TW202326179A - Optical dimming lens and fabrication method thereof - Google Patents

Optical dimming lens and fabrication method thereof Download PDF

Info

Publication number
TW202326179A
TW202326179A TW111146029A TW111146029A TW202326179A TW 202326179 A TW202326179 A TW 202326179A TW 111146029 A TW111146029 A TW 111146029A TW 111146029 A TW111146029 A TW 111146029A TW 202326179 A TW202326179 A TW 202326179A
Authority
TW
Taiwan
Prior art keywords
lens
material layer
dimming
layer
light
Prior art date
Application number
TW111146029A
Other languages
Chinese (zh)
Inventor
艾福森 札麻里
雷鳴
黃榮梓
納卡哈拉修
Original Assignee
美商元平台技術有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/983,944 external-priority patent/US20230194918A1/en
Application filed by 美商元平台技術有限公司 filed Critical 美商元平台技術有限公司
Publication of TW202326179A publication Critical patent/TW202326179A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/12Fluid-filled or evacuated lenses
    • G02B3/14Fluid-filled or evacuated lenses of variable focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/08Auxiliary lenses; Arrangements for varying focal length
    • G02C7/086Auxiliary lenses located directly on a main spectacle lens or in the immediate vicinity of main spectacles
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
    • G02C7/101Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses having an electro-optical light valve
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/0009Materials therefor
    • G02F1/0063Optical properties, e.g. absorption, reflection or birefringence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0132Head-up displays characterised by optical features comprising binocular systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/291Two-dimensional analogue deflection

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Nonlinear Science (AREA)
  • General Health & Medical Sciences (AREA)

Abstract

A lens is provided. The lens includes a first material layer including a first lens material with a first birefringence, a first density, and a first impact resistance. The lens also includes a second material layer coupled with the first material layer and including a second lens material with a second birefringence, a second density, and a second impact resistance. The first birefringence is lower than the second birefringence, the first density is lower than the second density, and the second impact resistance is stronger than the first impact resistance.

Description

光學調光透鏡及其製作方法Optical dimming lens and manufacturing method thereof

本發明一般係關於光學裝置,且更具體而言,係關於一種光學調光透鏡及其製作方法。 對相關申請案之交互參考 The present invention generally relates to optical devices, and more specifically relates to an optical dimming lens and a manufacturing method thereof. Cross-References to Related Applications

本申請案主張2021年12月22日申請之美國臨時申請案第63/292,471號、2022年6月18日申請之美國臨時專利申請案第63/353,562號及2022年11月9日申請之美國非臨時申請案第17/983944號的優先權之權益。上文所提及之申請案之內容以全文引用之方式併入。This application asserts U.S. Provisional Application No. 63/292,471, filed December 22, 2021, U.S. Provisional Patent Application No. 63/353,562, filed June 18, 2022, and U.S. Provisional Application No. 63/353,562, filed November 9, 2022. Benefit of Priority of Non-Provisional Application No. 17/983944. The contents of the applications mentioned above are incorporated by reference in their entirety.

人工實境裝置,諸如頭戴式顯示器(「head-mounted display;HMD」)或平視顯示器(「heads-up display;HUD」)裝置,在包括航空、工程設計、醫療手術實踐及視訊遊戲等之各種領域中具有廣泛應用。人工實境裝置可顯示虛擬物件或將真實物件之影像與虛擬物件組合,如在擴增實境(「augmented reality;AR」)、虛擬實境(「virtual reality;VR」)及/或混合實境(「mixed reality;MR」)中應用。在針對AR及/或MR應用實施時,自使用者之視角來看,人工實境裝置可為至少部分透明的,從而使得使用者能夠檢視周圍的真實世界環境。在針對VR應用實施時,人工實境裝置可為不透明的,使得使用者實質上沈浸在經由人工實境裝置提供之VR影像中。Artificial reality devices, such as head-mounted display ("head-mounted display; HMD") or head-up display ("heads-up display; HUD") devices, are used in aeronautics, engineering design, medical surgery practice, and video games. It has a wide range of applications in various fields. Artificial reality devices can display virtual objects or combine images of real objects with virtual objects, such as in augmented reality ("augmented reality; AR"), virtual reality ("virtual reality; VR") and/or mixed reality environment (“mixed reality; MR”). When implemented for AR and/or MR applications, the artificial reality device may be at least partially transparent from the perspective of the user, enabling the user to view the surrounding real world environment. When implemented for VR applications, the AR device may be opaque such that the user is substantially immersed in the VR imagery provided via the AR device.

與本發明之一態樣一致,提供一種透鏡。該透鏡包括第一材料層,該第一材料層包括具有第一雙折射率、第一密度及第一抗衝擊性之第一透鏡材料。該透鏡亦包括第二材料層,該第二材料層與第一材料層耦接且包括具有第二雙折射率、第二密度及第二抗衝擊性之第二透鏡材料。第一雙折射率低於第二雙折射率,第一密度低於第二密度,且第二抗衝擊性強於第一抗衝擊性。Consistent with an aspect of the present invention, a lens is provided. The lens includes a first layer of material including a first lens material having a first birefringence, a first density, and a first impact resistance. The lens also includes a second material layer coupled to the first material layer and including a second lens material having a second birefringence, a second density, and a second impact resistance. The first birefringence is lower than the second birefringence, the first density is lower than the second density, and the second impact resistance is stronger than the first impact resistance.

與本發明之另一態樣一致,提供一種方法。該方法包括提供第一材料層,該第一材料層包括具有第一雙折射率、第一密度及第一抗衝擊性之第一透鏡材料。該方法亦包括將調光元件安置於第一材料層處。該方法亦包括將第二材料層安置於調光元件處。第二材料層包括具有第二雙折射率、第二密度及第二抗衝擊性之第二透鏡材料。第一雙折射率低於第二雙折射率,第一密度低於第二密度,且第二抗衝擊性強於第一抗衝擊性。Consistent with another aspect of the invention, a method is provided. The method includes providing a first layer of material including a first lens material having a first birefringence, a first density, and a first impact resistance. The method also includes disposing a dimming element at the first material layer. The method also includes disposing a second material layer at the dimming element. The second material layer includes a second lens material having a second birefringence, a second density, and a second impact resistance. The first birefringence is lower than the second birefringence, the first density is lower than the second density, and the second impact resistance is stronger than the first impact resistance.

與本發明之另一態樣一致,提供一種方法。該方法包括提供第一材料層,該第一材料層包括具有第一雙折射率、第一密度及第一抗衝擊性之第一透鏡材料。該方法包括將調光元件安置至第二材料層中。第二材料層包括具有第二雙折射率、第二密度及第二抗衝擊性之第二透鏡材料。該方法包括將第二材料層安置於第一材料層處。第一雙折射率低於第二雙折射率,第一密度低於第二密度,且第二抗衝擊性強於第一抗衝擊性。Consistent with another aspect of the invention, a method is provided. The method includes providing a first layer of material including a first lens material having a first birefringence, a first density, and a first impact resistance. The method includes disposing a dimming element into a second material layer. The second material layer includes a second lens material having a second birefringence, a second density, and a second impact resistance. The method includes disposing a second material layer at the first material layer. The first birefringence is lower than the second birefringence, the first density is lower than the second density, and the second impact resistance is stronger than the first impact resistance.

本發明之其他態樣可由所屬技術領域中具有通常知識者鑒於本發明之描述、申請專利範圍及圖式而理解。前文的一般描述及下文的詳細描述僅為例示性及解釋性的,且並不限制申請專利範圍。Other aspects of the present invention can be understood by those skilled in the art in view of the description, claims and drawings of the present invention. The foregoing general description and the following detailed description are exemplary and explanatory only, and do not limit the scope of claims.

將參考隨附圖式描述與本發明一致的具體實例,該等隨附圖式僅為用於說明性目的之實例且並不意欲限制本發明之範圍。在任何可能的情況下,整個圖式使用相同參考編號來指相同或類似部分,且可省略其詳細描述。Specific examples consistent with this disclosure will be described with reference to the accompanying drawings, which are examples for illustrative purposes only and are not intended to limit the scope of the disclosure. Wherever possible, the same reference numerals are used throughout the drawings to refer to the same or like parts, and detailed descriptions thereof may be omitted.

此外,在本發明中,可組合所揭示具體實例及所揭示具體實例之特徵。所描述具體實例為本發明之一些但並非全部具體實例。基於所揭示具體實例,所屬技術領域中具有通常知識者可導出與本發明一致之其他具體實例。舉例而言,可基於所揭示具體實例進行修改、調適、取代、添加或其他變化。所揭示具體實例之此類變化仍在本發明之範圍內。因此,本發明不限於所揭示具體實例。相反地,本發明之範圍由隨附申請專利範圍界定。Furthermore, disclosed embodiments and features of disclosed embodiments may be combined in the present disclosure. The described embodiments are some, but not all, embodiments of the invention. Based on the disclosed embodiments, one of ordinary skill in the art can derive other embodiments consistent with the present invention. For example, modifications, adaptations, substitutions, additions, or other changes may be made based on the disclosed specific examples. Such variations of the disclosed examples are still within the scope of the invention. Accordingly, the invention is not intended to be limited to the specific examples disclosed. Rather, the scope of the present invention is defined by the appended claims.

如本文中所使用,術語「耦接(couple/coupled/coupling)」或其類似者可涵蓋光學耦接、機械耦接、電耦接、電磁耦接或其任何組合。兩個光學元件之間的「光學耦接」係指兩個光學元件以光學串聯方式配置且自一個光學元件輸出之光可由另一光學元件直接地或間接地接收之組態。光學串聯係指複數個光學元件在光路徑中之光學定位,使得自一個光學元件輸出之光可由其他光學元件中之一或多者透射、反射、繞射、轉換、修改或以其他方式處理或操控。在一些具體實例中,配置複數個光學元件之順序可能會或可能不會影響複數個光學元件之整體輸出。耦接可為直接耦接或間接耦接(例如,經由中間元件進行耦接)。As used herein, the term "couple/coupled/coupling" or the like may encompass optical coupling, mechanical coupling, electrical coupling, electromagnetic coupling, or any combination thereof. "Optical coupling" between two optical elements refers to a configuration in which two optical elements are arranged in optical series and light output from one optical element can be directly or indirectly received by the other optical element. Optical concatenation means the optical positioning of a plurality of optical elements in a light path such that light output from one optical element is transmitted, reflected, diffracted, converted, modified, or otherwise processed by one or more of the other optical elements or manipulation. In some embodiments, the order in which the plurality of optical elements are arranged may or may not affect the overall output of the plurality of optical elements. The coupling may be direct or indirect (eg, via intermediate elements).

片語「A或B中之至少一者」可涵蓋A及B之所有組合,諸如僅A、僅B、或A及B。同樣地,片語「A、B或C中之至少一者」可涵蓋A、B及C之所有組合,諸如僅A、僅B、僅C、A及B、A及C、B及C、或A及B及C。片語「A及/或B」可以與片語「A或B中之至少一者」類似之方式進行解譯。舉例而言,片語「A及/或B」可涵蓋A及B之所有組合,諸如僅A、僅B、或A及B。同樣,片語「A、B及/或C」具有與片語「A、B或C中之至少一者」之意義類似的意義。舉例而言,片語「A、B及/或C」可涵蓋A、B及C之所有組合,諸如僅A、僅B、僅C、A及B、A及C、B及C、或A及B及C。The phrase "at least one of A or B" may cover all combinations of A and B, such as only A, only B, or A and B. Likewise, the phrase "at least one of A, B, or C" may cover all combinations of A, B, and C, such as only A, only B, only C, A and B, A and C, B and C, Or A and B and C. The phrase "A and/or B" may be interpreted in a similar manner to the phrase "at least one of A or B". For example, the phrase "A and/or B" can encompass all combinations of A and B, such as only A, only B, or A and B. Likewise, the phrase "A, B, and/or C" has a meaning similar to that of the phrase "at least one of A, B, or C". For example, the phrase "A, B, and/or C" may cover all combinations of A, B, and C, such as only A, only B, only C, A and B, A and C, B and C, or A and B and C.

當將第一元件描述為「附接」、「設置」、「形成」、「貼附」、「安裝」、「固定」、「連接」、「接合」、「記錄」或「安置」至第二元件、在第二元件上、在第二元件處或至少部分地在第二元件中時,可使用諸如沈積、塗佈、蝕刻、接合、膠合、旋擰、壓入配合、搭扣配合、夾持等之任何合適的機械或非機械方式將第一元件「附接」、「設置」、「形成」、「貼附」、「安裝」、「固定」、「連接」、「接合」、「記錄」或「安置」至第二元件、在第二元件上、在第二元件處或至少部分地在第二元件中。此外,第一元件可與第二元件直接接觸,或第一元件與第二元件之間可存在中間元件。第一元件可安置於第二元件之任何合適的一側,諸如左側、右側、前側、後側、頂側或底側。When the first element is described as "attached", "disposed", "formed", "attached", "mounted", "fixed", "connected", "engaged", "recorded" or "placed" to the second Two elements, on, at, or at least partially in the second element, can be used such as deposition, coating, etching, joining, gluing, screwing, press-fitting, snap-fitting, "attach", "dispose", "form", "attach", "install", "fix", "connect", "bond", "Record" or "dispose" to, on, at, or at least partially in a second element. Also, the first element may be in direct contact with the second element, or there may be an intervening element between the first element and the second element. The first element may be positioned on any suitable side of the second element, such as the left, right, front, rear, top or bottom.

當第一元件經展示或描述為安置或配置在第二元件「上」時,術語「在…上」僅用於指示第一元件與第二元件之間的示範性相對位向。描述可基於圖中所展示之參考座標系統,或可基於圖中所展示之當前視圖或實例組態。舉例而言,當描述圖中所展示之視圖時,第一元件可描述為安置在第二元件「上」。應理解,術語「在…上」可能未必暗示第一元件在垂直重力方向上位於第二元件上方。舉例而言,當將第一元件及第二元件之組裝件轉動180度時,第一元件可在第二元件「之下」(或第二元件可在第一元件「上」)。因此,應理解,當圖展示第一元件在第二元件「上」時,組態僅為說明性實例。第一元件可相對於第二元件以任何合適之位向安置或配置(例如,在第二元件上方或之上、在第二元件下方或之下、在第二元件左側、在第二元件右側、在第二元件後方、在第二元件前方等)。When a first element is shown or described as being disposed or disposed "on" a second element, the term "on" is only used to indicate an exemplary relative orientation between the first element and the second element. The description may be based on the reference coordinate system shown in the drawing, or may be based on the current view or example configuration shown in the drawing. For example, when describing the views shown in the figures, a first element may be described as being disposed "on" a second element. It should be understood that the term "on" may not necessarily imply that a first element is located above a second element in the vertical gravitational direction. For example, the first element can be "below" the second element (or the second element can be "above" the first element) when the assembly of the first element and the second element is rotated 180 degrees. Accordingly, it should be understood that when the figures show a first element "on" a second element, that configuration is merely an illustrative example. The first element may be positioned or configured in any suitable orientation relative to the second element (e.g., above or above the second element, below or below the second element, to the left of the second element, to the right of the second element , behind the second element, in front of the second element, etc.).

當第一元件描述為安置在第二元件「上」時,第一元件可直接地或間接地安置在第二元件上。第一元件直接安置在第二元件上指無額外元件安置在第一元件與第二元件之間。第一元件間接安置在第二元件上指一或多個額外元件安置在第一元件與第二元件之間。When a first element is described as being disposed "on" a second element, the first element may be directly or indirectly disposed on the second element. A first element disposed directly on a second element means that no additional element is disposed between the first element and the second element. A first element being indirectly disposed on a second element means that one or more additional elements are disposed between the first element and the second element.

本文中所使用之術語「處理器」可涵蓋任何合適之處理器,諸如中央處理單元(「central processing unit;CPU」)、圖形處理單元(「graphics processing unit;GPU」)、特定應用積體電路(「application-specific integrated circuit;ASIC」)、可程式化邏輯裝置(「programmable logic device;PLD」)或其任何組合。亦可使用上文未列出之其他處理器。處理器可實施為軟體、硬體、韌體或其任何組合。The term "processor" as used herein may encompass any suitable processor, such as a central processing unit ("central processing unit; CPU"), a graphics processing unit ("graphics processing unit; GPU"), an application-specific integrated circuit ("application-specific integrated circuit; ASIC"), programmable logic device ("programmable logic device; PLD"), or any combination thereof. Other processors not listed above may also be used. A processor may be implemented as software, hardware, firmware, or any combination thereof.

術語「控制器」可涵蓋配置以產生用於控制裝置、電路、光學元件等之控制信號的任何合適之電路、軟體或處理器。「控制器」可實施為軟體、硬體、韌體或其任何組合。舉例而言,控制器可包括處理器,或可包括為處理器之一部分。The term "controller" may encompass any suitable circuit, software or processor configured to generate control signals for controlling devices, circuits, optical elements, and the like. A "controller" may be implemented as software, hardware, firmware, or any combination thereof. For example, a controller may include, or be part of, a processor.

術語「非暫時性電腦可讀取媒體」可涵蓋用於儲存、傳送、傳達、廣播或傳輸資料、信號或資訊之任何合適媒體。舉例而言,非暫時性電腦可讀取媒體可包括記憶體、硬碟、磁碟、光碟、磁帶等。記憶體可包括唯讀記憶體(「read-only memory;ROM」)、隨機存取記憶體(「random-access memory;RAM」)、快閃記憶體等。The term "non-transitory computer readable medium" may cover any suitable medium for storing, sending, conveying, broadcasting or transmitting data, signals or information. For example, non-transitory computer-readable media may include memory, hard disks, magnetic disks, optical disks, magnetic tapes, and the like. The memory may include read-only memory (“read-only memory; ROM”), random-access memory (“random-access memory; RAM”), flash memory, and the like.

術語「膜」、「層」、「塗層」或「板」可包括可安置於支撐基板上或基板之間的剛性或可撓性、自撐式或自立式膜、層、塗層或板。術語「膜」、「層」、「塗層」及「板」可為可互換的。術語「膜平面」係指垂直於厚度方向之膜、層、塗層或板中的平面。膜平面可為膜、層、塗層或板之體積中的平面,或可為膜、層、塗層或板之表面平面。The terms "film", "layer", "coating" or "plate" may include rigid or flexible, self-supporting or free-standing films, layers, coatings or plates that may be disposed on or between supporting substrates . The terms "film", "layer", "coating" and "sheet" may be interchangeable. The term "film plane" refers to a plane in a film, layer, coating or sheet perpendicular to the thickness direction. A film plane can be a plane in the bulk of the film, layer, coating or sheet, or can be a surface plane of the film, layer, coating or sheet.

在「正交偏振」中之術語「正交」或在「正交地偏振」中之術語「正交地」意謂表示兩個偏振的兩個向量之內積實質上係零。舉例而言,具有正交偏振之兩個光或光束(或兩個正交地偏振之光或光束)可為具有兩個正交偏振方向(例如,笛卡爾座標系統中之x軸方向及y軸方向)的兩個線性偏振光(或光束)或具有相反偏手性之兩個圓偏振光(例如,左旋圓偏振光及右旋圓偏振光)。The term "orthogonal" in "orthogonal polarization" or the term "orthogonally" in "orthogonally polarized" means that the product of two vectors representing the two polarizations is substantially zero. For example, two lights or light beams with orthogonal polarizations (or two orthogonally polarized lights or light beams) may have two orthogonal polarization directions (e.g., the x-axis direction and the y-axis direction in a Cartesian coordinate system). axis direction) of two linearly polarized lights (or beams) or two circularly polarized lights with opposite handedness (for example, left-handed circularly polarized light and right-handed circularly polarized light).

本發明中所提及之波長範圍、光譜或頻帶係出於說明性目的。所揭示之光學裝置、系統、元件、組裝件及方法可應用於可見波長帶,以及其他波長帶,諸如紫外線(「UV」)波長帶、紅外線(「IR」)波長帶,或其組合。用於修飾描述光之處理之光學回應動作(諸如,透射、反射、繞射、阻擋或其類似者)的術語「實質上」或「主要」意謂光之主要部分(包括全部)經透射、反射、繞射或阻擋等。該主要部分可為可基於特定應用需要而判定的整束光之預定百分比(大於50%),諸如100%、98%、90%、85%、80%等。The wavelength ranges, spectra or frequency bands mentioned in the present invention are for illustrative purposes. The disclosed optical devices, systems, components, assemblies, and methods are applicable to visible wavelength bands, as well as other wavelength bands, such as ultraviolet ("UV") wavelength bands, infrared ("IR") wavelength bands, or combinations thereof. The term "substantially" or "mainly" used to describe an optical response to a manipulation of light (such as transmission, reflection, diffraction, blocking or the like) means that a substantial portion (including all) of the light is transmitted, reflection, diffraction or blocking etc. The main portion may be a predetermined percentage (greater than 50%) of the entire beam, such as 100%, 98%, 90%, 85%, 80%, etc., which may be determined based on specific application needs.

調光透鏡已用於增大人工實境裝置之動態範圍。光學調光透鏡必須滿足一些屬性或效能以便滿足產品規格,諸如緊密性及輕重量、通過政府機構測試之足夠強的抗衝擊性、具有可忽略雙折射率問題之透視品質。滿足人工實境裝置所需之所有此等要求常常具有挑戰性。本發明提供一種提供輕重量、強抗衝擊性及低雙折射率之調光透鏡。Dimmable lenses have been used to increase the dynamic range of artificial reality devices. Optical dimming lenses must meet certain attributes or performance in order to meet product specifications, such as tightness and light weight, strong enough impact resistance to pass government agency tests, see-through quality with negligible birefringence issues. Meeting all of these requirements needed for an artificial reality device is often challenging. The present invention provides a dimming lens that provides light weight, strong impact resistance and low birefringence.

