TW202326036A - Heating device and detecting method using the same - Google Patents
Heating device and detecting method using the same Download PDFInfo
- Publication number
- TW202326036A TW202326036A TW110149678A TW110149678A TW202326036A TW 202326036 A TW202326036 A TW 202326036A TW 110149678 A TW110149678 A TW 110149678A TW 110149678 A TW110149678 A TW 110149678A TW 202326036 A TW202326036 A TW 202326036A
- Authority
- TW
- Taiwan
- Prior art keywords
- tank
- resonance
- resonant
- current
- value
- Prior art date
Links
Images
Landscapes
- General Induction Heating (AREA)
- Control Of Resistance Heating (AREA)
- Control Of High-Frequency Heating Circuits (AREA)
- Package Closures (AREA)
- Burglar Alarm Systems (AREA)
Abstract
Description
本案為一種加熱裝置,尤指一種利用諧振槽在負半週放電路徑之自然響應特性,進而以諧振槽之電流及電壓資訊計算諧振槽等效電感及諧振槽等效阻抗之加熱裝置及其適用之偵測方法。This case is a heating device, especially a heating device that utilizes the natural response characteristics of the resonant tank in the negative half-cycle discharge path, and calculates the equivalent inductance and impedance of the resonant tank based on the current and voltage information of the resonant tank and its application The detection method.
近年來隨著科技的進步,人們烹飪的加熱裝置已不再只有單一種選擇,除了利用瓦斯燃料加熱的加熱裝置之外,更有以電能驅動之微波爐、紅外線式烤箱以及電熱式加熱爐等多種選擇,這些各式各樣的加熱裝置各有其優缺點,可分別適用於各種不同食材的烹飪與烹飪的場合,以滿足不同需求的使用者。In recent years, with the advancement of science and technology, there is no longer a single choice of heating devices for people's cooking. In addition to heating devices using gas fuel, there are also microwave ovens driven by electric energy, infrared ovens, and electric heating furnaces. Choice, these various heating devices each have their own advantages and disadvantages, and can be respectively applied to the cooking and cooking occasions of various ingredients, so as to satisfy users with different needs.
一般加熱裝置,例如電磁爐等,係利用加熱線圈使食材容器加熱,再藉由調整供電至加熱線圈的電量大小控制對食材容器的加熱量。其中加熱裝置於加熱時,食材容器擺放的位置及食材容器的材質等不但影響感應線圈對食材容器的加熱量外,更會影響感應線圈的運作狀況及電流值大小。由於不同材質的食材容器的材質或食材容器的材質擺放的位置皆會由諧振槽等效電感感應出不同的等效參數,故習知的加熱裝置會利用諧振槽電壓、諧振槽電流及諧振槽電壓與諧振槽電流間的相位進行諧振槽等效阻抗及諧振槽等效電感的運算,進而利用諧振槽等效阻抗及諧振槽等效電感的運作結果來調整加熱線圈上的電能,然此方式需要額外的電壓偵測電路及電流偵測電路,導致習知加熱裝置具有線路複雜及成本較高等缺失。A general heating device, such as an induction cooker, uses a heating coil to heat the food container, and then controls the amount of heating to the food container by adjusting the power supplied to the heating coil. When the heating device is heating, the position of the food container and the material of the food container not only affect the heating amount of the food container by the induction coil, but also affect the operation status and current value of the induction coil. Since the material of the food container of different materials or the position of the material of the food container will have different equivalent parameters induced by the equivalent inductance of the resonant tank, the conventional heating device will use the resonant tank voltage, resonant tank current and resonance The phase between the tank voltage and the resonant tank current is calculated by calculating the equivalent impedance of the resonant tank and the equivalent inductance of the resonant tank, and then using the operating results of the equivalent impedance of the resonant tank and the equivalent inductance of the resonant tank to adjust the electric energy on the heating coil. The method requires an additional voltage detection circuit and a current detection circuit, resulting in disadvantages of conventional heating devices such as complex wiring and high cost.
因此,如何發展一種可改善上述習知技術缺失之加熱裝置及其適用之偵測方法,實為相關技術領域者目前所迫切需要解決之問題。Therefore, how to develop a heating device that can improve the above-mentioned deficiencies in the prior art and an applicable detection method is an urgent problem that those in the relevant technical field need to solve at present.
本案為一種加熱裝置及其適用之偵測方法,其中加熱裝置具有諧振槽,且加熱裝置利用諧振槽在負半週放電路徑之自然響應特性,進而以諧振槽之電流及電壓資訊來計算諧振槽等效電感及諧振槽等效阻抗,藉此加熱裝置無需設置過多的偵測電路,故可達到線路簡單及成本較低之功效。This case is a heating device and its applicable detection method, wherein the heating device has a resonant tank, and the heating device uses the natural response characteristics of the resonant tank in the negative half cycle discharge path, and then uses the current and voltage information of the resonant tank to calculate the resonant tank Equivalent inductance and equivalent impedance of the resonant tank, so that the heating device does not need to install too many detection circuits, so the effect of simple circuit and low cost can be achieved.
