TW202325452A - Method and device for back reflection protection using laser pulse interference - Google Patents

Method and device for back reflection protection using laser pulse interference Download PDF

Info

Publication number
TW202325452A
TW202325452A TW111142232A TW111142232A TW202325452A TW 202325452 A TW202325452 A TW 202325452A TW 111142232 A TW111142232 A TW 111142232A TW 111142232 A TW111142232 A TW 111142232A TW 202325452 A TW202325452 A TW 202325452A
Authority
TW
Taiwan
Prior art keywords
laser pulse
reentrant
laser
beam splitter
pulse portion
Prior art date
Application number
TW111142232A
Other languages
Chinese (zh)
Inventor
鈞瑟 葛勞斯
Original Assignee
德商創浦半導體製造雷射系統公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德商創浦半導體製造雷射系統公司 filed Critical 德商創浦半導體製造雷射系統公司
Publication of TW202325452A publication Critical patent/TW202325452A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0064Anti-reflection devices, e.g. optical isolaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0071Beam steering, e.g. whereby a mirror outside the cavity is present to change the beam direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0085Modulating the output, i.e. the laser beam is modulated outside the laser cavity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/008X-ray radiation generated from plasma involving a beam of energy, e.g. laser or electron beam in the process of exciting the plasma
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/212Mach-Zehnder type

Abstract

The present application relates to methods and devices for back reflection protection by destructive interference of a returning laser pulse. An advancing laser pulse (30) is split. A first advancing laser pulse portion (30a) opposites a second advancing laser pulse portion (30b), passing through the first beam path (19). The two laser pulse portions (30a, 30b) at least partially superimposed constructively. The advancing laser pulse (30) will then be reflected, and the reflected, returning laser pulse will substantially travel the same distance as the advancing laser pulse (30). The first returning laser pulse portion, however, will pass through the first beam path (19) when the phase shift occurs. At least part of the second advancing laser pulse portion coincides on its way to the laser light source (14), especially when completely destructive superimpose occurs, so as to protect the laser light source (14) from the returning laser pulse.

Description

利用雷射脈衝干涉進行背反射保護的方法和裝置Method and device for back reflection protection using laser pulse interference

本發明涉及一種用於以雷射光束照射物件的方法和設備The invention relates to a method and a device for irradiating an object with a laser beam

習知技術是以一道雷射光束,特別是用於產生極紫外光(EUV)光束照射物件的方式。然而習知技術的問題在於反射,特別是來自物件的反射,可能會傷害雷射光源。It is known to irradiate an object with a laser beam, in particular for generating an extreme ultraviolet (EUV) beam. However, a problem with conventional techniques is that reflections, especially from objects, may damage the laser light source.

雖然已知有一種反射保護的做法,然而這種做法通常只能用於強度受限制的雷射脈衝,以及只能用於極化的反射。Although a reflection protection is known, this can generally only be used for intensity-limited laser pulses and only for polarized reflections.

本發明與其相對的目的為部署一種方法與設備,可能實現用於特高強度雷射脈衝的反射保護及/或保護防止非極化的反射。The object of the present invention opposite to this is to deploy a method and a device that make it possible to achieve reflection protection for very high intensity laser pulses and/or protection against non-polarized reflections.

此功用根據本發明透過一種符合請求項1的方法與一個符合請求項11的設備實現。附屬項提供偏好的進一步說明。This function is achieved according to the invention by a method according to claim 1 and a device according to claim 11 . Dependents provide further clarification of preferences.

符合本發明的功用藉此透過一種以雷射光束照射物件的方法實現,其中該方法指出下列方法步驟: A) 從雷射光源發射前進雷射脈衝; B) 將前進雷射脈衝透過第一分光器分成第一前進和第二前進雷射脈衝部分; C) 第一雷射脈衝部分通過第一光束路徑; D) 在朝向物件方向路徑上的第二分光器上,讓第一前進雷射脈衝部分與第二雷射脈衝部分產生建設性干涉; E) 前進雷射脈衝的反射,特別是在物件上,並藉此產生折返雷射脈衝; F) 在第二分光器上將折返雷射脈衝分成第一折返雷射脈衝部分與第二折返雷射脈衝部分; G) 第一折返雷射脈衝部分通過第一光束路徑,其中第一折返雷射脈衝部分在通過第一光束路徑時會得到與第一前進雷射脈衝部分不同的相位偏移,方式為前進雷射脈衝與折返雷射脈衝至少有一部分: i) 通過一個調整元件,調整成透過折返雷射脈衝通過,相對於透過前進雷射脈衝通過;及/或 ii) 通過一個頻率偏移裝置(23、25); H) 在朝向雷射光源路徑上的第一分光器上讓折返第一雷射脈衝部分與折返第二雷射脈衝部分產生破壞性干涉。 The functions according to the invention are thereby achieved by a method for irradiating an object with a laser beam, wherein the method specifies the following method steps: A) firing forward laser pulses from the laser source; B) splitting the forward laser pulse through the first beam splitter into first forward and second forward laser pulse portions; C) passing the first laser pulse portion through the first beam path; D) Constructive interference of the first advancing laser pulse portion with the second laser pulse portion at the second beam splitter on the path towards the object; E) reflections of forward laser pulses, especially on objects, whereby reentrant laser pulses are generated; F) dividing the reentrant laser pulse into the first reentrant laser pulse part and the second reentrant laser pulse part on the second beam splitter; G) The first reentrant laser pulse part passes through the first beam path, wherein the first reentrant laser pulse part will get a different phase shift from the first forward laser pulse part when passing through the first beam path, in such a way that the forward laser pulse At least part of the laser pulse and the reentrant laser pulse: i) by means of an adjustment element, adjusted to pass through reentrant laser pulses as opposed to passing through forward laser pulses; and/or ii) by means of a frequency offset device (23, 25); H) Destructively interfering with the reentrant first laser pulse portion and the reentrant second laser pulse portion at the first beam splitter on the path towards the laser source.

在第一分光器上,前進雷射脈衝會分成第一與第二前進雷射脈衝部分,第一前進雷射脈衝部分沿著第一光束路徑,第二前進雷射脈衝部分則沿著第二光束路徑導引至第二分光器。第一前進雷射脈衝最好沿著第一光束路徑轉向兩個反射光學元件,因而得到比第二前進雷射脈衝更長的行進距離。在第二分光器上,第一與第二前進雷射脈衝部分會再次重疊,此時第一前進雷射脈衝部分沿著第一光束路徑的行進距離和第二前進雷射脈衝沿著第二光束路徑經過的行進距離不同,最好差大約一或多倍波長,結果讓第一與第二前進雷射脈衝部分在第二分光器上朝著物件的方向產生建設性干涉,而在第二個方向,例如說束流收集器的方向,則會產生破壞性干涉。On the first beam splitter, the forward laser pulse is divided into first and second forward laser pulse parts, the first forward laser pulse part along the first beam path, the second forward laser pulse part along the second The beam path is directed to a second beam splitter. The first forward laser pulse is preferably diverted along the first beam path to the two reflective optical elements, thus resulting in a longer travel distance than the second forward laser pulse. At the second beamsplitter, the first and second forward laser pulse portions overlap again, with the first forward laser pulse portion traveling the distance along the first beam path and the second advancing laser pulse along the second The beam paths traverse different travel distances, preferably by about one or more wavelengths, such that the first and second advancing laser pulse portions constructively interfere at the second beamsplitter towards the object, while at the second A direction, such as the direction of the beam dump, will produce destructive interference.

前進雷射脈衝在物件上反射後,折返的雷射脈衝會先通過第二分光器。在第二分光器上,折返雷射脈衝會分成第一與第二折返雷射脈衝部分。通過第一和第二光束路徑後,第一和第二折返雷射脈衝部分此時會在第一分光器上再度重疊,而且在沒有考慮本發明的情形下,在雷射光源方向上為建設性,而在其他方向上為破壞性。為了隔離折返雷射脈衝以保護雷射光源,第一與第二折返雷射脈衝部分必須達成,在第一分光器上朝著雷射光源為破壞性重疊,而在其他方向,例如說朝其他束流收集器的方向上為建設性重疊。After the forward laser pulse reflects off the object, the reentrant laser pulse first passes through the second beam splitter. At the second beam splitter, the reentrant laser pulse is split into first and second reentrant laser pulse portions. After passing through the first and second beam paths, the first and second reentrant laser pulse parts will overlap again on the first beam splitter at this time, and without considering the present invention, there will be no construction in the direction of the laser source. sexual, and destructive in other directions. In order to isolate the reentrant laser pulses to protect the laser source, the first and second reentrant laser pulse portions must achieve destructive overlap on the first beam splitter towards the laser source and in other directions, e.g. The directions of the beam dumps overlap constructively.

