至12,000、10,000至12,000、10,500至12,000、11,000至12,000、11,500至12,000、1,500至11,500、2,000至11,500、2,500至11,500、3,000至11,500、3,500至11,500、4,000至11,500、4,500至11,500、5,000至11,500、5,500至11,500、6,000至11,500、6,500至11,500、7,000至11,500、7,500至11,500、8,000至11,500、8,500至11,500、9,000至11,500、9,500至11,500、10,000至11,500、10,500至11,500、11,000至11,500、1,500至11,000、2,000至11,000、2,500至11,000、3,000至11,000、3,500至11,000、4,000至11,000、4,500至11,000、5,000至11,000、5,500至11,000、6,000至11,000、6,500至11,000、7,000至11,000、7,500至11,000、8,000至11,000、8,500至11,000、9,000至11,000、9,500至11,000、10,000至11,000、10,500至11,000、1,500至10,500、2,000至10,500、2,500至10,500、3,000至10,500、3,500至10,500、4,000至10,500、4,500至10,500、5,000至10,500、5,500至10,500、6,000至10,500、6,500至10,500、7,000至10,500、7,500至10,500、8,000至10,500、8,500至10,500、9,000至10,500、9,500至10,500、10,000至10,500、1,500至10,000、2,000至10,000、2,500至10,000、3,000至10,000、3,500至10,000、4,000至10,000、4,500至10,000、5,000至10,000、5,500至10,000、6,000至10,000、6,500至10,000、7,000至10,000、7,500至10,000、8,000至10,000、8,500至10,000、9,000至10,000、9,500至10,000、1,500至9,500、2,000至9,500、2,500至9,500、3,000至9,500、3,500至9,500、4,000至9,500、4,500至9,500、5,000至9,500、5,500至9,500、6,000至9,500、6,500至9,500、7,000至9,500、7,500至9,500、8,000至9,500、8,500至9,500、9,000至9,500、1,500至9,000、2,000至9,000、2,500至9,000、3,000至9,000、3,500至9,000、4,000至9,000、4,500至9,000、5,000至9,000、5,500至9,000、6,000至9,000、6,500至9,000、7,000至9,000、7,500至9,000、8,000至9,000、8,500至9,000、1,500至8,500、2,000至8,500、2,500至8,500、3,000至8,500、3,500至8,500、4,000至8,500、4,500至8,500、5,000至8,500、5,500至8,500、6,000至8,500、6,500至8,500、7,000至8,500、7,500至8,500、8,000至8,500、1,500至8,000、2,000至8,000、2,500至8,000、3,000至8,000、3,500至8,000、4,000至8,000、4,500至8,000、5,000至8,000、5,500至8,000、6,000至8,000、6,500至8,000、7,000至8,000、7,500至8,000、1,500至7,500、2,000至7,500、2,500至7,500、3,000至7,500、3,500至7,500、4,000至7,500、4,500至7,500、5,000至7,500、5,500至7,500、6,000至7,500、6,500至7,500、7,000至7,500、1,500至7,000、2,000至7,000、2,500至7,000、3,000至7,000、3,500至7,000、4,000至7,000、4,500至7,000、5,000至7,000、5,500至7,000、6,000至7,000、6,500至7,000、1,500至6,500、2,000至6,500、2,500至6,500、3,000至6,500、3,500至6,500、4,000至6,500、4,500至6,500、5,000至6,500、5,500至6,500、6,000至6,500、1,500至6,000、2,000至6,000、2,500至6,000、3,000至6,000、3,500至6,000、4,000至6,000、4,500至6,000、5,000至6,000、5,500至6,000、1,500至5,500、2,000至5,500、2,500至5,500、3,000至5,500、3,500至5,500、4,000至5,500、4,500至5,500、5,000至5,500、1,500至5,000、2,000至5,000、2,500至5,000、3,000至5,000、3,500至5,000、4,000至5,000、4,500至5,000、1,500至4,500、2,000至4,500、2,500至4,500、3,000至4,500、3,500至4,500、4,000至4,500、1,500至4,000、2,000至4,000、2,500至4,000、3,000至4,000、3,500至4,000、1,500至3,500、2,000至3,500、2,500至3,500、3,000至3,500、1,500至3,000、2,000至3,000、2,500至3,000、1,500至2,500、2,000至2,500、及1,500至2,000道耳頓。In some embodiments, the average molecular weight of the polymer moiety (eg, PEG) can be between 500 and 20,000 daltons. In some embodiments, the molecular weight of the polymer can be about 500 to 20,000, 1,000 to 20,000, 1,500 to 20,000, 2,000 to 20,000, 2,500 to 20,000, 3,000 to 20,000, 3,500 to 20,000, 4,000 to 20,000, 4,500 to 20 ,000, 5,000 to 20,000, 5,500 to 20,000, 6,000 to 20,000, 6,500 to 20,000, 7,000 to 20,000, 7,500 to 20,000, 8,000 to 20,000, 8,500 to 20,000, 9,000 to 20,000, 9,500 to 20,000, 10,000 to 20,000, 10,500 to 20,000, 11,000 to 20,000, 11,500-20,000, 12,000-20,000, 12,500-20,000, 13,000-20,000, 13,500-20,000, 14,000-20,000, 14,500-20,000, 15,000-20,000, 15,5 00 to 20,000, 16,000 to 20,000, 16,500 to 20,000, 17,000 to 20,000, 17,500 to 20,000, 18,000 to 20,000, 18,500 to 20,000, 19,000 to 20,000, 19,500 to 20,000, 500 to 19,500, 1,000 to 19,500, 1,500 to 19,500, 2,000 to 19,500, 2,5 00 to 19,500, 3,000 to 19,500, 3,500 to 19,500, 4,000 to 19,500, 4,500 to 19,500, 5,000 to 19,500, 5,500 to 19,500, 6,000 to 19,500, 6,500 to 19,500, 7,000 to 19,500, 7,500 to 19,500, 8,000 to 19,500, 8,500 to 19,500 , 9,000 to 19,500, 9,500 to 19,500, 10,000 to 19,500, 10,500 to 19,500, 11,000 to 19,500, 11,500 to 19,500, 12,500 to 19,500, 12,500 to 19,500, 13,000 to 19,500, 13,500 to 19,500, 14,000 to 19,500, 14,500 to 19,5 00, 15,000 to 19,500, 15,500 to 19,500, 16,000 to 19,500, 16,500 to 19,500, 17,000 to 19,500, 17,500 to 19,500, 18,000 to 19,500, 18,500 to 19,500, 19,000 to 19,500, 1,500 to 19,000, 2,000 to 19,000, 2,500 to 19,000, 3,000 to 1 9,000, 3,500 to 19,000, 4,000 to 19,000, 4,500 to 19,000, 5,000 to 19,000, 5,500 to 19,000, 6,000 to 19,000, 6,500 to 19,000, 7,000 to 19,000, 7,500 to 19,000, 8,000 to 19,000, 8,500 to 19,000, 9,000 to 19,000, 9,500 to 19,000, 10,000 to 19,000, 10,500 to 19,000, 11,000 to 19,000, 11,500 to 19,000, 12,000 to 19,000, 12,500 to 19,000, 13,000 to 19,000, 13,500 to 19,000, 14,000 to 19,000, 14,500 to 19,000, 15,000 to 19,000, 15,5 00 to 19,000, 16,000 to 19,000, 16,500 to 19,000, 17,000 to 19,000, 17,500 to 19,000, 18,000 to 19,000, 18,500 to 19,000, 1,500 to 18,500, 2,000 to 18,500, 2,500 to 18,500, 3,000 to 18,500, 3,500 to 18,500, 4,000 to 18,500, 4,5 00 to 18,500, 5,000 to 18,500, 5,500 to 18,500, 6,000 to 18,500, 6,500 to 18,500, 7,000 to 18,500, 7,500 to 18,500, 8,000 to 18,500, 8,500 to 18,500, 9,000 to 18,500, 9,500 to 18,500, 10,000 to 18,500, 10,500 to 18,5 00, 11,000 to 18,500, 11,500 to 18,500, 12,000 to 18,500, 12,500 to 18,500, 13,000 to 18,500, 13,500 to 18,500, 14,000 to 18,500, 14,500 to 18,500, 15,000 to 18,500, 15,500 to 18,500, 16,000 to 18,500, 16,500 to 18,5 00, 17,000 to 18,500, 17,500 to 18,500, 18,000 to 18,500, 1,500 to 18,000, 2,000 to 18,000, 2,500 to 18,000, 3,000 to 18,000, 3,500 to 18,000, 4,000 to 18,000, 4,500 to 18,000, 5,000 to 18,000, 5,500 to 18,000, 6,000 to 18,000 , 6,500 to 18,000, 7,000 to 18,000, 7,500 to 18,000, 8,000 to 18,000, 8,500 to 18,000, 9,000 to 18,000, 9,500 to 18,000, 10,000 to 18,000, 10,500 to 18,000, 11,000 to 18,000, 11,500 to 18,000, 12,000 to 18,000, 1 2,500 to 18,000, 13,000 to 18,000, 13,500 to 18,000, 14,000 to 18,000, 14,500-18,000, 15,000-18,000, 15,500-18,000, 16,000-18,000, 16,500-18,000, 17,000-18,000, 17,500-18,000, 1,500-17,500, 2,000 to 17,500, 2,500 to 17,500, 3,000 to 17,500, 3,500 to 17,500, 4,000 to 17,500, 4,500 to 17,500, 5,000 to 17,500, 5,500 to 17,500, 6,000 to 17,500, 6,500 to 17,500, 7,000 to 17,500, 7,500 to 17,500, 8,000 to 17,500, 8,500 to 17,500, 9,000 to 17,500, 9,500 to 17,500, 10,000 to 17,500, 10,500 to 17,500, 11,000 to 17,500, 11,500 to 17,500, 12,000 to 17,500, 12,500 to 17,500, 13,000 to 17,500, 13,500 to 17,500, 14,000 to 17,500, 14,5 00 to 17,500, 15,000 to 17,500, 15,500 to 17,500, 16,000 to 17,500, 16,500 to 17,500, 17,000 to 17,500, 1,500 to 17,000, 2,000 to 17,000, 2,500 to 17,000, 3,000 to 17,000, 3,500 to 17,000, 4,000 to 17,000, 4,500 to 17,000, 5,00 0 to 17,000, 5,500 to 17,000, 6,000 to 17,000, 6,500 to 17,000, 7,000 to 17,000, 7,500 to 17,000, 8,000 to 17,000, 8,500 to 17,000, 9,000 to 17,000, 9,500 to 17,000, 10,000 to 17,000, 10,500 to 17,000, 11,000 to 17, 000, 11,500 to 17,000, 12,000 to 17,000, 12,500 to 17,000, 13,000 to 17,000, 13,500 to 17,000, 14,000 to 17,000, 14,500 to 17,000, 15,000 to 17,000, 15,500 to 17,000, 16,000 to 17,000, 16,500 to 17,000, 1,500 to 16,50 0, 2,000 to 16,500, 2,500 to 16,500, 3,000 to 16,500, 3,500 to 16,500, 4,000 to 16,500, 4,500 to 16,500, 5,000 to 16,500, 5,500 to 16,500, 6,000 to 16,500, 6,500 to 16,500, 7,000 to 16,500, 7,500 to 16,500, 8,000 to 16,500 , 8,500 to 16,500, 9,000 to 16,500, 9,500 to 16,500, 10,000 to 16,500, 10,500 to 16,500, 11,000 to 16,500, 11,500 to 16,500, 12,000 to 16,500, 12,500 to 16,500, 13,000 to 16,500, 13,500 to 16,500, 14,000 to 16,5 00, 14,500 to 16,500, 15,000 to 16,500, 15,500 to 16,500, 16,000 to 16,500, 1,500 to 16,000, 2,000 to 16,000, 2,500 to 16,000, 3,000 to 16,000, 3,500 to 16,000, 4,000 to 16,000, 4,500 to 16,000, 5,000 to 16,000, 5,500 to 16,000 , 6,000 to 16,000, 6,500 to 16,000, 7,000 to 16,000, 7,500 to 16,000, 8,000 to 16,000, 8,500 to 16,000, 9,000 to 16,000, 9,500 to 16,000, 10,000 to 16,000, 10,500 to 16,000, 11,000 to 16,000, 11,500 to 16,000, 12 ,000 to 16,000, 12,500 to 16,000, 13,000 to 16,000, 13,500 to 16,000, 14,000 to 16,000, 14,500 to 16,000, 15,000 to 16,000, 15,500 to 16,000, 1,500 to 15,500, 2,000 to 15,500, 2,500 to 15,500, 3,000 to 15,500, 3,500 to 15 ,500, 4,000 to 15,500, 4,500 to 15,500, 5,000 to 15,500, 5,500 to 15,500, 6,000 to 15,500, 6,500 to 15,500, 7,000 to 15,500, 7,500 to 15,500, 8,000 to 15,500, 8,500 to 15,500, 9,000 to 15,500, 9,500 to 15,500, 10,000 to 15,500, 10,500 to 15,500, 11,000 to 15,500, 11,500 to 15,500, 12,000 to 15,500, 12,500 to 15,500, 13,000 to 15,500, 13,500 to 15,500, 14,000 to 15,500, 14,500 to 15,500, 15,000 to 15,500, 1,500 to 15,000, 2,000 to 15,000, 2,500 to 15,000, 3,000 to 15,000, 3,500 to 15,000, 4,000 to 15,000, 4,500 to 15,000, 5,000 to 15,000, 5,500 to 15,000, 6,000 to 15,000, 6,500 to 15,000, 7,000 to 15,000, 7,500 to 15,000, 8,000 to 15,000, 8,500 to 15,000, 9,000 to 15,000, 9,500 to 15,000, 10,000 to 15,000, 10,500 to 15,000, 11,000 to 15,000, 11,500 to 15,000, 12,000 to 15,000, 12,500 to 15,000, 13,000 to 15,000, 13,500 to 15,000, 14,000 to 15,000, 14,5 00 to 15,000, 1,500 to 14,500, 2,000 to 14,500, 2,500 to 14,500, 3,000 to 14,500, 3,500 to 14,500, 4,000 to 14,500, 4,500 to 14,500, 5,000 to 14,500, 5,500 to 14,500, 6,000 to 14,500, 6,500 to 14,500, 7,000 to 14,500, 7,500 to 14,500, 8,000 to 14,500, 8,500 to 14,500, 9,000 to 14,500, 9,500 to 14,500, 10,000 to 14,500, 10,500 to 14,500, 11,000 to 14,500, 11,500 to 14,500, 12,000 to 14,500, 12,500 to 14,500, 13,000 to 14,500, 13,50 0 to 14,500, 14,000 to 14,500, 1,500 to 14,000, 2,000 to 14,000, 2,500 to 14,000, 3,000 to 14,000, 3,500 to 14,000, 4,000 to 14,000, 4,500 to 14,000, 5,000 to 14,000, 5,500 to 14,000, 6,000 to 14,000, 6,500 to 14,000, 7,000 to 14,000, 7,500 to 14,000, 8,000 to 14,000, 8,500 to 14,000, 9,000 to 14,000, 9,500 to 14,000, 10,000 to 14,000, 10,500 to 14,000, 11,000 to 14,000, 11,500 to 14,000, 12,000 to 14,000, 12,500 to 14,000, 13,000 to 14,000, 13,500 to 14,000, 1,500 to 13,500, 2,000 to 13,500, 2,500 to 13,500, 3,000 to 13,500, 3,500 to 13,500, 4,000 to 13,500, 4,500 to 13,500, 5,000 to 13,500, 5,500 to 13,500, 6,000 to 13,500, 6,500 to 13,500, 7,000 to 13,500, 7,500 to 13,500, 8,000 to 13,500, 8,500 to 13,500, 9,000 to 13,500, 9,500 to 13,500, 10,000 to 13,500, 10,500 to 13,500, 11,000 to 13,500, 11,500 to 13,500, 12,000 to 13,500, 12,500 to 13,500, 13,000 to 13,500, 1,500 to 13,000, 2,000 to 13,000, 2,500 to 13,000, 3,000 to 13,000, 3,500 to 13,000, 4,000 to 13,000, 4,500 to 13,000, 5,000 to 13,000, 5,500 to 13,000, 6,000 to 13,000, 6,500 to 13,000, 7,000 to 13,000, 7,500 to 13,000, 8,000 to 13,000, 8,500 to 13,000, 9,000 to 13,000, 9,500 to 13,000, 10,000 to 13,000, 10,500 to 13,000, 11,000 to 13,000, 11,500 to 13,000, 12,000 to 13,000, 12,500 to 13,000, 1,500 to 12,500, 2,000 to 12,500, 2,500 to 12,500, 3,000 to 12,500, 3,500 to 12,500, 4,000 to 12,500, 4,500 to 12,500, 5,000 to 12,500, 5,500 to 12,500, 6,000 to 12,500, 6,500 to 12,500, 7,000 to 12,500, 7,500 to 12,500, 8,000 to 12,500, 8,500 to 12,500, 9,000 to 12,500, 9,500 to 12,500, 10,000 to 12,500, 10,500 to 12,500, 11,000 to 12,500, 11,500 to 12,500, 12,000 to 12,500, 1,500 to 12,000, 2,000 to 12,000, 2,500 to 12,000, 3,000 to 12,000, 3,500 to 12 ,000, 4,000 to 12,000, 4,500 to 12,000, 5,000 to 12,000, 5,500 to 12,000, 6,000 to 12,000, 6,500 to 12,000, 7,000 to 12,000, 7,500 to 12,000, 8,000 to 12,000, 8,500 to 12,000, 9,000 to 12,000, 9,500 to 12,000, 10,000 to 12,000, 10,500 to 12,000, 11,000 to 12,000, 11,500 to 12,000, 1,500 to 11,500, 2,000 to 11,500, 2,500 to 11,500, 3,000 to 11,500, 3,500 to 11,500, 4,000 to 11,500, 4,500 to 11,500, 5,000 to 11,500, 5,500 to 11,500 , 6,000 to 11,500, 6,500 to 11,500, 7,000 to 11,500, 7,500 to 11,500, 8,000 to 11,500, 8,500 to 11,500, 9,000 to 11,500, 9,500 to 11,500, 10,000 to 11,500, 10,500 to 11,500, 11,000 to 11,500, 1,500 to 11,000, 2,0 00 to 11,000, 2,500 to 11,000, 3,000 to 11,000, 3,500 to 11,000, 4,000 to 11,000, 4,500 to 11,000, 5,000 to 11,000, 5,500 to 11,000, 6,000 to 11,000, 6,500 to 11,000, 7,000 to 11,000, 7,500 to 11,000, 8,000 to 11,000 , 8,500 to 11,000, 9,000 to 11,000, 9,500 to 11,000, 10,000 to 11,000, 10,500 to 11,000, 1,500 to 10,500, 2,000 to 10,500, 2,500 to 10,500, 3,000 to 10,500, 3,500 to 10,500, 4,000 to 10,500, 4,500 to 10,500, 5,00 0 to 10,500, 5,500 to 10,500, 6,000 to 10,500, 6,500 to 10,500, 7,000 to 10,500, 7,500 to 10,500, 8,000 to 10,500, 8,500 to 10,500, 9,000 to 10,500, 9,500 to 10,500, 10,000 to 10,500, 1,500 to 10,000, 2,000 to 10,00 0, 2,500 to 10,000, 3,000 to 10,000, 3,500 to 10,000, 4,000 to 10,000, 4,500 to 10,000, 5,000 to 10,000, 5,500 to 10,000, 6,000 to 10,000, 6,500 to 10,000, 7,000 to 10,000, 7,500 to 10,000, 8,000 to 10,000, 8,500 to 10,000, 9,000 to 10,000, 9,500 to 10,000, 1,500 to 9,500, 2,000 to 9,500, 2,500 to 9,500, 3,000 to 9,500, 3,500 to 9,500, 4,000 to 9,500, 4,500 to 9,500, 5,000 to 9,500, 5,500 to 9,500, 6,000 to 9,500, 6,500 to 9,5 00, 7,000 to 9,500, 7,500 to 9,500, 8,000 to 9,500, 8,500 to 9,500, 9,000 to 9,500, 1,500 to 9,000, 2,000 to 9,000, 2,500 to 9,000, 3,000 to 9,000, 3,500 to 9,000, 4,000 to 9,000, 4,500 to 9,000, 5,0 00 to 9,000, 5,500 to 9,000, 6,000 to 9,000, 6,500 to 9,000, 7,000 to 9,000, 7,500 to 9,000, 8,000 to 9,000, 8,500 to 9,000, 1,500 to 8,500, 2,000 to 8,500, 2,500 to 8,500, 3,000 to 8,500, 3,500 to 8,5 00, 4,000 to 8,500, 4,500 to 8,500, 5,000 to 8,500, 5,500 to 8,500, 6,000 to 8,500, 6,500 to 8,500, 7,000 to 8,500, 7,500 to 8,500, 8,000 to 8,500, 1,500 to 8,000, 2,000 to 8,000, 2,500 to 8,000, 3,0 00 to 8,000, 3,500 to 8,000, 4,000 to 8,000, 4,500 to 8,000, 5,000 to 8,000, 5,500 to 8,000, 6,000 to 8,000, 6,500 to 8,000, 7,000 to 8,000, 7,500 to 8,000, 1,500 to 7,500, 2,000 to 7,500, 2,500 to 7,5 00, 3,000 to 7,500, 3,500 to 7,500, 4,000 to 7,500, 4,500 to 7,500, 5,000 to 7,500, 5,500 to 7,500, 6,000 to 7,500, 6,500 to 7,500, 7,000 to 7,500, 1,500 to 7,000, 2,000 to 7,000, 2,500 to 7,000, 3,0 00 to 7,000, 3,500 to 7,000, 4,000 to 7,000, 4,500 to 7,000, 5,000 to 7,000, 5,500 to 7,000, 6,000 to 7,000, 6,500 to 7,000, 1,500 to 6,500, 2,000 to 6,500, 2,500 to 6,500, 3,000 to 6,500, 3,500 to 6,5 00, 4,000 to 6,500, 4,500 to 6,500, 5,000 to 6,500, 5,500 to 6,500, 6,000 to 6,500, 1,500 to 6,000, 2,000 to 6,000, 2,500 to 6,000, 3,000 to 6,000, 3,500 to 6,000, 4,000 to 6,000, 4,500 to 6,000, 5,0 00 to 6,000, 5,500 to 6,000, 1,500 to 5,500, 2,000 to 5,500, 2,500 to 5,500, 3,000 to 5,500, 3,500 to 5,000, 4,000 to 5,500, 4,500 to 5,500, 5,000 to 5,500, 1,500 to 5,000, 2,000 to 5,000, 2,500 to 5,0 00, 3,000 to 5,000, 3,500 to 5,000, 4,000 to 5,000, 4,500 to 5,000, 1,500 to 4,500, 2,000 to 4,500, 2,500 to 4,500, 3,000 to 4,500, 3,500 to 4,500, 4,000 to 4,500, 1,500 to 4,000, 2,000 to 4,000, 2,5 00 to 4,000, 3,000 to 4,000, 3,500 to 4,000, 1,500 to 3,500, 2,000 to 3,500, 2,500 to 3,500, 3,000 to 3,500, 1,500 to 3,000, 2,000 to 3,000, 2,500 to 3,000, 1,500 to 2,500, 2,000 to 2,500, and 1,500 to 2, 000 daltons.

在一些實施態樣中,聚合物(例如PEG)係與至少一種脂質共軛。在一些實施態樣中,與聚合物共軛之脂質係由至少一種中性脂質、至少一種磷脂、至少一種陰離子脂質、至少一種陽離子脂質、至少一種膽固醇、至少一種膽固醇衍生物或其任何組合所組成。In some embodiments, a polymer (eg, PEG) is conjugated to at least one lipid. In some embodiments, the lipid conjugated to the polymer is composed of at least one neutral lipid, at least one phospholipid, at least one anionic lipid, at least one cationic lipid, at least one cholesterol, at least one cholesterol derivative, or any combination thereof. composition.

在一些實施態樣中,與聚合物共軛之脂質可選自但不限於先前列出之陽離子、非陽離子或固醇脂質中至少一者。In some embodiments, the lipid conjugated to the polymer may be selected from, but not limited to, at least one of the previously listed cationic, noncationic, or sterol lipids.

在一些實施態樣中,至少一種PEG-脂質共軛體可選自但不限於下列中至少一者:Siglec-1L-PEG-DSPE、胺甲酸(R)-2,3-雙(十八烷氧基)丙基-1-(甲氧基聚(乙二醇)2000)丙酯、PEG-S-DSG、PEG-S-DMG、PEG-PE、PEG-PAA、PEG-OH DSPE C18、PEG-DSPE、PEG-DSG、PEG-DPG、PEG-DOMG、PEG-DMPE Na、PEG-DMPE、PEG-DMG2000、PEG-DMG C14、PEG-DMG 2000、PEG-DMG、PEG-DMA、PEG-腦醯胺C16、PEG-C-DOMG、PEG-c-DMOG、PEG-c-DMA、PEG-cDMA、PEGA、PEG750-C-DMA、PEG400、PEG2k-DMG、PEG2k-C11、PEG2000-PE、PEG2000P、PEG2000-DSPE、PEG2000-DOMG、PEG2000-DMG、PEG2000-C-DMA、PEG2000、PEG200、PEG(2k)-DMG、PEG DSPE C18、PEG DMPE C14、PEG DLPE C12、PEG鏈接(Click) DMG C14、PEG鏈接C12、PEG鏈接C10、N(羰基-甲氧基聚乙二醇-2000)-l,2-二硬脂醯基-sn-甘油3-磷酸乙醇胺、Myrj52、mPEG-PLA、MPEG-DSPE、mPEG3000-DMPE、MPEG-2000-DSPE、MPEG2000-DSPE、mPEG2000-DPPE、mPEG2000-DMPE、mPEG2000-DMG、mDPPE-PEG2000、l,2-二硬脂醯基-sn-甘油-3-磷酸乙醇胺-PEG2000、HPEG-2K-LIPD、葉酸PEG-DSPE、DSPE-PEGMA 500、DSPE-PEGMA、DSPE-PEG6000、DSPE-PEG5000、DSPE-PEG2K-NAG、DSPE-PEG2k、DSPE-PEG2000順丁烯二醯亞胺、DSPE-PEG2000、DSPE-PEG、DSG-PEGMA、DSG-PEG5000、DPPE-PEG-2K、DPPE-PEG、DPPE-mPEG2000、DPPE-mPEG、DPG-PEGMA、DOPE-PEG2000、DMPE-PEGMA、DMPE-PEG2000、DMPE-Peg、DMPE-mPEG2000、DMG-PEGMA、DMG-PEG2000、DMG-PEG、二硬脂醯基-甘油-聚乙二醇、Cl8PEG750、CI8PEG5000、CI8PEG3000、CI8PEG2000、CI6PEG2000、CI4PEG2000、C18-PEG5000、C18PEG、C16PEG、C16 mPEG (聚乙二醇) 2000腦醯胺、C14-PEG-DSPE200、C14-PEG2000、C14PEG2000、C14-PEG 2000、C14-PEG、C14PEG、14:0-PEG2KPE、1,2-二硬脂醯基-sn-甘油-3-磷酸乙醇胺-PEG2000、胺甲酸(R)-2,3-雙(十八烷氧基)丙基-1-(甲氧基聚(乙二醇)2000)丙酯、(PEG)-C-DOMG、PEG-C-DMA、及DSPE-PEG-X。In some embodiments, at least one PEG-lipid conjugate can be selected from, but is not limited to, at least one of the following: Siglec-IL-PEG-DSPE, carbamic acid (R)-2,3-bis(octadecane) Oxy)propyl-1-(methoxypoly(ethylene glycol) 2000)propyl ester, PEG-S-DSG, PEG-S-DMG, PEG-PE, PEG-PAA, PEG-OH DSPE C18, PEG -DSPE, PEG-DSG, PEG-DPG, PEG-DOMG, PEG-DMPE Na, PEG-DMPE, PEG-DMG2000, PEG-DMG C14, PEG-DMG 2000, PEG-DMG, PEG-DMA, PEG-Brain Amine C16, PEG-C-DOMG, PEG-c-DMOG, PEG-c-DMA, PEG-cDMA, PEGA, PEG750-C-DMA, PEG400, PEG2k-DMG, PEG2k-C11, PEG2000-PE, PEG2000P, PEG2000 -DSPE, PEG2000-DOMG, PEG2000-DMG, PEG2000-C-DMA, PEG2000, PEG200, PEG(2k)-DMG, PEG DSPE C18, PEG DMPE C14, PEG DLPE C12, PEG link (Click) DMG C14, PEG link C12, PEG link C10, N(carbonyl-methoxypolyethylene glycol-2000)-l,2-distearyl-sn-glyceryl 3-phosphoethanolamine, Myrj52, mPEG-PLA, MPEG-DSPE, mPEG3000 -DMPE, MPEG-2000-DSPE, MPEG2000-DSPE, mPEG2000-DPPE, mPEG2000-DMPE, mPEG2000-DMG, mDPPE-PEG2000, l,2-distearyl-sn-glycerol-3-phosphoethanolamine-PEG2000, HPEG-2K-LIPD, Folic Acid PEG-DSPE, DSPE-PEGMA 500, DSPE-PEGMA, DSPE-PEG6000, DSPE-PEG5000, DSPE-PEG2K-NAG, DSPE-PEG2k, DSPE-PEG2000 Maleimide, DSPE -PEG2000, DSPE-PEG, DSG-PEGMA, DSG-PEG5000, DPPE-PEG-2K, DPPE-PEG, DPPE-mPEG2000, DPPE-mPEG, DPG-PEGMA, DOPE-PEG2000, DMPE-PEGMA, DMPE-PEG2000, DMPE -Peg, DMPE-mPEG2000, DMG-PEGMA, DMG-PEG2000, DMG-PEG, distearyl-glycerol-polyethylene glycol, Cl8PEG750, CI8PEG5000, CI8PEG3000, CI8PEG2000, CI6PEG2000, CI4PEG2000, C18-PEG5000, C18PEG, C16PEG, C16 mPEG (polyethylene glycol) 2000 cerebroamide, C14-PEG-DSPE200, C14-PEG2000, C14PEG2000, C14-PEG 2000, C14-PEG, C14PEG, 14:0-PEG2KPE, 1,2-dihard Fatty acyl-sn-glycerol-3-phosphoethanolamine-PEG2000, carbamic acid (R)-2,3-bis(octadecyloxy)propyl-1-(methoxy poly(ethylene glycol) 2000) Propyl ester, (PEG)-C-DOMG, PEG-C-DMA, and DSPE-PEG-X.

LNP組分的量及比例可取決於所欲形式、結構、功能、物品(cargo)、目標或其任何組合的任何量而改變。各組分的量可在各種實施態樣中由所指出之組分所佔所有脂質或經脂質共軛之組分的總莫耳質量之百分比表示(莫耳%)。各組分的量可在各種實施態樣中以基於莫耳質量的各組分之相對比例表示(莫耳比)。各組分的量可在各種實施態樣中以製造前用於調配LNP之各組分的重量表示(mg或當量)。各組分的量可在各種實施態樣中以此項技術中已知的任何其他方法表示。以組分量(「單位」)的一種表述給出之任何調配物明確地意味著涵蓋以不同單位的組分量表示之任何調配物,其中當轉換成相同的單位時,該等表述為有效的等效值。在一些實施態樣中,「有效的等效值」意指彼此在約10%之內的二或更多個值。The amounts and proportions of the LNP components may vary depending on any amount of the desired form, structure, function, cargo, target, or any combination thereof. The amount of each component may be expressed in various embodiments as a percentage (mol%) of the total molar mass of all lipids or lipid-conjugated components occupied by the indicated component. The amount of each component may be expressed in various embodiments as the relative proportion of each component based on molar mass (molar ratio). The amount of each component may be expressed in various embodiments as the weight (mg or equivalent) of each component used to formulate the LNP before manufacturing. The amounts of each component may be expressed in various embodiments by any other method known in the art. Any formulation given in one expression of the amount of an ingredient ("unit") is expressly meant to cover any formulation in which the amount of an ingredient is expressed in different units, where such expressions are valid when converted to the same units etc. Effectiveness value. In some implementations, "effectively equivalent values" means two or more values that are within about 10% of each other.

在一些實施態樣中,LNP包含至少一種陽離子脂質,其量為約0.1至100莫耳%。在一些實施態樣中,LNP包含至少一種陽離子脂質,其量為約20至60莫耳%。在一些實施態樣中,LNP包含至少一種陽離子脂質,其量為約50至85莫耳%。在一些實施態樣中,LNP包含至少一種陽離子脂質,其量為少於約20莫耳%。在一些實施態樣中,LNP包含至少一種陽離子脂質,其量為大於約60莫耳%或約85莫耳%。在一些實施態樣中,LNP包含至少一種陽離子脂質,其量為約95莫耳%或更少。在一些實施態樣中,LNP包含陽離子脂質,其量為少於或等於約95、90、85、80、75、70、65、60、55、50、45、40、35、30、25、20、15、10、及5莫耳%。在一些實施態樣中,LNP包含至少一種陽離子脂質,其量為大於或等於約5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、及95莫耳%。在一些實施態樣中,LNP包含至少一種陽離子脂質,其量為約20至30莫耳%、20至35莫耳%、20至40莫耳%、20至45莫耳%、20至50莫耳%、20至55莫耳%、20至60莫耳%、20至65莫耳%、20至70莫耳%、20至75莫耳%、20至80莫耳%、20至85莫耳%、20至90莫耳%、25至35莫耳%、25至40莫耳%、25至45莫耳%、25至50莫耳%、25至55莫耳%、25至60莫耳%、25至65莫耳%、25至70莫耳%、25至75莫耳%、25至80莫耳%、25至85莫耳%、25至90莫耳%、30至40莫耳%、30至45莫耳%、30至50莫耳%、30至55莫耳%、30至60莫耳%、30至65莫耳%、30至70莫耳%、30至75莫耳%、30至80莫耳%、30至85莫耳%、30至90莫耳%、35至40莫耳%、35至45莫耳%、35至50莫耳%、35至55莫耳%、35至60莫耳%、35至65莫耳%、35至70莫耳%、35至75莫耳%、35至80莫耳%、35至85莫耳%、35至90莫耳%、40至45莫耳%、40至50莫耳%、40至55莫耳%、40至60莫耳%、40至65莫耳%、40至70莫耳%、40至75莫耳%、40至80莫耳%、40至85莫耳%、40至90莫耳%、45至55莫耳%、45至60莫耳%、45至65莫耳%、45至70莫耳%、45至75莫耳%、45至80莫耳%、45至85莫耳%、45至90莫耳%、50至60莫耳%、50至65莫耳%、50至70莫耳%、50至75莫耳%、50至80莫耳%、50至85莫耳%、50至90莫耳%、55至65莫耳%、55至70莫耳%、55至75莫耳%、55至80莫耳%、55至85莫耳%、55至90莫耳%、60至70莫耳%、60至75莫耳%、60至80莫耳%、60至85莫耳%、60至90莫耳%、65至75莫耳%、65至80莫耳%、65至85莫耳%、65至90莫耳%、70至80莫耳%、70至85莫耳%、70至90莫耳%、75至85莫耳%、75至90莫耳%、80至90莫耳%、或85至95莫耳%。In some embodiments, the LNP includes at least one cationic lipid in an amount from about 0.1 to 100 mole %. In some embodiments, the LNP includes at least one cationic lipid in an amount of about 20 to 60 mole %. In some embodiments, the LNP includes at least one cationic lipid in an amount of about 50 to 85 mol%. In some embodiments, the LNPs comprise at least one cationic lipid in an amount of less than about 20 mole %. In some embodiments, the LNPs comprise at least one cationic lipid in an amount greater than about 60 molar % or about 85 molar %. In some embodiments, the LNPs comprise at least one cationic lipid in an amount of about 95 molar % or less. In some embodiments, the LNPs comprise cationic lipids in an amount less than or equal to about 95, 90, 85, 80, 75, 70, 65, 60, 55, 50, 45, 40, 35, 30, 25, 20, 15, 10, and 5 mol%. In some embodiments, the LNP includes at least one cationic lipid in an amount greater than or equal to about 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75 , 80, 85, 90, and 95 mol%. In some embodiments, the LNP includes at least one cationic lipid in an amount of about 20 to 30 mol%, 20 to 35 mol%, 20 to 40 mol%, 20 to 45 mol%, 20 to 50 mol% %, 20 to 55 mol%, 20 to 60 mol%, 20 to 65 mol%, 20 to 70 mol%, 20 to 75 mol%, 20 to 80 mol%, 20 to 85 mol% %, 20 to 90 mol%, 25 to 35 mol%, 25 to 40 mol%, 25 to 45 mol%, 25 to 50 mol%, 25 to 55 mol%, 25 to 60 mol% , 25 to 65 mol%, 25 to 70 mol%, 25 to 75 mol%, 25 to 80 mol%, 25 to 85 mol%, 25 to 90 mol%, 30 to 40 mol%, 30 to 45 mol%, 30 to 50 mol%, 30 to 55 mol%, 30 to 60 mol%, 30 to 65 mol%, 30 to 70 mol%, 30 to 75 mol%, 30 to 80 mol%, 30 to 85 mol%, 30 to 90 mol%, 35 to 40 mol%, 35 to 45 mol%, 35 to 50 mol%, 35 to 55 mol%, 35 to 60 mol%, 35 to 65 mol%, 35 to 70 mol%, 35 to 75 mol%, 35 to 80 mol%, 35 to 85 mol%, 35 to 90 mol%, 40 to 45 Mol%, 40 to 50 Mol%, 40 to 55 Mol%, 40 to 60 Mol%, 40 to 65 Mol%, 40 to 70 Mol%, 40 to 75 Mol%, 40 to 80 Mol% Ear%, 40 to 85 mol%, 40 to 90 mol%, 45 to 55 mol%, 45 to 60 mol%, 45 to 65 mol%, 45 to 70 mol%, 45 to 75 mol% %, 45 to 80 mol%, 45 to 85 mol%, 45 to 90 mol%, 50 to 60 mol%, 50 to 65 mol%, 50 to 70 mol%, 50 to 75 mol% , 50 to 80 mol%, 50 to 85 mol%, 50 to 90 mol%, 55 to 65 mol%, 55 to 70 mol%, 55 to 75 mol%, 55 to 80 mol%, 55 to 85 mol%, 55 to 90 mol%, 60 to 70 mol%, 60 to 75 mol%, 60 to 80 mol%, 60 to 85 mol%, 60 to 90 mol%, 65 to 75 mol%, 65 to 80 mol%, 65 to 85 mol%, 65 to 90 mol%, 70 to 80 mol%, 70 to 85 mol%, 70 to 90 mol%, 75 to 85 mol%, 75 to 90 mol%, 80 to 90 mol%, or 85 to 95 mol%.

在一些實施態樣中,LNP包含至少一種非陽離子脂質,其量為約0.1至100莫耳%。在一些實施態樣中,LNP包含至少一種非陽離子脂質,其量為約5至35莫耳%。在一些實施態樣中,LNP包含至少一種陽離子脂質,其量為約5至25莫耳%。在一些實施態樣中,LNP包含至少一種非陽離子脂質,其量為少於約5莫耳%。在一些實施態樣中,LNP包含至少一種非陽離子脂質,其量為大於約25莫耳%或約35莫耳%。在一些實施態樣中,LNP包含至少一種非陽離子脂質,其量為約95莫耳%或更少。在一些實施態樣中,LNP包含至少一種非陽離子脂質,其量為少於或等於約95、90、85、80、75、70、65、60、55、50、45、40、35、30、25、20、15、10、及5莫耳%。在一些實施態樣中,LNP包含至少一種非陽離子脂質,其量為大於或等於約5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、及95莫耳%。在一些實施態樣中,LNP包含至少一種非陽離子脂質,其量為約5至15莫耳%、5至25莫耳%、5至35莫耳%、5至45莫耳%、5至55莫耳%、10至20莫耳%、10至30莫耳%、10至40莫耳%、10至50莫耳%、15至25莫耳%、15至35莫耳%、15至45莫耳%、20至30莫耳%、20至40莫耳%、20至50莫耳%、25至35莫耳%、25至45莫耳%、30至40莫耳%、30至50莫耳%、及35至45莫耳%。In some embodiments, the LNP includes at least one non-cationic lipid in an amount from about 0.1 to 100 mole %. In some embodiments, the LNP includes at least one non-cationic lipid in an amount of about 5 to 35 mol%. In some embodiments, the LNP includes at least one cationic lipid in an amount of about 5 to 25 mol%. In some embodiments, the LNP includes at least one noncationic lipid in an amount of less than about 5 mole %. In some embodiments, the LNPs comprise at least one noncationic lipid in an amount greater than about 25 molar % or about 35 molar %. In some embodiments, the LNP includes at least one non-cationic lipid in an amount of about 95 molar % or less. In some embodiments, the LNP includes at least one noncationic lipid in an amount less than or equal to about 95, 90, 85, 80, 75, 70, 65, 60, 55, 50, 45, 40, 35, 30 , 25, 20, 15, 10, and 5 mol%. In some embodiments, the LNP includes at least one noncationic lipid in an amount greater than or equal to about 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, and 95 mol%. In some embodiments, the LNP includes at least one noncationic lipid in an amount of about 5 to 15 mol%, 5 to 25 mol%, 5 to 35 mol%, 5 to 45 mol%, 5 to 55 mol% Mol%, 10 to 20 Mol%, 10 to 30 Mol%, 10 to 40 Mol%, 10 to 50 Mol%, 15 to 25 Mol%, 15 to 35 Mol%, 15 to 45 Mol %, 20 to 30 mol%, 20 to 40 mol%, 20 to 50 mol%, 25 to 35 mol%, 25 to 45 mol%, 30 to 40 mol%, 30 to 50 mol% %, and 35 to 45 mol%.

在一些實施態樣中,LNP包含至少一種固醇,其量為約0.1至100莫耳%。在一些實施態樣中,LNP包含至少一種固醇,其量為約20至45莫耳%。在一些實施態樣中,LNP包含至少一種固醇,其量為約25至55莫耳%。在一些實施態樣中,LNP包含至少一種固醇,其量為少於約20莫耳%。在一些實施態樣中,LNP包含至少一種固醇,其量為大於約45莫耳%或約55莫耳%。在一些實施態樣中,LNP包含至少一種固醇,其量為約95莫耳%或更少。在一些實施態樣中,LNP包含至少一種固醇,其量為少於或等於約95、90、85、80、75、70、65、60、55、50、45、40、35、30、25、20、15、10、及5莫耳%。在一些實施態樣中,LNP包含至少一種固醇,其量為大於或等於約5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、及95莫耳%。在一些實施態樣中,LNP包含至少一種固醇,其量為約10至20莫耳%、10至30莫耳%、10至40莫耳%、10至50莫耳%、10至60莫耳%、15至25莫耳%、15至35莫耳%、15至45莫耳%、15至55莫耳%、15至65莫耳%、20至30莫耳%、20至40莫耳%、20至50莫耳%、20至60莫耳%、25至35莫耳%、25至45莫耳%、25至55莫耳%、25至65莫耳%、30至40莫耳%、30至50莫耳%、30至60莫耳%、35至45莫耳%、35至55莫耳%、35至65莫耳%、40至50莫耳%、40至60莫耳%、45至55莫耳%、45至65莫耳%、50至60莫耳%、及55至65莫耳%。In some embodiments, the LNP includes at least one sterol in an amount from about 0.1 to 100 mole %. In some embodiments, the LNP includes at least one sterol in an amount of about 20 to 45 mol%. In some embodiments, the LNP includes at least one sterol in an amount of about 25 to 55 mol%. In some embodiments, the LNP includes at least one sterol in an amount of less than about 20 mole %. In some embodiments, the LNP includes at least one sterol in an amount greater than about 45 mol% or about 55 mol%. In some embodiments, the LNP includes at least one sterol in an amount of about 95 mole percent or less. In some embodiments, the LNP includes at least one sterol in an amount less than or equal to about 95, 90, 85, 80, 75, 70, 65, 60, 55, 50, 45, 40, 35, 30, 25, 20, 15, 10, and 5 mol%. In some embodiments, the LNP includes at least one sterol in an amount greater than or equal to about 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75 , 80, 85, 90, and 95 mol%. In some embodiments, the LNP includes at least one sterol in an amount of about 10 to 20 mol%, 10 to 30 mol%, 10 to 40 mol%, 10 to 50 mol%, 10 to 60 mol% 15 to 25 mol%, 15 to 35 mol%, 15 to 45 mol%, 15 to 55 mol%, 15 to 65 mol%, 20 to 30 mol%, 20 to 40 mol% %, 20 to 50 mol%, 20 to 60 mol%, 25 to 35 mol%, 25 to 45 mol%, 25 to 55 mol%, 25 to 65 mol%, 30 to 40 mol% , 30 to 50 mol%, 30 to 60 mol%, 35 to 45 mol%, 35 to 55 mol%, 35 to 65 mol%, 40 to 50 mol%, 40 to 60 mol%, 45 to 55 mol%, 45 to 65 mol%, 50 to 60 mol%, and 55 to 65 mol%.

在一些實施態樣中,LNP包含至少一種額外的LNP功能性組分,其量為約0.1至100莫耳%。在一些實施態樣中,LNP包含至少一種額外的LNP功能性組分,其量為約0.5至15莫耳%。在一些實施態樣中,LNP包含至少一種額外的LNP功能性組分,其量為約15至40莫耳%。在一些實施態樣中,LNP包含至少一種額外的LNP功能性組分,其量為少於約0.1莫耳%。在一些實施態樣中,LNP包含至少一種額外的LNP功能性組分,其量為大於約15莫耳%或約40莫耳%。在一些實施態樣中,LNP包含至少一種額外的LNP功能性組分,其量為約95莫耳%或更少。在一些實施態樣中,LNP包含至少一種額外的LNP功能性組分,其量為少於或等於約95、90、85、80、75、70、65、60、55、50、45、40、35、30、25、20、15、10、及5莫耳%。在一些實施態樣中,LNP包含至少一種額外的LNP功能性組分,其量為大於或等於約5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、及95莫耳%。In some embodiments, the LNP includes at least one additional LNP functional component in an amount from about 0.1 to 100 mole %. In some embodiments, the LNP includes at least one additional LNP functional component in an amount of about 0.5 to 15 mole %. In some embodiments, the LNP includes at least one additional LNP functional component in an amount of about 15 to 40 mole %. In some embodiments, the LNP includes at least one additional LNP functional component in an amount of less than about 0.1 mole %. In some embodiments, the LNP includes at least one additional LNP functional component in an amount greater than about 15 mole % or about 40 mole %. In some embodiments, the LNP includes at least one additional LNP functional component in an amount of about 95 mole % or less. In some embodiments, the LNP includes at least one additional LNP functional component in an amount less than or equal to about 95, 90, 85, 80, 75, 70, 65, 60, 55, 50, 45, 40 , 35, 30, 25, 20, 15, 10, and 5 mol%. In some embodiments, the LNP includes at least one additional LNP functional component in an amount greater than or equal to about 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, and 95 mol%.

在一些實施態樣中,LNP包含至少一種額外的LNP功能性組分,其量為約0.1至1莫耳%、0.1至2莫耳%、0.1至3莫耳%、0.1至4莫耳%、0.1至5莫耳%、0.1至6莫耳%、0.1至7莫耳%、0.1至8莫耳%、0.1至9莫耳%、0.1至10莫耳%、0.1至15莫耳%、0.1至20莫耳%、0.1至25莫耳%、1至2莫耳%、1至3莫耳%、1至4莫耳%、1至5莫耳%、1至6莫耳%、1至7莫耳%、1至8莫耳%、1至9莫耳%、1至10莫耳%、1至15莫耳%、1至20莫耳%、1至25莫耳%、2至3莫耳%、2至4莫耳%、2至5莫耳%、2至6莫耳%、2至7莫耳%、2至8莫耳%、2至9莫耳%、2至10莫耳%、2至15莫耳%、2至25莫耳%、3至4莫耳%、3至5莫耳%、3至6莫耳%、3至7莫耳%、3至8莫耳%、3至9莫耳%、3至10莫耳%、3至15莫耳%、3至20莫耳%、3至25莫耳%、4至5莫耳%、4至6莫耳%、4至7莫耳%、4至8莫耳%、4至9莫耳%、4至10莫耳%、4至15莫耳%、4至20莫耳%、4至25莫耳%、5至10莫耳%、5至15莫耳%、5至20莫耳%、5至25莫耳%、10至15莫耳%、10至20莫耳%、10至25莫耳%、15至20莫耳%、15至25莫耳%、及20至25莫耳%。In some embodiments, the LNP includes at least one additional LNP functional component in an amount of about 0.1 to 1 mol%, 0.1 to 2 mol%, 0.1 to 3 mol%, 0.1 to 4 mol% , 0.1 to 5 mol%, 0.1 to 6 mol%, 0.1 to 7 mol%, 0.1 to 8 mol%, 0.1 to 9 mol%, 0.1 to 10 mol%, 0.1 to 15 mol%, 0.1 to 20 mol%, 0.1 to 25 mol%, 1 to 2 mol%, 1 to 3 mol%, 1 to 4 mol%, 1 to 5 mol%, 1 to 6 mol%, 1 to 7 mol%, 1 to 8 mol%, 1 to 9 mol%, 1 to 10 mol%, 1 to 15 mol%, 1 to 20 mol%, 1 to 25 mol%, 2 to 3 mol%, 2 to 4 mol%, 2 to 5 mol%, 2 to 6 mol%, 2 to 7 mol%, 2 to 8 mol%, 2 to 9 mol%, 2 to 10 Mol%, 2 to 15 Mol%, 2 to 25 Mol%, 3 to 4 Mol%, 3 to 5 Mol%, 3 to 6 Mol%, 3 to 7 Mol%, 3 to 8 Mol% Ear%, 3 to 9 mol%, 3 to 10 mol%, 3 to 15 mol%, 3 to 20 mol%, 3 to 25 mol%, 4 to 5 mol%, 4 to 6 mol% %, 4 to 7 mol%, 4 to 8 mol%, 4 to 9 mol%, 4 to 10 mol%, 4 to 15 mol%, 4 to 20 mol%, 4 to 25 mol% , 5 to 10 mol%, 5 to 15 mol%, 5 to 20 mol%, 5 to 25 mol%, 10 to 15 mol%, 10 to 20 mol%, 10 to 25 mol%, 15 to 20 mol%, 15 to 25 mol%, and 20 to 25 mol%.

在一些實施態樣中,LNP係由約30至60莫耳%之至少一種陽離子脂質;約0至30莫耳%之至少一種非陽離子脂質(例如磷脂);約18.5至48.5莫耳%之至少一種固醇(例如膽固醇);及約0至10莫耳%之至少一種額外的LNP功能性組分(例如聚乙二醇化脂質)所組成。In some embodiments, the LNP is composed of about 30 to 60 mol% of at least one cationic lipid; about 0 to 30 mol% of at least one noncationic lipid (eg, phospholipid); about 18.5 to 48.5 mol% of at least one Consisting of a sterol (eg, cholesterol); and about 0 to 10 mole % of at least one additional LNP functional component (eg, PEGylated lipid).

在一些實施態樣中,LNP係由約35至55莫耳%之至少一種陽離子脂質;約5至25莫耳%之至少一種非陽離子脂質(例如磷脂);約30至40莫耳%之至少一種固醇(例如膽固醇);及約0至10莫耳%之至少一種額外的LNP功能性組分(例如聚乙二醇化脂質)所組成。In some embodiments, the LNP is composed of about 35 to 55 mol% of at least one cationic lipid; about 5 to 25 mol% of at least one noncationic lipid (eg, phospholipid); about 30 to 40 mol% of at least Consisting of a sterol (eg, cholesterol); and about 0 to 10 mole % of at least one additional LNP functional component (eg, PEGylated lipid).

在一些實施態樣中,LNP係由約35至45莫耳%之至少一種陽離子脂質;約25至35莫耳%之至少一種非陽離子脂質(例如磷脂);約20至30莫耳%之至少一種固醇(例如膽固醇);及約0至10莫耳%之至少一種額外的LNP功能性組分(例如聚乙二醇化脂質)所組成。In some embodiments, the LNP is composed of about 35 to 45 mol% of at least one cationic lipid; about 25 to 35 mol% of at least one noncationic lipid (eg, phospholipid); about 20 to 30 mol% of at least one Consisting of a sterol (eg, cholesterol); and about 0 to 10 mole % of at least one additional LNP functional component (eg, PEGylated lipid).

在一些實施態樣中,LNP係由約45至65莫耳%之至少一種陽離子脂質;約5至10莫耳%之至少一種非陽離子脂質(例如磷脂);約25至40莫耳%之至少一種固醇(例如膽固醇);及約0.5至10莫耳%之至少一種額外的LNP功能性組分(例如聚乙二醇化脂質)所組成。In some embodiments, the LNP is composed of about 45 to 65 mol% of at least one cationic lipid; about 5 to 10 mol% of at least one noncationic lipid (eg, phospholipid); about 25 to 40 mol% of at least A sterol (such as cholesterol); and about 0.5 to 10 mol % of at least one additional LNP functional component (such as a pegylated lipid).

在一些實施態樣中,LNP係由約40至60莫耳%之至少一種陽離子脂質;約5至15莫耳%之至少一種非陽離子脂質(例如磷脂);約35至45莫耳%之至少一種固醇(例如膽固醇);及約0.5至3莫耳%之至少一種額外的LNP功能性組分(例如聚乙二醇化脂質)所組成。In some embodiments, the LNP is composed of about 40 to 60 mol% of at least one cationic lipid; about 5 to 15 mol% of at least one noncationic lipid (eg, phospholipid); about 35 to 45 mol% of at least A sterol (such as cholesterol); and about 0.5 to 3 mol % of at least one additional LNP functional component (such as a pegylated lipid).

在一些實施態樣中,LNP係由約30至60莫耳%之至少一種陽離子脂質;約0至30莫耳%之至少一種非陽離子脂質(例如磷脂);約15至50莫耳%之至少一種固醇(例如膽固醇);及約0.01至10莫耳%之至少一種額外的LNP功能性組分(例如聚乙二醇化脂質)所組成。In some embodiments, the LNP is composed of about 30 to 60 mol% of at least one cationic lipid; about 0 to 30 mol% of at least one noncationic lipid (eg, phospholipid); about 15 to 50 mol% of at least A sterol (such as cholesterol); and about 0.01 to 10 mol % of at least one additional LNP functional component (such as a pegylated lipid).

在一些實施態樣中,LNP係由約10至75莫耳%之至少一種陽離子脂質;約0.5至50莫耳%之至少一種非陽離子脂質(例如磷脂);約5至60莫耳%之至少一種固醇(例如膽固醇);及約0.1至20莫耳%之至少一種額外的LNP功能性組分(例如聚乙二醇化脂質)所組成。In some embodiments, the LNP is composed of about 10 to 75 mol% of at least one cationic lipid; about 0.5 to 50 mol% of at least one noncationic lipid (eg, phospholipid); about 5 to 60 mol% of at least one A sterol (such as cholesterol); and about 0.1 to 20 mol % of at least one additional LNP functional component (such as a pegylated lipid).

在一些實施態樣中,LNP係由約50至65莫耳%之至少一種陽離子脂質;約3至15莫耳%之至少一種非陽離子脂質(例如磷脂);約30至40莫耳%之至少一種固醇(例如膽固醇);及約0.5至2莫耳%之至少一種額外的LNP功能性組分(例如聚乙二醇化脂質)所組成。In some embodiments, the LNP is composed of about 50 to 65 mol% of at least one cationic lipid; about 3 to 15 mol% of at least one noncationic lipid (eg, phospholipid); about 30 to 40 mol% of at least A sterol (such as cholesterol); and about 0.5 to 2 mol % of at least one additional LNP functional component (such as a pegylated lipid).

在一些實施態樣中,LNP係由約50至85莫耳%之至少一種陽離子脂質;約3至15莫耳%之至少一種非陽離子脂質(例如磷脂);約30至40莫耳%之至少一種固醇(例如膽固醇);及約0.5至2莫耳%之至少一種額外的LNP功能性組分(例如聚乙二醇化脂質)所組成。In some embodiments, the LNP is composed of about 50 to 85 mol% of at least one cationic lipid; about 3 to 15 mol% of at least one noncationic lipid (eg, phospholipid); about 30 to 40 mol% of at least A sterol (such as cholesterol); and about 0.5 to 2 mol % of at least one additional LNP functional component (such as a pegylated lipid).

在一些實施態樣中,LNP係由約25至75莫耳%之至少一種陽離子脂質;約0.1至15莫耳%之至少一種非陽離子脂質(例如磷脂);約5至50莫耳%之至少一種固醇(例如膽固醇);及約0.5至20莫耳%之至少一種額外的LNP功能性組分(例如聚乙二醇化脂質)所組成。In some embodiments, the LNP is composed of about 25 to 75 mol% of at least one cationic lipid; about 0.1 to 15 mol% of at least one noncationic lipid (eg, phospholipid); about 5 to 50 mol% of at least A sterol (such as cholesterol); and about 0.5 to 20 mol % of at least one additional LNP functional component (such as a pegylated lipid).

在一些實施態樣中,LNP係由約50至65莫耳%之至少一種陽離子脂質;約5至10莫耳%之至少一種非陽離子脂質(例如磷脂);約25至35莫耳%之至少一種固醇(例如膽固醇);及約5至10莫耳%之至少一種額外的LNP功能性組分(例如聚乙二醇化脂質)所組成。In some embodiments, the LNP is composed of about 50 to 65 mol% of at least one cationic lipid; about 5 to 10 mol% of at least one noncationic lipid (eg, phospholipid); about 25 to 35 mol% of at least A sterol (such as cholesterol); and about 5 to 10 mole % of at least one additional LNP functional component (such as a pegylated lipid).

在一些實施態樣中,LNP係由約20至60莫耳%之至少一種陽離子脂質;約5至25莫耳%之至少一種非陽離子脂質(例如磷脂);約25至55莫耳%之至少一種固醇(例如膽固醇);及約0.5至15莫耳%之至少一種額外的LNP功能性組分(例如聚乙二醇化脂質)所組成。In some embodiments, the LNP is composed of about 20 to 60 mol% of at least one cationic lipid; about 5 to 25 mol% of at least one noncationic lipid (eg, phospholipid); about 25 to 55 mol% of at least one A sterol (such as cholesterol); and about 0.5 to 15 mol % of at least one additional LNP functional component (such as a pegylated lipid).

在一些實施態樣中,本文所述之核酸疫苗係在包含如本文所述之陽離子脂質、磷脂、固醇及聚乙二醇化脂質之脂質奈米粒子中調配。在調配物中的LNP可包含約20至70% (莫耳)之陽離子脂質,例如約30至60%、或約30至50%、或50%。在調配物中的LNP可包含約5至20% (莫耳)之磷脂,例如 5至10%、5至15%、10至15%、或約10%之磷脂。在調配物中的LNP可包含約20至45% (莫耳)之固醇,例如20至40%、30至40%、或約38%之固醇。LNP可包含約0.5至5.0%之聚乙二醇化脂質,例如約0.5至2.0%、1.0至3.0%、1.5至2.0%、或約2.0%之聚乙二醇化脂質。In some embodiments, the nucleic acid vaccines described herein are formulated in lipid nanoparticles including cationic lipids, phospholipids, sterols, and pegylated lipids as described herein. The LNPs in the formulation may comprise about 20 to 70 molar % cationic lipids, such as about 30 to 60%, or about 30 to 50%, or 50%. The LNP in the formulation may comprise about 5 to 20% (molar) phospholipids, such as 5 to 10%, 5 to 15%, 10 to 15%, or about 10% phospholipids. The LNP in the formulation may comprise about 20 to 45% (mol) sterols, such as 20 to 40%, 30 to 40%, or about 38% sterols. The LNP may include about 0.5 to 5.0% pegylated lipid, such as about 0.5 to 2.0%, 1.0 to 3.0%, 1.5 to 2.0%, or about 2.0% pegylated lipid.

作為非限制性實例,本文所述之核酸疫苗係在包含3D-P-DMA、磷脂、固醇及聚乙二醇化脂質之脂質奈米粒子中調配。As a non-limiting example, the nucleic acid vaccines described herein are formulated in lipid nanoparticles including 3D-P-DMA, phospholipids, sterols, and pegylated lipids.

作為另一非限制性實例,本文所述之核酸疫苗係在包含陽離子脂質、DSPC、固醇及聚乙二醇化脂質之脂質奈米粒子中調配。As another non-limiting example, the nucleic acid vaccines described herein are formulated in lipid nanoparticles including cationic lipids, DSPC, sterols, and pegylated lipids.

作為另一非限制性實例,本文所述之核酸疫苗係在包含陽離子脂質、磷脂、固醇及PEG-DMA之脂質奈米粒子中調配。As another non-limiting example, the nucleic acid vaccines described herein are formulated in lipid nanoparticles including cationic lipids, phospholipids, sterols, and PEG-DMA.

作為另一非限制性實例,本文所述之核酸疫苗係在包含陽離子脂質、磷脂、膽固醇及聚乙二醇化脂質之脂質奈米粒子中調配。As another non-limiting example, the nucleic acid vaccines described herein are formulated in lipid nanoparticles including cationic lipids, phospholipids, cholesterol, and pegylated lipids.

作為另一非限制性實例,本文所述之核酸疫苗係在包含3D-P-DMA、DSPC、固醇及聚乙二醇化脂質之脂質奈米粒子中調配。As another non-limiting example, the nucleic acid vaccines described herein are formulated in lipid nanoparticles including 3D-P-DMA, DSPC, sterols, and pegylated lipids.

作為另一非限制性實例,本文所述之核酸疫苗係在包含3D-P-DMA、磷脂、膽固醇及聚乙二醇化脂質之脂質奈米粒子中調配。As another non-limiting example, the nucleic acid vaccines described herein are formulated in lipid nanoparticles including 3D-P-DMA, phospholipids, cholesterol, and pegylated lipids.

作為另一非限制性實例,本文所述之核酸疫苗係在包含3D-P-DMA、磷脂、固醇及PEG-DMA之脂質奈米粒子中調配。As another non-limiting example, the nucleic acid vaccines described herein are formulated in lipid nanoparticles including 3D-P-DMA, phospholipids, sterols, and PEG-DMA.

作為另一非限制性實例,本文所述之核酸疫苗係在包含陽離子脂質、磷脂、膽固醇及PEG-DMA之脂質奈米粒子中調配。As another non-limiting example, the nucleic acid vaccines described herein are formulated in lipid nanoparticles including cationic lipids, phospholipids, cholesterol and PEG-DMA.

作為另一非限制性實例,本文所述之核酸疫苗係在包含陽離子脂質、DSPC、固醇及PEG-DMA之脂質奈米粒子中調配。As another non-limiting example, the nucleic acid vaccines described herein are formulated in lipid nanoparticles including cationic lipids, DSPC, sterols, and PEG-DMA.

作為另一非限制性實例,本文所述之核酸疫苗係在包含陽離子脂質、DSPC、膽固醇及聚乙二醇化脂質之脂質奈米粒子中調配。As another non-limiting example, the nucleic acid vaccines described herein are formulated in lipid nanoparticles including cationic lipids, DSPC, cholesterol, and pegylated lipids.

作為另一非限制性實例,本文所述之核酸疫苗係在包含3D-P-DMA、DSPC、膽固醇及PEG-DMA之脂質奈米粒子中調配。As another non-limiting example, the nucleic acid vaccines described herein are formulated in lipid nanoparticles including 3D-P-DMA, DSPC, cholesterol, and PEG-DMA.

在一些實施態樣中,本文所述之核酸疫苗係在脂質奈米粒子中調配,在調配物中的該脂質奈米粒子包含約50% (以莫耳計)之陽離子脂質;約10% (以莫耳計)之磷脂;約38% (以莫耳計)之固醇;及1.6%之聚乙二醇化脂質。In some embodiments, the nucleic acid vaccines described herein are formulated in lipid nanoparticles, and the lipid nanoparticles in the formulation comprise about 50% (on a molar basis) cationic lipids; about 10% ( (moles) of phospholipids; approximately 38% (moles) of sterols; and 1.6% of pegylated lipids.

作為非限制性實例,陽離子脂質、固醇、磷脂及聚乙二醇化脂質分別為3D-P-DMA、DSPC、膽固醇及PEG-DMA。As non-limiting examples, cationic lipids, sterols, phospholipids and pegylated lipids are 3D-P-DMA, DSPC, cholesterol and PEG-DMA respectively.

在一些實施態樣中,本文所述之核酸疫苗係在脂質奈米粒子中調配,在調配物中的該脂質奈米粒子包含約53% (以重量計)之3D-P-DMA;約14% (以重量計)之DSPC;約26% (以重量計)之膽固醇;及約7% (以重量計)之PEG-DMA。In some embodiments, the nucleic acid vaccines described herein are formulated in lipid nanoparticles, and the lipid nanoparticles in the formulation comprise about 53% (by weight) 3D-P-DMA; about 14 % (by weight) DSPC; about 26% (by weight) cholesterol; and about 7% (by weight) PEG-DMA.

在一些實施態樣中,本文所述之核酸疫苗組成物可包含至少一種在LNP中調配之包含SEQ ID NO:27之多核苷酸的核酸疫苗,該LNP包含約50% (以莫耳計)之陽離子脂質;約10% (以莫耳計)之磷脂;約38% (以莫耳計)之固醇;及約2.0%之聚乙二醇化脂質。作為非限制性實例,本文所述之核酸疫苗組成物可包含至少一種在LNP中調配之包含SEQ ID NO:27之多核苷酸的核酸疫苗,該LNP包含約50% (以莫耳計)之3D-P-DMA;約10% (以莫耳計)之DSPC;約38% (以莫耳計)之膽固醇;及約2.0%之PEG-DMA。In some embodiments, the nucleic acid vaccine compositions described herein can comprise at least one nucleic acid vaccine comprising the polynucleotide of SEQ ID NO: 27 formulated in LNP comprising about 50% (on a molar basis) Cationic lipids; approximately 10% (on a molar basis) phospholipids; approximately 38% (on a molar basis) sterols; and approximately 2.0% PEGylated lipids. As a non-limiting example, the nucleic acid vaccine compositions described herein may comprise at least one nucleic acid vaccine comprising the polynucleotide of SEQ ID NO: 27 formulated in LNP containing about 50% (on a molar basis) 3D-P-DMA; approximately 10% (on a molar basis) DSPC; approximately 38% (on a molar basis) cholesterol; and approximately 2.0% PEG-DMA.

在一些實施態樣中,本文所述之核酸疫苗組成物可包含至少一種在LNP中調配之包含SEQ ID NO:43之多核苷酸的核酸疫苗,該LNP包含約50% (以莫耳計)之陽離子脂質;約10% (以莫耳計)之磷脂;約38% (以莫耳計)之固醇;及約2.0%之聚乙二醇化脂質。作為非限制性實例,本文所述之核酸疫苗組成物可包含至少一種在LNP中調配之包含SEQ ID NO:43之多核苷酸的核酸疫苗,該LNP包含約50% (以莫耳計)之3D-P-DMA;約10% (以莫耳計)之DSPC;約38% (以莫耳計)之膽固醇;及約2.0%之PEG-DMA。In some embodiments, the nucleic acid vaccine compositions described herein can comprise at least one nucleic acid vaccine comprising the polynucleotide of SEQ ID NO: 43 formulated in LNP comprising about 50% (on a molar basis) Cationic lipids; approximately 10% (on a molar basis) phospholipids; approximately 38% (on a molar basis) sterols; and approximately 2.0% PEGylated lipids. As a non-limiting example, the nucleic acid vaccine compositions described herein may comprise at least one nucleic acid vaccine comprising the polynucleotide of SEQ ID NO: 43 formulated in LNP containing about 50% (on a molar basis) 3D-P-DMA; approximately 10% (on a molar basis) DSPC; approximately 38% (on a molar basis) cholesterol; and approximately 2.0% PEG-DMA.

在一些實施態樣中,本文所述之核酸疫苗組成物可包含至少一種在LNP中調配之包含SEQ ID NO:39之多核苷酸的核酸疫苗,該LNP包含約50% (以莫耳計)之陽離子脂質;約10% (以莫耳計)之磷脂;約38% (以莫耳計)之固醇;及約2.0%之聚乙二醇化脂質。作為非限制性實例,本文所述之核酸疫苗組成物可包含至少一種在LNP中調配之包含SEQ ID NO:39或SEQ ID NO:41之多核苷酸的核酸疫苗,該LNP包含約50% (以莫耳計)之3D-P-DMA;約10% (以莫耳計)之DSPC;約38% (以莫耳計)之膽固醇;及約2.0%之PEG-DMA。In some embodiments, the nucleic acid vaccine compositions described herein can comprise at least one nucleic acid vaccine comprising the polynucleotide of SEQ ID NO: 39 formulated in LNP comprising about 50% (on a molar basis) Cationic lipids; approximately 10% (on a molar basis) phospholipids; approximately 38% (on a molar basis) sterols; and approximately 2.0% PEGylated lipids. As a non-limiting example, the nucleic acid vaccine compositions described herein may comprise at least one nucleic acid vaccine comprising the polynucleotide of SEQ ID NO: 39 or SEQ ID NO: 41 formulated in an LNP comprising about 50% ( on a molar basis) of 3D-P-DMA; approximately 10% (on a molar basis) of DSPC; approximately 38% (on a molar basis) of cholesterol; and approximately 2.0% of PEG-DMA.

在一些實施態樣中,LNP可以其形狀特徵化。在一些實施態樣中,LNP基本上為球形。在一些實施態樣中,LNP基本上為桿狀(亦即圓柱形)。在一些實施態樣中,LNP基本上為盤狀。In some implementations, LNPs can be characterized by their shape. In some embodiments, the LNPs are substantially spherical. In some embodiments, the LNPs are substantially rod-shaped (ie, cylindrical). In some implementations, the LNP is substantially disk-shaped.

在一些實施態樣中,LNP可以其大小特徵化。在一些實施態樣中,LNP的大小可以其最大的圓形橫截面之直徑定義,在此簡稱為其直徑。在一些實施態樣中,LNP可具有介於30 nm至約150 nm之間的直徑。在一些實施態樣中,LNP可具有範圍介於約40至150 nm、 50至150 nm、60至150 nm、約70至150 nm、或80至150 nm、90至150 nm、100至nm、110至150 nm、120至150 nm、130至150 nm、或140至150 nm之間的直徑。In some implementations, LNPs can be characterized by their size. In some embodiments, the size of the LNP can be defined by the diameter of its largest circular cross-section, referred to herein as its diameter. In some implementations, the LNPs can have a diameter of between 30 nm and about 150 nm. In some embodiments, the LNPs can have a diameter ranging from about 40 to 150 nm, 50 to 150 nm, 60 to 150 nm, about 70 to 150 nm, or 80 to 150 nm, 90 to 150 nm, 100 to 150 nm, Diameter between 110 and 150 nm, 120 and 150 nm, 130 and 150 nm, or 140 and 150 nm.

在一些實施態樣中,LNP群體(諸如那些自相同的調配所得的LNP群體)可藉由測量群體中的粒子大小、形狀或質量的均勻性來特徵化。均勻性可在一些實施態樣中以群體的多分散性指數(PI)表示。在一些實施態樣中,均勻性可在一些實施態樣中以群體的像差性(disparity)(Đ)表示。應理解術語「多分散性指數」及「像差性」在本文為同義字且可互換使用。在一些實施態樣中,自給出之調配所得的LNP群體具有介於約0.1與1之間的PI。在一些實施態樣中,自給出之調配所得的LNP群體具有少於約1、少於約0.5、少於約0.4、少於約0.3、少於約0.2、少於約0.1之PI。在一些實施態樣中,自給出之調配所得的LNP群體具有介於約0.1至1、0.1至0.8、0.1至0.6、0.1至0.4、0.1至0.2、0.2至1、0.2至0.8、0.2至0.6、0.2至0.4、0.4至1、0.4至0.8、0.4至0.6、0.6至1、0.6至0.8、及0.8至1之間的PI。In some embodiments, a population of LNPs, such as those resulting from the same formulation, can be characterized by measuring uniformity of particle size, shape, or mass within the population. Uniformity may be expressed in some embodiments as the polydispersity index (PI) of a population. In some implementations, the uniformity may be expressed in some implementations as the disparity (Đ) of the population. It is understood that the terms "polydispersity index" and "aberration" are synonymous and used interchangeably herein. In some embodiments, the LNP population resulting from a given formulation has a PI between about 0.1 and 1. In some embodiments, the LNP population resulting from a given formulation has a PI of less than about 1, less than about 0.5, less than about 0.4, less than about 0.3, less than about 0.2, less than about 0.1. In some embodiments, the LNP population resulting from a given formulation has a molecular weight of between about 0.1 to 1, 0.1 to 0.8, 0.1 to 0.6, 0.1 to 0.4, 0.1 to 0.2, 0.2 to 1, 0.2 to 0.8, 0.2 to 0.6 , 0.2 to 0.4, 0.4 to 1, 0.4 to 0.8, 0.4 to 0.6, 0.6 to 1, 0.6 to 0.8, and 0.8 to 1.

在一些實施態樣中,LNP可完全或部分地囊封物品,諸如本揭露之核酸構築體。在一些實施態樣中,在最終調配物中存在的物品基本上0%暴露於LNP外部的環境(亦即將物品完全囊封)。在一些實施態樣中,物品係與LNP締合,但至少部分地暴露於LNP外部的環境。在一些實施態樣中,LNP可以未暴露於LNP外部的環境之物品的%來特徵化,例如囊封效率。為了清楚起見,約100%之囊封效率係指其中基本上所有的物品由LNP完全囊封之LNP調配物,而約0%之囊封率係指其中基本上沒有物品被囊封在LNP中的LNP,諸如其中物品結合至LNP的外表面之LNP。在一些實施態樣中,LNP可具有少於約100%、少於約95%、少於約85%. 少於約80%、少於約75%、少於約70%、少於約65%、少於約60%、少於約55%、少於約50%、少於約45%、少於約40%、少於約35%、少於約30%、少於約25%、少於約20%、少於約15% 少於約10%、或少於5%之囊封效率。在一些實施態樣中,LNP可具有介於約90至100%、80至100%、70至100%、60至100%、50至100%、40至100%、30至100%、20至100%、10至100%、80至90%、70至90%、60至90%、50至90%、40至90%、30至90%、20至90%、10至90%、70至80%、60至80%、50至80%、40至80%、30至80%、20至80%、10至80%、60至70%、50至70%、40至70%、30至70%、20至70%、10至70%、40至50%、30至50%、20至50%、10至50%、30至40%、20至40%、10至40%、20至30%、10至30%、及10至20%之間的囊封效率。In some implementations, LNPs can fully or partially encapsulate articles, such as the nucleic acid constructs of the present disclosure. In some embodiments, substantially 0% of the items present in the final formulation are exposed to the environment outside the LNP (i.e., the items are completely encapsulated). In some embodiments, the article is associated with the LNP but is at least partially exposed to the environment external to the LNP. In some implementations, the LNP may be characterized by % of the article that is not exposed to the environment outside the LNP, such as encapsulation efficiency. For clarity, an encapsulation efficiency of about 100% refers to an LNP formulation in which substantially all of the items are completely encapsulated by the LNP, while an encapsulation efficiency of about 0% refers to an LNP formulation in which substantially no items are encapsulated in the LNP. LNPs in, such as LNPs in which the article is bonded to the outer surface of the LNP. In some embodiments, the LNP can have less than about 100%, less than about 95%, less than about 85%. Less than about 80%, less than about 75%, less than about 70%, less than about 65% %, less than about 60%, less than about 55%, less than about 50%, less than about 45%, less than about 40%, less than about 35%, less than about 30%, less than about 25%, Less than about 20%, less than about 15%, less than about 10%, or less than 5% encapsulation efficiency. In some embodiments, the LNP can have a polymorphic content of between about 90 to 100%, 80 to 100%, 70 to 100%, 60 to 100%, 50 to 100%, 40 to 100%, 30 to 100%, 20 to 100%, 10 to 100%, 80 to 90%, 70 to 90%, 60 to 90%, 50 to 90%, 40 to 90%, 30 to 90%, 20 to 90%, 10 to 90%, 70 to 80%, 60 to 80%, 50 to 80%, 40 to 80%, 30 to 80%, 20 to 80%, 10 to 80%, 60 to 70%, 50 to 70%, 40 to 70%, 30 to 70%, 20 to 70%, 10 to 70%, 40 to 50%, 30 to 50%, 20 to 50%, 10 to 50%, 30 to 40%, 20 to 40%, 10 to 40%, 20 to Encapsulation efficiencies between 30%, 10 to 30%, and 10 to 20%.