圖1A繪示根據本發明之具體實例的人工實境裝置100之示意圖。在一些具體實例中,人工實境裝置100可為使用者產生VR、AR及/或MR內容,諸如影像、視訊、音訊或其組合。在一些具體實例中,人工實境裝置100可為智慧型眼鏡。在一個具體實例中,人工實境裝置100可為近眼顯示器(「near-eye display;NED」)。在一個具體實例中,人工實境裝置100可為抬頭顯示器。在一些具體實例中,人工實境裝置100可呈眼鏡、護目鏡、頭盔、遮光板或某一其他類型之眼用穿戴品的形式。在一些具體實例中,人工實境裝置100可配置以穿戴在使用者之頭部上(例如,藉由具有目鏡或眼鏡之形式,如圖1A中所展示),或包括為由使用者穿戴之頭盔之部分。在一些具體實例中,人工實境裝置100可配置以用於在不安裝至使用者之頭部的情況下在眼球前方之固定位置處接近使用者之一或多隻眼球置放。在一些具體實例中,人工實境裝置100可呈提供視覺校正之眼鏡的形式。在一些具體實例中,人工實境裝置100可呈不提供視覺校正之平光眼鏡的形式。在一些具體實例中,人工實境裝置100可呈保護使用者之眼球免受明亮日光影響之太陽鏡的形式。在一些具體實例中,人工實境裝置100可呈保護使用者之眼球之安全眼鏡的形式。在一些具體實例中,人工實境裝置100可呈夜視裝置或紅外護目鏡之形式以增強使用者在夜間之視覺。人工實境裝置100可以其他形式實施。FIG. 1A is a schematic diagram of an artificial reality device 100 according to a specific example of the present invention. In some embodiments, the artificial reality device 100 can generate VR, AR and/or MR content for the user, such as image, video, audio or a combination thereof. In some specific examples, the artificial reality device 100 can be smart glasses. In a specific example, the artificial reality device 100 may be a near-eye display (“near-eye display; NED”). In a specific example, the artificial reality device 100 can be a head-up display. In some embodiments, the artificial reality device 100 may be in the form of glasses, goggles, a helmet, a visor, or some other type of eyewear. In some embodiments, the artificial reality device 100 may be configured to be worn on the user's head (e.g., by taking the form of eyepieces or glasses, as shown in FIG. part of the helmet. In some embodiments, the artificial reality device 100 may be configured for placement near one or more eyeballs of a user at a fixed location in front of the eyeballs without being mounted to the user's head. In some embodiments, the artificial reality device 100 may be in the form of glasses that provide vision correction. In some embodiments, the artificial reality device 100 may be in the form of plano glasses that provide no vision correction. In some embodiments, the artificial reality device 100 may be in the form of sunglasses that protect the user's eyes from bright sunlight. In some embodiments, the artificial reality device 100 may be in the form of safety glasses that protect the user's eyeballs. In some embodiments, the artificial reality device 100 may be in the form of a night vision device or infrared goggles to enhance the user's vision at night. The artificial reality device 100 may be implemented in other forms.

出於論述目的,圖1A展示人工實境裝置100包括配置以安裝至使用者之頭部的框架105,以及安裝至框架105之左眼顯示系統110L及右眼顯示系統110R。圖1B為根據本發明之具體實例的圖1A中所展示之人工實境裝置100之一半的橫截面圖。出於說明性目的,圖1B展示與左眼顯示系統110L相關聯之橫截面圖。框架105僅係示範性結構,人工實境裝置100之各種組件可安裝至該結構。其他合適類型之夾具可代替框架105或與該框架組合而使用。For purposes of discussion, FIG. 1A shows that artificial reality device 100 includes a frame 105 configured to mount to a user's head, and a left-eye display system 110L and a right-eye display system 110R mounted to frame 105 . FIG. 1B is a cross-sectional view of one half of the artificial reality device 100 shown in FIG. 1A , according to an embodiment of the invention. For illustrative purposes, Figure IB shows a cross-sectional view associated with left-eye display system 110L. Frame 105 is merely an exemplary structure to which various components of artificial reality device 100 may be mounted. Other suitable types of clamps may be used in place of or in combination with frame 105 .

在一些具體實例中,左眼顯示系統110L及右眼顯示系統110R中之各者可包括影像顯示組裝件120,該影像顯示組裝件配置以產生表示電腦產生之虛擬影像的影像光,且將影像光引導至眼動區(eye-box region)160,在該眼動區中可定位眼球159以接收影像光。眼動區160可包括複數個出射光瞳157。出射光瞳157可為使用者之眼球159之眼球瞳孔158可定位於眼動區160中以接收影像光的位置。舉例而言,在一些具體實例中,影像顯示組裝件120可包括:光源,其配置以輸出表示虛擬影像之影像光;及影像組合器,其配置以將自光源接收之影像光引導至眼動區160。在一些具體實例中,影像組合器亦可朝向眼動區160透射來自真實世界環境之周圍環境光(或真實世界光) 142,藉此將影像光與真實世界光142組合,且朝向眼動區160導引兩束光。因此,眼球159可觀測與真實世界場景以光學方式組合的虛擬場景。影像顯示組裝件120可為任何合適的影像顯示組裝件,且影像組合器可為任何合適的影像組合器,諸如與內耦合元件及外耦合元件耦接之光導、全像光學元件(「holographic optical element;HOE」)等。為說明簡單起見,圖1B中未展示影像顯示組裝件120之細節。In some embodiments, each of left-eye display system 110L and right-eye display system 110R may include image display assembly 120 configured to generate image light representing a computer-generated virtual image, and to display the image The light is directed to an eye-box region 160 where the eyeball 159 can be positioned to receive the image light. The eye movement zone 160 may include a plurality of exit pupils 157 . Exit pupil 157 may be a location where eye pupil 158 of user's eye 159 may be positioned in eye movement zone 160 to receive image light. For example, in some embodiments, image display assembly 120 may include: a light source configured to output image light representing a virtual image; and an image combiner configured to direct image light received from the light source to an eye movement District 160. In some embodiments, the image combiner may also transmit ambient light (or real-world light) 142 from the real-world environment toward the eye-moving zone 160, thereby combining the image light with the real-world light 142, and toward the eye-moving zone 160 directs two beams of light. Thus, the eyeball 159 may observe a virtual scene optically combined with a real world scene. Image display assembly 120 can be any suitable image display assembly, and the image combiner can be any suitable image combiner, such as a light guide, a "holographic optical element" coupled with incoupling elements and outcoupling elements. element; HOE") and so on. For simplicity of illustration, details of the image display assembly 120 are not shown in FIG. 1B .

在一些具體實例中,如圖1B中所展示,左眼顯示系統110L及右眼顯示系統110R中之各者可包括由不同材料屬性之兩種透鏡材料形成的調光透鏡122。調光透鏡122可提供輕重量、高抗衝擊性及低雙折射率。影像顯示組裝件120可包括面向真實世界環境之外側及面向眼動區160之內側。調光透鏡122可安置於影像顯示組裝件120的外側處。應注意,儘管出於說明性目的將元件展示為具有平坦表面,但在一些具體實例中,影像顯示組裝件120或調光透鏡122中之至少一者(例如,各者)可包括彎曲表面。在一些具體實例中,調光透鏡122可與影像顯示組裝件120一體地形成,或可為與影像顯示組裝件120堆疊的分離元件。In some embodiments, as shown in FIG. 1B , each of the left-eye display system 110L and the right-eye display system 110R can include a dimming lens 122 formed from two lens materials of different material properties. The dimming lens 122 can provide light weight, high impact resistance and low birefringence. The image display assembly 120 may include an outer side facing the real world environment and an inner side facing the eye movement area 160 . The dimming lens 122 can be disposed at the outer side of the image display assembly 120 . It should be noted that although elements are shown as having flat surfaces for illustrative purposes, in some embodiments at least one (eg, each) of image display assembly 120 or dimming lens 122 may include a curved surface. In some embodiments, the dimming lens 122 may be integrally formed with the image display assembly 120 , or may be a separate component stacked with the image display assembly 120 .

在一些具體實例中,調光透鏡122可配置以朝向眼動區160調暗來自真實世界環境之周圍環境光(或真實世界光)142。在左眼顯示系統110L及右眼顯示系統110R之外側來自真實世界環境之周圍環境光142可入射至調光透鏡122上,之後周圍環境光142入射至影像顯示組裝件120上。基於合適調光機制,諸如偏振、吸收、散射及/或漫射等,調光透鏡122可降低周圍環境光142之透射率,或阻擋周圍環境光142入射至影像顯示組裝件120上。In some embodiments, the dimming lens 122 may be configured to dim the ambient light (or real world light) 142 from the real world environment toward the eye movement zone 160 . The ambient light 142 from the real world environment outside the left-eye display system 110L and the right-eye display system 110R may be incident on the dimming lens 122 , and then the ambient light 142 is incident on the image display assembly 120 . Based on a suitable dimming mechanism, such as polarization, absorption, scattering and/or diffusion, the dimming lens 122 can reduce the transmittance of the ambient light 142 or block the ambient light 142 from incident on the image display assembly 120 .

在一些具體實例中,調光透鏡122可為配置以在調光透鏡122之整個孔徑上具有均勻透光率的全域調光透鏡。換言之,調光透鏡122可配置以在調光透鏡122之整個孔徑上均勻地調暗或減弱真實世界光142。在一些具體實例中,調光透鏡122可為配置以在調光透鏡122之孔徑的不同區(或區域)處提供不同透光率的區域或局部調光透鏡。調光透鏡122之各別區或部分處對真實世界光142的透光率可為可個別地或獨立地控制的。In some embodiments, the dimming lens 122 may be a global dimming lens configured to have uniform light transmittance across the entire aperture of the dimming lens 122 . In other words, the dimming lens 122 may be configured to dim or attenuate the real world light 142 uniformly across the entire aperture of the dimming lens 122 . In some embodiments, the dimming lens 122 may be a zone or local dimming lens configured to provide different transmittance at different regions (or regions) of the aperture of the dimming lens 122 . The transmittance to real world light 142 at various regions or portions of the dimming lens 122 may be individually or independently controllable.

在一些具體實例中,調光透鏡122對真實世界光142之透射率或調光效應可為固定的。在一些具體實例中,調光透鏡122對真實世界光142之透射率或調光效應可為可藉由合適外場來調整的。在一些具體實例中,調光透鏡122的透射率或調光效應可為可藉由調整電場來調整的。舉例而言,調光透鏡122可包括具有電可調透射率的調光材料(出於論述目的,被稱作電可調的調光材料),以及一或多個電極層,其配置以電耦接至電源(其可向電極層提供電壓)以在調光材料中提供可調電場。電可調的調光材料之實例可包括主客型液晶(「liquid crystal;LC」)材料(例如,摻雜有客型染料(例如,二色性染料)之主型LC)、聚合物穩定的膽固醇型LC材料、懸浮粒子、電致變色材料、電泳材料等。In some embodiments, the transmittance or dimming effect of the dimming lens 122 to the real-world light 142 may be fixed. In some embodiments, the transmittance or dimming effect of the dimming lens 122 on the real-world light 142 can be adjusted by a suitable external field. In some embodiments, the transmittance or dimming effect of the dimming lens 122 can be adjusted by adjusting the electric field. For example, the dimming lens 122 may include a dimming material having an electrically tunable transmittance (for purposes of this discussion, referred to as an electrically tunable dimming material), and one or more electrode layers configured to electrically Coupled to a power source that can provide a voltage to the electrode layer to provide a tunable electric field in the dimming material. Examples of electrically tunable dimming materials may include host-guest liquid crystal ("liquid crystal; LC") materials (eg, host-type LC doped with guest dyes (eg, dichroic dyes)), polymer-stabilized Cholesterol-type LC materials, suspended particles, electrochromic materials, electrophoretic materials, etc.

在一些具體實例中,調光透鏡122的透射率或調光效應可為可藉由除電場以外的合適外場(例如,磁場、溫度或光等)來調整的。舉例而言,在一些具體實例中,調光透鏡122可包括具有非電可調透射率的調光材料(出於論述目的,被稱作非電可調的調光材料)。非電可調的調光材料之透光率可為可經由除電壓調諧之外的方法,例如藉由周圍環境光或溫度等之改變來調諧的。非電可調的調光材料之實例可包括光致變色材料、光致二色性材料、熱致變色材料等。在一些具體實例中,調光材料可包括電可調的調光材料及非電可調的調光材料兩者,以達成合乎需要的調光效應。In some specific examples, the transmittance or dimming effect of the dimming lens 122 can be adjusted by a suitable external field (eg, magnetic field, temperature or light, etc.) other than the electric field. For example, in some embodiments, the dimming lens 122 may include a dimming material having a non-electrically tunable transmittance (referred to as a non-electrically tunable dimming material for purposes of discussion). The light transmittance of non-electrically tunable light-tuning materials can be tuned by methods other than voltage tuning, such as by changing ambient light or temperature. Examples of non-electrically tunable dimming materials may include photochromic materials, photodichroic materials, thermochromic materials, and the like. In some embodiments, the dimming material may include both electrically tunable dimming material and non-electrically tunable dimming material to achieve a desired dimming effect.

在一些具體實例中,調光透鏡122可為具有處方(例如,單光、雙光、三光或漸進式)的眼用透鏡,以向使用者之視力提供視覺校正。舉例而言,調光透鏡122可配置以在透射周圍環境光142時更改周圍環境光142,以向使用者之視力提供視覺校正。在一些具體實例中,調光透鏡122可為不提供視覺校正的平光透鏡。舉例而言,在一些具體實例中,調光透鏡122可配置為對於周圍環境光142具有零光功率的平板或彎曲板。In some embodiments, the dimming lens 122 may be an ophthalmic lens with a prescription (eg, single vision, bifocal, trifocal, or progressive) to provide vision correction to the user's vision. For example, dimming lens 122 may be configured to alter ambient light 142 while transmitting ambient light 142 to provide visual correction to the user's vision. In some embodiments, dimming lens 122 may be a plano lens that provides no vision correction. For example, in some embodiments, dimming lens 122 may be configured as a flat or curved plate with zero optical power to ambient light 142 .

在一些具體實例中,如圖1B中所展示,人工實境裝置100亦可包括物件追蹤組裝件190(例如,眼球追蹤組裝件及/或面部追蹤組裝件)。物件追蹤組裝件190可包括配置以發射紅外(「IR」)光以照明眼球159及/或面部之IR光源191、偏轉元件192(諸如,光柵)以及光學感測器193(諸如,攝影機)。偏轉元件192可使由眼球159反射之IR光朝向光學感測器193偏轉(例如,繞射)。光學感測器193可基於由偏轉元件192偏轉之IR光而產生關於眼球159之追蹤信號。追蹤信號可為眼球159之影像。人工實境裝置100可包括控制器(圖中未示),該控制器可控制左眼顯示系統110L及/或物件追蹤組裝件190中之各種光學元件。In some embodiments, as shown in FIG. 1B , the artificial reality device 100 may also include an object tracking assembly 190 (eg, an eye tracking assembly and/or a face tracking assembly). The object tracking assembly 190 may include an IR light source 191 configured to emit infrared (“IR”) light to illuminate the eye 159 and/or the face, a deflection element 192 such as a light barrier, and an optical sensor 193 such as a camera. Deflection element 192 may deflect (eg, diffract) IR light reflected by eyeball 159 toward optical sensor 193 . The optical sensor 193 can generate a tracking signal about the eyeball 159 based on the IR light deflected by the deflection element 192 . The tracking signal can be an image of the eyeball 159 . The artificial reality device 100 may include a controller (not shown) that can control various optical elements in the left-eye display system 110L and/or the object tracking assembly 190 .

人工實境裝置100可配置以在VR模式、AR模式或MR模式中操作。人工實境裝置100可配置以在室內及室外環境兩者中可在以VR模式、AR模式及/或MR模式操作之間切換。在一些具體實例中,當人工實境裝置100在AR或MR模式中操作時,調光透鏡122可在透明狀態或中間狀態下操作,且左眼顯示系統110L及右眼顯示系統110R自使用者之視角來看可為完全或部分透明的,此可為使用者提供周圍真實世界環境之視圖。在一些具體實例中,當人工實境裝置100在VR模式中操作時,調光透鏡122可在不透明狀態下操作,且左眼顯示系統110L及右眼顯示系統110R可為不透明的以阻擋來自真實世界環境之光,使得使用者可沈浸在基於電腦產生影像之VR影像中。The artificial reality device 100 is configurable to operate in a VR mode, an AR mode, or an MR mode. The artificial reality device 100 may be configured to be switchable between operating in a VR mode, an AR mode, and/or an MR mode in both indoor and outdoor environments. In some embodiments, when the artificial reality device 100 is operating in the AR or MR mode, the dimmer lens 122 can be operated in a transparent state or an intermediate state, and the left-eye display system 110L and the right-eye display system 110R can be viewed from the user. It can be fully or partially transparent from the perspective of the user, which can provide the user with a view of the surrounding real world environment. In some embodiments, when the artificial reality device 100 is operating in the VR mode, the dimmer lens 122 can operate in an opaque state, and the left-eye display system 110L and right-eye display system 110R can be opaque to block images from the real World ambient light allows users to immerse themselves in VR images based on computer-generated images.

圖1C繪示根據本發明之具體實例的由在AR或MR模式中操作之人工實境裝置100之使用者感知的影像。圖1D繪示根據本發明之具體實例的由在VR模式中操作之人工實境裝置100之使用者感知的影像。出於論述目的,圖1C及圖1D展示經由右眼顯示系統110R檢視之影像。如圖1C中所示,當人工實境裝置100在AR或MR模式中操作時,使用者可感知與真實世界場景104疊加的虛擬場景或虛擬影像102。如圖1D中所展示,當人工實境裝置100在VR模式中操作時,使用者可感知虛擬場景102,而非真實世界場景104。FIG. 1C illustrates an image perceived by a user of artificial reality device 100 operating in AR or MR mode, according to an embodiment of the present invention. FIG. 1D illustrates an image perceived by a user of artificial reality device 100 operating in VR mode, according to an embodiment of the present invention. For purposes of discussion, FIGS. 1C and 1D show images viewed through right-eye display system 110R. As shown in FIG. 1C , when the artificial reality device 100 is operating in the AR or MR mode, the user can perceive the virtual scene or virtual image 102 superimposed on the real world scene 104 . As shown in FIG. 1D , when the artificial reality device 100 is operating in the VR mode, the user can perceive the virtual scene 102 instead of the real world scene 104 .

圖2A繪示根據本發明之具體實例的調光透鏡(或調光裝置)200之示意圖。調光透鏡200可為圖1B中所展示的調光透鏡122之具體實例。調光透鏡200可包括第一材料層131,以及與第一材料層131耦接的第二材料層132。第一材料層131可位於調光透鏡200之面向真實世界環境且接收周圍環境光142的外側。第二材料層132可位於調光透鏡200的面向使用者之眼球159的內側。儘管第一材料層131及第二材料層132經展示為具有彎曲表面,但在一些具體實例中,第一材料層131或第二材料層132中的至少一者在厚度方向(例如,圖2A中之z軸方向)上可具有一個或兩個平坦表面。FIG. 2A shows a schematic diagram of a dimming lens (or dimming device) 200 according to an embodiment of the present invention. The dimming lens 200 may be a specific example of the dimming lens 122 shown in FIG. 1B . The dimming lens 200 may include a first material layer 131 and a second material layer 132 coupled to the first material layer 131 . The first material layer 131 may be located on the outer side of the dimmer lens 200 facing the real world environment and receiving the ambient light 142 . The second material layer 132 can be located on the inner side of the dimming lens 200 facing the user's eyeball 159 . Although the first material layer 131 and the second material layer 132 are shown as having curved surfaces, in some embodiments, at least one of the first material layer 131 or the second material layer 132 is in the thickness direction (eg, FIG. 2A There can be one or two flat surfaces in the z-axis direction).

可基於第一透鏡材料製作第一材料層131,且可基於不同於第一透鏡材料之第二透鏡材料製作第二材料層132。在一些具體實例中,第一透鏡材料及第二透鏡材料在調光透鏡200之操作波長範圍(例如,可見光譜)中可為光學透明的。在一些具體實例中,第一透鏡材料可具有低於第二透鏡材料的密度。在一些具體實例中,第一透鏡材料在調光透鏡200之操作波長範圍(例如,可見光譜)內可具有低於第二透鏡材料的雙折射率。在一些具體實例中,包括於第一材料層131中之第一透鏡材料可具有等於或小於預定密度的密度,以及等於或小於預定雙折射率的雙折射率。因此,第二透鏡材料可具有大於預定密度的密度,以及大於預定雙折射率的雙折射率。舉例而言,第一透鏡材料的密度可為約1.0 g/cm 3或更低,且第一透鏡材料的雙折射率可為約10 -5或更低。亦即,預定密度可為例如1.0 g/cm 3、1.05 g/cm 3、1.1 g/cm 3等。預定雙折射率可為10 -5、2*10 -5、5*10 -5等。第一透鏡材料的雙折射率可比第二透鏡材料的雙折射率小至少10倍。 The first material layer 131 may be fabricated based on a first lens material, and the second material layer 132 may be fabricated based on a second lens material different from the first lens material. In some embodiments, the first lens material and the second lens material can be optically transparent in the wavelength range of operation of dimming lens 200 (eg, the visible spectrum). In some embodiments, the first lens material can have a lower density than the second lens material. In some embodiments, the first lens material may have a lower birefringence than the second lens material in the operating wavelength range of the dimming lens 200 (eg, the visible spectrum). In some embodiments, the first lens material included in the first material layer 131 may have a density equal to or less than a predetermined density and a birefringence equal to or less than a predetermined birefringence. Accordingly, the second lens material may have a density greater than the predetermined density, and a birefringence greater than the predetermined birefringence. For example, the density of the first lens material can be about 1.0 g/cm 3 or less, and the birefringence of the first lens material can be about 10 −5 or less. That is, the predetermined density may be, for example, 1.0 g/cm 3 , 1.05 g/cm 3 , 1.1 g/cm 3 , or the like. The predetermined birefringence may be 10 -5 , 2*10 -5 , 5*10 -5 , or the like. The birefringence of the first lens material may be at least 10 times less than the birefringence of the second lens material.