達成此點的作法是,第一折返雷射脈衝部分在通過第一光束路徑時會得到與第一前進雷射脈衝部分在通過第一光束路徑時不同的相位偏移。如果第一折返雷射脈衝部分沿著第一光束路徑的相位相較於第一前進雷射脈衝部分的相位偏移180º,則在第一分光器上會朝雷射光源的方向發生破壞性干涉,而在另一個方向上,例如朝其他雷射光源的方向上發生建設性干涉。This is achieved in that the first reentrant laser pulse portion receives a different phase shift when passing through the first beam path than the first forward laser pulse portion when passing through the first beam path. If the phase of the first reentrant laser pulse portion along the first beam path is shifted by 180º compared to the phase of the first forward laser pulse portion, destructive interference will occur on the first beamsplitter in the direction of the laser source , while constructive interference occurs in another direction, for example towards other laser sources.

如此一來,第一與第二折返雷射脈衝部分會在雷射光源方向上破壞性重疊,前進及/或折返雷射脈衝,或者說第一前進及/或折返雷射脈衝部分則會通過一個調整元件。In this way, the first and second reentrant laser pulse portions overlap destructively in the direction of the laser source, the forward and/or reentrant laser pulses, or the first forward and/or reentrant laser pulse portions pass through an adjustment element.

調整元件可以沿著第一前進與折返雷射脈衝部分會通過兩個分光器之間的第一光束路徑建置。調整元件此時最好建置為主動調整元件。此時調整元件特別具有第一和第二調整位置。最好規劃一個主動調整元件,能夠在前進第一雷射脈衝部分通過與折返第一雷射脈衝部分通過的時間當中,最好切換到主動狀態,雖然技術上很有挑戰,但可提供較高功率雷射脈衝反射保護的可能性,而與背反射的極化無關。The tuning element may be disposed along the first beam path between the first forward and return laser pulse portions passing between the two beam splitters. The adjustment element is preferably designed as an active adjustment element in this case. In this case, the adjusting element has in particular a first and a second adjusting position. It is best to plan an active adjustment element, which can be switched to the active state during the passage of the forward first laser pulse part and the return first laser pulse part. Although it is technically challenging, it can provide higher Possibility of protection against reflections of laser pulses of power, independent of the polarization of the back reflection.

此外調整元件可以建置成改變第一前進及/或折返雷射脈衝部分在行經第一光束路徑時的波長。前進第一雷射脈衝在調整元件的第一調整位置可以藉此比在調整元件第二調整位置中的折返雷射脈衝通過更短或更長的距離。在調整元件之第二調整位置中的折返第一雷射脈衝部分,最好相對於在調整元件之第一調整位置中的前進第一雷射脈衝部分有180º + n*360º的相位偏移,其中n為整數(包括零)。換句話說,前進第一雷射脈衝部分沿著兩個分光器之間第一光束路徑通過的波長,與折返第一雷射脈衝部分沿著兩個分光器之間第一光束路徑通過的波長,會有折返和前進雷射脈衝部分之半波長的非整數倍率差異。波長差異通常為幾微米。Furthermore the tuning element may be configured to vary the wavelength of the first forward and/or reentrant laser pulse portion as it travels through the first beam path. The forward first laser pulse in the first adjustment position of the adjustment element can thereby cover a shorter or longer distance than the reentrant laser pulse in the second adjustment position of the adjustment element. The reentrant first laser pulse portion in the second adjustment position of the adjustment element preferably has a phase offset of 180° + n*360° relative to the forward first laser pulse portion in the first adjustment position of the adjustment element, where n is an integer (including zero). In other words, the wavelength at which the portion of the forward first laser pulse passes along the first beam path between the two beam splitters and the wavelength at which the portion of the reentrant first laser pulse passes along the first beam path between the two beam splitters , there will be a non-integer multiple of the half-wavelength difference between the reentrant and forward laser pulse portions. The wavelength difference is typically a few micrometers.

為了波長的改變,調整元件最好有一個壓電元件,藉此得以用建設性的簡單方式達成非常迅速的切換時間。For the wavelength change, the adjustment element preferably has a piezoelectric element, whereby very fast switching times can be achieved in a constructively simple manner.

可能在折返雷射脈衝於通往雷射光源的路徑上實現完全破壞性干涉,而得以最大程度保護雷射光源。It is possible to achieve complete destructive interference on the path of the reentrant laser pulse leading to the laser light source, thereby protecting the laser light source to the greatest extent.

此外調整元件可以改用或額外具有一個能夠主動調節其折射率的光學元件,例如調整元件可以具有一個用於相位偏移的光電晶體,於是在調整元件之第一調整位置中的前進第一雷射脈衝部分可以得到與在調整元件第二調整位置中之折返第一雷射脈衝部分不同的相位偏移。此時在第一調整位置或第二調整位置中的相位偏移也可能為零(沒有相位偏移)。調整元件在第二調整位置中的折返第一雷射脈衝部分最好相對於調整元件在第一調整位置中的前進第一雷射脈衝部分有180º + n*360º的相位偏移(或反過來),其中n為整數(包括零)。In addition, the adjusting element can be replaced or additionally have an optical element capable of actively adjusting its refractive index, for example, the adjusting element can have a photoelectric crystal for phase shifting, so that in the first adjusting position of the adjusting element, the advancing first light The part of the laser pulse can obtain a different phase shift than the part of the reentrant first laser pulse in the second adjustment position of the adjustment element. In this case, the phase offset in the first adjustment position or in the second adjustment position can also be zero (no phase offset). Preferably, the reentrant first laser pulse portion of the adjustment element in the second adjustment position has a phase offset of 180° + n*360° relative to the forward first laser pulse portion of the adjustment element in the first adjustment position (or vice versa ), where n is an integer (including zero).

頻率偏移裝置也可以另外或額外偏移折返雷射脈衝的頻率及/或前進雷射脈衝的頻率。The frequency shifting means may additionally or additionally shift the frequency of the reentrant laser pulses and/or the frequency of the forward laser pulses.

此時具有與第一和第二折返雷射脈衝部分不同頻率的第一和第二前進雷射脈衝部分會通過第一和第二光束路徑,換句話說,第一和第二前進雷射脈衝會通過具有第一頻率的第一和第二光束路徑,而第一和第二折返雷射脈衝部分則會通過具有第二頻率的第一和第二光束路徑。At this point the first and second forward laser pulse portions having a different frequency than the first and second reentrant laser pulse portions pass through the first and second beam paths, in other words, the first and second forward laser pulse First and second beam paths having a first frequency are passed through, and first and second reentrant laser pulse portions are passed through first and second beam paths having a second frequency.

這時為了實現朝雷射光源方向的破壞性干涉,必須選擇沿著第一和第二光束路徑的行程長度,以滿足下面兩個條件:第一折返雷射脈衝沿著第一光束路徑行經的行程長度,以及第二折返雷射脈衝沿著第二光束路徑所行經行程長度之間的差異,必須為以第二頻率折返雷射脈衝之半波長的整數倍率加或減一。同時第一前進雷射脈衝沿著第一光束路徑行經的行程長度和第二前進雷射脈衝沿著第二光束路徑所行經行程長度之間的差異必須為以第一頻率前進雷射脈衝之波長的整數倍率。At this time, in order to realize the destructive interference toward the laser source direction, the travel lengths along the first and second beam paths must be selected to meet the following two conditions: the travel length of the first reentrant laser pulse along the first beam path The difference between the length, and the length of travel of the second refracted laser pulse along the second beam path must be an integer multiple of one-half the wavelength of the refracted laser pulse at the second frequency plus or minus one. At the same time the difference between the length of travel traveled by the first advancing laser pulse along the first beam path and the length of travel traveled by the second advancing laser pulse along the second beam path must be the wavelength of the advancing laser pulse at the first frequency Integer multiples of .

頻率偏移裝置特別是可能為一個聲光調變器(AOM)或一個受激布里淵散射(SBS)鏡。在移動元件上,例如膨脹的電漿也可以偏移頻率,特別是物件本身可建置為移動、膨脹的電漿,而雷射脈衝在上面反射,讓物件上的反射本身即可偏移雷射脈衝的頻率,此時可在前進及/或折返雷射脈衝的光束行程中配置一或複數個頻率偏移裝置。The frequency shifting means may especially be an acousto-optic modulator (AOM) or a stimulated Brillouin scattering (SBS) mirror. On moving elements such as expanding plasma can also shift the frequency, in particular the object itself can be constructed as moving, expanding plasma on which the laser pulses reflect, allowing the reflection on the object itself to deflect the In this case, one or more frequency offset devices can be arranged in the beam path of the forward and/or reentrant laser pulse.

