TW202329062A - Coordinated top electrode - drive electrode voltages for switching optical state of electrophoretic displays using postive and negative voltages of different magnitudes - Google Patents
Coordinated top electrode - drive electrode voltages for switching optical state of electrophoretic displays using postive and negative voltages of different magnitudes Download PDFInfo
- Publication number
- TW202329062A TW202329062A TW111134719A TW111134719A TW202329062A TW 202329062 A TW202329062 A TW 202329062A TW 111134719 A TW111134719 A TW 111134719A TW 111134719 A TW111134719 A TW 111134719A TW 202329062 A TW202329062 A TW 202329062A
- Authority
- TW
- Taiwan
- Prior art keywords
- particles
- electrode
- voltage
- providing
- top electrode
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims description 20
- 239000002245 particle Substances 0.000 claims abstract description 225
- 238000000149 argon plasma sintering Methods 0.000 claims abstract description 19
- 239000012530 fluid Substances 0.000 claims description 42
- 239000003086 colorant Substances 0.000 claims description 31
- 239000003094 microcapsule Substances 0.000 claims description 18
- 229920005596 polymer binder Polymers 0.000 claims description 7
- 239000002491 polymer binding agent Substances 0.000 claims description 7
- 238000000034 method Methods 0.000 description 29
- 239000000049 pigment Substances 0.000 description 23
- 239000010410 layer Substances 0.000 description 22
- 229910044991 metal oxide Inorganic materials 0.000 description 11
- 150000004706 metal oxides Chemical class 0.000 description 11
- 239000000463 material Substances 0.000 description 10
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 8
- 239000003990 capacitor Substances 0.000 description 8
- 238000000576 coating method Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 239000002775 capsule Substances 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 7
- 230000001351 cycling effect Effects 0.000 description 7
- 239000004065 semiconductor Substances 0.000 description 7
- 239000010409 thin film Substances 0.000 description 7
- 239000012790 adhesive layer Substances 0.000 description 6
- 230000005684 electric field Effects 0.000 description 6
- 239000010408 film Substances 0.000 description 6
- 239000012071 phase Substances 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 210000004027 cell Anatomy 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 229910021417 amorphous silicon Inorganic materials 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 238000007639 printing Methods 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 239000011787 zinc oxide Substances 0.000 description 4
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229910052733 gallium Inorganic materials 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical group [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000011241 protective layer Substances 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 238000007766 curtain coating Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- 238000001652 electrophoretic deposition Methods 0.000 description 2
- 238000007765 extrusion coating Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000007641 inkjet printing Methods 0.000 description 2
- 239000008384 inner phase Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 238000009877 rendering Methods 0.000 description 2
- 238000007651 thermal printing Methods 0.000 description 2
- 241001270131 Agaricus moelleri Species 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 208000033853 acromesomelic dysplasia 4 Diseases 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000007754 air knife coating Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- JGDFBJMWFLXCLJ-UHFFFAOYSA-N copper chromite Chemical compound [Cu]=O.[Cu]=O.O=[Cr]O[Cr]=O JGDFBJMWFLXCLJ-UHFFFAOYSA-N 0.000 description 1
- 238000007607 die coating method Methods 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000007756 gravure coating Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 238000009685 knife-over-roll coating Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000005499 meniscus Effects 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 238000007645 offset printing Methods 0.000 description 1
- 239000000382 optic material Substances 0.000 description 1
- 239000004038 photonic crystal Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000007763 reverse roll coating Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000007764 slot die coating Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- 238000001429 visible spectrum Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/3433—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
- G09G3/344—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on particles moving in a fluid or in a gas, e.g. electrophoretic devices
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/165—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on translational movement of particles in a fluid under the influence of an applied field
- G02F1/166—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
- G02F1/167—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/165—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on translational movement of particles in a fluid under the influence of an applied field
- G02F1/1685—Operation of cells; Circuit arrangements affecting the entire cell
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/2003—Display of colours
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/06—Details of flat display driving waveforms
- G09G2310/068—Application of pulses of alternating polarity prior to the drive pulse in electrophoretic displays
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2330/00—Aspects of power supply; Aspects of display protection and defect management
- G09G2330/02—Details of power systems and of start or stop of display operation
- G09G2330/028—Generation of voltages supplied to electrode drivers in a matrix display other than LCD
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Computer Hardware Design (AREA)
- Theoretical Computer Science (AREA)
- Optics & Photonics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Molecular Biology (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
Abstract
Description
[相關申請案][Related applications]
本申請案主張2022年3月16日申請之美國臨時申請案第63/320,524號之優先權。本申請案另主張2021年9月14日申請之美國專利申請案第17/474,375號之優先權。本文中所揭露之專利和公開專利申請案之全文以引用的方式併入。This application claims priority to U.S. Provisional Application Serial No. 63/320,524, filed March 16, 2022. This application also claims priority to US Patent Application Serial No. 17/474,375, filed September 14, 2021. The entire contents of the patents and published patent applications disclosed herein are incorporated by reference.
電泳顯示器(EPD)藉由改變帶電有色粒子相對於透光觀看面的位置來改變顏色。這樣的電泳顯示器通常被稱為「電子紙」或「ePaper」,因為所得到的顯示器具有高對比度,且在陽光下係可閱讀,很像紙上的墨水。電泳顯示器已在eReader(例如AMAZON KINDLE®)中得到廣泛採用,因為電泳顯示器提供書本般的閱讀體驗,耗電量低,並且允許使用者在輕型手持裝置中攜帶數百冊的藏書。Electrophoretic displays (EPDs) change color by changing the position of charged colored particles relative to a light-transmissive viewing surface. Such electrophoretic displays are often called "electronic paper" or "ePaper" because the resulting display has a high contrast ratio and is readable in sunlight, much like ink on paper. Electrophoretic displays have been widely adopted in eReaders such as Amazon KINDLE® because they provide a book-like reading experience with low power consumption and allow users to carry a collection of hundreds of volumes in a lightweight handheld device.
多年來,電泳顯示器只包含兩種類型的帶電顏色(黑色及白色)粒子。(當然,在此使用的「顏色」包括黑色及白色。)白色粒子通常是光散射型的且包含例如二氧化鈦(titanium dioxide),而黑色粒子在整個可見光譜範圍內係吸收性的且可以包含碳黑或吸收性金屬氧化物(諸如亞鉻酸銅(copper chromite))。從最簡單的意義上講,黑白電泳顯示器只需要一個位於觀看面的透光電極、一個背電極及一個包含帶相反電荷的白色及黑色粒子之電泳介質。當提供一種極性的電壓時,白色粒子移動至觀看面,而當提供相反極性的電壓時,黑色粒子移動至觀看面。如果背電極包括可控制區域(像素)(由電晶體控制的分段電極或一種像素電極的主動矩陣),可以使圖案以電子方式出現在觀看面。該圖案例如可以是一本書的文字。For many years, electrophoretic displays consisted of only two types of charged colored (black and white) particles. (Of course, "color" as used herein includes black and white.) White particles are typically light scattering and contain, for example, titanium dioxide, while black particles are absorptive throughout the visible spectrum and may contain carbon Black or absorbing metal oxides (such as copper chromite). In the simplest sense, a black-and-white electrophoretic display requires only a light-transmitting electrode on the viewing side, a back electrode, and an electrophoretic medium containing oppositely charged white and black particles. When a voltage of one polarity is applied, the white particles move to the viewing surface, and when a voltage of the opposite polarity is applied, the black particles move to the viewing surface. If the back electrode comprises controllable areas (pixels) (segmented electrodes controlled by transistors or an active matrix of pixel electrodes), the pattern can be made to appear electronically on the viewing surface. The pattern can be, for example, the text of a book.
最近,電泳顯示器在市場上已有各種顏色可供選擇,包括三色顯示器(黑色、白色、紅色;黑色、白色、黃色)及四色顯示器(黑色、白色、紅色、黃色)。與黑白電泳顯示器的操作相似,具有三個或四個反射顏料之電泳顯示器的操作類似於簡單的黑白顯示器,因為所需的顏色粒子被驅動至觀看面。驅動方案遠比只有黑色及白色要複雜得多,但是最後,粒子的光學功能是一樣的。Recently, electrophoretic displays have been available in the market in a variety of colors, including three-color displays (black, white, red; black, white, yellow) and four-color displays (black, white, red, yellow). Similar to the operation of a black and white electrophoretic display, an electrophoretic display with three or four reflective pigments operates like a simple black and white display in that the desired color particles are driven to the viewing surface. The driving scheme is far more complex than just black and white, but in the end, the optical function of the particles is the same.
進階型彩色電子紙(ACeP™)亦包含四種粒子,但青色、黃色及洋紅色粒子是減色性的而不是反射性的,因此每個像素可以產生數千種顏色。色彩處理在功能上相當於平板印刷(offset printing)及噴墨印表機中長期使用的印刷方法。藉由在鮮明的白紙背景上使用正確比例的青色、黃色及洋紅色來產生給定的顏色。在ACeP的例子中,青色、黃色、洋紅色及白色粒子相對於觀看面的相對位置將決定每個像素的顏色。雖然這種類型的電泳顯示器允許在每個像素上呈現數千種顏色,但是在厚度約為10至20微米(micrometers)的工作空間內仔細地控制每種(50至500奈米尺寸的)顏料的位置是至關重要的。顯然,顏料位置的變動將導致在給定像素處顯示不正確的顏色。據此,這樣的系統需要精細的電壓控制。這種系統的更多細節提供於以下美國專利中,所有這些專利其完整內容皆以引用方式併入本文:美國專利第9,361,836、9,921,451、10,276,109、10,353,266、10,467,984及10,593,272號。Advanced Color Electronic Paper (ACeP™) also contains four particles, but the cyan, yellow and magenta particles are subtractive rather than reflective, so each pixel can produce thousands of colors. Color processing is functionally equivalent to long-used printing methods in offset printing and inkjet printers. Produces a given color by using the correct proportions of cyan, yellow, and magenta on a sharp white paper background. In the case of ACeP, the relative positions of the cyan, yellow, magenta and white particles with respect to the viewing surface will determine the color of each pixel. While this type of electrophoretic display allows the rendering of thousands of colors per pixel, each pigment (50 to 500 nanometers in size) is carefully controlled within a working space of about 10 to 20 micrometers (micrometers) thick The location is critical. Obviously, a shift in the position of the paint will result in an incorrect color being displayed at a given pixel. Accordingly, such systems require fine voltage control. Further details of such systems are provided in the following US patents, all of which are incorporated herein by reference in their entirety: US Patent Nos. 9,361,836, 9,921,451, 10,276,109, 10,353,266, 10,467,984, and 10,593,272.
本發明係有關於用於彩色電泳顯示器,特別是但不限於能夠使用包括複數個有色粒子(例如白色、青色、黃色及洋紅色)的單層電泳材料呈現多於兩種顏色的電泳顯示器。在某些例子中,粒子其中二者帶正電,而兩粒子帶負電。在某些例子中,粒子其中三者帶正電,而一粒子帶負電。在某些例子中,一帶正電粒子具有厚的聚合物外殼,且一帶負電粒子具有厚的聚合物外殼。The present invention relates to use in color electrophoretic displays, particularly but not limited to electrophoretic displays capable of displaying more than two colors using a single layer of electrophoretic material comprising a plurality of colored particles such as white, cyan, yellow and magenta. In some instances, two of the particles are positively charged and two of the particles are negatively charged. In some instances, three of the particles are positively charged and one is negatively charged. In some examples, the positively charged particles have a thick polymer shell and the negatively charged particles have a thick polymer shell.
用語「灰階狀態」在本文中以其成像技藝中之習知含義用於提及在像素之兩個極端光學狀態間的狀態,且不一定暗示這兩個極端狀態間之黑色-白色過渡(黑色-白色transition)。舉例而言,下面提及的數個E Ink專利及公開申請案描述電泳顯示器,其中,極端狀態為白色及深藍色,使得於中間「灰階狀態」實際上是淺藍色。確實,如所述,光學狀態之變化可能根本不是顏色變化。用語「黑色」及「白色」可於下文中用以意指顯示器之兩個極端光學狀態,且應該理解為通常包括完全不是黑色及白色之極端光學狀態,例如前述白色及深藍色狀態。The term "grayscale state" is used herein in its conventional sense in the imaging arts to refer to a state between two extreme optical states of a pixel, and does not necessarily imply a black-to-white transition between these two extreme states ( black-white transition). For example, several of the E Ink patents and published applications mentioned below describe electrophoretic displays in which the extreme states are white and dark blue, such that the intermediate "gray state" is actually light blue. Indeed, as stated, the change in optical state may not be a color change at all. The terms "black" and "white" may be used hereinafter to refer to two extreme optical states of a display, and should be understood to generally include extreme optical states that are not black and white at all, such as the aforementioned white and dark blue states.
用語「雙穩態(bistable)」及「雙穩性(bistability)」在本文中以該項技藝中之習知含義用以提及顯示器包括具有在至少一光學性質方面係不同的第一及第二顯示狀態之顯示元件,且使得在任何給定元件經驅動後,藉由有限(finite)期間的定址脈波(addressing pulse),呈現其第一個或第二個顯示狀態,而在定址脈波已終止後,該狀態將持續存在至少幾次(例如至少4次),即更改顯示元件狀態之定址脈波的最短期間。美國專利第7,170,670號中顯示,一些具有灰階的粒子系電泳顯示器不僅在極端黑白狀態下穩定,而且在中間灰階狀態下也穩定,且一些其它類型的電光顯示器亦同樣是如此。這種類型的顯示器可適當地稱為多穩態(multi-stable)而不是雙穩態,但是為了方便起見,「雙穩態」一詞在此可以用以涵蓋雙穩態及多穩態顯示器。The terms "bistable" and "bistability" are used herein in their conventional meaning in the art to refer to a display comprising first and second components having at least one optical property that differs. Two display state display elements such that after any given element is driven, it assumes its first or second display state by an addressing pulse of finite duration, while the addressing pulse After the wave has terminated, the state will persist for at least a few times (eg, at least 4), ie, the shortest duration of the addressing pulse that changes the state of the display element. US Patent No. 7,170,670 shows that some particle-based electrophoretic displays with gray scales are stable not only in extreme black and white states, but also in intermediate gray scale states, and the same is true for some other types of electro-optic displays. This type of display may properly be called multi-stable rather than bistable, but for convenience the term "bistable" may be used here to cover both bistable and multi-stable. monitor.
術語「脈衝(impulse)」,在用於指驅動電泳顯示器時,在本文中用於指在顯示器被驅動的時段期間施加的電壓相對於時間的積分。The term "impulse", when used to refer to driving an electrophoretic display, is used herein to refer to the integral of the applied voltage with respect to time during the period during which the display is driven.
吸收、散射或反射寬帶或被選波長的光之粒子在本文中稱為有色或顏料粒子。本發明的電泳介質及顯示器中亦可以使用除顏料之外的各種吸收或反射光的材料(在該術語的嚴格意義上是指不溶性有色材料),例如染料或光子晶體(photonic crystals)等。Particles that absorb, scatter or reflect broadband or selected wavelengths of light are referred to herein as colored or pigment particles. Various light-absorbing or reflective materials (in the strict sense of the term, refer to insoluble colored materials) other than pigments can also be used in the electrophoretic medium and display of the present invention, such as dyes or photonic crystals.