在一些具體實例中,第二透鏡材料可具有高於第一透鏡材料的抗衝擊性。抗衝擊性(或衝擊強度)與材料對衝擊之抵抗性相關,且可量測為在標準化衝擊下標準化試樣斷裂所吸收之能量(單位:J或ft-lbs)。抗衝擊性(或衝擊強度)可藉由將衝擊能量除以試樣之厚度來計算。在一些具體實例中,第二透鏡材料可具有等於或大於預定抗衝擊性臨限值的抗衝擊性。因此,第一透鏡材料可具有小於預定抗衝擊性臨限值的抗衝擊性。第二透鏡材料的抗衝擊性可比第一透鏡材料的抗衝擊性大至少10倍。In some embodiments, the second lens material can have a higher impact resistance than the first lens material. Impact resistance (or impact strength) is related to a material's resistance to impact and can be measured as the energy (in J or ft-lbs) absorbed by the fracture of a standardized specimen under a standardized impact. Impact resistance (or impact strength) can be calculated by dividing the impact energy by the thickness of the specimen. In some embodiments, the second lens material can have an impact resistance equal to or greater than a predetermined impact resistance threshold. Accordingly, the first lens material may have an impact resistance less than a predetermined impact resistance threshold. The impact resistance of the second lens material may be at least 10 times greater than the impact resistance of the first lens material.

舉例而言,第二透鏡材料的缺口衝擊強度可為約0.7 ft-lbs/in或更高、約0.8 ft-lbs/in或更高、約0.9 ft-lbs/in或更高、約1.0 ft-lbs/in或更高、約1.5 ft-lbs/in或更高、約2.0 ft-lbs/in或更高、約3.0 ft-lbs/in或更高、約4.0 ft-lbs/in或更高、約5.0 ft-lbs/in或更高、約10.0 ft-lbs/in或更高、約15.0 ft-lbs/in或更高等。第二透鏡材料可滿足美國食品及藥物管理局(「FDA」)之落球測試或歐洲及亞洲透鏡之等效衝擊測試標準中之至少一者。舉例而言,為了通過FDA對透鏡之落球測試,將稱重約0.56盎司的5/8吋鋼球自50吋之高度掉落至透鏡之幾何中心處的5/8吋直徑的圓上,且透鏡不應破裂。For example, the second lens material can have a notched impact strength of about 0.7 ft-lbs/in or greater, about 0.8 ft-lbs/in or greater, about 0.9 ft-lbs/in or greater, about 1.0 ft -lbs/in or greater, approximately 1.5 ft-lbs/in or greater, approximately 2.0 ft-lbs/in or greater, approximately 3.0 ft-lbs/in or greater, approximately 4.0 ft-lbs/in or greater High, approximately 5.0 ft-lbs/in or greater, approximately 10.0 ft-lbs/in or greater, approximately 15.0 ft-lbs/in or greater, etc. The second lens material may meet at least one of the US Food and Drug Administration ("FDA") drop ball test or equivalent impact test standards for European and Asian lenses. For example, to pass the FDA drop ball test for a lens, a 5/8 inch steel ball weighing approximately 0.56 ounces is dropped from a height of 50 inches onto a 5/8 inch diameter circle at the geometric center of the lens, and The lens should not break.

第一透鏡材料之實例可包括環烯烴共聚物(「cyclic olefin copolymer;COC」)或環烯烴聚合物(「cyclic olefin polymer;COP」)等。COC及COP具有類似於玻璃之光學屬性,例如高透明度、低雙折射率、高阿貝數及高耐熱性。第二透鏡材料之實例可包括聚碳酸酯(「PC」)、聚甲基丙烯酸甲酯(「PMMA」)、聚乙烯(「PE」)、聚氨酯或聚丙烯(「PP」)等。舉例而言,PC具有比習知塑膠或玻璃大10倍的抗衝擊性。下表展示可用作第一透鏡材料及第二透鏡材料之示範性材料的一些屬性。本發明不限於此等材料。 表 材料 密度(g/cm 3 雙折射率 缺口衝擊強度(ft-lbs/in) COC 1.0 小於10 -5 0.69 COP 1.08 小於10 -5 0.56 PC 1.20 ~10 -4 12.0至16.0 Examples of the first lens material may include cyclic olefin copolymer (“cyclic olefin copolymer; COC”) or cyclic olefin polymer (“cyclic olefin polymer; COP”) and the like. COC and COP have optical properties similar to glass, such as high transparency, low birefringence, high Abbe number, and high heat resistance. Examples of the second lens material may include polycarbonate ("PC"), polymethyl methacrylate ("PMMA"), polyethylene ("PE"), polyurethane or polypropylene ("PP"), and the like. For example, PC has impact resistance 10 times greater than conventional plastic or glass. The following table shows some properties of exemplary materials that can be used as the first lens material and the second lens material. The present invention is not limited to these materials. surface Material Density (g/cm 3 ) birefringence Notched Impact Strength (ft-lbs/in) COC 1.0 less than 10 -5 0.69 COP 1.08 less than 10 -5 0.56 PC 1.20 ~10 -4 12.0 to 16.0

在一些具體實例中,調光透鏡200可為具有處方(例如,單光、雙光、三光或漸進式)的眼用透鏡,以向使用者之視力提供視覺校正。如圖2A中所展示,第一材料層131可配置有自訂非零光功率以用於使用者之視覺校正,且第二材料層132可配置有實質上較低或零光功率(例如,第二材料層132可為具有均勻厚度及實質上零光功率之平板或彎曲板)。舉例而言,由第二材料層132提供之光功率的絕對值可低於由第一材料層131提供之光功率的絕對值。第一材料層131之內表面的曲率半徑可與第二材料層132之外表面的曲率半徑實質上相同。出於論述目的,圖2A展示第一材料層131用作配置以用於遠視校正之凹凸透鏡。在一些具體實例中,第一材料層131可配置用於另一類型之視覺校正,例如,第一材料層131可用作配置用於近視校正等之凸凹透鏡。在一些具體實例中,調光透鏡200可能不提供視覺校正,且第一材料層131及第二材料層132中之各者可配置有零光功率,例如,第一材料層131及第二材料層132中之各者可為具有零光功率的平板或彎曲板。In some embodiments, the dimming lens 200 may be an ophthalmic lens with a prescription (eg, single vision, bifocal, trifocal, or progressive) to provide vision correction to the user's vision. As shown in FIG. 2A , the first material layer 131 can be configured with a custom non-zero optical power for the user's vision correction, and the second material layer 132 can be configured with substantially lower or zero optical power (e.g., The second material layer 132 may be a flat plate or a curved plate with uniform thickness and substantially zero optical power). For example, the absolute value of the optical power provided by the second material layer 132 may be lower than the absolute value of the optical power provided by the first material layer 131 . The radius of curvature of the inner surface of the first material layer 131 may be substantially the same as the radius of curvature of the outer surface of the second material layer 132 . For purposes of discussion, FIG. 2A shows the first material layer 131 used as a meniscus lens configured for hyperopia correction. In some embodiments, the first material layer 131 can be configured for another type of vision correction, for example, the first material layer 131 can be used as a convex-concave lens configured for myopia correction and the like. In some embodiments, dimmer lens 200 may not provide vision correction, and each of first material layer 131 and second material layer 132 may be configured with zero optical power, e.g., first material layer 131 and second material layer 131 Each of layers 132 may be a flat or curved plate with zero optical power.

基於具有相對較低密度及較低雙折射率之第一透鏡材料製作的第一材料層131可具有輕重量及良好的影像品質。此外,基於具有相對較高抗衝擊性之第二透鏡材料製作的第二材料層132可為使用者之眼球159提供良好的安全性。當第二材料層132配置有零光功率時,包括於第二材料層132中之第二透鏡材料的相對較高雙折射率可能不會使調光透鏡200的影像效能降級。The first material layer 131 based on the first lens material with relatively low density and low birefringence can have light weight and good image quality. In addition, the second material layer 132 made based on the second lens material with relatively high impact resistance can provide good safety for the user's eyeball 159 . The relatively high birefringence of the second lens material included in the second material layer 132 may not degrade the image performance of the dimmer lens 200 when the second material layer 132 is configured with zero optical power.

在一些具體實例中,第一材料層131可配置以厚於第二材料層132。舉例而言,第一材料層131之厚度可在0.1 mm至1.1 mm之範圍內、0.1 mm至1.0 mm之範圍內、0.1 mm至0.9 mm之範圍內、0.1 mm至0.8 mm之範圍內、0.1 mm至0.7 mm之範圍內、0.1 mm至0.6 mm之範圍內、0.1 mm至0.5 mm之範圍內、0.5 mm至1.1 mm之範圍內、0.6 mm至1.1 mm之範圍內、0.7 mm至1.1 mm之範圍內或0.8 mm至1.1 mm之範圍內等。在一些具體實例中,第二材料層132的厚度可在0.01 mm至0.5 mm之範圍內、0.01 mm至0.4 mm之範圍內、0.01 mm至0.3 mm之範圍內、0.01 mm至0.2 mm之範圍內或0.01 mm至0.1 mm之範圍內等。在一些具體實例中,第一材料層131之中心厚度可在1.0 mm至1.5 mm之範圍內。「中心厚度」可為在層之幾何中心點(其亦可為光學中心點)處量測之厚度。在一些具體實例中,第二材料層132之中心厚度可在0.2 mm至0.7 mm之範圍內。在一些具體實例中,第一材料層131在操作波長範圍(例如,可見波長範圍)內可具有小於100 奈米之延遲值。In some specific examples, the first material layer 131 may be configured to be thicker than the second material layer 132 . For example, the thickness of the first material layer 131 may be in the range of 0.1 mm to 1.1 mm, in the range of 0.1 mm to 1.0 mm, in the range of 0.1 mm to 0.9 mm, in the range of 0.1 mm to 0.8 mm, in the range of 0.1 mm to 0.7 mm, 0.1 mm to 0.6 mm, 0.1 mm to 0.5 mm, 0.5 mm to 1.1 mm, 0.6 mm to 1.1 mm, 0.7 mm to 1.1 mm within the range or within the range of 0.8 mm to 1.1 mm, etc. In some embodiments, the thickness of the second material layer 132 may be in the range of 0.01 mm to 0.5 mm, in the range of 0.01 mm to 0.4 mm, in the range of 0.01 mm to 0.3 mm, in the range of 0.01 mm to 0.2 mm Or within the range of 0.01 mm to 0.1 mm, etc. In some embodiments, the central thickness of the first material layer 131 may be in the range of 1.0 mm to 1.5 mm. "Center thickness" may be the thickness measured at the geometric center point (which may also be the optical center point) of a layer. In some embodiments, the center thickness of the second material layer 132 may be in the range of 0.2 mm to 0.7 mm. In some embodiments, the first material layer 131 may have a retardation value less than 100 nm in an operating wavelength range (eg, a visible wavelength range).

在一些具體實例中,第一材料層131及第二材料層132可經由合適製程來製作,該等製程諸如金剛石車削、模製、鑄造、三維(「3D」)列印或其組合。在一些具體實例中,第一材料層131及第二材料層132可層壓在一起(例如,經由光學透明黏著層),其中第二材料層132經層壓至第一材料層131的面向使用者之眼球159的內側(例如,凹表面)上。舉例而言,第一材料層131及第二材料層132可經由合適的光學透明黏著劑層壓並結合在一起。在一些具體實例中,光學透明黏著層在調光透鏡200的孔徑上可具有均勻厚度。光學透明黏著層之厚度可在0.01 mm至0.2 mm之範圍內。調光透鏡200可包括用於調暗周圍環境光142的調光材料136,且調光材料136可摻雜至第一材料層131或第二材料層132中之至少一者中。出於說明性目的,圖2A展示調光材料136經摻雜至第二材料層132中。在一些具體實例中,儘管未展示,但調光材料136可摻雜至第一材料層131中。調光材料136可包括非電可調的調光材料,諸如光致變色材料、光致二色性材料、熱致變色材料等。調光材料136可提供可調的調光效應(例如,根據周圍環境光142之溫度或亮度),或可為周圍環境光142提供不可調的固定調光效應。In some embodiments, the first material layer 131 and the second material layer 132 can be fabricated by suitable processes, such as diamond turning, molding, casting, three-dimensional (“3D”) printing, or combinations thereof. In some embodiments, the first material layer 131 and the second material layer 132 can be laminated together (eg, via an optically clear adhesive layer), wherein the second material layer 132 is laminated to the use-facing surface of the first material layer 131 . On the inner side (eg, concave surface) of the eyeball 159 of the patient. For example, the first material layer 131 and the second material layer 132 can be laminated and bonded together through a suitable optically transparent adhesive. In some embodiments, the optically transparent adhesive layer may have a uniform thickness across the aperture of the dimming lens 200 . The thickness of the optically clear adhesive layer may be in the range of 0.01 mm to 0.2 mm. The dimming lens 200 may include a dimming material 136 for dimming the ambient light 142 , and the dimming material 136 may be doped into at least one of the first material layer 131 or the second material layer 132 . For illustrative purposes, FIG. 2A shows a dimming material 136 doped into the second material layer 132 . In some specific examples, although not shown, the light-adjusting material 136 can be doped into the first material layer 131 . The light-adjusting material 136 may include non-electrically tunable light-adjusting materials, such as photochromic materials, photodichroic materials, thermochromic materials, and the like. The dimming material 136 may provide an adjustable dimming effect (eg, according to the temperature or brightness of the ambient light 142 ), or may provide a non-adjustable fixed dimming effect for the ambient light 142 .

基於單個第一透鏡材料層(例如,COC或COP等)製作之習知透鏡可提供相對較輕重量及相對較低雙折射率,但提供相對較低抗衝擊性,而基於單個第二透鏡材料層(例如,PC、PMMA、PE或PP等)製作之習知透鏡可提供相對較高抗衝擊性,但提供相對較重重量及相對較高雙折射率。包括基於第一透鏡材料製作之第一材料層131及基於第二透鏡材料製作之第二材料層132的調光透鏡200可配置以提供重量、雙折射率以及抗衝擊性之間的平衡。舉例而言,相較於基於單個第一透鏡材料層(例如,COC或COP等)或單個第二透鏡材料層(例如,PC、PMMA、PE或PP等)製作之習知透鏡,調光透鏡200可同時提供低重量、低雙折射率及高抗衝擊性。Conventional lenses based on a single layer of first lens material (e.g., COC or COP, etc.) can provide relatively light weight and relatively low birefringence, but provide relatively low impact resistance, while based on a single second lens material Conventional lenses made of layers (eg, PC, PMMA, PE or PP, etc.) can provide relatively high impact resistance, but provide relatively heavy weight and relatively high birefringence. The dimming lens 200 including the first material layer 131 based on the first lens material and the second material layer 132 based on the second lens material can be configured to provide a balance between weight, birefringence and impact resistance. For example, compared to conventional lenses based on a single first lens material layer (eg, COC or COP, etc.) or a single second lens material layer (eg, PC, PMMA, PE, or PP, etc.), the dimming lens 200 can simultaneously provide low weight, low birefringence and high impact resistance.

圖2B繪示根據本發明之具體實例的調光透鏡(或調光裝置) 210之示意圖。調光透鏡210可為圖1B中所展示的調光透鏡122之具體實例。調光透鏡210可包括基於第一透鏡材料製作的第一材料層131,及基於第二透鏡材料製作的第二材料層132。在圖2B中所展示之具體實例中,調光透鏡210亦可包括安置於第一材料層131與第二材料層132之間的調光材料層138。在一些具體實例中,調光材料層138可包括非電可調的調光材料,諸如光致變色材料、光致二色性材料、熱致變色材料等。調光材料層138可為周圍環境光142提供可調的調光效應(例如,根據周圍環境光142之溫度或亮度),或不可調的固定調光效應。FIG. 2B shows a schematic diagram of a dimming lens (or dimming device) 210 according to an embodiment of the present invention. Dimming lens 210 may be a specific example of dimming lens 122 shown in FIG. 1B . The dimming lens 210 may include a first material layer 131 made based on a first lens material, and a second material layer 132 made based on a second lens material. In the specific example shown in FIG. 2B , the dimming lens 210 may also include a dimming material layer 138 disposed between the first material layer 131 and the second material layer 132 . In some specific examples, the light-adjusting material layer 138 may include non-electrically adjustable light-adjusting materials, such as photochromic materials, photodichroic materials, thermochromic materials, and the like. The dimming material layer 138 can provide an adjustable dimming effect (eg, according to the temperature or brightness of the ambient light 142 ) or a non-adjustable fixed dimming effect for the ambient light 142 .

圖2C繪示根據本發明之具體實例的調光透鏡(或調光裝置) 230之示意圖。調光透鏡230可為圖1B中所展示的調光透鏡122之具體實例。調光透鏡230可包括基於第一透鏡材料製作的第一材料層131、基於第二透鏡材料製作的兩個第二材料層132a及132b(其可分別被稱作第二材料層及第三材料層),以及調光材料層138。由調光材料層138以及第二材料層132a及132b形成之堆疊可安置於第一材料層131之面向眼球159的內側。舉例而言,由調光材料層138以及第二材料層132a及132b形成之堆疊可層壓至第一材料層131的面向使用者之眼球159的內側(例如,凹表面)。第二材料層132a可安置於第一材料層131與調光材料層138之間。調光材料層138可安置於第二材料層132a與132b之間。第一材料層131可配置有非零光功率以用於視覺校正,且第二材料層132a及132b可配置有實質上較低或零光功率(例如,第二材料層132a或132b可為具有均勻厚度及實質上零光功率之平板或彎曲板)。舉例而言,由第二材料層132a及132b提供之光功率的絕對值可低於由第一材料層131提供之光功率的絕對值。FIG. 2C is a schematic diagram of a dimming lens (or dimming device) 230 according to an embodiment of the present invention. Dimming lens 230 may be a specific example of dimming lens 122 shown in FIG. 1B . The dimming lens 230 may include a first material layer 131 made based on a first lens material, two second material layers 132a and 132b made based on a second lens material (which may be referred to as a second material layer and a third material layer, respectively). layer), and the light-adjusting material layer 138. The stack formed by the light-adjusting material layer 138 and the second material layers 132 a and 132 b may be disposed on the inner side of the first material layer 131 facing the eyeball 159 . For example, the stack formed by the layer of dimming material 138 and the second material layers 132a and 132b may be laminated to the inner side (eg, concave surface) of the first material layer 131 facing the user's eyeball 159 . The second material layer 132a can be disposed between the first material layer 131 and the light-adjusting material layer 138 . The light-adjusting material layer 138 can be disposed between the second material layers 132a and 132b. The first material layer 131 can be configured with non-zero optical power for vision correction, and the second material layers 132a and 132b can be configured with substantially lower or zero optical power (e.g., the second material layer 132a or 132b can have Flat or curved plates of uniform thickness and virtually zero optical power). For example, the absolute value of the optical power provided by the second material layer 132 a and 132 b may be lower than the absolute value of the optical power provided by the first material layer 131 .

圖2D繪示根據本發明之具體實例的調光透鏡(或調光裝置) 240之示意圖。調光透鏡240可為圖1B中所展示的調光透鏡122之具體實例。調光透鏡240可包括第一材料層131、第二材料層132以及安置於第一材料層131與第二材料層132之間的調光單元(或調光元件)166。調光單元166可包括調光材料層207及至少一個電極層。出於說明性目的,圖2D展示第一電極層209-1及第二電極層209-2分別安置於調光材料層207之相對側。電極層209-1及209-2在調光透鏡240之操作波長範圍(例如,可見光譜)內可為光學透明的。在一些具體實例中,電極層209-1及209-2在IR光譜中亦可為光學透明的。FIG. 2D is a schematic diagram of a dimming lens (or dimming device) 240 according to an embodiment of the present invention. Dimming lens 240 may be a specific example of dimming lens 122 shown in FIG. 1B . The dimming lens 240 may include a first material layer 131 , a second material layer 132 and a dimming unit (or dimming element) 166 disposed between the first material layer 131 and the second material layer 132 . The dimming unit 166 may include a dimming material layer 207 and at least one electrode layer. For illustrative purposes, FIG. 2D shows that the first electrode layer 209 - 1 and the second electrode layer 209 - 2 are respectively disposed on opposite sides of the light-adjusting material layer 207 . Electrode layers 209 - 1 and 209 - 2 may be optically transparent in the wavelength range of operation of dimming lens 240 (eg, the visible spectrum). In some embodiments, electrode layers 209-1 and 209-2 may also be optically transparent in the IR spectrum.

在一些具體實例中,電極層209-1及209-2中之各者可包括連續平面電極。在一些具體實例中,電極層209-1及209-2中之一者可包括連續平面電極,且電極層209-1及209-2中之另一者可包括由複數個離散、分離的子電極形成之圖案化電極。舉例而言,在一些具體實例中,圖案化電極可包括由第二子電極包圍之第一子電極。在一些具體實例中,圖案化電極可包括像素化子電極之陣列。在一些具體實例中,電極層209-1及209-2中之各者可包括圖案化電極。舉例而言,在一些具體實例中,各圖案化電極可包括平行配置之複數個分離的條狀電極,且各別圖案化電極中之條狀電極可經配置以在例如正交方向之不同方向上平行延伸。在一些具體實例中,電極層209-1及209-2可包括以下導電材料:氧化銦錫(「indium tin oxide;ITO」)、摻雜Al之氧化鋅(「AZO」)、石墨烯、聚(3,4-乙烯二氧噻吩):聚(苯乙烯-磺酸鹽)(「PEDOT:PSS」)、奈米碳管或銀奈米線,或其組合。In some embodiments, each of electrode layers 209-1 and 209-2 can comprise a continuous planar electrode. In some embodiments, one of the electrode layers 209-1 and 209-2 may comprise a continuous planar electrode, and the other of the electrode layers 209-1 and 209-2 may comprise a plurality of discrete, separated Patterned electrodes for electrode formation. For example, in some embodiments, the patterned electrode may include a first sub-electrode surrounded by a second sub-electrode. In some embodiments, the patterned electrode can include an array of pixelated sub-electrodes. In some embodiments, each of the electrode layers 209-1 and 209-2 can include patterned electrodes. For example, in some embodiments, each patterned electrode may include a plurality of separate strip electrodes arranged in parallel, and the strip electrodes in each patterned electrode may be configured to move in different directions such as orthogonal directions. extend in parallel. In some embodiments, the electrode layers 209-1 and 209-2 may include the following conductive materials: indium tin oxide ("indium tin oxide; ITO"), Al-doped zinc oxide ("AZO"), graphene, poly (3,4-ethylenedioxythiophene): poly(styrene-sulfonate) (“PEDOT:PSS”), carbon nanotubes or silver nanowires, or combinations thereof.