特別是頻率偏移裝置可以建置成可切換。如果應用可切換的頻率偏移裝置,例如AOM,則前進雷射脈衝會在此第一,例如關閉的調整位置中通過,其中雷射脈衝的頻率不會受到影響。折返脈衝接著會在第二調整位置中通過頻率偏移裝置,其中雷射脈衝的頻率會偏移。缺點是頻率偏移的折返雷射脈衝不再像前進雷射脈衝會通過相同的光學軸,不過頻率偏移的雷射脈衝可特別通過折射光線的光學元件再度轉向第一及/或第二分光器。In particular the frequency offset means can be constructed switchable. If a switchable frequency offset device is used, such as an AOM, the forward laser pulses will pass in this first, for example off, adjustment position, wherein the frequency of the laser pulses is not affected. The folded pulse then passes through the frequency shifting device in a second adjusted position, wherein the frequency of the laser pulse is shifted. The disadvantage is that the frequency-shifted reentrant laser pulses no longer pass through the same optical axis as the forward laser pulses, but the frequency-shifted laser pulses can be diverted again to the first and/or second split, especially by optical elements that refract light device.

頻率偏移裝置最好建置成讓前進及/或折返雷射脈衝的頻率偏移最高1000 MHz和最少20 MHz,最好在600 MHz和30 MHz之間,特別是40 MHz。The frequency offset means are preferably constructed to offset the frequency of the forward and/or reentrant laser pulses by at most 1000 MHz and at least 20 MHz, preferably between 600 MHz and 30 MHz, especially 40 MHz.

特別是前進雷射脈衝能夠在通過第一分光器之前先通過第一頻率偏移裝置,以及在通過第二分光器前先通過第二頻率偏移裝置。折返雷射脈衝接著在通過第二分光器之前先通過第二頻率偏移裝置,以及在通過第一分光器前之後通過第一頻率偏移裝置。採用這種方式有可能讓通過第二分光器之後對第二頻率偏移裝置發生作用的頻率偏移完全或部分得到補償。此時第一頻率偏移裝置會將前進雷射脈衝的頻率偏移與第二頻率偏移裝置相同或大約相同的量,只有符號方向相反。如果前進雷射脈衝通過第二分光器之後在一或複數台放大機中放大的話,會特別有好處,這樣會在一或複數個頻率下有最佳的放大範圍,具有不同、與此相異頻率的雷射光束不會得到最佳程度的放大。使用兩個建置在第一分光器之前與第二分光器之後的頻率偏移裝置,以及將前進與折返雷射脈衝偏移自行補償量的頻率,即可選擇一個相較而言較大的頻率偏移量,而不會讓前進雷射脈衝在後面的放大機中以較低的效率放大。In particular the advancing laser pulse can pass through the first frequency shifting means before passing through the first beam splitter and through the second frequency shifting means before passing through the second beam splitter. The reentrant laser pulse then passes through the second frequency shifting means before passing through the second beam splitter, and through the first frequency shifting means before and after passing through the first beam splitter. In this way it is possible to completely or partially compensate the frequency offset that acts on the second frequency offset means after passing through the second optical splitter. The first frequency shifting means will now shift the frequency of the advancing laser pulse by the same or about the same amount as the second frequency shifting means, only in the opposite direction of sign. It is especially advantageous if the forward laser pulse is amplified in one or more amplifiers after passing through the second beam splitter, so that there will be an optimum range of amplification at one or more frequencies, with different, different from this The frequency of the laser beam will not be amplified to an optimal degree. A comparatively large frequency offset without allowing the forward laser pulses to be amplified less efficiently in subsequent amplifiers.

前進雷射脈衝和折返雷射脈衝相較之下頻率偏移的量越大,第一前進與折返雷射脈衝沿著第一光束路徑相較於第二前進與折返雷射脈衝沿著第二光束路徑行經的行程距離差異就越小,而可確保朝雷射光源方向的破壞性干涉。The greater the amount of frequency shift between the forward laser pulse and the reentrant laser pulse, the first forward and reentrant laser pulse along the first beam path compared to the second forward and reentrant laser pulse along the second The difference in travel distances traveled by the beam paths is smaller, ensuring destructive interference in the direction of the laser source.

雷射脈衝在分光器上的分配最好是各50%,也就是說等分。兩個分光器最好是馬赫曾德爾干涉儀的部分。其中一種實施方式是在馬赫曾德爾干涉儀的光路中配置主動操作式調整元件。The distribution of the laser pulses on the beam splitter is preferably 50% each, that is to say equally divided. The two beam splitters are preferably part of a Mach-Zehnder interferometer. One of the implementation manners is to configure an actively operated adjustment element in the optical path of the Mach-Zehnder interferometer.

前進雷射光束的發射最好為來自種子源形式的雷射光束。The emission of the forward laser beam is preferably a laser beam in the form of a seed source.

第一分光器及/或第二分光器可能各自建置成部分透光鏡的形式,分光器可以建置成單面鍍金屬玻璃片的形式。The first beam splitter and/or the second beam splitter may be built in the form of a partially transparent mirror, and the beam splitter may be built in the form of a single-sided metallized glass sheet.

第一與第二分光器之間,特別是第一前進與折返雷射脈衝可能通過望遠鏡或其他光束整形元件,讓第一前進與折返雷射脈衝可能出現的的照射強度誤差及/或發散得到第二前進與折返雷射脈衝的補償,採用這種方式應可保證,第一和第二前進與折返雷射脈衝的干涉在空間中盡可能不受影響,而第一和第二前進與折返雷射脈衝則盡可能完全破壞性和建設性干涉。Between the first and second beam splitters, especially the first forward and return laser pulse may pass through a telescope or other beam shaping elements, so that the possible irradiation intensity error and/or divergence of the first forward and return laser pulse can be obtained The compensation of the second forward and reentry laser pulses should be ensured in this way that the interference of the first and second forward and reentrant laser pulses is not affected as far as possible in space, while the first and second forward and reentrant Laser pulses interfere as completely destructively and constructively as possible.

為了接收建設性干涉的雷射脈衝部分,可以在第一分光器及/或第二分光器上配置一個束流收集器。In order to receive the part of the laser pulse that interferes constructively, a beam dump can be arranged on the first beam splitter and/or the second beam splitter.

在物件與第二分光器之間,雷射脈衝最好通過一個放大器。Between the object and the second beam splitter, the laser pulses are preferably passed through an amplifier.

放大器可以建置成放大器鏈的形式。Amplifiers can be built in the form of amplifier chains.

為了讓調整元件的切換有更多時間,第二分光器和物件之間可以規劃一個延遲行程。In order to allow more time for the switching of the adjustment element, a delay path can be planned between the second beam splitter and the object.

本發明特別偏好的實施方式會產生前進雷射脈衝EUV光束,藉此可以將物件建置成錫罐的形式,其中膨脹的電漿會透過前進雷射脈衝受激,導致發射EUV光束。A particularly preferred embodiment of the invention generates an advancing laser pulse EUV beam whereby an object can be built in the form of a tin can, wherein the expanding plasma is stimulated by the advancing laser pulse resulting in the emission of the EUV beam.

符合發明的功用會繼續透過用於發射物件的設備實現,特別是為了執行此處所描述的方法。設備具有下列特徵: a) 一個雷射光源; b) 一個第一分光器,用於將前進雷射脈衝分成一個第一前進雷射脈衝部分與一個第二前進雷射脈衝部分; c) 一個第一光束路徑,可讓第一前進雷射脈衝部分通過; d) 一個第二分光器,用於讓第一前進雷射脈衝部分與第二前進雷射脈衝部分在往返物件的行程中發生至少部分建設性干涉; e) 用於反射前進雷射脈衝和產生折返雷射脈衝的物件; 其中第二分光器建置成用於將折返雷射脈衝分成一個第一折返雷射脈衝部分和一個第二折返雷射脈衝部分; 其中配置的設備具有一個調整元件及/或一個頻率偏移裝置,上面第一折返雷射脈衝部分與第一前進雷射脈衝部分會產生不同的頻率偏移,而且 其中折返第一雷射脈衝部分會與折返第二雷射脈衝部分在通往雷射光源行程上的第一分光器上至少可產生部分破壞性干涉。 Functions consistent with the invention continue to be achieved by apparatus for launching objects, in particular for performing the methods described herein. The device has the following characteristics: a) a laser light source; b) a first beam splitter for splitting the forward laser pulse into a first forward laser pulse portion and a second forward laser pulse portion; c) a first beam path through which the first forward laser pulse portion passes; d) a second beam splitter for at least partial constructive interference between the first advancing laser pulse portion and the second advancing laser pulse portion on their way to and from the object; e) Objects for reflecting forward laser pulses and generating reentrant laser pulses; wherein the second beam splitter is configured to split the reentrant laser pulse into a first reentrant laser pulse portion and a second reentrant laser pulse portion; The apparatus configured therein has an adjustment element and/or a frequency offset device, on which the first reentrant laser pulse portion and the first forward laser pulse portion produce a different frequency offset, and The part of the reentrant first laser pulse will at least partially destructively interfere with the part of the reentrant second laser pulse on the first beam splitter on the way to the laser light source.