粒子系的電泳顯示器數年來已成為密集研發的主題。在這種顯示器中,複數個帶電粒子(有時稱為顏料粒子)在電場之影響下移動通過流體。相較於液晶顯示器,電泳顯示器可具有優良的亮度和對比度、寬視角、狀態雙穩性、低功耗等屬性。然而,關於這些顯示器之長期影像品質的問題已阻礙它們的廣泛使用。舉例而言,構成電泳顯示器之粒子易於沉降,導致這些顯示器的使用壽命不足。Particle-based electrophoretic displays have been the subject of intensive research and development for several years. In such displays, a plurality of charged particles, sometimes called pigment particles, move through a fluid under the influence of an electric field. Compared with liquid crystal displays, electrophoretic displays can have properties such as excellent brightness and contrast, wide viewing angles, state bistability, and low power consumption. However, problems with the long-term image quality of these displays have hindered their widespread use. For example, the particles that make up electrophoretic displays are prone to sedimentation, resulting in insufficient lifetime of these displays.
如上所述,電泳介質需要流體之存在。在大部分習知技藝電泳介質中,此流體係液體,但是可使用氣體流體來產生該電泳介質;參見例如Kitamura, T., et al., Electrical toner movement for electronic paper-like display, IDW Japan, 2001, Paper HCS1-1以及Yamaguchi, Y., et al., Toner display using insulative particles charged triboelectrically, IDW Japan, 2001, Paper AMD4-4。亦參見美國專利第7,321,459及7,236,291號。當在一允許粒子沉降(settling)之方位上(例如在垂直平面中配置介質之標記中)使用該等介質時,這種氣體系電泳介質似乎易受相同於液體系電泳介質之因粒子沉降所造成之類型的問題所影響。確實,粒子沉降似乎在氣體系電泳介質中比在液體系電泳介質中更是嚴重問題,由於相較於液體懸浮流體,氣體懸浮流體之較低黏性允許該等電泳粒子之更快速沉降。As mentioned above, the electrophoretic medium requires the presence of a fluid. In most prior art electrophoretic media, this fluid is a liquid, but gaseous fluids can be used to create the electrophoretic media; see for example Kitamura, T., et al., Electrical toner movement for electronic paper-like display, IDW Japan, 2001, Paper HCS1-1 and Yamaguchi, Y., et al., Toner display using insulative particles charged triboelectrically, IDW Japan, 2001, Paper AMD4-4. See also US Patent Nos. 7,321,459 and 7,236,291. Such gas-based electrophoretic media appear to be susceptible to the same settling effects of particles as liquid-based electrophoretic media when the media are used in an orientation that allows particle settling, such as in a label that arranges the media in a vertical plane. Caused by the type of problems affected. Indeed, particle settling appears to be a more serious problem in gas-based electrophoretic media than in liquid-based electrophoretic media, since the lower viscosity of gas-suspended fluids allows for faster settling of the electrophoretic particles compared to liquid-based suspending fluids.
讓渡給Massachusetts Institute of Technology (MIT)和E Ink Corporation或在它們的名義下之許多專利及申請案描述在膠囊型電泳及其它電光介質方面所使用之各種技術。這樣的膠囊型介質包括許多小膠囊,每一個小膠囊本身包括內相和圍繞內相的囊壁,該內相在流體介質中含有可電泳移動的粒子。通常,該等膠囊本身係保持於一高分子黏著劑中,以形成一位於兩個電極間之黏著層(coherent layer)。記載在這些專利和專利申請案中的該等技術包括: (a)電泳粒子、流體及流體添加劑;參見例如美國專利第7,002,728和7,679,814號; (b)膠囊、黏著劑及膠囊化製程;參見例如美國專利第6,922,276和7,411,719號; (c)微胞結構、壁材及形成微胞之方法;參見例如美國專利第7,072,095和9,279,906號; (d)用於填充及密封微胞之方法;參見例如美國專利第7,144,942和7,715,088號; (e)包含電光材料之薄膜及次總成(sub-assemblies);參見例如美國專利第6,982,178和7,839,564號; (f)在顯示器中所使用之背板、黏著層及其它輔助層以及方法;參見例如美國專利第7,116,318和7,535,624號; (g)顏色形成及顏色調整;參見例如美國專利第6,017,584、6,545,797、6,664,944、6,788,452、6,864,875、6,914,714、6,972,893、7,038,656、7,038,670、7,046,228、7,052,571、7,075,502、7,167,155、7,385,751、7,492,505、7,667,684、7,684,108、7,791,789、7,800,813、7,821,702、7,839,564、7,910,175、7,952,790、7,956,841、7,982,941、8,040,594、8,054,526、8,098,418、8,159,636、8,213,076、8,363,299、8,422,116、8,441,714、8,441,716、8,466,852、8,503,063、8,576,470、8,576,475、8,593,721、8,605,354、8,649,084、8,670,174、8,704,756、8,717,664、8,786,935、8,797,634、8,810,899、8,830,559、8,873,129、8,902,153、8,902,491、8,917,439、8,964,282、9,013,783、9,116,412、9,146,439、9,164,207、9,170,467、9,170,468、9,182,646、9,195,111、9,199,441、9,268,191、9,285,649、9,293,511、9,341,916、9,360,733、9,361,836、9,383,623和9,423,666號;以及美國專利申請案公開第2008/0043318、2008/0048970、2009/0225398、2010/0156780、2011/0043543、2012/0326957、2013/0242378、2013/0278995、2014/0055840、2014/0078576、2014/0340430、2014/0340736、2014/0362213、2015/0103394、2015/0118390、2015/0124345、2015/0198858、2015/0234250、2015/0268531、2015/0301246、2016/0011484、2016/0026062、2016/0048054、2016/0116816、2016/0116818和2016/0140909號; (h)驅動顯示器之方法;參見例如美國專利第 5,930,026、6,445,489、6,504,524、6,512,354、6,531,997、6,753,999、6,825,970、6,900,851、6,995,550、7,012,600、7,023,420、7,034,783、7,061,166、7,061,662、7,116,466、7,119,772、7,177,066、7,193,625、7,202,847、7,242,514、7,259,744、7,304,787、7,312,794、7,327,511、7,408,699、7,453,445、7,492,339、7,528,822、7,545,358、7,583,251、7,602,374、7,612,760、7,679,599、7,679,813、7,683,606、7,688,297、7,729,039、7,733,311、7,733,335、7,787,169、7,859,742、7,952,557、7,956,841、7,982,479、7,999,787、8,077,141、8,125,501、8,139,050、8,174,490、8,243,013、8,274,472、8,289,250、8,300,006、8,305,341、8,314,784、8,373,649、8,384,658、8,456,414、8,462,102、8,514,168、8,537,105、8,558,783、8,558,785、8,558,786、8,558,855、8,576,164、8,576,259、8,593,396、8,605,032、8,643,595、8,665,206、8,681,191、8,730,153、8,810,525、8,928,562、8,928,641、8,976,444、9,013,394、9,019,197、9,019,198、9,019,318、9,082,352、9,171,508、9,218,773、9,224,338、9,224,342、9,224,344、9,230,492、9,251,736、9,262,973、9,269,311、9,299,294、9,373,289、9,390,066、9,390,661和9,412,314號;及以及美國專利申請案公開第2003/0102858、2004/0246562、2005/0253777、2007/0091418、2007/0103427、2007/0176912、2008/0024429、2008/0024482、2008/0136774、2008/0291129、2008/0303780、2009/0174651、2009/0195568、2009/0322721、2010/0194733、2010/0194789、2010/0220121、2010/0265561、2010/0283804、2011/0063314、2011/0175875、2011/0193840、2011/0193841、2011/0199671、2011/0221740、2012/0001957、2012/0098740、2013/0063333、2013/0194250、2013/0249782、2013/0321278、2014/0009817、2014/0085355、2014/0204012、2014/0218277、2014/0240210、2014/0240373、2014/0253425、2014/0292830、2014/0293398、2014/0333685、2014/0340734、2015/0070744、2015/0097877、2015/0109283、2015/0213749、2015/0213765、2015/0221257、2015/0262255、2015/0262551、2016/0071465、2016/0078820、2016/0093253、2016/0140910和2016/0180777號(這些專利及申請案在下文中可能被稱為MEDEOD (MEthods for Driving Electro-optic Displays) applications,用於驅動電光顯示器的方法)應用); (i)顯示器之應用;參見例如美國專利第7,312,784和8,009,348號;以及 (j)非電泳顯示器,其如美國專利第6,241,921、美國專利申請案公開第2015/0277160號以及美國專利申請案公開第2015/0005720及2016/0012710號所述。 Numerous patents and applications assigned to or in the name of the Massachusetts Institute of Technology (MIT) and E Ink Corporation describe various techniques used in capsule electrophoresis and other electro-optic media. Such capsule-type media comprise a plurality of small capsules, each of which itself comprises an inner phase containing electrophoretically mobile particles in a fluid medium and a wall surrounding the inner phase. Typically, the capsules themselves are held in a polymeric adhesive to form a coherent layer between the two electrodes. Such technologies described in these patents and patent applications include: (a) Electrophoretic particles, fluids and fluid additives; see, eg, US Patent Nos. 7,002,728 and 7,679,814; (b) Capsules, adhesives, and encapsulation processes; see, eg, US Patent Nos. 6,922,276 and 7,411,719; (c) Microcellular structures, wall materials, and methods of forming cells; see, for example, U.S. Patent Nos. 7,072,095 and 9,279,906; (d) methods for filling and sealing micelles; see, e.g., U.S. Patent Nos. 7,144,942 and 7,715,088; (e) Films and sub-assemblies comprising electro-optic materials; see, for example, U.S. Patent Nos. 6,982,178 and 7,839,564; (f) backplanes, adhesive layers, and other auxiliary layers and methods used in displays; see, for example, U.S. Patent Nos. 7,116,318 and 7,535,624; (g) Color formation and color adjustment; see, e.g., U.S. Patent Nos. 1, 7,075,502, 7,167,155, 7,385,751, 7,492,505, 7,667,684, 7,684,108, 7,791,789, 7,800,813, 7,821,702, 7,839,564, 7,910,175, 7,952,790, 7,956,841, 7,982,941, 8,040,594, 8,054,526, 8,098,418, 8,159,636, 8,213,076, 8 ,363,299 8,422,116 8,441,714 8,441,716 8,466,852 8,503,063 8,576,470 8,576,475 8,593,721 8,605,354 8,649,084 8,670,174 4,756, 8,717,664, 8,786,935, 8,797,634, 8,810,899, 8,830,559, 8,873,129, 8,902,153, 8,902,491, 8,917,439, 8,964,282, 9,013,783, 9,116,412, 9 ,146,439, 9,164,207, 9,170,467, 9,170,468, 9,182,646, 9,195,111, 9,199,441, 9,268,191, 9,285,649, 9,293,511, 9,341,916, 9,360,733, 9,36 1,836, 9,383,623 and 9,423,666; and U.S. Patent Application Publication Nos. 2008/0043318, 2008/0048970, 2009/0225398, 2010/0156780, 2011/0043543, 2012/0326957, 2013/0242378, 20 13/0278995, 2014/0055840, 2014/ 0078576, 2014/0340430, 2014/0340736, 2014/0362213, 2015/0103394, 2015/0118390, 2015/0124345, 2015/0198858, 2015/0234250, 2015/0268 531, 2015/0301246, 2016/0011484, 2016/0026062, Nos. 2016/0048054, 2016/0116816, 2016/0116818 and 2016/0140909; (h) Methods of driving displays; see, for example, U.S. Pat. , 7,034,783, 7,061,166, 7,061,662, 7,116,466, 7,119,772, 7,177,066, 7,193,625, 7,202,847 ,7,242,514,7,259,744,7,304,787,7,312,794,7,327,511,7,408,699,7,453,445,7,492,339,7,528,822,7,545,358,7,583,251,7,602,374, 7,612,760,7,679,599,7,679,813,7,683,606,7,688,297,7,729,039,7,733,311,7,733,335,7,787,169,7,859,742,7,952,557,7,956,841,7,9 82,479 , 7,999,787, 8,077,141, 8,125,501, 8,139,050, 8,174,490, 8,243,013, 8,274,472, 8,289,250, 8,300,006, 8,305,341, 8,314,784, 8,373,649, 8,384,658,8,456,414,8,462,102,8,514,168,8,537,105,8,558,783,8,558,785,8,558,786,8,558,855,8,576,164,8,576,259,8,593,396,8,6 05,032 , 8,643,595, 8,665,206, 8,681,191, 8,730,153, 8,810,525, 8,928,562, 8,928,641, 8,976,444, 9,013,394, 9,019,197, 9,019,198, 9,019,318, 9,082,352,9,171,508,9,218,773,9,224,338,9,224,342,9,224,344,9,230,492,9,251,736,9,262,973,9,269,311,9,299,294,9,373,289,9,3 90,066 , 9,390,661, and 9,412,314; and U.S. Patent Application Publication Nos. 2003/0102858, 2004/0246562, 2005/0253777, 2007/0091418, 2007/0103427, 2007/0176912, 2008/0024429, 2008/0024482, 2008/0136774, 2008/0291129, 2008/0303780, 2009/0174651, 2009/0195568, 2009/0322721, 2010/0194733, 2010/0194789, 2010/0220121, 2010/0265561, 2010 /0283804, 2011/0063314, 2011/0175875, 2011/ 0193840, 2011/0193841, 2011/0199671, 2011/0221740, 2012/0001957, 2012/0098740, 2013/0063333, 2013/0194250, 2013/0249782, 2013/0321 278, 2014/0009817, 2014/0085355, 2014/0204012, 2014/0218277, 2014/0240210, 2014/0240373, 2014/0253425, 2014/0292830, 2014/0293398, 2014/0333685, 2014/0340734, 2015/0070744, 2015 /0097877, 2015/0109283, 2015/0213749, 2015/ 0213765, 2015/0221257, 2015/0262255, 2015/0262551, 2016/0071465, 2016/0078820, 2016/0093253, 2016/0140910 and 2016/0180777 (these patents and applications are hereinafter May be called MEDEOD (MEthods for Driving Electro-optic Displays) applications, method for driving electro-optic displays) applications); (i) Display applications; see, eg, US Patent Nos. 7,312,784 and 8,009,348; and (j) Non-electrophoretic displays as described in US Patent No. 6,241,921, US Patent Application Publication No. 2015/0277160, and US Patent Application Publication Nos. 2015/0005720 and 2016/0012710.
許多上述專利及申請案認識到在膠囊型電泳介質中包圍離散微膠囊的壁可以由連續相來取代,從而產生所謂的聚合物分散型電泳顯示器,其中電泳介質包含複數個離散小滴的電泳流體及連續相的聚合材料,並且即使沒有離散的膠囊膜與每個個別小滴相關聯,在這樣的聚合物分散型電泳顯示器內之離散小滴的電泳流體可以被視為膠囊或微膠囊;參見例如美國專利第6,866,760號。於是,基於本申請案的目的,這樣的聚合物分散型電泳介質被視為膠囊型電泳介質的亞種。Many of the aforementioned patents and applications recognize that the walls surrounding discrete microcapsules in capsule-type electrophoretic media can be replaced by a continuous phase, resulting in so-called polymer-dispersed electrophoretic displays, where the electrophoretic medium comprises a plurality of discrete droplets of electrophoretic fluid and continuous phase of polymeric material, and the discrete droplets of electrophoretic fluid within such polymer-dispersed electrophoretic displays can be viewed as capsules or microcapsules even though there is no discrete capsule membrane associated with each individual droplet; see For example US Patent No. 6,866,760. Thus, for the purposes of this application, such polymer-dispersed electrophoretic media are considered subspecies of capsule-type electrophoretic media.
一種相關類型之電泳顯示器係所謂的「微單元電泳顯示器」。在微胞電泳顯示器中,沒有將帶電粒子及流體囊封於微膠囊中,而是將其保持在載體介質(carrier medium)(通常是聚合膜)內所形成之複數個空腔(cavities)中。參見例如美國專利第6,672,921和6,788,449號。A related type of electrophoretic display is the so-called "microcell electrophoretic display". In microcell electrophoretic displays, charged particles and fluids are not encapsulated in microcapsules, but are held in cavities formed within a carrier medium (usually a polymeric film) . See, eg, US Patent Nos. 6,672,921 and 6,788,449.
