TW202326789A - Method and apparatus for determining a beam tail of a focused particle beam - Google Patents

Method and apparatus for determining a beam tail of a focused particle beam Download PDF

Info

Publication number
TW202326789A
TW202326789A TW111134119A TW111134119A TW202326789A TW 202326789 A TW202326789 A TW 202326789A TW 111134119 A TW111134119 A TW 111134119A TW 111134119 A TW111134119 A TW 111134119A TW 202326789 A TW202326789 A TW 202326789A
Authority
TW
Taiwan
Prior art keywords
particle beam
test element
tail
focused
focused particle
Prior art date
Application number
TW111134119A
Other languages
Chinese (zh)
Inventor
丹尼爾 里諾夫
馬庫斯 包爾
大衛 藍勒
Original Assignee
德商卡爾蔡司Smt有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德商卡爾蔡司Smt有限公司 filed Critical 德商卡爾蔡司Smt有限公司
Publication of TW202326789A publication Critical patent/TW202326789A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/304Controlling tubes by information coming from the objects or from the beam, e.g. correction signals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/282Determination of microscope properties
    • H01J2237/2823Resolution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/31732Depositing thin layers on selected microareas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3174Etching microareas
    • H01J2237/31742Etching microareas for repairing masks
    • H01J2237/31744Etching microareas for repairing masks introducing gas in vicinity of workpiece

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Measurement Of Radiation (AREA)

Abstract

The present invention relates to a method (1800) and an apparatus (1700) for determining an intensity distribution of at least one beam tail (120, 125, 130, 135) of a focused particle beam (100). The method (1800) comprises the steps of: (a) irradiating (1820) a test element (300, 500, 1100, 1400, 1600) with the focused particle beam (100) such that the at least one beam tail (120, 125, 130, 135) of the focused particle beam (100) causes at least one measurable change (620, 955, 1250, 1540, 1670) of the test element (300, 500, 1100, 1400, 1600); and (b) measuring (1830) the at least one change (620, 955, 1250, 1540, 1670) of the test element (300, 500, 1100, 1400, 1600) for the purposes of determining the intensity distribution of the at least one beam tail (120, 125, 130, 135) of the focused particle beam (100).

Description

用於確定聚焦粒子束之束尾的方法與裝置Method and apparatus for determining the beam tail of a focused particle beam

本發明是關於用於確定聚焦粒子束之束尾的方法與裝置。特別是,本發明是關於用於確定聚焦粒子束(例如一電子束)的束尾之強度分佈的方法與裝置。 [交互參照] The present invention relates to methods and apparatus for determining the beam tail of a focused particle beam. In particular, the invention relates to methods and apparatus for determining the intensity distribution of the tail of a focused particle beam, such as an electron beam. [Cross-reference]

本申請案主張2021年9月10日向德國專利商標局申請的德國專利申請第DE 10 2021 210 005.8號、名稱為「用於確定聚焦粒子束之束尾的方法與裝置(Verfahren und Vorrichtung zum Bestimmen eines Strahlausläufers eines fokussierten Teilchenstrahls)」之優先權,其在此是以引用形式整個併入本申請案供參考。The present application claims German Patent Application No. DE 10 2021 210 005.8 filed with the German Patent and Trademark Office on September 10, 2021, entitled "Method and device for determining the beam tail of a focused particle beam (Verfahren und Vorrichtung zum Bestimmen eines Strahlausläufers eines fokussierten Teilchenstrahls), which is hereby incorporated by reference into this application in its entirety.

奈米技術的進步使得可生產具尺寸達到奈米等級的越來越小結構元件之組件。為了顯示奈米結構,需要可對這些結構進行成像的測量工具,以從其測量數據產生出這些結構的真實圖像。Advances in nanotechnology allow the production of components with smaller and smaller structural elements whose dimensions reach the nanometer scale. In order to visualize nanostructures, measurement tools that can image these structures are needed to produce realistic images of these structures from their measurement data.

顯微鏡是用於成像奈米結構的有力工具。在顯微鏡中,粒子束通常與待分析或處理的樣品相互作用。顯微鏡可分為兩類,光學或光學顯微鏡使用光子來成像樣品。此顯微鏡類型以多種不同方式來成像顯微結構。除了特定類型以外,光學顯微鏡的解析度受到用於暴露待檢樣品的光源波長、以及因繞射效應而用以成像樣品之光學元件的數值孔徑所限制。深紫外光(DUV)波長範圍內的光源的生產,特別針對更短波長(例如極紫外光(EUV)波長範圍內)的光源,則是非常複雜。Microscopy is a powerful tool for imaging nanostructures. In a microscope, a particle beam typically interacts with the sample to be analyzed or processed. Microscopes can be divided into two categories, optical or light microscopes use photons to image a sample. This microscope type images microscopic structures in a number of different ways. Except for certain types, the resolution of an optical microscope is limited by the wavelength of the light source used to expose the sample to be examined, and by the numerical aperture of the optics used to image the sample due to diffraction effects. The production of light sources in the deep ultraviolet (DUV) wavelength range, especially for shorter wavelengths such as in the extreme ultraviolet (EUV) wavelength range, is complex.

由於用於成像目的之電子的短德布羅意波長,使用大量粒子進行成像奈米結構的顯微鏡(例如電子顯微鏡),在解析度方面具有比光學顯微鏡顯著的優勢。例如,類似光學顯微鏡的情況,電子顯微鏡的繞射極限與電子的德布羅意波長成線性比例,並與所用電子束的孔徑角度成反比。因此,可藉由將電子束的電子加速到更大的動能來降低電子束的繞射極限。Due to the short de Broglie wavelength of electrons used for imaging purposes, microscopes that use large numbers of particles to image nanostructures, such as electron microscopes, have significant advantages over optical microscopes in terms of resolution. For example, as is the case with light microscopy, the diffraction limit of electron microscopy is linearly proportional to the de Broglie wavelength of the electrons and inversely proportional to the aperture angle of the electron beam used. Therefore, the diffraction limit of the electron beam can be reduced by accelerating the electrons of the electron beam to a greater kinetic energy.

由於高解析度及其局部引發化學反應的能力,使得聚焦粒子束也用於修復奈米結構中的局部缺陷。舉例而言,有缺陷的奈米結構可能出現在晶片、光蝕刻遮罩及/或用於奈米壓印微影技術的印模上。所述有缺陷的奈米結構也經常藉由局部粒子束誘發蝕刻製程及/或沉積製程來進行修復。由於整形聚焦粒子束的射束成形系統的像差之故,使得聚焦粒子束通常具有延伸遠超出理想高斯聚焦粒子束區域的束尾。然而,在傳統解析度測量中僅考慮聚焦粒子束的高斯分佈的中心部分。Due to the high resolution and its ability to locally initiate chemical reactions, focused particle beams are also used to repair localized defects in nanostructures. For example, defective nanostructures may appear on wafers, photo-etching masks, and/or stamps used in nanoimprint lithography. The defective nanostructures are also often repaired by local particle beam induced etching processes and/or deposition processes. Due to the aberrations of the beam shaping system that shapes the focused particle beam, the focused particle beam typically has a beam tail that extends well beyond the region of an ideal Gaussian focused particle beam. However, only the central part of the Gaussian distribution of the focused particle beam is considered in conventional resolution measurements.

然而,在一或多個束尾中入射到樣品上、並因此入射遠離待處理位置的粒子對於局部粒子束誘發修復處理也是重要。首先,在一或多個束尾中的粒子減少了待處理樣品區域中可用的粒子數量;其次,束尾中的粒子可能導致該待修復樣品區域外的意外粒子束誘發的蝕刻及/或沉積製程。舉例而言,射束輪廓的品質影響最佳可能修復所需的修復處理的重複次數。However, particles incident on the sample in one or more beam tails, and thus incident far away from the location to be treated, are also important for localized particle beam induced repair treatments. First, particles in one or more beam tails reduce the number of particles available in the region of the sample to be treated; second, particles in the beam tails may cause unintended particle beam-induced etching and/or deposition outside of the region of the sample to be repaired Process. For example, the quality of the beam profile affects the number of repetitions of the restoration process required for the best possible restoration.

F.Stumpf等人在文獻「藉由電掃描式探針顯微鏡和穿透式電子顯微鏡對聚焦離子束所引起的碳化矽樣品側向破壞之詳細特性化( J. of Appl. Physics123、125104-1 至 125104-10(2018))」提出聚焦離子束對碳化矽引起的側向破壞的研究。所述破壞係利用使用電掃描式探針顯微鏡(SPM)(即掃描擴散式電阻顯微鏡)和傳導式原子力顯微鏡(c-AFM)予以特徵化。 F. Stumpf et al. in the literature "Detailed characterization of lateral damage to silicon carbide samples induced by focused ion beams by electronic scanning probe microscopy and transmission electron microscopy ( J. of Appl. Physics 123, 125104- 1 to 125104-10 (2018))" proposed a study on the lateral damage caused by focused ion beams on silicon carbide. The damage was characterized using scanning probe microscopy (SPM) (ie, scanning diffusion resistance microscopy) and conduction atomic force microscopy (c-AFM).

因此,為了評估奈米結構成像處理的品質,且特別是奈米結構修復處理的品質,除了中央區域中的輪廓之外,重要的是還要得知聚焦粒子束的束尾的強度曲線。當前用於確定聚焦粒子束的射束輪廓的方法通常在確定聚焦粒子束的束尾的強度分佈方面僅具有非常低的靈敏度。這態樣中的一實例是藉由穿透式電子顯微鏡(TEM)進行分析之樣品(薄片)的複雜製備。特別是,目前很難對聚焦粒子束的束尾的強度分佈進行定量分析。Therefore, in order to assess the quality of the nanostructure imaging process, and in particular the quality of the nanostructure repair process, it is important to know the intensity profile of the beam tail of the focused particle beam in addition to the profile in the central region. Current methods for determining the beam profile of a focused particle beam generally have only very low sensitivity in determining the intensity distribution of the beam tail of the focused particle beam. An example of this is the complex preparation of samples (thin sections) for analysis by transmission electron microscopy (TEM). In particular, it is currently difficult to quantitatively analyze the intensity distribution of the beam tail of a focused particle beam.

本發明因此解決了指明一種允許確定聚焦粒子束的束尾的強度分佈之方法和裝置的問題。The invention thus solves the problem of specifying a method and a device allowing determination of the intensity distribution of the beam tail of a focused particle beam.

根據本發明的一示例實施例,此問題係藉由獨立請求項所定義的標的而至少部分得到解決;在附屬請求項中則描述了多個示例實施例。According to an example embodiment of the present invention, this problem is at least partly solved by the subject matter defined in the independent claims; in the dependent claims a number of example embodiments are described.

在一實施例中,一種用於確定粒子束於樣品上之強度分佈的方法包含以下步驟:(a)以該粒子束照射一測試元件,使得該粒子束引起該測試元件的至少一可測量變化;及(b)測量該測試元件的該至少一變化,以確定該粒子束於該樣品上的強度分佈。In one embodiment, a method for determining an intensity distribution of a particle beam on a sample comprises the steps of: (a) irradiating a test element with the particle beam such that the particle beam causes at least one measurable change in the test element and (b) measuring the at least one change of the test element to determine an intensity distribution of the particle beam on the sample.

本發明之方法可將粒子束的強度分佈轉化或轉換為測試元件的永久性或持續性變化。測試元件可適用於特定粒子束的強度分佈。例如,粒子束可照射在測試元件上可用的前驅物氣體,以引起該至少一可測量變化。在另一實例中,測試元件的單層可將粒子束的強度分佈成像於其結構的持續變異中。可檢測測試元件的永久變化,並且可從測試元件的測量變化中得出粒子束的強度分佈。強度分佈可能與各種誤差來源有關,這些誤差來源可能導致強度分佈偏離理想的預期強度分佈。因此,可識別出各種來源的影響,且隨後可系統性減少或甚至幾乎消除一或多個來源的影響。The method of the present invention converts or converts the intensity distribution of the particle beam into a permanent or continuous change in the test element. The test element can be adapted to the intensity distribution of a particular particle beam. For example, a particle beam may irradiate available precursor gases on the test element to cause the at least one measurable change. In another example, a single layer of a test element can image the intensity distribution of a particle beam in continuous variation in its structure. Permanent changes of the test element can be detected and the intensity distribution of the particle beam can be derived from the measured change of the test element. The intensity distribution may be related to various error sources that may cause the intensity distribution to deviate from the ideal expected intensity distribution. Thus, various sources of influence can be identified, and then the influence of one or more sources can be systematically reduced or even nearly eliminated.

粒子束可為聚焦粒子束,且確定強度分佈可包含:藉由以聚焦粒子束照射測試元件使得該聚焦粒子束的至少一束尾引起該測試元件的至少一可測量變化來確定該聚焦粒子束的該至少一束尾的強度分佈;及測量該測試元件的該至少一變化以確定該聚焦粒子束的該至少一束尾的強度分佈。The particle beam may be a focused particle beam, and determining the intensity distribution may include determining the focused particle beam by irradiating the test element with the focused particle beam such that at least one tail of the focused particle beam causes at least one measurable change in the test element and measuring the at least one change in the test element to determine the intensity distribution of the at least one tail of the focused particle beam.

理想的高斯射束可很容易分為主射束或中心射束、以及束尾。從強度最大值 I 0開始,主射束可定義為強度大於與強度最大值相關的臨界值的區域。舉例而言,所述臨界值可定義為I > I 0·e -2。束尾則由強度小於指定相對臨界值的區域形成,例如 I< I 0·e -2An ideal Gaussian beam can be easily divided into a main or central beam, and a beam tail. Starting from the intensity maximum I0 , the main beam can be defined as the region of intensity greater than a critical value associated with the intensity maximum. For example, the critical value can be defined as I > I 0 ·e −2 . The beam tail is formed by a region whose intensity is less than a specified relative critical value, eg I<I 0 ·e −2 .

本申請案中描述的射束輪廓與理想的高斯強度分佈間可能有顯著偏差;然而,在本申請案中,主射束或中心射束是定義為類似於理想的高斯射束,這表示射束的強度最大值I 0在第一步驟中即確定。然後,將達到最大值的一特定百分比之降值指定為臨界值,其標記中心射束和束尾之間的邊界。對於一真實粒子束而言,一或多個束尾由引導至中心射束外部的整個強度形成。此定義並不代表強度必須在束尾的每個點處都保持低於一特定臨界值,而是所述強度可以隨著與強度最大值的距離增加而再成長。此外,與理想的高斯射束相比,真實射束可能具有強度輪廓不圍繞強度最大值I 0對稱旋轉延伸的束尾。以下,這情況的特徵在於兩或多個束尾。較佳係,這些定義(主射束和束尾)涉及焦點或焦點附近的區域,其中聚焦粒子束的束腰徑(beam waist)相對於焦斑(Focal spot)的直徑增加不超過2倍(a factor of 2)。 The beam profile described in this application may deviate significantly from the ideal Gaussian intensity distribution; however, in this application the main or central beam is defined to resemble an ideal Gaussian beam, which means The intensity maximum I0 of the beam is determined in a first step. A certain percentage drop off from the maximum value is then designated as the critical value, which marks the boundary between the center beam and the beam tail. For a real particle beam, one or more beam tails are formed by the entire intensity directed outside the central beam. This definition does not imply that the intensity must remain below a certain critical value at every point of the beam tail, but that the intensity can grow again with increasing distance from the intensity maximum. Furthermore, in contrast to an ideal Gaussian beam, a real beam may have a beam tail whose intensity profile does not extend rotationally symmetrically around the intensity maximum I0 . In the following, this case is characterized by two or more bundle tails. Preferably, these definitions (main beam and beam tail) relate to the focal point or the region near the focal point in which the beam waist of the focused particle beam does not increase by more than a factor of 2 relative to the diameter of the focal spot (a factor of 2).

該方法藉由與測試元件的相互作用使得束尾中所含之粒子的效應變得可見,而有助於對聚焦粒子束的束尾進行定量分析。此檢測處理可以聚焦粒子束的主射束的粒子對於測試元件的變化實質沒有影響的方式來執行。換言之,測試元件的變化本質上僅由(多個)束尾來確定。The method facilitates quantitative analysis of the beam tail of a focused particle beam by interacting with a test element to make visible the effects of particles contained in the beam tail. This detection process can be performed in such a way that the particles of the main beam of the focused particle beam have substantially no influence on the variation of the test element. In other words, the variation of the test element is essentially only determined by the beam tail(s).

聚焦粒子束的束尾的強度分佈可從測試元件的可見或可測量的變化中定量確定。對於聚焦粒子束所照射的整個區域上的強度分佈的瞭解可用於最佳化以聚焦粒子束掃描樣品所產生的圖像。此外,關於束尾中存在的聚焦粒子束的強度的知識可用於最佳化樣品的局部粒子束誘發製程處理。舉例而言,對於聚焦粒子束的束尾的強度分佈的瞭解可允許使缺陷的最佳可能修復所需的循環疊代次數降到最低。The intensity distribution of the beam tail of the focused particle beam can be quantitatively determined from visible or measurable changes in the test element. Knowledge of the intensity distribution over the entire area illuminated by the focused particle beam can be used to optimize the images produced by scanning the sample with the focused particle beam. Furthermore, knowledge about the intensity of the focused particle beam present in the beam tail can be used to optimize local particle beam induced processing of the sample. For example, knowledge of the intensity distribution of the beam tail of a focused particle beam may allow minimizing the number of cycle iterations required for the best possible repair of a defect.

粒子束的粒子可為諸如光子等沒有靜止質量的粒子;在這情況下,粒子束的強度與電能密度分佈成正比。然而,粒子束的粒子也可為具有質量的粒子,例如電子、原子、離子或分子;在這些情況下,強度與對應的粒子類型的波函數的振幅平方的絕對值成正比。The particles of the particle beam may be particles with no rest mass, such as photons; in this case, the intensity of the particle beam is directly proportional to the electrical energy density distribution. However, the particles of the particle beam may also be particles with mass, such as electrons, atoms, ions or molecules; in these cases the intensity is proportional to the absolute value squared of the amplitude of the wave function of the corresponding particle type.

粒子束可透過至少一前驅物氣體照射樣品,且確定強度分佈可包含確定由該至少一前驅物氣體引起的強度分佈的變化。該至少一前驅物氣體可位於樣品上。The particle beam can irradiate the sample through at least one precursor gas, and determining the intensity distribution can include determining a change in the intensity distribution caused by the at least one precursor gas. The at least one precursor gas can be located on the sample.

當粒子束穿過前驅物氣體時,前驅物氣體的粒子可散射粒子束的粒子。射束粒子的散射通常導致樣品上不需要的射束擴展。例如,具有約10nm焦斑的聚焦粒子束可擴展到毫米範圍。散射量係依前驅物氣體的濃度或密度而定。As the particle beam passes through the precursor gas, the particles of the precursor gas may scatter the particles of the particle beam. Scattering of beam particles often leads to unwanted beam expansion on the sample. For example, a focused particle beam with a focal spot of about 10 nm can be extended to the millimeter range. The amount of scattering depends on the concentration or density of the precursor gas.

此外,散射束粒子的部分係依粒子束在前驅物氣體內傳播所沿的路徑長度而定。此外,可藉由增加射束粒子的動能來降低前驅物氣體的散射效應。然而,射束粒子的高動能通常是不想要的,因其增加了粒子束與樣品的相互作用體積。一般而言,射束粒子的最佳化動能是在非常低和高動能之間的範圍內。此外,使射束必須穿過之前驅物氣體體積達最小化是有益的。此外,降低前驅物氣體密度也可助於使粒子束的射束膨脹達降到最低。另一方面,則需要前驅物氣體來啟動和維持局部粒子束誘發化學反應。Furthermore, the fraction of scattered beam particles depends on the path length along which the particle beam propagates within the precursor gas. In addition, the scattering effect of the precursor gas can be reduced by increasing the kinetic energy of the beam particles. However, the high kinetic energy of the beam particles is generally undesirable because it increases the interaction volume of the particle beam with the sample. In general, the optimum kinetic energy of beam particles is in the range between very low and high kinetic energy. Furthermore, it is beneficial to minimize the volume of precursor gas that the beam must pass through. In addition, reducing the precursor gas density can also help minimize beam expansion of the particle beam. On the other hand, precursor gases are required to initiate and sustain local particle beam-induced chemical reactions.

確定強度分佈的變化可有助於最佳化粒子束及/或前驅物氣體誘發蝕刻及/或沉積製程。其可助於完整特徵化一應用製程與一理想預期製程之間的可能偏差。可針對前驅物氣體的不同壓力及/或流動速率來確定該變化。Determining changes in the intensity distribution can help optimize particle beam and/or precursor gas induced etch and/or deposition processes. It can help to fully characterize possible deviations between an applied process and an ideal expected process. This variation can be determined for different pressures and/or flow rates of precursor gases.

粒子束可透過一屏蔽元件來照射該樣品,且確定強度分佈可包含確定該屏蔽元件所引起樣品上之強度分佈的變化。The particle beam can illuminate the sample through a shielding element, and determining the intensity distribution can include determining a change in the intensity distribution across the sample caused by the shielding element.

屏蔽元件可用於屏蔽帶電粒子束,使其免受因帶電粒子束與樣品的相互作用而在樣品表面上產生的靜電荷影響。殘餘的氣體粒子及/或前驅物氣體粒子可在其從粒子來源到樣品的路徑上散射射束粒子。配置在樣品上方小距離處的射束路徑中的屏蔽元件也可作用為散射射束粒子的阻障或孔徑。Shielding elements can be used to shield the charged particle beam from electrostatic charges that develop on the sample surface due to the interaction of the charged particle beam with the sample. Residual gas particles and/or precursor gas particles can scatter beam particles on their way from the particle source to the sample. A shielding element arranged in the beam path at a small distance above the sample may also act as a barrier or aperture to scatter beam particles.

確定屏蔽元件對強度分佈的影響也可助於最佳化粒子束及/或前驅物氣體誘發蝕刻及/或沉積製程。其可允許對一應用處理與一理想預期處理的可能偏差進行完整的特徵化。例如,可藉由與屏蔽元件的圖案相關聯而從測試元件的至少一變化中得出強度分佈(的變化)。Determining the effect of shielding elements on the intensity distribution may also assist in optimizing particle beam and/or precursor gas induced etch and/or deposition processes. This allows for a complete characterization of possible deviations of an applied process from an ideal expected process. For example, (a change in) the intensity distribution may be derived from at least one change in the test element by correlating with the pattern of the shielding element.

屏蔽元件可執行以下之至少一者:重新分佈在射束方向上通過屏蔽元件的散射粒子、以及產生二次粒子(例如二次電子)。The shielding element may at least one of redistribute scattered particles passing through the shielding element in the direction of the beam, and generate secondary particles (eg, secondary electrons).

結果產生屏蔽元件對散射粒子的重新分佈、以及其作為二次粒子來源的作用,例如,在由粒子束的射斑大小定義的預期區域之外的樣品表面上之增強粒子誘發處理。因此,屏蔽元件的應用可放大對於樣品表面的不需要處理。The result is a redistribution of scattered particles by the shielding element, and its effect as a source of secondary particles, eg, enhanced particle-inducing treatment on the sample surface outside the intended area defined by the particle beam's spot size. Thus, the application of shielding elements can amplify unwanted treatment of the sample surface.

在一進一步實施例中,一種用於確定在樣品的粒子束誘發蝕刻製程中、及/或在粒子束誘發沉積製程中所使用至少一前驅物氣體的一自發蝕刻速率、及/或一自發沉積速率的方法包含以下步驟:(a)在不以一粒子束照射該測試元件下,以一預定氣體流動速率對一測試元件提供該至少一前驅物氣體達一段預定時間(period);及(b)測量該測試元件的該至少一變化以確定該至少一前驅物氣體於該樣品上的該自發蝕刻速率及/或該自發沉積速率。In a further embodiment, a method for determining a spontaneous etch rate and/or a spontaneous deposition of at least one precursor gas used in a particle beam induced etching process and/or in a particle beam induced deposition process of a sample The rate method comprises the steps of: (a) providing the at least one precursor gas to a test element at a predetermined gas flow rate for a predetermined period of time without irradiating the test element with a particle beam; and (b ) measuring the at least one change of the test element to determine the spontaneous etch rate and/or the spontaneous deposition rate of the at least one precursor gas on the sample.

在進行局部粒子束誘發化學處理的情況下,由前驅物氣體自發性誘發的處理一般是非常不需要的,因為其降低了處理控制。作為蝕刻氣體的前驅物氣體的自發性蝕刻會無意中移除了樣品的材料。此外,作為沉積氣體的前驅物氣體的自發性沉積會意外將材料沉積在樣品上。此外,自發性沉積的材料可能不具有預期的材料成分。In the case of localized particle beam induced chemical processing, spontaneously induced processing by precursor gases is generally very undesirable because it reduces process control. Spontaneous etching of the precursor gas used as the etching gas inadvertently removes material from the sample. In addition, spontaneous deposition of precursor gases used as deposition gases can accidentally deposit material on the sample. Furthermore, spontaneously deposited material may not have the expected material composition.

自發性處理通常作用於較大的樣品區域,因為樣品上的前驅物氣體濃度的側向控制是困難的。一般而言,自發性處理會導致僅數奈米的小樣品變異,但即使是這些小變異對於某些類型的樣品也會是有害的,例如光學遮罩。此外,所導致的變異可能在較大的區域中發生變化,亦即在一或數個平方毫米的區域中。專門設計的測試元件的應用可允許測量樣品的這小變異及其在整個樣品中的變化,例如由前驅物氣體濃度尖峰等所引起者。例如,局部尖峰(local spike)會導致測試元件的變化中的局部峰值(local peak)。Spontaneous processing typically acts on larger sample areas because lateral control of the concentration of precursor gases on the sample is difficult. In general, spontaneous processing results in small sample variations of only a few nanometers, but even these small variations can be detrimental for certain types of samples, such as optical masking. Furthermore, the resulting variation may vary over a larger area, ie over an area of one or several square millimeters. The application of specially designed test elements may allow the measurement of this small variation of the sample and its variation throughout the sample, e.g. caused by precursor gas concentration spikes and the like. For example, a local spike can cause a local peak in the variation of the test element.

自發性處理可考慮對樣品的影響,該影響並非在執行局部粒子束誘發化學處理時由粒子束所引起,而是由局部粒子束誘發處理中使用的前驅物氣體所引起。對於這些處理的研究能夠將粒子束尾的影響與所施加的前驅物氣體的影響分開,並因而可以全面研究粒子束的強度分佈、以及前驅物氣體於局部粒子束誘發化學反應中的側向解析度對樣品造成的自發性變異這兩種影響。對於這兩種效應的分析能夠改進對局部粒子束誘發化學反應的控制。Spontaneous processing can account for effects on the sample that are not caused by the particle beam when performing a localized particle beam induced chemical process, but by the precursor gases used in the localized particle beam induced process. The study of these treatments enables the separation of the effect of the beam tail from the effect of the applied precursor gas, and thus allows a comprehensive study of the intensity distribution of the beam and the lateral resolution of the precursor gas in the local beam-induced chemical reaction These two effects of the spontaneous variation caused by the degree to the sample. Analysis of these two effects could improve the control of local particle beam-induced chemical reactions.

在一些實例中,氣體流動速率可不是預確定的,但是可控制其他量以獲得可控制的前驅物氣體環境,諸如壓力、密度、溫度等。In some examples, the gas flow rate may not be predetermined, but other quantities may be controlled to obtain a controllable precursor gas environment, such as pressure, density, temperature, and the like.

在另一示例中,一種用於確定樣品中殘餘變化的方法包含以下步驟:(a)在測試元件上提供具有一預定氣體流動速率的至少一前驅物氣體達一段預定時間,而不以粒子束照射該測試樣品;(b)測量測試元件的至少一變化,以確定該至少一前驅物氣體於該樣品上的自發蝕刻速率、及/或自發沉積速率。In another example, a method for determining residual changes in a sample includes the steps of: (a) providing at least one precursor gas at a predetermined gas flow rate on a test element for a predetermined period of time without a particle beam irradiating the test sample; (b) measuring at least one change in the test element to determine a spontaneous etch rate and/or a spontaneous deposition rate of the at least one precursor gas on the sample.

確定自發蝕刻速率、及/或自發沉積速率可更包含改變以下之至少一者:氣體流動速率、該至少一前驅物氣體的組成、以及該至少一前驅物氣體的溫度,並且在測試元件上提供具有預定氣體流動速率的至少一前驅物氣體達一段預定時間,而不以粒子束照射測試元件。Determining the spontaneous etch rate, and/or the spontaneous deposition rate may further comprise changing at least one of: the gas flow rate, the composition of the at least one precursor gas, and the temperature of the at least one precursor gas, and providing At least one precursor gas having a predetermined gas flow rate for a predetermined period of time without irradiating the test element with the particle beam.

可藉由執行一或多個測試處理來研究自發性處理的影響。例如,在一第一步中測量一測試元件。接著在預定條件下使該測試元件暴露於前驅物氣體的作用。在說明之後,分析測試元件的持續變化。影響自發性處理的參數經系統性改變以確定其對自發蝕刻或沉積速率的影響。The effect of spontaneous treatments can be studied by performing one or more test treatments. For example, a test element is measured in a first step. The test element is then exposed to the action of the precursor gas under predetermined conditions. Following the instructions, analyze the continuous variation of the test element. Parameters affecting spontaneous processing were varied systematically to determine their effect on spontaneous etch or deposition rates.

獨立相關、但也結合本文其他構想的本發明的進一步態樣是測試元件。測試元件可包含一基底元件和至少一結構元件,其中所述至少一結構元件可較佳配置在該基底元件上。A further aspect of the invention, independently related, but also in combination with other concepts herein, is a test element. The test element may comprise a base element and at least one structural element, wherein the at least one structural element may preferably be arranged on the base element.

測試元件的所述至少一結構元件可專門設計用於與本文概述的多個方法當中的一者搭配使用。用於確定粒子束或部分粒子束(例如束尾)的強度分佈的結構元件可與用於確定自發性處理的影響的測試結構的一或多個結構元件不同。The at least one structural element of the test element may be specifically designed for use with one of the methods outlined herein. The structural elements used to determine the intensity distribution of the particle beam or parts of the particle beam (eg the beam tail) may differ from one or more structural elements of the test structure used to determine the influence of spontaneous treatment.

該至少一結構元件可具有高度為1nm至1000nm、較佳為5nm至500nm、更佳為10nm至200nm、且最佳為20nm至100nm之範圍。The at least one structural element may have a height ranging from 1 nm to 1000 nm, preferably from 5 nm to 500 nm, more preferably from 10 nm to 200 nm, and most preferably from 20 nm to 100 nm.

該至少一結構元件可包括至少2個、較佳為至少5個、更佳為至少10個、且最佳為至少30個平行線段,其具有間隔為50至150nm或80至120nm、較佳為30至70nm或40至60nm、更佳為20至40nm或25至35nm、且最佳為5至25nm或10至20nm。The at least one structural element may comprise at least 2, preferably at least 5, more preferably at least 10, and most preferably at least 30 parallel line segments with an interval of 50 to 150 nm or 80 to 120 nm, preferably 30 to 70 nm or 40 to 60 nm, more preferably 20 to 40 nm or 25 to 35 nm, and most preferably 5 to 25 nm or 10 to 20 nm.

結構元件可包含一第一材料,且基底元件可包含一第二材料,其中第一材料可不同於第二材料。The structural element may comprise a first material and the base element may comprise a second material, wherein the first material may be different from the second material.

舉例而言,兩材料中的一者可不受到自發性處理的影響,因此可作為基準,然而另一材料可能會受前驅物氣體的作用而變異。測試結構的基準允許精確確定測試元件的小變異。此外,具有數個特定結構元件的測試元件能夠確定因暴露於前驅物氣體所引起的測試元件的小的側向變化。此外,藉由使用數個特定的結構元件,­即可藉由慢速的結構變化的離散化來檢測慢速的結構變化。For example, one of the two materials may be unaffected by spontaneous processing and thus serve as a reference, while the other material may be altered by the effect of the precursor gas. Benchmarking of test structures allows precise determination of small variations in test elements. Furthermore, a test element having several specific structural elements enables the determination of small lateral changes in the test element caused by exposure to the precursor gas. Furthermore, by using several specific structural elements, slow structural changes can be detected by discretizing the slow structural changes.

由該至少一前驅物氣體所誘發該第一材料的一自發蝕刻速率與該測試樣品的該第二材料的一自發蝕刻速率差異為至少2倍、較佳為至少5倍、更佳為至少10倍、且最佳為至少20倍。A spontaneous etch rate of the first material induced by the at least one precursor gas differs from a spontaneous etch rate of the second material of the test sample by a factor of at least 2, preferably by a factor of at least 5, more preferably by a factor of at least 10 times, and preferably at least 20 times.

該至少一結構元件可具有以下之至少一者:一維(1-D)結構、二維(2-D)結構和三維(3-D)結構。The at least one structural element may have at least one of: a one-dimensional (1-D) structure, a two-dimensional (2-D) structure, and a three-dimensional (3-D) structure.

該至少一結構元件包含以下之至少一者:一棋盤圖案、一具有至少一開口的光圈遮罩、至少一柱體、以及一隨機化結構。The at least one structural element includes at least one of: a checkerboard pattern, an aperture mask with at least one opening, at least one pillar, and a randomization structure.

該隨機化結構包含在一碳層上之金粒子(例如球形)。The randomized structure comprises gold particles (eg spherical) on a carbon layer.

測量該測試元件的該至少一變化包含以下之至少一者:測量該測試元件的一邊緣變化、以及測量該測試元件的一區域間變化。Measuring the at least one variation of the test element includes at least one of: measuring an edge variation of the test element, and measuring a region-to-region variation of the test element.

測量該測試元件的該至少一變化可包含測量該測試元件的至少一結構元件的一邊緣的變化,且測量該測試元件的區域間的變化可包含測量該至少一結構元件的區域間的變化、及/或測量該測試元件的該基底元件的區域間變化。Measuring the at least one variation of the test element may comprise measuring variation of an edge of at least one structural element of the test element, and measuring variation between regions of the test element may comprise measuring variation between regions of the at least one structural element, and/or measure region-to-region variation of the base element of the test element.

照射該測試元件可引起該測試元件的至少一佈局變化(topographic change)、至少一化學變化、及/或至少一物理變化。Irradiating the test element can cause at least one topographic change, at least one chemical change, and/or at least one physical change of the test element.

測試元件的(多個)變化為可測量,因此變化可被測量。假設在測試元件中引起的(多個)變化與局部有效強度成比例,則可從測試元素的(多個)測量變化推導出射束中粒子及/或聚焦粒子束的束尾的劑量分佈。The change(s) of the test element are measurable, so the change can be measured. The dose distribution of the particles in the beam and/or the beam tail of the focused particle beam can be deduced from the measured change(s) of the test element, assuming the induced change(s) in the test element are proportional to the local effective intensity.

測試元件具有至少一測試結構,其包含下列群組之至少一元件: - 至少一階高(height step); - 至少一硬遮罩,其具有至少一開口;及 - 至少一單層(monolayer)。 The test element has at least one test structure, which includes at least one element of the following groups: - At least one height step; - at least one hard mask having at least one opening; and - At least one monolayer.