一個調整元件特別是可以沿著第一與第二分光器之間的第一光束路徑來配置。特別是調整元件可以在第一與第二調整位置之間切換,此時調整元件可以為了改變第一前進與折返雷射脈衝部分沿著第一光束路徑行經的行程長度來建置。此外調整元件最好具有一個壓電元件,藉此得以用建設性的簡易方式與方法實現非常快速的切換時間,特別是調整元件可以建置成為了將第一光束路徑的行程長度而改變半個或非整數倍率之第一前進與折返雷射脈衝的半波長。An adjusting element can in particular be arranged along the first beam path between the first and the second beam splitter. In particular the adjustment element can be switched between a first and a second adjustment position, in which case the adjustment element can be configured to vary the travel length of the first forward and return laser pulse portion along the first beam path. In addition, the adjusting element preferably has a piezo element, whereby very fast switching times can be achieved with constructive simplicity, in particular the adjusting element can be designed to vary the stroke length of the first beam path by half Or the half-wavelength of the first forward and retrace laser pulses of non-integer multiples.

調整元件也可以另行或額外具備一個光學元件,特別是能夠主動控制改變其折射率,例如一個光電相位調變器。此調整元件最好也沿著第一光束路徑配置,如此可讓第一折返雷射脈衝部分得到與第一前進雷射脈衝部分不同的相位偏移,特別是光學元件可以建置成將第一折返雷射脈衝部分移動180º + n*360º (或反過來),其中n為一整數(包括零)。Alternatively or additionally, the adjusting element can also be provided with an optical element, in particular whose refractive index can be actively controlled to be changed, for example an optoelectronic phase modulator. This adjustment element is preferably also arranged along the first beam path, so that the first reentrant laser pulse part can be phase shifted differently from the first forward laser pulse part, in particular the optical element can be constructed to align the first The part of the reentrant laser pulse moves 180º + n*360º (or vice versa), where n is an integer (including zero).

頻率偏移裝置可以建置成聲光調變器(AOM)、受激布里淵散射(SBS)鏡及/或一個運動的元件,例如膨脹的電漿。The frequency shifting device can be implemented as an acousto-optic modulator (AOM), a stimulated Brillouin scattering (SBS) mirror and/or a moving element such as an expanding plasma.

設備也可能具有複數個頻率偏移裝置,特別是能夠讓一個第一頻率偏移裝置(配置朝著前進雷射脈衝的光束方向)配置在第一分光器之前,以及一個第二頻率偏移裝置配置在第二分光器之後。It is also possible for the device to have a plurality of frequency shifting means, in particular it is possible to have a first frequency shifting means (arranged towards the beam direction of the advancing laser pulse) before the first beam splitter, and a second frequency shifting means Configured after the second beam splitter.

第一與第二頻率偏移裝置這時會特別建置成讓第一分光器之前的前進雷射脈衝頻率提高一定的量,並且在第二分光器之後降低特別是相同或幾乎相同的量。這樣的好處是,前進與折返雷射脈衝之間可以選擇相較之下比較大的頻率差,而不會讓前進雷射脈衝在後面的放大器中以較低的效率放大。此外,前進雷射脈衝相較於折返雷射脈衝的頻率偏移量越大,就可以在第一前進與折返雷射脈衝沿著第一光束路徑,相較於第二前進與折返雷射脈衝沿著第二光束路徑行經的行程之間選擇較小的行程長度差異。The first and second frequency shifting means are then specifically designed to increase the frequency of the advancing laser pulses before the first beam splitter by a certain amount and to decrease it after the second beam splitter, in particular by the same or almost the same amount. The advantage of this is that a comparatively large frequency difference between the forward and return laser pulses can be chosen without the forward laser pulse being amplified with lower efficiency in the following amplifiers. In addition, the greater the frequency offset of the forward laser pulses compared to the reentrant laser pulses, the greater the frequency of the first forward and reentrant laser pulses along the first beam path than the second forward and reentrant laser pulses along the first beam path. A small difference in run length is selected between the runs traveled along the second beam path.

這時在第一光束路徑中可以配置一或複數個望遠鏡,讓第一前進與折返雷射脈衝可能出現的光束強度之誤差及/或發散量可以用第二前進與折返雷射脈衝補償。採用這種方式可以保證,第一和第二前進與折返雷射脈衝的干涉在空間中盡可能不受影響,並且讓第一和第二前進與折返雷射脈衝盡可能完全破壞性和建設性干涉。At this time, one or more telescopes can be arranged in the first beam path, so that the error and/or divergence of the beam intensity that may occur in the first forward and return laser pulse can be compensated by the second forward and return laser pulse. In this way it is ensured that the interference of the first and second forward and reentrant laser pulses is as spatially unaffected as possible and that the first and second forward and reentrant laser pulses are as completely destructive and constructive as possible put one's oar in.

設備可以在第二分光器與物件之間具有一個放大器,特別是可能為一或複數個串聯的CO 2放大器。 The device may have an amplifier between the second splitter and the object, in particular possibly one or several CO2 amplifiers connected in series.

在物件本身建置成電漿形式頻率偏移裝置的情形下,設備也可以配置在放大器與物件之間。In case the object itself is built as a plasma form frequency shifting device, the device can also be placed between the amplifier and the object.

設備至少可以具有一個鏡子,尤其是複數個鏡子,用來將雷射光束轉向。特別是第一前進與折返雷射脈衝可以藉由一對鏡子導向通過第一光束路徑。The device can have at least one mirror, in particular a plurality of mirrors, for deflecting the laser beam. In particular the first forward and return laser pulses may be directed through the first beam path by a pair of mirrors.

物件最好建置成發射EUV光束,最好將物件建置成錫罐形式。The object is preferably constructed to emit the EUV beam, preferably the object is constructed in the form of a tin can.

本發明的其他好處於說明和圖式中提供。同樣地,前述及還會進一步實施的特點,也可以根據本發明各自單獨或是以多項任意組合方式來應用。顯示和說明的實施方式並非最終形式,而是有更多可作為範例的特性來說明本發明。Other advantages of the invention are provided in the description and drawings. Likewise, the features mentioned above and those that will be further implemented can also be applied individually or in multiple arbitrary combinations according to the present invention. The embodiments shown and described are not final but have more of an exemplary nature to illustrate the invention.

第1a圖顯示一個設備10用於照射一個物件12,設備10具有一個雷射光源14、一個第一分光器16、一個第二分光器18、一個第一光束路徑19、一個調整元件20、一個第一束流收集器22、一個第二束流收集器24和一個放大器26。Figure 1a shows a device 10 for illuminating an object 12, the device 10 having a laser light source 14, a first beam splitter 16, a second beam splitter 18, a first beam path 19, an adjustment element 20, a A first beam dump 22 , a second beam dump 24 and an amplifier 26 .

分光器16、18最好建置成單面鍍金屬的玻璃板,讓反射的雷射光束視其在分光器16、18上的入射面得到一個相跳躍或沒有相跳躍,這種分光器被認為是一種馬赫曾德爾干涉儀的架構。The beam splitter 16,18 is preferably built into a single-sided metallized glass plate, allowing the reflected laser beam to obtain a phase jump or no phase jump depending on its incident surface on the beam splitter 16,18, and this beam splitter is called Considered to be a Mach-Zehnder interferometer architecture.

雷射光源14發射一個雷射光束28,雷射光束28具有一個前進雷射脈衝30,前進雷射脈衝30在第一分光器16分成一個第一前進雷射脈衝部分30a和一個第二前進雷射脈衝部分30b。第一前進雷射脈衝部分30a透過第一光束路徑19以及調整元件20導引至第二分光器18,反之則是第二前進雷射脈衝部分30b導引至第二分光器18,而不會通過調整元件20。The laser light source 14 emits a laser beam 28, the laser beam 28 has a forward laser pulse 30, and the forward laser pulse 30 is divided into a first forward laser pulse part 30a and a second forward laser pulse part 30a at the first beam splitter 16. Radiation pulse portion 30b. The first forward laser pulse part 30a is guided to the second beam splitter 18 through the first beam path 19 and the adjustment element 20, whereas the second forward laser pulse part 30b is guided to the second beam splitter 18 without through the adjustment element 20.

第一前進雷射脈衝部分30a根據其在第一分光器上16的反射而得到一個180º或者說Pi的相跳躍,反之則是第二前進雷射脈衝部分30b在第一分光器16上沒有得到相跳躍。The first forward laser pulse part 30a gets a phase jump of 180° or Pi according to its reflection on the first beam splitter 16, whereas the second forward laser pulse part 30b does not get it on the first beam splitter 16. phase jump.