為達上述之目的,本案之一較佳實施例為一種加熱裝置,包含:諧振電路,包含:逆變電路,提供諧振槽電流及諧振槽電壓;以及諧振槽,包含加熱線圈、諧振槽電容、諧振槽等效電感及諧振槽等效阻抗;偵測單元,電氣耦接諧振電路,並偵測諧振槽電流與諧振槽電壓而取得參考電流值、第一零交越時間點、第二零交越時間點、時間變化量、諧振週期及負峰值電流值,參考電流值係對應諧振槽電壓為零的諧振槽電流之電流值,時間變化量為諧振槽電壓為零的時間點至第一零交越時間點的時間間距,諧振週期係第一零交越時間點及第二零交越時間點所定義;以及控制單元,控制逆變電路輸出諧振槽電流及諧振槽電壓而進行加熱線圈的加熱功率控制;其中,偵測單元依據諧振槽電容之電容值、諧振週期與第一運算式而計算出諧振槽等效電感的電感值;偵測單元依據諧振槽等效電感、時間變化量、諧振週期、參考電流值及負峰值電流值與第二運算式而計算出諧振槽等效阻抗的阻抗值;控制單元依據諧振槽等效電感的電感值與等效阻抗的阻抗值,以進行加熱線圈的加熱功率控制;其中第一運算式為 , 為諧振槽等效電感的電感值, 為諧振槽電容的電容值, 為諧振週期;第二運算式為 , 為諧振槽等效阻抗的阻抗值, 為參考電流值, 為時間變化量, 為負峰值電流值。 In order to achieve the above-mentioned purpose, one of the preferred embodiments of this case is a heating device, comprising: a resonant circuit, including: an inverter circuit, providing a resonant tank current and a resonant tank voltage; and a resonant tank, including a heating coil, a resonant tank capacitor, The equivalent inductance of the resonance tank and the equivalent impedance of the resonance tank; the detection unit is electrically coupled to the resonance circuit, and detects the current and voltage of the resonance tank to obtain the reference current value, the first zero crossing time point, and the second zero crossing Over time point, time variation, resonance period and negative peak current value, the reference current value is the current value of the resonance tank current corresponding to the resonance tank voltage being zero, and the time variation is from the time point when the resonance tank voltage is zero to the first zero The time interval of the crossing time point, the resonance period is defined by the first zero crossing time point and the second zero crossing time point; and the control unit controls the inverter circuit to output the resonance tank current and the resonance tank voltage to heat the coil Heating power control; wherein, the detection unit calculates the inductance value of the equivalent inductance of the resonance tank according to the capacitance value of the resonance tank capacitance, the resonance period and the first calculation formula; the detection unit calculates the inductance value of the equivalent inductance of the resonance tank according to the equivalent inductance of the resonance tank, the time change The impedance value of the equivalent impedance of the resonance tank is calculated by the resonance period, the reference current value and the negative peak current value and the second calculation formula; the control unit performs heating according to the inductance value of the equivalent inductance of the resonance tank and the impedance value of the equivalent impedance Coil heating power control; where the first formula is , is the inductance value of the equivalent inductance of the resonant tank, is the capacitance value of the resonant tank capacitor, is the resonance period; the second formula is , is the impedance value of the equivalent impedance of the resonant tank, is the reference current value, is the amount of time change, is the negative peak current value.
為達上述之目的,本案之另一較佳實施例為一種偵測方法,應用於加熱裝置的偵測單元中,其中加熱裝置更包含諧振電路,諧振電路包含逆變電路及諧振槽,逆變電路提供諧振槽電流及諧振槽電壓,諧振槽包含加熱線圈、諧振槽電容、諧振槽等效電感及諧振槽等效阻抗,偵測方法包含:(a)偵測諧振槽電流與諧振槽電壓而取得參考電流值、第一零交越時間點、第二零交越時間點、時間變化量、諧振週期及負峰值電流值,其中參考電流值係對應諧振槽電壓為零的諧振槽電流之電流值,時間變化量為諧振槽電壓為零的時間點至第一零交越時間點的時間間距,諧振週期係第一零交越時間點及第二零交越時間點所定義;(b)依據諧振槽電容、諧振週期與第一運算式而計算出諧振槽等效電感的電感值,其中第一運算式為 , 為諧振槽等效電感的電感值, 為諧振槽電容的電容值, 為諧振週期;(c)依據諧振槽等效電感、時間變化量、諧振週期、參考電流值及負峰值電流值與一第二運算式而計算出等效阻抗的阻抗值,其中第二運算式為 , 為諧振槽等效阻抗的阻抗值, 為參考電流值, 為時間變化量, 為負峰值電流值;以及(d)依據諧振槽等效電感的電感值與諧振槽等效阻抗的阻抗值,以進行加熱線圈的加熱功率控制。 In order to achieve the above-mentioned purpose, another preferred embodiment of this case is a detection method, which is applied to the detection unit of the heating device, wherein the heating device further includes a resonant circuit, and the resonant circuit includes an inverter circuit and a resonant tank. The circuit provides a resonant tank current and a resonant tank voltage. The resonant tank includes a heating coil, a resonant tank capacitor, a resonant tank equivalent inductance, and a resonant tank equivalent impedance. The detection method includes: (a) detecting the resonant tank current and the resonant tank voltage Obtain the reference current value, the first zero-crossing time point, the second zero-crossing time point, the time change, the resonance period and the negative peak current value, where the reference current value is the current corresponding to the resonance tank current whose voltage of the resonance tank is zero value, the amount of time change is the time interval from the time point when the resonance tank voltage is zero to the first zero crossing time point, and the resonance period is defined by the first zero crossing time point and the second zero crossing time point; (b) The inductance value of the equivalent inductance of the resonant tank is calculated according to the resonant tank capacitance, the resonant period and the first formula, wherein the first formula is , is the inductance value of the equivalent inductance of the resonant tank, is the capacitance value of the resonant tank capacitor, is the resonance period; (c) calculate the impedance value of the equivalent impedance according to the equivalent inductance of the resonance tank, the amount of time change, the resonance period, the reference current value and the negative peak current value and a second calculation formula, wherein the second calculation formula for , is the impedance value of the equivalent impedance of the resonant tank, is the reference current value, is the amount of time change, is a negative peak current value; and (d) control the heating power of the heating coil according to the inductance value of the equivalent inductance of the resonance tank and the impedance value of the equivalent impedance of the resonance tank.