該至少一階高由階高的頂側定義一上平面,並且由階高的下邊緣定義一下平面。硬遮罩指明該頂側為聚焦粒子束入射到硬遮罩上的一側,並指明位於與頂側相對的背側。該至少一階高的上平面和下平面、以及硬遮罩的頂側和背側可為實質上平坦。此外,該至少一階高的上和下平面、以及硬遮罩的頂側及背側可形成實質上平行的平面。上、下平面或硬遮罩的頂側和背側的平行度可提高確定聚焦粒子束的束尾的強度分佈的準確性。The at least one step defines an upper plane by the top side of the step and a lower plane by the lower edge of the step. The hard mask designates the top side as the side on which the focused particle beam is incident on the hard mask, and designates the back side opposite the top side. The upper and lower planes of the at least one step height, and the top and back sides of the hard mask may be substantially flat. Furthermore, the upper and lower planes of the at least one step height, and the top and back sides of the hard mask may form substantially parallel planes. The parallelism of the upper and lower planes or the top and back sides of the hard mask can improve the accuracy of determining the intensity distribution of the beam tail of the focused particle beam.

該測試結構可包含至少一階高和一單層,及/或該測試結構可包含一具有至少一開口的硬遮罩且可包含一單層。The test structure can include at least one step and a single layer, and/or the test structure can include a hard mask with at least one opening and can include a single layer.

測試元件可包含一基底元件。 基底元件的頂側可形成該至少一階高的下平面。測試元件的基底元件可為光學遮罩的基材。該至少一階高可為光學遮罩的圖案元件。測試元件的基底元件可為光學遮罩或晶圓的基材,且一或多個階高可被蝕刻到光學遮罩或晶圓的基材中,及/或可藉由在光學遮罩或晶圓的基材上沉積材料來產生。The test element may include a base element. The top side of the base element may form the at least one step-high lower plane. The base element of the test element can be the substrate of the optical mask. The at least one step height can be a pattern element of an optical mask. The base element of the test element may be the base material of the optical mask or the wafer, and one or more steps may be etched into the optical mask or the base material of the wafer, and/or may Wafers are produced by depositing materials on a substrate.

硬遮罩可施加到測試元件的基底元件的頂側。硬遮罩的至少一開口可以暴露出基底元件的頂側的一部分。硬遮罩的至少一開口可藉由蝕刻而產生。A hard mask can be applied to the top side of the base element of the test element. The at least one opening of the hard mask may expose a portion of the top side of the base element. At least one opening of the hard mask can be created by etching.

相較於由光阻劑製成的聚合物遮罩,硬遮罩為一種可耐聚焦粒子束長久照射時間的遮罩。舉例而言,硬遮罩可包含一金屬層、一氧化物層、或一氮化物層。A hard mask is a mask that is resistant to prolonged exposure to a focused particle beam, compared to a polymer mask made of photoresist. For example, the hard mask can include a metal layer, an oxide layer, or a nitride layer.

在此本說明書中,用語「實質上」表示在使用根據現有技術的測量設備來測量對應的量時,在測量不確定度內的測量量示值。In this specification, the term "substantially" denotes the indication of a measured quantity within a measurement uncertainty when the corresponding quantity is measured using a measuring device according to the prior art.

該至少一階高及/或該至少一開口可具有至少一邊緣,及/或該單層可設計成當以該聚焦粒子束照射時改變二次電子對比。The at least one step and/or the at least one opening can have at least one edge, and/or the monolayer can be designed to alter secondary electron contrast when irradiated with the focused particle beam.

至少一階高及/或硬遮罩的至少一開口的至少一邊緣可配置在該至少一階高的上平面及/或硬遮罩的頂側上。該至少一邊緣可包含一截面直邊緣。At least one step and/or at least one edge of at least one opening of the hard mask may be arranged on an upper plane of the at least one step and/or a top side of the hard mask. The at least one edge may comprise a cross-sectional straight edge.

單層可應用於該至少一階高、應用於具有至少一開口的硬遮罩、及/或應用於測試元件的基底元件。可從應用於該至少一階高的單層的變化、及/或從應用於硬遮罩的至少一開口中的單層的變化來確定聚焦粒子束的束尾的強度分佈。A single layer may be applied to the at least one step, to a hard mask having at least one opening, and/or to a base element of a test element. The intensity distribution of the beam tail of the focused particle beam may be determined from the variation applied to the at least one high-order monolayer and/or from the variation applied to the monolayer in the at least one opening of the hard mask.

該方法可更包含:設定該至少一階高的高度、及/或該硬遮罩的厚度,使得該聚焦粒子束的射束面積沿著該高度相對於該聚焦粒子束的束腰徑增加至少2%、較佳為5%、更佳為10%、且最佳為30%。The method may further include: setting the height of the at least one step height, and/or the thickness of the hard mask, so that the beam area of the focused particle beam increases by at least 2%, preferably 5%, more preferably 10%, and most preferably 30%.

聚焦粒子束的束腰徑可具有<20nm的直徑,較佳為<10nm,更佳為<5nm,且最佳為<2nm。The beam waist of the focused particle beam may have a diameter < 20 nm, preferably < 10 nm, more preferably < 5 nm, and most preferably < 2 nm.

以下,束腰徑和焦斑直徑都與強度下降到e -2有關,即強度下降到最大強度的13.5%。若聚焦粒子束的主射束是基於此定義,則理想高斯射束的主射束攜帶約93%的粒子,且束尾攜帶約7%。真實的粒子光學系統中的像差會導致束尾中包含的粒子比例增加。例如,像差可能導致束尾的尺寸100 nm的範圍內。 Below, both the beam waist diameter and the focal spot diameter are related to the intensity drop to e -2 , that is, the intensity drops to 13.5% of the maximum intensity. If the main beam of a focused particle beam is based on this definition, then the main beam of an ideal Gaussian beam carries about 93% of the particles, and the beam tail carries about 7%. Aberrations in real particle optics can lead to an increased fraction of particles contained in the beam tail. For example, aberrations may result in beam tails with dimensions in the 100 nm range.

測試元件可具有 N 個測試結構或結構元件,其包含1≤N≤1000、較佳為5≤N≤500、更佳為10≤N≤100、最佳為20≤N≤50之範圍。具有N個相同測試結構的測試元件可用於粒子束及/或聚焦粒子束的束尾的強度分佈的N個校準測量。這測試元件可在裝置的生產過程中安裝到裝置中,其接著可用於在每次服務之後、在修改之後、及/或在裝置於其使用壽命期間進行維修之後分析射束、或聚焦粒子束的束尾。此外,測試元件可用於研究自發性處理對樣品的影響。然而,也可在分析聚焦粒子束的一或多個束尾之前將測試元件引入裝置中。The test element may have N test structures or structural elements, which include 1≤N≤1000, preferably 5≤N≤500, more preferably 10≤N≤100, most preferably 20≤N≤50. A test element with N identical test structures can be used for N calibration measurements of the intensity distribution of the particle beam and/or the beam tail of the focused particle beam. This test element can be installed into the device during its production, which can then be used to analyze the beam, or focus the particle beam after each service, after modification, and/or after the device is serviced during its service life beam tail. In addition, test elements can be used to study the effects of spontaneous handling on samples. However, it is also possible to introduce the test element into the device before analyzing one or more beam tails of the focused particle beam.

例如,測試元件可為樣品的一組成部分。For example, a test element can be an integral part of a sample.

測試元件可包含以下群組之至少兩測試結構:至少一階高、一具有至少一開口的硬遮罩、以及一單層。The test device may include at least two test structures from the group: at least one step, a hard mask with at least one opening, and a single layer.

可在一測試元件上結合兩或三個不同類型的測試結構。因此,可使可確定聚焦粒子束的(多個)束尾及/或粒子束的強度分佈的精準度最佳化。此外,測試元件也可含有一或多個具有專門設計用於分析自發性處理對樣品的影響的測試結構的測試元件。Two or three different types of test structures can be combined on one test element. Thus, the accuracy with which the tail(s) of the focused particle beam and/or the intensity distribution of the particle beam can be determined can be optimized. In addition, the test element may also contain one or more test elements with test structures specifically designed to analyze the effect of spontaneous processing on the sample.

照射該測試元件可包含:聚焦該粒子束於以下群組的至少一元件上: - 該至少一階高的一上平面、及/或該硬遮罩的一後側; - 該至少一階高的一下平面、及/或該硬遮罩的一頂側; - 該單層的一頂側。 Irradiating the test element may include: focusing the particle beam on at least one element of the following group: - an upper plane of the at least one step, and/or a rear side of the hard mask; - a lower plane of the at least one step, and/or a top side of the hard mask; - a top side of the single layer.

聚焦粒子束聚焦在至少一階高的下平面及/或硬遮罩的頂側上的實施例為目前較佳。在這些實施例中可獲得束尾自聚焦粒子束的中心部分或主要部分中的最佳分離,且因此可在主射束的最小影響下分析射束尾的劑量分佈。Embodiments in which the focused particle beam is focused on at least one higher lower plane and/or the top side of the hard mask are presently preferred. In these embodiments an optimal separation of the beam tail from the central or main part of the focused particle beam can be obtained and thus the dose distribution of the beam tail can be analyzed with minimal influence of the main beam.

在聚焦粒子束聚焦在至少一階高的上平面及/或硬遮罩的下側的實施例中,由主射束在階高或硬遮罩中產生的一些粒子會進入束尾的區域,從而除了改變束尾的強度分佈之外,還會改變測試元件的測試結構。這會使聚焦粒子束的束尾的劑量分佈的分析更為困難。In embodiments where the focused particle beam is focused on the upper plane of at least one step and/or the underside of the hard mask, some particles generated by the main beam in the step or hard mask will enter the region of the beam tail, Thus, in addition to changing the intensity distribution of the beam tail, the test structure of the test element is also changed. This makes the analysis of the dose distribution at the beam tail of the focused particle beam more difficult.

聚焦粒子束於測試元件中產生的粒子可包含二次電子(SE)及/或測試元件背向散射的電子(BSE)。Particles generated by the focused particle beam in the test element may contain secondary electrons (SE) and/or backscattered electrons (BSE) from the test element.

在硬遮罩的上平面或頂側中,至少一階高及/或硬遮罩的至少一開口的至少一截面直邊緣可包含角度α,其在60°<α<120°的範圍內,較佳為75°<α<105°的範圍內,更佳為85°<α<95°的範圍內,最佳為89°<α<91°的範圍內。In the upper plane or top side of the hard mask, at least one step and/or at least one cross-sectional straight edge of at least one opening of the hard mask may comprise an angle α in the range of 60°<α<120°, It is preferably within the range of 75°<α<105°, more preferably within the range of 85°<α<95°, most preferably within the range of 89°<α<91°.

所述至少一階高可包含括至少兩階高,其相對於對稱線呈對稱配置,所述對稱線可位於下平面中。該至少一階高較佳包含至少四個階高,其邊緣實質上具有彼此為90°的角度。The at least one height may include at least two heights, which are arranged symmetrically with respect to a line of symmetry, and the line of symmetry may lie in a lower plane. The at least one step preferably comprises at least four steps, the edges of which have substantially an angle of 90° to each other.

硬遮罩可包含至少兩開口,其相對於聚焦粒子束在硬遮罩上的入射點呈對稱配置,及/或相對於聚焦粒子束的至少一掃描方向呈對稱配置。 硬遮罩的至少一開口較佳具有矩形狀。硬遮罩的槽形開口(特別是在硬遮罩上圍繞聚焦粒子束的入射點之同心結構形式,例如環形)同樣是有利的。The hard mask may include at least two openings, which are symmetrically arranged with respect to the incident point of the focused particle beam on the hard mask, and/or symmetrically arranged with respect to at least one scanning direction of the focused particle beam. The at least one opening of the hard mask preferably has a rectangular shape. Slot-shaped openings of the hard mask, in particular in the form of concentric structures, eg rings, around the point of incidence of the focused particle beam on the hard mask are also advantageous.

關於階高的上平面或硬遮罩的頂側,至少一階高的至少一邊緣及/或硬遮罩的至少一開口的至少一邊緣可包含一角度β,其在60°<β<120°的範圍內,較佳為75°<β<105°的範圍內,更佳為85°<β<95°的範圍內,最佳為89°<β< 91°的範圍內。With respect to the upper plane of the step or the top side of the hard mask, at least one edge of at least one step and/or at least one edge of at least one opening of the hard mask may comprise an angle β in the range 60°<β<120 °, preferably within the range of 75°<β<105°, more preferably within the range of 85°<β<95°, most preferably within the range of 89°<β<91°.

在下平面和上平面之間具有直角的階高、或者在頂側和背側之間具有直角的硬遮罩的開口係增加了確定聚焦粒子束的束尾劑量分佈時的解析度。Having a right angled step between the lower and upper planes, or a right angled hard mask opening between the top side and the back side increases the resolution in determining the beam tail dose distribution of the focused particle beam.

照射該測試元件可包含以下群組之至少一要件: - 以該聚焦粒子束照射該至少一階高的一下平面的至少一點,使得該至少一束尾入射於該至少一階高的一上平面; - 沿著該至少一階高的至少一邊緣掃描該聚焦粒子束,使得該聚焦粒子束的該至少一束尾入射於該至少一階高的該上平面; - 以該聚焦粒子束照射該硬遮罩的至少一點,使得該至少一束尾的至少一部分入射於該硬遮罩中的該至少一開口; - 平行於該硬遮罩的該至少一開口的該至少一邊緣掃描該聚焦粒子束,使得該至少一束尾的至少一部分入射於該硬遮罩中的該至少一開口; - 照射該單層的至少一點。 Irradiating the test element may comprise at least one element of the following group: - irradiating at least one point of the lower plane of the at least one step with the focused particle beam such that the at least one beam tail is incident on an upper plane of the at least one step; - scanning the focused particle beam along at least one edge of the at least one step such that the at least one tail of the focused particle beam is incident on the upper plane of the at least one step; - irradiating at least one point of the hard mask with the focused particle beam such that at least a portion of the at least one beam tail is incident on the at least one opening in the hard mask; - scanning the focused particle beam parallel to the at least one edge of the at least one opening in the hard mask such that at least a portion of the at least one beam tail is incident on the at least one opening in the hard mask; - irradiating at least a point of the monolayer.

照射該測試元件可包含以下群組的至少一要件: - 選擇該聚焦粒子束的一強度最大值與該至少一階高的該至少一邊緣之間的一距離,使得該聚焦粒子束於該至少一階高的該下平面中產生的粒子實質上無到達該至少一階高的該上表面; - 選擇該聚焦粒子束的該強度最大值與該硬遮罩中的該至少一開口的該至少一邊緣之間的一距離,使得該聚焦粒子束於該硬遮罩中產生的粒子實質上無到達該至少一開口中; - 選擇該聚焦粒子束的能量,使得該聚焦粒子束的粒子實質上無到達該單層的一後側。 Irradiating the test element may comprise at least one element of the following group: - selecting a distance between an intensity maximum of the focused particle beam and the at least one edge of the at least one step such that particles generated by the focused particle beam in the lower plane of the at least one step are substantially free of reaching the upper surface of the at least one step; - selecting a distance between the intensity maximum of the focused particle beam and the at least one edge of the at least one opening in the hard mask such that particles produced by the focused particle beam in the hard mask are substantially free of reaches into the at least one opening; - selecting the energy of the focused particle beam such that substantially none of the particles of the focused particle beam reach a rear side of the monolayer.

聚焦粒子束的主要部分可於測試元件的下平面中或基底元件中產生二次粒子,例如SE及/或BSE。這些粒子不應抵達該至少一階高的上平面,否則可能與束尾的粒子或與束尾產生的二級粒子混合,並因而覆蓋了由束尾引起的測試元件的變化的檢測。這同樣適用於入射到硬遮罩上的粒子束。藉由在空間上分離主射束的影響和束尾的影響,即可分析束尾的劑量分佈,而實質上不受聚焦粒子束的主射束的干擾影響。The main part of the focused particle beam can generate secondary particles such as SE and/or BSE in the lower plane of the test element or in the substrate element. These particles should not reach this at least first-order high upper plane, otherwise they could mix with particles of the beam tail or secondary particles generated with the beam tail and thus cover the detection of changes in the test element caused by the beam tail. The same applies to particle beams incident on hard masks. By spatially separating the influence of the main beam and the influence of the beam tail, the dose distribution at the beam tail can be analyzed substantially independent of interference from the main beam of the focused particle beam.

當以聚焦粒子束照射單層時,可設定粒子的動能,使得這些粒子實質上無法滲入已經施加單層的測試元件中,因此在測試元件中產生的二次粒子無法改變單層的化學成分及/或結構。When irradiating a monolayer with a focused particle beam, the kinetic energy of the particles can be set such that these particles are virtually unable to penetrate the test element to which the monolayer has already been applied, so that the secondary particles generated in the test element cannot alter the chemical composition and /or structure.

照射測試元件可包含:在聚焦粒子束的強度最大值和該至少兩階高的至少一邊緣之間的至少兩不同距離中沿著該至少兩階高的至少一邊緣掃描聚焦粒子束。Irradiating the test element may comprise scanning the focused particle beam along at least one edge of the at least two-step height in at least two different distances between an intensity maximum of the focused particle beam and at least one edge of the at least two-step height.

藉由改變聚焦粒子束的強度最大值與複數個階高的邊緣之間的距離,可確定聚焦粒子束的最佳可能定位以沿著一階高的邊緣進行掃描。這使得主射束對一或多個束尾分析的影響達降到最低。By varying the distance between the intensity maximum of the focused particle beam and the edges of the plurality of steps, the best possible positioning of the focused particle beam for scanning along the edges of the first steps can be determined. This minimizes the influence of the main beam on the analysis of one or more beam tails.

照射測試元件可包含:提供至少一前驅物氣體包含以下之至少一者:在粒子束的區域中提供該至少一前驅物氣體、以及在至少一聚焦粒子束的至少一束尾的區域中提供至少一前驅物氣體。測試元件藉由進行局部粒子束誘發化學反應來經歷佈局變化。主射束和聚焦粒子束的束尾的空間分離使得束尾的強度分佈為可見(即可測量),而不受主射束的干擾影響。Irradiating the test element may comprise: providing at least one precursor gas comprising at least one of: providing the at least one precursor gas in the region of the particle beam and providing at least one in the region of at least one tail of the at least one focused particle beam a precursor gas. Test elements undergo layout changes by performing localized particle beam-induced chemical reactions. The spatial separation of the main beam and the beam tail of the focused particle beam makes the intensity distribution of the beam tail visible (ie measurable), independent of interference from the main beam.

該至少一前驅物氣體可包含選自以下群組之至少一元素:至少一蝕刻氣體、至少一沉積氣體和至少一添加物氣體。The at least one precursor gas may include at least one element selected from the group consisting of at least one etching gas, at least one deposition gas, and at least one additive gas.

所述至少一沉積氣體可包含選自以下群組之至少一元素:烷基金屬、烷基過渡元素、烷基主族、羰基金屬、羰基過渡元素、羰基主族、金屬醇鹽 、過渡元素醇鹽、主族醇鹽、金屬錯合物、過渡元素錯合物、主族錯合物和有機化合物。The at least one deposition gas may comprise at least one element selected from the following group: metal alkyl, transition element alkyl, main group alkyl, metal carbonyl, transition element carbonyl, main group carbonyl, metal alkoxide, transition element alcohol Salts, main group alkoxides, metal complexes, transition element complexes, main group complexes and organic compounds.

烷基金屬、烷基過渡元素和烷基主族可包含選自以下群組之至少一元素:環戊二烯基(Cp)三甲基鉑(CpPtMe 3)、甲基環戊二烯基(MeCp)三甲基鉑(MeCpPtMe 3)、四甲基錫(SnMe 4)、三甲基鎵(GaMe 3)、二茂鐵(Cp 2Fe)和雙芳基鉻(Ar 2Cr)。羰基金屬、羰基過渡元素和羰基主族可包含選自以下群組之至少一元素:六羰基鉻(Cr(CO) 6)、六羰基鉬(Mo(CO) 6)、六羰基鎢(W(CO) 6)、八羰基二鈷(Co 2(CO) 8)、十二羰基三釕(Ru 3(CO) 12)和五羰基鐵(Fe(CO) 5)。金屬醇鹽、過渡元素醇鹽和主族醇鹽可包含選自以下群組之至少一元素:原矽酸四乙酯(TEOS,Si(OC 2H 5) 4)和四異丙氧基鈦(Ti(OC 3H 7) 4)。金屬鹵化物、過渡元素鹵化物和主族鹵化物可包含選自以下群組之至少一元素:六氟化鎢(WF 6)、六氯化鎢(WCl 6)、四氯化鈦(TiCl 4)、三氯化硼(BCl 3)和 四氯化矽(SiCl 4)。 金屬錯合物、過渡元素錯合物和主族錯合物可包含選自以下群組之至少一元素:雙(六氟乙醯丙酮)銅(Cu(C 5F 6HO 2) 2)和三氟乙醯丙酮二甲基金(Me 2Au(C 5F 3H 4O 2))。有機化合物可包含選自以下群組之至少一元素:一氧化碳(CO)、二氧化碳(CO 2)、脂族烴、芳族烴、真空幫浦油的成分和揮發性有機化合物。 Metal alkyl, transition element alkyl and main alkyl group may contain at least one element selected from the group consisting of: cyclopentadienyl (Cp) trimethylplatinum (CpPtMe 3 ), methylcyclopentadienyl ( MeCp) trimethylplatinum (MeCpPtMe 3 ), tetramethyltin (SnMe 4 ), trimethylgallium (GaMe 3 ), ferrocene (Cp 2 Fe) and bisaryl chromium (Ar 2 Cr). Metal carbonyls, carbonyl transition elements and carbonyl main groups may contain at least one element selected from the group consisting of chromium hexacarbonyl (Cr(CO) 6 ), molybdenum hexacarbonyl (Mo(CO) 6 ), tungsten hexacarbonyl (W( CO) 6 ), dicobalt octacarbonyl (Co 2 (CO) 8 ), triruthenium dodecacarbonyl (Ru 3 (CO) 12 ), and iron pentacarbonyl (Fe(CO) 5 ). Metal alkoxides, transition element alkoxides and main group alkoxides may contain at least one element selected from the group consisting of tetraethyl orthosilicate (TEOS, Si(OC 2 H 5 ) 4 ) and titanium tetraisopropoxide (Ti(OC 3 H 7 ) 4 ). Metal halides, transition element halides and main group halides may contain at least one element selected from the group consisting of: tungsten hexafluoride (WF 6 ), tungsten hexachloride (WCl 6 ), titanium tetrachloride (TiCl 4 ), boron trichloride (BCl 3 ) and silicon tetrachloride (SiCl 4 ). Metal complexes, transition element complexes and main group complexes may contain at least one element selected from the group consisting of bis(hexafluoroacetylacetonate)copper (Cu(C 5 F 6 HO 2 ) 2 ) and Dimethyl gold trifluoroacetylacetonate (Me 2 Au(C 5 F 3 H 4 O 2 )). The organic compound may contain at least one element selected from the group consisting of carbon monoxide (CO), carbon dioxide (CO 2 ), aliphatic hydrocarbons, aromatic hydrocarbons, components of vacuum pump oil, and volatile organic compounds.

所述至少一蝕刻氣體可包含選自以下群組之至少一元素:含鹵素化合物和含氧化合物。含鹵素化合物可包含選自以下群組之至少一元素:氟(F 2)、氯(Cl 2)、溴(Br 2)、碘(I 2)、二氟化氙(XeF 2)二氯化氙(XeCl 2)、四氯化氙(XeCl 4)、四氟化二氙(Xe 2F 4)、氫氟酸(HF)、碘化氫(HI)、溴化氫(HBr)、亞硝醯氯(NOCl)、三氯化磷(PCl 3)、五氯化磷(PCl 5)、三氟化磷(PF 3)。 含氧化合物可包含選自以下群組之至少一元素:氧(O 2)、臭氧(O 3)、水蒸氣(H 2O)、重水(D 2O)、過氧化氫(H 2O 2)、一氧化二氮(N 2O)、氮氧化物(NO)、二氧化氮(NO 2)和硝酸(HNO 3)。專利申請案第US2012/0273458A1號中則指出了多個進一步蝕刻氣體。 The at least one etching gas may include at least one element selected from the group consisting of halogen-containing compounds and oxygen-containing compounds. The halogen-containing compound may contain at least one element selected from the group consisting of fluorine (F 2 ), chlorine (Cl 2 ), bromine (Br 2 ), iodine (I 2 ), xenon difluoride (XeF 2 ) dichloride Xenon (XeCl 2 ), xenon tetrachloride (XeCl 4 ), dixenon tetrafluoride (Xe 2 F 4 ), hydrofluoric acid (HF), hydrogen iodide (HI), hydrogen bromide (HBr), nitrous Acyl chloride (NOCl), phosphorus trichloride (PCl 3 ), phosphorus pentachloride (PCl 5 ), phosphorus trifluoride (PF 3 ). Oxygenates may contain at least one element selected from the following group: oxygen (O 2 ), ozone (O 3 ), water vapor (H 2 O), heavy water (D 2 O), hydrogen peroxide (H 2 O 2 ), nitrous oxide (N 2 O), nitrogen oxides (NO), nitrogen dioxide (NO 2 ) and nitric acid (HNO 3 ). Patent application No. US2012/0273458A1 pointed out a number of further etching gases.

至少一添加物氣體可包含選自以下群組之至少一元素:氧化劑、鹵化物和還原劑。The at least one additive gas may comprise at least one element selected from the group consisting of oxidizing agents, halides and reducing agents.

氧化劑可包含選自以下群組之至少一元素:氧(O 2)、臭氧(O 3)、水蒸氣(H 2O)、過氧化氫(H 2O 2)、一氧化二氮(N 2O)、氧化氮(NO),二氧化氮(NO 2)和硝酸(HNO 3)。鹵化物可包含選自以下群組之至少一元素:氯(Cl 2)、鹽酸(HCl)、二氟化氙(XeF 2)、氫氟酸(HF)、碘(I 2)、碘化氫(HI)、溴(Br 2)、溴化氫(HBr)、亞硝醯氯(NOCl)、三氯化磷(PCl 3)、五氯化磷(PCl 5)和三氟化磷(PF 3)。 還原劑可包含選自以下群組之至少一元素:氫(H 2)、氨(NH 3)和甲烷(CH 4)。 The oxidizing agent may contain at least one element selected from the following group: oxygen (O 2 ), ozone (O 3 ), water vapor (H 2 O), hydrogen peroxide (H 2 O 2 ), nitrous oxide (N 2 O), nitrogen oxides (NO), nitrogen dioxide (NO 2 ) and nitric acid (HNO 3 ). The halide may contain at least one element selected from the following group: chlorine (Cl 2 ), hydrochloric acid (HCl), xenon difluoride (XeF 2 ), hydrofluoric acid (HF), iodine (I 2 ), hydrogen iodide (HI), bromine (Br 2 ), hydrogen bromide (HBr), nitrosyl chloride (NOCl), phosphorus trichloride (PCl 3 ), phosphorus pentachloride (PCl 5 ) and phosphorus trifluoride (PF 3 ). The reducing agent may contain at least one element selected from the group consisting of hydrogen (H 2 ), ammonia (NH 3 ), and methane (CH 4 ).

以聚焦粒子束照射測試元件同時提供至少一沉積氣體可在測試元件上局部引起沉積反應。當在至少一階高的上平面受聚焦粒子束的束尾照射同時提供至少一沉積氣體時,束尾的粒子可引起局部化學反應,其將材料沉積在該至少一階高的上平面上。當於硬遮罩的至少一開口受聚焦粒子束的束尾照射同時提供至少一沉積氣體時,束尾的粒子可引起局部化學反應,其將材料沉積在硬遮罩的至少一開口中。沉積在硬遮罩的至少一開口中的材料可沉積在測試元件的基底元件的頂側上。Irradiating the test element with a focused particle beam while providing at least one deposition gas locally induces a deposition reaction on the test element. When the at least one-step-high upper plane is illuminated by the beam tail of the focused particle beam while at least one deposition gas is provided, the particles at the beam tail can cause a localized chemical reaction that deposits material on the at least one-step-high upper plane. When the at least one opening in the hard mask is illuminated by the tail of the focused particle beam while at least one deposition gas is provided, the particles at the tail of the beam cause a localized chemical reaction that deposits material in the at least one opening in the hard mask. Material deposited in at least one opening of the hard mask may be deposited on the top side of the base element of the test element.

以聚焦粒子束照射測試元件同時提供至少一蝕刻氣體可在測試元件上局部引起蝕刻反應。當至少一階高的上平面受聚焦粒子束的束尾照射同時提供至少一蝕刻氣體時,束尾的粒子可引發局部化學反應,其從該至少一階高的上平面蝕刻材料。當硬遮罩的至少一開口受聚焦粒子束的束尾照射同時提供至少一蝕刻氣體時,束尾的粒子可誘發局部化學反應,其蝕刻在硬遮罩的至少一開口中的材料。於硬遮罩的至少一開口中蝕刻的材料可在測試元件的基底元件的頂側上被蝕刻。Irradiating the test element with a focused particle beam while providing at least one etching gas locally induces an etching reaction on the test element. When the at least one-step-high upper plane is irradiated by the beam tail of the focused particle beam while at least one etching gas is provided, the particles of the beam tail can initiate a localized chemical reaction that etches material from the at least one-step-high upper plane. When the at least one opening of the hard mask is illuminated by the tail of the focused particle beam while at least one etching gas is provided, the particles at the tail of the beam induce a localized chemical reaction that etches material in the at least one opening of the hard mask. The material etched in at least one opening of the hard mask may be etched on the top side of the base element of the test element.

所述測量該測試元件的該至少一變化包含下列群組的至少一要件: - 使用一掃描式探針顯微鏡的一測量探針掃描至少由該粒子束所覆蓋的該測試元件的區域; - 使用一掃描式探針顯微鏡的一測量探針掃描至少由該聚焦粒子束的該至少一束尾所覆蓋的該測試元件的區域; - 使用一檢測射束掃描至少由該粒子束覆蓋的該測試元件的區域,以及分析由該檢測射束所產生的粒子; - 使用一檢測射束掃描至少該聚焦粒子束的該至少一束尾覆蓋的該測試元件的區域,以及分析由該檢測射束所產生的粒子; - 使用一光學系統成像至少由該粒子束所覆蓋的該測試元件的區域; - 使用一光學系統成像至少由該聚焦粒子束的該至少一束尾所覆蓋的該測試元件的區域; - 製備由該粒子束或該聚焦粒子束的該至少一束尾所覆蓋的該測試元件的區域的至少一部分,以及使用一穿透式電子顯微鏡的電子束成像該測試元件的該製備部分。 Said measuring the at least one change of the test element comprises at least one element of the following group: - scanning at least the area of the test element covered by the particle beam with a measuring probe of a scanning probe microscope; - scanning at least the area of the test element covered by the at least one tail of the focused particle beam using a measuring probe of a scanning probe microscope; - scanning at least the area of the test element covered by the particle beam with a detection beam and analyzing the particles generated by the detection beam; - scanning at least the area of the test element covered by the at least one tail of the focused particle beam with a detection beam, and analyzing particles generated by the detection beam; - imaging at least the area of the test element covered by the particle beam using an optical system; - imaging at least the area of the test element covered by the at least one tail of the focused particle beam using an optical system; - preparing at least a portion of the area of the test element covered by the particle beam or the at least one tail of the focused particle beam, and imaging the prepared portion of the test element using an electron beam of a transmission electron microscope.

所述測量該測試元件的該至少一變化包含以下群組的至少一要件: - 使用一掃描式探針顯微鏡(1780)的一掃描探針掃描由2x2、較佳為5x5、更佳為10x10、最佳為20x20個測量點所覆蓋之該測試元件的0.01cm 2、較佳為0.1cm 2、更佳為1cm 2、且最佳為5cm 2之一區域; - 使用一檢測射束掃描由2x2、較佳為5x5、更佳為10x10、最佳為20x20個測量點所覆蓋之該測試元件的0.01cm 2、較佳為0.1cm 2、更佳為1cm 2、且最佳為5cm 2之一區域; - 使用一光學系統成像由2x2、較佳為5x5、更佳為10x10、最佳為20x20個測量點所覆蓋之該測試元件的0.01cm 2、較佳為0.1cm 2、更佳為1cm 2、且最佳為5cm 2之一區域。 Said measuring the at least one variation of the test element comprises at least one element of the following group: - a scanning probe scan using a scanning probe microscope (1780) consisting of 2x2, preferably 5x5, more preferably 10x10, An area of 0.01 cm 2 , preferably 0.1 cm 2 , more preferably 1 cm 2 , and most preferably 5 cm 2 of the test element covered by preferably 20x20 measuring points; , preferably 5x5, more preferably 10x10, and most preferably 20x20 measurement points of the test element covered by 0.01cm 2 , preferably 0.1cm 2 , more preferably 1cm 2 , and most preferably 5cm 2 area; - using an optical system to image 0.01 cm 2 , preferably 0.1 cm 2 , more preferably 1 cm of the test element covered by 2x2, preferably 5x5, more preferably 10x10 , most preferably 20x20 measurement points 2 , and the best is an area of 5cm 2 .

可提供相應設計的測試元件作為本文所概述方法的一部分,但也可與其獨立。例如,測試元件可包含由2×2、較佳為5×5、更佳為10x10、最佳為20x20個測量點所覆蓋至少為0.01cm 2、較佳為至少0.1cm 2、更佳為至少1cm 2、最佳為至少5cm 2的區域,例如具有本文所概述的柱、孔、棋盤圖案、及/或結構元件等的形式。這可允許例如藉由自發蝕刻/沉積製程、及/或此類製程在較大規模上的蝕刻或沉積速率來確定殘餘變化。 Correspondingly designed test elements may be provided as part of the methods outlined herein, but also independently thereof. For example, the test element may comprise at least 0.01 cm 2 , preferably at least 0.1 cm 2 , more preferably at least Areas of 1 cm 2 , preferably at least 5 cm 2 , for example in the form of pillars, holes, checkerboard patterns, and/or structural elements etc. as outlined herein. This may allow residual variation to be determined, for example, by spontaneous etch/deposition processes, and/or etch or deposition rates of such processes on a larger scale.

當使用固定的聚焦粒子束照射測試元件時,束尾的整個三維(3-D)強度分佈的一部分被成像到測試元件中或到測試元件上。因此,可檢測3-D束尾的一部分。然而,此製程機制的一可能缺點是較差的訊雜比,其可能會限制束尾的確定準確性。When a test element is irradiated with a fixed focused particle beam, a portion of the entire three-dimensional (3-D) intensity distribution of the beam tail is imaged into or onto the test element. Thus, a portion of the 3-D beam tail can be detected. However, a possible disadvantage of this process mechanism is poor signal-to-noise ratio, which may limit the accuracy of beam tail determination.