第一前進雷射脈衝部分30a通過第二分光器18有一部分前往第二束流收集器24而沒有相跳躍,第一前進雷射脈衝部分30a在第二分光器18上有一部分反射到放大器26,因而得到180º的相跳躍。A portion of the first forward laser pulse portion 30a passes through the second beam splitter 18 to the second beam dump 24 without a phase jump, and a portion of the first forward laser pulse portion 30a is reflected at the second beam splitter 18 to the amplifier 26 , thus obtaining a phase jump of 180º.

第二前進雷射脈衝部分30b通過第一分光器16而沒有相跳躍,第二前進雷射脈衝部分30b接著有一部分通過第二分光器18前往放大器26,而沒有相跳躍,以及有一部分通往第二束流收集器24,同樣沒有相跳躍。The second forward laser pulse portion 30b passes through the first beam splitter 16 without a phase jump, a portion of the second forward laser pulse portion 30b then passes through the second beam splitter 18 to the amplifier 26 without a phase jump, and a portion to The second beam dump 24, again, has no phase jumps.

從第二分光器18到放大器26,第一前進雷射脈衝部分30a和第二前進雷射脈衝部分30b因此發生建設性干涉,而從第二分光器18到第二光束路徑24則是第一前進雷射脈衝部分30a和第二前進雷射脈衝部分30b發生破壞性干涉,因此至少會有一部分重新會合的前進雷射脈衝30導引至放大器26。From the second beam splitter 18 to the amplifier 26, the first forward laser pulse portion 30a and the second forward laser pulse portion 30b thus constructively interfere, while from the second beam splitter 18 to the second beam path 24 is the first The forward laser pulse portion 30a and the second forward laser pulse portion 30b interfere destructively such that at least a portion of the rejoined forward laser pulse 30 is directed to the amplifier 26 .

在最好建置成放大器鏈形式的放大器26中,雷射脈衝30會被放大,隨後到達物件12。In the amplifier 26 , which is preferably implemented as an amplifier chain, the laser pulse 30 is amplified and then reaches the object 12 .

在前面的案例中物件12建置成錫罐的形式,錫罐中透過前進雷射脈衝30產生一個電漿,造成發射極紫外光 (EUV) 光束 32In the previous case the object 12 was implemented in the form of a tin can in which a plasma was generated by advancing laser pulses 30 resulting in the emission of an extreme ultraviolet (EUV) beam 32 .

1b圖顯示附帶被物件12反射之折返雷射脈衝 34的設備10。折返雷射脈衝34在第二分光器18分成第一折返雷射脈衝部分 34a和第二折返雷射脈衝部分 34b,第一折返雷射脈衝部分34a在第二分光器18得到一個180º的相跳躍,反之則是第二折返雷射脈衝部分34b在第二分光器18沒有得到相跳躍。 FIG. 1 b shows the device 10 with reflected laser pulses 34 reflected by the object 12 . The reentrant laser pulse 34 is divided into a first reentrant laser pulse portion 34a and a second reentrant laser pulse portion 34b at the second optical splitter 18, and the first reentrant laser pulse portion 34a obtains a 180° phase jump at the second optical splitter 18 , otherwise, the second reentrant laser pulse portion 34b does not obtain a phase jump in the second beam splitter 18 .

第一折返雷射脈衝部分34a於其前往第一分光器16的行程上沿著第一光束路徑19通過調整元件20,反之則是第二折返雷射脈衝部分34b於其前往第一分光器16的路徑上不會通過調整元件20。The first refracted laser pulse portion 34a passes through the adjustment element 20 along the first beam path 19 on its way to the first beam splitter 16, whereas the second refracted laser pulse portion 34b passes through the adjustment element 20 on its way to the first beam splitter 16. The adjustment element 20 will not pass on the path.

第一折返雷射脈衝部分34a通過第一分光器16有一部分前往第一束流收集器22,而沒有相跳躍。第一折返雷射脈衝部分34a在第一分光器16有一部分前往雷射光源14會反射,因而得到180º的相跳躍。A portion of the first reentrant laser pulse portion 34a passes through the first beam splitter 16 to the first beam dump 22 without phase jumping. A portion of the first reentrant laser pulse portion 34a is reflected at the first beam splitter 16 towards the laser light source 14, thereby obtaining a phase jump of 180°.

第二折返雷射脈衝部分34b有一部分通過第一分光器16前往雷射光源14,而沒有相跳躍,以及有一部分前往第一束流收集器22,同樣沒有相跳躍。Part of the second reentrant laser pulse portion 34b goes to the laser source 14 through the first beam splitter 16 without phase jumping, and part of it goes to the first beam dump 22 without phase jumping.

因此基本上可以期待,第一折返雷射脈衝部分34a與第二折返雷射脈衝部分34b從第一分光器16往雷射光源14發生建設性干涉,往第一束流收集器22發生破壞性干涉,雷射光源14因而受損。Therefore, it can basically be expected that the first reentrant laser pulse portion 34a and the second reentrant laser pulse portion 34b will constructively interfere from the first beam splitter 16 to the laser light source 14, and produce destructive interference to the first beam dump 22. interference, the laser light source 14 is thus damaged.

因此調整元件20會從第1a圖中所顯示前進雷射脈衝30的第一調整位置切換到其於第1b圖中所顯示折返雷射脈衝34的第二調整位置,因此調整元件20會執行折返雷射脈衝34相較於前進雷射脈衝30的行程長度改變,此外調整元件20可能具有一個壓電元件。The adjustment element 20 will thus switch from its first adjustment position shown in figure 1 a for the forward laser pulse 30 to its second adjustment position shown in figure 1 b for the reentrant laser pulse 34, whereby the adjustment element 20 will perform a reentry The path length of the laser pulse 34 is changed compared to the advancing laser pulse 30 , and the adjustment element 20 may also have a piezoelectric element.

此時調整元件20的行程長度改變會定義為折返雷射脈衝34相對於前進雷射脈衝30有180º+n*360º(n為整數,其中n可能為0)的相位偏移,因此第一折返雷射脈衝部分34a與第二折返雷射脈衝部分34b從分光器16前往雷射光源14會發生破壞性干涉,而前往第一束流收集器22則會發生建設性干涉。雷射光源14受到防範折返雷射脈衝34的保護。At this time, the change of the stroke length of the adjustment element 20 will be defined as a phase shift of 180º+n*360º (n is an integer, where n may be 0) between the reentrant laser pulse 34 and the forward laser pulse 30, so the first reentrant Destructive interference occurs between the laser pulse portion 34 a and the second reentrant laser pulse portion 34 b going from the beam splitter 16 to the laser light source 14 , while constructive interference occurs when traveling to the first beam dump 22 . The laser light source 14 is protected against reentrant laser pulses 34 .

2a圖和第 2b圖相當於第1a、1b圖中的設備10,但是第2a、2b圖中顯示的調整元件20具有一個光電晶體 36用於改變第一折返雷射脈衝34相對於第一前進雷射脈衝30的相位。 Figures 2a and 2b correspond to the device 10 in Figures 1a, 1b, but the adjustment element 20 shown in Figures 2a, 2b has a photoelectric crystal 36 for varying the first refracted laser pulse 34 relative to the first The phase of the laser pulse 30 is advanced.

對於第1a、1b和2a、2b圖要注意的是第一雷射脈衝部分30a、34a與第二雷射脈衝部分30b、34b到可能會有的相位偏移之行程相同,圖中的行程只是基於展示的理由而畫成不一樣,因此行程可任意選擇,使其在末端一樣長。For Figures 1a, 1b and 2a, 2b, it should be noted that the first laser pulse part 30a, 34a and the second laser pulse part 30b, 34b have the same stroke to the possible phase shift, and the stroke in the figure is only Drawn differently for display reasons, so the strokes can be arbitrarily chosen to be the same length at the ends.

第3、4和5圖中的設備10相當於第1a與1b圖和2a與2b圖中所顯示的設備10,但是第3、4和5圖中的設備10沒有沿著第一光束路徑19的調整元件20。The device 10 in Figures 3, 4 and 5 is equivalent to the device 10 shown in Figures 1a and 1b and 2a and 2b, but the device 10 in Figures 3, 4 and 5 is not along the first beam path 19 The adjustment element 20.