在一些實施態樣中,至少一種靶向劑(targeting agent)可存在於奈米粒子的外表面上。在一些實施態樣中,至少一種靶向劑可與奈米粒子之脂質組分共軛。在一些實施態樣中,至少一種靶向劑可與奈米粒子之聚合物組分共軛。在一些實施態樣中,至少一種靶向劑可經由至少一種靶向劑、奈米粒子薄膜及奈米粒子內部或外部的水性環境之間的疏水性及親水性相互作用而錨定至奈米粒子。在一些實施態樣中,至少一種靶向劑係與奈米粒子薄膜之肽/蛋白質組分共軛。在一些實施態樣中,至少一種靶向劑係與適合的連結子部分共軛,該連結子部分係與奈米粒子薄膜之組分共軛。在一些實施態樣中,力與鍵的任何組合可導致靶向劑與奈米粒子締合。In some embodiments, at least one targeting agent can be present on the outer surface of the nanoparticle. In some embodiments, at least one targeting agent can be conjugated to the lipid component of the nanoparticle. In some embodiments, at least one targeting agent can be conjugated to the polymer component of the nanoparticle. In some embodiments, at least one targeting agent can be anchored to the nanoparticles via hydrophobic and hydrophilic interactions between the at least one targeting agent, the nanoparticle film, and the aqueous environment inside or outside the nanoparticles. particle. In some embodiments, at least one targeting agent is conjugated to the peptide/protein component of the nanoparticle film. In some embodiments, at least one targeting agent is conjugated to a suitable linker moiety that is conjugated to a component of the nanoparticle film. In some embodiments, any combination of forces and bonds can cause the targeting agent to associate with the nanoparticles.

本文所述之LNP可使用此項技術中已知的技術形成。作為非限制性實例,將含有脂質之有機溶液與含有核酸組成物之酸性水溶液在微流體通道中混合,導致靶向系統(遞送媒劑及核酸疫苗)的形成。LNPs described herein can be formed using techniques known in the art. As a non-limiting example, an organic solution containing lipids and an acidic aqueous solution containing nucleic acid compositions are mixed in a microfluidic channel, resulting in the formation of a targeting system (delivery vehicle and nucleic acid vaccine).

在一些實施態樣中,脂質組成物係根據調配物中的組分脂質之各自的莫耳比描述。作為非限制性實例,可離子化的脂質之莫耳%可為約10莫耳%至約80莫耳%。作為非限制性實例,可離子化的脂質之莫耳%可為約20莫耳%至約70莫耳%。作為非限制性實例,可離子化的脂質之莫耳%可為約30莫耳%至約60莫耳%。作為非限制性實例,可離子化的脂質之莫耳%可為約35莫耳%至約55莫耳%。作為非限制性實例,可離子化的脂質之莫耳%可為約40莫耳%至約50莫耳%。作為非限制性實例,轉移媒劑批料之可離子化的脂質莫耳%為目標莫耳%之±30%、±25%、±20%、±15%、±10%、±5%、或±2.5%。在一些實施態樣中,在批次之間的轉移媒劑可變性少於15%、少於10%、或少於5%。In some embodiments, the lipid composition is described in terms of the respective molar ratios of the component lipids in the formulation. As a non-limiting example, the molar % of ionizable lipid may be from about 10 molar % to about 80 molar %. As a non-limiting example, the molar % of ionizable lipid may be from about 20 molar % to about 70 molar %. As a non-limiting example, the molar % of ionizable lipid may be from about 30 molar % to about 60 molar %. As a non-limiting example, the mole % of ionizable lipid may be from about 35 mole % to about 55 mole %. As a non-limiting example, the molar % of ionizable lipid may be from about 40 molar % to about 50 molar %. As non-limiting examples, the ionizable lipid molar % of the transfer vehicle batch is ±30%, ±25%, ±20%, ±15%, ±10%, ±5%, ±30%, ±25%, ±20%, ±10%, ±5%, Or ±2.5%. In some embodiments, the transfer vehicle variability from batch to batch is less than 15%, less than 10%, or less than 5%.

在一些實施態樣中,輔助者脂質之莫耳%可為約1莫耳%至約50莫耳%。在一些實施態樣中,輔助者脂質之莫耳%可為約2莫耳%至約45莫耳%。在一些實施態樣中,輔助者脂質之莫耳%可為約3莫耳%至約40莫耳%。在一些實施態樣中,輔助者脂質之莫耳%可為約4莫耳%至約35莫耳%。在一些實施態樣中,輔助者脂質之莫耳%可為約5莫耳%至約30莫耳%。在一些實施態樣中,輔助者脂質之莫耳%可為約10莫耳%至約20莫耳%。在一些實施態樣中,轉移媒劑批料之輔助者脂質莫耳%為目標莫耳%之±30%、±25%、±20%、±15%、±10%、±5%、或±2.5%。In some embodiments, the molar % of the helper lipid can be from about 1 molar % to about 50 molar %. In some embodiments, the molar % of the helper lipid can be from about 2 molar % to about 45 molar %. In some embodiments, the molar % of the helper lipid may be from about 3 molar % to about 40 molar %. In some embodiments, the molar % of the helper lipid can be from about 4 molar % to about 35 molar %. In some embodiments, the molar % of the helper lipid may be from about 5 molar % to about 30 molar %. In some embodiments, the molar % of the helper lipid may be from about 10 molar % to about 20 molar %. In some embodiments, the auxiliary lipid mol% of the transfer vehicle batch is ±30%, ±25%, ±20%, ±15%, ±10%, ±5%, or ±30%, ±25%, ±20%, ±10%, ±5%, or ±2.5%.

在一些實施態樣中,結構脂質之莫耳%可為約10莫耳%至約80莫耳%。在一些實施態樣中,結構脂質之莫耳%可為約20莫耳%至約70莫耳%。在一些實施態樣中,結構脂質之莫耳%可為約30莫耳%至約60莫耳%。在一些實施態樣中,結構脂質之莫耳%可為約35莫耳%至約55莫耳%。在一些實施態樣中,結構脂質之莫耳%可為約40莫耳%至約50莫耳%。在一些實施態樣中,轉移媒劑批料之結構脂質莫耳%為目標莫耳%之±30%、±25%、±20%、±15%、±10%、±5%、或±2.5%。In some embodiments, the molar % of structural lipids may be from about 10 molar % to about 80 molar %. In some embodiments, the molar % of structural lipids may be from about 20 molar % to about 70 molar %. In some embodiments, the molar % of structural lipids may be from about 30 molar % to about 60 molar %. In some embodiments, the molar % of structural lipids may be from about 35 molar % to about 55 molar %. In some embodiments, the molar % of the structural lipid may be from about 40 molar % to about 50 molar %. In some embodiments, the structural lipid mole % of the transfer vehicle batch is ±30%, ±25%, ±20%, ±15%, ±10%, ±5%, or ± 2.5%.

在一些實施態樣中,經PEG修飾之脂質之莫耳%可為約0.1莫耳%至約10莫耳%。在一些實施態樣中,經PEG修飾之脂質之莫耳%可為約0.2莫耳%至約5莫耳%。在一些實施態樣中,經PEG修飾之脂質之莫耳%可為約0.5莫耳%至約3莫耳%。在一些實施態樣中,經PEG修飾之脂質之莫耳%可為約1莫耳%至約2莫耳%。在一些實施態樣中,經PEG修飾之脂質之莫耳%可為約1.5莫耳%。在一些實施態樣中,轉移媒劑批料之經PEG修飾之脂質莫耳%為目標莫耳%之±30%、±25%、±20%、±15%、±10%、±5%、或±2.5%。In some embodiments, the molar % of PEG-modified lipids can be from about 0.1 molar % to about 10 molar %. In some embodiments, the molar % of PEG-modified lipids can be from about 0.2 molar % to about 5 molar %. In some embodiments, the molar % of the PEG-modified lipid can be from about 0.5 molar % to about 3 molar %. In some embodiments, the molar % of PEG-modified lipids can be from about 1 molar % to about 2 molar %. In some embodiments, the molar % of PEG-modified lipids can be about 1.5 molar %. In some embodiments, the PEG-modified lipid mole % of the transfer vehicle batch is ±30%, ±25%, ±20%, ±15%, ±10%, ±5% of the target mole % , or ±2.5%.

在一些實施態樣中,脂質奈米粒子調配物可以國際公開案第WO2011127255號或第W02008103276號中所述之方法製備,將每一該等內容以其全文引用方式併入本文中。在一些實施態樣中,脂質奈米粒子調配物可如國際公開案第W02019131770號所述,將其內容以其全文引用方式併入本文中。In some embodiments, lipid nanoparticle formulations can be prepared as described in International Publication No. WO2011127255 or WO2008103276, each of which is incorporated herein by reference in its entirety. In some embodiments, lipid nanoparticle formulations may be as described in International Publication No. WO2019131770, the contents of which are incorporated herein by reference in their entirety.

在一些實施態樣中,脂質奈米粒子調配物可以國際公開案第WO2020237227號中所述之方法製備,將其內容以其全文引用方式併入本文中。在一些實施態樣中,脂質奈米粒子調配物可如國際公開案第WO2020237227號所述,將其內容以其全文引用方式併入本文中。In some embodiments, lipid nanoparticle formulations can be prepared as described in International Publication No. WO2020237227, the contents of which are incorporated herein by reference in their entirety. In some embodiments, lipid nanoparticle formulations may be as described in International Publication No. WO2020237227, the contents of which are incorporated herein by reference in their entirety.

在一些實施態樣中,脂質可為可切割脂質,諸如那些在PCT專利申請公開案第WO2012170889號中所述者,將其內容以其全文引用方式併入本文中。In some embodiments, the lipids may be cleavable lipids, such as those described in PCT Patent Application Publication No. WO2012170889, the contents of which are incorporated herein by reference in their entirety.

在一些實施態樣中,本文所述之奈米粒子可包含至少一種本文所述及/或此項技術中已知的陽離子聚合物。In some embodiments, the nanoparticles described herein can comprise at least one cationic polymer described herein and/or known in the art.

在一些實施態樣中,陽離子脂質可藉由此項技術中已知及/或如以下各者中所述之方法合成:PCT專利申請公開案第WO2012040184號、第WO2011153120號、第WO2011149733號、第WO2011090965號、第WO2011043913號、第WO2011022460號、第WO2012061259號、第WO2012054365號、第WO2012044638號、第WO2010080724號及第WO201021865號;將每一該等內容以其全文引用方式併入本文中。In some embodiments, cationic lipids can be synthesized by methods known in the art and/or as described in PCT Patent Application Publication Nos. WO2012040184, WO2011153120, WO2011149733, WO2011090965, WO2011043913, WO2011022460, WO2012061259, WO2012054365, WO2012044638, WO2010080724 and WO201021865; each of which is incorporated herein by reference in its entirety. in.

在一些實施態樣中,核酸疫苗組成物之醫藥組成物可包括PCT專利申請案公開案第WO2012099755號中所述之聚乙二醇化脂質中之至少一者,將其內容以其全文引用方式併入本文中。In some embodiments, the pharmaceutical composition of the nucleic acid vaccine composition may include at least one of the pegylated lipids described in PCT Patent Application Publication No. WO2012099755, the content of which is incorporated by reference in its entirety. into this article.

在一些實施態樣中,脂質奈米粒子(LNP)調配物中PEG之比率可增加或降低及/或PEG脂質之碳鏈長度可在C14至C18內修改以改變LNP調配物之藥物動力學及/或生物分佈。作為非限制性實例,相比於陽離子脂質、DSPC及膽固醇,LNP調配物可含有1-5% PEG-c-DOMG之脂質莫耳比。在一些實施態樣中,核酸疫苗組成物之LNP調配物可含有3%脂質莫耳比之PEG-c-DOMG。在一些實施態樣中,核酸疫苗組成物之LNP調配物可含有1.5%脂質莫耳比之PEG-c-DOMG。In some embodiments, the ratio of PEG in lipid nanoparticle (LNP) formulations can be increased or decreased and/or the carbon chain length of the PEG lipid can be modified from C14 to C18 to alter the pharmacokinetics of the LNP formulation and /or biodistribution. As a non-limiting example, LNP formulations may contain a lipid molar ratio of 1-5% PEG-c-DOMG compared to cationic lipids, DSPC and cholesterol. In some embodiments, the LNP formulation of the nucleic acid vaccine composition may contain 3% lipid molar ratio of PEG-c-DOMG. In some embodiments, the LNP formulation of the nucleic acid vaccine composition may contain 1.5% lipid molar ratio of PEG-c-DOMG.

在一些實施態樣中,PEG-c-DOMG可用PEG脂質,諸如但不限於用PEG-DSG (1,2-二硬脂醯基-sn-甘油、甲氧基聚乙二醇)或PEG-DPG(1,2-二棕櫚醯基-sn-甘油、甲氧基聚乙二醇)置換。陽離子脂質可選自此項技術中已知的任何脂質,諸如但不限於DLin-MC3-DMA、DLin-DMA、C12-200及DLin-KC2-DMA。In some embodiments, PEG-c-DOMG can be used with PEG lipids, such as, but not limited to, PEG-DSG (1,2-distearyl-sn-glycerol, methoxypolyethylene glycol) or PEG- DPG (1,2-dipalmitoyl-sn-glycerol, methoxypolyethylene glycol) substitution. The cationic lipid may be selected from any lipid known in the art, such as, but not limited to, DLin-MC3-DMA, DLin-DMA, C12-200, and DLin-KC2-DMA.

在一些實施態樣中,LNP調配物可含有PEG-DMG 2000 (1,2-二肉豆蔻醯基-sn-甘油基-3-磷酸乙醇胺-N-[甲氧基(聚乙二醇)-2000),一種此項技術中已知的陽離子脂質。在一些實施態樣中,LNP調配物可含有PEG-DMG 2000及至少一種其他組分。在一些實施態樣中,LNP調配物可含有PEG-DMG 2000、DSPC及膽固醇。作為非限制性實例,LNP調配物可含有PEG-DMG 2000、DLin-DMA、DSPC及膽固醇。作為另一非限制性實例,LNP調配物可含有莫耳比為2:40:10:48之PEG-DMG 2000、DLin-DMA、DSPC及膽固醇(參見例如Geall等人,Nonviral delivery of self-amplifying RNA vaccines, PNAS, 2012, 109(36): 14604-14609;以全文引用方式併入本文中)。 In some embodiments, the LNP formulation may contain PEG-DMG 2000 (1,2-dimyristyl-sn-glyceryl-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)- 2000), a cationic lipid known in the art. In some embodiments, LNP formulations can contain PEG-DMG 2000 and at least one other component. In some embodiments, LNP formulations can contain PEG-DMG 2000, DSPC, and cholesterol. As non-limiting examples, LNP formulations may contain PEG-DMG 2000, DLin-DMA, DSPC, and cholesterol. As another non-limiting example, the LNP formulation may contain PEG-DMG 2000, DLin-DMA, DSPC, and cholesterol in a molar ratio of 2:40:10:48 (see, e.g., Geall et al., Nonviral delivery of self-amplifying RNA vaccines, PNAS , 2012, 109(36): 14604-14609; incorporated by reference in its entirety).

作為另一非限制性實例,本文所描述之核酸疫苗組成物可調配為藉由非經腸途徑遞送之奈米粒子,如美國專利申請公開案第US20120207845號中所述;將其內容以其全文引用方式併入本文中。As another non-limiting example, the nucleic acid vaccine compositions described herein can be formulated as nanoparticles delivered via parenteral routes, as described in U.S. Patent Application Publication No. US20120207845; the contents of which are incorporated herein by reference in their entirety. Incorporated herein by reference.

在一些實施態樣中,本揭露之核酸疫苗組成物可用複數種陽離子脂質,諸如頒予Hope等人之美國專利申請公開案第US20130017223號中所述之第一及第二陽離子脂質來調配,將其內容以其全文引用方式併入本文中。第一陽離子脂質可基於第一特性選擇且第二陽離子脂質可基於第二特性選擇,其中特性可如US20130017223中所概述地確定。在一些實施態樣中,第一及第二特性為互補的。In some embodiments, the nucleic acid vaccine composition of the present disclosure can be formulated with a plurality of cationic lipids, such as the first and second cationic lipids described in US Patent Application Publication No. US20130017223 to Hope et al. Its contents are incorporated herein by reference in their entirety. The first cationic lipid may be selected based on a first property and the second cationic lipid may be selected based on a second property, where the properties may be determined as outlined in US20130017223. In some implementations, the first and second characteristics are complementary.

本文所描述之核酸疫苗組成物可用包含一或多種陽離子脂質及一或多種第二脂質及一或多種核酸之脂質粒子調配,其中脂質粒子包含如頒予Cullis等人之美國專利公開案第US20120276209號中所述的固體核心,將其內容以其全文引用方式併入本文中。Nucleic acid vaccine compositions described herein may be formulated with lipid particles comprising one or more cationic lipids and one or more second lipids and one or more nucleic acids, wherein the lipid particles comprise as disclosed in U.S. Patent Publication No. US20120276209 to Cullis et al. The solid core described in , the contents of which are incorporated herein by reference in their entirety.

在一些實施態樣中,本揭露之核酸疫苗組成物可在水包油(o/w)乳液中與陽離子兩親分子複合,諸如頒予Satishchandran等人之歐洲公開案第EP2298358號中所述,將其內容以其全文引用方式併入本文中。陽離子兩親分子可為陽離子脂質、改質或未改質精胺、布比卡因(bupivacaine)或苯紮氯銨,且油可為植物或動物油。作為非限制性實例,至少10%之核酸-陽離子兩親分子複合物在水包油乳液之油相中(參見例如頒予Satishchandran等人之EP2298358中所述之複合物),將其內容以其全文引用方式併入本文中。In some embodiments, the nucleic acid vaccine compositions of the present disclosure can be complexed with cationic amphiphilic molecules in an oil-in-water (o/w) emulsion, such as described in European Publication No. EP2298358 to Satishchandran et al. Its contents are incorporated herein by reference in their entirety. The cationic amphiphilic molecule can be a cationic lipid, modified or unmodified spermine, bupivacaine or benzalkonium chloride, and the oil can be a vegetable or animal oil. As a non-limiting example, at least 10% of the nucleic acid-cationic amphiphilic molecule complex is in the oil phase of an oil-in-water emulsion (see, for example, the complexes described in EP 2298358 to Satishchandran et al.), the contents of which are The full text is incorporated by reference into this article.

在一些實施態樣中,本揭露之核酸疫苗組成物可用包含陽離子化合物及中性脂質之混合物的組成物調配。作為非限制性實例,陽離子化合物可為頒予Ansell等人之PCT專利申請公開案第WO 1999010390號中所揭示之式(I),將其內容以其全文引用方式描述於本文中,且中性脂質可選自由二醯基磷脂醯膽鹼、二醯基磷脂醯乙醇胺、神經醯胺及神經鞘磷脂組成之群。在另一非限制性實例中,脂質調配物可包含頒予Akinc等人之美國專利公開案第US 20120101148號中所揭示之式A之陽離子脂質、中性脂質、固醇及PEG或經PEG修飾之脂質,將其內容以其全文引用方式併入本文中。In some embodiments, the nucleic acid vaccine compositions of the present disclosure may be formulated with a composition including a mixture of cationic compounds and neutral lipids. As a non-limiting example, the cationic compound may be formula (I) disclosed in PCT Patent Application Publication No. WO 1999010390 to Ansell et al., the contents of which are incorporated herein by reference in their entirety, and neutral The lipid may be selected from the group consisting of diylphospholipid choline, diylphospholipid ethanolamine, ceramide and sphingomyelin. In another non-limiting example, the lipid formulation may comprise a cationic lipid of Formula A disclosed in U.S. Patent Publication No. US 20120101148 to Akinc et al., a neutral lipid, a sterol, and PEG or be modified with PEG Lipids, the contents of which are incorporated herein by reference in their entirety.

在一些實施態樣中,LNP調配物可藉由國際公開案第WO2011127255或WO2008103276號中所述之方法調配。作為非限制性實例,本揭露之核酸疫苗組成物可囊封於WO2011127255及/或WO2008103276中所述之脂質奈米粒子(LNP)調配物中之任一者中;將每一該等內容以其全文引用方式併入本文中。In some embodiments, LNP formulations can be formulated by methods described in International Publication No. WO2011127255 or WO2008103276. As a non-limiting example, the nucleic acid vaccine composition of the present disclosure can be encapsulated in any of the lipid nanoparticle (LNP) formulations described in WO2011127255 and/or WO2008103276; each of these contents is referred to as The full text is incorporated by reference into this article.

在一些實施態樣中,本文所述之LNP調配物可包含聚陽離子組成物。作為非限制性實例,聚陽離子組成物可選自美國專利公開案第US20050222064號之式1-60;將其內容以其全文引用方式併入本文中。包含聚陽離子組成物之LNP調配物可用於活體內及/或活體外遞送本文所描述之核酸疫苗組成物。In some embodiments, LNP formulations described herein can include polycationic compositions. As a non-limiting example, the polycationic composition may be selected from Formulas 1-60 of U.S. Patent Publication No. US20050222064; the contents of which are incorporated herein by reference in their entirety. LNP formulations containing polycationic compositions can be used to deliver nucleic acid vaccine compositions described herein in vivo and/or in vitro.

在一些實施態樣中,本文所述之LNP調配物可另外包含滲透性增強劑分子。非限制性滲透性增強劑分子描述於美國專利公開案第US20050222064號中;將其內容以其全文引用方式併入本文中。In some embodiments, the LNP formulations described herein may additionally include permeability enhancer molecules. Non-limiting permeability enhancer molecules are described in US Patent Publication No. US20050222064; the contents of which are incorporated herein by reference in their entirety.

奈米粒子調配物可為包含碳水化合物載劑及核酸疫苗組成物(例如用於COVID-19之核酸疫苗)之碳水化合物奈米粒子。作為非限制性實例,碳水化合物載劑可包括但不限於經酸酐修飾之植物糖原或糖原型材料、植物糖原辛烯基丁二酸鹽、植物糖原β-糊精及經酸酐修飾之植物糖原β-糊精。(參見例如PCT專利申請公開案第WO2012109121號;將其內容以其全文引用方式併入本文中)。The nanoparticle formulation can be a carbohydrate nanoparticle that includes a carbohydrate carrier and a nucleic acid vaccine composition (eg, a nucleic acid vaccine for COVID-19). As non-limiting examples, carbohydrate carriers may include, but are not limited to, anhydride-modified plant glycogen or glycogen-based materials, phytoglycogen octenylsuccinate, phytoglycogen beta-dextrin, and anhydride-modified phytoglycogen. Phytoglycogen beta-dextrin. (See, eg, PCT Patent Application Publication No. WO2012109121; the contents of which are incorporated herein by reference in their entirety).

脂質奈米粒子調配物可藉由用稱為快速消除之脂質奈米粒子(reLNP)之可生物降解陽離子脂質置換陽離子脂質來改良。諸如但不限於DLinDMA、DLin-KC2-DMA及DLin-MC3-DMA之可離子化的陽離子脂質已展示隨時間推移積聚於血漿及組織中且可為潛在毒性來源。快速消除之脂質之快速代謝可藉由在大鼠中1 mg/kg劑量至10 mg/kg劑量之數量級改良脂質奈米顆粒之耐受性及治療指數。包括酶促降解之酯鍵可改良陽離子組分之降解及代謝曲線,同時仍維持reLNP調配物之活性。酯鍵可內部位於脂鏈內或其可端部位於脂鏈之末端。內部酯鍵可置換脂鏈中之任何碳。Lipid nanoparticle formulations can be modified by replacing the cationic lipids with biodegradable cationic lipids called rapidly eliminating lipid nanoparticles (reLNPs). Ionizable cationic lipids such as, but not limited to, DLinDMA, DLin-KC2-DMA, and DLin-MC3-DMA have been shown to accumulate in plasma and tissues over time and can be a source of potential toxicity. Rapid metabolism of rapidly eliminated lipids may improve the tolerability and therapeutic index of lipid nanoparticles by doses on the order of 1 mg/kg to 10 mg/kg in rats. Inclusion of enzymatically degraded ester linkages can improve the degradation and metabolism profiles of the cationic components while still maintaining the activity of the reLNP formulation. The ester bond may be located internally within the lipid chain or may be terminally located at the end of the lipid chain. Internal ester bonds can replace any carbon in the aliphatic chain.

在一些實施態樣中,核酸疫苗組成物調配為固體脂質奈米粒子。固體脂質奈米粒子(SLN)可為平均直徑在10至1000 nm之間的球形。SLN具有固體脂質核心基質,其可溶解親脂性分子且可用界面活性劑及/或乳化劑穩定。脂質奈米粒子可為自組裝脂質-聚合物奈米粒子(參見Zhang等人, ACS Nano, 2008, 2 (8):1696-1702;將其內容以其全文引用方式併入本文中)。 In some embodiments, the nucleic acid vaccine composition is formulated as solid lipid nanoparticles. Solid lipid nanoparticles (SLN) can be spherical with an average diameter between 10 and 1000 nm. SLN has a solid lipid core matrix that can dissolve lipophilic molecules and can be stabilized with surfactants and/or emulsifiers. The lipid nanoparticles may be self-assembling lipid-polymer nanoparticles (see Zhang et al., ACS Nano , 2008, 2(8):1696-1702; the contents of which are incorporated herein by reference in their entirety).

在一些實施態樣中,包含本文所描述之核酸疫苗組成物的調配物亦可經構築或改變以使其被動地或主動地針對活體內不同的細胞類型,包括但不限於免疫細胞、內皮細胞、抗原呈遞細胞及白血球(Akinc等人 Mol Ther.2010, 18:1357-1364;Song等人, Nat Biotechnol.2005, 23:709-717;Judge等人, J Clin Invest.2009, 119:661-673;Kaufmann等人, Microvasc Res, 2010, 80:286-293;Santel等人, Gene Ther2006, 13:1222-1234;Santel等人, Gene Ther, 2006, 13:1360-1370;Gutbier等人, Pulm Pharmacol. Ther.2010, 23:334-344;Basha等人, Mol. Ther.2011, 19:2186-2200;Fenske and Cullis, Expert Opin Drug Deliv.2008, 5:25-44;Peer等人, Science.2008, 319:627-630;Peer及Lieberman, Gene Ther. 2011, 18:1127-1133;將每一該等內容以其全文引用方式併入本文中)。調配物被動靶向肝細胞之一個實例包括基於DLin-DMA、DLin-KC2-DMA及DLin-MC3-DMA之脂質奈米粒子調配物,該等調配物已被證明與脂蛋白元E結合且促進此等調配物活體內結合及吸收至肝細胞中(Akinc等人 Mol Ther.2010, 18:1357-1364;將其內容以其全文引用方式併入本文中)。調配物亦可經由在其表面上表現不同配位體來選擇性靶向,如由但不限於葉酸、運鐵蛋白、N-乙醯基半乳糖胺(GalNAc)及抗體靶向方法所例示(Kolhatkar等人, Curr Drug Discov Technol.2011, 8:197-206;Musacchio及Torchilin, Front Biosci.2011, 16:1388-1412;Yu等人, Mol Membr Biol.2010, 27:286-298;Patil等人, Crit Rev Ther Drug Carrier Syst.2008, 25:1-61;Benoit等人, Biomacromolecules.2011, 12:2708-2714;Zhao等人, Expert Opin Drug Deliv.2008, 5:309-319;Akinc等人, Mol Ther.2010, 18:1357-1364;Srinivasan等人, Methods Mol Biol.2012, 820:105-116;Ben-Arie等人, Methods Mol Biol.2012, 757:497-507;Peer J Control Release.2010, 20:63-68;Peer等人, Proc Natl Acad Sci U S A.2007, 104:4095-4100;Kim等人, Methods Mol Biol.2011, 721:339-353;Subramanya等人, Mol Ther.2010, 18:2028-2037;Song等人, Nat Biotechnol.2005, 23:709-717;Peer等人, Science.2008, 319:627-630;Peer及Lieberman, Gene Ther.2011, 18:1127-1133;將每一該等內容以其全文引用方式併入本文中)。 In some embodiments, formulations containing nucleic acid vaccine compositions described herein can also be constructed or modified to passively or actively target different cell types in vivo, including but not limited to immune cells, endothelial cells , antigen-presenting cells and leukocytes (Akinc et al. Mol Ther. 2010, 18:1357-1364; Song et al. Nat Biotechnol. 2005, 23:709-717; Judge et al. J Clin Invest. 2009, 119:661- 673; Kaufmann et al., Microvasc Res , 2010, 80:286-293; Santel et al., Gene Ther 2006, 13:1222-1234; Santel et al., Gene Ther , 2006, 13:1360-1370; Gutbier et al., Pulm Pharmacol. Ther. 2010, 23:334-344; Basha et al., Mol. Ther. 2011, 19:2186-2200; Fenske and Cullis, Expert Opin Drug Deliv. 2008, 5:25-44; Peer et al., Science. 2008, 319:627-630; Peer and Lieberman, Gene Ther . 2011, 18:1127-1133; each such content is incorporated herein by reference in its entirety). An example of a formulation that passively targets hepatocytes includes lipid nanoparticle formulations based on DLin-DMA, DLin-KC2-DMA, and DLin-MC3-DMA, which have been shown to bind to lipoprotein E and promote These formulations are bound and absorbed into liver cells in vivo (Akinc et al. Mol Ther. 2010, 18:1357-1364; the contents of which are incorporated herein by reference in their entirety). Formulations can also be selectively targeted by expressing different ligands on their surface, as exemplified by, but not limited to, folic acid, transferrin, N-acetylgalactosamine (GalNAc) and antibody targeting methods ( Kolhatkar et al., Curr Drug Discov Technol. 2011, 8:197-206; Musacchio and Torchilin, Front Biosci. 2011, 16:1388-1412; Yu et al., Mol Membr Biol. 2010, 27:286-298; Patil et al. Human, Crit Rev Ther Drug Carrier Syst. 2008, 25:1-61; Benoit et al., Biomacromolecules. 2011, 12:2708-2714; Zhao et al., Expert Opin Drug Deliv. 2008, 5:309-319; Akinc et al. Human, Mol Ther. 2010, 18:1357-1364; Srinivasan et al., Methods Mol Biol. 2012, 820:105-116; Ben-Arie et al., Methods Mol Biol. 2012, 757:497-507; Peer J Control Release. 2010, 20:63-68; Peer et al., Proc Natl Acad Sci US A. 2007, 104:4095-4100; Kim et al., Methods Mol Biol. 2011, 721:339-353; Subramanya et al., Mol Ther. 2010, 18:2028-2037; Song et al., Nat Biotechnol. 2005, 23:709-717; Peer et al., Science. 2008, 319:627-630; Peer and Lieberman, Gene Ther. 2011, 18: 1127-1133; each such content is incorporated herein by reference in its entirety).

在一些實施態樣中,本揭露之核酸疫苗組成物可經調配以用於控制釋放及/或靶向遞送。如本文所用,「控制釋放」係指符合特定釋放模式以實現治療結果的醫藥組成物或化合物釋放特徵。在一些實施態樣中,核酸疫苗組成物可囊封至本文所述及/或此項技術中已知的遞送劑中以用於控制釋放及/或靶向遞送。如本文所用,術語「囊封」意謂封閉、包圍或包覆。由於囊封涉及本揭露之組成物的調配物,因此囊封可為實質性、完全或部分的。術語「實質上囊封」意謂至少大於50、60、70、80、85、90、95、96、97、98、99、99.9、99.9、或大於99.999%之本揭露之醫藥組成物可封閉、包圍或包覆於遞送劑內。「部分囊封」意謂小於10、10、20、30、40、50、或更少的本揭露之醫藥組成物或化合物可封閉、包圍或包覆於遞送劑內。有利地,可藉由使用螢光及/或電子顯微圖量測本揭露之醫藥組成物之逃逸或活性來確定囊封。例如,至少1、5、10、20、30、40、50、60、70、80、85、90、95、96、97、98、99、99.9、99.99、或大於99.99%之本揭露之醫藥組成物係囊封於遞送劑中。In some embodiments, the nucleic acid vaccine compositions of the present disclosure can be formulated for controlled release and/or targeted delivery. As used herein, "controlled release" refers to the release characteristics of a pharmaceutical composition or compound that conform to a specific release pattern to achieve a therapeutic outcome. In some embodiments, nucleic acid vaccine compositions can be encapsulated in delivery agents described herein and/or known in the art for controlled release and/or targeted delivery. As used herein, the term "encapsulate" means to enclose, surround or envelop. As encapsulation relates to the formulation of the compositions of the present disclosure, the encapsulation may be substantial, complete, or partial. The term "substantially encapsulates" means that at least greater than 50, 60, 70, 80, 85, 90, 95, 96, 97, 98, 99, 99.9, 99.9, or greater than 99.999% of the pharmaceutical composition of the present disclosure can be encapsulated , surrounded or coated in the delivery agent. "Partially encapsulated" means that less than 10, 10, 20, 30, 40, 50, or less of the pharmaceutical composition or compound of the present disclosure may be enclosed, surrounded, or coated within the delivery agent. Advantageously, encapsulation can be determined by measuring the escape or activity of the pharmaceutical compositions of the present disclosure using fluorescence and/or electron microscopy. For example, at least 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 85, 90, 95, 96, 97, 98, 99, 99.9, 99.99, or greater than 99.99% of the disclosed medicines The composition is encapsulated in a delivery agent.

核酸疫苗組成物可囊封至脂質奈米粒子或快速消除之脂質奈米粒子中,且脂質奈米粒子或快速消除之脂質奈米粒子可接著囊封至本文所述及/或此項技術中已知的聚合物、水凝膠及/或外科密封劑中。作為非限制性實例,聚合物、水凝膠或外科密封劑可為PLGA、乙烯乙酸乙烯酯(EVAc)、泊洛沙姆、GELSITE® (Nanotherapeutics, Inc. Alachua, FL)、HYLENEX® (Halozyme Therapeutics, San Diego CA)、外科密封劑,諸如血纖維蛋白原聚合物(Ethicon Inc. Cornelia, GA)、TISSELL® (Baxter International, Inc., Deerfield, IL)、基於PEG之密封劑及COSEAL® (Baxter International, Inc., Deerfield, IL)。The nucleic acid vaccine composition can be encapsulated into lipid nanoparticles or rapidly eliminated lipid nanoparticles, and the lipid nanoparticles or rapidly eliminated lipid nanoparticles can then be encapsulated into the technology described herein and/or the technology Among known polymers, hydrogels and/or surgical sealants. As non-limiting examples, the polymer, hydrogel or surgical sealant may be PLGA, ethylene vinyl acetate (EVAc), poloxamer, GELSITE® (Nanotherapeutics, Inc. Alachua, FL), HYLENEX® (Halozyme Therapeutics , San Diego CA), surgical sealants such as fibrinogen polymers (Ethicon Inc. Cornelia, GA), TISSELL® (Baxter International, Inc., Deerfield, IL), PEG-based sealants, and COSEAL® (Baxter International, Inc., Deerfield, IL).

在一些實施態樣中,脂質奈米粒子可囊封至此項技術中已知的任何當注射至個體體內時可形成凝膠的聚合物中。作為另一非限制性實例,脂質奈米粒子可囊封至可生物降解的聚合物基質中。In some embodiments, lipid nanoparticles can be encapsulated in any polymer known in the art that can form a gel when injected into an individual. As another non-limiting example, lipid nanoparticles can be encapsulated into a biodegradable polymer matrix.

在一些實施態樣中,包含用於控制釋放及/或靶向遞送之核酸疫苗組成物的調配物亦可包括至少一種控制釋放包衣。控制釋放包衣包括但不限於OPADRY®、聚乙烯吡咯啶酮/乙酸乙烯酯共聚物、聚乙烯吡咯啶酮、羥丙基甲基纖維素、羥丙基纖維素、羥乙基纖維素、EUDRAGIT RL®、EUDRAGIT RS®及纖維素衍生物,諸如乙基纖維素水性分散液(AQUACOAT®及SURELEASE®)。In some embodiments, formulations comprising nucleic acid vaccine compositions for controlled release and/or targeted delivery may also include at least one controlled release coating. Controlled release coatings include, but are not limited to, OPADRY®, polyvinylpyrrolidone/vinyl acetate copolymer, polyvinylpyrrolidone, hydroxypropylmethylcellulose, hydroxypropylcellulose, hydroxyethylcellulose, EUDRAGIT RL®, EUDRAGIT RS® and cellulose derivatives such as aqueous ethylcellulose dispersions (AQUACOAT® and SURELEASE®).

在一些實施態樣中,控制釋放及/或靶向遞送調配物可包含至少一種可降解聚酯,其可含有聚陽離子側鏈。可降解聚酯包括但不限於聚(絲胺酸酯)、聚(L-交酯-共-L-離胺酸)、聚(4-羥基-L-脯胺酸酯)及其組合。在一些實施態樣中,可降解聚酯可包括PEG結合以形成聚乙二醇化聚合物。In some embodiments, controlled release and/or targeted delivery formulations can include at least one degradable polyester, which can contain polycationic side chains. Degradable polyesters include, but are not limited to, poly(serinate), poly(L-lactide-co-L-lysine), poly(4-hydroxy-L-proline), and combinations thereof. In some embodiments, degradable polyesters may include PEG conjugations to form PEGylated polymers.

在一些實施態樣中,本揭露之核酸疫苗組成物可用具有靶向部分,諸如頒予Manoharan等人之美國專利申請公開案第US20130202652號中所揭示之靶向部分的靶向脂質調配,將其內容以其全文引用方式併入本文中。作為非限制性實例,頒予Manoharan等人之US 20130202652之式I的靶向部分可經選擇以有利於定位於所需器官、組織、細胞、細胞類型或亞型或細胞器的脂質。本揭露中涵蓋之非限制性靶向部分包括運鐵蛋白、對甲氧苯甲醯胺、RGD肽、前列腺特異性膜抗原(PSMA)、岩藻醣、抗體或適體。In some embodiments, the nucleic acid vaccine compositions of the present disclosure may be formulated with a targeting lipid having a targeting moiety, such as that disclosed in U.S. Patent Application Publication No. US20130202652 to Manoharan et al. The content is incorporated herein by reference in its entirety. As a non-limiting example, the targeting moiety of Formula I of US 20130202652 to Manoharan et al. can be selected to favor lipid localization to a desired organ, tissue, cell, cell type or subtype, or organelle. Non-limiting targeting moieties contemplated by the present disclosure include transferrin, p-methoxybenzamide, RGD peptide, prostate-specific membrane antigen (PSMA), fucose, antibodies or aptamers.

在一些實施態樣中,本揭露之核酸疫苗組成物可囊封於治療性奈米粒子中。治療性奈米粒子可藉由本文所描述及此項技術中已知的方法調配,諸如但不限於PCT專利申請公開案第WO2010005740號、第WO2010030763號、第WO2010005721號、第WO2010005723號及第WO2012054923號,美國公開案第US20110262491號、第US20100104645號、第US20100087337號、第US20100068285號、第US20110274759號、第US20100068286號及第US20120288541號,及美國專利第8,206,747號、第8,293,276號、第8,318,208號及第8,318,211號;將每一該等內容以其全文引用方式併入本文中。治療性聚合物奈米粒子可藉由美國公開案第US20120140790號中所述之方法鑑定,將其內容以其全文引用方式併入本文中。In some implementations, the nucleic acid vaccine compositions of the present disclosure can be encapsulated in therapeutic nanoparticles. Therapeutic nanoparticles may be formulated by methods described herein and known in the art, such as, but not limited to, PCT Patent Application Publication Nos. WO2010005740, WO2010030763, WO2010005721, WO2010005723, and WO2012054923 , U.S. Publication Nos. US20110262491, US20100104645, US20100087337, US20100068285, US20110274759, US20100068286 and US20120288541, and US Patent No. 8,206,747 , No. 8,293,276, No. 8,318,208 and No. 8,318,211 ; Each such content is incorporated herein by reference in its entirety. Therapeutic polymer nanoparticles can be identified by methods described in US Publication No. US20120140790, the contents of which are incorporated herein by reference in their entirety.

在一些實施態樣中,治療性奈米粒子可調配用於持續釋放。如本文所用,「持續釋放」係指在特定時段內符合釋放速率之醫藥組成物或化合物。該時段可包括但不限於數小時、數天、數週、數月及數年。作為非限制性實例,持續釋放奈米粒子可包含聚合物及治療劑,諸如但不限於本揭露之核酸疫苗組成物(參見PCT專利申請公開案第WO2010075072號及美國公開案第US20100216804號、第US20110217377號及第US20120201859號,將每一該等內容以其全文引用方式併入本文中)。In some embodiments, therapeutic nanoparticles can be formulated for sustained release. As used herein, "sustained release" refers to a pharmaceutical composition or compound that is released at a consistent rate over a specified period of time. This period of time may include, but is not limited to, hours, days, weeks, months and years. As non-limiting examples, sustained release nanoparticles may include polymers and therapeutic agents, such as but not limited to the nucleic acid vaccine composition of the present disclosure (see PCT Patent Application Publication No. WO2010075072 and US Publication Nos. US20100216804, US20110217377 and US20120201859, each of which is incorporated herein by reference in its entirety).

在一些實施態樣中,治療性奈米粒子可調配為靶標特異性的。作為非限制性實例,治療性奈米粒子可包括皮質類固醇(參見PCT專利申請公開案第WO2011084518號;將其內容以其全文引用方式併入本文中)。在一些實施態樣中,治療性奈米粒子可調配為癌症特異性的。作為非限制性實例,治療性奈米粒子可調配為以下各者中所述之奈米粒子:PCT專利申請公開案第WO2008121949號、第WO2010005726號、第WO2010005725號及第WO2011084521號,及美國公開案第US20100069426號、第US20120004293號及第US20100104655號,將每一該等內容以其全文引用方式併入本文中。In some implementations, therapeutic nanoparticles can be formulated to be target-specific. As a non-limiting example, therapeutic nanoparticles may include corticosteroids (see PCT Patent Application Publication No. WO2011084518; the contents of which are incorporated herein by reference in their entirety). In some implementations, therapeutic nanoparticles can be formulated to be cancer specific. As non-limiting examples, therapeutic nanoparticles may be formulated as nanoparticles described in PCT Patent Application Publication Nos. WO2008121949, WO2010005726, WO2010005725, and WO2011084521, and U.S. Publications No. US20100069426, US20120004293 and US20100104655, each of which is incorporated herein by reference in its entirety.

在一些實施態樣中,本揭露之奈米粒子可包含聚合基質。作為非限制性實例,奈米粒子可包含兩種或更多種聚合物,諸如但不限於聚乙烯、聚碳酸酯、聚酸酐、聚羥基酸、聚反丁烯二酸丙酯、聚己內酯、聚醯胺、聚縮醛、聚醚、聚酯、聚(原酸酯)、聚氰基丙烯酸酯、聚乙烯醇、聚胺基甲酸酯、聚磷氮烯、聚丙烯酸酯、聚甲基丙烯酸酯、聚氰基丙烯酸酯、聚脲、聚苯乙烯、聚胺、聚離胺酸、聚(乙烯亞胺)、聚(絲胺酸酯)、聚(L-交酯-共-L-離胺酸)、聚(4-羥基-L-脯胺酸酯)或其組合。In some embodiments, the nanoparticles of the present disclosure may include a polymeric matrix. As non-limiting examples, nanoparticles may comprise two or more polymers, such as, but not limited to, polyethylene, polycarbonate, polyanhydrides, polyhydroxy acids, polypropyl fumarate, polycaprolactone ester, polyamide, polyacetal, polyether, polyester, poly(orthoester), polycyanoacrylate, polyvinyl alcohol, polyurethane, polyphosphorus zene, polyacrylate, poly Methacrylate, polycyanoacrylate, polyurea, polystyrene, polyamine, polylysine, poly(ethylenimine), poly(serine), poly(L-lactide-co- L-lysine), poly(4-hydroxy-L-proline), or combinations thereof.

在一些實施態樣中,治療性奈米粒子包含二嵌段共聚物。在一些實施態樣中,二嵌段共聚物可包括PEG與聚合物之組合,聚合物諸如但不限於聚乙烯、聚碳酸酯、聚酸酐、聚羥基酸、聚反丁烯二酸丙酯、聚己內酯、聚醯胺、聚縮醛、聚醚、聚酯、聚(原酸酯)、聚氰基丙烯酸酯、聚乙烯醇、聚胺基甲酸酯、聚磷氮烯、聚丙烯酸酯、聚甲基丙烯酸酯、聚氰基丙烯酸酯、聚脲、聚苯乙烯、聚胺、聚離胺酸、聚(乙烯亞胺)、聚(絲胺酸酯)、聚(L-交酯-共-L-離胺酸)、聚(4-羥基-L-脯胺酸酯)或其組合。In some embodiments, therapeutic nanoparticles comprise diblock copolymers. In some embodiments, the diblock copolymer may include a combination of PEG and polymers such as, but not limited to, polyethylene, polycarbonate, polyanhydrides, polyhydroxy acids, polypropyl fumarate, Polycaprolactone, polyamide, polyacetal, polyether, polyester, poly(orthoester), polycyanoacrylate, polyvinyl alcohol, polyurethane, polyphosphorene, polyacrylic acid ester, polymethacrylate, polycyanoacrylate, polyurea, polystyrene, polyamine, polylysine, poly(ethylenimine), poly(serine ester), poly(L-lactide) -co-L-lysine), poly(4-hydroxy-L-proline), or combinations thereof.

作為非限制性實例,治療性奈米粒子包含PLGA-PEG嵌段共聚物(參見美國公開案第US20120004293號及美國專利第8,236,330號,其各自以全文引用方式併入本文中)。在另一非限制性實例中,治療性奈米粒子為包含PEG及PLA或PEG及PLGA之二嵌段共聚物的隱形奈米粒子(參見美國專利第8,246,968號及PCT專利申請公開案第WO2012166923號,將每一該等內容以其全文引用方式併入本文中)。As non-limiting examples, therapeutic nanoparticles include PLGA-PEG block copolymers (see U.S. Publication No. US20120004293 and U.S. Patent No. 8,236,330, each of which is incorporated by reference in its entirety). In another non-limiting example, the therapeutic nanoparticles are stealth nanoparticles comprising a diblock copolymer of PEG and PLA or PEG and PLGA (see U.S. Patent No. 8,246,968 and PCT Patent Application Publication No. WO2012166923 , each such content is incorporated herein by reference in its entirety).

在一些實施態樣中,治療性奈米粒子可包含多嵌段共聚物,諸如但不限於美國專利第8,263,665號及第8,287,910號中所述之多嵌段共聚物;將每一該等內容以其全文引用方式併入本文中。In some embodiments, therapeutic nanoparticles may include multi-block copolymers, such as, but not limited to, those described in U.S. Pat. Nos. 8,263,665 and 8,287,910; substituting each of these with It is incorporated by reference in its entirety.

在一些實施態樣中,本文所述之嵌段共聚物可包括於包含非聚合膠束及嵌段共聚物之聚離子複合物中。(參見例如美國公開案第US20120076836號;將其內容以其全文引用方式併入本文中)。In some embodiments, the block copolymers described herein can be included in polyionic complexes including non-polymeric micelles and block copolymers. (See, eg, U.S. Publication No. US20120076836; the contents of which are incorporated herein by reference in their entirety).

在一些實施態樣中,用於遞送本文所述之核酸疫苗的奈米粒子包括嵌段共聚物。嵌段共聚物之非限制性實例包括PCT專利申請公開案第WO2015017519號之式I、式II、式III、式IV、式V、式VI、及式VII之彼等,將其內容以其全文引用方式併入本文中。In some embodiments, nanoparticles used to deliver the nucleic acid vaccines described herein include block copolymers. Non-limiting examples of block copolymers include those of Formula I, Formula II, Formula III, Formula IV, Formula V, Formula VI, and Formula VII of PCT Patent Application Publication No. WO2015017519, the contents of which are incorporated herein by reference in their entirety. Incorporated herein by reference.

在一些實施態樣中,治療性奈米粒子可包含至少一種丙烯酸聚合物。丙烯酸聚合物包括但不限於丙烯酸、甲基丙烯酸、丙烯酸及甲基丙烯酸共聚物、甲基丙烯酸甲酯共聚物、甲基丙烯酸乙氧基乙酯、甲基丙烯酸氰基乙酯、甲基丙烯酸胺基烷酯共聚物、聚(丙烯酸)、聚(甲基丙烯酸)、聚氰基丙烯酸酯及其組合。In some embodiments, therapeutic nanoparticles can include at least one acrylic polymer. Acrylic polymers include, but are not limited to, acrylic acid, methacrylic acid, acrylic acid and methacrylic acid copolymers, methyl methacrylate copolymer, ethoxyethyl methacrylate, cyanoethyl methacrylate, amine methacrylate Alkyl ester copolymers, poly(acrylic acid), poly(methacrylic acid), polycyanoacrylates, and combinations thereof.

在一些實施態樣中,治療性奈米粒子可包含至少一種含胺聚合物,諸如但不限於聚離胺酸、聚乙烯亞胺、聚(醯胺基胺)樹枝狀聚合物、聚(β-胺基酯) (參見例如美國專利第8,287,849號;將其內容以其全文引用方式併入本文中)及其組合。In some embodiments, therapeutic nanoparticles can comprise at least one amine-containing polymer, such as, but not limited to, polylysine, polyethylenimine, poly(amidoamine) dendrimers, poly(beta) -aminoester) (see, e.g., U.S. Patent No. 8,287,849; the contents of which are incorporated herein by reference in its entirety) and combinations thereof.

在一些實施態樣中,治療性奈米粒子可包含至少一種可降解聚酯,其可含有聚陽離子側鏈。可降解聚酯包括但不限於聚(絲胺酸酯)、聚(L-交酯-共-L-離胺酸)、聚(4-羥基-L-脯胺酸酯)及其組合。可降解聚酯可包括PEG結合以形成聚乙二醇化聚合物。In some embodiments, therapeutic nanoparticles can include at least one degradable polyester, which can contain polycationic side chains. Degradable polyesters include, but are not limited to, poly(serinate), poly(L-lactide-co-L-lysine), poly(4-hydroxy-L-proline), and combinations thereof. Degradable polyesters may include PEG conjugations to form pegylated polymers.

在一些實施態樣中,治療性奈米粒子可包括至少一種靶向配位體之結合。靶向配位體可為此項技術中已知的任何配位體,諸如但不限於單株抗體。(Kirpotin等人, Cancer Res. 2006, 66:6732-6740;將其內容以其全文引用方式併入本文中)。 In some embodiments, therapeutic nanoparticles may include the binding of at least one targeting ligand. The targeting ligand can be any ligand known in the art, such as, but not limited to, monoclonal antibodies. (Kirpotin et al., Cancer Res . 2006, 66:6732-6740; the contents of which are incorporated herein by reference in their entirety).

在一些實施態樣中,治療性奈米粒子可在可用於靶向癌症之水溶液中調配(參見PCT專利申請公開案第WO2011084513號及美國公開案第US20110294717號,將每一該等內容以其全文引用方式併入本文中)。In some embodiments, therapeutic nanoparticles can be formulated in an aqueous solution that can be used to target cancer (see PCT Patent Application Publication No. WO2011084513 and U.S. Publication No. US20110294717, each of which is cited in its entirety). incorporated herein by reference).

在一些實施態樣中,核酸疫苗組成物可囊封於合成奈米載劑中、與其連接及/或與其結合。合成奈米載劑包括但不限於那些在下列中所述者:PCT專利申請公開案第WO2010005740號、第WO2010030763號、第WO201213501號、第WO2012149252號、第WO2012149255號、第WO2012149259號、第WO2012149265號、第WO2012149268號、第WO2012149282號、第WO2012149301號、第WO2012149393號、第WO2012149405號、第WO2012149411號、第WO2012149454號及第WO2013019669號,及美國公開案第US20110262491號、第US20100104645號、第US20100087337號及第US20120244222號,將每一該等內容以其全文引用方式併入本文中。合成奈米載劑可使用此項技術中已知及/或本文所述之方法調配。作為非限制性實例,合成奈米載劑可藉由PCT專利申請公開案第WO2010005740號、第WO2010030763號及第WO201213501號,及美國公開案第US20110262491號、第US20100104645號、第US20100087337號及第US2012024422號中所述之方法調配,將每一該等內容以其全文引用方式併入本文中。合成奈米載劑調配物可藉由PCT專利申請公開案公開號WO2011072218及美國專利第8,211,473號中所述之方法凍乾;將每一該等內容以其全文引用方式併入本文中。In some embodiments, nucleic acid vaccine compositions can be encapsulated in, linked to, and/or combined with synthetic nanocarriers. Synthetic nanocarriers include, but are not limited to, those described in: PCT Patent Application Publication Nos. WO2010005740, WO2010030763, WO201213501, WO2012149252, WO2012149255, WO2012149259, WO2012149265, Nos. WO2012149268, WO2012149282, WO2012149301, WO2012149393, WO2012149405, WO2012149411, WO2012149454 and WO2013019669, and U.S. Publication No. US201102 No. 62491, No. US20100104645, No. US20100087337 and No. US20120244222 No., each such content is incorporated herein by reference in its entirety. Synthetic nanocarriers may be formulated using methods known in the art and/or described herein. As non-limiting examples, synthetic nanocarriers can be synthesized by PCT Patent Application Publication Nos. WO2010005740, WO2010030763 and WO201213501, and U.S. Publication Nos. US20110262491, US20100104645, US20100087337 and US2012024422. Each such content is incorporated herein by reference in its entirety. Synthetic nanocarrier formulations can be lyophilized by methods described in PCT Patent Application Publication No. WO2011072218 and US Patent No. 8,211,473; each of which is incorporated herein by reference in its entirety.

在一些實施態樣中,合成奈米載劑可含有反應性基團以釋放本文所述之核酸疫苗組成物(參見PCT專利申請公開案第WO20120952552號及美國公開案第US20120171229號,將每一該等內容以其全文引用方式併入本文中)。In some embodiments, synthetic nanocarriers may contain reactive groups to release the nucleic acid vaccine compositions described herein (see PCT Patent Application Publication No. WO20120952552 and U.S. Publication No. US20120171229, each of which content is incorporated into this article by reference in its entirety).

在一些實施態樣中,合成奈米載劑可調配用於靶向釋放。在一些實施態樣中,合成奈米載劑可經調配以在指定pH下及/或在所需時間間隔之後釋放核酸疫苗組成物。作為非限制性實例,合成奈米粒子可經調配以在24小時之後及/或在4.5之pH下釋放核酸疫苗組成物(參見PCT專利申請公開案第WO2010138193號及第WO2010138194號,及美國公開案第US20110020388號及第US20110027217號,將每一該等內容以其全文引用的方式併入本文中)。In some embodiments, synthetic nanocarriers can be formulated for targeted release. In some embodiments, synthetic nanocarriers can be formulated to release nucleic acid vaccine compositions at a specified pH and/or after a desired time interval. As non-limiting examples, synthetic nanoparticles can be formulated to release nucleic acid vaccine compositions after 24 hours and/or at a pH of 4.5 (see PCT Patent Application Publication Nos. WO2010138193 and WO2010138194, and U.S. Publications No. US20110020388 and US20110027217, each of which is incorporated herein by reference in its entirety).

在一些實施態樣中,合成奈米載劑可調配用於控制釋放及/或持續釋放本文所述之核酸疫苗組成物。作為非限制性實例,用於持續釋放之合成奈米載劑可藉由此項技術中已知、本文所述及/或如PCT專利申請公開案第WO2010138192號及美國公開案第US20100303850號中所述之方法調配,將每一該等內容以其全文引用方式併入本文中。In some embodiments, synthetic nanocarriers can be formulated for controlled release and/or sustained release of the nucleic acid vaccine compositions described herein. By way of non-limiting example, synthetic nanocarriers for sustained release may be prepared by methods known in the art, described herein, and/or as described in PCT Patent Application Publication No. WO2010138192 and U.S. Publication No. US20100303850. Each such content is incorporated herein by reference in its entirety.

在一些實施態樣中,奈米粒子可經最佳化以供經口投予。奈米粒子可包含至少一種陽離子生物聚合物,諸如但不限於聚葡萄胺糖或其衍生物。作為非限制性實例,奈米粒子可藉由美國公開案第US20120282343號中所述之方法調配;將其內容以其全文引用方式併入本文中。In some implementations, nanoparticles can be optimized for oral administration. Nanoparticles may comprise at least one cationic biopolymer such as, but not limited to, polyglucosamine or derivatives thereof. As a non-limiting example, nanoparticles can be formulated by the methods described in US Publication No. US20120282343; the contents of which are incorporated herein by reference in their entirety.

在一些實施態樣中,本揭露之核酸疫苗組成物可在諸如頒予Manoharan等人之美國專利第US 8,575,123號中所述之模組化組成物中調配,將其內容以其全文引用方式併入本文中。作為非限制性實例,模組化組成物可包含核酸(例如本揭露之核酸疫苗組成物)、至少一種內體切割組分及至少一種靶向配位體。模組化組成物可具有一式,諸如頒予Manoharan等人之US 8,575,123中所述之任何式。In some embodiments, the nucleic acid vaccine compositions of the present disclosure can be formulated in modular compositions such as those described in U.S. Patent No. 8,575,123 to Manoharan et al., the contents of which are incorporated by reference in their entirety. into this article. As a non-limiting example, the modular composition may include a nucleic acid (eg, the nucleic acid vaccine composition of the present disclosure), at least one endosomal cleavage component, and at least one targeting ligand. The modular composition may have a formula, such as any of the formulas described in US 8,575,123 to Manoharan et al.

在一些實施態樣中,本揭露之核酸疫苗組成物可囊封於脂質調配物中以形成穩定核酸-脂質粒子(SNALP),諸如頒予de Fougerolles等人之美國專利第US8,546,554號中所述,將其內容以其全文引用方式併入本文。脂質可為陽離子或非陽離子的。在一個非限制性實例中,脂質:核酸比(質量/質量比) (例如脂質:核酸疫苗組成物比)將在以下範圍內:約1:1至約50:1、約1:1至約25:1、約3:1至約15:1、約4:1至約10:1、約5:1至約9:1或約6:1至約9:1,或5:1、6:1、7:1、8:1、9:1、10:1、或11:1。在另一實例中,SNALP包括40% 2,2-二亞麻仁油基-4-二甲胺基乙基-[1,3]-二氧雜環戊烷(脂質A)、10%二油醯基磷脂醯膽鹼(DSPC)、40%膽固醇、10%聚乙二醇(PEG)-C-DOMG(莫耳百分比),粒度為63.0±20 nm,且核酸/脂質比為0.027。In some embodiments, the nucleic acid vaccine compositions of the present disclosure can be encapsulated in lipid formulations to form stable nucleic acid-lipid particles (SNALP), such as those disclosed in U.S. Patent No. 8,546,554 to de Fougerolles et al. The content is incorporated into this article by reference in its entirety. Lipids can be cationic or non-cationic. In a non-limiting example, the lipid:nucleic acid ratio (mass/mass ratio) (e.g., lipid:nucleic acid vaccine composition ratio) will be in the following range: about 1:1 to about 50:1, about 1:1 to about 25:1, about 3:1 to about 15:1, about 4:1 to about 10:1, about 5:1 to about 9:1, or about 6:1 to about 9:1, or 5:1, 6 :1, 7:1, 8:1, 9:1, 10:1, or 11:1. In another example, SNALP includes 40% 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (lipid A), 10% dioleyl Dylphospholipid choline (DSPC), 40% cholesterol, 10% polyethylene glycol (PEG)-C-DOMG (mol%), particle size 63.0±20 nm, and nucleic acid/lipid ratio 0.027.

本揭露之核酸疫苗組成物可用包含內體膜去穩定劑之核酸-脂質粒子調配,如頒予Lam等人之美國專利第US 7,189,705中所揭示,將其內容以其全文引用方式併入本文中。作為非限制性實例,內體膜去穩定劑可為Ca 2+離子。 The nucleic acid vaccine composition of the present disclosure can be formulated with nucleic acid-lipid particles containing endosomal membrane destabilizing agents, as disclosed in U.S. Patent No. 7,189,705 issued to Lam et al., the contents of which are incorporated herein by reference in their entirety. . As a non-limiting example, the endosomal membrane destabilizing agent may be Ca 2+ ions.

在一些實施態樣中,本揭露之核酸疫苗組成物可用頒予Akinc等人之美國專利第US 8,148,344號中所揭示之經調配脂質粒子(FLiPs)調配,將其內容以其全文引用方式併入本文中。Akinc等人教示FLiP可包含單股或雙股寡核苷酸中之至少一者,其中寡核苷酸已結合至親脂體及已與結合之寡核苷酸一起聚集、摻合或結合的乳液或脂質體中之至少一者。如頒予Akinc等人之US 8148344中所揭示,此等粒子已出人意料地顯示出有效地將寡核苷酸遞送至心臟、肺及肌肉。In some embodiments, the nucleic acid vaccine composition of the present disclosure can be formulated with formulated lipid particles (FLiPs) disclosed in U.S. Patent No. 8,148,344 to Akinc et al., the contents of which are incorporated by reference in their entirety. in this article. Akinc et al. teach that FLiP can comprise at least one of a single-stranded or double-stranded oligonucleotide, wherein the oligonucleotide has been bound to a lipophile and an emulsion that has been aggregated, blended, or combined with the bound oligonucleotide. or at least one of liposomes. As disclosed in US 8,148,344 to Akinc et al., these particles have surprisingly been shown to effectively deliver oligonucleotides to the heart, lungs and muscles.

在一些實施態樣中,本揭露之核酸疫苗組成物可使用在脂質調配物中包含表現載體之組成物遞送至細胞,如頒予Tam等人之美國專利第US 6,086,913號中所述,將其內容以其全文引用方式併入本文中。Tam所揭示之組成物為血清穩定的且包含表現載體,該表現載體包含來自腺相關病毒(AAV)之第一及第二反向重複序列、來自AAV之rep基因及核酸片段。Tam中之表現載體與脂質複合。In some embodiments, the nucleic acid vaccine compositions of the present disclosure can be delivered to cells using compositions that include expression vectors in lipid formulations, as described in U.S. Patent No. 6,086,913 to Tam et al. The content is incorporated herein by reference in its entirety. The composition disclosed by Tam is serum stable and includes an expression vector that includes first and second inverted repeats from adeno-associated virus (AAV), the rep gene from AAV, and nucleic acid fragments. The expression vector in Tam is complexed with lipids.

在一些實施態樣中,本揭露之核酸疫苗組成物可用頒予de Fougerolles等人之美國公開案第US 20120270921號中所揭示之脂質調配物調配,將其內容以其全文引用方式併入本文中。在一個非限制性實例中,脂質調配物可包括具有US 20120270921中所述之式A的陽離子脂質。在另一非限制性實例中,US20120270921之表A中所揭示之例示性核酸-脂質粒子的組成物可與本揭露之核酸疫苗組成物一起使用。In some embodiments, the nucleic acid vaccine compositions of the present disclosure may be formulated with the lipid formulation disclosed in US Publication No. US 20120270921 to de Fougerolles et al., the contents of which are incorporated herein by reference in their entirety. . In one non-limiting example, a lipid formulation may include a cationic lipid of Formula A as described in US 20120270921. In another non-limiting example, the exemplary nucleic acid-lipid particle composition disclosed in Table A of US20120270921 can be used with the nucleic acid vaccine composition of the present disclosure.

在一些實施態樣中,本揭露之核酸疫苗組成物可完全囊封於頒予Maurer等人之美國公開案第US 20120276207號中所揭示之脂質粒子,將其內容以其全文引用方式併入本文中。粒子可包含脂質組成物,該脂質組成物包含預先形成之脂質囊泡、帶電治療劑及去穩定劑以在去穩定溶劑中形成預先形成之囊泡及治療劑的混合物,其中去穩定溶劑有效地使預先形成之脂質囊泡的膜去穩定而不破壞囊泡。In some embodiments, the nucleic acid vaccine composition of the present disclosure can be completely encapsulated in the lipid particles disclosed in US Publication No. US 20120276207 to Maurer et al., the contents of which are incorporated herein by reference in their entirety. middle. The particles may comprise a lipid composition comprising preformed lipid vesicles, a charged therapeutic agent, and a destabilizing agent to form a mixture of preformed vesicles and therapeutic agent in a destabilizing solvent, wherein the destabilizing solvent effectively Destabilizes the membrane of preformed lipid vesicles without damaging the vesicles.

在一些實施態樣中,本揭露之核酸疫苗組成物可用結合脂質調配。在非限制性實例中,結合脂質可具有諸如頒予Lin等人之美國公開案第US 20120264810號中所述之式,將其內容以其全文引用方式併入本文中。共軛脂質可形成脂質粒子,其進一步包含陽離子脂質、中性脂質及能夠減少聚集之脂質。In some embodiments, the nucleic acid vaccine compositions of the present disclosure may be formulated with conjugated lipids. In a non-limiting example, the binding lipid may have a formula such as that described in US Publication No. 20120264810 to Lin et al., the contents of which are incorporated herein by reference in their entirety. Conjugated lipids can form lipid particles, which further include cationic lipids, neutral lipids, and lipids capable of reducing aggregation.

在一些實施態樣中,本揭露之核酸疫苗組成物可在諸如頒予Fitzgerald等人之美國公開案第US 20120244207號中所揭示之中性脂質體調配物中調配,將其內容以其全文引用方式併入本文中。片語「中性脂質體調配物」係指在生理pH下具有接近中性或中性表面電荷的脂質體調配物。生理pH可為例如約7.0至約7.5、或例如約7.5,或例如7.0、7.1、7.2、7.3、7.4或7.5、或例如7.3、或例如7.4。中性脂質體調配物之實例為可離子化的脂質奈米粒子(iLNP)。中性脂質體調配物可包括可離子化的陽離子脂質,例如DLin-KC2-DMA。In some embodiments, the nucleic acid vaccine compositions of the present disclosure can be formulated in neutral liposome formulations such as those disclosed in US Publication No. 20120244207 to Fitzgerald et al., the contents of which are incorporated by reference in their entirety. method is incorporated into this article. The phrase "neutral liposome formulation" refers to a liposome formulation that has a near-neutral or neutral surface charge at physiological pH. Physiological pH can be, for example, about 7.0 to about 7.5, or, for example, about 7.5, or, for example, 7.0, 7.1, 7.2, 7.3, 7.4, or 7.5, or, for example, 7.3, or, for example, 7.4. Examples of neutral liposomal formulations are ionizable lipid nanoparticles (iLNPs). Neutral liposome formulations may include ionizable cationic lipids, such as DLin-KC2-DMA.

在一些實施態樣中,本揭露之核酸疫苗組成物可用帶電脂質或胺基脂質調配。如本文所用,術語「帶電脂質」意欲包括具有一或兩個脂肪醯基或脂肪烷基鏈及四級胺基頭基的彼等脂質。四級胺攜帶永久正電荷。頭基可視情況包括可離子化的基團,諸如可在生理pH下質子化之一級、二級或三級胺。相對於不具有四級胺(例如四級胺經三級胺置換)之結構類似化合物中之基團的pKa,四級胺之存在可改變可離子化的基團之pKa。在一些實施態樣中,帶電脂質稱為「胺基脂質」。在非限制性實例中,胺基脂質可為頒予Hope等人之美國公開案第US20110256175號中所述之任何胺基脂質,將其內容以其全文引用方式併入本文中。例如,胺基脂質可具有Hope之表3至7中所揭示之結構,諸如結構(II)、DLin-K-C2-DMA、DLin-K2-DMA、DLin-K6-DMA等。所得醫藥製劑可根據Hope凍乾。在另一非限制性實例中,胺基脂質可為頒予Hope等人之US 20110117125中所述之任何胺基脂質,將其內容以其全文引用方式併入本文中,諸如結構(I)、DLin-K-DMA、DLin-C-DAP、DLin-DAC、DLin-MA、DLin-S-DMA等脂質。在另一非限制性實例中,胺基脂質可具有如頒予Manoharan等人之PCT專利申請公開案第WO2009132131號中所述之結構(I)、(II)、(III)或(IV),或4-(R)-DLin-K-DMA (VI)、4-(S)-DLin-K-DMA (V),將其內容以其全文引用方式併入本文中。在另一非限制性實例中,本文所述之任何調配物中所用之帶電脂質可為頒予Manoharan等人之EP2509636中所述之任何帶電脂質,將其內容以其全文引用方式併入本文中。In some embodiments, the nucleic acid vaccine compositions of the present disclosure can be formulated with charged lipids or amino lipids. As used herein, the term "charged lipid" is intended to include those lipids having one or two fatty acyl or fatty alkyl chains and a quaternary amine head group. Quaternary amines carry a permanent positive charge. The headgroup optionally includes an ionizable group such as a primary, secondary or tertiary amine that can be protonated at physiological pH. The presence of a quaternary amine can change the pKa of an ionizable group relative to the pKa of a group in a structurally similar compound that does not have a quaternary amine (eg, a quaternary amine replaced by a tertiary amine). In some embodiments, the charged lipids are called "amino lipids." In a non-limiting example, the amino lipid can be any of the amino lipids described in US Publication No. 20110256175 to Hope et al., the contents of which are incorporated herein by reference in their entirety. For example, the amino lipid can have the structures disclosed in Tables 3 to 7 of Hope, such as structure (II), DLin-K-C2-DMA, DLin-K2-DMA, DLin-K6-DMA, etc. The resulting pharmaceutical preparation can be lyophilized according to Hope. In another non-limiting example, the amino lipid can be any of the amino lipids described in US 20110117125 to Hope et al., the contents of which are incorporated herein by reference in their entirety, such as structure (I), DLin-K-DMA, DLin-C-DAP, DLin-DAC, DLin-MA, DLin-S-DMA and other lipids. In another non-limiting example, the amino lipid may have structure (I), (II), (III) or (IV) as described in PCT Patent Application Publication No. WO2009132131 to Manoharan et al. or 4-(R)-DLin-K-DMA (VI), 4-(S)-DLin-K-DMA (V), the contents of which are incorporated herein by reference in their entirety. In another non-limiting example, the charged lipid used in any formulation described herein can be any of the charged lipids described in EP 2509636 to Manoharan et al., the contents of which are incorporated herein by reference in their entirety. .

在一些實施態樣中,本揭露之核酸疫苗組成物可用締合複合物調配。在非限制性實例中,締合複合物包含頒予Manoharan等人之美國專利第US8,034,376號中所揭示之一或多種各自具有由式(I)所定義之結構的化合物、具有由式(XV)定義之結構的PEG-脂質、類固醇及核酸,將其內容以其全文引用方式併入本文中。核酸疫苗組成物可用美國專利第US8,034,376號中所述之任何締合複合物調配,將其內容以其全文引用方式併入本文中。In some embodiments, the nucleic acid vaccine compositions of the present disclosure may be formulated with association complexes. In a non-limiting example, the associative complex includes one or more compounds each having a structure defined by formula (I) as disclosed in U.S. Pat. No. 8,034,376 to Manoharan et al., having a structure defined by formula (I) XV), the contents of which are incorporated herein by reference in their entirety. Nucleic acid vaccine compositions may be formulated with any of the association complexes described in U.S. Patent No. 8,034,376, the contents of which are incorporated herein by reference in their entirety.

在一些實施態樣中,本揭露之核酸疫苗組成物可用反向頭基脂質調配。作為非限制性實例,核酸疫苗組成物可用包含頭基之兩性離子脂質調配,其中正電荷位於醯基鏈區域附近且負電荷位於頭基遠端,諸如具有頒予Leung等人之PCT專利申請公開案第WO2011056682號中所述之結構(A)或結構(I)的脂質,將其內容以其全文引用方式併入本文中。In some embodiments, the nucleic acid vaccine compositions of the present disclosure can be formulated with reverse headgroup lipids. As a non-limiting example, nucleic acid vaccine compositions may be formulated with zwitterionic lipids containing a head group in which positive charges are located near the acyl chain region and negative charges are located distal to the head group, such as disclosed in PCT patent application issued to Leung et al. The lipid of structure (A) or structure (I) described in Case No. WO2011056682 is incorporated herein by reference in its entirety.

在一些實施態樣中,本揭露之核酸疫苗組成物可在脂質雙層載劑中調配。作為非限制性實例,核酸疫苗組成物可與脂質-清潔劑混合物組合以提供核酸-脂質-清潔劑混合物,該脂質-清潔劑混合物包含約5莫耳%至約20莫耳%之量的防聚集劑、約0.5莫耳%至約50莫耳%之量的陽離子脂質及促融脂質之脂質混合物及清潔劑;且接著用緩衝鹽溶液滲吸核酸-脂質-清潔劑混合物以移除清潔劑且將核酸囊封於脂質雙層載劑中,且提供脂質雙層-核酸組成物,其中緩衝鹽溶液之離子強度足以囊封約40%至約80%之核酸,如頒予Cullis等人之PCT專利申請公開案第WO1999018933號中所述,將其內容以其全文引用方式併入本文中。In some embodiments, the nucleic acid vaccine compositions of the present disclosure can be formulated in a lipid bilayer carrier. As a non-limiting example, the nucleic acid vaccine composition can be combined with a lipid-detergent mixture to provide a nucleic acid-lipid-detergent mixture that includes an amount of about 5 molar % to about 20 molar %. an aggregating agent, a lipid mixture of cationic lipids and melt-promoting lipids in an amount from about 0.5 molar % to about 50 molar %, and a detergent; and then aspirating the nucleic acid-lipid-detergent mixture with a buffered saline solution to remove the detergent and encapsulating the nucleic acid in a lipid bilayer carrier and providing a lipid bilayer-nucleic acid composition in which the ionic strength of the buffer saline solution is sufficient to encapsulate about 40% to about 80% of the nucleic acid, as awarded to Cullis et al. Described in PCT Patent Application Publication No. WO1999018933, the contents of which are incorporated herein by reference in their entirety.

在一些實施態樣中,本揭露之核酸疫苗組成物可包含(a)核酸;(b) 1.0莫耳%至45莫耳%之陽離子脂質;(c) 0.0莫耳%至90莫耳%之另一脂質;(d) 1.0莫耳%至10莫耳%之雙層穩定組分;(e) 0.0莫耳%至60莫耳%膽固醇;及(f) 0.0莫耳%至10莫耳%陽離子聚合物脂質,如頒予Cullis等人之EP1328254中所述,將其內容以其全文引用方式併入本文中。In some embodiments, the nucleic acid vaccine composition of the present disclosure may include (a) nucleic acid; (b) 1.0 mol% to 45 mol% of cationic lipids; (c) 0.0 mol% to 90 mol% of Another lipid; (d) 1.0 mol% to 10 mol% of the bilayer stabilizing component; (e) 0.0 mol% to 60 mol% cholesterol; and (f) 0.0 mol% to 10 mol% Cationic polymeric lipids are described in EP 1328254 to Cullis et al., the contents of which are incorporated herein by reference in their entirety.

在一些實施態樣中,核酸疫苗可使用較小LNP來遞送。此類粒子可包含小於0.1 µm直至100 nm之直徑,諸如但不限於小於0.1 µm、小於1.0 µm、小於5 µm、小於10 µm、小於15 µm、小於20 µm、小於25 µm、小於30 µm、小於35 µm、小於40 µm、小於50 µm、小於55 µm、小於60 µm、小於65 µm、小於70 µm、小於75 µm、小於80 µm、小於85 µm、小於90 µm、小於95 µm、小於100 µm、小於125 µm、小於150 µm、小於175 µm、小於200 µm、小於225 µm、小於250 µm、小於275 µm、小於300 µm、小於325 µm、小於350 µm、小於375 µm、小於400 µm、小於425 µm、小於450 µm、小於475 µm、小於500 µm、小於525 µm、小於550 µm、小於575 µm、小於600 µm、小於625 µm、小於650 µm、小於675 µm、小於700 µm、小於725 µm、小於750 µm、小於775 µm、小於800 µm、小於825 µm、小於850 µm、小於875 µm、小於900 µm、小於925 um、小於950 µm、小於975 µm。In some implementations, nucleic acid vaccines can be delivered using smaller LNPs. Such particles may include diameters from less than 0.1 µm up to 100 nm, such as, but not limited to, less than 0.1 µm, less than 1.0 µm, less than 5 µm, less than 10 µm, less than 15 µm, less than 20 µm, less than 25 µm, less than 30 µm, Less than 35 µm, Less than 40 µm, Less than 50 µm, Less than 55 µm, Less than 60 µm, Less than 65 µm, Less than 70 µm, Less than 75 µm, Less than 80 µm, Less than 85 µm, Less than 90 µm, Less than 95 µm, Less than 100 µm, less than 125 µm, less than 150 µm, less than 175 µm, less than 200 µm, less than 225 µm, less than 250 µm, less than 275 µm, less than 300 µm, less than 325 µm, less than 350 µm, less than 375 µm, less than 400 µm, Less than 425 µm, Less than 450 µm, Less than 475 µm, Less than 500 µm, Less than 525 µm, Less than 550 µm, Less than 575 µm, Less than 600 µm, Less than 625 µm, Less than 650 µm, Less than 675 µm, Less than 700 µm, Less than 725 µm, less than 750 µm, less than 775 µm, less than 800 µm, less than 825 µm, less than 850 µm, less than 875 µm, less than 900 µm, less than 925 um, less than 950 µm, less than 975 µm.