在一些具體實例中,兩個電極層209-1及209-2可經由合適的方法(例如,塗佈或沈積等)分別安置於第一材料層131之內表面及第二材料層132之外表面處。在一些具體實例中,為減少電極層209-1與第一材料層131之內表面之間的界面處的表面反射,折射率匹配層(圖中未示)可安置於電極層209-1與第一材料層131之內表面之間。在一些具體實例中,為減少電極層209-2與第二材料層132之外表面之間的界面處的表面反射,折射率匹配層(圖中未示)可安置於電極層209-2與第二材料層132之外表面之間。In some specific examples, the two electrode layers 209-1 and 209-2 can be disposed on the inner surface of the first material layer 131 and outside the second material layer 132 respectively by appropriate methods (such as coating or deposition, etc.) at the surface. In some specific examples, in order to reduce the surface reflection at the interface between the electrode layer 209-1 and the inner surface of the first material layer 131, a refractive index matching layer (not shown in the figure) can be arranged between the electrode layer 209-1 and the inner surface of the first material layer 131. between the inner surfaces of the first material layer 131 . In some specific examples, in order to reduce the surface reflection at the interface between the electrode layer 209-2 and the outer surface of the second material layer 132, a refractive index matching layer (not shown in the figure) can be disposed between the electrode layer 209-2 and the outer surface of the second material layer 132. between the outer surfaces of the second material layer 132 .

調光材料層207可包括具有電可調透射率之調光材料(出於論述目的,其被稱作電可調的調光材料)。在施加至調光材料之電場如由控制器控制而變化時,電可調的調光材料之透光率可為可調的。電可調的調光材料之實例可包括主客型液晶(「LC」)材料(例如,摻雜有客型染料(例如,二色性染料)之主型LC)、聚合物穩定的膽固醇型LC材料、懸浮粒子、電致變色材料、電泳材料等。在一些具體實例中,調光材料層207亦可包括具有非電可調透射率之調光材料(出於論述目的,其被稱作非電可調的調光材料)。非電可調的調光材料之透光率可為可經由除電壓調諧之外的方法,例如藉由周圍環境光或溫度等之改變來調諧的。非電可調的調光材料之實例可包括光致變色材料、光致二色性材料、熱致變色材料等。調光裝置166之實例可包括主客型液晶(「LC」)調光裝置、聚合物穩定的膽固醇型LC調光裝置、懸浮粒子裝置、電致變色調光裝置、電泳調光裝置、電鍍調光裝置、光致變色調光裝置、光致二色性調光裝置、包括電可調的調光材料層及非電可調的調光材料層之調光裝置等。Dimming material layer 207 may include a dimming material with electrically tunable transmittance (for purposes of discussion, it is referred to as an electrically tunable dimming material). The light transmittance of an electrically tunable light-adjustable material may be adjustable when the electric field applied to the light-adjustable material is varied as controlled by a controller. Examples of electrically tunable dimming materials may include host-guest liquid crystal ("LC") materials (e.g., host LC doped with guest dyes (e.g., dichroic dyes)), polymer-stabilized cholesteric LC materials, suspended particles, electrochromic materials, electrophoretic materials, etc. In some specific examples, the light-adjustable material layer 207 may also include a light-adjustable material with non-electrically adjustable transmittance (for the purpose of discussion, it is referred to as a non-electrically adjustable light-adjustable material). The light transmittance of non-electrically tunable light-tuning materials can be tuned by methods other than voltage tuning, such as by changing ambient light or temperature. Examples of non-electrically tunable dimming materials may include photochromic materials, photodichroic materials, thermochromic materials, and the like. Examples of dimming devices 166 may include host-guest liquid crystal (“LC”) dimming devices, polymer stabilized cholesteric LC dimming devices, suspended particle devices, electrochromic dimming devices, electrophoretic dimming devices, electroplating dimming devices Devices, photochromic dimming devices, photodichroic dimming devices, dimming devices including electrically adjustable dimming material layers and non-electrically adjustable dimming material layers, etc.

在一些具體實例中,調光材料層207可配置為在調光裝置166之孔徑上(例如,在圖2D中之x軸方向上)具有均勻厚度。在一些具體實例中,調光材料層207可配置為在調光裝置166之孔徑上具有不均勻厚度。舉例而言,調光材料層207在孔徑之中心處可具有比在孔徑之周邊處更大的厚度。出於論述目的,圖2D展示調光材料層207配置有兩個彎曲表面,且電極層209-1及209-2為彎曲電極層。在一些具體實例中,調光材料層207可配置有彎曲表面及平坦表面,例如電極層209-1及209-2中之一者可為彎曲電極層且另一者可為平坦電極層。在一些具體實例中,調光材料層207可配置有兩個平坦表面,例如電極層209-1及209-2中之各者可為平坦電極層。In some embodiments, the dimming material layer 207 can be configured to have a uniform thickness on the aperture of the dimming device 166 (eg, in the x-axis direction in FIG. 2D ). In some embodiments, the dimming material layer 207 may be configured to have a non-uniform thickness across the aperture of the dimming device 166 . For example, the layer of dimming material 207 may have a greater thickness at the center of the aperture than at the periphery of the aperture. For purposes of discussion, FIG. 2D shows that the layer of dimming material 207 is configured with two curved surfaces, and the electrode layers 209-1 and 209-2 are curved electrode layers. In some embodiments, the light-adjusting material layer 207 may be configured with a curved surface and a flat surface, for example, one of the electrode layers 209-1 and 209-2 may be a curved electrode layer and the other may be a flat electrode layer. In some embodiments, the light-adjusting material layer 207 may be configured with two flat surfaces, for example, each of the electrode layers 209-1 and 209-2 may be a flat electrode layer.

電極層209-1及209-2可與電源175電耦接。控制器215可與電源175連接,且可控制電源175至電極層209-1及209-2之輸出(例如,電壓輸出或電流輸出)。因此,控制器215可控制經由電極層209-1及209-2施加至調光材料層207之電場(例如,電場之振幅及/或方向),藉此控制調光裝置166之操作狀態。在一些具體實例中,控制器215可控制調光裝置166,使得調光裝置166可在透明狀態操作與黑暗狀態(「dark state」)(亦被稱作不透明狀態)操作之間切換。因此,調光透鏡240可為可在透明狀態操作與黑暗狀態操作之間切換。The electrode layers 209 - 1 and 209 - 2 can be electrically coupled to the power source 175 . The controller 215 can be connected with the power source 175, and can control the output (for example, voltage output or current output) of the power source 175 to the electrode layers 209-1 and 209-2. Therefore, the controller 215 can control the electric field (eg, the amplitude and/or direction of the electric field) applied to the light-adjusting material layer 207 through the electrode layers 209 - 1 and 209 - 2 , thereby controlling the operation state of the light-adjusting device 166 . In some embodiments, the controller 215 can control the dimming device 166 such that the dimming device 166 can switch between a transparent state operation and a "dark state" (also referred to as an opaque state) operation. Thus, dimming lens 240 may be switchable between clear state operation and dark state operation.

在一些具體實例中,在黑暗狀態下操作之調光裝置166可配置以實質上阻擋可見的真實世界光142,例如具有約0.01%之透光率(或具有4.0之光學密度)。在黑暗狀態下操作之調光裝置166的透光率可被稱作調光裝置166之最小透射率。在透明狀態下操作之調光裝置166可配置以提供大於對真實世界光142之最小透射率的預定透射率。在一些具體實例中,預定透射率可在約30%至約50%之範圍內,例如30%、35%、40%、45%、50%、30%至40%、40%至50%或30%至50%之範圍內的任何其他子範圍。在一些具體實例中,預定透射率可在約30%至約60%之範圍內(例如,30%、35%、40%、45%、50%、55%、60%、30%至40%、40%至50%、50%至60%或30%至60%之範圍內的任何其他子範圍),在約30%至約70%之範圍內(例如,30%、35%、40%、45%、50%、55%、60%、65%、70%、30%至40%、40%至50%、50%至60%、60%至70%或30%至70%之範圍內的任何其他子範圍),在約30%至約80%之範圍內(例如,30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、30%至40%、40%至50%、50%至60%、60%至70%、70%至80%或30%至80%之範圍內的任何其他子範圍),或在約30%至約90%之範圍內(30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、30%至40%、40%至50%、50%至60%、60%至70%、70%至80%、80%至90%或30%至90%之範圍內的任何其他子範圍)等。因此,使用者可感知與真實世界場景疊加之虛擬場景。出於論述目的,在透明狀態下操作之調光裝置166的預定透射率可被稱作調光裝置166的最大透射率。在一些具體實例中,除透明狀態及黑暗狀態外,控制器215亦可控制調光裝置166在中間狀態下操作。因此,調光透鏡240可在中間狀態下操作。在中間狀態下操作之調光裝置166可提供大於在黑暗狀態下之最小透射率且小於在透明狀態下之最大透射率的透射率。經由控制調光裝置166的透射率,可控制調光透鏡240的透射率。因此,可動態地調整經由調光透鏡240觀測到的透視視圖之透射率。In some embodiments, the dimming device 166 that operates in a dark state can be configured to substantially block visible real world light 142 , such as having a transmittance of about 0.01% (or having an optical density of 4.0). The light transmittance of the dimming device 166 operating in the dark state may be referred to as the minimum transmittance of the dimming device 166 . The dimming device 166 operating in the transparent state may be configured to provide a predetermined transmittance greater than the minimum transmittance to real world light 142 . In some embodiments, the predetermined transmittance may be in the range of about 30% to about 50%, such as 30%, 35%, 40%, 45%, 50%, 30% to 40%, 40% to 50%, or Any other sub-range within the range of 30% to 50%. In some embodiments, the predetermined transmittance may be in the range of about 30% to about 60% (e.g., 30%, 35%, 40%, 45%, 50%, 55%, 60%, 30% to 40% , 40% to 50%, 50% to 60%, or any other subrange within the range of 30% to 60%), within the range of about 30% to about 70% (e.g., 30%, 35%, 40% , 45%, 50%, 55%, 60%, 65%, 70%, 30% to 40%, 40% to 50%, 50% to 60%, 60% to 70%, or 30% to 70% any other subrange within), in the range of about 30% to about 80% (e.g., 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75% %, 80%, 30% to 40%, 40% to 50%, 50% to 60%, 60% to 70%, 70% to 80%, or any other subrange within the range 30% to 80%), or in the range of about 30% to about 90% (30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90% %, 30% to 40%, 40% to 50%, 50% to 60%, 60% to 70%, 70% to 80%, 80% to 90%, or 30% to 90% range), etc. Therefore, the user can perceive the virtual scene superimposed with the real world scene. For purposes of discussion, the predetermined transmittance of the dimming device 166 operating in the transparent state may be referred to as the maximum transmittance of the dimming device 166 . In some embodiments, in addition to the transparent state and the dark state, the controller 215 can also control the dimming device 166 to operate in an intermediate state. Therefore, the dimmer lens 240 can operate in an intermediate state. Dimming device 166 operating in an intermediate state may provide a transmittance greater than the minimum transmittance in the dark state and less than the maximum transmittance in the clear state. By controlling the transmittance of the dimming device 166 , the transmittance of the dimming lens 240 can be controlled. Therefore, the transmittance of the see-through view observed through the dimming lens 240 can be dynamically adjusted.

在一些具體實例中,調光裝置166可為配置以在調光裝置166之整個孔徑上具有均勻透光率的全域調光裝置。換言之,調光裝置166可配置以在調光裝置166之整個孔徑上均勻地調暗或減弱真實世界光142。因此,調光透鏡240可為全域調光透鏡。在一些具體實例中,調光裝置166可為配置以在調光裝置166之孔徑的不同區(或區域)處提供不同透光率的區域或局部調光裝置。各別區或部分處對真實世界光142之透光率可為可個別地或獨立地控制的。在一些具體實例中,調光裝置166之孔徑的各區(或區域)可包括一或多個像素化調光元件。各別像素化調光元件處之透光率可為可個別地或獨立地控制的。在一些具體實例中,各別像素化調光元件之大小可大於1毫米。因此,調光透鏡240可為區域或局部調光透鏡。In some embodiments, the dimming device 166 may be a global dimming device configured to have uniform light transmittance across the aperture of the dimming device 166 . In other words, the dimming device 166 may be configured to dim or attenuate the real world light 142 uniformly across the entire aperture of the dimming device 166 . Therefore, the dimming lens 240 may be a global dimming lens. In some embodiments, the dimming device 166 may be a zone or local dimming device configured to provide different light transmittance at different regions (or regions) of the aperture of the dimming device 166 . The transmittance to real world light 142 at various regions or portions may be individually or independently controllable. In some embodiments, each region (or region) of the aperture of the dimming device 166 may include one or more pixelated dimming elements. The light transmittance at the respective pixelated dimming elements may be individually or independently controllable. In some embodiments, the size of the individual pixelated dimming elements may be greater than 1 mm. Thus, the dimming lens 240 may be a zone or local dimming lens.

出於說明性目的,圖2D中所展示之調光透鏡240的調光效應經展示為經由施加至調光材料層207之外部電場而可調的。亦可實施其他機制以基於調光材料之屬性來調整調光效應。For illustrative purposes, the dimming effect of the dimming lens 240 shown in FIG. 2D is shown as being adjustable via an external electric field applied to the layer of dimming material 207 . Other mechanisms can also be implemented to adjust the dimming effect based on the properties of the dimming material.

圖2E示意性地繪示根據本發明之具體實例的調光透鏡250之圖。調光透鏡250可包括第一材料層131、調光單元166以及兩個第二材料層132a及132b。調光單元166可安置於兩個第二材料層132a與132b之間。舉例而言,調光單元166可囊封至第二透鏡材料中,使得實質上整個調光單元166由第二透鏡材料包圍。包括於兩個第二材料層132a及132b中之材料可與包括於第二材料層132中的第二透鏡材料實質上相同,如上文所描述。組態可類似於圖2C中所展示之組態,不同之處在於調光效應係由電可調的調光單元166提供。FIG. 2E schematically illustrates a diagram of a dimming lens 250 according to an embodiment of the present invention. The dimming lens 250 may include a first material layer 131 , a dimming unit 166 and two second material layers 132a and 132b. The dimming unit 166 can be disposed between the two second material layers 132a and 132b. For example, the dimming unit 166 can be encapsulated into the second lens material, so that substantially the entire dimming unit 166 is surrounded by the second lens material. The material included in the two second material layers 132a and 132b may be substantially the same as the second lens material included in the second material layer 132, as described above. The configuration may be similar to that shown in FIG. 2C , except that the dimming effect is provided by an electrically adjustable dimming unit 166 .

在圖2D及圖2E中所展示之各種具體實例中,除電可調的調光單元166之外,調光透鏡240或250亦可包括分離、非電可調的調光材料層,其設置於合適位置處,諸如第一材料層131之外表面處、在圖2D中所展示之具體實例中第一材料層131與主動調光單元166之間,或在圖2E中所展示之具體實例中第一材料層131與第二材料層132a之間。在一些具體實例中,圖2C中所展示之調光材料層138亦可由電可調的調光單元166替代。In the various embodiments shown in FIGS. 2D and 2E , in addition to the electrically adjustable dimming unit 166, the dimming lens 240 or 250 may also include a separate, non-electrically adjustable dimming material layer disposed on the At a suitable location, such as at the outer surface of the first material layer 131, between the first material layer 131 and the active dimming unit 166 in the embodiment shown in FIG. 2D , or in the embodiment shown in FIG. 2E Between the first material layer 131 and the second material layer 132a. In some specific examples, the dimming material layer 138 shown in FIG. 2C can also be replaced by an electrically adjustable dimming unit 166 .

參看圖2A至圖2E,在一些具體實例中,調光透鏡200、210、230、240或250可為配置以在調光透鏡之整個孔徑上具有均勻透光率的全域調光透鏡。換言之,調光透鏡200、210、230、240或250可配置以在調光透鏡之整個孔徑上均勻地調暗或減弱真實世界光142。在一些具體實例中,調光透鏡200、210、230、240或250可為配置以在調光透鏡之孔徑的不同區(或區域)處提供不同透光率的區域或局部調光透鏡。調光透鏡之各別區或部分處對真實世界光142的透光率可為可個別地或獨立地控制的。在一些具體實例中,調光透鏡之孔徑的各區(或區域)可包括一或多個像素化調光元件。各別像素化調光元件處之透光率可為可個別地或獨立地控制的。Referring to FIGS. 2A-2E , in some embodiments, the dimming lens 200 , 210 , 230 , 240 , or 250 may be a global dimming lens configured to have uniform light transmission across the entire aperture of the dimming lens. In other words, the dimming lens 200, 210, 230, 240, or 250 may be configured to dim or attenuate real world light 142 uniformly across the entire aperture of the dimming lens. In some embodiments, the dimming lens 200, 210, 230, 240, or 250 may be a zone or local dimming lens configured to provide different transmittance at different regions (or regions) of the aperture of the dimming lens. The transmittance to real world light 142 at various regions or portions of the dimming lens may be individually or independently controllable. In some embodiments, each zone (or region) of the aperture of the dimming lens may include one or more pixelated dimming elements. The light transmittance at the respective pixelated dimming elements may be individually or independently controllable.

圖3A繪示根據本發明之具體實例的顯示系統300之x-z截面視圖。顯示系統300可實施於用於AR、VR及/或MR應用之人工實境裝置中,諸如圖1A至圖1D中所展示之人工實境裝置100中。舉例而言,顯示系統300可為圖1A及圖1B中所展示的顯示系統110L或110R之具體實例。如圖3A中所展示,顯示系統300可包括光導顯示組裝件320。光導顯示組裝件320可包括於圖1B中所展示之影像顯示組裝件120中或實施為該影像顯示組裝件。顯示系統300亦可包括調光透鏡312。調光透鏡312可為本文中所揭示之調光透鏡之任何具體實例,諸如圖2A中所展示之調光透鏡200、圖2B中所展示之調光透鏡210、圖2C中所展示之調光透鏡230、圖2D中所展示之調光透鏡240或圖2E中所展示之調光透鏡250。出於論述目的,圖3A展示調光透鏡312具有與圖2D中所展示之調光透鏡240相同或類似的組態。FIG. 3A illustrates an x-z cross-sectional view of a display system 300 according to an embodiment of the present invention. The display system 300 may be implemented in an artificial reality device for AR, VR, and/or MR applications, such as the artificial reality device 100 shown in FIGS. 1A-1D . For example, display system 300 may be an embodiment of display system 110L or 110R shown in FIGS. 1A and 1B . As shown in FIG. 3A , display system 300 may include light guide display assembly 320 . Light guide display assembly 320 may be included in or implemented as image display assembly 120 shown in FIG. 1B . The display system 300 may also include a dimming lens 312 . The dimming lens 312 can be any specific example of the dimming lens disclosed herein, such as the dimming lens 200 shown in FIG. 2A, the dimming lens 210 shown in FIG. 2B, the dimming lens shown in FIG. 2C. Lens 230, dimming lens 240 shown in FIG. 2D or dimming lens 250 shown in FIG. 2E. For purposes of discussion, FIG. 3A shows dimming lens 312 having the same or similar configuration as dimming lens 240 shown in FIG. 2D.

調光透鏡312可設置於光導顯示組裝件320之面向真實世界環境之外側。光導顯示組裝件320可包括光源組裝件305。光導310可與內耦合元件335及外耦合元件345耦接。光導310可包括第一表面310-1及第二表面310-2。光源組裝件305可配置以輸出表示虛擬影像350(例如,包括虛擬物件302)之影像光330。與內耦合元件335及外耦合元件345耦接之光導310可配置以將影像光330引導至顯示系統300之眼動區160中的一或多個出射光瞳157。舉例而言,內耦合元件335可將影像光330耦合至光導310中,作為內耦合影像光332。內耦合影像光332可經由全內反射在光導310內部自內耦合元件335朝向外耦合元件345傳播。外耦合元件345可將入射至外耦合元件345之不同部分上的內耦合影像光332耦合出光導310,作為朝向眼動區160傳播之複數個輸出影像光334,藉此在光導320之外部處複製影像光330。因此,位於出射光瞳157處之眼球159可感知由光源組裝件305產生之虛擬影像。在一些具體實例中,與內耦合元件335及外耦合元件345耦接之光導310亦可朝向眼動區160透射真實世界光142。因此,位於出射光瞳157處之眼球159可感知與真實世界場景以光學方式組合之虛擬影像。與內耦合元件335及外耦合元件345耦接之光導310可用作將虛擬場景與真實世界場景以光學方式組合之影像組合器,例如光導影像組合器。The dimming lens 312 can be disposed on the outside of the light guide display assembly 320 facing the real world environment. Light guide display assembly 320 may include light source assembly 305 . The light guide 310 may be coupled with an incoupling element 335 and an outcoupling element 345 . The light guide 310 may include a first surface 310-1 and a second surface 310-2. Light source assembly 305 may be configured to output image light 330 representing virtual image 350 (eg, including virtual object 302 ). Light guide 310 coupled with incoupling element 335 and outcoupling element 345 may be configured to direct image light 330 to one or more exit pupils 157 in eye moving region 160 of display system 300 . For example, in-coupling element 335 may couple image light 330 into light guide 310 as in-coupled image light 332 . The in-coupling image light 332 can propagate from the in-coupling element 335 toward the out-coupling element 345 inside the light guide 310 via total internal reflection. The outcoupling element 345 can couple the incoupled image light 332 incident on different portions of the outcoupling element 345 out of the light guide 310 as a plurality of output image lights 334 propagating toward the eye movement region 160 , thereby being transmitted at the exterior of the light guide 320. Duplicate image light 330 . Therefore, the eyeball 159 located at the exit pupil 157 can perceive the virtual image generated by the light source assembly 305 . In some embodiments, the light guide 310 coupled with the incoupling element 335 and the outcoupling element 345 can also transmit the real world light 142 toward the eye movement zone 160 . Therefore, the eyeball 159 located at the exit pupil 157 can perceive the virtual image optically combined with the real world scene. The light guide 310 coupled with the incoupling element 335 and the outcoupling element 345 can be used as an image combiner, such as a light guide image combiner, that optically combines a virtual scene with a real world scene.