雖然電泳介質通常是不透光的(因為,例如在許多電泳介質中,粒子大致阻擋通過顯示器之可見光的傳輸)且在反射模式中操作,但是可使很多電泳顯示器在所謂「光柵模式(shutter mode)」中操作,在該光柵模式中,一顯示狀態係大致不透光,而一顯示狀態係透光的。參見例如美國專利第5,872,552;6,130,774;6,144,361;6,172,798;6,271,823;6,225,971和6,184,856號。介電泳顯示器(dielectrophoretic displays)(其相似於電泳顯示器,但是依賴電場強度之變化)可在相似模式中操作;參見美國專利第4,418,346號。其它類型之電光顯示器亦能夠在光柵模式中操作。以光柵模式操作的電光介質可用於全彩顯示器的多層結構中;在這樣的結構中,與顯示器的觀看面相鄰的至少一層以光柵模式操作,以暴露或隱藏離觀看面較遠的第二層。Although electrophoretic media are generally opaque (because, for example, in many electrophoretic media, the particles substantially block the transmission of visible light through the display) and operate in a reflective mode, many electrophoretic displays can be operated in a so-called "shutter mode". )" in which one display state is substantially opaque and one display state is transmissive. See, eg, US Patent Nos. 5,872,552; 6,130,774; 6,144,361; 6,172,798; 6,271,823; Dielectrophoretic displays (which are similar to electrophoretic displays, but rely on changes in electric field strength) can operate in a similar mode; see US Patent No. 4,418,346. Other types of electro-optic displays can also operate in raster mode. Electro-optic media that operate in a raster pattern can be used in multilayer structures for full-color displays; in such structures, at least one layer adjacent to the viewing surface of the display operates in a raster pattern to expose or hide a second layer further from the viewing surface. layer.
一種膠囊型電泳顯示器通常沒有遭遇傳統電泳裝置之群集(clustering)及沉降故障模式且提供另外的優點,例如,將顯示器印刷或塗布在各種撓性及剛性基板上之能力。(文字「印刷」之使用意欲包括所有形式之印刷及塗布,其包括但不侷限於:預計量式塗布(pre-metered coatings)(例如:方塊擠壓式塗布(patch die coating)、狹縫型或擠壓型塗布(slot or extrusion coating)、斜板式或階式塗布(slide or cascade coating)及淋幕式塗布(curtain coating));滾筒式塗布(roll coating)(例如:輥襯刮刀塗布(knife over roll coating及正反滾筒式塗布(forward and reverse roll coating));凹版塗布(gravure coating);浸塗(dip coating);噴灑式塗布(spray coating);液面彎曲形塗布(meniscus coating);旋轉塗布(spin coating);刷塗式塗布(brush coating);氣刀塗布(air-knife coating);絲網印刷製程(silk screen printing processes);靜電印刷製程(electrostatic printing processes);熱印刷製造(thermal printing processes);噴墨印刷製程(ink jet printing processes);電泳沉積(electrophoretic deposition)(參見美國專利第7,339,715號);以及其它相似技術)。因此,所完成的顯示器可以是可撓性的。再者,因為(使用各種方法)可印刷顯示介質,所以可便宜地製造顯示器本身。A capsule-type electrophoretic display generally does not suffer from the clustering and settling failure modes of conventional electrophoretic devices and offers additional advantages, such as the ability to print or coat the display on a variety of flexible and rigid substrates. (The use of the word "printing" is intended to include all forms of printing and coating, including but not limited to: pre-metered coatings (e.g. patch die coating, slot die coating) or extrusion coating (slot or extrusion coating), inclined plate or cascade coating (slide or cascade coating) and curtain coating (curtain coating)); roll coating (roll coating) (for example: roller lining knife coating ( knife over roll coating and forward and reverse roll coating); gravure coating; dip coating; spray coating; meniscus coating ; spin coating; brush coating; air-knife coating; silk screen printing processes; electrostatic printing processes; thermal printing manufacturing (thermal printing processes); ink jet printing processes (ink jet printing processes); electrophoretic deposition (electrophoretic deposition) (see U.S. Patent No. 7,339,715); and other similar techniques). Therefore, the completed display can be flexible Furthermore, since the display medium can be printed (using various methods), the display itself can be manufactured cheaply.
如上所述,大多數簡單的習知技藝電泳介質實質上只顯示兩種顏色。這樣的電泳介質在具有第二不同顏色的有色流體中使用具有第一顏色的單一類型的電泳粒子(在這種情況下,當粒子鄰近顯示器的觀看面時,顯示第一顏色,而當粒子與觀看面間隔開時,顯示第二顏色)或在無色流體中使用具有不同的第一及第二顏色的第一及第二類型的電泳粒子(在這種情況下,當第一類型的粒子鄰近顯示器的觀看面時,顯示第一顏色,而當第二類型的粒子鄰近觀看面時,顯示第二顏色)。通常這兩種顏色是黑色及白色。如果需要全彩顯示器,可以在單色(黑白)顯示器的觀看面上沉積彩色濾光片陣列。As noted above, most simple prior art electrophoretic media exhibit essentially only two colors. Such electrophoretic media use a single type of electrophoretic particle of a first color in a colored fluid of a second, different color (in this case, the first color is displayed when the particle is adjacent to the viewing surface of the display, and the first color is displayed when the particle is in contact with the viewing surface of the display. displaying a second color when the viewing surfaces are spaced apart) or using first and second types of electrophoretic particles of different first and second colors in a colorless fluid (in this case, when particles of the first type are adjacent When the viewing surface of the display is displayed, a first color is displayed, and when particles of the second type are adjacent to the viewing surface, a second color is displayed). Usually these two colors are black and white. If a full color display is desired, a color filter array can be deposited on the viewing side of a monochrome (black and white) display.
帶有彩色濾光片陣列的顯示器依靠區域共享及顏色混合來產生顏色刺激(color stimuli)。在諸如紅/綠/藍(RGB)或紅/綠/藍/白(RGBW)的三或四個原色之間共享可用的顯示區域,以及濾光片可以一維(條紋)或二維(2x2)重複形態來進行排列。其它原色或多於三種原色的選擇在本領域中亦是已知的。三個(在RGB顯示器的情況下)或四個(在RGBW顯示器的情況下)子像素被選擇得足夠小,以便在預期的觀看距離處,它們在視覺上混合在一起成為具有均勻顏色刺激(「顏色混合」)的單個像素。區域共享的固有缺點是著色劑始終存在,以及只能藉由將下面單色顯示器的相應像素切換為白色或黑色(打開或關閉相應的原色)來調製顏色。例如,在理想的RGBW顯示器中,紅色、綠色、藍色及白色原色中之每一者都佔據顯示區域的四分之一(四個子像素中的一個),白色子像素與下面單色顯示器白色一樣亮,並且每個彩色子像素不會比單色顯示器白色的三分之一亮。顯示器整體顯示的白色亮度無法大於白色子像素亮度的一半(顯示器之白色區域係藉由顯示每四個子像素中的一個白色子像素加上每個彩色子像素以其彩色形式相當於白色子像素的三分之一而產生,所以三個彩色子像素組合起來的貢獻不超過一個白色子像素)。顏色的亮度及飽和度會因與切換成黑色之顏色像素的區域共享而降低。當混合黃色時,區域共享特別有問題,因為黃色比相同亮度的任何其它顏色亮且飽和黃色幾乎與白色一樣亮。將藍色像素(顯示區域的四分之一)切換成黑色會使得黃色太暗。Displays with color filter arrays rely on area sharing and color mixing to generate color stimuli. Share the available display area between three or four primary colors such as Red/Green/Blue (RGB) or Red/Green/Blue/White (RGBW), and the filters can be one-dimensional (striped) or two-dimensional (2x2 ) repeating patterns to arrange. Other primary colors or a selection of more than three primary colors are also known in the art. The three (in the case of RGB displays) or four (in the case of RGBW displays) sub-pixels are chosen to be small enough that at the expected viewing distance they visually blend together into a stimulus of uniform color ( "color blending") individual pixels. The inherent disadvantage of area sharing is that the colorant is always present, and the color can only be modulated by switching the corresponding pixel of the underlying monochrome display to white or black (turning the corresponding primary color on or off). For example, in an ideal RGBW display, each of the red, green, blue, and white primary colors occupies a quarter of the display area (one of four sub-pixels), with the white sub-pixel matching the underlying monochrome display white as bright as , and each color sub-pixel is no brighter than a third of the white of a monochrome display. The white brightness displayed by the display as a whole cannot be greater than half of the brightness of the white sub-pixel (the white area of the display is obtained by displaying one white sub-pixel in every four sub-pixels plus each color sub-pixel equivalent to the white sub-pixel in its color form 1/3, so the combined contribution of the three colored sub-pixels is no more than one white sub-pixel). The brightness and saturation of the color will be reduced by sharing the area with the color pixel that is switched to black. Area sharing is particularly problematic when mixing yellow, since yellow is brighter than any other color of the same brightness and saturated yellow is almost as bright as white. Switching the blue pixels (a quarter of the display area) to black makes the yellow too dark.
一種用於量化色彩特徵(包括亮度和色相(hue)兩者)的系統是CIELAB系統,其指定CIE標準光源D65(例如:色溫為6500K)下,對應於一般彩色反射式顯示裝置所顯示顏色的顏色座標值(即,L*、a*及b*)。L*以0到100的等級表示從黑色到白色的亮度,a*和b*表示沒有特定數值限制的色度。負數a*對應綠色,正數a*對應紅色,負數b*對應藍色,且數b*對應黃色。L*可使用以下公式轉換為反射率: L*=116(R/R 0) 1/3-16, 其中R係反射率,而R 0係標準反射率值。 A system for quantifying color characteristics (including both luminance and hue) is the CIELAB system, which specifies the CIE standard illuminant D65 (for example: a color temperature of 6500K) corresponding to the color displayed by a general color reflective display device Color coordinate values (ie, L*, a* and b*). L* represents lightness from black to white on a scale of 0 to 100, and a* and b* represent chromaticity without specific numerical limits. The negative number a* corresponds to green, the positive number a* corresponds to red, the negative number b* corresponds to blue, and the number b* corresponds to yellow. L* can be converted to reflectance using the following formula: L*=116(R/R 0 ) 1/3 -16, where R is the reflectance and R 0 is the standard reflectance value.
美國專利第8,576,476及8,797,634號描述多色電泳顯示器,其具有包含可獨立定址的像素電極之單個背板及共同透光前電極。該共同透光前電極也被稱為頂部電極。該背板和前電極之間配置有負數電泳層。這些申請案中所描述的顯示器可在任何像素位置處呈現任何原色(紅色、綠色、藍色、青色、洋紅色、黃色、白色和黑色)。但是,使用位於單組定址電極之間的多個電泳層存在數缺點。特定層中粒子所經受的電場低於使用相同電壓定址的單層電泳層的情況。此外,最接近觀看面之電泳層的光學損耗(例如,由光散射或不需要的吸收所造成)可能對在底層電泳層中所形成圖像的外觀造成影響。US Patent Nos. 8,576,476 and 8,797,634 describe multicolor electrophoretic displays having a single backplane comprising individually addressable pixel electrodes and a common light-transmissive front electrode. This common light-transmitting front electrode is also called top electrode. A negative number electrophoretic layer is disposed between the back plate and the front electrode. The displays described in these applications can render any primary color (red, green, blue, cyan, magenta, yellow, white, and black) at any pixel location. However, there are several disadvantages to using multiple electrophoretic layers located between a single set of addressing electrodes. The electric field experienced by the particles in a particular layer is lower than in the case of a single electrophoretic layer addressed using the same voltage. Additionally, optical losses (eg, caused by light scattering or unwanted absorption) of the electrophoretic layer closest to the viewing surface may affect the appearance of images formed in the underlying electrophoretic layer.
已經嘗試提供使用單層電泳層的全彩電泳顯示器。例如,美國專利第8,917,439號描述一種包含電泳流體的彩色顯示器,電泳流體包含一種或兩種類型之分散在透明無色或有色溶劑中的顏料粒子,電泳流體設置在一個共同電極與複數個像素或驅動電極之間。驅動電極配置成暴露背景層。美國專利第9,116,412號描述一種用於驅動顯示單元的方法,顯示單元填充有電泳流體,電泳流體包含兩種類型之帶有相反電荷極性及兩種對比色的帶電粒子。這兩種類型的顏料粒子分散在有色溶劑中或在具有不帶電或微帶電有色粒子的溶劑中。所述方法包括藉由施加全驅動電壓的約1至約20%的驅動電壓來驅動顯示單元,以顯示溶劑的顏色或者不帶電或微帶電的有色粒子之顏色。美國專利第8,717,664及8,964,282號描述一種電泳流體及一種用於驅動電泳顯示器的方法。流體包括第一、第二及第三類型的顏料粒子,所有這些粒子都分散在溶劑或溶劑混合物中。第一及第二類型的顏料粒子帶有相反的電荷極性,且第三類型的顏料粒子之電荷位準小於第一或第二類型的顏料粒子之電荷位準的約50%。這三種類型的顏料粒子具有不同位準的臨界電壓或或不同位準的遷移率或兩者皆有。這些專利申請案中沒有一個揭露在下文使用之術語的意義上之全彩顯示器,而可達成顯示至少8個獨立顏色(白色、紅色、綠色、藍色、青色、黃色、洋紅色和黑色)。Attempts have been made to provide full-color electrophoretic displays using a single electrophoretic layer. For example, U.S. Pat. No. 8,917,439 describes a color display comprising an electrophoretic fluid comprising one or two types of pigment particles dispersed in a transparent colorless or colored solvent, the electrophoretic fluid being disposed between a common electrode and a plurality of pixels or drive between the electrodes. The drive electrodes are configured to expose the background layer. US Patent No. 9,116,412 describes a method for driving a display unit filled with an electrophoretic fluid comprising two types of charged particles of opposite charge polarity and two contrasting colors. Both types of pigment particles are dispersed in a colored solvent or in a solvent with uncharged or slightly charged colored particles. The method includes driving the display unit by applying a driving voltage of about 1 to about 20% of the full driving voltage to display the color of the solvent or the color of the uncharged or slightly charged colored particles. US Patent Nos. 8,717,664 and 8,964,282 describe an electrophoretic fluid and a method for driving an electrophoretic display. The fluid includes first, second and third types of pigment particles, all of which are dispersed in a solvent or solvent mixture. The first and second types of pigment particles have opposite charge polarities, and the charge level of the third type of pigment particles is less than about 50% of the charge level of the first or second type of pigment particles. These three types of pigment particles have different levels of threshold voltage or different levels of mobility or both. None of these patent applications discloses a full-color display in the sense of the term used hereinafter, which achieves the display of at least 8 independent colors (white, red, green, blue, cyan, yellow, magenta and black).
本說明書中揭露驅動全彩電泳顯示器的改良方法及使用這些驅動方法的全彩電泳顯示器。在一樣態中,本發明有關一種彩色電泳顯示器,包含在觀看面處的透光電極、背板,其包括耦接至像素電極之薄膜電晶體陣列,其中每一薄膜電晶體包括一層金屬氧化物半導體和配置於透光電極和背板之間的彩色電泳介質。該彩色電泳介質包括(a)流體;(b)分散流體中的在複數個第一和複數個第二粒子,該等第一和第二粒子帶有極性相反的電荷,該第一粒子係光散射粒子,且帶第二粒子具有減色原色;及(c)分散流體中的在複數個第三和複數個第四粒子,該等三和第四粒子帶有極性相反的電荷,且該等第三和第四粒子各為彼此不同且與該等第二粒子不同的減色原色。This specification discloses improved methods for driving full-color electrophoretic displays and full-color electrophoretic displays using these driving methods. In one aspect, the invention relates to a color electrophoretic display comprising a light-transmitting electrode at a viewing surface, a backplane comprising an array of thin film transistors coupled to pixel electrodes, wherein each thin film transistor comprises a layer of metal oxide Semiconductor and colored electrophoretic media disposed between the light-transmitting electrodes and the backplane. The color electrophoretic medium includes (a) fluid; (b) a plurality of first and a plurality of second particles in the dispersion fluid, the first and second particles have opposite charges, and the first particles are optical scattering particles with a second particle having a subtractive primary color; and (c) a plurality of third and a plurality of fourth particles in a dispersed fluid, the third and fourth particles having charges of opposite polarity, and the fourth particles The third and fourth particles are each of a different subtractive primary color from each other and from the second particles.