在另一實施態樣中,核酸疫苗可使用較小LNP來遞送,該等LNP之直徑可為約1 nm至約100 nm、約1 nm至約10 nm、約1 nm至約20 nm、約1 nm至約30 nm、約1 nm至約40 nm、約1 nm至約50 nm、約1 nm至約60 nm、約1 nm至約70 nm、約1 nm至約80 nm、約1 nm至約90 nm、約5 nm至約100 nm、約5 nm至約10 nm、約5 nm至約20 nm、約5 nm至約30 nm、約5 nm至約40 nm、約5 nm至約50 nm、約5 nm至約60 nm、約5 nm至約70 nm、約5 nm至約80 nm、約5 nm至約90 nm、約10 nm至約50 nm、約20 nm至約50 nm、約30 nm至約50 nm、約40 nm至約50 nm、約20 nm至約60 nm、約30 nm至約60 nm、約40 nm至約60 nm、約20 nm至約70 nm、約30 nm至約70 nm、約40 nm至約70 nm、約50 nm至約70 nm、約60 nm至約70 nm、約20 nm至約80 nm、約30 nm至約80 nm、約40 nm至約80 nm、約50 nm至約80 nm、約60 nm至約80 nm、約20 nm至約90 nm、約30 nm至約90 nm、約40 nm至約90 nm、約50 nm至約90 nm、約60 nm至約90 nm、及/或約70 nm至約90 nm。In another embodiment, the nucleic acid vaccine can be delivered using smaller LNPs, and the diameter of the LNPs can be about 1 nm to about 100 nm, about 1 nm to about 10 nm, about 1 nm to about 20 nm, about 1 nm to about 30 nm, about 1 nm to about 40 nm, about 1 nm to about 50 nm, about 1 nm to about 60 nm, about 1 nm to about 70 nm, about 1 nm to about 80 nm, about 1 nm to about 90 nm, about 5 nm to about 100 nm, about 5 nm to about 10 nm, about 5 nm to about 20 nm, about 5 nm to about 30 nm, about 5 nm to about 40 nm, about 5 nm to about 50 nm, about 5 nm to about 60 nm, about 5 nm to about 70 nm, about 5 nm to about 80 nm, about 5 nm to about 90 nm, about 10 nm to about 50 nm, about 20 nm to about 50 nm , about 30 nm to about 50 nm, about 40 nm to about 50 nm, about 20 nm to about 60 nm, about 30 nm to about 60 nm, about 40 nm to about 60 nm, about 20 nm to about 70 nm, about 30 nm to about 70 nm, about 40 nm to about 70 nm, about 50 nm to about 70 nm, about 60 nm to about 70 nm, about 20 nm to about 80 nm, about 30 nm to about 80 nm, about 40 nm to about 80 nm, about 50 nm to about 80 nm, about 60 nm to about 80 nm, about 20 nm to about 90 nm, about 30 nm to about 90 nm, about 40 nm to about 90 nm, about 50 nm to about 90 nm, about 60 nm to about 90 nm, and/or about 70 nm to about 90 nm.

在一些實施態樣中,核酸疫苗可在具有以下直徑之脂質奈米粒子中調配:約10 nm至約100 nm,例如(但不限於)、約10 nm至約20 nm、約10 nm至約30 nm、約10 nm至約40 nm、約10 nm至約50 nm、約10 nm至約60 nm、約10 nm至約70 nm、約10 nm至約80 nm、約10 nm至約90 nm、約20 nm至約30 nm、約20 nm至約40 nm、約20 nm至約50 nm、約20 nm至約60 nm、約20 nm至約70 nm、約20 nm至約80 nm、約20 nm至約90 nm、約20 nm至約100 nm、約30 nm至約40 nm、約30 nm至約50 nm、約30 nm至約60 nm、約30 nm至約70 nm、約30 nm至約80 nm、約30 nm至約90 nm、約30 nm至約100 nm、約40 nm至約50 nm、約40 nm至約60 nm、約40 nm至約70 nm、約40 nm至約80 nm、約40 nm至約90 nm、約40 nm至約100 nm、約50 nm至約60 nm、約50 nm至約70 nm、約50 nm至約80 nm、約50 nm至約90 nm、約50 nm至約100 nm、約60 nm至約70 nm、約60 nm至約80 nm、約60 nm至約90 nm、約60 nm至約100 nm、約70 nm至約80 nm、約70 nm至約90 nm、約70 nm至約100 nm、約80 nm至約90 nm、約80 nm至約100 nm、及/或約90 nm至約100 nm。In some embodiments, nucleic acid vaccines can be formulated in lipid nanoparticles having a diameter of about 10 nm to about 100 nm, such as, but not limited to, about 10 nm to about 20 nm, about 10 nm to about 30 nm, about 10 nm to about 40 nm, about 10 nm to about 50 nm, about 10 nm to about 60 nm, about 10 nm to about 70 nm, about 10 nm to about 80 nm, about 10 nm to about 90 nm , about 20 nm to about 30 nm, about 20 nm to about 40 nm, about 20 nm to about 50 nm, about 20 nm to about 60 nm, about 20 nm to about 70 nm, about 20 nm to about 80 nm, about 20 nm to about 90 nm, about 20 nm to about 100 nm, about 30 nm to about 40 nm, about 30 nm to about 50 nm, about 30 nm to about 60 nm, about 30 nm to about 70 nm, about 30 nm to about 80 nm, about 30 nm to about 90 nm, about 30 nm to about 100 nm, about 40 nm to about 50 nm, about 40 nm to about 60 nm, about 40 nm to about 70 nm, about 40 nm to about 80 nm, about 40 nm to about 90 nm, about 40 nm to about 100 nm, about 50 nm to about 60 nm, about 50 nm to about 70 nm, about 50 nm to about 80 nm, about 50 nm to about 90 nm , about 50 nm to about 100 nm, about 60 nm to about 70 nm, about 60 nm to about 80 nm, about 60 nm to about 90 nm, about 60 nm to about 100 nm, about 70 nm to about 80 nm, about 70 nm to about 90 nm, about 70 nm to about 100 nm, about 80 nm to about 90 nm, about 80 nm to about 100 nm, and/or about 90 nm to about 100 nm.

在一些實施態樣中,核酸疫苗可在具有10至1000 nm之直徑的脂質奈米粒子中調配。奈米粒子可為10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、100、105、110、115、120、125、130、135、140、145、150、155、160、165、170、175、180、185、190、195、200、205、210、215、220、225、230、235、240、245、250、255、260、265、270、275、280、285、290、295、300、305、310、315、320、325、330、335、340、345、350、355、360、365、370、375、380、385、390、395、400、405、410、415、420、425、430、435、440、445、450、455、460、465、470、475、480、485、490、495、500、505、510、515、520、525、530、535、540、545、550、555、560、565、570、575、580、585、590、595、600、605、610、615、620、625、630、635、640、645、650、655、660、665、670、675、680、685、690、695、700、705、710、715、720、725、730、735、740、745、750、755、760、765、770、775、780、785、790、795、800、805、810、815、820、825、830、835、840、845、850、855、860、865、870、875、880、885、890、895、900、905、910、915、920、925、930、935、940、945、950、955、960、965、970、975、980、985、990、995、或1000 nm。In some embodiments, nucleic acid vaccines can be formulated in lipid nanoparticles having a diameter of 10 to 1000 nm. Nanoparticles can be 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120 ,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195,200,205,210,215,220,225,230,235,240,245 ,250,255,260,265,270,275,280,285,290,295,300,305,310,315,320,325,330,335,340,345,350,355,360,365,370 ,375,380,385,390,395,400,405,410,415,420,425,430,435,440,445,450,455,460,465,470,475,480,485,490,495 ,500,505,510,515,520,525,530,535,540,545,550,555,560,565,570,575,580,585,590,595,600,605,610,615,620 ,625,630,635,640,645,650,655,660,665,670,675,680,685,690,695,700,705,710,715,720,725,730,735,740,745 ,750,755,760,765,770,775,780,785,790,795,800,805,810,815,820,825,830,835,840,845,850,855,860,865,870 ,875,880,885,890,895,900,905,910,915,920,925,930,935,940,945,950,955,960,965,970,975,980,985,990,995 , or 1000 nm.

在一些實施態樣中,脂質奈米粒子可具有約10至500 nm之直徑。In some implementations, lipid nanoparticles can have a diameter of about 10 to 500 nm.

在一些實施態樣中,脂質奈米粒子之直徑可為大於100 nm、大於150 nm、大於200 nm、大於250 nm、大於300 nm、大於350 nm、大於400 nm、大於450 nm、大於500 nm、大於550 nm、大於600 nm、大於650 nm、大於700 nm、大於750 nm、大於800 nm、大於850 nm、大於900 nm、大於950 nm、或大於1000 nm。 聚合物、可生物降解奈米粒子及核-殼奈米粒子 In some embodiments, the diameter of the lipid nanoparticles can be greater than 100 nm, greater than 150 nm, greater than 200 nm, greater than 250 nm, greater than 300 nm, greater than 350 nm, greater than 400 nm, greater than 450 nm, greater than 500 nm. , greater than 550 nm, greater than 600 nm, greater than 650 nm, greater than 700 nm, greater than 750 nm, greater than 800 nm, greater than 850 nm, greater than 900 nm, greater than 950 nm, or greater than 1000 nm. Polymers, biodegradable nanoparticles and core-shell nanoparticles

本揭露之核酸疫苗組成物可使用天然及/或合成聚合物調配。可用於遞送之聚合物之非限制性實例包括但不限於DYNAMIC POLYCONJUGATE® (Arrowhead Research Corp., Pasadena, CA)、獲自MIRUS® Bio (Madison, WI)及Roche Madison (Madison, WI)之調配物、PHASERX TM聚合物調配物(諸如但不限於SMARTT POLYMER TECHNOLOGY™ (PHASERX®, Seattle, WA))、DMRI/DOPE、泊洛沙姆、獲自Vical (San Diego, CA)之VAXFECTIN®佐劑、聚葡萄胺糖、獲自Calando Pharmaceuticals (Pasadena, CA)之環糊精、樹枝狀聚合物及聚(乳酸-共-乙醇酸) (PLGA)聚合物、RONDEL TM(RNAi/寡核苷酸奈米粒子遞送)聚合物(Arrowhead Research Corporation, Pasadena, CA)及pH反應性共嵌段共聚物,諸如但不限於PHASERX® (Seattle, WA)。 The nucleic acid vaccine composition of the present disclosure can be formulated using natural and/or synthetic polymers. Non-limiting examples of polymers that can be used for delivery include, but are not limited to, DYNAMIC POLYCONJUGATE® (Arrowhead Research Corp., Pasadena, CA), formulations available from MIRUS® Bio (Madison, WI) and Roche Madison (Madison, WI) , PHASERX polymer formulations such as, but not limited to, SMARTT POLYMER TECHNOLOGY™ (PHASERX®, Seattle, WA), DMRI/DOPE, poloxamer, VAXFECTIN® adjuvants available from Vical (San Diego, CA), Polyglucosamine, cyclodextrin, dendrimers and poly(lactic-co-glycolic acid) (PLGA) polymers obtained from Calando Pharmaceuticals (Pasadena, CA), RONDEL (RNAi/oligonucleotide nanoparticles particle delivery) polymers (Arrowhead Research Corporation, Pasadena, CA) and pH-responsive co-block copolymers such as, but not limited to, PHASERX® (Seattle, WA).

基於聚葡萄胺糖之調配物之非限制性實例包括帶正電聚葡萄胺糖之核心及帶負電基質之外部部分(美國公開案第US20120258176號;將其內容以其全文引用方式併入本文中)。聚葡萄胺糖包括但不限於N-三甲基聚葡萄胺糖、單-N-羧甲基聚葡萄胺糖(MCC)、N-棕櫚醯基聚葡萄胺糖(NPCS)、EDTA-聚葡萄胺糖、低分子量聚葡萄胺糖、聚葡萄胺糖衍生物或其組合。Non-limiting examples of polyglucosamine-based formulations include a positively charged polyglucosamine core and an outer portion of a negatively charged matrix (U.S. Publication No. US20120258176; the contents of which are incorporated herein by reference in their entirety). ). Polyglucosamine includes, but is not limited to, N-trimethylpolyglucosamine, mono-N-carboxymethylpolyglucosamine (MCC), N-palmitoyl polyglucosamine (NPCS), EDTA-polyglucosamine Aminosugar, low molecular weight polyglucosamine, polyglucosamine derivatives or combinations thereof.

在一些實施態樣中,本揭露中所用之聚合物已經歷處理以減少及/或抑制非所需物質,諸如但不限於細菌附著至聚合物表面。聚合物可藉由此項技術中已知及/或描述及/或PCT專利申請公開案第WO2012150467號中描述之方法處理;將其內容以其全文引用方式併入本文中。In some embodiments, the polymers used in the present disclosure have been treated to reduce and/or inhibit attachment of undesirable species, such as but not limited to bacteria, to the polymer surface. The polymer may be treated by methods known in the art and/or described and/or described in PCT Patent Application Publication No. WO2012150467; the contents of which are incorporated herein by reference in their entirety.

基於PLGA之調配物的非限制性實例包括但不限於基於PLGA之可注射儲存物(例如ELIGARD®,其係藉由將PLGA溶解於66% N-甲基-2-吡咯啶酮(NMP)及其餘部分之水溶劑及亮丙瑞林中形成。一旦注射,PLGA及亮丙瑞林肽便沈澱至皮下空間中。基於PLGA之可注射儲存物可為長效的。Non-limiting examples of PLGA-based formulations include, but are not limited to, PLGA-based injectable depots (e.g., ELIGARD®, prepared by dissolving PLGA in 66% N-methyl-2-pyrrolidone (NMP) and The remainder is formed in aqueous solvent and leuprolide. Once injected, PLGA and leuprolide peptide precipitate into the subcutaneous space. Injectable depots based on PLGA can be long-acting.

許多此等聚合物方法已證明在將寡核苷酸活體內遞送至細胞質中的功效(綜述於Fougerolles Hum Gene Ther.2008, 19:125-132中;將其內容以其全文引用方式併入本文中)。在小干擾RNA (siRNA)之情況下,兩種聚合物方法產生了穩固的核酸活體內遞送,亦即動態多共軛體及基於環糊精之奈米粒子。此等遞送方法中之第一者使用動態多共軛體且已顯示在小鼠活體內有效地遞送siRNA且使肝細胞中之內源性目標mRNA沉默(Rozema等人, Proc Natl Acad Sci U S A.2007, 104:12982-12887;將其內容以其全文引用方式併入本文中)。此特定方法為一種多組分聚合物系統,其主要特徵包括經由二硫鍵與核酸(在此情況下為siRNA)共價偶聯之膜活性聚合物,其中PEG (用於電荷掩蔽)及 N-乙醯基半乳糖胺(用於肝細胞靶向)基團經由pH敏感鍵連接(再次參見Rozema等人, Proc Natl Acad Sci U S A. 2007, 104:12982-12887)。在與肝細胞結合且進入內體後,聚合物複合物在低pH環境中分解,聚合物暴露其正電荷,導致內體逃逸及siRNA自聚合物的細胞質釋放。經由用甘露糖基團替換 N-乙醯基半乳糖胺基團,顯示可改變自表現去唾液酸醣蛋白受體之肝細胞至竇內皮細胞及庫弗細胞的靶向性。另一聚合物方法涉及使用運鐵蛋白靶向的含環糊精之聚陽離子奈米粒子。此等奈米粒子已證明在表現運鐵蛋白受體之尤文氏肉瘤腫瘤細胞中靶向沉默 EWS-FLI1基因產物(Hu-Lieskovan等人, Cancer Res.2005, 65: 8984-8982;以全文引用方式併入本文中),且在此等奈米粒子中調配之siRNA在非人類靈長類動物中具有良好耐受性(Heidel等人, Proc Natl Acad Sci USA2007, 104:5715-21;以全文引用方式併入本文中)。此兩種遞送策略均結合了使用靶向遞送及內體逃逸機制的合理方法。 Many of these polymeric approaches have demonstrated efficacy in delivering oligonucleotides into the cytoplasm in vivo (reviewed in Fougerolles Hum Gene Ther. 2008, 19:125-132; the contents of which are incorporated herein by reference in their entirety) middle). In the case of small interfering RNA (siRNA), two polymer approaches have resulted in robust in vivo delivery of nucleic acids, namely dynamic polyconjugates and cyclodextrin-based nanoparticles. The first of these delivery methods used dynamic polyconjugates and has been shown to efficiently deliver siRNA in vivo in mice and silence endogenous target mRNA in hepatocytes (Rozema et al., Proc Natl Acad Sci US A . 2007, 104:12982-12887; the contents of which are incorporated herein by reference in their entirety). This particular approach is a multi-component polymer system whose main features include a membrane-active polymer covalently coupled to a nucleic acid (siRNA in this case) via disulfide bonds, with PEG (for charge masking) and N The -acetylgalactosamine (for hepatocyte targeting) group is attached via a pH-sensitive bond (see again Rozema et al., Proc Natl Acad Sci USA . 2007, 104:12982-12887). After binding to hepatocytes and entering endosomes, the polymer complex dissociates in a low pH environment, exposing the polymer to its positive charge, resulting in endosomal escape and cytoplasmic release of siRNA from the polymer. By replacing the N -acetylgalactosamine group with a mannose group, targeting from hepatocytes expressing asialoglycoprotein receptors to sinusoidal endothelial cells and Kupffer cells was shown to change. Another polymer approach involves the use of transferrin-targeted cyclodextrin-containing polycationic nanoparticles. These nanoparticles have demonstrated targeted silencing of the EWS-FLI1 gene product in Ewing's sarcoma tumor cells expressing the transferrin receptor (Hu-Lieskovan et al., Cancer Res. 2005, 65: 8984-8982; cited in full are incorporated herein), and siRNA formulated in these nanoparticles is well tolerated in non-human primates (Heidel et al., Proc Natl Acad Sci USA 2007, 104:5715-21; with The full text is incorporated into this article by reference). Both delivery strategies combine rational approaches using targeted delivery and endosomal escape mechanisms.

聚合物調配物可允許核酸疫苗組成物的持續或延遲釋放(例如在肌內、皮下、實質內、鞘內、腦室內投予後)。核酸疫苗組成物之經改變釋放特徵可引起例如編碼蛋白質或多肽或肽在延長時段內的轉譯。可生物降解聚合物先前已用於保護核酸免於降解且已顯示引起有效負載之活體內持續釋放(Rozema等人, Proc Natl Acad Sci U S A.2007, 104:12982-12887;Sullivan等人, Expert Opin Drug Deliv.2010, 7:1433-1446;Convertine等人, Biomacromolecules.2010年10月1日;Chu等人, Acc Chem Res.2012年1月13日;Manganiello等人, Biomaterials.2012, 33:2301-2309;Benoit等人, Biomacromolecules. 2011, 12:2708-2714;Singha等人, Nucleic Acid Ther.2011, 2:133-147;de Fougerolles Hum Gene Ther.2008, 19:125-132;Schaffert及Wagner, Gene Ther.2008, 16:1131-1138;Chaturvedi等人, Expert Opin Drug Deliv.2011, 8:1455-1468;Davis, Mol Pharm.2009, 6:659-668;Davis, Nature,2010, 464:1067-1070;將每一該等內容以其全文引用方式併入本文中)。 Polymeric formulations may allow sustained or delayed release of the nucleic acid vaccine composition (eg, following intramuscular, subcutaneous, intraparenchymal, intrathecal, intracerebroventricular administration). Altered release characteristics of nucleic acid vaccine compositions can result in, for example, translation of the encoded protein or polypeptide or peptide over an extended period of time. Biodegradable polymers have previously been used to protect nucleic acids from degradation and have been shown to induce sustained release of payloads in vivo (Rozema et al., Proc Natl Acad Sci US A. 2007, 104:12982-12887; Sullivan et al., Expert Opin Drug Deliv. 2010, 7:1433-1446; Convertine et al., Biomacromolecules. Oct. 1, 2010; Chu et al., Acc Chem Res. Jan. 13, 2012; Manganiello et al., Biomaterials. 2012, 33: 2301-2309; Benoit et al., Biomacromolecules . 2011, 12:2708-2714; Singha et al., Nucleic Acid Ther. 2011, 2:133-147; de Fougerolles Hum Gene Ther. 2008, 19:125-132; Schaffert and Wagner, Gene Ther. 2008, 16:1131-1138; Chaturvedi et al., Expert Opin Drug Deliv. 2011, 8:1455-1468; Davis, Mol Pharm. 2009, 6:659-668; Davis, Nature, 2010, 464 :1067-1070; each such content is incorporated herein by reference in its entirety).

在一些實施態樣中,本揭露之核酸疫苗可調配用於控制釋放。一種形式的控釋調配物含有分散或囊封於緩慢降解、無毒、非抗原性聚合物,諸如共聚(乳酸/乙醇酸)中的治療化合物或其鹽,如Kent等人,美國專利第4,675,189號之開創性工作中所述,將其內容以其全文引用的方式併入本文中。化合物或其鹽亦可調配為膽固醇或其他脂質基質丸粒,或矽彈性體基質植入物。作為非限制性實例,本揭露之核酸疫苗可分散或囊封於美國專利第4,675,189號中所揭示之聚合物中以用於控制釋放。控制釋放調配物之另一形式包含可生物降解聚合物之溶液,諸如共聚(乳酸/乙醇酸)或乳酸及PEG之嵌段共聚物,其經皮下或肌內注射以獲得用於控制釋放之儲庫調配物。In some implementations, the nucleic acid vaccines of the present disclosure can be formulated for controlled release. One form of controlled release formulation contains the therapeutic compound dispersed or encapsulated in a slowly degrading, non-toxic, non-antigenic polymer, such as copolymer (lactic acid/glycolic acid) or a salt thereof, as described by Kent et al., U.S. Patent No. 4,675,189 described in their seminal work, the contents of which are incorporated into this article by reference in their entirety. The compounds or salts thereof may also be formulated as cholesterol or other lipid matrix pellets, or silicone elastomer matrix implants. As a non-limiting example, the nucleic acid vaccine of the present disclosure can be dispersed or encapsulated in the polymer disclosed in US Pat. No. 4,675,189 for controlled release. Another form of controlled release formulations comprise solutions of biodegradable polymers, such as copolymers (lactic acid/glycolic acid) or block copolymers of lactic acid and PEG, which are injected subcutaneously or intramuscularly to obtain a reservoir for controlled release. Library mix.

在一些實施態樣中,醫藥組成物可為持續釋放調配物。在其他實施態樣中,持續釋放調配物可用於皮下遞送。持續釋放調配物可包括但不限於PLGA微球、乙烯乙酸乙烯酯(EVAc)、泊洛沙姆、GELSITE® (Nanotherapeutics, Inc. Alachua, FL)、HYLENEX® (Halozyme Therapeutics, San Diego CA)、外科密封劑諸如血纖維蛋白原聚合物(Ethicon Inc. Cornelia, GA)、TISSELL® (Baxter International, Inc Deerfield, IL)、基於PEG之密封劑及COSEAL® (Baxter International, Inc Deerfield, IL)。In some embodiments, the pharmaceutical composition can be a sustained release formulation. In other embodiments, sustained release formulations can be used for subcutaneous delivery. Sustained release formulations may include, but are not limited to, PLGA microspheres, ethylene vinyl acetate (EVAc), poloxamer, GELSITE® (Nanotherapeutics, Inc. Alachua, FL), HYLENEX® (Halozyme Therapeutics, San Diego CA), surgical Sealants such as fibrinogen polymer (Ethicon Inc. Cornelia, GA), TISSELL® (Baxter International, Inc Deerfield, IL), PEG-based sealants, and COSEAL® (Baxter International, Inc Deerfield, IL).

作為非限制性實例,可藉由以可調釋放速率(例如數天及數週)製備PLGA微球且將核酸疫苗組成物囊封於PLGA微球中,同時在囊封過程期間維持核酸疫苗組成物之完整性而在PLGA微球中調配核酸疫苗組成物。EVAc為不可生物降解的生物相容性聚合物,其廣泛用於臨床前持續釋放植入物應用中。泊洛沙姆F-407 NF為一種聚氧乙烯-聚氧丙烯-聚氧乙烯之親水性、非離子界面活性劑三嵌段共聚物,其在小於5℃之溫度下具有低黏度且在大於15℃之溫度下形成固體凝膠。基於PEG之外科密封劑包含在遞送裝置中混合的兩種合成PEG組分,該裝置可在一分鐘內製備、在3分鐘內密封且在30天內再吸收。GELSITE®及天然聚合物能夠在投予部位處原位膠凝。已顯示其經由離子相互作用與蛋白質及肽治療候選物相互作用以提供穩定效應。As a non-limiting example, the nucleic acid vaccine composition can be encapsulated in the PLGA microspheres by preparing PLGA microspheres with an adjustable release rate (e.g., days and weeks) while maintaining the nucleic acid vaccine composition during the encapsulation process. The nucleic acid vaccine composition is formulated in PLGA microspheres based on the integrity of the substance. EVAc is a non-biodegradable biocompatible polymer that is widely used in preclinical sustained-release implant applications. Poloxamer F-407 NF is a hydrophilic, nonionic surfactant triblock copolymer of polyoxyethylene-polyoxypropylene-polyoxyethylene, which has low viscosity at temperatures less than 5°C and is A solid gel forms at a temperature of 15°C. PEG-based surgical sealants contain two synthetic PEG components mixed in a delivery device that can be prepared in one minute, seals in 3 minutes, and resorbs in 30 days. GELSITE® and natural polymers gel in situ at the site of administration. It has been shown to interact with protein and peptide therapeutic candidates via ionic interactions to provide a stabilizing effect.

亦可經由不同配位體之表現選擇性靶向聚合物調配物,該等配位體如由但不限於葉酸、運鐵蛋白及N-乙醯基半乳糖胺(GalNAc)所例示(Benoit等人, Biomacromolecules.2011, 12:2708-2714;Rozema等人, Proc Natl Acad Sci U S A.2007, 104:12982-12887;Davis, Mol Pharm.2009, 6:659-668;Davis, Nature,2010 464:1067-1070;將每一該等內容以其全文引用方式併入本文中)。 Polymeric formulations can also be selectively targeted through the expression of different ligands, such as exemplified by, but not limited to, folic acid, transferrin, and N-acetylgalactosamine (GalNAc) (Benoit et al. Human, Biomacromolecules. 2011, 12:2708-2714; Rozema et al., Proc Natl Acad Sci US A. 2007, 104:12982-12887; Davis, Mol Pharm. 2009, 6:659-668; Davis, Nature , 2010 464 :1067-1070; each such content is incorporated herein by reference in its entirety).

本揭露之核酸疫苗組成物可用聚合化合物調配或在聚合化合物中調配。聚合化合物可包括至少一種聚合物,諸如但不限於聚乙烯、聚乙二醇(PEG)、聚(l-離胺酸) (PLL)、接枝至PLL之PEG、陽離子脂質聚合物、可生物降解陽離子脂質聚合物、聚乙烯亞胺(PEI)、交聯分支鏈聚(伸烷基亞胺)、聚胺衍生物、改質泊洛沙姆、可生物降解聚合物、彈性可生物降解聚合物、可生物降解嵌段共聚物、可生物降解無規共聚物、可生物降解聚酯共聚物、可生物降解聚酯嵌段共聚物、可生物降解聚酯嵌段無規共聚物、多嵌段共聚物、直鏈可生物降解共聚物、聚[α-(4-胺基丁基)-L-乙醇酸) (PAGA)、可生物降解交聯陽離子多嵌段共聚物、聚碳酸酯、聚酸酐、聚羥基酸、聚反丁烯二酸丙酯、聚己內酯、聚醯胺、聚縮醛、聚醚、聚酯、聚(原酸酯)、聚氰基丙烯酸酯、聚乙烯醇、聚胺基甲酸酯、聚磷氮烯、聚丙烯酸酯、聚甲基丙烯酸酯、聚氰基丙烯酸酯、聚脲、聚苯乙烯、聚胺、聚離胺酸、聚(乙烯亞胺)、聚(絲胺酸酯)、聚(L-交酯-共-L-離胺酸)、聚(4-羥基-L-脯胺酸酯)、丙烯酸聚合物、含胺聚合物、聚葡萄糖聚合物、聚葡萄糖聚合物衍生物或其組合。The nucleic acid vaccine compositions of the present disclosure may be formulated with or in polymeric compounds. The polymeric compound may include at least one polymer such as, but not limited to, polyethylene, polyethylene glycol (PEG), poly(l-lysine) (PLL), PEG grafted to PLL, cationic lipid polymers, biodegradable Degradable cationic lipid polymer, polyethyleneimine (PEI), cross-linked branched poly(alkyleneimine), polyamine derivatives, modified poloxamer, biodegradable polymer, elastic biodegradable polymer material, biodegradable block copolymer, biodegradable random copolymer, biodegradable polyester copolymer, biodegradable polyester block copolymer, biodegradable polyester block random copolymer, multi-block copolymer Segment copolymer, linear biodegradable copolymer, poly[α-(4-aminobutyl)-L-glycolic acid) (PAGA), biodegradable cross-linked cationic multi-block copolymer, polycarbonate, Polyanhydride, polyhydroxy acid, polypropyl fumarate, polycaprolactone, polyamide, polyacetal, polyether, polyester, poly(orthoester), polycyanoacrylate, polyethylene Alcohol, polyurethane, polyphosphazene, polyacrylate, polymethacrylate, polycyanoacrylate, polyurea, polystyrene, polyamine, polylysine acid, poly(ethylenimine) ), poly(serine ester), poly(L-lactide-co-L-lysine), poly(4-hydroxy-L-proline), acrylic polymer, amine-containing polymer, poly Glucose polymers, polydextrose polymer derivatives or combinations thereof.

作為非限制性實例,本揭露之核酸疫苗組成物可用如美國專利第6,177,274號中所述之接枝有PLL之PEG的聚合化合物調配;該專利以全文引用方式併入本文中。調配物可用於活體外轉染細胞或活體內遞送核酸疫苗組成物。在另一實例中,核酸疫苗組成物可懸浮於具有陽離子聚合物之溶液或介質、乾燥醫藥組成物或能夠如美國公開案第US20090042829號及第US20090042825號中所述進行乾燥的溶液中;將每一該等內容以其全文引用方式併入本文中。As a non-limiting example, the nucleic acid vaccine composition of the present disclosure may be formulated with a polymeric compound of PEG grafted with PLL as described in US Pat. No. 6,177,274; this patent is incorporated herein by reference in its entirety. The formulations can be used to transfect cells in vitro or to deliver nucleic acid vaccine compositions in vivo. In another example, the nucleic acid vaccine composition can be suspended in a solution or medium with a cationic polymer, a dry pharmaceutical composition, or a solution that can be dried as described in US Publication Nos. US20090042829 and US20090042825; 1. Such content is incorporated herein by reference in its entirety.

作為另一非限制性實例,本揭露之核酸疫苗組成物可用PLGA-PEG嵌段共聚物(參見美國公開案第US20120004293號及美國專利第8,236,330,以全文引用的方式併入本文中)或PLGA-PEG-PLGA嵌段共聚物(參見美國專利第6,004,573號,以全文引用方式併入本文中)調配。作為非限制性實例,本揭露之核酸疫苗組成物可用PEG及PLA或PEG及PLGA之二嵌段共聚物調配(參見美國專利第8,246,968號,以全文引用方式併入本文中)。As another non-limiting example, the nucleic acid vaccine composition of the present disclosure may be PLGA-PEG block copolymer (see U.S. Publication No. US20120004293 and U.S. Patent No. 8,236,330, which are incorporated herein by reference in their entirety) or PLGA-PEG PEG-PLGA block copolymer (see U.S. Patent No. 6,004,573, incorporated herein by reference in its entirety) formulation. As a non-limiting example, the nucleic acid vaccine composition of the present disclosure may be formulated with a diblock copolymer of PEG and PLA or PEG and PLGA (see U.S. Patent No. 8,246,968, which is incorporated herein by reference in its entirety).

在一些實施態樣中,核酸疫苗組成物可用如PCT專利申請公開案第WO20180126084中所述或藉由其中所述之方法製得的分支鏈PEG分子調配;將其內容以其全文引用方式併入本文中。作為非限制性實例,可用於本文所述之調配物的分支鏈PEG可具有PCT公開案第WO20180126084號之式I、式II、式III、式IV、式V、式VI,將其內容以其全文引用方式併入本文中。In some embodiments, nucleic acid vaccine compositions may be formulated with branched PEG molecules as described in or prepared by methods described in PCT Patent Application Publication No. WO20180126084; the contents of which are incorporated by reference in their entirety. in this article. As a non-limiting example, branched chain PEGs useful in the formulations described herein may have Formula I, Formula II, Formula III, Formula IV, Formula V, Formula VI of PCT Publication No. WO20180126084, the contents of which are The full text is incorporated by reference into this article.

聚胺衍生物可用於遞送核酸或治療及/或預防疾病或包括於可植入或可注射裝置中(美國公開案第US20100260817號;將其內容以其全文引用方式併入本文中)。作為非限制性實例,本揭露之核酸疫苗組成物可使用美國公開案第US20100260817號中所述之聚胺衍生物調配;將其內容以其全文引用方式併入本文中。作為另一非限制性實例,本揭露之核酸疫苗組成物可使用聚醯胺聚合物遞送,該聚醯胺聚合物諸如但不限於包含藉由將碳水化合物二疊氮化物單體與包含低聚胺之二炔烴單元組合製備之1,3-偶極加成聚合物的聚合物(美國專利第8,236,280號;將其內容以其全文引用方式併入本文中)。Polyamine derivatives may be used to deliver nucleic acids or treat and/or prevent disease or be included in implantable or injectable devices (US Publication No. US20100260817; the contents of which are incorporated herein by reference in their entirety). As a non-limiting example, the nucleic acid vaccine composition of the present disclosure can be formulated using the polyamine derivatives described in US Publication No. US20100260817; the content of which is incorporated herein by reference in its entirety. As another non-limiting example, the nucleic acid vaccine compositions of the present disclosure may be delivered using polyamide polymers such as, but not limited to, polyamide polymers made by combining carbohydrate diazide monomers with oligomers. Polymers of 1,3-dipolar addition polymers prepared by combining diyne units of amines (U.S. Patent No. 8,236,280; the contents of which are incorporated herein by reference in their entirety).

在一些實施態樣中,本揭露之核酸疫苗組成物可用PCT專利申請公開案第WO2011115862號、第WO2012082574號及第WO2012068187號以及美國公開案第US20120283427號中所述之至少一種聚合物及/或其衍生物調配,將每一該等內容以其全文引用的方式併入本文中。本揭露之核酸疫苗組成物可用如WO2011115862中所述之式Z的聚合物調配;將其內容以其全文引用方式併入本文中。核酸疫苗組成物可用如PCT專利申請公開案第WO2012082574號或第WO2012068187號及美國公開案第US2012028342號中所述之式Z、Z'或Z''的聚合物調配;將每一該等內容以其全文引用的方式併入本文中。用本揭露之核酸疫苗組成物調配之聚合物可藉由PCT專利申請公開案第WO2012082574號或第WO2012068187號中所述之方法合成,該等公開案之內容各自以全文引用的方式併入本文中。In some embodiments, the nucleic acid vaccine composition of the present disclosure may be made of at least one polymer and/or other polymers described in PCT Patent Application Publication Nos. WO2011115862, WO2012082574 and WO2012068187 and US Publication No. US20120283427. Derivative Formulation, each such content is incorporated herein by reference in its entirety. The nucleic acid vaccine composition of the present disclosure may be formulated with a polymer of formula Z as described in WO2011115862; the content of which is incorporated herein by reference in its entirety. Nucleic acid vaccine compositions may be formulated with polymers of formula Z, Z' or Z'' as described in PCT Patent Application Publication No. WO2012082574 or WO2012068187 and US Publication No. US2012028342; each of these contents is It is incorporated by reference in its entirety. The polymer formulated with the nucleic acid vaccine composition of the present disclosure can be synthesized by the method described in PCT Patent Application Publication No. WO2012082574 or WO2012068187, the contents of which are each incorporated herein by reference in their entirety. .

本揭露之核酸疫苗組成物可用至少一種丙烯酸聚合物調配。丙烯酸聚合物包括但不限於丙烯酸、甲基丙烯酸、丙烯酸及甲基丙烯酸共聚物、甲基丙烯酸甲酯共聚物、甲基丙烯酸乙氧基乙酯、甲基丙烯酸氰基乙酯、甲基丙烯酸胺基烷酯共聚物、聚(丙烯酸)、聚(甲基丙烯酸)、聚氰基丙烯酸酯及其組合。The nucleic acid vaccine compositions of the present disclosure may be formulated with at least one acrylic polymer. Acrylic polymers include, but are not limited to, acrylic acid, methacrylic acid, acrylic acid and methacrylic acid copolymers, methyl methacrylate copolymer, ethoxyethyl methacrylate, cyanoethyl methacrylate, amine methacrylate Alkyl ester copolymers, poly(acrylic acid), poly(methacrylic acid), polycyanoacrylates, and combinations thereof.

本揭露之核酸疫苗組成物的調配物可包括至少一種含胺聚合物,諸如但不限於聚離胺酸、聚乙烯亞胺、聚(醯胺基胺)樹枝狀聚合物或其組合。Formulations of the nucleic acid vaccine compositions of the present disclosure may include at least one amine-containing polymer, such as, but not limited to, polylysine, polyethylenimine, poly(amidoamine) dendrimers, or combinations thereof.

例如,本揭露之核酸疫苗組成物可在包括以下各者之醫藥化合物中調配:聚(乙烯亞胺)、可生物降解陽離子脂質聚合物、可生物降解嵌段共聚物、可生物降解聚合物或可生物降解無規共聚物、可生物降解聚酯嵌段共聚物、可生物降解聚酯聚合物、可生物降解聚酯無規共聚物、直鏈可生物降解共聚物、PAGA、可生物降解交聯陽離子多嵌段共聚物或其組合。可生物降解陽離子脂質聚合物可藉由此項技術中已知及/或美國專利第6,696,038號及美國公開案第US20030073619號及第US20040142474號中所述之方法製得;將每一該等內容以其全文引用的方式併入本文中。聚(伸烷基亞胺)可使用此項技術中已知及/或如美國公開案第US20100004315號中所述之方法製得,該案以全文引用方式併入本文中。可生物降解聚合物、可生物降解嵌段共聚物、可生物降解無規共聚物、可生物降解聚酯嵌段共聚物、可生物降解聚酯聚合物或可生物降解聚酯無規共聚物可使用此項技術中已知及/或如美國專利第6,517,869及第6,267,987號中所述之方法製得,該等專利中之各者之內容各自以全文引用方式併入本文中。直鏈可生物降解共聚物可使用此項技術中已知及/或如美國專利第6,652,886號中所述之方法製得;該專利之內容各自以全文引用方式併入本文中。PAGA聚合物可使用此項技術中已知及/或如美國專利第6,217,912號中所述之方法製得;將其內容以其全文引用方式併入本文中。PAGA聚合物可與聚合物共聚合以形成共聚物或嵌段共聚物,該等聚合物諸如但不限於聚-L-離胺酸、聚精胺酸、聚鳥胺酸、組蛋白、抗生物素蛋白、魚精蛋白、聚丙交酯及聚(交酯-共-乙交酯)。可生物降解交聯陽離子多嵌段共聚物可藉由此項技術中已知及/或如美國專利第8,057,821號或美國公開案第US2012009145號中所述之方法製得;將每一該等內容以其全文引用的方式併入本文中。例如,多嵌段共聚物可使用相比於分支鏈聚乙二亞胺具有不同模式之直鏈聚乙烯亞胺(LPEI)嵌段合成。另外,組成物或醫藥組成物可藉由此項技術中已知、本文所述或如美國公開案第US20100004315號或美國專利第6,267,987號及第6,217,912號中所述之方法製得;將每一該等內容以其全文引用的方式併入本文中。For example, the nucleic acid vaccine compositions of the present disclosure may be formulated in pharmaceutical compounds including poly(ethyleneimine), biodegradable cationic lipid polymers, biodegradable block copolymers, biodegradable polymers, or Biodegradable random copolymer, biodegradable polyester block copolymer, biodegradable polyester polymer, biodegradable polyester random copolymer, linear biodegradable copolymer, PAGA, biodegradable cross Dicationic multi-block copolymers or combinations thereof. Biodegradable cationic lipid polymers can be prepared by methods known in the art and/or described in U.S. Patent No. 6,696,038 and U.S. Publication Nos. US20030073619 and US20040142474; refer to each of these as It is incorporated by reference in its entirety. Poly(alkyleneimines) can be prepared using methods known in the art and/or as described in US Publication No. US20100004315, which is incorporated herein by reference in its entirety. Biodegradable polymers, biodegradable block copolymers, biodegradable random copolymers, biodegradable polyester block copolymers, biodegradable polyester polymers or biodegradable polyester random copolymers can Prepared using methods known in the art and/or as described in U.S. Patent Nos. 6,517,869 and 6,267,987, the contents of each of which are incorporated herein by reference in their entirety. Linear biodegradable copolymers can be prepared using methods known in the art and/or as described in U.S. Patent No. 6,652,886, the contents of which are each incorporated herein by reference in their entirety. PAGA polymers can be prepared using methods known in the art and/or as described in U.S. Patent No. 6,217,912; the disclosure of which is incorporated herein by reference in its entirety. PAGA polymers can be copolymerized with polymers such as, but not limited to, poly-L-lysine, polyarginine, polyornithine, histones, antibiotics, etc. to form copolymers or block copolymers. Protamine, protamine, polylactide and poly(lactide-co-glycolide). The biodegradable cross-linked cationic multi-block copolymer can be prepared by methods known in the art and/or as described in U.S. Patent No. 8,057,821 or U.S. Publication No. US2012009145; each of these contents It is incorporated herein by reference in its entirety. For example, multi-block copolymers can be synthesized using linear polyethyleneimine (LPEI) blocks with a different pattern compared to branched polyethyleneimine. Additionally, the composition or pharmaceutical composition may be prepared by methods known in the art, described herein, or as described in U.S. Publication No. US20100004315 or U.S. Patent Nos. 6,267,987 and 6,217,912; These contents are incorporated herein by reference in their entirety.

本揭露之核酸疫苗組成物可用至少一種可含有聚陽離子側鏈之可降解聚酯調配。可降解聚酯包括但不限於聚(絲胺酸酯)、聚(L-交酯-共-L-離胺酸)、聚(4-羥基-L-脯胺酸酯)及其組合。在一些實施態樣中,可降解聚酯可包括PEG結合以形成聚乙二醇化聚合物。The nucleic acid vaccine composition of the present disclosure may be formulated with at least one degradable polyester that may contain polycationic side chains. Degradable polyesters include, but are not limited to, poly(serinate), poly(L-lactide-co-L-lysine), poly(4-hydroxy-L-proline), and combinations thereof. In some embodiments, degradable polyesters may include PEG conjugations to form PEGylated polymers.

本揭露之核酸疫苗組成物可用至少一種可交聯聚酯調配。可交聯聚酯包括那些在此項技術中已知及美國公開案第US20120269761號中所述者;將其內容以其全文引用方式併入本文中。The nucleic acid vaccine composition of the present disclosure can be formulated with at least one cross-linkable polyester. Cross-linkable polyesters include those known in the art and described in US Publication No. US20120269761; the contents of which are incorporated herein by reference in their entirety.

在一些實施態樣中,本文所述之聚合物可結合至脂質封端PEG。作為非限制性實例,PLGA可結合至脂質封端PEG,形成PLGA-DSPE-PEG。作為另一非限制性實例,用於本揭露之PEG共軛體包括那些在PCT專利申請公開案第WO2008103276號中所述者;將其內容以其全文引用方式併入本文中。聚合物可使用配位體共軛體,諸如但不限於美國專利第8,273,363號中所述之共軛體結合;將其內容以其全文引用方式併入本文中。In some embodiments, the polymers described herein can be conjugated to lipid-terminated PEG. As a non-limiting example, PLGA can be conjugated to lipid-terminated PEG, forming PLGA-DSPE-PEG. As another non-limiting example, PEG conjugates for use in the present disclosure include those described in PCT Patent Application Publication No. WO2008103276; the contents of which are incorporated herein by reference in their entirety. The polymers may be combined using ligand conjugates such as, but not limited to, those described in U.S. Patent No. 8,273,363; the disclosure of which is incorporated herein by reference in its entirety.

在一些實施態樣中,本文所述之核酸疫苗組成物可與另一化合物結合。共軛體之非限制性實例描述於美國專利第7,964,578號及第7,833,992號中;該等專利之內容各自以全文引用的方式併入本文中。在一些實施態樣中,本揭露之核酸疫苗組成物可與如美國專利第7,964,578號及第7,833,992號中所述之式1-122的共軛體結合;該等專利之內容各自以全文引用的方式併入本文中。本文所述之核酸疫苗組成物可與金屬,諸如但不限於金結合。(參見例如Giljohann等人 Journ. Amer. Chem. Soc.2009, 131(6): 2072-2073;將其內容以其全文引用方式併入本文中)。在一些實施態樣中,本文所述之核酸疫苗組成物可結合及/或囊封於金奈米粒子中(PCT申請公開案第WO201216269號及美國公開案第US20120302940號;將每一該等內容以其全文引用方式併入本文中)。 In some embodiments, the nucleic acid vaccine compositions described herein can be combined with another compound. Non-limiting examples of conjugates are described in U.S. Patent Nos. 7,964,578 and 7,833,992; the contents of each of these patents are incorporated herein by reference in their entirety. In some embodiments, the nucleic acid vaccine composition of the present disclosure can be combined with the conjugates of Formulas 1-122 as described in U.S. Patent Nos. 7,964,578 and 7,833,992; the contents of these patents are each cited in their entirety. method is incorporated into this article. The nucleic acid vaccine compositions described herein can be combined with metals, such as, but not limited to, gold. (See, eg, Giljohann et al . Journ. Amer. Chem. Soc. 2009, 131(6):2072-2073; the contents of which are incorporated herein by reference in their entirety). In some embodiments, the nucleic acid vaccine compositions described herein can be combined and/or encapsulated in gold nanoparticles (PCT Application Publication No. WO201216269 and US Publication No. US20120302940; refer to each of these incorporated herein by reference in its entirety).

如美國公開案第US20100004313號中所述,基因遞送組成物可包括核苷酸序列及泊洛沙姆。作為非限制性實例,本揭露之核酸疫苗組成物可用於美國公開案第US20100004313號中所述之具有泊洛沙姆的基因遞送組成物中;該案之內容各自以全文引用方式併入本文中。As described in US Publication No. US20100004313, the gene delivery composition may include a nucleotide sequence and a poloxamer. As a non-limiting example, the nucleic acid vaccine composition of the present disclosure can be used in the gene delivery composition with poloxamer described in U.S. Publication No. US20100004313; the contents of which are each incorporated herein by reference in their entirety. .

在一些實施態樣中,包含本揭露之核酸疫苗的聚合物調配物可藉由使可包括陽離子載劑之聚合物調配物與可共價連接至膽固醇及聚乙二醇基團之陽離子脂質聚合物接觸來穩定。聚合物調配物可使用美國公開案第US20090042829號中所述之方法與陽離子脂質聚合物接觸;將其內容以其全文引用方式併入本文中。In some embodiments, polymer formulations comprising the nucleic acid vaccines of the present disclosure may be prepared by polymerizing the polymer formulation, which may include a cationic carrier, with a cationic lipid that may be covalently linked to cholesterol and polyethylene glycol groups. Stable by physical contact. The polymer formulation may be contacted with the cationic lipid polymer using the methods described in US Publication No. US20090042829; the contents of which are incorporated herein by reference in their entirety.

陽離子載劑可包括但不限於聚伸乙亞胺、聚(三亞甲基亞胺)、聚(四亞甲基亞胺)、聚伸丙亞胺、胺基醣苷-聚胺、雙脫氧-二胺基-b-環糊精、精胺、亞精胺、甲基丙烯酸聚(2-二甲胺基)乙酯、聚(離胺酸)、聚(組胺酸)、聚(精胺酸)、陽離子化明膠、樹枝狀聚合物、聚葡萄胺糖、1,2-二油醯基-3-三甲基銨-丙烷(DOTAP)、N-[1-(2,3-二油醯氧基)丙基]-N,N,N-三甲基氯化銨(DOTMA)、1-[2-(油醯氧基)乙基]-2-油基-3-(2-羥乙基)咪唑啉鎓氯化物(DOTIM)、2,3-二油基氧基-N-[2(精胺甲醯胺基)乙基]-N,N-二甲基-1-丙胺鎓三氟乙酸鹽(DOSPA)、3B-[N-(N',N'-二甲基胺基乙烷)-胺甲醯基]膽固醇鹽酸鹽(DC-膽固醇HCl)、二十七烷基醯胺基甘胺醯亞精胺(DOGS)、N,N-二硬脂醯基-N,N-二甲基溴化胺(DDAB)、N-(1,2-二肉豆蔻氧基丙-3-基)-N,N-二甲基-N-羥乙基溴化銨(DMRIE)、N,N-二油基-N,N-二甲基氯化胺(DODAC)及其組合。Cationic carriers may include, but are not limited to, polyethyleneimine, poly(trimethyleneimine), poly(tetramethyleneimine), polypropyleneimine, aminoglycoside-polyamine, dideoxy-di Amino-b-cyclodextrin, spermine, spermidine, poly(2-dimethylamino)ethyl methacrylate, poly(lysine), poly(histidine), poly(arginine) ), cationized gelatin, dendrimers, polyglucosamine, 1,2-dioleyl-3-trimethylammonium-propane (DOTAP), N-[1-(2,3-dioleyl Oxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA), 1-[2-(Oleyloxy)ethyl]-2-oleyl-3-(2-hydroxyethyl) base) imidazolinium chloride (DOTIM), 2,3-dioleyloxy-N-[2(sperminemethamide)ethyl]-N,N-dimethyl-1-propylamine tris Fluoroacetate (DOSPA), 3B-[N-(N',N'-dimethylaminoethane)-aminoformyl]cholesterol hydrochloride (DC-cholesterol HCl), heptadecyl acyl Aminoglycinylspermidine (DOGS), N,N-distearyl-N,N-dimethylamine bromide (DDAB), N-(1,2-dimyristyloxypropane- 3-yl)-N,N-dimethyl-N-hydroxyethylammonium bromide (DMRIE), N,N-dioleyl-N,N-dimethylamine chloride (DODAC) and combinations thereof.

在一些實施態樣中,本揭露之核酸疫苗組成物可在一或多種聚合物之聚合複合體中調配(美國公開案第US20120237565號及第US20120270927號;將每一該等內容以其全文引用方式併入本文中)。在一些實施態樣中,聚合複合體包含兩種或更多種陽離子聚合物。陽離子聚合物可包含聚(乙烯亞胺) (PEI),諸如直鏈PEI。In some embodiments, the nucleic acid vaccine compositions of the present disclosure may be formulated in polymeric complexes of one or more polymers (U.S. Publication Nos. US20120237565 and US20120270927; each of these contents is incorporated by reference in its entirety. incorporated herein). In some embodiments, the polymeric complex includes two or more cationic polymers. The cationic polymer may include poly(ethyleneimine) (PEI), such as linear PEI.

本揭露之核酸疫苗組成物亦可使用聚合物、脂質及/或其他可生物降解藥劑,諸如但不限於磷酸鈣之組合調配為奈米粒子。組分可在核-殼、混合及/或逐層結構中組合,以允許微調奈米粒子,從而可增強核酸疫苗組成物之遞送(Wang等人, Nat Mater.2006, 5:791-796;Fuller等人, Biomaterials. 2008, 29:1526-1532;DeKoker等人, Adv Drug Deliv Rev. 2011, 63:748-761;Endres等人, Biomaterials. 2011, 32:7721-7731;Su等人, Mol Pharm.2011;8(3):774-87;將每一該等內容以其全文引用方式併入本文中)。作為非限制性實例,奈米粒子可包含複數種聚合物,諸如但不限於親水性-疏水性聚合物(例如PEG-PLGA)、疏水性聚合物(例如PEG)及/或親水性聚合物(PCT申請公開案第WO20120225129號;將其內容以其全文引用方式併入本文中)。 The nucleic acid vaccine composition of the present disclosure can also be formulated into nanoparticles using a combination of polymers, lipids and/or other biodegradable agents, such as but not limited to calcium phosphate. Components can be combined in core-shell, hybrid, and/or layer-by-layer structures to allow fine-tuning of the nanoparticles, thereby enhancing delivery of nucleic acid vaccine compositions (Wang et al., Nat Mater. 2006, 5:791-796; Fuller et al., Biomaterials . 2008, 29:1526-1532; DeKoker et al., Adv Drug Deliv Rev. 2011, 63:748-761; Endres et al., Biomaterials . 2011, 32:7721-7731; Su et al., Mol Mol Pharm. 2011;8(3):774-87; each such content is incorporated herein by reference in its entirety). As non-limiting examples, nanoparticles may include a plurality of polymers, such as, but not limited to, hydrophilic-hydrophobic polymers (e.g., PEG-PLGA), hydrophobic polymers (e.g., PEG), and/or hydrophilic polymers (e.g., PEG-PLGA), PCT Application Publication No. WO20120225129; the contents of which are incorporated herein by reference in their entirety).

可生物降解磷酸鈣奈米粒子與脂質及/或聚合物之組合可用於活體內遞送核酸疫苗組成物。在一些實施態樣中,亦可含有諸如對甲氧苯甲醯胺之靶向配位體的塗有脂質之磷酸鈣奈米粒子可用於遞送本揭露之核酸疫苗組成物。例如,為了在小鼠轉移性肺模型中有效地遞送siRNA,使用塗有脂質之磷酸鈣奈米粒子(Li等人, J Contr Rel.2010, 142: 416-421;Li等人, J Contr Rel. 2012, 158:108-114;Yang等人, Mol Ther.2012, 20:609-615;將每一該等內容以其全文引用方式併入本文中)。此遞送系統組合靶向奈米粒子及增強內體逃逸之組分磷酸鈣兩者,以便改良siRNA之遞送。 The combination of biodegradable calcium phosphate nanoparticles with lipids and/or polymers can be used to deliver nucleic acid vaccine compositions in vivo. In some embodiments, lipid-coated calcium phosphate nanoparticles, which may also contain targeting ligands such as p-methoxybenzamide, may be used to deliver the nucleic acid vaccine compositions of the present disclosure. For example, to effectively deliver siRNA in a mouse metastatic lung model, lipid-coated calcium phosphate nanoparticles were used (Li et al., J Contr Rel. 2010, 142: 416-421; Li et al., J Contr Rel. 2010, 142: 416-421; Li et al., J Contr Rel. 2012, 158:108-114; Yang et al., Mol Ther. 2012, 20:609-615; each such content is incorporated herein by reference in its entirety). This delivery system combines both targeting nanoparticles and calcium phosphate, a component that enhances endosomal escape, to improve delivery of siRNA.

在一些實施態樣中,具有PEG-聚陰離子嵌段共聚物之磷酸鈣可用於遞送本揭露之核酸疫苗組成物(Kazikawa等人, J Contr Rel.2004, 97:345-356;Kazikawa等人, J Contr Rel.2006, 111:368-370;將每一該等內容以其全文引用方式併入本文中)。 In some embodiments, calcium phosphate with PEG-polyanionic block copolymers can be used to deliver the nucleic acid vaccine compositions of the present disclosure (Kazikawa et al., J Contr Rel. 2004, 97:345-356; Kazikawa et al., J Contr Rel. 2006, 111:368-370; each such content is incorporated herein by reference in its entirety).

在一些實施態樣中,PEG-電荷轉換聚合物(Pitella等人, Biomaterials.2011, 32:3106-3114;將其內容以其全文引用方式併入本文中)可用於形成奈米粒子以遞送本揭露之核酸疫苗組成物。PEG-電荷轉換聚合物可藉由在酸性pH下切割為聚陽離子來改進PEG-聚陰離子嵌段共聚物,從而增強內體逃逸。 In some embodiments, PEG-charge transfer polymers (Pitella et al., Biomaterials. 2011, 32:3106-3114; the contents of which are incorporated by reference in their entirety) can be used to form nanoparticles to deliver the present invention. Disclosed nucleic acid vaccine composition. PEG-charge-switch polymers can improve PEG-polyanionic block copolymers by cleaving to polycations at acidic pH, thereby enhancing endosomal escape.

在一些實施態樣中,核-殼奈米粒子可用於形成奈米粒子以遞送本揭露之核酸疫苗組成物。核-殼奈米粒子之使用另外聚焦於高通量方法以合成陽離子交聯奈米凝膠核及各種殼(Siegwart等人, Proc Natl Acad Sci U S A. 2011, 108:12996-13001;將其內容以其全文引用方式併入本文中)。聚合奈米粒子之複合、遞送及內化可藉由改變奈米粒子之核及殼組分兩者的化學組成來精確控制。例如,核-殼奈米粒子可在將膽固醇共價連接至奈米粒子之後有效地遞送核酸疫苗組成物至小鼠肝細胞。 In some embodiments, core-shell nanoparticles can be used to form nanoparticles to deliver the nucleic acid vaccine compositions of the present disclosure. The use of core-shell nanoparticles has also focused on high-throughput methods to synthesize cationic cross-linked nanogel cores and various shells (Siegwart et al., Proc Natl Acad Sci USA . 2011, 108:12996-13001; refer to the content incorporated herein by reference in its entirety). The complexation, delivery and internalization of polymeric nanoparticles can be precisely controlled by changing the chemical composition of both the core and shell components of the nanoparticles. For example, core-shell nanoparticles can effectively deliver nucleic acid vaccine compositions to mouse hepatocytes after covalently linking cholesterol to the nanoparticles.

在一些實施態樣中,本文所述之奈米粒子可為包括至少一個配位體之奈米粒子,且該配位體可為肽、核酸適體(其為對其靶標具有低奈莫耳結合親和力之小分子量(8至13 Kda)單股RNA或DNA)、肽適體、抗體、小分子配位體,諸如但不限於葉酸、對甲氧苯甲醯胺及半乳糖。(Leng等人 Journal of Drug Delivery.2017, 17, 文章編號6971297;將其內容以其全文引用方式併入本文中)。 In some embodiments, the nanoparticles described herein can be nanoparticles including at least one ligand, and the ligand can be a peptide, a nucleic acid aptamer (which has low nanomoles to its target). Binding affinity is small molecular weight (8 to 13 Kda) single-stranded RNA or DNA), peptide aptamers, antibodies, small molecule ligands such as but not limited to folic acid, p-methoxybenzamide and galactose. (Leng et al. Journal of Drug Delivery. 2017, 17, Article No. 6971297; the contents of which are incorporated herein by reference in their entirety).

在一些實施態樣中,包含中間PLGA層及含有PEG之外部中性脂質層的中空脂質核可用於遞送本揭露之核酸疫苗組成物。作為非限制性實例,脂質-聚合物-脂質雜化奈米粒子可用於遞送本文所述之核酸疫苗組成物(Shi等人, Angew Chem Int Ed.2011, 50:7027-7031;將其內容以其全文引用方式併入本文中)。 In some embodiments, a hollow lipid core comprising a middle PLGA layer and an outer neutral lipid layer containing PEG can be used to deliver the nucleic acid vaccine compositions of the present disclosure. As a non-limiting example, lipid-polymer-lipid hybrid nanoparticles can be used to deliver the nucleic acid vaccine compositions described herein (Shi et al., Angew Chem Int Ed. 2011, 50:7027-7031; refer to the content as The full text of which is incorporated herein by reference).

用於本揭露之核酸疫苗組成物的核-殼奈米粒子可藉由美國專利第8,313,777號中所述之方法形成;將其內容以其全文引用方式併入本文中。Core-shell nanoparticles used in the nucleic acid vaccine composition of the present disclosure can be formed by the method described in U.S. Patent No. 8,313,777; the content of which is incorporated herein by reference in its entirety.

在一些實施態樣中,核-殼奈米粒子可包含本文所述之核酸疫苗組成物的核及聚合物殼。聚合物殼可為本文所述之聚合物中之任一者且為此項技術中已知。在另一實施態樣中,聚合物殼可用於保護核中之核酸疫苗組成物。(參見例如美國公開案第20120321719號;將其內容以其全文引用方式併入本文中)。In some embodiments, core-shell nanoparticles can include a core and a polymer shell of a nucleic acid vaccine composition described herein. The polymer shell can be any of the polymers described herein and known in the art. In another embodiment, a polymer shell can be used to protect the nucleic acid vaccine composition in the core. (See, eg, U.S. Publication No. 20120321719; the contents of which are incorporated herein by reference in their entirety).

在一些實施態樣中,用於本文所述之調配物的聚合物可為如PCT申請公開案第WO2011120053號中所述之經修飾聚合物(諸如但不限於經修飾聚縮醛);將其內容以其全文引用方式併入本文中。In some embodiments, the polymer used in the formulations described herein can be a modified polymer (such as, but not limited to, a modified polyacetal) as described in PCT Application Publication No. WO2011120053; The content is incorporated herein by reference in its entirety.

在一些實施態樣中,可藉由使細胞與膜去穩定聚合物及核酸疫苗組成物、靶向配位體及視情況選用之連接子的共軛體接觸而將核酸疫苗組成物遞送至目標細胞之細胞或胞質液。膜去穩定聚合物之非限制性實例教示於國際PCT申請公開案第WO2020093061號中,將其內容以其全文引用方式併入本文中,諸如但不限於其中之式XX的膜去穩定聚合物。 賦形劑 In some embodiments, the nucleic acid vaccine composition can be delivered to a target by contacting a cell with a membrane-destabilizing polymer and a conjugate of the nucleic acid vaccine composition, a targeting ligand, and optionally a linker. The cell or cytosol of a cell. Non-limiting examples of membrane destabilizing polymers are taught in International PCT Application Publication No. WO2020093061, the content of which is incorporated herein by reference in its entirety, such as, but not limited to, the membrane destabilizing polymer of Formula XX therein. Excipients

在一些實施態樣中,醫藥調配物可另外包含醫藥學上可接受之賦形劑,如本文所用,其包括但不限於適於所需之特定劑型的任何及所有溶劑、分散介質、稀釋劑或其他液體媒劑、分散或懸浮助劑、表面活性劑、等張劑、增稠或乳化劑、防腐劑、固體黏合劑、潤滑劑、調味劑、穩定劑、抗氧化劑、重量莫耳滲透濃度調節劑、pH調節劑及其類似物。用於調配醫藥組成物之各種賦形劑及用於製備該組成物之技術為此項技術中已知(參見Remington: The Science and Practice of Pharmacy, 第21版, A. R. Gennaro (Lippincott, Williams & Wilkins, Baltimore, Md., 2006;以全文引用方式併入本文中)。習知賦形劑介質的使用可涵蓋於本揭露之範疇內,除非任何習知賦形劑介質與物質或其衍生物不相容,諸如藉由產生任何非所需生物效應或另外以有害方式與醫藥組成物之任何一或多種其他組分相互作用,該一或多種其他組分的使用涵蓋於本揭露之範疇內。In some embodiments, pharmaceutical formulations may additionally include pharmaceutically acceptable excipients, as used herein, including, but not limited to, any and all solvents, dispersion media, diluents suitable for the particular dosage form desired. or other liquid vehicles, dispersing or suspending aids, surfactants, isotonic agents, thickening or emulsifiers, preservatives, solid binders, lubricants, flavoring agents, stabilizers, antioxidants, molar osmolality Regulators, pH regulators and the like. Various excipients for formulating pharmaceutical compositions and techniques for preparing such compositions are known in the art (see Remington: The Science and Practice of Pharmacy, 21st ed., A. R. Gennaro (Lippincott, Williams & Wilkins) , Baltimore, Md., 2006; incorporated herein by reference in its entirety). The use of conventional excipient media is included within the scope of this disclosure unless any conventional excipient medium is incompatible with the substance or its derivatives, such as The use of any one or more other components of a pharmaceutical composition by producing any undesirable biological effect or otherwise interacting in a harmful manner is within the scope of the present disclosure.

在一些實施態樣中,醫藥學上可接受之賦形劑可為至少95%、至少96%、至少97%、至少98%、至少99%、或100%純。在一些實施態樣中,賦形劑經批准用於人類使用及獸醫使用。在一些實施態樣中,賦形劑可經美國食品及藥物管理局(the United States Food and Drug Administration)批准。在一些實施態樣中,賦形劑可為醫藥級。在一些實施態樣中,賦形劑可滿足美國藥典(the United States Pharmacopoeia,USP)、歐洲藥典(the European Pharmacopoeia,EP)、英國藥典及/或國際藥典之標準。In some embodiments, a pharmaceutically acceptable excipient can be at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% pure. In some embodiments, the excipients are approved for human use and veterinary use. In some embodiments, the excipients may be approved by the United States Food and Drug Administration. In some embodiments, the excipients can be pharmaceutical grade. In some embodiments, the excipients can meet the standards of the United States Pharmacopoeia (USP), the European Pharmacopoeia (EP), the British Pharmacopoeia and/or the International Pharmacopoeia.

在製造醫藥組成物中使用之醫藥學上可接受之賦形劑包括但不限於惰性稀釋劑、分散及/或成粒劑、表面活性劑及/或乳化劑、崩解劑、黏合劑、防腐劑、緩衝劑、潤滑劑及/或油。此類賦形劑可視情況包括於醫藥組成物中。組成物亦可包括賦形劑,諸如可可脂及栓劑蠟、著色劑、包衣劑、甜味劑、調味劑、及/或芳香劑。Pharmaceutically acceptable excipients used in the manufacture of pharmaceutical compositions include, but are not limited to, inert diluents, dispersing and/or granulating agents, surfactants and/or emulsifiers, disintegrants, binders, and preservatives. agents, buffers, lubricants and/or oils. Such excipients may optionally be included in pharmaceutical compositions. The compositions may also include excipients such as cocoa butter and suppository waxes, coloring agents, coating agents, sweetening agents, flavoring agents, and/or perfuming agents.

例示性稀釋劑包括但不限於碳酸鈣、碳酸鈉、磷酸鈣、磷酸二鈣、硫酸鈣、磷酸氫鈣、磷酸鈉乳糖、蔗糖、纖維素、微晶纖維素、高嶺土、甘露糖醇、山梨糖醇、肌醇、氯化鈉、乾澱粉、玉米澱粉、粉糖等、及/或其組合。Exemplary diluents include, but are not limited to, calcium carbonate, sodium carbonate, calcium phosphate, dicalcium phosphate, calcium sulfate, dicalcium phosphate, sodium phosphate lactose, sucrose, cellulose, microcrystalline cellulose, kaolin, mannitol, sorbose Alcohol, inositol, sodium chloride, dry starch, corn starch, powdered sugar, etc., and/or combinations thereof.

例示性成粒劑及/或分散劑包括但不限於馬鈴薯澱粉、玉米澱粉、木薯澱粉、羥基乙酸澱粉鈉、黏土、褐藻酸、瓜爾膠、柑桔渣、瓊脂、膨潤土、纖維素及木製品、天然海綿、陽離子交換樹脂、碳酸鈣、矽酸鹽、碳酸鈉、交聯聚乙烯吡咯啶酮)(交聯聚維酮)、羧甲基澱粉鈉(羥基乙酸澱粉鈉)、羧甲基纖維素、交聯羧甲基纖維素鈉(交聯羧甲纖維素)、甲基纖維素、預膠凝化澱粉(澱粉1500)、微晶澱粉、水不溶性澱粉、羧甲基纖維素鈣、矽酸鎂鋁(VEEGUM®)、月桂基硫酸鈉、四級銨化合物等、及/或其組合。Exemplary granulating agents and/or dispersing agents include, but are not limited to, potato starch, corn starch, tapioca starch, sodium starch glycolate, clay, alginic acid, guar gum, citrus pomace, agar, bentonite, cellulose and wood products, Natural sponge, cation exchange resin, calcium carbonate, silicate, sodium carbonate, crospovidone), sodium carboxymethyl starch (sodium starch glycolate), carboxymethyl cellulose , Croscarmellose sodium (croscarmellose), methylcellulose, pregelatinized starch (starch 1500), microcrystalline starch, water-insoluble starch, carboxymethylcellulose calcium, silicic acid Magnesium aluminum (VEEGUM®), sodium lauryl sulfate, quaternary ammonium compounds, etc., and/or combinations thereof.

例示性表面活性劑及/或乳化劑包括但不限於天然乳化劑(例如阿拉伯膠、瓊脂、褐藻酸、褐藻酸鈉、黃蓍、角叉菜屬(chondrux)、膽固醇、三仙膠、果膠、明膠、蛋黃、酪蛋白、羊毛脂、膽固醇、蠟及磷脂醯膽鹼)、膠體黏土(例如膨潤土(矽酸鋁)及VEEGUM® (矽酸鎂鋁))、長鏈胺基酸衍生物、高分子量醇(例如硬脂醇、鯨蠟醇、油醇、三乙酸甘油酯單硬脂酸酯、乙二醇二硬脂酸酯、單硬脂酸甘油酯及丙二醇單硬脂酸酯、聚乙烯醇)、卡波姆(例如羧基聚亞甲基、聚丙烯酸、丙烯酸聚合物及羧基乙烯基聚合物)、角叉菜膠、纖維素衍生物(例如羧甲基纖維素鈉、粉末纖維素、羥甲基纖維素、羥丙基纖維素、羥丙基甲基纖維素、甲基纖維素)、脫水山梨糖醇脂肪酸酯(例如聚氧乙烯脫水山梨糖醇單月桂酸酯(TWEEN®20)、聚氧乙烯脫水山梨糖醇(TWEEN®60)聚氧乙烯脫水山梨糖醇單油酸酯(TWEEN®80)、脫水山梨糖醇單棕櫚酸酯(SPAN®40)、脫水山梨糖醇單硬脂酸酯(SPAN®60)、脫水山梨糖醇三硬脂酸酯(SPAN®65)、單油酸甘油酯、脫水山梨糖醇單油酸酯(SPAN®80))、聚氧乙烯酯(例如聚氧乙烯單硬脂酸酯(MYRJ®45)、聚氧乙烯氫化蓖麻油、聚乙氧基化蓖麻油、聚甲醛硬脂酸酯及SOLUTOL®)、蔗糖脂肪酸酯、聚乙二醇脂肪酸酯(例如CREMOPHOR®)、聚氧乙烯醚(例如聚氧乙烯月桂醚(BRIJ®30))、聚(乙烯吡咯啶酮)、二乙二醇單月桂酸酯、三乙醇胺油酸酯、油酸鈉、油酸鉀、油酸乙酯、油酸、月桂酸乙酯、月桂基硫酸鈉、PLUORINC®F 68、POLOXAMER® 188、溴化十六烷基三甲基銨、氯化十六烷基吡錠、苯紮氯銨、多庫酯鈉等、及/或其組合。Exemplary surfactants and/or emulsifiers include, but are not limited to, natural emulsifiers (eg, gum arabic, agar, alginic acid, sodium alginate, tragacanth, chondrux, cholesterol, gum, pectin , gelatin, egg yolk, casein, lanolin, cholesterol, wax and phosphatidylcholine), colloidal clays (such as bentonite (aluminum silicate) and VEEGUM® (magnesium aluminum silicate)), long-chain amino acid derivatives, High molecular weight alcohols (such as stearyl alcohol, cetyl alcohol, oleyl alcohol, glyceryl triacetate monostearate, ethylene glycol distearate, glyceryl monostearate and propylene glycol monostearate, poly vinyl alcohol), carbomers (such as carboxypolymethylene, polyacrylic acid, acrylic polymers and carboxyvinyl polymers), carrageenan, cellulose derivatives (such as sodium carboxymethylcellulose, powdered cellulose , hydroxymethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, methylcellulose), sorbitan fatty acid esters (such as polyoxyethylene sorbitan monolaurate (TWEEN® 20), polyoxyethylene sorbitan (TWEEN®60), polyoxyethylene sorbitan monooleate (TWEEN®80), sorbitan monopalmitate (SPAN®40), sorbitan Monostearate (SPAN®60), sorbitan tristearate (SPAN®65), glyceryl monooleate, sorbitan monooleate (SPAN®80)), polyoxyethylene Esters (such as polyoxyethylene monostearate (MYRJ®45), polyoxyethylene hydrogenated castor oil, polyethoxylated castor oil, polyoxymethylene stearate and SOLUTOL®), sucrose fatty acid esters, polyethylene Glycol fatty acid esters (e.g. CREMOPHOR®), polyoxyethylene ethers (e.g. polyoxyethylene lauryl ether (BRIJ® 30)), poly(vinylpyrrolidone), diethylene glycol monolaurate, triethanolamine oleic acid Ester, sodium oleate, potassium oleate, ethyl oleate, oleic acid, ethyl laurate, sodium lauryl sulfate, PLUORINC® F 68, POLOXAMER® 188, cetyltrimethylammonium bromide, chloride Cetylpyridium, benzalkonium chloride, docusate sodium, etc., and/or combinations thereof.

例示性黏合劑包括但不限於澱粉(例如玉米澱粉及澱粉糊);明膠;糖(例如蔗糖、葡萄糖、右旋糖、糊精、糖蜜、乳糖、乳糖醇、甘露糖醇);胺基酸(例如甘胺酸);天然及合成樹膠(例如阿拉伯膠、褐藻酸鈉、鹿角菜提取物、龐沃膠(panwar gum)、哥地膠(ghatti gum)、依莎貝果殼(isapol husk)之黏液、羧甲基纖維素、甲基纖維素、乙基纖維素、羥乙基纖維素、羥丙基纖維素、羥丙基甲基纖維素、微晶纖維素、乙酸纖維素、聚(乙烯吡咯啶酮)、矽酸鎂鋁(VEEGUM®)及落葉松阿拉伯半乳聚糖(larch arabogalactan));褐藻酸鹽;聚氧化乙烯;聚乙二醇;無機鈣鹽;矽酸;聚甲基丙烯酸酯;蠟;水;醇等;及其組合。Exemplary binders include, but are not limited to, starches (such as corn starch and starch paste); gelatin; sugars (such as sucrose, glucose, dextrose, dextrin, molasses, lactose, lactitol, mannitol); amino acids ( For example, glycine); natural and synthetic gums (such as gum arabic, sodium alginate, carrageenan extract, panwar gum, ghatti gum, isapol husk) Mucilage, carboxymethylcellulose, methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, microcrystalline cellulose, cellulose acetate, poly(ethylene) Pyrrolidone), magnesium aluminum silicate (VEEGUM®) and larch arabogalactan); alginate; polyethylene oxide; polyethylene glycol; inorganic calcium salts; silicic acid; polymethacrylic acid Esters; waxes; water; alcohols, etc.; and combinations thereof.

例示性防腐劑可包括但不限於抗氧化劑、螯合劑、抗微生物防腐劑、抗真菌防腐劑、醇防腐劑、酸性防腐劑、及/或其他防腐劑。氧化為mRNA之潛在降解途徑,尤其對於液體mRNA調配物而言。為了防止氧化,可將抗氧化劑添加至調配物中。例示性抗氧化劑包括但不限於α生育酚、抗壞血酸、抗壞血酸棕櫚酸酯、苯甲醇、丁基化羥基大茴香醚、EDTA、間甲酚、甲硫胺酸、丁基化羥基甲苯、單硫代甘油、偏亞硫酸氫鈉、丙酸、沒食子酸丙酯、抗壞血酸鈉、亞硫酸氫鈉、偏亞硫酸氫鈉、硫代甘油、及/或亞硫酸鈉。例示性螯合劑包括乙二胺四乙酸(EDTA)、單水合檸檬酸、乙二胺四乙酸二鈉、乙二胺四乙酸二鉀、乙二胺四乙酸、反丁烯二酸、蘋果酸、磷酸、乙二胺四乙酸鈉、酒石酸、及/或乙二胺四乙酸三鈉。例示性抗微生物防腐劑包括但不限於苯紮氯銨、苄索氯銨、苯甲醇、溴硝丙二醇、西曲溴銨、氯化鯨蠟基吡錠、氯己定、氯丁醇、氯甲酚、氯二甲酚、甲酚、乙醇、甘油、海克替啶(hexetidine)、咪唑啶基脲、苯酚、苯氧基乙醇、苯乙醇、硝酸苯汞、丙二醇、及/或硫柳汞。例示性抗真菌防腐劑包括但不限於對羥基苯甲酸丁酯、對羥基苯甲酸甲酯、對羥基苯甲酸乙酯、對羥基苯甲酸丙酯、苯甲酸、羥基苯甲酸、苯甲酸鉀、山梨酸鉀、苯甲酸鈉、丙酸鈉、及/或山梨酸。例示性醇防腐劑包括但不限於乙醇、聚乙二醇、苯酚、酚化合物、雙酚、氯丁醇、羥基苯甲酸酯、及/或苯乙醇。例示性酸性防腐劑包括但不限於維生素A、維生素C、維生素E、β-胡蘿蔔素、檸檬酸、乙酸、去氫乙酸、抗壞血酸、山梨酸及/或植酸。其他防腐劑包括但不限於生育酚、生育酚乙酸酯、去鐵胺甲磺酸酯、西曲溴銨、丁基化羥基茴香醚(BHA)、丁基化羥基甲苯(BHT)、乙二胺、月桂基硫酸鈉(SLS)、月桂基醚硫酸鈉(SLES)、亞硫酸氫鈉、偏亞硫酸氫鈉、亞硫酸鉀、偏亞硫酸氫鉀、GLYDANT PLUS®、PHENONIP®、對羥基苯甲酸甲酯、GERMALL®115、GERMABEN®!!、NEOLONE™、KATHON™、及/或EUXYL®。Exemplary preservatives may include, but are not limited to, antioxidants, chelating agents, antimicrobial preservatives, antifungal preservatives, alcohol preservatives, acidic preservatives, and/or other preservatives. Oxidation to mRNA is a potential degradation pathway, especially for liquid mRNA formulations. To prevent oxidation, antioxidants can be added to the formulation. Exemplary antioxidants include, but are not limited to, alpha tocopherol, ascorbic acid, ascorbyl palmitate, benzyl alcohol, butylated hydroxyanisole, EDTA, m-cresol, methionine, butylated hydroxytoluene, monothio Glycerin, sodium metabisulfite, propionic acid, propyl gallate, sodium ascorbate, sodium bisulfite, sodium metabisulfite, thioglycerol, and/or sodium sulfite. Exemplary chelating agents include ethylenediaminetetraacetic acid (EDTA), citric acid monohydrate, disodium EDTA, dipotassium EDTA, ethylenediaminetetraacetic acid, fumaric acid, malic acid, Phosphoric acid, sodium EDTA, tartaric acid, and/or trisodium EDTA. Exemplary antimicrobial preservatives include, but are not limited to, benzalkonium chloride, benzethonium chloride, benzyl alcohol, bronopol, cetrimonium bromide, cetylpyridinium chloride, chlorhexidine, chlorobutanol, methyl chloride Phenol, chloroxylenol, cresol, ethanol, glycerin, hexetidine, imidazolidinyl urea, phenol, phenoxyethanol, phenethyl alcohol, phenylmercuric nitrate, propylene glycol, and/or thimerosal. Exemplary antifungal preservatives include, but are not limited to, butylparaben, methylparaben, ethylparaben, propylparaben, benzoic acid, hydroxybenzoic acid, potassium benzoate, sorbate Potassium acid, sodium benzoate, sodium propionate, and/or sorbic acid. Exemplary alcohol preservatives include, but are not limited to, ethanol, polyethylene glycol, phenol, phenolic compounds, bisphenols, chlorobutanol, parabens, and/or phenethyl alcohol. Exemplary acidic preservatives include, but are not limited to, vitamin A, vitamin C, vitamin E, beta-carotene, citric acid, acetic acid, dehydroacetic acid, ascorbic acid, sorbic acid, and/or phytic acid. Other preservatives include, but are not limited to, tocopherol, tocopheryl acetate, deferoxamine mesylate, cetrimonium bromide, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), ethylene glycol Amine, sodium lauryl sulfate (SLS), sodium laureth sulfate (SLES), sodium bisulfite, sodium metabisulfite, potassium sulfite, potassium metabisulfite, GLYDANT PLUS®, PHENONIP®, p-hydroxybenzene Methyl formate, GERMALL® 115, GERMABEN®!!, NEOLONE™, KATHON™, and/or EUXYL®.