為此在第3圖中有個頻率偏移裝置23規劃在第二分光器18和物件12之間,前進雷射脈衝的頻率在通過第二分光器18之後會透過頻率偏移裝置23偏移。沿著第一光束路徑19與沿著第二光束路徑21的行程長度會選擇為,讓兩個分光器16、18之間的第二前進與折返雷射脈衝部分30b、34b通過該行程,讓頻率偏移的第一與第二折返雷射脈衝部分30a、30b在第一分光器16朝著雷射光源14的方向發生破壞性干涉,同時間沒有頻率偏移的第一與第二前進雷射脈衝部分34a、34b前往物件12則發生建設性干涉。For this reason, there is a frequency shifting device 23 planned between the second beam splitter 18 and the object 12 in Figure 3, and the frequency of the forward laser pulse will be shifted by the frequency shifting device 23 after passing through the second beam splitter 18 . The length of travel along the first beam path 19 and along the second beam path 21 will be selected such that the second forward and return laser pulse portions 30b, 34b between the two beam splitters 16, 18 pass through the travel, allowing The frequency-shifted first and second reentrant laser pulse portions 30a, 30b destructively interfere in the direction of the first beam splitter 16 toward the laser source 14, while the frequency-shifted first and second forward laser pulses The radiation pulse portions 34a, 34b travel to the object 12 and constructively interfere.

在第4圖中物件12建置成頻率偏移裝置23,例如膨脹的電漿,前進雷射脈衝30的頻率在物件12上會偏移,折返雷射脈衝34在通過放大器26之前已經朝雷射光源14的方向發生破壞性干涉。In Figure 4 the object 12 is constructed as a frequency shifting device 23, such as an expanding plasma, the frequency of the forward laser pulse 30 is shifted on the object 12, and the reentrant laser pulse 34 has been directed towards the laser before passing through the amplifier 26. The direction of the radiation source 14 interferes destructively.

第5圖顯示附帶兩個頻率偏移裝置23、25的設備10,配置成一個在雷射光源14與第一分光器16之間,另一個在第二分光器18與物件12之間,這時前進雷射脈衝30的頻率在通過第一分光器16之前,會偏移一個特定的量,並且在通過第二分光器18之後偏移回相同的量。在物件13上反射之後,折返雷射脈衝34的頻率在通過第二分光器18之前同樣會偏移一個特定的量,並且在通過第一分光器16之後也同樣會偏移回來。放大器26可以使用在雷射光源14中所產生雷射脈衝驅動的頻率驅動。Fig. 5 shows the apparatus 10 with two frequency shifting devices 23, 25, one is arranged between the laser source 14 and the first beam splitter 16, and the other is between the second beam splitter 18 and the object 12, at this time The frequency of the advancing laser pulse 30 is shifted by a certain amount before passing through the first beam splitter 16 and shifted back by the same amount after passing through the second beam splitter 18 . After reflection on the object 13 , the frequency of the reentrant laser pulse 34 is likewise shifted by a certain amount before passing through the second beam splitter 18 and likewise shifted back after passing through the first beam splitter 16 . Amplifier 26 may be driven at a frequency driven by laser pulses generated in laser light source 14 .

在根據第3、4和5圖的實施方式中,第一與第二雷射脈衝部分 (30a、30b、34a、34b) 沿著第一與第二光束路徑19、21行經的行程距離不一樣長,兩個光束路徑19、21都規劃成相較於脈衝長度,第一雷射脈衝部分 (30a、34a) 通過第一光束路徑19所需時間與第二雷射脈衝部分 (30b、34b) 通過第二光束路徑21所需時間的時間差很短,因此可確保兩個雷射脈衝部分 (30a、30b、34a、34b) 只有很小一部分不會干涉。In the embodiments according to Figures 3, 4 and 5, the first and second laser pulse portions (30a, 30b, 34a, 34b) travel different travel distances along the first and second beam paths 19, 21 Long, both beam paths 19, 21 are planned so that compared to the pulse length, the time required for the first laser pulse portion (30a, 34a) to pass through the first beam path 19 is the same as the time required for the second laser pulse portion (30b, 34b) The time difference in the time required to traverse the second beam path 21 is very short, thus ensuring that only a small fraction of the two laser pulse parts (30a, 30b, 34a, 34b) do not interfere.

綜觀所有圖式的圖形下,本發明總括來說涉及一種透過折返雷射脈衝34之破壞性干涉的反射保護。一個前進雷射脈衝30會分成一個第一前進雷射脈衝部分30a,相對於一個第二前進雷射脈衝部分30b,通過一個第一光束路徑19。兩個雷射脈衝部分30a、30b至少有一部分會建設性重疊,之後前進雷射脈衝30會反射,而反射的折返雷射脈衝34基本上會通過與前進雷射脈衝30相同的行程,但是折返第一雷射脈衝部分34a在通過第一光束路徑19時,在通往雷射光源14的行程中會與折返第二雷射脈衝部分34b至少有一部分特別完全破壞性重疊,讓雷射光源14受保護防止折返雷射脈衝34。Looking at all figures of the drawings, the invention generally relates to a reflection protection through destructive interference of refracted laser pulses 34 . A forward laser pulse 30 is divided into a first forward laser pulse portion 30a and a second forward laser pulse portion 30b through a first beam path 19 . The two laser pulse portions 30a, 30b will constructively overlap at least in part, after which the forward laser pulse 30 will be reflected, and the reflected reentrant laser pulse 34 will travel substantially the same distance as the forward laser pulse 30, but reentrant When the first laser pulse part 34a passes through the first beam path 19, it will overlap at least partly with the reentrant second laser pulse part 34b during the journey to the laser light source 14, so that the laser light source 14 The laser pulse 34 is protected against reentry.

10:設備 12:物件 14:雷射光源 16:第一分光器 18:第二分光器 19:第一光束路徑 20:調整元件 21:第二光束路徑 22:第一束流收集器 23:頻率偏移裝置 24:第二束流收集器 25:頻率偏移裝置 26:放大器 28:雷射光束 30:前進雷射脈衝 30a:第一雷射脈衝部分 30b:第二雷射脈衝部分 32:極紫外光光束 34:折返雷射脈衝 34a:第一雷射脈衝部分 34b:第二雷射脈衝部分 36:光電晶體 10: Equipment 12: Object 14: Laser light source 16: The first beam splitter 18: Second beam splitter 19: First beam path 20: Adjustment components 21: Second beam path 22: The first beam collector 23: Frequency offset device 24: Second beam dump 25: Frequency offset device 26: Amplifier 28:Laser Beam 30: Forward Laser Pulse 30a: first laser pulse part 30b: Second laser pulse part 32: EUV Beam 34:Foldback Laser Pulse 34a: First laser pulse part 34b: Second laser pulse part 36: photoelectric crystal

第1a圖:顯示第一種實施方式之設備的示意圖,附帶一個前進雷射脈衝時的行程長度調整元件。Fig. 1a: A schematic diagram showing the apparatus of the first embodiment, with an element for adjusting the stroke length when advancing the laser pulse.

第1b圖顯示折返雷射脈衝時,如第1a圖的設備。Figure 1b shows the device in Figure 1a when the laser pulses are folded back.

第2a圖顯示第二種實施方式之設備的示意圖,附帶一個前進雷射脈衝時的折射率調整元件。Fig. 2a shows a schematic diagram of a second embodiment of the apparatus with a refractive index modulating element as the laser pulse advances.

第2b圖顯示折返雷射脈衝時,如第2a圖的設備。Figure 2b shows the device in Figure 2a when the laser pulses are folded back.

第3圖顯示第三種實施方式之設備的示意圖,附帶一個頻率偏移裝置。Figure 3 shows a schematic diagram of an apparatus of a third embodiment, with a frequency offset device attached.

第4圖顯示第四種實施方式之設備的示意圖,展示一個在受照射物件上的頻率偏移裝置。Figure 4 shows a schematic diagram of a fourth embodiment of the apparatus, showing a frequency shifting device on an irradiated object.

第5圖顯示第五種實施方式的示意圖,附帶一個前面配備干涉儀的頻率偏移裝置,以及一個後面配備干涉儀的頻率偏移裝置。Fig. 5 shows a schematic diagram of a fifth embodiment, with a frequency shifting device preceded by an interferometer, and a frequency shifted device reared by an interferometer.