相反,如果沿測試結構的邊緣掃描聚焦粒子束,則束尾的3-D強度分佈沿邊緣減小為二維(2-D)強度分佈,亦即其係平行於掃描方向而加以平均。以這方式產生了具有提升的訊雜比之包含測試結構中或測試結構上的束尾的圖像表示的二維輪廓。或換句話說:當沿邊緣掃描聚焦粒子束時,束尾的影響分佈在一區域上。對變異區域進行平均會產生具有提升的訊雜比的束尾輪廓。Conversely, if the focused particle beam is scanned along the edge of the test structure, the 3-D intensity distribution at the beam tail is reduced to a two-dimensional (2-D) intensity distribution along the edge, ie it is averaged parallel to the scan direction. In this way a two-dimensional profile comprising an image representation of the beam tail in or on the test structure is produced with an improved signal-to-noise ratio. Or in other words: when a focused particle beam is scanned along an edge, the effect of the beam tail is distributed over an area. Averaging the variable regions produces a beam tail profile with improved signal-to-noise ratio.

掃描式探針顯微鏡可包含以下群組的至少一元件:原子力顯微鏡(AFM)、磁力顯微鏡(MFM)、掃描式穿隧顯微鏡(STM)、掃描式近場光學顯微鏡(SNOM)以及掃描式近場聲學顯微鏡(SNAM)。掃描式探針顯微鏡可包含一或多個並行操作的測量探針。The scanning probe microscope may comprise at least one element of the following group: atomic force microscope (AFM), magnetic force microscope (MFM), scanning tunneling microscope (STM), scanning near-field optical microscope (SNOM), and scanning near-field Acoustic Microscopy (SNAM). A scanning probe microscope may comprise one or more measurement probes operating in parallel.

掃描式探針顯微鏡能夠測量由聚焦粒子束的至少一束尾結合至少一蝕刻氣體照射測試元件而引起的測試元件的佈局變化。結合至少一蝕刻氣體,所述至少一束尾可藉由蝕刻或沉積材料來改變至少一階高的上平面或下平面的佈局。目前較佳是改變至少一階高的上平面。結合至少一前驅物氣體,所述至少一束尾可藉由蝕刻或沉積材料來改變硬遮罩及/或硬遮罩的至少一開口的佈局。目前較佳是改變硬遮罩的至少一開口。The scanning probe microscope is capable of measuring changes in the layout of a test element caused by irradiating the test element with at least one tail of a focused particle beam in combination with at least one etching gas. Combined with at least one etching gas, the at least one beam tail can change the layout of the upper plane or the lower plane of at least one step by etching or depositing materials. It is presently preferred to change the upper plane of at least one order of height. In combination with at least one precursor gas, the at least one tail can alter the layout of the hard mask and/or at least one opening of the hard mask by etching or depositing material. It is presently preferred to change at least one opening of the hard mask.

若硬遮罩應用於測試元件的基底元件,則聚焦粒子束的至少一束尾係結合至少一前驅物氣體而改變測試元件的基底元件。在使用掃描式探針顯微鏡的測量探針掃描硬遮罩的至少一開口之前,從測試元件移除硬遮罩可能是有利的。硬遮罩可藉由進行蝕刻製程去除。蝕刻製程可為粒子束誘發蝕刻製程。對硬遮罩的材料採用用於從測試元件移除硬遮罩的蝕刻氣體是有利的。If the hard mask is applied to the base element of the test element, at least one tail of the focused particle beam combines with at least one precursor gas to alter the base element of the test element. It may be advantageous to remove the hard mask from the test element before scanning at least one opening of the hard mask with the measurement probe of the scanning probe microscope. The hard mask can be removed by performing an etch process. The etching process may be a particle beam induced etching process. It is advantageous to employ the etching gas used to remove the hard mask from the test element to the material of the hard mask.

檢測射束可為聚焦粒子束。然而,該檢測射束和聚焦粒子束也可使用不同的粒子類型。舉例而言,檢測射束可使用電子,而聚焦粒子束可使用離子。被檢測射束照射的測試元件中產生的粒子可為SE及/或BSE。此外,可使用光子來測量由聚焦粒子束的至少一束尾引起的測試元件的變化,且所述光子可經受X射線分析。此外,還可分析檢測射束產生的歐傑電子(Auger elec- trons)。The detection beam may be a focused particle beam. However, it is also possible to use different particle types for the detection beam and the focused particle beam. For example, a detection beam can use electrons, and a focused particle beam can use ions. The particles generated in the test element irradiated by the detection beam can be SE and/or BSE. Furthermore, photons can be used to measure changes in the test element caused by at least one tail of the focused particle beam, and the photons can be subjected to X-ray analysis. In addition, Auger electrons generated by the detection beam can be analyzed.

光學系統可包含以下群組的至少一元件:共焦雷射掃描式顯微鏡(CLSM)、掃描式近場光學顯微鏡(SNOM)、航空圖像生成顯微鏡、以及干涉儀。The optical system may comprise at least one element of the following group: Confocal Laser Scanning Microscope (CLSM), Scanning Near Field Optical Microscope (SNOM), Aerial Image Generating Microscope, and Interferometer.

測量測試結構的至少一變化可包含:使用檢測射束至少掃描由以下至少一者所覆蓋的單層區域:粒子束、聚焦粒子束的束尾、以及至少一前驅物氣體,並且檢測至少覆蓋區域中的二次電子對比。Measuring at least one change in the test structure may include scanning at least a monolayer region covered by at least one of: a particle beam, a beam tail of a focused particle beam, and at least one precursor gas with a detection beam, and detecting at least the covered region Secondary electron contrast in .

如同上述實施例中,檢測射束可使用與聚焦粒子束相同的粒子類型;此實施例是有利的,但是相同的粒子束來源可用於改變單層和用於分析所引起的變化。如果檢測射束和聚焦粒子束使用具有質量的粒子,則粒子入射到單層上的動能是在這些射束方面有所不同的參數。檢測射束較佳是使用電子來掃描被聚焦粒子束照射的單層。在SE電子所產生的單層圖像中,已經可呈現單層的微小變化。As in the above embodiment, the detection beam can use the same particle type as the focused particle beam; this embodiment is advantageous, but the same particle beam source can be used to modify the monolayer and to analyze the resulting changes. If the detection beam and the focused particle beam use particles with mass, the kinetic energy of the particle incident on the monolayer is the parameter that differs with respect to these beams. The detection beam preferably uses electrons to scan the monolayer illuminated by the focused particle beam. In the monolayer image produced by SE electrons, small changes of the monolayer can already be presented.

然而,檢測射束和聚焦粒子束也可使用不同的粒子類型。However, it is also possible to use different particle types for the detection beam and the focused particle beam.

該至少一單層可包含自組合(self-assembled)有機化合物。The at least one monolayer may comprise self-assembled organic compounds.

自組合有機化合物(SAM,自組合單層)可在將基材浸沒入表面活性溶液或懸浮液或有機物質的同時形成。自組合有機化合物的厚度可包含介於0.1nm至50nm、較佳為0.5nm至20nm、更佳為0.8nm至10nm、且最佳為1nm至5nm的範圍。Self-assembled organic compounds (SAM, self-assembled monolayers) can be formed while submerging the substrate in a surface-active solution or suspension or organic substance. The thickness of the self-assembled organic compound may range from 0.1 nm to 50 nm, preferably from 0.5 nm to 20 nm, more preferably from 0.8 nm to 10 nm, and most preferably from 1 nm to 5 nm.

舉例而言,自組合化合物形成鏈烷硫醇或烷基三氯矽烷。舉例而言,烷烴或碳鏈長度為8個(C 8H 17SH)至15個碳原子(C 15H 31SH)的烷硫醇可以形成單層,其厚度適合於使束尾成像。束尾的一次電子和一次電子產生的SE可以與單層相互作用。因此,可在單層中發生電子束誘發的反應。這相互作用伴隨著從一次電子及/或SE到單層碳鏈碳原子的能量轉移。束尾的電子(通常是粒子)可改變烷烴的鏈長,亦即藉由粒子束引起的烷烴鏈斷裂來縮短鏈長。此外,聚焦粒子束的束尾的粒子可改變硫醇基或位於距離單層表面距離的烷基鏈末端的末端官能基團。可使用檢測射束來分析單層的(多個)變化,例如藉由引起的SE對比變化。 For example, alkanethiols or alkyltrichlorosilanes are formed from combination compounds. For example, alkanes or alkanethiols with chain lengths of 8 (C 8 H 17 SH ) to 15 carbon atoms (C 15 H 31 SH ) can form monolayers with a thickness suitable for imaging beam tails. The primary electrons at the tail of the beam and the SE generated by the primary electrons can interact with the monolayer. Thus, electron beam-induced reactions can occur in the monolayer. This interaction is accompanied by energy transfer from primary electrons and/or SE to monolayer carbon chain carbon atoms. The electrons (usually particles) at the tail of the beam can change the chain length of the alkane, that is, shorten the chain length by breaking the alkane chain caused by the particle beam. In addition, particles at the beam tail of the focused particle beam can alter thiol groups or terminal functional groups located at the ends of alkyl chains at a distance from the monolayer surface. The detection beam can be used to analyze the change(s) of the monolayer, eg by induced SE contrast changes.

該測試元件包含至少一層含有以下之至少一元素:金(Au)、銀(Ag)、鉑(Pt)、銅(Cu)、石墨(C)與矽(Si)。The test element comprises at least one layer containing at least one element of the following: gold (Au), silver (Ag), platinum (Pt), copper (Cu), graphite (C) and silicon (Si).

因此,由矽晶圓產生的測試元件係直接適用於,亦即在沒有沉積另一層的情況下,適用於形成單層形式的測試結構。對照下,從光學遮罩的基材產生測試元件需要沉積由上述元素之一者製成的薄金屬層,使得可在測試元件上形成一穩定的自組合單層作為測試結構。Test elements produced from silicon wafers are therefore directly suitable, ie without depositing another layer, for forming test structures in the form of a single layer. In contrast, producing a test element from a substrate of an optical mask requires the deposition of a thin metal layer made of one of the aforementioned elements, so that a stable self-assembled monolayer can be formed on the test element as a test structure.

單層可應用於多個上述測試結構之一。由聚焦粒子束的束尾引起的單層變化係由於主射束和束尾之間的空間分離而實質上不受主射束的影響,其可用於確定粒子束的束尾的強度分佈。A single layer can be applied to one of several of the above test structures. The monolayer variation induced by the beam tail of the focused particle beam, which is substantially unaffected by the main beam due to the spatial separation between the main beam and the beam tail, can be used to determine the intensity profile of the beam tail of the particle beam.

基底元件可被調適成使得粒子束誘發蝕刻製程本質上不蝕刻測試結構的基底元件,且測試結構的至少一結構元件可包含要在粒子束誘發蝕刻製程中被蝕刻的至少一柱體。The substrate element may be adapted such that the particle beam induced etching process does not substantially etch the substrate element of the test structure, and at least one structural element of the test structure may comprise at least one pillar to be etched during the particle beam induced etching process.

結構元件可包含至少兩柱體,其調適成使得粒子束誘發蝕刻製程本質上不蝕刻至少兩柱體,且基底元件包含將在粒子束誘發蝕刻製程中被蝕刻的材料。The structural element may comprise at least two pillars adapted such that the particle beam induced etching process does not substantially etch the at least two pillars, and the base element comprises a material to be etched during the particle beam induced etching process.

該至少一結構元件可包含至少一光圈遮罩,其調適成使得粒子束誘發蝕刻製程本質上不蝕刻所述至少一光圈遮罩,且基底元件可調適成使得粒子束誘發蝕刻製程可蝕刻該基底元件。The at least one structural element may comprise at least one aperture mask adapted such that the particle beam induced etching process does not substantially etch the at least one aperture mask, and the substrate element may be adapted such that the particle beam induced etching process etches the substrate element.

光圈遮罩可包含至少兩開口以確定該基底元件的變化。The aperture mask may include at least two openings to define variations of the base element.

一種含有多個指令的電腦程式,當一電腦系統執行該電腦程式促使該電腦系統執行如本文所述多個方法之一者中的多個步驟。A computer program comprising a plurality of instructions that, when executed by a computer system, causes the computer system to perform steps in one of the methods described herein.

在進一步實施例中,一種用於確定粒子束於樣品上之強度分佈的裝置,其包含:(a)照射構件,用於以該粒子束照射一測試元件使得該粒子束引起該測試元件的至少一變化;及(b)測量構件,用於測量該測試元件的該至少一變化以確定該粒子束於該樣品上之強度分佈。In a further embodiment, an apparatus for determining an intensity distribution of a particle beam on a sample comprises: (a) irradiating means for irradiating a test element with the particle beam such that the particle beam induces at least a change; and (b) measuring means for measuring the at least one change of the test element to determine an intensity distribution of the particle beam on the sample.

用於確定強度分佈之裝置可更包含聚焦構件,用於聚焦該粒子束。The device for determining the intensity distribution may further comprise focusing means for focusing the particle beam.

用於確定強度分佈之裝置可更包含提供構件,用於提供至少一前驅物氣體於該樣品及/或該測試元件上。The device for determining the intensity distribution may further comprise providing means for providing at least one precursor gas on the sample and/or the test element.

該用於提供該至少一前驅物氣體之構件可包含設定構件,用於設定該至少一前驅物氣體的一氣體流動速率、一溫度、一壓力及/或一密度。The means for providing the at least one precursor gas may include setting means for setting a gas flow rate, a temperature, a pressure and/or a density of the at least one precursor gas.

用於確定強度分佈之裝置可更包含測量構件,用於測量該測試元件的該至少一變化。The device for determining the intensity distribution may further comprise measuring means for measuring the at least one change of the test element.

用於確定強度分佈之裝置可更包含確定構件,用於從該測試元件的該至少一測量變化確定該粒子束的強度分佈。The device for determining the intensity distribution may further comprise determining means for determining the intensity distribution of the particle beam from the at least one measured change of the test element.

在另一實施例中,一種用於確定聚焦粒子束的至少一束尾的強度分佈的裝置包含:(a)一設定單元,其配置成設定該聚焦粒子束的至少一參數,使得當一測試元件受該聚焦粒子束照射時,該聚焦粒子束引起該測試元件的至少一可測量變化;及(b)一測量單元,其配置成測量該測試元件的變化以確定該聚焦粒子束的該至少一束尾的強度變化。In another embodiment, an apparatus for determining an intensity distribution of at least one tail of a focused particle beam comprises: (a) a setting unit configured to set at least one parameter of the focused particle beam such that when a test the focused particle beam causes at least one measurable change in the test element when the component is irradiated by the focused particle beam; and (b) a measurement unit configured to measure the change in the test element to determine the at least one measurable change in the focused particle beam The intensity variation of a bunch of tails.

設定單元可設定粒子束源及/或粒子束成像系統的各種參數。設定單元可調整的參數可包含:具有質量的粒子束的動能、聚焦粒子束的束腰徑、束腰徑在束流方向上的位置、束流、掃描方案、 聚焦粒子束的孔徑角和消散設定。掃描方案描述了聚焦粒子束在一平面上的運動。The setting unit can set various parameters of the particle beam source and/or the particle beam imaging system. The adjustable parameters of the setting unit may include: the kinetic energy of the particle beam with mass, the beam waist diameter of the focused particle beam, the position of the beam waist diameter in the beam direction, the beam current, the scanning scheme, the aperture angle of the focused particle beam and the dissipation set up. A scanning scheme describes the motion of a focused particle beam in a plane.

此外,設定單元可配置成設定檢測射束的參數。檢測射束的參數可包含聚焦粒子束的參數。此外,設定單元可配置成設定檢測射束的檢測裝置的各種參數設定。檢測裝置的參數可包含:檢測器的加速電壓、檢測器的能量過濾器和檢測器類型。Furthermore, the setting unit may be configured to set parameters of the detection beam. The parameters of the detection beam may include parameters of the focused particle beam. Furthermore, the setting unit may be configured to set various parameter settings of the detection device of the detection beam. The parameters of the detection device may include: the accelerating voltage of the detector, the energy filter of the detector and the type of detector.

該裝置可更包含一用於該測試元件之固持裝置。用於該測試元件之固持裝置可為一與樣品固定座分開的單元。The device may further include a holding device for the test element. The holding device for the test element can be a separate unit from the sample holder.

測試元件可包含數個測試結構。因此,在裝置的使用壽命期間,必要時可重複使用單個測試元件來分析裝置的聚焦粒子束的至少一束尾。然而,也可針對至少一束尾的每個單獨的分析程序使用專用的測試元件。此外,還可使用用於製造該測試元件的裝置。A test element may contain several test structures. Thus, during the service life of the device, a single test element can be reused, if necessary, to analyze at least one tail of the focused particle beam of the device. However, it is also possible to use a dedicated test element for each individual analysis procedure of at least one tail. In addition, the apparatus for manufacturing the test element can also be used.

該固持裝置可包含一定位單元,其配置成將該測試元件定位於該聚焦粒子束下方及/或該測量單元下方。The holding device may comprise a positioning unit configured to position the test element below the focused particle beam and/or below the measurement unit.

定位單元可包含一或多個微型操縱器,其能夠在一、兩或三個空間方向上移動測試元件。The positioning unit may comprise one or more micromanipulators capable of moving the test element in one, two or three spatial directions.

此外,該裝置可包含一計算單元,其配置成從該測試元件的該測量變化確定該聚焦粒子束的該至少一束尾的強度分佈。Furthermore, the device may comprise a computing unit configured to determine an intensity distribution of the at least one tail of the focused particle beam from the measured variation of the test element.

根據本發明的又另一示例實施例,該問題為至少部分藉由本申請案中的獨立實施例1和17的標的解決。在附屬請求項中描述進一步示例實施例。According to yet another exemplary embodiment of the present invention, this problem is at least partially solved by the objects of the independent embodiments 1 and 17 of the present application. Further example embodiments are described in the appended claims.

在實施例1中,一種用於確定粒子束於樣品上之強度分佈的方法包含以下步驟:(a)以該粒子束照射一測試元件,使得該粒子束引起該測試元件的至少一可測量變化;及(b)測量該測試元件的該至少一變化,以確定該粒子束於該樣品上的強度分佈。In Example 1, a method for determining the intensity distribution of a particle beam on a sample comprises the steps of: (a) irradiating a test element with the particle beam such that the particle beam causes at least one measurable change in the test element and (b) measuring the at least one change of the test element to determine an intensity distribution of the particle beam on the sample.

理想的高斯射束可容易分為主射束或中心射束、及束尾。從強度最大值I 0開始,主射束定義為強度大於與強度最大值相關的臨界值的區域。舉例而言,所述臨界值可定義為I>I 0·e -2。束尾由強度小於指定相對臨界值的區域形成,例如I<I 0·e -2An ideal Gaussian beam can be easily divided into a main or central beam, and a beam tail. Starting from the intensity maximum I0 , the main beam is defined as the region of intensity greater than the critical value associated with the intensity maximum. For example, the critical value can be defined as I>I 0 ·e -2 . Beam tails are formed by regions with intensities less than a specified relative critical value, eg I<I 0 ·e −2 .

本申請案中描述的射束輪廓與理想的高斯強度分佈間可有顯著偏差。然而,在本申請中,主射束或中心射束被定義為類似於理想的高斯射束。這表示射束的強度最大值I 0在第一步驟中即確定。然後,將達到最大值的一特定百分比之降值指定為標記中心射束與束尾之間邊界的臨界值。對於一真實粒子束而言,束尾由引導至中心射束外部的整個強度形成。此定義並不代表強度必須在束尾的每個點處都保持低於一給定臨界值,而是所述強度可以隨著與強度最大值的距離增加而再成長。此外,與理想的高斯射束相比,真實射束可能具有強度輪廓不圍繞強度最大值I 0旋轉對稱延伸的束尾。以下,這情況的特徵在於具有兩或多個束尾。較佳係,這些定義(主射束和束尾)涉及焦點或焦點附近的區域,其中聚焦粒子束的束腰徑相對於焦斑(Focal spot)的直徑增加不超過2倍。 The beam profile described in this application can deviate significantly from the ideal Gaussian intensity distribution. However, in this application the main or central beam is defined to resemble an ideal Gaussian beam. This means that the intensity maximum value I 0 of the beam is determined in a first step. Then, a certain percentage drop off from the maximum value is assigned as the threshold marking the boundary between the center beam and the beam tail. For a real particle beam, the beam tail is formed by the entire intensity directed outside the central beam. This definition does not imply that the intensity must remain below a given critical value at every point of the beam tail, but that the intensity can grow again with increasing distance from the intensity maximum. Furthermore, compared to an ideal Gaussian beam, a real beam may have a beam tail whose intensity profile does not extend rotationally symmetric around the intensity maximum I0 . Hereinafter, this case is characterized by having two or more bundle tails. Preferably, these definitions (main beam and beam tail) relate to the focal point or the region near the focal point where the beam waist diameter of the focused particle beam does not increase by more than a factor of 2 relative to the diameter of the focal spot.

該方法藉由與測試元件的相互作用使得束尾中所含之粒子的效應變得可見,而有助於對聚焦粒子束的束尾進行定量分析。此檢測處理可聚焦粒子束的主射束的粒子對於測試元件的變化實質上沒有影響的方式來執行。The method facilitates quantitative analysis of the beam tail of a focused particle beam by interacting with a test element to make visible the effects of particles contained in the beam tail. The detection process can be performed in such a way that the particles of the main beam of the focused particle beam have substantially no influence on the variation of the test element.

聚焦粒子束的束尾的強度分佈可從測試元件的可見或可測量的變化中定量確定。對於聚焦粒子束所照射的整個區域上的強度分佈的瞭解可用於最佳化以聚焦粒子束掃描樣品所產生的圖像。此外,關於束尾中存在的聚焦粒子束的強度的知識可用於最佳化樣品的局部粒子束誘發製程處理。舉例而言,對於聚焦粒子束的束尾的強度分佈的瞭解可允許使缺陷的最佳可能修復所需的循環疊代次數降到最低。The intensity distribution of the beam tail of the focused particle beam can be quantitatively determined from visible or measurable changes in the test element. Knowledge of the intensity distribution over the entire area illuminated by the focused particle beam can be used to optimize the images produced by scanning the sample with the focused particle beam. Furthermore, knowledge about the intensity of the focused particle beam present in the beam tail can be used to optimize local particle beam induced processing of the sample. For example, knowledge of the intensity distribution of the beam tail of a focused particle beam may allow minimizing the number of cycle iterations required for the best possible repair of a defect.

粒子束的粒子可為諸如光子等沒有靜止質量的粒子;在這情況下,粒子束的強度與電能密度分佈成正比。然而,粒子束的粒子也可為具有質量的粒子,例如電子、原子、離子或分子;在這些情況下,強度與對應的粒子類型的波函數的振幅平方的絕對值成正比。The particles of the particle beam may be particles with no rest mass, such as photons; in this case, the intensity of the particle beam is directly proportional to the electrical energy density distribution. However, the particles of the particle beam may also be particles with mass, such as electrons, atoms, ions or molecules; in these cases the intensity is proportional to the absolute value squared of the amplitude of the wave function of the corresponding particle type.

照射測試元件可引起測試元件的至少一佈局變化、至少一化學變化、及/或至少一物理變化。Irradiating the test element can cause at least one layout change, at least one chemical change, and/or at least one physical change of the test element.

測試元件的(多個)變化可被測量。假設在測試元件中引起的(多個)變化與局部有效強度成正比,則可從(多個)測量變化中得出在聚焦粒子束的束尾中的粒子劑量分佈。The change(s) of the test element can be measured. Assuming that the induced change(s) in the test element are directly proportional to the local effective intensity, the particle dose distribution in the beam tail of the focused particle beam can be derived from the measured change(s).

測試元件具有至少一測試結構,其包含下列群組之至少一元件: - 至少一階高; - 至少一硬遮罩,其具有至少一開口;及 - 至少一單層。 The test element has at least one test structure, which includes at least one element of the following groups: - at least one order high; - at least one hard mask having at least one opening; and - At least one single layer.

該至少一階高由階高的頂側定義一上平面,並且由階高的下邊緣定義一下平面。硬遮罩指明該頂側為聚焦粒子束入射到硬遮罩上的一側,並指明位於與頂側相對的背側。該至少一階高的上平面和下平面、以及硬遮罩的頂側和背側可為實質上平坦。此外,該至少一階高的上和下平面、以及硬遮罩的頂側及背側可形成實質上平行的平面。上、下平面或硬遮罩的頂側和背側的平行度可以提高確定聚焦粒子束的束尾的強度分佈的準確性。The at least one step defines an upper plane by the top side of the step and a lower plane by the lower edge of the step. The hard mask designates the top side as the side on which the focused particle beam is incident on the hard mask, and designates the back side opposite the top side. The upper and lower planes of the at least one step height, and the top and back sides of the hard mask may be substantially flat. Furthermore, the upper and lower planes of the at least one step height, and the top and back sides of the hard mask may form substantially parallel planes. The parallelism of the upper and lower planes or the top and back sides of the hard mask can improve the accuracy of determining the intensity distribution of the beam tail of the focused particle beam.

該測試結構可包含至少一階高和一單層,及/或該測試結構可包含一具有至少一開口的硬遮罩且可包含一單層。The test structure can include at least one step and a single layer, and/or the test structure can include a hard mask with at least one opening and can include a single layer.

測試元件可包含一基底元件。基底元件的頂側可形成該至少一階高的下平面。測試元件的基底元件可為光學遮罩的基材。該至少一階高可為光學遮罩的圖案元件。測試元件的基底元件可為光學遮罩或晶圓的基材,且一或多個階高可被蝕刻至光學遮罩或晶圓的基材中,及/或可藉由在光學遮罩或晶圓的基材上沉積材料來產生。The test element may include a base element. The top side of the base element may form the at least one step-high lower plane. The base element of the test element can be the substrate of the optical mask. The at least one step height can be a pattern element of an optical mask. The base element of the test device can be the base material of the optical mask or the wafer, and one or more steps can be etched into the optical mask or the base material of the wafer, and/or can be formed by the optical mask or the base material of the wafer. Wafers are produced by depositing materials on a substrate.

硬遮罩可施加到測試元件的基底元件的頂側。硬遮罩的至少一開口可暴露出基底元件的頂側的一部分。硬遮罩的至少一開口可藉由蝕刻而產生。A hard mask can be applied to the top side of the base element of the test element. At least one opening of the hard mask may expose a portion of the top side of the base element. At least one opening of the hard mask can be created by etching.

相較於由光阻劑製成的聚合物遮罩,硬遮罩為一種可耐聚焦粒子束長久照射時間很多的遮罩。舉例而言,硬遮罩可包含一金屬層、一氧化物層、或一氮化物層。A hard mask is a mask that is resistant to prolonged exposure to a focused particle beam for much longer periods of time than a polymer mask made of photoresist. For example, the hard mask can include a metal layer, an oxide layer, or a nitride layer.

在此及本說明書中,用語「實質上」表示在使用根據現有技術的測量設備來測量相對應的量時,在測量不確定度內的測量量示值。Here and in this description, the term "substantially" denotes the indication of a measured quantity within the measurement uncertainty when the corresponding quantity is measured using measuring equipment according to the prior art.

該至少一階高及/或該至少一開口具有至少一邊緣,及/或其中該單層係設計成當以該聚焦粒子束照射時改變二次電子對比。The at least one step and/or the at least one opening has at least one edge, and/or wherein the monolayer is designed to alter secondary electron contrast when irradiated with the focused particle beam.

至少一階高及/或硬遮罩的至少一開口的至少一邊緣可配置在該至少一階高的上平面及/或硬遮罩的頂側上。該至少一邊緣可包含一截面直邊緣。At least one step and/or at least one edge of at least one opening of the hard mask may be arranged on an upper plane of the at least one step and/or a top side of the hard mask. The at least one edge may comprise a cross-sectional straight edge.

單層可應用於該至少一階高、應用於具有至少一開口的硬遮罩、及/或應用於測試元件的基底元件。可從應用於該至少一階高的單層的變化、及/或從應用於硬遮罩的至少一開口中的單層的變化來確定聚焦粒子束的束尾的強度分佈。A single layer may be applied to the at least one step, to a hard mask having at least one opening, and/or to a base element of a test element. The intensity distribution of the beam tail of the focused particle beam may be determined from the variation applied to the at least one high-order monolayer and/or from the variation applied to the monolayer in the at least one opening of the hard mask.

該方法可更包含:設定該至少一階高的高度、及/或該硬遮罩的厚度,使得該聚焦粒子束的射束面積沿著該高度相對於該聚焦粒子束的束腰徑增加至少2%、較佳為5%、更佳為10%、且最佳為30%。The method may further include: setting the height of the at least one step height, and/or the thickness of the hard mask, so that the beam area of the focused particle beam increases by at least 2%, preferably 5%, more preferably 10%, and most preferably 30%.

聚焦粒子束的束腰徑可具有<20nm的直徑,較佳為<10nm,更佳為<5nm,且最佳為<2nm。The beam waist of the focused particle beam may have a diameter < 20 nm, preferably < 10 nm, more preferably < 5 nm, and most preferably < 2 nm.

以下,束腰徑和焦斑直徑兩者係與強度下降到e -2有關,即強度下降到最大強度的13.5%。若聚焦粒子束的主射束是基於此定義,則理想高斯射束的主射束攜帶約93%的粒子,束尾攜帶約7%。真實的粒子光學系統中的像差會導致束尾中包含粒子比例增加。 In the following, both the beam waist diameter and the focal spot diameter are related to the intensity drop to e -2 , that is, the intensity drops to 13.5% of the maximum intensity. If the main beam of a focused particle beam is based on this definition, the main beam of an ideal Gaussian beam carries about 93% of the particles, and the beam tail carries about 7%. Aberrations in real particle optics can lead to an increased fraction of particles contained in the beam tail.

測試元件可具有 N 個測試結構或結構元件,其包括1≤N≤1000、較佳為5≤N≤500、更佳為10≤N≤100、最佳為20≤N≤50之範圍。具有N個相同測試結構的測試元件可用於粒子束及/或聚焦粒子束的束尾的強度分佈的N個校準測量。這測試元件可在裝置的生產過程中安裝到裝置中,其接著可用於在每次服務之後、在修改之後、及/或在裝置於其使用壽命期間進行維修之後分析射束、或聚焦粒子束的束尾。此外,測試元件可用於研究自發性處理對樣品的影響。然而,也可在分析聚焦粒子束的一或多個束尾之前將測試元件引入裝置中。The test element may have N test structures or structural elements, which include the range of 1≤N≤1000, preferably 5≤N≤500, more preferably 10≤N≤100, most preferably 20≤N≤50. A test element with N identical test structures can be used for N calibration measurements of the intensity distribution of the particle beam and/or the beam tail of the focused particle beam. This test element can be installed into the device during its production, which can then be used to analyze the beam, or focus the particle beam after each service, after modification, and/or after the device is serviced during its service life beam tail. In addition, test elements can be used to study the effects of spontaneous handling on samples. However, it is also possible to introduce the test element into the device before analyzing one or more beam tails of the focused particle beam.

測試元件可包含以下群組的至少兩測試結構:至少一階高、一具有至少一開口的硬遮罩、以及一單層。The test device may include at least two test structures from the group: at least one step, a hard mask with at least one opening, and a single layer.

可在一測試元件上結合兩或三個不同類型的測試結構。因此,可使確定聚焦粒子束的束尾的強度分佈的精準度最佳化。Two or three different types of test structures can be combined on one test element. Thus, the accuracy with which the intensity distribution of the beam tail of the focused particle beam can be determined can be optimized.

照射該測試元件可包含:聚焦該粒子束於下列群組中至少一元件上: - 該至少一階高的一上平面、及/或該硬遮罩的一後側; - 該至少一階高的一下平面、及/或該硬遮罩的一頂側; - 該單層的一頂側。 Irradiating the test element may include: focusing the particle beam on at least one element of the following group: - an upper plane of the at least one step, and/or a rear side of the hard mask; - a lower plane of the at least one step, and/or a top side of the hard mask; - a top side of the single layer.

聚焦粒子束聚焦在至少一階高的下平面及/或硬遮罩的頂側上的實施例為目前較佳。在這些實施例中可獲得束尾自聚焦粒子束的中心部分或主要部分中的最佳分離,且因此可在主射束的最小影響下分析一或多個射束尾的劑量分佈。Embodiments in which the focused particle beam is focused on at least one higher lower plane and/or the top side of the hard mask are presently preferred. In these embodiments an optimal separation of the beam tails from the central or main part of the focused particle beam can be obtained and thus the dose distribution of one or more beam tails can be analyzed with minimal influence of the main beam.

在聚焦粒子束聚焦在至少一階高的上平面及/或硬遮罩的下側的實施例中,由主射束在階高或硬遮罩中產生的一些粒子會進入束尾的區域,從而除了改變束尾的強度分佈之外,還會改變測試元件的測試結構。這會使聚焦粒子束的一或多個束尾的劑量分佈的分析更為困難。In embodiments where the focused particle beam is focused on the upper plane of at least one step and/or the underside of the hard mask, some particles generated by the main beam in the step or hard mask will enter the region of the beam tail, Thus, in addition to changing the intensity distribution of the beam tail, the test structure of the test element is also changed. This can make analysis of the dose distribution of one or more beam tails of the focused particle beam more difficult.

聚焦粒子束於測試元件中產生的粒子可包含二次電子(SE)及/或測試元件背向散射的電子(BSE)。Particles generated by the focused particle beam in the test element may contain secondary electrons (SE) and/or backscattered electrons (BSE) from the test element.

在硬遮罩的上平面或頂側中,至少一階高及/或硬遮罩的至少一開口的至少一截面直邊緣可包含角度α,其在60°<α<120°的範圍內,較佳為75°<α<105°的範圍內,更佳為85°<α<95°的範圍內,最佳為89°<α<91°的範圍內。In the upper plane or top side of the hard mask, at least one step and/or at least one cross-sectional straight edge of at least one opening of the hard mask may comprise an angle α in the range of 60°<α<120°, It is preferably within the range of 75°<α<105°, more preferably within the range of 85°<α<95°, most preferably within the range of 89°<α<91°.

所述至少一階高可包含至少兩階高,其相對於對稱線呈對稱配置,所述對稱線可位於下平面中。該至少一階高較佳包含至少四個階高,其邊緣實質上具有彼此為90°的角度。The at least one height may include at least two heights, which are arranged symmetrically with respect to a line of symmetry, which may lie in a lower plane. The at least one step preferably comprises at least four steps, the edges of which have substantially an angle of 90° to each other.

硬遮罩可包含至少兩開口,其相對於聚焦粒子束在硬遮罩上的入射點呈對稱配置,及/或相對於聚焦粒子束的至少一掃描方向呈對稱配置。 硬遮罩的至少一開口較佳具有矩形狀。硬遮罩的槽形開口(特別是具有同心結構的形式,例如圍繞聚焦粒子束在硬遮罩上的入射點的環形)同樣是有利的。The hard mask may include at least two openings, which are symmetrically arranged with respect to the incident point of the focused particle beam on the hard mask, and/or symmetrically arranged with respect to at least one scanning direction of the focused particle beam. The at least one opening of the hard mask preferably has a rectangular shape. A slot-shaped opening of the hard mask, in particular in the form of a concentric structure, eg a ring around the point of incidence of the focused particle beam on the hard mask, is also advantageous.