在一些實施態樣中,醫藥溶液之pH維持在pH 5與pH 8之間以改良穩定性。控制pH之例示性緩衝液可包括但不限於磷酸鈉、檸檬酸鈉、丁二酸鈉、組胺酸(或組胺酸-HCl)、碳酸鈉、及/或蘋果酸鈉。在另一實施態樣中,以上列出之例示性緩衝液可與額外單價相對離子(包括但不限於鉀)一起使用。二價陽離子亦可用作緩衝相對離子;然而,由於複雜的形成及/或mRNA降解,此等並非較佳的。In some embodiments, the pH of the pharmaceutical solution is maintained between pH 5 and pH 8 to improve stability. Exemplary buffers to control pH may include, but are not limited to, sodium phosphate, sodium citrate, sodium succinate, histidine (or histidine-HCl), sodium carbonate, and/or sodium malate. In another embodiment, the exemplary buffers listed above may be used with additional monovalent counterions including, but not limited to, potassium. Divalent cations can also be used as buffer counterions; however, these are not preferred due to complex formation and/or mRNA degradation.

例示性緩衝劑包括但不限於檸檬酸鹽緩衝溶液、乙酸鹽緩衝溶液、磷酸鹽緩衝溶液、氯化銨、碳酸鈣、氯化鈣、檸檬酸鈣、葡乳醛酸鈣、葡庚糖酸鈣、葡糖酸鈣、D-葡萄糖酸、甘油磷酸鈣、乳酸鈣、丙酸、乙醯丙酸鈣、戊酸、磷酸氫二鈣、磷酸、磷酸三鈣、氫氧化鈣磷酸鹽、乙酸鉀、氯化鉀、葡糖酸鉀、鉀混合物、磷酸氫二鉀、磷酸二氫鉀、磷酸鉀混合物、乙酸鈉、碳酸氫鈉、氯化鈉、檸檬酸鈉、乳酸鈉、磷酸氫二鈉、磷酸二氫鈉、磷酸鈉混合物、緩血酸胺、氫氧化鎂、氫氧化鋁、褐藻酸、無熱原質水、等張生理鹽水、林格氏溶液(Ringer's solution)、乙醇等、及/或其組合。Exemplary buffers include, but are not limited to, citrate buffer, acetate buffer, phosphate buffer, ammonium chloride, calcium carbonate, calcium chloride, calcium citrate, calcium glucuronate, calcium glucoheptonate , calcium gluconate, D-gluconic acid, calcium glycerophosphate, calcium lactate, propionic acid, calcium acetate propionate, valeric acid, dicalcium hydrogen phosphate, phosphoric acid, tricalcium phosphate, calcium hydroxide phosphate, potassium acetate, Potassium chloride, potassium gluconate, potassium mixture, dipotassium hydrogen phosphate, potassium dihydrogen phosphate, potassium phosphate mixture, sodium acetate, sodium bicarbonate, sodium chloride, sodium citrate, sodium lactate, disodium hydrogen phosphate, disodium phosphate Sodium bishydride, sodium phosphate mixture, bradysamine, magnesium hydroxide, aluminum hydroxide, alginic acid, pyrogen-free water, isotonic saline, Ringer's solution, ethanol, etc., and/or other combination.

例示性潤滑劑包括但不限於硬脂酸鎂、硬脂酸鈣、硬脂酸、二氧化矽、滑石、麥芽、山崳酸甘油酯、氫化植物油、聚乙二醇、苯甲酸鈉、乙酸鈉、氯化鈉、白胺酸、月桂基硫酸鎂、月桂基硫酸鈉等、及其組合。Exemplary lubricants include, but are not limited to, magnesium stearate, calcium stearate, stearic acid, silicon dioxide, talc, malt, behenyl, hydrogenated vegetable oil, polyethylene glycol, sodium benzoate, sodium acetate , sodium chloride, leucine, magnesium lauryl sulfate, sodium lauryl sulfate, etc., and combinations thereof.

例示性油包括但不限於杏仁、杏核、鱷梨、巴巴蘇(babassu)、佛手柑、黑加侖籽、琉璃苣、杜松(cade)、洋甘菊、芥花、葛縷子、棕櫚蠟、蓖麻、肉桂、可可脂、椰子、鱈魚肝、咖啡、玉米、棉籽、鴯鶓、桉樹、晚櫻草、魚、亞麻籽、香草醇、葫蘆、葡萄籽、榛子、牛膝草、十四烷酸異丙酯、荷荷芭、夏威夷胡桃、醒目薰衣草、薰衣草、檸檬、山蒼子、夏威夷果仁、錦葵、芒果籽、白池花籽、貂、肉豆蔻、橄欖、橙子、大西洋胸棘鯛、棕櫚、棕櫚仁、桃仁、花生、罌粟籽、南瓜籽、油菜籽、米糠、迷迭香、紅花、檀香木、山茶花、香薄荷、沙棘、芝麻、牛油樹油、聚矽氧、大豆、向日葵、茶樹、薊、椿本、岩蘭草、胡桃及小麥胚油。例示性油包括但不限於硬脂酸丁酯、辛酸三甘油酯、癸酸三甘油酯、環甲聚矽氧烷、癸二酸二乙酯、二甲聚矽氧烷360、肉豆蔻酸異丙酯、礦物油、辛基十二烷醇、油醇、聚矽氧油、及/或其組合。Exemplary oils include, but are not limited to, almond, apricot stone, avocado, babassu, bergamot, blackcurrant seed, borage, cade, chamomile, canola, caraway, palm wax, castor oil Hemp, cinnamon, cocoa butter, coconut, cod liver, coffee, corn, cottonseed, emu, eucalyptus, evening primrose, fish, flaxseed, vanillyl alcohol, bottle gourd, grape seed, hazelnut, hyssop, myristanoic acid Isopropyl ester, jojoba, Hawaiian walnut, eye-catching lavender, lavender, lemon, litsea cubeba, macadamia nut, mallow, mango seed, white pond flower seed, mink, nutmeg, olive, orange, Atlantic bluegrass, Palm, palm kernel, peach kernel, peanut, poppy seed, pumpkin seed, rapeseed, rice bran, rosemary, safflower, sandalwood, camellia, savory, sea buckthorn, sesame, shea oil, silicone, soybean, sunflower , tea tree, thistle, toon, vetiver, walnut and wheat germ oil. Exemplary oils include, but are not limited to, butyl stearate, triglyceride caprylate, triglyceride caprate, cyclomethicone, diethyl sebacate, dimethicone 360, isomyristate Propyl ester, mineral oil, octyldodecanol, oleyl alcohol, silicone oil, and/or combinations thereof.

根據調配者之判斷,賦形劑,諸如可可脂及栓劑蠟、著色劑、包衣劑、甜味劑、調味劑、及/或芳香劑可存在於組成物中。Excipients such as cocoa butter and suppository waxes, coloring agents, coating agents, sweeteners, flavorings, and/or fragrances may be present in the compositions at the discretion of the formulator.

例示性添加劑包括生理生物相容性緩衝液(例如三甲胺鹽酸鹽)、添加螯合劑(諸如DTPA或DTPA-雙醯胺)或鈣螯合物(例如DTPA鈣、CaNaDTPA-雙醯胺)或視情況添加鈣或鈉鹽(例如氯化鈣、抗壞血酸鈣、葡糖酸鈣或乳酸鈣)。此外,可使用抗氧化劑及懸浮劑。Exemplary additives include physiologically biocompatible buffers (e.g., trimethylamine hydrochloride), added chelating agents (such as DTPA or DTPA-diamide) or calcium chelates (e.g., calcium DTPA, CaNaDTPA-diamide), or Calcium or sodium salts (such as calcium chloride, calcium ascorbate, calcium gluconate or calcium lactate) are added as appropriate. In addition, antioxidants and suspending agents can be used.

在本揭露之一些實施態樣中,本文所述之核酸疫苗組成物可包含至少一種在脂質奈米粒子(LNP)中調配之核酸疫苗及至少一種賦形劑。作為非限制性實例,賦形劑可為糖,諸如蔗糖。 佐劑 In some embodiments of the present disclosure, the nucleic acid vaccine compositions described herein may include at least one nucleic acid vaccine formulated in lipid nanoparticles (LNP) and at least one excipient. As a non-limiting example, the excipient may be a sugar, such as sucrose. Adjuvant

佐劑亦可與本文所述之一或多種核酸疫苗,例如mRNA疫苗一起投予或組合投予。佐劑可用於增強核酸疫苗之免疫原性、改變免疫反應、減少免疫所需之核酸疫苗的量、減少所需之額外或「加強」免疫的頻率或在免疫系統減弱或免疫功能不全的人群或老年人中產生改善的免疫反應。佐劑可為含有核酸疫苗之調配物的組分,或其可與核酸疫苗組成物共投予。佐劑之共投予可為此項技術中已知或本文所述之任何方法,諸如但不限於靜脈內(IV)、肌內(IM)、皮下(SC)、或皮內(ID)。Adjuvants may also be administered with or in combination with one or more nucleic acid vaccines described herein, such as an mRNA vaccine. Adjuvants can be used to enhance the immunogenicity of nucleic acid vaccines, alter immune responses, reduce the amount of nucleic acid vaccines required for immunization, reduce the frequency of additional or "booster" immunizations required, or in people with weakened or immunocompromised immune systems or Improved immune response in older adults. The adjuvant can be a component of a formulation containing the nucleic acid vaccine, or it can be co-administered with the nucleic acid vaccine composition. Co-administration of the adjuvant may be by any method known in the art or described herein, such as, but not limited to, intravenous (IV), intramuscular (IM), subcutaneous (SC), or intradermal (ID).

在一些實施態樣中,佐劑為天然或合成的。佐劑亦可為有機或無機的。In some embodiments, adjuvants are natural or synthetic. Adjuvants may also be organic or inorganic.

在一些實施態樣中,用於核酸疫苗之佐劑來自一類佐劑,諸如但不限於碳水化合物、微生物、礦物質鹽(例如氫氧化鋁、磷酸鋁凝膠或磷酸鈣凝膠)、乳液(例如油乳液、基於界面活性劑之乳液、純化皂苷及水包油乳液)、惰性媒劑、微粒佐劑(例如單層脂質體媒劑,諸如病毒體或皂苷及脂質之結構化複合物,諸如聚丙交酯共乙交酯(PLG))、微生物衍生物、內源性人類免疫調節劑及張力活性化合物。可用於本文所述之核酸疫苗之佐劑的清單可見於基於網路之疫苗佐劑資料庫Vaxjo (參見例如violinet.org/vaxjo或Sayers等人., Journal of Biomedicine and Biotechnology. 2012; 2012:831486. PMID: 22505817;將其內容以其全文引用方式併入本文中)。 In some embodiments, adjuvants for nucleic acid vaccines are from a class of adjuvants such as, but not limited to, carbohydrates, microorganisms, mineral salts (e.g., aluminum hydroxide, aluminum phosphate gel, or calcium phosphate gel), emulsions ( e.g. oil emulsions, surfactant-based emulsions, purified saponins and oil-in-water emulsions), inert vehicles, particulate adjuvants (e.g. unilamellar liposome vehicles such as virions or structured complexes of saponins and lipids such as Polylactide-co-glycolide (PLG)), microbial derivatives, endogenous human immunomodulators and tonicity-active compounds. A list of adjuvants that may be used in the nucleic acid vaccines described herein can be found in the web-based vaccine adjuvant database Vaxjo (see, e.g., violinet.org/vaxjo or Sayers et al., Journal of Biomedicine and Biotechnology . 2012; 2012:831486 . PMID: 22505817; the contents of which are incorporated herein by reference in their entirety).

可由一般熟習此項技術者選擇用於核酸疫苗之佐劑。佐劑可為干擾素、TNF-α、TNF-β、趨化因子(例如CCL21、伊紅趨素、HMGB1、SA100-8α、GCSF、GMCSF、顆粒溶素、乳鐵蛋白、卵白蛋白、CD40L、CD28促效劑、PD1、可溶性PD1、PDL1、PDL2)或介白素(例如IL1、IL2、IL4、IL6、IL7、IL10、IL12、IL13、IL15、IL17、IL18、IL21及IL23)。佐劑之非限制性實例包括Abisco-100疫苗佐劑、金剛烷基醯胺二肽疫苗佐劑、Adjumer™、AF03、白蛋白-肝素微粒疫苗佐劑、海藻葡聚糖、Algammulin、鋁膠、氫氧化鋁疫苗佐劑、磷酸鋁疫苗佐劑、硫酸鋁鉀佐劑、鋁疫苗佐劑、無定形鋁羥基磷酸化硫酸鋁佐劑、Arlacel A、AS0、AS04、AS03、AS-2疫苗佐劑、Avridine®、B7-2疫苗佐劑、Bay R1005、百日咳博德特氏菌成分疫苗佐劑、布比卡因疫苗佐劑、磷酸鈣凝膠、磷酸鈣疫苗佐劑、陽離子脂質體疫苗佐劑、陽離子脂質體-DNA複合物JVRS-100、霍亂毒素、霍亂毒素B次單元、棒狀桿菌衍生之P40疫苗佐劑、CpG DNA疫苗佐劑、CRL1OO5、CTA1-DD基因融合蛋白、DDA佐劑、DHEA疫苗佐劑、DL-PGL (聚酯聚(DL-丙交酯-共-乙交酯))疫苗佐劑、DOC/Alum複合物、大腸桿菌不耐熱毒素、Etx B次單元佐劑、鞭毛蛋白、弗氏完全佐劑、弗氏不完全佐劑、γ菊糖、Gerbu佐劑、GM-CSF、GMDP、咪喹莫特、含有協同刺激分子抗體之免疫脂質體、ISCOM(s)™、ISCOMA-TRIX®、滅活的短小棒狀桿菌疫苗佐劑、脂多醣、脂質體、洛索立賓、LTK63疫苗突變體佐劑、LTK72疫苗佐劑、LTR192G疫苗佐劑、Matrix-S、MF59、Montanide Incomplete Seppic佐劑、Montanide ISA 51、Montanide ISA 720佐劑、MPL-SE疫苗佐劑、MPL™佐劑、MTP-PE脂質體、胞壁肽、胞壁醯二肽佐劑、木帕米啶(Murapalmitine)、D-木帕米啶、NAGO、奈米乳液疫苗佐劑、非離子界面活性劑囊泡、霍亂毒素無毒突變體E112K mCT-E112K、PMMA、Poly(LC)、Polygen疫苗佐劑、蛋白質脂質卷、QS-21、Quil-A疫苗佐劑、RC529疫苗佐劑、重組hlFN-γ/干擾素-g、Rehydragel EV、Rehydragel HPA、雷西莫特(Resiquimod)、Ribi疫苗佐劑、SAF-1、皂苷疫苗佐劑、胸腺肽、仙台蛋白脂質體、含仙台之脂質極致、Specol、SPT (抗原調配物)、基於角鯊烯之佐劑、硬脂醯酪胺酸、Theramide®、羥丁胺醯基胞壁醯二肽(TMDP)、Titer-Max Gold佐劑、Ty Particles疫苗佐劑、及VSA-3佐劑。Adjuvants for nucleic acid vaccines can be selected by those skilled in the art. Adjuvants can be interferon, TNF-α, TNF-β, chemokines (such as CCL21, eosin, HMGB1, SA100-8α, GCSF, GMCSF, granulysin, lactoferrin, ovalbumin, CD40L, CD28 agonist, PD1, soluble PD1, PDL1, PDL2) or interleukins (e.g. IL1, IL2, IL4, IL6, IL7, IL10, IL12, IL13, IL15, IL17, IL18, IL21 and IL23). Non-limiting examples of adjuvants include Abisco-100 vaccine adjuvant, adamantylamide dipeptide vaccine adjuvant, Adjumer™, AF03, albumin-heparin particulate vaccine adjuvant, seaweed dextran, Algammulin, aluminum glue, Aluminum hydroxide vaccine adjuvant, aluminum phosphate vaccine adjuvant, aluminum potassium sulfate adjuvant, aluminum vaccine adjuvant, amorphous aluminum hydroxyphosphorylated aluminum sulfate adjuvant, Arlacel A, AS0, AS04, AS03, AS-2 vaccine adjuvant , Avridine®, B7-2 vaccine adjuvant, Bay R1005, Bordetella pertussis component vaccine adjuvant, bupivacaine vaccine adjuvant, calcium phosphate gel, calcium phosphate vaccine adjuvant, cationic liposome vaccine adjuvant , Cationic liposome-DNA complex JVRS-100, cholera toxin, cholera toxin B subunit, Corynebacterium-derived P40 vaccine adjuvant, CpG DNA vaccine adjuvant, CRL1OO5, CTA1-DD gene fusion protein, DDA adjuvant, DHEA vaccine adjuvant, DL-PGL (polyester poly(DL-lactide-co-glycolide)) vaccine adjuvant, DOC/Alum complex, E. coli heat-labile toxin, Etx B subunit adjuvant, flagella Protein, Freund's complete adjuvant, Freund's incomplete adjuvant, gamma inulin, Gerbu adjuvant, GM-CSF, GMDP, imiquimod, immunoliposomes containing costimulatory molecule antibodies, ISCOM(s)™, ISCOMA-TRIX®, inactivated Corynebacterium parvum vaccine adjuvant, lipopolysaccharide, liposome, loxoribine, LTK63 vaccine mutant adjuvant, LTK72 vaccine adjuvant, LTR192G vaccine adjuvant, Matrix-S, MF59, Montanide Incomplete Seppic Adjuvant, Montanide ISA 51, Montanide ISA 720 Adjuvant, MPL-SE Vaccine Adjuvant, MPL™ Adjuvant, MTP-PE Liposome, Cellular Peptide, Cellular Dipeptide Adjuvant, Xupamidine (Murapalmitine), D-mopamidine, NAGO, nanoemulsion vaccine adjuvant, non-ionic surfactant vesicles, cholera toxin non-toxic mutant E112K mCT-E112K, PMMA, Poly(LC), Polygen vaccine adjuvant, Protein lipid volume, QS-21, Quil-A vaccine adjuvant, RC529 vaccine adjuvant, recombinant hlFN-γ/interferon-g, Rehydragel EV, Rehydragel HPA, Resiquimod, Ribi vaccine adjuvant, SAF -1. Saponin vaccine adjuvant, thymosin, Sendai proteoliposome, Sendai-containing Lipid Ultimate, Specol, SPT (antigen formulation), squalene-based adjuvant, stearyl tyrosine, Theramide®, hydroxybutyrate Aminolysyl muramidyl dipeptide (TMDP), Titer-Max Gold adjuvant, Ty Particles vaccine adjuvant, and VSA-3 adjuvant.

在一些實施態樣中,本文所述之核酸疫苗可用作疫苗且可進一步包含可使得疫苗能夠引發更高免疫反應的佐劑。作為非限制性實例,佐劑可為亞微米水包油乳液,其可在人類小兒群體中引發更高免疫反應(參見例如美國專利公開案第US20120027813號及美國專利第8,506,966號中所述之佐劑疫苗,將每一該等內容以其全文引用方式併入本文中)。 給藥及投予 In some embodiments, the nucleic acid vaccines described herein can be used as vaccines and can further include adjuvants that can enable the vaccine to elicit a higher immune response. As a non-limiting example, the adjuvant can be a submicron oil-in-water emulsion, which can elicit higher immune responses in the human pediatric population (see, for example, adjuvants described in U.S. Patent Publication No. US20120027813 and U.S. Patent No. 8,506,966 doses of vaccine, each such content is incorporated herein by reference in its entirety). Drug administration and administration

本揭露涵蓋藉由考慮藥物遞送科學之可能發展的任何適當途徑遞送核酸疫苗組成物,包括例如用於任何治療、預防、醫藥、診斷或成像用途的COVID-19核酸疫苗。遞送可為裸式的或調配的。The present disclosure encompasses delivery of nucleic acid vaccine compositions by any appropriate route taking into account possible developments in drug delivery science, including, for example, COVID-19 nucleic acid vaccines for any therapeutic, prophylactic, pharmaceutical, diagnostic or imaging use. Delivery can be naked or formulated.

本揭露之核酸疫苗組成物可裸式地遞送至細胞。如本文所用,「裸式」係指遞送不含促進轉染之試劑的核酸疫苗組成物。例如,遞送至細胞之核酸疫苗組成物可不含修飾。裸核酸疫苗組成物可使用此項技術中已知及本文所述之投予途徑遞送至細胞。The nucleic acid vaccine compositions of the present disclosure can be delivered to cells naked. As used herein, "naked" refers to the delivery of a nucleic acid vaccine composition that does not contain agents that facilitate transfection. For example, nucleic acid vaccine compositions delivered to cells may be free of modifications. Naked nucleic acid vaccine compositions can be delivered to cells using administration routes known in the art and described herein.

本揭露之核酸疫苗組成物可使用本文所述之調配物組分及方法調配。調配物可含有核酸疫苗組成物,該等組成物可經修飾及/或未經修飾。調配物可進一步包括但不限於細胞穿透劑、醫藥學上可接受之載劑、遞送劑、生物溶蝕性或生物相容性聚合物、溶劑及持續釋放遞送儲存物。所調配核酸疫苗組成物可使用此項技術中已知及本文所述之投予途徑遞送至細胞。The nucleic acid vaccine compositions of the present disclosure may be formulated using the formulation components and methods described herein. The formulations may contain nucleic acid vaccine compositions, which may be modified and/or unmodified. The formulations may further include, but are not limited to, cell penetrating agents, pharmaceutically acceptable carriers, delivery agents, bioerodible or biocompatible polymers, solvents, and sustained release delivery depots. The formulated nucleic acid vaccine compositions may be delivered to cells using administration routes known in the art and described herein.

核酸疫苗組成物亦可經調配用於以此項技術之若干方式中之任一者直接遞送至器官或組織,該等方式包括但不限於:直接浸泡或沐浴,經由導管,藉由凝膠、粉末、軟膏、乳膏、凝膠、洗劑、及/或滴劑,藉由使用塗佈或浸漬有組成物之基板,諸如織物或可生物降解材料,及其類似方式。本揭露之核酸疫苗組成物亦可選殖至反轉錄病毒複製載體(RRV)中且轉導至細胞。 給藥 Nucleic acid vaccine compositions may also be formulated for direct delivery to organs or tissues in any of several modalities of this technology, including but not limited to: direct immersion or bathing, via catheters, via gels, Powders, ointments, creams, gels, lotions, and/or drops, by using a substrate coated or impregnated with the composition, such as a fabric or biodegradable material, and the like. The nucleic acid vaccine composition of the present disclosure can also be cloned into a retroviral replication vector (RRV) and transduced into cells. Give medication

本文所提供的亦包括包含向有需要之個體投予本文所述之核酸疫苗的方法。視個體之物種、年齡、健康及一般狀況、疾病之嚴重程度、特定組成物、其投予模式、其活動模式及類似因素而定,所需之精確量將因個體而異。出於易於投予及劑量之均勻性考慮,組成物通常以單位劑型調配。然而,應理解,組成物之每天總用量將由主治醫師在合理的醫學判斷範疇內決定。用於任何特定患者之特定治療有效、預防有效或適當成像劑量水平將視多種因素而定,該等因素包括所治療病症及病症嚴重度;所用特定化合物之活性;所用特定組成物;患者之年齡、體重、一般健康、性別及膳食;所用特定化合物之投予時間、投予途徑及排泄率;治療持續時間;與所用特定化合物組合或同時使用之藥物;及醫學技術中熟知之類似因素。Also provided herein are methods comprising administering a nucleic acid vaccine described herein to an individual in need thereof. The precise amount required will vary from individual to individual depending on the individual's species, age, health and general condition, severity of disease, the specific composition, its mode of administration, its pattern of activity and similar factors. For ease of administration and uniformity of dosage, the compositions are usually formulated in unit dosage form. However, it should be understood that the total daily dosage of the composition will be determined by the attending physician within the scope of reasonable medical judgment. The specific therapeutically effective, prophylactically effective, or appropriate imaging dose level for any particular patient will depend on a variety of factors, including the condition being treated and the severity of the condition; the activity of the specific compound used; the specific composition used; and the age of the patient. , body weight, general health, gender and diet; administration time, route of administration and excretion rate of the specific compound used; duration of treatment; drugs used in combination or concurrently with the specific compound used; and similar factors well known in medical technology.

本揭露涵蓋以下劑量水平:約0.001至約500 mg核酸疫苗(例如COVID-19核酸疫苗,例如COVID-19 mRNA疫苗)/kg體重/天、約0.001至約200 mg/kg、約0.001至約100 mg/kg、0.01至約100 mg/kg,較佳約0.005至約50 mg/kg、0.01至約50 mg/kg、0.01至約40 mg/kg、0.01至約30 mg/kg、0.01至約10 mg/kg、0.05至約50 mg/kg、0.05至約30 mg/kg、0.05至約10 mg/kg、0.05至約5 mg/kg、0.1至約50 mg/kg、0.1至約30 mg/kg、0.1至約10 mg/kg、0.1至約1 mg/kg、1.0至約50 mg/kg、1.0至約40 mg/kg、1.0至約30 mg/kg、10至約50 mg/kg體重。其他實施態樣涵蓋約0.001至0.010、0.010至0.050、0.050至0.100、0.1至0.5、0.5至1.0、1.0至5.0、5.0至10、10至50 mg/kg、10至100 mg/kg體重的劑量。劑量可大約每小時、每天多次、每天、每隔一天、每週、每隔一週、每月、每隔一個月或根據需要投予。This disclosure encompasses the following dosage levels: about 0.001 to about 500 mg nucleic acid vaccine (e.g., COVID-19 nucleic acid vaccine, e.g., COVID-19 mRNA vaccine)/kg body weight/day, about 0.001 to about 200 mg/kg, about 0.001 to about 100 mg/kg, 0.01 to about 100 mg/kg, preferably about 0.005 to about 50 mg/kg, 0.01 to about 50 mg/kg, 0.01 to about 40 mg/kg, 0.01 to about 30 mg/kg, 0.01 to about 10 mg/kg, 0.05 to about 50 mg/kg, 0.05 to about 30 mg/kg, 0.05 to about 10 mg/kg, 0.05 to about 5 mg/kg, 0.1 to about 50 mg/kg, 0.1 to about 30 mg /kg, 0.1 to about 10 mg/kg, 0.1 to about 1 mg/kg, 1.0 to about 50 mg/kg, 1.0 to about 40 mg/kg, 1.0 to about 30 mg/kg, 10 to about 50 mg/kg weight. Other embodiments include doses of about 0.001 to 0.010, 0.010 to 0.050, 0.050 to 0.100, 0.1 to 0.5, 0.5 to 1.0, 1.0 to 5.0, 5.0 to 10, 10 to 50 mg/kg, 10 to 100 mg/kg body weight . Doses may be administered approximately hourly, multiple times per day, daily, every other day, weekly, every other week, monthly, every other month, or as needed.

在一些實施態樣中,核酸疫苗之組成物可以足以遞送約0.0001 mg/kg至約100 mg/kg、約0.001 mg/kg至約0.05 mg/kg、約0.005 mg/kg至約0.05 mg/kg、約0.001 mg/kg至約0.005 mg/kg、約0.05 mg/kg至約0.5 mg/kg、約0.01 mg/kg至約50 mg/kg、約0.1 mg/kg至約40 mg/kg、約0.5 mg/kg至約30 mg/kg、約0.01 mg/kg至約10 mg/kg、約0.1 mg/kg至約10 mg/kg、約1 mg/kg至約25 mg/kg、約1 mg/kg至約50 mg/kg、約10 mg/kg至約100 mg/kg、約10 mg/kg至約50 mg/k個體體重/天,一天一或多次之劑量水平投予,以獲得所需治療、診斷、預防或成像效應。所需劑量可一天三次、一天兩次、一天一次、每隔一天、每三天、每週、每兩週、每三週或每四週遞送。在某些實施態樣中,所需劑量可使用多次投藥進行遞送(例如兩次、三次、四次、五次、六次、七次、八次、九次、十次、十一次、十二次、十三次、十四次或更多次投藥)。當採用多次投藥時,可使用分次給藥方案,諸如那些在本文中所述之方案。In some embodiments, the composition of the nucleic acid vaccine may be sufficient to deliver about 0.0001 mg/kg to about 100 mg/kg, about 0.001 mg/kg to about 0.05 mg/kg, about 0.005 mg/kg to about 0.05 mg/kg , about 0.001 mg/kg to about 0.005 mg/kg, about 0.05 mg/kg to about 0.5 mg/kg, about 0.01 mg/kg to about 50 mg/kg, about 0.1 mg/kg to about 40 mg/kg, about 0.5 mg/kg to about 30 mg/kg, about 0.01 mg/kg to about 10 mg/kg, about 0.1 mg/kg to about 10 mg/kg, about 1 mg/kg to about 25 mg/kg, about 1 mg /kg to about 50 mg/kg, about 10 mg/kg to about 100 mg/kg, about 10 mg/kg to about 50 mg/k individual body weight/day, administered at dosage levels one or more times a day to obtain Desired therapeutic, diagnostic, preventive or imaging effect. The desired dose may be delivered three times a day, twice a day, once a day, every other day, every third day, weekly, every two weeks, every three weeks, or every four weeks. In certain embodiments, the desired dose can be delivered using multiple administrations (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, Twelve, thirteen, fourteen or more doses). When multiple dosing is employed, divided dosing regimens such as those described herein may be used.

在一些實施態樣中,本文所述之核酸疫苗之組成物可以足以向個體遞送約1 µg、10 µg、15 µg、20 µg、25 µg、30 µg、35 µg、40 µg、50 µg、60 µg、70 µg、80 µg、90 µg、或100 µg核酸組成物之劑量水平投予。In some embodiments, the composition of the nucleic acid vaccine described herein can be sufficient to deliver about 1 µg, 10 µg, 15 µg, 20 µg, 25 µg, 30 µg, 35 µg, 40 µg, 50 µg, 60 dose levels of µg, 70 µg, 80 µg, 90 µg, or 100 µg of the nucleic acid composition.

在一些實施態樣中,核酸疫苗可以分次劑量方案投予。如本文所用,「分次劑量」係將單一單位劑量或每日總劑量分為兩次或更多次劑量,例如單一單位劑量之兩次或更多次投予。如本文所用之「單一單位劑量」為以一個劑量/一次性/單一途徑/單一接觸點、亦即單一投藥事件投予的任何治療劑的劑量。如本文所用,「每日總劑量」為24小時時段中給與或開處之量。其可以單一單位劑量形式進行投予。在一些實施態樣中,本文所述之核酸疫苗以分次劑量向個體投予。核酸疫苗可僅在緩衝液中或在本文所述之調配物中調配。In some implementations, the nucleic acid vaccine can be administered in a divided dose regimen. As used herein, "fractionated dose" means dividing a single unit dose or total daily dose into two or more doses, such as two or more administrations of a single unit dose. A "single unit dose" as used herein is a dose of any therapeutic agent administered in one dose/single time/single route/single point of contact, ie, a single administration event. As used herein, a "total daily dose" is the amount administered or prescribed in a 24-hour period. It can be administered in a single unit dose. In some embodiments, the nucleic acid vaccines described herein are administered to an individual in divided doses. Nucleic acid vaccines can be formulated in buffer alone or in the formulations described herein.

在一些實施態樣中,本文所述之核酸疫苗組成物可在兩個獨立階段(起始給藥階段及維持給藥階段)向個體投予。給藥方案可包含在預防、緩解及/或治療過程開始時首次給與個體之核酸疫苗的初始較高起始劑量,例如用於預防COVID-19之第一劑量,及在第一起始劑量之後的較低維持劑量。在一些實施態樣中,起始劑量及維持劑量具有相同量的本揭露之核酸疫苗。在一些實施態樣中,向個體投予超過一個維持劑量。可每兩週、每三週、每四週、每個月、每兩個月、每三個月、每四個月、每五個月或每六個月投予多個維持劑量。在疫苗接種用於預防病症,例如用於COVID-19之核酸(例如mRNA)疫苗的情形下,核酸疫苗之維持劑量亦可稱為加強劑量。如本文所用,「加強劑量」(或「加強注射」)為初始引子劑量之後的額外或補充劑量之疫苗。加強劑量之核酸疫苗的量可與初始起始劑量相同。或者,加強劑量之核酸疫苗的量小於初始劑量中之核酸疫苗的原始量。在一些實施態樣中,個體可接受一個、兩個、三個、四個或更多個加強劑量。In some embodiments, the nucleic acid vaccine compositions described herein can be administered to an individual in two separate phases (initial administration phase and maintenance administration phase). The dosing regimen may include an initial higher starting dose of the nucleic acid vaccine first administered to the individual at the beginning of a course of prevention, mitigation, and/or treatment, such as the first dose for prevention of COVID-19, and after the first starting dose lower maintenance dose. In some embodiments, the starting dose and the maintenance dose have the same amount of the nucleic acid vaccine of the present disclosure. In some embodiments, more than one maintenance dose is administered to an individual. Multiple maintenance doses can be administered every two weeks, every three weeks, every four weeks, every month, every two months, every three months, every four months, every five months, or every six months. In the case of vaccination to prevent disease, such as nucleic acid (eg, mRNA) vaccines for COVID-19, the maintenance dose of the nucleic acid vaccine may also be called a booster dose. As used herein, a "booster dose" (or "booster shot") is an additional or supplemental dose of vaccine following the initial primer dose. The amount of the booster dose of nucleic acid vaccine can be the same as the initial starting dose. Alternatively, the amount of the nucleic acid vaccine in the booster dose is less than the original amount of the nucleic acid vaccine in the initial dose. In some embodiments, a subject may receive one, two, three, four, or more booster doses.

此類投藥可用作臨床相關病狀之慢性或急性治療或預防。可與載劑組合以產生單一劑型之藥物的量將視所治療之宿主及特定投予模式而變化。典型的製劑將含有約5%至約95%活性化合物(w/w)。較佳地,此類製劑含有約20%至約80%、30%至約70%、40%至約60%、或約50%活性化合物。在其他實施態樣中,本揭露中所用之製劑將為約5至10%、10至20%、20至30%、30至40%、40至50%、50至60%、60至70%、70至80%、80至90%、90至99%、或大於99%之活性成分。Such administration may be used for the chronic or acute treatment or prevention of clinically relevant conditions. The amount of drug that can be combined with the carrier to produce a single dosage form will vary depending on the host treated and the particular mode of administration. A typical formulation will contain from about 5% to about 95% active compound (w/w). Preferably, such formulations contain from about 20% to about 80%, from 30% to about 70%, from 40% to about 60%, or about 50% active compound. In other embodiments, formulations used in the present disclosure will be about 5 to 10%, 10 to 20%, 20 to 30%, 30 to 40%, 40 to 50%, 50 to 60%, 60 to 70% , 70 to 80%, 80 to 90%, 90 to 99%, or greater than 99% of active ingredients.

在個體之病狀改善時,必要時可投予維持劑量之本揭露之化合物、組成物或組合。隨後,投予劑量或頻率或兩者可隨症狀而減少至在症狀已緩解至所需水平時保持病狀改善的水平,治療應停止。然而,患者可在任何疾病症狀復發時要求長期間歇性治療。When an individual's condition improves, a maintenance dose of a compound, composition or combination of the present disclosure may be administered if necessary. Subsequently, the dose or frequency of administration, or both, may be reduced with symptoms to a level that maintains improvement when symptoms have alleviated to the desired level, and treatment should be discontinued. However, patients may require long-term intermittent treatment if symptoms of any disease recur.

熟習此項技術者應瞭解,可能需要比上述劑量更低或更高的劑量。任何特定患者之特定劑量及治療方案將視多種因素而定,該等因素包括所用特定化合物之活性、年齡、體重、一般健康狀況、性別、飲食、投予時間、排泄率、藥物組合、感染之嚴重程度及病程、患者對感染之處置及治療醫師之判斷。 遞送 Those skilled in the art should understand that lower or higher doses than those stated above may be required. The specific dosage and treatment regimen for any particular patient will depend on a variety of factors, including the activity of the specific compound used, age, weight, general health, sex, diet, timing of administration, excretion rate, drug combination, infection The severity and course of the disease, the patient's management of the infection and the judgment of the treating physician. delivery

在一些實施態樣中,核酸疫苗之遞送可為裸式的或調配的。In some embodiments, delivery of nucleic acid vaccines can be naked or formulated.

在一些實施態樣中,本文所述之核酸疫苗可裸式地遞送至細胞。如本文所用,「裸式」係指遞送不含促進轉染之試劑的核酸疫苗。例如,遞送至細胞之核酸疫苗可不含修飾。裸核酸疫苗可使用此項技術中已知及本文所述之投予途徑遞送至細胞。In some embodiments, the nucleic acid vaccines described herein can be delivered to cells naked. As used herein, "naked" refers to the delivery of a nucleic acid vaccine that does not contain agents that facilitate transfection. For example, nucleic acid vaccines delivered to cells may be free of modifications. Naked nucleic acid vaccines can be delivered to cells using administration routes known in the art and described herein.

在一些實施態樣中,本文所述之核酸疫苗可使用本文所述之方法調配。調配物可進一步包括但不限於細胞穿透劑、醫藥學上可接受之載劑、遞送劑、生物溶蝕性或生物相容性聚合物、溶劑及持續釋放遞送儲存物。所調配核酸疫苗可使用此項技術中已知及本文所述之投予途徑遞送至細胞。In some embodiments, the nucleic acid vaccines described herein can be formulated using the methods described herein. The formulations may further include, but are not limited to, cell penetrating agents, pharmaceutically acceptable carriers, delivery agents, bioerodible or biocompatible polymers, solvents, and sustained release delivery depots. The formulated nucleic acid vaccines can be delivered to cells using administration routes known in the art and described herein.

組成物亦可經調配用於以此項技術之若干方式中之任一者直接遞送至器官或組織,該等方式包括但不限於:直接浸泡或沐浴,經由導管,藉由凝膠、粉末、軟膏、乳膏、凝膠、洗劑、及/或滴劑,藉由使用塗佈或浸漬有組成物之基板,諸如織物或可生物降解材料,及其類似方式。 投予 The compositions may also be formulated for direct delivery to organs or tissues in any of several modalities of this technology, including but not limited to: direct immersion or bathing, via catheters, by gels, powders, Ointments, creams, gels, lotions, and/or drops, by using a substrate coated or impregnated with the composition, such as a fabric or biodegradable material, and the like. invest

在一些實施態樣中,本揭露之核酸疫苗組成物可藉由產生預防或治療有效結果之任何途徑投予。此等包括但不限於腸內(至腸中)、胃腸道、硬膜外(至硬腦膜中)、口服(經由口腔)、經皮、硬膜外、腦內(至大腦中)、腦室內(至腦室中)、上表皮(施用至皮膚上)、皮內(至皮膚本身中)、皮下(皮膚下)、經鼻投予(經由鼻子)、靜脈內(至靜脈中)、靜脈內彈丸注射、靜脈內滴瀝、動脈內(至動脈中)、肌內(至肌肉中)、心內(至心臟中)、骨內輸注(至骨髓中)、鞘內(至脊椎管中)、腹膜內(輸注或注射至腹膜中)、膀胱內輸注、玻璃體內(經由眼睛)、海綿竇內注射(至病理腔中)、腔內(至陰莖根部中)、陰道內投予、子宮內、羊膜外投予、經皮(經由完整的皮膚擴散用於全身分佈)、經黏膜(經由黏膜擴散)、經陰道、吹入(鼻吸)、舌下、唇下、灌腸、滴眼液(至結膜上)、滴耳液、耳道(在耳朵內或經由耳朵)、頰內(針對臉頰)、結膜、皮膚、牙科(針對一顆或多顆牙齒)、電滲透、子宮頸內、鼻竇內、氣管內、體外、血液透析、浸潤、間質、腹內、羊膜內、關節內、膽管內、支氣管內、囊內、軟骨內(在軟骨內)、尾部內(在馬尾內)、腦池內(在大腦延髓池內)、角膜內(在角膜內)、牙科角膜內、冠狀動脈內(在冠狀動脈內)、陰莖海綿體內(在陰莖海綿體的可擴張空間內)、椎間盤內(在椎間盤內)、管內(在腺管內)、十二指腸內(在十二指腸內)、硬膜內(在硬腦膜內或下方)、表皮內(至表皮)、食管內(至食道)、胃內(在胃內)、齦內(在齒齦內)、迴腸內(在小腸遠端部分內)、病灶內(在局部病灶內或直接引入局部病灶)、管腔內(在管腔內)、淋巴管內(在淋巴內)、髓內(在骨的骨髓腔內)、腦膜內(在腦膜內)、眼內(在眼內)、卵巢內(在卵巢內)、心包內(在心包內)、胸膜內(在胸膜內)、前列腺內(在前列腺內)、肺內(在肺或其支氣管內)、竇內(在鼻竇或眶周竇內)、脊柱內(在脊柱內)、滑膜內(在關節滑液腔內)、肌腱內(在肌腱內)、睾丸內(在睾丸內)、鞘內(在腦脊髓軸任何水平的腦脊髓液內)、胸腔內(在胸腔內)、小管內(在器官的小管內)、腫瘤內(在腫瘤內)、鼓室內(在耳中層內)、血管內(在一或多個血管內)、心室內(在心室內)、離子導入療法(藉助於電流,其中可溶性鹽離子遷移至身體組織中)、灌洗(沖刷或沖洗開放的傷口或體腔)、喉(直接在喉部)、鼻胃(經由鼻子且進入胃中)、封閉敷裹技術、經眼(至外眼)、口咽(直接至口咽)、非經腸、經皮、關節周圍、硬膜外、神經周、牙周、經直腸、呼吸(藉由口服或經鼻吸入呼吸道內,用於局部或全身作用)、球後(在腦橋或眼球後)、心肌內(進入心肌)、軟組織、蛛網膜下、結膜下、黏膜下、經胎盤(穿過或越過胎盤)、經氣管(穿過氣管壁)、經鼓膜(越過或穿過鼓腔)、輸尿管(至輸尿管)、尿道(至尿道)、陰道、骶管阻滯、診斷、神經阻滯、膽管灌注、心臟灌注、光除去法或脊髓。在特定實施態樣中,組成物可以允許其穿過血腦障壁、血管障壁、或其他上皮障壁之方式進行投予。In some embodiments, the nucleic acid vaccine compositions of the present disclosure can be administered by any route that produces a preventive or therapeutically effective result. These include, but are not limited to, enteral (into the intestines), gastrointestinal, epidural (into the dura mater), oral (through the mouth), transdermal, epidural, intracerebral (into the brain), intracerebroventricular (into the ventricles of the brain), epidermal (into the skin), intradermal (into the skin itself), subcutaneous (under the skin), nasal (through the nose), intravenous (into a vein), intravenous bolus Injection, intravenous drip, intraarterial (into arteries), intramuscular (into muscles), intracardiac (into heart), intraosseous infusion (into bone marrow), intrathecal (into spinal canal), intraperitoneal (infusion or injection into the peritoneum), intravesical infusion, intravitreal (through the eye), intracavernous sinus injection (into the pathological cavity), intracavity (into the base of the penis), intravaginal administration, intrauterine, extraamniotic Administer, transdermal (diffusion through intact skin for systemic distribution), transmucosal (diffusion through mucous membranes), vaginal, insufflation (nasal), sublingual, sublabial, enema, eye drops (to the supraconjunctiva) ), ear drops, ear canal (in or through the ear), intrabuccal (for the cheek), conjunctiva, skin, dental (for one or more teeth), electroosmosis, intracervix, intranasal sinuses, trachea Intra, extracorporeal, hemodialysis, infiltration, interstitial, intraabdominal, intraamniotic, intraarticular, intrabiliary, intrabronchial, intracystic, intrachondral (within the cartilage), intracaudal (within the cauda equina), intracisternal ( Within the cistern of the brain), within the cornea (within the cornea), within the dental cornea, within the coronary arteries (within the coronary arteries), intracavernosus (within the expandable space of the corpora cavernosa of the penis), within the intervertebral disc (within the intervertebral disc ), intraductal (inside the glandular duct), intraduodenal (inside the duodenum), intradural (in or below the dura mater), intraepidermal (to the epidermis), intraesophageal (to the esophagus), intragastric (in the stomach intragingival (within the gums), intraileal (within the distal part of the small intestine), intralesional (within or directly introduced into a localized lesion), intraluminal (within the lumen of a tube), intralymphatic ( Intralymph), intramedullary (in the marrow cavity of the bone), intrameningeal (in the meninges), intraocular (in the eye), intraovarian (in the ovary), intrapericardial (in the pericardium), intrapleural (in the pleura), intraprostatic (in the prostate), intrapulmonary (in the lungs or their bronchi), intrasinus (in the paranasal or periorbital sinuses), intraspinal (in the spine), intrasynovial (in Within the synovial cavity of joints), intratendinally (within the tendons), intratesticularly (within the testicles), intrathecally (within the cerebrospinal fluid at any level of the cerebrospinal axis), intrathoracic (within the chest cavity), intracanaliculus ( within the small ducts of an organ), intratumoral (within a tumor), intratympanic (within the middle layer of the ear), intravascular (within one or more blood vessels), intraventricular (within the heart of the heart), iontophoresis (with the help of an electric current , in which soluble salt ions migrate into body tissues), lavage (washing or flushing of an open wound or body cavity), larynx (directly in the throat), nasogastric (through the nose and into the stomach), occlusive dressing techniques, trans. Ocular (to the external eye), oropharyngeal (directly to the oropharynx), parenteral, transdermal, periarticular, epidural, perineural, periodontal, transrectal, respiratory (by oral or nasal inhalation into the respiratory tract) , for local or systemic action), retrobulbar (in the pons or behind the eyeball), intramyocardial (into the myocardium), soft tissue, subarachnoid, subconjunctival, submucosal, transplacental (across or beyond the placenta), transtracheal (across the tracheal wall), transtympanic (over or through the tympanic cavity), ureteral (to the ureter), urethral (to the urethra), vaginal, sacral block, diagnostic, nerve block, bile duct perfusion, cardiac perfusion, light Remove method or spinal cord. In certain embodiments, the composition may be administered in a manner that allows it to cross the blood-brain barrier, vascular barrier, or other epithelial barrier.

本文所述之核酸疫苗經延長時段,例如一週至一年時段向個體遞送可藉由單次投予含有足夠活性成分之控制釋放系統持續所需釋放時段來實現。出於此目的,可利用各種控制釋放系統,諸如單片或儲集型微膠囊、儲槽式植入物、聚合水凝膠、滲透泵、囊泡、膠束、脂質體、經皮貼片、離子導入裝置及替代性可注射劑型。定位於需要遞送活性成分的部位係一些控制釋放裝置的額外特徵,可證明對治療某些病症有益。Delivery of the nucleic acid vaccines described herein to an individual over an extended period of time, such as one week to one year, can be accomplished by a single administration of a controlled release system containing sufficient active ingredient to sustain the desired release period. For this purpose, various controlled release systems can be utilized, such as monolithic or reservoir microcapsules, reservoir implants, polymeric hydrogels, osmotic pumps, vesicles, micelles, liposomes, transdermal patches , iontophoresis devices, and alternative injectable dosage forms. Localization to the site where delivery of the active ingredient is desired is an additional feature of some controlled release devices that may prove beneficial in the treatment of certain conditions.

在一些實施態樣中,本文所述之核酸疫苗可與活疫苗之投予類似地鼻內投予。在另一態樣中,多核苷酸可與此項技術中已知的不活化疫苗之投予類似地肌內或皮內投予。In some embodiments, the nucleic acid vaccines described herein can be administered intranasally similar to the administration of live vaccines. In another aspect, the polynucleotide can be administered intramuscularly or intradermally similar to the administration of inactivated vaccines known in the art.

在經皮投予之某些實施態樣中,將使用電極(例如離子導入療法)、電穿孔或向皮膚施加短的高壓電脈衝、射頻、超音波(例如超音波電滲法)、微投射(例如微針)、噴射注射器、熱消融、磁泳、雷射、速度或光機械波來增強穿過皮膚障壁的遞送。藥物可包含於單層含藥黏合劑、多層含藥黏合劑、儲庫、基質或蒸汽型貼片中,或者可利用無貼片技術。亦可使用囊封、皮膚脂質流化劑或中空或實心微結構化經皮系統(MTS,諸如由3M製造的MTS)、噴射注射器來增強穿過皮膚障壁的遞送。用於幫助治療化合物穿過皮膚之調配物添加劑包括前藥、化學品、界面活性劑、細胞穿透肽、滲透增強劑、囊封技術、酶、酶抑制劑、凝膠、奈米粒子、及肽或蛋白質伴隨蛋白。In some embodiments of transdermal administration, electrodes (e.g., iontophoresis), electroporation, or the application of short high-voltage electrical pulses to the skin, radiofrequency, ultrasound (e.g., sonotophoresis), microsurgery, etc. will be used. Projection (e.g., microneedles), jet injector, thermal ablation, magnetophoresis, laser, velocity, or optomechanical waves to enhance delivery across the skin barrier. Drugs may be contained in a single layer of medicated adhesive, multiple layers of medicated adhesive, a reservoir, a matrix or a vapor-based patch, or patchless technology may be utilized. Encapsulation, skin lipid fluidizers or hollow or solid microstructured transdermal systems (MTS, such as MTS manufactured by 3M), jet injectors may also be used to enhance delivery across the skin barrier. Formulation additives used to aid the passage of therapeutic compounds through the skin include prodrugs, chemicals, surfactants, cell-penetrating peptides, penetration enhancers, encapsulation technologies, enzymes, enzyme inhibitors, gels, nanoparticles, and Peptide or protein chaperone.

其他緩慢釋放、儲庫式植入物或可注射調配物對於熟習此項技術者將為顯而易見的。參見例如Sustained and Controlled Release Drug Delivery Systems, JR Robinson編, Marcel Dekker Inc., New York, 1978;及Controlled Release of Biologically Active Agents, RW Baker, John Wiley & Sons, New York, 1987。將前述者以全文引用方式併入。Other slow release, depot implants or injectable formulations will be apparent to those skilled in the art. See, for example, Sustained and Controlled Release Drug Delivery Systems, edited by JR Robinson, Marcel Dekker Inc., New York, 1978; and Controlled Release of Biologically Active Agents, RW Baker, John Wiley & Sons, New York, 1987. The foregoing is incorporated by reference in its entirety.

混合本文所述之核酸疫苗與聚合調配物適合於獲得極長作用持續時間的調配物,該聚合調配物包含可在投予後形成儲庫調配物之可生物降解聚合物。Combining the nucleic acid vaccines described herein with polymeric formulations containing biodegradable polymers that form depot formulations upon administration is suitable for obtaining extremely long duration of action formulations.

當調配用於經鼻投予時,跨越鼻黏膜之吸收可藉由界面活性劑進一步增強,該等界面活性劑諸如甘膽酸、膽酸、牛膽酸、乙膽酸、去氧膽酸、鵝去氧膽酸、去氫膽酸、甘胺去氧膽酸、環糊精及類似物,其量在約0.1與15重量%之間、約0.5與4重量%之間的範圍內或為約2重量%。據報導,另一類表現出更大功效與減少之刺激的吸收促進劑為烷基麥芽糖苷類,諸如十四烷基麥芽糖苷(Arnold, JJ等人, J Pharm Sci,2004, 93: 2205-13;Ahsan, F等人, Pharm Res, 2001,18:1742-46)及其中之參考文獻,該等文獻均特此以全文引用方式併入。 When formulated for nasal administration, absorption across the nasal mucosa can be further enhanced by surfactants such as glycocholic acid, cholic acid, taurocholic acid, acecholic acid, deoxycholic acid, Chenodeoxycholic acid, dehydrocholic acid, glycodeoxycholic acid, cyclodextrins and the like in amounts ranging between about 0.1 and 15% by weight, between about 0.5 and 4% by weight, or About 2% by weight. Another class of absorption enhancers reported to exhibit greater efficacy and reduced irritation are the alkyl maltosides, such as tetradecyl maltoside (Arnold, JJ et al., J Pharm Sci, 2004, 93: 2205-13 ; Ahsan, F et al., Pharm Res , 2001,18:1742-46) and the references therein, which are hereby incorporated by reference in their entirety.

醫藥組成物可呈無菌可注射製劑形式,例如作為無菌可注射水性或油性懸浮液。此懸浮液可根據此項技術中已知的技術,使用適合之分散劑或濕潤劑(諸如Tween 80)及懸浮劑調配。無菌可注射製劑亦可為於無毒非經腸可接受之稀釋劑或溶劑中之無菌可注射溶液或懸浮液,例如於1,3-丁二醇中之溶液。在可接受之媒劑及溶劑中,可採用的有甘露醇、水、林格氏溶液及等張氯化鈉溶液。另外,無菌不揮發性油習用作溶劑或懸浮介質。出於此目的,可採用任何溫和不揮發性油,包括合成單甘油酯或二甘油酯。諸如油酸及其甘油酯衍生物之脂肪酸適用於製備可注射劑,天然醫藥學上可接受之油(諸如橄欖油或蓖麻油,尤其呈其聚氧乙基化型式)亦然。此等油溶液或懸浮液亦可含有長鏈醇稀釋劑或分散劑,諸如Ph. Helv或類似醇。The pharmaceutical compositions may be in the form of sterile injectable preparations, for example, as sterile injectable aqueous or oily suspensions. This suspension may be formulated according to techniques known in the art using suitable dispersing or wetting agents (such as Tween 80) and suspending agents. The sterile injectable preparation may also be a sterile injectable solution or suspension in a nontoxic parenterally acceptable diluent or solvent, such as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be used are mannitol, water, Ringer's solution and isotonic sodium chloride solution. In addition, sterile fixed oils are often used as solvents or suspending media. For this purpose any bland fixed oil may be employed including synthetic mono- or diglycerides. Fatty acids such as oleic acid and its glyceride derivatives are suitable for the preparation of injectables, as are natural pharmaceutically acceptable oils, such as olive oil or castor oil, especially in their polyoxyethylated versions. Such oil solutions or suspensions may also contain long chain alcohol diluents or dispersants such as Ph. Helv or similar alcohols.

本揭露之醫藥組成物可以任何經口可接受之劑型經口投予,該劑型包括但不限於膠囊、錠劑及水性懸浮液及溶液。在用於口服之錠劑之情況下,常用載劑包括乳糖及玉米澱粉。亦典型地添加潤滑劑,諸如硬脂酸鎂。對於以膠囊形式經口投予,適用的稀釋劑包括乳糖及乾燥玉米澱粉。當經口投予水性懸浮液時,將活性成分與乳化劑及懸浮劑組合。若需要,可添加某些甜味劑及/或調味劑及/或著色劑。The pharmaceutical compositions of the present disclosure can be orally administered in any orally acceptable dosage form, including but not limited to capsules, tablets, and aqueous suspensions and solutions. In the case of tablets for oral administration, common carriers include lactose and cornstarch. Lubricants such as magnesium stearate are also typically added. For oral administration in capsule form, suitable diluents include lactose and dried cornstarch. When aqueous suspensions are administered orally, the active ingredients are combined with emulsifying and suspending agents. If desired, certain sweetening and/or flavoring and/or coloring agents may be added.

本揭露之醫藥組成物亦可以用於經直腸投予之栓劑形式投予。此等組成物可藉由將本揭露之活性成分與適合之無刺激性賦形劑混合來製備,該賦形劑在室溫下為固體但在直腸溫度下為液體且因此將在直腸中融化以釋放活性組分。此類材料包括但不限於可可脂、蜂臘及聚乙二醇。The pharmaceutical compositions of the present disclosure may also be administered in the form of suppositories for rectal administration. Such compositions may be prepared by mixing the active ingredients of the present disclosure with a suitable non-irritating excipient which is solid at room temperature but liquid at rectal temperature and therefore will melt in the rectum to release active ingredients. Such materials include, but are not limited to, cocoa butter, beeswax, and polyethylene glycol.

當所需治療涉及藉由局部施用容易進入之區域或器官時,本揭露之醫藥組成物之局部投予尤其適用。對於局部施用至皮膚,醫藥組成物應用含有懸浮於或溶解於載劑中之活性組分之適合的軟膏調配。用於局部投予本揭露化合物之載劑包括但不限於礦物油、液體石油、白色石油、丙二醇、聚氧乙烯聚氧丙烯化合物、乳化蠟、及水。或者,醫藥組成物可用含有懸浮於或溶解於載劑中之活性化合物之適合的洗劑或乳膏調配。適合的載劑包括但不限於礦物油、脫水山梨糖醇單硬脂酸酯、聚山梨醇酯60、十六酯蠟、十六醇十八醇、2-辛基十二醇、苯甲醇、及水。本揭露之醫藥組成物亦可藉由直腸栓劑調配物或以適合的灌腸調配物形式局部施用至下腸道。本揭露中亦包括局部經皮貼片。Topical administration of the pharmaceutical compositions of the present disclosure is particularly useful when the desired treatment involves areas or organs that are easily accessible by topical administration. For topical application to the skin, the pharmaceutical compositions should be formulated in a suitable ointment containing the active ingredient suspended or dissolved in a vehicle. Carriers for topical administration of compounds of the present disclosure include, but are not limited to, mineral oil, liquid petroleum, white petroleum, propylene glycol, polyoxyethylene polyoxypropylene compounds, emulsifying waxes, and water. Alternatively, the pharmaceutical compositions may be formulated with a suitable lotion or cream containing the active compound suspended or dissolved in a vehicle. Suitable carriers include, but are not limited to, mineral oil, sorbitan monostearate, polysorbate 60, cetyl wax, cetyl stearyl alcohol, 2-octyldodecanol, benzyl alcohol, And water. The pharmaceutical compositions of the present disclosure may also be administered topically to the lower intestinal tract via rectal suppository formulations or in suitable enema formulations. Also included in this disclosure are topical transdermal patches.

本揭露之醫藥組成物可藉由鼻氣霧劑或吸入投予。該等組成物根據藥物調配技術中熟知之技術製備,且可採用苯甲醇或其他適合的防腐劑、增強生物可用性之吸收促進劑、碳氟化合物及/或此項技術中已知的其他溶解劑或分散劑製備為於生理鹽水中之溶液。The pharmaceutical compositions of the present disclosure may be administered via nasal aerosol or inhalation. Such compositions are prepared according to techniques well known in the pharmaceutical compounding art, and may employ benzyl alcohol or other suitable preservatives, absorption enhancers that enhance bioavailability, fluorocarbons, and/or other dissolving agents known in the art. Or the dispersant is prepared as a solution in physiological saline.

當調配用於藉由吸入遞送時,多種調配物提供優點。將治療劑吸附至容易分散的固體,諸如二酮哌𠯤(例如Technosphere粒子(Pfutzner, A及Forst, T, 2005, Expert Opin Drug Deliv 2:1097-1106)或類似結構上得到一種使得治療化合物被快速初始吸收的調配物。含有治療化合物及賦形劑之凍乾粉末,尤其玻璃狀粒子可用於以良好生物可用性遞送至肺,例如參見Exubera ®(inhaled insulin, Pfizer, Inc.及Aventis Pharmaceuticals Inc.)及Afrezza ®(inhaled insulin, Mannkind, Corp.)。 劑型 A variety of formulations offer advantages when formulated for delivery by inhalation. Adsorption of therapeutic agents onto readily dispersible solids such as diketones (e.g., Technosphere particles (Pfutzner, A and Forst, T, 2005, Expert Opin Drug Deliv 2:1097-1106)) or similar structures results in a structure that allows the therapeutic compound to be Formulations for rapid initial absorption. Lyophilized powders, especially glassy particles, containing therapeutic compounds and excipients can be used for delivery to the lungs with good bioavailability, see for example Exubera ® (inhaled insulin, Pfizer, Inc. and Aventis Pharmaceuticals Inc. ) and Afrezza ® (inhaled insulin, Mannkind, Corp.). Dosage Form

本文所述之醫藥組成物可調配成本文所述之劑型,諸如局部、鼻內、氣管內或可注射(例如靜脈內、眼內、玻璃體內、肌內、心內、腹膜內、皮下)劑型。 液體劑型 The pharmaceutical compositions described herein may be formulated into dosage forms as described herein, such as topical, intranasal, intratracheal, or injectable (e.g., intravenous, intraocular, intravitreal, intramuscular, intracardiac, intraperitoneal, subcutaneous) dosage forms . liquid dosage form

用於非經腸投予之液體劑型包括但不限於醫藥學上可接受之乳液、微乳液、溶液、懸浮液、糖漿及/或酏劑。除活性成分以外,液體劑型亦可包含此項技術中常用之惰性稀釋劑,包括但不限於水或其他溶劑、增溶劑及乳化劑,諸如乙醇、異丙醇、碳酸乙酯、乙酸乙酯、苯甲醇、苯甲酸苯甲酯、丙二醇、1,3-丁二醇、二甲基甲醯胺、油(特定言之,棉籽油、花生油、玉米油、胚芽油、橄欖油、蓖麻油及芝麻油)、甘油、四氫糠醇、聚乙二醇及脫水山梨糖醇脂肪酸酯、及其混合物。在用於非經腸投予之某些實施態樣中,可將組成物與增溶劑混合,該等增溶劑諸如CREMO- PHOR®、醇、油、改質油、二醇、聚山梨醇酯、環糊精、聚合物、及/或其組合。 可注射形式 Liquid dosage forms for parenteral administration include, but are not limited to, pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and/or elixirs. In addition to the active ingredients, liquid dosage forms may also contain inert diluents commonly used in the art, including but not limited to water or other solvents, solubilizers and emulsifiers such as ethanol, isopropyl alcohol, ethyl carbonate, ethyl acetate, Benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butanediol, dimethylformamide, oils (specifically, cottonseed oil, peanut oil, corn oil, germ oil, olive oil, castor oil and sesame oil ), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycol and sorbitan fatty acid esters, and mixtures thereof. In certain embodiments for parenteral administration, the compositions may be mixed with solubilizing agents such as CREMO-PHOR®, alcohols, oils, modified oils, glycols, polysorbates , cyclodextrins, polymers, and/or combinations thereof. injectable form

可根據已知技術調配可注射製劑,例如無菌可注射水性或油性懸浮液,且可包括適合之分散劑、濕潤劑及/或懸浮劑。無菌可注射製劑可為含在無毒非經腸可接受之稀釋劑及/或溶劑中之無菌可注射溶液、懸浮液及/或乳液,例如1,3-丁二醇中之溶液。可採用的可接受媒劑及溶劑中包括但不限於水、林格氏溶液、U.S.P.及等張氯化鈉溶液。習知採用無菌不揮發性油作為溶劑或懸浮介質。出於此目的,可採用任何溫和的不揮發性油,包括合成單酸甘油酯或二酸甘油酯。可採用諸如油酸之脂肪酸製備可注射劑。Injectable preparations, such as sterile injectable aqueous or oily suspensions, may be formulated according to known techniques, and may include suitable dispersing, wetting and/or suspending agents. Sterile injectable preparations may be sterile injectable solutions, suspensions and/or emulsions in a nontoxic parenterally acceptable diluent and/or solvent, such as a solution in 1,3-butanediol. Acceptable vehicles and solvents that may be used include, but are not limited to, water, Ringer's solution, U.S.P., and isotonic sodium chloride solution. It is common practice to use sterile fixed oil as the solvent or suspension medium. For this purpose any bland fixed oil may be employed including synthetic mono- or diglycerides. Injectables may be prepared using fatty acids such as oleic acid.

可注射調配物可例如藉由通過截留細菌之過濾器過濾來滅菌,及/或藉由併入滅菌劑,呈無菌固體組成物形式,在使用之前可溶解或分散於無菌水或其他無菌可注射介質中來滅菌。Injectable formulations can be sterilized, for example, by filtration through a bacteria-retaining filter, and/or by incorporating a sterilizing agent, in the form of sterile solid compositions that can be dissolved or dispersed in sterile water or other sterile injectables prior to use. media for sterilization.

為了延長活性成分之作用,可能需要減緩來自皮下或肌內注射之活性成分之吸收。此可藉由使用具有低水溶性之結晶或非晶形材料之液體懸浮液來達成。核酸疫苗之吸收速率則視其溶解速率而定,而溶解速率又可視晶體大小及結晶形式而定。或者,可由核酸疫苗溶解或懸浮於油性媒劑中來延遲非經腸投予之核酸疫苗之吸收。可注射積存形式係藉由在可生物降解聚合物(諸如聚丙交酯-聚乙交酯)中形成核酸疫苗之微膠囊基質而製得。視核酸疫苗與聚合物之比例及所採用特定聚合物之性質而定,可控制多核苷酸釋放速率。其他可生物降解聚合物之實例包括但不限於聚(原酸酯)及聚(酸酐)。可注射積存調配物可藉由將核酸疫苗囊封於與身體組織相容之脂質體或微乳液中來製備。 經肺 To prolong the effect of the active ingredient, it may be necessary to slow the absorption of the active ingredient from subcutaneous or intramuscular injection. This can be achieved by using liquid suspensions of crystalline or amorphous materials with low water solubility. The absorption rate of a nucleic acid vaccine depends on its dissolution rate, which in turn depends on the crystal size and crystallization form. Alternatively, absorption of a parenterally administered nucleic acid vaccine can be delayed by dissolving or suspending the nucleic acid vaccine in an oily vehicle. Injectable depot forms are made by forming microencapsule matrices of nucleic acid vaccines in biodegradable polymers such as polylactide-polyglycolide. Depending on the ratio of nucleic acid vaccine to polymer and the properties of the specific polymer used, the rate of polynucleotide release can be controlled. Examples of other biodegradable polymers include, but are not limited to, poly(orthoesters) and poly(anhydrides). Injectable depot formulations can be prepared by encapsulating the nucleic acid vaccine in liposomes or microemulsions that are compatible with body tissue. Lung

本文描述為適用於經肺遞送之調配物亦可用於鼻內遞送醫藥組成物。適於鼻內投予之另一調配物可為包含活性成分且具有約0.2 pm至500 pm之平均粒子的粗糙粉末。此類調配物可以採用鼻吸的方式投予,例如經由鼻孔快速自靠近鼻子之容器吸入粉末。Formulations described herein as suitable for transpulmonary delivery may also be used for intranasal delivery of pharmaceutical compositions. Another formulation suitable for intranasal administration may be a coarse powder containing the active ingredient and having an average particle size of about 0.2 pm to 500 pm. Such formulations may be administered by nasal inhalation, such as by rapidly inhaling the powder through the nostrils from a container close to the nose.

適合於經鼻投予之調配物可例如包含少至約0.1% (w/w)且多至100% (w/w)之活性成分,且可包含本文所述之額外成分之一或多者。醫藥組成物可以適合於經頰投藥之調配物形式製備、封裝及/或出售。此類調配物可例如呈使用習知方法製得之錠劑及/或口含錠形式,且可例如含有約0.1%至20% (w/w)活性成分,其餘部分可包含經口可溶解的及/或可降解的組成物,且視情況包含本文所述之額外成分之一或多者。或者,適於頰內投予之調配物可包含含有活性成分的粉末及/或氣溶膠化及/或霧化溶液及/或懸浮液。此類粉末狀、氣溶膠化及/或氣溶膠化調配物當分散時,可具有約0.1 nm至約200 nm範圍內的平均粒度及/或液滴尺寸,且可進一步包含本文所述之任何一或多種額外成分。Formulations suitable for nasal administration may, for example, contain as little as about 0.1% (w/w) and as much as 100% (w/w) of the active ingredient, and may contain one or more of the additional ingredients described herein . Pharmaceutical compositions may be prepared, packaged and/or sold in formulations suitable for buccal administration. Such formulations may, for example, be in the form of tablets and/or buccal tablets prepared using conventional methods, and may, for example, contain from about 0.1% to 20% (w/w) of the active ingredient, the remainder of which may comprise orally soluble and/or degradable compositions, and optionally include one or more of the additional ingredients described herein. Alternatively, formulations suitable for intrabuccal administration may comprise powders and/or aerosolized and/or nebulized solutions and/or suspensions containing the active ingredient. Such powdered, aerosolized and/or aerosolized formulations, when dispersed, may have an average particle size and/or droplet size in the range of about 0.1 nm to about 200 nm, and may further comprise any of the One or more additional ingredients.

調配及/或製造醫藥劑中之一般考慮因素可見於例如Remington: The Science and Practice of Pharmacy 第21版, Lippincott Williams & Wilkins, 2005中。 固體劑型:包衣或殼層 General considerations in formulating and/or manufacturing pharmaceutical agents can be found, for example, in Remington: The Science and Practice of Pharmacy 21st Edition, Lippincott Williams & Wilkins, 2005. Solid dosage form: coating or shell

錠劑、糖衣藥丸、膠囊、丸劑及顆粒劑之固體劑型可製備有包衣及外殼,諸如腸溶包衣及醫藥調配技術中熟知之其他包衣。其可視情況包含乳濁劑,且可具有其僅在或優先在腸道之某一部分中釋放、視情況以延遲方式釋放活性成分之組成。可使用之包埋組成物之實例包括聚合物質及蠟。類似類型之固體組成物可用作使用諸如乳糖(lactose或milk sugar)以及高分子量聚乙二醇及其類似物之賦形劑之軟填充及硬填充明膠膠囊中的填充劑。 醫藥組成物之特性 Solid dosage forms of tablets, dragees, capsules, pills, and granules may be prepared with coatings and shells, such as enteric coatings and other coatings well known in the pharmaceutical compounding art. They may optionally contain opacifying agents and may be of such a composition that they release the active ingredient only or preferentially in a certain part of the intestinal tract, optionally in a delayed manner. Examples of embedding compositions that can be used include polymeric substances and waxes. Solid compositions of a similar type may be used as fillers in soft-filled and hard-filled gelatin capsules using excipients such as lactose or milk sugar and high molecular weight polyethylene glycols and the like. Characteristics of pharmaceutical compositions

本文所述之核酸疫苗醫藥組成物可使用生物可用性、治療窗、分佈體積、生物效應及藉由質譜法偵測多核苷酸之一或多者來表徵。 生物可用性 Nucleic acid vaccine pharmaceutical compositions described herein may be characterized using one or more of bioavailability, therapeutic window, distribution volume, biological effect, and detection of polynucleotides by mass spectrometry. bioavailability

與缺乏如本文所述之遞送劑的組成物相比,核酸疫苗在與如本文所述之遞送劑一起調配成組成物時可展現生物可用性的增加。如本文所用,術語「生物可用性」係指向哺乳動物投予之給定量核酸疫苗的全身可用性。生物可用性可藉由量測在向哺乳動物投予化合物後,化合物之不變形式的曲線下面積(AUC)或最大血清或血漿濃度來評估。AUC為繪製沿縱座標之化合物之血清或血漿濃度(Y軸)相對於沿橫座標(X軸)之時間的曲線下面積測定。一般而言,特定化合物之AUC可使用一般技術者已知且如以全文引用方式併入本文中之G. S. Banker, Modem Pharmaceutics, Drugs and the Pharmaceutical Sciences, v. 72, Marcel Dekker, N.Y, Inc., 1996中所述之方法來計算。Nucleic acid vaccines can exhibit increased bioavailability when formulated into compositions with a delivery agent as described herein compared to compositions lacking a delivery agent as described herein. As used herein, the term "bioavailability" refers to the systemic availability of a given amount of a nucleic acid vaccine administered to a mammal. Bioavailability can be assessed by measuring the area under the curve (AUC) or the maximum serum or plasma concentration of the unchanged form of the compound following administration to a mammal. AUC is a measurement of the area under a curve plotting the serum or plasma concentration of a compound along the ordinate (Y-axis) versus time along the abscissa (X-axis). In general, the AUC of a particular compound can be determined using G. S. Banker, Modem Pharmaceutics, Drugs and the Pharmaceutical Sciences, v. 72, Marcel Dekker, N.Y., Inc., which is known to those of ordinary skill and is incorporated herein by reference in its entirety. Calculated using the method described in 1996.

Cmax值為在向哺乳動物投予化合物後,在哺乳動物之血清或血漿中達成的化合物最大濃度。特定化合物之Cmax值可使用一般技術者已知的方法來量測。如本文所用之片語「增加生物可用性」或「改良藥物動力學」意謂當與如本文所述之遞送劑共投予時,以AUC、Cmax或Cmin形式量測的第一核酸疫苗在哺乳動物中之全身可用性比在不進行此類共投予時的全身可用性更大。在一些實施態樣中,核酸疫苗之生物可用性可增加至少約2%、至少約5%、至少約10%、至少約15%、至少約20%、至少約25%、至少約30%、至少約35%、至少約40%、至少約45%、至少約50%、至少約55%、至少約60%、至少約65%、至少約70%、至少約75%、至少約80%、至少約85%、至少約90%、至少約95%、或約100%。The Cmax value is the maximum concentration of a compound achieved in the serum or plasma of the mammal after administration of the compound to the mammal. The Cmax value of a particular compound can be measured using methods known to those of ordinary skill. The phrase "increased bioavailability" or "improved pharmacokinetics" as used herein means that when co-administered with a delivery agent as described herein, the first nucleic acid vaccine, measured as AUC, Cmax or Cmin, in breast-feeding Systemic availability in the animal is greater than in the absence of such co-administration. In some embodiments, the bioavailability of the nucleic acid vaccine can be increased by at least about 2%, at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least About 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least About 85%, at least about 90%, at least about 95%, or about 100%.

在一些實施態樣中,核酸疫苗之液體調配物可具有不同活體內半衰期,需要調節劑量以產生預防或治療效果。為解決此問題,在一些實施態樣中,核酸疫苗調配物可經設計以改良重複投予期間之生物可用性及/或預防或治療效果。此類調配物可使得核酸疫苗能夠持續釋放及/或降低核酸疫苗由核酸酶降解之速率。在一些實施態樣中,提供懸浮液調配物,其包含核酸疫苗、水不混溶的油儲庫、界面活性劑及/或共界面活性劑及/或共溶劑。油及界面活性劑之組合可實現核酸疫苗之懸浮液調配物。在水不混溶儲庫中遞送核酸疫苗可用於經由多核苷酸自儲庫持續釋放至周圍生理環境來改良生物可用性及/或防止多核苷酸由核酸酶降解。In some embodiments, liquid formulations of nucleic acid vaccines may have different in vivo half-lives, requiring dosage adjustments to produce prophylactic or therapeutic effects. To address this issue, in some embodiments, nucleic acid vaccine formulations can be designed to improve bioavailability and/or prophylactic or therapeutic efficacy during repeated administrations. Such formulations may enable sustained release of the nucleic acid vaccine and/or reduce the rate of degradation of the nucleic acid vaccine by nucleases. In some embodiments, suspension formulations are provided that include nucleic acid vaccines, water-immiscible oil depots, surfactants and/or co-surfactants and/or co-solvents. The combination of oil and surfactant enables suspension formulations of nucleic acid vaccines. Delivery of nucleic acid vaccines in water-immiscible reservoirs can be used to improve bioavailability via sustained release of the polynucleotide from the reservoir to the surrounding physiological environment and/or to prevent degradation of the polynucleotide by nucleases.