10:設備 10: Equipment

12:物件 12: Object

14:雷射光源 14: Laser light source

16:第一分光器 16: The first beam splitter

18:第二分光器 18: Second beam splitter

19:第一光束路徑 19: First beam path

20:調整元件 20: Adjustment components

22:第一束流收集器 22: The first beam collector

24:第二束流收集器 24: Second beam dump

26:放大器 26: Amplifier

28:雷射光束 28:Laser Beam

30:前進雷射脈衝 30: Forward Laser Pulse

30a:第一雷射脈衝部分 30a: first laser pulse part

30b:第二雷射脈衝部分 30b: Second laser pulse part

32:極紫外光光束 32: EUV Beam

Claims (15)

用於以一雷射光束(28)照射物件(12)的方法,該方法包括: A) 從雷射光源(14)發射雷射光束(28)的前進雷射脈衝(30); B) 透過第一分光器(16)將前進雷射脈衝(30)分成一第一前進雷射脈衝部分(30a)和一第二前進雷射脈衝部分(30b); C) 第一前進雷射脈衝(30a)通過第一光束路徑(19); D) 透過第二分光器(18)發生第一雷射脈衝部分(30a)和第二雷射脈衝部分(30b)的干涉; E) 至少有一部分重新會合的前進雷射脈衝(30)在物件(12)上反射,因而產生折返雷射脈衝(34); F) 透過該第二分光器(18)將折返雷射脈衝(34)分成一第一折返雷射脈衝部分(34a)和一第二折返雷射脈衝部分(34b); G) 該第一折返雷射脈衝部分(34a)通過第一光束路徑(19),其中第一折返雷射脈衝部分(34a)得到與第一前進雷射脈衝部分(30a)不同的相位偏移,方式為前進雷射脈衝(30)和折返雷射脈衝(34)至少有一部分: i) 通過一調整元件(20),在折返雷射脈衝(34)通過時,相對於前進雷射脈衝(30)通過時進行調整;及/或 ii) 通過一頻率偏移裝置(23、25); H) 折返雷射脈衝(34)的第一雷射脈衝部分(34a)至少有一部分與折返雷射脈衝(34)的第二雷射脈衝部分(34b)會合,通過第一分光器(16)前往雷射光源(14),其中第一雷射脈衝部分(34a)與第二雷射脈衝部分(34b)發生破壞性干涉。 A method for irradiating an object (12) with a laser beam (28), the method comprising: A) an advancing laser pulse (30) emitting a laser beam (28) from a laser light source (14); B) splitting the forward laser pulse (30) into a first forward laser pulse portion (30a) and a second forward laser pulse portion (30b) through a first beam splitter (16); C) passing the first forward laser pulse (30a) through the first beam path (19); D) interference of the first laser pulse portion (30a) and the second laser pulse portion (30b) occurs through the second beam splitter (18); E) at least a portion of the rejoined advancing laser pulse (30) is reflected off the object (12), thereby producing a reentrant laser pulse (34); F) dividing the reentrant laser pulse (34) into a first reentrant laser pulse portion (34a) and a second reentrant laser pulse portion (34b) through the second beam splitter (18); G) The first reentrant laser pulse portion (34a) passes through the first beam path (19), wherein the first reentrant laser pulse portion (34a) gets a different phase shift than the first forward laser pulse portion (30a) , the way is at least a part of the forward laser pulse (30) and the reentrant laser pulse (34): i) by means of an adjustment element (20), the passage of the reentrant laser pulse (34) is adjusted relative to the passage of the forward laser pulse (30); and/or ii) by means of a frequency offset device (23, 25); H) At least a part of the first laser pulse portion (34a) of the reentrant laser pulse (34) meets with the second laser pulse portion (34b) of the reentrant laser pulse (34), passing through the first beam splitter (16) To a laser light source (14), where the first laser pulse portion (34a) destructively interferes with the second laser pulse portion (34b). 根據請求項1所述之方法,其中在方法步驟C)和G)中前進與折返第一雷射脈衝部分(30a、34a)會通過一調整元件(20),切換成一第一調整位置和一第二調整位置,其中調整元件(20)在方法步驟C)中以第一調整位置讓第一前進雷射脈衝部分(30a)通過,而在方法步驟G)中以第二調整位置讓第一折返雷射脈衝部分(34a)通過。The method according to claim 1, wherein in method steps C) and G), the forward and reverse first laser pulse parts (30a, 34a) are switched to a first adjustment position and a first adjustment position via an adjustment element (20) in method steps C) and G). Second adjustment position, wherein the adjustment element (20) passes the first advancing laser pulse portion (30a) in the first adjustment position in method step C) and the first advancing laser pulse portion (30a) in the second adjustment position in method step G). The reentrant laser pulse portion (34a) passes. 根據請求項1或請求項2所述之方法,其中調整元件(20)另外建置成調整沿著第一光束路徑(19)的行程長度,讓在調整元件(20)之第一調整位置通過第一光束路徑(19)的前進第一雷射脈衝部分(30a),比在調整元件(20)之第二調整位置的折返第一雷射脈衝(34a)通過一段較短或較長的行程,其中前進第一雷射脈衝(30a)通過的行程長度,與折返第一雷射脈衝部分(34a)通過的行程長度,特別是會有一折返雷射脈衝部分(34a)之一非整數倍率半波長的差異。The method according to claim 1 or claim 2, wherein the adjustment element (20) is additionally configured to adjust the length of travel along the first beam path (19), passing through the first adjustment position of the adjustment element (20) The forward first laser pulse portion (30a) of the first beam path (19) travels a shorter or longer distance than the reentrant first laser pulse (34a) at the second adjustment position of the adjustment element (20) , where the length of travel passed by the forward first laser pulse (30a) and the length of travel passed by the reentrant first laser pulse portion (34a), in particular, there will be a non-integer multiple of one half of the reentrant laser pulse portion (34a) difference in wavelength. 根據前述請求項之任一項所述之方法,其中調整元件(20)具有一壓電元件用來改變第一調整位置與第二調整位置之間的行程長度。Method according to any one of the preceding claims, wherein the adjustment element (20) has a piezoelectric element for changing the stroke length between the first adjustment position and the second adjustment position. 根據前述請求項之任一項所述之方法,其中調整元件(20)具有一光電晶體(36)用於相位偏移,讓通過調整元件(20)的前進第一雷射脈衝部分(30a)在調整元件(20)之第一調整位置中得到與折返第一雷射脈衝部分(34a)在調整元件(20)之第二調整位置中不同的相位偏移,其中相位偏移特別是相當於折返雷射脈衝部分(34a)之半波長的非整數倍率。The method according to any one of the preceding claims, wherein the adjustment element (20) has a photoelectric crystal (36) for phase shifting, allowing the advancing first laser pulse portion (30a) passing through the adjustment element (20) In the first adjustment position of the adjustment element (20) a different phase shift is obtained than in the second adjustment position of the adjustment element (20) of the folded first laser pulse portion (34a), wherein the phase shift corresponds in particular to A non-integer multiple of the half-wavelength of the reentrant laser pulse portion (34a). 根據前述請求項之任一項所述之方法,其中前進雷射脈衝(30)在方法步驟B)之前及/或方法步驟D)之後及/或折返雷射脈衝(34)在方法步驟E)之前及/或在方法步驟H)之後通過一頻率偏移裝置(23、25),特別是一聲光調變器(AOM)、一受激布里淵散射(SBS)鏡及/或一膨脹電漿。The method according to any one of the preceding claims, wherein the forward laser pulse (30) precedes method step B) and/or after method step D) and/or the reentrant laser pulse (34) precedes method step E) Before and/or after method step H), passing through a frequency shifting device (23, 25), in particular an acoustic optical modulator (AOM), a stimulated Brillouin scattering (SBS) mirror and/or an expansion Plasma. 根據前述請求項之任一項所述之方法,其中頻率偏移裝置(23、25)將前進雷射脈衝(30)及/或折返雷射脈衝(34)的頻率偏移最高1000 MHz和至少20 MHz,最好是小於100 MHz。The method according to any one of the preceding claims, wherein the frequency offset means (23, 25) offset the frequency of the forward laser pulse (30) and/or reentrant laser pulse (34) by at most 1000 MHz and at least 20 MHz, preferably less than 100 MHz. 根據前述請求項之任一項所述之方法,其中前進雷射脈衝(30)在方法步驟D)中導引至一放大器(26)中,而折返雷射脈衝(34)則在方法步驟F)中從放大器(26)導引到第二分光器(18)上。The method according to any one of the preceding claims, wherein the forward laser pulse (30) is guided into an amplifier (26) in method step D), and the return laser pulse (34) is guided in method step F ) from the amplifier (26) to the second splitter (18). 根據前述請求項之任一項所述之方法,其中在方法步驟D)中前進雷射脈衝(3)在第一雷射脈衝部分(30a)與第二雷射脈衝部分(30b)發生建設性干涉之後會通過一段延遲行程,方法步驟E)中的折返雷射脈衝(34)也會通過此行程。The method according to any one of the preceding claims, wherein in method step D) the advancing laser pulse (3) takes place constructively in the first laser pulse part (30a) and the second laser pulse part (30b) After the interference, a delay path is traversed by which the reentrant laser pulse ( 34 ) in method step E) is also traversed. 根據前述請求項之任一項所述之方法,其中使用前進雷射脈衝(30)以產生極紫外光(EUV)光束(32)。The method according to any one of the preceding claims, wherein advancing laser pulses (30) are used to generate an extreme ultraviolet (EUV) beam (32). 一種用於照射物件(12)的設備(10),特別建置成發射EUV光束,使用一雷射光束(28),特別用於執行依據前述請求項任一項所述之方法,具備下列特點: a) 一雷射光源(14); b) 一第一分光器(16)用於將來自雷射光源(14)的前進雷射脈衝(30)分成一第一前進雷射脈衝部分(30a)與一第二前進雷射脈衝部分(30b); c) 一第一光束路徑(19),可讓該第一雷射脈衝部分(30a)通過; d) 一第二分光器(18),該第一雷射脈衝部分(30a)在上面和該第二雷射脈衝部分(30b)至少有一部分發生建設性干涉; e) 一物件(12)用來反射前進雷射脈衝(30)和產生折返雷射脈衝(34); 其中折返雷射脈衝(34)可以在第二分光器(18)上分成一第一折返雷射脈衝(34a)和一第二折返雷射脈衝部分(34b); 其中設備具有一調整元件(20)及/或一頻率偏移裝置(23、25),另外配置成在折返雷射脈衝(34)的第一雷射脈衝部分(34a)產生與前進雷射脈衝(30)的第一雷射脈衝部分(30a)不同的相位偏移;以及 其中第一折返雷射脈衝部分(34a)在通往雷射光源(14)的第一分光器(16)上與第二折返雷射脈衝部分(34b)至少有一部發生破壞性干涉。 A device (10) for irradiating an object (12), in particular configured to emit an EUV beam, using a laser beam (28), in particular for carrying out the method according to any one of the preceding claims, having the following characteristics : a) a laser light source (14); b) a first beam splitter (16) is used to divide the forward laser pulse (30) from the laser light source (14) into a first forward laser pulse part (30a) and a second forward laser pulse part ( 30b); c) a first beam path (19) through which the first laser pulse portion (30a) passes; d) a second beam splitter (18) on which the first laser pulse portion (30a) constructively interferes at least in part with the second laser pulse portion (30b); e) an object (12) for reflecting forward laser pulses (30) and generating reentrant laser pulses (34); Wherein the reentry laser pulse (34) can be divided into a first reentry laser pulse (34a) and a second reentry laser pulse part (34b) on the second beam splitter (18); wherein the apparatus has an adjustment element (20) and/or a frequency shifting device (23, 25), additionally configured to generate and advance laser pulses in a first laser pulse portion (34a) of a reentrant laser pulse (34) (30) different phase shifts of the first laser pulse portion (30a); and Wherein the first reentrant laser pulse part (34a) destructively interferes with at least part of the second reentrant laser pulse part (34b) on the first beam splitter (16) leading to the laser light source (14). 根據請求項11所述之設備,其中調整元件(20)可切換成第一和第二調整位置。The device according to claim 11, wherein the adjustment element (20) is switchable into a first and a second adjustment position. 根據請求項11或12所述之設備,其中調整元件(20)沿著第一光束路徑(19)配置,讓通過第一光束路徑(19)的前進第一雷射脈衝部分(30a)在調整元件(20)的第一調整位置中比折返第一雷射脈衝(34a)在調整元件(20)之第二調整位置中通過較短或較長的行程,及/或調整元件(20)沿著第一光束路徑(19)配置,以及具有一光電晶體(36)用於相位偏移,讓通過第一光束路徑的前進第一雷射脈衝部分(30a)在調整元件(20)的第一調整位置中得到與折返第一雷射脈衝部分(34a)在調整元件(20)的第二調整位置中不同的相位偏移。The device according to claim 11 or 12, wherein the adjustment element (20) is arranged along the first beam path (19) such that the advancing first laser pulse portion (30a) passing through the first beam path (19) is adjusted In the first adjustment position of the element (20) travels a shorter or longer distance than the reentrant first laser pulse (34a) in the second adjustment position of the adjustment element (20), and/or the adjustment element (20) travels along is arranged along the first beam path (19), and has a photoelectric crystal (36) for phase shifting, so that the advancing first laser pulse portion (30a) passing through the first beam path is at the first A different phase shift results in the adjusted position than in the second adjusted position of the adjusted element ( 20 ) compared to the folded-back first laser pulse portion ( 34 a ). 根據請求項11至13之任一項所述之設備,其中頻率偏移裝置(23、25)建置成聲光調變器(AOM)、受激布里淵散射(SBS)鏡及/或移動的物件,其中可看到頻率偏移裝置(23、25)配置在前進雷射脈衝(30)的光束方向,特別是在第二分光器(18)之後及/或在第一分光器(16)之前。The device according to any one of claims 11 to 13, wherein the frequency shifting means (23, 25) are implemented as an acousto-optic modulator (AOM), a stimulated Brillouin scattering (SBS) mirror and/or Moving object, wherein it can be seen that the frequency shifting means (23, 25) are arranged in the beam direction of the advancing laser pulse (30), in particular after the second beam splitter (18) and/or after the first beam splitter ( 16) before. 根據請求項11至14之任一項所述之設備,其中設備(10)具有一放大器(26),可讓前進雷射脈衝(30)在第二分光器(18)之後導引至該放大器,並且從該放大器將折返雷射脈衝(34)導引至第二分光器(18)。Apparatus according to any one of claims 11 to 14, wherein the apparatus (10) has an amplifier (26) allowing the forward laser pulse (30) to be directed to the amplifier after the second beam splitter (18) , and direct the reentrant laser pulse (34) from the amplifier to the second beam splitter (18).
TW111142232A 2021-11-17 2022-11-04 Method and device for back reflection protection using laser pulse interference TW202325452A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
WOPCT/EP2021/081909 2021-11-17
PCT/EP2021/081909 WO2023088544A1 (en) 2021-11-17 2021-11-17 Back reflection protection by means of a method and a device for interference of a laser pulse