體現本案特徵與優點的一些典型實施例將在後段的說明中詳細敘述。應理解的是本案能夠在不同的態樣上具有各種的變化,其皆不脫離本案的範圍,且其中的說明及圖式在本質上係當作說明之用,而非用於限制本案。Some typical embodiments embodying the features and advantages of the present application will be described in detail in the description in the following paragraphs. It should be understood that this case can have various changes in different aspects without departing from the scope of this case, and the descriptions and drawings therein are used as illustrations in nature rather than limiting this case.
請參閱第1A圖、第1B圖及第2圖,其中第1A圖為本案較佳實施例之加熱裝置的系統示意圖,第1B圖為第1A圖所示之加熱裝置的電路架構示意圖,第2圖為第1B圖所示之加熱裝置的上開關元件的控制電壓及諧振槽電流的波形示意圖。於本案中,加熱裝置1可為但不限於電磁爐,且包含電源供應電路2、偵測單元3及控制單元4。電源供應電路2包含諧振電路22,諧振電路22包含逆變電路20及諧振槽21。逆變電路20接收輸入電壓V
in,且包含至少一開關元件,例如第1B圖所示,逆變電路20包含上開關元件Q
h及下開關元件Q
l,上開關元件Q
h及下開關元件Q
l串聯電連接,使逆變電路20構成半橋形式的逆變電路,且藉由上開關元件Q
h及下開關元件Q
l交錯的進行導通及關斷的切換,逆變電路20將輸入電壓V
in轉換而輸出諧振槽電流I
r及諧振槽電壓V
r。另外,上開關元件Q
h及下開關元件Q
l分別包含控制端、第一電流傳導端及第二電流傳導端。
Please refer to Figure 1A, Figure 1B and Figure 2, wherein Figure 1A is a schematic diagram of the system of the heating device in a preferred embodiment of this case, Figure 1B is a schematic diagram of the circuit structure of the heating device shown in Figure 1A, and Figure 2 The figure is a schematic diagram of the waveforms of the control voltage of the upper switching element of the heating device shown in Figure 1B and the current of the resonant tank. In this case, the
諧振槽21包含第一端T
1、第二端T
2、加熱線圈210、諧振槽電容C
r、諧振槽等效電感
及諧振槽等效阻抗R
eq。第一端T
1及第二端T
2分別電氣耦接於逆變電路20的其中之一開關元件之兩個電流傳導端,例如第1B圖所示,諧振槽21之第一端T
1電氣耦接於下開關元件Q
l之第一電流傳導端,諧振槽21之第二端T
2電氣耦接於下開關元件Q
l之第二電流傳導端。諧振槽電容C
r、諧振槽等效電感
及諧振槽等效阻抗R
eq依序串聯電連接於第一端T
1及第二端T
2之間,然諧振槽電容C
r、諧振槽等效電感
及諧振槽等效阻抗R
eq在第一端T
1及第二端T
2之間的串聯電連接順序並不侷限於如第1B圖所示,可依實際需求而變化。加熱線圈210可依據逆變電路20提供的諧振槽電流I
r及諧振槽電壓V
r對放置在加熱裝置1上的食材容器(未圖示)感應加熱。此外,諧振槽21、加熱線圈210及食材容器在電路上等效構成諧振槽等效電感
,且諧振槽21、加熱線圈210及食材容器亦在電路上等效構成諧振槽等效阻抗R
eq。另外,諧振槽電容C
r的電容值則為已知值。
The
由上可知,諧振槽等效電感
的電感值與加熱線圈210的電感值、食材容器的材質及食器容材在加熱裝置1上的位置存在對應關係,換言之,即加熱線圈210的電感值、食材容器的材質及食器容材在加熱裝置1上的位置三者的任意變化都使得諧振槽等效電感
的電感值改變。諧振槽等效阻抗R
eq之阻抗值則與諧振槽21的阻抗值、食材容器的材質及食器容材在加熱裝置1上的位置存在對應關係,即諧振電路1的阻抗值、食材容器的材質及食器容材在加熱裝置1上的位置三者的任意變化都使得諧振槽等效阻抗R
eq之阻抗值改變。
It can be seen from the above that the equivalent inductance of the resonant tank There is a corresponding relationship between the inductance value of the
控制單元4與逆變電路20電氣耦接,用以控制逆變電路20輸出諧振槽電流I
r及諧振槽電壓V
r,進行加熱線圈210的加熱功率控制。
The
偵測單元3與諧振電路22電氣耦接,例如電氣耦接於諧振槽21之第一端T
1及諧振槽電容C
r之間,且偵測諧振槽電流I
r與諧振槽電壓V
r,以取得參考電流值I
0、時間變化量Δt、第一零交越時間點、第二零交越時間點、諧振週期T及負峰值電流值
。參考電流值I
0係對應諧振槽電壓V
r為零時的諧振槽電流I
r之電流值,例如逆變電路20之上開關元件Q
h處於負半週期而從導通切換為關斷,使諧振槽電壓V
r為零時,諧振槽電流I
r的瞬間電流值構成參考電流值I
0(如第2圖所例示時間t=0時)。第一零交越時間點為諧振槽電壓V
r為零後諧振槽電流I
r第一次為零時的時間點(如第2圖所例示時間t1)。第二零交越時間點為諧振槽電壓V
r為零後諧振槽電流I
r第二次為零時的時間點(如第2圖所例示時間t3)。時間變化量Δt為諧振槽電壓V
r為零的時間點至第一零交越時間點的時間間距(例如第2圖所示時間t0至時間t1的時間長度)。諧振週期T由第一零交越時間點及第二零交越時間點所定義。負峰值電流值
為諧振槽電流I
r在負電流時的最大值(例如發生於第2圖所示之時間t2)。
The
另外,在本案中,偵測單元3依據諧振槽電容C
r之電容值、諧振週期T與第一運算式而計算出諧振槽等效電感
的電感值,第一運算式如下:
---(1);
其中,L
eq為諧振槽等效電感
的電感值,C
r為諧振槽電容C
r之電容值, T為諧振週期。
In addition, in this case, the
更甚者,偵測單元3亦依據諧振槽等效電感L
eq的電感值、時間變化量Δt、諧振週期T、參考電流值I
0、負峰值電流值
與第二運算式計算出等諧振槽等效阻抗R
eq的阻抗值,其中第二運算式如下:
---(2);
其中
為諧振槽等效阻抗R
eq的阻抗值,
為參考電流值,
為時間變化量,
為負峰值電流值。
What's more, the
請參閱第3圖、第4圖及第5圖,並配合第1A圖、第1B圖及第2圖,其中第3圖為第1B圖所示之偵測單元之參數獲取單元之零交越檢測電路的電路結構示意圖,第4圖為在第2圖的架構下,顯示了第3圖所示之零交越檢測電路所輸出之脈波寬度訊號的波形示意圖,第5圖為第1B圖所示之偵測單元之參數獲取單元之負峰值檢測電路的電路結構示意圖。偵測單元3更包含參數獲取單元30及微處理器31。參數獲取單元30與諧振電路22電氣耦接,例如電氣耦接於諧振槽21之第一端T
1及諧振槽電容C
r之間,且偵測諧振槽電流I
r及諧振槽電壓V
r,並在諧振槽電壓V
r因逆變電路20處於負半週期而為零,例如因逆變電路20之上開關元件Q
h處於負半週期而從導通切換為關斷而為零時,依據諧振槽電流I
r及諧振槽電壓V
r取得關於諧振槽21的諧振週期T及諧振槽電流I
r的負峰值電流值
的參數資訊。
Please refer to Figure 3, Figure 4 and Figure 5, and cooperate with Figure 1A, Figure 1B and Figure 2, where Figure 3 is the zero crossing of the parameter acquisition unit of the detection unit shown in Figure 1B Schematic diagram of the circuit structure of the detection circuit. Figure 4 is a schematic diagram of the waveform of the pulse width signal output by the zero-crossing detection circuit shown in Figure 3 under the structure of Figure 2, and Figure 5 is Figure 1B The schematic diagram of the circuit structure of the negative peak detection circuit of the parameter acquisition unit of the detection unit is shown. The
於本案中,參數獲取單元30可由電路硬體或軟體來實現,其中當參數獲取單元30由電路硬體實現時,則如第1B圖所示,參數獲取單元30包含零交越檢測電路300及負峰值檢測電路301。零交越檢測電路300與諧振槽21電氣耦接,例如電氣耦接於第一端T
1及諧振槽電容C
r之間,且偵測諧振槽電流I
r及諧振槽電壓V
r,用以依據諧振槽電流I
r及諧振槽電壓V
r取得的諧振週期T的參數資訊,其中零交越檢測電路300包含第一比流器CT
1、第一電阻R
1、比較器COM、第二電阻R
2、第一電容C
1及稽納二極體D
z。第一比流器CT
1的輸入端與諧振槽21電氣耦接,例如電氣耦接於第一端T
1及諧振槽電容C
r之間,以接收諧振槽電流I
r。第一電阻R
1的第一端及第二端分別與第一比流器CT
1的輸出端電氣耦接,且第一電阻R
1的第二端更與接地端G電氣耦接。比較器COM的正輸入端與第一電阻R
1的第一端及第一比流器CT
1的輸出端電氣耦接,比較器COM的負輸入端與第一電阻R
1的第二端及接地端G電氣耦接。第二電阻R
2電氣耦接於電壓源V
1及比較器COM的輸出端之間。稽納二極體D
z的陽極與接地端G電氣耦接,稽納二極體D
z的陰極與比較器COM的輸出端電氣耦接。第一電容C
1電氣耦接於比較器COM的輸出端與接地端G之間,且與稽納二極體D
z並聯電氣耦接。藉由上述零交越檢測電路300的硬體結構,比較器COM可於輸出端輸出脈波寬度訊號,其中諧振槽電流I
r每一次過零(即通過零交越點)時,脈波寬度訊號便對應在諧振槽電流I
r的零交越點進行高準位及低準位之間的準位切換,此外,當上開關元件Q
h從導通切換為關斷而諧振槽電壓V
r為零後,比較器COM所輸出的脈波寬度訊號從第一次的準位切換(對應第一零交越時間點)到第二次準位切換(對應第二零交越時間點)的時間長度實際上等於二分之一諧振週期T,而將二分之一諧振週期T乘兩倍即可得諧振週期T,因此諧振週期T實由諧振槽電流I
r及諧振槽電壓V
r所定義,而零交越檢測電路300依據諧振槽電流I
r及諧振槽電壓V
r取得關於諧振週期T的資訊。
In this case, the parameter acquisition unit 30 can be implemented by circuit hardware or software, wherein when the parameter acquisition unit 30 is implemented by circuit hardware, as shown in Figure 1B, the parameter acquisition unit 30 includes a zero-
負峰值檢測電路301與諧振槽21電氣耦接,例如電氣耦接於第一端T
1及諧振槽電容C
r之間,且偵測諧振槽電流I
r及諧振槽電壓V
r,用以依據諧振槽電流I
r取得關於諧振槽電流I
r的負峰值電流值
的參數資訊,其中負峰值檢測電路301包含第二比流器CT
2、第三電阻R
3、第四電阻R
4、負回授放大器C
amp、二極體D及第二電容C
2。第二比流器CT
2的輸入端與諧振槽21電氣耦接,例如電氣耦接於第一端T
1及諧振槽電容C
r之間,以接收諧振槽電流I
r。第三電阻R
3的第一端及第二端分別與第二比流器CT
2的輸出端電氣耦接,且第三電阻R
3的第二端更與接地端G電氣耦接。負回授放大器C
amp的非反相輸入端與第三電阻R
3之第一端及第二比流器CT
2的輸出端電氣耦接,負回授放大器C
amp的反相輸入端與負回授放大器C
amp的輸出端電氣耦接。二極體D之陰極與負回授放大器C
amp的輸出端電氣耦接。第四電阻R
4電氣耦接於二極體D之陽極及接地端G之間。第二電容C
2電氣耦接於二極體D之陽極及接地端G之間,且與第四電阻R