在一些實施態樣中,包含二價及單價陽離子之組合的陽離子奈米粒子可用核酸疫苗調配。此類奈米粒子可在給定時段(例如數小時、數天等)內在溶液中自發地形成。此類奈米粒子不在單獨的二價陽離子存在下或單獨的單價陽離子存在下形成。在陽離子奈米粒子中或在一或多種包含陽離子奈米粒子之儲庫中遞送核酸疫苗可藉由充當長效儲庫及/或降低核酸酶之降解速率來改良核酸疫苗生物可用性。 治療窗 In some embodiments, cationic nanoparticles containing a combination of divalent and monovalent cations can be formulated with nucleic acid vaccines. Such nanoparticles can form spontaneously in solution over a given period of time (eg, hours, days, etc.). Such nanoparticles do not form in the presence of divalent cations alone or in the presence of monovalent cations alone. Delivering nucleic acid vaccines in cationic nanoparticles or in one or more reservoirs containing cationic nanoparticles may improve nucleic acid vaccine bioavailability by acting as a long-lasting reservoir and/or reducing the rate of nuclease degradation. therapeutic window

與缺少如本文所述之遞送劑之所投予核酸疫苗組成物的治療窗相比,核酸疫苗在與本文所述之遞送劑一起調配成組成物時可展現所投予核酸疫苗組成物之治療窗的增加。如本文所用,「治療窗」係指引發預防或治療效果之機率較高的血漿濃度範圍或治療活性物質在作用部位之水平範圍。在一些實施態樣中,當與如本文所述之遞送劑共投予時,核酸疫苗之治療窗可增加至少約2%、至少約5%、至少約10%、至少約15%、至少約20%、至少約25%、至少約30%、至少約35%、至少約40%、至少約45%、至少約50%、至少約55%、至少約60%、至少約65%、至少約70%、至少約75%、至少約80%、至少約85%、至少約90%、至少約95%、或約100%。 分佈體積 The nucleic acid vaccine, when formulated into a composition with a delivery agent as described herein, can exhibit therapeutic efficacy of the administered nucleic acid vaccine composition when compared to the therapeutic window of the administered nucleic acid vaccine composition in the absence of a delivery agent as described herein. The addition of windows. As used herein, the "therapeutic window" refers to the range of plasma concentrations or levels of a therapeutically active substance at the site of action over which there is a higher probability of eliciting a prophylactic or therapeutic effect. In some embodiments, when co-administered with a delivery agent as described herein, the therapeutic window of a nucleic acid vaccine can be increased by at least about 2%, at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, or about 100%. Distribution volume

與缺少如本文所述之遞送劑的組成物相比,核酸疫苗在與如本文所述之遞送劑一起調配成組成物時可展現改良的分佈體積(Vdist),例如降低的或靶向的。分佈容積(Vdist)將體內藥物(例如本揭露之核酸疫苗)的量與血液或血漿中之藥物濃度相關聯。如本文所用之術語「分佈體積」係指體內含有與血液或血漿中濃度相同的藥物總量所需的液體體積:Vdist等於體內藥物量/血液或血漿中之藥物濃度。例如,對於10 mg劑量及10 mg/L之血漿濃度,分佈體積將為1公升。分佈體積反映藥物存在於血管外組織中的程度。較大分佈體積反映與血漿蛋白質結合相比,化合物傾向於與組織組分結合。在臨床配置中,Vdist可用於確定達成穩態濃度之起始劑量。在一些實施態樣中,當與如本文所述之遞送劑共投予時,核酸疫苗之分佈體積可降低至少約2%、至少約5%、至少約10%、至少約15%、至少約20%、至少約25%、至少約30%、至少約35%、至少約40%、至少約45%、至少約50%、至少約55%、至少約60%、至少約65%、至少約70%。 生物效應 Nucleic acid vaccines when formulated into compositions with a delivery agent as described herein may exhibit improved distribution volumes (Vdist), eg, reduced or targeted, compared to compositions lacking a delivery agent as described herein. The volume of distribution (Vdist) relates the amount of a drug (such as the nucleic acid vaccine of the present disclosure) in the body to the concentration of the drug in the blood or plasma. The term "distribution volume" as used herein refers to the volume of liquid required to contain the total amount of drug in the body at the same concentration as in the blood or plasma: Vdist is equal to the amount of drug in the body/drug concentration in the blood or plasma. For example, for a 10 mg dose and a plasma concentration of 10 mg/L, the volume of distribution would be 1 liter. The volume of distribution reflects the extent to which a drug is present in extravascular tissues. The larger distribution volume reflects the tendency of the compound to bind to tissue components compared to plasma protein binding. In a clinical setting, Vdist can be used to determine the starting dose to achieve steady-state concentrations. In some embodiments, when co-administered with a delivery agent as described herein, the volume of distribution of a nucleic acid vaccine can be reduced by at least about 2%, at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%. Biological effects

在一些實施態樣中,遞送至動物之核酸疫苗之生物效應可藉由分析動物中之蛋白質表現來分類。蛋白質表現可由分析自投予本文所述之核酸疫苗的哺乳動物收集之生物樣品確定。 藉由質譜分析偵測多核苷酸 In some embodiments, the biological effects of nucleic acid vaccines delivered to animals can be classified by analyzing protein expression in the animals. Protein expression can be determined by analysis of biological samples collected from mammals administered the nucleic acid vaccines described herein. Detection of polynucleotides by mass spectrometry

質譜分析(MS)為可在分子轉化為離子之後提供關於分子之結構及分子質量/濃度資訊的分析技術。分子首先經電離以獲取正電荷或負電荷,且接著其穿過質量分析儀,根據其質荷比(m/z)到達偵測器之不同區域。Mass spectrometry (MS) is an analytical technique that provides information about the structure and molecular mass/concentration of molecules after they are converted into ions. Molecules are first ionized to acquire a positive or negative charge, and then they pass through the mass analyzer and reach different areas of the detector according to their mass-to-charge ratio (m/z).

使用質譜儀進行質譜分析,該質譜儀包括用於電離分級樣品且產生帶電分子用於進一步分析的離子源。例如,樣品的電離可藉由電噴霧電離(ESI)、大氣壓化學電離(APCI)、光電離、電子電離、快速原子轟擊(FAB)/液體二次電離(LSIMS)、基質輔助雷射解吸/電離(MALDI)、場電離、場解吸、熱噴霧/電漿噴霧電離、及粒子束電離來進行。熟習此項技術者應理解,電離方法的選擇可基於待量測之分析物、樣品類型、偵測器類型、正模式相對於負模式的選擇等來確定。Mass spectrometry is performed using a mass spectrometer that includes an ion source for ionizing the fractionated sample and producing charged molecules for further analysis. For example, samples can be ionized by electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), photoionization, electron ionization, fast atom bombardment (FAB)/liquid secondary ionization (LSIMS), matrix-assisted laser desorption/ionization (MALDI), field ionization, field desorption, thermal spray/plasma spray ionization, and particle beam ionization. Those skilled in the art will understand that the choice of ionization method may be determined based on the analyte to be measured, sample type, detector type, selection of positive mode versus negative mode, etc.

在樣品已被電離之後,可分析由此產生之帶正電或帶負電離子以確定質荷比(亦即m/z)。用於確定質荷比之合適分析儀包括四極分析儀、離子阱分析儀及飛行時間分析儀。可使用若干偵測模式偵測離子。例如,可偵測選定離子(亦即使用選擇性離子監測模式(SIM)),或者,可使用掃描模式,例如多反應監測(MRM)或選擇反應監測(SRM)偵測離子。After a sample has been ionized, the resulting positively or negatively charged ions can be analyzed to determine the mass-to-charge ratio (ie, m/z). Suitable analyzers for determining mass-to-charge ratio include quadrupole analyzers, ion trap analyzers, and time-of-flight analyzers. Several detection modes are available for detecting ions. For example, selected ions can be detected (ie using Selective Ion Monitoring Mode (SIM)), or ions can be detected using scanning modes such as Multiple Reaction Monitoring (MRM) or Selected Reaction Monitoring (SRM).

液相層析-多反應監測(LC-MS/MRM)結合穩定同位素標記之肽標準稀釋液已被證明是一種有效的蛋白質驗證方法(例如Keshishian等人, Mol Cell Proteomics,2009, 8: 2339-2349;Kuhn等人, Clin Chem2009, 55:1108-1117;Lopez等人, Clin Chem, 2010, 56:281- 290;將每一該等內容以其全文引用方式併入本文中)。與生物標記發現研究中經常使用之非靶向質譜法不同,靶向MS方法為基於肽序列之MS模式,其將儀器之全部分析能力集中於複雜混合物中之數十至數百個選定肽上。與發現模式MS方法相比,藉由將偵測及片段化限制於僅來自所關注蛋白質之彼等肽,靈敏度及再現性得到顯著提高。此基於質譜法之多反應監測(MRM)蛋白質定量方法可經由對臨床樣品之快速、靶向、多重蛋白質表現分析顯著影響生物標記之發現及定量。 Liquid chromatography-multiple reaction monitoring (LC-MS/MRM) combined with stable isotope-labeled peptide standard dilutions has been shown to be an effective method for protein verification (e.g. Keshishian et al., Mol Cell Proteomics, 2009, 8: 2339- 2349; Kuhn et al., Clin Chem 2009, 55:1108-1117; Lopez et al., Clin Chem , 2010, 56:281-290; each of which is incorporated herein by reference in its entirety). Unlike non-targeted mass spectrometry, which is often used in biomarker discovery studies, targeted MS methods are peptide sequence-based MS modes that focus the entire analytical power of the instrument on tens to hundreds of selected peptides in complex mixtures. . By limiting detection and fragmentation to only those peptides from the protein of interest, sensitivity and reproducibility are significantly improved compared to discovery mode MS methods. This mass spectrometry-based multiple reaction monitoring (MRM) protein quantification method can significantly impact the discovery and quantification of biomarkers through rapid, targeted, multiplex protein expression analysis of clinical samples.

在一些實施態樣中,生物樣品一旦獲自個體,即可經受酶消化。如本文所用,術語「消化」意謂分解成較短肽。如本文所用,片語「處理樣品以消化蛋白質」意謂以分解樣品中之蛋白質的方式處理樣品。此等酶包括但不限於胰蛋白酶、內切蛋白酶Glu-C及胰凝乳蛋白酶。In some embodiments, the biological sample, once obtained from the individual, can be subjected to enzymatic digestion. As used herein, the term "digestion" means breaking down into shorter peptides. As used herein, the phrase "treating a sample to digest proteins" means treating the sample in a manner that breaks down the proteins in the sample. Such enzymes include, but are not limited to, trypsin, endoprotease Glu-C, and chymotrypsin.

在一些實施態樣中,可使用電噴霧電離分析生物樣品之蛋白質。電噴霧電離(ESI)質譜法(ESIMS)使用電能幫助離子自溶液轉移至氣相,隨後藉由質譜分析對離子進行分析。可使用此項技術中已知的方法(例如Ho等人, Clin Biochem Rev.2003, 24(1):3-12;以全文引用方式併入本文中)分析樣品。通過分散帶電液滴之細噴霧、蒸發溶劑及自帶電液滴中噴射離子以產生高度帶電液滴霧,可將溶液中包含的離子物質轉移至氣相中。可以使用至少1個、至少2個、至少3個或至少4個質量分析儀,諸如但不限於四極質量分析儀來分析高度帶電液滴霧。此外,質譜法可包括純化步驟。作為非限制性實例,第一個四極可設置為選擇單一m/z比,因此其可濾出具有不同m/z比的其他分子離子,此可消除MS分析之前複雜且耗時的樣品純化程序。 In some embodiments, electrospray ionization can be used to analyze proteins in biological samples. Electrospray ionization (ESI) mass spectrometry (ESIMS) uses electrical energy to help transfer ions from solution to the gas phase, where the ions are subsequently analyzed by mass spectrometry. Samples can be analyzed using methods known in the art (eg, Ho et al., Clin Biochem Rev. 2003, 24(1):3-12; incorporated herein by reference in its entirety). Ionic species contained in the solution can be transferred to the gas phase by dispersing a fine spray of charged droplets, evaporating the solvent, and ejecting ions from the charged droplets to create a mist of highly charged droplets. The highly charged liquid droplet mist may be analyzed using at least 1, at least 2, at least 3 or at least 4 mass analyzers, such as, but not limited to, quadrupole mass analyzers. Additionally, mass spectrometry can include purification steps. As a non-limiting example, the first quadrupole can be set up to select a single m/z ratio, so it can filter out other molecular ions with different m/z ratios. This can eliminate complex and time-consuming sample purification procedures prior to MS analysis. .

在一些實施態樣中,可在串聯ESIMS系統(例如MS/MS)中分析生物樣品之蛋白質。作為非限制性實例,可使用產物掃描(或子掃描)、前驅體掃描(母掃描)、中性損失或多反應監測來分析液滴。In some embodiments, biological samples can be analyzed for proteins in a tandem ESIMS system (eg, MS/MS). As non-limiting examples, droplets can be analyzed using product scans (or sub-scans), precursor scans (parent scans), neutral loss, or multiple reaction monitoring.

在一些實施態樣中,可使用基質輔助雷射解吸/電離(MALDI)質譜法(MALDIMS)分析生物樣品。MALDI提供大分子及小分子(諸如蛋白質)之非破壞性汽化及電離。在MALDI分析中,分析物首先與大量莫耳過量的基質化合物共結晶,該基質化合物亦可包括但不限於吸收紫外線之弱有機酸。MALDI中所用之基質之非限制性實例為a-氰基-4-羥基肉桂酸、3,5-二甲氧基-4-羥基肉桂酸及2,5-二羥基苯甲酸。分析物-基質混合物之雷射輻射可導致基質及分析物蒸發。雷射誘導之解吸提供完整分析物之高離子產率,且允許以高精度量測化合物。可使用此項技術中已知的方法分析樣品(例如Lewis, Wei及Siuzdak, Encyclopedia of Analytical Chemistry2000:5880-5894;將其內容以其全文引用方式併入本文中)。作為非限制性示例,MALDI分析中所用之質量分析儀可包括線性飛行時間(TOF)、TOF反射器或傅立葉變換質量分析儀。 表現系統 In some implementations, biological samples can be analyzed using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MALDIMS). MALDI provides non-destructive vaporization and ionization of large and small molecules such as proteins. In MALDI analysis, the analyte is first co-crystallized with a large molar excess of a matrix compound, which may also include, but is not limited to, weak organic acids that absorb UV light. Non-limiting examples of bases used in MALDI are a-cyano-4-hydroxycinnamic acid, 3,5-dimethoxy-4-hydroxycinnamic acid and 2,5-dihydroxybenzoic acid. Laser radiation of the analyte-matrix mixture can cause the matrix and analyte to evaporate. Laser-induced desorption provides high ion yields of intact analytes and allows compounds to be measured with high precision. Samples can be analyzed using methods known in the art (eg, Lewis, Wei, and Siuzdak, Encyclopedia of Analytical Chemistry 2000:5880-5894; the contents of which are incorporated herein by reference in their entirety). As non-limiting examples, mass analyzers used in MALDI analysis may include linear time-of-flight (TOF), TOF reflector, or Fourier transform mass analyzers. performance system

在一些實施態樣中,本文所述之核酸疫苗可以可操作方式連接於一或多種調節核苷酸序列且在表現構築體中編碼。調節核苷酸序列一般將適合於用於表現之宿主細胞。對於多種宿主細胞,此項技術中已知許多類型之適當表現載體及適合調節序列。通常,一或多個調節核苷酸序列可包括但不限於啟動子序列、前導或信號序列、轉錄起始及終止序列及強化子或活化子序列。亦考慮如此項技術中已知的組成型或可誘導型啟動子。啟動子可為天然存在之啟動子,或組合超過一種啟動子之元件之雜合啟動子。表現構築體可存在於細胞中之游離基因體(諸如質體)上,或表現構築體可插入染色體中。在特定實施態樣中,表現載體包括允許選擇經轉化宿主細胞之可選標記基因。某些實施態樣包括表現載體,該表現載體編碼可操作地連接於至少一個調節序列之COVID-19序列的核酸疫苗。用於本文中之調節序列包括啟動子、強化子及其他表現控制元件。在某些實施態樣中,考慮待轉化之宿主細胞的選擇、待表現之特定核酸疫苗序列、載體之複本數、控制該複本數之能力或由載體編碼之其他蛋白質,諸如抗生素標記的表現來設計表現載體。In some embodiments, the nucleic acid vaccines described herein can be operably linked to one or more regulatory nucleotide sequences and encoded in an expression construct. The regulatory nucleotide sequence will generally be appropriate for the host cell used for expression. Many types of suitable expression vectors and suitable regulatory sequences are known in the art for a variety of host cells. Generally, the one or more regulatory nucleotide sequences may include, but are not limited to, promoter sequences, leader or signal sequences, transcription initiation and termination sequences, and enhancer or activator sequences. Constitutive or inducible promoters as known in the art are also contemplated. The promoter may be a naturally occurring promoter, or a hybrid promoter combining elements of more than one promoter. The expression construct may be present on an episome in the cell, such as a plastid, or the expression construct may be inserted into the chromosome. In certain embodiments, the expression vector includes a selectable marker gene that allows selection of transformed host cells. Certain embodiments include expression vectors encoding a nucleic acid vaccine of a COVID-19 sequence operably linked to at least one regulatory sequence. Regulatory sequences as used herein include promoters, enhancers and other expression control elements. In certain embodiments, consideration is given to the selection of host cells to be transformed, the specific nucleic acid vaccine sequences to be expressed, the number of copies of the vector, the ability to control the number of copies, or other proteins encoded by the vector, such as expression of antibiotic markers. Design expression vehicle.

在一些實施態樣中,本文所述之核酸可在微生物中表現。作為非限制性實例,核酸可在細菌系統中,例如在短乳桿菌( Bacillus brevis)、巨大芽孢桿菌( Bacillus megaterium)、枯草芽孢桿菌( Bacillus subtilis)、新月柄桿菌( Caulobacter crescentus)、大腸桿菌( Escherichia coli)及其衍生物中表現。例示性啟動子包括l-阿拉伯糖誘導性araBAD啟動子(PBAD)、lac啟動子、l-鼠李糖誘導型rhaP BAD啟動子、T7 RNA聚合酶啟動子、trc及tac啟動子、λ噬菌體啟動子Pl及無水四環素誘導型tetA啟動子/操縱子。 In some embodiments, the nucleic acids described herein can be expressed in microorganisms. As non-limiting examples, the nucleic acid may be in a bacterial system, such as in Bacillus brevis , Bacillus megaterium , Bacillus subtilis , Caulobacter crescentus , Escherichia coli ( Escherichia coli ) and its derivatives. Exemplary promoters include l-arabinose-inducible araBAD promoter (PBAD), lac promoter, l-rhamnose-inducible rhaP BAD promoter, T7 RNA polymerase promoter, trc and tac promoters, lambda phage promoter Pl and anhydrotetracycline-inducible tetA promoter/operator.

在一些實施態樣中,本文所述之核酸可在酵母表現系統中表現。可用於酵母載體中之啟動子之非限制性實例包括3-磷酸甘油酸激酶之啟動子(Hitzeman等人, J. Biol. Chem. 255:2073 (1980));其他糖酵解酶之啟動子(Hess等人, J. Adv. Enzyme Res. 7:149 (1968);Holland等人, Biochemistry17:4900 (1978)。其他啟動子來自例如烯醇酶、甘油醛-3-磷酸脫氫酶、己糖激酶、丙酮酸脫羧酶、磷酸果糖激酶、葡萄糖-6-磷酸異構酶、3-磷酸甘油酸變位酶、丙酮酸激酶、丙糖磷酸異構酶、磷酸葡萄糖異構酶、葡萄糖激酶醇氧化酶I (AOX1)、醇脫氫酶2、異細胞色素C、酸性磷酸酶、與氮代謝相關之降解酶及前述甘油醛-3-磷酸脫氫酶,及負責麥芽糖及半乳糖利用之酶。任何含有酵母相容性啟動子及終止序列,有或無複製起點之質體載體均為合適的。某些酵母表現系統為市售的,例如獲自Clontech Laboratories, Inc. (Palo Alto, Calif.,例如用於釀酒酵母之Pyex 4T載體家族)、Invitrogen (Carlsbad, Calif.,例如Ppicz系列Easy Select Pichia Expression Kit)及Stratagene (La Jolla, Calif.,例如用於粟酒裂殖酵母之ESP.TM. Yeast Protein Expression and Purification System及用於釀酒酵母之Pesc載體)。 In some embodiments, the nucleic acids described herein can be expressed in a yeast expression system. Non-limiting examples of promoters useful in yeast vectors include the promoter of 3-phosphoglycerate kinase (Hitzeman et al., J. Biol. Chem . 255:2073 (1980)); the promoters of other glycolytic enzymes (Hess et al., J. Adv. Enzyme Res . 7:149 (1968); Holland et al., Biochemistry 17:4900 (1978). Other promoters are derived from, for example, enolase, glyceraldehyde-3-phosphate dehydrogenase, Hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, glucokinase Alcohol oxidase I (AOX1), alcohol dehydrogenase 2, isocytochrome C, acid phosphatase, degradative enzymes related to nitrogen metabolism and the aforementioned glyceraldehyde-3-phosphate dehydrogenase, and those responsible for the utilization of maltose and galactose enzyme. Any plasmid vector containing a yeast-compatible promoter and termination sequence, with or without an origin of replication, is suitable. Certain yeast expression systems are commercially available, e.g., from Clontech Laboratories, Inc. (Palo Alto, Calif., such as the Pyex 4T vector family for Saccharomyces cerevisiae), Invitrogen (Carlsbad, Calif., such as the Ppicz Series Easy Select Pichia Expression Kit), and Stratagene (La Jolla, Calif., such as the ESP for Schizosaccharomyces pombe) .TM. Yeast Protein Expression and Purification System and Pesc vector for Saccharomyces cerevisiae).

在一些實施態樣中,本文所述之核酸可在哺乳動物表現系統中表現。哺乳動物啟動子之非限制性實例包括例如來自以下基因之啟動子:倉鼠之泛素/S27a啟動子(WO 97/15664)、猴空泡病毒40(SV40)早期啟動子、腺病毒主要晚期啟動子、小鼠金屬硫蛋白-I啟動子、勞氏肉瘤病毒(Rous Sarcoma Virus)(RSV)之長末端重複區、小鼠乳房腫瘤病毒啟動子(MMTV)、莫洛尼鼠類白血病病毒(Moloney murine leukemia virus)長末端重複區及人類巨細胞病毒(CMV)的早期啟動子。其他異源哺乳動物啟動子之實例為肌動蛋白、免疫球蛋白或熱休克啟動子。在特定實施態樣中,使用酵母醇氧化酶啟動子。In some embodiments, the nucleic acids described herein can be expressed in mammalian expression systems. Non-limiting examples of mammalian promoters include, for example, promoters from genes such as: hamster ubiquitin/S27a promoter (WO 97/15664), simian vacuolating virus 40 (SV40) early promoter, adenovirus major late promoter promoter, mouse metallothionein-I promoter, long terminal repeat region of Rous Sarcoma Virus (RSV), mouse mammary tumor virus promoter (MMTV), Moloney murine leukemia virus (Moloney murine leukemia virus) long terminal repeat region and the early promoter of human cytomegalovirus (CMV). Examples of other heterologous mammalian promoters are actin, immunoglobulin or heat shock promoters. In certain embodiments, a yeast alcohol oxidase promoter is used.

在一些實施態樣中,用於哺乳動物宿主細胞之啟動子可獲自病毒之基因體,該等病毒諸如多瘤病毒、禽痘病毒(UK 2,211,504,1989年7月5日公開)、牛乳頭狀瘤病毒、禽肉瘤病毒、巨細胞病毒、反轉錄病毒、B型肝炎病毒及猴病毒40 (SV40)。在其他實施態樣中,使用異源哺乳動物啟動子。實例包括肌動蛋白啟動子、免疫球蛋白啟動子及熱休克啟動子。SV40之早期及晚期啟動子宜以亦含有SV40病毒複製起點之SV40限制性片段形式獲得。Fiers等人, Nature273: 113-120 (1978)。人類巨細胞病毒之即刻早期啟動子適宜以HindIII E限制性片段形式獲得。Greenaway, P. J.等人, Gene18: 355-360 (1982)。前述參考文獻以全文引用的方式併入本文中。 In some embodiments, promoters for use in mammalian host cells can be obtained from the genome of viruses such as polyomavirus, fowlpox virus (UK 2,211,504, published July 5, 1989), bovine papillomavirus parvovirus, avian sarcoma virus, cytomegalovirus, retrovirus, hepatitis B virus, and simian virus 40 (SV40). In other embodiments, heterologous mammalian promoters are used. Examples include actin promoters, immunoglobulin promoters, and heat shock promoters. The early and late promoters of SV40 are preferably obtained in the form of SV40 restriction fragments that also contain the SV40 viral origin of replication. Fiers et al., Nature 273: 113-120 (1978). The human cytomegalovirus immediate early promoter is suitably obtained as a HindIII E restriction fragment. Greenaway, PJ et al. Gene 18: 355-360 (1982). The foregoing references are incorporated herein by reference in their entirety.

在一些實施態樣中,本文所述之核酸可在昆蟲細胞表現系統中表現。採用昆蟲細胞宿主之真核表現系統可依賴於質體或桿狀病毒表現系統。典型的昆蟲宿主細胞衍生自草地夜蛾(草地黏蟲( Spodoptera frugiperda))。對於異質蛋白質之表現,用桿狀病毒苜蓿銀紋夜蛾( Autographa californica)核型多角體病毒之重組型形式感染此等細胞,該病毒具有在病毒多角體蛋白啟動子控制下表現之所關注基因。受此病毒感染之其他昆蟲包括商業上稱為「High 5」(Invitrogen)之細胞株,其衍生自甘藍銀紋夜蛾(粉紋夜蛾( Trichoplusia ni))。有時使用之另一桿狀病毒為家蠶(Bombyx mori)核型多角體病毒,其感染蠶(家蠶)。許多桿狀病毒表現系統為市售的,例如獲自Thermo Fisher (Bac-N- Blue TMk或BAC-TO-BAC TM系統)、Clontech (BacPAK TM桿狀病毒表現系統)、Novagen (Bac Vector System TM)或獲自Pharmingen或Quantum Biotechnologies之其他者。另一種昆蟲細胞宿主為常見的果蠅黑腹果蠅( Drosophila melanogaster),Thermo Fisher (The DES TMSystem)為其商業提供了一種瞬時或穩定的基於質體之轉染套組。 In some embodiments, the nucleic acids described herein can be expressed in insect cell expression systems. Eukaryotic expression systems using insect cell hosts can rely on plastid or baculovirus expression systems. A typical insect host cell is derived from the Spodoptera frugiperda ( Spodoptera frugiperda ). For expression of heterogeneous proteins, the cells were infected with a recombinant version of the baculovirus Autographa californica nuclear polyhedrosis virus that has the gene of interest expressed under the control of the viral polyhedrin promoter. . Other insects infected by this virus include a cell strain commercially known as "High 5" (Invitrogen), which is derived from the cabbage exigua moth ( Trichoplusia ni ). Another baculovirus sometimes used is Bombyx mori nuclear polyhedrosis virus, which infects silkworms (Bombyx mori). Many baculovirus expression systems are commercially available, for example from Thermo Fisher (Bac-N-Blue k or BAC-TO-BAC system), Clontech (BacPAK Baculovirus Expression System), Novagen (Bac Vector System TM ) or others obtained from Pharmingen or Quantum Biotechnologies. Another insect cell host is the common fruit fly Drosophila melanogaster , for which Thermo Fisher (The DES TM System) commercially provides a transient or stable plastid-based transfection kit.

在一些實施態樣中,細胞用表現本文所述之核酸的載體轉化。用於將新遺傳物質插入至真核細胞(包括動物及植物細胞)中之轉化技術為熟知的。病毒載體可用於將表現卡匣插入至宿主細胞基因體中。或者,載體可轉染至宿主細胞中。轉染可藉由如此項技術中所述之方法實現,諸如但不限於磷酸鈣沈澱、電穿孔、光學轉染、原生質體融合、刺穿感染及流體動力學遞送。 IV. 使用方法 In some embodiments, cells are transformed with vectors expressing nucleic acids described herein. Transformation techniques for inserting new genetic material into eukaryotic cells, including animal and plant cells, are well known. Viral vectors can be used to insert expression cassettes into the host cell genome. Alternatively, the vector can be transfected into host cells. Transfection can be accomplished by methods as described in the art, such as, but not limited to, calcium phosphate precipitation, electroporation, optical transfection, protoplast fusion, punch infection, and hydrodynamic delivery. IV. How to use

本揭露之一個態樣提供使用本揭露之核酸疫苗及包含核酸疫苗及至少一種醫藥學上可接受之載劑之醫藥組成物及調配物的方法。本文提供用於診斷、治療、緩解或預防人類或其他哺乳動物之疾病或病狀的組成物、方法、套組及試劑,其中活性劑為核酸疫苗、含有核酸疫苗之細胞或自核酸疫苗多核苷酸轉譯之多肽。One aspect of the present disclosure provides methods of using the nucleic acid vaccines of the present disclosure and pharmaceutical compositions and formulations comprising the nucleic acid vaccines and at least one pharmaceutically acceptable carrier. Provided herein are compositions, methods, kits and reagents for diagnosing, treating, alleviating or preventing diseases or conditions in humans or other mammals, wherein the active agent is a nucleic acid vaccine, a cell containing a nucleic acid vaccine or a polynucleoside derived from a nucleic acid vaccine Acid-translated peptides.

在一些實施態樣中,可使用任何表明對個體有益之終點來評估使用方法,包括但不限於(1)在一定程度上抑制疾病進展,包括穩定、減緩及完全遏制;(2)減少疾病發作及/或症狀之數目;(3)抑制(亦即減少、減緩或完全停止)疾病細胞浸潤至鄰近的周邊器官及/或組織中;(4)抑制(亦即減少、減緩或完全停止)疾病傳播;(5)自體免疫病狀的減輕;(6)與病症相關之生物標記之表現的有利變化;(7)在一定程度上緩解與病症相關之一或多種症狀;(8)增加治療後無病表現之時長;或(9)在治療後之給定時間點降低死亡率。 治療或預防用途 In some embodiments, any endpoint indicating benefit to an individual may be used to evaluate the use, including but not limited to (1) inhibiting disease progression to a certain extent, including stabilization, slowing, and complete containment; (2) reducing disease exacerbations and/or the number of symptoms; (3) inhibit (i.e., reduce, slow down, or completely stop) the infiltration of disease cells into adjacent peripheral organs and/or tissues; (4) inhibit (i.e., reduce, slow down, or completely stop) the disease Transmission; (5) Alleviation of autoimmune symptoms; (6) Favorable changes in the expression of biomarkers related to the disease; (7) Alleviation to a certain extent of one or more symptoms related to the disease; (8) Increased treatment the duration of disease-free manifestations; or (9) reducing mortality at a given time point after treatment. Therapeutic or prophylactic use

本文所述之核酸疫苗可用於保護、治療或治癒由與諸如但不限於病毒、細菌、真菌、寄生蟲及原生動物之感染物接觸引起的感染。作為非限制性實例,感染物為病毒且病毒為SARS-CoV-2及/或其變異體。在一些實施態樣中,SARS-CoV-2之變異體為VOI、VOC及VOHC變異體。The nucleic acid vaccines described herein can be used to protect, treat or cure infections caused by contact with infectious agents such as, but not limited to, viruses, bacteria, fungi, parasites and protozoa. As a non-limiting example, the infectious agent is a virus and the virus is SARS-CoV-2 and/or variants thereof. In some implementations, the variants of SARS-CoV-2 are VOI, VOC, and VOHC variants.

本文所述之核酸疫苗可用作預防劑,其中向個體投予核酸疫苗,且其中核酸疫苗多核苷酸活體內轉譯以產生SARS-CoV-2之一或多種蛋白質、肽、其片段或變異體,用於預防COVID-19。The nucleic acid vaccines described herein can be used as prophylactics, wherein the nucleic acid vaccine is administered to an individual, and wherein the nucleic acid vaccine polynucleotide is translated in vivo to produce one or more proteins, peptides, fragments or variants thereof of SARS-CoV-2 , for the prevention of COVID-19.

本文所述之核酸疫苗可用作治療劑,其中向個體投予核酸疫苗,且其中核酸疫苗多核苷酸活體內轉譯以產生SARS-CoV-2之一或多種蛋白質、肽、其片段或變異體,用於緩解COVID-19之一或多種症狀。The nucleic acid vaccines described herein can be used as therapeutics, wherein the nucleic acid vaccine is administered to an individual, and wherein the nucleic acid vaccine polynucleotide is translated in vivo to produce one or more proteins, peptides, fragments or variants thereof of SARS-CoV-2 , used to relieve one or more symptoms of COVID-19.

在一些實施態樣中,提供用於治療或預防個體的病毒感染及/或與病毒感染或其症狀相關之疾病、病症或病狀的方法,該等方法藉由投予包含一或多種編碼病毒多肽之多核苷酸的核酸疫苗。投予可與本文所述或此項技術中已知的抗病毒劑或抗細菌劑或小分子化合物組合。In some embodiments, methods are provided for treating or preventing viral infections and/or diseases, disorders, or conditions associated with viral infections or symptoms thereof in an individual by administering a virus containing one or more encoded viruses Polypeptide-polynucleotide nucleic acid vaccine. Administration may be in combination with antiviral or antibacterial agents or small molecule compounds described herein or known in the art.

在一些實施態樣中,本文所述之核酸疫苗可用於保護免於及/或防止可能已知或未知的新興或工程化威脅的傳播。In some embodiments, the nucleic acid vaccines described herein may be used to protect against and/or prevent the spread of emerging or engineered threats that may be known or unknown.

在一些實施態樣中,本文提供使用本文所述之核酸多核苷酸在細胞、組織或生物體中誘導多肽(例如SARS-CoV-2之一或多種蛋白質、肽、其片段或變異體之轉譯的方法。轉譯之多肽可用於預防、緩解及/或治療COVID-19。此類轉譯可為活體外、活體內、離體或在培養物中。細胞、組織或生物體可與有效量之含有核酸疫苗之組成物或醫藥組成物接觸,該核酸疫苗包括具有至少一個編碼所關注多肽之區域的多核苷酸(例如SARS-CoV-2之一或多種蛋白質、多肽、肽、其片段或變異體,用於治療及/或預防COVID-19。In some embodiments, provided herein are the use of nucleic acid polynucleotides described herein to induce translation of one or more proteins, peptides, fragments or variants thereof of a polypeptide (e.g., SARS-CoV-2) in a cell, tissue, or organism. Methods. The translated polypeptides can be used to prevent, mitigate, and/or treat COVID-19. Such translation can be in vitro, in vivo, ex vivo, or in culture. Cells, tissues, or organisms can contain an effective amount of Contact with a composition or pharmaceutical composition of a nucleic acid vaccine that includes a polynucleotide having at least one region encoding a polypeptide of interest (e.g., one or more proteins, polypeptides, peptides, fragments or variants thereof of SARS-CoV-2 , for the treatment and/or prevention of COVID-19.

在一些實施態樣中,向細胞、組織或個體提供的本文所述之核酸疫苗之有效量可足以用於免疫預防。In some embodiments, an effective amount of a nucleic acid vaccine described herein provided to a cell, tissue, or individual may be sufficient for immunoprophylaxis.

核酸疫苗之組成物之「有效量」至少部分地基於以下各者提供:目標組織、目標細胞類型、投予方式、多核苷酸之物理特徵(例如未經修飾及經修飾之核苷的大小及數目)及核酸疫苗之其他組分。含有本文所述之核酸疫苗之組成物的有效量為相比於未處理細胞,隨細胞中產生之SARS-CoV-2之一或多種蛋白質、多肽、肽、其片段或變異體而變地提供誘導或加強免疫反應的量。增加的產量可藉由增加的細胞轉染(亦即經核酸疫苗轉染之細胞的百分比)、增加的來自多核苷酸之蛋白質轉譯或改變的宿主細胞之先天性免疫反應來證明。An "effective amount" of a composition of a nucleic acid vaccine is provided based at least in part on: the target tissue, the target cell type, the mode of administration, the physical characteristics of the polynucleotide (e.g., the size of the unmodified and modified nucleosides and number) and other components of the nucleic acid vaccine. An effective amount of a composition containing a nucleic acid vaccine described herein is provided as a function of one or more proteins, polypeptides, peptides, fragments or variants of SARS-CoV-2 produced in the cell compared to untreated cells. An amount that induces or enhances an immune response. Increased yield may be evidenced by increased cell transfection (ie, the percentage of cells transfected with the nucleic acid vaccine), increased protein translation from the polynucleotide, or altered host cell innate immune response.

本文所提供的係關於在有需要之哺乳動物個體中誘導SARS-CoV-2之一或多種蛋白質、多肽、肽、其片段或變異體之活體內轉譯的方法。使用本文所述之遞送方法向個體投予有效量之核酸疫苗組成物,該核酸疫苗組成物含有具有至少一個編碼多肽(例如SARS-CoV-2之一或多種蛋白質、多肽、肽、其片段或變異體)之可轉譯區的多核苷酸。多核苷酸以使得多核苷酸在細胞中轉譯之量及其他條件提供。多核苷酸所位於的細胞,或細胞所存在的組織可用一或多輪核酸疫苗投予來靶向。Provided herein are methods for inducing in vivo translation of one or more proteins, polypeptides, peptides, fragments or variants thereof of SARS-CoV-2 in a mammalian subject in need thereof. An effective amount of a nucleic acid vaccine composition containing one or more proteins, polypeptides, peptides, fragments thereof, or variant) of the translatable region of the polynucleotide. The polynucleotide is provided in an amount and under other conditions such that the polynucleotide is translated in the cell. The cell in which the polynucleotide is located, or the tissue in which the cell resides, can be targeted with one or more rounds of nucleic acid vaccine administration.

在某些實施態樣中,投予之包含多核苷酸之核酸疫苗指導一或多種多肽的產生,該一或多種多肽提供在轉譯該多肽之細胞、組織或生物體中基本上不存在的功能性免疫系統相關活性。例如,缺失的功能活性本質上可為酶、結構或基因調節的。在相關實施態樣中,投予之多核苷酸指導一或多種多肽的產生,該一或多種多肽增加與免疫系統相關的功能活性,該免疫系統存在於轉譯多肽之細胞中但基本上缺乏。In certain embodiments, administration of a nucleic acid vaccine comprising a polynucleotide directs the production of one or more polypeptides that provide a function that is substantially absent in the cell, tissue, or organism that translates the polypeptide. Sexual immune system related activity. For example, the missing functional activity may be enzymatic, structural, or gene-regulated in nature. In related embodiments, the polynucleotide administered directs the production of one or more polypeptides that increase functional activity associated with the immune system present but substantially lacking in cells that translate the polypeptides.

另外,自核酸疫苗轉譯之多肽可直接或間接地拮抗存在於細胞中、細胞表面上或自細胞分泌之生物部分的活性。可被拮抗之生物部分的非限制性實例包括核酸、碳水化合物、蛋白質毒素(諸如志賀及破傷風毒素)、脂質(例如膽固醇)、脂蛋白(例如低密度脂蛋白)或小分子毒素(例如霍亂、肉毒桿菌及白喉毒素)。在一些實施態樣中,可被拮抗之生物分子可為內源性蛋白質,其可能具有非所需活性,諸如但不限於細胞毒性或細胞抑制活性。本文所述之蛋白質可經工程化以定位於細胞內,可能在特定區室,諸如細胞質或細胞核內,或經工程化以自細胞分泌或易位至細胞的質膜。Additionally, polypeptides translated from nucleic acid vaccines may directly or indirectly antagonize the activity of biological moieties present in, on the surface of, or secreted from cells. Non-limiting examples of biological moieties that can be antagonized include nucleic acids, carbohydrates, protein toxins (such as Shiga and tetanus toxins), lipids (such as cholesterol), lipoproteins (such as low-density lipoprotein), or small molecule toxins (such as cholera, botulinum toxin and diphtheria toxin). In some embodiments, biomolecules that can be antagonized can be endogenous proteins, which may have undesirable activities, such as, but not limited to, cytotoxic or cytostatic activity. The proteins described herein can be engineered to localize within a cell, possibly within a specific compartment, such as the cytoplasm or nucleus, or engineered to be secreted from the cell or translocated to the cell's plasma membrane.

在一些實施態樣中,核酸疫苗之多核苷酸及其編碼之多肽可用於治療多種疾病、病症及/或病狀中之任一者,包括但不限於病毒感染(例如由SARS-CoV-2及/或其變異體引起之感染)。In some embodiments, the polynucleotides of nucleic acid vaccines and the polypeptides they encode can be used to treat any of a variety of diseases, disorders, and/or conditions, including but not limited to viral infections (e.g., caused by SARS-CoV-2 and/or infections caused by variants thereof).

可投予核酸疫苗的之個體罹患或可處於患上疾病、病症或有害病狀的風險下。提供了在此等基礎上對個體進行鑑別、診斷及分類之方法,其可包括臨床診斷、生物標記水平、全基因組關聯研究(GWAS)及此項技術中已知的其他方法。Individuals to whom nucleic acid vaccines may be administered suffer or may be at risk of contracting a disease, illness or harmful condition. Methods for identifying, diagnosing, and classifying individuals on these basis are provided, which may include clinical diagnosis, biomarker levels, genome-wide association studies (GWAS), and other methods known in the art.

藥劑(例如核酸疫苗及任何額外部分之組成物)可同時投予,例如以組合單位劑量(例如提供兩種藥劑之同時遞送)。藥劑亦可以指定的時間間隔,諸如但不限於數分鐘、數小時、數天或數週之間隔投予。一般而言,藥劑可在個體中同時生物可用,例如可偵測。在一些實施態樣中,藥劑可基本上同時投予,例如同時投予兩個單位劑量,或兩種藥劑之組合單位劑量。在其他實施態樣中,藥劑可以分開的單位劑量遞送。藥劑可按任何次序投予,或者作為包括兩種或更多種藥劑之一或多種製劑投予。在一較佳實施態樣中,藥劑中之一者(例如第一藥劑)之至少一次投予可在另一藥劑(例如第二藥劑)之幾分鐘、一小時、兩小時、三小時或四小時內,或甚至一或兩天內進行。在一些實施態樣中,組合可達成協同結果,例如大於相加結果,例如比相加結果大至少25、50、75、100、200、300、400、或500%。The agents (eg, nucleic acid vaccine and any additional part of the composition) may be administered simultaneously, for example, in combined unit doses (eg, providing for simultaneous delivery of both agents). Agents may also be administered at specified intervals, such as, but not limited to, minutes, hours, days, or weeks. Generally speaking, an agent is simultaneously bioavailable, eg detectable, in an individual. In some embodiments, the agents may be administered substantially simultaneously, such as two unit doses administered simultaneously, or a combined unit dose of two agents. In other embodiments, the agent may be delivered in divided unit doses. The agents may be administered in any order, or as one or more formulations including two or more agents. In a preferred embodiment, at least one administration of one of the agents (e.g., the first agent) may occur within a few minutes, one hour, two hours, three hours, or four hours of the other agent (e.g., the second agent). Within hours, or even within a day or two. In some embodiments, the combination can achieve a synergistic result, for example, greater than the additive result, for example, at least 25, 50, 75, 100, 200, 300, 400, or 500% greater than the additive result.

在一些實施態樣中,本文所述之核酸疫苗可與其他預防或治療化合物一起投予。作為非限制性實例,預防或治療化合物可為佐劑或加強劑。如本文所用,當提及預防組成物,諸如疫苗時,術語「加強劑」係指額外投予預防組成物。加強劑(或加強疫苗)可在預防組成物之早先投予之後投予。初始投予預防組成物與加強劑之間的投予時間可為但不限於1分鐘、2分鐘、3分鐘、4分鐘、5分鐘、6分鐘、7分鐘、8分鐘、9分鐘、10分鐘、15分鐘、20分鐘、35分鐘、40分鐘、45分鐘、50分鐘、55分鐘、1小時、2小時、3小時、4小時、5小時、6小時、7小時、8小時、9小時、10小時、11小時、12小時、13小時、14小時、15小時、16小時、17小時、18小時、19小時、20小時、21小時、22小時、23小時、1天、36小時、2天、3天、4天、5天、6天、7天、8天、9天、10天、14天、21天、28天、1個月、2個月、3個月、4個月、5個月、6個月、7個月、8個月、9個月、10個月、11個月、1年、18個月、2年、3年、4年、5年、6年、7年、8年、9年、10年、11年、12年、13年、14年、15年、16年、17年、18年、19年、20年、25年、30年、35年、40年、45年、50年、55年、60年、65年、70年、75年、80年、85年、90年、95年、或超過99年。In some embodiments, the nucleic acid vaccines described herein can be administered with other prophylactic or therapeutic compounds. As non-limiting examples, prophylactic or therapeutic compounds may be adjuvants or potentiators. As used herein, when referring to a prophylactic composition, such as a vaccine, the term "booster" refers to the additional administration of the prophylactic composition. A booster dose (or booster vaccine) can be administered after an earlier administration of the prophylactic composition. The administration time between the initial administration of the preventive composition and the booster may be, but is not limited to, 1 minute, 2 minutes, 3 minutes, 4 minutes, 5 minutes, 6 minutes, 7 minutes, 8 minutes, 9 minutes, 10 minutes, 15 minutes, 20 minutes, 35 minutes, 40 minutes, 45 minutes, 50 minutes, 55 minutes, 1 hour, 2 hours, 3 hours, 4 hours, 5 hours, 6 hours, 7 hours, 8 hours, 9 hours, 10 hours , 11 hours, 12 hours, 13 hours, 14 hours, 15 hours, 16 hours, 17 hours, 18 hours, 19 hours, 20 hours, 21 hours, 22 hours, 23 hours, 1 day, 36 hours, 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, 8 days, 9 days, 10 days, 14 days, 21 days, 28 days, 1 month, 2 months, 3 months, 4 months, 5 Month, 6 months, 7 months, 8 months, 9 months, 10 months, 11 months, 1 year, 18 months, 2 years, 3 years, 4 years, 5 years, 6 years, 7 years , 8 years, 9 years, 10 years, 11 years, 12 years, 13 years, 14 years, 15 years, 16 years, 17 years, 18 years, 19 years, 20 years, 25 years, 30 years, 35 years, 40 years years, 45 years, 50 years, 55 years, 60 years, 65 years, 70 years, 75 years, 80 years, 85 years, 90 years, 95 years, or more than 99 years.

在一些實施態樣中,核酸疫苗可藉由本文所述之方法調配。在一個態樣中,調配物可包含核酸疫苗或多核苷酸,該核酸疫苗或多核苷酸可對超過一種疾病、病症或病狀具有治療及/或預防作用。作為非限制性實例,調配物可包含編碼SARS-CoV-2之一或多種蛋白質、多肽、肽、其片段或變異體的多核苷酸,用於治療及/或預防COVID-19。In some embodiments, nucleic acid vaccines can be formulated by the methods described herein. In one aspect, the formulation may include a nucleic acid vaccine or polynucleotide that may have therapeutic and/or preventive effects on more than one disease, disorder or condition. As a non-limiting example, a formulation may include a polynucleotide encoding one or more proteins, polypeptides, peptides, fragments or variants thereof of SARS-CoV-2 for the treatment and/or prevention of COVID-19.

在一些實施態樣中,本文所述之核酸疫苗可用於許多應用中之研究,諸如但不限於鑑別及定位細胞內及細胞外蛋白質、蛋白質相互作用、信號路徑及細胞生物學。 免疫反應調節 In some embodiments, the nucleic acid vaccines described herein can be used for research in many applications, such as, but not limited to, identification and localization of intracellular and extracellular proteins, protein interactions, signaling pathways, and cell biology. immune response modulation

在一些實施態樣中,包含本文所述之多核苷酸的核酸疫苗可充當疫苗形式之單一組成物。如本文所用,「疫苗」係指在生物體,例如動物生物體,例如哺乳動物生物體(例如人類)中刺激、誘發、引起或提高免疫的組成物、物質或製劑。較佳地,疫苗提供針對生物體之一或多種疾病或病症的免疫,包括預防性及/或治療性免疫。例示性疫苗包括一或多種類似於感染物(例如致病微生物)的藥劑,且可由例如活、減毒、修飾、減弱或滅活形式之致病微生物或由其衍生之抗原製成,包括抗原成分的組合。在例示性實施態樣中,疫苗刺激、誘發、引起或提高生物體的免疫或引起或模擬生物體中之感染而不誘發任何疾病或病症。疫苗將抗原引入個體之組織、細胞外間隙或細胞中且引發免疫反應,從而保護個體免受特定疾病或病原體感染。本文所述之核酸疫苗可編碼抗原,且當多核苷酸在細胞中表現時,達成所需免疫反應。作為非限制性實例,本文所述之核酸疫苗可編碼SARS-CoV-2之一或多種蛋白質、多肽、肽、其片段或變異體,且當多核苷酸在細胞中表現時,達成針對SARS-CoV-2之所需免疫反應以治療及/或預防COVID-19。In some embodiments, a nucleic acid vaccine comprising a polynucleotide described herein may serve as a single component in a vaccine form. As used herein, "vaccine" refers to a composition, substance or preparation that stimulates, induces, induces or enhances immunity in an organism, such as an animal organism, such as a mammalian organism (eg, a human). Preferably, the vaccine provides immunity against one or more diseases or conditions of the organism, including prophylactic and/or therapeutic immunity. Exemplary vaccines include one or more agents that resemble the infectious agent (e.g., a pathogenic microorganism) and may be made from, for example, live, attenuated, modified, attenuated, or inactivated forms of the pathogenic microorganism or antigens derived therefrom, including antigens combination of ingredients. In exemplary embodiments, a vaccine stimulates, induces, induces or enhances immunity in an organism or causes or simulates an infection in an organism without inducing any disease or disorder. Vaccines introduce antigens into the tissues, extracellular space, or cells of an individual and trigger an immune response, thereby protecting the individual from infection by a specific disease or pathogen. The nucleic acid vaccines described herein can encode an antigen and achieve a desired immune response when the polynucleotide is expressed in cells. As a non-limiting example, the nucleic acid vaccine described herein may encode one or more proteins, polypeptides, peptides, fragments or variants thereof of SARS-CoV-2, and when the polynucleotide is expressed in cells, it can achieve the goal of targeting SARS-CoV-2. Required immune response to CoV-2 to treat and/or prevent COVID-19.

可預防性或治療性投予核酸疫苗作為健康個體之主動免疫接種方案之一部分,或該等核酸疫苗在培育階段期間之感染早期或在症狀發作之後的活動性感染期間投予。Nucleic acid vaccines may be administered prophylactically or therapeutically as part of an active immunization regimen in healthy individuals, or such nucleic acid vaccines may be administered early in the infection during the incubation phase or during active infection after the onset of symptoms.

在標準的第一線治療,諸如抗生素及抗病毒劑未能誘導被動免疫之後,本文所述之核酸疫苗亦可作為第二線治療投予。就此而言,本文所述之核酸疫苗可用於已對第一線治療產生抗性且疾病持續存在且誘發慢性疾病的情況。The nucleic acid vaccines described herein may also be administered as second-line treatment after standard first-line treatments, such as antibiotics and antiviral agents, fail to induce passive immunity. In this regard, the nucleic acid vaccines described herein may be used in situations where resistance to first-line treatments has developed and disease persists and induces chronic disease.

核酸疫苗可作為潛伏病毒感染(諸如SARS-CoV-2感染)之治療方案的一部分進行投予。在此實施態樣中,投予一或多種多核苷酸以治療及/或預防COVID-19,該一或多種多核苷酸最終產生達成針對SARS-CoV-2之所需免疫反應的蛋白質。Nucleic acid vaccines can be administered as part of a treatment regimen for latent viral infections, such as SARS-CoV-2 infection. In this embodiment, one or more polynucleotides are administered to treat and/or prevent COVID-19, which ultimately produce proteins that achieve the desired immune response against SARS-CoV-2.

RNA用於疫苗中或用作疫苗克服了涉及將DNA併入細胞中之習知基因疫苗接種的缺點(就安全性、可行性、適用性及產生免疫反應的有效性而言)。RNA分子被認為比DNA疫苗安全得多,因為RNA更容易降解。其迅速自生物體中清除,且無法整合至基因體中且以不可控制的方式影響細胞之基因表現。RNA疫苗亦不太可能引起嚴重的副作用,例如產生自體免疫疾病或抗DNA抗體( Bringmann A.等人, Journal of Biomedicine and Biotechnology(2010),第2010卷,文章編號623687)。用RNA轉染僅需插入細胞之細胞質中,其比插入細胞核中更容易達成。然而,RNA容易受到細胞之細胞質中之RNase降解及其他自然分解的影響。 The use of RNA in or as a vaccine overcomes the shortcomings (in terms of safety, feasibility, applicability and effectiveness in generating an immune response) of conventional genetic vaccinations involving the incorporation of DNA into cells. RNA molecules are considered much safer than DNA vaccines because RNA degrades more easily. It is rapidly cleared from the organism, cannot be integrated into the genome and affects the gene expression of cells in an uncontrollable manner. RNA vaccines are also less likely to cause serious side effects, such as the development of autoimmune diseases or anti-DNA antibodies ( Bringmann A. et al., Journal of Biomedicine and Biotechnology (2010), Vol. 2010, Article No. 623687). Transfection with RNA requires only insertion into the cytoplasm of the cell, which is easier to achieve than insertion into the nucleus. However, RNA is susceptible to RNase degradation and other natural breakdowns in the cell's cytoplasm.

增加RNA疫苗之穩定性及存放期的各種嘗試。頒予 Von Der Mulbe等人之美國公開案第US 20050032730號揭示藉由增加mRNA分子之G(鳥苷)/C(胞嘧啶)含量來改良mRNA疫苗組成物的穩定性。頒予Feigner等人之美國專利第5,580,859號教示併入編碼與mRNA結合且調節mRNA穩定性之調節蛋白的多核苷酸序列。雖然不希望受理論束縛,但咸信本文所述之核酸疫苗可至少部分由於構築體設計之特異性、純度及選擇性而改良穩定性及治療功效。另外,可將經修飾核苷或其組合引入本文所述之核酸疫苗中以活化先天性免疫反應。當與多肽及/或其他疫苗組合時,此類活化分子適用作佐劑。在某些實施態樣中,活化分子含有編碼可用作疫苗之多肽序列的可轉譯區,從而提供作為自佐劑的能力。 Various attempts to increase the stability and shelf life of RNA vaccines. US Publication No. US 20050032730 issued to Von Der Mulbe et al. discloses improving the stability of the mRNA vaccine composition by increasing the G (guanosine)/C (cytosine) content of the mRNA molecule. US Patent No. 5,580,859 to Feigner et al. teaches the incorporation of polynucleotide sequences encoding regulatory proteins that bind to mRNA and modulate mRNA stability. While not wishing to be bound by theory, it is believed that the nucleic acid vaccines described herein may have improved stability and therapeutic efficacy due at least in part to the specificity, purity, and selectivity of the construct design. Additionally, modified nucleosides or combinations thereof can be introduced into the nucleic acid vaccines described herein to activate the innate immune response. Such activated molecules are suitable as adjuvants when combined with polypeptides and/or other vaccines. In certain embodiments, the activation molecule contains a translatable region encoding a polypeptide sequence useful as a vaccine, thereby providing the ability to act as a self-adjuvant.

在一些實施態樣中,本文所述之核酸疫苗可用於預防、治療及診斷由感染物,諸如但不限於SARS-CoV-2或SARS-CovV-2之VOC、VOI或VOHC引起的疾病及身體障礙。本文所述之核酸疫苗可編碼至少一種所關注多肽(例如SARS-CoV-2之一或多種蛋白質、多肽、肽、其片段或變異體)且可提供給個體以刺激免疫系統來防止病原體。作為非限制性實例,來自感染物的生物活性及/或作用可藉由提供以下者而抑制及/或消除:具有結合及中和感染物之能力的中和抗體;由核酸疫苗轉譯之多肽刺激之免疫系統所產生的中和抗體。In some embodiments, the nucleic acid vaccines described herein can be used to prevent, treat and diagnose diseases and diseases caused by infectious agents, such as but not limited to VOCs, VOIs or VOHCs of SARS-CoV-2 or SARS-CovV-2. obstacles. The nucleic acid vaccines described herein may encode at least one polypeptide of interest (eg, one or more proteins, polypeptides, peptides, fragments or variants thereof of SARS-CoV-2) and may be provided to an individual to stimulate the immune system to protect against the pathogen. As non-limiting examples, biological activities and/or effects from infectious agents can be inhibited and/or eliminated by providing: neutralizing antibodies with the ability to bind and neutralize infectious agents; stimulation of polypeptides translated from nucleic acid vaccines Neutralizing antibodies produced by the immune system.

作為非限制性實例,可將編碼免疫原之多核苷酸遞送至細胞以觸發多種先天性反應途徑(參見PCT專利申請公開案第WO2012006377號及美國專利公開案第US20130177639號;該等專利之內容各自以全文引用方式併入本文中)。作為另一非限制性實例,本文所述之核酸疫苗可以足以對脊椎動物具有免疫原性之劑量遞送至脊椎動物(參見PCT專利申請公開案第WO2012006372號及第WO2012006369號以及美國公開案第US20130149375號及第US20130177640號;將每一該等內容以其全文引用方式併入本文中)。As non-limiting examples, polynucleotides encoding immunogens can be delivered to cells to trigger a variety of innate response pathways (see PCT Patent Application Publication No. WO2012006377 and United States Patent Publication No. US20130177639; the contents of each of these patents incorporated herein by reference in its entirety). As another non-limiting example, the nucleic acid vaccines described herein can be delivered to a vertebrate animal in a dose sufficient to be immunogenic for the vertebrate animal (see PCT Patent Application Publication Nos. WO2012006372 and WO2012006369 and U.S. Publication No. US20130149375 and US20130177640; each of which is incorporated herein by reference in its entirety).

在一些實施態樣中,本文所述之核酸疫苗可以足夠大以對刺激哺乳動物之免疫反應具有免疫原性的劑量遞送至哺乳動物(例如人類)。免疫反應可防禦病毒感染,從而預防及/或治療疾病。作為非限制性實例,本文所述之核酸疫苗可治療及/或預防感染性疾病,包括病毒感染性疾病,諸如由SARS-CoV-2或SARS-CoV-2之VOC、VOI或VOHC引起的COVID-19。In some embodiments, the nucleic acid vaccines described herein can be delivered to a mammal (eg, a human) in a dose large enough to be immunogenic for stimulating an immune response in the mammal. The immune response protects against viral infection, thereby preventing and/or treating disease. As non-limiting examples, the nucleic acid vaccines described herein can treat and/or prevent infectious diseases, including viral infectious diseases, such as COVID caused by SARS-CoV-2 or VOCs, VOIs or VOHCs of SARS-CoV-2. -19.

本文所述之核酸疫苗可根據感染之流行率或未滿足之醫療需求的程度或水平而在各種環境中使用。作為非限制性實例,本文所述之核酸疫苗可用於治療及/或預防COVID-19感染,包括與COVID-19感染(包括由SARS-CoV-2之原始及突變型式引起的感染)相關之疾病及病狀。The nucleic acid vaccines described herein may be used in a variety of settings depending on the prevalence of infection or the extent or level of unmet medical need. As non-limiting examples, the nucleic acid vaccines described herein may be used to treat and/or prevent COVID-19 infections, including diseases associated with COVID-19 infections, including infections caused by original and mutant forms of SARS-CoV-2. and symptoms.

隨著對該疾病愈來愈瞭解,COVID-19感染之症狀正在發生變化,但當前的症狀包括發熱或發冷、咳嗽、呼吸短促或呼吸困難、疲勞、身體酸痛、肌肉酸痛、頭痛、喉嚨痛、充血或流鼻涕、噁心及/或嘔吐、腹瀉、以及新的味覺或嗅覺喪失。Symptoms of COVID-19 infection are changing as the disease is better understood, but current symptoms include fever or chills, cough, shortness of breath or difficulty breathing, fatigue, body aches, muscle aches, headache, sore throat , congestion or runny nose, nausea and/or vomiting, diarrhea, and new loss of taste or smell.

在一些實施態樣中,與當前的抗病毒治療相比,本文所述之核酸疫苗可更好地設計以在轉譯時產生適當蛋白質構形,因為核酸疫苗共同選擇天然細胞機制。與離體製造且可引發非所需細胞反應之傳統疫苗不同,核酸疫苗以更天然的方式呈現給細胞系統。在一些實施態樣中,本文所述之核酸疫苗為針對COVID-19定製的活性疫苗,其不僅可預防SARS-CoV-2感染,且亦可限制SARS-CoV-2的傳播。In some embodiments, the nucleic acid vaccines described herein may be better designed to produce the proper protein conformation upon translation than current antiviral treatments because the nucleic acid vaccines co-opt native cellular machinery. Unlike traditional vaccines, which are manufactured ex vivo and can trigger undesirable cellular responses, nucleic acid vaccines are presented to cellular systems in a more natural way. In some embodiments, the nucleic acid vaccine described herein is an active vaccine customized for COVID-19, which can not only prevent SARS-CoV-2 infection, but also limit the spread of SARS-CoV-2.

在一些實施態樣中,本文所述之核酸疫苗可用於藉由以極快速的基於核酸之疫苗生產過程對新出現的病毒株起反應來預防大流行性COVID-19。In some embodiments, the nucleic acid vaccines described herein may be used to prevent pandemic COVID-19 by responding to emerging viral strains with an extremely rapid nucleic acid-based vaccine production process.

在一些實施態樣中,核酸疫苗之單次注射可為整個季節提供保護。In some implementations, a single injection of a nucleic acid vaccine can provide protection for an entire season.

在一些實施態樣中,本文所述之核酸疫苗可為免疫刺激性的。核酸疫苗之多核苷酸序列可進一步包含編碼促進免疫反應之細胞介素的序列區,該細胞介素諸如單核球激素、淋巴激素、介白素或趨化激素,諸如IL-1、IL-2、IL-3、IL-4、IL-5、IL-6、IL-7、IL-8、IL-9、IL-10、IL-12、INF-a、INF-γ、GM-CFS、LT-a、或生長因子,諸如hGH。 COVID-19之治療及/或預防 In some embodiments, the nucleic acid vaccines described herein can be immunostimulatory. The polynucleotide sequence of the nucleic acid vaccine may further comprise a sequence region encoding an interleukin that promotes an immune response, such as a mononuclear hormone, a lymphokine, an interleukin or a chemokine, such as IL-1, IL- 2. IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12, INF-a, INF-γ, GM-CFS, LT-a, or growth factors such as hGH. COVID-19 Treatment and/or Prevention

在一些實施態樣中,本文所述之核酸疫苗編碼SARS-CoV-2之一或多種蛋白質、多肽、肽、其片段或變異體,且可用於治療及/或預防COVID-19。In some embodiments, the nucleic acid vaccines described herein encode one or more proteins, polypeptides, peptides, fragments or variants thereof of SARS-CoV-2 and can be used to treat and/or prevent COVID-19.

在一些實施態樣中,本文所述之核酸疫苗可產生高得多的中和抗體效價,且其可比市售抗病毒劑更早地產生反應。作為非限制性實例,本文所述之核酸疫苗可產生比其他疫苗多10倍、或9倍、或8倍、或7倍、或6倍、或5倍、或4倍、或3倍的中和抗體效價。In some embodiments, the nucleic acid vaccines described herein can produce much higher titers of neutralizing antibodies and can produce responses earlier than commercially available antiviral agents. As a non-limiting example, the nucleic acid vaccines described herein can produce 10 times, or 9 times, or 8 times, or 7 times, or 6 times, or 5 times, or 4 times, or 3 times more neutralization than other vaccines. and antibody titers.

在一些實施態樣中,本文所述之核酸疫苗共同選擇天然細胞機制以在轉譯時產生適當蛋白質構形。與離體製造且可觸發非所需細胞反應之傳統疫苗不同,本文所述之核酸疫苗以更接近天然方式或正常細胞加工發生方式的方式引入至細胞系統中。另外,調配物可用於保護或靶向遞送核酸疫苗至個體之特定細胞或組織。In some embodiments, the nucleic acid vaccines described herein co-opt native cellular machinery to produce the appropriate protein conformation upon translation. Unlike traditional vaccines, which are manufactured ex vivo and can trigger undesirable cellular responses, the nucleic acid vaccines described herein are introduced into cellular systems in a manner that is closer to nature or how normal cellular processing occurs. Additionally, the formulations can be used to protect or target the delivery of nucleic acid vaccines to specific cells or tissues of an individual.

在一些實施態樣中,本文所述之核酸疫苗代表一種不僅可預防感染且亦可限制COVID-19之傳播的靶向活性疫苗。In some embodiments, the nucleic acid vaccines described herein represent a targeted active vaccine that not only prevents infection but also limits the spread of COVID-19.

在一些實施態樣中,核酸疫苗可用於藉由以極快速的疫苗生產過程對新出現的病毒株起反應來預防大流行性SARS-CoV-2感染或COVID-19。In some implementations, nucleic acid vaccines can be used to prevent pandemic SARS-CoV-2 infection or COVID-19 by responding to emerging viral strains with an extremely rapid vaccine production process.

在一些實施態樣中,單次注射編碼SARS-CoV-2之一或多種蛋白質、多肽、肽、其片段或變異體的核酸疫苗可提供保護至少6個月、至少1年、至少2年、至少3年、至少4年、至少5年、至少6年、至少7年、至少8年、至少9年、至少10年、至少11年、至少12年、至少13年、至少15年、或超過15年。In some embodiments, a single injection of a nucleic acid vaccine encoding one or more proteins, polypeptides, peptides, fragments or variants thereof of SARS-CoV-2 can provide protection for at least 6 months, at least 1 year, at least 2 years, At least 3 years, at least 4 years, at least 5 years, at least 6 years, at least 7 years, at least 8 years, at least 9 years, at least 10 years, at least 11 years, at least 12 years, at least 13 years, at least 15 years, or more 15 years.

本文所述之核酸疫苗亦可用於維持或恢復個體或群體之抗原記憶,作為針對COVID-19或其他由SARS-CoV-2引起之疾病之疫苗接種計劃的一部分。The nucleic acid vaccines described herein may also be used to maintain or restore antigenic memory in individuals or populations as part of a vaccination program against COVID-19 or other diseases caused by SARS-CoV-2.

在一些實施態樣中,可產生核酸疫苗組成物,其包括編碼顯示出流行率增加全年感染率之SARS-CoV-2之一或多種蛋白質、多肽、肽、其片段或變異體的多核苷酸。SARS-CoV-2之蛋白序列已顯示隨時間推移而變化或突變,其中一些突變顯示出感染率增加。作為非限制性實例,可產生核酸疫苗組成物,其包括編碼顯示出流行率增加全年感染率之SARS-CoV-2之一或多種蛋白質、多肽、肽、其片段或變異體的多核苷酸,諸如但不限於刺突蛋白中之D614G突變。In some embodiments, nucleic acid vaccine compositions can be produced that include polynucleosides encoding one or more proteins, polypeptides, peptides, fragments, or variants thereof of SARS-CoV-2 that exhibit increased prevalence of year-round infection rates. acid. The protein sequence of SARS-CoV-2 has been shown to change or mutate over time, with some mutations showing increased infection rates. As a non-limiting example, nucleic acid vaccine compositions can be produced that include polynucleotides encoding one or more proteins, polypeptides, peptides, fragments or variants thereof of SARS-CoV-2 that exhibit increased prevalence of infection throughout the year. , such as but not limited to the D614G mutation in the spike protein.

在一些實施態樣中,核酸疫苗可用於在個體中誘導中和抗體。由本發明核酸疫苗誘導之中和抗體之中和活性可與本文所述之疫苗之所得有效性(例如免疫保護)相關。在一些態樣中,本發明核酸疫苗提供之免疫保護可大於恢復期個體中提供之免疫保護。本發明核酸疫苗誘導之中和活性可提高暴露於SARS-CoV-2或處於恢復期之個體的恢復率。與其他可用的mRNA疫苗,諸如BNT162b2及mRNA-1273相比,本發明核酸疫苗在所治療個體中誘導更高的中和抗體效價。在一些實施態樣中,核酸疫苗包括比其他COVID-19疫苗高至少10倍、9倍、8倍、7倍、6倍、5倍、或4倍的中和抗體效價。In some embodiments, nucleic acid vaccines can be used to induce neutralizing antibodies in individuals. The neutralizing activity of the neutralizing antibodies induced by the nucleic acid vaccines of the invention can be correlated with the resulting effectiveness (eg, immune protection) of the vaccines described herein. In some aspects, the immune protection provided by the nucleic acid vaccines of the present invention may be greater than the immune protection provided in convalescent individuals. The neutralizing activity induced by the nucleic acid vaccine of the present invention can improve the recovery rate of individuals exposed to SARS-CoV-2 or in the recovery phase. Compared to other available mRNA vaccines, such as BNT162b2 and mRNA-1273, the nucleic acid vaccines of the present invention induce higher neutralizing antibody titers in treated individuals. In some embodiments, the nucleic acid vaccine includes a neutralizing antibody titer that is at least 10 times, 9 times, 8 times, 7 times, 6 times, 5 times, or 4 times higher than other COVID-19 vaccines.

在一些實施態樣中,開發了疫苗接種方案或計劃,其不僅允許在當前年份進行疫苗接種,且亦允許跨年份、病毒株或其群組的記憶加強疫苗接種,以在群體中建立及維持記憶。以此方式,群體不太可能死於任何涉及舊病毒株復發的大流行或爆發。可利用先前疫苗組分病毒株之任何組合來產生或設計記憶加強疫苗。In some implementation aspects, vaccination protocols or plans are developed that not only allow for vaccination in the current year, but also allow for memory booster vaccination across years, strains, or groups thereof to establish and maintain within the population. memory. In this way, groups are less likely to succumb to any pandemic or outbreak involving the resurgence of old strains of the virus. Memory booster vaccines can be created or designed using any combination of previous vaccine component strains.

在一些實施態樣中,投予作為記憶加強疫苗之核酸疫苗,以在2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、35、40、45、50年、或超過50年之時段內加強記憶。In some implementations, the nucleic acid vaccine as a memory booster vaccine is administered at 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 , 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50 years, or more than 50 years to enhance memory.

在一些實施態樣中,投予作為記憶加強疫苗之核酸疫苗以加強交替歷史年份的記憶,包括相對於當前年份之過去疫苗組分病毒株的每隔一年。在一些實施態樣中,疫苗組分之選擇可來自每第2、第3、第4、第5、第6、第7、第8、第9、第10年、或更多年。In some implementations, the nucleic acid vaccine is administered as a memory booster vaccine to enhance memory of alternate historical years, including every other year of past vaccine component strains relative to the current year. In some embodiments, the selection of vaccine components may be from every 2nd, 3rd, 4th, 5th, 6th, 7th, 8th, 9th, 10th, or more years.

在一些實施態樣中,投予作為記憶加強疫苗之核酸疫苗以在十年期間加強記憶。In some implementations, a nucleic acid vaccine is administered as a memory booster vaccine to enhance memory over a ten-year period.

在一些實施態樣中,核酸加強疫苗可一次或定期用於群體以產生群體免疫,此意謂大於30%之群體受到保護。In some implementations, nucleic acid booster vaccines can be administered to a population once or regularly to generate herd immunity, which means that greater than 30% of the population is protected.

在一些實施態樣中,核酸加強疫苗可一次或定期用於群體以產生針對COVID-19之群體免疫,此意謂大於30%之群體受到保護。In some implementations, a nucleic acid booster vaccine can be administered to a population once or regularly to generate herd immunity against COVID-19, meaning that greater than 30% of the population is protected.

在一些實施態樣中,核酸疫苗用於針對COVID-19之風險群體,諸如具有包括但不限於以下之預先存在病狀的群體:癌症;慢性腎病;慢性阻塞性肺病(COPD);來自實體器官移植、血液或骨髓移植、免疫缺陷、HIV以及使用皮質類固醇或其他免疫弱化藥物的免疫功能不全狀態(免疫系統減弱);肥胖(身體質量指數(BMI)為30或更高);心臟病狀,諸如心衰竭、冠狀動脈疾病或心肌病;鐮狀細胞病;1型或2型糖尿病;哮喘(中度至重度);腦血管疾病;囊性纖維化;高血壓症或高血壓;神經病狀,諸如癡呆症、肝病、懷孕、肺纖維化、吸菸、及地中海貧血症。In some embodiments, nucleic acid vaccines are used to target risk groups for COVID-19, such as those with pre-existing conditions including, but not limited to, cancer; chronic kidney disease; chronic obstructive pulmonary disease (COPD); from solid organs Transplant, blood or bone marrow transplant, immunodeficiency, HIV, and immunocompromised states (weakened immune system) using corticosteroids or other immune-weakening drugs; obesity (body mass index (BMI) 30 or higher); heart disease symptoms, Such conditions as heart failure, coronary artery disease, or cardiomyopathy; sickle cell disease; type 1 or type 2 diabetes; asthma (moderate to severe); cerebrovascular disease; cystic fibrosis; hypertension or hypertension; neuropathy, Such as dementia, liver disease, pregnancy, pulmonary fibrosis, smoking, and thalassemia.

在一些實施態樣中,核酸疫苗用於保護處於暴露於SARS-CoV-2之風險下的醫護人員。In some implementations, nucleic acid vaccines are used to protect health care workers at risk of exposure to SARS-CoV-2.

作為非限制性實例,本揭露之核酸疫苗包含LNP調配之多核苷酸,其編碼具有D614G之全長S蛋白(SEQ ID NO:27) (稱為「PTX-B」)。提供了使用PTX-B疫苗在個體中誘導保護性免疫反應的方法。保護性免疫反應可保護個體免受病毒感染,諸如SAR-CoV-2原始病毒株及其變異體的感染。SARS-CoV-2變異體可為任何VOC、VOI及/或VOHC病毒株。作為非限制性實例,變異體為α變異體、β變異體或δ變異體。As a non-limiting example, the nucleic acid vaccine of the present disclosure includes an LNP-formulated polynucleotide encoding a full-length S protein (SEQ ID NO: 27) with D614G (referred to as "PTX-B"). Methods of inducing a protective immune response in an individual using a PTX-B vaccine are provided. A protective immune response protects an individual from viral infection, such as that of the original strain of SAR-CoV-2 and its variants. SARS-CoV-2 variants can be any VOC, VOI and/or VOHC strains. As non-limiting examples, the variants are alpha, beta or delta variants.

在一些實施態樣中,核酸疫苗PTX-B用於針對α變異體提供保護。In some embodiments, the nucleic acid vaccine PTX-B is used to provide protection against alpha variants.

在一些實施態樣中,核酸疫苗PTX-B用於針對β變異體提供保護。In some embodiments, the nucleic acid vaccine PTX-B is used to provide protection against beta variants.

在一些實施態樣中,核酸疫苗PTX-B用於針對δ變異體提供保護。In some embodiments, the nucleic acid vaccine PTX-B is used to provide protection against delta variants.

在一些實施態樣中,核酸疫苗PTX-B用於在個體中誘導中和抗體。核酸疫苗PTX-B誘導具有高中和效價之抗體。例如,所誘導抗體之中和效價為來自受感染個體或恢復期個體之血清之效價的至少100倍、90倍、80倍、70倍、60倍、50倍、40倍、30倍、25倍、20倍、15倍、10倍、或5倍。In some embodiments, the nucleic acid vaccine PTX-B is used to induce neutralizing antibodies in an individual. The nucleic acid vaccine PTX-B induces antibodies with high neutralizing titers. For example, the neutralizing titer of the induced antibody is at least 100 times, 90 times, 80 times, 70 times, 60 times, 50 times, 40 times, 30 times, the titer of serum from an infected individual or a convalescent individual. 25x, 20x, 15x, 10x, or 5x.