在一些實施例中,分離由第三類和第四類粒子形成之聚合體所需的第一電場大於分離由另二類粒子形成之聚合體所需的第二電場。在一些實施例中,該等第二、第三和第四粒子其中至少二者係非光散射性。在一些實施例中,該等第一粒子係白色,且該等第二、第三和第四粒子係非光散射性。在一些實施例中,該等第一和第三粒子係帶負電,且該等第二和第四粒子係帶正電。在一些實施例中,該等第一、第二、第三和第四粒子的顏色分別係白色、青色、黃色和洋紅色,且該等白色和黃色粒子係帶負電,該等洋紅色和青色粒子係帶正電。在一些實施例中,黃色、洋紅色和青色顏料分別在650、550和450nm處表現出漫反射(diffuse reflectances),當顏料以15%的體積近似各向同性地分布在包含顏料和折射率小於1.55的液體的厚度為1 µm的層中時,其在黑色背景上測量為小於2.5%。在一些實施例中,該流體係介電常數小於約5的非極性流體。在一些實施例中,流體已經溶解或分散在其中的聚合物,其數平均分子量(number average molecular weight)超過約20,000,並且本質上不吸收顆粒。在一些實施例中,該金屬氧化物半導體係銦鎵鋅氧化物(IGZO)。以上所述之本發明可併入電子書閱讀器、可攜式計算機、平板電腦、行動電話、智慧卡、標誌、手錶、貨架標籤或快閃驅動器中。In some embodiments, the first electric field required to separate aggregates formed from the third and fourth types of particles is greater than the second electric field required to separate aggregates formed from the other two types of particles. In some embodiments, at least two of the second, third and fourth particles are non-light scattering. In some embodiments, the first particles are white, and the second, third and fourth particles are non-light scattering. In some embodiments, the first and third particles are negatively charged, and the second and fourth particles are positively charged. In some embodiments, the colors of the first, second, third and fourth particles are white, cyan, yellow and magenta respectively, and the white and yellow particles are negatively charged, and the magenta and cyan particles are negatively charged. Tether is positively charged. In some embodiments, yellow, magenta, and cyan pigments exhibit diffuse reflectances at 650, 550, and 450 nm, respectively, when the pigments are approximately isotropically distributed at 15% by volume in an area containing the pigment and with a refractive index less than 1.55 in a layer of liquid with a thickness of 1 µm, which is measured on a black background as less than 2.5%. In some embodiments, the fluid is a non-polar fluid with a dielectric constant of less than about 5. In some embodiments, the polymer in which the fluid has been dissolved or dispersed has a number average molecular weight in excess of about 20,000 and is substantially nonabsorbent to particles. In some embodiments, the metal oxide semiconductor is indium gallium zinc oxide (IGZO). The invention described above can be incorporated into an e-book reader, portable computer, tablet computer, mobile phone, smart card, sign, watch, shelf label or flash drive.
在另一樣態中,彩色電泳顯示器包括控制器、在觀看面處的透光電極、及背板,其包括耦接至像素電極之薄膜電晶體陣列,每一薄膜電晶體包括一層金屬氧化物半導體。透光電極和背板之間配置有彩色電泳介質,且該彩色電泳介質包括(a)流體;(b)分散流體中的在複數個第一和複數個第二粒子,該等第一和第二粒子帶有極性相反的電荷,該第一粒子係光散射粒子,且帶第二粒子具有減色原色;及(c)分散流體中的在複數個第三和複數個第四粒子,該等三和第四粒子帶有極性相反的電荷,且該等第三和第四粒子各為彼此不同且與該等第二粒子不同的減色原色。該控制器經組態為提供複數驅動電壓至數像素電極,使得在每一像素電極處可顯示白色、黃色、紅色、洋紅色、藍色、青色、綠色和黑色,同時將該透光電極維持在一恆定電壓。在一些實施例中,該控制器經組態為提供大於25伏特且小於-25伏特之電壓至該等像素電極。在一些實施例中,該控制器經組態為額外提供介於25 V與0 V之間的電壓,和介於-25 V與0V之間的電壓。在一些實施例中,該金屬氧化物半導體係銦鎵鋅氧化物(IGZO)。In another aspect, a color electrophoretic display includes a controller, a light-transmitting electrode at a viewing surface, and a backplane including an array of thin film transistors coupled to pixel electrodes, each thin film transistor comprising a layer of metal oxide semiconductor . A colored electrophoretic medium is arranged between the light-transmitting electrode and the back plate, and the colored electrophoretic medium includes (a) a fluid; (b) a plurality of first particles and a plurality of second particles in the dispersion fluid, and the first and second particles are (c) a plurality of third particles and a plurality of fourth particles in a dispersed fluid, the first particles being light-scattering particles, and the second particle having a subtractive primary color; The fourth particles are oppositely charged, and the third and fourth particles are each of a different subtractive primary color from each other and from the second particles. The controller is configured to provide a plurality of drive voltages to several pixel electrodes so that white, yellow, red, magenta, blue, cyan, green and black can be displayed at each pixel electrode while maintaining the light-transmitting electrode at a constant voltage. In some embodiments, the controller is configured to provide a voltage greater than 25 volts and less than −25 volts to the pixel electrodes. In some embodiments, the controller is configured to additionally provide a voltage between 25 V and 0 V, and a voltage between -25 V and 0 V. In some embodiments, the metal oxide semiconductor is indium gallium zinc oxide (IGZO).
在另一樣態中,彩色電泳顯示器包括控制器、在觀看面處的透光電極、背板電極、和配置於透光電極和背板電極之間的彩色電泳介質。該彩色電泳介質包括(a)流體;(b)分散流體中的在複數個第一和複數個第二粒子,該等第一和第二粒子帶有極性相反的電荷,該第一粒子係光散射粒子,且帶第二粒子具有減色原色;及(c)分散流體中的在複數個第三和複數個第四粒子,該等三和第四粒子帶有極性相反的電荷,且該等第三和第四粒子各為彼此不同且與該等第二粒子不同的減色原色。該控制器經組態為提供第一高電壓和第一低電壓至該透光電極,及提供第二高電壓、零電壓和第二低電壓至該背板電極,使得在該觀看面處可顯示白色、黃色、紅色、洋紅色、藍色、青色、綠色和黑色,其中該第一高電壓、第一低電壓、第二高電壓和第二低電壓其中一者的大小不相同。在一些實施例中,該第一高電壓的大小和該第二高電壓的大小相同。在一些實施例中,該第一低電壓的大小和該第二低電壓的大小相同,且該第一高電壓的大小和該第一低電壓的大小不相同。In another aspect, a color electrophoretic display includes a controller, a light-transmissive electrode at a viewing surface, a backplane electrode, and a color electrophoretic medium disposed between the light-transmissive electrode and the backplane electrode. The color electrophoretic medium includes (a) fluid; (b) a plurality of first and a plurality of second particles in the dispersion fluid, the first and second particles have opposite charges, and the first particles are optical scattering particles with a second particle having a subtractive primary color; and (c) a plurality of third and a plurality of fourth particles in a dispersed fluid, the third and fourth particles having charges of opposite polarity, and the fourth particles The third and fourth particles are each of a different subtractive primary color from each other and from the second particles. The controller is configured to provide a first high voltage and a first low voltage to the light-transmissive electrode, and a second high voltage, zero voltage, and a second low voltage to the backplane electrode such that White, yellow, red, magenta, blue, cyan, green and black are displayed, wherein the magnitude of one of the first high voltage, the first low voltage, the second high voltage and the second low voltage is different. In some embodiments, the magnitude of the first high voltage is the same as that of the second high voltage. In some embodiments, the magnitude of the first low voltage is the same as that of the second low voltage, and the magnitude of the first high voltage is different from that of the first low voltage.
在另一樣態中,彩色電泳顯示器包括控制器、在觀看面處的透光電極、背板電極和配置於透光電極和背板電極之間的彩色電泳介質。該彩色電泳介質包括(a)流體;(b)分散流體中的在複數個第一和複數個第二粒子,該等第一和第二粒子帶有極性相反的電荷,該第一粒子係光散射粒子,且帶第二粒子具有數減色原色其中一者;及(c)分散流體中的在複數個第三和複數個第四粒子,該等三和第四粒子帶有極性相反的電荷,且該等第三和第四粒子各為彼此不同且與該等第二粒子不同的減色原色。該控制器經組態為藉由提供複數個時間相關驅動電壓至該背板電極,以使白色、黃色、紅色、洋紅色、藍色、青色、綠色和黑色等色彩顯示於觀看面處,同時提供下列驅動電壓至該透光電極:1)第一時間提供高電壓,第二時間提供低電壓,且第三時間提供高電壓,或者2)第一時間提供低電壓,第二時間提供高電壓,且第三時間提供低電壓。In another aspect, a color electrophoretic display includes a controller, a light-transmitting electrode at a viewing surface, a backplane electrode, and a color electrophoretic medium disposed between the light-transmitting electrode and the backplane electrode. The color electrophoretic medium includes (a) fluid; (b) a plurality of first and a plurality of second particles in the dispersion fluid, the first and second particles have opposite charges, and the first particles are optical scattering particles with a second particle having one of the subtractive primary colors; and (c) a plurality of third and a plurality of fourth particles in the dispersed fluid, the third and fourth particles having charges of opposite polarity, And the third and fourth particles are each different subtractive primary colors from each other and from the second particles. The controller is configured to cause white, yellow, red, magenta, blue, cyan, green, and black colors to be displayed at the viewing surface by providing a plurality of time-dependent drive voltages to the backplane electrodes while simultaneously The following driving voltages are provided to the light-transmitting electrode: 1) a high voltage is provided for a first time, a low voltage is provided for a second time, and a high voltage is provided for a third time, or 2) a low voltage is provided for a first time and a high voltage is provided for a second time , and provide a low voltage for the third time.
在另一樣態中,一種用於驅動電泳介質的系統包括電泳顯示器和電源,其能夠提供正電壓和負電壓,其中該正電壓和負電壓的大小不同;及控制器,其耦接至該頂部電極驅動器、該第一驅動電極驅動器和該第二驅動電極驅動器。該電泳介質包括在觀看面處的透光頂部電極、第一驅動電極、第二驅動電極、和配置於該頂部電極與該第一和第二驅動電極之間的電泳介質。該控制器經組態為:A)在第一幀中,提供該正電壓至該頂部電極,提供該負電壓至該第一驅動電極,且提供該正電壓至該第二驅動電極;B)在第二幀中,提供該負電壓至該頂部電極,提供該負電壓至該第一驅動電極,且提供該負電壓至該第二驅動電極;C)在第三幀中,提供該接地電壓至該頂部電極,提供該接地電壓至該第一驅動電極,且提供該正電壓至該第二驅動電極;及D)在第四幀中,提供該正電壓至該頂部電極,提供該正電壓至該第一驅動電極,且提供該正電壓至該第二驅動電極。在一實施方式中,該控制器經組態為進一步E):在第五幀中,提供該負電壓至該頂部電極,提供該接地電壓至該第一驅動電極,且提供該負電壓至該第二驅動電極;及F)在第六幀中,提供該接地電壓至該頂部電極,提供該接地電壓至該第一驅動電極,且提供該接地電壓至該第二驅動電極。在一實施例中,該電泳介質係囊封於複數個微膠囊中,且該等微膠囊係分散於該頂部電極與該第一和第二驅動電極之間的聚合物接合劑中。在一實施例中,該電泳介質係囊封於具有開口的微胞(microcell)陣列中,其中該等開口係以聚合物接合劑密封,且該微胞陣列係配置於該頂部電極與該第一和第二驅動電極之間。在一實施例中,該電泳介質包括非極性流體和具有不同光學性質的四組粒子。在一實施例中,該第一和第二組粒子帶有極性相反的電荷,該第三和第四組粒子帶有極性相反的電荷,該第一粒子係光散射粒子,且該第二、第三和第四組粒子各為彼此不同的減色原色。在一實施例中,該控制器經組態為將該正電壓、該負電壓和該接地電壓的組合提供至該頂部電極和該第一驅動電極,使得在該觀看面處可顯示白色、黃色、紅色、洋紅色、藍色、青色、綠色和黑色。在一實施例中,該第一和第二組粒子帶有極性相反的電荷,該第三和第四組粒子帶有與該第二粒子相同之電荷,該第一粒子係光散射粒子,且該第二、第三和第四組粒子各為彼此不同的減色原色。在一實施例中,該控制器經組態為將該正電壓、該負電壓和該接地電壓的組合提供至該頂部電極和該第一驅動電極,使得在該觀看面處可顯示白色、黃色、紅色、洋紅色、藍色、青色、綠色和黑色。在一實施例中,該正電壓係+15V,且該負電壓係-9V。在一實施例中,該正電壓係+9V,且該負電壓係-15V。In another aspect, a system for driving an electrophoretic medium includes an electrophoretic display and a power supply capable of providing positive and negative voltages, wherein the positive and negative voltages are different in magnitude; and a controller coupled to the top electrode driver, the first driving electrode driver and the second driving electrode driver. The electrophoretic medium includes a light-transmissive top electrode at the viewing surface, a first drive electrode, a second drive electrode, and the electrophoretic medium disposed between the top electrode and the first and second drive electrodes. The controller is configured to: A) in a first frame, provide the positive voltage to the top electrode, provide the negative voltage to the first drive electrode, and provide the positive voltage to the second drive electrode; B) In a second frame, providing the negative voltage to the top electrode, providing the negative voltage to the first drive electrode, and providing the negative voltage to the second drive electrode; C) in a third frame, providing the ground voltage to the top electrode, providing the ground voltage to the first drive electrode, and providing the positive voltage to the second drive electrode; and D) in a fourth frame, providing the positive voltage to the top electrode, providing the positive voltage to the first driving electrode, and provide the positive voltage to the second driving electrode. In one embodiment, the controller is configured to further E): in a fifth frame, provide the negative voltage to the top electrode, provide the ground voltage to the first drive electrode, and provide the negative voltage to the a second drive electrode; and F) in a sixth frame, providing the ground voltage to the top electrode, providing the ground voltage to the first drive electrode, and providing the ground voltage to the second drive electrode. In one embodiment, the electrophoretic medium is encapsulated in a plurality of microcapsules, and the microcapsules are dispersed in a polymer binder between the top electrode and the first and second driving electrodes. In one embodiment, the electrophoretic medium is encapsulated in a microcell array having openings, wherein the openings are sealed with a polymer binder, and the microcell array is disposed between the top electrode and the second electrode. between the first and second drive electrodes. In one embodiment, the electrophoretic medium includes a non-polar fluid and four groups of particles with different optical properties. In one embodiment, the first and second groups of particles are charged with opposite polarities, the third and fourth groups of particles are charged with opposite polarities, the first particles are light scattering particles, and the second, The third and fourth sets of particles are each of a different subtractive primary color from the other. In one embodiment, the controller is configured to provide a combination of the positive voltage, the negative voltage and the ground voltage to the top electrode and the first drive electrode such that white, yellow , Red, Magenta, Blue, Cyan, Green, and Black. In one embodiment, the first and second groups of particles have opposite charges, the third and fourth groups of particles have the same charge as the second particles, the first particles are light scattering particles, and The second, third and fourth sets of particles are each of a different subtractive primary color from the other. In one embodiment, the controller is configured to provide a combination of the positive voltage, the negative voltage and the ground voltage to the top electrode and the first drive electrode such that white, yellow , Red, Magenta, Blue, Cyan, Green, and Black. In one embodiment, the positive voltage is +15V and the negative voltage is -9V. In one embodiment, the positive voltage is +9V and the negative voltage is -15V.