在一些具體實例中,調光透鏡312可分離地形成且安置於(例如,貼附至)光導310之面向真實世界環境的表面(例如,第一表面310-1)處。在一些具體實例中,第一調光透鏡312可一體地形成為光導310之部分。在一些具體實例中,調光透鏡312的面積可大於或等於外耦合元件345的面積。調光透鏡312可安置於外耦合元件345之面向真實世界環境的一側。在一些具體實例中,如圖3A中所展示,調光透鏡312可安置於光導310之第一表面310-1處,且外耦合元件345可安置於光導310之第二表面310-2處。在一些具體實例中,外耦合元件345亦可安置於第一表面310-1處,處於調光透鏡312與光導310之間。應注意,儘管光導310在圖3A中展示為具有平坦表面,但光導310可具有彎曲表面,或整個光導310可為彎曲的(例如,具有與第二材料層132之曲率相匹配的曲率)。In some embodiments, the dimming lens 312 may be separately formed and disposed at (eg, affixed to) a real-world environment-facing surface (eg, the first surface 310 - 1 ) of the light guide 310 . In some embodiments, the first dimming lens 312 can be integrally formed as part of the light guide 310 . In some specific examples, the area of the dimming lens 312 may be greater than or equal to the area of the outcoupling element 345 . The dimming lens 312 may be disposed on the side of the outcoupling element 345 facing the real world environment. In some embodiments, as shown in FIG. 3A , dimming lens 312 can be disposed at first surface 310 - 1 of light guide 310 , and outcoupling element 345 can be disposed at second surface 310 - 2 of light guide 310 . In some embodiments, the outcoupling element 345 can also be disposed on the first surface 310 - 1 , between the dimming lens 312 and the light guide 310 . It should be noted that although the light guide 310 is shown in FIG. 3A as having a flat surface, the light guide 310 may have a curved surface, or the entire light guide 310 may be curved (eg, having a curvature that matches the curvature of the second material layer 132 ).

控制器215(圖中未示)可與調光透鏡312及/或光導顯示組裝件320中之各種元件通信耦接,以控制其操作。控制器215可控制調光透鏡312之操作狀態以動態地調整真實世界光142之透射率,藉此使包括顯示系統300之人工實境裝置在VR模式中操作與在AR裝置中操作之間切換,或在VR裝置中操作與在MR裝置中操作之間切換。舉例而言,當控制器215控制調光透鏡312在黑暗狀態(「dark state」)下操作時,包括顯示系統300之人工實境裝置可配置以在VR模式中操作。當控制器215控制調光透鏡312在透明狀態或中間狀態下操作時,包括顯示系統300之人工實境裝置可配置以在AR模式或MR模式中操作。在一些具體實例中,調光透鏡312可配置以取決於真實世界環境之亮度而動態地減弱真實世界光142,藉此調整透視視圖之亮度。舉例而言,當包括顯示系統300之人工實境裝置在AR模式或MR模式中操作時,調光透鏡312可配置以調整透視視圖之亮度以緩解透視視圖與使用者所感知之虛擬影像之間的亮度差異。Controller 215 (not shown) may be communicatively coupled to various components within dimming lens 312 and/or light guide display assembly 320 to control the operation thereof. The controller 215 can control the operating state of the dimming lens 312 to dynamically adjust the transmittance of the real world light 142, thereby switching the artificial reality device including the display system 300 between operating in a VR mode and operating in an AR device , or switch between operating in a VR device and operating in an MR device. For example, an artificial reality device including display system 300 may be configured to operate in a VR mode when controller 215 controls dimming lens 312 to operate in a "dark state." When the controller 215 controls the dimming lens 312 to operate in the transparent state or the intermediate state, the artificial reality device including the display system 300 may be configured to operate in an AR mode or an MR mode. In some embodiments, dimming lens 312 may be configured to dynamically attenuate real world light 142 depending on the brightness of the real world environment, thereby adjusting the brightness of the see-through view. For example, when the artificial reality device including the display system 300 is operating in AR mode or MR mode, the dimming lens 312 can be configured to adjust the brightness of the see-through view to ease the gap between the see-through view and the virtual image perceived by the user. difference in brightness.

在一些具體實例中,調光透鏡312可為全域調光器。舉例而言,當包括顯示系統300之人工實境裝置在AR模式或MR模式中操作時,顯示系統300可在調光透鏡312之孔徑上提供透視視圖與虛擬影像之均勻對比率。在一些具體實例中,調光透鏡312可為區域或局部調光器。舉例而言,當包括顯示系統300之人工實境裝置在AR模式或MR模式中操作時,顯示系統300可在調光透鏡312之孔徑的不同區(或部分、區域)處提供透視視圖與虛擬影像之不同對比率。In some embodiments, the dimming lens 312 can be a global dimmer. For example, when an artificial reality device including display system 300 is operating in AR mode or MR mode, display system 300 may provide a uniform contrast ratio of see-through views and virtual images across the aperture of dimming lens 312 . In some embodiments, the dimming lens 312 can be a regional or local dimmer. For example, when an artificial reality device including display system 300 is operating in AR mode or MR mode, display system 300 may provide see-through and virtual reality at different regions (or portions, regions) of the aperture of dimming lens 312. Different contrast ratios of images.

出於論述目的,圖3A展示,控制器215控制調光透鏡312在黑暗狀態下操作,且因此,包括顯示系統300之人工實境裝置在VR模式中操作。調光透鏡312可實質上阻擋真實世界光142經由光導310朝向眼動區160透射。因此,位於出射光瞳157處之眼球159可僅感知虛擬物件302之影像355。For purposes of discussion, FIG. 3A shows that controller 215 controls dimming lens 312 to operate in a dark state, and thus, the artificial reality device including display system 300 operates in VR mode. The dimmer lens 312 can substantially block the transmission of the real-world light 142 toward the eye movement zone 160 through the light guide 310 . Therefore, the eyeball 159 located at the exit pupil 157 can only perceive the image 355 of the virtual object 302 .

出於論述目的,圖3B展示,控制器215控制調光透鏡312在透明狀態或中間狀態下操作,且因此,包括顯示系統300之人工實境裝置在AR模式或MR模式中操作。調光透鏡312可朝向眼動區160中之一或多個出射光瞳157透射真實世界光142。因此,位於出射光瞳157處之眼球159可感知影像375,其中虛擬場景(例如,虛擬物件302)與真實世界場景(例如,真實世界物件274之影像304)疊加。在一些具體實例中,調光透鏡312可為眼用透鏡,其配置以更改真實世界光142從而向使用者之視力提供視覺校正,同時透射真實世界光142。For purposes of discussion, FIG. 3B shows that controller 215 controls dimmer lens 312 to operate in a transparent state or an intermediate state, and thus, an artificial reality device including display system 300 operates in either an AR mode or an MR mode. The modulating lens 312 may transmit the real world light 142 towards one or more of the exit pupils 157 in the eye movement zone 160 . Thus, eye 159 located at exit pupil 157 may perceive image 375 in which a virtual scene (eg, virtual object 302 ) is superimposed on a real-world scene (eg, image 304 of real-world object 274 ). In some embodiments, modulating lens 312 may be an ophthalmic lens configured to modify real world light 142 to provide visual correction to the user's vision while transmitting real world light 142 .

圖3A及圖3B展示光導顯示組裝件320及調光透鏡312為以堆疊組態配置之個別組件。在一些具體實例中,光導顯示組裝件320可嵌入於調光透鏡312中。圖3C繪示根據本發明之具體實例的顯示系統360之x-z截面圖。顯示系統360可實施於用於AR、VR及/或MR應用之人工實境裝置中,諸如圖1A至圖1D中所展示之人工實境裝置100中。舉例而言,顯示系統360可為圖1A及圖1B中所展示之顯示系統110L或110R的具體實例。顯示系統360可包括與包括於圖3A及圖3B中所展示之顯示系統300中的元件、結構及/或功能相同或類似的元件、結構及/或功能。相同或類似元件、結構及/或功能之描述可參考結合圖3A及圖3B呈現之以上描述。3A and 3B show light guide display assembly 320 and dimming lens 312 as individual components configured in a stacked configuration. In some embodiments, the light guide display assembly 320 can be embedded in the dimming lens 312 . FIG. 3C illustrates an x-z cross-sectional view of a display system 360 according to an embodiment of the present invention. The display system 360 may be implemented in an artificial reality device for AR, VR, and/or MR applications, such as the artificial reality device 100 shown in FIGS. 1A-1D . For example, display system 360 may be an embodiment of display system 110L or 110R shown in FIGS. 1A and 1B . Display system 360 may include the same or similar elements, structures and/or functions as those included in display system 300 shown in FIGS. 3A and 3B . For descriptions of the same or similar elements, structures and/or functions, reference may be made to the above description presented in conjunction with FIG. 3A and FIG. 3B .

如圖3C中所展示,顯示系統360可包括光導顯示組裝件320及調光透鏡312。在圖3C中所展示之具體實例中,光導顯示組裝件320及調光透鏡312可能未以堆疊組態配置。實情為,光導顯示組裝件320可至少部分地嵌入於調光透鏡312之第二材料層132中。光導顯示組裝件320可能不嵌入於調光裝置166及第一材料層131中,且因此,光導310之輸出影像光334可能不受調光裝置166影響。在一些具體實例中,調光透鏡312之第二材料層132可更改輸出影像光334以向使用者之視力提供視覺校正,同時朝向眼動區160中之一或多個出射光瞳157透射輸出影像光334。在一些具體實例中,雖然未展示,但調光透鏡312可包括摻雜至第一材料層131中的非電可調的調光材料,且光導顯示組裝件320可至少部分地嵌入調光透鏡312之第二材料層132中。如圖3C中所展示,在一些具體實例中,安裝有外耦合元件345的光導310之至少一部分可嵌入於調光透鏡312之第二材料層132中。在一些具體實例中,光導310可為具有與第二材料層132之曲率相匹配之曲率的彎曲光導。As shown in FIG. 3C , display system 360 may include light guide display assembly 320 and dimming lens 312 . In the particular example shown in Figure 3C, the light guide display assembly 320 and the dimming lens 312 may not be arranged in a stacked configuration. In fact, the light guide display assembly 320 can be at least partially embedded in the second material layer 132 of the dimming lens 312 . The light guide display assembly 320 may not be embedded in the dimming device 166 and the first material layer 131 , and thus, the output image light 334 of the light guide 310 may not be affected by the dimming device 166 . In some embodiments, the second material layer 132 of the modulating lens 312 can modify the output image light 334 to provide visual correction to the user's vision while transmitting the output toward one or more exit pupils 157 in the eye-moving zone 160 Image light 334 . In some embodiments, although not shown, the dimming lens 312 can include a non-electrically adjustable dimming material doped into the first material layer 131, and the light guide display assembly 320 can be at least partially embedded in the dimming lens 312 in the second material layer 132 . As shown in FIG. 3C , in some embodiments, at least a portion of light guide 310 mounted with outcoupling element 345 may be embedded in second material layer 132 of dimming lens 312 . In some embodiments, the light guide 310 can be a curved light guide having a curvature that matches the curvature of the second material layer 132 .

圖3D繪示根據本發明之具體實例的顯示系統380之x-z截面圖。顯示系統380可實施於用於AR、VR及/或MR應用之人工實境裝置中,諸如圖1A至圖1D中所展示之人工實境裝置100中。舉例而言,顯示系統380可為圖1A及圖1B中所展示之顯示系統110L或110R的具體實例。顯示系統380可包括與包括於圖3A及圖3B中所展示之顯示系統300或圖3C中所展示之顯示系統360中的元件、結構及/或功能相同或類似的元件、結構及/或功能。相同或類似元件、結構及/或功能之描述可參考結合圖3A及圖3B或圖3C呈現的以上描述。FIG. 3D illustrates an x-z cross-sectional view of a display system 380 according to an embodiment of the present invention. The display system 380 may be implemented in an artificial reality device for AR, VR, and/or MR applications, such as the artificial reality device 100 shown in FIGS. 1A-1D . For example, display system 380 may be an embodiment of display system 110L or 110R shown in FIGS. 1A and 1B . Display system 380 may include the same or similar elements, structures and/or functions as those included in display system 300 shown in FIGS. 3A and 3B or display system 360 shown in FIG. 3C . For descriptions of the same or similar elements, structures and/or functions, reference may be made to the above description presented in conjunction with FIG. 3A and FIG. 3B or FIG. 3C.

如圖3D中所展示,顯示系統380可包括全像光學元件(「HOE」)顯示組裝件390及調光透鏡312。HOE顯示組裝件390可包括光源組裝件305及HOE影像組合器385。光源組裝件305可配置以朝向HOE影像組合器385輸出表示虛擬影像350(例如,包括虛擬物件302)之影像光330。HOE影像組合器385可將影像光330聚焦至眼動區160內之一或多個出射光瞳157處的一或多個光點。在一些具體實例中,調光透鏡312可分離地形成且安置於(例如,貼附至)HOE影像組合器385之面向真實世界環境的表面(例如,第一表面385-1)處。應注意,儘管HOE影像組合器385在圖3D中展示為具有平坦表面,但HOE影像組合器385可具有彎曲表面,或整個HOE影像組合器385可為彎曲的(例如,具有與第二材料層132之曲率相匹配的曲率)。As shown in FIG. 3D , display system 380 may include a holographic optical element (“HOE”) display assembly 390 and a dimming lens 312 . The HOE display assembly 390 may include the light source assembly 305 and the HOE image combiner 385 . Light source assembly 305 may be configured to output image light 330 representing virtual image 350 (eg, including virtual object 302 ) toward HOE image combiner 385 . The HOE image combiner 385 can focus the image light 330 to one or more points of light at one or more exit pupils 157 within the eye-moving zone 160 . In some embodiments, dimming lens 312 may be separately formed and disposed at (eg, affixed to) a real-world environment-facing surface (eg, first surface 385 - 1 ) of HOE image combiner 385 . It should be noted that although HOE image combiner 385 is shown as having a flat surface in FIG. 132 to match the curvature).

控制器215(圖中未示)可與調光透鏡312及/或HOE顯示組裝件390中之各種元件通信耦接以控制其操作。舉例而言,控制器215可控制調光透鏡312之操作狀態以動態地調整真實世界光142之透射率,藉此使包括顯示器系統380之人工實境裝置在VR模式中操作與在AR裝置中操作之間切換,或在VR裝置中操作與在MR裝置中操作之間切換。當配置用於AR或MR應用時,HOE影像組合器385可將由HOE影像組合器385聚焦之影像光338與真實世界光142組合,且朝向眼動區160導引兩束光。Controller 215 (not shown) may be communicatively coupled to various components within dimming lens 312 and/or HOE display assembly 390 to control the operation thereof. For example, the controller 215 can control the operating state of the dimming lens 312 to dynamically adjust the transmittance of the real world light 142, thereby enabling the artificial reality device including the display system 380 to operate in VR mode and in an AR device Switch between operations, or between operating in a VR device and operating in an MR device. When configured for AR or MR applications, the HOE image combiner 385 may combine the image light 338 focused by the HOE image combiner 385 with the real world light 142 and direct both lights toward the eye-moving zone 160 .

在一些具體實例中,儘管未展示,但HOE影像組合器385可至少部分地嵌入於調光透鏡312之第二材料層132中。HOE影像組合器385可能不嵌入於調光裝置166及第一材料層131中,且因此,HOE影像組合器385之輸出影像光338可能不受調光裝置166影響。In some embodiments, although not shown, the HOE image combiner 385 can be at least partially embedded in the second material layer 132 of the dimming lens 312 . HOE image combiner 385 may not be embedded in dimming device 166 and first material layer 131 , and thus, output image light 338 of HOE image combiner 385 may not be affected by dimming device 166 .

圖3A及圖3B中所展示之顯示系統300、圖3C中所展示之顯示系統360及圖3D中所展示之顯示系統380係出於說明性目的,以解釋將所揭示之調光透鏡實施至包括於人工實境裝置中之顯示系統中。所揭示之調光透鏡亦可實施於智慧型眼鏡或其他合適的眼用穿戴品中。圖3A至圖3C中所展示之光導顯示組裝件320及HOE顯示組裝件390係出於說明性目的,且為圖1B中所展示之影像顯示組裝件120之實例。在一些具體實例中,顯示系統可包括除光導顯示組裝件320及HOE顯示組裝件390以外的另一合適之影像顯示組裝件,且顯示組裝件可包括除光導影像組合器及HOE影像組合器以外的另一合適之影像組合器。The display system 300 shown in FIGS. 3A and 3B , the display system 360 shown in FIG. 3C , and the display system 380 shown in FIG. 3D are for illustrative purposes to explain implementing the disclosed dimming lens to Included in the display system in the artificial reality device. The disclosed dimming lenses may also be implemented in smart glasses or other suitable eyewear. Light guide display assembly 320 and HOE display assembly 390 shown in FIGS. 3A-3C are for illustrative purposes and are examples of image display assembly 120 shown in FIG. 1B . In some embodiments, the display system can include another suitable image display assembly in addition to the light guide display assembly 320 and the HOE display assembly 390, and the display assembly can include other than the light guide image combiner and the HOE image combiner. Another suitable image combiner for .

在下文中,將解釋可實施於所揭示之調光透鏡中的例示性調光元件。調光元件可經由諸如偏振、吸收及/或散射等之合適調光機制來減弱輸入光。圖4A及圖4B繪示根據本發明之具體實例的調光元件400之x-z截面圖。調光元件400可為圖2D或圖2E中所展示之調光元件166的具體實例。調光元件400可為主客型型LC調光裝置。如圖4A中所展示,調光元件400可包括電極層(或導電層) 209-1及209-2以及安置於電極層209-1與209-2之間的調光材料層207。各電極層209-1或209-2可具備配向層404。調光材料層207可安置於配向層404之間。配向層404為包括於調光材料層207中之分子提供配向。在圖4A及圖4B中所展示之具體實例中,調光材料層207可為主客型LC層,其包括主型LC 408與摻雜至LC 408中的客型染料410之混合物。在圖4A中所展示之具體實例中,客型染料410可包括為電壓回應性或電場回應性染料之二色性染料(出於論述目的,亦被稱作410),且主客型LC層可為電壓驅動之主客型LC層。In the following, exemplary dimming elements that may be implemented in the disclosed dimming lenses will be explained. The dimming element can attenuate input light through suitable dimming mechanisms such as polarization, absorption and/or scattering. 4A and 4B illustrate x-z cross-sectional views of a dimming element 400 according to a specific example of the present invention. The dimming element 400 can be a specific example of the dimming element 166 shown in FIG. 2D or FIG. 2E . The dimming element 400 may be a host-guest type LC dimming device. As shown in FIG. 4A , the dimming element 400 may include electrode layers (or conductive layers) 209-1 and 209-2 and a dimming material layer 207 disposed between the electrode layers 209-1 and 209-2. Each electrode layer 209 - 1 or 209 - 2 may include an alignment layer 404 . The light-adjusting material layer 207 can be disposed between the alignment layers 404 . The alignment layer 404 provides alignment for the molecules included in the dimming material layer 207 . In the embodiment shown in FIGS. 4A and 4B , the light-adjusting material layer 207 may be a host-guest LC layer, which includes a mixture of host-type LC 408 and guest-type dye 410 doped into the LC 408 . In the specific example shown in FIG. 4A , the guest dye 410 can include a dichroic dye (also referred to as 410 for purposes of discussion) that is a voltage-responsive or field-responsive dye, and the host-guest LC layer can be It is a voltage-driven host-guest LC layer.

二色性染料410可為具有異向性吸收之有機分子。二色性染料410之吸收屬性可取決於二色性染料410之吸收軸(例如,染料分子之長軸或短軸)與入射光之偏振方向之間的相對位向。舉例而言,二色性染料410可相對較強地吸收具有平行於染料分子之吸收軸(例如,長軸或短軸)之偏振方向的入射光,且相對較弱地吸收具有垂直於染料分子之吸收軸(例如,長軸或短軸)之偏振方向的入射光。亦即,相比具有垂直於吸收軸之偏振方向的入射光,二色性染料410可對具有平行於染料分子之吸收軸之偏振方向的入射光提供更大的調光效應。因此,藉由經由例如電場使染料分子之位向變化,可調整入射光142之透射率。The dichroic dye 410 can be an organic molecule with anisotropic absorption. The absorption properties of dichroic dye 410 may depend on the relative orientation between the absorption axis of dichroic dye 410 (eg, the major or minor axis of the dye molecule) and the polarization direction of incident light. For example, dichroic dye 410 may absorb relatively strongly incident light having a polarization direction parallel to the absorption axis (e.g., major or minor axis) of the dye molecule and relatively weakly absorb light having a polarization direction perpendicular to the dye molecule. Incident light is polarized along the absorption axis (e.g., major or minor axis). That is, the dichroic dye 410 can provide a greater dimming effect to incident light having a polarization direction parallel to the absorption axis of the dye molecules than to incident light having a polarization direction perpendicular to the absorption axis. Therefore, by changing the orientation of the dye molecules through, for example, an electric field, the transmittance of the incident light 142 can be adjusted.

調光材料層207中之LC 408可具有正或負介電各異向性。出於說明性目的,圖4A及圖4B展示LC 408具有正介電各異向性(Δε >0)。二色性染料410之染料分子可與LC分子408一起在電壓斷開狀態下在x軸方向上配向。如圖4A及圖4B中所展示,當LC 408之指向矢隨著所施加電壓V自平面位向改變至垂直位向時,染料分子之長分子軸亦可隨著LC 408改變位向。換言之,染料分子可自在V=0下之平面位向(強吸收狀態)改變至在V≠0下之垂直位向(弱吸收狀態)。因此,調光元件400可自在V=0下以黑暗狀態操作切換至在V≠0下以透明狀態操作。在一些具體實例中,LC 408可具有負介電各異向性(Δε <0),且調光元件400之不透明狀態及透明狀態可逆轉,例如調光元件400可在V=0下以透明狀態操作且在V≠0下以黑暗狀態操作。在一些具體實例中,調光元件400可能不包括偏振器。在一些具體實例中,調光元件400可包括偏振器(圖中未示),例如安置於上部電極層209-1處的線柵偏振器,且上部電極層209-1可安置於偏振器與上部配向層404之間。The LC 408 in the dimming material layer 207 can have positive or negative dielectric anisotropy. For illustrative purposes, FIGS. 4A and 4B show that LC 408 has positive dielectric anisotropy (Δε > 0). The dye molecules of the dichroic dye 410 can be aligned with the LC molecules 408 in the x-axis direction in the voltage-off state. As shown in FIGS. 4A and 4B , when the director of the LC 408 changes from a planar orientation to a vertical orientation with the applied voltage V, the long molecular axis of the dye molecule can also change orientation with the LC 408 . In other words, the dye molecules can change from a planar orientation (strong absorption state) at V=0 to a vertical orientation (weak absorption state) at V≠0. Therefore, the dimming device 400 can be switched from operating in a dark state at V=0 to operating in a transparent state at V≠0. In some embodiments, the LC 408 can have negative dielectric anisotropy (Δε <0), and the opaque state and the transparent state of the dimming element 400 can be reversed, for example, the dimming element 400 can be transparent at V=0 State operation and dark state operation at V≠0. In some embodiments, dimming element 400 may not include a polarizer. In some specific examples, the dimming element 400 may include a polarizer (not shown in the figure), such as a wire grid polarizer disposed at the upper electrode layer 209-1, and the upper electrode layer 209-1 may be disposed between the polarizer and Between the upper alignment layer 404 .