關於階高的上平面或硬遮罩的頂側,至少一階高的至少一邊緣及/或硬遮罩的至少一開口的至少一邊緣可包含一角度β,其在60°<β<120°的範圍內,較佳為75°<β<105°的範圍內,更佳為85°<β<95°的範圍內,最佳為89°<β<91°的範圍內。With respect to the upper plane of the step or the top side of the hard mask, at least one edge of at least one step and/or at least one edge of at least one opening of the hard mask may comprise an angle β in the range 60°<β<120 °, preferably within the range of 75°<β<105°, more preferably within the range of 85°<β<95°, most preferably within the range of 89°<β<91°.

在下平面和上平面之間具有直角的階高、或者在頂側和背側之間具有直角的硬遮罩的開口係增加了確定聚焦粒子束的束尾劑量分佈時的解析度。Having a right angled step between the lower and upper planes, or a right angled hard mask opening between the top side and the back side increases the resolution in determining the beam tail dose distribution of the focused particle beam.

照射該測試元件可包含以下群組的至少一要件: - 以該聚焦粒子束照射該至少一階高的一下平面的至少一點,使得該至少一束尾入射於該至少一階高的一上平面; - 沿著該至少一階高的至少一邊緣掃描該聚焦粒子束,使得該聚焦粒子束的該至少一束尾入射於該至少一階高的該上平面; - 以該聚焦粒子束照射該硬遮罩的至少一點,使得該至少一束尾的至少一部分入射於該硬遮罩中的該至少一開口; - 平行於該硬遮罩的該至少一開口的該至少一邊緣掃描該聚焦粒子束,使得該至少一束尾的至少一部分入射於該硬遮罩中的該至少一開口; - 照射該單層的至少一點。 Irradiating the test element may comprise at least one element of the following group: - irradiating at least one point of the lower plane of the at least one step with the focused particle beam such that the at least one beam tail is incident on an upper plane of the at least one step; - scanning the focused particle beam along at least one edge of the at least one step such that the at least one tail of the focused particle beam is incident on the upper plane of the at least one step; - irradiating at least one point of the hard mask with the focused particle beam such that at least a portion of the at least one beam tail is incident on the at least one opening in the hard mask; - scanning the focused particle beam parallel to the at least one edge of the at least one opening in the hard mask such that at least a portion of the at least one beam tail is incident on the at least one opening in the hard mask; - irradiating at least a point of the monolayer.

照射該測試元件包含以下群組的至少一要件: - 選擇該聚焦粒子束的一強度最大值與該至少一階高的該至少一邊緣之間的一距離,使得該聚焦粒子束於該至少一階高的該下平面中產生的粒子實質上無到達該至少一階高的該上表面; - 選擇該聚焦粒子束的該強度最大值與該硬遮罩中的該至少一開口的該至少一邊緣之間的一距離,使得該聚焦粒子束於該硬遮罩中產生的粒子實質上無到達該至少一開口中; - 選擇該聚焦粒子束的能量,使得該聚焦粒子束的粒子實質上無到達該單層的一後側。 Irradiating the test element comprises at least one element of the following group: - selecting a distance between an intensity maximum of the focused particle beam and the at least one edge of the at least one step such that particles generated by the focused particle beam in the lower plane of the at least one step are substantially free of reaching the upper surface of the at least one step; - selecting a distance between the intensity maximum of the focused particle beam and the at least one edge of the at least one opening in the hard mask such that particles produced by the focused particle beam in the hard mask are substantially free of reaches into the at least one opening; - selecting the energy of the focused particle beam such that substantially none of the particles of the focused particle beam reach a rear side of the monolayer.

聚焦粒子束的主要部分可於測試元件的下平面中或基底元件中產生二次粒子,例如SE及/或BSE。這些粒子不應抵達該至少一階高的上平面,否則可能與束尾的粒子或與束尾產生的二級粒子混合,並因而覆蓋了由束尾引起測試元件變化的檢測。這同樣適用於入射到硬遮罩上的粒子束。藉由在空間上分離主射束的影響和束尾的影響,即可分析束尾的劑量分佈,而實質上不受聚焦粒子束的主射束的干擾影響。The main part of the focused particle beam can generate secondary particles such as SE and/or BSE in the lower plane of the test element or in the substrate element. These particles should not reach the at least first-order high upper plane, otherwise they could mix with particles of the beam tail or with secondary particles generated from the beam tail and thus cover the detection of changes in the test element caused by the beam tail. The same applies to particle beams incident on hard masks. By spatially separating the influence of the main beam and the influence of the beam tail, the dose distribution at the beam tail can be analyzed substantially independent of interference from the main beam of the focused particle beam.

當以聚焦粒子束照射單層時,可設定粒子的動能為使得這些粒子實質上無法滲入已經施加了單層的測試元件中,因此在測試元件中產生的二次粒子無法改變單層的化學成分及/或結構。When irradiating a monolayer with a focused particle beam, the kinetic energy of the particles can be set such that these particles are virtually unable to penetrate into the test element to which the monolayer has been applied, so secondary particles generated in the test element cannot change the chemical composition of the monolayer and/or structure.

照射測試元件可包含:在聚焦粒子束的強度最大值和該至少兩階高的至少一邊緣之間的至少兩不同距離中沿著該至少兩階高的至少一邊緣掃描聚焦粒子束。Irradiating the test element may comprise scanning the focused particle beam along at least one edge of the at least two-step height in at least two different distances between an intensity maximum of the focused particle beam and at least one edge of the at least two-step height.

藉由改變聚焦粒子束的強度最大值和多個階高的邊緣之間的距離,即可確定聚焦粒子束的最佳可能定位以沿著一階高的邊緣進行掃描。這使得主射束對一或多個束尾分析的影響降到最低。By varying the distance between the intensity maxima of the focused particle beam and the edges of the multiple steps, the best possible positioning of the focused particle beam for scanning along the edges of the first steps can be determined. This minimizes the influence of the main beam on the analysis of one or more beam tails.

照射測試元件可包含:在聚焦粒子束的至少一束尾的區域中提供至少一前驅物氣體。測試元件藉由進行局部粒子束誘發化學反應來經歷佈局變化。主射束和聚焦粒子束的一或多個束尾的空間分離使得一或多個束尾的強度分佈為可見(即可測量),而不受主射束的干擾影響。Irradiating the test element may include providing at least one precursor gas in the region of at least one tail of the focused particle beam. Test elements undergo layout changes by performing localized particle beam-induced chemical reactions. The spatial separation of the main beam and the one or more beam tails of the focused particle beam enables the intensity distribution of the one or more beam tails to be visible (ie, measurable) independent of interference from the main beam.

該至少一前驅物氣體可包含選自以下群組之至少一元素:至少一蝕刻氣體、至少一沉積氣體和至少一添加物氣體。The at least one precursor gas may include at least one element selected from the group consisting of at least one etching gas, at least one deposition gas, and at least one additive gas.

所述至少一沉積氣體可包含選自以下群組之至少一元素:烷基金屬、烷基過渡元素、烷基主族、羰基金屬、羰基過渡元素、羰基主族、金屬醇鹽 、過渡元素醇鹽、主族醇鹽、金屬錯合物、過渡元素錯合物、主族錯合物和有機化合物。The at least one deposition gas may comprise at least one element selected from the following group: metal alkyl, transition element alkyl, main group alkyl, metal carbonyl, transition element carbonyl, main group carbonyl, metal alkoxide, transition element alcohol Salts, main group alkoxides, metal complexes, transition element complexes, main group complexes and organic compounds.

烷基金屬、烷基過渡元素和烷基主族可包含選自以下群組之至少一元素:環戊二烯基(Cp)三甲基鉑(CpPtMe 3)、甲基環戊二烯基(MeCp)三甲基鉑(MeCpPtMe 3)、四甲基錫(SnMe 4)、三甲基鎵(GaMe 3)、二茂鐵(Cp 2Fe)和雙芳基鉻(Ar 2Cr)。羰基金屬、羰基過渡元素和羰基主族可包含選自以下群組之至少一元素:六羰基鉻(Cr(CO) 6)、六羰基鉬(Mo(CO) 6)、六羰基鎢(W(CO) 6)、八羰基二鈷(Co 2(CO) 8)、十二羰基三釕(Ru 3(CO) 12)和五羰基鐵(Fe(CO) 5)。金屬醇鹽、過渡元素醇鹽和主族醇鹽可包含選自以下群組之至少一元素:原矽酸四乙酯(TEOS,Si(OC 2H 5) 4)和四異丙氧基鈦(Ti(OC 3H 7) 4)。金屬鹵化物、過渡元素鹵化物和主族鹵化物可包含選自以下群組之至少一元素:六氟化鎢(WF 6)、六氯化鎢(WCl 6)、四氯化鈦(TiCl 4)、三氯化硼(BCl 3)和 四氯化矽(SiCl 4)。 金屬錯合物、過渡元素錯合物和主族錯合物可包含選自以下群組之至少一元素:雙(六氟乙醯丙酮)銅(Cu(C 5F 6HO 2) 2)和三氟乙醯丙酮二甲基金(Me 2Au(C 5F 3H 4O 2))。有機化合物可包含選自以下群組之至少一元素:一氧化碳(CO)、二氧化碳(CO 2)、脂族烴、芳族烴、真空幫浦油的成分和揮發性有機化合物。 Metal alkyl, transition element alkyl and main alkyl group may contain at least one element selected from the group consisting of: cyclopentadienyl (Cp) trimethylplatinum (CpPtMe 3 ), methylcyclopentadienyl ( MeCp) trimethylplatinum (MeCpPtMe 3 ), tetramethyltin (SnMe 4 ), trimethylgallium (GaMe 3 ), ferrocene (Cp 2 Fe) and bisaryl chromium (Ar 2 Cr). Metal carbonyls, carbonyl transition elements and carbonyl main groups may contain at least one element selected from the group consisting of chromium hexacarbonyl (Cr(CO) 6 ), molybdenum hexacarbonyl (Mo(CO) 6 ), tungsten hexacarbonyl (W( CO) 6 ), dicobalt octacarbonyl (Co 2 (CO) 8 ), triruthenium dodecacarbonyl (Ru 3 (CO) 12 ), and iron pentacarbonyl (Fe(CO) 5 ). Metal alkoxides, transition element alkoxides and main group alkoxides may contain at least one element selected from the group consisting of tetraethyl orthosilicate (TEOS, Si(OC 2 H 5 ) 4 ) and titanium tetraisopropoxide (Ti(OC 3 H 7 ) 4 ). Metal halides, transition element halides and main group halides may contain at least one element selected from the group consisting of: tungsten hexafluoride (WF 6 ), tungsten hexachloride (WCl 6 ), titanium tetrachloride (TiCl 4 ), boron trichloride (BCl 3 ) and silicon tetrachloride (SiCl 4 ). Metal complexes, transition element complexes and main group complexes may contain at least one element selected from the group consisting of bis(hexafluoroacetylacetonate)copper (Cu(C 5 F 6 HO 2 ) 2 ) and Dimethyl gold trifluoroacetylacetonate (Me 2 Au(C 5 F 3 H 4 O 2 )). The organic compound may contain at least one element selected from the group consisting of carbon monoxide (CO), carbon dioxide (CO 2 ), aliphatic hydrocarbons, aromatic hydrocarbons, components of vacuum pump oil, and volatile organic compounds.

所述至少一蝕刻氣體可包含選自以下群組之至少一元素:含鹵素化合物和含氧化合物。含鹵素化合物可包含選自以下群組之至少一元素:氟(F 2)、氯(Cl 2)、溴(Br 2)、碘(I 2)、二氟化氙(XeF 2)、二氯化氙(XeCl 2)、四氯化氙(XeCl 4)、四氟化二氙(Xe 2F 4)、氫氟酸(HF)、碘化氫(HI)、溴化氫(HBr)、亞硝醯氯(NOCl)、三氯化磷(PCl 3)、五氯化磷(PCl 5)、三氟化磷(PF 3)。 含氧化合物可包含選自以下群組之至少一元素:氧(O 2)、臭氧(O 3)、水蒸氣(H 2O)、重水(D 2O)、過氧化氫(H 2O 2)、一氧化二氮(N 2O)、氮氧化物(NO)、二氧化氮(NO 2)和硝酸(HNO 3)。專利申請案第US2012/0273458A1號中則指出了其他蝕刻氣體。 The at least one etching gas may include at least one element selected from the group consisting of halogen-containing compounds and oxygen-containing compounds. The halogen-containing compound may contain at least one element selected from the group consisting of fluorine (F 2 ), chlorine (Cl 2 ), bromine (Br 2 ), iodine (I 2 ), xenon difluoride (XeF 2 ), dichloro Xenon (XeCl 2 ), xenon tetrachloride (XeCl 4 ), dixenon tetrafluoride (Xe 2 F 4 ), hydrofluoric acid (HF), hydrogen iodide (HI), hydrogen bromide (HBr), Nitrogen chloride (NOCl), phosphorus trichloride (PCl 3 ), phosphorus pentachloride (PCl 5 ), phosphorus trifluoride (PF 3 ). Oxygenates may contain at least one element selected from the following group: oxygen (O 2 ), ozone (O 3 ), water vapor (H 2 O), heavy water (D 2 O), hydrogen peroxide (H 2 O 2 ), nitrous oxide (N 2 O), nitrogen oxides (NO), nitrogen dioxide (NO 2 ) and nitric acid (HNO 3 ). Other etching gases are indicated in patent application US2012/0273458A1.

至少一添加物氣體可包含選自以下群組之至少一元素:氧化劑、鹵化物和還原劑。The at least one additive gas may comprise at least one element selected from the group consisting of oxidizing agents, halides and reducing agents.

氧化劑可包含選自以下群組之至少一元素:氧(O 2)、臭氧(O 3)、水蒸氣(H 2O)、過氧化氫(H 2O 2)、一氧化二氮(N 2O)、氧化氮(NO),二氧化氮(NO 2)和硝酸(HNO 3)。鹵化物可包含選自以下群組之至少一元素:氯(Cl 2)、鹽酸(HCl)、二氟化氙(XeF 2)、氫氟酸(HF)、碘(I 2)、碘化氫(HI)、溴(Br 2)、溴化氫(HBr)、亞硝醯氯(NOCl)、三氯化磷(PCl 3)、五氯化磷(PCl 5)和三氟化磷(PF 3)。 還原劑可包含選自以下群組之至少一元素:氫(H 2)、氨(NH 3)和甲烷(CH 4)。 The oxidizing agent may contain at least one element selected from the following group: oxygen (O 2 ), ozone (O 3 ), water vapor (H 2 O), hydrogen peroxide (H 2 O 2 ), nitrous oxide (N 2 O), nitrogen oxides (NO), nitrogen dioxide (NO 2 ) and nitric acid (HNO 3 ). The halide may contain at least one element selected from the following group: chlorine (Cl 2 ), hydrochloric acid (HCl), xenon difluoride (XeF 2 ), hydrofluoric acid (HF), iodine (I 2 ), hydrogen iodide (HI), bromine (Br 2 ), hydrogen bromide (HBr), nitrosyl chloride (NOCl), phosphorus trichloride (PCl 3 ), phosphorus pentachloride (PCl 5 ) and phosphorus trifluoride (PF 3 ). The reducing agent may contain at least one element selected from the group consisting of hydrogen (H 2 ), ammonia (NH 3 ), and methane (CH 4 ).

以聚焦粒子束照射測試元件同時提供至少一沉積氣體可在測試元件上局部引起沉積反應。當在至少一階高的上平面受聚焦粒子束的束尾照射同時提供至少一沉積氣體時,束尾的粒子可引起局部化學反應,其將材料沉積在該至少一階高的上平面上。當於硬遮罩的至少一開口受聚焦粒子束的束尾照射同時提供至少一沉積氣體時,束尾的粒子可引起局部化學反應,其將材料沉積在硬遮罩的至少一開口中。沉積在硬遮罩的至少一開口中的材料可沉積在測試元件的基底元件的頂側上。Irradiating the test element with a focused particle beam while providing at least one deposition gas locally induces a deposition reaction on the test element. When the at least one-step-high upper plane is illuminated by the beam tail of the focused particle beam while at least one deposition gas is provided, the particles at the beam tail can cause a localized chemical reaction that deposits material on the at least one-step-high upper plane. When the at least one opening in the hard mask is illuminated by the tail of the focused particle beam while at least one deposition gas is provided, the particles at the tail of the beam cause a localized chemical reaction that deposits material in the at least one opening in the hard mask. Material deposited in at least one opening of the hard mask may be deposited on the top side of the base element of the test element.

以聚焦粒子束照射測試元件同時提供至少一蝕刻氣體可在測試元件上局部引起蝕刻反應。當至少一階高的上平面受聚焦粒子束的束尾照射同時提供至少一蝕刻氣體時,束尾的粒子可引發局部化學反應,其從該至少一階高的上平面蝕刻材料。當硬遮罩的至少一開口受聚焦粒子束的束尾照射同時提供至少一蝕刻氣體時,束尾的粒子可誘發局部化學反應,其蝕刻在硬遮罩的至少一開口中的材料。於硬遮罩的至少一開口中蝕刻的材料可在測試元件的基底元件的頂側上被蝕刻。Irradiating the test element with a focused particle beam while providing at least one etching gas locally induces an etching reaction on the test element. When the at least one-step-high upper plane is irradiated by the beam tail of the focused particle beam while at least one etching gas is provided, the particles of the beam tail can initiate a localized chemical reaction that etches material from the at least one-step-high upper plane. When the at least one opening of the hard mask is illuminated by the tail of the focused particle beam while at least one etching gas is provided, the particles at the tail of the beam induce a localized chemical reaction that etches material in the at least one opening of the hard mask. The material etched in at least one opening of the hard mask may be etched on the top side of the base element of the test element.

所述測量該測試元件的該至少一變化包含以下群組的至少一要件: - 使用一掃描式探針顯微鏡的一測量探針掃描至少由該聚焦粒子束的該至少一束尾所覆蓋的該測試元件的區域; - 使用一檢測射束掃描至少該聚焦粒子束的該至少一束尾覆蓋的該測試元件的區域,以及分析由該檢測射束所產生的粒子; - 使用一光學系統成像至少由該聚焦粒子束的該至少一束尾所覆蓋的該測試元件的區域; - 製備該聚焦粒子束的該至少一束尾所覆蓋的該測試元件的區域的至少一部分,以及使用一穿透式電子顯微鏡的電子束成像該測試元件的該製備部分。 Said measuring the at least one change of the test element comprises at least one element of the following group: - scanning at least the area of the test element covered by the at least one tail of the focused particle beam using a measuring probe of a scanning probe microscope; - scanning at least the area of the test element covered by the at least one tail of the focused particle beam with a detection beam, and analyzing particles generated by the detection beam; - imaging at least the area of the test element covered by the at least one tail of the focused particle beam using an optical system; - preparing at least a portion of the area of the test element covered by the at least one tail of the focused particle beam, and imaging the prepared portion of the test element using an electron beam of a transmission electron microscope.

當使用固定的聚焦粒子束照射測試元件時,束尾的整個三維(3-D)強度分佈的一部分被成像到測試元件中或到測試元件上。因此,可檢測3-D束尾的一部分。然而,此處理機制的一可能缺點是較差的訊雜比,其可能會限制束尾的確定準確性。When a test element is irradiated with a fixed focused particle beam, a portion of the entire three-dimensional (3-D) intensity distribution of the beam tail is imaged into or onto the test element. Thus, a portion of the 3-D beam tail can be detected. However, a possible disadvantage of this processing mechanism is poor signal-to-noise ratio, which may limit the accuracy of beam tail determination.

相對下,如果沿測試結構的邊緣掃描聚焦粒子束,則束尾的3-D強度分佈沿邊緣減小為二維(2-D)強度分佈,亦即其係平行於掃描方向而加以平均。如此所產生具有提升訊雜比之含有測試結構中或測試結構上的束尾的圖像表示的二維輪廓。或換句話說:當沿邊緣掃描聚焦粒子束時,束尾的影響分佈在一區域上。對變異區域進行平均會產生具有提升訊雜比的束尾輪廓。In contrast, if the focused particle beam is scanned along the edge of the test structure, the 3-D intensity distribution at the beam tail is reduced to a two-dimensional (2-D) intensity distribution along the edge, ie it is averaged parallel to the scan direction. A two-dimensional profile containing an image representation of the beam tail in or on the test structure is thus produced with an improved signal-to-noise ratio. Or in other words: when a focused particle beam is scanned along an edge, the effect of the beam tail is distributed over an area. Averaging the variable regions produces a beam tail profile with an improved signal-to-noise ratio.

掃描式探針顯微鏡可包含以下群組之至少一要件:原子力顯微鏡(AFM)、磁力顯微鏡(MFM)、掃描式穿隧顯微鏡(STM)、掃描式近場光學顯微鏡(SNOM)以及掃描式近場聲學顯微鏡(SNAM)。掃描式探針顯微鏡可包含一或多個並行操作的測量探針。A scanning probe microscope may comprise at least one element of the following groups: atomic force microscope (AFM), magnetic force microscope (MFM), scanning tunneling microscope (STM), scanning near-field optical microscope (SNOM), and scanning near-field Acoustic Microscopy (SNAM). A scanning probe microscope may comprise one or more measurement probes operating in parallel.

掃描式探針顯微鏡能夠測量由聚焦粒子束的至少一束尾結合至少一蝕刻氣體照射測試元件而引起的測試元件的佈局變化。結合至少一蝕刻氣體,所述至少一束尾可藉由蝕刻或沉積材料來改變至少一階高的上平面或下平面的佈局。目前較佳是改變至少一階高的上平面。結合至少一前驅物氣體,所述至少一束尾可藉由蝕刻或沉積材料來改變硬遮罩及/或硬遮罩的至少一開口的佈局。目前較佳是改變硬遮罩的至少一開口。The scanning probe microscope is capable of measuring changes in the layout of a test element caused by irradiating the test element with at least one tail of a focused particle beam in combination with at least one etching gas. Combined with at least one etching gas, the at least one beam tail can change the layout of the upper plane or the lower plane of at least one step by etching or depositing materials. It is presently preferred to change the upper plane of at least one order of height. In combination with at least one precursor gas, the at least one tail can alter the layout of the hard mask and/or at least one opening of the hard mask by etching or depositing material. It is presently preferred to change at least one opening of the hard mask.

若硬遮罩應用於測試元件的基底元件,則聚焦粒子束的至少一束尾係結合至少一前驅物氣體而改變測試元件的基底元件。在使用掃描式探針顯微鏡的測量探針掃描硬遮罩的至少一開口之前,從測試元件移除硬遮罩可能是有利的。硬遮罩可藉由進行蝕刻製程去除。蝕刻製程可為粒子束誘發蝕刻製程。調適用於對硬遮罩的材料從測試元件移除硬遮罩的蝕刻氣體是有利的。If the hard mask is applied to the base element of the test element, at least one tail of the focused particle beam combines with at least one precursor gas to alter the base element of the test element. It may be advantageous to remove the hard mask from the test element before scanning at least one opening of the hard mask with the measurement probe of the scanning probe microscope. The hard mask can be removed by performing an etch process. The etching process may be a particle beam induced etching process. It is advantageous to adapt the etching gas to remove the hard mask from the test element to the material of the hard mask.

檢測射束可為聚焦粒子束。然而,該檢測射束和聚焦粒子束也可使用不同的粒子類型。舉例而言,檢測射束可使用電子,而聚焦粒子束可使用離子。被檢測射束照射的測試元件中產生的粒子可為SE及/或BSE。此外,可使用光子來測量由聚焦粒子束的至少一束尾引起的測試元件的變化,且所述光子可經X射線分析。此外,還可分析檢測射束產生的歐傑電子(Auger electron)。The detection beam may be a focused particle beam. However, it is also possible to use different particle types for the detection beam and the focused particle beam. For example, a detection beam can use electrons, and a focused particle beam can use ions. The particles generated in the test element irradiated by the detection beam can be SE and/or BSE. Furthermore, photons can be used to measure changes in the test element caused by at least one tail of the focused particle beam, and the photons can be analyzed by X-rays. In addition, Auger electrons generated by the detection beam can be analyzed.

光學系統可包含以下群組之至少一元件:共焦雷射掃描式顯微鏡(CLSM)、掃描式近場光學顯微鏡(SNOM)、航空圖像生成顯微鏡、以及干涉儀。The optical system may comprise at least one element from the following group: Confocal Laser Scanning Microscope (CLSM), Scanning Near Field Optical Microscope (SNOM), Aerial Image Generating Microscope, and Interferometer.

測量測試結構的至少一變化可包含:使用檢測射束以至少掃描由聚焦粒子束的束尾所覆蓋的單層區域。Measuring at least one change in the test structure may include using the detection beam to scan at least a monolayer area covered by the beam tail of the focused particle beam.

如同上述實施例中,檢測射束可使用與聚焦粒子束相同的粒子類型;此實施例是有利的,但是相同的粒子束來源可用於改變單層和用於分析所引起的變化。如果檢測射束和聚焦粒子束使用具有質量的粒子,則粒子入射到單層上的動能是在這些射束方面有所不同的參數。檢測射束較佳是使用電子來掃描被聚焦粒子束照射的單層。在SE電子所產生的單層圖像中,已經可呈現單層的微小變化。As in the above embodiment, the detection beam can use the same particle type as the focused particle beam; this embodiment is advantageous, but the same particle beam source can be used to modify the monolayer and to analyze the resulting changes. If the detection beam and the focused particle beam use particles with mass, the kinetic energy of the particle incident on the monolayer is the parameter that differs with respect to these beams. The detection beam preferably uses electrons to scan the monolayer illuminated by the focused particle beam. In the monolayer image produced by SE electrons, small changes of the monolayer can already be presented.

然而,檢測射束和聚焦粒子束也可使用不同的粒子類型。However, it is also possible to use different particle types for the detection beam and the focused particle beam.

該至少一單層可包含一自組合有機化合物。The at least one monolayer may comprise a self-assembling organic compound.

自組合有機化合物(SAM,自組合單層)可在將基材浸入表面活性的溶液或懸浮液或有機物質的同時形成。自組合有機化合物的厚度可包含介於0.1nm至50nm、較佳為0.5nm至20nm、更佳為.8nm至10nm、且最佳為1nm至5nm的範圍。Self-assembled organic compounds (SAM, self-assembled monolayers) can be formed while immersing the substrate in a solution or suspension of surface-active or organic substances. The thickness of the self-assembled organic compound may range from 0.1 nm to 50 nm, preferably from 0.5 nm to 20 nm, more preferably from .8 nm to 10 nm, and most preferably from 1 nm to 5 nm.

舉例而言,自組合化合物形成鏈烷硫醇或烷基三氯矽烷。舉例而言,烷烴或碳鏈長度為8個(C 8H 17SH)至15個碳原子(C 15H 31SH)的烷硫醇可以形成單層,其厚度適合於使束尾成像。束尾的一次電子和一次電子產生的SE可與單層相互作用。因此,可在單層中發生電子束誘發的反應。這相互作用伴隨著從一次電子及/或SE到單層碳鏈碳原子的能量轉移。束尾的電子(通常是粒子)可改變烷烴的鏈長,亦即藉由粒子束引起的烷烴鏈斷裂來縮短鏈長。此外,聚焦粒子束的束尾的粒子可改變硫醇基或位於距離單層表面距離的烷基鏈末端的末端官能基團。可使用檢測射束來分析單層的(多個)變化,例如藉由引起的SE對比變化。 For example, alkanethiols or alkyltrichlorosilanes are formed from combination compounds. For example, alkanes or alkanethiols with chain lengths of 8 (C 8 H 17 SH ) to 15 carbon atoms (C 15 H 31 SH ) can form monolayers with a thickness suitable for imaging beam tails. The primary electrons at the tail of the beam and the SE generated by the primary electrons can interact with the monolayer. Thus, electron beam-induced reactions can occur in the monolayer. This interaction is accompanied by energy transfer from primary electrons and/or SE to monolayer carbon chain carbon atoms. The electrons (usually particles) at the tail of the beam can change the chain length of the alkane, that is, shorten the chain length by breaking the alkane chain caused by the particle beam. In addition, particles at the beam tail of the focused particle beam can alter thiol groups or terminal functional groups located at the ends of alkyl chains at a distance from the monolayer surface. The detection beam can be used to analyze the change(s) of the monolayer, eg by induced SE contrast changes.

該測試元件包含選自以下群組之至少一元素製成的至少一層:金(Au)、銀(Ag)、鉑(Pt)、銅(Cu)、石墨(C)與矽(Si)。The test element includes at least one layer made of at least one element selected from the following group: gold (Au), silver (Ag), platinum (Pt), copper (Cu), graphite (C) and silicon (Si).

因此,由矽晶圓產生的測試元件係直接適用於(亦即在沒有沉積一進一步層的情況下適用於)形成單層形式的測試結構。對照下,從光學遮罩的基材產生測試元件則需要沉積由上述元素之一者製成的薄金屬層,使得可在測試元件上形成穩定的自組合單層作為測試結構。Test elements produced from silicon wafers are therefore directly suitable (ie without depositing a further layer) for forming test structures in monolayer form. In contrast, producing a test element from a substrate of an optical mask requires depositing a thin metal layer made of one of the aforementioned elements, so that a stable self-assembled monolayer can be formed on the test element as a test structure.

單層可應用於上述多個測試結構之一。由聚焦粒子束的束尾引起的單層變化係由於主射束和束尾之間的空間分離而實質上不受主射束的影響,其可用於確定粒子束的束尾的強度分佈。A single layer can be applied to one of several test structures described above. The monolayer variation induced by the beam tail of the focused particle beam, which is substantially unaffected by the main beam due to the spatial separation between the main beam and the beam tail, can be used to determine the intensity profile of the beam tail of the particle beam.

一種含有多個指令電腦程式,當一電腦系統執行該電腦程式促使該電腦系統執行上述方法之一者的多個步驟。A computer program containing a plurality of instructions. When a computer system executes the computer program, it causes the computer system to perform a plurality of steps of one of the above-mentioned methods.

在實施例17中,一種用於確定粒子束於樣品上之強度分佈的裝置包含:(a)一設定單元,其配置成設定該聚焦粒子束的至少一參數,使得當一測試元件受該聚焦粒子束照射時,該聚焦粒子束引起該測試元件的至少一可測量變化;及(b)一測量單元,其配置成測量該測試元件的該至少一變化以確定該聚焦粒子束的該至少一束尾的強度變化。In embodiment 17, an apparatus for determining an intensity distribution of a particle beam on a sample comprises: (a) a setting unit configured to set at least one parameter of the focused particle beam such that when a test element is subjected to the focused upon irradiation with a particle beam, the focused particle beam causes at least one measurable change in the test element; and (b) a measurement unit configured to measure the at least one change in the test element to determine the at least one change in the focused particle beam The intensity variation of the beam tail.

設定單元可設定粒子束源及/或粒子束成像系統的各種參數。設定單元可調整的參數可包含:具有質量的粒子束的動能、聚焦粒子束的束腰徑、束腰徑在束流方向上的位置、束流、掃描方案、 聚焦粒子束的孔徑角和消散設定。掃描方案描述了聚焦粒子束在一平面上的運動。The setting unit can set various parameters of the particle beam source and/or the particle beam imaging system. The adjustable parameters of the setting unit may include: the kinetic energy of the particle beam with mass, the beam waist diameter of the focused particle beam, the position of the beam waist diameter in the beam direction, the beam current, the scanning scheme, the aperture angle of the focused particle beam and the dissipation set up. A scanning scheme describes the motion of a focused particle beam in a plane.

此外,設定單元可配置成設定檢測射束的參數。檢測射束的參數可包含聚焦粒子束的參數。此外,設定單元可配置成設定檢測射束的檢測裝置的各種參數設定。檢測裝置的參數可包含:檢測器的加速電壓、檢測器的能量過濾器和檢測器類型。Furthermore, the setting unit may be configured to set parameters of the detection beam. The parameters of the detection beam may include parameters of the focused particle beam. Furthermore, the setting unit may be configured to set various parameter settings of the detection device of the detection beam. The parameters of the detection device may include: the accelerating voltage of the detector, the energy filter of the detector and the type of detector.

該裝置可更包含一用於該測試元件之固持裝置。用於該測試元件之固持裝置可為一與樣品固定座分開的單元。The device may further include a holding device for the test element. The holding device for the test element can be a separate unit from the sample holder.

測試元件可包含數個測試結構。因此,在裝置的使用壽命期間,必要時可重複使用單個測試元件來分析裝置的聚焦粒子束的至少一束尾。然而,也可針對至少一束尾的每個單獨的分析程序使用專用的測試元件。此外,還可使用用於製造該測試元件的裝置。A test element may contain several test structures. Thus, during the service life of the device, a single test element can be reused, if necessary, to analyze at least one tail of the focused particle beam of the device. However, it is also possible to use a dedicated test element for each individual analysis procedure of at least one tail. In addition, the apparatus for manufacturing the test element can also be used.

該固持裝置包含一定位單元,其配置成將該測試元件定位於該聚焦粒子束下方及/或該測量單元下方。The holding device includes a positioning unit configured to position the test element below the focused particle beam and/or below the measurement unit.

定位單元可包含一或多個微型操縱器,其能夠在一、兩或三個空間方向上移動測試元件。The positioning unit may comprise one or more micromanipulators capable of moving the test element in one, two or three spatial directions.

此外,該裝置可包含一計算單元,其配置成從該測試元件的該測量變化確定該聚焦粒子束的該至少一束尾的強度分佈。Furthermore, the device may comprise a computing unit configured to determine an intensity distribution of the at least one tail of the focused particle beam from the measured variation of the test element.

以下說明根據本發明之方法和根據本發明之裝置的當前較佳實施例。使用掃描式電子顯微鏡(SEM)結合掃描式探針顯微鏡(SPM)的示例來解釋根據本發明的裝置。然而,根據本發明的方法和根據本發明的裝置並不限於確定具有電子束形式的質量的粒子束的束尾。相反,這些可用於分析其粒子包含玻粒子或費米粒子的任何粒子束的束尾。如果粒子束包括光子束,則根據本發明的方法尤其可用於短波長光子,亦即波長在深紫外光(DUV)波長範圍內、或甚至更短波長範圍內的光子。Presently preferred embodiments of the method according to the invention and the device according to the invention are described below. The device according to the invention is explained using the example of a scanning electron microscope (SEM) in combination with a scanning probe microscope (SPM). However, the method according to the invention and the device according to the invention are not limited to determining the beam tail of a particle beam having a mass in the form of an electron beam. Instead, these can be used to analyze the beam tail of any particle beam whose particles contain glass particles or Fermi particles. If the particle beam comprises a photon beam, the method according to the invention is especially useful for short-wavelength photons, ie photons with wavelengths in the deep ultraviolet (DUV) wavelength range, or even shorter wavelength ranges.

此外,本申請案中描述的方法和相關裝置可用於使用掃描式聚焦粒子束記錄圖像的顯微鏡。以下,粒子束包含具有質量的粒子束、以及含有不具靜止質量的粒子的粒子束。In addition, the methods and associated devices described in this application can be used in microscopes that record images using scanning focused particle beams. Hereinafter, a particle beam includes a particle beam having mass, and a particle beam including particles without rest mass.