在另一樣態中,一種用於驅動電泳介質的系統,包括電泳顯示器;和電源,能夠提供正電壓和負電壓,其中該正電壓和負電壓的大小不同;及控制器,其耦接至該頂部電極驅動器、該第一驅動電極驅動器和該第二驅動電極驅動器。該電泳介質包括在觀看面處的透光頂部電極、第一驅動電極、第二驅動電極,和配置於該頂部電極與該第一和第二驅動電極之間的電泳介質。該控制器經組態為:A)在第一幀中,提供該正電壓至該頂部電極,提供該負電壓至該第一驅動電極,且提供該正電壓至該第二驅動電極;B)在第二幀中,提供該負電壓至該頂部電極,提供該負電壓至該第一驅動電極,且提供該負電壓至該第二驅動電極;C)在第三幀中,提供該接地電壓至該頂部電極,提供該接地電壓至該第一驅動電極,且提供該接地電壓至該第二驅動電極;及D)在第四幀中,提供該正電壓至該頂部電極,提供該正電壓至該第一驅動電極,且提供該正電壓至該第二驅動電極。在一實施例中,該控制器經組態為進一步:E)在第五幀中,提供該負電壓至該頂部電極,提供該接地電壓至該第一驅動電極,且提供該負電壓至該第二驅動電極;及F)在第六幀中,提供該接地電壓至該頂部電極,提供該接地電壓至該第一驅動電極,且提供該接地電壓至該第二驅動電極。在一實施例中,該電泳介質係囊封於複數個微膠囊中,且該等微膠囊係分散於該頂部電極與該第一和第二驅動電極之間的聚合物接合劑中。在一實施例中,該電泳介質係囊封於具有開口的微胞陣列中,其中該等開口係以聚合物接合劑密封,且該微胞陣列係配置於該頂部電極與該第一和第二驅動電極之間。在一實施例中,該電泳介質包括非極性流體和具有不同光學性質的四組粒子。在一實施例中,該第一和第二組粒子帶有極性相反的電荷,該第三和第四組粒子帶有極性相反的電荷,該第一粒子係光散射粒子,且該第二、第三和第四組粒子各為彼此不同的減色原色。在一實施例中,該控制器經組態為將該正電壓、該負電壓和該接地電壓的組合提供至該頂部電極和該第一驅動電極,使得在該觀看面處可顯示白色、黃色、紅色、洋紅色、藍色、青色、綠色和黑色。在一實施例中,該第一和第二組粒子帶有極性相反的電荷,該第三和第四組粒子帶有與該第二粒子相同之電荷,該第一粒子係光散射粒子,且該第二、第三和第四組粒子各為彼此不同的減色原色。在一實施例中,該控制器經組態為將該正電壓、該負電壓和該接地電壓的組合提供至該頂部電極和該第一驅動電極,使得在該觀看面處可顯示白色、黃色、紅色、洋紅色、藍色、青色、綠色和黑色。在一實施例中,該正電壓係+15V,且該負電壓係-9V。在一實施例中,該正電壓係+9V,且該負電壓係-15V。In another aspect, a system for driving an electrophoretic medium includes an electrophoretic display; and a power supply capable of providing a positive voltage and a negative voltage, wherein the positive and negative voltages are different in magnitude; and a controller coupled to the a top electrode driver, the first driving electrode driver and the second driving electrode driver. The electrophoretic medium includes a light-transmissive top electrode at the viewing surface, a first drive electrode, a second drive electrode, and the electrophoretic medium disposed between the top electrode and the first and second drive electrodes. The controller is configured to: A) in a first frame, provide the positive voltage to the top electrode, provide the negative voltage to the first drive electrode, and provide the positive voltage to the second drive electrode; B) In a second frame, providing the negative voltage to the top electrode, providing the negative voltage to the first drive electrode, and providing the negative voltage to the second drive electrode; C) in a third frame, providing the ground voltage to the top electrode, providing the ground voltage to the first drive electrode, and providing the ground voltage to the second drive electrode; and D) in a fourth frame, providing the positive voltage to the top electrode, providing the positive voltage to the first driving electrode, and provide the positive voltage to the second driving electrode. In one embodiment, the controller is configured to further: E) in a fifth frame, provide the negative voltage to the top electrode, provide the ground voltage to the first drive electrode, and provide the negative voltage to the a second drive electrode; and F) in a sixth frame, providing the ground voltage to the top electrode, providing the ground voltage to the first drive electrode, and providing the ground voltage to the second drive electrode. In one embodiment, the electrophoretic medium is encapsulated in a plurality of microcapsules, and the microcapsules are dispersed in a polymer binder between the top electrode and the first and second driving electrodes. In one embodiment, the electrophoretic medium is encapsulated in a microcellular array having openings, wherein the openings are sealed with a polymeric binder, and the microcellular array is disposed between the top electrode and the first and second electrodes. Between the two drive electrodes. In one embodiment, the electrophoretic medium includes a non-polar fluid and four groups of particles with different optical properties. In one embodiment, the first and second groups of particles are charged with opposite polarities, the third and fourth groups of particles are charged with opposite polarities, the first particles are light scattering particles, and the second, The third and fourth sets of particles are each of a different subtractive primary color from the other. In one embodiment, the controller is configured to provide a combination of the positive voltage, the negative voltage and the ground voltage to the top electrode and the first drive electrode such that white, yellow , Red, Magenta, Blue, Cyan, Green, and Black. In one embodiment, the first and second groups of particles have opposite charges, the third and fourth groups of particles have the same charge as the second particles, the first particles are light scattering particles, and The second, third and fourth sets of particles are each of a different subtractive primary color from the other. In one embodiment, the controller is configured to provide a combination of the positive voltage, the negative voltage and the ground voltage to the top electrode and the first drive electrode such that white, yellow , Red, Magenta, Blue, Cyan, Green, and Black. In one embodiment, the positive voltage is +15V and the negative voltage is -9V. In one embodiment, the positive voltage is +9V and the negative voltage is -15V.
一種用於使用正負電壓源進行電泳介質之簡化驅動的系統,其中電壓源具有不同大小,以及控制器,其對在兩個電壓源與接地電壓之間之頂部電極進行循環,同時協調驅動與頂部電極相對的至少二驅動電極。相較於對每一驅動電極提供6個獨立驅動位準和接地電壓,所完成的系統大致可達成相同顏色狀態。因此,該系統簡化了所需的電子元件,而僅有色域的邊際損失。該系統特別適用於對包括四組不同粒子之電泳介質進行定址,例如,其中該等粒子中之三者係有色且減色,而該等粒子中之一者係光散射。A system for simplified driving of electrophoretic media using positive and negative voltage sources, wherein the voltage sources are of different sizes, and a controller which cycles the top electrode between the two voltage sources and ground voltage while coordinating the drive with the top At least two driving electrodes opposite to each other. Compared to providing 6 independent driving levels and ground voltages for each driving electrode, the completed system can achieve roughly the same color state. Thus, the system simplifies the required electronics with only a marginal loss of color gamut. The system is particularly suitable for addressing electrophoretic media comprising four different groups of particles, for example, where three of the particles are colored and subtractive and one of the particles is light scattering.
本發明提出驅動具有所謂頂平面切換(top-plane switching)之電光介質裝置的改良方法,即,其中頂部(共用)電極上的電壓隨裝置更新過程期間變動。在一些實施例中,本發明係與包括四粒子之電泳介質一起使用,其中該等粒子中之二者係有色且減色,而該等粒子中之一者係光散射。一般而言,這種系統包括白色粒子和青色、黃色和洋紅色減色原色粒子。在一些實施例中,該等粒子其中二者帶正電,該等粒子其中二者帶負電。在一些實施例中,該等粒子其中三者帶正電,該等粒子其中一者帶負電。在一些實施例中,該等粒子其中一者帶正電,該等粒子其中三者帶負電。這種系統如圖5所示意繪示,且其可以在每一像素處提供白色、黃色、紅色、洋紅色、藍色、青色、綠色和黑色。The present invention proposes an improved method of driving electro-optic devices with so-called top-plane switching, ie, where the voltage on the top (common) electrode varies during the device refresh process. In some embodiments, the present invention is used with electrophoretic media comprising four particles, where two of the particles are colored and subtractive, and one of the particles is light scattering. Generally, such systems include white particles and cyan, yellow and magenta subtractive primary color particles. In some embodiments, two of the particles are positively charged and two of the particles are negatively charged. In some embodiments, three of the particles are positively charged and one of the particles is negatively charged. In some embodiments, one of the particles is positively charged and three of the particles are negatively charged. Such a system is shown schematically in Figure 5 and it can provide white, yellow, red, magenta, blue, cyan, green and black at each pixel.
利用本發明之電泳流體,可以數種習知技藝中已知之方式建構顯示器裝置。該電泳流體可囊封於微膠囊中,或加入微胞結構中,之後再以聚合物層密封。該微膠囊或微胞層可塗布或壓印在乘載導電材料之透明塗層塑膠基板或薄膜上。可以使用導電黏合劑將該組件層壓至承載像素電極的背板上。或者,該電泳流體可直接分配於已經配置在包括主動像素電極陣列背板上之薄開孔網格上。然後可以用整合式保護片/透光電極對經填充的網格進行頂部密封。Using the electrophoretic fluids of the present invention, display devices can be constructed in several ways known in the art. The electrophoretic fluid can be encapsulated in microcapsules, or incorporated into a cellular structure, which is then sealed with a polymer layer. The microcapsule or cell layer can be coated or imprinted on a transparent coated plastic substrate or film loaded with conductive material. The assembly can be laminated to a backplane carrying the pixel electrodes using a conductive adhesive. Alternatively, the electrophoretic fluid can be dispensed directly onto a thin grid of openings already disposed on the backplane including the active pixel electrode array. The filled grid can then be top-sealed with an integrated protective sheet/light-transmissive electrode.
關於圖1和2,一種電泳顯示器(101、102)一般包括頂部透光電極110、電泳介質120和底部驅動電極130/135,其通常係以薄膜電晶體(TFT)控制之主動像素陣列的像素電極。或者,底部驅動電極130/135可直接連線至控制器或其他提供電壓至該底部驅動電極130/135之開關,以使電泳介質120(例如:分段式電極(segmented electrodes))的光學狀態產生改變。重要地,沒有必要的是,驅動電極130/135之間的接合處對應微膠囊的交叉點,或微胞127的壁。因為電泳介質120夠薄,且膠囊或微胞夠寬,所以當從觀看面檢視顯示器時,將看到驅動電極的圖案(方形、圓形、六邊形、波浪形、文字或其他),而非所述容器的圖案。該電泳介質120包含至少一電泳粒子121,但是,第二電泳粒子122、第三電泳粒子123、第四電泳粒子124或更多粒子皆為可行。[應注意的是,第三電泳粒子123和第四電泳粒子124可包括於圖1之微膠囊126中,但為清楚起見已省略。]該電泳介質120一般包括溶劑,例如異烷烴類(isoparaffins),且亦可包括分散聚合物和電荷控制劑,以促進狀態穩定性,例如雙穩態性(bistability),即在不輸入任何額外能量的情況下保持一電光狀態的能力。Referring to Figures 1 and 2, an electrophoretic display (101, 102) generally includes a top light-transmissive electrode 110, an electrophoretic medium 120, and bottom drive electrodes 130/135, which are usually pixels of an active pixel array controlled by thin film transistors (TFTs). electrode. Alternatively, the bottom drive electrodes 130/135 may be wired directly to a controller or other switch that provides a voltage to the bottom drive electrodes 130/135 to enable the optical state of the electrophoretic medium 120 (eg, segmented electrodes) Make a change. Importantly, it is not necessary that the junctions between the drive electrodes 130/135 correspond to the intersections of the microcapsules, or the walls of the cells 127 . Because the electrophoretic medium 120 is thin enough and the capsules or cells are wide enough, when the display is viewed from the viewing side, the pattern (square, circular, hexagonal, wavy, text or other) of the driving electrodes will be seen, while not the pattern of the container described. The electrophoretic medium 120 includes at least one electrophoretic particle 121 , however, the second electrophoretic particle 122 , the third electrophoretic particle 123 , the fourth electrophoretic particle 124 or more particles are feasible. [It should be noted that the third electrophoretic particle 123 and the fourth electrophoretic particle 124 may be included in the microcapsule 126 of FIG. 1 , but are omitted for clarity. ] The electrophoretic medium 120 generally includes solvents, such as isoparaffins (isoparaffins), and may also include dispersed polymers and charge control agents to promote state stability, such as bistability (bistability), that is, without inputting any additional The ability to maintain an electro-optical state in the absence of energy.
該電泳介質120一般由微膠囊126或微胞127的壁隔開。整個顯示器堆疊一般係配置於基板150上,其可為剛性或可撓性基板。該顯示器(101、102)一般也包括保護層160,其可簡單地保護頂部電極110免於受損,或其亦可包圍整個顯示器(101、102)以防止進水等等。電泳顯示器(101、102)亦可包括一或多黏著層140、170及/或密封層180,視需要而定。在一些實施例中,黏著層可包括底漆成分以增進對電極層110的黏著度,或亦可使用單獨的底漆層(圖1或2中未繪示)。(電泳顯示器和組成部件、顏料、黏著劑、電極材料等的結構係記載於許多E Ink Corporation的專利和專利申請公開案(例如:美國專利第6,922,276、7,002,728、7,072,095、7,116,318、7,715,088及7,839,564號),其完整內容皆以引用方式併入本文中。)The electrophoretic medium 120 is generally separated by walls of microcapsules 126 or cells 127 . The entire display stack is generally configured on a substrate 150, which may be a rigid or flexible substrate. The display (101, 102) generally also includes a protective layer 160, which may simply protect the top electrode 110 from damage, or it may also surround the entire display (101, 102) to prevent water ingress and the like. The electrophoretic display (101, 102) may also include one or more adhesive layers 140, 170 and/or sealing layer 180, as desired. In some embodiments, the adhesive layer may include a primer component to enhance the adhesion to the electrode layer 110 , or a separate primer layer (not shown in FIG. 1 or 2 ) may also be used. (The structures of electrophoretic displays and components, pigments, adhesives, electrode materials, etc. are described in many patents and patent application publications of E Ink Corporation (for example: U.S. Patent Nos. 6,922,276, 7,002,728, 7,072,095, 7,116,318, 7,715,088, and 7,839,564) , the entire contents of which are incorporated herein by reference.)
薄膜電晶體(TFT)背板的每一像素電極或推進電極(propulsion electrode)通常僅具有一電晶體。習知上,每一像素電極具有與其關聯的電容器電極(capacitor electrode),使得該像素電極和電容器電極形成電容器,參見例如國際專利申請公開WO01/07961。在一些實施例中,N型半導體(例如,非晶矽)可以用於形成電晶體,並且施加至閘極電極的「選擇」及「非選擇」電壓可以分別為正的及負的。Each pixel electrode or propulsion electrode of a thin film transistor (TFT) backplane usually has only one transistor. Conventionally, each pixel electrode has a capacitor electrode associated therewith such that the pixel electrode and the capacitor electrode form a capacitor, see eg International Patent Application Publication WO 01/07961. In some embodiments, an N-type semiconductor (eg, amorphous silicon) can be used to form the transistor, and the "select" and "non-select" voltages applied to the gate electrodes can be positive and negative, respectively.