圖4C繪示根據本發明之具體實例的調光元件450之x-z截面圖。調光元件450可包括與圖4A及圖4B中所展示之調光元件400中所包括的元件、結構及/或功能相同或類似的元件、結構及/或功能。相同或類似元件、結構及/或功能的描述可參考結合圖4A及圖4B呈現的以上描述。調光元件450可為圖2D或圖2E中所展示之調光元件166的具體實例。調光元件450可為包括調光材料層207的主客型LC調光裝置,該調光材料層包括主型LC 408及摻雜至LC 408中之客型染料。在一些具體實例中,客型染料可包括電壓回應性或電場回應性染料(例如,二色性染料410)及光響應染料460。在一些具體實例中,光響應染料460可包括光致變色染料、光致二色性染料或其組合。如圖4C中所展示,調光元件450可包括安置於調光材料層207之相對側的電極層(或導電層) 209-1及209-2,以及安置於調光材料層207之相對表面處的配向層404。配向層404與調光材料層207直接接觸。FIG. 4C shows an x-z cross-sectional view of a dimming element 450 according to an embodiment of the present invention. The dimming element 450 may include the same or similar elements, structures and/or functions as those included in the dimming element 400 shown in FIGS. 4A and 4B . For descriptions of the same or similar elements, structures and/or functions, reference may be made to the above description presented in conjunction with FIG. 4A and FIG. 4B . The dimming element 450 may be a specific example of the dimming element 166 shown in FIG. 2D or FIG. 2E . The dimming element 450 can be a host-guest LC dimming device including a dimming material layer 207 , the dimming material layer includes a host-type LC 408 and a guest-type dye doped into the LC 408 . In some embodiments, guest dyes can include voltage-responsive or electric-field-responsive dyes (eg, dichroic dye 410 ) and light-responsive dye 460 . In some embodiments, the photoresponsive dye 460 can include a photochromic dye, a photodichroic dye, or a combination thereof. As shown in FIG. 4C , the dimming element 450 may include electrode layers (or conductive layers) 209-1 and 209-2 disposed on opposite sides of the dimming material layer 207, and disposed on opposite surfaces of the dimming material layer 207. The alignment layer 404 at. The alignment layer 404 is in direct contact with the light-adjusting material layer 207 .

在一些具體實例中,光響應染料460可在具有相異光吸收效應之至少兩個穩定狀態(或穩態)之間經歷可逆光異構化。在可逆光異構化製程期間,當光響應染料460經受活化能量(例如,活化光輻照)時,可改變光響應染料460之一或多個實體屬性,諸如吸收光譜、螢光發射、共軛、電子傳導率、偶極相互作用及幾何形狀。在一些具體實例中,光響應染料460之色彩可取決於具有足夠高頻率之活化光,諸如紫外(「UV」)光、藍光及/或紫光之存在或不存在而可逆地改變。舉例而言,光響應染料460可在曝露於UV光時(或在UV光之強度大於預定強度時)自透明穩態(「clear steady-state」)(或被稱作「透明狀態」)改變至黑暗穩態(「dark steady-state」)(或被稱作「黑暗狀態」),且可在不存在UV光之情況下(或在UV光之強度低於預定強度時)恢復至透明穩態。黑暗穩態(亦可被稱作著色穩態,此係因為光響應染料460在黑暗穩態下可展現灰色或暗色調。透明穩態亦可被稱作無色穩態,此係因為光響應染料460在透明穩態下可為視覺上透明的。In some embodiments, photoresponsive dye 460 can undergo reversible photoisomerization between at least two stable states (or steady states) with distinct light absorption effects. During the reversible photoisomerization process, when photoresponsive dye 460 is subjected to activating energy (e.g., irradiation with activating light), one or more physical properties of photoresponsive dye 460, such as absorption spectrum, fluorescence emission, co- Yokes, electronic conductivity, dipole interactions, and geometry. In some embodiments, the color of photoresponsive dye 460 can reversibly change depending on the presence or absence of activating light of sufficiently high frequency, such as ultraviolet ("UV") light, blue light, and/or violet light. For example, the photoresponsive dye 460 can change from a "clear steady-state" (alternatively referred to as a "clear state") upon exposure to UV light (or when the intensity of the UV light is greater than a predetermined intensity) to a dark steady-state ("dark steady-state") (or referred to as "dark state"), and can return to transparent steady-state in the absence of UV light (or when the intensity of UV light is below a predetermined intensity) state. The dark steady state (also referred to as the colored steady state, because the photoresponsive dye 460 can exhibit gray or dark shades in the dark steady state. The transparent steady state can also be referred to as the colorless steady state, because the photoresponsive dye 460 can exhibit a gray or dark hue. 460 may be visually transparent in a transparent steady state.

在一些具體實例中,恢復至透明穩態之過程可藉由將光響應染料460曝露於其他類型之活化能量(諸如,熱或電磁輻射)來加速。舉例而言,在一些具體實例中,光響應染料460在低溫環境中可能會花費較長時間來返回至透明穩態,且在高溫環境中可能不會達到實質上黑暗穩態,此係因為光誘發(例如,UV誘發)的至黑暗穩態之轉變可藉由熱誘發的至透明穩態之快速逆轉來抵消。此類光響應染料460可被稱作熱可逆光響應染料,其可以取決於溫度(例如,周圍環境溫度)之速率返回至透明穩態。在一些具體實例中,光響應染料460可吸收具有不同波長之光以驅動轉變至黑暗穩態及透明穩態兩者,其中周圍環境溫度可對轉變速度及穩態(例如,黑暗穩態及透明穩態)屬性具有可忽略的影響或無影響。此類光響應染料460可被稱作熱穩定光響應染料。在一些具體實例中,一或多個紅外(「IR」)、可見及/或UV光源可鄰近於光響應染料460配置,且按需要供能以輻照光響應染料460。舉例而言,在一些具體實例中,熱穩定光響應染料460可吸收具有預定波長之活化光以自透明穩態改變至黑暗穩態,且吸收具有不同於活化光之預定波長之波長的光以返回至透明穩態。In some embodiments, the process of returning to a steady state of transparency can be accelerated by exposing photoresponsive dye 460 to other types of activation energy, such as heat or electromagnetic radiation. For example, in some embodiments, the photoresponsive dye 460 may take longer to return to a transparent steady state in a low temperature environment, and may not reach a substantially dark steady state in a high temperature environment because the light An induced (eg, UV-induced) transition to a dark steady state can be counteracted by a thermally induced rapid reversal to a transparent steady state. Such photoresponsive dyes 460 can be referred to as thermally reversible photoresponsive dyes, which can return to a transparent steady state at a rate dependent on temperature (eg, ambient temperature). In some embodiments, the photoresponsive dye 460 can absorb light having different wavelengths to drive the transition to both a dark steady state and a clear steady state, where the ambient temperature can have an effect on the transition speed and steady state (e.g., dark steady state and clear steady state). Steady-state) properties have negligible or no effect. Such photoresponsive dyes 460 may be referred to as thermally stable photoresponsive dyes. In some embodiments, one or more infrared (“IR”), visible, and/or UV light sources may be disposed adjacent to and powered to irradiate photoresponsive dye 460 as needed. For example, in some embodiments, thermally stable photoresponsive dye 460 can absorb activating light having a predetermined wavelength to change from a clear steady state to a dark steady state, and absorb light having a wavelength different from the predetermined wavelength of activating light to Return to transparent steady state.

圖5A及圖5B繪示根據本發明之具體實例的調光元件500之x-z截面圖。調光元件500可為圖2D或圖2E中所展示之調光元件166的具體實例。調光元件500可為電致變色調光裝置。如圖5A中所展示,調光元件500可包括電極層209-1及209-2(統稱為209)以及安置於電極層209-1與209-2之間的調光材料層207。5A and 5B illustrate x-z cross-sectional views of a dimming element 500 according to a specific example of the present invention. The dimming element 500 may be a specific example of the dimming element 166 shown in FIG. 2D or FIG. 2E . The dimming element 500 can be an electrochromic dimming device. As shown in FIG. 5A , the dimming element 500 may include electrode layers 209 - 1 and 209 - 2 (collectively referred to as 209 ) and a dimming material layer 207 disposed between the electrode layers 209 - 1 and 209 - 2 .

在圖5A中所展示之具體實例中,調光材料層207可包括至少一個電致變色層,該至少一個電致變色層配置有回應於所施加電場或電流之改變而可變以產生視覺效應的透光率。出於論述目的,如圖5A中所展示,調光材料層207可包括以堆疊組態配置之離子儲存層505、含離子材料層507(例如,離子傳導層或電解質層)以及電致變色層509。含離子材料層507可安置在離子儲存層505與電致變色層509之間。電致變色層509可包括電致變色材料,諸如有機小分子之電致變色材料、包括導電聚合物之電致變色材料或包括過渡金屬氧化物之電致變色材料等。電致變色材料可回應於所施加電位(例如,所施加電壓)而在電化學氧化及還原之後可逆地更改其光學屬性。舉例而言,電致變色層509之透光率可在電致變色材料之氧化或還原後改變。In the embodiment shown in FIG. 5A , the layer of light-adjusting material 207 may include at least one electrochromic layer configured to be variable to produce a visual effect in response to changes in an applied electric field or current. light transmittance. For purposes of discussion, as shown in FIG. 5A , the layer of dimming material 207 may include an ion storage layer 505, a layer of ion-containing material 507 (e.g., an ion-conducting layer or an electrolyte layer), and an electrochromic layer arranged in a stacked configuration. 509. Ion-containing material layer 507 may be disposed between ion storage layer 505 and electrochromic layer 509 . The electrochromic layer 509 may include electrochromic materials, such as electrochromic materials of small organic molecules, electrochromic materials including conductive polymers, or electrochromic materials including transition metal oxides. An electrochromic material can reversibly change its optical properties after electrochemical oxidation and reduction in response to an applied potential (eg, an applied voltage). For example, the light transmittance of the electrochromic layer 509 may change upon oxidation or reduction of the electrochromic material.

離子儲存層505可用作電荷儲存膜,該電荷儲存膜吸引及儲存與活化或去活化電致變色層509之離子帶相反電荷的對應物。在一些具體實例中,離子儲存層505可配置以在用於含於電致變色層509中之電致變色材料之色彩切換的可逆氧化/還原反應後與電致變色層匹配電荷平衡。舉例而言,在一些具體實例中,離子儲存層505可包括色彩切換反應特性不同於包括於電致變色層509中之電致變色材料的電致變色材料。舉例而言,當電致變色層509包括還原電致變色材料時,離子儲存層505可包括氧化電致變色材料。在一些具體實例中,含離子材料層507可用作用於在離子儲存層505與電致變色層509之間傳送離子的介質。在一些具體實例中,含離子材料層507可有效地阻擋電子電流,同時允許離子(通常地為質子(H +)或鋰離子(Li +))穿過。 The ion storage layer 505 can serve as a charge storage film that attracts and stores the oppositely charged counterparts of the ions that activate or deactivate the electrochromic layer 509 . In some embodiments, the ion storage layer 505 can be configured to match the charge balance with the electrochromic layer after reversible oxidation/reduction reactions for color switching of the electrochromic material contained in the electrochromic layer 509 . For example, in some embodiments, ion storage layer 505 may include an electrochromic material having a different color switching response characteristic than the electrochromic material included in electrochromic layer 509 . For example, when electrochromic layer 509 includes a reducing electrochromic material, ion storage layer 505 may include an oxidizing electrochromic material. In some embodiments, ion-containing material layer 507 may serve as a medium for transporting ions between ion storage layer 505 and electrochromic layer 509 . In some embodiments, the ion-containing material layer 507 can effectively block electron current flow while allowing ions, typically protons (H + ) or lithium ions (Li + ), to pass through.

在一些具體實例中,在調光元件500之操作期間,如圖5A中所展示,可將正電壓施加至電極層209-1且可將負電壓(或零電壓)施加至電極層209-2。在調光材料層207中產生的外部電場之方向可沿圖5A中之z軸方向。所產生電場可使得電荷補償離子,諸如鋰、鈉或氫離子,經由含離子材料層507自離子儲存層505傳遞至電致變色層509中。同時,電子可沿著外部電路傳送,且注入至電致變色層509中。所注入電子可產生包括於電致變色層509中之電致變色材料的電化學還原,從而導致調光裝置500之無色(例如,透明)狀態。In some embodiments, during operation of the dimming element 500, as shown in FIG. 5A, a positive voltage may be applied to the electrode layer 209-1 and a negative voltage (or zero voltage) may be applied to the electrode layer 209-2. . The direction of the external electric field generated in the light-adjusting material layer 207 can be along the z-axis direction in FIG. 5A . The generated electric field may cause charge compensating ions, such as lithium, sodium, or hydrogen ions, to be transferred from ion storage layer 505 into electrochromic layer 509 via ion-containing material layer 507 . At the same time, electrons can be transmitted along the external circuit and injected into the electrochromic layer 509 . The injected electrons can produce an electrochemical reduction of the electrochromic material included in the electrochromic layer 509 , resulting in a colorless (eg, transparent) state of the dimming device 500 .

在一些具體實例中,如圖5B中所展示,可將負電壓(或零電壓)施加至電極層209-1,且可將正電壓施加至電極層209-2。在調光材料層207中產生的外部電場之方向可沿圖5B中的z軸方向。所產生電場可使得電荷補償離子流出電致變色電極層509且經由含離子材料層507流回至離子儲存層505。同時,極性逆轉可使得電子流出電致變色電極層509,沿著外部電路流動,且流入離子儲存層505中。電子的提取可導致包括於電致變色層509中之電致變色材料的電化學氧化,從而導致調光元件500的著色(例如,黑暗)狀態。參看圖5A及圖5B,經由逆轉施加至調光元件500的電壓之極性,調光裝置元件可為可在無色狀態與著色狀態之間切換的。In some embodiments, as shown in Figure 5B, a negative voltage (or zero voltage) can be applied to the electrode layer 209-1, and a positive voltage can be applied to the electrode layer 209-2. The direction of the external electric field generated in the light-adjusting material layer 207 can be along the z-axis direction in FIG. 5B . The resulting electric field may cause charge compensating ions to flow out of the electrochromic electrode layer 509 and back through the ion-containing material layer 507 to the ion storage layer 505 . At the same time, the polarity reversal can cause electrons to flow out of the electrochromic electrode layer 509 , along the external circuit, and into the ion storage layer 505 . The extraction of electrons may result in electrochemical oxidation of the electrochromic material included in the electrochromic layer 509 , resulting in a colored (eg, dark) state of the dimming element 500 . 5A and 5B, by reversing the polarity of the voltage applied to the dimming element 500, the dimming device element may be switchable between a colorless state and a colored state.

圖5C繪示根據本發明之具體實例的調光元件550之x-z截面圖。調光元件550可為圖2D或圖2E中所展示之調光元件166的具體實例。調光元件550可為電致變色調光元件或懸浮粒子調光元件。調光元件550可包括與包括於圖5A及圖5B中所展示之調光元件500中的元件、結構及/或功能相同或類似的元件、結構及/或功能。相同或類似元件、結構及/或功能的描述可參考結合圖5A及圖5B呈現的以上描述。FIG. 5C shows an x-z cross-sectional view of a dimming element 550 according to an embodiment of the present invention. The dimming element 550 may be a specific example of the dimming element 166 shown in FIG. 2D or FIG. 2E. The dimming element 550 can be an electrochromic dimming element or a suspended particle dimming element. The dimming element 550 may include the same or similar elements, structures and/or functions as those included in the dimming element 500 shown in FIGS. 5A and 5B . For descriptions of the same or similar elements, structures and/or functions, reference may be made to the above description presented in conjunction with FIG. 5A and FIG. 5B .

在圖5C中所展示之具體實例中,調光材料層207可配置以亦包括光響應染料460,諸如光致變色染料、光致二色性染料或其組合。光響應染料460可摻雜至離子儲存層505、含離子材料層507或電致變色層509中之至少一者中。出於論述目的,圖5C展示將光響應染料460摻雜至含離子材料層507中。在一些具體實例中,光響應染料460可摻雜至電致變色層509中。在一些具體實例中,光響應染料460可摻雜至離子儲存層505中。In the embodiment shown in FIG. 5C, the layer of light modulating material 207 can be configured to also include a photoresponsive dye 460, such as a photochromic dye, a photodichroic dye, or a combination thereof. The photoresponsive dye 460 can be doped into at least one of the ion storage layer 505 , the ion-containing material layer 507 or the electrochromic layer 509 . For purposes of discussion, FIG. 5C shows doping of photoresponsive dye 460 into ion-containing material layer 507 . In some embodiments, photoresponsive dye 460 can be doped into electrochromic layer 509 . In some embodiments, photoresponsive dye 460 can be doped into ion storage layer 505 .

圖6A及圖6B繪示根據本發明之具體實例的調光元件600之x-z截面圖。調光元件600可為圖2D或圖2E中所展示的調光元件166之具體實例。調光元件600可為電泳調光元件。如圖6A中所展示,調光元件600可包括電極層209-1及209-2以及安置於兩個電極層209-1與209-2之間的調光材料層207。在圖6A中所展示之具體實例中,調光材料層207可包括懸浮於液體懸浮液或聚合物膜610中之微觀粒子608。粒子608可為針形、桿形或板條形等。6A and 6B illustrate x-z cross-sectional views of a dimming element 600 according to a specific example of the present invention. The dimming element 600 can be a specific example of the dimming element 166 shown in FIG. 2D or FIG. 2E . The dimming element 600 can be an electrophoretic dimming element. As shown in FIG. 6A , the dimming element 600 may include electrode layers 209-1 and 209-2 and a dimming material layer 207 disposed between the two electrode layers 209-1 and 209-2. In the embodiment shown in FIG. 6A , the layer of dimming material 207 may include microscopic particles 608 suspended in a liquid suspension or polymer film 610 . Particles 608 may be needle-shaped, rod-shaped, or lath-shaped, among others.

在電壓斷開狀態下,如圖6A中所展示,懸浮於液體懸浮液或膜610中之粒子608可能由於布朗運動而隨機分佈或無序,且入射於調光材料層207上之光142可被吸收及/或散射。因此,入射於調光材料層207上的光142可能不透射通過,且調光元件600可在黑暗狀態下操作。在電壓接通狀態下,如圖6B中所展示,當所施加電壓足夠高時,粒子608可在電場方向(例如,圖6B中之z軸方向)上均勻地定向,從而允許入射光142實質上透射通過。因此,調光元件600可在透明狀態下操作。在移除電壓之後,粒子608可移動回至隨機圖案且實質上阻擋入射光142。因此,經由使所施加電壓變化,調光元件600之透光率可為可調的。In the voltage-off state, as shown in FIG. 6A , the particles 608 suspended in the liquid suspension or film 610 may be randomly distributed or disordered due to Brownian motion, and the light 142 incident on the layer of dimming material 207 may be absorbed and/or scattered. Therefore, the light 142 incident on the light-adjusting material layer 207 may not be transmitted through, and the light-adjusting element 600 may operate in a dark state. In the voltage-on state, as shown in FIG. 6B , when the applied voltage is high enough, the particles 608 can be uniformly oriented in the direction of the electric field (e.g., the z-axis direction in FIG. 6B ), allowing the incident light 142 to substantially transmission through. Therefore, the dimming element 600 can operate in a transparent state. After the voltage is removed, the particles 608 may move back to a random pattern and substantially block the incident light 142 . Therefore, the light transmittance of the dimming element 600 can be adjusted by varying the applied voltage.

圖6C繪示根據本發明之具體實例的調光元件650之x-z截面圖。調光元件650可為圖2D或圖2E中所展示之調光元件166的具體實例。調光元件650可為電致變色調光元件或懸浮粒子調光元件。調光元件650可包括與包括於圖6A及圖6B中所展示之調光元件600中的元件、結構及/或功能相同或類似的元件、結構及/或功能。相同或類似元件、結構及/或功能的描述可參考結合圖6A及圖6B呈現的以上描述。在圖6C中所展示之具體實例中,調光材料層207可配置以亦包括光響應染料460,諸如光致變色染料、光致二色性染料或其組合。光響應染料460可摻雜至液體懸浮液或聚合物膜610中,此可進一步增強調光元件650之調光效應。FIG. 6C shows an x-z cross-sectional view of a dimming element 650 according to an embodiment of the present invention. The dimming element 650 can be a specific example of the dimming element 166 shown in FIG. 2D or FIG. 2E. The dimming element 650 can be an electrochromic dimming element or a suspended particle dimming element. The dimming element 650 may include the same or similar elements, structures and/or functions as those included in the dimming element 600 shown in FIGS. 6A and 6B . For descriptions of the same or similar elements, structures and/or functions, reference may be made to the above description presented in conjunction with FIG. 6A and FIG. 6B . In the embodiment shown in FIG. 6C, the layer of light modulating material 207 can be configured to also include a photoresponsive dye 460, such as a photochromic dye, a photodichroic dye, or a combination thereof. The photoresponsive dye 460 can be doped into the liquid suspension or the polymer film 610 , which can further enhance the dimming effect of the dimming element 650 .