圖1a示意顯示了聚焦粒子束100的輪廓。例示的粒子束100包含一聚焦粒子束100。聚焦粒子束100包含一主射束110(其包含電子的主要部分)、以及兩束尾120和130。在本申請案中所使用的主射束100的定義係如上所述。聚焦粒子束100具有一強度最大值I 0190。如圖1a之示意說明,聚焦粒子束100的輪廓(不同於理想高斯射束的輪廓)並不從中心或強度最大值I 0190開始單調減小,且射束輪廓不是中心對稱的。這表示聚焦粒子束100的一或多個束尾120、130同樣不是中心對稱的;相反,在紙面中,聚焦粒子束100具有鑑於強度分佈不同的兩束尾120、130。 FIG. 1 a schematically shows the profile of a focused particle beam 100 . The exemplary particle beam 100 includes a focused particle beam 100 . Focused particle beam 100 includes a main beam 110 (which contains a major portion of electrons), and two tails 120 and 130 . The definition of main beam 100 used in this application is as described above. Focused particle beam 100 has an intensity maximum I 0 190 . As schematically illustrated in Figure 1a, the profile of a focused particle beam 100 (unlike that of an ideal Gaussian beam) does not decrease monotonically from the center or intensity maximum I0 190, and the beam profile is not centrosymmetric. This means that one or more beam tails 120 , 130 of the focused particle beam 100 are likewise not centrosymmetric; instead, in the paper, the focused particle beam 100 has two beam tails 120 , 130 that differ in view of the intensity distribution.

如同在上文中已經解釋,主射束或中心射束110在本申請案中被定義為,其區域中強度從最大值I 0開始下降到最大強度的特定百分比。舉例而言,此可下降到 I 0∙e -2。在主射束110外的非消失強度區域形成束尾120和130。 As already explained above, the main beam or central beam 110 is defined in this application as the region in which the intensity drops from a maximum value I0 to a certain percentage of the maximum intensity. For example, this can be reduced to I 0 ·e −2 . Beam tails 120 and 130 are formed in non-vanishing intensity regions outside the main beam 110 .

圖 2 說明了以具有窄峰和不對稱束尾120、130的聚焦粒子束 100所暴露的樣品區域。聚焦粒子束100的窄峰集中在小區域200中。下一較大的區域表示樣品的缺陷區域的像素150,其應當由聚焦粒子束100結合一或多個前驅物氣體加以處理。區域210、220、230和240表示聚焦粒子束100的束尾120、130的各個部分。在圖2中再現的示例中,束尾在x方向(在水平方向中),但束尾相對於y方向(在垂直方向中)的強度最大值是對稱的。FIG. 2 illustrates a sample area exposed with a focused particle beam 100 having a narrow peak and asymmetric beam tails 120, 130. The narrow peak of the focused particle beam 100 is concentrated in a small region 200 . The next larger area represents pixels 150 of defective regions of the sample that should be processed by the focused particle beam 100 in combination with one or more precursor gases. Regions 210 , 220 , 230 and 240 represent respective portions of beam tails 120 , 130 of focused particle beam 100 . In the example reproduced in Figure 2, the beam tail is in the x-direction (in the horizontal direction), but the beam tail is symmetrical with respect to the intensity maximum in the y-direction (in the vertical direction).

即使區域210、220、230和240中的束尾120、130的強度水平與主射束110的強度最大值相比較小,束尾120、130因其絕對尺寸而可攜帶聚焦粒子束110的整個強度的顯著部分。在聚焦粒子束100的光學系統的對應像差的情況下,在極端情況中,會有高達整個射束強度的一半可能存在於束尾中。Even if the intensity levels of beam tails 120, 130 in regions 210, 220, 230 and 240 are small compared to the intensity maximum of main beam 110, beam tails 120, 130 can carry the entire mass of focused particle beam 110 due to their sheer size. A significant portion of the strength. With corresponding aberrations of the optical system focusing the particle beam 100, in extreme cases up to half of the entire beam intensity may be present in the beam tail.

請即重新參考圖1,聚焦電子束100被引導向樣品140處。在圖1a再現的部分中,樣品100具有圖1a中未示之缺陷。樣品140的缺陷應藉由執行粒子束誘發的局部化學製成來進行修復。在圖1a所示的示例中,聚焦電子束100可執行局部電子束誘發蝕刻(EBIE)製程及/或局部電子束誘發沉積(EBID)製程。Referring back now to FIG. 1 , focused electron beam 100 is directed toward sample 140 . In the portion reproduced in Figure 1a, the sample 100 has defects not shown in Figure 1a. Defects in the sample 140 should be repaired by performing particle beam-induced local chemical fabrication. In the example shown in FIG. 1a, the focused electron beam 100 may perform a localized electron beam induced etching (EBIE) process and/or a localized electron beam induced deposition (EBID) process.

為了進行修復處理,樣品140的缺陷區域被分為像素150,聚焦電子束100依序掃描像素150。結合相應的前驅物氣體,聚焦電子束100從樣品140局部移除材料、或在樣品140上局部沉積材料。For the repair process, the defective area of the sample 140 is divided into pixels 150, and the focused electron beam 100 scans the pixels 150 sequentially. The focused electron beam 100 locally removes material from, or locally deposits material on, the sample 140 in combination with a corresponding precursor gas.

圖1a顯示了樣品140中待由聚焦電子束100處理的區域的像素150。由於束尾120和130,以聚焦電子束100照射像素150也無意中導致粒子束在像素150外部的區域160、170、210至240 中引起局部化學反應。從圖2和圖1b中可知(後者同樣再現了聚焦粒子束100於樣品140的像素150上 的平面圖),束尾120和130導致比待處理的像素150的區域大出許多倍之聚焦粒子束100的處理區域180。FIG. 1 a shows pixels 150 of a region of a sample 140 to be treated by a focused electron beam 100 . Irradiating the pixel 150 with the focused electron beam 100 also inadvertently causes the particle beam to induce localized chemical reactions in the regions 160 , 170 , 210 - 240 outside the pixel 150 due to the beam tails 120 and 130 . From Fig. 2 and Fig. 1 b (the latter also reproduces the plan view of the focused particle beam 100 on the pixel 150 of the sample 140), the beam tails 120 and 130 result in a focused particle beam many times larger than the area of the pixel 150 to be processed 100 of the processing area 180 .

為了控制、且更具體為最佳化樣品140的粒子束誘發局部製程處理,因而除了知道主射束110的射束輪廓以外,還需要知道束尾120和130中存在的輻射劑量的分佈。如果聚焦粒子束100是用於對樣品140成像,這也同樣適用。In order to control, and more particularly optimize, particle beam-induced localized processing of sample 140 , knowledge of the radiation dose distribution present in beam tails 120 and 130 is thus required in addition to knowledge of the beam profile of main beam 110 . The same applies if the focused particle beam 100 is used to image the sample 140 .

以下詳細說明了有助於對聚焦粒子束100的束尾120、130的強度分佈進行定量分析的各種示例實施例。Various example embodiments that facilitate quantitative analysis of the intensity distribution of the beam tails 120, 130 of the focused particle beam 100 are detailed below.

圖 3 於上方部分圖像中顯示了測試元件300的第一示例實施例的示意平面圖,於下方部分圖像中顯示了通過測試元件300的示意剖面。測試元件300包含一基底元件310和一結構元件390。圖3的示例測試元件300包含一光微影遮罩的基材310作為基底元件310。兩矩形圖案元件320和360已經作為結構元件390而被施加到測試元件300的基底元件310。矩形圖案元件320和360可為光學遮罩的任何圖案元件,例如吸收及/或相移圖案元件。這兩圖案元件形成至少兩階高320和360。其的高度380可介於從50nm至2000nm的範圍。階高320、360的上平面340形成圖案元件320、360的表面。兩階高320、360的下平面350形成測試元件300的基底元件310的表面370。FIG. 3 shows a schematic plan view of a first exemplary embodiment of a test element 300 in the upper partial image and a schematic cross-section through the test element 300 in the lower partial image. The test element 300 includes a base element 310 and a structural element 390 . The exemplary test element 300 of FIG. 3 includes a photolithographic mask substrate 310 as the base element 310 . Two rectangular pattern elements 320 and 360 have been applied as structural elements 390 to the base element 310 of the test element 300 . Rectangular pattern elements 320 and 360 may be any pattern elements of an optical mask, such as absorbing and/or phase shifting pattern elements. These two pattern elements form at least two steps 320 and 360 . Its height 380 may range from 50nm to 2000nm. The upper plane 340 of the steps 320 , 360 forms the surface of the pattern elements 320 , 360 . The lower plane 350 with two steps 320 , 360 forms the surface 370 of the base element 310 of the test element 300 .

兩階高320、360的邊緣330表示從上平面340到下平面350的轉變。在圖3所示的示例測試元件300中,邊緣330具有實質上為90°的角度α。該角度有利於下文中解釋的測試元件的功能。在圖3中,邊緣330具有截面直輪廓。上平面340內的角度β同樣具有實質上為90°的角度。Edge 330 with two steps 320 , 360 represents the transition from upper plane 340 to lower plane 350 . In the example test element 300 shown in Figure 3, the edge 330 has an angle a of substantially 90°. This angle facilitates the function of the test element explained below. In FIG. 3, the edge 330 has a cross-sectional straight profile. The angle β in the upper plane 340 likewise has an angle of substantially 90°.

圖4呈現了使用測試元件300來分析聚焦粒子束100的束尾120、130的第一示意性示例。在第一步驟中,粒子束100的焦點被設置到階高 320、360的上平面 340上。這由圖4下方部分圖像中的束腰徑400所示意說明。在下一步驟中,束腰徑400或強度最大值係相對於階高320、360的邊緣330而定位,使得聚焦粒子束100的主射束110在階高320、360的下平面350上照射經過階高320、360的邊緣330,且束尾120係聚焦在階高320、360的上平面340上。聚焦粒子束100相對於邊緣330的最佳定位可由改變聚焦粒子束100的強度最大值I 0和邊緣330之間的距離來實驗性確定。 FIG. 4 presents a first schematic example of using a test element 300 to analyze beam tails 120 , 130 of a focused particle beam 100 . In a first step, the focus of the particle beam 100 is set onto the upper plane 340 of the steps 320 , 360 . This is illustrated schematically by the beam waist diameter 400 in the lower partial image of FIG. 4 . In a next step, the beam waist diameter 400 or intensity maxima are positioned relative to the edge 330 of the steps 320, 360 such that the main beam 110 of the focused particle beam 100 passes through on the lower plane 350 of the steps 320, 360. The edges 330 of the steps 320 , 360 and the beam tail 120 are focused on the upper plane 340 of the steps 320 , 360 . The optimal positioning of the focused particle beam 100 relative to the edge 330 can be determined experimentally by varying the distance between the intensity maximum I 0 of the focused particle beam 100 and the edge 330 .

在此對準之後,在束尾120的區域中提供前驅物氣體,而且所述前驅物氣體由已經相對於邊緣330進行最佳對齊的粒子束100照射達一段預定持續時間。具有蝕刻氣體形式的前驅物氣體自階高320、360的上平面340局部移除材料,其由束尾120的粒子和蝕刻氣體的組合效應所引起。舉例而言,含鹵素的蝕刻氣體,例如二氟化氙(XeF 2),可用作為蝕刻氣體。如果在束尾120 的區域中提供沉積氣體,則束尾120的強度分佈會導致材料沉積在階高320、360的上平面340上。舉例而言,羰基金屬,例如六羰基鉻(Cr(CO) 6),可用作為沉積氣體。藉由蝕刻或沉積材料來改變階高320、360的上平面340係持續將束尾120的強度分佈映射到測試元件300的階高320、360的上平面340中。 After this alignment, a precursor gas is provided in the region of the beam tail 120 and is irradiated for a predetermined duration by the particle beam 100 which has been optimally aligned relative to the edge 330 . The precursor gas in the form of an etching gas locally removes material from the upper plane 340 of the steps 320, 360 caused by the combined effect of the particles of the beam tail 120 and the etching gas. For example, a halogen-containing etching gas, such as xenon difluoride (XeF 2 ), may be used as the etching gas. If a deposition gas is provided in the region of the beam tail 120 , the intensity distribution of the beam tail 120 causes material to be deposited on the upper plane 340 of the steps 320 , 360 . For example, metal carbonyls, such as chromium hexacarbonyl (Cr(CO) 6 ), can be used as deposition gases. Changing the upper plane 340 of the steps 320 , 360 by etching or depositing material continues to map the intensity distribution of the beam tail 120 into the upper plane 340 of the steps 320 , 360 of the test element 300 .

將聚焦粒子束100的主射束110的影響與束尾120的影響進行空間分離有助於束尾120的強度分佈之可見­性或可測量的再現。前驅物氣體的提供無法在空間上集中到可使得前驅物氣體的氣體分子僅存在於階高320、360的上平面340上的程度。這表示聚焦粒子束100的主射束110也改變階高320、360的下平面350,就像(在較小程度上)聚焦粒子束100的束尾130一樣。然而,下平面350的改變是以與由測試元件300的測試結構390的階高320、360的上平面340中的束尾120所觸發之局部化學反應在空間上分離的方式執行。因此,主射束110的作用實質上不影響束尾120的強度分佈持續映射至階高320、360的上平面340中或上。Spatial separation of the influence of the main beam 110 and the beam tail 120 of the focused particle beam 100 facilitates the visible or measurable reproduction of the intensity distribution of the beam tail 120 . The provision of the precursor gas cannot be spatially concentrated to such an extent that the gas molecules of the precursor gas are only present on the upper plane 340 of the steps 320 , 360 . This means that the main beam 110 of the focused particle beam 100 also changes the lower plane 350 of the steps 320 , 360 , just like (to a lesser extent) the beam tail 130 of the focused particle beam 100 . However, the modification of the lower plane 350 is performed in a spatially separate manner from the local chemical reaction triggered by the beam tail 120 in the upper plane 340 of the steps 320 , 360 of the test structure 390 of the test element 300 . Thus, the action of the main beam 110 does not substantially affect the continued mapping of the intensity distribution of the beam tail 120 into or onto the upper plane 340 of the steps 320 , 360 .

聚焦粒子束100的束尾130可在一或多個前驅物氣體的幫助下利用階高320的左邊緣330而變得可見。替代上,也可使用測試元件300的測試結構390的階高320的右邊緣330來持續映射聚焦粒子束100的束尾130。The beam tail 130 of the focused particle beam 100 can be made visible using the left edge 330 of the step 320 with the aid of one or more precursor gases. Alternatively, the right edge 330 of the step 320 of the test structure 390 of the test element 300 can also be used to continuously map the beam tail 130 of the focused particle beam 100 .

測試元件300的測試結構390的階高320、360可促進主射束110和束尾130於下平面350的影響、以及束尾120於測試結構390的上平面340的影響之間的空間分離。當藉由以聚焦粒子束100照射來改變平面樣品140時,主射束110的遠遠較高強度的效應將掩蓋束尾120、130的效應,因此無法分析束尾120、130的強度分佈。由於主射束110和束尾120、130在沿著射束傳播的不同平面上的入射,主射束110的SE和BSE實質上無法到達束尾120、130的檢測區域340中。The steps 320 , 360 of the test structure 390 of the test element 300 may facilitate spatial separation between the influence of the main beam 110 and beam tail 130 on the lower plane 350 , and the influence of the beam tail 120 on the upper plane 340 of the test structure 390 . When modifying the planar sample 140 by irradiating with the focused particle beam 100, the effect of the much higher intensity of the main beam 110 will mask the effect of the beam tails 120, 130, so the intensity distribution of the beam tails 120, 130 cannot be analyzed. Due to the incidence of the main beam 110 and the beam tails 120 , 130 on different planes along the beam propagation, the SE and BSE of the main beam 110 cannot substantially reach the detection region 340 of the beam tails 120 , 130 .

原則上,也可反向執行所述程序。這表示粒子束100的焦點400是設於下平面350上,且粒子束100的主要部分110是以令束尾120或130聚焦於下平面350上的方式而被引導向測試結構 390 的上平面 340。然而,在此實施例中,主射束110在階高320、360中產生粒子,其中一些粒子從邊緣330下方的階高320、360出現並可入射於下平面350上。因此,主射束110的一些影響可轉移到束尾120或130暴露的區域中。這會使束尾部120和130的強度分佈的分析更加困難。因此,這實施例不是較佳的。In principle, the procedure described can also be carried out in reverse. This means that the focal point 400 of the particle beam 100 is set on the lower plane 350 and the main part 110 of the particle beam 100 is directed towards the upper plane of the test structure 390 in such a way that the beam tail 120 or 130 is focused on the lower plane 350 340. However, in this embodiment, the main beam 110 produces particles in the steps 320 , 360 , some of which emerge from the steps 320 , 360 below the edge 330 and may be incident on the lower plane 350 . Therefore, some of the influence of the main beam 110 may be transferred into the area where the beam tail 120 or 130 is exposed. This makes the analysis of the intensity distribution at the beam tails 120 and 130 more difficult. Therefore, this embodiment is not preferred.

圖5呈現了具有測試結構590的測試元件500的示意平面圖。圖5的測試元件500的示例性測試結構590被應用於基底元件510。舉例而言,基底元件 可為光學遮罩的基材,在其中已蝕刻有矩形或正方形凹陷。然而,測試元件500的測試結構590也可為晶圓的接觸孔。也可藉由在基底元件510上沉積材料來產生測試結構590。FIG. 5 presents a schematic plan view of a test element 500 with a test structure 590 . The exemplary test structure 590 of the test element 500 of FIG. 5 is applied to the base element 510 . For example, the base element can be the substrate of an optical mask into which rectangular or square depressions have been etched. However, the test structure 590 of the test device 500 may also be a contact hole of a wafer. The test structure 590 may also be created by depositing material on the base element 510 .

圖5的示例性測試結構590包含一正方形階高520。階高520具有一上平面540和一下平面550。下平面550是基底元件510的表面570。階高520的上平面540具有沿其圍繞的邊緣530,其在上平面540中具有四個直角β。此外,邊緣530相對於下平面550具有直角,即α=90°。階高520的邊緣530可用於分析聚焦粒子束100的束尾120、130(類似於圖4的說明)。這表示粒子束100的焦點400是位於階高520的上平面540中。藉由從四個不同側部成像的束尾120、130,可非常精確確定束尾的輪廓。The exemplary test structure 590 of FIG. 5 includes a square step 520 . The step 520 has an upper plane 540 and a lower plane 550 . The lower plane 550 is the surface 570 of the base element 510 . The upper plane 540 of the step 520 has an edge 530 surrounding it, which has four right angles β in the upper plane 540 . Furthermore, the edge 530 has a right angle with respect to the lower plane 550, ie α=90°. The edge 530 of the step 520 can be used to analyze the beam tails 120, 130 of the focused particle beam 100 (similar to the illustration of FIG. 4). This means that the focal point 400 of the particle beam 100 is located in the upper plane 540 of the step 520 . With beam tails 120, 130 imaged from four different sides, the beam tail profile can be determined very accurately.

然而,用於確定束尾120、130的強度分佈的暴露次數不限於兩或四次。相反,束尾120、130可在必要時暴露任意次數,以獲得盡可能全面的關於束尾120、130中的強度分佈的圖像。舉例而言,為此,測試元件 300、500可繞聚焦粒子束100的射束軸旋轉限定角度。替代、或附加上,粒子束100可繞固定的測試元件300、500旋轉。However, the number of exposures used to determine the intensity distribution of the beam tail 120, 130 is not limited to two or four. Instead, the beam tails 120, 130 may be exposed as many times as necessary to obtain as comprehensive an image as possible of the intensity distribution in the beam tails 120, 130. For this purpose, for example, the test element 300, 500 can be rotated by a defined angle around the beam axis of the focused particle beam 100. Alternatively, or in addition, the particle beam 100 may be rotated about a stationary test element 300 , 500 .

可藉由掃描式探針顯微鏡(SPM)的測量探針(例如原子力顯微鏡(AFM))進行掃描來檢測持續成像到階高320、360、520的上平面340、540中的聚焦粒子束100的束尾120、130。可替代地及/或累積地,還可藉助光學系統來對上平面340、540的變異區域進行成像,以分析測試元件300、500的測試結構390、590的變化。此外,可使用檢測射束掃描階高320、360、520的上平面340、540的變異區域。舉例而言,可藉助CLSM(共焦雷射掃描式顯微鏡)來分析測試結構390、590的佈局變化。此外,由測試結構390、590的化學反應所引起的變化可藉助電子束形式的檢測射束來加以分析,例如藉由使用具有不同動能的電子來掃描變異區域。此外,可例如藉由二次離子質譜儀(SIMS)裝置來檢視沉積材料的材料組成。The continuous imaging of the focused particle beam 100 into the upper plane 340 , 540 of the steps 320 , 360 , 520 can be detected by scanning with a measuring probe of a scanning probe microscope (SPM), such as an atomic force microscope (AFM). Beam tail 120,130. Alternatively and/or cumulatively, the variation regions of the upper plane 340 , 540 can also be imaged by means of an optical system in order to analyze the variation of the test structures 390 , 590 of the test element 300 , 500 . In addition, the detection beam may be used to scan the variation region of the upper plane 340, 540 of the step 320, 360, 520. For example, the layout variations of the test structures 390, 590 can be analyzed by means of CLSM (Confocal Laser Scanning Microscopy). Furthermore, changes caused by chemical reactions of the test structures 390, 590 can be analyzed by means of a detection beam in the form of an electron beam, for example by scanning the variation area with electrons having different kinetic energies. Furthermore, the material composition of the deposited material can be inspected, for example, by means of a secondary ion mass spectrometer (SIMS) device.

圖6說明了用於分析聚焦粒子束100的束尾120、130的第二示例實施例。束尾120、130的分析是基於測試元件300的測試結構390而進行;然而,與在圖4的上下文中解釋的不同,聚焦粒子束100並未設定在相對於測試結構 390 的邊緣330的固定點上,而是平行於邊緣330進行掃描。在沿著邊緣330掃描聚焦粒子束100時,提供適於至少改變階高320、360的上平面340的前驅物氣體。藉由掃描粒子束100,由前者引起變異的測試結構390的區域係增加數倍。此外,束尾120或130與前驅物氣體的組合效應所引起的測試元件300的測試結構390的上平面340的佈局變化可藉由掃描處理的設計而加以放大。這簡化了測試結構390的佈局變化的計量檢測。FIG. 6 illustrates a second example embodiment for analyzing the beam tail 120 , 130 of the focused particle beam 100 . The analysis of the beam tails 120, 130 is performed based on the test structure 390 of the test element 300; however, unlike explained in the context of FIG. point, but scan parallel to edge 330. While scanning the focused particle beam 100 along the edge 330, a precursor gas adapted to vary at least the upper plane 340 of the step heights 320, 360 is provided. By scanning the particle beam 100, the area of the test structure 390 that is induced by the former is multiplied several times. In addition, the layout change of the upper plane 340 of the test structure 390 of the test device 300 caused by the combination effect of the beam tail 120 or 130 and the precursor gas can be amplified by the design of the scanning process. This simplifies the metrology detection of layout changes of the test structure 390 .

以圖6中的雙向箭頭600來表示沿邊緣330掃描聚焦粒子束100。由於掃描聚焦粒子束100的結果,其主射束110照射該矩形區域610,其沿著邊緣330延伸、或沿著階高320或階高320、360的下平面350延伸。當沿著階高320的邊緣330掃描時,束尾120在階高320的下平面340的焦點中成像,且束尾120照射區域620。結合一或多個前驅物氣體,當焦點400沿著邊緣330被掃描時,束尾120改變了測試結構390的階高320的上平面340的區域620。測試結構390將聚焦粒子束100的束尾130成像到遠離焦點的階高320的下平面350上。Scanning of the focused particle beam 100 along the edge 330 is indicated by the double-headed arrow 600 in FIG. 6 . As a result of scanning the focused particle beam 100 , its main beam 110 illuminates this rectangular area 610 which extends along the edge 330 or along the step 320 or the lower plane 350 of the steps 320 , 360 . When scanned along the edge 330 of the step 320 , the beam tail 120 is imaged in the focus of the lower plane 340 of the step 320 and the beam tail 120 illuminates the region 620 . In conjunction with one or more precursor gases, beam tail 120 alters region 620 of upper plane 340 of step 320 of test structure 390 as focal point 400 is scanned along edge 330 . The test structure 390 images the beam tail 130 of the focused particle beam 100 onto the lower plane 350 of the step 320 away from the focal point.

圖6中的區域650、660和670顯示了聚焦粒子束100沿著左側階高320的邊緣330之掃描600。這些掃描600在聚焦粒子束100的強度最大值I 0距階高320的邊緣330的距離方面有所不同。改變該距離允許在執行粒子束誘發蝕刻或沉積製程時使主射束110的影響與束尾120的影響有最佳可能的分離。為了確定束尾120的強度分佈,對階高320的上平面340的區域620的變異進行分析。 Regions 650 , 660 and 670 in FIG. 6 show the scan 600 of the focused particle beam 100 along the edge 330 of the left step 320 . These scans 600 differ in the distance of the intensity maximum I 0 of the focused particle beam 100 from the edge 330 of the step 320 . Varying this distance allows for the best possible separation of the influence of the main beam 110 from the influence of the beam tail 120 when performing a particle beam induced etching or deposition process. To determine the intensity distribution of the beam tail 120, the variation of the region 620 of the upper plane 340 of the step 320 is analyzed.

圖6中區域655、665和675顯示了聚焦粒子束100沿右側階高360的邊緣330之掃描600。可從這些變異區域655、665和675來確定聚焦粒子束100的束尾130的強度分佈。這些掃描600在聚焦粒子束100的強度最大值距階高360的邊緣330的距離方面有所不同。改變該距離允許在執行粒子束誘發蝕刻或沉積製程時,主射束110的影響和束尾130的影響之間有最佳可能分離。為了確定束尾130的強度分佈,僅對階高360的上平面340的區域630的變異進行分析。Regions 655 , 665 and 675 in FIG. 6 show the scan 600 of the focused particle beam 100 along the edge 330 of the right step 360 . From these regions of variation 655 , 665 and 675 the intensity distribution of the beam tail 130 of the focused particle beam 100 can be determined. These scans 600 differ in the distance of the intensity maximum of the focused particle beam 100 from the edge 330 of the step 360 . Varying this distance allows for the best possible separation between the influence of the main beam 110 and the influence of the beam tail 130 when performing a particle beam induced etching or deposition process. To determine the intensity distribution of the beam tail 130, only the variation in the region 630 of the upper plane 340 of the step 360 is analyzed.

圖7呈現了區域750、760和770,檢測其變化以確定聚焦粒子束100 的束尾120的強度分佈。從圖7可知, 除了束尾120、130所照射的上平面340的區域620和630之外,也測量了在掃描聚焦粒子束100時束尾120、130沒有掃過的上平面340的部分。所述非掃描區域的測量可用於校準測量過程。此外,由主射束110產生的照射區域610的變異同樣可用於校準目的。舉例而言,可藉由使用AFM的測量探針掃描區域750、760和770來進行檢測。為了確定束尾130的強度分佈,可以檢測粒子束引起的表面755、765和775的變化。不言而喻,上述檢測方法同樣可用於此目的。FIG. 7 presents regions 750 , 760 and 770 whose changes are detected to determine the intensity distribution of the beam tail 120 of the focused particle beam 100 . It can be seen from FIG. 7 that in addition to the areas 620 and 630 of the upper plane 340 illuminated by the beam tails 120 , 130 , the portion of the upper plane 340 not swept by the beam tails 120 , 130 when scanning the focused particle beam 100 is also measured. The measurement of the non-scanning area can be used to calibrate the measurement process. Furthermore, the variation of the irradiation area 610 produced by the main beam 110 can likewise be used for calibration purposes. For example, detection may be performed by scanning the regions 750, 760, and 770 with the measurement probe of the AFM. In order to determine the intensity distribution of the beam tail 130, changes in the surfaces 755, 765, and 775 induced by the particle beam can be detected. It goes without saying that the detection methods described above can likewise be used for this purpose.

圖8示意呈現了由束尾120、130引起的測試結構390的上平面340的區域750、755、760、765、770、775的佈局變化的評估方法。在此方法中,區域620、630的一維(1-D)輪廓係沿著邊緣330(亦即在y方向中)相加。1-D輪廓在圖8中由虛線810、840和870表示。對於掃描810和840,部分820和850在測試結構390的上平面340的變異區域620、630內延伸。測試結構390的變化在這些部分上被平均,這由圖8中的矩形800所表示。在位於變異區域620、630外的掃描810和840的區域830和860中,1-D掃描同樣被平均。這些平均值用於作為1-D 掃描820和850的平均值相關的參考。平均之1-D掃描870則呈現進一步參考,其完全延伸到結構元件390的變異區域620、630外部。可從平均之1-D分佈820、850重新建構出聚焦粒子束100的束尾120、130的強度分佈。平均之1-D分佈820、850 也可被視為邊緣 330與聚焦粒子束100的點擴展函數(PSF)的卷積運算結果。FIG. 8 schematically presents a method for evaluating layout changes of regions 750 , 755 , 760 , 765 , 770 , 775 of the upper plane 340 of the test structure 390 caused by beam tails 120 , 130 . In this approach, the one-dimensional (1-D) contours of the regions 620, 630 are added along the edge 330 (ie, in the y-direction). The 1-D profiles are represented by dashed lines 810 , 840 and 870 in FIG. 8 . For scans 810 and 840 , portions 820 and 850 extend within variation regions 620 , 630 of upper plane 340 of test structure 390 . The variation of the test structure 390 is averaged over these portions, which is represented by the rectangle 800 in FIG. 8 . In regions 830 and 860 of scans 810 and 840 that lie outside the regions of variation 620, 630, the 1-D scans are also averaged. These averages are used as a reference to correlate the averages of the 1-D scans 820 and 850 . The averaged 1-D scan 870 then presents a further reference that extends completely outside the variation regions 620 , 630 of the structural element 390 . The intensity distribution of the beam tail 120 , 130 of the focused particle beam 100 can be reconstructed from the averaged 1-D distribution 820 , 850 . The averaged 1-D distributions 820, 850 can also be viewed as the result of a convolution operation of the edge 330 with the point spread function (PSF) of the focused particle beam 100.

圖9再次顯示了具有圖5所示測試結構590的測試元件500。以類似於圖6的描述的方式,沿著測試結構590的四個邊緣530掃描聚焦粒子束100。在這情況下,區域950、960、970和980係藉由前驅物氣體和聚焦粒子束的組合效應進行佈局上改變。聚焦粒子束100的束尾120、130在上平面540的照射區域950、975的部分955和975上聚焦成像。聚焦粒子束100的兩束尾125、135(其垂直於圖1中的紙平面)藉由沿著階高520的水平邊緣530在階高520的上平面540的照射區域960、980的部分965和985上掃描而成像。對應於束尾120、130,垂直於紙面延伸的聚焦粒子束100的束尾125、135同樣可為非中心對稱的。束尾125、135也可相對於主射束110的強度最大值呈對稱。FIG. 9 again shows the test element 500 having the test structure 590 shown in FIG. 5 . Focused particle beam 100 is scanned along four edges 530 of test structure 590 in a manner similar to that described for FIG. 6 . In this case, regions 950, 960, 970 and 980 are topographically altered by the combined effect of the precursor gas and the focused particle beam. Beam tails 120 , 130 of focused particle beam 100 are imaged in focus on portions 955 and 975 of illuminated areas 950 , 975 of upper plane 540 . The two beam tails 125, 135 of the focused particle beam 100 (which are perpendicular to the plane of the paper in FIG. And 985 on the scanning and imaging. Corresponding to the beam tails 120, 130, the beam tails 125, 135 of the focused particle beam 100 extending perpendicular to the paper plane may likewise be non-centrosymmetric. The beam tails 125 , 135 can also be symmetrical with respect to the intensity maximum of the main beam 110 .

圖10再現圖 9,其額外標記了檢測到變化的區域1050、1060、1070和1080(例如藉由以掃描式探針顯微鏡的測量探針進行掃描),以確定由束尾120、125、130、135結合前驅物氣體照射而引起之測試結構590的上平面540的區域1050、1060、1070、1080中的變化。如上所述,區域1050、1060、1070、1080包含在沿著邊緣的掃描程序期間沒有被束尾120、125、130、135照射的區域1050、1060、1070、1080。這些區域530用於校準目的。接著,從區域1050、1060、1070、1080的測量變化來定量確定聚焦粒子束100的束尾120、125、130、135的強度分佈,如上述在圖8的情境所解釋。Fig. 10 reproduces Fig. 9, which additionally marks the regions 1050, 1060, 1070 and 1080 where changes were detected (for example by scanning with a measuring probe of a scanning probe microscope) to determine the number of beam tails 120, 125, 130 , 135 in combination with the changes in the regions 1050, 1060, 1070, 1080 of the upper plane 540 of the test structure 590 caused by irradiation of precursor gases. As mentioned above, the regions 1050, 1060, 1070, 1080 comprise the regions 1050, 1060, 1070, 1080 which were not illuminated by the beam tails 120, 125, 130, 135 during the scan procedure along the edge. These areas 530 are used for calibration purposes. The intensity distribution of the beam tails 120, 125, 130, 135 of the focused particle beam 100 is then quantitatively determined from the measured variations of the regions 1050, 1060, 1070, 1080, as explained above in the context of Fig. 8 .

圖11在上方部分圖像中呈現了測試元件的一第三示例的示意平面圖,下方部分圖像顯示了通過所述測試元件的剖面。圖11所示之測試元件1100包含一基底元件1110和一測試結構1190。圖11的示例性測試元件1100包含光學遮罩的基材(例如石英基材)作為基底元件1110。硬遮罩1120已經被施用到基底元件1110的表面1170。舉例而言,可藉由在石英基材1110上平面沉積鉻層來沉積硬遮罩1120。鉻層的厚度、以及因而硬遮罩1120的厚度可在1nm與500nm之間的範圍。FIG. 11 presents a schematic plan view of a third example of a test element in the upper partial image, the lower partial image showing a section through said test element. The test element 1100 shown in FIG. 11 includes a base element 1110 and a test structure 1190 . The exemplary test element 1100 of FIG. 11 comprises a substrate of an optical mask (eg, a quartz substrate) as a base element 1110 . Hard mask 1120 has been applied to surface 1170 of base element 1110 . For example, hard mask 1120 may be deposited by planar deposition of a layer of chromium on quartz substrate 1110 . The thickness of the chrome layer, and thus the thickness of the hard mask 1120, may range between 1 nm and 500 nm.

硬遮罩1120具有一頂側1115和一背側1125。此外,硬遮罩1120 具有一開口1180。開口1180具有一邊緣1130,其在頂測1115的平面中(亦即在上平面1140中)圍繞硬遮罩1120的矩形開口1180。正如上述測試元件300和500一樣,如果邊緣1130與頂側1115和開口1180的平面間形成90°之角度,則對測試元件1100是有利的。硬遮罩1120的開口1180可藉由蝕刻鉻層來實現。舉例而言,亞硝醯氯(NOCl)(選擇性藉由添加物氣體的添加)可被使用作為蝕刻氣體。實施蝕刻通過硬遮罩1120的整體厚度。因此,硬遮罩1100的開口1180定義了具有上平面1140的階高1160(其相當於硬遮罩1120的頂側1115)、以及下平面1150(其對應於硬遮罩1120的背側1125或基底元件1110的頂側1170)。Hard mask 1120 has a top side 1115 and a back side 1125 . In addition, the hard mask 1120 has an opening 1180 . The opening 1180 has an edge 1130 which surrounds the rectangular opening 1180 of the hard mask 1120 in the plane of the top side 1115 (ie, in the upper plane 1140 ). As with test elements 300 and 500 described above, it is advantageous for test element 1100 if edge 1130 forms an angle of 90° with the plane of top side 1115 and opening 1180 . The opening 1180 of the hard mask 1120 can be realized by etching the chrome layer. For example, nitrosyl chloride (NOCl) (optionally added by additive gas) can be used as the etching gas. Etching is performed through the entire thickness of the hard mask 1120 . Thus, the opening 1180 of the hard mask 1100 defines a step 1160 having an upper plane 1140 corresponding to the top side 1115 of the hard mask 1120, and a lower plane 1150 corresponding to the back side 1125 or the top side 1170 of the base member 1110).