Publications (1)

Publication Number Publication Date
TW202325452A true TW202325452A (en) 2023-07-01

Family

ID=78806500

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111142232A TW202325452A (en) 2021-11-17 2022-11-04 Method and device for back reflection protection using laser pulse interference

Country Status (2)

Country Link
TW (1) TW202325452A (en)
WO (1) WO2023088544A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7228023B1 (en) * 2005-12-30 2007-06-05 Intel Corporation Planar non-magnetic optical isolator
WO2015082004A1 (en) * 2013-12-05 2015-06-11 Trumpf Lasersystems For Semiconductor Manufacturing Gmbh Amplifier arrangement and driver laser arrangement for an euv light source comprising same
JP6899835B2 (en) * 2016-02-10 2021-07-07 トルンプフ レーザーシステムズ フォー セミコンダクター マニュファクチャリング ゲゼルシャフト ミット ベシュレンクテル ハフツングTRUMPF Lasersystems for Semiconductor Manufacturing GmbH A driver laser device equipped with an optical isolator and an EUV beam generator equipped with the driver laser device.

Also Published As

Publication number Publication date
WO2023088544A1 (en) 2023-05-25

Similar Documents

Publication Publication Date Title
US9958710B1 (en) Multi-channel laser system including an acousto-optic modulator (AOM) and related methods
US10495943B2 (en) Multi-channel phase-capable acousto-optic modulator (AOM) including beam stabilizer and related methods
US9915851B1 (en) Multi-channel phase-capable acousto-optic modulator (AOM) and related methods
JP6192280B2 (en) Laser light source device and laser microscope
KR20040063079A (en) Beam irradiator and laser anneal device
US10186827B2 (en) Amplifying pulsed laser radiation for EUV radiation production
JP2017187465A5 (en)
WO2015067772A1 (en) Adjustable speed fast laser scanning system and two-photon microscope associated
TW202325452A (en) Method and device for back reflection protection using laser pulse interference
JP5228168B2 (en) Method and apparatus for optical inspection of samples
US20160276798A1 (en) Fiber coupled modular laser system
CN100397139C (en) Apparatus and method for self-phase control in amplifier with stimulated brillouin scattering phase conjugate mirror
KR102393457B1 (en) Pulsed light generating apparatus, pulsed light generating method, exposure apparatus and inspection apparatus provided with pulsed light generating apparatus
WO2011158646A1 (en) Laser generating device and laser generation method
JP2019537845A (en) Laser scanning method and laser scanning device
JP7097236B2 (en) Laser device
KR20220025113A (en) Laser system with pulse duration switch
TWI733814B (en) Pulsed light generating device, pulsed light generating method, exposure device and inspection device provided with pulsed light generating device
JP2008046246A (en) Light generating apparatus and terahertz light generating apparatus equipped with the apparatus
JP6489311B2 (en) Electromagnetic wave generator
US9166359B2 (en) Method and laser oscillator for the generation of a laser beam
JP7143553B2 (en) laser device
WO2021131477A1 (en) Light source for laser processing, and laser processing device
WO2018074010A1 (en) Optical transmission module
JP2022029970A (en) Detection device and detection method