圖7A為繪示根據本發明之具體實例的製作調光透鏡的方法700之流程圖。方法700可包括提供第一材料層(步驟701)。第一材料層可安置於基板上。方法700亦可包括將調光元件安置於第一材料層處(步驟702)。調光元件可安置於第一材料層之內表面(例如,凹表面)處,當使用者使用所製作的調光透鏡時,該內表面面向使用者之眼球。方法700可進一步包括將第二材料層安置於調光元件處(步驟703)。第二材料層可安置於調光元件之內表面處,當使用者使用所製作的調光透鏡時,該內表面面向使用者之眼球。第一材料層可包括具有低密度及低雙折射率之第一透鏡材料,如上文所描述。第二材料層可包括具有高抗衝擊性之第二透鏡材料,如上文所描述。第一透鏡材料的密度可低於第二透鏡材料的密度。第一透鏡材料的雙折射率可低於第二透鏡材料的雙折射率。第二透鏡材料之抗衝擊性(或衝擊強度)可高於(或強於)第一透鏡材料之抗衝擊性(或衝擊強度)。在一些具體實例中,在提供第一材料層之後,方法700可包括將調光元件安置於第二材料層處,且將調光元件及第二材料層的堆疊安置於第一材料層處。舉例而言,調光元件及第二材料層的堆疊可安置於第一材料層的內表面(例如,凹表面)處,當使用者使用所製作的調光透鏡時,該內表面面向使用者之眼球。FIG. 7A is a flowchart illustrating a method 700 of fabricating a dimming lens according to an embodiment of the present invention. Method 700 may include providing a first layer of material (step 701 ). The first material layer can be disposed on the substrate. The method 700 may also include disposing a dimming element at the first material layer (step 702 ). The dimming element can be disposed on the inner surface (for example, concave surface) of the first material layer, and when the user uses the manufactured dimming lens, the inner surface faces the user's eyeball. The method 700 may further include disposing a second material layer at the dimming element (step 703 ). The second material layer can be arranged on the inner surface of the dimming element, and when the user uses the fabricated dimming lens, the inner surface faces the user's eyeball. The first material layer may include a first lens material having a low density and low birefringence, as described above. The second material layer may include a second lens material with high impact resistance, as described above. The density of the first lens material may be lower than the density of the second lens material. The birefringence of the first lens material may be lower than the birefringence of the second lens material. The impact resistance (or impact strength) of the second lens material may be higher (or stronger) than the impact resistance (or impact strength) of the first lens material. In some embodiments, after providing the first material layer, method 700 can include disposing the dimming element at the second material layer, and disposing the stack of the dimming element and the second material layer at the first material layer. For example, the stack of dimming element and second material layer can be placed at the inner surface (eg, concave surface) of the first material layer, which faces the user when the user uses the fabricated dimming lens eyeball.

圖7B為繪示根據本發明之具體實例的製作調光透鏡的方法750之另一流程圖。方法750可包括例如經由射出模製提供第一材料層(步驟751)。方法750亦可包括將調光元件安置至第二材料層中(步驟752)。舉例而言,步驟752可包括經由合適製程將調光元件囊封至第二材料層中。方法750可進一步包括例如經由利用光學透明黏著劑接合將包括調光元件之第二材料層安置於第一材料層處(步驟753)。第二材料層可安置於第一材料層的內表面處,當使用者使用所製作的調光透鏡時,該內表面面向使用者之眼球。第一材料層可包括具有低密度及低雙折射率之第一透鏡材料,如上文所描述。第二材料層可包括具有高抗衝擊性之第二透鏡材料,如上文所描述。第一透鏡材料的密度可低於第二透鏡材料的密度。第一透鏡材料的雙折射率可低於第二透鏡材料的雙折射率。第二透鏡材料之抗衝擊性(或衝擊強度)可高於(或強於)第一透鏡材料之抗衝擊性(或衝擊強度)。FIG. 7B is another flowchart illustrating a method 750 of fabricating a dimming lens according to an embodiment of the present invention. Method 750 may include providing a first layer of material, eg, via injection molding (step 751 ). Method 750 may also include disposing a dimming element into the second material layer (step 752). For example, step 752 may include encapsulating the dimming element into the second material layer through a suitable process. The method 750 may further include disposing the second material layer including the dimming element at the first material layer, for example by bonding with an optically clear adhesive (step 753 ). The second material layer can be disposed on the inner surface of the first material layer, and when the user uses the manufactured dimming lens, the inner surface faces the user's eyeball. The first material layer may include a first lens material having a low density and low birefringence, as described above. The second material layer may include a second lens material with high impact resistance, as described above. The density of the first lens material may be lower than the density of the second lens material. The birefringence of the first lens material may be lower than the birefringence of the second lens material. The impact resistance (or impact strength) of the second lens material may be higher (or stronger) than the impact resistance (or impact strength) of the first lens material.

在一些具體實例中,本發明提供一種透鏡。該透鏡包括第一材料層,該第一材料層包括具有第一雙折射率、第一密度及第一抗衝擊性之第一透鏡材料。透鏡亦包括第二材料層,該第二材料層與第一材料層耦接且包括具有第二雙折射率、第二密度及第二抗衝擊性之第二透鏡材料。第一雙折射率低於第二雙折射率,第一密度低於第二密度,且第二抗衝擊性強於第一抗衝擊性。In some embodiments, the invention provides a lens. The lens includes a first layer of material including a first lens material having a first birefringence, a first density, and a first impact resistance. The lens also includes a second material layer coupled to the first material layer and including a second lens material having a second birefringence, a second density, and a second impact resistance. The first birefringence is lower than the second birefringence, the first density is lower than the second density, and the second impact resistance is stronger than the first impact resistance.

在一些具體實例中,透鏡具有面向使用者之眼球的內側及面向真實世界環境的外側,第一材料層位於透鏡的外側,且第二材料層位於透鏡的內側。In some embodiments, the lens has an inner side facing the user's eyeball and an outer side facing the real world environment, the first material layer is located on the outer side of the lens, and the second material layer is located on the inner side of the lens.

在一些具體實例中,第一材料層配置有非零光功率以用於提供視覺校正,且第二材料層配置有零光功率或小於預定值之光功率。In some embodiments, the first material layer is configured with non-zero optical power for providing vision correction, and the second material layer is configured with zero optical power or an optical power less than a predetermined value.

在一些具體實例中,第一透鏡材料包括環烯烴共聚物或環烯烴聚合物中之至少一者。第二透鏡材料包括聚碳酸酯(「PC」)、聚甲基丙烯酸甲酯(「PMMA」)、聚乙烯(「PE」)或聚丙烯(「PP」)或聚氨酯中之至少一者。In some embodiments, the first lens material includes at least one of a cycloolefin copolymer or a cycloolefin polymer. The second lens material includes at least one of polycarbonate ("PC"), polymethylmethacrylate ("PMMA"), polyethylene ("PE") or polypropylene ("PP"), or polyurethane.

在一些具體實例中,第一材料層具有凹表面,且第二材料層經層壓至第一材料層之凹表面。在一些具體實例中,透鏡亦包括安置於第一材料層與第二材料層之間的調光元件。在一些具體實例中,調光元件包括非電可調的調光材料。在一些具體實例中,非電可調的調光材料包括光致變色材料、光致二色性材料或熱致變色材料中之至少一者。在一些具體實例中,調光元件包括安置於第一材料層處的第一電極層及安置於第二材料層處的第二電極層,以及安置於第一電極層與第二電極層之間的調光材料。在一些具體實例中,第一電極層及第二電極層中之各者包括氧化銦錫、摻雜Al之氧化鋅、石墨烯、聚(3,4-乙烯二氧噻吩):聚(苯乙烯-磺酸鹽)、奈米碳管或銀奈米線中之至少一者。In some embodiments, the first material layer has a concave surface, and the second material layer is laminated to the concave surface of the first material layer. In some embodiments, the lens also includes a dimming element disposed between the first material layer and the second material layer. In some embodiments, the dimming element includes a non-electrically tunable dimming material. In some embodiments, the non-electrically tunable dimming material includes at least one of a photochromic material, a photodichroic material, or a thermochromic material. In some specific examples, the dimming element includes a first electrode layer disposed at the first material layer and a second electrode layer disposed at the second material layer, and disposed between the first electrode layer and the second electrode layer dimming material. In some embodiments, each of the first electrode layer and the second electrode layer includes indium tin oxide, Al-doped zinc oxide, graphene, poly(3,4-ethylenedioxythiophene):poly(styrene - at least one of sulfonate), carbon nanotubes or silver nanowires.

在一些具體實例中,調光材料包括電可調的調光材料。電可調的調光材料包括主客型液晶(「LC」)材料、聚合物穩定的膽固醇型LC材料、懸浮粒子、電致變色材料或電泳材料中之至少一者。在一些具體實例中,調光材料亦包括非電可調的調光材料。在一些具體實例中,第二材料層包括兩個第二材料層之集合,且透鏡進一步包含安置於兩個第二材料層之間的調光元件。In some embodiments, the dimming material includes an electrically tunable dimming material. Electrically tunable dimming materials include at least one of host-guest liquid crystal ("LC") materials, polymer-stabilized cholesteric LC materials, suspended particles, electrochromic materials, or electrophoretic materials. In some embodiments, the light-adjustable material also includes a non-electrically adjustable light-adjustable material. In some embodiments, the second material layer includes a set of two second material layers, and the lens further includes a dimming element disposed between the two second material layers.

在一些具體實例中,透鏡亦包括摻雜至第一材料層或第二材料層中之至少一者中的調光材料。在一些具體實例中,調光材料包括非電可調的調光材料。In some embodiments, the lens also includes a light-adjusting material doped into at least one of the first material layer or the second material layer. In some embodiments, the dimming material includes a non-electrically adjustable dimming material.

在一些具體實例中,本發明提供一種系統。該系統包括配置以輸出影像光之光源。該系統亦包括影像組合器,其配置以將自光源接收之影像光引導至系統之眼動區,該影像組合器具有面向眼動區之第一側及面向真實世界環境之第二側。該系統亦包括安置於影像組合器之第二側的透鏡。該透鏡包括第一材料層,該第一材料層包括具有第一雙折射率、第一密度及第一抗衝擊性之第一透鏡材料。該透鏡亦包括第二材料層,該第二材料層與第一材料層耦接且包括具有第二雙折射率、第二密度及第二抗衝擊性之第二透鏡材料。第一雙折射率低於第二雙折射率,第一密度低於第二密度,且第二抗衝擊性強於第一抗衝擊性。In some embodiments, the invention provides a system. The system includes a light source configured to output image light. The system also includes an image combiner configured to direct image light received from the light source to an eye movement zone of the system, the image combiner having a first side facing the eye movement zone and a second side facing the real world environment. The system also includes a lens disposed on the second side of the image combiner. The lens includes a first layer of material including a first lens material having a first birefringence, a first density, and a first impact resistance. The lens also includes a second material layer coupled to the first material layer and including a second lens material having a second birefringence, a second density, and a second impact resistance. The first birefringence is lower than the second birefringence, the first density is lower than the second density, and the second impact resistance is stronger than the first impact resistance.

在一些具體實例中,本發明提供一種系統。該系統包括配置以輸出影像光之光源。該系統亦包括影像組合器,其配置以將自光源接收之影像光引導至系統之眼動區,該影像組合包括面向眼動區之第一側及面向真實世界環境之第二側。該系統亦包括安置於影像組合器之第二側的透鏡。該透鏡包括第一材料層,該第一材料層包括具有第一雙折射率、第一密度及第一抗衝擊性之第一透鏡材料。該透鏡亦包括第二材料層,該第二材料層與第一材料層耦接且包括具有第二雙折射率、第二密度及第二抗衝擊性之第二透鏡材料。第一雙折射率低於第二雙折射率,第一密度低於第二密度,且第二抗衝擊性強於第一抗衝擊性。影像組合器至少部分地嵌入至透鏡之第二材料層中。In some embodiments, the invention provides a system. The system includes a light source configured to output image light. The system also includes an image combiner configured to direct image light received from the light source to an eye movement zone of the system, the image combination including a first side facing the eye movement zone and a second side facing the real world environment. The system also includes a lens disposed on the second side of the image combiner. The lens includes a first layer of material including a first lens material having a first birefringence, a first density, and a first impact resistance. The lens also includes a second material layer coupled to the first material layer and including a second lens material having a second birefringence, a second density, and a second impact resistance. The first birefringence is lower than the second birefringence, the first density is lower than the second density, and the second impact resistance is stronger than the first impact resistance. The image combiner is at least partially embedded in the second material layer of the lens.

在一些具體實例中,本發明提供一種方法。該方法包括提供第一材料層,該第一材料層包括具有第一雙折射率、第一密度及第一抗衝擊性之第一透鏡材料。該方法亦包括將調光元件安置於第一材料層處。該方法亦包括將第二材料層安置於調光元件處。第二材料層包括具有第二雙折射率、第二密度及第二抗衝擊性之第二透鏡材料。第一雙折射率低於第二雙折射率,第一密度低於第二密度,且第二抗衝擊性強於第一抗衝擊性。在一些具體實例中,將調光元件安置於第一材料層處包括經由光學黏著劑將調光元件層壓至第一材料層的凹表面上。In some embodiments, the invention provides a method. The method includes providing a first layer of material including a first lens material having a first birefringence, a first density, and a first impact resistance. The method also includes disposing a dimming element at the first material layer. The method also includes disposing a second material layer at the dimming element. The second material layer includes a second lens material having a second birefringence, a second density, and a second impact resistance. The first birefringence is lower than the second birefringence, the first density is lower than the second density, and the second impact resistance is stronger than the first impact resistance. In some embodiments, disposing the dimming element at the first material layer includes laminating the dimming element onto the concave surface of the first material layer via an optical adhesive.

在一些具體實例中,第一材料層、調光元件及第二材料層的堆疊形成透鏡,該透鏡具有面向使用者之眼球的內側及面向真實世界環境的外側,第一材料層位於透鏡的外側,且第二材料層位於透鏡的內側。In some embodiments, the stack of the first material layer, the dimming element and the second material layer forms a lens having an inner side facing the user's eyeball and an outer side facing the real world environment, the first material layer being located on the outer side of the lens , and the second material layer is located inside the lens.

在一些具體實例中,第一材料層配置有自訂光功率以用於提供視覺校正,且第二材料層配置有零光功率或小於預定值之光功率。在一些具體實例中,第一透鏡材料包括環烯烴共聚物或環烯烴聚合物中之至少一者。在一些具體實例中,第一材料層具有小於100 奈米之延遲值。在一些具體實例中,第二透鏡材料包括聚碳酸酯、聚甲基丙烯酸甲酯、聚乙烯、聚丙烯或聚氨酯中之至少一者。In some embodiments, the first material layer is configured with a custom optical power for providing vision correction, and the second material layer is configured with zero optical power or an optical power less than a predetermined value. In some embodiments, the first lens material includes at least one of a cycloolefin copolymer or a cycloolefin polymer. In some embodiments, the first material layer has a retardation value less than 100 nm. In some embodiments, the second lens material includes at least one of polycarbonate, polymethylmethacrylate, polyethylene, polypropylene, or polyurethane.

在一些具體實例中,本發明提供一種方法。該方法包括提供第一材料層,該第一材料層包括具有第一雙折射率、第一密度及第一抗衝擊性之第一透鏡材料。該方法亦包括將調光元件安置至第二材料層中,該第二材料層包括具有第二雙折射率、第二密度及第二抗衝擊性之第二透鏡材料。該方法進一步包括將第二材料層安置於第一材料層處。第一雙折射率低於第二雙折射率,第一密度低於第二密度,且第二抗衝擊性強於第一抗衝擊性。在一些具體實例中,將調光元件安置至第二材料層中包括將調光元件囊封至第二材料層中。在一些具體實例中,將第二材料層安置於第一材料層處包括經由光學黏著劑將第二材料層層壓至第一材料層之凹表面上。In some embodiments, the invention provides a method. The method includes providing a first layer of material including a first lens material having a first birefringence, a first density, and a first impact resistance. The method also includes disposing the dimming element in a second material layer including a second lens material having a second birefringence, a second density, and a second impact resistance. The method further includes disposing a second material layer at the first material layer. The first birefringence is lower than the second birefringence, the first density is lower than the second density, and the second impact resistance is stronger than the first impact resistance. In some embodiments, disposing the dimming element into the second material layer includes encapsulating the dimming element into the second material layer. In some embodiments, disposing the second material layer at the first material layer includes laminating the second material layer onto the concave surface of the first material layer via an optical adhesive.

出於說明性目的,已呈現本發明之具體實例的前述描述。其並不意欲為詳盡的或將本發明限於所揭示之精確形式。所屬技術領域中具有通常知識者可瞭解,鑒於上述揭示內容,修改及變化係可能的。The foregoing descriptions of specific examples of the invention have been presented for purposes of illustration. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Those of ordinary skill in the art appreciate that modifications and variations are possible in light of the above disclosure.

本說明書之一些部分可依據對資訊之操作的演算法及符號表示來描述本發明之具體實例。雖然在功能上、計算上或邏輯上描述此等操作,但此等操作可由電腦程式或等效電路、微碼或其類似者來實施。此外,有時亦證明將操作之此等配置稱作模組為方便的,而不失一般性。所描述之操作及其相關聯模組可具體實現於軟體、韌體、硬體或其任何組合中。Portions of this specification may describe embodiments of the invention in terms of algorithms and symbolic representations of operations on information. Although such operations are described functionally, computationally or logically, such operations may be implemented by computer programs or equivalent circuits, microcode or the like. Furthermore, it has also proven convenient at times, to refer to such configurations of operation as modules, without loss of generality. The described operations and their associated modules may be embodied in software, firmware, hardware, or any combination thereof.

本文中所描述之步驟、操作或程序中之任一者可藉由一或多個硬體及/或軟體模組單獨地或與其他裝置組合來執行或實施。在一個具體實例中,軟體模組藉由電腦程式產品實施,該電腦程式產品包括含有電腦程式碼之非暫時性電腦可讀取媒體,該電腦程式碼可由電腦處理器執行以執行所描述之任何或所有步驟、操作或程序。在一些具體實例中,硬體模組可包括硬體組件,諸如裝置、系統、光學元件、控制器、電路、邏輯閘等。Any of the steps, operations or procedures described herein may be executed or implemented by one or more hardware and/or software modules alone or in combination with other devices. In one embodiment, the software modules are implemented by a computer program product comprising a non-transitory computer-readable medium containing computer code executable by a computer processor to perform any of the described or all steps, operations or procedures. In some embodiments, a hardware module may include hardware components, such as devices, systems, optical components, controllers, circuits, logic gates, and the like.

本發明之具體實例亦可關於一種用於執行本文中之操作的設備。此設備可經專門建構以用於特定目的,及/或其可包括由儲存於電腦中之電腦程式選擇性地啟動或重組態之通用計算裝置。此電腦程式可儲存於非暫時性的有形電腦可讀取儲存媒體中或適合於儲存電子指令的任何類型之媒體中,該等媒體可耦接至電腦系統匯流排。非暫時性電腦可讀取儲存媒體可為可儲存程式碼之任何媒體,例如磁碟、光碟、唯讀記憶體(「ROM」)或隨機存取記憶體(「RAM」)、電可程式化唯讀記憶體(「Electrically Programmable read only memory;EPROM」)、電可抹除可程式化唯讀記憶體(「Electrically Erasable Programmable read only memory;EEPROM」)、暫存器、硬碟、固態磁碟機、智慧型媒體卡(「smart media card;SMC」)、安全數位卡(「SD」)、快閃記憶卡等。此外,說明書中所描述之任何計算系統可包括單個處理器或可為使用多個處理器以用於增加計算能力的架構。處理器可為中央處理單元(「CPU」)、圖形處理單元(「GPU」)或配置以處理資料及/或基於資料而執行計算之任何處理裝置。處理器可包括軟體組件及硬體組件兩者。舉例而言,處理器可包括硬體組件,諸如特定應用積體電路(「ASIC」)、可程式化邏輯裝置(「PLD」)或其組合。PLD可為複合可程式化邏輯裝置(「complex programmable logic device;CPLD」)、場可程式化閘陣列(「field-programmable gate array;FPGA」)等。Embodiments of the invention may also relate to an apparatus for performing the operations herein. This apparatus may be specially constructed for a particular purpose and/or it may comprise a general purpose computing device selectively activated or reconfigured by a computer program stored in the computer. The computer program can be stored on a non-transitory tangible computer readable storage medium or any type of medium suitable for storing electronic instructions, which can be coupled to a computer system bus. A non-transitory computer-readable storage medium can be any medium that can store program code, such as magnetic disks, optical disks, read-only memory ("ROM") or random-access memory ("RAM"), electrically programmable Read-only memory ("Electrically Programmable read only memory; EPROM"), Electrically Erasable Programmable read-only memory ("Electrically Erasable Programmable read only memory; EEPROM"), scratchpad, hard disk, solid-state disk computer, smart media card (“smart media card; SMC”), secure digital card (“SD”), flash memory card, etc. Furthermore, any computing system described in this specification may include a single processor or may be an architecture that uses multiple processors for increased computing power. A processor may be a central processing unit (“CPU”), a graphics processing unit (“GPU”), or any processing device configured to process data and/or perform computations based on data. A processor may include both software components and hardware components. For example, a processor may include hardware components such as an application specific integrated circuit ("ASIC"), a programmable logic device ("PLD"), or a combination thereof. The PLD may be a complex programmable logic device ("complex programmable logic device; CPLD"), a field-programmable gate array ("field-programmable gate array; FPGA"), and the like.