在上方部分圖像中,圖12說明了以聚焦粒子束100對圖11所示之測試元件1100的暴露,且下部部分圖像說明了當同時提供蝕刻氣體時,由聚焦粒子束100的束尾120、130在測試元件1100的硬遮罩1120的開口1180中所引起的測試元件1100的變化。粒子束100被引導至硬遮罩1120的頂側1115處。這是由圖 12之下方部分圖像中的束腰徑1200所描述。如果硬遮罩1120僅具有小於聚焦粒子束100的景深,則後者的焦點可與硬遮罩1120的頂側1115和下側1125相關。較佳係,聚焦粒子束100的焦點與基材1110的頂側1170相關,使得其束尾120、125、130、135係最大程度改變基材1110。In the upper part of the image, FIG. 12 illustrates the exposure of the test element 1100 shown in FIG. 11 with the focused particle beam 100, and the lower part of the image illustrates the exposure of the beam tail by the focused particle beam 100 when the etching gas is simultaneously supplied. 120 , 130 changes in the test element 1100 caused in the opening 1180 of the hard mask 1120 of the test element 1100 . Particle beam 100 is directed at top side 1115 of hard mask 1120 . This is depicted by the beam waist diameter 1200 in the lower portion of the image in Figure 12. If the hard mask 1120 has only a smaller depth of field than the focused particle beam 100 , the focus of the latter can be associated with the top side 1115 and the bottom side 1125 of the hard mask 1120 . Preferably, the focal point of the focused particle beam 100 is relative to the topside 1170 of the substrate 1110 such that its beam tails 120, 125, 130, 135 alter the substrate 1110 the most.

在xy平面中,亦即在紙平面中,聚焦粒子束100以束尾120、130的至少一部分落入硬遮罩1120的開口1180中的方式被引導至硬遮罩1120處。蝕刻氣體形式的前驅物氣體係連同 粒子束100同時提供於硬遮罩1120的開口1180的區域中。舉例而言,二氟化氙(XeF 2)可用於蝕刻測試元件1100的基底元件1110。下方部分圖像顯示了藉由聚焦粒子束100的束尾120、130、結合硬遮罩1120的開口1180的區域中的蝕刻氣體而蝕刻至基底元件1110中的凹陷1250。 In the xy plane, ie in the plane of the paper, the focused particle beam 100 is directed at the hard mask 1120 in such a way that at least a part of the beam tail 120 , 130 falls into the opening 1180 of the hard mask 1120 . A precursor gas system in the form of an etching gas is provided simultaneously with the particle beam 100 in the region of the opening 1180 of the hard mask 1120 . For example, xenon difluoride (XeF 2 ) may be used to etch the base element 1110 of the test element 1100 . The lower part of the image shows a recess 1250 etched into the substrate element 1110 by focusing the beam tails 120 , 130 of the particle beam 100 in combination with etching gas in the region of the opening 1180 of the hard mask 1120 .

在上方部分圖像中,圖13呈現了在移除硬遮罩1120之後的圖11所示之測試元件 1100的變異基底元件1300的平面圖。可使用蝕刻氣體NOCl、結合添加物氣體(如有需要的話)來移除測試元件1100的變異基底元件1300上的硬遮罩1120。基底元件1110在硬遮罩1120的開口1180的區域中具有凹陷1250。該凹陷1250可以例如藉由以掃描式探針顯微鏡的測量探針掃描來加以測量。獲得的測量數據可用於定量確定聚焦粒子束100的束尾120、130的強度分佈。In the upper partial image, FIG. 13 presents a plan view of a modified base element 1300 of the test element 1100 shown in FIG. 11 after hard mask 1120 has been removed. The hard mask 1120 on the variant substrate element 1300 of the test element 1100 may be removed using the etching gas NOCl, in combination with additive gases if desired. The base element 1110 has a recess 1250 in the region of the opening 1180 of the hard mask 1120 . The depression 1250 can be measured, for example, by scanning with a measuring probe of a scanning probe microscope. The obtained measurement data can be used to quantitatively determine the intensity distribution of the beam tail 120 , 130 of the focused particle beam 100 .

由局部蝕刻製程所引起之開口1180中凹陷1250的分析也可在沒有事先移除硬遮罩1120的情況下進行。舉例而言,這可能是非常薄的硬遮罩1120的情況。然而,在厚的硬遮罩11200的情況下,計量挑戰明顯更大。此外,可藉由蝕刻而僅移除開口1180周圍的硬遮罩1120的小區域,所述區域正好大到足使硬遮罩1120不損害凹陷1250的測量。Analysis of the recess 1250 in the opening 1180 caused by the local etch process can also be performed without prior removal of the hard mask 1120 . This may be the case for a very thin hard mask 1120, for example. However, in the case of thick hard masks 11200, the metrology challenge is significantly greater. Furthermore, only a small area of hard mask 1120 around opening 1180 , just large enough that hard mask 1120 does not impair the measurement of recess 1250 , can be removed by etching.

圖14示意說明了測試元件1400的第四示例實施例。上方部分圖像再現了測試元件1400的平面圖,下方部分圖像再現了測試元件1400的剖面。基底元件1410對應於圖11之測試元件1100的基底元件1110,其由光學遮罩的石英基材形成。硬遮罩1420已附加到基底元件1410。硬遮罩1420的產生、處理和移除皆已在上文中結合圖11至圖13的上下文進行了說明。圖14之硬遮罩1420與硬遮罩1120的不同處在於其以八個開口1480取代了一開口1180。硬遮罩1420的八個開口1480形成測試元件1400的測試結構1490。硬遮罩1420的八個開口1480中的每一者都具有邊緣1430。相較於圖12之硬遮罩1120的一單開口1180,由於圖14的八個開口1480的較大區域,使得聚焦粒子束100的束尾120、130有明顯較大部分可借助於硬遮罩1420而持續成像到測試元件1400的基底元件1410中。類似於圖12,當測試元件1400被照射時,粒子束100聚焦在硬遮罩1420的背側1425上。FIG. 14 schematically illustrates a fourth example embodiment of a test element 1400 . The upper part of the image reproduces a plan view of the test element 1400 , and the lower part of the image reproduces a cross-section of the test element 1400 . Base element 1410 corresponds to base element 1110 of test element 1100 of FIG. 11 , which is formed from a quartz substrate of the optical mask. A hard mask 1420 has been attached to the base element 1410 . The generation, processing, and removal of the hard mask 1420 have all been described above in the context of FIGS. 11-13 . The difference between the hard mask 1420 of FIG. 14 and the hard mask 1120 is that it replaces one opening 1180 with eight openings 1480 . Eight openings 1480 of hard mask 1420 form test structures 1490 of test element 1400 . Each of the eight openings 1480 of hard mask 1420 has an edge 1430 . Compared with the single opening 1180 of the hard mask 1120 of FIG. 12, due to the larger area of the eight openings 1480 of FIG. Mask 1420 is continuously imaged into base element 1410 of test element 1400 . Similar to FIG. 12 , when the test element 1400 is illuminated, the particle beam 100 is focused on the backside 1425 of the hard mask 1420 .

此外,不像圖12,聚焦粒子束100係沿著硬遮罩1420的對稱線在垂直方向上掃描,如雙向箭頭1450 所示。因此,可放大對測試元件1400引起的變化,可以提升其檢測的準確性。然而,也可在固定定位的情況下將聚焦粒子束100引導在對稱線的平均上。Furthermore, unlike FIG. 12 , focused particle beam 100 is scanned in a vertical direction along the line of symmetry of hard mask 1420 , as indicated by double-headed arrow 1450 . Therefore, the change caused to the test element 1400 can be amplified, and the detection accuracy thereof can be improved. However, it is also possible to direct the focused particle beam 100 on the mean of the line of symmetry with fixed positioning.

圖15的上方部分圖像顯示了在移除硬遮罩1420之後的測試元件1400的變異基底元件1500的平面圖,下方部分圖像再現了凹陷1510、1520、1530、1540,其為聚焦粒子束100的束尾120結合蝕刻氣體XeF 2在測試元件1400的基底元件1410中所產生。凹陷1550、1560、1570、1580代表聚焦粒子束100的束尾130與蝕刻氣體XeF 2的結合作用的變化。隨距主射束110的強度最大值的距離增加而減小的蝕刻深度係表示束尾120、130中的強度水平隨著距強度峰值I 0的距離增加而減少。聚焦粒子束100的束尾120、130的強度分佈可基於所獲得的測量數據加以確定。 The upper portion of the image of FIG. 15 shows a plan view of the modified base element 1500 of the test element 1400 after removal of the hard mask 1420, and the lower portion of the image reproduces the depressions 1510, 1520, 1530, 1540 that focus the particle beam 100. The beam tail 120 is produced in the substrate element 1410 of the test element 1400 in combination with the etching gas XeF 2 . The indentations 1550, 1560, 1570, 1580 represent changes in the combination of the beam tail 130 of the focused particle beam 100 with the etching gas XeF2 . The decreasing etch depth with increasing distance from the intensity maximum of the main beam 110 means that the intensity level in the beam tails 120, 130 decreases with increasing distance from the intensity peak I0 . The intensity distribution of the beam tails 120, 130 of the focused particle beam 100 may be determined based on the obtained measurement data.

為了更精確分析聚焦粒子束100的束尾125、135,可將測試結構1400旋轉90°以在水平方向上執行聚焦粒子束100的掃描。可從測試元件1100的變異基底元件1300的測量來確定聚焦粒子束100的射束尾部125、135的強度分佈。For a more precise analysis of the beam tails 125, 135 of the focused particle beam 100, the test structure 1400 may be rotated by 90° to perform a scan of the focused particle beam 100 in the horizontal direction. The intensity distribution of the beam tails 125 , 135 of the focused particle beam 100 can be determined from measurements of the variant substrate element 1300 of the test element 1100 .

藉由使硬遮罩1420的開口適應粒子束的對稱性,即可達到進一步提升測量數據。這表示束尾120、125、130、135的最大部分可透過硬遮罩1420中具有同心環形式的開口而成像到對應的測試元件中。 然而,具有同心環形式的測試結構的測試元件不允許聚焦粒子束的掃描,因此,為了增加測試元件1100的變化從而產生的自由度不能成為可用。By adapting the opening of the hard mask 1420 to the symmetry of the particle beam, a further improvement in measurement data can be achieved. This means that the largest part of the beam tails 120, 125, 130, 135 can be imaged into the corresponding test element through the openings in the hard mask 1420 in the form of concentric rings. However, a test element with a test structure in the form of concentric rings does not allow scanning of a focused particle beam, and thus the resulting degrees of freedom for increasing the variation of the test element 1100 cannot be made available.

在上方部分圖像中,圖16再現一第五測試元件1600的平面圖,下方部分圖像再現測試元件1600在被聚焦粒子束100照射之後的剖面。測試元件1600的基底元件1610包含一矽晶圓。具有單層1620形式的測試結構1690已經被施加到基底元件1610。單層1620具有一頂側1615和一背側1625。單層1620可包含自組合單層(SAM)。自組合單層1620具有一多分子層,該等分子係配置在具厚度或一分子層高度的基底元件1610的表面上。In the upper partial image, FIG. 16 reproduces a plan view of a fifth test element 1600 , and the lower partial image reproduces a cross section of the test element 1600 after being irradiated by the focused particle beam 100 . The base element 1610 of the test element 1600 includes a silicon wafer. A test structure 1690 in the form of a single layer 1620 has been applied to the base element 1610 . Single layer 1620 has a top side 1615 and a back side 1625 . Monolayer 1620 may comprise a self-assembled monolayer (SAM). The self-assembled monolayer 1620 has a multilayer of molecules disposed on the surface of the base element 1610 having a thickness or a molecular layer height.

自組合單層1620可包含自組合有機化合物。自組合有機化合物的示例是鏈烷硫醇或烷基三氯矽烷。選擇單層的分子的鏈長和鏈的化學官能基化,使得藉由與SE的相互作用來達到粒子束誘發單層的分子變化。在單層中引起的變化程度與作用的電子劑量成比例。舉例而言,可使用掃描式電子顯微鏡將引起的分子變化呈現為SE訊號的變化。粒子束引起的單層分子變化伴隨著單層表面的SE之功函數的變化。替代上、及/或總之,變異的功函數可用於檢測單層中的變化。Self-assembled monolayer 1620 may comprise self-assembled organic compounds. Examples of self-assembled organic compounds are alkanethiols or alkyltrichlorosilanes. The chain length of the molecules of the monolayer and the chemical functionalization of the chains are selected such that the particle beam induces molecular changes in the monolayer through the interaction with the SE. The degree of change induced in the monolayer is proportional to the electron dose applied. For example, scanning electron microscopy can be used to visualize the induced molecular changes as changes in the SE signal. The particle beam-induced molecular changes in the monolayer are accompanied by changes in the work function of the SE of the monolayer surface. Alternatively, and/or in general, the work function of the variation can be used to detect changes in the monolayer.

單層的分子可具有官能基團,例如羥基、羰基、羧基、氨基或這些官能基團的組合。目前較佳是具有八個(C 8H 17SH)至十五個碳原子(C1 5H 31SH)的烷烴或碳鏈長度的烷硫醇。具有這些鏈長的單層特別適用於分析聚焦電子束100的束尾120、125、130、135。此外,這可用於從電磁光譜的DUV和EUV波長範圍分析光子射束的束尾120、125、130、135。 The molecules of the monolayer may have functional groups such as hydroxyl, carbonyl, carboxyl, amino, or a combination of these functional groups. Presently preferred are alkanes or alkanethiols with a carbon chain length of eight (C 8 H 17 SH) to fifteen carbon atoms (C 1 5 H 31 SH). Monolayers with these chain lengths are particularly suitable for analyzing the beam tails 120 , 125 , 130 , 135 of the focused electron beam 100 . Furthermore, this can be used to analyze beam tails 120, 125, 130, 135 of photon beams from the DUV and EUV wavelength ranges of the electromagnetic spectrum.

當基底元件1610浸入溶液或懸浮液中時,自組合層1620即自發性形成。若測試結構1600的基底元件1610包含不允許自組合單層1620自發性形成的材料,則可藉由沉積薄金層來自發性形成自組合單層1520以製備基底元件1610(例如光學遮罩的石英基材)。此外,二氧化矽可藉助烷基三氯矽烷而官能基化。The self-assembled layer 1620 forms spontaneously when the base member 1610 is immersed in a solution or suspension. If the base element 1610 of the test structure 1600 comprises a material that does not allow the spontaneous formation of the self-assembled monolayer 1620, the spontaneous formation of the self-assembled monolayer 1520 can be made by depositing a thin gold layer to prepare the base element 1610 (e.g., of an optical mask). quartz substrate). Furthermore, silica can be functionalized with the aid of alkyltrichlorosilanes.

圖16的上方部分圖像說明聚焦電子束100在自組合單層1620中產生的變化。在射束中心或主射束110中,入射於自組合單層1620上的大量電子藉由破壞分子鏈(例如烷烴鏈)而在自組合單層1620中產生破壞。此外,自組合單層1620的官能基團可藉由聚焦粒子束100的照射而進行化學調整,這在圖1 中以暗色調1660表示。束尾120、125、130、135的區域中的電子比主射束110中少了許多。然而,束尾120、125、130、135中的電子數量仍明顯大於零。束尾120、125、130、135的電子產生可見的變化、或可呈現為可見的變化。束尾部120、125、130、135引起的變化由圖16的上方部分圖像中的灰色1670、1675、1680、1685表示。圖16的下方部分圖像再現了測試元件1600沿著x軸的剖面。The upper partial image of FIG. 16 illustrates the changes produced by the focused electron beam 100 in the self-assembled monolayer 1620 . In the center of the beam or the main beam 110, a large number of electrons incident on the self-assembled monolayer 1620 creates damage in the self-assembled monolayer 1620 by breaking molecular chains, such as alkane chains. In addition, the functional groups of the self-assembled monolayer 1620 can be chemically tuned by irradiation of the focused particle beam 100 , which is represented by dark shades 1660 in FIG. 1 . There are much fewer electrons in the region of the beam tails 120 , 125 , 130 , 135 than in the main beam 110 . However, the number of electrons in the beam tails 120, 125, 130, 135 is still significantly greater than zero. The electrons at the beam tails 120, 125, 130, 135 produce, or may appear to be, visible changes. The changes caused by the beam tails 120 , 125 , 130 , 135 are represented by gray 1670 , 1675 , 1680 , 1685 in the upper part of the image in FIG. 16 . The lower portion of the image in FIG. 16 reproduces a cross-section of the test element 1600 along the x-axis.

在一修飾例中,自組合層1620增加了一種結構,其減少或屏蔽了主射束110對單層1620的加強效應。舉例而言,主射束110可被引導到中心吸收層,例如金屬層,例如鉻層,其係由自組合層1620圍繞,束尾120、125、130、135係入射於其上。替代或附加上,測試結構1600的基底元件1610可具有主射束110將落入其中的凹陷,所述凹陷實質上防止主射束110或主射束110的SE改質單層1620。此外,可為測試結構300、500、1100、1400提供單層1620並使用由束尾120、125、130、135引起的單層1620的變化來確定束尾120、125、130、135的強度分佈。In a modification, the self-assembling layer 1620 adds a structure that reduces or shields the enhancement effect of the main beam 110 on the single layer 1620 . For example, the main beam 110 may be directed to a central absorbing layer, such as a metal layer, such as a chromium layer, which is surrounded by a self-combined layer 1620 on which the beam tails 120, 125, 130, 135 are incident. Alternatively or additionally, the substrate element 1610 of the test structure 1600 may have a recess into which the main beam 110 will fall, which substantially prevents the main beam 110 or the SE-modified monolayer 1620 of the main beam 110 . Furthermore, the test structure 300, 500, 1100, 1400 may be provided with a monolayer 1620 and the variation in the monolayer 1620 caused by the beam tail 120, 125, 130, 135 may be used to determine the intensity distribution of the beam tail 120, 125, 130, 135 .

在將受破壞的自組合單層1630成像於掃描式電子束時,自組合單層1620中的聚焦電子束100所產生的變化對於SE對比敏感反應。藉由使用具有電子束形式的檢測射束來掃描自組合單層1620的變異或損傷區域1660、1670、1675、1680、1685,可使對自組合單層1620的局部損壞變為可見。自組合單層1620的局部變化程度與局部作用在單層1620上的聚焦粒子束100的射束強度成比例。因此,可從變異的單層的重製來定量確定束尾120、125、130、135中的強度分佈。When the damaged self-assembled monolayer 1630 is imaged to a scanning electron beam, the changes produced by the focused electron beam 100 in the self-assembled monolayer 1620 are sensitive to SE contrast. Localized damage to the self-assembled monolayer 1620 can be made visible by scanning the altered or damaged regions 1660, 1670, 1675, 1680, 1685 of the self-assembled monolayer 1620 with a detection beam in the form of an electron beam. The degree of local variation of the self-assembled monolayer 1620 is proportional to the beam intensity of the focused particle beam 100 locally acting on the monolayer 1620 . Thus, the intensity distribution in the beam tails 120, 125, 130, 135 can be quantitatively determined from the reconstruction of the varied monolayer.

圖17顯示通過裝置1700之一實例的一些重要組件的示意剖面,該裝置可用於確定聚焦粒子束100的一或多個束尾120、125、130、135的強度分佈。樣品1705(例如具有光學遮罩模形式)可配置在樣品台1702上。光學遮罩可具有過剩材料形式(「暗缺陷」)及/或缺失材料形式(「 明顯缺陷」)的一或多個缺陷。光微影遮罩的缺陷並未再現於圖17中。可掃描缺陷或通常具有過剩或缺失材料的缺陷,並因此藉助粒子束、及/或藉助掃描式探針顯微鏡1780的測量探針進行分析。此外,可藉由粒子束誘發製程處理來校正缺陷。為此目的,裝置1700包含一具有掃描式電子顯微鏡(SEM)1710形式的改良式掃描粒子顯微鏡1710。FIG. 17 shows a schematic cross-section through some important components of an example of an apparatus 1700 that can be used to determine the intensity distribution of one or more beam tails 120 , 125 , 130 , 135 of a focused particle beam 100 . Sample 1705 (eg, in the form of an optical mask) may be disposed on sample stage 1702 . The optical mask may have one or more defects in the form of excess material ("dark defects") and/or in the form of missing material ("significant defects"). The defects of the photolithographic mask are not reproduced in Figure 17. Defects or generally defects with excess or missing material can be scanned and thus analyzed by means of a particle beam, and/or by means of a measuring probe of a scanning probe microscope 1780 . In addition, defects can be corrected by particle beam induced processing. For this purpose, apparatus 1700 includes a modified scanning particle microscope 1710 in the form of a scanning electron microscope (SEM) 1710 .

在圖17的SEM 1710中,電子槍1712產生電子束1715,該電子束作為聚焦電子束1715被配置在電子柱1717中的成像元件(未示於圖17)引導到樣品1705。樣品1705配置在樣品台1702或樣品座1702上。樣品台1702在本領域中也稱為「載台(Stage)」。如圖17中的箭頭所示,定位裝置1707可使樣品台1702相對於SEM 1710的電子柱1717繞六個軸移動。定位裝置1707對樣品台1702的移動可藉助於例如微型操縱器(未示於圖17中)而進行。因此,定位系統1707藉由產生缺陷的圖像來促成樣品1702的缺陷分析。為此目的,SEM 1710的電子柱1717的成像元件可在樣品1705上掃描電子束1715。藉由傾斜及/或旋轉六軸樣品台1702,後者可以檢視從不同的角度或觀點來檢視一或多個缺陷。樣品台1702的各個軸的各自位置可藉由干涉測量儀(未示於圖17中)進行測量。定位系統1707由設定單元1725的訊號加以控制。設定單元1735可為裝置1700的電腦系統1730的一部分。In the SEM 1710 of FIG. 17 , an electron gun 1712 generates an electron beam 1715 that is directed to a sample 1705 as a focused electron beam 1715 by an imaging element (not shown in FIG. 17 ) disposed in an electron column 1717 . The sample 1705 is arranged on the sample stage 1702 or the sample holder 1702 . The sample stage 1702 is also referred to as a "stage" in the art. As indicated by the arrows in FIG. 17 , the positioning device 1707 can move the sample stage 1702 relative to the electron column 1717 of the SEM 1710 about six axes. Movement of the sample stage 1702 by the positioning device 1707 may be performed by means of, for example, a micromanipulator (not shown in FIG. 17 ). Accordingly, localization system 1707 facilitates defect analysis of sample 1702 by generating an image of the defect. The imaging elements of electron column 1717 of SEM 1710 may scan electron beam 1715 over sample 1705 for this purpose. By tilting and/or rotating six-axis sample stage 1702, the latter can inspect one or more defects from different angles or points of view. The respective positions of the various axes of the sample stage 1702 can be measured by an interferometer (not shown in FIG. 17 ). The positioning system 1707 is controlled by signals from the setting unit 1725 . The setting unit 1735 can be a part of the computer system 1730 of the device 1700 .

此外,在射束方向上移動樣品台1702允許降低樣品台1702,使得測試元件1725可定位在電子束1715和SPM 1780的測量探針下方。Furthermore, moving the sample stage 1702 in the direction of the beam allows the sample stage 1702 to be lowered so that the test element 1725 can be positioned under the electron beam 1715 and the measurement probe of the SPM 1780 .

裝置1700可更包含多個感應器,這些感應器可將SEM 1710的當前狀態和使用SEM 1710的製程環境(例如真空環境)兩者予以特徵化。Apparatus 1700 may further include sensors that can characterize both the current state of SEM 1710 and the process environment in which SEM 1710 is used (eg, vacuum environment).

電子束1715可進一步用於引發粒子束誘發製程處理,以校正識別的缺陷,例如在用於移除暗缺陷的電子束引發蝕刻EBIE製程及/或用於校正明顯缺陷的電子束誘發沉積EBID製程。此外,用於分析樣品1702的修復位置的電子束1715可用於圖17的裝置1700中。The electron beam 1715 may further be used to induce particle beam induced processing to correct identified defects, such as in an electron beam induced etch (EBIE) process for removing dark defects and/or an electron beam induced deposition (EBID) process for correcting apparent defects . In addition, an electron beam 1715 for analyzing the repair location of the sample 1702 may be used in the apparatus 1700 of FIG. 17 .

裝置1700包含一用於固持測試元件1725的固持裝置1722。測試元件1725可包含上述測試元件300、500、1100、1400、160之一者。此外,固持裝置1722包含一定位單元1727。定位單元1727有助於將測試元件1725定位在電子束1715下方及/或SPM 1780的測量探針下方。電子束1715可為用於照射測試元件1725的電子束100,其束尾120、125、130、135旨在使用測試元件1725進行分析。此外,電子束1715可為用於照射測試元件1600的測試結構1690的電子束100。此外,電子束1715可為檢測射束,用於分析測試元件1600的測試結構1690的變化。Device 1700 includes a holding device 1722 for holding a test element 1725 . The test element 1725 may include one of the test elements 300 , 500 , 1100 , 1400 , 160 described above. In addition, the holding device 1722 includes a positioning unit 1727 . Positioning unit 1727 facilitates positioning test element 1725 under electron beam 1715 and/or under measurement probes of SPM 1780 . Electron beam 1715 may be electron beam 100 for irradiating test element 1725 , the beam tails 120 , 125 , 130 , 135 of which are intended to be analyzed using test element 1725 . Furthermore, the electron beam 1715 may be the electron beam 100 for irradiating the test structure 1690 of the test element 1600 . Additionally, electron beam 1715 may be a detection beam for analyzing changes in test structure 1690 of test element 1600 .

從樣品1705或測試元件1725背向散射的電子、及電子束1715於樣品1705或測試元件1725中產生的二次電子係由檢測器1720加以記錄。若測試元件1725包含光學遮罩110的一部分,則檢測器1720識別在掃描測試元件300、500的吸收上平面340、540時發射的二次電子(SE)。配置在電子柱1717中的檢測器1720被稱為 「鏡頭中檢測器」。在各個實施例中,檢測器1720可安裝在電子柱1717中。檢測器420係由裝置1700的電腦系統1730的設定單元1735所控制。Electrons backscattered from sample 1705 or test element 1725 , and secondary electrons generated by electron beam 1715 in sample 1705 or test element 1725 are recorded by detector 1720 . If the test element 1725 comprises a portion of the optical mask 110 , the detector 1720 identifies secondary electrons (SE) emitted while scanning the absorbing upper plane 340 , 540 of the test element 300 , 500 . The detector 1720 disposed in the electron column 1717 is referred to as an "in-lens detector". In various embodiments, detector 1720 may be mounted in electron column 1717 . The detector 420 is controlled by the setting unit 1735 of the computer system 1730 of the device 1700 .

裝置1700可含有一第二檢測器1721。第二檢測器1721係設計成檢測電磁輻射,特別是在x射線範圍內。因此,第二檢測器1721有助於分析測試元件1725和樣品1705兩者的材料組成。檢測器1721同樣由設定單元1735加以控制。The device 1700 may contain a second detector 1721 . The second detector 1721 is designed to detect electromagnetic radiation, especially in the x-ray range. Thus, second detector 1721 facilitates analysis of the material composition of both test element 1725 and sample 1705 . The detector 1721 is also controlled by the setting unit 1735 .

電腦系統1730的設定單元1735可設定電子束1715的參數以在測試元件1725上引發沉積製程和蝕刻製程。The setting unit 1735 of the computer system 1730 can set the parameters of the electron beam 1715 to induce the deposition process and the etching process on the test element 1725 .

此外,裝置1700的電腦系統1730可包括一計算單元1740。計算單元1740接收檢測器1720、1721的測量數據。計算單元1740可從測量數據(例如從SE對比數據)產生以灰階表示或灰階值表示的圖像,其可在監視器1732上表示。此外,電腦系統1730包含一界面1737,藉此電腦系統1730或計算單元1740能夠從其他的外部檢測器接收關於測試元件1725的變化的數據。此外,電腦系統1730可以經由介面1737將檢測器1720及/或1721的測量數據傳輸到一外部評估裝置。此外,裝置1700的電腦系統1730可接收一或多個處理或評估圖像、及/或來自外部評估裝置的測試元件1725的一或多個重疊圖像。In addition, the computer system 1730 of the device 1700 may include a computing unit 1740 . The calculation unit 1740 receives the measurement data of the detectors 1720 , 1721 . The computing unit 1740 may generate an image in gray scale representation or gray scale values from the measurement data (eg from SE contrast data), which may be represented on the monitor 1732 . Furthermore, the computer system 1730 includes an interface 1737, whereby the computer system 1730 or the computing unit 1740 can receive data about changes in the test element 1725 from other external detectors. Furthermore, the computer system 1730 can transmit the measurement data of the detectors 1720 and/or 1721 to an external evaluation device via an interface 1737 . Additionally, computer system 1730 of device 1700 may receive one or more processing or evaluation images, and/or one or more overlay images of test element 1725 from an external evaluation device.

如上所述,裝置1700的改良之SEM 1710的電子束1715可用於引發電子束誘發製程處理。如同上所述,測試元件1725可藉由電子束誘發暴露處理而­從佈局及/或化學觀點進行永久改變。為了執行這些製程,圖17所示裝置1700的示例掃描式電子顯微鏡1710具有三個不同的供應容器1750、1760和1770。As described above, the electron beam 1715 of the modified SEM 1710 of the apparatus 1700 can be used to initiate the electron beam induced process. As noted above, the test element 1725 can be permanently altered from a layout and/or chemical standpoint by EB-induced exposure. To perform these processes, the example scanning electron microscope 1710 of the apparatus 1700 shown in FIG. 17 has three different supply containers 1750 , 1760 and 1770 .

第一供應容器1750儲存沉積氣體形式的第一前驅物氣體,例如羰基金屬,例如六羰基鉻(Cr(CO) 6)、或含碳之前驅物氣體,例如,諸如芘。藉助於儲存在第一供應容器1750中的前驅物氣體,材料可在局部化學反應中沉積在樣品1705上或測試元件1725上,其中SEM 1710的電子束1715作用為能量供應者,以將儲存在第一供應容器1750中的前驅物氣體在預期沉積材料的位置處(亦即在測試元件1725的測試結構390、590的上平面340、540上)較佳分裂成鉻原子和一氧化碳分子。這表示用於永久改變測試元件1725的EBID製程係藉由電子束1715和前驅物氣體的組合提供來執行。 The first supply container 1750 stores a first precursor gas in the form of a deposition gas, such as a metal carbonyl, such as chromium hexacarbonyl (Cr(CO) 6 ), or a carbon-containing precursor gas, such as pyrene, for example. With the aid of the precursor gas stored in the first supply container 1750, material can be deposited on the sample 1705 or on the test element 1725 in a localized chemical reaction, wherein the electron beam 1715 of the SEM 1710 acts as an energy supplier to convert the stored The precursor gas in the first supply container 1750 is preferably split into chromium atoms and carbon monoxide molecules at the location where the deposition material is expected (ie, on the upper plane 340, 540 of the test structure 390, 590 of the test element 1725). This means that the EBID process for permanently altering the test device 1725 is performed by the combined delivery of the electron beam 1715 and the precursor gases.

在圖17所示的裝置1700中,第二供應容器1760儲存蝕刻氣體形式的前驅物氣體,這使其可執行局部電子束誘發蝕刻(EBIE)製程。凹陷可在電子束誘發蝕刻製程的輔助下被蝕刻到測試元件1725的上平面340、540及/或測試元件1725的底部元件1110、1410中。蝕刻氣體形式的前驅物氣體可包含例如二氟化氙(XeF 2)、氯氣(Cl 2)、氧(O 2)、臭氧(O 3)、水蒸氣(H 2O)、過氧化氫(H 2O 2)、一氧化二氮(N 2O)、一氧化氮(NO)、二氧化氮(NO 2)硝酸(HNO 3)、亞硝醯氯(NOCl)、氨(NH 3)或六氟化硫(SF 6)或其組合。 In the apparatus 1700 shown in FIG. 17, the second supply container 1760 stores the precursor gas in the form of etching gas, which makes it possible to perform a localized electron beam induced etching (EBIE) process. Recesses may be etched into the upper planes 340, 540 of the test element 1725 and/or the bottom elements 1110, 1410 of the test element 1725 with the aid of an electron beam induced etching process. Precursor gases in the form of etching gases may contain, for example, xenon difluoride (XeF 2 ), chlorine (Cl 2 ), oxygen (O 2 ), ozone (O 3 ), water vapor (H 2 O), hydrogen peroxide (H 2 O 2 ), nitrous oxide (N 2 O), nitric oxide (NO), nitrogen dioxide (NO 2 ), nitric acid (HNO 3 ), nitrosyl chloride (NOCl), ammonia (NH 3 ) or hexa Sulfur fluoride (SF 6 ) or combinations thereof.

添加物氣體可儲存在第三供應容器1570 中。必要時,所述添加物氣體能夠添加到在第二供應容器1760中保持可用的蝕刻氣體、或添加到第一供應容器1750中儲存的沉積氣體。The additive gas may be stored in the third supply container 1570 . The additive gas can be added to the etching gas kept available in the second supply container 1760 or to the deposition gas stored in the first supply container 1750 as necessary.

替代上,第三供應容器1770可儲存具有第二沉積氣體或第二蝕刻氣體形式的前驅物氣體。Alternatively, the third supply container 1770 may store the precursor gas in the form of the second deposition gas or the second etching gas.

在圖17所示的掃描式電子顯微鏡1710中,該等供應容器1750、1740和1770之每一者有其自身的控制閥1752、1762和1772,用於監測或控制每單位時間提供的相應氣體的量,即電子束1715入射於樣品1705或測試元件1725處的氣體體積流量。控制閥1752、1762和1772由設定單元1735所控制及監測。藉此,可在寬範圍內設定用於執行EBID及/或EBIE製程的處理位置處所提供的一或多個氣體的分壓條件。In the scanning electron microscope 1710 shown in FIG. 17, each of the supply containers 1750, 1740 and 1770 has its own control valve 1752, 1762 and 1772 for monitoring or controlling the corresponding gas supplied per unit time. The amount of , that is, the gas volume flow rate at which the electron beam 1715 is incident on the sample 1705 or the test element 1725 . The control valves 1752 , 1762 and 1772 are controlled and monitored by the setting unit 1735 . Thereby, partial pressure conditions of one or more gases provided at a processing location for performing EBID and/or EBIE processes can be set in a wide range.