4並聯電氣耦接。藉由上述負峰值檢測電路301的電路結構,負峰值檢測電路301可依據諧振槽電流I
r及諧振槽電壓V
r取得關於諧振槽電流I
r的負峰值電流值
的資訊。
The negative
當參數獲取單元30由軟體實現時,則可在參數獲取單元30中預設演算法、計算式及/或參數關係表格等,以經由諧振槽電流I r與諧振槽電壓V r並配合預設演算法、計算式及/或參數關係等來取得關於諧振週期T及諧振槽電流I r的負峰值電流值 的參數資訊。 When the parameter acquisition unit 30 is implemented by software, then the algorithm, calculation formula and/or parameter relationship table, etc. can be preset in the parameter acquisition unit 30, so as to cooperate with the preset through the resonance tank current I r and the resonance tank voltage V r Algorithms, calculation formulas and/or parameter relationships, etc. to obtain the negative peak current value of the resonant period T and the resonant tank current I r Parameter information for .
微處理器31可由數位訊號處理器(Digital Signal Processor; DSP)或微控制器(microcontroller unit; MCU)構成,且與參數獲取單元30電氣耦接,並包含第一計算單元310及第二計算單元311。第一計算單元310預設有第一運算式,並從參數獲取單元30接收關於諧振週期T的參數資訊,且第一計算單元310依據諧振槽電容Cr之電容值、第一運算式及所接收到之諧振週期T計算諧振槽等效電感 的電感值,並輸出關於諧振槽等效電感 的電感值之第一計算結果 The microprocessor 31 may be composed of a digital signal processor (Digital Signal Processor; DSP) or a microcontroller (microcontroller unit; MCU), and is electrically coupled with the parameter acquisition unit 30, and includes a first calculation unit 310 and a second calculation unit 311. The first calculation unit 310 is preset with a first calculation formula, and receives parameter information about the resonance period T from the parameter acquisition unit 30, and the first calculation unit 310 is based on the capacitance value of the resonance tank capacitor Cr, the first calculation formula and the received Calculate the equivalent inductance of the resonant tank from the resonant period T The inductance value, and output about the equivalent inductance of the resonant tank The first calculation result of the inductance value
第二計算單元311預設有第二運算式,且從第一計算單元310接收關於諧振槽等效電感 的電感值之第一計算結果,且依據諧振槽電流I r與諧振槽電壓V r取得參考電流值I 0、時間變化量Δt及諧振槽電流I r的負峰值電流值 ,並依據諧振槽等效電感 的電感值、參考電流值I 0、時間變化量Δt、諧振槽電流I r的負峰值電流值 及第二運算式計算諧振槽等效阻抗R eq的阻抗值,以輸出關於諧振槽等效阻抗R eq的阻抗值之第二計算結果。 The second calculation unit 311 is preset with a second calculation formula, and receives the equivalent inductance of the resonant tank from the first calculation unit 310 The first calculation result of the inductance value, and obtain the reference current value I 0 , the time variation Δt and the negative peak current value of the resonance tank current I r according to the resonance tank current I r and the resonance tank voltage V r , and according to the equivalent inductance of the resonant tank Inductance value, reference current value I 0 , time variation Δt, negative peak current value of resonant tank current I r and the second calculation formula calculates the impedance value of the equivalent impedance Req of the resonance tank to output a second calculation result about the impedance value of the equivalent impedance Req of the resonance tank.