如圖3所示,每一件晶體(TFT)係連接至閘線、資料線和像素電極(推進電極)。當TFT閘上正電壓夠大(或負電壓,依電晶體的類型而定)使掃描線與耦接該TFT汲極(即,Vg「ON」或「開啟」)之像素電極間有較小的阻抗時,該掃描線上的電壓因此轉移到像素的電極。但是,當該TFT閘上有負電壓時,則像素儲存電容器上有較高的阻抗並儲存有電壓,且在其他像素被定址(即,Vg「OFF」或「關閉」)時,不受掃描線上的電壓影響。因此,一般而言,該TFT應作為數位開關之用。實務上,該TFT處於「ON」設定時仍有一定的電阻量,因此像素的充電需要一些時間。此外,電壓處於「OFF」設定時可能從V S漏電至V pix,而造成串音(cross-talk)。增加儲存電容器C s的電容量雖可降低串音,但是其代價卻是使得像素更難充電,而且充電時間增加。如圖3中所示,提供一單獨電壓(V TOP)至該頂部電極,藉此在頂部電極與像素電極(V FPL)之間建立電場。最後,決定相關電光介質光學狀態的是V FPL的值。W當該儲存電容器的第一側耦接該像素電極時,該儲存電容器的第二側耦接一單獨線(V COM),使得電荷自該像素電極中移除。參見例如美國專利第7,176,880號,其完整內容以引用方式併入本文中。[在一些實施例中,N型半導體(例如,非晶矽)可以用於形成電晶體,並且施加至閘極電極的「選擇」及「非選擇」電壓可以分別為正的及負的。]在一些實施例中,可接地,但是,有許多不同的設計用於從充電電容器中排出電荷,例如,美國專利第10,037,735號中所記載者,其完整內容皆以引用方式併入本文中。 As shown in Figure 3, each transistor (TFT) is connected to gate lines, data lines and pixel electrodes (push electrodes). When the positive voltage on the TFT gate is large enough (or negative voltage, depending on the type of transistor) to make the scanning line and the pixel electrode coupled to the TFT drain (ie, Vg "ON" or "turn on") have a small gap The voltage on the scan line is thus transferred to the electrode of the pixel when the impedance is lower. However, when there is a negative voltage on the TFT gate, the pixel storage capacitor has a higher impedance and stores voltage and is not scanned while other pixels are addressed (i.e., Vg "OFF" or "OFF"). voltage on the line. Therefore, generally speaking, the TFT should be used as a digital switch. In practice, the TFT still has a certain amount of resistance when it is in the "ON" setting, so it takes some time to charge the pixels. In addition, when the voltage is in the “OFF” setting, current may leak from V S to V pix , causing cross-talk. Increasing the capacitance of the storage capacitor C s reduces crosstalk, but at the cost of making it more difficult to charge the pixel and increasing the charging time. As shown in FIG. 3, a separate voltage (V TOP ) is supplied to the top electrode, thereby establishing an electric field between the top electrode and the pixel electrode (V FPL ). Finally, it is the value of V FPL that determines the optical state of the associated electro-optic medium. When the first side of the storage capacitor is coupled to the pixel electrode, the second side of the storage capacitor is coupled to a separate line (V COM ), so that charge is removed from the pixel electrode. See, eg, US Patent No. 7,176,880, which is hereby incorporated by reference in its entirety. [In some embodiments, an N-type semiconductor (eg, amorphous silicon) can be used to form the transistor, and the "select" and "non-select" voltages applied to the gate electrodes can be positive and negative, respectively. ] In some embodiments, ground may be used, however, there are many different designs for draining charge from charging capacitors, such as described in US Patent No. 10,037,735, the entire contents of which are incorporated herein by reference.
習知非晶矽TFT的問題是,操作電壓僅限於大約±15V,從而電晶體開始漏電,最後故障。當操作電壓範圍±15V適用於許多雙粒子電泳系統時,會發現到,電壓範圍加大更容易分離具有不同zeta電位的粒子,使得進階式電泳顯示器更新更快並具有更多可再生的顏色。增加像素電極電壓範圍的解決方案是利用頂平面切換,即藉此頂部(共用)電極上的電壓隨時間函數變動。The problem with conventional amorphous silicon TFTs is that the operating voltage is limited to about ±15V, so that the transistor starts to leak and eventually fails. While an operating voltage range of ±15V is available for many two-particle electrophoretic systems, it has been found that the increased voltage range makes it easier to separate particles with different zeta potentials, enabling advanced electrophoretic displays to update faster and have more reproducible colors . A solution to increase the voltage range of the pixel electrode is to use top-plane switching, ie whereby the voltage on the top (common) electrode varies as a function of time.
頂平面切換的原理如圖4所繪示。一種示範性電泳顯示器401包括電泳介質420,其配置於頂部電極410與(底部)驅動電極430之間。該圖4中的電泳介質420繪示為具有四種不同類型的電泳粒子,但是,該電泳介質420可能具有比所繪示者較少類型或更多類型的不同粒子。在圖4的簡化實施例中,頂部電極410和驅動電極430二者皆由不同電源供應器440和460所供電,其可來自同一電源(未繪示)。此外,還接地電壓470可供使用。一般而言,一供電係相對於接地電壓為正,而一供電係相對於接地電壓為負。哪一個供電(或接地電壓)在給定單位時間(一個幀)時連接至哪一個電極係由控制器470所控制。該控制器可為市面商用電泳顯示器控制器,其例如UltraChip所製造,或其可為研究控制器,其例如由E Ink Corporation所提供(HULK控制器、ARC30™控制器),或者其可為虛擬控制器,使用例如LABVIEW® 以控制電壓板的輸出。The principle of top plane switching is shown in FIG. 4 . An exemplary electrophoretic display 401 includes an electrophoretic medium 420 disposed between a top electrode 410 and a (bottom) drive electrode 430 . The electrophoretic medium 420 in FIG. 4 is shown as having four different types of electrophoretic particles, however, the electrophoretic medium 420 may have fewer or more types of different particles than depicted. In the simplified embodiment of FIG. 4, both the top electrode 410 and the drive electrode 430 are powered by different power supplies 440 and 460, which may be from the same power source (not shown). In addition, a ground voltage 470 is also available. Generally, one power supply is positive with respect to ground voltage, and one power supply is negative with respect to ground voltage. Which power supply (or ground voltage) is connected to which electrode at a given unit of time (one frame) is controlled by the controller 470 . The controller may be a commercially available electrophoretic display controller, such as that manufactured by UltraChip, or it may be a research controller, such as that provided by E Ink Corporation (HULK controller, ARC30™ controller), or it may be a virtual Controller, using eg LABVIEW® to control the output of the voltage board.
如在圖4的電泳顯示器401下面的算式中所示,每一提供至頂部電極410和至驅動電極430之電壓的組合,其結果為在電泳介質420上的電壓差ΔV=V(驅動電極)–V(頂部電極)。從該等算式可以看出(如下所述),藉由修改頂部電極上的電壓,該電泳介質420上可以達到更大範圍的電壓。此外,在440和460的大小不同的情況,可以得到電泳介質上的中間差分電壓值。如圖4中所示,藉由仔細協調頂部電極410和驅動電極430連接到哪個電源時,七個不同電壓可提供給該電泳介質420。As shown in the equation below the electrophoretic display 401 of FIG. 4, each combination of voltages supplied to the top electrode 410 and to the drive electrode 430 results in a voltage difference ΔV=V(drive electrode) across the electrophoretic medium 420 – V (top electrode). It can be seen from the equations (described below) that by modifying the voltage on the top electrode, a wider range of voltages on the electrophoretic medium 420 can be achieved. Furthermore, where the magnitudes of 440 and 460 are different, intermediate differential voltage values across the electrophoretic medium can be obtained. As shown in FIG. 4, by carefully coordinating which power source the top electrode 410 and drive electrode 430 are connected to, seven different voltages can be supplied to the electrophoretic medium 420.
雖然圖4僅繪示單一個驅動電極430,但是可以理解的是,此原理可以擴展到具有許多驅動像素的系統,例如提供有主動矩陣背板。然而,協調必要的頂部電極電壓以在特定像素上達到所需的電壓差隨著像素數量的增加,會變得非常複雜。實務上,利用主動矩陣背板的頂平面切換針對該頂平面和像素電極使用獨立電壓控制器,且需要持續多幀的頂部電極電壓循環,同時個別像素電極經切換以產生所需的波型。美國專利第10,593,272號中記載此方法的更多細節,其完整內容以引用方式併入本文中。Although FIG. 4 only shows a single drive electrode 430, it is understood that this principle can be extended to a system with many drive pixels, for example provided with an active matrix backplane. However, coordinating the necessary top electrode voltages to achieve the desired voltage difference across a particular pixel becomes very complex as the number of pixels increases. In practice, top plane switching with an active matrix backplane uses separate voltage controllers for the top plane and pixel electrodes, and requires cycling the top electrode voltage for multiple frames while individual pixel electrodes are switched to generate the desired waveform. Further details of this approach are described in US Patent No. 10,593,272, the entire contents of which are incorporated herein by reference.
在ACeP®的例子中,該八個主要顏色(紅色、綠色、藍色、青色、洋紅色、黃色、黑色和白色)中的每一者各自對應四種顏料的不同布置方式,使得觀看者只看到位於白色顏料(即,唯一散射光的顏料)觀看側的那些有色顏料。更具體而言,當青色、洋紅色和黃色粒子位於白色粒子下方(圖5中的情境[A]),白色粒子上方沒有粒子,且像素只顯示白色。當白色粒子上方只有單一粒子時,則顯示該單一粒子的顏色,在圖5的情境[B]、[D]和[F]中分別為黃色、洋紅色和青色。當兩種粒子位於白色粒子上方時,所顯示的顏色為這兩種粒子的組合,在圖5的情境[C]中,洋紅色和黃色粒子顯示紅色,情境[E]中,青色和洋紅色粒子顯示藍色,而在情境[G]中,黃色和青色粒子顯示綠色。最後,當全部三種有色粒子位於白色粒子下方(圖5中的情境[H]),所有入射光被該三種減色原色粒子所吸收,而像素顯示黑色。In the case of ACeP®, each of the eight primary colors (red, green, blue, cyan, magenta, yellow, black, and white) corresponds to a different arrangement of the four pigments so that the viewer can only See those colored pigments that are on the viewing side of the white pigments (ie, the only pigments that scatter light). More specifically, when cyan, magenta, and yellow particles are below a white particle (scenario [A] in Figure 5), there are no particles above the white particle, and the pixel only displays white. When there is only a single particle above the white particle, the color of the single particle is displayed, which are yellow, magenta and cyan respectively in situations [B], [D] and [F] in Fig. 5 . When two particles are above a white particle, the displayed color is the combination of the two particles, in situation [C] of Figure 5, magenta and yellow particles display red, and in situation [E], cyan and magenta particles shows blue, while in situation [G] yellow and cyan particles show green. Finally, when all three colored particles are located below the white particles (scenario [H] in FIG. 5), all incident light is absorbed by the three subtractive primary color particles, and the pixel appears black.
一種減色原色可能由散射光的粒子呈現,致使該顯示器會包括兩類光散射粒子,其中一種是白色的,另一種是彩色的。但是,在這種請況下,散射光有色粒子相對於其他覆蓋在白色粒子上的其他有色粒子的位置變得重要。舉例而言,在呈現黑色時(當所有三種有色粒子都位於白色粒子上時)散射的有色粒子不能位於非散射的有色粒子上(否則它們將部分或完全隱藏在散射粒子後面,所呈現的顏色將是散射的有色粒子的顏色,而不是黑色)。如果不止一種類型的有色粒子散射光,那麼將顏色呈現為黑色並不容易。A subtractive primary color may be represented by light-scattering particles, so that the display will include two types of light-scattering particles, one white and one colored. In this case, however, the position of the light-scattering colored particle relative to other colored particles covering the white particle becomes important. For example, when rendering black (when all three colored particles are on white particles) the scattering colored particles cannot sit on non-scattering colored particles (otherwise they would be partially or completely hidden behind the scattering particles, the rendered color will be the color of the scattered colored particles, not black). If more than one type of colored particle scatters light, it is not easy to render the color as black.
已經發現的是,將四種顏料分類成適當的配置以作成這些顏色的波形會以至少七種電壓位準(高正位準、中正位準、低正位準、零位準、低負位準、中負位準和高負位準)達到最佳。圖6繪示用以驅動上述4-粒子彩色電泳顯示系統的典型波型(以簡化方式)。這類波型具有「推-拉」結構,即,其由兩個相反極性之脈衝組成的偶極所組成。這些脈衝的大小和長度決定所取得的顏色。一般來說,「高」電壓的大小越高,由顯示器達成的色域(color gamut)越佳。該「高」電壓一般地介於20V和30V之間,更一般地為25V左右,例如24V。該「中」(M)位準一般地介於10V和20V之間,更一般地在15V左右,例如15V或12V。該「低」(L)電壓一般地介於3V和10V之間,更一般地為7V左右,例如9V或5V。當然,H、M、L的值在某種程度上取決於粒子的組成,以及電泳介質的環境。在某些應用中,H、M、L可以藉由用於產生和控制這些電壓位準的組件的成本來設定。It has been found that sorting the four pigments into appropriate configurations to make waveforms for these colors results in at least seven voltage levels (high positive level, middle positive level, low positive level, zero level, low negative level). Standard, Medium Negative Level and High Negative Level) to achieve the best. Figure 6 shows typical waveforms (in a simplified manner) used to drive the 4-particle color electrophoretic display system described above. This type of waveform has a "push-pull" structure, ie, it consists of a dipole formed by two pulses of opposite polarity. The size and length of these pulses determine the color achieved. In general, the higher the magnitude of the "high" voltage, the better the color gamut achieved by the display. The "high" voltage is typically between 20V and 30V, more typically around 25V, eg 24V. The "middle" (M) level is typically between 10V and 20V, more typically around 15V, such as 15V or 12V. The "low" (L) voltage is typically between 3V and 10V, more typically around 7V, eg 9V or 5V. Of course, the values of H, M, and L depend to some extent on the composition of the particles, as well as the environment of the electrophoretic medium. In some applications, H, M, L can be set by the cost of the components used to generate and control these voltage levels.
如圖6中所示,如果頂部電極保持在一恆定電壓(即,非頂平面切換),即使是ACeP® system的簡單波型要求驅動電子裝置在顯示器的選定像素更新期間向資料線提供七種不同的電壓(+H、+M、+L、0、-L、-M、-H)。雖然可以提供能夠提供七種不同電壓的多級源極驅動器,但用於電泳顯示器的大多數市售源極驅動器僅允許在單個幀期間提供三種不同的電壓(一般地是正電壓、零電壓和負電壓)。As shown in Figure 6, if the top electrode is held at a constant voltage (i.e., non-top-plane switching), even the simple waveform of the ACeP® system requires the drive electronics to provide seven Different voltages (+H, +M, +L, 0, -L, -M, -H). While multi-level source drivers capable of supplying seven different voltages are available, most commercially available source drivers for electrophoretic displays only allow three different voltages (typically positive, zero, and negative) to be supplied during a single frame. Voltage).