此外,在圖17之示例SEM 1710中,每個供應容器1750、1760和 1770都具有其自身的氣體供給管線系統1754、1764和1774,其末端設有噴嘴1756、1766和1776位在電子束1715於樣品1705或測試元件1725上的入射點附近。Furthermore, in the example SEM 1710 of FIG. Near the point of incidence on sample 1705 or test element 1725 .

供應容器1750、1760和1770可具有其自身的溫度設定元件及/或控制元件,其允許相應供應容器1750、1760和1770的冷卻和加熱。這使得可儲存且特別是可在各自的最佳溫度下提供沉積氣體和/或蝕刻氣體的前驅物氣體(未示於圖17中)。設定單元1735可控制供應容器1750、1760和1770的溫度設定元件和溫度控制元件。在EBID和EBIE製程處理中,供應容器1750、1760和1770的溫度設定元件可進一步用於藉由選擇合適的溫度來設定儲存其中的(多個)製程氣體的蒸氣壓。The supply containers 1750, 1760, and 1770 may have their own temperature setting elements and/or control elements that allow cooling and heating of the respective supply containers 1750, 1760, and 1770. This makes it possible to store and in particular to provide the deposition gas and/or the etching gas precursor gases (not shown in FIG. 17 ) at respective optimal temperatures. The setting unit 1735 may control temperature setting elements and temperature control elements of the supply containers 1750 , 1760 and 1770 . During EBID and EBIE processing, the temperature setting elements of the supply vessels 1750, 1760, and 1770 may further be used to set the vapor pressure of the process gas(s) stored therein by selecting an appropriate temperature.

裝置1700可包含一個以上的供應容器1750以儲存兩或多個沉積氣體的前驅物氣體。此外,裝置1700可包含一個以上的供應容器1760以儲存兩或多個蝕刻氣體的前驅物氣體。Apparatus 1700 may include one or more supply containers 1750 for storing precursor gases for two or more deposition gases. Additionally, the apparatus 1700 may include more than one supply container 1760 for storing precursor gases for two or more etching gases.

圖17所示的掃描式電子顯微鏡1710可在環境條件下或在真空腔室1742中操作。實施EBID和EBIE製程需要真空腔室1742中呈相對於環境壓力的負壓。為此,圖17所示SEM 1710包含一幫浦系統1744,用於產生和維持真空腔室1742 中所需的負壓。在關閉控制閥1752、1762和1772的情況下,可在真空腔室1742中達到<10 -4Pa的殘餘氣體壓力。幫浦系統1744可包含單獨的幫浦系統供用於真空腔室1742的上部以提供電子束1715、以及用於下部1748或反應室1748(未示於圖17中)。 The scanning electron microscope 1710 shown in FIG. 17 can be operated under ambient conditions or in a vacuum chamber 1742 . Performing the EBID and EBIE processes requires a negative pressure in the vacuum chamber 1742 relative to ambient pressure. To this end, the SEM 1710 shown in FIG. 17 includes a pump system 1744 for generating and maintaining the desired negative pressure in the vacuum chamber 1742 . With the control valves 1752, 1762 and 1772 closed, a residual gas pressure of <10 −4 Pa can be achieved in the vacuum chamber 1742 . The pump system 1744 may include separate pump systems for the upper portion of the vacuum chamber 1742 to provide the electron beam 1715 and for the lower portion 1748 or reaction chamber 1748 (not shown in FIG. 17 ).

圖17所示裝置1700中呈現的SEM 1710具有一單電子束1715。然而,SEM 1710也可能具有一第二粒子束源。第二粒子束可包含光子束及/或離子束(未示於圖17中)。此外,SEM 1710可具有兩或多個電子束1715,以能夠同時執行兩或多個粒子束誘發處理製程、或兩或多個測量製程。The SEM 1710 presented in the device 1700 shown in FIG. 17 has a single electron beam 1715 . However, SEM 1710 may also have a second particle beam source. The second particle beam may comprise a photon beam and/or an ion beam (not shown in FIG. 17 ). In addition, the SEM 1710 may have two or more electron beams 1715 to be able to perform two or more particle beam induced treatment processes, or two or more measurement processes simultaneously.

附加上,圖17所示之示例裝置1700包含一掃描式探針顯微鏡(SPM)1780,其在裝置1700中以掃描力顯微鏡(SFM)1780或原子力顯微鏡(AFM)480的形式體現。SPM 1780可用於掃描永久變異的測試元件1725。此外,SPM 1780可用於修復樣品1705。為此,SPM 1780可包含一用於分析測試元件1725及/或樣品1706的第一測量探針、以及一用於處理樣品1705的第二測量探針。Additionally, the example device 1700 shown in FIG. 17 includes a scanning probe microscope (SPM) 1780 embodied in the device 1700 as a scanning force microscope (SFM) 1780 or an atomic force microscope (AFM) 480 . SPM 1780 may be used to scan for permanently mutated test elements 1725 . Additionally, SPM 1780 can be used to repair sample 1705. To this end, SPM 1780 may include a first measurement probe for analyzing test element 1725 and/or sample 1706 and a second measurement probe for processing sample 1705 .

圖17之裝置1700中僅示出了SPM 1780的測量頭1785。在圖17的實例中,測量頭1785包含一固持單元1787。測量頭1785係藉由固持單元1787而緊固到裝置1700的框架上(未示於圖17中)。 一壓電致動器1790係附接到測量頭1785的固持單元1787,其使壓電致動器的自由端能夠在三個空間方向上移動(未示於圖17)。探針1795或測量探針1795包含一懸臂1794或槓桿臂1794,且一測量尖端1792係固定到壓電致動器1790的自由端。測量探針1795的懸臂1794的自由端具有測量尖端1792。SPM 1780因此實現了一種測量單元1780,其設計成測量測試元件1725的變化,更具體為佈局變化。Only the measurement head 1785 of the SPM 1780 is shown in the apparatus 1700 of FIG. 17 . In the example of FIG. 17 , the measuring head 1785 includes a holding unit 1787 . The measuring head 1785 is fastened to the frame of the device 1700 by means of a holding unit 1787 (not shown in FIG. 17 ). A piezoelectric actuator 1790 is attached to the holding unit 1787 of the measuring head 1785, which enables the free end of the piezoelectric actuator to move in three spatial directions (not shown in Figure 17). Probe 1795 or measurement probe 1795 includes a cantilever 1794 or lever arm 1794 and a measurement tip 1792 is fixed to the free end of piezoelectric actuator 1790 . The free end of the cantilever 1794 of the measurement probe 1795 has a measurement tip 1792 . The SPM 1780 thus implements a measurement unit 1780 designed to measure variations of the test element 1725, more specifically layout variations.

電腦系統1730的設定單元1735可移動AFM 1780的測量頭1785的固持單元1787。設定單元1735還可進一步在高度(z方向)上執行樣品1705或測試元件1725的概略定位,及供測量頭1785的壓電致動器1790執行AFM 1780的精確高度設定。The setting unit 1735 of the computer system 1730 can move the holding unit 1787 of the measuring head 1785 of the AFM 1780 . The setting unit 1735 can further perform rough positioning of the sample 1705 or test element 1725 in height (z direction), and the precise height setting of the AFM 1780 for the piezoelectric actuator 1790 of the measuring head 1785 .

在裝置1700中,SPM 1780可替代或附加用於掃描樣品1705。裝置1700可使用兩或多個SPM 1780。SPM 1780可具有相同類型、或可實現為不同類型的SPM。In apparatus 1700 , SPM 1780 may be used instead or in addition to scan sample 1705 . Apparatus 1700 may use two or more SPMs 1780 . The SPMs 1780 may be of the same type, or may be implemented as different types of SPMs.

在圖17所示的實例中,SPM 1780係整合到裝置1700中,並由裝置1700的電腦系統1730所控制。SPM 1780也可以體現為一獨立單元(未示於圖17 中)。In the example shown in FIG. 17 , SPM 1780 is integrated into device 1700 and controlled by computer system 1730 of device 1700 . SPM 1780 may also be embodied as a stand-alone unit (not shown in Figure 17).

裝置1700的電腦系統1730的計算單元1740可具有設計成從SPM 1780的測量數據確定聚焦粒子束1715的束尾120、125、130、135的強度分佈之演算法。演算法可以硬體、軟體、韌體或其組合予以實現。The computing unit 1740 of the computer system 1730 of the device 1700 may have an algorithm designed to determine the intensity distribution of the beam tails 120 , 125 , 130 , 135 of the focused particle beam 1715 from the measurement data of the SPM 1780 . Algorithms can be implemented in hardware, software, firmware or a combination thereof.

最後,圖18之流程圖1800再次總結了用於確定聚焦粒子束100的一或多個束尾120、125、130、135的強度分佈之所述方法的基本步驟。該方法是從步驟1810開始。在下一步驟1820中,以聚焦粒子束100照射測試元件300、500、1100、1400、1600,使得聚焦粒子束100的至少一束尾120、125、130、135引起測試元件 300、500、1100、1400、1600的可測量變化620、955、1250、1540。Finally, the flowchart 1800 of FIG. 18 summarizes again the basic steps of the described method for determining the intensity distribution of one or more beam tails 120 , 125 , 130 , 135 of the focused particle beam 100 . The method starts at step 1810 . In a next step 1820, the test element 300, 500, 1100, 1400, 1600 is irradiated with the focused particle beam 100 such that at least one tail 120, 125, 130, 135 of the focused particle beam 100 causes the test element 300, 500, 1100, 1400, 1600 measurable changes 620, 955, 1250, 1540.

在步驟1830中,測量測試元件300、500、1100、1400、1600的變化620、955、1250、1540以確定聚焦粒子束100的至少一束尾120、125、130、135的強度分佈。該方法在步驟1840結束。In step 1830 , the variation 620 , 955 , 1250 , 1540 of the test element 300 , 500 , 1100 , 1400 , 1600 is measured to determine the intensity distribution of at least one tail 120 , 125 , 130 , 135 of the focused particle beam 100 . The method ends at step 1840 .

以下描述多個進一步實施例有助瞭解本發明。 1. 一種用於確定聚焦粒子束(100)的至少一束尾(120、125、130、135)之強度分佈的方法(1800),該方法(1800)包括下列步驟: a. 以該聚焦粒子束(100)照射(1820)一測試元件(300、500、1100、1400、1600),使得該聚焦粒子束(100)的該至少一束尾(120、125、130、135)引起該測試元件(300、500、1100、1400、1600)的至少一可測量變化(620、955、1250、1540、1670);及 b. 測量(1830)該測試元件(300、500、1100、1400、1600)的該至少一變化(620、955、1250、1540、1670),以確定該聚焦粒子束(100)的該至少一束尾(120、125、130、135)的強度分佈。 2. 如實施例1所述之方法(1800),其中該測試元件(300、500、1100、1400、1600)的照射引起該測試元件(300、500、1100、1400、1600)的至少一佈局變化(620、955、1250、1540)、至少一化學變化(1660、1670、1675、1680、1685)、及/或至少一物理變化(300、500、1100、1400、1600)。 3. 如實施例1或2所述之方法(1800),其中該測試元件(300、500、1100、1400、1600)包含至少一測試結構(390、590、1190、1490、1690),該測試結構包含下列群組之至少一元件: - 至少一階高(320、360、520); - 至少一硬遮罩(1120、1420),其具有至少一開口(1180、1480);及 - 至少一單層(1620)。 4. 如實施例3所述之方法(1800),其中該至少一階高(320、360、520)及/或該至少一開口(1180、1480)具有至少一邊緣(330、530、1130、1430),及/或其中該單層(1620)係設計成當以該聚焦粒子束(100)照射時改變二次電子對比。 5. 如實施例3或4所述之方法(1800),其更包含:設定該至少一階高(320、360、520)的高度(380)及/或該硬遮罩(1120、1420)的厚度,使得該聚焦粒子束(100)的射束面積沿著該高度(380)相對於該聚焦粒子束(100)的束腰徑(400)增加至少2%、較佳為5%、更佳為10%、且最佳為30%。 6. 如實施例3至5所述之方法(1800),其中照射該測試元件(300、500、1100、1400、1600)包含:聚焦該粒子束(100)於下列群組之至少一元件上: - 該至少一階高(320、360、520)的一上平面(340、540)、及/或該硬遮罩(1120、1420)的一後側(1125); - 該至少一階高(320、360、520)的一下平面(350、550)、及/或該硬遮罩(1120、1140)的一頂側(1115); - 該單層(1620)的一頂側(1620)。 7. 如實施例3至6所述之方法(1800),其中照射該測試元件(300、500、1100、1400、1600)包含下列群組之至少一要件: - 以該聚焦粒子束(100)照射該至少一階高(320、360、520)的一下平面(350、550)的至少一點,使得該至少一束尾(120、125、130、135)入射於該至少一階高(320、360、520)的一上平面(350、550); - 沿著該至少一階高(320、360、520)的至少一邊緣(330、530、1130、1430)掃描該聚焦粒子束(100),使得該聚焦粒子束(100)的該至少一束尾(120、125、130、135)入射於該至少一階高(320、360、520)的該上平面(350、550); - 以該聚焦粒子束(100)照射該硬遮罩(1120、1420)的至少一點,使得該至少一束尾(120、125、130、135)的至少一部分入射於該硬遮罩(1120、1420)中的該至少一開口(1180、1480); - 平行於該硬遮罩(1120、1420)的該至少一開口(1180、1480)的該至少一邊緣(330、530、1130、1430)掃描該聚焦粒子束(100),使得該至少一束尾(120、125、130、135)的至少一部分入射於該硬遮罩(1120、1140)中的該至少一開口(1180、1480); - 照射該單層(1620)的至少一點。 8. 如實施例3至7所述之方法(1800),其中照射該測試元件(300、500、1100、1400、1600)包含下列群組之至少一要件: - 選擇該聚焦粒子束(100)的一強度最大值與該至少一階高(320、360、520)的該至少一邊緣(330、530、1130、1430)之間的一距離,使得該聚焦粒子束(100)於該至少一階高(320、350、520)的該下平面(350、550)中產生的粒子實質上無到達該至少一階高(320、260、520)的該上表面(350、550); - 選擇該聚焦粒子束(100)的該強度最大值與該硬遮罩(1120、1420)中的該至少一開口(1180、1480)的該至少一邊緣(330、530、1130、1430)之間的一距離,使得該聚焦粒子束(110)於該硬遮罩(1120、1420)中產生的粒子實質上無到達該至少一開口(1180、1480)中; - 選擇該聚焦粒子束(100)的能量,使得該聚焦粒子束(100)的粒子實質上無到達該單層(1620)的一後側(1625)。 9. 如實施例中任一項所述之方法(1800),其中照射該測試元件(300、500、1100、1400、1600)包含:沿著至少兩階高(320、360、520)的該至少一邊緣(330、530、1130、1430)在該聚焦粒子束(100)的一強度最大值和該至少兩階高(320、360、520)的該至少一邊緣(330、530、1130、1430)之間的至少兩不同距離中掃描該聚焦粒子束(100)。 10. 如實施例1至9中任一項所述之方法(1800),其中照射該測試元件(300、500、1100、1400、1600)包含:於該聚焦粒子束(100)的該至少一束尾(120、125、130、135)的區域中提供至少一前驅物氣體。 11. 如實施例10所述之方法(1800),其中該至少一前驅物氣體包含以下群組之至少一元素:至少一蝕刻氣體、至少一沉積氣體、及至少一添加物氣體。 12. 如實施例1至11中任一項所述之方法(1800),其中測量該測試元件(300、500、1100、1400、1600)的該至少一變化包含以下群組之至少一要件: - 使用一掃描式探針顯微鏡(1780)的一測量探針(1795)掃描至少由該聚焦粒子束(100)的該至少一束尾(120、125、130、135)所覆蓋的該測試元件(300、500、1100、1400、1600)的區域(620、955); - 使用一檢測射束掃描至少由該聚焦粒子束(100)的該至少一束尾(120、125、130、135)所覆蓋的該測試元件(300、1100、1400、1600)的區域(520、955),以及分析由該檢測射束所產生的粒子; - 使用一光學系統成像至少由該聚焦粒子束(100)的該至少一束尾(120、125、130、135)所覆蓋的該測試元件(300、500、1100、1400、1600)的區域(620、955); - 製備由該聚焦粒子束(100)的該至少一束尾(120、125、130、135)所覆蓋的該測試元件(300、500、1100、1400、1600)的區域(620、955、1250、1540)的至少一部分,以及使用一穿透式電子顯微鏡的電子束成像該測試元件(300、500、1100、1400、1600)的該製備部分。 13. 如實施例1至12中任一項所述之方法(1800),其中測量該測試結構(300、500、1100、1400、1600)的該至少一變化(620、955)包含:使用一檢測射束掃描至少由該聚焦粒子束(100)的該束尾(120、125、130、135)所覆蓋的該單層(1620)的區域,以及檢測至少由該聚焦粒子束(100)所覆蓋區域中的二次電子對比。 14. 如實施例1至13中任一項所述之方法(1800),其中該至少一單層(1620)包含一自組合有機化合物。 15. 如實施例14所述之方法(1800),其中該測試元件(300、500、1100、1400、1600)包含以下群組之至少一元素所製成的至少一層:金(Au)、銀(Ag)、鉑(Pt)、銅(Cu)、石墨(C)與矽(Si)。 16. 一種含有多個指令的電腦程式,當一電腦系統執行該電腦程式促使該電腦系統執行如實施例1至16中任一項所述之方法步驟。 17. 一種用於確定聚焦粒子束(100)的至少一束尾(120、125、130、135)的強度分佈之裝置(1700),其包含: a. 一設定單元(1735),其配置成設定該聚焦粒子束(100)的至少一參數,使得當一測試元件(300、500、1100、1400、1600)受該聚焦粒子束(100)照射時,該聚焦粒子束(100)引起該測試元件(300、500、1100、1400、1600)的至少一可測量變化(620、955、1250、1540、1670);及 b. 一測量單元(1780),其配置成測量該測試元件(300、500、1100、1400、1600)的該至少一變化(620、955、1250、1540、1670)以確定該聚焦粒子束(100)的該至少一束尾(120、125、130、135)的強度變化。 18. 如實施例17所述之裝置(1700),其更包含一用於該測試元件(300、500、1100、1400、1600)之固持裝置(1722)。 19. 如實施例18之裝置(1700),其中該固持裝置(1722)包含一定位單元(1727),其配置成將該測試元件(300、500、1100、1400、1600)定位於該聚焦粒子束(100)下方及/或該測量單元(1780)下方。 20. 如實施例17至19中任一項所述之裝置(1700),其更包含一計算單元(1740),其配置成從該測試元件(300、500、1100、1400、1600)的該測量變化(620、955、1250、1540、1670)確定該聚焦粒子束(100)的該至少一束尾(120、125、130、135)的強度分佈。 A number of further examples are described below to aid in the understanding of the invention. 1. A method (1800) for determining the intensity distribution of at least one tail (120, 125, 130, 135) of a focused particle beam (100), the method (1800) comprising the steps of: a. irradiating (1820) a test element (300, 500, 1100, 1400, 1600) with the focused particle beam (100) such that the at least one tail (120, 125, 130, 135) causing at least one measurable change (620, 955, 1250, 1540, 1670) of the test element (300, 500, 1100, 1400, 1600); and b. measuring (1830) the at least one change (620, 955, 1250, 1540, 1670) of the test element (300, 500, 1100, 1400, 1600) to determine the at least one change of the focused particle beam (100) Intensity distribution of beam tails (120, 125, 130, 135). 2. The method (1800) of embodiment 1, wherein the illumination of the test element (300, 500, 1100, 1400, 1600) causes at least one layout of the test element (300, 500, 1100, 1400, 1600) A change (620, 955, 1250, 1540), at least one chemical change (1660, 1670, 1675, 1680, 1685), and/or at least one physical change (300, 500, 1100, 1400, 1600). 3. The method (1800) of embodiment 1 or 2, wherein the test element (300, 500, 1100, 1400, 1600) comprises at least one test structure (390, 590, 1190, 1490, 1690), the test The structure contains at least one element from the following groups: - At least one high order (320, 360, 520); - at least one hard mask (1120, 1420) having at least one opening (1180, 1480); and - At least one single storey (1620). 4. The method (1800) of embodiment 3, wherein the at least one step (320, 360, 520) and/or the at least one opening (1180, 1480) has at least one edge (330, 530, 1130, 1430), and/or wherein the monolayer (1620) is designed to alter secondary electron contrast when irradiated with the focused particle beam (100). 5. The method (1800) of embodiment 3 or 4, further comprising: setting the height (380) of the at least one step height (320, 360, 520) and/or the hard mask (1120, 1420) thickness such that the beam area of the focused particle beam (100) increases by at least 2%, preferably 5%, or more along the height (380) relative to the beam waist diameter (400) of the focused particle beam (100) The best is 10%, and the best is 30%. 6. The method (1800) of embodiments 3 to 5, wherein irradiating the test element (300, 500, 1100, 1400, 1600) comprises: focusing the particle beam (100) on at least one element of the following group : - an upper plane (340, 540) of the at least one step (320, 360, 520), and/or a rear side (1125) of the hard mask (1120, 1420); - a lower plane (350, 550) of the at least one step height (320, 360, 520), and/or a top side (1115) of the hard mask (1120, 1140); - a top side (1620) of the single layer (1620). 7. The method (1800) of embodiments 3 to 6, wherein irradiating the test element (300, 500, 1100, 1400, 1600) comprises at least one element of the following group: - irradiating at least one point of the lower plane (350, 550) of the at least one step height (320, 360, 520) with the focused particle beam (100), such that the at least one beam tail (120, 125, 130, 135) is incident an upper plane (350, 550) on the at least one step (320, 360, 520); - scanning the focused particle beam (100) along at least one edge (330, 530, 1130, 1430) of the at least one step height (320, 360, 520) such that the at least one beam of the focused particle beam (100) the tail (120, 125, 130, 135) is incident on the upper plane (350, 550) of the at least one height (320, 360, 520); - illuminating at least one point of the hard mask (1120, 1420) with the focused particle beam (100) such that at least a portion of the at least one beam tail (120, 125, 130, 135) is incident on the hard mask (1120, the at least one opening (1180, 1480) in 1420); - scanning the focused particle beam (100) parallel to the at least one edge (330, 530, 1130, 1430) of the at least one opening (1180, 1480) of the hard mask (1120, 1420) such that the at least one beam at least a portion of the tail (120, 125, 130, 135) is incident on the at least one opening (1180, 1480) in the hard mask (1120, 1140); - irradiating at least one point of the monolayer (1620). 8. The method (1800) of embodiments 3 to 7, wherein irradiating the test element (300, 500, 1100, 1400, 1600) comprises at least one element of the following group: - selecting a distance between an intensity maximum of the focused particle beam (100) and the at least one edge (330, 530, 1130, 1430) of the at least one height (320, 360, 520) such that the focused Particles generated by the particle beam (100) in the lower plane (350, 550) of the at least one height (320, 350, 520) substantially do not reach the upper plane of the at least one height (320, 260, 520) surface(350, 550); - selecting a difference between the intensity maximum of the focused particle beam (100) and the at least one edge (330, 530, 1130, 1430) of the at least one opening (1180, 1480) in the hard mask (1120, 1420) a distance between such that particles generated by the focused particle beam (110) in the hard mask (1120, 1420) substantially do not reach the at least one opening (1180, 1480); - selecting the energy of the focused particle beam (100) such that substantially none of the particles of the focused particle beam (100) reach a rear side (1625) of the monolayer (1620). 9. The method (1800) of any one of the embodiments, wherein illuminating the test element (300, 500, 1100, 1400, 1600) comprises: the At least one edge (330, 530, 1130, 1430) at an intensity maximum of the focused particle beam (100) and the at least one edge (330, 530, 1130, 1130, The focused particle beam (100) is scanned in at least two different distances between 1430). 10. The method (1800) of any one of embodiments 1 to 9, wherein irradiating the test element (300, 500, 1100, 1400, 1600) comprises: at the at least one of the focused particle beams (100) At least one precursor gas is provided in the region of the beam tail (120, 125, 130, 135). 11. The method (1800) of embodiment 10, wherein the at least one precursor gas comprises at least one element from the group: at least one etching gas, at least one deposition gas, and at least one additive gas. 12. The method (1800) of any one of embodiments 1 to 11, wherein measuring the at least one change of the test element (300, 500, 1100, 1400, 1600) comprises at least one element of the following group: - scanning the test element covered by at least the at least one tail (120, 125, 130, 135) of the focused particle beam (100) using a measuring probe (1795) of a scanning probe microscope (1780) Area (620, 955) of (300, 500, 1100, 1400, 1600); - scanning (520) the area (520) of the test element (300, 1100, 1400, 1600) covered at least by the at least one tail (120, 125, 130, 135) of the focused particle beam (100) with a detection beam , 955), and analyzing particles produced by the detection beam; - using an optical system to image at least the area of the test element (300, 500, 1100, 1400, 1600) covered by the at least one tail (120, 125, 130, 135) of the focused particle beam (100) ( 620, 955); - preparing the area (620, 955, 1250) of the test element (300, 500, 1100, 1400, 1600) covered by the at least one tail (120, 125, 130, 135) of the focused particle beam (100) , 1540), and image the prepared portion of the test element (300, 500, 1100, 1400, 1600) using an electron beam of a transmission electron microscope. 13. The method (1800) of any one of embodiments 1 to 12, wherein measuring the at least one change (620, 955) of the test structure (300, 500, 1100, 1400, 1600) comprises: using a A detection beam scans at least the region of the monolayer (1620) covered by the beam tail (120, 125, 130, 135) of the focused particle beam (100), and detects at least Secondary electron contrast in the coverage area. 14. The method (1800) of any one of embodiments 1 to 13, wherein the at least one monolayer (1620) comprises a self-assembled organic compound. 15. The method (1800) of embodiment 14, wherein the test element (300, 500, 1100, 1400, 1600) comprises at least one layer made of at least one element of the following group: gold (Au), silver (Ag), platinum (Pt), copper (Cu), graphite (C) and silicon (Si). 16. A computer program containing a plurality of instructions, when a computer system executes the computer program, it causes the computer system to execute the method steps described in any one of embodiments 1-16. 17. A device (1700) for determining an intensity distribution of at least one tail (120, 125, 130, 135) of a focused particle beam (100), comprising: a. a setting unit (1735), configured to set at least one parameter of the focused particle beam (100), such that when a test element (300, 500, 1100, 1400, 1600) is irradiated by the focused particle beam (100), , the focused particle beam (100) causes at least one measurable change (620, 955, 1250, 1540, 1670) of the test element (300, 500, 1100, 1400, 1600); and b. a measurement unit (1780) configured to measure the at least one change (620, 955, 1250, 1540, 1670) of the test element (300, 500, 1100, 1400, 1600) to determine the focused particle beam ( The intensity variation of the at least one bundle tail (120, 125, 130, 135) of 100). 18. The device (1700) of embodiment 17, further comprising a holding device (1722) for the test element (300, 500, 1100, 1400, 1600). 19. The device (1700) of embodiment 18, wherein the holding device (1722) comprises a positioning unit (1727) configured to position the test element (300, 500, 1100, 1400, 1600) on the focusing particle Below the beam (100) and/or below the measuring unit (1780). 20. The device (1700) according to any one of embodiments 17 to 19, further comprising a computing unit (1740) configured to extract from the A measurement variation (620, 955, 1250, 1540, 1670) determines an intensity distribution of the at least one tail (120, 125, 130, 135) of the focused particle beam (100).

100:聚焦粒子束 110:主射束 120、125、130、135:束尾 140:樣品 150:像素 160、170、180、200、210、220、230、240、610、650、655、660、665、670、675、750、755、760、765、770、775、830、860、950、960、970、980、1050、1060、1070、1080、1660、1670、1675、1680、1685:區域 190:強度最大值 300、500、1400、1600:測試元件 310、510、1110、1300、1410、1500、1610:基底元件 320、360:圖案元件/階高 330、530、1130、1430:邊緣 340、540:上平面 350、550、1150:下平面 370、570:表面 380:高度 390、590、1190、1490、1690:測試結構 400、1200:束腰徑 520、1160:階高 620、630:變異區域 800:矩形 810、840:虛線/掃描 820、850:部分/1-D分佈 870:虛線 955、965、975、985:部分 1115、1170、1615:頂側 1120、1420:硬遮罩 1125、1425、1625:背側 1140:硬遮罩 1250:凹陷 1450:雙向箭頭 1480:開口 1510、1520、1530、1540、1550、1560、1570、1580:凹陷 1620:單層 1700:裝置 1702:樣品台 1705:樣品 1707:定位系統 1710:掃描式電子顯微鏡(SEM) 1712:電子槍 1715:電子束 1717:電子柱 1720:檢測器 1721:檢測器 1722:固持裝置 1725:測試元件 1727:定位單元 1730:電腦系統 1732:監視器 1735:設定單元 1737:界面 1740:計算單元 1742:真空腔室 1744:幫浦系統 1748:下部/反應室 1750:供應容器 1752:控制閥 1754:氣體供給管線系統 1756:噴嘴 1760:供應容器 1762:控制閥 1764:氣體供給管線系統 1766:噴嘴 1770:供應容器 1772:控制閥 1774:氣體供給管線系統 1776:噴嘴 1780:掃描力顯微鏡(SFM) 1785:測量頭 1787:固持單元 1790:壓電致動器 1792:測量尖端 1794:懸臂/槓桿臂 1795:測量探針 100: Focused Particle Beam 110: main beam 120, 125, 130, 135: beam tail 140: sample 150: pixels 160, 170, 180, 200, 210, 220, 230, 240, 610, 650, 655, 660, 665, 670, 675, 750, 755, 760, 765, 770, 775, 830, 860, 950, 960, 970, 980, 1050, 1060, 1070, 1080, 1660, 1670, 1675, 1680, 1685: area 190: maximum intensity 300, 500, 1400, 1600: test element 310, 510, 1110, 1300, 1410, 1500, 1610: base element 320, 360: pattern element/step height 330, 530, 1130, 1430: Edge 340, 540: upper plane 350, 550, 1150: lower plane 370, 570: surface 380: height 390, 590, 1190, 1490, 1690: test structure 400, 1200: waist diameter 520, 1160: step height 620, 630: Variation area 800: rectangle 810, 840: dotted line/scan 820, 850: partial/1-D distribution 870: dotted line 955, 965, 975, 985: part 1115, 1170, 1615: top side 1120, 1420: hard mask 1125, 1425, 1625: dorsal side 1140: hard mask 1250: sunken 1450: Two-way arrow 1480: opening 1510, 1520, 1530, 1540, 1550, 1560, 1570, 1580: Depression 1620: single layer 1700: Installation 1702: sample table 1705: sample 1707: positioning system 1710: Scanning Electron Microscope (SEM) 1712: Electron gun 1715: electron beam 1717: Electron column 1720: detector 1721: detector 1722: holding device 1725: Test element 1727: positioning unit 1730: Computer systems 1732: Monitor 1735: setting unit 1737: interface 1740: computing unit 1742: Vacuum chamber 1744: Pump system 1748: Lower part/reaction chamber 1750: Supply Containers 1752: Control valve 1754: Gas supply pipeline system 1756: Nozzle 1760: Supply Containers 1762: Control valve 1764: Gas supply pipeline system 1766: nozzle 1770: Supply Containers 1772: Control valve 1774: Gas supply pipeline system 1776: nozzle 1780: Scanning force microscope (SFM) 1785: measuring head 1787: Holding unit 1790: Piezoelectric actuators 1792: Measuring tip 1794: Cantilever / Lever Arm 1795: Measuring Probes

以下實施方式將參考圖式來描述本發明的當前較佳示例實施例,其中:The following description will describe presently preferred example embodiments of the invention with reference to the drawings, in which:

圖1a說明具有兩不同束尾的聚焦粒子束的射束輪廓的示意剖面;Figure 1a illustrates a schematic cross-section of the beam profile of a focused particle beam with two different beam tails;

圖1b再現圖1a中的聚焦粒子束所照射的樣品的平面圖;Figure 1b reproduces the plan view of the sample irradiated by the focused particle beam in Figure 1a;

圖2示意表示以具有非中心對稱束尾的聚焦粒子束照射的區域;Figure 2 schematically represents an area irradiated with a focused particle beam having a non-centrosymmetric beam tail;

圖3於上方部分圖像中再現了測試元件的示意平面圖,該測試元件的測試結構包含光學遮罩的兩圖案元件,並於下方部分圖像中再現了通過上部分圖像的測試元件的剖面;Figure 3 reproduces in the upper partial image a schematic plan view of a test element with a test structure comprising two pattern elements of an optical mask, and in the lower partial image a section through the test element through the upper partial image ;

圖4於上方部分圖像中描述以具束尾的聚焦粒子束對圖3的測試元件進行照射,並於下方部分中說明粒子束的焦點位置係與圖3的測試元件的測試結構相關聯;Fig. 4 depicts in the upper part of the image that a focused particle beam with a beam tail is used to irradiate the test element of Fig. 3, and in the lower part illustrates that the focal position of the particle beam is associated with the test structure of the test element of Fig. 3;

圖5顯示一測試元件的測試結構的第二實例之示意平面圖;Figure 5 shows a schematic plan view of a second example of a test structure of a test element;

圖6示意描述圖1之聚焦粒子束沿著圖3支測試元件的階高的邊緣進行掃描,其中聚焦粒子束的強度最大值之間的距離和離階高的邊緣的距離係加以改變;Fig. 6 schematically depicts that the focused particle beam of Fig. 1 is scanned along the edge of the step of the test element in Fig. 3, wherein the distance between the intensity maxima of the focused particle beam and the distance from the edge of the step are changed;

圖7再現圖6,其中額外標記了測量佈局變化以確定聚焦粒子束的束尾的區域;FIG. 7 reproduces FIG. 6 with additionally labeled regions of measurement layout changes to determine the beam tail of the focused particle beam;

圖8再現圖7,其中額外描述了確定一維輪廓以計算束尾的射束輪廓;FIG. 8 reproduces FIG. 7 with the additional depiction of determining the one-dimensional profile to calculate the beam profile of the beam tail;

圖9示意呈現了圖1之聚焦粒子束沿著圖5之測試元件的測試結構的四個邊緣進行掃描;Fig. 9 schematically presents that the focused particle beam of Fig. 1 scans along the four edges of the test structure of the test element of Fig. 5;

圖10重複圖9,其中額外標記了測量由束尾和至少一前驅物氣體的組合效應所引起的佈局變化以確定圖1之聚焦粒子束的束尾強度分佈的區域;FIG. 10 repeats FIG. 9 , with additionally marked regions for measuring layout changes caused by the combined effect of the beam tail and at least one precursor gas to determine the beam tail intensity distribution of the focused particle beam of FIG. 1 ;

圖11於上方部分圖像中顯示了測試元件的第三示例的示意平面圖,並於下方部分圖像中顯示其一剖面,其中測試元件的測試結構包含一基底元件,其上沉積有具一開口的硬遮罩;FIG. 11 shows a schematic plan view of a third example of a test element in the upper partial image and a section thereof in the lower partial image, wherein the test structure of the test element comprises a substrate element on which is deposited a hard mask for

圖12於上方部分圖像中說明了以圖1之聚焦粒子束對圖11之測試元件的測試結構進行照射,下方部分圖像說明了由束尾和蝕刻氣體的組合效應引起的測試元件的佈局變化;Figure 12 illustrates in the upper part of the image the irradiation of the test structure of the test element of Figure 11 with the focused particle beam of Figure 1, and the lower part of the image illustrates the layout of the test element caused by the combined effect of the beam tail and etching gas Variety;

圖13於上方部分圖像中再現了圖11之測試元件在移除硬遮罩之後的變異基底元件的平面圖,並於下方部分圖像中呈現了在移除硬遮罩之後的變異基底元件的剖面;Figure 13 reproduces the plan view of the variant base element of the test element of Figure 11 after removal of the hard mask in the upper part of the image, and presents the plan view of the variant base component after removal of the hard mask in the lower part of the image profile;

圖14於上方部分圖像中再現了測試元件的第四示例的示意平面圖,其測試結構具有一硬遮罩,硬遮罩具有沿著縱軸對稱配置的八個開口,且該測試元件藉由於y方向中掃描一聚焦粒子束而進行照射,並於下方部分圖像中顯示了通過該測試元件的剖面;FIG. 14 reproduces in the upper partial image a schematic plan view of a fourth example of a test element with a test structure having a hard mask with eight openings arranged symmetrically along the longitudinal axis, and the test element by means of Irradiation is performed by scanning a focused particle beam in the y-direction, and a section through the test element is shown in the lower part of the image;

圖15於上方部分圖像中再現了圖14之測試元件在移除硬遮罩之後的變異基底元件的平面圖,並於下方部分圖像中呈現了通過在移除硬遮罩之後的變異基底元件的剖面;Figure 15 reproduces the plan view of the modified base element of the test element of Figure 14 after removal of the hard mask in the upper part of the image, and presents a plan view of the modified base part after removal of the hard mask in the lower part of the image profile;

圖16於上方部分圖像中再現了測試元件的第五示例在以圖1之聚焦粒子束進行照射之後的示意平面圖,該測試元件具有自組合單層的形式,並且下方部分圖像再現了通過該測試元件與該聚焦粒子束的剖面;FIG. 16 reproduces in the upper partial image a schematic plan view of a fifth example of a test element in the form of a self-assembled monolayer after irradiation with the focused particle beam of FIG. a profile of the test element and the focused particle beam;

圖17重現了通過裝置的數個組件的示意剖面,裝置有助於以一聚焦粒子束的束尾、或以一聚焦粒子束和一前驅物氣體來照射一測試元件,且該裝置允許測量測量元件的引起變化;及Figure 17 reproduces a schematic cross-section through several components of a device that facilitates irradiating a test element with the tail of a focused particle beam, or with a focused particle beam and a precursor gas, and that allows the measurement of induced changes in the measuring element; and

圖18指出一種用於確定聚焦粒子束之束尾強度分佈的方法之流程圖。Figure 18 shows a flow diagram of a method for determining the intensity distribution of the beam tail of a focused particle beam.