在一些實施態樣中,提供核酸疫苗PTX-B之給藥方案。PTX-B之劑量範圍介於每kg個體體重1 µg至500 µg、1 µg至1 mg、1 mg至10 mg、1 mg至100 mg、或10 mg至100 mg。在一些實例中,PTX-B之劑量可達成約10 µg、20 µg、25 µg、30 µg、35 µg、40 µg、45 µg、50 µg、60 µg、70 µg、80 µg、90 µg、或100 µg核酸疫苗之劑量水平。投予至少一個劑量之核酸疫苗PTX-B。在一些實施態樣中,投予至少一個加強劑量之PTX-B。可在個體接受PTX-B之第一劑量之後一個月、兩個月、三個月、四個月、六個月或一年或超過一年向個體投予加強劑量。在一些情況下,向個體投予超過一個,例如兩個、三個、四個、或超過四個加強劑量。In some embodiments, dosing regimens for the nucleic acid vaccine PTX-B are provided. Doses of PTX-B range from 1 µg to 500 µg, 1 µg to 1 mg, 1 mg to 10 mg, 1 mg to 100 mg, or 10 mg to 100 mg per kg of individual body weight. In some examples, the dose of PTX-B can be about 10 µg, 20 µg, 25 µg, 30 µg, 35 µg, 40 µg, 45 µg, 50 µg, 60 µg, 70 µg, 80 µg, 90 µg, or Dose level of 100 µg nucleic acid vaccine. Administer at least one dose of the nucleic acid vaccine PTX-B. In some embodiments, at least one booster dose of PTX-B is administered. A booster dose can be administered to the subject one month, two months, three months, four months, six months, or one year or more after the subject receives the first dose of PTX-B. In some cases, more than one, such as two, three, four, or more than four booster doses are administered to an individual.

在另一實施態樣中,本揭露之核酸疫苗包含LNP調配之多核苷酸,該多核苷酸編碼SARS-CoV-2變異體B.1.351 (南非變異體(SEQ ID NO:43)之全長S蛋白。 V. 套組及裝置 套組 In another embodiment, the nucleic acid vaccine of the present disclosure includes an LNP-formulated polynucleotide encoding the full-length S of SARS-CoV-2 variant B.1.351 (South African variant (SEQ ID NO: 43)). protein. V. Kits and Devices set

本揭露提供用於便利地及/或有效地進行本揭露之方法的多種套組。通常,套組將包含足以允許使用者對個體進行多個治療及/或進行多個實驗的組分量及/或數目。The present disclosure provides various sets of methods for carrying out the present disclosure conveniently and/or efficiently. Typically, a kit will contain an amount and/or number of components sufficient to allow the user to perform multiple treatments on an individual and/or conduct multiple experiments.

在一些實施態樣中,本揭露提供用於活體外或活體內調節基因表現之套組,其包含本揭露之核酸疫苗組成物或本揭露之核酸疫苗組成物、調節其他基因、siRNA、miRNA或其他寡核苷酸分子之核酸疫苗組成物之組合。In some embodiments, the disclosure provides a kit for modulating gene expression in vitro or in vivo, which includes a nucleic acid vaccine composition of the disclosure or a nucleic acid vaccine composition of the disclosure, modulating other genes, siRNA, miRNA, or Combinations of nucleic acid vaccine compositions with other oligonucleotide molecules.

套組可進一步包含包裝及說明書及/或遞送劑以形成調配物,例如用於向需要使用本文所述之核酸疫苗組成物治療之個體投予。遞送劑可包含生理鹽水、緩衝溶液、類脂質、樹枝狀聚合物或任何適合之遞送劑。The kit may further comprise packaging and instructions and/or delivery agents to form a formulation, eg, for administration to an individual in need of treatment with a nucleic acid vaccine composition described herein. Delivery agents may include physiological saline, buffered solutions, lipidoids, dendrimers, or any suitable delivery agent.

在一個非限制性實例中,緩衝溶液可包括氯化鈉、氯化鈣、磷酸鹽及/或EDTA。在另一非限制性實例中,緩衝溶液可包括但不限於生理鹽水、含2 mM鈣之生理食鹽水、5%蔗糖、含2 mM鈣之5%蔗糖、5%甘露糖醇、含2 mM鈣之5%甘露糖醇、乳酸林格氏液(Ringer's lactate)、氯化鈉、含2 mM鈣之氯化鈉及甘露糖(參見美國公開案第20120258046號;以全文引用的方式併入本文中)。在另一非限制性實例中,緩衝溶液可經沈澱或其可經凍乾。各組分之量可變化以實現一致、可再現更高濃度生理鹽水或單一緩衝液調配物。亦可改變該等組分以便增加核酸疫苗組成物在一段時間內及/或在多種條件下在緩衝溶液中之穩定性。 裝置 In one non-limiting example, the buffer solution may include sodium chloride, calcium chloride, phosphate, and/or EDTA. In another non-limiting example, the buffer solution may include, but is not limited to, normal saline, normal saline with 2 mM calcium, 5% sucrose, 5% sucrose with 2 mM calcium, 5% mannitol, 2 mM calcium Calcium 5% mannitol, Ringer's lactate, sodium chloride, sodium chloride with 2 mM calcium, and mannose (see U.S. Publication No. 20120258046; incorporated herein by reference in its entirety) middle). In another non-limiting example, the buffer solution can be precipitated or it can be lyophilized. The amounts of each component can be varied to achieve consistent, reproducible higher concentration saline or single buffer formulations. The components may also be altered to increase the stability of the nucleic acid vaccine composition in buffer solutions over time and/or under various conditions. device

本揭露提供可併入本揭露之核酸疫苗組成物之裝置。此等裝置可含有可用於立即遞送至有需要之個體,諸如人類患者之穩定調配物。The present disclosure provides devices that may incorporate the nucleic acid vaccine compositions of the present disclosure. Such devices may contain stable formulations for immediate delivery to individuals in need, such as human patients.

裝置之非限制性實例包括泵、導管、針、經皮貼片、加壓嗅覺遞送裝置、電穿孔裝置、離子導入療法裝置、多層微流體裝置。裝置可用於根據單次、多次或分次給藥方案遞送本揭露之核酸疫苗組成物。該等裝置可用於至生物組織、皮內、皮下或肌內遞送本揭露之核酸疫苗組成物。適用於遞送寡核苷酸之裝置之更多實例揭示於國際公開案WO 2013/090648中,將其內容以其全文引用方式併入本文中。 VI. 定義 Non-limiting examples of devices include pumps, catheters, needles, transdermal patches, pressurized olfactory delivery devices, electroporation devices, iontophoresis devices, multilayer microfluidic devices. The device can be used to deliver the nucleic acid vaccine compositions of the present disclosure according to a single, multiple or divided dosing regimen. Such devices can be used to deliver the nucleic acid vaccine compositions of the present disclosure to biological tissue, intradermally, subcutaneously or intramuscularly. Further examples of devices suitable for delivering oligonucleotides are disclosed in International Publication WO 2013/090648, the contents of which are incorporated herein by reference in their entirety. VI. Definition

在本說明書中各個位置處,本揭露之化合物的取代基以群組或範圍形式揭示。特別要表明的是,本揭露包括該等群組及範圍之成員的每一個單獨的子組合。At various locations throughout this specification, substituents of the compounds of the present disclosure are disclosed in groups or ranges. In particular, this disclosure includes each individual subgroup of members of such groups and ranges.

約:如本文所用,術語「約」意謂所述值之+/-10%。Approximately: As used herein, the term "approximately" means +/-10% of the stated value.

以組合形式投予:如本文所用,術語「以組合形式投予」或「組合投予」意謂同時或在一定時間間隔內向個體投予兩種或更多種藥劑,使得每種藥劑對患者之作用可能發生重疊。在一些實施態樣中,各藥劑彼此間隔約60、30、15、10、5、或1分鐘之內投予。在一些實施態樣中,藥劑之投藥以在一起足夠緊密的程度間隔開以使得達成組合(例如協同)作用。Administering in Combination: As used herein, the term "administering in combination" or "administering in combination" means administering two or more agents to an individual simultaneously or within a time interval such that each agent is effective for the patient Their roles may overlap. In some embodiments, each agent is administered within about 60, 30, 15, 10, 5, or 1 minute of each other. In some embodiments, the agents are administered sufficiently closely spaced together to achieve a combined (eg, synergistic) effect.

佐劑:如本文所用,術語「佐劑」意謂增強個體對抗原之免疫反應的物質。本文所述之核酸疫苗可視情況包含一或多種佐劑。Adjuvant: As used herein, the term "adjuvant" means a substance that enhances an individual's immune response to an antigen. The nucleic acid vaccines described herein optionally include one or more adjuvants.

動物:如本文所使用之術語「動物」係指動物界之任何成員。在一些實施態樣中,「動物」係指處於任何發育階段之人類。在一些實施態樣中,「動物」係指處於任何發育階段之非人類動物。在某些實施態樣中,非人類動物為哺乳動物(例如嚙齒動物、小鼠、大鼠、兔、猴、狗、貓、羊、牛、靈長類動物或豬)。在一些實施態樣中,動物包括但不限於哺乳動物、鳥類、爬行動物、兩棲動物、魚類、及蠕蟲。在一些實施態樣中,動物可為基因轉殖動物、經基因工程改造之動物或純系。Animal: As used herein, the term "animal" refers to any member of the animal kingdom. In some implementations, "animal" refers to a human being at any stage of development. In some implementations, "animal" refers to a non-human animal at any stage of development. In certain embodiments, the non-human animal is a mammal (eg, rodent, mouse, rat, rabbit, monkey, dog, cat, sheep, cow, primate, or pig). In some embodiments, animals include, but are not limited to, mammals, birds, reptiles, amphibians, fish, and worms. In some embodiments, the animal may be a transgenic animal, a genetically engineered animal, or a purebred animal.

抗原:如本文所定義,術語「抗原」係指組成物,例如物質或試劑,其在生物體中引起免疫反應,例如引起生物體的免疫反應以產生針對該物質或試劑的抗體,特別是在生物體中引起適應性免疫反應。抗原可為任何免疫原性物質,尤其包括蛋白質、多肽、多醣、核酸、脂質、及其類似物。例示性抗原衍生自感染物。此類試劑可包括感染物之部分或次單元,例如感染物,例如細菌、病毒及其他微生物之外殼;外殼成分,例如外殼蛋白或多肽;表面成分,例如表面蛋白質或多肽;莢膜成分;細胞壁成分;鞭毛;菌毛;及/或毒素或類毒素)。某些抗原,例如脂質及/或核酸為抗原性的,較佳在與蛋白質及/或多醣組合時。Antigen: As defined herein, the term "antigen" refers to a composition, such as a substance or agent, that causes an immune response in an organism, such as an immune response in an organism to produce antibodies against the substance or agent, particularly in Causes adaptive immune responses in organisms. An antigen can be any immunogenic substance, including, inter alia, proteins, polypeptides, polysaccharides, nucleic acids, lipids, and the like. Exemplary antigens are derived from infectious agents. Such agents may include parts or subunits of the infectious agent, such as the coat of the infectious agent, such as bacteria, viruses, and other microorganisms; coat components, such as coat proteins or polypeptides; surface components, such as surface proteins or polypeptides; capsular components; cell walls. components; flagella; pili; and/or toxins or toxoids). Certain antigens, such as lipids and/or nucleic acids, are antigenic, preferably when combined with proteins and/or polysaccharides.

大致:如本文所用,如應用於所關注之一或多個值之術語「大致」或「約」係指類似於所陳述參考值之值。在某些實施態樣中,除非另外說明或另外自上下文顯而易見,否則術語「大致」或「約」係指在任一方向上(大於或小於)處於所陳述參考值之25%、20%、19%、18%、17%、16%、15%、14%、13%、12%、11%、10%、9%、8%、7%、6%、5%、4%、3%、2%、1%、或更小百分比之內之一系列值(但該等數值將超出可能值之100%的情況除外)。Approximately: As used herein, the term "approximately" or "approximately" as applied to the value or values in question means a value similar to the stated reference value. In certain embodiments, unless stated otherwise or otherwise apparent from context, the term "approximately" or "approximately" means in either direction (greater or less) 25%, 20%, 19% of the stated reference value , 18%, 17%, 16%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2 %, 1%, or a range of values within a smaller percentage (except where such values would exceed 100% of possible values).

與……締合:如本文所用,當關於兩個或更多個部分使用時,術語「與……締合」、「結合」、「連接」、「附接」及「繫留」意謂該等部分直接或經由一或多個充當連接劑之額外部分而在物理上彼此締合或連接以形成足夠穩定之結構,使得該等部分在使用該結構之條件(例如生理學條件)下保持在物理上締合。「締合」不必嚴格經由直接共價化學鍵結進行。其亦可表示離子鍵結或氫鍵結或基於雜化之連接性足夠穩定以使得「締合的」實體保持實體締合。Associated with: As used herein, the terms "associated with", "bonded", "connected", "attached" and "tethered" when used with respect to two or more parts mean The moieties are physically associated or linked to each other, either directly or via one or more additional moieties that act as linkers, to form a structure that is sufficiently stable such that the moieties remain under the conditions in which the structure is used (e.g., physiological conditions) Physically associated. "Association" need not be strictly through direct covalent chemical bonding. It may also mean that ionic or hydrogen bonding or hybridization-based connectivity is sufficiently stable such that the "associated" entities remain physically associated.

雙功能性:如本文所用,術語「雙功能性」係指任何能夠具有或維持至少兩種功能的物質、分子或部分。該等功能可實現相同結果或不同結果。產生功能之結構可相同或不同。Bifunctionality: As used herein, the term "bifunctional" refers to any substance, molecule or moiety capable of having or maintaining at least two functions. These features may achieve the same results or different results. The structures producing the functions may be the same or different.

生物相容性:如本文所用,術語「生物相容性」意謂與活細胞、組織、器官或系統相容,幾乎不引起損傷、毒性或被免疫系統排斥的風險。Biocompatibility: As used herein, the term "biocompatibility" means compatible with living cells, tissues, organs or systems without causing virtually any risk of damage, toxicity or rejection by the immune system.

生物可降解:如本文所用,術語「生物可降解」意謂能夠藉由活物之作用分解成無害產物。Biodegradable: As used herein, the term "biodegradable" means capable of breaking down into harmless products by the action of living organisms.

生物活性:如本文所用,片語「生物活性」係指任何在生物系統及/或生物體中具有活性之物質的特徵。例如,當向生物體投予時對彼生物體具有生物學作用之物質視為具有生物學活性。在特定實施態樣中,若甚至多核苷酸之一部分亦具有生物活性或模擬被視為生物相關的活性,則可認為本文所述之多核苷酸具有生物活性。Biological Activity: As used herein, the phrase "biological activity" refers to any characteristic of a substance that is active in biological systems and/or organisms. For example, a substance is considered to be biologically active if it has a biological effect on an organism when administered to that organism. In certain embodiments, a polynucleotide described herein is considered biologically active if even a portion of the polynucleotide is biologically active or mimics an activity considered biologically relevant.

嵌合體:如本文所用,「嵌合體」為具有兩個或更多個不協調或異質部分或區域的實體。Chimera: As used herein, a "chimera" is an entity having two or more incongruous or heterogeneous parts or regions.

化合物:如本文所用,術語「化合物」意欲包括所描繪之結構的所有立體異構體、幾何異構體、互變異構體及同位素。Compound: As used herein, the term "compound" is intended to include all stereoisomers, geometric isomers, tautomers and isotopes of the depicted structure.

本文所述之化合物可不對稱(例如具有一或多個立體中心)。除非另外指明,否則意指所有立體異構體,諸如對映異構體及非對映異構體。含有經不對稱取代之碳原子的本揭露之化合物可以光學活性或外消旋形式分離。此項技術中已知如何自光學活性起始物質製備光學活性形式之方法,諸如藉由解析外消旋混合物或立體選擇性合成。本文中所述之化合物中亦可存在烯烴、C=N雙鍵及其類似物之許多幾何異構體,且所有此類穩定異構體均涵蓋於本揭露中。描述本揭露之化合物的順式及反式幾何異構體,且可以異構體混合物或以分開之異構形式對其進行分離。The compounds described herein may be asymmetric (eg, have one or more stereocenters). Unless otherwise indicated, all stereoisomers, such as enantiomers and diastereomers, are intended. Compounds of the present disclosure containing asymmetrically substituted carbon atoms can be isolated in optically active or racemic forms. Methods are known in the art for preparing optically active forms from optically active starting materials, such as by resolution of racemic mixtures or stereoselective synthesis. Many geometric isomers of alkenes, C=N double bonds, and the like may also exist in the compounds described herein, and all such stable isomers are encompassed by this disclosure. Cis and trans geometric isomers of the compounds of the present disclosure are described and may be isolated as mixtures of isomers or in separate isomeric forms.

本揭露之化合物亦包括互變異構形式。互變異構形式由單鍵與相鄰雙鍵之調換及質子的伴隨遷移而產生。互變異構形式包括處於具有相同經驗式及總電荷之異構質子化狀態的質子轉移互變異構體。Compounds of the present disclosure also include tautomeric forms. Tautomeric forms result from the exchange of single bonds with adjacent double bonds and the concomitant migration of protons. Tautomeric forms include proton transfer tautomers in isomeric protonation states with the same empirical formula and overall charge.

本揭露之化合物亦包括存在於中間物或最終化合物中之原子的所有同位素。「同位素」係指具有相同原子數但因為原子核中之中子數不同而具有不同質量數的原子。例如,氫之同位素包括氚及氘。Compounds of the present disclosure also include all isotopes of atoms present in intermediates or final compounds. "Isotopes" are atoms with the same atomic number but different mass numbers due to different numbers of neutrons in the nucleus. For example, isotopes of hydrogen include tritium and deuterium.

本揭露之化合物及鹽可藉由常規方法與溶劑或水分子組合製備以形成溶劑合物及水合物。The compounds and salts of the present disclosure can be prepared by conventional methods in combination with solvents or water molecules to form solvates and hydrates.

保守:如本文所用,術語「保守(conserved)」多核苷酸序列或多肽序列之核苷酸或胺基酸殘基分別為在所比較之兩個或更多個序列之相同位置未發生改變的核苷酸或胺基酸殘基。相對保守之核苷酸或胺基酸為與序列中其他地方出現之核苷酸或胺基酸相比而言相關性較高之序列中之保守性核苷酸或胺基酸。Conserved: As used herein, the term "conserved" means that the nucleotide or amino acid residues of a polynucleotide sequence or a polypeptide sequence, respectively, are unchanged at the same position in two or more sequences being compared. Nucleotide or amino acid residues. Relatively conserved nucleotides or amino acids are conserved nucleotides or amino acids in a sequence that are more closely related to nucleotides or amino acids occurring elsewhere in the sequence.

在一些實施態樣中,若兩個或更多個序列彼此100%相同,則將其稱為「完全保守」。在一些實施態樣中,若兩個或更多個序列彼此至少70%相同、至少80%相同、至少90%相同、或至少95%相同,則將其稱為「高度保守」。在一些實施態樣中,若兩個或更多個序列彼此約70%相同、約80%相同、約90%相同、約95%、約98%、或約99%相同,則將其稱為「高度保守」。在一些實施態樣中,若兩個或更多個序列彼此至少30%相同、至少40%相同、至少50%相同、至少60%相同、至少70%相同、至少80%相同、至少90%相同、或至少95%相同,則將其稱為「保守」。在一些實施態樣中,若兩個或更多個序列彼此約30%相同、約40%相同、約50%相同、約60%相同、約70%相同、約80%相同、約90%相同、約95%相同、約98%相同、或約99%相同,則將其稱為「保守」。序列之保守可應用於多核苷酸或多肽之整個長度或可應用於其一部分、區域或特徵。In some embodiments, two or more sequences are said to be "completely conserved" if they are 100% identical to each other. In some embodiments, two or more sequences are said to be "highly conserved" if they are at least 70% identical, at least 80% identical, at least 90% identical, or at least 95% identical to each other. In some embodiments, two or more sequences are said to be about 70% identical, about 80% identical, about 90% identical, about 95%, about 98%, or about 99% identical to each other. "Highly conservative". In some embodiments, if two or more sequences are at least 30% identical to each other, at least 40% identical, at least 50% identical, at least 60% identical, at least 70% identical, at least 80% identical, at least 90% identical , or at least 95% identical, it is called "conservative". In some embodiments, if two or more sequences are about 30% identical, about 40% identical, about 50% identical, about 60% identical, about 70% identical, about 80% identical, about 90% identical to each other, , about 95% identical, about 98% identical, or about 99% identical, it is called "conservative". Sequence conservation may apply to the entire length of a polynucleotide or polypeptide or may apply to a portion, region, or feature thereof.

控制釋放:如本文所用,術語「控制釋放」係指符合特定釋放模式以實現治療作用之醫藥組成物或化合物釋放特徵。Controlled release: As used herein, the term "controlled release" refers to the release characteristics of a pharmaceutical composition or compound that conform to a specific release pattern to achieve a therapeutic effect.

細胞抑制:如本文所用,「細胞抑制」係指抑制、減少、抑止細胞(例如哺乳動物細胞(例如人類細胞))、細菌、病毒、真菌、原生動物、寄生蟲、朊病毒、或其組合之生長、分裂或增值。Cytostatic: As used herein, "cytostatic" means inhibiting, reducing, inhibiting cells (e.g., mammalian cells (e.g., human cells)), bacteria, viruses, fungi, protozoa, parasites, prions, or combinations thereof To grow, divide or add value.

細胞毒性:如本文所用,「細胞毒性」係指將細胞(例如哺乳動物細胞(例如人類細胞))、細菌、病毒、真菌、原生動物、寄生蟲、朊病毒、或其組合殺死或對其造成有害、有毒或致命的影響。Cytotoxicity: As used herein, "cytotoxicity" means the killing or destruction of cells (e.g., mammalian cells (e.g., human cells)), bacteria, viruses, fungi, protozoa, parasites, prions, or combinations thereof Cause harmful, toxic or fatal effects.

遞送:如本文所用,「遞送」係指遞送化合物、物質、實體、部分、負荷或有效負載的行為或方式。Delivery: As used herein, "delivery" means the act or manner of delivering a compound, substance, entity, part, load or payload.

遞送劑:如本文所用,「遞送劑」係指任何至少部分地有助於將多核苷酸活體內遞送至所靶向細胞的物質。Delivery Agent: As used herein, "delivery agent" refers to any substance that facilitates, at least in part, the delivery of a polynucleotide to a targeted cell in vivo.

去穩定化:如本文所用,術語「去穩定」、「去穩定化」或「去穩定化區域」意謂使某個區域或分子之穩定性比相同區域或分子之起始、野生型或原生形式小。Destabilization: As used herein, the term "destabilization," "destabilization," or "destabilized region" means rendering a region or molecule less stable than the starting, wild-type, or native version of the same region or molecule. Small form.

可偵測標記:如本文所用,「可偵測標記」係指一或多種與另一實體附接、併入另一實體中或與另一實體締合的標記物、信號或部分,該另一實體易於藉由此項技術中已知的方法偵測,該等方法包括放射線照相術、螢光、化學發光、酶活性、吸光度及其類似方法。可偵測標記包括放射性同位素、螢光團、發色團、酶、染料、金屬離子、配位體(諸如生物素、抗生物素蛋白、鏈黴親和素及半抗原)、量子點及其類似物。可偵測標記可位於本文中所揭示之肽或蛋白質中之任何位置。其可在胺基酸、肽或蛋白質內,或位於N端或C端。Detectable Marker: As used herein, "detectable marker" means one or more markers, signals, or moieties attached to, incorporated into, or associated with another entity that is An entity is readily detectable by methods known in the art, including radiography, fluorescence, chemiluminescence, enzymatic activity, absorbance and the like. Detectable labels include radioisotopes, fluorophores, chromophores, enzymes, dyes, metal ions, ligands (such as biotin, avidin, streptavidin, and haptens), quantum dots, and the like things. The detectable label can be located anywhere in the peptides or proteins disclosed herein. It can be within an amino acid, peptide or protein, or located at the N- or C-terminus.

分解:如本文所用,術語「分解」意謂分裂成較小的碎片或組分。在提及多肽或蛋白質時,消化引起產生肽。Decompose: As used herein, the term "decompose" means breaking into smaller fragments or components. When referring to polypeptides or proteins, digestion results in the production of the peptide.

給藥方案:如本文所用,「給藥方案」為投藥時程或由醫師確定之治療、預防或姑息劑照護方案。Dosage Regimen: As used herein, a "dosage regimen" is a schedule of dosing or a regimen of therapeutic, preventive, or palliative care determined by a physician.

囊封:如本文所用,術語「囊封」意謂封閉、包圍或包覆。Encapsulate: As used herein, the term "encapsulate" means to enclose, surround or envelop.

經編碼之蛋白質切割信號:如本文所用,「經編碼之蛋白質切割信號」係指編碼蛋白質切割信號之核苷酸序列。Encoded protein cleavage signal: As used herein, "encoded protein cleavage signal" refers to a nucleotide sequence encoding a protein cleavage signal.

工程化:如本文所用,當核酸疫苗之實施態樣經設計以具有與起始點、野生型或天然分子不同的特徵或特性(無論結構上抑或化學上)時,該等實施態樣經「工程化」。Engineered: As used herein, when embodiments of a nucleic acid vaccine are designed to have characteristics or properties (whether structurally or chemically) that are different from the starting point, wild-type, or native molecule, such embodiments are " Engineering".

有效量:如本文所用,術語藥劑之「有效量」為足以實現有益的或所需的結果,例如臨床結果的量,且因此「有效量」視其應用情形而定。例如,在投予治療癌症之藥劑的情形下,藥劑之有效量為例如相比於在未投予藥劑之情況下所獲得的反應,足以實現對癌症進行如本文所定義之治療的量。Effective Amount: As used herein, the term "effective amount" of a pharmaceutical agent is an amount sufficient to achieve a beneficial or desired result, such as a clinical outcome, and thus "effective amount" depends on the situation in which it is used. For example, in the case of administration of an agent to treat cancer, an effective amount of the agent is an amount sufficient to effect treatment of the cancer as defined herein, eg compared to the response obtained without administration of the agent.

胞外體:如本文所用,「胞外體」為由哺乳動物細胞分泌之囊泡或參與RNA降解之複合物。Exosomes: As used herein, "exosomes" are vesicles secreted by mammalian cells or complexes involved in RNA degradation.

表現:如本文所用,核酸序列之「表現」係指以下事件之一或多者:(1)自DNA序列產生RNA模板(例如藉由轉錄);(2)處理RNA轉錄本(例如藉由剪接、編輯、5'端帽形成及/或3'端處理);(3)將RNA轉譯成多肽或蛋白質;及(4)多肽或蛋白質之轉譯後修飾。Representation: As used herein, "expression" of a nucleic acid sequence refers to one or more of the following events: (1) generation of an RNA template from a DNA sequence (e.g., by transcription); (2) processing of the RNA transcript (e.g., by splicing) , editing, 5' end cap formation and/or 3' end processing); (3) translation of RNA into polypeptides or proteins; and (4) post-translational modification of polypeptides or proteins.

特徵(feature):如本文所用,「特徵」係指特徵(characteristic)、特性或獨特要素。Feature: As used herein, "feature" means a characteristic, characteristic, or unique element.

調配物:如本文所用,「調配物」包括核酸疫苗之至少一種多核苷酸及遞送劑。Formulation: As used herein, "formulation" includes at least one polynucleotide of a nucleic acid vaccine and a delivery agent.

片段:如本文所用,「片段」係指一部分。例如,蛋白質之片段可包含藉由使自經培養細胞分離之全長蛋白質分解而獲得的多肽。Fragment: As used herein, "fragment" means a portion. For example, fragments of a protein may include polypeptides obtained by cleaving full-length proteins isolated from cultured cells.

功能性:如本文所用,「功能性」生物分子為展現出其特性及/或活性之生物分子之形式,其特徵在於該特性及/或活性。Functional: As used herein, a "functional" biomolecule is a form of biomolecule that exhibits properties and/or activities that are characterized by that property and/or activity.

同源性:如本文所用,術語「同源性(homology)」係指聚合分子之間,例如核酸分子(例如DNA分子及/或RNA分子)之間及/或多肽分子之間的整體相關性。在一些實施態樣中,若聚合物分子之序列至少25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、或99%相同或相似,則將其視為彼此「同源」。術語「同源(homologous)」必然係指在至少兩個序列(多核苷酸或多肽序列)之間的比較。若對於具有至少約20個胺基酸的至少一個延伸部,兩個多核苷酸序列編碼之多肽為至少約50%、60%、70%、80%、90%、95%、或甚至99%一致,則認為其同源。在一些實施態樣中,同源聚核酸苷序列之特徵在於能夠編碼具有至少4至5個特別指定之胺基酸的序列段。對於長度小於60個核苷酸之多核苷酸序列,同源性由編碼具有至少4至5個特別指定之胺基酸的延伸部的能力來確定。若對於具有至少約20個胺基酸的至少一個延伸部,蛋白質為至少約50%、60%、70%、80%、或90%一致,則認為兩個蛋白序列同源。Homology: As used herein, the term "homology" refers to the overall relatedness between polymeric molecules, such as between nucleic acid molecules (eg, DNA molecules and/or RNA molecules) and/or between polypeptide molecules. . In some embodiments, if the sequence of the polymer molecules is at least 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, If they are 85%, 90%, 95%, or 99% identical or similar, they are considered to be "homogeneous" to each other. The term "homologous" necessarily refers to a comparison between at least two sequences (polynucleotide or polypeptide sequences). If for at least one extension having at least about 20 amino acids, the polypeptide encoded by the two polynucleotide sequences is at least about 50%, 60%, 70%, 80%, 90%, 95%, or even 99% If they are consistent, they are considered to have the same origin. In some embodiments, homologous polynucleoside sequences are characterized by encoding a sequence segment having at least 4 to 5 specifically designated amino acids. For polynucleotide sequences less than 60 nucleotides in length, homology is determined by the ability to encode a stretch of at least 4 to 5 specifically designated amino acids. Two protein sequences are considered homologous if the proteins are at least about 50%, 60%, 70%, 80%, or 90% identical for at least one stretch of at least about 20 amino acids.

一致性:如本文所用,術語「一致性」係指聚合分子之間,例如多核苷酸分子(例如DNA分子及/或RNA分子)之間及/或多肽分子之間的總體相關性。Identity: As used herein, the term "identity" refers to the overall relatedness between polymeric molecules, such as between polynucleotide molecules (eg, DNA molecules and/or RNA molecules) and/or between polypeptide molecules.

例如,兩個多核苷酸序列之一致性百分比的計算可藉由出於最佳比較目的而比對兩個序列來進行(例如可將間隙引入第一及第二核酸序列中之一者或兩者中以便最佳比對且出於比較目的可忽略非一致序列)。在某些實施態樣中,出於比較目的比對之序列的長度為參考序列之長度的至少30%、至少40%、至少50%、至少60%、至少70%、至少80%、至少90%、至少95%、或100%。接著比較在對應核苷酸位置處之核苷酸。當第一序列中之位置被與第二序列中之對應位置相同的核苷酸佔據時,則該等分子在該位置相同。在考慮到為求兩個序列之最佳比對而需要引入之間隙數目及各間隙長度的情況下,該兩個序列之間的一致性百分比與該等序列共有的一致位置之數目有關。可使用數學算法達成序列比較及測定兩個序列之間的一致性百分比。例如,兩個核苷酸序列之間的一致性百分比可使用一些方法來確定,諸如以下各者中所述之方法:Computational Molecular Biology, Lesk, A. M編, Oxford University Press, N.Y., 1988;Biocomputing: Informatics and Genome Projects, Smith, D. W.編, Academic Press, N.Y., 1993;Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987;Computer Analysis of Sequence Data, 第I部分, Griffin, A. M及Griffin, H. G.編, Humana Press, N.J., 1994;及Sequence Analysis Primer, Gribskov, M.及Devereux, J.編, M Stockton Press, N.Y, 1991,該等文獻中之每一者均以全文引用方式併入本文中。例如,兩個核苷酸序列之間的一致性百分比可使用Meyers及Miller (CABIOS, 1989, 4:11-17)之演算法來確定,該演算法已併入使用PAM 120權重殘基表、空隙長度罰分12及空隙罰分4之ALIGN程式(2.0版)中。或者,可使用GCG套裝軟體中之GAP程式,使用NWSgapdna.CMP矩陣確定兩個核苷酸序列之間的一致性百分比。常用於確定序列之間的一致性百分比的方法包括但不限於Carillo, H.及Lipman, D., SIAM J Applied Math., 48:1073 (1988)中所揭示之方法,該文獻以引用方式併入本文中。用於測定一致性之技術編碼於公開可獲得之電腦程式中。用於測定兩個序列之間的同源性之例示性電腦軟體包括但不限於GCG套裝程式(Devereux, J.等人,Nucleic Acids Research, 12(1), 387 (1984)), BLASTP, BLASTN, and FASTA (Altschul, S. F.等人,J. Molec. Biol., 215, 403 (1990))。For example, calculation of the percent identity of two polynucleotide sequences can be performed by aligning the two sequences for optimal comparison purposes (e.g., gaps can be introduced into one or both of the first and second nucleic acid sequences). for optimal alignment and non-identical sequences can be ignored for comparison purposes). In certain embodiments, the length of the sequences compared for comparison purposes is at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90% of the length of the reference sequence. %, at least 95%, or 100%. The nucleotides at corresponding nucleotide positions are then compared. The molecules are identical at a position in the first sequence when it is occupied by the same nucleotide as the corresponding position in the second sequence. The percent identity between two sequences is related to the number of identical positions shared by the sequences, taking into account the number of gaps and the length of each gap that need to be introduced to obtain an optimal alignment of the two sequences. Mathematical algorithms can be used to achieve sequence comparison and determine the percent identity between two sequences. For example, the percent identity between two nucleotide sequences can be determined using methods such as those described in: Computational Molecular Biology, Lesk, A. M, ed., Oxford University Press, N.Y., 1988; Biocomputing: Informatics and Genome Projects, edited by Smith, D. W., Academic Press, N.Y., 1993; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; Computer Analysis of Sequence Data, Part I, Griffin, A. M and Griffin, H. G., eds., Humana Press, N.J., 1994; and Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M Stockton Press, N.Y., 1991, each of which is cited in its entirety. method is incorporated into this article. For example, the percent identity between two nucleotide sequences can be determined using the algorithm of Meyers and Miller (CABIOS, 1989, 4:11-17), which has been incorporated using the PAM 120 weighted residue table, In the ALIGN program (version 2.0) with a gap length penalty of 12 and a gap penalty of 4. Alternatively, the GAP program in the GCG suite of software can be used to determine the percent identity between two nucleotide sequences using the NWSgapdna.CMP matrix. Methods commonly used to determine percent identity between sequences include, but are not limited to, those disclosed in Carillo, H. and Lipman, D., SIAM J Applied Math., 48:1073 (1988), which is incorporated by reference. into this article. The techniques used to determine consistency are encoded in publicly available computer programs. Exemplary computer software for determining homology between two sequences includes, but is not limited to, the GCG suite (Devereux, J. et al., Nucleic Acids Research, 12(1), 387 (1984)), BLASTP, BLASTN , and FASTA (Altschul, S. F. et al., J. Molec. Biol., 215, 403 (1990)).

感染物:如本文所用,片語「感染物」意謂能夠在生物體,例如在動物中產生感染的試劑。感染物可指可由於生物技術工程化的任何微生物、病毒、感染性物質或生物製品,或任何此類微生物、病毒、感染性物質或生物製品的任何天然存在或生物工程化成分,可導致人類、動物、植物或另一活有機體之新發及觸染性疾病、死亡或其他生物故障。Infectious agent: As used herein, the phrase "infectious agent" means an agent capable of producing an infection in an organism, such as an animal. Infectious agent may refer to any microorganism, virus, infectious agent or biological product that may be biotechnologically engineered, or any naturally occurring or bioengineered component of any such microorganism, virus, infectious agent or biological product that may cause disease in humans , new and infectious diseases, death or other biological malfunctions of animals, plants or another living organism.

活體外:如本文所用,術語「活體外」係指發生在人工環境中(例如試管或反應容器中、細胞培養物中、皮氏培養皿(Petri dish)中等)而非發生在生物體(例如動物、植物或微生物)內的事件。In vitro: As used herein, the term "ex vivo" refers to an occurrence in an artificial environment (e.g., in a test tube or reaction vessel, in a cell culture, a Petri dish, etc.) rather than in an organism (e.g., animals, plants or microorganisms).

活體內:如本文所用,術語「活體內」係指發生在生物體(例如動物、植物或微生物或其細胞或組織)中之事件。In vivo: As used herein, the term "in vivo" refers to events that occur in an organism, such as an animal, plant, or microorganism, or its cells or tissues.

經分離:如本文所用,術語「經分離」係指物質或實體已與至少一些與其締合之組分(無論在自然界中或在實驗環境中)分離。經分離之物質關於其曾締合之物質的純度水平可不同。經分離之物質及/或實體可與其最初締合之其他組分的至少約10%、約20%、約30%、約40%、約50%、約60%、約70%、約80%、約90%、或更大分離。在一些實施態樣中,經分離之試劑為約80%、約85%、約90%、約91%、約92%、約93%、約94%、約95%、約96%、約97%、約98%、約99%、或超過約99%純。如本文所用,物質在其實質上不含其他組分時為「純的」。實質上經分離:「實質上經分離」意謂化合物自形成或偵測到該化合物之環境基本上分離。部分分離可包括例如富含本揭示案之化合物的組成物。實質上分離可包括含有至少約50重量%、至少約60重量%、至少約70重量%、至少約80重量%、至少約90重量%、至少約95重量%、至少約97重量%、或至少約99重量%之本揭露之化合物或其鹽之組成物。用於分離化合物及其鹽之方法為此項技術中之工藝路線。Isolated: As used herein, the term "isolated" means that a substance or entity has been separated from at least some of the components with which it is associated, whether in nature or in an experimental setting. Isolated substances can have different levels of purity relative to the substances with which they were associated. At least about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80% of other components with which the isolated substance and/or entity can be originally associated , approximately 90%, or greater separation. In some embodiments, the separated reagents are about 80%, about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97 %, about 98%, about 99%, or more than about 99% pure. As used herein, a substance is "pure" when it is substantially free of other components. Substantially Isolated: "Substantially isolated" means that a compound is substantially separated from the environment in which it was formed or detected. Partial isolation may include, for example, compositions enriched in compounds disclosed herein. Substantially separating may include containing at least about 50% by weight, at least about 60% by weight, at least about 70% by weight, at least about 80% by weight, at least about 90% by weight, at least about 95% by weight, at least about 97% by weight, or at least A composition of about 99% by weight of a compound of the present disclosure or a salt thereof. Methods for isolating compounds and their salts are known as processes in the art.

連接子:如本文所用,「連接子」係指一組原子,例如約10至1,000個原子,且可包含諸如但不限於碳、胺基、烷基胺基、氧、硫、亞碸、磺醯基、羰基、及亞胺之原子或基團。連接子可在第一端附接至核鹼基或糖部分上之經修飾之核苷或核苷酸,且在第二端附接至有效負載,例如可偵測或治療劑。連接子可具有足夠的長度,以不干擾併入至核酸序列中。Linker: As used herein, "linker" refers to a group of atoms, for example, from about 10 to 1,000 atoms, and may include, but is not limited to, carbon, amine, alkylamino, oxygen, sulfur, trisine, sulfonate Atoms or groups of acyl groups, carbonyl groups, and imines. The linker can be attached at a first end to a modified nucleoside or nucleotide on a nucleobase or sugar moiety and at a second end to a payload, such as a detectable or therapeutic agent. The linker can be of sufficient length so as not to interfere with incorporation into the nucleic acid sequence.

經修飾:如本文所用,「經修飾」係指改變本文所述之分子的狀態或結構。可以多種方式修飾分子,包括在化學上、結構上及功能上修飾分子。Modified: As used herein, "modified" means changing the state or structure of a molecule described herein. Molecules can be modified in a variety of ways, including chemically, structurally, and functionally.

黏液:如本文所用,「黏液」係指黏性且包含黏液素醣蛋白之天然物質。Mucus: As used herein, "mucus" refers to a naturally occurring substance that is viscous and contains mucin glycoproteins.

天然存在:如本文所用,「天然存在」意謂在無人工輔助之情況下存在於自然界中。Naturally occurring: As used herein, "naturally occurring" means existing in nature without artificial assistance.

中和抗體:如本文所用,「中和抗體」係指與其抗原結合且藉由中和或消除抗原或感染物具有的任何生物活性來保護細胞免受抗原或感染物侵害的抗體。Neutralizing Antibody: As used herein, "neutralizing antibody" refers to an antibody that binds to its antigen and protects cells from the antigen or infectious agent by neutralizing or eliminating any biological activity possessed by the antigen or infectious agent.

非人類脊椎動物:如本文所用,「非人類脊椎動物」包括除了智人(Homo sapiens)之外的所有脊椎動物,包括野生及家養物種。非人類脊椎動物之實例包括但不限於哺乳動物,諸如羊駝、爪哇牛(banteng)、野牛、駱駝、貓、牛、鹿、狗、驢、大額牛(gayal)、山羊、豚鼠、馬、駱馬、騾、豬、兔、馴鹿、綿羊、水牛、及犛牛(yak)。Non-human vertebrates: As used herein, "non-human vertebrates" includes all vertebrates except Homo sapiens, including wild and domestic species. Examples of non-human vertebrates include, but are not limited to, mammals such as alpacas, banteng, bison, camels, cats, cattle, deer, dogs, donkeys, gayals, goats, guinea pigs, horses, Llama, mule, pig, rabbit, reindeer, sheep, buffalo, and yak.

核酸疫苗:如本文所用,「核酸疫苗」係指包括編碼抗原(例如抗原蛋白質或多肽)之核酸或核酸分子(例如多核苷酸)的疫苗或疫苗組成物。在例示性實施態樣中,核酸疫苗包括核糖核酸(「RNA」)多核苷酸、核糖核酸(「RNA」)或核糖核酸(「RNA」)分子。此類實施態樣可稱為核糖核酸(「RNA」)疫苗。Nucleic acid vaccine: As used herein, "nucleic acid vaccine" refers to a vaccine or vaccine composition that includes a nucleic acid or nucleic acid molecule (eg, a polynucleotide) encoding an antigen (eg, an antigenic protein or polypeptide). In exemplary embodiments, nucleic acid vaccines include ribonucleic acid ("RNA") polynucleotides, ribonucleic acid ("RNA") or ribonucleic acid ("RNA") molecules. Such implementations may be referred to as ribonucleic acid ("RNA") vaccines.

脫靶:如本文所用,「脫靶(off target)」係指對任何一或多個目標、基因或細胞轉錄本之任何非預期作用。Off-target: As used herein, "off-target" refers to any unintended effect on any one or more targets, genes, or cellular transcripts.

開放閱讀框架:如本文所用,術語「開放閱讀框架」或「ORF」係指連續多核苷酸序列,例如DNA序列或RNA序列(例如mRNA序列),其包含起始密碼子、包含複數個胺基酸編碼密碼子之後續區域及末端終止密碼子,其中包含複數個胺基酸編碼密碼子之區域不含終止密碼子。Open Reading Frame: As used herein, the term "open reading frame" or "ORF" refers to a contiguous polynucleotide sequence, such as a DNA sequence or an RNA sequence (e.g., an mRNA sequence), which contains an initiation codon, contains a plurality of amine groups The subsequent region of the acid-coding codon and the terminal stop codon, and the region containing multiple amino acid-coding codons does not contain a stop codon.

可操作地連接:如本文所用,片語「可操作地連接」係指兩個或更多個分子、構築體、轉錄本、實體、部分、或其類似物之間的功能性連接。Operably linked: As used herein, the phrase "operably linked" refers to a functional connection between two or more molecules, constructs, transcripts, entities, portions, or the like.

部分:如本文所用,多核苷酸之「部分」或「區域」定義為多核苷酸中任何小於多核苷酸之整個長度的部分。Portion: As used herein, a "portion" or "region" of a polynucleotide is defined as any portion of a polynucleotide that is less than the entire length of the polynucleotide.

肽:如本文所用,「肽」之長度為小於或等於50個胺基酸,例如長度為約5、10、15、20、25、30、35、40、45、或50個胺基酸。Peptide: As used herein, a "peptide" is less than or equal to 50 amino acids in length, such as about 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 amino acids in length.

互補位:如本文所用,「互補位」係指抗體之抗原結合位點。Paratope: As used herein, "paratope" refers to the antigen-binding site of an antibody.

患者:如本文所用,「患者」係指可能尋求或需要治療、要求治療、正在接受治療、即將接受治療之個體,或受到經過訓練的專業人員針對特定疾病或病狀之照護之個體。Patient: As used herein, "patient" means an individual who may seek or need treatment, request treatment, be receiving treatment, be about to receive treatment, or be cared for by a trained professional for a specific disease or condition.

醫藥學上可接受:片語「醫藥學上可接受」在本文中用於指在合理醫學判斷範疇內,適用於與人類及動物之組織接觸而無過度毒性、刺激、過敏反應或其他問題或併發症,與合理益處/風險比相匹配的彼等化合物、材料、組成物、及/或劑型。Pharmaceutically acceptable: The phrase "pharmaceutically acceptable" is used herein to mean, within the scope of reasonable medical judgment, suitable for contact with human and animal tissue without undue toxicity, irritation, allergic reaction or other problems or Complications, those compounds, materials, compositions, and/or dosage forms that are matched with a reasonable benefit/risk ratio.

醫藥學上可接受之賦形劑:如本文所用,片語「醫藥學上可接受之賦形劑」係指除本文所述之化合物以外的任何成分(例如能夠懸浮或溶解活性化合物之媒劑),且具有在患者中實質上無毒性及無炎性的特性。賦形劑可包括例如:抗黏劑、抗氧化劑、黏合劑、包衣、壓縮助劑、崩解劑、染料(顏料)、潤膚劑、乳化劑、填充劑(稀釋劑)、成膜劑或包衣、調味劑、芳香劑、助滑劑(流動增強劑)、潤滑劑、防腐劑、印刷油墨、吸附劑、懸浮劑或分散劑、甜味劑、及水合用水。例示性賦形劑包括但不限於:丁基化羥基甲苯(BHT)、碳酸鈣、磷酸鈣(磷酸氫二鈣)、硬脂酸鈣、交聯羧甲纖維素、交聯聚乙烯吡咯啶酮、檸檬酸、交聯聚維酮、半胱胺酸、乙基纖維素、明膠、羥丙基纖維素、羥丙基甲基纖維素、乳糖、硬脂酸鎂、麥芽糖醇、甘露糖醇、甲硫胺酸、甲基纖維素、對羥基苯甲酸甲酯、微晶纖維素、聚乙二醇、聚乙烯吡咯啶酮、聚維酮、預膠凝化澱粉、對羥基苯甲酸丙酯、棕櫚酸視黃酯、蟲膠、二氧化矽、羧甲基纖維素鈉、檸檬酸鈉、羥基乙酸澱粉鈉、山梨糖醇、澱粉(玉米)、硬脂酸、蔗糖、滑石、二氧化鈦、維生素A、維生素E、維生素C、及木糖醇。Pharmaceutically acceptable excipient: As used herein, the phrase "pharmaceutically acceptable excipient" refers to any ingredient other than the compound described herein (e.g., a vehicle capable of suspending or dissolving the active compound ), and has substantially non-toxic and non-inflammatory properties in patients. Excipients may include, for example: anti-adhesive agents, antioxidants, binders, coatings, compression aids, disintegrants, dyes (pigments), emollients, emulsifiers, fillers (diluents), film-forming agents Or coatings, flavoring agents, fragrances, slip agents (flow enhancers), lubricants, preservatives, printing inks, adsorbents, suspending or dispersing agents, sweeteners, and hydration water. Exemplary excipients include, but are not limited to: butylated hydroxytoluene (BHT), calcium carbonate, calcium phosphate (dicalcium phosphate), calcium stearate, croscarmellose, crospolyvinylpyrrolidone , citric acid, crospovidone, cysteine, ethylcellulose, gelatin, hydroxypropylcellulose, hydroxypropylmethylcellulose, lactose, magnesium stearate, maltitol, mannitol, Methionine, methylcellulose, methylparaben, microcrystalline cellulose, polyethylene glycol, polyvinylpyrrolidone, povidone, pregelatinized starch, propylparaben, Retinyl palmitate, shellac, silicon dioxide, sodium carboxymethylcellulose, sodium citrate, sodium starch glycolate, sorbitol, starch (corn), stearic acid, sucrose, talc, titanium dioxide, vitamin A , vitamin E, vitamin C, and xylitol.

醫藥學上可接受之鹽:本揭露亦包括本文所述之化合物的醫藥學上可接受之鹽。如本文所用,「醫藥學上可接受之鹽」係指所揭示之化合物之衍生物,其中母體化合物藉由將現有酸或鹼部分轉化為其鹽形式(例如藉由使游離鹼基與適合有機酸反應)來改性。醫藥學上可接受之鹽的實例包括但不限於鹼性殘基(諸如胺)之無機酸鹽或有機酸鹽;酸性殘基(諸如羧酸)之鹼金屬鹽或有機鹽;及其類似物。代表性酸加成鹽包括乙酸鹽、乙酸、己二酸鹽、海藻酸鹽、抗壞血酸鹽、天冬胺酸鹽、苯磺酸鹽、苯磺酸、苯甲酸鹽、硫酸氫鹽、硼酸鹽、丁酸鹽、樟腦酸鹽、樟腦磺酸鹽、檸檬酸鹽、環戊烷丙酸鹽、二葡糖酸鹽、十二烷基硫酸鹽、乙烷磺酸鹽、反丁烯二酸鹽、葡庚糖酸鹽、甘油磷酸鹽、半硫酸鹽、庚酸鹽、己酸鹽、氫溴酸鹽、鹽酸鹽、氫碘酸鹽、2-羥基-乙烷磺酸鹽、乳糖酸鹽、乳酸鹽、月桂酸鹽、月桂基硫酸鹽、蘋果酸鹽、順丁烯二酸鹽、丙二酸鹽、甲烷磺酸鹽、2-萘磺酸鹽、菸鹼酸鹽、硝酸鹽、油酸鹽、草酸鹽、棕櫚酸鹽、雙羥萘酸鹽、果膠酸鹽、過硫酸鹽、3-苯基丙酸鹽、磷酸鹽、苦味酸鹽、特戊酸鹽、丙酸鹽、硬脂酸鹽、丁二酸鹽、硫酸鹽、酒石酸鹽、硫氰酸鹽、甲苯磺酸鹽、十一烷酸鹽、戊酸鹽、及其類似物。代表性鹼金屬或鹼土金屬鹽包括鈉、鋰、鉀、鈣、鎂、及其類似物,以及無毒性銨、四級銨及胺陽離子,包括但不限於銨、四甲銨、四乙銨、甲胺、二甲胺、三甲胺、三乙胺、乙胺、及其類似物。本揭露之醫藥學上可接受之鹽包括例如由無毒無機酸或有機酸形成的母體化合物之習知無毒鹽。本揭露之醫藥學上可接受之鹽可藉由習知化學方法由含有鹼性或酸性部分之母體化合物合成。一般而言,此類鹽可藉由使游離酸或鹼形式之此等化合物與化學計算量之適當鹼或酸於水中或於有機溶劑中或於兩者之混合物中反應來製備。一般而言,非水性介質為較佳,如乙醚、乙酸乙酯、乙醇、異丙醇、或乙腈。適合之鹽的清單見於Remington's Pharmaceutical Sciences, 第17版, Mack Publishing Company, Easton, Pa., 1985, 第1418頁;Pharmaceutical Salts: Properties, Selection, and Use, P.H. Stahl及C.G. Wermuth (編), Wiley-VCH, 2008,及Beige等人,Journal of Pharmaceutical Science, 66, 1-19 (1977)中;將該等文獻中之每一者均以全文引用方式併入本文中。Pharmaceutically Acceptable Salts: The present disclosure also includes pharmaceutically acceptable salts of the compounds described herein. As used herein, "pharmaceutically acceptable salts" refer to derivatives of the disclosed compounds wherein the parent compound is converted into its salt form by converting an existing acid or base moiety (e.g., by reacting the free base with a suitable organic acid reaction) to modify. Examples of pharmaceutically acceptable salts include, but are not limited to, inorganic or organic acid salts of basic residues such as amines; alkali metal or organic salts of acidic residues such as carboxylic acids; and the like. . Representative acid addition salts include acetate, acetic acid, adipate, alginate, ascorbate, aspartate, benzenesulfonate, benzenesulfonic acid, benzoate, bisulfate, borate , butyrate, camphorate, camphorsulfonate, citrate, cyclopentane propionate, digluconate, lauryl sulfate, ethane sulfonate, fumarate , Glucoheptonate, Glycerophosphate, Hemisulfate, Enanthate, Caproate, Hydrobromide, Hydrochloride, Hydroiodide, 2-Hydroxy-Ethanesulfonate, Lactonate , lactate, laurate, lauryl sulfate, malate, maleate, malonate, methane sulfonate, 2-naphthalene sulfonate, nicotinate, nitrate, oil Acid salt, oxalate, palmitate, pamoate, pectate, persulfate, 3-phenylpropionate, phosphate, picrate, pivalate, propionate, Stearate, succinate, sulfate, tartrate, thiocyanate, tosylate, undecanoate, valerate, and the like. Representative alkali metal or alkaline earth metal salts include sodium, lithium, potassium, calcium, magnesium, and the like, as well as nontoxic ammonium, quaternary ammonium, and amine cations including, but not limited to, ammonium, tetramethylammonium, tetraethylammonium, Methylamine, dimethylamine, trimethylamine, triethylamine, ethylamine, and the like. Pharmaceutically acceptable salts of the present disclosure include, for example, conventional nontoxic salts of the parent compound formed from nontoxic inorganic or organic acids. The pharmaceutically acceptable salts of the present disclosure can be synthesized from the parent compound containing a basic or acidic moiety by conventional chemical methods. In general, such salts may be prepared by reacting the free acid or base form of these compounds with a stoichiometric amount of the appropriate base or acid in water or in an organic solvent or in a mixture of the two. Generally speaking, non-aqueous media are preferred, such as diethyl ether, ethyl acetate, ethanol, isopropyl alcohol, or acetonitrile. A list of suitable salts is found in Remington's Pharmaceutical Sciences, 17th ed., Mack Publishing Company, Easton, Pa., 1985, page 1418; Pharmaceutical Salts: Properties, Selection, and Use, P.H. Stahl and C.G. Wermuth (eds.), Wiley- VCH, 2008, and Beige et al., Journal of Pharmaceutical Science, 66, 1-19 (1977); each of these documents is incorporated by reference in its entirety.

醫藥學上可接受之溶劑合物:如本文所用,術語「醫藥學上可接受之溶劑合物」意謂在晶格中併有適合之溶劑分子的本文所述之化合物。適合之溶劑在所投予之劑量下為生理學上可耐受的。例如,溶劑合物可藉由自包括有機溶劑、水或其混合物之溶液結晶、再結晶或沈澱來加以製備。適合之溶劑的實例為乙醇、水(例如單水合物、二水合物及三水合物)、N-甲基吡咯啶酮(NMP)、二甲亞碸(DMSO)、N,N'-二甲基甲醯胺(DMF)、N,N'-二甲基乙醯胺(DMAC)、1,3-二甲基-2-咪唑啶酮(DMEU)、1,3-二甲基-3,4,5,6-四氫-2-(1H)-嘧啶酮(DMPU)、乙腈(ACN)、丙二醇、乙酸乙酯、苯甲醇、2-吡咯啶酮、苯甲酸苯甲酯、及其類似物。當水為溶劑時,溶劑合物稱作「水合物」。Pharmaceutically acceptable solvate: As used herein, the term "pharmaceutically acceptable solvate" means a compound described herein in a crystal lattice with suitable solvent molecules. Suitable solvents are physiologically tolerable at the doses administered. For example, solvates can be prepared by crystallization, recrystallization, or precipitation from solutions including organic solvents, water, or mixtures thereof. Examples of suitable solvents are ethanol, water (eg monohydrate, dihydrate and trihydrate), N-methylpyrrolidone (NMP), dimethylsulfoxide (DMSO), N,N'-dimethyl Methylformamide (DMF), N,N'-dimethylacetamide (DMAC), 1,3-dimethyl-2-imidazolidinone (DMEU), 1,3-dimethyl-3, 4,5,6-Tetrahydro-2-(1H)-pyrimidinone (DMPU), acetonitrile (ACN), propylene glycol, ethyl acetate, benzyl alcohol, 2-pyrrolidone, benzyl benzoate, and the like things. When water is the solvent, the solvate is called a "hydrate".

藥物動力學:如本文所用,「藥物動力學」係指分子或化合物在涉及確定向活有機體投予之物質的結局時的任何一或多種特性。藥物動力學分成若干領域,包括吸收、分佈、代謝及排泄之程度及速率。此通常稱為ADME,其中:(A)吸收為物質進入血液循環之過程;(D)分佈為物質在整個體液及身體組織中之分散或擴散;(M)代謝(或生物轉化)為母體化合物變成子體代謝物之不可逆轉化;及(E)排泄(或消除)係指自身體消除物質。在罕見情況下,一些藥物在身體組織中不可逆地累積。Pharmacokinetics: As used herein, "pharmacokinetics" refers to any one or more properties of a molecule or compound involved in determining the outcome of a substance administered to a living organism. Pharmacokinetics is divided into several areas, including the extent and rate of absorption, distribution, metabolism, and excretion. This is often called ADME, where: (A) Absorption is the process by which a substance enters the blood circulation; (D) Distribution is the dispersion or diffusion of a substance throughout body fluids and body tissues; (M) Metabolism (or biotransformation) into the parent compound Irreversible transformation into daughter metabolites; and (E) Excretion (or elimination) means the elimination of a substance from the body. In rare cases, some drugs accumulate irreversibly in body tissues.

物理化學:如本文所用,「物理化學」意謂具有或涉及物理及/或化學性質。Physicochemical: As used herein, "physically chemical" means having or relating to physical and/or chemical properties.

每單位藥物(PUD)之多肽:如本文所用,PUD或每單位藥物之產物定義為在體液或組織中所量測之產物(諸如多肽)之每日總劑量(通常為1 mg、pg、kg等)的細分部分(通常以諸如pmol/mL、mmol/mL等之濃度定義)除以體液中之量測值。Polypeptides per unit drug (PUD): As used herein, PUD or product per unit drug is defined as the total daily dose (usually 1 mg, pg, kg) of a product (such as a peptide) measured in a body fluid or tissue etc.) divided by the measured value in the body fluid.

預防:如本文所用,術語「預防」係指部分或完全地延遲感染、疾病、病症及/或病狀之發作;部分或完全地延遲特定感染、疾病、病症及/或病狀之一或多種症狀、特徵或臨床表現的發作;部分或完全地延遲特定感染、疾病、病症及/或病狀之一或多種症狀、特徵或表現的發作;部分或完全地延遲感染、特定疾病、病症及/或病狀之進展;及/或降低患上與感染、疾病、病症及/或病狀相關之病變的風險。Prevention: As used herein, the term "prevention" means to partially or completely delay the onset of an infection, disease, disorder and/or condition; to partially or completely delay one or more of a specific infection, disease, disorder and/or condition. The onset of symptoms, characteristics or clinical manifestations; the partial or complete delay in the onset of one or more symptoms, characteristics or manifestations of a particular infection, disease, disorder and/or condition; the partial or complete delay in the onset of an infection, a particular disease, disorder and/or condition or progression of conditions; and/or reduce the risk of developing lesions related to infections, diseases, conditions and/or conditions.

增殖:如本文所用,術語「增殖」意謂生長、擴增或增加或引起快速生長、擴增或增加。「增殖性」意謂具有增殖能力。「抗增殖性」意謂具有與增殖特性相反或不相稱的特性。Proliferation: As used herein, the term "proliferation" means to grow, amplify or increase or to cause rapid growth, amplification or increase. "Proliferative" means having the ability to proliferate. "Antiproliferative" means having properties that are opposite or disproportionate to proliferative properties.

預防性:如本文所用,「預防性」係指用於預防疾病擴散之治療或作用過程。Prophylactic: As used herein, "prophylactic" refers to a treatment or course of action used to prevent the spread of disease.

預防:如本文所用,「預防」係指為維持健康並預防疾病擴散而採用之措施。「免疫預防」係指產生主動或被動免疫以防止疾病傳播的措施。Prevention: As used herein, "prevention" refers to measures taken to maintain health and prevent the spread of disease. "Immunoprophylaxis" refers to measures to generate active or passive immunity to prevent the spread of disease.

蛋白質切割位點:如本文所用,「蛋白質切割位點」係指可藉由化學、酶或光化學手段實現胺基酸鏈之控制切割的位點。Protein cleavage site: As used herein, "protein cleavage site" refers to a site where controlled cleavage of an amino acid chain can be achieved by chemical, enzymatic or photochemical means.

蛋白質切割信號:如本文所用,「蛋白質切割信號」係指至少一個標示或標記用於切割之多肽的胺基酸。Protein cleavage signal: As used herein, "protein cleavage signal" refers to at least one amino acid that identifies or labels a polypeptide for cleavage.

所關注蛋白質:如本文所用之術語「所關注蛋白質」或「所需蛋白質」包括本文所提供之蛋白質及其片段、突變體、變異體及改變形式。Protein of Interest: The term "protein of interest" or "protein of interest" as used herein includes the proteins provided herein and fragments, mutants, variants and altered forms thereof.

經純化:如本文所用,「純化(purify)」、「經純化(purified)」、「純化(purification)」意謂自非所需組分、材料污物、混雜物或缺陷品變得實質上純的或乾淨的。Purified: As used herein, "purify," "purified," or "purification" means becoming substantially free from undesired components, material contaminants, contaminants, or defects. pure or clean.

重複轉染:如本文所用,術語「重複轉染」係指用多核苷酸轉染相同細胞培養物複數次。細胞培養物可轉染至少兩次、至少3次、至少4次、至少5次、至少6次、至少7次、至少8次、至少9次、至少10次、至少11次、至少12次、至少13次、至少14次、至少15次、至少16次、至少17次、至少18次、至少19次、至少20次、至少25次、至少30次、至少35次、至少40次、至少45次、至少50次、或更多次。Repeat transfection: As used herein, the term "repeat transfection" refers to transfecting the same cell culture multiple times with a polynucleotide. Cell cultures can be transfected at least twice, at least 3 times, at least 4 times, at least 5 times, at least 6 times, at least 7 times, at least 8 times, at least 9 times, at least 10 times, at least 11 times, at least 12 times, At least 13 times, at least 14 times, at least 15 times, at least 16 times, at least 17 times, at least 18 times, at least 19 times, at least 20 times, at least 25 times, at least 30 times, at least 35 times, at least 40 times, at least 45 times times, at least 50 times, or more.

樣品:如本文所用,術語「樣品」或「生物樣品」係指其組織、細胞或組成部分之子組(例如體液,包括但不限於血液、黏液、淋巴液、滑液、腦脊髓液、唾液、羊水、羊膜臍帶血、尿液、陰道液、及精液)。樣品進一步可包括由完整生物體或其組織、細胞或組分部分之子集或其級分或部分製備的勻漿、溶胞物或提取物,包括但不限於例如血漿;血清;脊髓液;淋巴液;皮膚、呼吸道、腸道及生殖泌尿道之外部切片;淚液;唾液;乳汁;血球;腫瘤;器官。樣品亦指培養基,諸如營養培養液或凝膠,其可含有細胞組分,諸如蛋白質或核酸分子。Sample: As used herein, the term "sample" or "biological sample" refers to a subgroup of its tissues, cells, or components (e.g., body fluids, including but not limited to blood, mucus, lymph, synovial fluid, cerebrospinal fluid, saliva, Amniotic fluid, amniotic cord blood, urine, vaginal fluid, and semen). Samples may further include homogenates, lysates or extracts prepared from intact organisms or subsets of tissues, cells or component parts thereof, or fractions or portions thereof, including but not limited to, for example, plasma; serum; spinal fluid; lymph fluid; external sections of skin, respiratory tract, intestine and genitourinary tract; tears; saliva; breast milk; blood cells; tumors; organs. A sample also refers to a culture medium, such as a nutrient broth or gel, which may contain cellular components, such as proteins or nucleic acid molecules.

信號序列:如本文所用,片語「信號序列」係指可引導蛋白質之轉運或定位之序列。Signal sequence: As used herein, the phrase "signal sequence" refers to a sequence that directs the transport or localization of a protein.

單一單位劑量:如本文所用之「單一單位劑量」為以一個劑量/一次性/單一途徑/單一接觸點、亦即單一投藥事件投予的任何治療劑的劑量。Single Unit Dose: A "single unit dose" as used herein is a dose of any therapeutic agent administered in one dose/single time/single route/single point of contact, ie, a single administration event.

類似性:如本文中所使用,術語「類似性」係指聚合分子之間,例如多核苷酸分子(例如DNA分子及/或RNA分子)之間及/或多肽分子之間的整體相關性。聚合物分子彼此之類似性百分比的計算可以與一致性百分比之計算相同的方式進行,不同之處在於計算類似性百分比時要考慮如此項技術中所理解之保守性取代。Similarity: As used herein, the term "similarity" refers to the overall relatedness between polymeric molecules, such as between polynucleotide molecules (eg, DNA molecules and/or RNA molecules) and/or between polypeptide molecules. The calculation of the percent similarity of polymer molecules to one another can be performed in the same manner as the calculation of the percent identity, except that the calculation of the percent similarity takes into account conservative substitutions as understood in the art.

分次劑量:如本文所用,「分次劑量」為將單一單位劑量或每日總劑量分成兩個或更多個劑量。Divided dose: As used herein, "fractionated dose" is the division of a single unit dose or total daily dose into two or more doses.

穩定的:如本文所用,「穩定的」係指化合物足夠穩固以經受住自反應混合物分離達到適用純度且較佳能夠調配成有效治療劑。Stable: As used herein, "stable" means a compound that is stable enough to withstand isolation from the reaction mixture to a suitable purity and preferably can be formulated into an effective therapeutic agent.

穩定化:如本文所用,術語「使……穩定」、「穩定化」、「穩定化區域」意謂使之穩定或變得穩定。Stabilization: As used herein, the terms "stabilize," "stabilize," and "stabilize region" mean to stabilize or become stable.

個體:如本文所用,術語「個體」或「患者」係指可例如出於實驗、診斷、預防及/或治療目的向其投予組成物的任何生物體。典型個體包括動物(例如哺乳動物,諸如小鼠、大鼠、兔、非人類靈長類、及人類)。Subject: As used herein, the term "subject" or "patient" refers to any organism to which a composition may be administered, for example, for experimental, diagnostic, prophylactic and/or therapeutic purposes. Typical individuals include animals (eg, mammals such as mice, rats, rabbits, non-human primates, and humans).

實質上:如本文所用,術語「實質上」係指展現所關注之特徵或特性之全部或接近全部界限或程度的定性病症。生物技術中之一般技術者所瞭解,生物及化學現象很少(若曾有)進行完全及/或繼續進行完整或很少達成或避免絕對結果。因而本文中使用術語「實質上」以獲得許多生物及化學現象中所固有的完整性之潛在缺乏。Substantially: As used herein, the term "substantially" refers to a qualitative condition that exhibits all or nearly all of the limits or degrees of the characteristic or characteristic of interest. It is understood by those of ordinary skill in biotechnology that biological and chemical phenomena rarely, if ever, proceed completely and/or continue to completion or that absolute results are rarely achieved or avoided. The term "substantially" is therefore used herein to capture the potential lack of completeness inherent in many biological and chemical phenomena.

實質上相等:如本文所用,在其與各劑量之間的時間差異相關時,該術語意謂加上/減去2%。Substantially equal: As used herein, this term means plus/minus 2% as it relates to the time difference between doses.

實質上同時:如本文所用且在其與複數個劑量相關時,該術語意謂在2秒之內。Substantially simultaneously: As used herein and when it relates to a plurality of doses, the term means within 2 seconds.

罹患:「罹患」疾病、病症及/或病狀之個體已診斷患有該疾病、病症及/或病狀或呈現其一或多種症狀。Suffering: An individual "suffering from" a disease, disorder and/or condition has been diagnosed with or exhibits one or more symptoms of the disease, disorder and/or condition.

易患:「易患」疾病、病症及/或病狀之個體尚未診斷患有該疾病、病症及/或病狀及/或可能未展現其症狀,但具有患上疾病或產生其症狀之傾向。在一些實施態樣中,易患疾病、病症及/或病狀(例如癌症)之個體的特徵可為以下之一或多者:(1)與患上疾病、病症及/或病狀相關之基因突變;(2)與患上疾病、病症及/或病狀相關之遺傳多態性;(3)與患上疾病、病症及/或病狀之蛋白質及/或核酸的表現及/或活性增加及/或減少;(4)與患上疾病、病症及/或病狀相關之習慣及/或生活方式;(5)疾病、病症及/或病狀之家族史;及(6)暴露於與患上疾病、病症及/或病狀相關之微生物及/或經該微生物感染。在一些實施態樣中,易患疾病、病症及/或病狀之個體將患上該疾病、病症及/或病狀。在一些實施態樣中,易患疾病、病症及/或病狀之個體將不患上該疾病、病症及/或病狀。Vulnerable: An individual who is "susceptible" to a disease, disease and/or condition has not yet been diagnosed with the disease, disease and/or condition and/or may not exhibit symptoms of the disease, disease and/or condition, but has a tendency to develop the disease, disease and/or condition or develop its symptoms. . In some embodiments, characteristics of an individual susceptible to a disease, disorder, and/or condition (e.g., cancer) may be one or more of the following: (1) Characteristics associated with developing the disease, disorder, and/or condition; Gene mutations; (2) Genetic polymorphisms associated with the development of diseases, diseases and/or symptoms; (3) The expression and/or activity of proteins and/or nucleic acids associated with the development of diseases, diseases and/or symptoms Increases and/or decreases; (4) Habits and/or lifestyle associated with developing diseases, illnesses and/or conditions; (5) Family history of diseases, illnesses and/or conditions; and (6) Exposure to Microorganisms associated with the development of diseases, illnesses and/or conditions and/or infection by such microorganisms. In some embodiments, an individual susceptible to a disease, disorder, and/or condition will develop the disease, disorder, and/or condition. In some embodiments, an individual susceptible to a disease, disorder, and/or condition will not develop the disease, disorder, and/or condition.

持續釋放:如本文所用,術語「持續釋放」係指在特定時間段內符合釋放速率之醫藥組成物或化合物釋放特徵。Sustained Release: As used herein, the term "sustained release" refers to the release characteristics of a pharmaceutical composition or compound consistent with a release rate over a specified period of time.

合成:術語「合成」意謂藉由人工生產、製備及/或製造。本文所述之多核苷酸或多肽或其他分子的合成可為化學合成或酶合成。Synthetic: The term "synthetic" means produced, prepared and/or manufactured by artificial means. The synthesis of polynucleotides or polypeptides or other molecules described herein may be chemical synthesis or enzymatic synthesis.

疫苗:如本文所用,疫苗為包含至少一種編碼至少一個抗原之多核苷酸的化合物或組成物。Vaccine: As used herein, a vaccine is a compound or composition comprising at least one polynucleotide encoding at least one antigen.

目標細胞:如本文所用,「目標細胞」係指任何一或多個相關細胞。該等細胞可見於活體外、活體內、原位或生物體之組織或器官中。生物體可為動物,較佳為哺乳動物,更佳為人類,且最佳為患者。Target Cell: As used herein, "target cell" refers to any relevant cell or cells. These cells can be found in vitro, in vivo, in situ or in tissues or organs of an organism. The organism can be an animal, preferably a mammal, more preferably a human, and most preferably a patient.

治療劑:術語「治療劑」係指當向個體投予時,具有治療、診斷及/或預防作用及/或引發所需生物學及/或藥理學作用之任何藥劑。Therapeutic Agent: The term "therapeutic agent" refers to any agent that, when administered to an individual, has therapeutic, diagnostic and/or prophylactic effects and/or induces a desired biological and/or pharmacological effect.

治療有效量:如本文所用,術語「治療有效量」意謂當向罹患或易患感染、疾病、病症及/或病狀之個體投予時,足以治療該感染、疾病、病症及/或病狀,改良其症狀、對其進行診斷、預防及/或延遲其發作的所遞送之藥劑(例如核酸、藥物、治療劑、診斷劑、預防劑等)之量。Therapeutically Effective Amount: As used herein, the term "therapeutically effective amount" means an amount that is sufficient to treat an infection, disease, disorder, and/or condition when administered to an individual suffering from or susceptible to the infection, disease, disorder, and/or condition. The amount of a delivered agent (e.g., nucleic acid, drug, therapeutic agent, diagnostic agent, prophylactic agent, etc.) that ameliorates symptoms, diagnoses them, prevents them, and/or delays their onset.

治療有效結果:如本文所用,術語「治療有效結果」意謂在罹患或易患感染、疾病、病症及/或病狀之個體中足以治療該感染、疾病、病症及/或病狀、改善其症狀、對其進行診斷、預防及/或延遲其發作的結果。Therapeutically Effective Result: As used herein, the term "therapeutically effective result" means sufficient to treat, ameliorate, or ameliorate an infection, disease, disorder, and/or condition in an individual suffering from, or susceptible to, the infection, disease, disorder, and/or condition. symptoms, diagnosing them, preventing and/or delaying their onset as a result.

總日劑量:如本文所用,「總日劑量」為24小時時段內給予或以處方開具之量。其可以單一單位劑量形式進行投予。Total Daily Dose: As used herein, the "total daily dose" is the amount administered or prescribed within a 24-hour period. It can be administered in a single unit dose.

轉染:如本文所用,術語「轉染」係指將外源性核酸引入至細胞中之方法。轉染方法包括但不限於化學方法、物理處理及陽離子脂質或混合物。Transfection: As used herein, the term "transfection" refers to a method of introducing exogenous nucleic acid into a cell. Transfection methods include, but are not limited to, chemical methods, physical treatments, and cationic lipids or mixtures.

轉譯:如本文所用,「轉譯」為藉以使得多核苷酸分子由核糖體或核糖體樣機構,例如細胞或人工加工以產生肽或多肽的過程。Translation: As used herein, "translation" is the process by which polynucleotide molecules are processed by ribosomes or ribosome-like mechanisms, such as cells or humans, to produce peptides or polypeptides.

轉錄:如本文所用,「轉錄」為藉以使得多核苷酸分子由聚合酶或其他酶加工以產生多核苷酸,例如RNA多核苷酸的過程。Transcription: As used herein, "transcription" is the process whereby a polynucleotide molecule is processed by a polymerase or other enzyme to produce a polynucleotide, such as an RNA polynucleotide.

治療:如本文所用,術語「治療」係指部分或完全緩解、改善、改良、減輕特定感染、疾病、病症及/或病狀、延遲其發作、抑制其進展、降低其嚴重程度及/或降低其一或多種症狀或特徵之發生率。出於降低出現與某種疾病、感染、病症及/或病狀相關之病變的風險的目的,可向未展現該疾病、感染、病症及/或病狀之病徵的個體及/或向僅展現該疾病、感染、病症及/或病狀之早期病徵的個體投予治療。Treatment: As used herein, the term "treatment" means partial or complete relief, amelioration, amelioration, alleviation, delaying the onset, inhibiting the progression, reducing the severity and/or reducing the severity of a particular infection, disease, disorder and/or condition. The incidence of one or more of its symptoms or characteristics. For the purpose of reducing the risk of developing pathology associated with a disease, infection, illness and/or condition, individuals who do not exhibit symptoms of the disease, infection, illness and/or condition and/or individuals who only exhibit symptoms of the disease, infection, illness and/or condition may be Treatment of individuals with early signs of the disease, infection, disorder and/or condition.

未經修飾:如本文所用,「未經修飾」係指以任何方式改變之前的任何物質、化合物或分子。未經修飾可指,但並不始終指生物分子之野生型或天然形式。分子可經歷一系列修飾,由此,各經修飾之分子可充當後續修飾之「未經修飾」之起始分子。Unmodified: As used herein, "unmodified" refers to any substance, compound, or molecule that has not been altered in any way. Unmodified can refer to, but does not always refer to, the wild-type or native form of a biomolecule. Molecules can undergo a series of modifications, whereby each modified molecule can serve as the "unmodified" starting molecule for subsequent modifications.

疫苗:如本文所用,片語「疫苗」係指在特定疾病、病症或病狀之情況下改善免疫性的生物製劑。Vaccine: As used herein, the phrase "vaccine" refers to a biological agent that improves immunity in the context of a specific disease, disorder or condition.