當然,使用圖6的驅動脈衝實現所需的顏色係取決於從已知狀態開始製程的粒子,這不太可能是像素上所顯示的最後一種顏色。據此,一連串重置(reset)脈衝優先於驅動脈衝,增加用以將像素從第一顏色更新至第二顏色所需的時間量。該重置脈衝更詳細地記載於美國專利第10,593,272號中,其以引用方式併入本文中。可選擇這些脈衝(復新和定址)和任何休息(即,它們之間的零電壓週期)的長度,使得整個波型(即,整個波形上電壓相對於時間的積分)是直流(DC)平衡的(即,電壓隨時間的積分實質上為零)。直流平衡可以藉由調整脈衝的長度和在重置階段中的休息來達成,使得重置階段所提供的淨脈衝與定址階段所提供的淨脈衝大小相等,符號相反,其在顯示器被切換至特定所需顏色階段期間。Of course, achieving the desired color using the drive pulses of Figure 6 depends on starting the process from a known state of the particle, which is unlikely to be the last color displayed on the pixel. Accordingly, a series of reset pulses takes precedence over drive pulses, increasing the amount of time required to update a pixel from a first color to a second color. This reset pulse is described in more detail in US Patent No. 10,593,272, which is incorporated herein by reference. The lengths of these pulses (resetting and addressing) and any rests (i.e., periods of zero voltage between them) can be chosen such that the overall waveform (i.e., the integral of voltage over time over the entire waveform) is direct current (DC) balanced (ie, the integral of voltage over time is essentially zero). DC balance can be achieved by adjusting the length of the pulses and the rest during the reset phase so that the net pulses provided by the reset phase are equal in magnitude and opposite in sign to the net pulses provided by the address phase, which are switched to a specific During the desired color phase.
此外,前面對波形的討論,特別是對直流平衡的討論,忽略了回衝(kickback)電壓的問題。實務上,同上所述,每個背板電壓係電源提供之電壓,與回衝(kickback)電壓V KB相等量之偏移量。因此,若所使用電源提供該三個+V、0和-V電壓,該背板實際上接收到電壓為V+V KB、V KB和–V+V KB(須注意的是,在非晶矽TFT的情況下,V KB實際上會是負數)。但是,該相同電源會提供+V、0和-V給前電極,而沒有回衝電壓偏移。因此,舉例來說,當-V提供給前電極時,顯示器會經受2V+V KB的最大電壓和V KB的最小電壓。波形可以劃分為前電極被提供正電壓、負電壓和的V KB部分,而非使用單獨電源以提供V KB至前電極(可能既昂貴又不方便)。除回衝電壓之外。 使用金屬氧化物背板實現較高電壓定址 In addition, the previous discussion of waveforms, especially the discussion of DC balance, ignored the problem of kickback voltage. In practice, as mentioned above, each backplane voltage is the voltage provided by the power supply, offset by an amount equal to the kickback voltage V KB . Therefore, if the power supply used provides the three +V, 0, and -V voltages, the backplane actually receives voltages of V+V KB , V KB , and –V+V KB (note that in amorphous In the case of silicon TFTs, V KB will actually be negative). However, this same power supply would provide +V, 0 and -V to the front electrodes without backshoot voltage offset. Thus, for example, when -V is supplied to the front electrode, the display will experience a maximum voltage of 2V+V KB and a minimum voltage of V KB . Instead of using a separate power supply to supply V KB to the front electrodes (which can be expensive and inconvenient), the waveform can be divided into V KB parts where the front electrodes are supplied with positive voltage, negative voltage and V KB . In addition to the kickback voltage. Higher Voltage Addressing Using a Metal Oxide Backplane
雖然修改導軌電壓(rail voltages)為實現與四粒子電泳系統不同的電光性能提供了一些靈活性,但在頂表面切換上仍帶來許多限制。舉例而言,一般較佳的是,為了使本發明的顯示器處於白色狀態,較低負電壓V M-係低於最大負電壓V H-的一半。然而,如以上等式所示,頂平面切換要求較低的正電壓恆為最大正電壓的至少一半,一般高於一半。 Although modifying the rail voltages provides some flexibility to achieve different electro-optical performances than the four-particle electrophoretic system, it still brings many constraints on the top surface switching. For example, it is generally preferred that the lower negative voltage V M- be less than half of the maximum negative voltage V H- for the display of the present invention to be in a white state. However, as shown in the above equation, top-plane switching requires a lower positive voltage constant of at least half of the maximum positive voltage, typically higher than half.
一種解決頂平面切換之複雜性的替代解決方案可以藉由使用具有更高電子遷移率之不常見材料製造控制電晶體來提供,從而允許電晶體直接切換更大的控制電壓,例如:+/-30V。新開發的主動矩陣背板可能包括加入有金屬氧化物材料,例如氧化鎢(tungsten oxide)、氧化錫(tin oxide)、氧化銦(indium oxide)和氧化鋅(zinc oxide)的薄膜電晶體。在這些應用中,使用這種金屬氧化物材料為每一電晶體形成通道形成區,從而允許更快地切換較高電壓。這種電晶體一般包括閘電極、閘極絕緣膜(一般是SiO 2)、金屬源電極、金屬汲電極和閘極絕緣膜上方的金屬氧化物半導體膜,與閘電極、源電極和汲電極至少部分重疊。這種背板係由製造商(例如Sharp/Foxconn、LG和BOE)供應。 An alternative solution to the complexity of top-plane switching can be provided by fabricating control transistors using uncommon materials with higher electron mobility, allowing the transistors to directly switch larger control voltages, e.g. +/- 30V. Newly developed active matrix backplanes may include thin film transistors incorporating metal oxide materials such as tungsten oxide, tin oxide, indium oxide and zinc oxide. In these applications, such metal oxide materials are used to form a channel forming region for each transistor, allowing faster switching of higher voltages. This type of transistor generally includes a gate electrode, a gate insulating film (usually SiO 2 ), a metal source electrode, a metal drain electrode, and a metal oxide semiconductor film above the gate insulating film, and the gate electrode, the source electrode, and the drain electrode are at least partially overlap. Such backplanes are supplied by manufacturers such as Sharp/Foxconn, LG and BOE.
用於此類應用的一種較佳的金屬氧化物材料係銦鎵鋅氧化物(IGZO)。IGZO-TFT的電子遷移率較非晶矽高出20至50倍。藉由在一主動陣列背板中使用IGZO TFT,可經由適用的顯示器驅動器提供大於30V的電壓。再者,可提供至少五(較佳為七)位準的源極驅動器針對四粒子電泳顯示系統提供不同驅動範例(paradigm)。在一實施例中,其具有兩個正電壓、兩個負電壓,及數個0伏特。在另一實施例中,其具有三個正電壓、三個負電壓,及數個0伏特。在一實施例中,其具有四個正電壓、四個負電壓,及數個0伏特。可在約-27V至+27V的範圍內選擇這些位準,而沒有加諸於如上所述之頂平面切換的限制。A preferred metal oxide material for such applications is Indium Gallium Zinc Oxide (IGZO). The electron mobility of IGZO-TFT is 20 to 50 times higher than that of amorphous silicon. By using IGZO TFTs in an active matrix backplane, voltages greater than 30V can be provided by suitable display drivers. Furthermore, at least five (preferably seven) levels of source drivers can be provided to provide different driving paradigms for the four-particle electrophoretic display system. In one embodiment, it has two positive voltages, two negative voltages, and several zero volts. In another embodiment, it has three positive voltages, three negative voltages, and several zero volts. In one embodiment, it has four positive voltages, four negative voltages, and several zero volts. These levels can be selected in the range of about -27V to +27V without imposing the constraints of top plane switching as described above.
使用進階式背板,例如金屬氧化物背板,其可以適用的推-拉波型直接對每一像素定址,即,如圖6所述。這樣大幅減少更新每一像素所需的時間,在某些情況下將六秒的更新轉換為不到一秒。同時,在某些情況下,可能需要使用重置脈衝來建立用於定址的起點,重置可在更高的電壓下更快地完成。此外,在具有減少的顏色集的四色電泳顯示器中,可以使用僅比圖6所示的推-拉波形稍長的特定波形直接從第一顏色驅動到第二顏色。 簡化的頂平面切換 Using an advanced backplane, such as a metal oxide backplane, it is possible to directly address each pixel in a suitable push-pull waveform, ie, as described in FIG. 6 . This drastically reduces the time it takes to update each pixel, converting a six-second update to less than a second in some cases. While, in some cases, it may be necessary to use a reset pulse to establish a starting point for addressing, reset can be done faster at higher voltages. Furthermore, in a four-color electrophoretic display with a reduced color set, it is possible to drive directly from a first color to a second color using a specific waveform that is only slightly longer than the push-pull waveform shown in FIG. 6 . Simplified Top Plane Switching
為了減少更新的時間長和閃爍(flashiness),可減少該前平面切換的複雜度,以換取較少數量的可用顏色。此外,因為該等粒子在電泳介質中具有有限的速度,應用偶極的時間量也會影響色域的大小。To reduce update length and flashiness, the complexity of the front plane switching can be reduced in exchange for a smaller number of available colors. Furthermore, since the particles have a finite velocity in the electrophoretic medium, the amount of time the dipole is applied also affects the size of the color gamut.
圖7繪示一種使用簡化的頂平面切換脈衝序列(左上圖)的解決方案,帶有簡化的背板開關脈衝序列(左下)匹配至單一頂平面序列,藉此提供至少有區別的顏色。該頂平面在兩個電壓(一正一負)之間切換,同時背板可取用三個不同的電壓:正電壓、負電壓和零電壓。(在圖7中,電壓準位係相對的(即,1、0和-1),但是在許多例子中,由於一般與包括非晶矽薄膜電晶體的市售背板一起使用,所以實際上為15V、0和-15V。)須注意的是,藉由將頂平面的脈衝序列自背板脈衝序列中減去(圖7左邊),可實現圖6中八種顏色序列(圖7右邊)。可瞭解的是,對圖6和圖7中的脈衝序列而言,電泳流體包括帶負電的白色顏料、帶正電的洋紅色和青色顏料,及可帶正電或帶負電或實質上中性的黃色顏料。可能有其他顏色/電荷組合,且波形可以相應地調整。Figure 7 shows a solution using a simplified top-plane switching pulse sequence (top left), with a simplified backplane switching pulse sequence (bottom left) matched to a single top-plane sequence, thereby providing at least distinct colors. The top plane switches between two voltages (one positive and one negative), while the backplane can take three different voltages: positive, negative and zero. (In Figure 7, the voltage levels are relative (i.e., 1, 0, and -1), but in many instances the actual are 15V, 0, and -15V.) Note that the eight color sequences in Figure 6 (right in Figure 7) can be achieved by subtracting the pulse sequence for the top plane from the backplane pulse sequence (left in Figure 7). . It will be appreciated that for the pulse sequences in Figures 6 and 7, the electrophoretic fluid includes negatively charged white pigments, positively charged magenta and cyan pigments, and may be positively or negatively charged or substantially neutral. yellow paint. Other color/charge combinations are possible and the waveform can be adjusted accordingly.
如上所說明者,在圖7的波型中,需要至少五個不同電壓。在主動陣列驅動環境中,這可(a)在特定時間選擇特定列時,藉由對行提供五種不同電壓的選擇來達成,或者(b)在第一時間選擇特定列,且在第二時間選擇同一列時,提供一不同組的電壓時,藉由對行提供較少(例如,3種)不同電壓的選擇來達成,或者(c)藉由同時在第一和第二時間對行提供三個電壓的相同選擇,但更改第一與第二時間之間的前電極的電位來達成。當需要提供的至少一個電壓高於背板電子裝置可以支持的電壓時,選項(c)特別有用。As explained above, in the waveform of FIG. 7, at least five different voltages are required. In an active array drive environment, this can be achieved either (a) by providing a selection of five different voltages to the row when a particular column is selected at a particular time, or (b) by selecting a particular column at a first time and then selecting it at a second When a different set of voltages is provided when the same column is time selected, this is achieved by providing a selection of fewer (eg, 3) different voltages to the row, or (c) by simultaneously applying the same row at the first and second time The same selection of three voltages is provided, but achieved by changing the potential of the front electrode between the first and second times. Option (c) is particularly useful when at least one voltage needs to be provided that is higher than what the backplane electronics can support.
因為,利用頂平面切換,不可能同時斷定高正和高負電位,其必須相對於背板的-/+偶極偏移頂平面的+/-偶極子。在圖7中所示的波型中,每次過渡只有一個偶極。這提供了盡可能少的「瞬間」波形,因為每個偶極都會對顯示器產生兩個可見的光學變化。在選擇每一列時可以向背板電極提供五種不同電壓位準,且背板電子裝置可支持所需的最高電壓的情況下,不須以圖7所示之方式偏移偶極。 利用循環式頂平面電壓驅動 Since, with top plane switching, it is not possible to assert both high positive and high negative potentials, it is necessary to offset the +/- dipole of the top plane relative to the -/+ dipole of the backplane. In the wave pattern shown in Figure 7, there is only one dipole per transition. This provides as few "momentary" waveforms as possible, since each dipole produces two visible optical changes to the display. In cases where five different voltage levels can be provided to the backplane electrodes when each column is selected, and the backplane electronics can support the highest voltage required, it is not necessary to shift the dipoles in the manner shown in FIG. 7 . Driving with Cyclic Top Plane Voltage
用於圖7的驅動順序,施加於頂平面的電壓分別表示為 V t+ and V t- ,施加於背板的電壓分別表示為 V b + and V b - ,且| V t+ |=| V t- |=| V b + |=| V b - |=V。據此,當最大電源電壓為+/-15伏特(如一般市售背板一樣)時,跨電泳介質的電壓變成30V、28V、0V、-28V和-30V。 For the driving sequence in Figure 7, the voltages applied to the top plane are denoted as V t+ and V t- , and the voltages applied to the backplane are denoted as V b + and V b - , respectively, and | V t+ |=| V t - |=| V b + |=| V b - |=V. According to this, when the maximum supply voltage is +/-15 volts (as in typical commercially available backplanes), the voltages across the electrophoretic medium become 30V, 28V, 0V, -28V and -30V.
但是,該頂平面電極和背面電極的最大電壓的大小(即,導軌電壓)不須相同。舉例而言,導軌電壓偏移量可以從某個標稱最大電壓幅度值V中計算得出來。每一軌的偏移可表示為w、x、y和z,同時假設零電壓軌保持為零並且不施加於頂平面。 因此: However, the magnitude of the maximum voltage (ie rail voltage) of the top plane electrode and the back electrode need not be the same. For example, the rail voltage offset can be calculated from some nominal maximum voltage amplitude V. The offset of each rail can be denoted as w, x, y and z, while assuming that the zero voltage rail remains at zero and is not applied to the top plane. therefore:
參考背板電壓,當頂平面設置為V t+時,可以對電泳介質施加高、中、低三種大小不同的負電壓,分別表示為V H-、V M-和V L-(即,V b–V t,其中V b可以取用以上所示該三值其中一者)。 這些電壓為: 當頂平面的電壓設為V t-,可供應該等電壓: 當頂平面的電壓設為0,可供應該等電壓: Referring to the backplane voltage, when the top plane is set to V t+ , three negative voltages of high, medium and low sizes can be applied to the electrophoretic medium, denoted as V H- , V M- and V L- (that is, V b -V t , where V b can take one of the three values shown above). These voltages are: When the voltage of the top plane is set to V t- , these equal voltages are available: When the voltage of the top plane is set to 0, the equivalent voltage is available:
由上可看出,當w=y且x=z,無論頂平面係設為 V t+ 、 V t- 或是0,都可保持零電壓條件。實務上,如果要獲得最佳顏色,波形需要明顯更大的複雜性和長度。據此,頂平面切換模式因此所需的複雜度比圖7所示的模式來得大。但是,隨著困難度提高,在需要在顯示器的不同區域同時更新的應用中,開始時間交錯,間隔小於一個波形的長度。因為頂平面電位係建立在整個顯示器,在另一個位置中先前啟動的更新結束之前,可能無法在顯示器的一個區域啟動新的更新。 It can be seen from the above that when w=y and x=z, no matter the top plane system is set to V t+ , V t- or 0, the zero voltage condition can be maintained. In practice, waveforms need to be significantly greater in complexity and length if the best color is to be achieved. Accordingly, the top-plane switching scheme thus requires greater complexity than the scheme shown in FIG. 7 . However, as the difficulty increases, in applications that require simultaneous updates in different areas of the display, the start times are interleaved with intervals smaller than the length of one waveform. Because the top plane potential is established across the display, it may not be possible to initiate a new update in one area of the display until a previously initiated update in another location has completed.