於一些實施例中,加熱裝置1的控制單元4更可依據微處理器31所輸出的第一計算結果及第二計算結果獲取諧振槽等效電感
及諧振槽等效電阻R
eq,進而依據諧振槽等效電感
及諧振槽等效電阻R
eq對諧振電路22進行各種控制,舉例而言,控制單元4可依據諧振槽等效電感
及諧振槽等效電阻R
eq的參數值來判斷加熱線圈210是否啟動或關閉及判斷食材容器是否仍在加熱裝置1上,且控制單元4可依據諧振槽等效電感
及諧振槽等效電阻R
eq的參數值來判斷加熱線圈210加熱功率的負擔比例,控制單元4亦可依據諧振槽等效電感L
eq及諧振槽等效電阻R
eq的參數值的變化來即時的修正加熱裝置1的輸出功率,又控制單元4可依據諧振槽等效電感L
eq及諧振槽等效電阻R
eq的參數值判斷食材容器材質。
In some embodiments, the
以下將約略推導出上述第一運算式(1)及第二運算式(2),請配合第1A圖至第3圖。首先,本案主要工作原理是基於諧振槽21的自然響應特性,當時間t≧0時,諧振槽21進入自然響應,因此諧振槽電流I
r之通式可表示為:
---(3);
其中
為諧振槽電流I
r的時間函數,
為衰減係數,
為阻尼共振頻率,
及
分別為任意常數,由邊界條件確定。由於加熱裝置1為電磁爐的應用,故
,使諧振槽21操作於欠阻尼區(underdamped),並可化簡
,其中
為自然諧振頻率。透過和角公式並重新整理式(3)後可得:
---(4);
其中
為諧振槽21在自然諧振時的電流峰值,
為角度。
The above-mentioned first calculation formula (1) and second calculation formula (2) will be roughly deduced below, please refer to FIG. 1A to FIG. 3 . First of all, the main working principle of this case is based on the natural response characteristics of the
此外,在式(4)中,部分參數具有下列通式: ---(5); ---(6); 因此由式(5)即可推得式(1),且諧振頻率 為與諧振週期T的關係如下: ---(7); In addition, in formula (4), some parameters have the following general formula: ---(5); ---(6); Therefore, formula (1) can be deduced from formula (5), and the resonant frequency The relationship between W and the resonance period T is as follows: ---(7);
由於在上開關元件Q
h的工作週期較小時,諧振槽21在負半週的放電波形較為完整,此時可利用零交越檢測電路300取得半個諧振週期T/2,進而讓第一計算單元310將半個諧振週期T/2配合式(7)而帶入式(1),以求得諧振槽等效電感L
eq的電感值。
Since the discharge waveform of the
另外,由於在 及 時諧振槽電流I r恆為零,故本案以諧振槽電流I r過零點作為參考點,以相對角度的方式進行計算。如第2圖所示,由於上開關元件Q h從導通切換為關斷而為零時,諧振槽電流I r的瞬間電流值構成參考電流值I 0,故假設上開關元件Q h斷開而下開關元件Q l導通瞬間在t=t0時發生,且假設上開關元件Q h從導通切換為關斷而為零後諧振槽電流I r第一次通過零交越點(第一零交越時間點)發生在角度為π時,並假設諧振槽電流I r的負峰值電流值 在t=t2(通常發生在t=3π/2)時發生,則將t=0及t=t2透過式(4)可分別得到下列式子: ---(8); ---(9); 其中由第3圖可知,在上開關元件Q h從導通切換為關斷後而諧振槽電流I r第一次過零點的時間點減去時間變化量Δt即可得到參考電流值I 0的採樣時間點,且諧振槽電流I r的負峰值電流值 發生在t=3π/2時,故可得下列式子: ---(10); ---(11); ---(12); Additionally, due to the and When the current I r of the resonance tank is always zero, so in this case, the zero-crossing point of the current I r of the resonance tank is used as a reference point, and the calculation is performed in the form of a relative angle. As shown in Figure 2, when the upper switching element Q h is switched from on to off and becomes zero, the instantaneous current value of the resonant tank current I r constitutes the reference current value I 0 , so it is assumed that the upper switching element Q h is off and The conduction moment of the lower switching element Ql occurs at t=t0, and assuming that the upper switching element Qh switches from conduction to off and becomes zero, the resonant tank current Ir passes through the zero-crossing point for the first time (the first zero-crossing time point) occurs at an angle of π, and assumes a negative peak current value of the resonant tank current I r Occurs when t=t2 (usually occurs at t=3π/2), then t=0 and t=t2 can be obtained through formula (4) to obtain the following formulas respectively: ---(8); ---(9); It can be seen from Figure 3 that after the upper switch element Q h is switched from on to off and the time point of the first zero-crossing point of the resonant tank current I r can be obtained by subtracting the time change Δt The sampling time point of the reference current value I 0 , and the negative peak current value of the resonant tank current I r Occurs when t=3π/2, so the following formula can be obtained: ---(10); ---(11); ---(12);
最後,將式(8)跟式(9)相除後並配合式(10)~(12),即可推得式(2)。Finally, after dividing formula (8) by formula (9) and matching formulas (10)~(12), formula (2) can be deduced.