病毒蛋白:如本文所用,片語「病毒蛋白」意謂源自病毒之任何蛋白。 實施例 實施例1. LNP調配之mRNA的活體內研究 Viral protein: As used herein, the phrase "viral protein" means any protein derived from a virus. Example Example 1. In vivo study of LNP formulated mRNA

如表6中所述地向五(5)組雌性C57bl/6隻小鼠,8隻小鼠/組(6週齡)投予調配物。在第0天及第21天對小鼠抽血,隨後在第1天及第22天經由肌內投予接受20微克(「µg」)表6之調配物中之一者。在第43天,使小鼠安樂死,且藉由心臟穿刺收集血液,收集脾臟且分離脾細胞。表7列出用於調配mRNA的脂質奈米粒子(LNP)之脂質組分。 表6. 調配物表 調配物之描述 1 LNP調配之TdTomato mRNA陰性對照(SEQ ID NO:46) 2 LNP調配之S蛋白受體結合域(RBD) mRNA (SEQ ID NO:25) 3 LNP調配之全長S蛋白mRNA (「PTX-B」) (SEQ ID NO:27) 4 LNP調配全長S蛋白,具有突變之弗林蛋白酶位點mRNA (SEQ ID NO:26) 5 杜爾貝科氏磷酸鹽緩衝鹽水(Dulbecco's Phosphate-Buffered Saline,DPBS)對照 表7. LNP組分 脂質 在調配物中的莫耳% 在調配物中的質量% 陽離子脂質 49.96 52.26 磷脂或DSPC 9.97 14.02 固醇或膽固醇 38.44 26.44 聚乙二醇化脂質或PEG-DMA 1.61 7.26 Five (5) groups of female C57bl/6 mice, 8 mice/group (6 weeks old) were dosed with the formulations as described in Table 6. Mice were bled on Days 0 and 21 and subsequently received 20 micrograms ("µg") of one of the formulations of Table 6 via intramuscular administration on Days 1 and 22. On day 43, mice were euthanized, and blood was collected by cardiac puncture, spleens were collected, and spleen cells were isolated. Table 7 lists the lipid components of lipid nanoparticles (LNP) used to formulate mRNA. Table 6. Table of preparations group Description of the blend 1 LNP formulated TdTomato mRNA negative control (SEQ ID NO: 46) 2 LNP formulated S protein receptor binding domain (RBD) mRNA (SEQ ID NO: 25) 3 LNP-formulated full-length S protein mRNA ("PTX-B") (SEQ ID NO: 27) 4 LNP formulates full-length S protein with mutated furin site mRNA (SEQ ID NO: 26) 5 Dulbecco's Phosphate-Buffered Saline (DPBS) control Table 7. LNP components Lipids Mol% in formulation Mass % in formulation cationic lipids 49.96 52.26 Phospholipids or DSPC 9.97 14.02 sterol or cholesterol 38.44 26.44 Pegylated lipids or PEG-DMA 1.61 7.26

對來自第21天活體抽血之彙集樣品進行臨床分離病毒中和分析。在終止時(第43天),量測血清抗體與SARS-CoV-2 RBD及S蛋白的結合、假病毒中和、臨床分離病毒中和及T細胞反應(藉由酶聯免疫斑點(ELIspot)及流動式細胞測量術測定)。Clinical isolate virus neutralization analysis was performed on pooled samples from day 21 ex vivo blood draws. At termination (day 43), serum antibody binding to SARS-CoV-2 RBD and S protein, pseudovirus neutralization, clinical isolate virus neutralization, and T cell responses were measured (by enzyme-linked immunospot (ELIspot) and flow cytometry).

小鼠不存在明顯不良反應。來自初始初步抽血的資料顯示所有三種構築體均具有中和活性。第3組調配物(全長S蛋白mRNA)係最佳的,緊隨其後的為第4組調配物(具有突變之弗林蛋白酶位點的全長S蛋白);第2組調配物(S蛋白RBD域)表現最差;且在任一陰性對照治療組中均未發現活性。There were no obvious adverse reactions in mice. Data from the initial preliminary blood draw showed neutralizing activity for all three constructs. Group 3 formulations (full-length S protein mRNA) were the best, closely followed by Group 4 formulations (full-length S protein with mutated furin sites); Group 2 formulations (S protein RBD domain) performed the worst; and no activity was seen in any of the negative control treatment groups.

脾細胞用SARS-CoV抗原(RBD肽池加上S蛋白)刺激,且抗原特異性T細胞反應係藉由以ELISpot計數分泌IFN-γ之T細胞,或以流動式細胞測量術計數產生Th1細胞介素(IFN-γ/TNF-α/IL-2)及Th2細胞介素(IL-4/IL-5)之T細胞來量測。亦藉由多重小鼠細胞介素分析在SARS-CoV抗原刺激之T細胞的上清液中量測Th1細胞介素(IFN-γ/TNF-α/IL-2)及Th2細胞介素(IL-4/IL-5)。 ELISpot分析 Splenocytes were stimulated with SARS-CoV antigen (RBD peptide pool plus S protein), and antigen-specific T cell responses were generated by counting IFN-γ-secreting T cells by ELISpot or by counting Th1 cells by flow cytometry. Interleukins (IFN-γ/TNF-α/IL-2) and Th2 interleukins (IL-4/IL-5) are measured in T cells. Th1 interleukins (IFN-γ/TNF-α/IL-2) and Th2 interleukins (IL-2) were also measured in the supernatants of SARS-CoV antigen-stimulated T cells by multiplex mouse interleukin analysis. -4/IL-5). ELISpot analysis

ELISpot分析表明來自用第2組、第3組及第4組調配物治療之小鼠的脾細胞產生T細胞,該等T細胞回應於肽池而分泌IFN-γ,該肽池在S蛋白之RBD及保守S2區內含有重疊肽。第2組、第3組及第4組之反應類似,且兩個對照組均不顯示對肽池之顯著反應。相比於兩個對照組,流動式細胞測量術分析未在三組中偵測到顯著Th1或Th2反應。ELISpot analysis demonstrated that splenocytes from mice treated with the Group 2, 3, and 4 formulations produced T cells that secreted IFN-γ in response to a pool of peptides located between the S protein There are overlapping peptides in the RBD and conserved S2 regions. The responses of Groups 2, 3 and 4 were similar, and neither control group showed a significant response to the peptide pool. Flow cytometry analysis detected no significant Th1 or Th2 responses in the three groups compared with the two control groups.

直接結合ELISA用於確定任何抗體是否被引發與S蛋白結合。RBD域或全長S蛋白結合至盤,且將來自經治療小鼠之血清的不同稀釋液在盤中培育,隨後洗滌且藉由抗小鼠抗體偵測。來自第2組、第3組及第4組之血清對可結合RBD及全長S蛋白兩者之抗體呈陽性,且對照對結合呈陰性。 SARS-CoV-2中和分析 Direct binding ELISA was used to determine whether any antibodies were primed to bind to the S protein. The RBD domain or full-length S protein was bound to the plate, and different dilutions of serum from treated mice were incubated in the plate, followed by washing and detection by anti-mouse antibodies. Sera from groups 2, 3 and 4 were positive for antibodies that bind both RBD and full-length S protein, and controls were negative for binding. SARS-CoV-2 Neutralization Assay

為確定自第2組、第3組或第4組調配物引發之抗體是否中和,使用兩種不同的分析。第一分析使用自安大略省(Ontario)首批COVID-19患者之一分離出的SARS-CoV-2病毒,且此分析之讀數為關於與活病毒及來自經治療小鼠之血清的不同稀釋液一起培育之Vero2 E6細胞健康狀況的顯微讀數。此分析已用於表徵來自恢復期患者的血清,其中ID50值範圍為1:80至1:320,因此選擇用於測試此等小鼠血清之稀釋系列介於1:20與1:2560之間。來自第1組小鼠之血清具有最小的可偵測中和活性。第2組顯示出一些中等活性,8個樣品中有6個的ID50介於1:20與1:80之間。第3組及第4組顯示出很強的中和活性,即使在1:2560之最高稀釋度下,大多數血清樣品亦保持100%的中和活性。結果提供於圖1中。 假病毒中和分析 To determine whether antibodies elicited from Group 2, Group 3 or Group 4 formulations were neutralizing, two different assays were used. The first analysis used SARS-CoV-2 virus isolated from one of the first COVID-19 patients in Ontario and read out different dilutions with live virus and serum from treated mice. Microscopic reading of the health of Vero2 E6 cells cultured together. This assay has been used to characterize sera from convalescent patients, with ID50 values ranging from 1:80 to 1:320, so the dilution series chosen to test these mouse sera was between 1:20 and 1:2560 . Sera from Group 1 mice had minimal detectable neutralizing activity. Group 2 showed some moderate activity, with 6 out of 8 samples having an ID50 between 1:20 and 1:80. Groups 3 and 4 showed strong neutralizing activity. Even at the highest dilution of 1:2560, most serum samples maintained 100% neutralizing activity. The results are provided in Figure 1. Pseudovirus neutralization analysis

第二中和分析由假病毒分析組成。此分析利用SARS-CoV-2 S蛋白假型慢病毒,該慢病毒編碼螢光素酶基因,且可感染表現hACE2及TMPRSS2之HEK293T細胞,以獲得更好的轉導效率。此分析之特徵在於確定來自約50名恢復期患者之血清效價,其中血清之平均ID50為約1:500,範圍為1:1至約1:10,000,但對於此研究,使用1:40至1:24,400之稀釋度範圍。來自兩個對照組(第1組及第5組)之血清活性極低或無活性。第2組具有顯著但較低的中和活性。第3組及第4組之活性高於分析之定量範圍。值經外推且平均ID50值為約1:50,000 (第3組)及約1:45,000 (第4組)。結果提供於圖2中。 結論 The second neutralization assay consists of pseudovirus analysis. This assay utilizes SARS-CoV-2 S protein pseudotyped lentivirus, which encodes the luciferase gene and can infect HEK293T cells expressing hACE2 and TMPRSS2 to obtain better transduction efficiency. This analysis was characterized by the determination of serum titers from approximately 50 convalescent patients, where the mean ID50 of the sera was approximately 1:500, with a range of 1:1 to approximately 1:10,000, but for this study, 1:40 to Dilution range of 1:24,400. Sera from the two control groups (Group 1 and Group 5) had little or no activity. Group 2 had significant but lower neutralizing activity. The activities of Groups 3 and 4 were above the quantitative range of the analysis. Values were extrapolated and the average ID50 values were approximately 1:50,000 (Group 3) and approximately 1:45,000 (Group 4). The results are provided in Figure 2. Conclusion

此研究表明,LNP調配之mRNA疫苗在三週時段內兩次向小鼠肌內注射時能夠引發可結合SARS-CoV-2之S蛋白的T細胞反應及抗體。經治療小鼠產生可中和SARS-CoV-2臨床分離株以及SARS-CoV-2假型慢病毒的抗體。此對於第3組及第4組調配物尤其如此,該等調配物導致各分析中之效價高於定量範圍。 實施例2. 小鼠之中和抗體研究 This study shows that the LNP-formulated mRNA vaccine can induce T cell responses and antibodies that can bind to the S protein of SARS-CoV-2 when injected intramuscularly into mice twice within a three-week period. Treated mice produced antibodies that neutralized SARS-CoV-2 clinical isolates as well as SARS-CoV-2 pseudotyped lentiviruses. This was especially true for the Group 3 and 4 formulations, which resulted in potencies above the quantitation range in each assay. Example 2. Studies on neutralizing antibodies in mice

候選疫苗,LNP調配之編碼具有D614G突變之全長S蛋白的疫苗(SEQ ID NO:27;編碼區提供為SEQ ID NO:7) (應用於表6中之第3組的疫苗調配物,下文稱為「PTX-B」)被選為進一步研究的候選物。評估了PTX-B在小鼠中產生中和抗體及T細胞反應的能力。三(3)組雌性C57BL/6小鼠(10隻小鼠/組)在第1天及第22天如下進行疫苗接種: 第1組:10 μg LNP調配之tdTomato mRNA (陰性對照) 第2組:1 μg PTX-B 第3組:10 μg PTX-B Vaccine candidate, LNP formulated vaccine encoding the full-length S protein with the D614G mutation (SEQ ID NO: 27; coding region provided as SEQ ID NO: 7) (applicable to vaccine formulations of Group 3 in Table 6, hereafter referred to as ("PTX-B") was selected as a candidate for further research. The ability of PTX-B to generate neutralizing antibodies and T cell responses in mice was evaluated. Three (3) groups of female C57BL/6 mice (10 mice/group) were vaccinated on days 1 and 22 as follows: Group 1: 10 μg LNP-prepared tdTomato mRNA (negative control) Group 2: 1 μg PTX-B Group 3: 10 μg PTX-B

在此研究中評估之參數包括對來自第一次免疫接種後三週(第22天)之活體抽血之彙集樣品的臨床分離病毒中和分析及假病毒中和分析;以及第二次免疫接種後終止(第43天)時的以下評估:血清抗體與SARS-CoV-2之S蛋白的結合、假病毒中和、臨床分離病毒中和、根據ELISpot及流動式細胞測量術之脾細胞T細胞反應以及細胞介素分泌。Parameters evaluated in this study included clinically isolated virus neutralization assays and pseudovirus neutralization assays on pooled samples of live blood drawn three weeks after the first immunization (day 22); and the second immunization The following assessments at post-termination (day 43): binding of serum antibodies to the S protein of SARS-CoV-2, neutralization of pseudoviruses, neutralization of clinically isolated viruses, splenocyte T cells by ELISpot and flow cytometry response and cytokine secretion.

小鼠在實驗的活體期未顯示出明顯的不良反應。來自第22天初始初步抽血之資料顯示,10 µg劑量水平產生中和抗體,而1 µg劑量水平與陰性對照組僅略有不同。The mice showed no obvious adverse reactions during the in vivo phase of the experiment. Data from the initial preliminary blood draw on Day 22 showed that the 10 µg dose level produced neutralizing antibodies, while the 1 µg dose level was only slightly different from the negative control group.

在終止時,在第二次免疫接種(加強)後三週,1 μg及10 μg劑量組在ELISpot分析中顯示出大致相等的T細胞反應,但10 μg劑量水平組在基於抗體之分析中之表現好得多,有證據表明IgG同型(總IgG、IgG1、IgG2b及IgG2c)水平較高。以1 µg給藥之小鼠的IgM水平高於以10 µg給藥之小鼠,可能歸因於10 µg組中更強的刺激所致的早期類別轉換。有IgGA之證據,尤其在10 µg劑量下,但此同型未被誘導至與IgG同型一樣高的水平。1及10 μg PTX-B均引發極強S特異性IgG、IgG1、IgG2b、IgG2c (1及10 μg PTX-B之終點效價分別為:對於IgG為2.7±0.9E6、3.0±0.5E7;對於IgG1為1.1±0.2E6、2.8±0.8E6;對於IgG2b為9.4±2.0E5、9.7±3.4E6;對於IgG2c為3.5±1.8E7、1.95±0.0E8)。1及10 μg PTX-B亦均引發強S特異性IgA (1及10 μg PTX-B之終點效價分別為:3.3±3.1E4、1.7±0.6E7),不過效價低於IgG之效價。10 μg PTX-B之劑量通常誘導比1 μg之劑量更高的S特異性結合抗體。Th1抗體(IgG2b及IgG2c)優於Th2抗體(IgG1)亦表明PTX-B誘導了偏向Th1之抗體反應。在接受tdTomato mRNA之對照小鼠的血清中偵測到極低或極少的S特異性結合抗體。At termination, three weeks after the second immunization (boost), the 1 μg and 10 μg dose groups showed approximately equal T cell responses in the ELISpot assay, but the 10 μg dose level group was inferior in the antibody-based analysis. performed much better, with evidence of higher levels of IgG isotypes (total IgG, IgG1, IgG2b and IgG2c). Mice dosed with 1 µg had higher IgM levels than mice dosed with 10 µg, possibly due to early class switching due to stronger stimulation in the 10 µg group. There was evidence of IgG, especially at the 10 µg dose, but this isotype was not induced to as high a level as the IgG isotype. Both 1 and 10 μg PTX-B elicited extremely strong S-specific IgG, IgG1, IgG2b, and IgG2c (the end-point titers of 1 and 10 μg PTX-B were respectively: 2.7±0.9E6 and 3.0±0.5E7 for IgG; 1.1±0.2E6, 2.8±0.8E6 for IgG1; 9.4±2.0E5, 9.7±3.4E6 for IgG2b; 3.5±1.8E7, 1.95±0.0E8 for IgG2c). Both 1 and 10 μg PTX-B also elicited strong S-specific IgA (the end-point titers of 1 and 10 μg PTX-B were: 3.3±3.1E4, 1.7±0.6E7 respectively), but the titers were lower than those of IgG. . A dose of 10 μg PTX-B generally induced higher S-specific binding antibodies than a dose of 1 μg. The superiority of Th1 antibodies (IgG2b and IgG2c) to Th2 antibodies (IgG1) also indicates that PTX-B induces a Th1-biased antibody response. Very low or minimal S-specific binding antibodies were detected in the serum of control mice receiving tdTomato mRNA.

與實施例1一樣,第一中和分析使用自安大略省首批COVID-19患者之一分離出的SARS-CoV-2病毒,且第二分析為使用SARS-CoV-2 S蛋白假型慢病毒之假病毒中和分析。在兩個抗體中和試驗中,10 µg劑量組之表現均大大勝過1 µg劑量組,儘管此劑量組確實顯示出相當大的中和活性(與恢復期患者的血清所見的中和活性相比)。圖3示出SARS-CoV-2臨床分離株及假病毒中和分析之ID50 (可見50%感染性抑制的稀釋度)。來自陰性對照組之血清在任一分析中均未顯示活性。來自10 µg組之血清具有劑量反應性效應,顯示出顯著更高的中和活性,尤其在SARS-CoV-2臨床分離株分析中。使用多重比較藉由克拉斯卡-瓦立斯檢定(Kruskal-Wallis test)進行統計;在圖3中,**=P<0.01,***=P<0.001,****=P<0.0001。在假病毒分析中,陰性對照組無顯著活性,1 µg劑量組有中等活性,且10 µg組有極強的中和活性,ID50至多為1:90,000。As in Example 1, the first neutralization assay used SARS-CoV-2 virus isolated from one of the first COVID-19 patients in Ontario, and the second assay used SARS-CoV-2 S protein pseudotyped lentivirus Pseudovirus neutralization analysis. In both antibody neutralization assays, the 10 µg dose group significantly outperformed the 1 µg dose group, although this dose group did show considerable neutralizing activity (comparable to that seen in sera from convalescent patients). Compare). Figure 3 shows the ID50 (dilution at which 50% inhibition of infectivity is seen) of SARS-CoV-2 clinical isolates and pseudovirus neutralization assays. Serum from the negative control group showed no activity in either assay. Serum from the 10 µg group had a dose-responsive effect, showing significantly higher neutralizing activity, especially in the analysis of SARS-CoV-2 clinical isolates. Statistics were performed by Kruskal-Wallis test using multiple comparisons; in Figure 3, **=P<0.01, ***=P<0.001, ****=P<0.0001 . In the pseudovirus analysis, the negative control group had no significant activity, the 1 µg dose group had moderate activity, and the 10 µg group had extremely strong neutralizing activity, with an ID50 of at most 1:90,000.

藉由ELISpot進行IFN-γ分析以確定T細胞對疫苗免疫接種的反應。來自小鼠之脾細胞用SARS-CoV-2 S蛋白之肽池(315個具有11聚體重疊之15聚體肽)刺激。藉由ELISpot分析來量測產生IFN-γ之T細胞。與來自接種陰性對照之小鼠的T細胞相比,來自PTX-B免疫小鼠之T細胞產生IFN-γ的頻率更高(圖4)。小鼠在第1天及第22天接種PTX-B之初打及加打。在第43天處死小鼠,且在存在SARS-CoV-2肽池之情況下,在預先塗有抗IFN-γ抗體之96孔ELISpot盤上刺激脾細胞隔夜。培育後,將盤洗滌染色且用抗IFN-γ HRP抗體處理且在ELISpot讀數器上讀取。使用克拉斯卡-瓦立斯檢定與多重比較分析進行統計。IFN-γ analysis by ELISpot to determine T cell responses to vaccine immunization. Spleen cells from mice were stimulated with a peptide pool of the SARS-CoV-2 S protein (315 15-mer peptides with 11-mer overlap). IFN-γ-producing T cells were measured by ELISpot analysis. T cells from PTX-B-immunized mice produced IFN-γ more frequently than T cells from mice vaccinated with negative controls (Fig. 4). Mice were vaccinated with PTX-B on the 1st and 22nd days at the beginning and additional injections. Mice were sacrificed on day 43, and splenocytes were stimulated overnight in 96-well ELISpot plates precoated with anti-IFN-γ antibody in the presence of a pool of SARS-CoV-2 peptides. After incubation, plates were washed, stained and treated with anti-IFN-γ HRP antibody and read on an ELISpot reader. Statistics were performed using the Kraska-Wallis test and multiple comparison analysis.

藉由Luminex之細胞介素分析顯示,用PTX-B免疫接種之小鼠以劑量依賴性方式產生高水平之IL-2、IFN-γ及GM-CSF,但產生低水平之IL-4及IL-10 (圖5)。小鼠在第1天及第22天接種PTX-B之初打及加打。在第43天處死小鼠,且在存在SARS-CoV-2肽池之情況下刺激脾細胞隔夜。藉由Luminex分析上清液中是否存在IL-2、IFN-γ、GM-CSF、IL-4、IL-5、及IL-10。藉由多重比較藉由克拉斯卡-瓦立斯檢定進行統計。在用PTX-B或對照免疫接種之小鼠的分析中不可偵測到TNF-α水平。有趣的是,在PTX-B免疫小鼠中可偵測到IL-5水平,但不會隨著疫苗接種而增加。 細胞免疫反應 Cytokine analysis by Luminex showed that mice immunized with PTX-B produced high levels of IL-2, IFN-γ, and GM-CSF in a dose-dependent manner, but low levels of IL-4 and IL -10 (Figure 5). Mice were vaccinated with PTX-B on the 1st and 22nd days at the beginning and additional injections. Mice were sacrificed on day 43, and splenocytes were stimulated overnight in the presence of a pool of SARS-CoV-2 peptides. Supernatants were analyzed by Luminex for the presence of IL-2, IFN-γ, GM-CSF, IL-4, IL-5, and IL-10. Statistics were performed by Kraska-Wallis test with multiple comparisons. TNF-α levels were undetectable in analysis of mice vaccinated with PTX-B or control. Interestingly, IL-5 levels were detectable in PTX-B-immunized mice but did not increase with vaccination. cellular immune response

PTX-B亦引發強細胞免疫反應。在加強疫苗接種後3週製備小鼠脾細胞,用S肽池刺激,且藉由IFN-γ/IL-4 ELISpot、CD4+及CD8+ T細胞之細胞介素產生的流動式細胞測量術分析,以及偵測經刺激脾細胞上清液中之細胞介素的多重免疫分析來量測S特異性細胞反應。此等分析顯示,1 μg及10 μg PTX-B均誘導穩固的S特異性細胞免疫反應,該誘導為偏向Th1的,如由CD4+ T細胞產生之主要Th1細胞介素(IFN-γ/TNF-α/IL-2)超過Th2細胞介素(IL-4/IL-5)所指示。值得注意的是,大量S特異性CD8+ T細胞被PTX-B誘導。與體液反應,尤其是nAb反應相比,1 μg及10 μg PTX-B引發之細胞反應通常相當。藉由流動式細胞測量術進行之細胞介素分析顯示,在PTX-B免疫小鼠中偵測到顯著比例的產生IL-2及IFN-γ之CD4+ (圖6A)及CD8+ (圖6B)細胞,尤其是產生CD8+ IFN-γ之細胞。相比之下,與對照小鼠相比,免疫小鼠中產生IL-4及IL-5之細胞無顯著差異。小鼠在第1天及第22天接種PTX-B之初打及加打。在第43天處死小鼠,且在存在SARS-CoV-2肽池之情況下刺激脾細胞隔夜。在隔夜刺激後,針對抗CD3、抗CD4及抗CD8抗體對細胞進行表面染色。接著將細胞固定且透化且針對IL-2、IFN-γ、TNF-α、IL-4、及IL-5進行染色。使用流動式細胞測量術評估細胞。圖6A及圖6B顯示產生TNF-α之細胞略高於對照小鼠,但並非始終以劑量依賴性方式高。此等結果表明接種PTX-B誘導了S蛋白特異性Th1反應。PTX-B also triggers a strong cellular immune response. Mouse splenocytes were prepared 3 weeks after booster vaccination, stimulated with S-peptide pool, and analyzed by flow cytometry of interleukin production by IFN-γ/IL-4 ELISpot, CD4+ and CD8+ T cells, and Multiplex immunoassay detecting interleukins in stimulated splenocyte supernatants to measure S-specific cellular responses. These analyzes showed that both 1 μg and 10 μg PTX-B induced robust S-specific cellular immune responses that were Th1-biased, as shown by the main Th1 interleukin (IFN-γ/TNF- α/IL-2) exceeds Th2 interleukins (IL-4/IL-5) as indicated. Notably, a large number of S-specific CD8+ T cells were induced by PTX-B. Compared with humoral responses, especially nAb responses, cellular responses elicited by 1 μg and 10 μg PTX-B were generally comparable. Interleukin analysis by flow cytometry showed that significant proportions of IL-2- and IFN-γ-producing CD4+ (Figure 6A) and CD8+ (Figure 6B) cells were detected in PTX-B-immunized mice , especially cells that produce CD8+ IFN-γ. In contrast, there were no significant differences in IL-4- and IL-5-producing cells in immunized mice compared with control mice. Mice were vaccinated with PTX-B on the 1st and 22nd days at the beginning and additional injections. Mice were sacrificed on day 43, and splenocytes were stimulated overnight in the presence of a pool of SARS-CoV-2 peptides. After overnight stimulation, cells were surface stained for anti-CD3, anti-CD4, and anti-CD8 antibodies. Cells were then fixed and permeabilized and stained for IL-2, IFN-γ, TNF-α, IL-4, and IL-5. Cells were evaluated using flow cytometry. Figures 6A and 6B show that TNF-α-producing cells were slightly higher than in control mice, but not always in a dose-dependent manner. These results indicate that vaccination with PTX-B induced an S protein-specific Th1 response.

確定用1 μg或10 μg PTX-B進行免疫接種產生相似的T細胞反應,均遠高於陰性對照組中的背景。對於基於抗體之分析(抗體水平及中和能力),10 µg劑量勝過1 µg劑量。 實施例3. 小鼠AAV6-hACE2攻擊模型 It was determined that immunization with 1 μg or 10 μg of PTX-B produced similar T cell responses, both well above background in the negative control group. For antibody-based assays (antibody levels and neutralizing capacity), the 10 µg dose outperforms the 1 µg dose. Example 3. Mouse AAV6-hACE2 challenge model

在AAV6-hACE2 (SARS-CoV-2之受體)轉染之C57BL/6小鼠中進行了一項非GLP攻擊研究,以研究PTX-B之保護功效。四組雌性C57BL/6小鼠(12隻小鼠/組)在第1天及第22天如下地接種PTX-B: 第1組:調配物緩衝液(陰性對照) 第2組:20 μg PTX-B 第3組:4 μg PTX-B 第4組:1 μg PTX-B A non-GLP challenge study was conducted in C57BL/6 mice transfected with AAV6-hACE2 (the receptor for SARS-CoV-2) to investigate the protective efficacy of PTX-B. Four groups of female C57BL/6 mice (12 mice/group) were vaccinated with PTX-B on day 1 and day 22 as follows: Group 1: Formulation Buffer (Negative Control) Group 2: 20 μg PTX-B Group 3: 4 μg PTX-B Group 4: 1 μg PTX-B

在第29天,動物用每隻小鼠1×10 11個AAV-hACE2載體基因體複本轉導,且接著在第38天用每隻小鼠2.5×10 4個TCID50與SARS-CoV-2進行鼻內攻擊。研究終止於第42天。此研究中評估之參數包括肺勻漿之感染性、肺中之病毒RNA水平及肺組織病理學。對小鼠實施安樂死,且取出一個肺進行組織學檢查,而將第二個肺一分為二,在培養基中進行均質化以用於感染性測試,及在RNA提取緩衝液中進行均質化以用於病毒負荷測定。 On day 29, animals were transduced with 1×10 11 copies of AAV-hACE2 vector gene copies per mouse, and then on day 38 with 2.5× 10 TCID50 per mouse with SARS-CoV-2 Intranasal attack. The study was terminated on day 42. Parameters evaluated in this study included the infectivity of lung homogenates, viral RNA levels in the lungs, and lung histopathology. Mice were euthanized and one lung removed for histological examination, while the second lung was bisected and homogenized in culture medium for infectivity testing and in RNA extraction buffer for For viral load determination.

小鼠在實驗的活體期未顯示出明顯的不良反應。在第38天,在攻擊時量測體重,且接著在第42天,在即將處死前再次量測體重。在1 μg PTX-B疫苗接種組中觀測到統計顯著的體重減輕(20.39相對於18.54,9.07% p=0.0016) (圖7)。C57BL/6小鼠用PTX-B初打-加打免疫且經AAV6-hACE2轉導。在攻擊時(第38天)及即將處死前(第42天)量測體重。藉由雙因子變異數分析與多重比較進行分析。在圖7中,** p<0.01。在20 µg或4 µg組或調配物對照組中未觀測到顯著體重減輕。The mice showed no obvious adverse reactions during the in vivo phase of the experiment. On day 38, body weights were measured at the time of challenge, and then again on day 42, just before sacrifice. Statistically significant weight loss was observed in the 1 μg PTX-B vaccinated group (20.39 vs. 18.54, 9.07% p=0.0016) (Figure 7). C57BL/6 mice were prime-boost immunized with PTX-B and transduced with AAV6-hACE2. Body weights were measured at the time of challenge (day 38) and immediately before sacrifice (day 42). Analysis was performed by two-way analysis of variation and multiple comparisons. In Figure 7, **p<0.01. No significant weight loss was observed in the 20 µg or 4 µg groups or the formulation control group.

如圖8中所示,PTX-B在測試之所有三個劑量水平下均提供保護功效。在用20或4 µg疫苗(TCID50=0)免疫之小鼠中未發現感染性病毒,且用1 µg免疫接種之12隻小鼠中有10隻亦無感染性病毒(平均TCID50=1.25±2.93),而調配物緩衝液陰性對照組之12隻小鼠中有11隻可容易地偵測到感染性SARS-CoV-2。在圖8中,TCID50意謂組織培養50%感染劑量。如所繪示,PTX-B中和SARS-CoV-2。在AAV6-hACE2轉導之C57BL/6小鼠中量測TCID50,該等小鼠藉由用3種不同劑量之PTX-B或調配物緩衝液陰性對照的初打-加打進行免疫。在加強免疫後7天用AAV6-hACE2轉導小鼠且在9天後進行攻擊。在用SARS-CoV-2攻擊後4天處死所有小鼠,且自肺勻漿中量測病毒(每組n=12) (**** p<0.0001)。As shown in Figure 8, PTX-B provided protective efficacy at all three dose levels tested. No infectious virus was found in mice immunized with 20 or 4 µg vaccine (TCID50=0), and 10 of 12 mice immunized with 1 µg were also free of infectious virus (mean TCID50=1.25±2.93 ), while infectious SARS-CoV-2 could be easily detected in 11 out of 12 mice in the formulation buffer negative control group. In Figure 8, TCID50 means the tissue culture 50% infectious dose. As shown, PTX-B neutralizes SARS-CoV-2. TCID50 was measured in AAV6-hACE2 transduced C57BL/6 mice immunized by prime-boost with 3 different doses of PTX-B or a formulation buffer negative control. Mice were transduced with AAV6-hACE2 7 days after the boost and challenged 9 days later. All mice were sacrificed 4 days after challenge with SARS-CoV-2, and virus was measured in lung homogenates (n=12 per group) (**** p<0.0001).

此外,藉由PCR偵測肺中之病毒RNA證明了劑量反應性降低,高劑量組與陰性對照組之平均值之間的差異超過100倍。對感染小鼠之一個肺切片進行肺組織病理學分級。所有小鼠均展現顯著組織病理學。不清楚多少病理學歸因於SARS-CoV-2以及多少歸因於用於表現hACE2之AAV6病毒;然而,在用兩種更高劑量水平之PTX-B治療之小鼠組中存在組織病理學評分降低的趨勢(圖9)。總而言之,小鼠用指定量之PTX-B免疫,用AAV6-hACE2轉導,且九天後用SARS-CoV-2進行攻擊。攻擊後四天,對小鼠進行免疫且將左肺固定於福馬林中,進行組織學處理且由對治療條件不知情的認證病理學家在顯微鏡下檢查。為各樣品分配一個1至5的組織學評分,其中最低分為正常的。隨著疫苗劑量的增加,可見病理學降低的趨勢。Furthermore, detection of viral RNA in the lungs by PCR demonstrated reduced dose responsiveness, with a more than 100-fold difference between the means of the high-dose group and the negative control group. Lung histopathology was graded on one lung section from an infected mouse. All mice exhibited significant histopathology. It is unclear how much of the pathology is attributable to SARS-CoV-2 and how much to the AAV6 virus used to express hACE2; however, there was histopathology in groups of mice treated with two higher dose levels of PTX-B There is a downward trend in scores (Figure 9). In summary, mice were immunized with indicated amounts of PTX-B, transduced with AAV6-hACE2, and challenged with SARS-CoV-2 nine days later. Four days after challenge, mice were immunized and left lungs were fixed in formalin, processed for histology and examined microscopically by a certified pathologist blinded to treatment conditions. Each sample is assigned a histological score from 1 to 5, with the lowest score being normal. A trend toward decreased pathology was seen with increasing vaccine doses.

總之,使用AAV6-hACE2轉導小鼠模型,投予PTX-B (1、4及20 μg)賦予了針對SARS-CoV-2感染的保護,且對肺病理學具有積極影響,表明PTX-B具有保護性或損害預防特徵。安樂死時肺中之SARS-CoV-2 mRNA的總量亦減少。在低劑量(1 µg)疫苗接種組中觀測到攻擊後體重減輕。 實施例4. 倉鼠攻擊模型 In conclusion, using an AAV6-hACE2 transduced mouse model, administration of PTX-B (1, 4, and 20 μg) conferred protection against SARS-CoV-2 infection and had a positive impact on lung pathology, indicating that PTX-B has Protective or damage prevention characteristics. The total amount of SARS-CoV-2 mRNA in the lungs was also reduced at the time of euthanasia. Postchallenge weight loss was observed in the low-dose (1 µg) vaccination group. Example 4. Hamster attack model

對用SARS-CoV-2攻擊之6至8週齡雄性敘利亞金倉鼠進行攻擊研究,以確定疫苗是否能保護免受感染。A challenge study was conducted in 6- to 8-week-old male Syrian golden hamsters challenged with SARS-CoV-2 to determine whether the vaccine protects against infection.

敘利亞金倉鼠易受SARS-CoV-2感染,且已證明可用於評估候選疫苗。Syrian golden hamsters are susceptible to SARS-CoV-2 infection and have been shown to be useful in evaluating vaccine candidates.

第1組倉鼠接受20 µg LNP調配之全長S蛋白mRNA (PTX-B)。Hamsters in group 1 received 20 µg of LNP-formulated full-length S protein mRNA (PTX-B).

第2組倉鼠接受4 µg LNP調配之全長S蛋白mRNA (PTX-B)。Hamsters in Group 2 received 4 µg of LNP-formulated full-length S protein mRNA (PTX-B).

第3組倉鼠接受1 µg LNP調配之全長S蛋白mRNA (PTX-B)。Hamsters in Group 3 received 1 µg of LNP-formulated full-length S protein mRNA (PTX-B).

第4組倉鼠接受調配物緩衝液(PBS假/陰性疫苗對照組)。Group 4 hamsters received formulation buffer (PBS sham/negative vaccine control group).

在第0天,對所有倉鼠進行預抽血以用於基線分析。在第1天,所有倉鼠接受第一次肌內注射(疫苗或對照,根據第1組至第4組)。使動物適應7天,隨後接受第一疫苗劑量。在第21天,對所有倉鼠進行活體抽血。在第22天,所有倉鼠根據第1組至第4組接受第二(加強)疫苗接種。在第29天,所有倉鼠經鼻內接受AAV6-hACE2 (參見例如實施例3)以促進SARS-CoV-2感染。在第38天,所有倉鼠經由鼻內感染而感染SARS-CoV-2。所有動物接受7.5×10^5 TCID 50之總劑量,如由反滴定所確定。在此之後,每日監測動物之體重減輕及疾病或窘迫跡象。另外,藉由每隔一天收集口腔拭子來監測病毒脫落。倉鼠在第42天被安樂死以用於終點分析:(i)肺勻漿之感染性;(ii)肺中的病毒RNA水平;(iii)肺組織病理學。在研究期間監測動物在疫苗接種階段期間的任何可觀測臨床徵象。未觀測到明顯不良反應。完整實驗設計說明於表8中。 表8. 實驗概述 疫苗接種途徑 在倉鼠後腿的兩個部位肌內接種疫苗,使用23-25號、3/8-1吋針頭,總共接種200 μL(每個部位100 μL) 疫苗接種時間 在第1天及第22天的2個劑量,在第43天攻擊 攻擊病毒 劑量 途徑 SARS-CoV-2 7.5×10 5TCID50 鼻內 On Day 0, all hamsters were pre-bleed for baseline analysis. On day 1, all hamsters received the first intramuscular injection (vaccine or control, according to group 1 to group 4). Animals were allowed to acclimate for 7 days before receiving the first vaccine dose. On day 21, a live blood draw was performed on all hamsters. On day 22, all hamsters received a second (booster) vaccination according to groups 1 to 4. On day 29, all hamsters received AAV6-hACE2 intranasally (see, eg, Example 3) to facilitate SARS-CoV-2 infection. On day 38, all hamsters were infected with SARS-CoV-2 via intranasal infection. All animals received a total dose of 7.5×10^5 TCID 50 as determined by back titration. Thereafter, animals were monitored daily for weight loss and signs of disease or distress. Additionally, viral shedding was monitored by collecting oral swabs every other day. Hamsters were euthanized on day 42 for endpoint analysis of: (i) infectivity of lung homogenates; (ii) viral RNA levels in the lungs; (iii) lung histopathology. Monitor animals for any observable clinical signs during the vaccination phase during the study. No obvious adverse reactions were observed. The complete experimental design is described in Table 8. Table 8. Experiment overview Vaccination route Inoculate the hamster intramuscularly into two sites on the hind legs, using a 23-25 gauge, 3/8-1 inch needle, inoculating a total of 200 μL (100 μL per site) Vaccination time 2 doses on day 1 and 22, challenge on day 43 Challenge virus dose route SARS-CoV-2 7.5×10 5TCID50 Intranasal

在感染後4天及8天(dpi)時,自各組隨機選擇四隻動物且使其安樂死。收集組織以用於藉由qRT-PCR及感染性病毒效價水平確定病毒負荷以及用於組織病理學。在實驗的終點(8 dpi),亦自兩組動物收集血液以評估中和抗體之效價。Four animals from each group were randomly selected and euthanized at 4 and 8 days post-infection (dpi). Tissues were collected for determination of viral load by qRT-PCR and infectious virus titer levels and for histopathology. At the end of the experiment (8 dpi), blood was also collected from both groups of animals to assess the titers of neutralizing antibodies.

接種疫苗組之動物在實驗過程期間平均未顯示體重減輕。相比之下,假疫苗組之倉鼠在3 dpi開始顯示中度平均體重減輕。總體而言,實驗終點時之平均體重減輕為11%。任一組均未報導其他顯著的疾病臨床徵象。Animals in the vaccinated group showed no weight loss on average during the course of the experiment. In contrast, hamsters in the sham vaccine group showed moderate average weight loss starting at 3 dpi. Overall, the average weight loss at the end of the trial was 11%. No other significant clinical signs of disease were reported in either group.

在4 dpi及8 dpi對動物進行安樂死之後,將一半肺置於福馬林中以用於組織固定。隨後對組織進行H&E染色,且由對各組不知情的病理學家進行評估。與接種疫苗組相比,對照組(假疫苗接種)在兩個時間點之病理學評分均顯著更高。此表明未接種疫苗組之疾病更嚴重。After animals were euthanized at 4 and 8 dpi, half of the lungs were placed in formalin for tissue fixation. Tissues were subsequently H&E stained and evaluated by a pathologist blinded to each group. Compared with the vaccinated group, the control group (sham vaccinated) had significantly higher pathology scores at both time points. This suggests that the disease in the unvaccinated group was more severe.

在實驗過程中收集口腔拭子用於評估病毒脫落。有趣的是,雖然在整個實驗過程中在兩組中均偵測到病毒RNA,但疫苗接種動物之實際感染性病毒的水平顯著降低(範圍為2至3對數降低,如圖14中所示)。此表明在整個實驗過程中,接種疫苗組之病毒脫落較低,且PTX-B可減少病毒脫落,從而提供治療益處。Oral swabs were collected during the experiment for assessment of viral shedding. Interestingly, although viral RNA was detected in both groups throughout the experiment, the actual levels of infectious virus were significantly reduced in vaccinated animals (ranging from 2 to 3 log reductions, as shown in Figure 14) . This suggests that viral shedding was lower in the vaccinated group throughout the experiment and that PTX-B reduced viral shedding, thereby providing a therapeutic benefit.

對鼻甲中之病毒負荷的檢查表明,接種疫苗組在4 dpi時之感染性病毒的量顯著降低,且在8 dpi時不可偵測到感染性病毒水平。在肺中可見類似趨勢,但顯著的差異為在接種疫苗動物的肺中在任一時間點均未偵測到感染性病毒。在兩個時間點,接種疫苗及未接種疫苗組的肺中均偵測到病毒RNA。Examination of viral loads in the turbinates showed a significant reduction in the amount of infectious virus at 4 dpi in the vaccinated group, and undetectable levels of infectious virus at 8 dpi. A similar trend was seen in the lungs, with the notable difference that no infectious virus was detected in the lungs of vaccinated animals at any time point. Viral RNA was detected in the lungs of both vaccinated and unvaccinated groups at both time points.

此等資料表明,在倉鼠感染模型中,接種PTX-B可提供針對SARS-CoV2-2鼻內攻擊的保護。 實施例5. 小鼠免疫原性及局部耐受性研究 These data demonstrate that vaccination with PTX-B provides protection against intranasal challenge with SARS-CoV2-2 in a hamster infection model. Example 5. Study on immunogenicity and local tolerance in mice

此2劑量免疫原性及耐受性研究之目標為獲得與mRNA疫苗相關的基本安全性資料外加用於其他臨床前實驗之不同小鼠品系的免疫學資料。在第1天及第22天,藉由IM注射以0、4或20 µg之劑量水平向BALB/c小鼠組投予PTX-B,如表9中所概述。藉由改良的Draize評分評估主要研究動物之臨床徵象、體重變化及皮膚觀測結果。在第24天(第二劑量後兩天)處死血液學群組的動物,抽取血液用於血液學且記錄器官重量,評估總體病理學,且用顯微鏡檢查肝臟、脾臟及注射部位組織。在第22天處死細胞介素群組用於測定血清細胞介素濃度。主要研究動物在第43天(第二劑量後三週)終止且評估免疫原性終點、血液學、臨床化學、肝功能測試、總體病理學及器官重量。 表9. 小鼠免疫原性及局部耐受性研究-研究設計 組號 測試物質 劑量 (µg) 劑量體積 (µl) 劑量濃度 (µg /mL) 動物數量 主要研究 血液學 細胞介素 雄性 雌性 雄性 雌性 雄性 雌性 1 對照 0 50 0 10 10 5 5 5 5 2 PTX-B 4 50 0.08 10 10 5 5 5 5 3 PTX-B 20 50 0.4 10 10 5 5 5 5 安全性相關終點 The goal of this 2-dose immunogenicity and tolerability study is to obtain basic safety data related to the mRNA vaccine in addition to immunological data on different mouse strains for use in other preclinical experiments. On Days 1 and 22, groups of BALB/c mice were administered PTX-B via IM injection at dose levels of 0, 4, or 20 µg, as summarized in Table 9. The clinical signs, body weight changes and skin observations of the main research animals were evaluated by the modified Draize score. Animals in the hematology cohort were sacrificed on day 24 (two days after the second dose), blood was drawn for hematology and organ weights were recorded, gross pathology was assessed, and liver, spleen and injection site tissue were examined microscopically. The interleukin population was sacrificed on day 22 for determination of serum interleukin concentration. Primary study animals were terminated on Day 43 (three weeks after the second dose) and immunogenicity endpoints, hematology, clinical chemistry, liver function testing, gross pathology, and organ weights were assessed. Table 9. Mouse immunogenicity and local tolerance studies - study design Group number test substance Dosage(µg) Dosage volume (µl) Dose concentration(µg/mL) Number of animals main research Hematology interleukin male female male female male female 1 control 0 50 0 10 10 5 5 5 5 2 PTX-B 4 50 0.08 10 10 5 5 5 5 3 PTX-B 20 50 0.4 10 10 5 5 5 5 safety-related endpoints

在第二次給藥20 μg PTX-B後,在兩種性別中均觀測到短暫的、略微的體重減輕;然而,在研究結束時,各組之間的平均體重無明顯差異(資料未示出)。After the second dose of 20 μg PTX-B, a transient, slight weight loss was observed in both sexes; however, there was no significant difference in mean body weight between the groups at the end of the study (data not shown out).

在臨床觀測及總體及顯微鏡檢查中注意到注射部位的測試材料相關發現;所有發現均為可逆的。基於Draize評分,在注射部位偶爾觀測到4及20 µg的發紅及/或腫脹,且在第一劑量後的一至兩天內在少數雌性小鼠中可見豎毛,但此等不被視為重要的發現。在第二劑量後兩天終止時,注射部位之組織病理學發現包括兩種性別在4及20 µg時出現輕微至中度混合細胞炎症;該發現伴隨著水腫,且在一隻雌性中在20 µg下伴隨著礦化物質。在雌性中注意到該發現之發生率及嚴重程度的劑量關係。炎症與堅硬的異常稠度及腫脹密切相關。另外,在兩種劑量下,少數動物均出現輕微至輕度出血,此與注射部位或皮下組織的暗灶密切相關;無明顯的劑量關係。在研究結束時,在注射部位未觀測到宏觀發現。Test material-related findings at the injection site were noted during clinical observation and gross and microscopic examination; all findings were reversible. Based on the Draize score, redness and/or swelling at the injection site between 4 and 20 µg was occasionally observed, and piloerection was seen in a few female mice for one to two days after the first dose, but these were not considered important. discovery. At termination two days after the second dose, histopathological findings at the injection site included mild to moderate mixed cellular inflammation in both sexes at 4 and 20 µg; this finding was accompanied by edema and in one female at 20 µg. Accompanied by mineralized substances at µg. A dose relationship was noted in the incidence and severity of this finding in females. Inflammation is closely associated with a hard, abnormal consistency and swelling. In addition, at both doses, a few animals experienced slight to mild bleeding, which was closely related to the dark lesions at the injection site or subcutaneous tissue; there was no obvious dose relationship. At the end of the study, no macroscopic findings were observed at the injection site.

在第二劑量後6小時(第22天)進行血清細胞介素分析以監測細胞介素釋放症候群,其為LNP調配之mRNA的已知潛在副作用。使用經過驗證的免疫分析方法來分析IFN-γ、IL-1β、IL-6、IL-10、MCP-1、及TNF-α。在兩個劑量水平下在兩種性別中均觀測到IL-6 (雄性及雌性分別為對照之至多53倍及266倍)及MCP-1 (雄性及雌性分別為對照之至多20倍及15倍)之血清濃度的PTX-B相關增加。一般而言,反應之幅度與劑量相關。對於MCP-1,反應不具有有意義的性別相關差異。對於IL-6,雌性之增加幅度大於雄性。在兩種性別的一些動物中觀測到IFN-γ之血清濃度輕度增加(至多2.5倍)。IL-1β、IL-10及TNF-α無明顯的PTX-B相關變化。觀測到的細胞介素變化模式與細胞介素釋放症候群不一致。Serum interleukin analysis was performed 6 hours after the second dose (day 22) to monitor for interleukin release syndrome, a known potential side effect of LNP-formulated mRNA. Analyze IFN-γ, IL-1β, IL-6, IL-10, MCP-1, and TNF-α using validated immunoassay methods. IL-6 (up to 53-fold and 266-fold higher in males and females, respectively) and MCP-1 (up to 20-fold and 15-fold higher in males and females, respectively) were observed in both sexes at both dose levels ) of PTX-B-related increases in serum concentrations. In general, the magnitude of response is dose-related. For MCP-1, there were no meaningful sex-related differences in responses. For IL-6, the increase was greater in females than in males. Mild increases (up to 2.5-fold) in serum concentrations of IFN-γ were observed in some animals of both sexes. There were no obvious PTX-B-related changes in IL-1β, IL-10 and TNF-α. The observed pattern of interleukin changes is inconsistent with interleukin release syndrome.

在研究期間每週測定體重。在20 µg組中,雄性及雌性之體重均略有下降。到研究結束時,各組之體重均已恢復(資料未示出)。Body weight was measured weekly during the study. In the 20 µg group, body weight of both males and females decreased slightly. By the end of the study, all groups had regained body weight (data not shown).

在第二次疫苗接種之後兩天(第24天)及三週(第43天)測定血液學參數。在第一個時間點,兩種性別中唯一發生劑量反應性改變的變化為白血球(雄性在4及20 µg下分別為對照之264%及420%,雌性在4及20 µg下分別為對照之329%及514%)及網狀紅血球(雄性在4及20 µg下分別為對照之69%及41%,雌性在4及20 µg下分別為對照之53%及27%);未觀測到對紅血球參數的影響。所有血液學參數在第43天均在正常範圍內(白血球:雄性在4及20 µg下分別為對照之77%及77%,雌性在4及20 µg下分別為對照之67%及75%,網狀紅血球(雄性在4及20 µg下分別為對照之107%及117%,雌性在4及20 µg下分別為對照之122%及129%)。Hematological parameters were measured two days (day 24) and three weeks (day 43) after the second vaccination. At the first time point, the only dose-responsive changes in both sexes were in leukocytes (264% and 420% of control at 4 and 20 µg for males and 420% and 420% for females at 4 and 20 µg, respectively). 329% and 514%) and reticulocytes (males were 69% and 41% of the control at 4 and 20 µg, respectively, and females were 53% and 27% of the control at 4 and 20 µg, respectively); no effects were observed. Effects of red blood cell parameters. All hematological parameters were within normal range on day 43 (white blood cells: 77% and 77% of control at 4 and 20 µg for males, 67% and 75% of control at 4 and 20 µg for females, Reticulocytes (107% and 117% of control at 4 and 20 µg for males, 122% and 129% of control at 4 and 20 µg for females).

在第二劑量後兩天(第24天),注意到雌性之肝臟在20 μg下表現出最小的肝細胞細胞質改變,其特徵為肝醣樣物質的積累。該變化與體重增加(絕對及相對於腦重量,24%至27%)及淺變色相關。然而,在第43天,所有肝功能測試均在正常範圍內,且與對照組無顯著差異。Two days after the second dose (day 24), it was noted that the livers of females at 20 μg exhibited minimal hepatocyte cytoplasmic changes, characterized by the accumulation of glycogen-like material. This change was associated with weight gain (absolute and relative to brain weight, 24% to 27%) and light discoloration. However, on day 43, all liver function tests were within the normal range and were not significantly different from the control group.

在第24天,在4及20 μg下,在兩種性別中均注意到脾臟重量增加(絕對及相對於腦重量,32%至49%)。此增加為統計顯著的,且與雌性的腫大密切相關。無法建立微觀相關性。On day 24, an increase in spleen weight was noted in both sexes at 4 and 20 μg (absolute and relative to brain weight, 32% to 49%). This increase was statistically significant and correlated well with enlargement in females. Micro-correlation cannot be established.

到研究結束時(第43天,第二劑量後三週),未發現PTX-B相關的總體發現。儘管絕對脾臟重量在20 µg時仍然增加(14%至18%),但增加的幅度明顯低於第二劑量後兩天,且所有血液學參數均正常。By the end of the study (day 43, three weeks after the second dose), no overall PTX-B-related findings were noted. Although absolute spleen weight still increased at 20 µg (14% to 18%), the magnitude of the increase was significantly less than two days after the second dose, and all hematological parameters were normal.

總之,在第1天及第22天以4及20 μg之劑量水平藉由IM注射向BALB/c小鼠投予的PTX-B具有良好耐受性。在第二劑量後觀測到的結果有限,主要為IL-6及MCP-1之血清濃度的增加、白血球之劑量相關增加及網狀紅血球的減少、劑量相關的注射部位反應及脾臟重量增加,但無微觀相關性。僅在20 μg/劑量下注意到的其他發現包括略微的體重減輕及肝細胞細胞質改變。所有發現均為完全或部分可逆的;截至第43天,測試材料相關的影響僅限於脾臟重量在20 μg/劑量下的略微增加。 免疫原性相關終點 In conclusion, PTX-B administered to BALB/c mice by IM injection on days 1 and 22 at dose levels of 4 and 20 μg was well tolerated. Limited results were observed after the second dose, mainly increases in serum concentrations of IL-6 and MCP-1, dose-related increases in leukocytes and decreases in reticulocytes, dose-related injection site reactions, and increases in spleen weight, but No micro correlation. Other findings noted only at 20 mcg/dose included slight weight loss and hepatocyte cytoplasmic changes. All findings were fully or partially reversible; as of day 43, test material-related effects were limited to a slight increase in spleen weight at 20 μg/dose. Immunogenicity-Related Endpoints

在研究結束時收集脾細胞用於藉由ELISpot進行分析(圖10,來自PTX-B免疫小鼠之脾細胞的IFN-γ及IL-4 ELISpots)。在SARS-CoV-2 S蛋白肽池S158及S157(可獲自例如JPT Peptide Technologies, Berlin, Germany)存在下,在IFN-γ及IL-4多重ELISpot盤上刺激自PTX-B小鼠收集的脾細胞。在隔夜刺激後對斑點進行計數。藉由雙因素變異數分析執行統計。如圖10中所示,自用S158肽池刺激之雄性及雌性小鼠中均觀測到IFN-γ表現的顯著增加。類似地,S157肽池誘導雄性小鼠IFN-γ表現的顯著增加。IL-4表現未因用任一肽池刺激而顯著增加。此結果組合指示偏向Th1之反應。Splenocytes were collected at the end of the study for analysis by ELISpot (Figure 10, IFN-γ and IL-4 ELISpots of splenocytes from PTX-B immunized mice). Collected from PTX-B mice were stimulated on IFN-γ and IL-4 multiplex ELISpot plates in the presence of SARS-CoV-2 S protein peptide pools S158 and S157 (available, for example, from JPT Peptide Technologies, Berlin, Germany). Splenocytes. Spots were counted after overnight stimulation. Statistics were performed by two-way ANOVA. As shown in Figure 10, a significant increase in IFN-γ expression was observed in both male and female mice self-stimulated with the S158 peptide pool. Similarly, the S157 peptide pool induced a significant increase in IFN-γ expression in male mice. IL-4 performance was not significantly increased by stimulation with either peptide pool. This combination of results indicates a Th1-biased response.

在SARS-CoV-2中和分析中,來自用調配物緩衝液處理、作為陰性對照之雌性及雄性小鼠的血清在任何測試稀釋度下均未提供針對SARS-CoV-2臨床分離株感染的保護(圖11)。相反,來自用4 µg PTX-B免疫接種之雌性及雄性小鼠之血清的平均ID50效價分別為1353及480。來自用20 μg PTX-B免疫接種之小鼠的血清提供更大保護,平均ID50效價為7645 (雌性)及5118 (雄性),表明劑量反應性效應(圖11)。In the SARS-CoV-2 neutralization assay, sera from female and male mice treated with formulation buffer as negative controls did not provide protection against infection with SARS-CoV-2 clinical isolates at any dilution tested. Protection (Figure 11). In contrast, the mean ID50 titers of sera from female and male mice immunized with 4 µg of PTX-B were 1353 and 480, respectively. Sera from mice immunized with 20 μg of PTX-B provided greater protection, with mean ID50 titers of 7645 (females) and 5118 (males), indicating a dose-responsive effect (Figure 11).

為了證實來自用PTX-B治療之小鼠之血清的強力中和作用,進行了第二獨立假病毒中和分析。來自陰性對照組的血清未顯示中和能力(圖12)。來自用4 µg PTX-B治療之雌性及雄性小鼠的血清提供了ID50值分別為4048及1863之保護活性。來自用20 µg PTX-B免疫接種之小鼠的血清顯示16390 (雌性)及1414 (雄性)之平均ID50值。To confirm the potent neutralization of sera from mice treated with PTX-B, a second independent pseudovirus neutralization assay was performed. Serum from the negative control group showed no neutralizing ability (Figure 12). Serum from female and male mice treated with 4 µg of PTX-B provided protective activity with ID50 values of 4048 and 1863, respectively. Serum from mice immunized with 20 µg PTX-B showed mean ID50 values of 16390 (female) and 1414 (male).

用4及20 μg之PTX-B免疫接種均導致BALB/c小鼠產生強中和抗體反應(圖13A至圖13C)。對來自PTX-B治療之小鼠的血清進行連續稀釋,且使用抗同型HRP抗體量測抗SARS-CoV-2刺突IgG、IgG1、IgG2a、IgG2b、IgM、及IgA。中值使用盒狀圖表示,其中須表示四分位數範圍之Q1及Q3的Tukey分析,統計離群值用單個點表示。結果為劑量反應性的,且與先前實驗中在C57BL/6小鼠中所證明的一致。由PTX-B之初打-加打誘導之抗SARS-CoV-2抗刺突蛋白抗體概況表明,此調配之疫苗促進針對SARS-CoV-2刺突蛋白之血清轉化。在兩個測試劑量水平下誘導了SARS-CoV-2刺突蛋白特異性IgG (圖13A,左圖)、IgG1 (圖13A,右圖)、IgG2a (圖13B,左圖)、IgG2b (圖13B,右圖)、IgM (圖13C,左圖)、及IgA (圖13C,右圖)。 實施例6. SARS-CoV-2 N、M、N/M蛋白核酸疫苗之功效 Immunization with both 4 and 20 μg of PTX-B resulted in strong neutralizing antibody responses in BALB/c mice (Figure 13A to Figure 13C). Serial dilutions of sera from PTX-B-treated mice were performed, and anti-SARS-CoV-2 spike IgG, IgG1, IgG2a, IgG2b, IgM, and IgA were measured using anti-isotype HRP antibodies. The median value is represented by a box plot, which must represent the Tukey analysis of Q1 and Q3 in the interquartile range, and statistical outliers are represented by a single point. The results were dose-responsive and consistent with those demonstrated in previous experiments in C57BL/6 mice. The profile of anti-SARS-CoV-2 anti-spike protein antibodies induced by initial and additional doses of PTX-B showed that this formulated vaccine promoted seroconversion against the SARS-CoV-2 spike protein. SARS-CoV-2 spike protein-specific IgG (Figure 13A, left panel), IgG1 (Figure 13A, right panel), IgG2a (Figure 13B, left panel), IgG2b (Figure 13B , right panel), IgM (Fig. 13C, left panel), and IgA (Fig. 13C, right panel). Example 6. Efficacy of SARS-CoV-2 N, M, N/M protein nucleic acid vaccines

藉由將螢光T細胞(用CFSE標記)與經N、M或N/M混雜物之mRNA轉染的活化樹突細胞(DC)混合進行共培養分析,該混雜物有或無分泌信號,如下表9中所述。特定言之,在第1天從來自COVID-19恢復期患者之周邊血液單核細胞(PBMC)分離單核球。單核球源性樹突狀細胞(MDDC)亦從來自相同恢復期患者之PBMC分化而來。在第4天用RNA疫苗轉染MDDC,且將轉染之MDDC與PBMC共培養以在共培養物中誘導T細胞之自體刺激。 表10. 實施例6及圖15中所用之核酸疫苗的描述 mRNA疫苗描述 SEQ ID NO A tdTomato (陰性對照) 46 B N - 編碼N蛋白之序列 30 C M - 編碼M蛋白之序列 28 D NM - 編碼N及M蛋白之序列 29 E sNM - 具有信號肽且編碼N及M蛋白之序列 31 Co-culture assays were performed by mixing fluorescent T cells (labeled with CFSE) with activated dendritic cells (DC) transfected with mRNA for N, M, or N/M mixtures with or without secretion signals. As described in Table 9 below. Specifically, monocytes were isolated on day 1 from peripheral blood mononuclear cells (PBMC) from COVID-19 convalescent patients. Mononuclear dendritic cells (MDDCs) were also differentiated from PBMCs from the same convalescent patients. MDDC were transfected with RNA vaccine on day 4, and the transfected MDDC were co-cultured with PBMC to induce autostimulation of T cells in the co-culture. Table 10. Description of nucleic acid vaccines used in Example 6 and Figure 15 group mRNA vaccine description SEQ ID NO A tdTomato (negative control) 46 B N - sequence encoding N protein 30 C M - sequence encoding M protein 28 D NM - sequence encoding N and M proteins 29 E sNM - sequence with signal peptide encoding N and M proteins 31

使用包含TNF-a、IL-1b、IL-6及PGE2因子之細胞介素混合液使共培養物中之樹突狀細胞成熟。在第5天,用羧基螢光素丁二醯亞胺酯(CFSE)對細胞進行標記以監測淋巴細胞增殖(參見例如 Lyons AB, Parish CR(1994年5月). 「Determination of lymphocyte division by flow cytometry」. Journal of Immunological Methods. 171 (1): 131-7,以引用的方式併入本文中)。 Dendritic cells in the co-culture were matured using a cocktail of interleukins containing TNF-a, IL-1b, IL-6 and PGE2 factors. On day 5, cells were labeled with carboxyfluorescein succinimidyl ester (CFSE) to monitor lymphocyte proliferation (see, e.g. , Lyons AB, Parish CR (May 1994). "Determination of lymphocyte division by flow Cytometry". Journal of Immunological Methods. 171 (1): 131-7, incorporated herein by reference).

隨後,在第11天,使用CD4或CD8之螢光抗體對細胞進行染色以鑑定CD4+/CD8+T細胞,且測定抗體標記之細胞中之CFSE標記的量以確定T細胞增殖。Subsequently, on day 11, cells were stained using fluorescent antibodies to CD4 or CD8 to identify CD4+/CD8+ T cells, and the amount of CFSE labeling in antibody-labeled cells was determined to determine T cell proliferation.

由於多次細胞分裂,被DC刺激之細胞具有低水平之CSFE。建立臨限值以鑑定低CFSE染色之細胞,亦即已經歷1次或多次分裂的細胞(例如分裂1次之細胞中的CFSE信號降低至1/2;分裂超過1次之細胞中的CFSE信號降低超過1/2)。通常,分裂1至7次之細胞被鑑定為「低CFSE」細胞。因此,[mRNA轉染細胞中之低CFSE染色]與[對照細胞中之低CFSE染色]之比提供了T細胞刺激指數(SI)。增加的SI值指示mRNA疫苗刺激T細胞反應之程度。Cells stimulated by DC have low levels of CSFE due to multiple cell divisions. Establish a threshold value to identify cells with low CFSE staining, that is, cells that have undergone 1 or more divisions (e.g., CFSE signal in cells that have divided once is reduced to 1/2; CFSE in cells that have divided more than 1 time) The signal is reduced by more than 1/2). Typically, cells that divide 1 to 7 times are identified as "low CFSE" cells. Therefore, the ratio of [low CFSE staining in mRNA-transfected cells] to [low CFSE staining in control cells] provides the T cell stimulation index (SI). An increased SI value indicates the extent to which the mRNA vaccine stimulates a T cell response.

T細胞之刺激,亦即刺激指數(SI)計算如下:SI=[用經mRNA轉染之DC刺激之T細胞的增殖(% CFSE-lo)]除以[用DC對照(含培養基之DC)刺激之T細胞的增殖(% CFSE-lo)]。大於2之SI值被認為指示生物學上顯著之增殖。資料在圖15中示出。 實施例7. 使用PTX-B對VOC進行的假病毒中和分析 The stimulation of T cells, that is, the stimulation index (SI), is calculated as follows: SI = [Proliferation of T cells stimulated with DC transfected with mRNA (% CFSE-lo)] divided by [Control with DC (DC containing culture medium) Proliferation of stimulated T cells (% CFSE-lo)]. SI values greater than 2 are considered to indicate biologically significant proliferation. The data are shown in Figure 15. Example 7. Pseudovirus neutralization analysis of VOC using PTX-B

使用假病毒中和分析(參見例如實施例2)測試各種患者血清之中和能力,該分析採用假型至野生型SARS-CoV-2關注變異體(VOC)及如表11中所述之其他變異體之S蛋白的假病毒。 表11. 實施例7及圖16至18中之假病毒編碼之S蛋白的描述 假病毒ID 經編碼S蛋白之描述 A WT 來自中國武漢之原始病毒株的S蛋白 B D614G 具有D614G突變之WT S蛋白 C UK變異體 PANGO譜系B.1.17 S蛋白 D SA變異體 PANGO譜系B.1.351 S蛋白 E D614G+L452R 具有D614G及L452R之WT S蛋白 F UK+L452R 具有L452R突變之PANGO譜系B.1.17 S蛋白 G SA+L452R 具有L452R突變之PANGO譜系B.1.351 S蛋白 H BR變異體 PANGO譜系P.1 S蛋白 Various patient sera were tested for neutralization capacity using a pseudovirus neutralization assay (see, e.g., Example 2) using pseudotyped to wild-type SARS-CoV-2 variants of concern (VOC) and others as described in Table 11 Pseudovirus with variant S protein. Table 11. Description of S proteins encoded by pseudoviruses in Example 7 and Figures 16 to 18 group Fake virus ID Description of the encoded S protein A WT S protein of the original virus strain from Wuhan, China B D614G WT S protein with D614G mutation C UK variant PANGO lineage B.1.17 S protein D SA variants PANGO lineage B.1.351 S protein E D614G+L452R WT S protein with D614G and L452R F UK+L452R PANGO lineage B.1.17 S protein with L452R mutation G SA+L452R PANGO lineage B.1.351 S protein with L452R mutation H BR variant PANGO lineage P.1 S protein

測試之血清包括CBS 13及CBS 5 (來自COVID-19患者之Canadian Blood Services樣品)、O132 (來自雙重mRNA疫苗接種患者之血清)、含有NRC VHH72抗體(靶向S蛋白RBD)之血清。如圖16中所示,各種測試血清對編碼不同SARS-CoV-2變異體S蛋白之假病毒的中和能力降低。通常,與WT及D614G變異體相比,對編碼英國及南非S蛋白變異體之變異體的中和能力下降。南非變異體S蛋白及包括L452R突變之南非變異體S蛋白始終顯示出最低中和水平。The sera tested include CBS 13 and CBS 5 (Canadian Blood Services samples from COVID-19 patients), O132 (sera from patients with dual mRNA vaccination), and sera containing NRC VHH72 antibodies (targeting S protein RBD). As shown in Figure 16, various test sera had reduced neutralizing abilities against pseudoviruses encoding the S proteins of different SARS-CoV-2 variants. In general, variants encoding the British and South African S protein variants had reduced neutralizing capacity compared to the WT and D614G variants. The S protein of the South African variant and the S protein of the South African variant including the L452R mutation always showed the lowest neutralization levels.

接下來,針對VOC假病毒測試來自接種1 μg或10 μg PTX-B或10 μg編碼TdTomato之對照mRNA疫苗之小鼠的血清,且量測ID50。如圖17中所示,接種對照mRNA疫苗(TdTomato)之小鼠的血清顯示無感染保護。來自接種1 µg PTX-B之小鼠的血清顯示出感染保護,10 µg劑量可見保護效率呈劑量依賴性增加。通常,圖17中之2與3之間的ID50值可能針對感染有保護作用,且推測大於3之ID值具有保護作用。如可見,針對WT (A)、UK (C)、UK+L452R (F)及D614G+L452R (E)假病毒S蛋白變異體展現了最高保護水平,觀測到針對BR (H)、SA (D)及SA+L452R (G)假病毒S蛋白變異體之保護功效降低。在圖17中,連接點之線表示來自同一小鼠之血清。圖18示出各變異體(表11中提供之C、F、E、H、D及G)相對於WT SARS-CoV-2假型假病毒(表11中之A)之保護效率的比較,且證實了圖17中所示之趨勢。 實施例8. 在人體內之安全性、耐受性及免疫原性 研究概述 Next, sera from mice vaccinated with 1 μg or 10 μg of PTX-B or 10 μg of a control mRNA vaccine encoding TdTomato were tested against VOC pseudoviruses, and the ID50 was measured. As shown in Figure 17, sera from mice vaccinated with the control mRNA vaccine (TdTomato) showed no protection from infection. Serum from mice vaccinated with 1 µg of PTX-B showed protection against infection, with a dose-dependent increase in protective efficiency seen at the 10 µg dose. Generally, ID50 values between 2 and 3 in Figure 17 may be protective against infection, and ID values greater than 3 are presumed to be protective. As can be seen, the highest level of protection was demonstrated against the WT (A), UK (C), UK+L452R (F) and D614G+L452R (E) pseudovirus S protein variants, with BR (H), SA (D ) and SA+L452R (G) pseudovirus S protein variants have reduced protective efficacy. In Figure 17, lines connecting dots represent serum from the same mouse. Figure 18 shows a comparison of the protective efficiency of each variant (C, F, E, H, D and G provided in Table 11) relative to the WT SARS-CoV-2 pseudotyped pseudovirus (A in Table 11), And the trend shown in Figure 17 is confirmed. Example 8. Safety, tolerability and immunogenicity in humans Research overview

進行了Ia/Ib期、首次用於人體、觀測者不知情、隨機化、安慰劑對照、遞增劑量研究,以評估PTX-B疫苗在18至64歲及≥65歲之健康血清陰性成人體內的安全性、耐受性及免疫原性。A Phase Ia/Ib, first-in-human, observer-blinded, randomized, placebo-controlled, ascending-dose study was conducted to evaluate the efficacy of PTX-B vaccine in healthy seronegative adults aged 18 to 64 years and ≥65 years. Safety, tolerability and immunogenicity.

該研究之目的為評估2劑PTX-B疫苗在18-64歲及≥65歲之健康血清陰性成人體內的安全性及耐受性,以及評估2劑PTX-B疫苗在18至64歲及≥65歲之健康血清陰性成人體內的免疫原性。The purpose of this study was to evaluate the safety and tolerability of 2 doses of PTX-B vaccine in healthy seronegative adults aged 18 to 64 years and ≥65 years, and to evaluate the safety and tolerability of 2 doses of PTX-B vaccine in healthy seronegative adults aged 18 to 64 years and ≥ Immunogenicity in healthy seronegative adults aged 65 years.

評估之安全性及耐受性終點為:使用符合方案(PP)及安全群體,在各疫苗接種後之隨訪期間事件的發生率,該等事件包括:各疫苗接種後之隨訪期間的生命徵象及投予部位反應(例如手臂檢查評估,包括疼痛、壓痛、紅斑/發紅、硬結/腫脹);以及直至各疫苗接種後第三天每天要求記錄的不良事件(AE;例如發熱、發冷、噁心/嘔吐、腹瀉、頭痛、疲勞、肌痛)。The safety and tolerability endpoints evaluated are: the incidence of events during the follow-up period after vaccination using the per-protocol (PP) and safety groups. These events include: vital signs during the follow-up period after vaccination and Administration site reactions (e.g., arm examination assessment, including pain, tenderness, erythema/redness, induration/swelling); and adverse events (AEs; e.g., fever, chills, nausea) required to be recorded daily through the third day after each vaccination /vomiting, diarrhea, headache, fatigue, myalgia).

使用調整意向治療(mITT)及安全群體兩者來分析總體安全。若各治療組之個體與PP群體的差異≤ 5%,則不使用mITT群體進行分析。分析了第1天至第56天之未要求記錄的不良事件,以及就醫的AE (第1天至第56天)、新發慢性病(NOCD)、嚴重不良事件[SAE]、特別受關注的不良事件[AESI]及第1天至第395天(最後一次疫苗接種後大約1年)之潛在免疫介導醫學病狀(PIMMC)。亦記錄有針對性的體格檢查、生命徵象評估及臨床安全實驗室測試的結果。Overall safety was analyzed using both adjusted intention-to-treat (mITT) and safety populations. If the difference between individuals in each treatment group and the PP population is ≤ 5%, the mITT population will not be used for analysis. Adverse events not required to be recorded from day 1 to day 56 were analyzed, as well as medical AEs (days 1 to 56), new chronic diseases (NOCD), serious adverse events [SAE], and adverse events of special concern. Event [AESI] and potential immune-mediated medical condition (PIMMC) from days 1 to 395 (approximately 1 year after last vaccination). Results of targeted physical examinations, vital sign assessments, and clinical safety laboratory tests are also recorded.

評估之免疫反應終點包括:使用mITT及安全群體之免疫原性分析。若各治療組之個體與PP群體的差異≤ 5%,則不使用mITT群體進行分析。分析了抗體(免疫球蛋白(Ig) M、IgG、IgA [酶聯免疫吸附分析];及中和),且分析了使用血液/周邊血液單核細胞(PBMC [流動式細胞測量術、酶聯免疫斑點分析])之細胞介導的免疫。Immune response endpoints evaluated include immunogenicity analysis using mITT and safety populations. If the difference between individuals in each treatment group and the PP population is ≤ 5%, the mITT population will not be used for analysis. Antibodies (immunoglobulin (Ig) M, IgG, IgA [enzyme-linked immunosorbent assay]; and neutralizing) were analyzed, and blood/peripheral blood mononuclear cells (PBMC [flow cytometry, enzyme-linked immunosorbent assay] Immunospot analysis]) of cell-mediated immunity.

該研究設計成具有年齡及劑量遞增,且在血清陰性成年個體中進行,無證據表明該等個體近期暴露於嚴重急性呼吸道症候群(SARS)-CoV-2或未被鑑定為流感或呼吸道融合病毒(RSV) (發熱性或下呼吸道感染)的病毒性呼吸道疾病。The study was designed with age and dose escalation and was conducted in seronegative adult individuals with no evidence of recent exposure to severe acute respiratory syndrome (SARS)-CoV-2 or an influenza or respiratory fusion virus identified ( RSV) (febrile or lower respiratory tract infection) viral respiratory disease.

該研究分以下2期進行:The study is conducted in the following 2 phases:

1a期(約60名個體)個體間隔4週接受2劑PTX-B肌內(IM)疫苗或安慰劑。Phase 1a (approximately 60 individuals) individuals received 2 doses of PTX-B intramuscular (IM) vaccine or placebo 4 weeks apart.

群組1包括20名18至64歲之健康個體,向其投予16 μg PTX-B IM疫苗或安慰劑;5名哨兵個體(4名PTX-B:1名安慰劑),接著為剩餘的11名PTX-B:4名安慰劑(群組擴展)個體。Cohort 1 included 20 healthy individuals aged 18 to 64 years who were administered 16 μg of PTX-B IM vaccine or placebo; 5 sentinel individuals (4 PTX-B: 1 placebo), followed by the remaining 11 PTX-B:4 placebo (cohort expansion) subjects.

群組2包括20名18至64歲之健康個體,向其投予40 μg PTX-B IM疫苗或安慰劑;5名哨兵個體(4名PTX-B:1名安慰劑),接著為剩餘的11名PTX-B:4名安慰劑(群組擴展)個體。Cohort 2 included 20 healthy individuals aged 18 to 64 years who were administered 40 μg of PTX-B IM vaccine or placebo; 5 sentinel individuals (4 PTX-B: 1 placebo), followed by the remaining 11 PTX-B:4 placebo (cohort expansion) subjects.

群組3包括20名18至64歲之健康個體,向其投予100 μg PTX-B IM疫苗或安慰劑;5名哨兵個體(4名PTX-B:1名安慰劑),接著為剩餘的11名PTX-B:4名安慰劑(群組擴展)個體。Cohort 3 included 20 healthy individuals aged 18 to 64 years who were administered 100 μg of PTX-B IM vaccine or placebo; 5 sentinel individuals (4 PTX-B: 1 placebo), followed by the remaining 11 PTX-B:4 placebo (cohort expansion) subjects.

哨兵群組之評估包括安全隨訪評估(包括要求記錄的及未要求記錄的AE以及安全實驗室評估)直至疫苗接種後第三天。Evaluation of the sentinel cohort includes safety follow-up assessments (including required and unrecorded AEs and safety laboratory assessments) until the third day after vaccination.

1b期(約60名個體)個體間隔4週接受2劑PTX-B疫苗(15名接受安慰劑且45名積極治療)。Phase 1b (approximately 60 individuals) individuals received 2 doses of PTX-B vaccine 4 weeks apart (15 receiving placebo and 45 on active treatment).

群組4包括20名≥65歲之健康個體;向15名個體投予PTX-B IM疫苗,其中1個劑量水平基於1a期之先前結果而確定,且向5名個體投予安慰劑。Cohort 4 included 20 healthy individuals ≥65 years of age; 15 individuals were administered PTX-B IM vaccine at 1 dose level based on previous results from Phase 1a, and 5 individuals were administered placebo.

群組5包括20名≥65歲之健康個體;向15名個體投予PTX-B IM疫苗,其中1個劑量水平基於1a期之先前結果而確定,且向5名個體投予安慰劑。Cohort 5 included 20 healthy individuals ≥65 years of age; 15 individuals were administered PTX-B IM vaccine at 1 dose level based on previous results from Phase 1a, and 5 individuals were administered placebo.

群組6包括20名≥65歲之健康個體,向其投予PTX-B IM疫苗,1個劑量水平基於先前結果而確定,且向5名個體投予安慰劑。Cohort 6 included 20 healthy individuals aged ≥65 years who were administered PTX-B IM vaccine at 1 dose level based on previous results, and 5 individuals were administered placebo.

在登記下一群組之前,各群組之間經過了大約14天的獨立安全審查。Each cohort undergoes approximately 14 days of independent security review before enrolling the next cohort.