協調多個同時更新各自都需要頂平面切換的問題可以藉由循環頂平面電壓同時拉伸波形來解決,如圖8所示。(V TE=頂部電極電壓,V DE1=第一驅動電極電壓,V DE2=第二驅動電極電壓,ΔV DE1=第一驅動電極與頂部電極之間之電泳介質上的電壓差,ΔV DE2=第二驅動電極與頂部電極之間之電泳介質上的電壓差。)先前針對能夠在任何幀中的任何像素位置提供+/-24V、+/-15V、+/-9V或0V的七級背板建立的綠色波形和黃色波形已針對循環式頂平面驅動進行修改。控制器提供+15V、-9V和0V的連續幀(即,上述等式中,V=15V、w=y=0V且x=z=6V)至頂部電極,如圖9中所示。藉由拉伸波形,和將提供至第一和第二驅動電極的電壓與頂部電壓循環進行協調,可以在利用頂切換在兩個不同的驅動電極處影響同時顏色更新。 The problem of coordinating multiple simultaneous updates each requiring top-plane switching can be solved by cycling the top-plane voltage while stretching the waveform, as shown in Figure 8. (V TE = top electrode voltage, V DE1 = first drive electrode voltage, V DE2 = second drive electrode voltage, ΔV DE1 = voltage difference on the electrophoretic medium between first drive electrode and top electrode, ΔV DE2 = second The voltage difference across the electrophoretic medium between the two drive electrodes and the top electrode.) previously targeted a seven-level backplane capable of delivering +/-24V, +/-15V, +/-9V, or 0V at any pixel location in any frame The established green and yellow waveforms have been modified for cyclic top-plane drive. The controller provides successive frames of +15V, -9V and 0V (ie, V=15V, w=y=0V and x=z=6V in the above equation) to the top electrode as shown in FIG. 9 . By stretching the waveform, and coordinating the voltage supplied to the first and second drive electrodes with the top voltage cycling, it is possible to effect simultaneous color refresh at two different drive electrodes using top switching.
當頂部電極為+15V,供給電泳介質的電壓差為-24V、-15V和-0V。當頂部電極為-9V,供給電泳介質的電壓差為24V、9V和0V。當頂部電極為接地電壓(0V),供給電泳介質的電壓差為15V、0V和-9V。[習知上,該電壓差係ΔV=V(驅動電極)–V(頂部電極)。]藉此,可提供七個電壓:+/-24V、+/-15V和+/-9V,以及0V。應注意的是,當一個特定的驅動電極需要「等待」下一個頂部電極幀時,將該驅動電極設為與頂部電極相同的電壓,使得對於該幀,跨電泳介質的電壓差為零。明顯地,這使得波形的時間更長,每個「簡單」波形現在需要的更新時間是原始多級波形的三倍。When the top electrode is +15V, the voltage difference supplied to the electrophoretic medium is -24V, -15V and -0V. When the top electrode is -9V, the voltage difference supplied to the electrophoretic medium is 24V, 9V and 0V. When the top electrode is at ground voltage (0V), the voltage difference supplied to the electrophoretic medium is 15V, 0V and -9V. [Conventionally, the voltage difference is ΔV=V(drive electrode)−V(top electrode). ] In this way, seven voltages can be provided: +/-24V, +/-15V and +/-9V, and 0V. It should be noted that when a particular drive electrode needs to "wait" for the next top electrode frame, that drive electrode is set to the same voltage as the top electrode such that for that frame the voltage difference across the electrophoretic medium is zero. Obviously this makes the waveforms much longer, each "simple" waveform now takes three times as long to update as the original multilevel waveform.
使用四粒子電泳系統的模型,利用+15V、-9V和0的頂部電極循環式驅動係針對具有七個單獨驅動位準和靜態頂部電極的同一系統進行測試。其結果如表1和表2中所示,並呈現於圖9A之曲線圖和圖9B之模擬色表中。
表 1. 使用專用的七級驅動器為模型化 ACeP 系統計算的 L*a*b* 值。
比較表1和2,似乎除了較長的更新時間之外,頂部電極循環有些微損失。事實上,頂部電極循環方法的色域(色彩空間)實際上略大。兩種方法之間的差異可透過考量圖9A和9B進一步視覺化。在圖9A中,實心圓代表七級驅動器的L*a*b*測量值,而空心圓代表循環式頂部電極驅動的L*a*b*測量值。從圖9A和9B可見,其產生的原色狀態非常相似。(比較空心圓和實心圓的位置。)在綠色原色(圖9A的左中心部分)中可以看到最大的變化,其中綠色原色朝黃色漂移很多。由圖9B可證明綠色原色的顏色狀態差異。Comparing Tables 1 and 2, it appears that in addition to the longer update time, there is a slight loss of top electrode cycling. In fact, the color gamut (color space) of the top electrode cycling method is actually slightly larger. The difference between the two methods can be further visualized by considering Figures 9A and 9B. In FIG. 9A , the solid circles represent the L*a*b* measurements for the seven-level drive, while the open circles represent the L*a*b* measurements for the cyclic top electrode drive. It can be seen from Figures 9A and 9B that the resulting primary color states are very similar. (Compare the positions of the open and filled circles.) The greatest change can be seen in the green primary (left center portion of Figure 9A), where the green primary shifts a lot towards yellow. The color state difference of the green primary color can be demonstrated by Fig. 9B.
因此,本發明提供能夠利用及不利用頂平面切換,直接對電泳介質定址的全彩色電泳顯示器,以及這種電泳顯示器的波形。本申請案的技術之數個態樣及實施例已經藉此說明,需瞭解的是,本技術領域中具有通常知識者將容易想到各種變更、修改及改進。這樣的變更、修改及改進意欲在本申請案中所述之技術的精神及範圍內。例如,本技術領域中具有通常知識者將可輕易地設想出用於執行本文所述之功能及/或獲得本文所述之結果及/或一個或多個優點的各種其它手段及/或結構,因此這樣的變更及/或修改中的每一者被認為是在本文所描述的實施例之範圍內。熟悉該項技藝者將認識到或能夠僅使用例行實驗來確定本文描述之特定實施例的許多均等物。因此,應當理解,前述實施例僅以示例的方式來呈現,並且在所附專利請求項及其均等物的範圍內,可以以不同於具體描述的方式來實踐本發明的實施例。此外,本文所述之兩個以上的特徵、系統、物品、材料、套件及/或方法的任何組合在沒有相互矛盾的情況下包含在本發明的範圍內。Accordingly, the present invention provides full color electrophoretic displays capable of directly addressing electrophoretic media with and without top plane switching, and waveforms for such electrophoretic displays. Several aspects and embodiments of the technology of the present application have been described here. It should be understood that those skilled in the art will easily think of various changes, modifications and improvements. Such alterations, modifications and improvements are intended to be within the spirit and scope of the technology described in this application. For example, various other means and/or structures for performing the functions described herein and/or obtaining the results and/or one or more advantages described herein will be readily conceivable by those skilled in the art, Each of such alterations and/or modifications are therefore considered to be within the scope of the embodiments described herein. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments described herein. It is therefore to be understood that the foregoing embodiments are presented by way of example only, and that within the scope of the appended claims and their equivalents, embodiments of the invention may be practiced otherwise than as specifically described. In addition, any combination of two or more features, systems, articles, materials, kits and/or methods described herein is within the scope of the present invention unless mutually inconsistent.
101,102:電泳顯示器 110:頂部透光電極 120:電泳介質 121:電泳粒子 122:第二電泳粒子 123:第三電泳粒子 124:第四電泳粒子 126:微膠囊 127:微胞 130,135:底部驅動電極 140,170:黏著層 150:基板 160:保護層 180:密封層 401:電泳顯示器 410:頂部電極 420:電泳介質 430:驅動電極 440,460:電源 470:控制器 101,102: Electrophoretic displays 110: top transparent electrode 120: Electrophoretic medium 121: Electrophoretic particles 122: the second electrophoretic particle 123: The third electrophoretic particle 124: The fourth electrophoretic particle 126: Microcapsules 127:Microcell 130,135: Bottom drive electrodes 140,170: Adhesive layer 150: Substrate 160: protective layer 180: sealing layer 401: Electrophoretic display 410: top electrode 420: Electrophoretic medium 430: drive electrode 440,460: Power 470:Controller
圖1係繪示一實施例之適於與本發明之方法一起使用之膠囊型電泳顯示器的示意剖面圖。 圖2係繪示一實施例之適於與本發明之方法一起使用之膠囊型電泳顯示器的示意剖面圖。 圖3繪示電泳顯示器之單一像素的示範性等效電路,其中該單一像素上的電壓係以電晶體控制。圖3之電路係常用於主動陣列背板。 圖4繪示如何將正電壓源和富電壓源施加於頂部電極和兩個分開的驅動電極以在該兩個分開的驅動電極上達到所需的驅動電壓。 圖5係繪示在顯示黑色、白色、三種減色原色和三種加色原色之有色電泳介質中各種有色粒子位置的示意剖面圖。 圖6繪示用於對包括三減色法粒子和散射(白色)粒子之電泳介質定址的示範性推拉驅動方案。 圖7描繪在包括三減色法粒子和散射(白色)粒子之電泳介質中產生八種顏色之簡化頂平面驅動波型。 圖8繪示僅利用兩個電壓源即在第一電極上方觀看面處達成綠色光學狀態,且在第二電極上方觀看面處達成黃色光學狀態示範性驅動模式。 圖9A繪示當相同四粒子電泳介質以七個獨立驅動電壓或以兩個電壓源和使用協調式頂部電極電壓循環進行驅動時,八種顏色指數之L*a*b*值的變化。 圖9B繪示在圖9A曲線圖中作為模擬顏色的日期。 Figure 1 is a schematic cross-sectional view illustrating an embodiment of a capsule-type electrophoretic display suitable for use with the method of the present invention. Figure 2 is a schematic cross-sectional view illustrating an embodiment of a capsule-type electrophoretic display suitable for use with the method of the present invention. FIG. 3 shows an exemplary equivalent circuit of a single pixel of an electrophoretic display, where the voltage on the single pixel is controlled by a transistor. The circuit in Figure 3 is commonly used in active array backplanes. FIG. 4 illustrates how a positive voltage source and a rich voltage source are applied to the top electrode and two separate drive electrodes to achieve the desired drive voltage on the two separate drive electrodes. Fig. 5 is a schematic cross-sectional view showing the positions of various colored particles in a colored electrophoretic medium displaying black, white, three subtractive primary colors and three additive primary colors. Figure 6 depicts an exemplary push-pull drive scheme for addressing an electrophoretic medium comprising tri-subtractive particles and scattering (white) particles. Figure 7 depicts a simplified top-plane drive waveform for the generation of eight colors in an electrophoretic medium comprising trisubtractive particles and scattering (white) particles. 8 illustrates an exemplary drive mode for achieving a green optical state at the viewing face above the first electrode and a yellow optical state at the viewing face above the second electrode using only two voltage sources. Figure 9A shows the variation of L*a*b* values for eight color indices when the same four-particle electrophoretic medium was driven with seven independent driving voltages or with two voltage sources and using coordinated top electrode voltage cycling. FIG. 9B depicts dates as simulated colors in the graph of FIG. 9A.
101:電泳顯示器 101: Electrophoretic display
110:頂部透光電極 110: top transparent electrode
120:電泳介質 120: Electrophoretic medium
121:電泳粒子 121: Electrophoretic particles
122:第二電泳粒子 122: the second electrophoretic particle
126:微膠囊 126: Microcapsules
130,135:底部驅動電極 130,135: Bottom drive electrodes
140:黏著層 140: Adhesive layer
150:基板 150: Substrate
160:保護層 160: protective layer
170:黏著層 170: Adhesive layer
Claims (20)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/474,375 | 2021-09-14 | ||
US17/474,375 US11776496B2 (en) | 2020-09-15 | 2021-09-14 | Driving voltages for advanced color electrophoretic displays and displays with improved driving voltages |
US202263320524P | 2022-03-16 | 2022-03-16 | |
US63/320,524 | 2022-03-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202329062A true TW202329062A (en) | 2023-07-16 |
TWI837824B TWI837824B (en) | 2024-04-01 |
Family
ID=88147525
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111134719A TWI837824B (en) | 2021-09-14 | 2022-09-14 | A system for driving an electrophoretic medium |
TW113110199A TW202427450A (en) | 2021-09-14 | 2022-09-14 | A system for driving an electrophoretic medium |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW113110199A TW202427450A (en) | 2021-09-14 | 2022-09-14 | A system for driving an electrophoretic medium |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP4402673A1 (en) |
JP (1) | JP2024533241A (en) |
KR (1) | KR20240043787A (en) |
CN (1) | CN117916799A (en) |
CA (1) | CA3231683A1 (en) |
TW (2) | TWI837824B (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI366059B (en) * | 2008-01-21 | 2012-06-11 | Prime View Int Co Ltd | Flexible electrophoretic display and method for manufacturing the same |
WO2020205206A1 (en) * | 2019-03-29 | 2020-10-08 | E Ink Corporation | Electro-optic displays and methods of driving the same |
TWI702459B (en) * | 2019-05-30 | 2020-08-21 | 元太科技工業股份有限公司 | Electrophoretic display and driving method thereof |
-
2022
- 2022-09-13 CN CN202280060113.3A patent/CN117916799A/en active Pending
- 2022-09-13 JP JP2024514515A patent/JP2024533241A/en active Pending
- 2022-09-13 CA CA3231683A patent/CA3231683A1/en active Pending
- 2022-09-13 EP EP22785853.7A patent/EP4402673A1/en active Pending
- 2022-09-13 KR KR1020247007684A patent/KR20240043787A/en unknown
- 2022-09-14 TW TW111134719A patent/TWI837824B/en active
- 2022-09-14 TW TW113110199A patent/TW202427450A/en unknown
Also Published As
Publication number | Publication date |
---|---|
CN117916799A (en) | 2024-04-19 |
JP2024533241A (en) | 2024-09-12 |
CA3231683A1 (en) | 2023-03-23 |
KR20240043787A (en) | 2024-04-03 |
TWI837824B (en) | 2024-04-01 |
EP4402673A1 (en) | 2024-07-24 |
TW202427450A (en) | 2024-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6739540B2 (en) | Method for driving an electro-optical display | |
US11404012B2 (en) | Drivers providing DC-balanced refresh sequences for color electrophoretic displays | |
TWI667648B (en) | Method for driving an electrophoretic display and controller for an electrophoretic display | |
US20230386421A1 (en) | Driving sequences to remove prior state information from color electrophoretic displays | |
US20240061305A1 (en) | Coordinated top electrode - drive electrode voltages for switching optical state of electrophoretic displays using positive and negative voltages of different magnitudes | |
TWI803978B (en) | Improved driving voltages for advanced color electrophoretic displays and displays with improved driving voltages | |
TWI837824B (en) | A system for driving an electrophoretic medium | |
JP7574422B2 (en) | Advanced color electrophoretic displays and improved driving voltages for displays with improved driving voltages - Patents.com | |
TWI854851B (en) | Method of driving color electrophoretic displays | |
US11984088B2 (en) | Color displays configured to convert RGB image data for display on advanced color electronic paper | |
WO2023043714A1 (en) | Coordinated top electrode - drive electrode voltages for switching optical state of electrophoretic displays using positive and negative voltages of different magnitudes | |
CN118382833A (en) | High voltage driving using top plane switching with zero voltage frames between driving frames |