此外,當圖式中所繪示之具體實例展示單個元件時,應理解,該具體實例或未展示於圖中但在本發明之範圍內的具體實例可包括複數個此類元件。同樣地,當圖式中所繪示之具體實例展示複數個此類元件時,應理解,該具體實例或未展示於圖中但在本發明之範圍內的具體實例可包括僅一個此類元件。圖式中所繪示之元件之數目僅出於說明性目的,且不應解釋為限制具體實例之範圍。此外,除非另外指出,否則圖式中所展示之具體實例並不相互排斥,且其可以任何合適方式組合。舉例而言,在一個圖/具體實例中展示但未在另一圖/具體實例中展示之元件可仍包括於另一圖/具體實例中。在本文中所揭示之包括一或多個光學層、膜、板或元件之任何光學裝置中,圖中所展示之層、膜、板或元件之數目僅出於說明性目的。在未展示於圖中但仍在本發明之範圍內的其他具體實例中,在相同或不同的圖/具體實例中所展示的相同或不同的層、膜、板或元件可以各種方式組合或重複以形成堆疊。Furthermore, when an embodiment depicted in a drawing shows a single element, it should be understood that that embodiment, or an embodiment not shown in the drawing but which is within the scope of the invention, may include a plurality of such elements. Likewise, when an embodiment depicted in a drawing shows a plurality of such elements, it is understood that that embodiment, or embodiments not shown in the drawing but which are within the scope of the invention, may include only one such element . The number of elements depicted in the drawings is for illustrative purposes only and should not be construed as limiting the scope of the particular example. Furthermore, unless otherwise indicated, the specific examples shown in the figures are not mutually exclusive and they may be combined in any suitable manner. For example, an element shown in one figure/embodiment but not another figure/embodiment may still be included in another figure/embodiment. In any optical device disclosed herein that includes one or more optical layers, films, plates or elements, the number of layers, films, plates or elements shown in the figures is for illustrative purposes only. In other embodiments not shown in the figures but still within the scope of the invention, the same or different layers, films, panels or elements shown in the same or different figures/embodiments may be combined or repeated in various ways to form a stack.

已描述各種具體實例以說明例示性實施方案。基於所揭示具體實例,在不脫離本發明之範圍的情況下,所屬技術領域中具有通常知識者可進行各種其他改變、修改、重新配置及取代。因此,雖然已參考以上具體實例詳細描述本發明,但本發明不限於上文所描述之具體實例。在不脫離本發明之範圍的情況下,本發明可以其他等效形式具體實現。本發明之範圍界定於隨附申請專利範圍中。Various specific examples have been described to illustrate illustrative embodiments. Based on the specific examples disclosed, various other changes, modifications, reconfigurations and substitutions may be made by those skilled in the art without departing from the scope of the present invention. Therefore, although the present invention has been described in detail with reference to the specific examples above, the present invention is not limited to the specific examples described above. The present invention may be embodied in other equivalent forms without departing from the scope of the present invention. The scope of the present invention is defined in the appended claims.

100:人工實境裝置 102:虛擬場景或虛擬影像 104:真實世界場景 105:框架 110L:左眼顯示系統 110R:右眼顯示系統 120:影像顯示組裝件 122:調光透鏡 131:第一材料層 132:第二材料層 132a:第二材料層 132b:第二材料層 136:調光材料 138:調光材料層 142:周圍環境光/真實世界光 157:出射光瞳 158:眼球瞳孔 159:眼球 160:眼動區 166:調光單元/調光元件/調光裝置 175:光源 190:物件追蹤組裝件 191:紅外(「IR」)光源 192:偏轉元件 193:光學感測器 200:調光透鏡/調光裝置 207:調光材料層 209-1:第一電極層 209-2:第二電極層 210:調光透鏡/調光裝置 215:控制器 230:調光透鏡/調光裝置 240:調光透鏡/調光裝置 250:調光透鏡 274:真實世界物件 300:顯示系統 302:虛擬物件 304:影像 305:光源組裝件 310:光導 310-1:第一表面 310-2:第二表面 312:調光透鏡 320:光導顯示組裝件 330:影像光 332:內耦合影像光 334:輸出影像光 335:內耦合元件 338:輸出影像光 345:外耦合元件 350:虛擬影像 355:影像 360:顯示系統 375:影像 380:顯示系統 385:HOE影像組合器 385-1:第一表面 390:全像光學元件(「HOE」)顯示組裝件 400:調光元件 404:配向層 408:主型LC/LC分子 410:客型染料 450:調光元件 460:光響應染料 500:調光裝置/調光元件 505:離子儲存層 507:含離子材料層 509:電致變色層 550:調光元件 600:調光元件 608:微觀粒子 610:液體懸浮液或聚合物膜 650:調光元件 700:方法 701:步驟 702:步驟 703:步驟 750:方法 751:步驟 752:步驟 753:步驟 100: Artificial Reality Device 102: Virtual scene or virtual image 104: Real World Scenarios 105: frame 110L: left eye display system 110R: Right eye display system 120: Image display assembly 122: Dimming lens 131: the first material layer 132: second material layer 132a: second material layer 132b: second material layer 136: Dimming material 138: Dimming material layer 142:Ambient light/real world light 157: exit pupil 158: eye pupil 159: eyeball 160: eye movement area 166: Dimming unit/dimming element/dimming device 175: light source 190: Object Tracking Assembly 191: Infrared ("IR") Light Sources 192: deflection element 193: Optical sensor 200: Dimming lens/dimming device 207: Dimming material layer 209-1: The first electrode layer 209-2: Second electrode layer 210: Dimming lens/dimming device 215: Controller 230: Dimming lens/dimming device 240: Dimming lens/dimming device 250: dimming lens 274: Real World Objects 300: display system 302: virtual object 304: Image 305: Light source assembly 310: light guide 310-1: first surface 310-2: second surface 312: Dimming lens 320: Light guide display assembly 330: image light 332: In-coupling image light 334: output image light 335: Internal coupling element 338: Output image light 345: External coupling element 350:Virtual Image 355: Image 360: display system 375: Image 380:Display system 385: HOE image combiner 385-1: first surface 390:Holographic Optical Element ("HOE") Display Assemblies 400: dimming element 404: alignment layer 408: Main type LC/LC molecules 410: guest dye 450: dimming element 460: Photoresponsive Dyes 500: Dimming device/dimming element 505: ion storage layer 507: Ion-containing material layer 509: Electrochromic layer 550: dimming element 600: dimming element 608: Microscopic Particles 610: liquid suspension or polymer film 650: dimming element 700: method 701: Step 702: Step 703: Step 750: method 751: step 752:Step 753:step

以下圖式係根據各種所揭示具體實例出於說明性目的而提供且並不意欲限制本發明之範圍。在圖式中:The following figures are provided for illustrative purposes according to various disclosed embodiments and are not intended to limit the scope of the invention. In the schema:

[圖1A]繪示根據本發明之具體實例的人工實境裝置之示意圖;[FIG. 1A] A schematic diagram showing an artificial reality device according to a specific example of the present invention;

[圖1B]示意性繪示根據本發明之具體實例的圖1A中所展示之人工實境裝置之一半的橫截面圖;[ FIG. 1B ] schematically shows a cross-sectional view of one half of the artificial reality device shown in FIG. 1A according to an embodiment of the present invention;

[圖1C]繪示根據本發明之具體實例的當圖1A中所展示之人工實境裝置在擴增實境(「AR」)或混合實境(「MR」)模式中操作時由人工實境裝置之使用者感知的影像;[FIG. 1C] depicts the artificial reality device shown in FIG. 1A when operating in Augmented Reality ("AR") or Mixed Reality ("MR") mode according to an embodiment of the present invention. images perceived by users of environmental devices;

[圖1D]繪示根據本發明之具體實例的當圖1A中所展示之人工實境裝置在虛擬實境(「VR」)中操作時由人工實境裝置之使用者感知的影像;[ FIG. 1D ] illustrates an image perceived by a user of an artificial reality device when the artificial reality device shown in FIG. 1A is operated in a virtual reality (“VR”) according to an embodiment of the present invention;

[圖2A]繪示根據本發明之具體實例的調光透鏡之示意圖;[FIG. 2A] A schematic diagram showing a dimming lens according to a specific example of the present invention;

[圖2B]繪示根據本發明之具體實例的調光透鏡之示意圖;[FIG. 2B] A schematic diagram showing a dimming lens according to a specific example of the present invention;

[圖2C]繪示根據本發明之具體實例的調光透鏡之示意圖;[FIG. 2C] A schematic diagram showing a dimming lens according to a specific example of the present invention;

[圖2D]繪示根據本發明之具體實例的調光透鏡之示意圖;[FIG. 2D] A schematic diagram showing a dimming lens according to a specific example of the present invention;

[圖2E]繪示根據本發明之具體實例的調光透鏡之示意圖;[FIG. 2E] A schematic diagram showing a dimming lens according to a specific example of the present invention;

[圖3A]及[圖3B]繪示根據本發明之具體實例的包括調光透鏡的顯示系統之示意圖;[ FIG. 3A ] and [ FIG. 3B ] are schematic diagrams showing a display system including a dimming lens according to a specific example of the present invention;

[圖3C]繪示根據本發明之具體實例的包括調光透鏡的顯示系統之示意圖;[FIG. 3C] A schematic diagram showing a display system including a dimming lens according to an embodiment of the present invention;

[圖3D]繪示根據本發明之具體實例的包括調光透鏡的顯示系統之示意圖;[FIG. 3D] A schematic diagram showing a display system including a dimming lens according to an embodiment of the present invention;

[圖4A]及[圖4B]繪示根據本發明之具體實例的可包括於調光透鏡中的調光元件之示意圖;[ FIG. 4A ] and [ FIG. 4B ] are schematic diagrams showing dimming elements that can be included in dimming lenses according to specific examples of the present invention;

[圖4C]繪示根據本發明之具體實例的可包括於調光透鏡中的調光元件之示意圖;[FIG. 4C] A schematic diagram showing a dimming element that can be included in a dimming lens according to an embodiment of the present invention;

[圖5A]及[圖5B]繪示根據本發明之具體實例的可包括於調光透鏡中的調光元件之示意圖;[ FIG. 5A ] and [ FIG. 5B ] are schematic diagrams showing dimming elements that can be included in dimming lenses according to specific examples of the present invention;

[圖5C]繪示根據本發明之具體實例的可包括於調光透鏡中的調光元件之示意圖;[FIG. 5C] A schematic diagram illustrating a dimming element that can be included in a dimming lens according to an embodiment of the present invention;

[圖6A]及[圖6B]繪示根據本發明之具體實例的可包括於調光透鏡中的調光元件之示意圖;[ FIG. 6A ] and [ FIG. 6B ] are schematic diagrams showing dimming elements that can be included in dimming lenses according to specific examples of the present invention;

[圖6C]繪示根據本發明之具體實例的可包括於調光透鏡中的調光元件之示意圖;[FIG. 6C] A schematic diagram illustrating a dimming element that can be included in a dimming lens according to an embodiment of the present invention;

[圖7A]為繪示根據本發明之具體實例的用於製作調光透鏡的方法之流程圖;及[ FIG. 7A ] is a flowchart illustrating a method for fabricating a dimming lens according to an embodiment of the present invention; and

[圖7B]為繪示根據本發明之具體實例的用於製作調光透鏡的方法之流程圖。[ FIG. 7B ] is a flowchart illustrating a method for fabricating a dimming lens according to an embodiment of the present invention.

131:第一材料層 131: the first material layer

132:第二材料層 132: second material layer

136:調光材料 136: Dimming material

142:周圍環境光/真實世界光 142:Ambient light/real world light

159:眼球 159: eyeball

200:調光透鏡/調光裝置 200: Dimming lens/dimming device

Claims (20)

一種透鏡,其包含: 第一材料層,其包括具有第一雙折射率、第一密度及第一抗衝擊性之第一透鏡材料;及 第二材料層,其與該第一材料層耦接且包括具有第二雙折射率、第二密度及第二抗衝擊性之第二透鏡材料, 其中該第一雙折射率低於該第二雙折射率,該第一密度低於該第二密度,且該第二抗衝擊性強於該第一抗衝擊性。 A lens comprising: a first material layer comprising a first lens material having a first birefringence, a first density, and a first impact resistance; and a second material layer coupled to the first material layer and comprising a second lens material having a second birefringence, a second density, and a second impact resistance, Wherein the first birefringence is lower than the second birefringence, the first density is lower than the second density, and the second impact resistance is stronger than the first impact resistance. 如請求項1之透鏡,其中: 該透鏡具有面向使用者之眼球的內側及面向真實世界環境的外側, 該第一材料層位於該透鏡之該外側,且 該第二材料層位於該透鏡之該內側。 Such as the lens of claim 1, wherein: The lens has an inner side facing the user's eyeball and an outer side facing the real world environment, the first material layer is located on the outer side of the lens, and The second material layer is located on the inner side of the lens. 如請求項1之透鏡,其中: 該第一材料層配置有自訂光功率以用於提供視覺校正,且 該第二材料層配置有零光功率或小於預定值之光功率。 Such as the lens of claim 1, wherein: the first material layer is configured with a custom optical power for providing visual correction, and The second material layer is configured with zero optical power or an optical power less than a predetermined value. 如請求項1之透鏡,其中該第一透鏡材料包括環烯烴共聚物或環烯烴聚合物中之至少一者,且該第二透鏡材料包括聚碳酸酯、聚甲基丙烯酸甲酯、聚乙烯、聚丙烯或聚氨酯中之至少一者。The lens of claim 1, wherein the first lens material comprises at least one of cycloolefin copolymer or cycloolefin polymer, and the second lens material comprises polycarbonate, polymethyl methacrylate, polyethylene, At least one of polypropylene or polyurethane. 如請求項1之透鏡,其中該第一材料層具有小於100 奈米之延遲值。The lens of claim 1, wherein the first material layer has a retardation value less than 100 nanometers. 如請求項1之透鏡,其更包含安置於該第一材料層與該第二材料層之間的光學透明黏著層。The lens according to claim 1, further comprising an optically transparent adhesive layer disposed between the first material layer and the second material layer. 如請求項1之透鏡,其中該第一材料層之中心厚度在1.0毫米至1.5毫米的範圍內,該第二材料層之中心厚度在0.2毫米至0.7毫米的範圍內,且該光學透明黏著層具有在0.01毫米至0.2毫米之範圍內的均勻厚度。The lens according to claim 1, wherein the center thickness of the first material layer is in the range of 1.0 mm to 1.5 mm, the center thickness of the second material layer is in the range of 0.2 mm to 0.7 mm, and the optically transparent adhesive layer Have a uniform thickness in the range of 0.01 mm to 0.2 mm. 如請求項1之透鏡,其更包含安置於該第一材料層與該第二材料層之間的調光元件,該調光元件包括非電可調的調光材料或電可調的調光材料中之至少一者。The lens according to claim 1, further comprising a dimming element arranged between the first material layer and the second material layer, the dimming element comprising a non-electrically adjustable dimming material or an electrically adjustable dimming at least one of the materials. 如請求項1之透鏡,其中該第二材料層包括兩個第二材料層之集合,且該透鏡進一步包括安置於該兩個第二材料層之間的調光元件。The lens according to claim 1, wherein the second material layer includes a set of two second material layers, and the lens further includes a light-adjusting element disposed between the two second material layers. 如請求項1之透鏡,其更包含摻雜至該第一材料層或該第二材料層中之至少一者中的調光材料。The lens according to claim 1, further comprising a light-adjusting material doped into at least one of the first material layer or the second material layer. 一種方法,其包含: 提供第一材料層,該第一材料層包括具有第一雙折射率、第一密度及第一抗衝擊性之第一透鏡材料; 將調光元件安置於該第一材料層處;及 將第二材料層安置於該調光元件處,該第二材料層包括具有第二雙折射率、第二密度及第二抗衝擊性之第二透鏡材料, 其中該第一雙折射率低於該第二雙折射率,該第一密度低於該第二密度,且該第二抗衝擊性強於該第一抗衝擊性。 A method comprising: providing a first layer of material comprising a first lens material having a first birefringence, a first density, and a first impact resistance; disposing a dimming element at the first material layer; and disposing a second material layer at the dimming element, the second material layer comprising a second lens material having a second birefringence, a second density, and a second impact resistance, Wherein the first birefringence is lower than the second birefringence, the first density is lower than the second density, and the second impact resistance is stronger than the first impact resistance. 如請求項11之方法,其中將該調光元件安置於該第一材料層處包括經由光學透明黏著層將該調光元件層壓至該第一材料層之凹表面上。The method of claim 11, wherein disposing the dimming element at the first material layer comprises laminating the dimming element onto the concave surface of the first material layer via an optically transparent adhesive layer. 如請求項11之方法,其中: 該第一材料層、該調光元件及該第二材料層的堆疊形成透鏡, 該透鏡具有面向使用者之眼球的內側及面向真實世界環境的外側, 該第一材料層位於該透鏡之該外側,且 該第二材料層位於該透鏡之該內側。 The method of claim 11, wherein: The stack of the first material layer, the dimming element and the second material layer forms a lens, The lens has an inner side facing the user's eyeball and an outer side facing the real world environment, the first material layer is located on the outer side of the lens, and The second material layer is located on the inner side of the lens. 如請求項11之方法,其中: 該第一材料層配置有自訂光功率以用於提供視覺校正,且 該第二材料層配置有零光功率或小於預定值之光功率。 The method of claim 11, wherein: the first material layer is configured with a custom optical power for providing visual correction, and The second material layer is configured with zero optical power or an optical power less than a predetermined value. 如請求項11之方法,其中該第一透鏡材料包括環烯烴共聚物或環烯烴聚合物中之至少一者,且該第二透鏡材料包括聚碳酸酯、聚甲基丙烯酸甲酯、聚乙烯、聚丙烯或聚氨酯中之至少一者。The method of claim 11, wherein the first lens material comprises at least one of cycloolefin copolymer or cycloolefin polymer, and the second lens material comprises polycarbonate, polymethyl methacrylate, polyethylene, At least one of polypropylene or polyurethane. 如請求項11之方法,其中該第一材料層具有小於100 奈米之延遲值。The method of claim 11, wherein the first material layer has a retardation value less than 100 nm. 一種方法,其包含: 提供第一材料層,該第一材料層包括具有第一雙折射率、第一密度及第一抗衝擊性之第一透鏡材料; 將調光元件安置至第二材料層中,該第二材料層包括具有第二雙折射率、第二密度及第二抗衝擊性之第二透鏡材料;及 將該第二材料層安置於該第一材料層處, 其中該第一雙折射率低於該第二雙折射率,該第一密度低於該第二密度,且該第二抗衝擊性強於該第一抗衝擊性。 A method comprising: providing a first layer of material comprising a first lens material having a first birefringence, a first density, and a first impact resistance; disposing the dimmer element into a second material layer comprising a second lens material having a second birefringence, a second density, and a second impact resistance; and disposing the second material layer at the first material layer, Wherein the first birefringence is lower than the second birefringence, the first density is lower than the second density, and the second impact resistance is stronger than the first impact resistance. 如請求項17之方法,其中將該調光元件安置至該第二材料層中包括將該調光元件囊封至該第二材料層中。The method according to claim 17, wherein disposing the dimming element into the second material layer comprises encapsulating the dimming element into the second material layer. 如請求項17之方法,其中將該第二材料層安置於該第一材料層處包括經由光學透明黏著層將該第二材料層層壓至該第一材料層之凹表面上。The method of claim 17, wherein disposing the second material layer at the first material layer comprises laminating the second material layer to the concave surface of the first material layer via an optically clear adhesive layer. 如請求項17之方法,其中: 該第一材料層、該調光元件及該第二材料層的堆疊形成透鏡, 該透鏡具有面向使用者之眼球的內側及面向真實世界環境的外側, 該第一材料層位於該透鏡之該外側,且 該第二材料層位於該透鏡之該內側。 The method of claim 17, wherein: The stack of the first material layer, the dimming element and the second material layer forms a lens, The lens has an inner side facing the user's eyeball and an outer side facing the real world environment, the first material layer is located on the outer side of the lens, and The second material layer is located on the inner side of the lens.
TW111146029A 2021-12-22 2022-11-30 Optical dimming lens and fabrication method thereof TW202326179A (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US202163292471P 2021-12-22 2021-12-22
US63/292,471 2021-12-22
US202263353562P 2022-06-18 2022-06-18
US63/353,562 2022-06-18
US17/983,944 2022-11-09
US17/983,944 US20230194918A1 (en) 2021-12-22 2022-11-09 Optical dimming lens and fabrication method thereof

Publications (1)

Publication Number Publication Date
TW202326179A true TW202326179A (en) 2023-07-01

Family

ID=85172659

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111146029A TW202326179A (en) 2021-12-22 2022-11-30 Optical dimming lens and fabrication method thereof

Country Status (2)

Country Link
TW (1) TW202326179A (en)
WO (1) WO2023122129A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2979713B1 (en) * 2011-09-06 2013-09-20 Bnl Eurolens POLARISANT TINTED OPTICAL ELEMENT AND METHOD FOR MANUFACTURING THE SAME
DE102015102012A1 (en) * 2015-02-12 2016-08-18 Carl Zeiss Smart Optics Gmbh optical element
US11209676B2 (en) * 2020-04-15 2021-12-28 Facebook Technologies, Llc Local dimming in a device

Also Published As

Publication number Publication date
WO2023122129A1 (en) 2023-06-29

Similar Documents

Publication Publication Date Title
US11796813B2 (en) Optical system and method for providing compressed eyebox
KR102044628B1 (en) Transparent head mound displey using mirror
US10948801B1 (en) Hybrid varifocal lens
US8994715B2 (en) 3D image display apparatus
US9500874B2 (en) Liquid crystal optical element and image display apparatus including the same
US20130169704A1 (en) Image display apparatus
CN105900000A (en) Method and apparatus for creation and electrical tuning of spatially non-uniform reflection of light
JP2012013922A (en) Phase difference element and display device
US9405125B2 (en) Image display apparatus
TW201901202A (en) Liquid crystal cell for polarization rotation
US9259906B2 (en) Optical laminated body, method of manufacturing the same, and display unit
US11852827B2 (en) Switchable artificial reality device
WO2021076244A1 (en) Liquid crystal mixtures for pitch variable optical elements
WO2021119377A1 (en) Near-eye display with array optics
US11754863B2 (en) Polarization-agnostic optical dimming device and optical assembly including the same
US11543570B1 (en) Gradient photochromic dimming device and optical assembly including the same
TW202326179A (en) Optical dimming lens and fabrication method thereof
US20230194918A1 (en) Optical dimming lens and fabrication method thereof
US20230066173A1 (en) Ophthalmic lens with embedded dimmer
TW202326231A (en) Ophthalmic lens with embedded dimmer
CN117940827A (en) Ophthalmic lens with embedded dimmer
CN115136061A (en) Fast electro-active lens switching system and method
WO2023122047A1 (en) Switchable artificial reality device
CN219778050U (en) Stereoscopic imaging device and display terminal
US20230161093A1 (en) Light guide display system for providing increased power efficiency