個體前往臨床站點進行篩選(第-21至-1天)以及在第1、8、28±2、36、56±2、90±3、180±5、及395-14天前往。在第2天及第29天對個體進行安全電話呼叫。篩選程序包括知情同意、進入標準評估、人口統計資料、身高、體重、身體質量指數、醫療及手術史、安全評估(包括SAE評估、記錄先前藥物治療及手術、體格檢查、生命徵象評估、臨床血液及尿液樣品、鼻咽[NP]拭子,診所可選擇經由額外的即時檢驗來確認是否符合條件),以及用於免疫原性分析之血液樣品(抗體)。在第1天,進行隨機分組(總體15:5研究疫苗:1a期及1b期群組之安慰劑疫苗)。在第1天及第28天,確認合格且進行安全評估、免疫原性及細胞介導免疫採血、紙質日記培訓及分發以及疫苗或安慰劑投予。進行安全評估、用於安全評估之血液及尿液樣品以及用於免疫原性分析及細胞介導免疫之血液樣品,直至研究問診結束。在第1天至第56天進行未要求記錄的AE的評估。當個體在第1天至第56天在家時,進行就醫的AE評估。自第1天至研究結束,對NOCD、AESI (包括COVID 19增強型疾病病例)及PIMMC進行了評估。將在整個研究期間評估SAE。Individuals visited clinical sites for screening (days -21 to -1) and on days 1, 8, 28±2, 36, 56±2, 90±3, 180±5, and 395-14. Secure telephone calls were made to individuals on Days 2 and 29. Screening procedures include informed consent, assessment of entry criteria, demographic information, height, weight, body mass index, medical and surgical history, safety assessment (including SAE assessment, documentation of previous medications and surgeries, physical examination, vital sign assessment, clinical hematology and urine samples, nasopharyngeal [NP] swabs, clinics may choose to undergo additional point-of-care testing to confirm eligibility), and blood samples for immunogenicity analysis (antibodies). On Day 1, randomization occurred (overall 15:5 study vaccine:placebo vaccine in Phase 1a and Phase 1b cohorts). On days 1 and 28, eligibility is confirmed and safety assessments are conducted, immunogenicity and cell-mediated immunity blood collection is performed, paper diary training and distribution is performed, and vaccine or placebo administration is performed. Conduct safety assessment, blood and urine samples for safety assessment, and blood samples for immunogenicity analysis and cell-mediated immunity until the end of the study consultation. Assessment of AEs not required to be documented was performed on days 1 to 56. Medical-seeking AE assessments were performed while the individual was at home on Days 1 to 56. NOCD, AESI (including COVID 19 enhanced disease cases), and PIMMC were assessed from Day 1 to the end of the study. SAEs will be assessed throughout the study.

疫苗及安慰劑由非盲的站點藥劑師製備,且由非盲的CPU人員在臨床研究站點藉由IM注射在非優勢側之上臂三角肌中投予。在投予疫苗後大約1小時內觀測個體之即時AE及/或反應原性。在每次接種疫苗後之隨訪期內,向個體提供日記卡且經過訓練以每天記錄具體引起的全身及局部症狀,以及任何額外的AE。要求個體拍下完成的日記卡的照片且將照片經由簡訊/電子郵件發送至站點,以確保密切監督反應。Vaccine and placebo were prepared by unblinded site pharmacists and administered by unblinded CPU personnel at the clinical study site by IM injection into the deltoid muscle of the non-dominant side of the upper arm. Individuals were observed for immediate AEs and/or reactogenicity within approximately 1 hour of vaccine administration. During the follow-up period after each vaccination, individuals were provided with diary cards and trained to record the specific systemic and local symptoms elicited daily, as well as any additional AEs. Individuals are asked to take a photo of the completed diary card and send the photo to the site via text/email to ensure close monitoring of responses.

對於每一個體,持續監測個體之持續時間為大約14個月。 研究納入標準 For each subject, the duration of continuous monitoring of the subject was approximately 14 months. Study inclusion criteria

個體必須滿足所有納入標準(以下編號1-8)才有資格參與研究。另外,尋求少數種族及族裔以獲得多樣化的研究群體。Individuals must meet all inclusion criteria (numbered 1-8 below) to be eligible to participate in the study. Additionally, seek out racial and ethnic minorities to obtain a diverse research population.

1. 個體已閱讀、理解且簽署知情同意書。1. The individual has read, understood and signed the informed consent form.

2. 在篩選時18至64歲(1a期)或≥65歲(1b期) (包括端點)的健康成年男性及女性。2. Healthy adult men and women aged 18 to 64 years (Phase 1a) or ≥65 years (Phase 1b) (inclusive of endpoints) at screening.

3. 篩選時呈SARS-CoV-2血清陰性且呈逆轉錄聚合酶鏈反應(RT-PCR)陰性,無證據表明近期暴露或未鑑定為流感或RSV (發熱性或下呼吸道感染)的病毒性呼吸道疾病。3. SARS-CoV-2 seronegative and reverse transcription polymerase chain reaction (RT-PCR) negative at screening, with no evidence of recent exposure or virality not identified as influenza or RSV (febrile or lower respiratory tract infection) Respiratory diseases.

4. 篩選時之身體質量指數≥18及≤30 kg/m2。4. Body mass index at the time of screening ≥18 and ≤30 kg/m2.

5. 在參與研究之前必須身體健康,無可能干擾研究評估之臨床相關異常。年齡較大(≥65歲)的參與者可患有穩定的共患病(過去3個月內無藥物變化或惡化)。5. You must be in good health before participating in the study and have no clinically relevant abnormalities that may interfere with the study evaluation. Older (≥65 years) participants could have stable comorbidities (no medication changes or worsening in the past 3 months).

6. 有生育潛力的女性(WOCBP)及性伴侶為WOCBP之男性必須能夠且願意在研究期間使用至少1種高效的避孕方法(亦即包括子宮切除術、雙側輸卵管切除術及雙側卵巢切除術、激素口服[結合含殺精子劑之男用保險套]、經皮、植入或注射、阻障[亦即,保險套、含殺精子劑的隔膜];子宮內節育器;輸精管切除的伴侶[最少6個月],臨床上不育的伴侶;或禁慾)。女性個體在初潮後被視為WOCBP,且直至其連續12個月處於絕經後狀態(無其他醫學原因)或以其他方式永久不育。無生育潛力的個體在研究期間不需要使用任何其他形式的避孕措施。無生育潛力被定義為個體確認:手術絕育(例如雙側卵巢切除術、雙側輸卵管切除術、雙側燒灼閉塞[Essure System®不可接受]、子宮切除術或輸卵管結紮)、絕經後(定義為在篩選前至少連續12個月永久停經);若絕經後狀態不明確,則在疫苗接種前進行妊娠測試。6. Women of childbearing potential (WOCBP) and men whose sexual partners are WOCBP must be able and willing to use at least one highly effective contraceptive method during the study period (that is, including hysterectomy, bilateral salpingectomy, and bilateral oophorectomy) surgical, hormonal oral [in combination with a spermicide-containing male condom], transdermal, implanted or injected, barrier [i.e., condom, spermicide-containing diaphragm]; intrauterine device; vasectomy Partner [minimum 6 months], clinically infertile partner; or abstinent). Female individuals are considered WOCBP after menarche and until they have been postmenopausal for 12 consecutive months (without other medical reasons) or are otherwise permanently infertile. Individuals of non-reproductive potential are not required to use any other form of contraception during the study. Non-reproductive potential is defined as individual confirmation of: surgical sterilization (e.g., bilateral oophorectomy, bilateral salpingectomy, bilateral cautery occlusion [not acceptable with Essure System®], hysterectomy, or tubal ligation), postmenopausal (defined as Permanent menopause for at least 12 consecutive months before screening); if postmenopausal status is unclear, perform a pregnancy test before vaccination.

7. 育齡女性在每次疫苗接種前必須妊娠測試呈陰性。若絕經狀態不明確,則需要進行妊娠測試。7. Women of childbearing age must have a negative pregnancy test before each vaccination. If menopausal status is unclear, a pregnancy test is required.

8. 必須能夠參加研究期間的所有問診(計劃及計劃外,如適用)且遵守所有研究程序,包括每天在每次注射後完成日記卡。 研究排除標準 8. Must be able to attend all consultations during the study (scheduled and unscheduled, as applicable) and comply with all study procedures, including completing daily diary cards after each injection. Study exclusion criteria

包括≥65歲個體(對於1b期)之個體若滿足任何排除標準(以下編號1至35)則不符合參與研究的條件,或者若其在研究期間出現任何排除標準,則由研究者酌情中止。Individuals, including individuals ≥65 years of age (for Phase 1b), are not eligible to participate in the study if they meet any of the exclusion criteria (numbered 1 to 35 below), or will be discontinued at the discretion of the investigator if they develop any of the exclusion criteria during the study.

1. 在研究者看來,將使疫苗接種不安全或將干擾對反應之評估的急性或慢性醫學病狀(包括癡呆症)史。1. A history of acute or chronic medical conditions (including dementia) that, in the opinion of the investigator, would make vaccination unsafe or interfere with assessment of response.

2. 任何使個體歸因於SARS-CoV-2之嚴重疾病之風險更高的醫學病狀史將被排除在外,包括:慢性腎病;COPD (慢性阻塞性肺疾病);心臟病,諸如心衰竭、冠狀動脈疾病或心肌病;任何免疫功能不全的狀態,包括移植、歷史免疫缺陷、HIV、免疫抑制藥物攝入;鐮狀細胞病;當前吸菸者或>5包/年之吸菸史;2型糖尿病。2. History of any medical condition that puts an individual at higher risk for severe illness attributable to SARS-CoV-2 will be excluded, including: chronic kidney disease; COPD (chronic obstructive pulmonary disease); heart disease, such as heart failure , coronary artery disease or cardiomyopathy; any immunocompromised state, including transplantation, historical immunodeficiency, HIV, immunosuppressive drug intake; sickle cell disease; current smoker or >5 pack/year smoking history; Type 2 diabetes.

具有以下任何病狀史、COVID-19併發症風險可能增加之個體被排除在外:哮喘(中度至重度);腦血管疾病(影響血管及大腦的血液供應);囊性纖維化;高血壓(Hypertension)或高血壓(high blood pressure);神經病狀,諸如癡呆症;肝病;肺纖維化(肺組織受損或有疤痕);地中海貧血症(一種血液病症);1型糖尿病。Individuals with a history of any of the following conditions that may be at increased risk for COVID-19 complications are excluded: Asthma (moderate to severe); Cerebrovascular disease (affecting blood vessels and blood supply to the brain); Cystic fibrosis; High blood pressure ( Hypertension or high blood pressure; neurological conditions such as dementia; liver disease; pulmonary fibrosis (damage or scarring of lung tissue); thalassemia (a blood disorder); type 1 diabetes.

3. 可能對免疫系統產生不利影響的正在進行的臨床病狀或藥物或治療史。3. Ongoing clinical conditions or history of medications or treatments that may adversely affect the immune system.

4. SARS-CoV-2血清陽性或RT-PCR陽性的個體,包括在第二劑PTX-B疫苗之前。4. SARS-CoV-2 seropositive or RT-PCR positive individuals, including before the second dose of PTX-B vaccine.

5. 暴露於SARS-CoV-2之風險增加的個體(例如醫護人員、急救人員)。5. Individuals at increased risk of exposure to SARS-CoV-2 (e.g., health care workers, first responders).

6. 在疫苗投予前30天內密切接觸過已知感染SARS-CoV-2的任何人。6. Close contact with anyone known to be infected with SARS-CoV-2 within 30 days before vaccine administration.

7. 住在團體環境或團體照護設施(例如宿舍、輔助生活設施或療養院)中。7. Living in a group setting or group care facility (such as a dormitory, assisted living facility, or nursing home).

8. 具有任何在篩選時被研究者評估為對年齡/性別具有臨床意義之升高(1級或更高)實驗室測試的個體。8. Individuals with any elevated (Grade 1 or higher) laboratory test assessed by the investigator at screening as clinically significant for age/sex.

9. 篩選時任何肝功能酶對於年齡/性別而言升高(1級或更高)的個體,無論臨床意義的評估如何(允許進行一次複驗)。排除肝酶升高個體之標準如下:鹼性磷酸酶、丙胺酸轉胺酶、天冬胺酸轉胺酶或γ-麩胺醯轉移酶>1.5×正常值上限(ULN);總膽紅素>1.5×ULN。9. Individuals with any liver function enzyme elevated (Grade 1 or higher) for age/sex at screening, regardless of assessment of clinical significance (one retest is allowed). The criteria for excluding individuals with elevated liver enzymes are as follows: alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase or gamma-glutaminyltransferase >1.5 × upper limit of normal (ULN); total bilirubin >1.5×ULN.

10. 活動性贅生性疾病(不包括成功治療的非黑色素瘤皮膚癌)或任何血液惡性腫瘤病史。「活動性」定義為在過去5年內接受過治療。10. History of active neoplastic disease (excluding successfully treated non-melanoma skin cancer) or any hematological malignancy. "Active" is defined as having received treatment within the past 5 years.

11. 篩選前6個月內長期(>2週)使用口服或非經腸類固醇或高劑量吸入類固醇(>800 μg/天二丙酸倍氯米松或等效物) (允許經鼻及局部類固醇)。11. Long-term (>2 weeks) use of oral or parenteral steroids or high-dose inhaled steroids (>800 μg/day beclomethasone dipropionate or equivalent) within 6 months before screening (nasal and topical steroids are allowed ).

12. 自體免疫疾病、發炎性疾病或PIMMC的病史(附錄B)。12. History of autoimmune disease, inflammatory disease or PIMMC (Appendix B).

13. 在登記與隨機分組後181天之間,目前懷孕、哺乳或計劃懷孕的女性。13. Women who are currently pregnant, breastfeeding, or planning to become pregnant between 181 days after registration and randomization.

14. 格-巴二氏症候群(Guillain-Barré Syndrome)或任何退化性神經學病症的病史。14. History of Guillain-Barré Syndrome or any degenerative neurological disorder.

15. 對任何注射疫苗之過敏型反應史。15. History of allergic reaction to any injected vaccine.

16. 已知或疑似對疫苗之一或多種組分過敏。16. Known or suspected allergy to one or more components of the vaccine.

17. 在篩選後12個月內有酗酒史、非法藥物使用、對任何類鴉片的身體依賴,或任何藥物濫用或成癮史。17. History of alcohol abuse, illicit drug use, physical dependence on any opioid, or any drug abuse or addiction within 12 months of screening.

18. 研究加入前3天內出現急性疾病或發熱(體溫>37.5C) (若研究人員可接受,則加入可能會延遲以完全康復)。18. Acute illness or fever (body temperature >37.5C) occurs within 3 days before study enrollment (enrollment may be delayed to allow for complete recovery if acceptable to the researcher).

19. 當前參與或計劃參與涉及實驗藥劑(疫苗、藥物、生物製劑、裝置或藥物)之研究的個體;或在加入此研究前1個月內(免疫球蛋白為3個月)內接受過實驗藥劑的個體;或預期在參與此研究期間接受另一種實驗藥劑的個體。19. Individuals who are currently participating or planning to participate in research involving experimental agents (vaccines, drugs, biological agents, devices or drugs); or who have undergone experiments within 1 month (3 months for immune globulin) before joining this study agents; or individuals who are expected to receive another experimental agent while participating in this study.

20. 加入本研究前3個月內接受過免疫球蛋白或另一血液製品,或預期在此研究期間接受免疫球蛋白或另一血液製品的個體。20. Individuals who have received immune globulin or another blood product within 3 months before joining this study, or who are expected to receive immune globulin or another blood product during this study.

21. 意欲在第一次接種疫苗後6個月內獻血的個體。21. Individuals who wish to donate blood within 6 months of the first vaccination.

22. 使用處方藥預防SARS-CoV-2的個體。22. Individuals using prescription drugs to prevent SARS-CoV-2.

23. 計劃在研究之前3個月內接受另一疫苗的個體,不應在疫苗後2週內給與之流感疫苗除外。23. Individuals scheduled to receive another vaccine within 3 months prior to the study should not be given influenza vaccine within 2 weeks of the vaccine, except for those scheduled to receive it within 3 months before the study.

24. 在研究之前或研究期間的任何時間接受任何其他SARS-CoV-2或其他實驗性冠狀病毒(中東呼吸症候群、SARS等)疫苗。24. Receipt any other SARS-CoV-2 or other experimental coronavirus (MERS, SARS, etc.) vaccine before or at any time during the study.

25. 在加入後1個月內至研究結束(最後一次疫苗接種後1年)接受任何研究性疫苗或研究性藥物。25. Receive any investigational vaccine or investigational drug within 1 month after enrollment until the end of the study (1 year after the last vaccination).

26. 計劃自加入至第56天前往加拿大境外旅行。26. Plan to travel outside Canada from joining to the 56th day.

27. 篩選後12週內有手術史或重大外傷史,或研究期間計劃進行手術。27. Have a history of surgery or major trauma within 12 weeks after screening, or have surgery planned during the study.

28. 大量失血(> 400 mL)或在參與研究前6週內捐獻了1個或更多個單位的血液或血漿。28. Severe blood loss (> 400 mL) or donation of 1 or more units of blood or plasma within 6 weeks before participating in the study.

29. 在安全實驗室樣品收集前72小時內進行劇烈活動或大量飲酒(由研究人員評估)。29. Engaging in strenuous activity or heavy drinking within 72 hours prior to safety laboratory sample collection (assessed by researcher).

30. 尿液藥物濫用篩檢或酒精呼氣分析儀測試結果呈陽性。30. Positive urine drug abuse screen or alcohol breathalyser test result.

31. 人類免疫缺陷病毒-1及-2抗體、B型肝炎表面抗原或C型肝炎病毒抗體篩查呈陽性。31. Screening for human immunodeficiency virus-1 and -2 antibodies, hepatitis B surface antigen, or hepatitis C virus antibodies is positive.

32. 參與此研究之計劃或實施。32. Participate in the planning or implementation of this study.

33. 不願意或不太可能遵守研究的要求。33. Unwilling or unlikely to comply with research requirements.

34. 個體為發起人、CRO、研究站點或站點附屬機構之雇員、承包人或任何雇員的朋友或親戚。34. The individual is an employee, contractor, or friend or relative of any employee of the sponsor, CRO, research site or site affiliate.

35. 個體血氧測定<90%。 研究組成物 35. Individual blood oxygen measurement <90%. research composition

疫苗產品呈現為3 mL美國藥典/歐洲藥典I型硼矽酸鹽玻璃小瓶中之0.2 mg/mL、2mL填充物,該玻璃小瓶具有氟樹脂層壓溴丁基橡膠塞及帶有紅色、塑膠易拉蓋的鋁製封蓋。PTX-B信使核糖核酸體液疫苗為0.2 mg/mL 0.5 mL可注射溶液,具有如所描述之多個劑量水平。The vaccine product is presented as a 0.2 mg/mL, 2 mL fill in a 3 mL USP/European Pharmacopoeia Type I borosilicate glass vial with a fluororesin-laminated bromobutyl rubber stopper with a red, plastic Pull-top aluminum closure. The PTX-B messenger ribonucleic acid humoral vaccine is a 0.2 mg/mL 0.5 mL injectable solution with multiple dose levels as described.

安慰劑為市售氯化鈉0.9%可注射IM溶液0.0 mg/mL 0.5 mL。 研究結果概述 The placebo was commercially available sodium chloride 0.9% injectable IM solution 0.0 mg/mL 0.5 mL. Overview of research results

此1期首次用於人體的觀測者不知情、隨機化、安慰劑對照、遞增劑量研究評估了PTX-B疫苗在18至64歲的健康血清陰性成人中的安全性、耐受性及免疫原性。該研究設計成具有劑量遞增,且在無證據表明近期接觸過SARS-CoV-2之血清陰性成年個體中進行。This Phase 1, first-in-human, observer-blinded, randomized, placebo-controlled, ascending-dose study evaluated the safety, tolerability, and immunogenicity of PTX-B vaccine in healthy seronegative adults aged 18 to 64 years. sex. The study was designed with dose escalation and was conducted in seronegative adult individuals with no evidence of recent exposure to SARS-CoV-2.

安全群體包括所有提供同意書的個體,該等個體被隨機分組,且接受任何量的疫苗/安慰劑。安全群體用於所有安全分析及免疫原性分析,且按實際治療進行分析。The safety population includes all individuals who provided consent to be randomized and receive any amount of vaccine/placebo. The safety population was used for all safety and immunogenicity analyses, and was analyzed on an actual treatment basis.

符合方案群體包括安全群體中根據方案接受指定劑量之疫苗/安慰劑,具有血清學結果,且無影響主要免疫原性結果之重大方案偏差的所有個體,如由發起人在資料庫鎖定及揭盲前所確定。PP群體為用於安全終點分析之主要群體。The per-protocol population includes all individuals in the safety population who received the specified dose of vaccine/placebo according to the protocol, have serological results, and have no major protocol deviations affecting the primary immunogenicity results, as locked and unblinded in the database by the sponsor previously determined. The PP population is the primary population used for safety endpoint analyses.

調整意向治療群體包括安全群體中提供任何血清學資料之所有個體。mITT群體用於免疫原性終點的分析。若各治療組之個體與PP群體的差異≤ 5%,則使用mITT群體進行分析。The intention-to-treat population was adjusted to include all individuals in the safety population who provided any serological data. The mITT population was used for analysis of immunogenicity endpoints. If the difference between individuals in each treatment group and the PP population was ≤ 5%, the mITT population was used for analysis.

使用適當的描述性統計按階段、群組及時間點列出及概述各群組及研究階段的免疫原性資料。List and summarize immunogenicity data for each cohort and study phase by phase, cohort, and time point using appropriate descriptive statistics.

使用適當的描述性統計,按研究階段、群組及時間點列出及概述生命徵象、臨床實驗室測試及體格檢查結果。List and summarize vital signs, clinical laboratory tests, and physical examination results by study phase, cohort, and time point using appropriate descriptive statistics.

報告任何治療出現的不良事件(TEAE)或反應原性之個體的數量及百分比按研究階段及群組進行概述,且按系統器官類別及優先項(使用MedDRA編碼)列表。TEAE根據嚴重性及關係進一步分類,且對於SAE,分為就醫的AE、NOCD及AESI。The number and percentage of individuals reporting any treatment-emergent adverse event (TEAE) or reactogenicity are summarized by study phase and cohort, and tabulated by system organ class and priority (using MedDRA codes). TEAEs are further classified according to severity and relationship, and for SAEs, they are divided into medical AEs, NOCDs, and AESIs.

此外,亦呈現疫苗接種後被感染之個體數量以及疫苗接種是否使疾病減輕或加重。In addition, the number of individuals who became infected after vaccination and whether vaccination reduced or worsened the disease are also presented.

個體經隨機分組以接受3:1比率之PTX-B疫苗或安慰劑。給藥在群組中如下地發生:自16 µg劑量開始,接著為40 µg,且接著為100 µg。各群組自5名個體的哨兵組開始,首先給藥,接著為群組之其餘部分。頻繁收集不良事件,且由感染性疾病專家及統計學家組成的獨立安全審查委員會(iSRC)經常開會審查及批准下一組的給藥。Individuals were randomized to receive PTX-B vaccine or placebo in a 3:1 ratio. Dosing occurred within the cohort as follows: starting with the 16 µg dose, followed by 40 µg, and then 100 µg. Each cohort started with a sentinel group of 5 individuals who were dosed first, followed by the rest of the cohort. Adverse events were collected frequently, and an independent safety review committee (iSRC) composed of infectious disease experts and statisticians met frequently to review and approve dosing of the next arm.

總共招募了60名個體且58名個體接受了兩種劑量的研究藥物。由於與研究藥物無關的個人原因,兩名個體在接受一劑研究藥物後退出研究。總體而言,男女比例正好為50:50,其中83.3%為白人,13.3%為亞洲人,且3.3%為其他。A total of 60 individuals were recruited and 58 individuals received two doses of study drug. Two individuals withdrew from the study after receiving one dose of study drug due to personal reasons unrelated to the study drug. Overall, the male to female ratio is exactly 50:50, with 83.3% being white, 13.3% Asian, and 3.3% other.

收集的不良事件根據關於疫苗反應的行業標準FDA指南分級為局部(在注射部位)或全身。總體而言,PTX-B在16 µg、40 µg及100 µg之所有三個劑量水平下均為安全且耐受良好的。不存在嚴重不良事件。所記錄之唯一局部不良事件為注射部位處之疼痛,正如所預期。任何劑量的40 μg PTX-B均無發紅或腫脹。此與在臨床試驗以及一般使用中記錄到發紅及腫脹之其他mRNA疫苗相比具有優勢。全身反應包括疲勞、發冷及發熱,且一般為輕度至中度,且耐受性良好,其中頭痛是最常見的反應,在第二劑量後發生率高達60%。此等結果與已批准的緊急使用mRNA疫苗的已公佈不良事件相比非常有利。Adverse events collected were graded as local (at the injection site) or systemic based on industry-standard FDA guidelines for vaccine reactions. Overall, PTX-B was safe and well tolerated at all three dose levels: 16 µg, 40 µg, and 100 µg. There were no serious adverse events. The only local adverse event recorded was pain at the injection site, as expected. There was no redness or swelling at any dose of 40 μg PTX-B. This compares favorably with other mRNA vaccines where redness and swelling have been documented in clinical trials and in general use. Systemic reactions include fatigue, chills and fever, and are generally mild to moderate and well tolerated, with headache being the most common reaction, occurring in up to 60% of patients after the second dose. These results compare favorably with published adverse events for emergency-use approved mRNA vaccines.

PTX-B疫苗接種誘導高抗-S IgG抗體:臨床試驗的參與者在第0天及第28天接種疫苗。在第0天(預篩選)、第8天、第28天(第2劑量前)及第42天收集血漿樣品,以使用基於多重夾心之免疫分析與來自Meso Scale Discovery (MSD)平台之電化學發光(ECL)讀數測定IgG抗S蛋白之水平。所有三個疫苗劑量組(16、40及100 µg)之所有研究參與者均對刺突蛋白產生了強烈的IgG抗體反應,該反應截至第28天被偵測到且截至第42天增強。在注射安慰劑之參與者中未偵測到針對S蛋白之抗體。此外,在中劑量及高劑量中發現了最高抗體水平。截至第42天,接種PTX-B之參與者的抗體水平比在同一分析中評估之恢復期個體之血漿高一個對數以上。分析個體之總IgG水平。剛好在第一劑量(第28天)後,在所有劑量水平下均誘導高水平之抗刺突(在圖19中示出)及抗RBD (圖19)。在第二劑量後兩週(第42天),水平增加至甚至更高,達到比來自恢復期患者之5個血清樣品之平均值高10倍以上的水平(圖19)。亦在SARS-CoV-2恢復期患者中量測抗刺突IgG (Au/mL) (圖20)。PTX-B vaccination induces high anti-S IgG antibodies: Clinical trial participants were vaccinated on days 0 and 28. Plasma samples were collected on day 0 (pre-screening), day 8, day 28 (pre-dose 2) and day 42 for use of a multiplex sandwich-based immunoassay with electrochemistry from the Meso Scale Discovery (MSD) platform Luminescence (ECL) readings determine levels of IgG anti-S protein. All study participants in all three vaccine dose groups (16, 40 and 100 µg) developed strong IgG antibody responses to the spike protein that were detected by day 28 and increased by day 42. No antibodies against the S protein were detected in participants who received placebo. Additionally, the highest antibody levels were found at the medium and high doses. As of day 42, antibody levels in participants vaccinated with PTX-B were more than one log higher than in plasma from convalescent individuals evaluated in the same analysis. Individuals were analyzed for total IgG levels. Just after the first dose (day 28), high levels of anti-spike (shown in Figure 19) and anti-RBD (Figure 19) were induced at all dose levels. Two weeks after the second dose (day 42), levels increased even higher, reaching levels more than 10 times higher than the average of 5 serum samples from convalescent patients (Figure 19). Anti-spike IgG (Au/mL) was also measured in SARS-CoV-2 convalescent patients (Figure 20).

抗體水平與Stanford University最近的一份報告中發表的抗體水平相當,該報告中評估了接種COVID-19 mRNA疫苗的個體與SARS-CoV-2感染患者相比的IgG反應( Röltgen 等人(2021年4月7日). mRNA Vaccination Compared to Infection Elicits an IgG-Predominant Response with Greater SARS-CoV-2 Specificity and Similar Decrease in Variant Spike Recognition. 預印本於2021年5月11日自doi.org/10.1101/2021.04.05.21254952下載)。 Antibody levels were comparable to those published in a recent Stanford University report evaluating IgG responses in individuals vaccinated with a COVID-19 mRNA vaccine compared with patients with SARS-CoV-2 infection ( Röltgen et al . (2021 April 7). mRNA Vaccination Compared to Infection Elicits an IgG-Predominant Response with Greater SARS-CoV-2 Specificity and Similar Decrease in Variant Spike Recognition. Preprint published on May 11, 2021 from doi.org/10.1101/2021.04 .05.21254952 download).

使用ELISA進一步證實了在所有三種不同劑量下誘導的高水平抗S蛋白IgG抗體。將來自接種個體之血清樣品添加至塗有刺突蛋白之ELISA盤上,且接著使用過氧化物酶標記之二級抗IgG抗體偵測結合的IgG抗體。藉由在校準曲線上插值確定之IgG抗體濃度在單劑量PTX-B (第28天)後高達約1000 ELISA單位/毫升(圖23)。IgG濃度在第二劑量後繼續增加,超過10,000 ELISA單位/毫升(圖23)。The high levels of anti-S protein IgG antibodies induced at all three different doses were further confirmed using ELISA. Serum samples from vaccinated individuals were added to spike protein-coated ELISA plates, and bound IgG antibodies were then detected using peroxidase-labeled secondary anti-IgG antibodies. The IgG antibody concentration determined by interpolation on the calibration curve was as high as approximately 1000 ELISA units/ml after a single dose of PTX-B (day 28) (Figure 23). The IgG concentration continued to increase after the second dose, exceeding 10,000 ELISA units/ml (Figure 23).

PTX-B疫苗接種誘導高中和抗體水平:藉由S-ACE2阻斷MSD分析評估來自研究參與者血漿的中和活性。此處,抗體阻斷了S蛋白與ACE2受體之間的相互作用,且ECL信號的降低用於計算相同稀釋度下血漿之抑制百分比。研究中3個劑量水平之所有參與者截至第28天均顯示阻斷活性,且截至第42天在1:100或更高稀釋度樣品之情況下,所有參與者均達到100%阻斷活性。此等結果表明PTX-B誘導了強烈的中和抗體反應。此外,以ng/mL為單位之參考標準抗體水平的定量表明,所有參與者截至第一次免疫接種後第28天均產生中和抗體,且截至第二次免疫接種後兩週的第42天增加10倍。藉由評估活體外阻斷刺突蛋白與hACE2之間相互作用的能力來分析個體中之中和抗體。使用基於MSD技術之S:ACE2受體阻斷分析,接種PTX-B之參與者在第28天及第42天在血漿中顯示出高水平的中和活性(圖21)。當在稀釋100倍或超過100倍之樣品中評估抑制百分比時,所有參與者截至第42天之抑制率為100%。Röltgen等人公佈之資料顯示,接種BioNTech/ Pfizer mRNA疫苗之個體使用相同MSD分析在第42天(1:100稀釋度)時顯示出75%平均抑制。此等資料表明PTX-B在所有劑量下均具有更強的中和能力。PTX-B vaccination induces high neutralizing antibody levels: Neutralizing activity in plasma from study participants assessed by S-ACE2 blockade MSD analysis. Here, the antibody blocks the interaction between the S protein and the ACE2 receptor, and the decrease in ECL signal is used to calculate the percent inhibition in plasma at the same dilution. All participants at all three dose levels in the study showed blocking activity by day 28, and all participants achieved 100% blocking activity by day 42 with samples at 1:100 or higher dilutions. These results indicate that PTX-B induces a strong neutralizing antibody response. In addition, quantification of reference standard antibody levels in ng/mL showed that all participants produced neutralizing antibodies by day 28 after the first immunization and by day 42 two weeks after the second immunization Increase 10 times. Neutralizing antibodies in individuals were analyzed by assessing their ability to block the interaction between spike protein and hACE2 in vitro. Using an S:ACE2 receptor blockade assay based on MSD technology, participants vaccinated with PTX-B showed high levels of neutralizing activity in plasma on days 28 and 42 (Figure 21). When percent inhibition was assessed in samples diluted 100-fold or more, all participants had 100% inhibition by day 42. Data published by Röltgen et al. showed that individuals vaccinated with the BioNTech/Pfizer mRNA vaccine showed an average inhibition of 75% at day 42 (1:100 dilution) using the same MSD analysis. These data indicate that PTX-B has enhanced neutralizing ability at all doses.

中和活性藉由S-ACE2阻斷MSD分析來評估。以ng/mL為單位之抗體水平定量係基於參考標準之活性。所有參與者截至第一次免疫接種後第28天均產生中和抗體,且截至第二次免疫接種後兩週的第42天增加10倍(圖22)。 實施例9. 人體內PTX-B誘導之抗COVID19抗體的假病毒中和 Neutralizing activity was assessed by S-ACE2 blocking MSD analysis. Quantification of antibody levels in ng/mL is based on the activity of a reference standard. All participants produced neutralizing antibodies by day 28 after the first immunization, with a 10-fold increase by day 42 two weeks after the second immunization (Figure 22). Example 9. Pseudovirus neutralization of anti-COVID19 antibodies induced by PTX-B in humans

藉由假病毒中和分析進一步評估中和活性。遵循Bewley K.R.報導之方案,在ES-293細胞中產生了刺突假型ΔG-螢光素酶rVSV病毒(Bewley等人,Quantification of SARS-CoV-2 neutralizing antibody by wild-type plaque reduction neutralization, microneutralization and pseudotyped virus neutralization assays; Nature Protocols, 2021, 16, 3114-3140)。使假病毒庫存經受觀測程序以獲得最佳假病毒稀釋度。Neutralizing activity was further assessed by pseudovirus neutralization assay. Spike pseudotype ΔG-luciferase rVSV virus was generated in ES-293 cells following the protocol reported by Bewley K.R. (Bewley et al., Quantification of SARS-CoV-2 neutralizing antibody by wild-type plaque reduction neutralization, microneutralization and pseudotyped virus neutralization assays; Nature Protocols, 2021, 16, 3114-3140). Subject pseudovirus stocks to observation procedures to obtain optimal pseudovirus dilutions.

將來自接種PTX-B之個體之血清樣品熱處理為無活性成分。不活化血清樣品及參考血清經連續稀釋。在37℃下將預稀釋之測試血清及參考血清與假病毒稀釋劑以1:1比率一起培育1小時。接著將血清及假病毒混合物轉移至塗鋪之Vero E6細胞中,且在37℃及5% CO2下培育18至22小時。Serum samples from individuals vaccinated with PTX-B were heat treated to inactive components. Non-activated serum samples and reference serum were serially diluted. Incubate pre-diluted test serum and reference serum with pseudovirus diluent at a 1:1 ratio for 1 hour at 37°C. The serum and pseudovirus mixture was then transferred to the plated Vero E6 cells and incubated at 37°C and 5% CO2 for 18 to 22 hours.

將ONE-Glo EX螢光素酶分析試劑添加至細胞盤中。將反應盤在室溫下培育3分鐘且讀取螢光素酶水平。各曲線之中點使用SoftMax Pro方案使用4PL回歸確定,且輸出報導為各樣品之中和效價(NT 50)。PTX-B疫苗產生之中和效價與在第一劑量(第28天)後自恢復期患者獲得之中和效價相當。在第二劑PTX-B後兩週(第42天),中和效價進一步增加,高於自恢復期患者獲得之中和效價(圖24)。 Add ONE-Glo EX Luciferase Assay Reagent to the cell plate. The reaction plate was incubated at room temperature for 3 minutes and luciferase levels were read. The midpoint of each curve was determined using 4PL regression using the SoftMax Pro protocol, and the output is reported as the neutralization titer ( NT50 ) for each sample. The PTX-B vaccine produced neutralizing titers comparable to those obtained in convalescent patients after the first dose (day 28). Two weeks after the second dose of PTX-B (day 42), neutralizing titers increased further and were higher than those obtained in patients since the recovery phase (Figure 24).

在第一劑量後(第28天;在接受第二劑量之前),中值中和水平可分別達到恢復期患者水平之0.3 (16 μg劑量及40 μg劑量)及0.8 (100 μg劑量)倍。在第二劑量後兩週(第42天),中值中和水平分別增加至恢復期患者水平之4.0倍(16 μg劑量)、8.5倍(40 μg劑量)及23.0倍(100 μg劑量)。相比於較低劑量,100 μg劑量誘導更高的結合及中和抗體效價。After the first dose (day 28; before receiving the second dose), the median neutralization levels reached 0.3 (16 μg dose and 40 μg dose) and 0.8 (100 μg dose) times the levels in convalescent patients, respectively. Two weeks after the second dose (day 42), median neutralization levels increased to 4.0 times (16 μg dose), 8.5 times (40 μg dose), and 23.0 times (100 μg dose) the levels in convalescent patients. The 100 μg dose induced higher binding and neutralizing antibody titers compared to lower doses.

將PTX-B疫苗誘導之中和抗體的中和活性與COVID19 mRNA疫苗BNT162b2及mRNA-1273進行比較。如表12及13所示,PTX-B疫苗誘導之中和抗體的平均中和水平與BNT162b2相當。 表12. PTX-B之平均中和水平(恢復期之倍數(n=33)) 16µg (n=15) 40µg (n=14) 100µg (n=15) 28 0.3 0.3 0.8 42 4.0 8.6 23.0 表13. BNT162b2之平均中和水平*(恢復期之倍數) 10µg 20µg 30µg 21 0.2 0.2 0.1 28 1.7 3.9 3.8 35 1.0 3.1 1.7 * 資料來自 Walsh, E.E.等人,Safety and immunogenicity of two RNA based COVID-19 vaccine candidates, N Engl. J. Med., 2020, 383(25): 2439-2450。 The neutralizing activity of neutralizing antibodies induced by PTX-B vaccine was compared with COVID19 mRNA vaccines BNT162b2 and mRNA-1273. As shown in Tables 12 and 13, the average neutralizing level of neutralizing antibodies induced by the PTX-B vaccine was comparable to that of BNT162b2. Table 12. Average neutralization levels of PTX-B (multiples of recovery period (n=33)) sky 16µg (n=15) 40µg (n=14) 100µg (n=15) 28 0.3 0.3 0.8 42 4.0 8.6 23.0 Table 13. Average neutralization level of BNT162b2* (multiple of recovery period) sky 10µg 20µg 30µg twenty one 0.2 0.2 0.1 28 1.7 3.9 3.8 35 1.0 3.1 1.7 * Data from Walsh, EE et al., Safety and immunogenicity of two RNA based COVID-19 vaccine candidates, N Engl. J. Med ., 2020, 383(25): 2439-2450.

類似地,與 Anderson E.J.等人,Safety and immunogenicity of SARS-CoV-2 mRNA 1273 vaccine in older adults. N Engl. J. Med., 2020, 383: 2427-2438報導之資料相比,PTX-B疫苗誘導之中和抗體的中和活性與mRNA-1273疫苗誘導之中和活性相當。 Similarly, compared with the data reported by Anderson EJ et al., Safety and immunogenicity of SARS-CoV-2 mRNA 1273 vaccine in older adults. N Engl. J. Med ., 2020, 383: 2427-2438, PTX-B vaccine The neutralizing activity of the induced neutralizing antibodies was comparable to the neutralizing activity induced by the mRNA-1273 vaccine.

使用Khoury, D.S.等人( Khoury, D.S.等人,Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat. Med.,2021, 27: 1205-1211)開發之模型預測PTX-B疫苗之保護功效表明PTX-B與核酸疫苗BNT162b2及mRNA-1273相當(圖25)。PTX-B疫苗之中和活性高於BNT162b2及mRNA-1273疫苗(圖25)。結果表明,與BNT162b2及mRNA-1273疫苗相比,PTX-B可在人體內引發更強的反應。 實施例10. 不同SAR-CoV-2關注變異體(VOC)之中和能力 Predict PTX- using the model developed by Khoury , DS et al. The protective efficacy of B vaccine showed that PTX-B was equivalent to the nucleic acid vaccines BNT162b2 and mRNA-1273 (Figure 25). The neutralizing activity of PTX-B vaccine was higher than that of BNT162b2 and mRNA-1273 vaccines (Figure 25). The results showed that PTX-B elicited a stronger response in humans than BNT162b2 and mRNA-1273 vaccines. Example 10. Neutralizing ability of different SAR-CoV-2 variants of concern (VOC)

測試來自接受2劑(第0天及第28天) 16 μg、40 μg或100 μg PTX-B疫苗之個體組的相同血清對病毒變異體的假病毒中和活性。製備了SAR-CoV-2原始病毒及其變異體α、β及δ VOC之假病毒用於中和分析。如圖26中所示之結果表明PTX-B疫苗對所有三個劑量群組中之SAR-CoV-2原始病毒株以及α、β及δ VOC誘導了相當的中和活性(圖26)。高劑量PTX-B (100 μg)誘導之中和活性一般高於低劑量(16 μg)及中劑量(40 μg) PTX-B誘導之中和活性。針對原始病毒株、α及δ變異體之中和能力亦與Ade K.T.等人( Ade K.T.等人,Neutralizing antibody responses to SARS-CoV-2 variants in vaccinated Ontario long-term care home residents and workers, 2021年8月8日; MedRxiv預印本doi: https://doi.org/10.1101/2021.08.06.2126172)報導之BNT162b2疫苗接種獲得的中和能力相當。 等效物及範疇 Identical sera from groups of individuals who received 2 doses (day 0 and day 28) of 16 μg, 40 μg or 100 μg PTX-B vaccine were tested for pseudovirus neutralizing activity against viral variants. Pseudoviruses of the original SAR-CoV-2 virus and its variant α, β and δ VOC were prepared for neutralization analysis. The results shown in Figure 26 indicate that the PTX-B vaccine induced comparable neutralizing activity against the original SAR-CoV-2 strain and alpha, beta and delta VOCs in all three dose cohorts (Figure 26). The neutralizing activity induced by high-dose PTX-B (100 μg) was generally higher than that induced by low-dose (16 μg) and medium-dose (40 μg) PTX-B. Neutralizing antibody responses to SARS-CoV-2 variants in vaccinated Ontario long-term care home residents and workers, 2021 August 8; MedRxiv preprint doi: https://doi.org/10.1101/2021.08.06.2126172) reported that the neutralizing ability obtained by BNT162b2 vaccination was equivalent. Equivalents and categories

熟習此項技術者將認識到或最多使用常規實驗便能夠確定本文所述之特定實施例之許多等效物。範疇不意欲限於以上描述,而是如所附申請專利範圍中所闡述。Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments described herein. The scope is not intended to be limited to the above description, but rather as set forth in the appended claims.

在申請專利範圍中,除非相反地指示或以其他方式自上下文顯而易見,否則諸如「一(a/an)」及「該」之冠詞可意謂一或大於一。除非相反地指示或以其他方式自上下文顯而易見,否則若一個、超過一個或所有群組成員存在於給定產物或方法中、用於給定產物或方法中或以其他方式與給定產物或方法相關,則在該群組的一或多個成員之間包括「或」的申請專利範圍或描述視為滿足。本揭露包括群組中恰好一個成員存在於、用於給定產物或方法中或另外與給定產物或方法相關之實施例。本揭露包括超過一個或所有的群組成員存在於、用於給定產物或製程中或以其他方式與給定產物或製程有關的實施例。In the scope of the claim, unless indicated to the contrary or otherwise obvious from the context, articles such as "a/an" and "the" may mean one or more than one. Unless indicated to the contrary or otherwise apparent from context, if one, more than one, or all group members are present in, used in, or otherwise associated with a given product or method are relevant, a claim or description that includes an "or" between one or more members of the group is deemed to be satisfied. The present disclosure includes embodiments in which exactly one member of the group is present in, used in, or otherwise associated with a given product or method. This disclosure includes embodiments in which more than one or all of the group members are present in, used in, or otherwise associated with a given product or process.

亦應注意,術語「包含」意欲為開放的且准許但不要求包括額外要素或步驟。當本文中使用術語「包含」時,亦因此涵蓋並揭示術語「由……組成」。It should also be noted that the term "comprising" is intended to be open-ended and permits, but does not require, the inclusion of additional elements or steps. When the term "comprises" is used herein, it also encompasses and discloses the term "consisting of."

在給出範圍的情況下,包括端點。此外,應理解,除非另外指示或以其他方式自上下文及一般技術者之理解顯而易見,否則表示為範圍之值可在不同的實施態樣中採用所陳述範圍內之任何具體值或子範圍,除非上下文另外明確規定,否則達到該範圍下限之單位的十分之一。Where a range is given, the endpoints are included. Furthermore, it should be understood that, unless otherwise indicated or otherwise apparent from the context and ordinary skill in the understanding, values expressed as ranges may be employed in different embodiments using any specific value or subrange within the stated range, unless The context otherwise expressly provides otherwise, or one-tenth of the unit up to the lower end of the range.

另外,應理解,屬於先前技術內之任何特定實施例可自任何一或多個技術方案中明確排除。因為認為此類實施例為一般熟習此項技術者已知,所以可對其進行排除,即使未在本文中明確地闡述該排除亦可。出於任何原因,無論是否與先前技術之存在有關,組成物之任何特定實施例(例如任何治療或活性成分;任何產生方法;任何使用方法;等)可自任一或多個技術方案中排除。In addition, it should be understood that any specific embodiments belonging to the prior art may be expressly excluded from any one or more technical solutions. Because such embodiments are believed to be known to those of ordinary skill in the art, they may be excluded, even if such exclusion is not expressly set forth herein. Any particular embodiment of a composition (e.g., any therapeutic or active ingredient; any method of production; any method of use; etc.) may be excluded from any one or more solutions for any reason, whether or not related to the existence of prior art.

應理解,已使用之文字係描述性而非限制性文字,且可在不背離本揭露在其較廣泛態樣中之真實範疇及精神之情況下,在隨附申請專利範圍之範圍內作出改變。It is to be understood that the words used are descriptive rather than limiting and that changes may be made within the scope of the appended claims without departing from the true scope and spirit of the disclosure in its broader form. .

儘管已經相對於所描述之若干實施例以一定的長度及一些特殊性描述了本揭露,但並非意指本揭露應受限於任何此類細節或實施態樣或任何特定實施態樣,而是應參考隨附申請專利範圍進行解釋,以便考慮到先前技術提供對此類申請專利範圍之儘可能最廣泛的解釋,且因此有效地涵蓋本揭露之預期範疇。Although the present disclosure has been described at some length and with some particularity with respect to several embodiments described, it is not intended that the disclosure be limited to any such details or implementations or to any particular implementation. Rather, Reference should be made to the accompanying claims for interpretation in order to provide the broadest possible interpretation of such claims considering the prior art and thus effectively encompass the intended scope of the present disclosure.

[圖1]示出使用自安大略省一名患者分離之病毒進行SARS-CoV-2中和分析的結果。第1至5組與投予之疫苗調配物相關(見表6)。[Figure 1] shows the results of SARS-CoV-2 neutralization analysis using virus isolated from a patient in Ontario. Groups 1 to 5 relate to the vaccine formulation administered (see Table 6).

[圖2]示出使用SARS-CoV-2假型慢病毒進行中和分析的結果,該病毒編碼螢光素酶基因且可感染HEK293T細胞。第1至5組與投予之疫苗調配物相關(見表6)。[Fig. 2] shows the results of neutralization analysis using SARS-CoV-2 pseudotyped lentivirus, which encodes a luciferase gene and can infect HEK293T cells. Groups 1 to 5 relate to the vaccine formulation administered (see Table 6).

[圖3]示出SARS-CoV-2臨床分離株及假病毒中和分析之ID50 (可見50%感染性抑制的稀釋度)。[Figure 3] shows the ID50 (dilution at which 50% inhibition of infectivity is seen) of neutralization analysis of SARS-CoV-2 clinical isolates and pseudoviruses.

[圖4]示出藉由ELISpot進行的IFN-γ分析以確定T細胞對PTX-B免疫接種的反應。[Fig. 4] shows IFN-γ analysis by ELISpot to determine T cell response to PTX-B immunization.

[圖5]示出在第1天及第22天接種PTX-B之初打及加打之小鼠藉由Luminex進行的細胞介素分析。[Fig. 5] shows the interleukin analysis performed by Luminex on the mice vaccinated with PTX-B on the 1st day and the 22nd day after the first dose and the additional dose.

[圖6A]至[圖6B]示出在第1天及第22天接種PTX-B之初打及加打之小鼠藉由流動式細胞測量術進行的細胞介素分析。[Fig. 6A] to [Fig. 6B] show interleukin analysis by flow cytometry of mice vaccinated with PTX-B on days 1 and 22 for the initial and additional injections.

[圖7]示出用SARS-CoV-2攻擊之小鼠的體重變化。[Fig. 7] shows changes in body weight of mice challenged with SARS-CoV-2.

[圖8]示出AAV6-hACE2轉導小鼠模型中之保護功效。[Fig. 8] shows the protective efficacy in the AAV6-hACE2 transduction mouse model.

[圖9]示出AAV6-hACE2轉導小鼠模型中之肺組織病理學評分。[Fig. 9] shows lung histopathological scores in the AAV6-hACE2 transduced mouse model.

[圖10]示出對來自PTX-B免疫小鼠之脾細胞的IFN-γ及IL-4 ELISpot分析。[Fig. 10] shows IFN-γ and IL-4 ELISpot analysis of spleen cells derived from PTX-B immunized mice.

[圖11]示出在SARS-CoV-2中和分析中針對SARS-CoV-2臨床分離株感染的保護。[Fig. 11] Shows protection against infection by SARS-CoV-2 clinical isolates in SARS-CoV-2 neutralization analysis.

[圖12]示出在假病毒中和分析中針對感染的保護。[Fig. 12] Shows protection against infection in pseudovirus neutralization analysis.

[圖13A]至[圖13C]示出抗SARS-CoV-2抗刺突蛋白抗體概況。[Fig. 13A] to [Fig. 13C] show anti-SARS-CoV-2 anti-spike protein antibody profiles.

[圖14]示出在倉鼠之SARS-CoV-2攻擊研究中,接種疫苗之動物的感染性病毒水平顯著降低。[Figure 14] shows that in a SARS-CoV-2 challenge study in hamsters, the levels of infectious virus were significantly reduced in vaccinated animals.

[圖15]示出使用SARS-CoV-2 N、M及N/M蛋白核酸疫苗之共培養實驗中T細胞刺激指數的計算。[Fig. 15] shows the calculation of T cell stimulation index in a co-culture experiment using SARS-CoV-2 N, M, and N/M protein nucleic acid vaccines.

[圖16]示出使用編碼來自SARS-CoV-2關注變異體(VOC)及其他變異體之S蛋白變異體的假病毒進行血清/抗體中和分析之表徵。[Fig. 16] Shows the characterization of serum/antibody neutralization analysis using pseudoviruses encoding S protein variants from SARS-CoV-2 variants of concern (VOC) and other variants.

[圖17]示出PTX-B對SARS-CoV-2 VOC假病毒及其他假病毒變異體感染的保護效率(ID50)。[Figure 17] shows the protective efficiency (ID50) of PTX-B against infection by SARS-CoV-2 VOC pseudovirus and other pseudovirus variants.

[圖18]示出PTX-B對個別SARS-CoV-2 VOC假病毒及其他假病毒變異體感染的保護效率(ID50)。[Figure 18] shows the protective efficiency (ID50) of PTX-B against infection by individual SARS-CoV-2 VOC pseudoviruses and other pseudovirus variants.

[圖19]示出在接種16、40或100 μg劑量後第8、28及42天,接種PTX-B之個體中的抗刺突蛋白IgG水平。[Fig. 19] shows anti-spike protein IgG levels in individuals vaccinated with PTX-B on days 8, 28, and 42 after vaccination with 16, 40, or 100 μg doses.

[圖20]示出與SARS-CoV-2恢復期患者血漿中之水平相比,安慰劑治療之對照個體中之抗刺突蛋白IgG水平。[Fig. 20] Shows anti-spike protein IgG levels in placebo-treated control individuals compared with levels in the plasma of SARS-CoV-2 convalescent patients.

[圖21]示出在接種16、40或100 μg劑量後第8、28及42天,來自接種PTX-B之個體之樣品中的中和活性。[Fig. 21] shows the neutralizing activity in samples from individuals vaccinated with PTX-B on days 8, 28, and 42 after vaccination with doses of 16, 40, or 100 μg.

[圖22]示出在接種16、40或100 μg劑量後第8、28及42天,來自接種PTX-B之個體之樣品中的抗COVID-19中和抗體水平。[Figure 22] Shows anti-COVID-19 neutralizing antibody levels in samples from individuals vaccinated with PTX-B on days 8, 28, and 42 after vaccination with 16, 40, or 100 μg doses.

[圖23]示出在接種16、40或100 μg劑量後第28及42天,來自接種PTX-B之個體的抗COVID-19中和抗體濃度。[Fig. 23] Shows anti-COVID-19 neutralizing antibody concentrations from individuals vaccinated with PTX-B on days 28 and 42 after vaccination with 16, 40, or 100 μg doses.

[圖24]示出在接種16、40或100 μg劑量後第28及42天,來自接種PTX-B之個體之抗COVID-19中和抗體的假型病毒中和。[Figure 24] Shows pseudotyped virus neutralization by anti-COVID-19 neutralizing antibodies from individuals vaccinated with PTX-B on days 28 and 42 after vaccination with 16, 40, or 100 μg doses.

[圖25]示出基於Khoury模型之PTX-B保護功效的預測。[Fig. 25] shows the prediction of the protective efficacy of PTX-B based on the Khoury model.

[圖26]示出PTX-B誘導的針對SAR-CoV-2原始病毒株以及α、β及δ VOC的中和活性。[Fig. 26] shows the neutralizing activity induced by PTX-B against the original strain of SAR-CoV-2 and α, β and δ VOCs.

TW202330923A_111136145_SEQL.xmlTW202330923A_111136145_SEQL.xml

Claims (59)

一種多核苷酸,其編碼SARS-CoV-2之至少一種結構蛋白或其變異體,其中該至少一種結構蛋白為刺突(S)蛋白,且其中該多核苷酸包含第一序列區域,該第一序列區域包含與由SEQ ID NO:7、20、26、27及32組成之群的成員具有至少80%一致性的核酸序列。A polynucleotide encoding at least one structural protein of SARS-CoV-2 or a variant thereof, wherein the at least one structural protein is the spike (S) protein, and wherein the polynucleotide includes a first sequence region, the third A sequence region includes a nucleic acid sequence that is at least 80% identical to a member of the group consisting of SEQ ID NOs: 7, 20, 26, 27, and 32. 如請求項1之多核苷酸,其中該第一序列區域與SEQ ID NO:7至少95%一致。The polynucleotide of claim 1, wherein the first sequence region is at least 95% identical to SEQ ID NO: 7. 如請求項2之多核苷酸,其中該第一序列區域與SEQ ID NO:7至少99%一致。The polynucleotide of claim 2, wherein the first sequence region is at least 99% identical to SEQ ID NO: 7. 如請求項3之多核苷酸,其中該第一序列區域由SEQ ID NO:7組成。The polynucleotide of claim 3, wherein the first sequence region consists of SEQ ID NO: 7. 如請求項4之多核苷酸,其中該經編碼之刺突蛋白具有SEQ ID NO:2之蛋白序列。The polynucleotide of claim 4, wherein the encoded spike protein has the protein sequence of SEQ ID NO: 2. 如請求項1至5中任一項之多核苷酸,其中至少50%之該多核苷酸序列係經密碼子最佳化。The polynucleotide of any one of claims 1 to 5, wherein at least 50% of the polynucleotide sequence is codon optimized. 如請求項5之多核苷酸,其中該多核苷酸為DNA。The polynucleotide of claim 5, wherein the polynucleotide is DNA. 如請求項5之多核苷酸,其中該多核苷酸為RNA。The polynucleotide of claim 5, wherein the polynucleotide is RNA. 如請求項8之多核苷酸,其中該多核苷酸為mRNA。The polynucleotide of claim 8, wherein the polynucleotide is mRNA. 如請求項9之多核苷酸,其包含5'UTR及3'UTR,其中該5'UTR包含SEQ ID NO:47且該3'UTR包含SEQ ID NO:48。The polynucleotide of claim 9, which includes a 5'UTR and a 3'UTR, wherein the 5'UTR includes SEQ ID NO: 47 and the 3'UTR includes SEQ ID NO: 48. 如請求項10之多核苷酸,其中至少一個尿嘧啶核苷係經修飾為N1-甲基假尿苷。The polynucleotide of claim 10, wherein at least one uridine nucleoside is modified to N1-methylpseudouridine. 如請求項11之多核苷酸,其中所有尿嘧啶核苷係經修飾為N1-甲基假尿苷。The polynucleotide of claim 11, wherein all uracil nucleosides are modified to N1-methylpseudouridine. 一種核酸疫苗,其包含如請求項12之多核苷酸。A nucleic acid vaccine comprising the polynucleotide of claim 12. 如請求項13之核酸疫苗,其在脂質奈米粒子(LNP)中調配。As claimed in claim 13, the nucleic acid vaccine is formulated in lipid nanoparticles (LNP). 如請求項14之核酸疫苗,其中該LNP包含(a) 50至85莫耳(mol)%之陽離子脂質;(b) 13至49.5莫耳%之非陽離子脂質;及(c) 0.5至2莫耳%之共軛脂質。For example, the nucleic acid vaccine of claim 14, wherein the LNP contains (a) 50 to 85 mol % of cationic lipids; (b) 13 to 49.5 mol % of non-cationic lipids; and (c) 0.5 to 2 mol %. Ear% conjugated lipids. 如請求項14之核酸疫苗,其中該LNP包含(a) 50至65莫耳%之陽離子脂質;(b)非陽離子脂質,其包含4至10莫耳%之磷脂和30至40莫耳%之膽固醇;及(c) 0.5至2莫耳%之共軛脂質。Such as the nucleic acid vaccine of claim 14, wherein the LNP contains (a) 50 to 65 mol% of cationic lipids; (b) non-cationic lipids, which contains 4 to 10 mol% of phospholipids and 30 to 40 mol% of Cholesterol; and (c) 0.5 to 2 mol% of conjugated lipids. 如請求項14之核酸疫苗,其中該LNP包含(a)約30至60莫耳%之陽離子脂質;(b)約0至30莫耳%之非陽離子脂質;(c)約18.5至48.5莫耳%之固醇;及(d)約0至10莫耳%之聚乙二醇化脂質。Such as the nucleic acid vaccine of claim 14, wherein the LNP contains (a) about 30 to 60 mol% of cationic lipids; (b) about 0 to 30 mol% of non-cationic lipids; (c) about 18.5 to 48.5 mol% % sterols; and (d) about 0 to 10 mol% PEGylated lipids. 如請求項14之核酸疫苗,其中該LNP包含(a)約35至55莫耳%之陽離子脂質;(b)約5至25莫耳%之非陽離子脂質;(c)約30至40莫耳%之固醇;及(d)約0至10莫耳%之聚乙二醇化脂質。Such as the nucleic acid vaccine of claim 14, wherein the LNP contains (a) about 35 to 55 mol% of cationic lipids; (b) about 5 to 25 mol% of non-cationic lipids; (c) about 30 to 40 mol% % sterols; and (d) about 0 to 10 mol% PEGylated lipids. 如請求項14之核酸疫苗,其中該LNP包含(a)約35至45莫耳%之陽離子脂質;(b)約25至35莫耳%之非陽離子脂質;(c)約20至30莫耳%之固醇;及(d)約0至10莫耳%之聚乙二醇化脂質。Such as the nucleic acid vaccine of claim 14, wherein the LNP contains (a) about 35 to 45 mol% of cationic lipids; (b) about 25 to 35 mol% of non-cationic lipids; (c) about 20 to 30 mol% % sterols; and (d) about 0 to 10 mol% PEGylated lipids. 如請求項14之核酸疫苗,其中該LNP包含(a)約45至65莫耳%之陽離子脂質;(b)約5至10莫耳%之非陽離子脂質;(c)約25至40莫耳%之固醇;及(d)約0.5至10莫耳%之聚乙二醇化脂質。Such as the nucleic acid vaccine of claim 14, wherein the LNP contains (a) about 45 to 65 mol% of cationic lipids; (b) about 5 to 10 mol% of non-cationic lipids; (c) about 25 to 40 mol% % sterol; and (d) about 0.5 to 10 mol% PEGylated lipid. 如請求項14之核酸疫苗,其中該LNP包含(a)約40至60莫耳%之陽離子脂質;(b)約5至15莫耳%之非陽離子脂質;(c)約35至45莫耳%之固醇;及(d)約0.5至3莫耳%之聚乙二醇化脂質。Such as the nucleic acid vaccine of claim 14, wherein the LNP contains (a) about 40 to 60 mol% of cationic lipids; (b) about 5 to 15 mol% of non-cationic lipids; (c) about 35 to 45 mol% % sterols; and (d) about 0.5 to 3 mol% PEGylated lipids. 如請求項14之核酸疫苗,其中該LNP包含(a)約30至60莫耳%之陽離子脂質;(b)約0至30莫耳%之非陽離子脂質;(c)約15至50莫耳%之固醇;及(d)約0.01至10莫耳%之聚乙二醇化脂質。Such as the nucleic acid vaccine of claim 14, wherein the LNP contains (a) about 30 to 60 mol% of cationic lipids; (b) about 0 to 30 mol% of non-cationic lipids; (c) about 15 to 50 mol% % sterol; and (d) about 0.01 to 10 mol% PEGylated lipid. 如請求項14之核酸疫苗,其中該LNP包含(a)約10至75莫耳%之陽離子脂質;(b)約0.5至50莫耳%之非陽離子脂質;(c)約5至60莫耳%之固醇;及(d)約0.1至20莫耳%之聚乙二醇化脂質。Such as the nucleic acid vaccine of claim 14, wherein the LNP contains (a) about 10 to 75 mol% of cationic lipids; (b) about 0.5 to 50 mol% of non-cationic lipids; (c) about 5 to 60 mol% % sterol; and (d) about 0.1 to 20 mol% PEGylated lipid. 如請求項14之核酸疫苗,其中該LNP包含(a)約50至65莫耳%之陽離子脂質;(b)約3至15莫耳%之非陽離子脂質;(c)約30至40莫耳%之至少一種固醇;及(d)約0.5至2莫耳%之聚乙二醇化脂質。Such as the nucleic acid vaccine of claim 14, wherein the LNP contains (a) about 50 to 65 mol% of cationic lipids; (b) about 3 to 15 mol% of non-cationic lipids; (c) about 30 to 40 mol% % of at least one sterol; and (d) about 0.5 to 2 mol% of a pegylated lipid. 如請求項14之核酸疫苗,其中該LNP包含(a)約50至85莫耳%之陽離子脂質;(b)約3至15莫耳%之非陽離子脂質;(c)約30至40莫耳%之固醇;及(d)約0.5至2莫耳%之聚乙二醇化脂質。Such as the nucleic acid vaccine of claim 14, wherein the LNP contains (a) about 50 to 85 mol% of cationic lipids; (b) about 3 to 15 mol% of non-cationic lipids; (c) about 30 to 40 mol% % sterols; and (d) about 0.5 to 2 mol% PEGylated lipids. 如請求項14之核酸疫苗,其中該LNP包含(a)約25至75莫耳%之陽離子脂質;(b)約0.1至15莫耳%之非陽離子脂質;(c)約5至50莫耳%之固醇;及(d)約0.5至20莫耳%之聚乙二醇化脂質。Such as the nucleic acid vaccine of claim 14, wherein the LNP contains (a) about 25 to 75 mol% of cationic lipids; (b) about 0.1 to 15 mol% of non-cationic lipids; (c) about 5 to 50 mol% % sterols; and (d) about 0.5 to 20 mol% PEGylated lipids. 如請求項14之核酸疫苗,其中該LNP包含(a)約50至65莫耳%之陽離子脂質;(b)約5至10莫耳%之非陽離子脂質;(c)約25至35莫耳%之固醇;及(d)約5至10莫耳%之聚乙二醇化脂質。Such as the nucleic acid vaccine of claim 14, wherein the LNP contains (a) about 50 to 65 mol% of cationic lipids; (b) about 5 to 10 mol% of non-cationic lipids; (c) about 25 to 35 mol% % sterols; and (d) about 5 to 10 mol% PEGylated lipids. 如請求項14之核酸疫苗,其中該LNP包含(a)約20至60莫耳%之陽離子脂質;(b)約5至25莫耳%之非陽離子脂質;(c)約25至55莫耳%之固醇;及(d)約0.5至15莫耳%之聚乙二醇化脂質。Such as the nucleic acid vaccine of claim 14, wherein the LNP contains (a) about 20 to 60 mol% of cationic lipids; (b) about 5 to 25 mol% of non-cationic lipids; (c) about 25 to 55 mol% % sterols; and (d) about 0.5 to 15 mol% PEGylated lipids. 如請求項14之核酸疫苗,其中該LNP包含(a) 45至55莫耳%之3D-P-DMA;(b) 8至10莫耳%之DSPC;(c) 36至42莫耳%之膽固醇;及(d) 1.4至1.8莫耳%之PEG-DMA。For example, the nucleic acid vaccine of claim 14, wherein the LNP contains (a) 45 to 55 mol% of 3D-P-DMA; (b) 8 to 10 mol% of DSPC; (c) 36 to 42 mol% of DSPC Cholesterol; and (d) 1.4 to 1.8 mol% PEG-DMA. 如請求項29之核酸疫苗,其中該LNP包含(a) 49.96莫耳%之3D-P-DMA;(b) 9.97莫耳%之DSPC;(c) 38.44莫耳%之膽固醇;及(d) 1.61%之PEG-DMA。For example, the nucleic acid vaccine of claim 29, wherein the LNP contains (a) 49.96 mol% of 3D-P-DMA; (b) 9.97 mol% of DSPC; (c) 38.44 mol% of cholesterol; and (d) 1.61% PEG-DMA. 一種醫藥組成物,其包含如請求項30之核酸疫苗及醫藥學上可接受之賦形劑。A pharmaceutical composition comprising the nucleic acid vaccine of claim 30 and a pharmaceutically acceptable excipient. 如請求項31之醫藥組成物,其包含約0.2 mg/mL之如請求項9所述之mRNA。The pharmaceutical composition of claim 31, which contains about 0.2 mg/mL of the mRNA described in claim 9. 如請求項32之醫藥組成物,其適合於肌內(IM)注射。The pharmaceutical composition of claim 32 is suitable for intramuscular (IM) injection. 如請求項32之醫藥組成物,其係以2 mL填充物封裝在3 mL玻璃小瓶中。For example, the pharmaceutical composition of claim 32 is packaged in a 3 mL glass vial with a 2 mL filler. 一種誘導個體之免疫反應之方法,其包含投予如請求項13至30中任一項之核酸疫苗或如請求項31至34中任一項之醫藥組成物。A method of inducing an immune response in an individual, comprising administering a nucleic acid vaccine according to any one of claims 13 to 30 or a pharmaceutical composition according to any one of claims 31 to 34. 如請求項35之方法,其中該免疫反應包含T細胞反應。The method of claim 35, wherein the immune response includes a T cell response. 如請求項35之方法,其中該免疫反應包含B細胞反應。The method of claim 35, wherein the immune response includes a B cell response. 如請求項35之方法,其進一步包含在該第一次投予後投予加強劑。The method of claim 35, further comprising administering a booster after the first administration. 如請求項35之方法,其中該個體之該免疫反應為劑量依賴性。The method of claim 35, wherein the immune response of the subject is dose-dependent. 如請求項39之方法,其中該劑量依賴性免疫反應包含誘導該個體之SARS-CoV-2刺突蛋白特異性IgG、IgG1、IgG2a、IgG2b、IgM及IgA抗體之一或多者。The method of claim 39, wherein the dose-dependent immune response comprises inducing one or more of SARS-CoV-2 spike protein-specific IgG, IgG1, IgG2a, IgG2b, IgM and IgA antibodies in the individual. 如請求項39之方法,其中該劑量依賴性免疫反應包含誘導IL-2+ T細胞、IL-4+ T細胞及IFN-γ+ T細胞之一或多者。The method of claim 39, wherein the dose-dependent immune response includes inducing one or more of IL-2+ T cells, IL-4+ T cells, and IFN-γ+ T cells. 一種治療個體之COVID-19之方法,其包含向該個體投予如請求項13至30中任一項之核酸疫苗或如請求項31至34中任一項之醫藥組成物。A method of treating COVID-19 in an individual, comprising administering to the individual a nucleic acid vaccine according to any one of claims 13 to 30 or a pharmaceutical composition according to any one of claims 31 to 34. 一種預防個體之COVID-19之方法,其包含向該個體投予如請求項13至30中任一項之核酸疫苗或如請求項31至34中任一項之醫藥組成物。A method of preventing COVID-19 in an individual, comprising administering to the individual a nucleic acid vaccine according to any one of claims 13 to 30 or a pharmaceutical composition according to any one of claims 31 to 34. 一種緩解或改善個體之COVID-19的生理效應或症狀之方法,其包含向該個體投予如請求項13至30中任一項之核酸疫苗或如請求項31至34中任一項之醫藥組成物。A method of alleviating or improving the physiological effects or symptoms of COVID-19 in an individual, comprising administering to the individual a nucleic acid vaccine according to any one of claims 13 to 30 or a medicine according to any one of claims 31 to 34 composition. 如請求項42至44中任一項之方法,其中向該個體投予之該mRNA的劑量為約5 µg至約100 µg。The method of any one of claims 42 to 44, wherein the dose of the mRNA administered to the individual is from about 5 µg to about 100 µg. 如請求項42至44中任一項之方法,其中向該個體投予之該mRNA的劑量為約16 µg。The method of any one of claims 42 to 44, wherein the dose of the mRNA administered to the individual is about 16 μg. 如請求項42至44中任一項之方法,其中向該個體投予之該mRNA的劑量為約40 µg。The method of any one of claims 42 to 44, wherein the dose of the mRNA administered to the individual is about 40 μg. 如請求項42至44中任一項之方法,其中向該個體投予之該mRNA的劑量為約100 µg。The method of any one of claims 42 to 44, wherein the dose of the mRNA administered to the individual is about 100 μg. 如請求項42至44中任一項之方法,其中向該個體投予之該醫藥組成物的體積為約0.025 mL至約0.5 mL。The method of any one of claims 42 to 44, wherein the volume of the pharmaceutical composition administered to the individual is from about 0.025 mL to about 0.5 mL. 如請求項42至44中任一項之方法,其中向該個體投予之該醫藥組成物的體積為約0.025 mL、0.05 mL、0.08 mL、0.2 mL或0.5 mL。The method of any one of claims 42 to 44, wherein the volume of the pharmaceutical composition administered to the individual is about 0.025 mL, 0.05 mL, 0.08 mL, 0.2 mL or 0.5 mL. 如請求項42至50中任一項之方法,其包含在第一劑量後介於約1週至約5週投予該核酸疫苗或醫藥組成物之第二劑量。The method of any one of claims 42 to 50, comprising administering a second dose of the nucleic acid vaccine or pharmaceutical composition between about 1 week and about 5 weeks after the first dose. 如請求項51之方法,其中該第二劑量在該第一劑量後約4週投予。The method of claim 51, wherein the second dose is administered about 4 weeks after the first dose. 如請求項42至44中任一項之方法,其中在接受該核酸疫苗或醫藥組成物之第一劑量後截至第28天,在該個體體內偵測到抗刺突蛋白IgG抗體。The method of any one of claims 42 to 44, wherein anti-spike protein IgG antibodies are detected in the individual as of day 28 after receiving the first dose of the nucleic acid vaccine or pharmaceutical composition. 如請求項53之方法,其中在接受該核酸疫苗或醫藥組成物之第二劑量後截至第42天,在該個體體內存在的該抗刺突蛋白IgG抗體的量增加。The method of claim 53, wherein the amount of the anti-spike protein IgG antibody present in the individual increases by day 42 after receiving the second dose of the nucleic acid vaccine or pharmaceutical composition. 如請求項53之方法,其中在該個體體內之該抗刺突蛋白IgG抗體值為來自SARS-CoV-2恢復期患者的血清樣品之抗刺突蛋白IgG抗體值的10倍以上。The method of claim 53, wherein the anti-spike protein IgG antibody value in the individual is more than 10 times the anti-spike protein IgG antibody value of a serum sample from a SARS-CoV-2 convalescent patient. 一種誘導個體之SARS-CoV-2中和抗體產生之方法,其包含向該個體投予如請求項13至30中任一項之核酸疫苗或如請求項31至34中任一項之醫藥組成物。A method for inducing the production of SARS-CoV-2 neutralizing antibodies in an individual, which includes administering to the individual a nucleic acid vaccine according to any one of claims 13 to 30 or a pharmaceutical composition according to any one of claims 31 to 34 things. 如請求項56之方法,其中在投予後截至第28天,可在該個體體內偵測到該SARS-CoV-2中和抗體。The method of claim 56, wherein the SARS-CoV-2 neutralizing antibody can be detected in the individual as of day 28 after administration. 如請求項57之方法,其中在接受該核酸疫苗或醫藥組成物之第二劑量後第42天,在該個體體內之該SARS-CoV-2中和抗體的產量增加。The method of claim 57, wherein the production of the SARS-CoV-2 neutralizing antibody in the individual increases on day 42 after receiving the second dose of the nucleic acid vaccine or pharmaceutical composition. 如請求項57之方法,其中該SARS-CoV-2中和抗體之水平截至第42天增加10倍。The method of claim 57, wherein the level of SARS-CoV-2 neutralizing antibodies increases 10-fold by day 42.
TW111136145A 2021-09-28 2022-09-23 Compositions and methods for the prevention and/or treatment of covid-19 TW202330923A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CA3132191A CA3132191A1 (en) 2021-09-28 2021-09-28 Compositions and methods for the prevention and/or treatment of covid-19
CA3132191 2021-09-28
CA3146392 2022-01-21
CA3146392A CA3146392A1 (en) 2021-09-28 2022-01-21 Compositions and methods for the prevention and/or treatment of covid-19

Publications (1)

Publication Number Publication Date
TW202330923A true TW202330923A (en) 2023-08-01

Family

ID=85727269

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111136145A TW202330923A (en) 2021-09-28 2022-09-23 Compositions and methods for the prevention and/or treatment of covid-19

Country Status (4)

Country Link
AR (1) AR127169A1 (en)
CA (2) CA3132191A1 (en)
TW (1) TW202330923A (en)
WO (1) WO2023050003A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2012267578B2 (en) * 2011-06-08 2017-04-20 Translate Bio, Inc. Cleavable lipids
KR20210105889A (en) * 2018-11-09 2021-08-27 아뷰터스 바이오파마 코포레이션 Lipid Nanoparticle Formulation
EP4147717A1 (en) * 2020-02-04 2023-03-15 CureVac SE Coronavirus vaccine
WO2021159130A2 (en) * 2020-05-15 2021-08-12 Modernatx, Inc. Coronavirus rna vaccines and methods of use

Also Published As

Publication number Publication date
CA3146392A1 (en) 2023-03-28
AR127169A1 (en) 2023-12-27
WO2023050003A1 (en) 2023-04-06
CA3132191A1 (en) 2023-03-28

Similar Documents

Publication Publication Date Title
JP7504464B2 (en) Nucleic Acid Vaccines
DE112021000012B4 (en) Coronavirus Vaccine
US11510977B2 (en) Nucleic acid vaccines for coronavirus
US20210378980A1 (en) Preparation of lipid nanoparticles and methods of administration thereof
US20200129445A1 (en) Lipid nanoparticle formulation
US20240307522A1 (en) Compositions and methods for the prevention and/or treatment of covid-19
WO2023137550A1 (en) Compositions and methods for the prevention and/or treatment of covid-19
CA3118329A1 (en) Compositions and methods for the prevention and/or treatment of covid-19
TW202330923A (en) Compositions and methods for the prevention and/or treatment of covid-19
WO2024125597A1 (en) Compositions and methods for infectious diseases
CA3146411A1 (en) Compositions and methods for prevention and/or treatment of covid-19
CA3107232A1 (en) Compositions and methods for the prevention and/or treatment of covid-19
WO2024073848A1 (en) Compositions and methods for the prevention and/or treatment of covid-19
CA3154578A1 (en) Compositions and methods for the prevention and/or treatment of covid-19
WO2024156053A1 (en) Nucleic acid vaccines for varicella-zoster virus (vzv)
CA3128078A1 (en) Compositions and methods for the prevention and/or treatment of covid-19
CA3113094A1 (en) Compositions and methods for the prevention and/or treatment of covid-19
CA3116932A1 (en) Compositions and methods for the prevention and/or treatment of covid-19
CA3116284A1 (en) Compositions and methods for the prevention and/or treatment of covid-19
WO2024083171A1 (en) Lipid compound and lipid nanoparticle composition
WO2024141784A2 (en) Broadly protective betacoronavirus vaccines and compositions
KR20230017730A (en) mRNA and its template for protein expression
CN118159287A (en) Respiratory syncytial virus RNA vaccine
CN118574637A (en) RNA molecules