於一些實施例中,偵測單元3可為但不限於由控制器所構成。In some embodiments, the
於一些實施例中,逆變電路20並不侷限於如第1B圖所示包含上開關元件Q
h及下開關元件Q
l,於其它實施例中,逆變電路20亦可包含單一開關元件或四個以上開關元件,其中在逆變電路20包含單一開關元件時,諧振槽21之第一端T
1及第二端T
2分別與單一開關元件的第一電流傳導端及第二電流傳導端電氣耦接,在逆變電路20包含例如四個開關元件而為全橋式逆變電路時,諧振槽21之第一端T
1及第二端T
2分別與任一橋臂中的下開關元件的第一電流傳導端及第二電流傳導端電氣耦接。此外,在逆變電路20包含單一開關元件或四個以上開關元件的實施態樣下,本案之加熱裝置1的運作皆相似於前述內容,故於此不再贅述。
In some embodiments, the
請參閱第6圖,其係為本案較佳實施例之偵測方法的步驟流程示意圖。本實施例之偵測方法可應用於第1B圖所示之加熱裝置1的偵測單元3中,並包含下列步驟。Please refer to Figure 6, which is a schematic flow chart of the steps of the detection method in a preferred embodiment of the present case. The detection method of this embodiment can be applied to the
步驟S1,偵測單元3依據諧振槽21之諧振槽電流I
r及諧振槽電壓V
r取得參考電流值I
0、時間變化量Δt、第一零交越時間點、第二零交越時間點、諧振週期T及負峰值電流值
。
Step S1, the
步驟S2,偵測單元3依據諧振槽電容Cr之電容值與諧振週期T、第一運算式計算出諧振槽等效電感
的電感值。
Step S2, the
步驟S3,偵測單元3依據諧振槽等效電感L
eq的電感值、時間變化量Δt、諧振週期T、參考電流值I
0、負峰值電流值
與第二運算式計算出諧振槽等效阻抗R
eq的阻抗值。
Step S3, the
步驟S4,控制單元4依據諧振槽等效電感L
eq的電感值與諧振槽等效阻抗R
eq的阻抗值,以進行加熱線圈210的加熱功率控制。
Step S4 , the
於一些實施例中,在步驟S4中,可進一步包括依據諧振槽等效電感L
eq及諧振槽等效電阻R
eq判斷加熱裝置1上是否放置食材容器。又在步驟S4中,亦可進一步包括依據諧振槽等效電感L
eq及諧振槽等效電阻R
eq判斷加熱線圈1的加熱功率負擔比例。更甚者,在步驟S4中,也可進一步包括據諧振槽等效電感L
eq及諧振槽等效電阻R
eq判斷加熱裝置上1的食材容器的材質。
In some embodiments, in step S4, it may further include determining whether a food container is placed on the
綜上所述,本案為一種加熱裝置及其適用之偵測方法,其中加熱裝置具有諧振槽,且基於諧振槽在負半週放電路徑之自然響應特性,使得本案之加熱裝置利用諧振槽之電流資訊並配合前述第一運算式(1)及第二運算式(2)來分別計算諧振槽等效電感的電感值及諧振槽等效阻抗的電感值,故相較於傳統加熱裝置,本案的加熱裝置僅需設置較少的偵測電路,進而達到線路簡單及成本較低之功效。In summary, this case is a heating device and its applicable detection method. The heating device has a resonant tank, and based on the natural response characteristics of the resonant tank in the negative half-cycle discharge path, the heating device in this case uses the current of the resonant tank information and cooperate with the aforementioned first formula (1) and second formula (2) to calculate the inductance value of the equivalent inductance of the resonance tank and the inductance value of the equivalent impedance of the resonance tank, so compared with the traditional heating device, the The heating device only needs to be equipped with fewer detection circuits, thereby achieving the effect of simple circuit and low cost.
1:加熱裝置 2:電源供應電路 3:偵測單元 4:控制單元 20:逆變電路 21:諧振槽 22:諧振電路 V in:輸入电壓 Q h:上開關元件 Q l:下開關元件 T 1:第一端 T 2:第二端 C r:諧振槽電容 :諧振槽等效電感 R eq:諧振槽等效阻抗 I r:諧振槽電流 I 0:參考電流值 Δt:時間變化量 V r:諧振槽電壓 I N:負峰值電流值 30:參數獲取單元 31:微處理器 300:零交越檢測電路 301:負峰值檢測電路 CT 1:第一比流器 R 1:第一電阻 COM:比較器 R 2:第二電阻 C 1:第一電容 D z:稽納二極體 G:接地端 CT 2:第二比流器 R 3:第三電阻 R 4:第四電阻 C amp:負回授放大器 D:二極體 C 2:第二電容 310:第一計算單元 311:第二計算單元 t0、t1、t2、t3:時間 T:諧振週期 210:加熱線圈 1: heating device 2: power supply circuit 3: detection unit 4: control unit 20: inverter circuit 21: resonance tank 22: resonance circuit V in : input voltage Q h : upper switching element Q l : lower switching element T 1 : first terminal T 2 : second terminal C r : resonant tank capacitance : Resonance tank equivalent inductance R eq : Resonance tank equivalent impedance I r : Resonance tank current I 0 : Reference current value Δt: Time variation V r : Resonance tank voltage I N : Negative peak current value 30: Parameter acquisition unit 31 : microprocessor 300: zero crossing detection circuit 301: negative peak detection circuit CT 1 : first current comparator R 1 : first resistor COM: comparator R 2 : second resistor C 1 : first capacitor D z : Zener diode G: ground terminal CT 2 : second current comparator R 3 : third resistor R 4 : fourth resistor C amp : negative feedback amplifier D: diode C 2 : second capacitor 310: first One calculation unit 311: second calculation unit t0, t1, t2, t3: time T: resonance period 210: heating coil
第1A圖為本案較佳實施例之加熱裝置的系統示意圖; 第1B圖為第1A圖所示之加熱裝置的電路架構示意圖; 第2圖為第1B圖所示之加熱裝置的上開關元件的控制電壓及諧振槽電流的波形示意圖; 第3圖為第1B圖所示之偵測單元之參數獲取單元之零交越檢測電路的電路結構示意圖; 第4圖為在第2圖的架構下,顯示了第3圖所示之零交越檢測電路所輸出之脈波寬度訊號的波形示意圖; 第5圖為第1B圖所示之偵測單元之參數獲取單元之負峰值檢測電路的電路結構示意圖; 第6圖為本案較佳實施例之偵測方法的步驟流程示意圖。 Fig. 1A is a system schematic diagram of the heating device of the preferred embodiment of the present case; Fig. 1B is a schematic diagram of the circuit structure of the heating device shown in Fig. 1A; Fig. 2 is a schematic diagram of the waveforms of the control voltage of the upper switching element of the heating device shown in Fig. 1B and the resonance tank current; Fig. 3 is a schematic diagram of the circuit structure of the zero-cross detection circuit of the parameter acquisition unit of the detection unit shown in Fig. 1B; Figure 4 is a schematic diagram of the waveform of the pulse width signal output by the zero-crossing detection circuit shown in Figure 3 under the framework of Figure 2; Fig. 5 is a schematic circuit structure diagram of the negative peak detection circuit of the parameter acquisition unit of the detection unit shown in Fig. 1B; Fig. 6 is a schematic flow chart of the steps of the detection method of the preferred embodiment of the present case.