100:聚焦粒子束 100: Focused Particle Beam

120:束尾 120: beam tail

130:束尾 130: beam tail

200:區域 200: area

300:測試元件 300: test components

310:基底元件 310: base element

320:圖案元件/階高 320: pattern element/step height

330:邊緣 330: edge

340:上平面 340: upper plane

350:下平面 350: lower plane

360:圖案元件/階高 360: pattern element/step height

370:表面 370: surface

380:高度 380: height

390:測試結構 390: Test structure

400:束腰徑 400: waist diameter

Claims (43)

一種用於確定一粒子束於一樣品上之一強度分佈的方法,該方法包含下列步驟: a. 以該粒子束照射一測試元件,使得該粒子束引起該測試元件的至少一可測量變化;及 b. 測量該測試元件的該至少一變化,以確定該粒子束於該樣品上的該強度分佈。 A method for determining an intensity distribution of a particle beam on a sample, the method comprising the steps of: a. irradiating a test element with the particle beam such that the particle beam causes at least one measurable change in the test element; and b. measuring the at least one change of the test element to determine the intensity distribution of the particle beam on the sample. 如請求項1所述之方法,其中該粒子束為一聚焦粒子束,且確定該強度分佈包含:藉由以該聚焦粒子束(100)照射(1820)該測試元件(300、500、1100、1400、1600)使得該聚焦粒子束(100)的至少一束尾(120、125、130、135)引起該測試元件(300、500、1100、1400、1600)的至少一可測量變化(600、955、1250、1540、1670)來確定該聚焦粒子束的該至少一束尾的一強度分佈;以及測量(1830)該測試元件(300、500、1100、1400、1600)的該至少一變化(600、955、1250、1540、1670)以確定該聚焦粒子束(100)的該至少一束尾(120、125、130、135)的該強度分佈。The method of claim 1, wherein the particle beam is a focused particle beam, and determining the intensity distribution comprises: by irradiating (1820) the test element (300, 500, 1100, 1400, 1600) such that at least one tail (120, 125, 130, 135) of the focused particle beam (100) causes at least one measurable change (600, 955, 1250, 1540, 1670) to determine an intensity distribution of the at least one tail of the focused particle beam; and measure (1830) the at least one change ( 600, 955, 1250, 1540, 1670) to determine the intensity distribution of the at least one tail (120, 125, 130, 135) of the focused particle beam (100). 如請求項1所述之方法,其中該粒子束透過至少一前驅物氣體照射該樣品,且確定該強度分佈包含確定該至少一前驅物氣體於該樣品上引起的該強度分佈的一變化。The method of claim 1, wherein the particle beam irradiates the sample through at least one precursor gas, and determining the intensity distribution comprises determining a change in the intensity distribution caused by the at least one precursor gas on the sample. 如請求項1至3中任一項所述之方法,其中該粒子束透過一屏蔽元件照射該樣品,且確定該強度分佈包含確定該遮蔽元件於該樣品上引起的該強度分佈的一變化。The method of any one of claims 1 to 3, wherein the particle beam irradiates the sample through a shielding element, and determining the intensity distribution comprises determining a change in the intensity distribution caused by the shielding element on the sample. 如請求項4所述之方法,其中該屏蔽元件執行以下之至少一者:重新分佈在射束方向中通過該遮蔽元件的多個散射束粒子以及產生多個二次粒子。The method of claim 4, wherein the shielding element performs at least one of: redistributing a plurality of scattered beam particles passing through the shielding element in a beam direction and generating a plurality of secondary particles. 一種用於確定在一樣品的一粒子束誘發蝕刻製程中及/或在一粒子束誘發沉積製程中所使用的至少一前驅物氣體的一自發蝕刻速率及/或一自發沉積速率的方法,該方法包含下列步驟: a. 在不以一粒子束照射該測試元件下,以一預定氣體流動速率對一測試元件提供該至少一前驅物氣體達一段預定時間;及 b. 測量該測試元件的該至少一變化以確定該至少一前驅物氣體於該樣品上的該自發蝕刻速率及/或該自發沉積速率。 A method for determining a spontaneous etch rate and/or a spontaneous deposition rate of at least one precursor gas used in a particle beam induced etching process and/or in a particle beam induced deposition process of a sample, the The method includes the following steps: a. providing the at least one precursor gas to a test element at a predetermined gas flow rate for a predetermined period of time without irradiating the test element with a particle beam; and b. measuring the at least one change of the test element to determine the spontaneous etch rate and/or the spontaneous deposition rate of the at least one precursor gas on the sample. 如請求項6所述之方法,其更包含改變以下之至少一者:該氣體流動速率、該至少一前驅物氣體之一組成、以及該至少一前驅物氣體的一溫度;以及重複步驟a。The method of claim 6, further comprising changing at least one of: the gas flow rate, a composition of the at least one precursor gas, and a temperature of the at least one precursor gas; and repeating step a. 如請求項1至7中任一項所述之方法,其中該測試元件包含一基底元件和至少一結構元件,其中該至少一結構元件較佳配置在該基底元件上。The method according to any one of claims 1 to 7, wherein the test element comprises a base element and at least one structural element, wherein the at least one structural element is preferably disposed on the base element. 如前述請求項所述之方法,其中該結構元件包含一第一材料,且該基底元件包含一第二材料,其中該第一材料與該第二材料不同。The method of the preceding claims, wherein the structural element comprises a first material and the base element comprises a second material, wherein the first material is different from the second material. 如前述請求項所述之方法,其中該至少一前驅物氣體所誘發該第一材料的一自發蝕刻速率與該測試樣品的該第二材料的一自發蝕刻速率的差異至少2倍、較佳為至少5倍、更佳為至少10倍、且最佳為至少20倍。The method as described in the preceding claims, wherein the difference between a spontaneous etch rate of the first material induced by the at least one precursor gas and a spontaneous etch rate of the second material of the test sample is at least 2 times, preferably At least 5 times, more preferably at least 10 times, and most preferably at least 20 times. 如請求項1至10中任一項所述之方法,其中該至少一結構元件包含以下之至少一者:一棋盤圖案、具有至少一開口之一光圈遮罩、至少一柱體、以及一隨機化結構。The method according to any one of claims 1 to 10, wherein the at least one structural element comprises at least one of the following: a checkerboard pattern, an aperture mask having at least one opening, at least one cylinder, and a random structure. 如前述請求項所述之方法,其中該隨機化結構包含在一碳層上之多個金粒子。The method of the preceding claims, wherein the randomized structure comprises gold particles on a carbon layer. 如請求項1至12中任一項所述之方法,其中測量該測試元件的該至少一變化包含以下之至少一者:測量該測試元件的一邊緣的一變化、以及測量該測試元件的一區域間的一變化。The method according to any one of claims 1 to 12, wherein measuring the at least one change of the test element comprises at least one of the following: measuring a change of an edge of the test element and measuring a change of the test element A change between regions. 直接或間接重新參考如請求項1之如請求項1至5或8至13中任一項所述之方法(1800),其中該測試元件(300、500、1100、1400、1600)的照射引起該測試元件(300、500、1100、1400、1600)的至少一佈局變化(620、955、1250、1540)、至少一化學變化(1660、1670、1675、1680、1685)、及/或至少一物理變化(300、500、1100、1400、1600)。The method (1800) of any one of claims 1 to 5 or 8 to 13 with direct or indirect re-reference to claim 1, wherein the irradiation of the test element (300, 500, 1100, 1400, 1600) causes at least one layout change (620, 955, 1250, 1540), at least one chemical change (1660, 1670, 1675, 1680, 1685), and/or at least one Physical changes (300, 500, 1100, 1400, 1600). 如請求項1至14中任一項所述之方法(1800),其中該測試元件(300、500、1100、1400、1600)具有至少一測試結構(390、590、1190、1490、1690),其包含下列群組之至少一元件: - 至少一階高(320、360、520); - 至少一硬遮罩(1120、1420),其具有至少一開口(1180、1480);及 - 至少一單層(1620)。 The method (1800) of any one of claims 1 to 14, wherein the test element (300, 500, 1100, 1400, 1600) has at least one test structure (390, 590, 1190, 1490, 1690), It contains at least one element from the following groups: - At least one high order (320, 360, 520); - at least one hard mask (1120, 1420) having at least one opening (1180, 1480); and - At least one single storey (1620). 如前述請求項所述之方法(1800),其中該至少一階高(320、360、520)及/或該至少一開口(1180、1480)具有至少一邊緣(330、530、1130、1430),及/或其中該單層(1620)係設計成當以該聚焦粒子束(100)照射時改變二次電子對比。The method (1800) of the preceding claim, wherein the at least one step (320, 360, 520) and/or the at least one opening (1180, 1480) has at least one edge (330, 530, 1130, 1430) , and/or wherein the monolayer (1620) is designed to alter secondary electron contrast when irradiated with the focused particle beam (100). 如請求項15或16所述之方法(1800),其更包括:設定該至少一階高(320、360、520)的一高度(380)及/或該硬遮罩(1120、1420)的一厚度,使得該聚焦粒子束(100)的一射束面積沿著該高度(380)相對於該聚焦粒子束(100)的該束腰徑(400)增加至少2%、較佳為5%、更佳為10%、且最佳為30%。The method (1800) of claim 15 or 16, further comprising: setting a height (380) of the at least one step height (320, 360, 520) and/or a height of the hard mask (1120, 1420) a thickness such that a beam area of the focused particle beam (100) increases along the height (380) by at least 2%, preferably 5% relative to the beam waist diameter (400) of the focused particle beam (100) , more preferably 10%, and best 30%. 如請求項15至17中任一項所述之方法(1800),其中照射該測試元件(300、500、1100、1400、1600)包含:聚焦該粒子束(100)於下列群組之至少一元件上: - 該至少一階高(320、360、520)的一上平面(340、540)、及/或該硬遮罩(1120、1420)的一後側(1125); - 該至少一階高(320、360、520)的一下平面(350、550)、及/或該硬遮罩(1120、1140)的一頂側(1115); - 該單層(1620)的一頂側(1620)。 The method (1800) of any one of claims 15 to 17, wherein irradiating the test element (300, 500, 1100, 1400, 1600) comprises: focusing the particle beam (100) on at least one of the following groups On the component: - an upper plane (340, 540) of the at least one step (320, 360, 520), and/or a rear side (1125) of the hard mask (1120, 1420); - a lower plane (350, 550) of the at least one step height (320, 360, 520), and/or a top side (1115) of the hard mask (1120, 1140); - a top side (1620) of the single layer (1620). 如請求項15至18中任一項所述之方法(1800),其中照射該測試元件(300、500、1100、1400、1600)包含下列群組之至少一要件: - 以該聚焦粒子束(100)照射該至少一階高(320、360、520)的一下平面(350、550)的至少一點,使得該至少一束尾(120、125、130、135)入射於該至少一階高(320、360、520)的一上平面(350、550); - 沿著該至少一階高(320、360、520)的至少一邊緣(330、530、1130、1430)掃描該聚焦粒子束(100),使得該聚焦粒子束(100)的該至少一束尾(120、125、130、135)入射於該至少一階高(320、360、520)的該上平面(350、550); - 以該聚焦粒子束(100)照射該硬遮罩(1120、1420)的至少一點,使得該至少一束尾(120、125、130、135)的至少一部分入射於該硬遮罩(1120、1420)中的該至少一開口(1180、1480); - 平行於該硬遮罩(1120、1420)中的該至少一開口(1180、1480)的該至少一邊緣(330、530、1130、1430)掃描該聚焦粒子束(100),使得該至少一束尾(120、125、130、135)的至少一部分入射於該硬遮罩(1120、1140)中的該至少一開口(1180、1480); - 照射該單層(1620)的至少一點。 The method (1800) of any one of claims 15 to 18, wherein irradiating the test element (300, 500, 1100, 1400, 1600) comprises at least one element of the following group: - irradiating at least one point of the lower plane (350, 550) of the at least one step height (320, 360, 520) with the focused particle beam (100), such that the at least one beam tail (120, 125, 130, 135) is incident an upper plane (350, 550) on the at least one step (320, 360, 520); - scanning the focused particle beam (100) along at least one edge (330, 530, 1130, 1430) of the at least one step height (320, 360, 520) such that the at least one beam of the focused particle beam (100) the tail (120, 125, 130, 135) is incident on the upper plane (350, 550) of the at least one height (320, 360, 520); - illuminating at least one point of the hard mask (1120, 1420) with the focused particle beam (100) such that at least a portion of the at least one beam tail (120, 125, 130, 135) is incident on the hard mask (1120, the at least one opening (1180, 1480) in 1420); - scanning the focused particle beam (100) parallel to the at least one edge (330, 530, 1130, 1430) of the at least one opening (1180, 1480) in the hard mask (1120, 1420) such that the at least one at least a portion of the beam tail (120, 125, 130, 135) is incident on the at least one opening (1180, 1480) in the hard mask (1120, 1140); - irradiating at least one point of the monolayer (1620). 如請求項15至19中任一項所述之方法(1800),其中照射該測試元件(300、500、1100、1400、1600)包含下列群組之至少一要件: - 選擇該聚焦粒子束(100)的一強度最大值與該至少一階高(320、360、520)的該至少一邊緣(330、530、1130、1430)之間的一距離,使得該聚焦粒子束(100)於該至少一階高(320、350、520)的該下平面(350、550)中產生的多個粒子實質上無到達該至少一階高(320、260、520)的該上表面(350、550); - 選擇該聚焦粒子束(100)的該強度最大值與該硬遮罩(1120、1420)中的該至少一開口(1180、1480)的該至少一邊緣(330、530、1130、1430)之間的一距離,使得該聚焦粒子束(110)於該硬遮罩(1120、1420)中產生的多個粒子實質上無到達該至少一開口(1180、1480)中; - 選擇該聚焦粒子束(100)的一能量,使得該聚焦粒子束(100)的多個粒子實質上無到達該單層(1620)的一後側(1625)。 The method (1800) of any one of claims 15 to 19, wherein irradiating the test element (300, 500, 1100, 1400, 1600) comprises at least one element of the following group: - selecting a distance between an intensity maximum of the focused particle beam (100) and the at least one edge (330, 530, 1130, 1430) of the at least one height (320, 360, 520) such that the focused Particles generated by the particle beam (100) in the lower plane (350, 550) of the at least one height (320, 350, 520) have substantially no access to the at least one height (320, 260, 520) the upper surface (350, 550); - selecting a difference between the intensity maximum of the focused particle beam (100) and the at least one edge (330, 530, 1130, 1430) of the at least one opening (1180, 1480) in the hard mask (1120, 1420) a distance between such that particles generated by the focused particle beam (110) in the hard mask (1120, 1420) substantially do not reach the at least one opening (1180, 1480); - selecting an energy of the focused particle beam (100) such that substantially none of the particles of the focused particle beam (100) reach a rear side (1625) of the monolayer (1620). 如請求項15至20中任一項之方法(1800),其中照射該測試元件(300、500、1100、1400、1600)包含:沿著至少兩階高(320、360、520)的該至少一邊緣(330、530、1130、1430)在該聚焦粒子束(100)的一強度最大值和該至少兩階高(320、360、530)的該至少一邊緣(330、530、1130、1430)之間的至少兩不同距離中掃描該聚焦粒子束(100)。The method (1800) of any one of claims 15 to 20, wherein illuminating the test element (300, 500, 1100, 1400, 1600) comprises: the at least An edge (330, 530, 1130, 1430) at an intensity maximum of the focused particle beam (100) and the at least one edge (330, 530, 1130, 1430) of the at least two steps high (320, 360, 530) The focused particle beam (100) is scanned in at least two different distances between ). 如請求項2、或直接或間接重新參考如請求項2之如請求項3至5或如請求項8至11中任一項所述之方法(1800),其中照射該測試元件(300、500、1100、1400、1600)包含以下之至少一者:於該粒子束的一區域中提供至少一前驅物氣體、以及於該聚焦粒子束(100)的該至少一束尾(120、125、130、135)的一區域中提供至少一前驅物氣體。Claim 2, or the method (1800) of any one of claims 3 to 5 or claims 8 to 11 with direct or indirect re-reference to claim 2, wherein the test element is irradiated (300, 500 , 1100, 1400, 1600) comprising at least one of: providing at least one precursor gas in a region of the particle beam, and the at least one tail (120, 125, 130) of the focused particle beam (100) , 135) providing at least one precursor gas in a region. 如前述請求項所述之方法(1800),其中該至少一前驅物氣體包括下列群組中至少一要件:至少一蝕刻氣體、至少一沉積氣體、以及至少一添加物氣體。The method (1800) of the preceding claim, wherein the at least one precursor gas comprises at least one member of the following group: at least one etching gas, at least one deposition gas, and at least one additive gas. 如請求項1至23中任一項所述之方法(1800),其中測量該測試元件(300、500、1100、1400、1600)的該至少一變化包含以下群組之至少一要件: - 使用一掃描式探針顯微鏡(1780)的一測量探針(1795)掃描至少由該粒子束所覆蓋的該測試元件的該區域; - 使用一掃描式探針顯微鏡(1780)的一測量探針(1795)掃描至少由該聚焦粒子束(100)的該至少一束尾(120、125、130、135)所覆蓋的該測試元件(300、500、1100、1400、1600)的該區域(620、955); - 使用一檢測射束掃描至少由該粒子束覆蓋的該測試元件的該區域,以及分析由該檢測射束所產生的該等粒子; - 使用一檢測射束掃描至少由該聚焦粒子束(100)的該至少一束尾(120、125、130、135)所覆蓋的該測試元件(300、1100、1400、1600)的該區域(520、955),以及分析由該檢測射束所產生的該等粒子; - 使用一光學系統成像至少由該粒子束所覆蓋的該測試元件的該區域; - 使用一光學系統成像至少由該聚焦粒子束(100)的該至少一束尾(120、125、130、135)所覆蓋的該測試元件(300、500、1100、1400、1600)的該區域(620、955); - 製備由該粒子束或該聚焦粒子束(100)的該至少一束尾(120、125、130、135)所覆蓋的該測試元件(300、500、1100、1400、1600)的該區域(620、955、1250、1540)的至少一部分,以及使用一穿透式電子顯微鏡的一電子束成像該測試元件(300、500、1100、1400、1600)的該製備部分。 The method (1800) of any one of claims 1 to 23, wherein measuring the at least one change in the test element (300, 500, 1100, 1400, 1600) comprises at least one element of the following group: - scanning at least the area of the test element covered by the particle beam using a measuring probe (1795) of a scanning probe microscope (1780); - scanning the test element covered by at least the at least one tail (120, 125, 130, 135) of the focused particle beam (100) using a measuring probe (1795) of a scanning probe microscope (1780) (300, 500, 1100, 1400, 1600) of the area (620, 955); - scanning at least the area of the test element covered by the particle beam with a detection beam and analyzing the particles generated by the detection beam; - scanning at least the area of the test element (300, 1100, 1400, 1600) covered by the at least one tail (120, 125, 130, 135) of the focused particle beam (100) with a detection beam ( 520, 955), and analyzing the particles produced by the detection beam; - imaging at least the area of the test element covered by the particle beam using an optical system; - imaging at least the area of the test element (300, 500, 1100, 1400, 1600) covered by the at least one tail (120, 125, 130, 135) of the focused particle beam (100) using an optical system (620, 955); - preparing the area ( 620, 955, 1250, 1540), and image the prepared portion of the test element (300, 500, 1100, 1400, 1600) using an electron beam of a transmission electron microscope. 如請求項1至24中任一項所述之方法,其中測量該測試元件的該至少一變化包含下列群組之至少一要件: - 使用一掃描式探針顯微鏡(1780)的一測量探針(2795)掃描由2x2、較佳為5x5、更佳為10x10、最佳為20x20個測量點所覆蓋之該測試元件的0.01cm 2、較佳為0.1cm 2、更佳為1cm 2、且最佳為5cm 2之一區域; - 使用一檢測射束掃描由2x2、較佳為5x5、更佳為10x10、最佳為20x20個測量點所覆蓋之該測試元件的0.01cm 2、較佳為0.1cm 2、更佳為1cm 2、且最佳為5cm 2之一區域; - 使用一光學系統成像由2x2、較佳為5x5、更佳為10x10、最佳為20x20個測量點所覆蓋之該測試元件的0.01cm 2、較佳為0.1cm 2、更佳為1cm 2、且最佳為5cm 2之一區域。 The method according to any one of claims 1 to 24, wherein measuring the at least one change of the test element comprises at least one element of the following group: - using a measuring probe of a scanning probe microscope (1780) (2795) scan 0.01cm 2 , preferably 0.1cm 2 , more preferably 1cm 2 , and most preferably an area of 5 cm 2 ; - scan 0.01 cm 2 , preferably 0.1 cm 2 of the test element covered by 2x2, preferably 5x5, more preferably 10x10, most preferably 20x20 measuring points using a detection beam cm 2 , preferably 1 cm 2 , and optimally 5 cm 2 ; - use an optical system to image the test covered by 2x2, preferably 5x5, more preferably 10x10, optimally 20x20 measurement points An area of 0.01 cm 2 , preferably 0.1 cm 2 , more preferably 1 cm 2 , and most preferably 5 cm 2 of the element. 如請求項1至25中任一項所述之方法(1800),其中測量該測試結構(300、500、1100、1400、1600)的該至少一變化(620、955)包含:使用一檢測射束掃描至少由該粒子束、該聚焦粒子束(100)的該束尾(120、125、130、135)和該至少一前驅物氣體之至少一者所覆蓋的該單層(1620)的該區域,以及檢測至少在所覆蓋之該區域中的二次電子對比。The method (1800) of any one of claims 1 to 25, wherein measuring the at least one change (620, 955) of the test structure (300, 500, 1100, 1400, 1600) comprises: using a detection radiometer beam scanning the monolayer (1620) covered by at least one of the particle beam, the beam tail (120, 125, 130, 135) of the focused particle beam (100), and the at least one precursor gas region, and detecting secondary electron contrast at least in the region covered. 如請求項15至20、或直接或間接重新參考如請求項15之如請求項21至26中任一項之方法(1800),其中該至少一單層(1620)包含一自組合有機化合物。Claims 15 to 20, or the method (1800) of any one of claims 21 to 26 with direct or indirect reference back to claim 15, wherein the at least one monolayer (1620) comprises a self-assembled organic compound. 如前述請求項之方法(1800),其中該測試元件(300、500、1100、1400、1600)包含至少一層,其包含以下群組之至少一元素:金(Au)、銀(Ag)、鉑(Pt)、銅(Cu)、石墨(C)與矽(Si)。The method (1800) of the preceding claim, wherein the test element (300, 500, 1100, 1400, 1600) comprises at least one layer comprising at least one element of the following group: gold (Au), silver (Ag), platinum (Pt), copper (Cu), graphite (C) and silicon (Si). 如請求項8至10、或直接或間接重新參考如請求項8之如請求項11至28中任一項所述之方法,其中該基底元件係調適成使得一粒子束誘發蝕刻製程本質上不蝕刻該測試結構的該基底元件,且該測試結構的該至少一結構元件包含要在該粒子束誘發蝕刻製程中蝕刻的至少一柱體。The method of any one of claims 8 to 10, or any one of claims 11 to 28 with direct or indirect re-reference to claim 8, wherein the substrate element is adapted so that a particle beam induced etching process is not substantially The base element of the test structure is etched, and the at least one structural element of the test structure includes at least one pillar to be etched in the particle beam induced etching process. 如請求項8至10、或直接或間接重新參考如請求項8之如請求項11至29中任一項所述之方法,其中該結構元件包含至少兩柱體,其係調適成使得一粒子束誘發蝕刻製程本質上不蝕刻該至少兩柱體,且該基底元件包括要在該粒子束誘發蝕刻製程中蝕刻的一材料。Claims 8 to 10, or the method of any one of claims 11 to 29 with direct or indirect re-reference to claim 8, wherein the structural element comprises at least two columns adapted such that a particle The beam-induced etching process does not substantially etch the at least two pillars, and the base element includes a material to be etched during the particle beam-induced etching process. 如請求項8至10、或直接或間接重新參考如請求項8之如請求項11至29中任一項所述之方法,其中該至少一結構元件包含至少一光圈遮罩,其係調適成使得一粒子束誘發蝕刻製程本質上不蝕刻該至少一光圈遮罩,且該基底元件係調適成使得該粒子束誘發蝕刻製程蝕刻該基底元件。The method of any one of claims 8 to 10, or any one of claims 11 to 29 with direct or indirect re-reference to claim 8, wherein the at least one structural element comprises at least one aperture mask adapted to A particle beam induced etching process does not substantially etch the at least one aperture mask, and the substrate element is adapted such that the particle beam induced etching process etches the substrate element. 如前述請求項所述之方法,其中該光圈遮罩包含用於確定該基底元件的一變化之至少兩開口。The method of the preceding claim, wherein the aperture mask comprises at least two openings for determining a change of the base element. 一種含有多個指令的電腦程式, 當一電腦系統執行該電腦程式時該等指令促使該電腦系統執行如請求項1至32中任一項所述之方法步驟。A computer program containing a plurality of instructions, when a computer system executes the computer program, the instructions cause the computer system to execute the method steps as described in any one of Claims 1-32. 一種用於確定一粒子束於一樣品上之一強度分佈的裝置,其包含: a. 一照射構件,用於以該粒子束照射一測試元件的構件,使得該粒子束引起該測試元件的至少一可測量變化;及 b. 一測量構件,用於測量該測試元件的該至少一變化的構件,以確定該粒子束於該樣品上之該強度分佈。 A device for determining an intensity distribution of a particle beam on a sample comprising: a. an irradiating member for irradiating a test element with the particle beam such that the particle beam causes at least one measurable change in the test element; and b. A measuring means for measuring the at least one variable means of the test element to determine the intensity distribution of the particle beam on the sample. 如請求項34所述之裝置,其更包含一聚焦構件,用於聚焦該粒子束。The device as claimed in claim 34, further comprising a focusing member for focusing the particle beam. 如請求項34或35所述之裝置,其更包含一提供構件,用於提供至少一前驅物氣體於該樣品及/或該測試元件上。The device as claimed in claim 34 or 35, further comprising a providing member for providing at least one precursor gas on the sample and/or the test element. 如請求項36所述之裝置,其中用於提供該至少一前驅物氣體之該提供構件包含一設定構件,用於設定該至少一前驅物氣體的一氣體流動速率。The device as claimed in claim 36, wherein the providing means for providing the at least one precursor gas comprises a setting means for setting a gas flow rate of the at least one precursor gas. 如請求項34至37中任一項所述之裝置,其更包含一測量構件,用於測量該測試元件的該至少一變化。The device according to any one of claims 34 to 37, further comprising a measuring member for measuring the at least one change of the test element. 如請求項34至38中任一項所述之裝置,其更包含一確定構件,用於從該測試元件的該至少一測量變化確定該粒子束的該強度分佈。The device according to any one of claims 34 to 38, further comprising a determining means for determining the intensity distribution of the particle beam from the at least one measured change of the test element. 一種用於確定一聚焦粒子束(100)的至少一束尾(120、125、130、135)的一強度分佈的裝置(1700),其包含: a. 一設定單元(1735),其配置成設定該聚焦粒子束(100)的至少一參數,使得當一測試元件(300、500、1100、1400、1600)受該聚焦粒子束(100)照射時,該聚焦粒子束(100)引起該測試元件(300、500、1100、1400、1600)的至少一可測量變化(620、955、1250、1540、1670);及 b. 一測量單元(1780),其配置成測量該測試元件(300、500、1100、1400、1600)的該至少一變化(620、955、1250、1540、1670)以確定該聚焦粒子束(100)的該至少一束尾(120、125、130、135)的該強度分佈。 A device (1700) for determining an intensity distribution of at least one tail (120, 125, 130, 135) of a focused particle beam (100), comprising: a. a setting unit (1735), configured to set at least one parameter of the focused particle beam (100), such that when a test element (300, 500, 1100, 1400, 1600) is irradiated by the focused particle beam (100), , the focused particle beam (100) causes at least one measurable change (620, 955, 1250, 1540, 1670) of the test element (300, 500, 1100, 1400, 1600); and b. a measurement unit (1780) configured to measure the at least one change (620, 955, 1250, 1540, 1670) of the test element (300, 500, 1100, 1400, 1600) to determine the focused particle beam ( 100) of the intensity distribution of the at least one beam tail (120, 125, 130, 135). 如前述請求項所述之裝置(1700),其更包含用於該測試元件(300、500、1100、1400、1600)之一固持裝置(1722)。The device (1700) of the preceding claim, further comprising a holding device (1722) for the test element (300, 500, 1100, 1400, 1600). 如前述請求項所述之裝置(1700),其中該固持裝置(1722)包含一定位單元(1727),其配置成將該測試元件(300、500、1100、1400、1600)定位於該聚焦粒子束(100)下方及/或該測量單元(1780)下方。The device (1700) of the preceding claim, wherein the holding device (1722) comprises a positioning unit (1727) configured to position the test element (300, 500, 1100, 1400, 1600) on the focusing particle Below the beam (100) and/or below the measuring unit (1780). 如請求項40至42中任一項所述之裝置(1700),其更包含一計算單元(1740),其配置成從該測試元件(300、500、1100、1400、1600)的該測量變化(620、955、1250、1540、1670)確定該聚焦粒子束(100)的該至少一束尾(120、125、130、135)的該強度分佈。The device (1700) of any one of claims 40 to 42, further comprising a calculation unit (1740) configured to vary from the measurement of the test element (300, 500, 1100, 1400, 1600) (620, 955, 1250, 1540, 1670) determining the intensity distribution of the at least one tail (120, 125, 130, 135) of the focused particle beam (100).
TW111134119A 2021-09-10 2022-09-08 Method and apparatus for determining a beam tail of a focused particle beam TW202326789A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021210005.8A DE102021210005A1 (en) 2021-09-10 2021-09-10 Method and device for determining a beam tail of a focused particle beam
DE102021210005.8 2021-09-10

Publications (1)

Publication Number Publication Date
TW202326789A true TW202326789A (en) 2023-07-01

Family

ID=83355439

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111134119A TW202326789A (en) 2021-09-10 2022-09-08 Method and apparatus for determining a beam tail of a focused particle beam

Country Status (3)

Country Link
DE (1) DE102021210005A1 (en)
TW (1) TW202326789A (en)
WO (1) WO2023036911A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6353231B1 (en) 1998-08-31 2002-03-05 Nikon Corporation Pinhole detector for electron intensity distribution
JP2001221897A (en) 2000-02-14 2001-08-17 Nissin High Voltage Co Ltd Device for measuring distribution of electron beam
US9721754B2 (en) 2011-04-26 2017-08-01 Carl Zeiss Smt Gmbh Method and apparatus for processing a substrate with a focused particle beam
DE102018210522B4 (en) * 2018-06-27 2021-03-18 Carl Zeiss Smt Gmbh Method and apparatus for examining a charged particle beam

Also Published As

Publication number Publication date
DE102021210005A1 (en) 2023-03-16
WO2023036911A1 (en) 2023-03-16

Similar Documents

Publication Publication Date Title
Klein et al. TSEM: A review of scanning electron microscopy in transmission mode and its applications
TWI714049B (en) Methods, apparatuses and computer programs for removing a particle from a photolithographic mask
TWI631343B (en) Methods and devices for examining an electrically charged specimen surface
Maas et al. Nanofabrication with a helium ion microscope
KR102327590B1 (en) Method and apparatus for inspecting the measuring tip of a scanning probe microscope
KR20170115971A (en) Device and method for analysing a defect of a photolithographic mask or of a wafer
JP7080264B2 (en) Equipment and methods for locating elements on a photolithography mask
KR102561038B1 (en) Apparatus and method for repairing a photolithographic mask
US20230109566A1 (en) Method and apparatus for setting a side wall angle of a pattern element of a photolithographic mask
CN112534540A (en) Device and method for examining and/or processing samples
TW202326789A (en) Method and apparatus for determining a beam tail of a focused particle beam
TWI791240B (en) Method, test structure and test device for determining a geometry of a measuring tip for a scanning probe micro-scope, use of a test structure, and method and device for analysing and/or processing a sample
TWI719666B (en) Method for moving a structure on a semiconductor article and inspection devices for inspecting a semiconductor article
CN117795637A (en) Apparatus and method for analyzing and/or processing a sample with a particle beam
KR20220006477A (en) Apparatus and method for removing a single particulate from a substrate
Cordes Semiconductor Defect Classification Utilizing Atomic Force Microscopy Mechanical Property and 3D Measurement Applications