1:加熱裝置 1: Heating device
2:電源供應電路 2: Power supply circuit
3:偵測單元 3: Detection unit
4:控制單元 4: Control unit
20:逆變電路 20: Inverter circuit
21:諧振槽 21: Resonance tank
22:諧振電路 22: Resonant circuit
Vin:輸入电壓 V in : input voltage
Qh:上開關元件 Q h : Upper switching element
Ql:下開關元件 Q l : Lower switching element
T1:第一端 T 1 : first end
T2:第二端 T 2 : the second terminal
Cr:諧振槽電容 C r : capacitance of resonant tank
Leq:諧振槽等效電感 L eq : Equivalent inductance of resonant tank
Req:諧振槽等效阻抗 R eq : Equivalent impedance of resonance tank
Ir:諧振槽電流 I r : resonant tank current
I0:參考電流值 I 0 : Reference current value
△t:時間變化量 △t: time change
Vr:諧振槽電壓 V r : Resonant tank voltage
30:參數獲取單元 30: Parameter acquisition unit
31:微處理器 31: Microprocessor
300:零交越檢測電路 300: Zero crossing detection circuit
301:負峰值檢測電路 301: Negative peak detection circuit
310:第一計算單元 310: The first computing unit
311:第二計算單元 311: Second computing unit
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110149678A TWI781032B (en) | 2021-12-30 | 2021-12-30 | Heating device and detecting method using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110149678A TWI781032B (en) | 2021-12-30 | 2021-12-30 | Heating device and detecting method using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI781032B TWI781032B (en) | 2022-10-11 |
TW202326036A true TW202326036A (en) | 2023-07-01 |
Family
ID=85462529
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110149678A TWI781032B (en) | 2021-12-30 | 2021-12-30 | Heating device and detecting method using the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI781032B (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107143894A (en) * | 2017-05-15 | 2017-09-08 | 深圳国创名厨商用设备制造有限公司 | Electromagnetism soup stove and the Poewr control method based on self-induction weight |
CN112953250B (en) * | 2019-11-26 | 2022-09-06 | 比亚迪股份有限公司 | Power supply control method, power supply module and storage medium |
CN111537099A (en) * | 2020-04-24 | 2020-08-14 | 云南中烟工业有限责任公司 | Eddy heating and temperature detection two-in-one device and temperature detection method |
CN113784472A (en) * | 2021-09-01 | 2021-12-10 | 田镇源 | Induction heater for releasing substance to air |
-
2021
- 2021-12-30 TW TW110149678A patent/TWI781032B/en active
Also Published As
Publication number | Publication date |
---|---|
TWI781032B (en) | 2022-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110048597B (en) | Control method, controller and system of power factor correction circuit | |
TWI573376B (en) | Boost PFC controller | |
CN101309529B (en) | Intelligent control apparatus and method for high-power energy saving electromagnetic stove | |
CN101944855B (en) | Digital control power supply converter for kitchen range | |
TWI289379B (en) | Resonant converter with phase delay control | |
KR102201189B1 (en) | Induction heating device | |
CN106813271B (en) | A kind of low-power laser heating electromagnetic oven | |
CN111432512B (en) | Electromagnetic heating equipment and heating control device and method thereof | |
Huang et al. | Quantitative design and implementation of an induction cooker for a copper pan | |
TWI558272B (en) | Induction Cooker and control circuit and control method | |
CN108513382A (en) | Electromagnetic heating device and power control method | |
CN108513381A (en) | Electromagnetic heating device and power control method | |
CN101010989B (en) | Induction heating apparatus | |
TWI781032B (en) | Heating device and detecting method using the same | |
CN201550029U (en) | Digital control type power converter for kitchen ranges | |
CN109302758A (en) | Electromagnetic heating system and its control circuit, method | |
CN106813276A (en) | A kind of electromagnetic oven | |
CN116419442A (en) | Heating device and detection method suitable for same | |
CN2456626Y (en) | Power controller for cleaner | |
JP2021061163A (en) | Electromagnetic induction heating device | |
CN112019077A (en) | Novel single-phase inverter based on buck circuit and control method thereof | |
JP7400096B2 (en) | Heating circuit and cooking utensils | |
Pérez-Tarragona et al. | A front-end PFC stage for improved performance of flexible induction heating appliances | |
CN218735061U (en) | Electromagnetic induction heating control circuit and electromagnetic induction heating equipment | |
CN215734908U (en) | Cooking utensil control circuit and cooking utensil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent |