TW202325081A - Systems and methods to facilitate long uplink transmission in internet of things non-terresterial networks - Google Patents

Systems and methods to facilitate long uplink transmission in internet of things non-terresterial networks Download PDF

Info

Publication number
TW202325081A
TW202325081A TW111142983A TW111142983A TW202325081A TW 202325081 A TW202325081 A TW 202325081A TW 111142983 A TW111142983 A TW 111142983A TW 111142983 A TW111142983 A TW 111142983A TW 202325081 A TW202325081 A TW 202325081A
Authority
TW
Taiwan
Prior art keywords
gap
transmission
information
network node
network
Prior art date
Application number
TW111142983A
Other languages
Chinese (zh)
Inventor
塔哈 可汗
林興欽
斯蒂芬 埃里克森 洛文馬克
Original Assignee
瑞典商Lm艾瑞克生(Publ)電話公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞典商Lm艾瑞克生(Publ)電話公司 filed Critical 瑞典商Lm艾瑞克生(Publ)電話公司
Publication of TW202325081A publication Critical patent/TW202325081A/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18563Arrangements for interconnecting multiple systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A method (700) by a user equipment, UE, (112, 200) for facilitating long uplink transmission in an Internet of Things, IoT, Non-Terrestrial Network, NTN, includes transmitting (702), to a network node (110, 300), information for determining whether the UE is to insert at least one gap between adjacent transmission segments in at least one uplink transmission. The UE receives (704), from the network node, configuration information configuring the UE to insert the at least one gap when the information transmitted to the network node indicates that at least one symbol, slot, and/or subframe is to be dropped and/or punctured to implement segmented pre-compensation or not insert the at least one gap when the information transmitted to the network node indicates that at least one sample is to be dropped and/or punctured to implement segmented pre-compensation.

Description

促進物聯網非地面網路中之長上行鏈路傳輸的系統和方法Systems and methods for facilitating long uplink transmissions in IoT non-terrestrial networks

一般而言,本發明係關於無線通信,且更特定言之,本發明係關於促進物聯網(IoT)非地面網路(NTN)中之長上行鏈路傳輸的系統及方法。The present invention relates generally to wireless communications, and more particularly to systems and methods that facilitate long uplink transmissions in Internet of Things (IoT) non-terrestrial networks (NTN).

在第三代合作夥伴計畫(3GPP)版本8中,指定演進版分封系統(EPS)。EPS基於長期演進(LTE)無線電網路及演進封包核心(EPC)。其最初意欲提供語音及移動寬頻(MBB)服務但已不斷演進以擴展其功能性。自3GPP版本13以來,窄頻物聯網(NB-IoT)及LTE機器型通信(LTE-M)係LTE規範之部分且提供至大規模機器型通信(mMTC)之連接性。In Release 8 of the 3rd Generation Partnership Project (3GPP), the Evolved Encapsulation System (EPS) was specified. EPS is based on the Long Term Evolution (LTE) radio network and the Evolved Packet Core (EPC). It was originally intended to provide voice and Mobile Broadband (MBB) services but has evolved to expand its functionality. Narrowband Internet of Things (NB-IoT) and LTE Machine Type Communication (LTE-M) are part of the LTE specification since 3GPP Release 13 and provide connectivity to massive Machine Type Communication (mMTC).

在3GPP版本15中,指定5G系統(5GS)之第一版本。此係一新一代無線電存取技術,意欲服務於用例(諸如增強型行動寬頻(eMBB)、超可靠及低延時通信(URLLC)及mMTC)。5G包含新無線(NR)存取層介面及5G核心網路(5GC)。NR實體及較高層正在重用LTE規範之部分,且當由新用例激勵時添加所需組件。一個此組件係引入用於波束形成及波束管理之一複雜框架以將3GPP技術之支援擴展至超過6 GHz之一頻率範圍。In 3GPP Release 15, the first release of the 5G system (5GS) is specified. This is a new generation radio access technology intended to serve use cases such as enhanced mobile broadband (eMBB), ultra-reliable and low-latency communications (URLLC) and mMTC. 5G includes the new radio (NR) access layer interface and the 5G core network (5GC). NR entities and higher layers are reusing parts of the LTE specification and adding required components when motivated by new use cases. One such component is to introduce a complex framework for beamforming and beam management to extend the support of 3GPP technology to a frequency range beyond 6 GHz.

衛星通信及非地面網路 衛星通信正在復蘇。在過去幾年中,已宣佈若干衛星網路計畫。目標服務自回載及固定無線變動至交通、戶外行動及IoT。衛星網路可藉由將連接性提供至服務不足區域及多播/廣播服務來補充地面上之行動網路。 Satellite communications and non-terrestrial networks Satellite communications are making a comeback. Over the past few years, several satellite network projects have been announced. Targeted services vary from Backhaul and Fixed Wireless to Transportation, Outdoor Mobility and IoT. Satellite networks can complement terrestrial mobile networks by providing connectivity to underserved areas and multicast/broadcast services.

為自強大行動生態系統及規模經濟獲益,將包含LTE及NR之地面無線存取技術應用於衛星網路引起極大興趣,其已反映在3GPP標準化工作中。To benefit from a strong mobile ecosystem and economies of scale, there is great interest in applying terrestrial radio access technologies including LTE and NR to satellite networks, which is reflected in the 3GPP standardization work.

在3GPP版本15中,3GPP開始為在一NTN中操作準備NR之工作。工作在研究項目「NR支援非地面網路」中執行且導致3GPP TR 38.811 v.15.4.0。參閱關於新無線(NR)之TR 38.111 v.15.4.0研究以支援非地面網路。在3GPP版本16中,繼續已在3GPP TR 38.821 v.16.1.0中捕獲之研究項目「支援非地面網路之NR解決場景」之為一NTN網路中之操作準備NR之工作。參閱NR之TR 38.821 v.16.1.0解決場景以支援2021年6月之非地面網路,3GPP,16.1.0。同時,使窄頻IoT (NB-IoT)及LTE機器型通信(LTE-M)適合於在NTN中操作之興趣正在增長。因此,3GPP版本17含有NR NTN上之一工作項目。參閱支援非地面網路(NTN)之NR之解決場景RP-193234,3GPP RAN#86.3GPP版本17亦包含關於NTN之NB-IoT及LTE-M支援之一研究項目。參閱關於非地面網路3GPP RAN#86之NB-Io/eMTC支援之研究RP-193235。In 3GPP Release 15, 3GPP started work on preparing NR for operation in an NTN. Work was performed in the research project "NR Support for Non-Terrestrial Networks" and resulted in 3GPP TR 38.811 v.15.4.0. See TR 38.111 v.15.4.0 study on New Radio (NR) to support non-terrestrial networks. In 3GPP Release 16, work on preparing NR for operation in an NTN network of the study item "Supporting NR solution scenarios for non-terrestrial networks" already captured in 3GPP TR 38.821 v.16.1.0 was continued. Refer to NR's TR 38.821 v.16.1.0 solution scenario to support non-terrestrial networks in June 2021, 3GPP, 16.1.0. At the same time, there is growing interest in adapting Narrowband IoT (NB-IoT) and LTE Machine-Type Communications (LTE-M) to operate in the NTN. Therefore, 3GPP Release 17 contains a work item on NR NTN. Refer to RP-193234 for NR supporting non-terrestrial networks (NTN), 3GPP RAN#86.3GPP Release 17 also includes a research project on NB-IoT and LTE-M support for NTN. See Study RP-193235 on NB-Io/eMTC support in 3GPP RAN #86 for non-terrestrial networks.

一衛星無線電存取網路通常包括以下組件: ·一衛星,其係指一太空載具平台。 ·一基於地球之閘道,其取決於架構之選擇而將該衛星連接至一基地台或一核心網路。 ·饋線鏈路,其係指一閘道與一衛星之間的鏈路。 ·存取鏈路或服務鏈路,其係指一衛星與一使用者設備(UE)之間的鏈路。 A satellite radio access network typically includes the following components: • A satellite, which means a space vehicle platform. • An earth-based gateway that connects the satellite to a base station or a core network, depending on the choice of architecture. • Feeder link, which refers to the link between a gateway and a satellite. • Access link or service link, which refers to the link between a satellite and a user equipment (UE).

取決於軌道高度,一衛星可分為低地球軌道(LEO)、中地球軌道(MEO)或地球同步軌道(GEO)衛星: ·LEO:典型高度在自250 km至1,500 km之範圍內,其軌道週期在自90分鐘至120分鐘之範圍內。 ·MEO:典型高度在自5,000 km至25,000 km之範圍內,其中軌道週期在自3小時至15小時之範圍內。 ·GEO:高度係約35,786 km,其具有24小時之一軌道週期。 Depending on the altitude of the orbit, a satellite can be classified as a Low Earth Orbit (LEO), Medium Earth Orbit (MEO) or Geosynchronous Orbit (GEO) satellite: · LEO: Typical altitudes range from 250 km to 1,500 km, with orbital periods ranging from 90 minutes to 120 minutes. • MEO: Typical altitudes range from 5,000 km to 25,000 km with orbital periods ranging from 3 hours to 15 hours. • GEO: Altitude is about 35,786 km, which has an orbital period of 24 hours.

取決於系統中之衛星之功能性,可區分衛星通信網路之兩種基本架構: ·透明酬載(亦指稱彎管架構):衛星在終端與地面上之網路設備之間轉發所接收之信號僅放大且自上行鏈路頻率位移至下行鏈路頻率。當應用於通用3GPP架構及術語時,透明酬載架構意謂gNodeB (gNB)位於地面上且衛星在gNB與UE之間轉發信號/資料。 ·再生酬載:衛星包含機載處理以解調及解碼所接收之信號且在將信號發送回地球之前再生信號。當應用於通用3GPP架構及術語時,再生酬載架構意謂gNB位於衛星中。 Depending on the functionality of the satellites in the system, two basic architectures of satellite communication networks can be distinguished: ·Transparent payload (also referred to as bent pipe architecture): The satellite forwards the received signal between the terminal and the network equipment on the ground only amplified and shifted from the uplink frequency to the downlink frequency. When applied to the general 3GPP architecture and terminology, the transparent payload architecture means that the gNodeB (gNB) is located on the ground and the satellite relays signals/data between the gNB and the UE. • Regeneration Payload: Satellites contain onboard processing to demodulate and decode received signals and regenerate them before sending them back to Earth. When applied to the general 3GPP architecture and terminology, the regenerative payload architecture means that the gNB is located in the satellite.

在3GPP版本17中之NR NTN之工作項目中,僅考量透明酬載架構。In the work item of NR NTN in 3GPP Release 17, only the transparent payload architecture is considered.

圖1繪示具有彎管詢答器之一衛星網路之一實例架構(即,透明酬載架構)。gNB可整合於閘道中或經由一地面連接(有線、光纖、無線鏈路)連接至閘道。FIG. 1 illustrates an example architecture (ie, transparent payload architecture) of a satellite network with bent pipe transponders. The gNB can be integrated in the gateway or connected to the gateway via a ground connection (wired, fiber optic, wireless link).

一通信衛星通常在一給定區域上產生若干波束。一波束之佔用面積通常呈一橢圓形狀,其在傳統上視為一小區,但在3GPP工作中不排除由多個波束之涵蓋佔用面積組成之小區。一光束之佔用面積通常亦指稱一點波束。一波束之佔用面積可隨著衛星之移動而在地球之表面上移動或可使用由衛星用於補償衛星之運動之一波束指向機構固定之地球。一點波束之大小取決於系統設計,其可在自幾十公里至幾千公里之範圍內。A communications satellite typically produces several beams over a given area. The occupied area of a beam is generally in the shape of an ellipse, which is traditionally regarded as a cell, but a cell composed of covered occupied areas of multiple beams is not excluded in 3GPP work. The occupied area of a beam is usually also referred to as a spot beam. The footprint of a beam can move over the Earth's surface as the satellite moves or the Earth can be fixed using a beam pointing mechanism used by the satellite to compensate for the satellite's motion. The size of a spot beam depends on the system design, which can range from tens of kilometers to thousands of kilometers.

長傳播延時/RTT及高衛星速度之後果 傳播延時係不同於一地面行動系統中預期之延遲之衛星通信之一重要態樣。對於一彎管衛星網路,取決於軌道高度,往返延遲可自LEO衛星之情況中之幾十ms至GEO衛星之幾百ms之範圍內。作為比較,地面蜂巢式網路中之往返延遲通常低於1 ms。 Consequences of long propagation delay/RTT and high satellite speed Propagation delay is an important aspect of satellite communications that differs from the delay expected in a terrestrial mobile system. For a bent-pipe satellite network, depending on the orbital altitude, the round-trip delay can range from tens of ms in the case of LEO satellites to hundreds of ms for GEO satellites. For comparison, round-trip latency in terrestrial cellular networks is typically below 1 ms.

UE與一衛星之間的距離可取決於衛星之位置及因此由UE看見之仰角ε而顯著變動。假定圓形軌道,當衛星位於UE正上方(ε = 90°)時,實現最小距離,且當衛星處於最小可能仰角時,實現最大距離。表1展示不同軌道高度及仰角下之衛星與UE之間的距離及單向傳播延遲及最大傳播延遲差(與ε = 90°時之傳播延遲之差)。應注意此表假定再生酬载架構。對於透明酬载情況,亦需要考量閘道與衛星之間的傳播延遲,除非基地台對此進行校正。 表1:不同軌道高度及仰角之傳播延遲。 軌道高度 仰角 距離 UE <-> 衛星 單向傳播延遲 傳播延遲差 600 km 90° 600 km 2.0 ms --- 30° 1075 km 3.6 ms 1.6 ms 10° 1932 km 6.4 ms 4.4 ms 1200 km 90° 1200 km 4.0 ms --- 30° 1999 km 6.7 ms 2.7 ms 10° 3131 km 10.4 ms 6.4 ms 35786 km 90° 35786 km 119.4 ms --- 30° 38609 km 128.8 ms 9.4 ms 10° 40581 km 135.4 ms 16.0 ms The distance between a UE and a satellite can vary significantly depending on the position of the satellite and thus the elevation angle ε seen by the UE. Assuming a circular orbit, the minimum range is achieved when the satellite is directly above the UE (ε = 90°), and the maximum range is achieved when the satellite is at the minimum possible elevation angle. Table 1 shows the distance between the satellite and the UE at different orbital heights and elevation angles, as well as the one-way propagation delay and the maximum propagation delay difference (difference from the propagation delay when ε = 90°). It should be noted that this table assumes a regenerative payload architecture. For the transparent payload case, the propagation delay between the gateway and the satellite also needs to be considered, unless corrected for by the base station. Table 1: Propagation delay for different orbital heights and elevation angles. track height elevation angle Distance UE <-> Satellites one-way propagation delay Propagation delay difference 600km 90° 600km 2.0ms --- 30° 1075km 3.6ms 1.6ms 10° 1932km 6.4ms 4.4ms 1200km 90° 1200km 4.0ms --- 30° 1999km 6.7ms 2.7ms 10° 3131km 10.4ms 6.4ms 35786km 90° 35786km 119.4ms --- 30° 38609km 128.8ms 9.4ms 10° 40581km 135.4ms 16.0ms

歸因於LEO及MEO衛星之高速,傳播延遲亦可取決於軌道高度及衛星速度及每秒約10 µs至約100 µs之改變而高度可變。Due to the high speeds of LEO and MEO satellites, propagation delays can also be highly variable depending on orbital altitude and satellite speed and can vary from about 10 µs to about 100 µs per second.

對於使用3GPP技術、特定言之5G/NR之NTN,長傳播延遲意謂UE用於其上行鏈路傳輸之計時提前(TA)係必要的且必須比地面網路中大很多以使上行鏈路及下行鏈路在gNB處時間對準,如同NR及LTE中之情況。隨機存取(RA)程序之目的之一者係提供UE網路稍後可基於來自UE之上行鏈路傳輸之接收時序來調整之一有效TA。然而,即使RA前綴(即,來自RA程序中之UE之初始訊息)亦必須與一TA一起傳輸以允許gNB中RA前綴接收視窗之一合理大小(且確保前綴之Zadoff-Chu序列之循環位移不太大以使Zadoff-Chu序列及因此前綴看起來似乎係另一Zadoff-Chu序列且因此係基於相同Zadoff-Chu根序列之另一前綴)。然而,此TA不必如UE隨後用於其他上行鏈路傳輸之TA般準確。UE用於NTN中之RA前綴傳輸之TA稱為「預補償TA」。已考量如何判定預補償TA之各種建議,所有此等建議均涉及來自gNB及UE兩者之資訊。簡而言之,所討論之替代場景包含: ·網路廣播在一特定參考點(諸如(例如)小區中之一中心點)處有效之一「共同TA」。接著,UE將基於UE之自身位置與參考點之間的差及衛星之位置來計算其自身之預補償TA如何偏離共同TA。根據此方法,UE使用全球導航衛星系統(GNSS)量測來獲取其自身之位置且使用由網路廣播之衛星軌道資料(包含一特計時間之衛星位置)來獲得衛星位置。 ·UE基於UE及衛星之各自位置自主計算UE與衛星之間的傳播延遲,且網路/gNB在饋線鏈路上廣播傳播延遲(即,gNB與衛星之間的傳播延遲)。根據此方法,UE使用GNSS量測來獲取其自身之位置且使用由網路廣播之衛星軌道資料(包含一特計時間之衛星位置)獲取衛星位置。接著將預補償TA計算為饋線鏈路上之傳播延遲及衛星與UE之間的傳播延遲之和之兩倍。 ·gNB廣播UE將其與自GNSS獲取之一參考時間戳記進行比較之一時間戳記(在系統資訊區塊9 (SIB9)中)。基於此等兩個時間戳記之間的差異,UE可計算gNB與UE之間的傳播延遲,且預補償TA係此傳播延遲之兩倍。 For NTN using 3GPP technologies, specifically 5G/NR, the long propagation delay means that the timing advance (TA) of the UE for its uplink transmission is necessary and has to be much larger than in terrestrial networks to make the uplink And the downlink is time aligned at the gNB, as is the case in NR and LTE. One of the purposes of the random access (RA) procedure is to provide the UE with an effective TA that the network can later adjust based on the timing of reception of uplink transmissions from the UE. However, even the RA prefix (i.e. the initial message from the UE in the RA procedure) has to be transmitted with a TA to allow a reasonable size of the RA prefix reception window in the gNB (and to ensure that the cyclic shift of the Zadoff-Chu sequence of the prefix is not is too large to make the Zadoff-Chu sequence and thus the prefix appear to be another Zadoff-Chu sequence and thus another prefix based on the same Zadoff-Chu root sequence). However, this TA need not be as accurate as the TA that the UE subsequently uses for other uplink transmissions. The TA used by UE for RA prefix transmission in NTN is called "precompensated TA". Various proposals on how to determine the precompensated TA have been considered, all of which involve information from both the gNB and the UE. In short, the alternative scenarios discussed include: • The network broadcasts a "common TA" valid at a specific reference point, such as, for example, a central point in a cell. Then, the UE will calculate how its own precompensated TA deviates from the common TA based on the difference between the UE's own position and the reference point and the position of the satellites. According to this method, the UE obtains its own position using Global Navigation Satellite System (GNSS) measurements and obtains satellite positions using satellite orbit data (including satellite positions at a particular time) broadcast by the network. • The UE autonomously calculates the propagation delay between the UE and the satellite based on the respective positions of the UE and the satellite, and the network/gNB broadcasts the propagation delay on the feeder link (ie, the propagation delay between the gNB and the satellite). According to this method, the UE obtains its own position using GNSS measurements and obtains satellite positions using satellite orbit data (including satellite positions at a particular time) broadcast by the network. The precompensated TA is then calculated as twice the sum of the propagation delay on the feeder link and the propagation delay between the satellite and the UE. • The gNB broadcasts a timestamp (in System Information Block 9 (SIB9)) that the UE compares with a reference timestamp obtained from the GNSS. Based on the difference between these two timestamps, UE can calculate the propagation delay between gNB and UE, and the precompensation TA is twice this propagation delay.

結合RA程序,gNB基於RA前綴之接收時間而在隨機存取回應訊息(在4步驟RA中)或MsgB (在2步驟RA中)中提供UE一準確(即,精細調整) TA。gNB可隨後基於自UE接收上行鏈路傳輸之時序而使用一計時提前命令MAC CE (或一絕對計時提前命令MACCE)來調整UE之TA。UE之TA之此網路控制之一目標通常係將UE在gNB之接收器處之上行鏈路傳輸之時間誤差保持在循環前綴內(如對於上行鏈路傳輸之正確解碼係必需)。TA控制框架亦包含gNB為UE組態之一時間對準計時器。每次gNB調整UE之TA時重新起動時間對準計時器且若時間對準計時器到期,則不允許UE在無需一先前RA程序之情況下在上行鏈路中傳輸,其用於提供UE一有效計時提前。對於NTN,3GPP亦同意,除gNB對UE之TA之控制之外,允許UE使用其位置(例如自GNSS量測獲得)及服務衛星之星曆資料之知識及來自gNB之饋線鏈路延遲資訊,基於對UE-gNB往返時間(RTT)中之變化之估計而自主地更新其TA。In conjunction with the RA procedure, the gNB provides the UE with an accurate (ie, fine-tuned) TA in the Random Access Response message (in 4-step RA) or MsgB (in 2-step RA) based on the reception time of the RA prefix. The gNB may then use a Timing Advance Command MAC CE (or an Absolute Timing Advance Command MAC CE) to adjust the TA of the UE based on the timing of receiving uplink transmissions from the UE. One goal of this network control of the UE's TA is typically to keep the timing error of the UE's uplink transmissions at the gNB's receiver within the cyclic prefix (as necessary for correct decoding of the uplink transmissions). The TA control frame also includes a time alignment timer configured by the gNB for the UE. The time alignment timer is restarted every time the gNB adjusts the UE's TA and if the time alignment timer expires, the UE is not allowed to transmit in the uplink without a previous RA procedure, which is used to provide the UE 1. The effective timing advances. For NTN, 3GPP also agrees that, in addition to the gNB's control of the UE's TA, the UE is allowed to use knowledge of its position (e.g. obtained from GNSS measurements) and ephemeris data of the serving satellites and feeder link delay information from the gNB, Its TA is updated autonomously based on the estimation of changes in UE-gNB round trip time (RTT).

一第二相關態樣係不僅UE與一衛星之間或UE與一gNB之間的傳播延遲在NTN中非常長,且歸因於大距離,兩個不同衛星或兩個不同gNB之間的傳播延遲之差異在與包含發訊程序之蜂窩通信相關之時標可較為顯著,即使當衛星/gNB服務於相鄰小區時亦如此。此對涉及由不同衛星及/或不同gNB服務之兩個小區中之接收或傳輸之所有程序均有影響。A second correlation pattern is that not only the propagation delay between a UE and a satellite or between a UE and a gNB is very long in NTN, but also due to the large distance, the propagation delay between two different satellites or two different gNBs The difference in latency can be more pronounced at timescales associated with cellular communications involving signaling procedures, even when satellites/gNBs serve neighboring cells. This has implications for all procedures involving reception or transmission in two cells served by different satellites and/or different gNBs.

與非地面網路中之長傳播延遲/RTT相關之一第三重要態樣係引入一額外參數來補償長傳播延遲/RTT。在地面蜂巢式網路中,UE-gNB RTT可在自一小區中之接近零至幾十微秒之範圍內。除傳播延遲/RTT之絕對大小之外,非地面網路中之一主要差異係,即使在其中傳播延遲/RTT最小之小區中之位置處,傳播延遲/RRT將較大且不接近零。事實上,與傳播延遲/RTT相比,一NTN小區內之傳播延遲/RTT之變動較小。此有利於引入基本上照顧到地面上之小區之佔據面積與衛星上之間的RTT之一偏移,而包含發訊及控制回路之其他機構在偏移之頂部上之小區內之RTT變動之較小範圍內照顧到RTT相依態樣。為此,3GPP已同意引入此一參數,其指定為K offset(或有時K_offset)。 A third important aspect related to long propagation delay/RTT in non-terrestrial networks is to introduce an additional parameter to compensate for long propagation delay/RTT. In terrestrial cellular networks, the UE-gNB RTT can range from close to zero to tens of microseconds in a cell. Aside from the absolute magnitude of the propagation delay/RTT, one major difference in non-terrestrial networks is that even at locations in the cell where the propagation delay/RTT is smallest, the propagation delay/RTT will be large and not close to zero. In fact, the variation of propagation delay/RTT within an NTN cell is small compared to propagation delay/RTT. This facilitates the introduction of an offset that basically takes care of the RTT between the footprint of the cell on the ground and the satellite, while other mechanisms including signaling and control loops vary in RTT within the cell on top of the offset Take care of RTT dependence in a small range. To this end, 3GPP has agreed to introduce such a parameter, designated Koffset (or sometimes K_offset).

K offset參數可潛在地用於各種計時相關機構中,但本文中相關之應用在實體上行鏈路共用通道(PUSCH)上之上行鏈路傳輸之排程中使用該參數。K offset用於指示上行鏈路授予(UL授予)及由UL授予分配之PUSCH傳輸資源之間的一額外延遲以添加至含有UL授予之下行鏈路控制資訊(DCI)中之時隙偏移參數K 2。因此,UL授予及分配PUSCH傳輸資源之時隙之間的偏移係K offset+ K 2。當在上行鏈路排程中以此方式使用時,K offset可據稱用於確保UE歸因於UE必須應用之較大TA而從未排程為在UE接收UL授予之時間點之前之一時間點傳輸。在3GPP中,亦已討論使網路之K offset組態考量UE可已用發訊UE已使用之TA。 The K offset parameter can potentially be used in various timing related mechanisms, but the relevant application herein uses this parameter in the scheduling of uplink transmissions on the Physical Uplink Shared Channel (PUSCH). K offset is used to indicate an additional delay between the uplink grant (UL grant) and the PUSCH transmission resources allocated by the UL grant to be added to the slot offset parameter in the downlink control information (DCI) containing the UL grant K 2 . Therefore, the offset between the UL grant and the time slot in which PUSCH transmission resources are allocated is K offset + K 2 . When used in this way in uplink scheduling, K offset can purportedly be used to ensure that the UE is not scheduled to be one before the point in time when the UE receives the UL grant due to the larger TA that the UE has to apply point-in-time transmission. In 3GPP, it has also been discussed to make the K offset configuration of the network take into account the TA that the UE can already use for the sending UE.

與時序密切相關之一第四重要態樣係由衛星之運動誘發之一都卜勒頻移。在次6 GHz頻帶中,存取鏈路可曝露於約10 kHz至約100 kHz之都卜勒頻移而在較高頻帶中按比例較高。另外,都卜勒頻移在S頻帶中以高達每秒幾百Hz之一速率變化且在Ka頻帶中以每秒幾千kHz之一速率變化。A fourth important aspect closely related to timing is a Doppler shift induced by the motion of the satellite. In the sub-6 GHz band, the access link may be exposed to a Doppler shift of about 10 kHz to about 100 kHz and proportionally higher in the higher frequency bands. Additionally, the Doppler shift varies at a rate of up to a few hundred Hz per second in the S-band and at a rate of several thousand kHz per second in the Ka-band.

星曆資料 在3GPP TR 38.821 v.16.1.0中,已捕獲應提供至UE之星曆資料以(例如)輔助將一定向天線(或一天線波束)指向衛星且計算一正確TA及都卜勒頻移。關於如何提供及更新星曆資料之程序尚未詳細研究,但在系統資訊中廣播星曆資料係一種選擇。 ephemeris data In 3GPP TR 38.821 v.16.1.0, ephemeris data that should be provided to the UE is acquired to, for example, assist in pointing a directional antenna (or an antenna beam) at a satellite and calculating a correct TA and Doppler shift. The procedure for how to provide and update ephemeris data has not been studied in detail, but broadcasting ephemeris data in system information is an option.

一衛星軌道可使用六個參數來完全描述。確切地選擇哪一組參數可由使用者決定,且諸多不同表示係可行。例如,天文學中經常使用之參數之一選擇係軌道集(a、ε、i、Ω、ω、t),如圖2中所繪示。如圖中所描繪,半長軸a及偏心率ε描述軌道橢圓之形狀及大小;傾角i、上升節點Ω之赤經、近心點ω之輻角判定其在空間中之位置,且曆元t判定一參考時間(例如衛星透過近心點移動之時間)。A satellite orbit can be fully described using six parameters. Exactly which set of parameters to choose is up to the user, and many different representations are possible. For example, one of the choices of parameters often used in astronomy is the set of orbits (a, ε, i, Ω, ω, t), as shown in FIG. 2 . As depicted in the figure, the semi-major axis a and eccentricity ε describe the shape and size of the orbital ellipse; the inclination i, the right ascension of the ascending node Ω, and the argument of the pericentric point ω determine its position in space, and the epoch t determines a reference time (for example, the time when the satellite moves through the periapsis).

作為一不同參數化之一實例,雙線元件(TLE)使用平均運動n及平均異常M替代a及t。一完全不同參數集係一衛星之位置及速度向量(x、y、z、v x、v y、v z)。此等有時被稱為軌道狀態向量。其等可自軌道元件導出且反之亦然,因為其等所含之資訊係等效的。所有此等公式(及諸多其他公式)均係用於NTN中之星曆資料之格式之可能選擇。為達成進一步進展,應商定資料之格式。 As an example of a different parameterization, a two-line element (TLE) uses mean motion n and mean anomaly M instead of a and t. A completely different set of parameters is the position and velocity vectors (x, y, z, v x , v y , v z ) of a satellite. These are sometimes called orbital state vectors. They can be derived from track elements and vice versa, since the information they contain is equivalent. All of these formulas (and many others) are possible choices for the format of the ephemeris data in NTN. To achieve further progress, the format of the information should be agreed upon.

重要的係一UE可以至少幾米之準確度判定一衛星之位置。然而,一些研究已展示當使用TLE之事實標準時,此可難以實現。另一方面,LEO衛星通常具有GNSS接收器且可以某米級準確度判定其位置。It is important that a UE can determine the position of a satellite with an accuracy of at least a few meters. However, some studies have shown that this can be difficult to achieve when using the de facto standard of TLE. On the other hand, LEO satellites usually have GNSS receivers and can determine their position with some meter accuracy.

在研究項目期間討論且在3GPP TR 38.821 v.16.1.0中捕獲之另一態樣係星曆資料之有效時間。通常,衛星位置之預測隨著所使用之星曆資料之使用年限增加而降級。此係歸因於大氣阻力、衛星之操縱、所使用之軌道模型中之缺陷等。因此,例如,公用TLE資料經常更新。更新頻率取決於衛星及其軌道且對於曝露於強烈大氣阻力且需要經常執行修正機動之非常低軌道上之衛星,更新頻率在自每週至一天多次之範圍內。Another aspect discussed during the research project and captured in 3GPP TR 38.821 v.16.1.0 is the validity time of ephemeris data. In general, predictions of satellite positions degrade with the age of the ephemeris data used. This is due to atmospheric drag, steering of the satellite, imperfections in the orbital model used, etc. Thus, for example, public TLE data are frequently updated. The update frequency depends on the satellite and its orbit and ranges from weekly to multiple times a day for satellites in very low orbits that are exposed to strong atmospheric drag and need to frequently perform corrective maneuvers.

因此,儘管看起來可能提供所需準確度之衛星位置,但需要注意滿足此等要求。例如,當選擇用於軌道傳播之星曆資料格式或軌道模型時需要小心。Therefore, while it may seem possible to provide satellite positions with the required accuracy, care needs to be taken to meet these requirements. For example, care needs to be taken when selecting the ephemeris data format or orbit model for orbit propagation.

關於NTN之3GPP研究項目之一些結果 3GPP中之研究項目之結果為3GPP中之NTN之規範工作奠定基礎。下文包含上文所討論之研究項目及所得技術報告之一些相關資訊: NTN之涵蓋圖案在3GPP TR 38.811 v.15.4.0之第4.6節中描述如下: 衛星或飛行器通常在一給定區域上產生若干波束。 波束之佔據面積通常係橢圓形。 波束佔據面積可隨著衛星或飛行器在其軌道上之運動而在地球上移動。替代地,波束佔據面積可固定在地球上,在此等情況中,一些波束指向機構(機械或電子轉向特徵)將補償衛星或飛行器運動。 Some results of 3GPP research projects on NTN The results of the research items in 3GPP lay the foundation for the specification work of NTN in 3GPP. The following contains some relevant information on the research project discussed above and the resulting technical report: The coverage pattern of NTN is described in Section 4.6 of 3GPP TR 38.811 v.15.4.0 as follows: Satellites or aircraft usually generate several beams over a given area. The footprint of the beam is usually elliptical. The beam footprint can move across the earth as the satellite or vehicle moves in its orbit. Alternatively, the beam footprint could be fixed on Earth, in which case some beam pointing mechanism (mechanical or electronic steering features) would compensate for satellite or vehicle motion.

表2中列出典型波束佔據面積大小,其對應於3GPP TR 38.811 v.15.4.0之第4.6節之表4.5.1。 表2:典型波束佔據面積大小[1] 屬性 GEO -GEO 天空 以直徑為單位之波束佔據面積大小 200 km至1000 km 100 km至500 km 5 km至200 km Typical beam footprint sizes are listed in Table 2, which corresponds to Table 4.5.1 in Section 4.6 of 3GPP TR 38.811 v.15.4.0. Table 2: Typical Beam Occupancy Area Size [1] Attributes GEOs Non -GEO Sky The area occupied by the beam in units of diameter 200 km to 1000 km 100km to 500km 5 km to 200 km

圖3繪示如3GPP TR 38.811 v.15.4.0中所討論之各種NTN存取網路之典型波束圖案。Figure 3 shows typical beam patterns for various NTN access networks as discussed in 3GPP TR 38.811 v.15.4.0.

第二研究項目3GPP TR 38.821 v.16.1.0之TR描述NTN工作之場景如下: 非地面網路通常以以下元件為特徵: -將非地面網路連接至一公共資料網路之一或若干衛星閘道 -一GEO衛星由跨衛星目標涵蓋範圍(例如區域或甚至大陸涵蓋範圍)部署之一或若干衛星閘道饋電。吾人假定一小區中之UE僅由一個衛星閘道服務 -一非GEO衛星一次由一個衛星閘道連續服務。系統確保連續服務衛星閘道之間的服務及饋線鏈路連續性且具有足夠持續時間以進行移動性錨定及交遞 The TR of the second research project 3GPP TR 38.821 v.16.1.0 describes the working scenario of NTN as follows: Non-terrestrial networks are often characterized by the following elements: - Connecting non-terrestrial networks to one or several satellite gateways of a public data network - A GEO satellite is fed by one or several satellite gateways deployed across satellite target coverage (eg regional or even continental coverage). We assume that UEs in a cell are served by only one satellite gateway - A non-GEO satellite is continuously served by one satellite gateway at a time. The system ensures continuity of service and feeder links between continuous service satellite gateways with sufficient duration for mobility anchoring and handover

如表3中所描繪,考量四種場景且在表4中詳細描述,其等分別對應於3GPP TR 38.821 v.16.1.0之表4.2-1及表4.2-2。 表3:參考場景    透明衛星 代表衛星 基於GEO之非地面存取網路 場景A 場景B 基於LEO之非地面存取網路 場景C 場景D 表4:參考場景參數 場景 基於GEO之非地面存取網路(場景A及B) 基於LEO之非地面存取網路(場景C & D) 軌道類型 就相當於一給定地球點之仰角/方位角,概念站保持位置固定。 圍繞地球之圓形軌道運行 高度 35,786 km 600 km 1,200 km 波譜(服務鏈路) <6 GHz (e.g. 2 GHz) >6 GHz (e.g. DL 20 GHz, UL 30 GHz) 最大頻道頻寬(服務鏈路) 對於頻帶 < 6 GHz,30 MHz 對於頻帶> 6 GHz,400 MHz 酬載 場景 A:透明 (僅包含射頻功能) 場景B:再生(包含RAN功能之全部或部分) 場景C:透明 (僅包含射頻功能) 場景D:再生(包含RAN功能之全部或部分) 衛星間鏈路 場景C:否 場景D:是 地球固定波束 場景C:否(波束與衛星一起移動) 場景 D,選項 1:是(操縱波束) ,參閱注釋 1 場景 D,選項 2:否(波束與衛星一起移動) 天底處之最大波束佔據面積直徑 500 km 200 km 衛星閘道及使用者設備兩者之最小仰角 10° 10° 最小仰角處之衛星與使用者設備之間的最大距離 40,586 km 1,932 km (600 km高度) 3,131 km (1,200 km高度) 最大往返延遲(僅傳播延遲) 場景A:562 ms (服務及饋線鏈路) 場景 B:281ms 場景C:25.76 ms (透明酬載:服務及饋線鏈路) 場景 D:12.88 ms (僅再生酬載:僅服務鏈路) 一波束內之最大延遲變動(地球固定使用者設備) 16 ms 4.44ms (600km) 6.44ms (1200km) 一波束內之最大差分延遲 1.6 ms 0.65 ms (*) 最大都卜勒頻移(地球固定使用者設備) 0.93 ppm 24 ppm (*) 最大都卜勒頻移變動(地球固定使用者設備) 0.000 045 ppm/s 0.27ppm/s (*) 地球上之使用者設備運動 1000 km/h (例如飛行器) 500 km/h (例如高速列車) 可能1000 km/h (例如飛行器) 使用者設備天線類型 全向天線(線性極化),假定0 dBi 定向天線(圓形計劃中之高達60 cm之等效孔徑直徑) 使用者設備Tx功率 全向天線:具有高達200 mV之UE功率種類3 定向天線:高達4 W 使用者設備雜訊指數 全向天線:7 dB 定向天線:1.2 dB 服務鏈路 3GPP界定之新無線 饋線鏈路 3GPP或非3GPP界定之無線電介面 3GPP或非3GPP界定之無線電介面 As depicted in Table 3, four scenarios are considered and detailed in Table 4, which correspond to Table 4.2-1 and Table 4.2-2 of 3GPP TR 38.821 v.16.1.0, respectively. Table 3: Reference Scenarios transparent satellite Representative satellite Non-terrestrial access network based on GEO Scenario A Scenario B Non-terrestrial access network based on LEO Scenario C Scenario D Table 4: Reference scene parameters Scenes GEO-based non-terrestrial access network (scenario A and B) Non-terrestrial access network based on LEO (Scenario C & D) track type Equivalent to the elevation/azimuth of a given earth point, the concept station remains fixed. circular orbit around the earth high 35,786 km 600 km 1,200 km Spectrum (Service Link) <6 GHz (eg 2 GHz) >6 GHz (eg DL 20 GHz, UL 30 GHz) Maximum channel bandwidth (service link) For frequency bands < 6 GHz, 30 MHz For frequency bands > 6 GHz, 400 MHz payload Scenario A: Transparent (includes radio frequency functions only) Scenario B: Regeneration (includes all or part of RAN functions) Scenario C: Transparent (includes radio frequency functions only) Scenario D: Regeneration (includes all or part of RAN functions) inter-satellite link no Scenario C: No Scenario D: Yes Earth Fixed Beam yes Scenario C: No (beam moves with satellite) Scenario D, option 1: Yes (steering beam), see note 1 Scenario D, option 2: No (beam moves with satellite) The diameter of the largest beam occupied area at the nadir 500km 200km Minimum elevation angle of both satellite gateway and user equipment 10° 10° Maximum distance between satellite and user equipment at minimum elevation angle 40,586km 1,932 km (600 km altitude) 3,131 km (1,200 km altitude) Maximum round trip delay (propagation delay only) Scenario A: 562ms (service and feeder link) Scenario B: 281ms Scenario C: 25.76 ms (transparent payload: service and feeder link) Scenario D: 12.88 ms (regenerating payload only: service link only) Maximum delay variation within a beam (Earth fixed user equipment) 16ms 4.44ms (600km) 6.44ms (1200km) Maximum differential delay within a beam 1.6ms 0.65 ms (*) Maximum Doppler shift (Earth fixed user equipment) 0.93ppm 24 ppm (*) Maximum Doppler Shift Variation (Earth Fixed User Equipment) 0.000 045 ppm/s 0.27ppm/s (*) User Equipment Movement on Earth 1000 km/h (eg aircraft) 500 km/h (eg high-speed train) possibly 1000 km/h (eg aircraft) User Equipment Antenna Type Omnidirectional antenna (linear polarization), assuming 0 dBi Directional antenna (up to 60 cm equivalent aperture diameter in circular plan) User equipment Tx power Omnidirectional Antenna: Up to 200 mV UE Power Category 3 Directional Antenna: Up to 4 W UE Noise Index Omni-directional antenna: 7 dB Directional antenna: 1.2 dB service link New Wireless defined by 3GPP feeder link 3GPP or non-3GPP defined radio interface 3GPP or non-3GPP defined radio interface

應注意各衛星具有使用波束成形技術操縱波束引向地球上之固定點之能力。此可適用於對應於衛星之可見性時間之一時間週期。基於閘道及使用者設備兩者之最小仰角,計算一波束(地球固定使用者設備)內之最大延遲變動。基於天底處之最大波束佔據面積直徑計算一波束內之最大差分延遲。It should be noted that each satellite has the ability to steer beams towards fixed points on Earth using beamforming techniques. This may apply for a period of time corresponding to the satellite's visibility time. Based on the minimum elevation angle of both the gateway and the UE, the maximum delay variation within a beam (Earth-fixed UE) is calculated. The maximum differential delay within a beam is calculated based on the maximum beam footprint diameter at nadir.

對於場景D (其係具有再生酬载之LEO),已列出地球固定及地球移動波束兩者。因此,當吾人考量固定/非固定波束時,亦存在一額外場景。3GPP TR 38.821 v.16.1.0中之5種場景之完整列表如下: ·場景A - GEO、透明衛星、地球固定波束; ·場景B - GEO、再生衛星、地球固定波束; ·場景C - LEO、透明衛星、地球移動波束; ·場景D1 - LEO、再生衛星、地球固定波束; ·場景D2 - LEO、再生衛星、地球移動波束。 For Scenario D, which is a LEO with a regenerative payload, both Earth-fixed and Earth-mobile beams are listed. Therefore, there is also an additional scenario when we consider fixed/non-stationary beams. The complete list of the 5 scenarios in 3GPP TR 38.821 v.16.1.0 is as follows: Scenario A - GEO, Transparent Satellite, Earth Fixed Beam; Scenario B - GEO, regenerative satellites, Earth fixed beams; Scenario C - LEO, Transparent Satellite, Earth Mobile Beam; Scenario D1 - LEO, regenerative satellite, Earth fixed beam; • Scenario D2 - LEO, regenerative satellite, Earth mobile beam.

長上行鏈路傳輸之分段預補償 在Rel-17 IoT NTN工作項目(WI)中,已同意為長上行鏈路傳輸引入上行鏈路傳輸之分段預補償。此前,UE將在傳輸開始時調整其上行鏈路時序。對於IoT NTN,網路可為UE組態一特定持續時間之一傳輸片段,且UE可在每個此傳輸片段開始時調整其時序及頻率。已引入此特徵以補償NTN場景(例如LEO)中之大時序及頻移。 Segment precompensation for long uplink transmissions In the Rel-17 IoT NTN work item (WI), it has been agreed to introduce segment pre-compensation for uplink transmissions for long uplink transmissions. Previously, the UE would adjust its uplink timing at the start of the transmission. For IoT NTN, the network can configure a transmission segment of a specific duration for the UE, and the UE can adjust its timing and frequency at the beginning of each such transmission segment. This feature has been introduced to compensate for large timing and frequency shifts in NTN scenarios such as LEO.

在3GPP RAN1#106-e會議中,針對長UL傳輸之分段預補償達成以下協議: 協議:用於實體隨機存取通道(PRACH)傳輸之UE預補償之上行鏈路(UL)傳輸片段之持續時間係由網路組態之若干隨機存取通道(RACH)重複單元 ·對於NB-IoT,重複單元係P個符號群組。 ·對於增強機器型通信(eMTC),重複單元係包含防護週期之一個前置碼。 ·對於未來研究(FFS):組態細節 協議:用於PUSCH傳輸之UE預補償之UL傳輸片段之持續時間係由網路組態之若干PUSCH重複單元: ·對於NB-IoT,重複單位係

Figure 02_image001
·對於eMTC,重複單元係用於子實體資源區塊(子PRB)分配之
Figure 02_image003
,其中T slot= 0.5 ms。對於全實體資源區塊(全PRB)分配,重複單元係一個子訊框。 ·注釋1:在TS 36.211 10.1.2.3及10.1.3.6中針對NB-IoT界定
Figure 02_image005
Figure 02_image007
Figure 02_image009
。 ·注釋2:在TS 36.211、5.2.3A中針對eMTC界定M_^UL_slot。 ·FFS:RAN1進一步討論有效及無效子訊框 ·FFS:組態細節 協議:對於NB-IoT,若至N slots時隙之一映射或針對窄頻PUSCH (NPUSCH)傳輸之UE預補償之一UL傳輸片段中之映射之一重複含有與任何經組態之窄頻實體隨機存取通道(NPRACH)資源重疊之一資源元件,則在重疊N slots時隙中之NPUSCH傳輸延遲直至下一個N slots時隙不與任何經組態之NPRACH資源重疊。 注釋:N slots界定於TS 36.211、10.1.3.6中 協議:UL傳輸片段持續時間由網路組態 ·FFS:組態發訊之細節。 協議: ·對於NB-IoT NTN,網路在一k位元欄中為各PRACH前置碼格式之UL傳輸片段持續時間組態K個值之一者,其中k位元欄之大小及K個候選值之數目取決於前置碼格式。 ○格式0及格式1:3位元欄,K = 6個候選值2.4.(T CP+ T SEQ)、4.4.(T CP+ T SEQ)、8.4.(T CP+ T SEQ), 16.4.(T CP+ T SEQ)、32.4.(T CP+ T SEQ)、64.4.(T CP+ T SEQ) ○格式2:2位元欄,K = 4個候選值2.6.(T CP+ T SEQ)、4.6.(T CP+ T SEQ)、8.6.(T CP+ S TEQ)、16.6 (T CP/T SEQ) ·FFS:K個候選值之向下範疇,k位元欄之大小 ·FFS:相同片段持續時間是否可用於一前置碼格式內之所有前置碼 協議: ·對於eMTC,網路在一k位元欄中為PRACH之UL傳輸片段持續時間組態K個值之一者 ·FFS:K個候選值,k位元欄之大小 協議: ·對於NB-IoT/eMTC NTN,網路在一k位元欄中為NPUSCH/PUSCH之UL傳輸片段持續時間組態K個候選值之一者。 ○對於NB-IoT,具有一最大數目K = 8個候選值2 ms、4 ms、8 ms、16 ms、32 ms、64 ms、128 ms、256 ms之最大3位元欄 ·FFS:K個候選值之向下範疇,k位元欄之大小 協議: ·UL傳輸片段持續時間由UE特定無線電資源控制(RRC)發訊或藉由在系統資訊區塊(SIB)中發訊來提供。 ·注釋:NB-IoT之UL傳輸片段持續時間之值可不同於eMTC之值。 In the 3GPP RAN1#106-e meeting, the following agreement was reached on segment pre-compensation for long UL transmissions: Protocol: Segmentation of uplink (UL) transmission segments for UE pre-compensation for physical random access channel (PRACH) transmission The duration is a number of Random Access Channel (RACH) repeating units configured by the network. For NB-IoT, the repeating unit is P groups of symbols. • For Enhanced Machine Type Communication (eMTC), the repeat unit contains a preamble of the guard period. For future studies (FFS): Configuration details Protocol: The duration of the UL transmission segment for UE precompensation for PUSCH transmission is a number of PUSCH repetition units configured by the network: For NB-IoT, the repetition unit is
Figure 02_image001
For eMTC, repeating units are used for sub-Physical Resource Block (sub-PRB) allocation
Figure 02_image003
, where T slot = 0.5 ms. For a full physical resource block (full PRB) allocation, the repetition unit is a subframe. Note 1: Defined for NB-IoT in TS 36.211 10.1.2.3 and 10.1.3.6
Figure 02_image005
,
Figure 02_image007
,
Figure 02_image009
. • Note 2: M_^UL_slot is defined for eMTC in TS 36.211, 5.2.3A. FFS: RAN1 further discusses valid and invalid subframes FFS: Configuration details protocol: For NB-IoT, if one of N slots is mapped or one of UE precompensation for narrowband PUSCH (NPUSCH) transmission UL If one of the repetitions of the mapping in the transmission segment contains a resource element that overlaps with any configured narrowband physical random access channel (NPRACH) resource, then the NPUSCH transmission in the overlapping N slots slots is delayed until the next N slots The slot does not overlap with any configured NPRACH resources. Note: N slots are defined in TS 36.211, 10.1.3.6 Protocol: UL transmission segment duration is configured by the network · FFS: Details of configuration signaling. Protocol: For NB-IoT NTN, the network configures one of K values for the UL transmission segment duration of each PRACH preamble format in a k-bit column, where the size of the k-bit column and K The number of candidate values depends on the preamble format. ○ Format 0 and Format 1: 3-bit column, K = 6 candidate values 2.4.(T CP + T SEQ ), 4.4.(T CP + T SEQ ), 8.4.(T CP + T SEQ ), 16.4. (T CP + T SEQ ), 32.4. (T CP + T SEQ ), 64.4. (T CP + T SEQ ) o Format 2: 2-bit column, K = 4 candidate values 2.6. (T CP + T SEQ ), 4.6. (T CP + T SEQ ), 8.6. (T CP + S TEQ ), 16.6 (T CP /T SEQ ) FFS: the downward category of K candidate values, the size of the k-bit column FFS : Whether the same segment duration can be used for all preamble protocols within a preamble format: For eMTC, the network configures one of K values for the UL transmission segment duration of PRACH in a k-bit column FFS: K candidate values, size of k-bit field Protocol: For NB-IoT/eMTC NTN, the network configures K candidate values for NPUSCH/PUSCH UL transmission segment duration in a k-bit field one of them. ○ For NB-IoT, there is a maximum number of K = 8 candidate values 2 ms, 4 ms, 8 ms, 16 ms, 32 ms, 64 ms, 128 ms, 256 ms maximum 3-bit field FFS: K Down range of candidate values, size of k-bit field Protocol: • UL transmission segment duration is provided by UE-specific Radio Resource Control (RRC) signaling or by signaling in System Information Block (SIB). Note: The value of UL transmission segment duration for NB-IoT may be different from that of eMTC.

在3GPP RAN1#106-bis-e會議中,針對長UL傳輸之分段預補償達成以下協議: 協議:UL傳輸片段之組態至少在系統資訊區塊(SIB)上指示用於初始存取 ·經由RRC_CONNECTED中之UE特定RRC發訊之FFS。 協議:對於eMTC PUSCH,用於指示上行鏈路傳輸片段持續時間之K = 8個值之一3位元欄: ·全PRB分配(單位:子訊框):2 4 8 16 32 64 128 256 ·子PRB分配(單位:資源單位):1 2 4 8 16 32 64 128 協議:對於eMTC,在SIB中界定一3位元欄以指示PRACH之UL傳輸片段持續時間之以下K = 8個值: ·(T CP+ T SEQ+ T GP),2 * (T CP+ T SEQ+ T GP)、4 * (T CP+ T SEQ+ T GP)、8 * (T CP+ T SEQ+ T GP)、16 * (T CP+ T SEQ+ T GP)、32 * (T CP+ T SEQ+ T GP)、64 * (T CP+ T SEQ+ T GP)、128 * (T CP+ T SEQ+ T GP) 協議:對於eMTC,相同值用於所有PRACH前置碼之片段持續時間 協議:對於NB-IOT,對於一特定NPRACH格式,相同值用於所有NPRACH前置碼之片段持續時間 In the 3GPP RAN1#106-bis-e meeting, the following agreement was reached for segment pre-compensation for long UL transmissions: Protocol: Configuration of UL transmission segments is at least indicated on the system information block (SIB) for initial access· FFS via UE-specific RRC signaling in RRC_CONNECTED. Protocol: For eMTC PUSCH, K = one of 8 values for indicating uplink transmission segment duration 3-bit column: · Full PRB allocation (unit: subframe): 2 4 8 16 32 64 128 256 · Sub-PRB allocation (unit: resource unit): 1 2 4 8 16 32 64 128 Protocol: For eMTC, a 3-bit column is defined in the SIB to indicate the following K = 8 values of the UL transmission segment duration of the PRACH: (T CP + T SEQ + T GP ), 2 * (T CP + T SEQ + T GP ), 4 * (T CP + T SEQ + T GP ), 8 * (T CP + T SEQ + T GP ), 16 * (T CP + T SEQ + T GP ), 32 * (T CP + T SEQ + T GP ), 64 * (T CP + T SEQ + T GP ), 128 * (T CP + T SEQ + T GP ) Protocol: For eMTC, the same value is used for the segment duration of all PRACH preambles Protocol: For NB-IOT, for a specific NPRACH format, the same value is used for the segment duration of all NPRACH preambles

然而,當前存在一些挑戰。例如,在非地球同步軌道(NGSO)衛星(尤其係LEO場景)中,歸因於大時序及頻移之TA及頻率誤差可非常高。在Rel-17 IoT NTN WI中,將為此等長UL傳輸引入分段預補償。例如,UE可在一UL持續傳輸期間之每個傳輸片段開始時調整其UL傳輸計時及頻率。因此,需要方法及發訊來促進分段預補償同時考量不同UE能力。However, there are currently some challenges. For example, in non-geosynchronous orbit (NGSO) satellites, especially LEO scenarios, TA and frequency errors due to large timing and frequency shifts can be very high. In Rel-17 IoT NTN WI, segment precompensation will be introduced for this equal-length UL transmission. For example, a UE may adjust its UL transmission timing and frequency at the beginning of each transmission segment during a UL transmission duration. Therefore, methods and signaling are needed to facilitate segment pre-compensation while taking into account different UE capabilities.

本發明之某些態樣及其實施例可為此等或其他挑戰提供解決方案。例如,提供方法及系統以支援相對於IoT NTN之分段預補償之不同類型之UE能力。另外或替代地,某些方法及系統映射提供TA相依間隙組態以最小化插入上行鏈路間隙用於分段預補償之需要。Certain aspects of the invention and embodiments thereof may provide solutions to these and other challenges. For example, methods and systems are provided to support different types of UE capabilities with respect to segment pre-compensation for IoT NTN. Additionally or alternatively, certain methods and system mappings provide for TA-dependent gap configurations to minimize the need to insert uplink gaps for segment pre-compensation.

根據某些實施例,一種由一UE用於促進一IoT NTN中之長上行鏈路傳輸之方法包含將傳輸至一網路節點用於判定該UE是否待在至少一個上行鏈路傳輸中之相鄰傳輸片段之間插入至少一個間隙之資訊。該處理電路系統經組態以自該網路節點接收組態該UE以當傳輸至該網路節點之該資訊指示待丟棄及/或擊穿至少一個符號、時隙及/或子訊框以實施分段預補償時插入該至少一個間隙之組態資訊。替代地,該組態資訊組態該UE以當傳輸至該網路節點之該資訊指示待丟棄及/或擊穿至少一個樣本以實施分段預補償時不插入該至少一個間隙。According to some embodiments, a method by a UE for facilitating long uplink transmissions in an IoT NTN comprises sending the transmissions to a network node for determining whether the UE is in at least one uplink transmission. Information of at least one gap is inserted between adjacent transmission segments. The processing circuitry is configured to receive from the network node the information configuring the UE to when transmitted to the network node indicates that at least one symbol, slot and/or subframe is to be discarded and/or punctured to The configuration information of the at least one gap is inserted when performing segment pre-compensation. Alternatively, the configuration information configures the UE not to insert the at least one gap when the information transmitted to the network node indicates that at least one sample is to be discarded and/or punctured for segment precompensation.

根據某些實施例,一種用於促進一IoT NTN中之長上行鏈路傳輸之UE包含經組態以將傳輸至一網路節點用於判定該UE是否待在至少一個上行鏈路傳輸中之相鄰傳輸片段之間插入至少一個間隙之資訊之處理電路系統。該處理電路系統經組態以自該網路節點接收之組態資訊,組態該UE以當傳輸至該網路節點之該資訊指示待丟棄及/或擊穿至少一個符號、時隙及/或子訊框以實現分段預補償時插入該至少一間隙。視情況,當發送至網路節點之資訊指示待丟棄及/或穿孔至少一樣本以實現分段預補償時,配置資訊將UE經組態以不插入至少一間隙。According to certain embodiments, a UE for facilitating long uplink transmissions in an IoT NTN comprises a UE configured to pass the transmission to a network node for determining whether the UE is in at least one uplink transmission Information processing circuitry for inserting at least one gap between adjacent transmission segments. The processing circuitry is configured with configuration information received from the network node to configure the UE to when the information transmitted to the network node indicates at least one symbol, slot and/or to be discarded and/or punctured or sub-frame to insert the at least one gap when implementing segment pre-compensation. Optionally, the configuration information configures the UE not to insert at least one gap when the information sent to the network node indicates that at least one sample is to be discarded and/or punctured for segment pre-compensation.

根據某些實施例,一種由一網路節點用於促進一IoT NTN中之長上行鏈路傳輸之方法包含自一UE接收用於判定該UE是否待在至少一個上行鏈路傳輸中之相鄰傳輸片段之間插入至少一個間隙之資訊。基於該資訊,當該資訊指示待丟棄及/或擊穿至少一個符號、時隙及/或子訊框以實施分段預補償時,該網路節點組態該UE以插入該至少一個間隙。替代地,當該資訊指示待丟棄及/或擊穿至少一個樣本以實施分段預補償時,該網路節點組態該UE以不插入該至少一個間隙。According to some embodiments, a method by a network node for facilitating long uplink transmissions in an IoT NTN comprises receiving from a UE a neighbor for determining whether the UE is staying in at least one uplink transmission Information for inserting at least one gap between transmission segments. Based on the information, the network node configures the UE to insert the at least one gap when the information indicates that at least one symbol, slot and/or subframe is to be dropped and/or punctured for segment precompensation. Alternatively, the network node configures the UE not to insert the at least one gap when the information indicates that at least one sample is to be discarded and/or punctured for segment pre-compensation.

根據某些實施例,一網路節點包含經組態以自一UE接收用於判定UE是否待在至少一個上行鏈路傳輸中之相鄰傳輸片段之間插入至少一個間隙之資訊之處理電路系統。基於該資訊,該處理電路系統經組態以當該資訊指示待丟棄及/或擊穿至少一個符號、時隙及/或子訊框以實施分段預補償時組態該UE以插入該至少一個間隙。替代地,當該資訊指示待丟棄及/或擊穿至少一樣本以實施分段預補償時,該網路節點組態該UE以不插入該至少一個間隙。According to some embodiments, a network node comprises processing circuitry configured to receive from a UE information for determining whether the UE is to insert at least one gap between adjacent transmission segments in at least one uplink transmission . Based on the information, the processing circuitry is configured to configure the UE to insert the at least one a gap. Alternatively, the network node configures the UE not to insert the at least one gap when the information indicates that at least one sample is to be discarded and/or punctured for fragmentation pre-compensation.

某些實施例可提供以下技術優點之一或多者。例如,某些實施例可提供支援相對於IoT NTN之分段預補償之不同類型之UE能力之一技術優點。作為另一實例,某些實施例可提供最小化插入上行鏈路間隙用於分段預補償之需要之一技術優點。Certain embodiments may provide one or more of the following technical advantages. For example, certain embodiments may provide a technical advantage of supporting different types of UE capabilities with respect to segment pre-compensation for IoT NTN. As another example, certain embodiments may provide a technical advantage of minimizing the need to insert uplink gaps for segment pre-compensation.

熟習技術者可易於明白其他優點。某些實施例可不具有、具有一些或所有所述優點。Other advantages will be readily apparent to those skilled in the art. Certain embodiments may have none, some, or all of the described advantages.

現將參考附圖更完全描述本文所預期之一些實施例。以實例之方式提供實施例以將標的之範疇傳達至熟習技術者。Some embodiments contemplated herein will now be described more fully with reference to the accompanying drawings. The embodiments are provided by way of example to convey the scope of the subject matter to those skilled in the art.

如上文所描述,在Rel-17 IoT NTN WI中,已同意引入UL預補償之傳輸片段。UE可在每個傳輸片段開始時自主地調整其用於UL傳輸之TA (及/或頻率)。網路將至少使用SIB來指示傳輸片段組態。As described above, in Rel-17 IoT NTN WI, it has been agreed to introduce UL precompensated transmission segments. The UE may autonomously adjust its TA (and/or frequency) for UL transmission at the beginning of each transmission segment. The network will at least use the SIB to indicate the transport segment configuration.

下文定義用於解釋本文揭示之實施例: ·A型UE:需要在相鄰傳輸片段之間插入一間隙以實施分段上行鏈路預補償。 ·B型UE:不需要在相鄰傳輸片段之間插入一間隙來實施分段上行鏈路預補償。其可(例如)藉由丟棄/插入樣本或擊穿符號等來實施。 The following definitions are used to explain the embodiments disclosed herein: • Type A UE: A gap needs to be inserted between adjacent transmission segments to implement segmented uplink precompensation. • Type B UE: No need to insert a gap between adjacent transmission segments to implement segmented uplink precompensation. It can be implemented, for example, by dropping/inserting samples or breaking down symbols, etc.

在一特定實施例中,對於B型UE,待丟棄以實施分段預補償之樣本或符號或時隙或子訊框或資源單元之數目在標準規範中係固定的。In a particular embodiment, for type B UEs, the number of samples or symbols or slots or subframes or resource units to be discarded for segment precompensation is fixed in the standard specification.

在另一特定實施例中,可在說明書中界定樣本或符號或時隙或子訊框或資源單元(待丟棄或擊穿)之數目之多個值。網路可使用系統資訊(SI)或UE特定RRC發訊來指示所支援之值或值之子集(來自說明書中界定之值)。應注意網路不需要在B型UE之傳輸片段之間插入一間隙。In another particular embodiment, multiple values for the number of samples or symbols or slots or subframes or resource units (to be discarded or punctured) may be defined in the specification. The network may use System Information (SI) or UE-specific RRC signaling to indicate supported values or a subset of values (from values defined in the specification). It should be noted that the network does not need to insert a gap between transmission segments for Type B UEs.

若為分段預補償引入UL間隙,將使排程複雜化,尤其係若間隙之需要取決於UE能力(即,A型或B型UE)。此外,若間隙較短(例如1 ms)且分散,則間隙將難以用於排程來自其他UE之UL傳輸。If UL gaps are introduced for segment pre-compensation, it will complicate scheduling, especially if the need for gaps depends on UE capabilities (ie, Type A or Type B UEs). Also, if the gaps are short (eg, 1 ms) and spread out, the gaps will be difficult to use to schedule UL transmissions from other UEs.

若(例如)對於B型UE需要UL間隙,則可減少對排程器之影響之一替代方法係由UE藉由以規則間隔(其可在說明書中固定或由網路組態)遮沒UL子訊框來產生間隙,藉此減少重複次數而非將其在時間上擴展。接著,無論UE是否需要間隙,排程器均可分配相同UL資源。An alternative method that can reduce the impact on the scheduler if, for example, UL gaps are required for Type B UEs is by UEs by blanking the UL at regular intervals (which can be fixed in the specification or configurable by the network) Subframes are used to create gaps, thereby reducing the number of repetitions rather than spreading them in time. Then, the scheduler can allocate the same UL resources no matter whether the UE needs gaps or not.

本文所描述之理念可適用於LTE-M NTN及NB-IoT NTN上行鏈路通道,諸如(例如)窄頻實體上行鏈路共用通道((N) PUSCH)、窄頻實體隨機存取通道((N PRACH)及實體上行鏈路控制通道(PUCCH)但亦可適用於其他UL通道。The concepts described herein can be applied to LTE-M NTN and NB-IoT NTN uplink channels such as, for example, Narrowband Physical Uplink Shared Channel ((N)PUSCH), Narrowband Physical Random Access Channel ((N)PUSCH) N PRACH) and physical uplink control channel (PUCCH) but can also be applied to other UL channels.

傳輸片段持續時間或片段持續時間係指由網路組態用於分段上行鏈路預補償之傳輸片段之持續時間。Transmission segment duration or segment duration refers to the duration of a transmission segment configured by the network for segmented uplink pre-compensation.

UE能力發訊 在一個實施例中,UE將其係一A型UE或B型UE發訊至網路。 UE capability signaling In one embodiment, the UE signals to the network whether it is a Type A UE or a Type B UE.

在一進一步特定實施例中,一A型UE發訊其需要在相鄰片段之間插入以實施分段上行鏈路預補償之間隙持續時間。可能間隙持續時間之一值範圍可在說明書中指定及/或由SI中之網路指示。In a further specific embodiment, a Type A UE signals the duration of gaps it needs to insert between adjacent segments to perform segmented uplink precompensation. A range of values for possible gap durations may be specified in the specification and/or indicated by the network in the SI.

在一進一步特定實施例中,一B型UE發訊至網路其需要丟棄/擊穿以實施分段預補償之樣本或符號或時隙或子訊框或資源單元之數目。In a further specific embodiment, a Type B UE signals to the network the number of samples or symbols or slots or subframes or resource units that it needs to discard/puncture to perform segment precompensation.

在一進一步特定實施例中,UE能力發訊取決於實體通道之類型。例如,一NB-IoT UE可發訊其需要NPUSCH傳輸之一間隙但不需要NPRACH傳輸之一間隙。類似地,一eMTC UE可發訊其需要PUSCH/PUCCH傳輸之一間隙但不需要PRACH傳輸之一間隙。In a further specific embodiment, UE capability signaling depends on the type of physical channel. For example, an NB-IoT UE may signal that it needs a gap in NPUSCH transmission but does not need a gap in NPRACH transmission. Similarly, an eMTC UE can signal that it needs a gap in PUSCH/PUCCH transmission but not a gap in PRACH transmission.

在另一特定實施例中,UE能力發訊取決於實體通道之傳輸之持續時間。例如,一UE可報告: ·相鄰傳輸片段之間不需要一間隙 ·在(例如) 256 ms之一特定持續時間內,其不需要相鄰傳輸片段之間的一間隙,但其需要在256 ms之各傳輸之後使用一間隙。另外,其可發訊所需間隙係40 ms之傳統UL補償間隙或具有不同於40 ms之一持續時間之一間隙。 ·在(例如) 256 ms之一特定持續時間內,相鄰傳輸片段之間需要一間隙。 In another specific embodiment, UE capability signaling depends on the duration of the transmission of the physical channel. For example, a UE may report: No need for a gap between adjacent transmission segments • It does not require a gap between adjacent transmission segments for a certain duration of eg 256 ms, but it needs to use a gap after each transmission of 256 ms. In addition, it can signal that the required gap is a conventional UL backoff gap of 40 ms or a gap with a duration other than 40 ms. • A gap is required between adjacent transmission segments within a certain duration of eg 256 ms.

在另一特定實施例中,UE能力發訊取決於NTN類型或衛星軌道。例如,一UE可報告 ·GEO衛星網路之相鄰傳輸片段之間不需要一間隙。 ·LEO/MEO衛星網路之相鄰傳輸片段之間需要一間隙。 In another specific embodiment, UE capability signaling depends on NTN type or satellite orbit. For example, a UE may report • There is no need for a gap between adjacent transmission segments of the GEO satellite network. • A gap is required between adjacent transmission segments of LEO/MEO satellite networks.

TA相依間隙組態 根據某些實施例,UE可需要在相鄰傳輸片段之間插入間隙以實施計時/頻率預補償。在一特定實施例中,網路可排程及/或指示UE在何處插入間隙。在另一實施例中,UE可自行選擇在何處插入間隙(即,在UE喜歡之該等相鄰片段之間)。接著,UE可告知網路間隙已由UE放置於何處。將資訊提供至網路可避免盲測且簡化排程。 TA dependent gap configuration According to some embodiments, the UE may need to insert gaps between adjacent transmission segments to implement timing/frequency pre-compensation. In a particular embodiment, the network may schedule and/or instruct the UE where to insert gaps. In another embodiment, the UE can choose where to insert the gap (ie, between the adjacent segments that the UE likes). The UE may then inform the network where the gaps have been placed by the UE. Making the information available online avoids blind testing and simplifies scheduling.

在一特定實施例中,UE取決於TA增加或減少而在相鄰傳輸片段之間插入一間隙。若TA不增加,則其將不在片段之間插入間隙;若TA增加,則其將在相鄰片段之間插入間隙。例如,基於衛星星曆及GNSS位置資訊,UE可判定衛星是否朝向UE移動及/或衛星-UE仰角是否增加。換言之,衛星-UE TA將在上行鏈路傳輸之過程中隨時間而減少。UE將不在相鄰片段之間插入額外間隙。In a particular embodiment, the UE inserts a gap between adjacent transmission segments depending on TA increase or decrease. If TA is not increased, it will not insert gaps between segments; if TA is increased, it will insert gaps between adjacent segments. For example, based on the satellite ephemeris and GNSS position information, the UE may determine whether the satellite is moving towards the UE and/or whether the satellite-UE elevation angle is increasing. In other words, the satellite-UE TA will decrease over time during uplink transmission. The UE will not insert extra gaps between adjacent segments.

在一特定實施例中,取決於TA增加或減少,UE對網路指示其是否將在持續UL傳輸之相鄰傳輸片段之間插入間隙。In a particular embodiment, depending on TA increase or decrease, the UE indicates to the network whether it will insert gaps between adjacent transmission segments of the persistent UL transmission.

在另一特定實施例中,UE將資訊提供至UE使得網路可判定UE是否將使用間隙且接著相應地偵測。例如,在一特定實施例中,UE將其位置報告至網路,且網路基於衛星星曆及所接收之UE位置來判定TA增加或減少。網路推導出若TA不增加,則UE不插入間隙。否則,若TA增加,則網路推導出UE插入間隙。In another particular embodiment, the UE provides information to the UE so that the network can determine whether the UE will use gaps and then detect accordingly. For example, in a particular embodiment, the UE reports its location to the network, and the network determines TA increase or decrease based on the satellite ephemeris and the received UE location. The network deduces that if the TA is not increased, the UE does not insert the gap. Otherwise, if TA increases, the network deduces that the UE inserts the gap.

在另一特定實施例中,UE將其TA報告至網路,且網路基於所接收之TA值來判定TA增加或減少。網路推導出若TA不增加,則UE不插入間隙。否則,若TA增加,則UE插入間隙。因此,在一特定實施例中,例如,基於網路判定(例如) TA增加,網路可將UE待插入間隙發訊至UE。In another specific embodiment, the UE reports its TA to the network, and the network decides to increase or decrease the TA based on the received TA value. The network deduces that if the TA is not increased, the UE does not insert the gap. Otherwise, if TA increases, UE inserts a gap. Thus, in a particular embodiment, the network may signal to the UE that the UE is to be inserted into a gap, eg, based on the network determining (for example) that the TA has increased.

MSG3 (N)PUSCH及PUCCH至Msg4/NPUSCH格式2至Msg4 以下實施例係關於網路為PUSCH/NPUSCH上之MSG3傳輸或PUCCH至Msg4接收上之混合自動重複請求確認(HARQ-ACK)傳輸/NPUSCH格式2至MSG3接收上之HARQ-ACK組態傳輸片段持續時間之情況。 MSG3 (N)PUSCH and PUCCH to Msg4/NPUSCH format 2 to Msg4 The following examples relate to network configuration for MSG3 transmission on PUSCH/NPUSCH or hybrid automatic repeat request acknowledgment (HARQ-ACK) transmission on PUCCH to Msg4 reception/HARQ-ACK transmission on NPUSCH format 2 to MSG3 reception The situation of time.

在一個實施例中,在標準說明書中指定UE在相鄰傳輸片段之間插入間隙用於PUSCH/NPUCCH上之MSG3傳輸或PUCCH至Msg4接收上之HARQ-ACK傳輸/NPUSCH格式2至MSG3接收上之HARQ-ACK。間隙之持續時間在說明書中係固定的。替代地,其可由網路自界定於說明書中之值之一集合組態,且經組態之間隙持續時間可由網路以SI指示。In one embodiment, the UE is specified in the standard specification to insert gaps between adjacent transmission segments for MSG3 transmission on PUSCH/NPUCCH or HARQ-ACK transmission on PUCCH to Msg4 reception/NPUSCH Format 2 to MSG3 reception HARQ-ACK. The duration of the gap is fixed in the specification. Alternatively, it can be configured by the network from a set of values defined in the specification, and the configured gap duration can be indicated by the network in SI.

例如,若在一小區中組態傳輸片段,則不管UE能力如何,所有UE均在相鄰片段之間插入用於PUSCH上之MSG3傳輸之指示持續時間之間隙。For example, if transmission segments are configured in a cell, all UEs insert gaps between adjacent segments for the indicated duration of MSG3 transmission on PUSCH, regardless of UE capabilities.

在另一實施例中,標準規範中指定對於PUSCH/NPUCCH上之MSG3傳輸或PUCCH至Msg4接收上之HARQ-ACK傳輸/NPUSCH格式2至MSG3接收上之HARQ-ACK傳輸,UE不應在相鄰傳輸片段之間插入間隙。 -若網路使用用於MSG3或PUCCH/NPUSCH格式2至Msg4接收之N次重複來組態UE,則A型UE之UE行為待使用最小(N、M)次重複來傳輸MSG3或PUCCH/NPUSCH格式2至Msg4接收,其中M係其在需要上行鏈路預補償之前可傳輸之最大重複次數。M可由網路在系統資訊(SI)中指示或在說明書中指定或M等於一片段之持續時間。因此,在一特定實施例中,UE僅傳輸M次重複。然而,在另一實施例中,在M小於N之情況中,UE可不傳輸所有N個重複。在又一實施例中,UE可插入一間隙且接著傳輸剩餘N-M個重複。在又一實施例中,UE可在最初M次重複之後使用一次重複作為一間隙且接著繼續傳輸N-M-1次重複。 -若網路為MSG3使用N次重複來組態UE,或PUCCH/NPUSCH格式2至Msg4接收,則B型UE之UE行為係使用N次重複來傳輸MSG3或PUCCH/NPUSCH格式2至Msg4接收。因此,在實例實施例中,B型UE視需要丟棄樣本或擊穿符號(如上文所描述)以能夠傳輸所有N次重複。 In another embodiment, the standard specification specifies that for MSG3 transmission on PUSCH/NPUCCH or HARQ-ACK transmission on PUCCH to Msg4 reception/HARQ-ACK transmission on NPUSCH format 2 to MSG3 reception, the UE should not be in the adjacent Inserts gaps between transmitted segments. - If the network configures the UE with N repetitions for MSG3 or PUCCH/NPUSCH format 2 to Msg4 reception, the UE behavior for Type A UEs is to use minimum (N, M) repetitions to transmit MSG3 or PUCCH/NPUSCH Format 2 to Msg4 reception, where M is the maximum number of repetitions it can transmit before requiring uplink precompensation. M can be indicated by the network in system information (SI) or specified in the specification or M can be equal to the duration of a segment. Therefore, in a particular embodiment, the UE transmits only M repetitions. However, in another embodiment, where M is less than N, the UE may not transmit all N repetitions. In yet another embodiment, the UE may insert a gap and then transmit the remaining N-M repetitions. In yet another embodiment, the UE may use one repetition as a gap after the initial M repetitions and then continue to transmit N-M-1 repetitions. - If the network configures the UE to use N repetitions for MSG3, or PUCCH/NPUSCH format 2 to Msg4 reception, then the UE behavior for Type B UEs is to use N repetitions to transmit MSG3 or PUCCH/NPUSCH format 2 to Msg4 reception. Thus, in an example embodiment, Type B UEs drop samples or puncture symbols as necessary (as described above) to be able to transmit all N repetitions.

在另一實施例中,A型UE在PUSCH/NPUSH (或PUCCH/NPUSCH格式2至Msg4接收)上之MSG3傳輸之傳輸片段之間插入所指定或所指示之間隙而B型UE不在PUSCH/PPUUSCH (或PUSCH/NSUCH格式2至Msg4接收)之MSG3傳輸之傳輸片段之間插入間隙。若網路尚不知道UE能力,則網路藉由盲測來接收UE傳輸。例如,網路可執行多次嘗試以接收UE傳輸以涵蓋所有可能選項。換言之,網路可假定UE正在使用一間隙且其未使用一間隙來盲測UE傳輸。In another embodiment, type A UEs insert specified or indicated gaps between transmission segments of MSG3 transmissions on PUSCH/NPUSH (or PUCCH/NPUSCH format 2 to Msg4 reception) and type B UEs do not on PUSCH/PPUUSCH Gap is inserted between transport segments of MSG3 transmission (or PUSCH/NSUCH format 2 to Msg4 reception). If the network does not yet know the UE capabilities, the network receives UE transmissions by blind testing. For example, the network may perform multiple attempts to receive UE transmissions to cover all possible options. In other words, the network can blindly test UE transmissions assuming that the UE is using a gap and that it is not using a gap.

在一子實施例中,為A型及B型UE劃分PRACH資源(時間/頻率/碼域)(即,其等使用不同PRACH使得網路知道UE能力且可相應地排程MSG3且可判定MSG3傳輸是否將包含間隙。如此處所使用,PRACH資源可包含用於隨機存取前置碼(Msg1)之資源。In a sub-embodiment, PRACH resources (time/frequency/code domain) are allocated for Type A and Type B UEs (i.e. they use different PRACHs so that the network knows UE capabilities and can schedule MSG3 accordingly and can decide MSG3 Whether the transmission will contain gaps. As used herein, PRACH resources may include resources for the random access preamble (Msg1).

圖4展示根據一些實施例之一通信系統100之一實例。在實例中,通信系統100包含:一電信網路102,其包含一存取網路104 (諸如一無線電存取網路(RAN));及一核心網路106,其包含一或多個核心網路節點108。存取網路104包含一或多個存取網路節點,諸如網路節點110a及110b (其中一或多個通常可指稱網路節點110),或任何其他類似第三代合作夥伴計畫(3GPP)存取節點或非3GPP存取點。網路節點110促進使用者設備(UE)之直接或間接連接,諸如藉由經由一或多個無線連接將UE 112a、112b、112c及112d (其一或多者可通常指稱UE 112)連接至核心網路106。Figure 4 shows an example of a communication system 100 according to some embodiments. In an example, the communication system 100 includes: a telecommunications network 102 including an access network 104 such as a radio access network (RAN); and a core network 106 including one or more cores Network node 108 . Access network 104 includes one or more access network nodes, such as network nodes 110a and 110b (one or more of which may generally be referred to as network node 110), or any other similar 3GPP ( 3GPP) access node or non-3GPP access point. Network node 110 facilitates direct or indirect connections of user equipment (UEs), such as by connecting UEs 112a, 112b, 112c, and 112d (one or more of which may be generally referred to as UE 112) via one or more wireless connections to core network 106 .

經由一無線連接之實例無線通信包含使用電磁波、無線電波、紅外波及/或適合於在不使用線、電纜或其他材料導體之情況中傳達資訊之其他類型之信號來傳輸及/或接收無線信號。愛著,在不同實施例中,通信系統100可包含任何數目之有線或無線網路、網路節點、UE及/或可促進或參與資料及/或信號之傳達之任何其他組件或系統,無論經由有線或無線連接。通信系統100可包含及/或與任何類型之通信、電信、資料、蜂巢、無線網路及/或其他類似類型之系統介接。Example wireless communication via a wireless connection includes transmitting and/or receiving wireless signals using electromagnetic waves, radio waves, infrared waves, and/or other types of signals suitable for communicating information without the use of wires, cables, or other material conductors. Note that in various embodiments, communication system 100 may include any number of wired or wireless networks, network nodes, UEs, and/or any other components or systems that may facilitate or participate in the communication of data and/or signals, regardless of Via wired or wireless connection. The communication system 100 may include and/or interface with any type of communication, telecommunications, data, cellular, wireless network, and/or other similar types of systems.

UE 112可為多種通信裝置之任何者,包含經配置、組態及/或可操作以與網路節點110及其他通信裝置無線通信之無線裝置。類似地,網路節點110經配置、能夠、組態及/或可操作以直接或間接地與UE 112及/或與電信網路102中之其他網路節點或設備通信以啟用及/或提供網路存取(諸如無線網路存取)及/或執行其他功能(諸如電信網路102之管理)。UE 112 may be any of a variety of communication devices, including wireless devices configured, configured, and/or operable to communicate wirelessly with network node 110 and other communication devices. Similarly, network node 110 is configured, capable, configured and/or operable to communicate directly or indirectly with UE 112 and/or with other network nodes or devices in telecommunications network 102 to enable and/or provide network access (such as wireless network access) and/or perform other functions (such as management of the telecommunications network 102).

在圖中所描繪之實例中,核心網路106將網路節點110連接至一或多個主機,諸如主機116。此等連接可為經由一或多個中間網路或裝置之直接或間接連接。在其他實例中,網路節點可直接耦合至主機。核心網路106包含使用硬體及軟體組件結構化之一或多個核心網路節點(例如核心網路節點108)。此等組件之特徵可實質上類似於相對於UE、網路節點及/或主機所描述之特徵,使得其描述通常可適用於核心網路節點108之對應組件。適合核心網路節點包含一行動交換中心(MSC)、行動管理實體(MME)、歸屬用戶伺服器(HSS)、存取及移動性管理功能(AMF)、會話管理功能(SMF)、鑑認伺服器功能(AUSF)、用戶識別符去隱藏功能(SIDF)、統一資料管理(UDM)、安全邊緣保護代理(SEPP)、網路曝光功能(NEF)及/或一使用者平面功能(UPF)之一或多者之功能。In the example depicted in the figure, core network 106 connects network node 110 to one or more hosts, such as host 116 . These connections may be direct or indirect through one or more intervening networks or devices. In other examples, network nodes may be directly coupled to hosts. Core network 106 includes one or more core network nodes (eg, core network node 108 ) structured using hardware and software components. Features of these components may be substantially similar to those described with respect to UEs, network nodes and/or hosts, such that their descriptions may generally apply to corresponding components of core network node 108 . Suitable core network nodes include a Mobile Switching Center (MSC), Mobile Management Entity (MME), Home Subscriber Server (HSS), Access and Mobility Management Function (AMF), Session Management Function (SMF), Authentication Server Server Function (AUSF), Subscriber Identifier Uncloaking Function (SIDF), Unified Data Management (UDM), Secure Edge Protection Proxy (SEPP), Network Exposure Function (NEF) and/or a User Plane Function (UPF) one or more functions.

主機116可在除存取網路104及/或電信網路102之一操作者或提供者之外之一服務提供者之所有權或控制下,且可由服務提供者或代表服務提供者操作。主機116可擁有各種應用以提供一或多個服務。此等應用之實例包含實況及預記錄之音訊/視訊內容、資料收集服務(諸如擷取及編譯關於由複數個UE偵測之各種環境條件之資料)、分析功能性、社交媒體、用於控制或以其他方式與遠端裝置互動之功能、用於一警報及監視中心之功能或由一伺服器執行之任何其他此功能。Host 116 may be under the ownership or control of a service provider other than the operator or provider of access network 104 and/or telecommunications network 102 and may be operated by or on behalf of the service provider. Host 116 may host various applications to provide one or more services. Examples of such applications include live and pre-recorded audio/video content, data collection services (such as capturing and compiling data on various environmental conditions detected by a plurality of UEs), analytics functionality, social media, for control or otherwise interact with remote devices, for an alarm and monitoring center, or any other such function performed by a server.

作為整體,圖4之通信系統100實施UE、網路節點與主機之間的連接性。在該意義上,通信系統可經組態以根據預界定之規則或程式操作,諸如包含(但不限於)以下之特定標準:全球行動通信系統(GSM);通用移動電信系統(UMTS);長期演進(LTE)及/或其他適合2G、3G、4G、5G標準,或任何可適用之未來一代標準(例如6G);無線區域網路(WLAN)標準(諸如電子電機工程師協會(IEEE) 802.11標準(WiFi);及/或任何其他適當無線通信標準(諸如全球微波存取互通性(WiMax)、藍牙、Z-Wave、近場通信(NFC) ZigBee、LiFi及/或任何低功率廣域網路(LPWAN)標準(諸如LoRa及Sigfox))。As a whole, the communication system 100 of FIG. 4 implements connectivity among UEs, network nodes, and hosts. In this sense, a communication system may be configured to operate according to predefined rules or programs, such as specific standards including (but not limited to): Global System for Mobile Communications (GSM); Universal Mobile Telecommunications System (UMTS); long-term Evolution (LTE) and/or other suitable 2G, 3G, 4G, 5G standards, or any applicable future generation standards (such as 6G); wireless area network (WLAN) standards (such as the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard (WiFi); and/or any other appropriate wireless communication standard (such as Worldwide Interoperability for Microwave Access (WiMax), Bluetooth, Z-Wave, Near Field Communication (NFC) ZigBee, LiFi, and/or any Low Power Wide Area Network (LPWAN ) standards (such as LoRa and Sigfox)).

在一些實例中,電信網路102係實施3GPP標準化特徵之一蜂巢式網路。因此,電信網路102可支援網路切片以將不同邏輯網路提供至連接至電信網路102之不同裝置。例如,電信網路102可將超可靠低延時通信(URLLC)服務提供至一些UE同時將增強型行動寬頻(eMBB)服務提供至其他UE及/或將大規模機器型通信(mMTC)/大規模IoT服務提供至進一步UE。In some examples, the telecommunications network 102 is a cellular network implementing one of the 3GPP standardized features. Accordingly, the telecommunications network 102 can support network slicing to provide different logical networks to different devices connected to the telecommunications network 102 . For example, the telecommunications network 102 may provide ultra-reliable low-latency communication (URLLC) services to some UEs while providing enhanced mobile broadband (eMBB) services to other UEs and/or massive machine-type communication (mMTC)/massive IoT services are provided to further UEs.

在一些實例中,UE 112經組態以在無直接人類互動之情況中傳輸及/或接收資訊。例如,當由一內部或外部事件觸發或回應於來自存取網路104之請求時,一UE可經設計以按一預定排程將資訊傳輸至存取網路104。另外,一UE可經組態以在單或多RAT或多標準模式中操作。例如,一UE可與Wi-Fi、NR (新無線)及LTE之任一者或組合一起操作(即,經組態用於多無線電雙連接性(MR-DC),諸如E-UTRAN (演進UMTS地面無線電存取網路)新無線-雙連接性(EN-DC))。In some examples, UE 112 is configured to transmit and/or receive information without direct human interaction. For example, a UE may be programmed to transmit information to the access network 104 on a predetermined schedule when triggered by an internal or external event or in response to a request from the access network 104 . Additionally, a UE can be configured to operate in single or multi-RAT or multi-standard modes. For example, a UE may operate with any or a combination of Wi-Fi, NR (New Radio) and LTE (i.e., configured for Multi-Radio Dual Connectivity (MR-DC), such as E-UTRAN (Evolved UMTS Terrestrial Radio Access Network) New Radio-Dual Connectivity (EN-DC)).

在實例中,集線器114與存取網路104通信以促進一或多個UE (例如UE 112c及/或112d)與網路節點(例如網路節點110b)之間的間接通信。在一些實例中,集線器114可為一控制器、路由器、內容源及分析,或本文所描述之關於UE之任何其他通信裝置。例如,集線器114可為達成UE存取核心網路106之一寬頻路由器。作為另一實例,集線器114可為將命令或指令發送至UE中之一或多個致動器之一控制器。命令或指令可自UE、網路節點110接收,或由集線器114中之可執行碼、腳本、程式或其他指令接收。作為另一實例,集線器114可為充當UE資料之臨時儲存器之一資料收集器,且在一些實施例中,可執行資料之分析或其他處理。作為另一實例,集線器114可為一內容源。例如,對於一UE (其係一VR頭戴式耳機、顯示器、揚聲器或其他媒體輸送裝置),集線器114可經由一網路節點擷取VR資產、視訊、音訊或與感官資訊相關之其他媒體或資料,接著集線器114直接、在執行本地處理之後及/或在添加額外本地內容之後將其等提供至UE。在又一實例中,集線器114充當UE之一代理伺服器或協調器,特定言之若UE係低能量IoT裝置之一或多者。In an example, hub 114 communicates with access network 104 to facilitate indirect communication between one or more UEs (eg, UE 112c and/or 112d ) and a network node (eg, network node 110b ). In some examples, hub 114 may be a controller, router, content source and analysis, or any other communication device described herein with respect to UEs. For example, the hub 114 can be a broadband router that enables UEs to access the core network 106 . As another example, the hub 114 may be a controller that sends commands or instructions to one or more actuators in the UE. Commands or instructions may be received from the UE, network node 110 , or by executable code, scripts, programs, or other instructions in the hub 114 . As another example, hub 114 may be a data collector that acts as a temporary store for UE data, and in some embodiments, may perform analysis or other processing of the data. As another example, hub 114 may be a source of content. For example, for a UE (which is a VR headset, display, speaker, or other media delivery device), the hub 114 may retrieve VR assets, video, audio, or other media related to sensory information via a network node or data, then the hub 114 provides them to the UE directly, after performing local processing and/or after adding additional local content. In yet another example, the hub 114 acts as a proxy or coordinator for a UE, particularly if the UE is one or more low energy IoT devices.

集線器114可具有至網路節點110b之一恒定/持續或間歇連接。集線器114亦可允許集線器114與UE (例如UE 112c及/或112d)之間及集線器114與核心網路106之間的不同通信方案及/或排程。在其他實例中,集線器114經由一有線連接連接至核心網路106及/或一或多個UE。再者,集線器114可經組態以經由存取網路104連接至一M2M服務提供者及/或經由一直接連接連接至另一UE。在一些場景中,UE可與網路節點110建立一無線連接同時仍然經由集線器114經由一有線或無線連接連接。在一些實施例中,集線器114可為一專用集線器–即,其主要功能係將通信路由至/自UE路由至網路節點110b之一集線器。在其他實施例中,集線器114可為一非專用集線器–即,能夠操作以路由UE與網路節點110b之間的通信之一裝置,但其額外能夠操作為某些資料通道之一通信起點及/或終點。Hub 114 may have a constant/continuous or intermittent connection to network node 110b. Hub 114 may also allow for different communication schemes and/or scheduling between hub 114 and UEs (eg, UE 112c and/or 112d ) and between hub 114 and core network 106 . In other examples, hub 114 is connected to core network 106 and/or one or more UEs via a wired connection. Furthermore, the hub 114 can be configured to connect to an M2M service provider via the access network 104 and/or to another UE via a direct connection. In some scenarios, the UE may establish a wireless connection with the network node 110 while still being connected via a wired or wireless connection via the hub 114 . In some embodiments, hub 114 may be a dedicated hub—ie, a hub whose primary function is to route communications to/from UEs to network node 110b. In other embodiments, the hub 114 may be a non-dedicated hub - i.e., a device operable to route communications between the UE and the network node 110b, but additionally operable as a communication origin for certain data channels and / or endpoint.

圖5展示根據一些實施例之一UE 200。如本文所使用,一UE係指能夠、經組態、經配置及/或可操作以與網路節點及/或其他UE無線通信之一裝置。一UE之實例包含(但不限於)一智慧型電話、行動電話、蜂巢式電話、IP語音傳輸(VoIP)電話、無線本地迴路電話、桌上型電腦、個人數位助理(PDA)、無線相機、遊戲控制台或裝置、音樂儲存裝置、重播設備、可佩戴終端裝置、無線端點、行動站、平板電腦、膝上型電腦、膝上嵌入式設備(LEE)、膝上安裝設備(LME)、智慧型裝置、無線客戶擁有設備(CPE)、車載或車載嵌入式/整合無線裝置等。其他實例包含由第三代合作夥伴計畫(3GPP)識別之任何UE,包含一窄頻物聯網(NB-IoT) UE、一機器型通信(MTC) UE及/或一增強型MTC (eMTC) UE。Figure 5 shows a UE 200 according to one of some embodiments. As used herein, a UE refers to a device capable of, configured, configured and/or operable to communicate wirelessly with network nodes and/or other UEs. Examples of a UE include, but are not limited to, a smartphone, cellular phone, cellular phone, voice over IP (VoIP) phone, wireless local loop phone, desktop computer, personal digital assistant (PDA), wireless camera, Game consoles or devices, music storage devices, playback devices, wearable terminal devices, wireless endpoints, mobile stations, tablets, laptops, laptop embedded equipment (LEE), lap mounted equipment (LME), Smart devices, wireless customer owned equipment (CPE), in-vehicle or in-vehicle embedded/integrated wireless devices, etc. Other examples include any UE identified by the 3rd Generation Partnership Project (3GPP), including a Narrowband Internet of Things (NB-IoT) UE, a Machine Type Communication (MTC) UE, and/or an Enhanced MTC (eMTC) UE.

一UE可支援裝置至裝置(D2D)通信,例如藉由實施用於側鏈路通信、專用短程通信(DSRC)、車輛至車輛(V2V)、車輛至基礎設施(V2I)或車輛至一切(V2X)之一3GPP標準。在其他實例中,UE不必須具有擁有及/或操作相關裝置之一人類使用者意義上之一使用者。相反,一UE可表示意欲出售給一人類使用者或由一人類使用者操作,但其可不或其最初可不與一特定人類使用者(例如一智慧型灑水器控制器)相關聯之一裝置。替代地,一UE可表示不意欲售給一終端使用者或由一終端使用者操作但可與一使用者相關聯或為一使用者之利益而操作之一裝置(例如一智慧型功率計)。A UE may support device-to-device (D2D) communication, e.g., by implementing a device for side-link communication, dedicated short-range communication (DSRC), vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I) or vehicle-to-everything (V2X) ) One of the 3GPP standards. In other examples, the UE does not necessarily have a user in the sense of a human user who owns and/or operates the associated device. Conversely, a UE may represent a device intended to be sold to or operated by a human user, but which may not or may not be originally associated with a particular human user (e.g., a smart sprinkler controller) . Alternatively, a UE may represent a device (such as a smart power meter) that is not intended to be sold to or operated by an end user but may be associated with or operated for the benefit of a user .

UE 200包含經由一匯流排204可操作地耦合至一輸入/輸出介面206、一電源208、一記憶體210、一通信介面212及/或任何其他組件或其等之任何組合之處理電路系統202。某些UE可利用圖5中所展示之所有組件或元件之一子集。組件之間的整合位準可自一個UE變動至另一UE。此外,某些UE可包含一組件之多個例項,諸如多個處理器、記憶體、收發器、傳輸器、接收器等。UE 200 includes processing circuitry 202 operably coupled via a bus 204 to an input/output interface 206, a power source 208, a memory 210, a communication interface 212, and/or any other components or any combination thereof . Certain UEs may utilize all of the components or a subset of elements shown in FIG. 5 . The level of integration between components can vary from one UE to another. Furthermore, some UEs may contain multiple instances of a component, such as multiple processors, memories, transceivers, transmitters, receivers, and so on.

處理電路系統202經組態以處理指示及資料且可經組態以實施操作以執行為記憶體210中之機器可讀電腦程式之任何序列狀態機。處理電路系統202可實施為一或多個硬體實施之狀態機(例如在離散邏輯、場可程式化閘陣列(FPGA)、應用特定積體電路(ASIC)等中);可程式化邏輯及適當韌體一起;一或多個所儲存之電腦程式、通用處理器(諸如一微處理器或數位信號處理器(DSP))與適當軟體一起;或上述之任何組合)。例如,處理電路系統202可包括多個中央處理單元(CPU)。Processing circuitry 202 is configured to process instructions and data and may be configured to implement any sequential state machine operating to execute as a machine-readable computer program in memory 210 . Processing circuitry 202 may be implemented as one or more hardware-implemented state machines (e.g., in discrete logic, field-programmable gate array (FPGA), application-specific integrated circuit (ASIC), etc.); programmable logic and together with appropriate firmware; one or more stored computer programs, a general purpose processor (such as a microprocessor or digital signal processor (DSP)) together with appropriate software; or any combination of the foregoing). For example, processing circuitry 202 may include multiple central processing units (CPUs).

在實例中,輸入/輸出介面206可經組態以將一或若干介面提供至一輸入裝置、輸出裝置或一或多個輸入及/或輸出裝置。一輸出裝置之實例包含一揚聲器、一音效卡、一視訊卡、一顯示器、一監視器、一印表機、一致動器、一發射器、一智慧卡、另一輸出裝置或其等之任何組合。一輸入裝置可允許一使用者將資訊捕獲至UE 200中。一輸入裝置之實例包含一觸摸敏感或存在敏感顯示器、一相機(例如一數位相機、一數碼視訊相機、一網路相機等)、一麥克風、一感測器、一滑鼠、一軌跡球、一定向板、一觸控板、一捲輪、一智慧卡及其類似者。存在敏感顯示器可包含一電容式或電阻式觸摸感測器以感測來自一使用者之輸入。一感測器可為(例如)一加速度計、一陀螺儀、一傾斜感測器、一力感測器、一磁力計、一光學感測器、一接近感測器、一生物量測感測器等或其等之任何組合。一輸出裝置可使用相同於一輸入裝置之類型之介面埠。例如,一通用串列匯流排(USB)埠可用於提供一輸入裝置及一輸出裝置。In examples, input/output interface 206 may be configured to provide one or more interfaces to an input device, output device, or one or more input and/or output devices. Examples of an output device include a speaker, a sound card, a video card, a display, a monitor, a printer, an actuator, a transmitter, a smart card, another output device, or any combination thereof combination. An input device may allow a user to capture information into UE 200 . Examples of an input device include a touch-sensitive or presence-sensitive display, a camera (eg, a digital camera, a digital video camera, a webcam, etc.), a microphone, a sensor, a mouse, a trackball, A directional pad, a touch pad, a scroll wheel, a smart card and the like. Presence sensitive displays may include a capacitive or resistive touch sensor to sense input from a user. A sensor can be, for example, an accelerometer, a gyroscope, a tilt sensor, a force sensor, a magnetometer, an optical sensor, a proximity sensor, a biometric sensor Measuring devices, etc. or any combination thereof. An output device can use the same type of port as an input device. For example, a Universal Serial Bus (USB) port can be used to provide an input device and an output device.

在一些實施例中,電源208結構化為一電池或電池組。可使用其他類型之電源,諸如一外部電源(例如一電源插座)、光伏打裝置或功率單元。電源208可進一步包含用於經由輸入電路系統或一介面(諸如一電力電纜)將電力自電源208本身及/或一外部電源輸送至UE 200之各種部分之電力電路系統。輸送電力可用於(例如)對電源208充電。電力電路系統可對來自電源208之電力執行任何格式化、轉換或其他修改以使電力適合於電力供應至其之UE 200之各自組件。In some embodiments, the power source 208 is configured as a battery or battery pack. Other types of power sources may be used, such as an external power source (eg, an electrical outlet), photovoltaic devices or power units. The power supply 208 may further include power circuitry for delivering power from the power supply 208 itself and/or an external power source to various parts of the UE 200 via input circuitry or an interface such as a power cable. The delivered power may be used, for example, to charge power source 208 . The power circuitry may perform any formatting, conversion, or other modification of the power from the power supply 208 to make the power suitable for the respective components of the UE 200 to which power is supplied.

記憶體210可為或經組態以包含記憶體,諸如隨機存取記憶體(RAM)、唯讀記憶體(ROM)、可程式化唯讀記憶體(PROM)、可擦除可程式化唯讀記憶體(EPROM)、電可擦除可程式化唯讀記憶體(EEPROM)、磁碟、光碟、硬碟、可移匣、快閃驅動等等。在一個實例中,記憶體210包含一或多個應用程式214,諸如一作業系統、網頁流覽器應用、一介面工具集、小工具引擎或其他應用及對應資料216。記憶體210可儲存多種作業系統或作業系統之組合之任何者以供UE 200使用。Memory 210 may be or be configured to include memory such as random access memory (RAM), read only memory (ROM), programmable read only memory (PROM), erasable programmable Read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), magnetic disk, optical disk, hard disk, removable cartridge, flash drive, etc. In one example, memory 210 includes one or more applications 214 , such as an operating system, web browser application, an interface toolkit, widget engine, or other applications, and corresponding data 216 . Memory 210 may store any of a variety of operating systems or combinations of operating systems for use by UE 200 .

記憶體210可經組態以包含若干實體驅動器單元,諸如獨立磁碟冗餘陣列(RAID)、快閃記憶體、USB快閃驅動器、外部硬碟驅動器、隨身碟、筆式驅動器、鍵式驅動器、高密度數位多功能光碟(HD-DVD)光碟驅動器、內部硬碟驅動器、藍光光碟驅動器、全息數位資料儲存(HDDS)光碟驅動器、外部迷你雙列直插式記憶體模組(DIMM)、同步動態隨機存取記憶體(SDRAM)、外部微型DIMM SDRAM、智慧卡記憶體(諸如呈一通用積體電路卡(UICC)形式之防篡改模組),包含一或多個用戶身份模組(SIM),諸如一USIM及/或ISIM,其他記憶體或其等之任何組合。UICC可為(例如)一嵌入式UICC (eUICC)、整合UICC (iUICC)或通常稱為「SIM卡」之一可移除UICC。記憶體210可允許UE 200存取儲存於暫時或非暫時性儲存媒體上之指令、應用程式及其類似者以卸載資料或上載資料。諸如利用一通信系統之一製造物件可有形地體現為記憶體210或在記憶體210中,記憶體210可為或包括一裝置可讀儲存媒體。Memory 210 can be configured to include several physical drive units, such as Redundant Array of Independent Disks (RAID), flash memory, USB flash drives, external hard drives, pen drives, pen drives, key drives , High Density Digital Versatile Disc (HD-DVD) Optical Drive, Internal Hard Disk Drive, Blu-ray Disc Drive, Holographic Digital Data Storage (HDDS) Optical Drive, External Mini Dual Inline Memory Module (DIMM), Synchronous Dynamic Random Access Memory (SDRAM), external micro-DIMM SDRAM, smart card memory such as a tamper-resistant module in the form of a Universal Integrated Circuit Card (UICC), containing one or more Subscriber Identity Modules (SIMs) ), such as a USIM and/or ISIM, other memory or any combination thereof. The UICC can be, for example, an embedded UICC (eUICC), integrated UICC (iUICC), or a removable UICC commonly referred to as a "SIM card." Memory 210 may allow UE 200 to access commands, applications, and the like stored on temporary or non-transitory storage media to offload data or upload data. An article of manufacture, such as utilizing a communication system, may be tangibly embodied as or in memory 210, which may be or include a device-readable storage medium.

處理電路系統202可經組態以使用通信介面212與一存取網路或其他網路通信。通信介面212可包括一或多個通信子系統且可包含或通信地耦合至一天線222。通信介面212可包含(諸如)藉由與能夠無線通信之另一裝置(例如一存取網路中之另一UE或一網路節點)之一或多個遠端收發器通信。各收發器可包含適合於提供網路通信(例如光學、電、頻率分配等等)之一傳輸器218及/或一接收器220。再者,傳輸器218及接收器220可耦合至一或多個天線(例如天線222)且可共用電路組件、軟體或韌體,或替代地可單獨實施。Processing circuitry 202 may be configured to communicate with an access network or other network using communication interface 212 . Communication interface 212 may include one or more communication subsystems and may include or be communicatively coupled to an antenna 222 . Communication interface 212 may include, such as by communicating with another device capable of wireless communication, such as another UE in an access network or a network node, by one or more remote transceivers. Each transceiver may include a transmitter 218 and/or a receiver 220 suitable for providing network communications (eg, optical, electrical, frequency distribution, etc.). Furthermore, transmitter 218 and receiver 220 may be coupled to one or more antennas (eg, antenna 222 ) and may share circuit components, software or firmware, or alternatively may be implemented separately.

在圖中所繪示之實施例中,通信介面212之通信功能可包含蜂巢式通信、Wi-Fi通信、LPWAN通信、資料通信、語音通信、多媒體通信、短程通信(諸如藍牙)、近場通信、基於位置之通信(諸如使用全球定位系統(GPS)來判定一位置)、另一類似通信功能或其等之任何組合。通信可根據一或多個通信協定及/或標準來實施,諸如IEEE 802.11、碼分多址(CDMA)、寬頻碼分多址(WCDMA)、GSM、LTE、新無線(NR)、UMTS、WiMax、乙太網路、傳輸控制協定/網際網路協定(TCP/IP)、同步光學網路(SONET)、非同步傳輸模式(ATM)、QUIC、超文字傳輸協定(HTTP)等等。In the embodiment shown in the figure, the communication function of the communication interface 212 may include cellular communication, Wi-Fi communication, LPWAN communication, data communication, voice communication, multimedia communication, short-range communication (such as Bluetooth), near field communication , location-based communication (such as using the Global Positioning System (GPS) to determine a location), another similar communication function, or any combination thereof. Communications may be implemented according to one or more communication protocols and/or standards, such as IEEE 802.11, Code Division Multiple Access (CDMA), Wideband Code Division Multiple Access (WCDMA), GSM, LTE, New Radio (NR), UMTS, WiMax , Ethernet, Transmission Control Protocol/Internet Protocol (TCP/IP), Synchronous Optical Network (SONET), Asynchronous Transfer Mode (ATM), QUIC, Hypertext Transfer Protocol (HTTP), etc.

不管感測器之類型,一UE可透過其通信介面212經由至一網路節點之一無線連接提供由其感測器捕獲之資料之一輸出。由一UE之感測器捕獲之資料可透過一無線連接經由另一UE傳達至一網路節點。輸出可為週期性(例如若其報告所感測之溫度,則每15分鐘一次)、隨機(例如為自若干感測器之報告均衡負載)、回應於一觸發事件(例如當偵測到濕氣時,發送一警報)、回應於一請求(例如一使用者起始之請求)或一連續流(例如一患者之一即時視訊饋送)。Regardless of the type of sensor, a UE may, through its communication interface 212, provide an output of the data captured by its sensor via a wireless connection to a network node. Data captured by a UE's sensors can be communicated to a network node via another UE over a wireless connection. The output can be periodic (e.g. every 15 minutes if it reports the sensed temperature), random (e.g. to load balance reports from several sensors), respond to a trigger event (e.g. when moisture is detected , sending an alert), in response to a request (eg, a user-initiated request), or a continuous stream (eg, a real-time video feed of a patient).

作為另一實例,一UE包括與經組態以經由一無線連接自一網路節點接收無線輸入之一通信介面相關之一致動器、一馬達或一開關。回應於所接收之無線輸入,致動器、馬達或開關之狀態可改變。例如,UE可包括根據所接收之輸入調整飛行中之一無人機之控制表面或轉子或根據所接收之輸入調整執行一醫療程序之一機械臂之一馬達。As another example, a UE includes an actuator, a motor, or a switch associated with a communication interface configured to receive wireless input from a network node via a wireless connection. In response to wireless input received, the state of an actuator, motor or switch may change. For example, a UE may include adjusting control surfaces or rotors of a drone in flight based on received input or adjusting a motor of a robotic arm performing a medical procedure based on received input.

當呈物聯網(IoT)裝置之形式時,一UE可為用於一或多個應用領域之一裝置,此等領域包括(但不限於)城市可佩戴技術、擴展工業應用及健康照護。此一IoT裝置之非限制性實例係一裝置,其係或嵌入以下中:一連接之冰箱或冷凍器、一TV、一連接之照明裝置、一電量計、一機器人真空吸塵器、一語音控制之智慧揚聲器、一家庭安全相機、一運動偵測器、一恒溫器、一煙霧偵測器、一門/窗感測器、一洪水/濕度感測器、一電動門鎖、一連接門鈴、一空調系統(諸如一熱泵)、一自動駕駛車、一監視系統、一天氣監視裝置、一車輛停車監視裝置、一電動車輛充電站、一智慧手錶、一健身追蹤器、用於擴增實境(AR)或虛擬實境(VR)之一頭戴式顯示器、用於觸覺增強或感官增強之一可穿戴設備、一灑水器、一動物或物品追蹤裝置、用於監視一植物或動物之一感測器、一工業機器人、一無人飛行載具(UAV)及任何類型之醫療裝置,諸如一心率監視器或一遠端控制之手術機器人。除相對於圖5中所展示之UE 200所描述之其他組件之外,呈一IoT裝置之形式之一UE包括依賴於IoT裝置之預期應用之電路系統及/或軟體。When in the form of an Internet of Things (IoT) device, a UE may be a device for one or more application areas including, but not limited to, urban wearable technology, extended industrial applications, and healthcare. A non-limiting example of such an IoT device is a device that is or is embedded in: a connected refrigerator or freezer, a TV, a connected lighting device, a power gauge, a robotic vacuum cleaner, a voice-controlled A smart speaker, a home security camera, a motion detector, a thermostat, a smoke detector, a door/window sensor, a flood/humidity sensor, an electric door lock, a connected doorbell, and an air conditioner system (such as a heat pump), an autonomous vehicle, a monitoring system, a weather monitoring device, a vehicle parking monitoring device, an electric vehicle charging station, a smart watch, a fitness tracker, a ) or virtual reality (VR), a wearable device for tactile enhancement or sensory enhancement, a sprinkler, an animal or object tracking device, a sensory device for monitoring a plant or animal sensors, an industrial robot, an unmanned aerial vehicle (UAV) and any type of medical device, such as a heart rate monitor or a remotely controlled surgical robot. In addition to other components described with respect to UE 200 shown in FIG. 5 , a UE in the form of an IoT device includes circuitry and/or software depending on the intended application of the IoT device.

作為又一具體實例,在一IoT場景中,一UE可表示執行監視及/或量測之一機器或其他裝置,且將此等監視及/或量測之結果傳輸至另一UE及/或一網路節點。在此情況中,UE可為一M2M裝置,其在3GPP上下文中可指稱一MTC裝置。作為一個特定實例,UE可實施3GPP NB-IoT標準。在其他場景中,一UE可表示一車輛,諸如一汽車、一汽車、一卡車、一輪船及一飛機,或能夠監視及/或報告其操作狀態或與其操作相關聯之其他功能之其他設備。As yet another specific example, in an IoT scenario, a UE may represent a machine or other device that performs monitoring and/or measurement, and transmits the results of such monitoring and/or measurement to another UE and/or A network node. In this case, the UE may be an M2M device, which may be referred to as an MTC device in the context of 3GPP. As a specific example, a UE may implement the 3GPP NB-IoT standard. In other contexts, a UE may represent a vehicle, such as an automobile, an automobile, a truck, a boat, and an airplane, or other equipment capable of monitoring and/or reporting its operating status or other functions associated with its operation.

在實踐中,任何數目之UE可相對於一單一用例一起使用。例如,一第一UE可為或整合於一無人機中且將無人機之速度資訊(透過一速度感測器獲得)提供至係操作無人機之一遠端控制器之一第二UE。當使用者自遠端控制器改變時,第一UE可調整無人機上之油門(例如藉由控制一致動器)以增加或降低無人機之速度。第一及/或第二UE亦可包含上述功能性之一者以上。例如,一UE可包括感測器及致動器,且處置速度感測器及致動器兩者之資料之傳達。In practice, any number of UEs can be used together for a single use case. For example, a first UE may be or be integrated in a drone and provide the speed information of the drone (obtained by a speed sensor) to a second UE which is a remote controller operating the drone. When the user changes from the remote controller, the first UE can adjust the throttle on the drone (eg, by controlling an actuator) to increase or decrease the speed of the drone. The first and/or second UE may also include more than one of the above-mentioned functionalities. For example, a UE may include sensors and actuators and handle the communication of data from both the speed sensors and actuators.

圖6繪示根據一些實施例之一網路節點300。如本文所使用,網路節點係指能夠、經組態、經配置及/或可操作以在一電信網路中與一UE及/或與其他網路節點或設備直接或間接通信之設備。網路節點之實例包含(但不限於)存取點(AP)(例如無線電存取點)、基站(BS)(例如無線電基站、節點B、演進節點B (eNB)及NR NodeB (gNB))。FIG. 6 illustrates a network node 300 according to some embodiments. As used herein, a network node refers to a device capable, configured, configured and/or operable to communicate directly or indirectly with a UE and/or with other network nodes or devices in a telecommunications network. Examples of network nodes include, but are not limited to, access points (APs) such as radio access points, base stations (BSs) such as radio base stations, Node Bs, evolved Node Bs (eNBs), and NR NodeBs (gNBs) .

基站可基於其等提供之涵蓋量(或,換言之,其等之傳輸功率位準)來分類且因此,取決於所提供之涵蓋量,可指稱毫微微基站、微微基站、微基站或宏基站。一基站可為控制一中繼器之一中繼節點或一中繼施體節點。一網路節點亦可包含一分佈式無線電基站之一或多個(或所有)部分,諸如集中式數位單元及/或遠端無線電單元(RRU),有時指稱遠端無線電頭部(RRH)。此等遠端無線電單元可或可不與一天線整合作為一天線整合無線電。一分佈式無線電基站之部分亦可指稱一分佈式天線系統(DAS)中之節點。Base stations may be classified based on the amount of coverage they provide (or, in other words, their transmission power levels) and thus, may be referred to as femto, pico, micro or macro base stations depending on the coverage provided. A base station may be a relay node controlling a relay or a relay donor node. A network node may also include one or more (or all) parts of a distributed radio base station, such as centralized digital units and/or remote radio units (RRU), sometimes referred to as remote radio heads (RRH) . These remote radio units may or may not be integrated with an antenna as an antenna integrated radio. Parts of a distributed radio base station may also be referred to as nodes in a distributed antenna system (DAS).

網路節點之其他實例包含多個傳輸點(多TRP) 5G存取節點、多標準無線電(MSR)設備(諸如MSR BS)、網路控制器(諸如無線電網路控制器(RNC)或基站控制器(BSC))、基站收發器站(BTS)、傳輸點、傳輸節點、多小區/多播協調實體(MCE)、操作及維護(O&M)節點、操作支援系統(OSS)節點、自組織網路(SON)節點、定位節點(例如演進服務行動定位中心(E-SMLC))及/或駕駛測試之最小化(MDT))。Other examples of network nodes include multiple transmission point (multi-TRP) 5G access nodes, multi-standard radio (MSR) equipment such as MSR BS, network controllers such as radio network controllers (RNC) or base station control (BSC)), base transceiver station (BTS), transmission point, transmission node, multi-cell/multicast coordination entity (MCE), operation and maintenance (O&M) node, operation support system (OSS) node, ad hoc network On-road (SON) nodes, positioning nodes such as Evolved Services Mobile Location Center (E-SMLC) and/or Minimization of Drive Test (MDT)).

網路節點300包含一處理電路系統302、一記憶體304、一通信介面306及一電源308。網路節點300可由多個實體分離組件(例如NodeB組件及一RNC組件,或一BTS組件及一BSC組件等)組成,其可各具有其等自身之各自組件。在網路節點300包括多個單獨組件(例如BTS及BSC組件)之某些場景中,可在若干網路節點之間共用單獨組件之一或者。例如,一單個一RNC可控制多個NodeB。在此一場景中,在一些例項中,各唯一NodeB及RNC對可被視為一單一單獨網路節點。在一些實施例中,網路節點300可經組態以支援多種無線電存取技術(RAT)。在此等實施例中,一些組件可被複製(例如用於不同RAT之單獨記憶體304)而一些組件可重複使用(例如一相同天線310可由不同RAT共用)。網路節點300亦可包含用於整合至網路節點300中之不同無線技術(例如,GSM、WCDMA、LTE、NR、WiFi、Zigbee、Z-wave、LoRaWAN、射頻識別(RFID)或藍牙無線技術)之多組各種圖中所繪示之組件。此等無線技術可整合至網路節點300內之相同或不同晶片或晶片組及其他組件中。The network node 300 includes a processing circuitry 302 , a memory 304 , a communication interface 306 and a power supply 308 . The network node 300 may consist of multiple physically separate components (eg NodeB component and an RNC component, or a BTS component and a BSC component, etc.), each of which may have its own respective components. In some scenarios where network node 300 includes multiple individual components (eg, BTS and BSC components), one or both of the individual components may be shared among several network nodes. For example, a single RNC can control multiple NodeBs. In this scenario, in some instances, each unique NodeB and RNC pair can be considered a single separate network node. In some embodiments, the network node 300 can be configured to support multiple radio access technologies (RATs). In these embodiments, some components can be duplicated (eg, separate memory 304 for different RATs) and some components can be reused (eg, a same antenna 310 can be shared by different RATs). The network node 300 may also include different wireless technologies for integration into the network node 300 (for example, GSM, WCDMA, LTE, NR, WiFi, Zigbee, Z-wave, LoRaWAN, radio frequency identification (RFID) or Bluetooth wireless technology ) of multiple sets of components shown in various figures. These wireless technologies may be integrated into the same or different chips or chipsets and other components within network node 300 .

處理電路系統302可包括一微處理器、控制器、微控制器、中央處理單元、數位信號處理器、應用特定積體電路、場可程式化閘陣列或任何其他適合計算裝置、資源或硬體、軟體及/或編碼邏輯之組合之一或多者之一組合,單獨或結合其他網路節點300組件(諸如記憶體304)以提供網路節點300功能性。Processing circuitry 302 may include a microprocessor, controller, microcontroller, central processing unit, digital signal processor, application specific integrated circuit, field programmable gate array, or any other suitable computing device, resource, or hardware One or more of a combination of, software, and/or coded logic, alone or in combination with other network node 300 components, such as memory 304, to provide network node 300 functionality.

在一些實施例中,處理電路系統302包含一晶片上系統(SOC)。在一些實施例中,處理電路系統302包含射頻(RF)收發器電路系統312及基頻處理電路系統314之一或多者。在一些實施例中,射頻(RF)收發器電路系統312及基頻處理電路系統314可位於單獨晶片(或晶片組)、板或單元(諸如無線電單元及數位單元)上。在替代實施例中,RF收發器電路系統312及基頻處理電路系統314之部分或全部可位於相同晶片或晶片組、板或單元上。In some embodiments, processing circuitry 302 includes a system on chip (SOC). In some embodiments, processing circuitry 302 includes one or more of radio frequency (RF) transceiver circuitry 312 and baseband processing circuitry 314 . In some embodiments, radio frequency (RF) transceiver circuitry 312 and baseband processing circuitry 314 may be located on separate chips (or chipsets), boards, or units such as a radio unit and a digital unit. In alternative embodiments, some or all of the RF transceiver circuitry 312 and baseband processing circuitry 314 may be located on the same die or chipset, board or unit.

記憶體304可包括任何形式之揮發性或非揮發性電腦可讀記憶體,包含(但不限於)持久儲存器、固態記憶體、遠端安裝記憶體、磁性媒體、光學媒體、隨機存取記憶體(RAM)、唯讀記憶體(ROM)、大規模儲存媒體(例如,一硬碟)、可移除儲存媒體(例如,一快閃驅動、一光碟(CD)或一數位光碟(DVD))及/或儲存可由處理電路系統302使用之資訊、資料及/或指令之任何其他揮發性或非揮發性、非暫時性裝置可讀及/或電腦可執行記憶體裝置。記憶體304可儲存任何適合指令、資料或資訊,包含一電腦程式、軟體、包含邏輯、規則、碼、表及/或能夠由處理電路系統302執行且由網路節點300利用之其他指令之一或多者之一應用。記憶體304可用於儲存由處理電路系統302進行之任何計算及/或經由通信介面306接收之任何資料。在一些實施例中,處理電路系統302與記憶體304整合。Memory 304 may comprise any form of volatile or non-volatile computer readable memory, including (but not limited to) persistent storage, solid state memory, remote mount memory, magnetic media, optical media, random access memory memory (RAM), read-only memory (ROM), mass storage media (e.g., a hard disk), removable storage media (e.g., a flash drive, a compact disc (CD) or a digital disc (DVD) ) and/or any other volatile or non-volatile, non-transitory device-readable and/or computer-executable memory device that stores information, data, and/or instructions that may be used by the processing circuitry 302. Memory 304 may store any suitable instructions, data, or information, including one of a computer program, software, including logic, rules, codes, tables, and/or other instructions executable by processing circuitry 302 and utilized by network node 300 or one of more applications. Memory 304 may be used to store any calculations performed by processing circuitry 302 and/or any data received via communication interface 306 . In some embodiments, processing circuitry 302 is integrated with memory 304 .

通信介面306用於一網路節點、存取網路及/或UE之間的發訊及/或資料之有線或無線通信。如圖中所繪示,通信介面306包括(若干)埠/(若干)終端316以(例如)經由一有線連接將資料發送至一網路及自一網路接收資料。通信介面306亦包含可耦合至天線310或在某些實施例中耦合至天線310之一部分之無線電前端電路系統318。無線電前端電路系統318包括濾波器320及放大器322。無線電前端線路318可連接至一天線310及處理電路系統302。無線電前端電路系統可經組態以調節在天線310與處理電路系統302之間傳達之信號。無線電前端電路系統318可接收將經由一無線連接發送至其他網路節點或UE之數位資料。無線電前端電路系統318可使用濾波器320及/或放大器322之一組合將數位資料轉換為具有適當通道及頻寬參數之一無線電信號。接著,可經由天線310傳輸無線電信號。類似地,當接收資料時,天線310可收集接著由無線電前端電路系統318轉換為數位資料之無線電信號。數位資料可傳遞至處理電路系統302。在其他實施例中,通信介面可包括不同組件及/或組件之不同組合。The communication interface 306 is used for wired or wireless communication of signaling and/or data between a network node, an access network and/or a UE. As shown, communication interface 306 includes port(s)/terminal(s) 316 to send and receive data to and from a network, eg, via a wired connection. Communication interface 306 also includes radio front-end circuitry 318 that may be coupled to antenna 310 or, in some embodiments, a portion of antenna 310 . Radio front-end circuitry 318 includes filter 320 and amplifier 322 . Radio front-end circuitry 318 may be connected to an antenna 310 and processing circuitry 302 . Radio front-end circuitry may be configured to condition signals communicated between antenna 310 and processing circuitry 302 . RFE circuitry 318 may receive digital data to be sent to other network nodes or UEs via a wireless connection. Radio front-end circuitry 318 may use a combination of filter 320 and/or amplifier 322 to convert the digital data into a radio signal with appropriate channel and bandwidth parameters. Then, a radio signal may be transmitted via the antenna 310 . Similarly, when receiving data, antenna 310 may collect radio signals that are then converted to digital data by radio front-end circuitry 318 . The digital data may be passed to processing circuitry 302 . In other embodiments, the communication interface may include different components and/or different combinations of components.

在某些替代實施例中,網路節點300不包含單獨無線電前端電路系統318,相反,處理電路系統302包含無線電前端電路系統且連接至天線310。類似地,在一些實施例中,所有或一些RF收發器電路系統312係通信介面306之部分。在其他實施例中,通信介面306包含一或多個埠或終端316、無線電前端電路系統318及RF收發器電路系統312作為一無線電單元(圖中未展示)之部分,且通信介面306與基頻處理電路314 (其係一數位單元(圖中未展示)之部分)通信。In some alternative embodiments, network node 300 does not include separate radio front-end circuitry 318 , instead processing circuitry 302 includes radio front-end circuitry and is connected to antenna 310 . Similarly, all or some of the RF transceiver circuitry 312 is part of the communication interface 306 in some embodiments. In other embodiments, communication interface 306 includes one or more ports or terminals 316, radio front-end circuitry 318, and RF transceiver circuitry 312 as part of a radio unit (not shown), and communication interface 306 communicates with the base The video processing circuit 314 (which is part of a digital bit cell (not shown)) communicates.

天線310可包含經組態以發送及/或接收無線信號之一或多個天線或天線陣列。天線310可耦合至無線電前端電路系統318且可為能夠無線傳輸及接收資料及/或信號之任何類型之天線。在某些實施例中,天線310與網路節點300分離且可透過一介面或埠連接至網路節點300。Antenna 310 may include one or more antennas or antenna arrays configured to transmit and/or receive wireless signals. Antenna 310 may be coupled to radio front-end circuitry 318 and may be any type of antenna capable of wirelessly transmitting and receiving data and/or signals. In some embodiments, the antenna 310 is separate from the network node 300 and can be connected to the network node 300 through an interface or port.

天線310、通信介面306及/或處理電路系統302可經組態以執行本文描述為由網路節點執行之任何接收操作及/或某些獲得操作。可自一UE、另一網路節點及/或任何其他網路設備接收任何資訊、資料及/或信號。類似地,天線310、通信介面306及/或處理電路系統302可經組態以執行本文中描述為由網路節點執行之任何傳輸操作。可將任何資訊、資料及/或信號傳輸至一UE、另一網路節點及/或任何其他網路設備。Antenna 310, communication interface 306, and/or processing circuitry 302 may be configured to perform any receive operations and/or certain obtain operations described herein as being performed by a network node. Any information, data and/or signals may be received from a UE, another network node and/or any other network device. Similarly, antenna 310, communication interface 306, and/or processing circuitry 302 may be configured to perform any of the transmission operations described herein as being performed by a network node. Any information, data and/or signals may be transmitted to a UE, another network node and/or any other network device.

電源308以呈適合於各自組件之一形式(例如以各各自組件所需之一電壓及電流位準)將電力提供至網路節點300之各種組件。電源308可進一步包括或耦合至電源管理電路系統以供應網路節點300之組件用於執行本文所描述之功能性之電力。例如,網路節點300可經由一輸入電路系統或介面(諸如一電纜)連接至一外部電源(例如電網、一電源插座),藉此外部電源將電力供應至電源308之電力電路系統。作為一進一步實例,電源308可包括呈一電池或電池組之形式之電力之一源,其連接至或整合於電力電路系統中。若外部電源故障,則電池可提供備用電源。The power supply 308 provides power to the various components of the network node 300 in a form suitable for the respective components, eg, at a voltage and current level required by each respective component. Power supply 308 may further include or be coupled to power management circuitry to supply power to components of network node 300 for performing the functionality described herein. For example, network node 300 may be connected to an external power source (eg, grid, an electrical outlet) via an input circuitry or interface (such as a cable), whereby the external power source supplies power to the power circuitry of power source 308 . As a further example, power source 308 may include a source of electrical power in the form of a battery or battery pack connected to or integrated in the power circuitry. Batteries provide backup power in the event of external power failure.

網路節點300之實施例可包含除圖6中所展示之組件之外之額外組件用於提供網路節點之功能性之某些態樣,包含本文所描述之功能性之任何者及/或支援本文所所描述之標的必需之任何功能性。例如,網路節點300可包含使用者介面設備以允許將資訊輸入網路節點300中且允許自網路節點300輸出資訊。此可允許一用者對網路節點300執行診斷、維護、維修及其他管理功能。Embodiments of the network node 300 may include additional components beyond those shown in FIG. 6 for providing certain aspects of the functionality of the network node, including any of the functionality described herein and/or Any functionality necessary to support the objectives described herein. For example, the network node 300 may include user interface equipment to allow information to be input into the network node 300 and to allow information to be output from the network node 300 . This may allow a user to perform diagnostics, maintenance, repair and other management functions on the network node 300 .

圖7係根據本文所描述之各種態樣之主機400之一方塊圖,其可為圖4之主機116之一實施例。如本文所使用,主機400可為或包括各種硬體及/或軟體之組合,包含一獨立伺服器、一刀片伺服器、一雲端實施之伺服器、一分佈式伺服器、一虛擬機器、容器或一伺服器場中之處理資源。主機400可將一或多個服務提供至一或多個UE。FIG. 7 is a block diagram of a host 400 , which may be an embodiment of the host 116 of FIG. 4 , according to various aspects described herein. As used herein, host 400 can be or include various combinations of hardware and/or software, including a standalone server, a blade server, a cloud-implemented server, a distributed server, a virtual machine, a container Or processing resources in a server farm. The host 400 can provide one or more services to one or more UEs.

主機400包含經由一匯流排404可操作地耦合至一輸入/輸出介面406、一網路介面408、一電源410及一記憶體412之處理電路系統402。其他組件可包含於其他實施例中。此等組件之特徵可實質上類似於相對於先前圖(諸如圖2及圖3)之裝置所描述之特徵,使得其描述通常可適用於主機400之對應組件。Host 400 includes processing circuitry 402 operably coupled to an input/output interface 406 , a network interface 408 , a power source 410 , and a memory 412 via a bus bar 404 . Other components may be included in other embodiments. The features of these components may be substantially similar to those described with respect to the devices of previous figures, such as FIGS. 2 and 3 , such that their descriptions may generally apply to corresponding components of host 400 .

記憶體412可包含具有一或多個主機應用414及資料416 (其可包含使用者資料(例如一由UE為主機400產生之資料或由主機400為一UE產生之資料))之一或多個電腦程式。主機400之實施例可僅利用圖中所展示之組件之一子集或全部。主機應用程式414可在一基於容器之架構中實施且可提供對視訊編解碼器(例如多功能視訊編碼(VVC)、高效率視訊編碼(HEVC)、先進視訊編碼(AVC)、MPEG、VP9)及音訊編解碼器(例如FLAC、先進音訊編碼(AAC)、MPEG、G.711)之支援,包含多個不同種類、類型或UE之實施方案(例如手機、桌上型電腦、可佩戴顯示系統、平視顯示系統)之轉碼。主機應用程式414亦可提供使用者鑑認及授權檢查且可週期性地將健康、路由及內容可用性報告至一中心節點(諸如一核心網路中或邊緣上之一裝置)。因此,主機400可選擇及/或指示用於一UE之雲上服務之一不同主機。主機應用程式414可支援各種協定,諸如HTTP即時串流(HLS)協定、即時訊息協定(RTMP)、即時串流通信協定(RTSP)、HTTP動態自適性串流(MPEG-DASH)等。Memory 412 may include one or more host applications 414 and data 416 (which may include user data such as data generated by a UE for a host 400 or data generated by a host 400 for a UE) a computer program. Embodiments of host 400 may utilize only a subset or all of the components shown in the figure. Host application 414 may be implemented in a container-based architecture and may provide support for video codecs (e.g., Versatile Video Coding (VVC), High Efficiency Video Coding (HEVC), Advanced Video Coding (AVC), MPEG, VP9) and audio codecs (such as FLAC, Advanced Audio Coding (AAC), MPEG, G.711), including multiple implementations of different types, types or UEs (such as mobile phones, desktop computers, wearable display systems , head-up display system) transcoding. Host application 414 can also provide user authentication and authorization checks and can periodically report health, routing and content availability to a central node (such as a device in a core network or on the edge). Therefore, the host 400 may select and/or indicate a different host for a UE's cloud service. The host application 414 can support various protocols, such as HTTP Real Time Streaming (HLS) protocol, Real Time Messaging Protocol (RTMP), Real Time Streaming Protocol (RTSP), HTTP Dynamic Adaptive Streaming (MPEG-DASH) and so on.

圖8係繪示其中由一些實施例實施之功能可虛擬化之一虛擬化環境500之一方塊圖。在本上下文中,虛擬化意謂產生設備或裝置之虛擬版本,其可包含虛擬化硬體平台、儲存裝置及網路資源。如本文所使用,虛擬化可應用於本文所描述之任何裝置或其組件,且係關於其中功能性之至少一個部分實施為一或多個虛擬組件之一實施方案。本文所描述之功能之一些或全部可實施為由在由硬體節點(諸如操作為一網路節點、UE、核心網路節點或主機之一硬體計算裝置)之一或多者裝載之一或多個虛擬環境500中實施之一或多個虛擬機器(VM)執行之虛擬組件。此外,在其中虛擬節點不需要無線電連接性(例如一核心網路節點或主機)之實施例中,則節點可完全虛擬化。FIG. 8 is a block diagram illustrating a virtualization environment 500 in which functions implemented by some embodiments may be virtualized. In this context, virtualization means creating a virtual version of a device or device, which may include virtualizing hardware platforms, storage devices, and network resources. As used herein, virtualization may apply to any device or component thereof described herein, and relates to an implementation in which at least a portion of the functionality is implemented as one or more virtual components. Some or all of the functions described herein may be implemented as one of the functions carried by one or more of a hardware node, such as a hardware computing device operating as a network node, UE, core network node, or host. One or more virtual machines (VMs) execute virtual components implemented in one or more virtual environments 500 . Furthermore, in embodiments where the virtual node does not require radio connectivity (eg, a core network node or host), then the node can be fully virtualized.

在虛擬化環境Q400中運行應用502 (其可替換地稱為軟體例項、虛擬設備、網路功能、虛擬節點、虛擬網路功能等)以實施本文所揭示之一些實施例之一些特徵、功能及/或益處。Applications 502 (alternatively referred to as software instances, virtual appliances, network functions, virtual nodes, virtual network functions, etc.) are run in the virtualization environment Q400 to implement some features, functions of some embodiments disclosed herein and/or benefits.

硬體504包含處理電路系統、儲存可由硬體處理電路系統執行之軟體及/或指令之記憶體及/或如本文所描述之其他硬體裝置,諸如一網路介面、輸入/輸出介面等等。軟體可由處理電路系統執行以例示一或多個虛擬化層506 (亦指稱超管理器或虛擬機器監視器(VMM)),提供VM 508a及508b (其一或多者通常指稱VM 508),及/或執行結合本文所描述之一些實施例描述之功能、特徵及/或益處之任何者。虛擬化層506可將看起來如同網路硬體之一虛擬操作平台呈現至VM 508。Hardware 504 includes processing circuitry, memory storing software and/or instructions executable by the hardware processing circuitry, and/or other hardware devices as described herein, such as a network interface, input/output interface, etc. . software executable by the processing circuitry to instantiate one or more virtualization layers 506 (also referred to as a hypervisor or virtual machine monitor (VMM)), provide VMs 508a and 508b (one or more of which are commonly referred to as VM 508), and and/or perform any of the functions, features and/or benefits described in connection with some of the embodiments described herein. The virtualization layer 506 can present to the VM 508 a virtual operating platform that looks like network hardware.

VM 508包括虛擬處理、虛擬記憶體、虛擬網路或介面及虛擬儲存,且可由一對應虛擬化層506運行。一虛擬設備502之例項之不同實施例可在VM 508之一或多者上實施,且可不同方式實施實施方案。硬體之虛擬化在一些上下文中指稱網路功能虛擬化(NFV)。NFV可用於將諸多網路設備類型整合至行業標準高體積伺服器硬體、實體開關及實體儲存器(其可位於資料中心及用戶端設備中)上。VM 508 includes virtual processing, virtual memory, virtual network or interface, and virtual storage, and can be run by a corresponding virtualization layer 506 . Different embodiments of an instance of virtual appliance 502 may be implemented on one or more of VMs 508, and implementations may be implemented in different ways. Virtualization of hardware is referred to in some contexts as Network Functions Virtualization (NFV). NFV can be used to consolidate many network equipment types onto industry-standard high-volume server hardware, physical switches, and physical storage (which can be located in data centers and customer premises equipment).

在NFV之上下文中,VM 508可為宛如其等在一實體、非虛擬化機器上運行程式之一實體機器之一軟體實施方案。VM 508之各者及執行該VM之硬體504之部分(無論係專用於該VM之專用硬體及/或由該VM與其他VM共用之硬體)形成單獨虛擬網路元件。仍在NFV之上下文中,一虛擬網路功能負責處置在硬體504之頂部上之一或多個VM 508中運行且對應於應用502之特定網路功能。In the context of NFV, VM 508 may be a software implementation of a physical machine as if it were running programs on a physical, non-virtualized machine. Each of VM 508 and the portion of hardware 504 executing that VM (whether dedicated hardware dedicated to that VM and/or hardware shared by that VM with other VMs) form a separate virtual network element. Still in the context of NFV, a virtual network function is responsible for handling specific network functions running in one or more VMs 508 on top of hardware 504 and corresponding to applications 502 .

硬體504可在具有通用或特定組件之一獨立網路節點中實施。硬體504可經由虛擬化來實施一些功能。替代地,硬體504可為一較大硬體集群之部分(例如(諸如)在一資料中心或CPE中),其中諸多硬體節點一起工作且經由管理及編排510來管理,其(尤其)監視應用502之生命週期管理。在一實施例中,硬體504耦合至各包括可耦合至一或多個天線之一或多個傳輸器及一或多個接收器之一或多個無線電單元。無線電單元可經由一或多個適當網路介面與其他硬體節點直接通信且可與虛擬組件組合使用以將無線電能力提供至一虛擬節點,諸如一無線電存取節點或一基站。在一些實施例中,可使用可替代地用於硬體節點與無線電單元之間的通信之一控制系統512來提供一些發訊。Hardware 504 may be implemented in a separate network node with generic or specific components. Hardware 504 may implement some functions via virtualization. Alternatively, hardware 504 may be part of a larger hardware cluster (eg, such as in a data center or CPE), where many hardware nodes work together and are managed via management and orchestration 510, which (among other things) Monitor the life cycle management of the application 502 . In one embodiment, hardware 504 is coupled to one or more radios each including one or more transmitters and one or more receivers that may be coupled to one or more antennas. The radio unit can communicate directly with other hardware nodes via one or more suitable network interfaces and can be used in combination with virtual components to provide radio capabilities to a virtual node, such as a radio access node or a base station. In some embodiments, some signaling may be provided using a control system 512 that is alternatively used for communication between hardware nodes and radio units.

圖9展示根據一些實施例之經由一部分無線連接經由一網路節點604與一UE 606通信之一主機602之一通信圖。FIG. 9 shows a communication diagram of a host 602 communicating with a UE 606 via a network node 604 via a portion of a wireless connection, according to some embodiments.

現將參考圖9描述根據各種實施例之前述段落中所討論之UE (諸如圖4之一UE 112a及/或圖5之UE 200)、網路節點(例如圖4之網路節點110a及/或圖6之網路節點300)及主機(諸如圖4之主機116及/或圖7之主機400)之實例實施方案。The UE (such as the UE 112a of FIG. 4 and/or the UE 200 of FIG. 5 ), the network node (such as the network node 110a of FIG. 4 and/or the UE 200 of FIG. 4 ) discussed in the preceding paragraphs according to various embodiments will now be described with reference to FIG. or network node 300 of FIG. 6) and a host (such as host 116 of FIG. 4 and/or host 400 of FIG. 7).

如同主機400,主機602之實施例包含硬體,諸如一通信介面、處理電路系統及記憶體。主機602亦包含儲存於主機602中或可由主機602存取且可由處理電路系統執行之軟體。軟體包含可操作以將一服務提供至一遠端使用者(諸如經由延伸於UE 606與主機602之間的一雲上(OTT)連接650連接之UE 606)之一主機應用。在將服務提供至遠端使用者時,一主機應用可提供使用OTT連接650傳輸之使用者資料。Like host 400, embodiments of host 602 include hardware, such as a communications interface, processing circuitry, and memory. Host 602 also includes software stored in or accessible by host 602 and executable by processing circuitry. The software includes a host application operable to provide a service to a remote user, such as UE 606 connected via an over-the-cloud (OTT) connection 650 extending between UE 606 and host 602 . In providing services to remote users, a host application may provide user data transmitted using the OTT connection 650 .

網路節點604包含使其能夠與主機602及UE 606通信之硬體。連接660可為直接或通過一核心網路(如同圖4之核心網路106)及/或一或多個其他中間網路,諸如一或多個公用、私用或主機網路。例如,一中間網路可為一骨幹網路或網際網路。Network node 604 includes hardware that enables it to communicate with host 602 and UE 606 . Connection 660 may be direct or through a core network (such as core network 106 of FIG. 4 ) and/or one or more other intermediate networks, such as one or more public, private, or host networks. For example, an intermediate network can be a backbone network or the Internet.

UE 606包含儲存於UE 606中或可由UE 606存取且可由UE之處理電路系統執行之硬體及軟體。軟體包含一用戶端應用,諸如一網頁流覽器或可在主機602之支援下操作以經由UE 606將一服務提供至一人類或非人類使用者之操作者特定「應用」。在主機602中,正在執行之一主機應用程式可經由終接於UE 606及主機602之OTT連接650與正在執行之用戶端應用通信。在將服務提供至使用者時,UE之用戶端應用可自主機之主機應用接收請求資料且回應於請求資料而提供使用者資料。OTT連接650可傳送請求資料及使用者資料兩者。UE之用戶端應用可與使用者互動以產生其透過OTT連接650提供至主機應用之使用者資料。UE 606 includes hardware and software stored in or accessible by UE 606 and executable by the UE's processing circuitry. The software includes a client application, such as a web browser or an operator-specific "application" operable with the support of host 602 to provide a service to a human or non-human user via UE 606. In the host 602 , an executing host application can communicate with an executing client application via the OTT connection 650 terminating at the UE 606 and the host 602 . In providing services to a user, a client application of the UE may receive request data from a host application of the host and provide user data in response to the request data. OTT connection 650 can transmit both request data and user data. The client application of the UE can interact with the user to generate user data that it provides to the host application through the OTT connection 650 .

OTT連接650可經由主機602與網路節點604之間的一連接660及經由網路節點604與UE 606之間的一無線連接670延伸。已抽象地繪製其上可提供OTT連接650之連接660及無線連接670以繪示主機602與UE 606之間經由網路節點604之通信而未明確指涉任何中間裝置及經由此等裝置之訊息之精確路由。The OTT connection 650 may extend via a connection 660 between the host 602 and the network node 604 and via a wireless connection 670 between the network node 604 and the UE 606 . Connection 660 and wireless connection 670 over which OTT connection 650 may be provided have been drawn abstractly to illustrate communication between host 602 and UE 606 via network node 604 without explicit reference to any intermediary devices and messages via such devices the precise route.

作為經由OTT連接650傳輸資料之一實例,在步驟608中,主機602提供使用者資料,其可藉由執行一主機應用來執行。在一些實施例中,使用者資料與與UE 606互動之一特定人類使用者相關聯。在其他實施例中,使用者資料與在無顯式人類互動之情況中與主機602共用資料之一UE 606相關聯。在步驟610中,主機602朝向UE 606起始攜帶使用者資料之一傳輸。主機602可回應於由UE 606傳輸之一請求而起始傳輸。請求可由與UE 606之人類互動或由在UE 606上執行之用戶端應用之操作引起。根據貫穿本發明所描述之實施例之教示,傳輸可經由網路節點604傳遞。因此,在步驟612中,根據貫穿本發明之實施例之教示,網路節點604將在主機602起始之傳輸中攜帶之使用者資料傳輸至UE 606。在步驟614中,UE 606接收傳輸中攜帶之使用者資料,其可由在UE 606上執行之與由主機602執行之主機應用相關聯之一用戶端應用執行。As an example of transferring data over the OTT connection 650, in step 608 the host 602 provides user data, which may be performed by executing a host application. In some embodiments, the user profile is associated with a particular human user interacting with the UE 606 . In other embodiments, user profile is associated with one UE 606 that shares profile with host 602 without explicit human interaction. In step 610, the host 602 initiates a transmission towards the UE 606 carrying user data. Host 602 may initiate a transmission in response to a request transmitted by UE 606 . The request may result from human interaction with the UE 606 or from the operation of a client application executing on the UE 606 . Transmissions may pass through network node 604 in accordance with the teachings of embodiments described throughout this disclosure. Thus, in step 612 , network node 604 transmits to UE 606 the user data carried in the transmission initiated by host 602 in accordance with the teachings throughout embodiments of the present invention. In step 614 , the UE 606 receives the user data carried in the transmission, which may be executed by a client application executing on the UE 606 associated with the host application executed by the host 602 .

在一些實例中,UE 606執行將使用者資料提供至主機602之一用戶端應用。可回應於自主機602接收之資料來提供使用者資料。因此,在步驟616中,UE 606可提供使用者資料,其可藉由執行用戶端應用來執行。在提供使用者資料時,用戶端應用可進一步考量經由UE 606之一輸入/輸出介面自使用者接收之使用者輸入。不管其中提供使用者資料之特定方式,UE 606在步驟618中起始經由網路節點604朝向主機602傳輸使用者資料。在步驟620中,根據貫穿本發明所描述之實施例之教示,網路節點604自UE 606接收使用者資料且朝向主機602起始所接收之使用者資料之傳輸。在步驟622中,主機602接收由UE 606起始之傳輸中攜帶之使用者資料。In some examples, UE 606 executes a client application that provides user data to host 602 . User data may be provided in response to data received from host 602 . Accordingly, in step 616, UE 606 may provide user data, which may be performed by executing a client application. When providing user information, the client application may further consider user input received from the user via an input/output interface of the UE 606 . Regardless of the particular manner in which the user data is provided, UE 606 initiates transmission of user data towards host 602 via network node 604 in step 618 . In step 620 , network node 604 receives user data from UE 606 and initiates transmission of the received user data toward host 602 in accordance with the teachings of embodiments described throughout this disclosure. In step 622, the host 602 receives the user data carried in the transmission initiated by the UE 606.

各種實施例中之一或多者改良使用OTT連接650提供至UE 606之OTT服務之效能,其中無線連接670形成最終片段。更精確而言,此等實施例之教示可改量(例如)資料速率、延時及/或功耗之一或多者,且藉此提供益處,諸如(例如)減少使用者等待時間、放寬檔案大小限制、改量內容解析度、更佳響應性及/或延長電池壽命。One or more of the various embodiments improve the performance of OTT services provided to UE 606 using OTT connection 650, with wireless connection 670 forming the final segment. More precisely, the teachings of these embodiments may modify, for example, one or more of data rate, latency, and/or power consumption, and thereby provide benefits such as, for example, reduced user latency, relaxed file Size limitations, improved content resolution, better responsiveness and/or improved battery life.

在一實例場景中,工廠狀態資訊可由主機602收集及分析。作為另一實例,主機602可處理自一UE擷取之音訊及視訊資料以用於產生地圖。作為另一實例,主機602可收集及分析即時資料以輔助控制車輛擁堵(例如控制交通燈)。作為另一實例,主機602可儲存由一UE上傳之監視視訊。作為另一實例,主機602可儲存或控制對媒體內容之存取,諸如視訊、音訊、VR或AR,其可廣播、多播或單播至UE。作為其他實例,主機602可用於能源定價、遠端控制非時間關鍵之電力負載以平衡發電需要、定位服務、呈現服務(諸如自遠端裝置收集之資料編譯圖等),或用於收集、擷取、儲存、分析及/或傳輸資料之任何其他功能。In an example scenario, plant status information may be collected and analyzed by host 602 . As another example, the host 602 can process audio and video data retrieved from a UE for generating maps. As another example, the host 602 can collect and analyze real-time data to assist in controlling vehicle congestion (eg, controlling traffic lights). As another example, the host 602 may store surveillance video uploaded by a UE. As another example, host 602 may store or control access to media content, such as video, audio, VR or AR, which may be broadcast, multicast or unicast to UEs. As other examples, the host 602 can be used for energy pricing, remote control of non-time-critical electrical loads to balance generation needs, location services, rendering services (such as compiling maps from data collected from remote devices, etc.), or for collecting, retrieving Any other functions for acquiring, storing, analyzing and/or transmitting data.

在一些實例中,可為了監視資料速率、延時及一或多個實施例改量之其他因數之目的而提供一量測程序。可進一步存在用於回應於量測結果中之變化來重新組態主機602與UE 606之間的OTT連接650之一選用網路功能性。用於重新組態OTT連接之量測程序及/或網路功能性可在主機602及/或UE 606之軟體及硬體中實施。在一些實施例中,感測器(圖中未展示)可部署於OTT連接650通過之其他裝置中或與其他裝置相關聯;感測器可藉由供應上文例示之監視量之值或提供軟體可計算或估計監視量之其他實體量之值來參與量測程序。OTT連接650之重新組態可包含訊息格式、重傳設定、較佳路由等;重新組態不需要直接更改網路節點604之操作。此等程序及功能性在本技術中係已知及實踐。在某些實施例中,量測可涉及促進由主機602量測處理量、傳播時間、延時及其類似者之專用UE發訊。可在軟體中使用OTT連接650實施量測引起訊息傳輸(特定言之空或「偽」訊息)同時監視傳播時間、錯誤等。In some examples, a measurement procedure may be provided for the purpose of monitoring data rate, latency, and other factors for one or more implementation improvements. There may further be an optional network functionality for reconfiguring the OTT connection 650 between the host 602 and the UE 606 in response to changes in the measurement results. Measurement procedures and/or network functionality for reconfiguring OTT connections may be implemented in the software and hardware of the host 602 and/or UE 606 . In some embodiments, sensors (not shown) may be deployed in or associated with other devices through which the OTT connection 650 passes; The software can calculate or estimate the value of other physical quantities of the monitored quantity to participate in the measurement process. Reconfiguration of OTT connection 650 may include message format, retransmission settings, better routing, etc.; reconfiguration does not require direct changes to network node 604 operations. Such procedures and functionality are known and practiced in the art. In some embodiments, the measurements may involve dedicated UE signaling that facilitates measurements by the host 602 of throughput, propagation time, latency, and the like. Measurements can be implemented in software using the OTT connection 650 to cause message transmissions (specifically empty or "false" messages) while monitoring propagation time, errors, etc.

儘管本文所描述之計算裝置(例如UE、網路節點、主機)可包含圖中所繪示之硬體組件之組合,但其他實施例可包括具有組件之不同組合之計算裝置。應理解此等計算裝置可包括執行本文所揭示之任務、特徵、功能及方法所需之硬體及/或軟體之任何適合組合。本文之判定、計算、獲得或類似操作可由可藉由(例如)將所獲得之資訊轉換為其他資訊、比較所獲得之資訊或經轉換之資訊與儲存於網路節點中之資訊及/或基於所獲得之資訊或經轉換之資訊而執行一或多個操作之處理電路系統執行,且由於該處理,作出一判定。再者,儘管組件描繪為位於一較大盒子內或嵌套於多個盒子內之單一盒子,但在實踐中,計算裝置可包括組成一單一圖中所繪示之組件之多個不同實體組件,且功能性可在單獨組件之間劃分。例如,一通信介面可經組態以包含本文所描述之組件之任何者,及/或組件之功能性可在處理電路系統與通信介面之間劃分。在另一實例中,此等組件之任何者之非計算密集型功能可在軟體或韌體中實施且計算密集型功能可在硬體中實施。Although computing devices (eg, UEs, network nodes, hosts) described herein may include combinations of hardware components as depicted in the figures, other embodiments may include computing devices having different combinations of components. It should be understood that such computing devices may include any suitable combination of hardware and/or software required to perform the tasks, features, functions and methods disclosed herein. Determinations, calculations, obtaining or similar operations herein may be performed by, for example, converting obtained information into other information, comparing obtained or transformed information with information stored in network nodes and/or based on Processing circuitry that performs one or more operations on the obtained or transformed information is performed, and as a result of the processing, a decision is made. Furthermore, although components are depicted as a single box within a larger box or nested within multiple boxes, in practice a computing device may include multiple distinct physical components that make up the depicted components in a single figure , and functionality can be divided between separate components. For example, a communications interface can be configured to include any of the components described herein, and/or the functionality of the components can be divided between processing circuitry and the communications interface. In another example, the non-computationally intensive functions of any of these components may be implemented in software or firmware and the computationally intensive functions may be implemented in hardware.

在某些實施例中,本文所描述之一些或全部功能可由執行儲存於記憶體中之指令之處理電路系統提供,其在某些實施例中可為呈一非暫時性電腦可讀儲存媒體之形式之一電腦程式產品。在替代實施例中,一些或所有功能性可由處理電路系統提供而不執行儲存於一單獨或離散裝置可讀儲存媒體上之指令,諸如一固線方式。在該等特定實施例之任何者中,無論是否執行儲存於一非暫時性電腦可讀儲存媒體上之指令,處理電路系統均可經組態以執行所描述之功能性。由此功能性提供之益處不僅受限於處理電路系統或計算裝置之其他組件,而由計算裝置作為整體及/或由終端使用者及一無線網路共同享有。In some embodiments, some or all of the functionality described herein may be provided by processing circuitry executing instructions stored in memory, which in some embodiments may be in the form of a non-transitory computer-readable storage medium One of the forms is a computer program product. In alternative embodiments, some or all of the functionality may be provided by the processing circuitry rather than executing instructions stored on a separate or discrete device-readable storage medium, such as in a hard-wired manner. In any of these particular embodiments, the processing circuitry can be configured to perform the described functionality whether or not executing instructions stored on a non-transitory computer-readable storage medium. The benefits provided by this functionality are not limited to the processing circuitry or other components of the computing device, but are shared by the computing device as a whole and/or by the end user and a wireless network.

圖10繪示根據某些實施例之由一UE 112、200用於促進IoT NTN中之長UL傳輸之一實例方法700。方法在步驟702處開始,其中UE將用於判定UE是否待在至少一個UL傳輸中之相鄰傳輸片段之間插入至少一個間隙之資訊傳輸至一網路節點110、300。在步驟704處,UE 112、200自網路節點110、300接收組態UE 112、300以當傳輸至網路節點110、300之資訊指示待丟棄及/或擊穿至少一個符號、時隙及/或子訊框以實施分段預補償時插入至少一個間隙之組態資訊。替代地,組態資訊組態UE 112、200以當傳輸至網路節點110、300之資訊指示待丟棄及/或擊穿至少一個樣本以實施分段預補償時不插入至少一個間隙。Figure 10 illustrates an example method 700 for facilitating long UL transmissions in IoT NTN by a UE 112, 200, according to certain embodiments. The method starts at step 702, wherein the UE transmits to a network node 110, 300 information for determining whether the UE is to insert at least one gap between adjacent transmission segments in at least one UL transmission. At step 704, the UE 112, 200 receives from the network node 110, 300 information configuring the UE 112, 300 to when transmitted to the network node 110, 300 indicates to discard and/or puncture at least one symbol, slot and / or sub-frame to insert configuration information of at least one gap when performing segment pre-compensation. Alternatively, the configuration information configures the UE 112, 200 to not insert at least one gap when the information transmitted to the network node 110, 300 indicates that at least one sample is to be discarded and/or punctured for segment precompensation.

在一特定實施例中,當該UE待插入該至少一個間隙時,該資訊指示該UE係一A型UE或當該UE不待插入該至少一個間隙時,該資訊指示該UE係一B型UE。In a specific embodiment, when the UE is to be inserted into the at least one gap, the information indicates that the UE is a type A UE or when the UE is not to be inserted into the at least one gap, the information indicates that the UE is a type B UE .

在一特定實施例中,當該UE待插入該至少一個間隙時,該資訊指示可在該等相鄰傳輸片段之間插入的一間隙持續時間或間隙持續時間之一範圍。In a particular embodiment, when the UE is to insert the at least one gap, the information indicates a gap duration or a range of gap durations that can be inserted between the adjacent transmission segments.

在一特定實施例中,當該UE待插入該至少一個間隙時,該資訊指示待丟棄及/或擊穿以實施分段預補償之若干符號、時隙及/或子訊框。In a particular embodiment, when the UE is to be inserted into the at least one gap, the information indicates a number of symbols, slots and/or subframes to be discarded and/or punctured for segment precompensation.

在一特定實施例中,該資訊包括與該UE相關聯之能力資訊。In a particular embodiment, the information includes capability information associated with the UE.

在一特定實施例中,該UE待插入該至少一個間隙,且該資訊指示將針對一特定類型之傳輸及/或一特定類型之實體通道插入該至少一個間隙。In a specific embodiment, the UE is to be inserted into the at least one gap, and the information indicates that the at least one gap will be inserted for a specific type of transmission and/or a specific type of physical channel.

在一特定實施例中,該特定類型之實體通道係一PUSCH、PUCCH或(N)PUSCH。In a specific embodiment, the specific type of physical channel is a PUSCH, PUCCH or (N)PUSCH.

在一特定實施例中,當該UE待插入該至少一個間隙時,該資訊指示對於具有高於一臨限持續時間之一持續時間之各傳輸,將在該等相鄰傳輸片段之間插入該至少一個間隙或對於具有一特定持續時間之各傳輸,將在該等相鄰傳輸片段之間插入該至少一個間隙。In a particular embodiment, when the UE is to insert the at least one gap, the information indicates that for each transmission having a duration higher than a threshold duration, the adjacent transmission segments are to be inserted between the adjacent transmission segments. At least one gap, or for each transmission of a certain duration, will be inserted between the adjacent transmission segments.

在一特定實施例中,該資訊指示一特定類型之NTN且該組態資訊組態該UE以針對與該特定類型之NTN相關聯之各傳輸在該等相鄰傳輸片段之間插入該至少一個間隙。In a particular embodiment, the information indicates a particular type of NTN and the configuration information configures the UE to insert the at least one between adjacent transmission segments for each transmission associated with the particular type of NTN gap.

在一特定實施例中,該特定類型之該NTN係低地球軌道或中地球軌道。In a particular embodiment, the NTN of the particular type is low earth orbit or medium earth orbit.

在一特定實施例中,該資訊指示一計時提前,且當該計時提前增加時,該UE在至少一個上行鏈路傳輸中之相鄰傳輸片段之間插入該至少一個間隙,或當該計時提前減少時,該UE判定不在該至少一個上行鏈路傳輸中之相鄰傳輸片段之間插入該至少一個間隙。In a particular embodiment, the information indicates a timing advance, and when the timing advance is increased, the UE inserts the at least one gap between adjacent transmission segments in at least one uplink transmission, or when the timing advances When decreasing, the UE decides not to insert the at least one gap between adjacent transmission segments in the at least one uplink transmission.

在一特定實施例中,該資訊指示該UE之一位置。In a specific embodiment, the information indicates a location of the UE.

圖11繪示根據某些實施例之由一網路節點110、300用於促進IoT NTN中之長UL傳輸之一實例方法800。方法包還拿網路節點110、300在步驟802處且自一UE (112、200)接收用於判定UE是否待在至少一個上行鏈路傳輸中之相鄰傳輸片段之間插入至少一個間隙之資訊。在步驟804處,基於該資訊,當該資訊指示待丟棄及/或擊穿至少一個符號、時隙及/或子訊框以實施分段預補償時,網路節點110、300組態UE以插入至少一個間隙。替代地,網路節點110、300組態UE以當資訊指示待丟棄及/或擊穿至少一個樣本以實施分段預補償時不插入至少一個間隙。Figure 11 illustrates an example method 800 used by a network node 110, 300 to facilitate long UL transmissions in the IoT NTN, according to certain embodiments. The method package also takes the network node 110, 300 at step 802 and receives from a UE (112, 200) a method for determining whether the UE is to insert at least one gap between adjacent transmission segments in at least one uplink transmission Information. At step 804, based on the information, the network node 110, 300 configures the UE to Insert at least one gap. Alternatively, the network node 110, 300 configures the UE to not insert at least one gap when the information indicates that at least one sample is to be discarded and/or punctured for segment precompensation.

在一特定實施例中,當資訊指示UE待插入至少一個間隙時,網路節點110、300判定UE係一A型UE,或當資訊指示UE不插入至少一個間隙時,網路節點判定UE係一B型UE。In a particular embodiment, the network node 110, 300 determines that the UE is a Type A UE when the information indicates that the UE is to be inserted into at least one gap, or the network node determines that the UE is a Type A UE when the information indicates that the UE is not to be inserted into at least one gap. A Type B UE.

在一特定實施例中,當該UE待插入該至少一個間隙時,該資訊指示待在該等相鄰傳輸片段之間插入一間隙持續時間或間隙持續時間之一範圍。In a particular embodiment, when the UE is to insert the at least one gap, the information indicates a gap duration or a range of gap durations to be inserted between the adjacent transmission segments.

在一特定實施例中,當該UE待插入該至少一個間隙時,該資訊指示待丟棄及/或擊穿以實施分段預補償之若干符號、時隙及/或子訊框。In a particular embodiment, when the UE is to be inserted into the at least one gap, the information indicates a number of symbols, slots and/or subframes to be discarded and/or punctured for segment precompensation.

在一特定實施例中,該資訊包括與該UE相關聯之能力資訊。In a particular embodiment, the information includes capability information associated with the UE.

在一特定實施例中,該資訊指示一特定類型之傳輸及/或一特定類型之實體通道,且該網路節點判定該至少一個間隙將基於該特定類型之傳輸及/或該特定類型之實體通道而插入該等相鄰傳輸片段之間。In a specific embodiment, the information indicates a specific type of transmission and/or a specific type of physical path, and the network node determines that the at least one gap will be based on the specific type of transmission and/or the specific type of physical channels are inserted between the adjacent transport segments.

在一特定實施例中,該特定類型之實體通道係一PUSCH、PUCCH或(N)PUSCH。In a specific embodiment, the specific type of physical channel is a PUSCH, PUCCH or (N)PUSCH.

在一特定實施例中,該資訊包括一持續時間,且該網路節點判定對於具有高於一臨限持續時間之一持續時間之各傳輸,該至少一個間隙將插入該等相鄰傳輸片段之間,或對於具有該特定持續時間之各傳輸,該網路節點判定該至少一個間隙將插入該等相鄰傳輸片段之間。In a particular embodiment, the information includes a duration and the network node determines that for each transmission having a duration higher than a threshold duration, the at least one gap is to be inserted between the adjacent transmission segments , or for each transmission of the specified duration, the network node determines that the at least one gap is to be inserted between the adjacent transmission segments.

在一特定實施例中,該資訊指示一特定類型之NTN,且該網路節點判定對於與該特定類型NTN相關聯之各傳輸,將在該等相鄰傳輸片段之間插入該至少一個間隙。In a particular embodiment, the information indicates a particular type of NTN, and the network node determines that for each transmission associated with the particular type of NTN, the at least one gap is to be inserted between the adjacent transmission segments.

在一特定實施例中,該特定類型之該NTN係低地球軌道或中地球軌道。In a particular embodiment, the NTN of the particular type is low earth orbit or medium earth orbit.

在一特定實施例中,該資訊指示一計時提前,且當該計時提前增加時,該網路節點判定將在至少一個上行鏈路傳輸中之相鄰傳輸片段之間插入該至少一個間隙,或當該計時提前減少時,該網路節點判定在該至少一個上行鏈路傳輸中之相鄰傳輸片段之間不插入該至少一個間隙。In a particular embodiment, the information indicates a timing advance, and when the timing advance increases, the network node decides to insert the at least one gap between adjacent transmission segments in at least one uplink transmission, or When the timing advance decreases, the network node determines not to insert the at least one gap between adjacent transmission segments in the at least one uplink transmission.

在一特定實施例中,該資訊指示該UE之一位置。In a specific embodiment, the information indicates a location of the UE.

實例實施例 A組實例實施例 實例實施例A1。一種由一使用者設備用於促進IoT NTN中之長上行鏈路傳輸之方法,該方法包括:上述該等使用者設備步驟、特徵或功能之任何者,單獨或與上述其他步驟、特徵或功能組合。 實例實施例A2。如先前實施例之方法,其進一步包括上述一或多個額外使用者設備步驟、特徵或功能。 實例實施例A3。如先前實施例中任一項之方法,其進一步包括:提供使用者資料;及經由至該網路節點之該傳輸將該使用者資料轉發至一主機電腦。 Example embodiment A group example embodiment Example Embodiment Al. A method for facilitating long uplink transmissions in an IoT NTN by a user equipment, the method comprising: any of the user equipment steps, features or functions described above, alone or in combination with other steps, features or functions described above combination. Example Embodiment A2. As in the method of the previous embodiment, it further includes the above-mentioned one or more additional user equipment steps, features or functions. Example Embodiment A3. The method of any one of the previous embodiments, further comprising: providing user data; and forwarding the user data to a host computer via the transmission to the network node.

B組實例實施例 實例實施例B1。一種由一網路節點執行之用於促進IoT NTN中之長上行鏈路傳輸之方法,該方法包括:上述該等網路節點步驟、特徵或功能之任何者,單獨或與上述其他步驟、特徵或功能組合。 實例實施例B2。如先前實施例中任一項之方法,其進一步包括上述一或多個額外網路節點步驟、特徵或功能。 實例實施例B3。如先前實施例中任一項之方法,其進一步包括:獲得使用者資料;及將該使用者資料轉發至一主機或一使用者設備。 Group B example embodiment Example Embodiment B1. A method performed by a network node for facilitating long uplink transmissions in an IoT NTN, the method comprising: any of the above-mentioned network node steps, features or functions, alone or in combination with the above-mentioned other steps, features or a combination of functions. Example Embodiment B2. The method according to any one of the previous embodiments, further comprising one or more additional network node steps, features or functions described above. Example Embodiment B3. The method according to any one of the previous embodiments, further comprising: obtaining user data; and forwarding the user data to a host or a user device.

C組實例實施例 實例實施例C1。一種由一使用者設備(UE)用於促進IoT NTN中之長上行鏈路傳輸之方法,該方法包括:與一網路節點傳達用於判定該UE是否待在至少一個上行鏈路傳輸中之相鄰傳輸片段之間插入至少一個間隙之資訊。 實例實施例C2a。如實例實施例C1之方法,其中傳達該資訊包括將該資訊傳輸至該網路節點。 實例實施例C2b。如實例實施例C1至C2a中任一項之方法,其中該資訊指示該UE係一A型UE或一B型UE。 實例實施例C3。如實例實施例C1之方法,其中傳達該資訊包括自該網路節點接收該資訊。 實例實施例C4。如實例實施例C1至C3中任一項之方法,其中該資訊指示待插入該等相鄰傳輸片段之間的一間隙持續時間或間隙持續時間之一範圍。 實例實施例C5。如實例實施例C1至C4中任一項之方法,其中該資訊指示待丟棄及/或擊穿以實施分段預補償之若干樣本、符號、時隙、子訊框及/或資源單元。 實例實施例C6。如實例實施例C1至C5中任一項之方法,其中該資訊包括與該UE相關聯之能力資訊。 實例實施例C7。如實例實施例C1至C6中任一項之方法,其中該資訊指示待為一特定類型之傳輸及/或一特定類型之實體通道插入該至少一個間隙。 實例實施例C8。如實例實施例C1至C7中任一項之方法,其中該資訊指示對於具有高於一臨限持續時間之一持續時間之各傳輸,將在該等相鄰傳輸片段之間插入該至少一個間隙。 實例實施例C9。如實例實施例C1至C8中任一項之方法,其中該資訊指示對於具有一特定持續時間之各傳輸,將在該等相鄰傳輸片段之間插入該至少一個間隙。 實例實施例C10。如實例實施例C1至C9中任一項之方法,其中該資訊指示對於具有一特定持續時間之各傳輸,將在該等相鄰傳輸片段之間插入該至少一個間隙。 實例實施例C11。如實例實施例C1至C10中任一項之方法,其中該資訊指示一特定類型之NTN,且該UE經組態以針對與該特定類型之NTN相關聯之各傳輸,在該等相鄰傳輸片段之間插入該至少一個間隙。 實例實施例C12。如實例實施例C1至C11中任一項之方法,其中該資訊指示一計時提前。 實例實施例C13。如實例實施例C12之方法,其中該UE經組態以基於該計時提前增加或減少而在至少一個上行鏈路傳輸中之相鄰傳輸片段之間插入該至少一個間隙。 實例實施例C14。如實例實施例C1至C13中任一項之方法,其中該資訊指示該UE之一位置。 實例實施例C15。如實例實施例C14之方法,其進一步包括:基於該UE之該位置來判定與該UE相關聯之一計時提前增加或減少,且其中該UE經組態以基於該計時提前增加或減少而在至少一個上行鏈路傳輸中之相鄰傳輸片段之間插入該至少一個間隙。 實例實施例C16。如實例實施例C12至C15中任一項之方法,其中該UE經組態以在當該計時提前增加時在該至少一個上行鏈路傳輸中之該等相鄰傳輸片段之間插入該至少一個間隙,且其中該UE經組態以當該計時提前不增加或減少時,不在該至少一個上行鏈路傳輸中之該等相鄰傳輸片段之間插入該至少一個間隙。 實例實施例C17。如實例實施例C1至C16之方法,其進一步包括:提供使用者資料;及經由至該網路節點之該傳輸將該使用者資料轉發至一主機。 實例實施例C18。一種使用者設備,其包括經組態以執行實例實施例C1至C17之該等方法之任何者之處理電路系統。 實例實施例C19。一種無線裝置,其包括經組態以執行實例實施例C1至C17之該等方法之任何者之處理電路系統。 實例實施例C20。一種電腦程式,其包括當在一電腦上執行時執行實例實施例C1至C17之該等方法之任何者之指令。 實例實施例C21。一種包括電腦程式之電腦程式產品,該電腦程式包括當在一電腦上執行時執行實例實施例C1至C17之該等方法之任何者之指令。 實例實施例C22。一種儲存指令之非暫時性電腦可讀媒體,當由一電腦執行時,該等指令執行實例實施例C1至C17之該等方法之任何者。 Group C example embodiment Example Embodiment C1. A method by a user equipment (UE) for facilitating long uplink transmissions in IoT NTN, the method comprising: communicating with a network node information for determining whether the UE is in at least one uplink transmission Information of at least one gap is inserted between adjacent transmission segments. Example embodiment C2a. The method of example embodiment C1, wherein communicating the information includes transmitting the information to the network node. Example Embodiment C2b. The method as in any one of example embodiments C1 to C2a, wherein the information indicates that the UE is a type A UE or a type B UE. Example embodiment C3. The method of example embodiment C1, wherein communicating the information includes receiving the information from the network node. Example embodiment C4. The method as in any one of example embodiments C1 to C3, wherein the information indicates a gap duration or a range of gap durations to be inserted between the adjacent transmission segments. Example embodiment C5. The method as in any one of example embodiments C1 to C4, wherein the information indicates a number of samples, symbols, slots, subframes and/or resource units to be discarded and/or punctured for segment precompensation. Example embodiment C6. The method as in any one of example embodiments C1 to C5, wherein the information includes capability information associated with the UE. Example Embodiment C7. The method of any of example embodiments C1 to C6, wherein the information indicates the at least one gap to be inserted for a particular type of transmission and/or a particular type of physical channel. Example embodiment C8. The method of any one of example embodiments C1 to C7, wherein the information indicates that for each transmission having a duration higher than a threshold duration, the at least one gap will be inserted between the adjacent transmission segments . Example embodiment C9. The method as in any one of example embodiments C1 to C8, wherein the information indicates that for each transmission having a particular duration, the at least one gap is to be inserted between the adjacent transmission segments. Example embodiment C10. The method as in any one of example embodiments C1 to C9, wherein the information indicates that for each transmission having a particular duration, the at least one gap is to be inserted between the adjacent transmission segments. Example Example C11. The method of any one of example embodiments C1 to C10, wherein the information indicates a particular type of NTN, and the UE is configured to, for each transmission associated with the particular type of NTN, between the adjacent transmissions The at least one gap is inserted between the segments. Example embodiment C12. The method of any of example embodiments C1-C11, wherein the information indicates a timing advance. Example embodiment C13. The method of example embodiment C12, wherein the UE is configured to insert the at least one gap between adjacent transmission segments in at least one uplink transmission based on the timing advance increase or decrease. Example embodiment C14. The method as in any one of example embodiments C1 to C13, wherein the information indicates a location of the UE. Example embodiment C15. The method of example embodiment C14, further comprising: determining a timing advance increase or decrease associated with the UE based on the location of the UE, and wherein the UE is configured to increase or decrease in timing advance based on the timing advance increase or decrease The at least one gap is inserted between adjacent transmission segments in at least one uplink transmission. Example embodiment C16. The method as in any one of example embodiments C12 to C15, wherein the UE is configured to insert the at least one between adjacent transmission segments in the at least one uplink transmission when the timing advance increases gaps, and wherein the UE is configured not to insert the at least one gap between the adjacent transmission segments in the at least one uplink transmission when the timing advance is not increased or decreased. Example embodiment C17. The method of example embodiments C1 to C16, further comprising: providing user data; and forwarding the user data to a host via the transmission to the network node. Example embodiment C18. A user equipment comprising processing circuitry configured to perform any of the methods of example embodiments C1-C17. Example embodiment C19. A wireless device comprising processing circuitry configured to perform any of the methods of example embodiments C1-C17. Example embodiment C20. A computer program comprising instructions for performing any of the methods of example embodiments C1 to C17 when executed on a computer. Example embodiment C21. A computer program product comprising a computer program comprising instructions for performing any of the methods of example embodiments C1 to C17 when executed on a computer. Example embodiment C22. A non-transitory computer-readable medium storing instructions that, when executed by a computer, perform any of the methods of example embodiments C1-C17.

D組實例實施例 實例實施例D1。一種由一網路節點用於促進IoT NTN中之長上行鏈路傳輸之方法,該方法包括:與一使用者設備(UE)傳達用於判定該UE是否待在至少一個上行鏈路傳輸中之相鄰傳輸片段之間插入至少一個間隙之資訊。 實例實施例D2a。如實例實施例D1之方法,其中傳達該資訊包括自該UE接收該資訊。 實例實施例D2b。如實例實施例D1至D2a中任一項之方法,其中該資訊指示該UE係一A型UE或一B型UE。 實例實施例D3。如實例實施例D1之方法,其中傳達該資訊包括將該資訊傳輸至該UE。 實例實施例D4。如實例實施例D1至D3中任一項之方法,其中該資訊指示待在該等相鄰傳輸片段之間插入之一間隙持續時間或間隙持續時間之一範圍。 實例實施例D5。如實例實施例D1至D4中任一項之方法,其中該資訊指示待丟棄及/或擊穿以實施分段預補償之若干樣本、符號、時隙、子訊框及/或資源單元。 實例實施例D6。如實例實施例D1至D5中任一項之方法,其中該資訊包括與該UE相關聯之能力資訊。 實例實施例D7。如實例實施例D1至D6中任一項之方法,其中該資訊指示一特定類型之傳輸及/或一特定類型之實體通道,且該方法進一步包含基於該特定類型之傳輸及/或該特定類型之實體通道來判定將在該等相鄰傳輸片段之間插入該至少一個間隙。 實例實施例D8。如實例實施例D1至D7中任一項之方法,其中該資訊包括一持續時間,且該方法進一步包括判定對於具有高於一臨限持續時間之一持續時間之各傳輸,將在該等相鄰傳輸片段之間插入該至少一個間隙。 實例實施例D9。如實例實施例D1至D7中任一項之方法,其中該資訊包括一持續時間,且該方法進一步包括判定對於具有該特定持續時間之各傳輸,將在該等相鄰傳輸片段之間插入該至少一個間隙。 實例實施例D10。如實例實施例D1至D9中任一項之方法,其中該資訊指示該UE將針對具有一特定持續時間之各傳輸在該等相鄰傳輸片段之間插入該至少一個間隙。 實例實施例D11。如實例實施例D1至D10中任一項之方法,其中該資訊指示一特定類型之NTN,且該方法進一步包括判定對於與該特定類型之NTN相關聯之各傳輸,將在該等相鄰傳輸片段之間插入該至少一個間隙。 實例實施例D12。如實例實施例D1至D11中任一項之方法,其中該資訊指示一計時提前。 實例實施例D13。如實例實施例D12之方法,其進一步包括:判定該計時提前增加或減少,及基於該計時提前增加或減少,判定待在至少一個上行鏈路傳輸中之該等相鄰傳輸片段之間插入該至少一個間隙。 實例實施例D14。如實例實施例D1至D13中任一項之方法,其中該資訊指示該UE之一位置。 實例實施例D15。如實例實施例D14之方法,其進一步包括:基於該UE之該位置來判定與該UE相關聯之一計時提前增加或減少,及基於該計時提前增加或減少來判定該至少一個間隙是否將插入至少一個上行鏈路傳輸中之相鄰傳輸片段之間。 實例實施例D16。如實例實施例D12至D15中任一項之方法,其中該UE經組態以當該計時提前增加時將該至少一個間隙插入該至少一個上行鏈路傳輸中之該等相鄰傳輸片段之間,且其中該UE經組態以當該計時提前不增加或減少時,不在該至少一個上行鏈路傳輸中之該等相鄰傳輸片段之間插入該至少一個間隙。 實例實施例D17。如實例實施例D1至D16中任一項之方法,其中該網路節點包括一gNodeB (gNB)。 實例實施例D18。如先前實例實施例中任一項之方法,其進一步包括:獲得使用者資料;及將該使用者資料轉發至一主機或一使用者設備。 實例實施例D19。一種網路節點,其包括經組態以執行實例實施例D1至D18之該等方法之任何者之處理電路系統。 實例實施例D20。一種電腦程式,其包括當在一電腦上執行時執行實例實施例D1至D18之該等方法之任何者之指令。 實例實施例D21。一種包括電腦程式之電腦程式產品,該電腦程式包括當在一電腦上執行時執行實例實施例D1至D18之該等方法之任何者之指令。 實例實施例D22。一種儲存指令之非暫時性電腦可讀媒體,當由一電腦執行時,該等指令執行實例實施例D1至D18之該等方法之任何者。 Group D example embodiment Example Embodiment D1. A method by a network node for facilitating long uplink transmissions in IoT NTN, the method comprising: communicating with a user equipment (UE) information for determining whether the UE is in at least one uplink transmission Information of at least one gap is inserted between adjacent transmission segments. Example Embodiment D2a. The method of example embodiment D1, wherein communicating the information includes receiving the information from the UE. Example Embodiment D2b. The method as in any one of example embodiments D1 to D2a, wherein the information indicates that the UE is a type A UE or a type B UE. Example Embodiment D3. The method of example embodiment D1, wherein communicating the information includes transmitting the information to the UE. Example Embodiment D4. The method as in any one of example embodiments D1 to D3, wherein the information indicates a gap duration or a range of gap durations to be inserted between the adjacent transmission segments. Example Embodiment D5. The method as in any one of example embodiments D1 to D4, wherein the information indicates a number of samples, symbols, slots, subframes and/or resource units to be discarded and/or punctured for segment precompensation. Example Embodiment D6. The method as in any one of example embodiments D1 to D5, wherein the information comprises capability information associated with the UE. Example Embodiment D7. The method of any one of example embodiments D1 to D6, wherein the information indicates a specific type of transmission and/or a specific type of physical channel, and the method further comprises based on the specific type of transmission and/or the specific type The at least one gap is to be inserted between the adjacent transmission segments according to the physical channel. Example Embodiment D8. The method of any one of example embodiments D1 to D7, wherein the information includes a duration, and the method further comprises determining that for each transmission having a duration higher than a threshold duration, the The at least one gap is inserted between adjacent transmission segments. Example Embodiment D9. The method of any one of example embodiments D1 to D7, wherein the information includes a duration, and the method further comprises determining that for each transmission having the particular duration, the at least one gap. Example Embodiment D10. The method as in any one of example embodiments D1 to D9, wherein the information indicates that the UE will insert the at least one gap between the adjacent transmission segments for each transmission having a specific duration. Example Embodiment D11. The method of any one of example embodiments D1 to D10, wherein the information indicates a particular type of NTN, and the method further comprises determining that, for each transmission associated with the particular type of NTN, the adjacent transmissions will be The at least one gap is inserted between the segments. Example Embodiment D12. The method of any one of example embodiments D1 to D11, wherein the information indicates a timing advance. Example Embodiment D13. The method of example embodiment D12, further comprising: determining the timing advance increase or decrease, and based on the timing advance increase or decrease, determining to insert the at least one gap. Example Embodiment D14. The method as in any one of example embodiments D1 to D13, wherein the information indicates a location of the UE. Example Embodiment D15. The method of example embodiment D14, further comprising: determining a timing advance increase or decrease associated with the UE based on the location of the UE, and determining whether the at least one gap is to be inserted based on the timing advance increase or decrease Between adjacent transmission segments in at least one uplink transmission. Example Embodiment D16. The method of any one of example embodiments D12 to D15, wherein the UE is configured to insert the at least one gap between the adjacent transmission segments in the at least one uplink transmission when the timing advance is increased , and wherein the UE is configured not to insert the at least one gap between the adjacent transmission segments in the at least one uplink transmission when the timing advance is not increasing or decreasing. Example Embodiment D17. The method of any one of example embodiments D1 to D16, wherein the network node comprises a gNodeB (gNB). Example Embodiment D18. The method according to any one of the previous example embodiments, further comprising: obtaining user data; and forwarding the user data to a host or a user device. Example Example D19. A network node comprising processing circuitry configured to perform any of the methods of example embodiments Dl-D18. Example Embodiment D20. A computer program comprising instructions for performing any of the methods of example embodiments D1 to D18 when executed on a computer. Example Embodiment D21. A computer program product comprising a computer program comprising instructions for performing any of the methods of example embodiments D1 to D18 when executed on a computer. Example Embodiment D22. A non-transitory computer readable medium storing instructions that, when executed by a computer, perform any of the methods of example embodiments D1 to D18.

E組實例實施例 實例實施例E1。一種用於促進IoT NTN中之長上行鏈路傳輸之使用者設備,該使用者設備包括:處理電路系統,其經組態以執行A組及C組實例實施例之任何者之步驟之任何者;及電源供應器電路系統,其經組態以將電力供應至該處理電路系統。 實例實施例E2。一種用於促進IoT NTN中之長上行鏈路傳輸之網路節點,該網路節點包括:處理電路系統,其經組態以執行B組及D組實例實施例之任何一之步驟;電源供應器電路,其經組態以將電力供應至該處理電路系統。 實例實施例E3。一種用於促進IoT NTN中之長上行鏈路傳輸之使用者設備(UE),該UE包括:一天線,其經組態以發送及接收無線信號;無線電前端電路系統,其連接至該天線及處理電路系統,且經組態以調節在該天線與該處理電路系統之間傳達之信號;該處理電路系統經組態以執行A組及C組實例實施例之任何者之該等步驟之任何者;一輸入介面,其連接至該處理電路系統且經組態以允許將資訊輸入至待由該處理電路系統處理之該UE中;一輸出介面,其連接至該處理電路系統且經組態以自該UE輸出已由該處理電路系統處理之資訊;及一電池,其連接至該處理電路系統且經組態以將電力供應至該UE。 實例實施例E4。一種經組態以在一通信系統中操作以提供一雲上(OTT)服務之主機,該主機包括:處理電路系統,其經組態以提供使用者資料;及一網路介面,其經組態以起始將該使用者資料傳輸至一蜂巢式網路以傳輸至一使用者設備(UE),其中該UE包括一通信介面及處理電路系統,該UE之該通信介面及處理電路系統經組態以執行A組及C組實例實施例之任何者之該等步驟之任何者以自該主機接收該使用者資料。 實例實施例E5。如先前實例實施例之主機,其中該蜂巢式網路進一步包含之一網路節點,經組態以與該UE通信以自該主機將該使用者資料傳輸至該UE。 實例實施例E6。如先前2個實例實施例之主機,其中:該主機之該處理電路系統經組態以執行一主機應用,藉此提供該使用者資料;且該主機應用經組態以與對該UE執行之一用戶端應用互動,該用戶端應用與該主機應用相關聯。 實例實施例E7。一種由在進一步包含一網路節點及一使用者設備(UE)之一通信系統中操作之一主機實施之方法,該方法包括:為該UE提供使用者資料;及經由包括該網路節點之一蜂巢式網路起始將該使用者資料攜帶至該UE之一傳輸,其中該UE執行A組實施例之任何者之該等操作之任何者以自該主機接收該使用者資料。 實例實施例E8。如先前實例實施例之方法,其進一步包括:在該主機處,執行與對該UE執行之一用戶端應用相關聯之一主機應用以自該UE接收該使用者資料。 實例實施例E9。如先前實例實施例之方法,其進一步包括:在該主機處,將輸入資料傳輸至對該UE執行之該用戶端應用,藉由執行該主機應用來提供該輸入資料,其中回應於來自該主機應用之該輸入資料而由該用戶端應用提供該使用者資料。 實例實施例E10。一種經組態以在一通信系統中操作以提供一雲上(OTT)服務之主機,該主機包括:處理電路系統,其經組態以提供使用者資料;及一網路介面,其經組態以起始將該使用者資料傳輸至一蜂巢式網路以傳輸至一使用者設備(UE),其中該UE包括一通信介面及處理電路系統,該UE之該通信介面及處理電路系統經組態以執行A組及C組實例實施例之任何者之該等步驟之任何者以將該使用者資料傳輸至該主機。 實例實施例E11。如先前實例實施例之主機,其中該蜂巢式網路進一步包含經組態以與該UE通信以將該使用者資料自該UE傳輸至該主機之一網路節點。 實例實施例E12。如先前2個實例實施例之主機,其中:該主機之該處理電路系統經組態以執行一主機應用程式,藉此提供該使用者資料;且該主機應用經組態以與對該UE執行之一用戶端應用互動,該用戶端應用與該主機應用相關聯。 實例實施例E13。一種由經組態以在進一步包含一網路節點及一使用者設備(UE)之一通信系統中操作之一主機實施之方法,該方法包括:在該主機處,接收由該UE經由該網路節點傳輸至該主機之使用者資料,其中該UE執行A組及C組實例實施例之任何者之該等步驟之任何者以將該使用者資料傳輸至該主機。 實例實施例E14。如先前實例實施例之方法,其進一步包括:在該主機處,執行與對該UE執行之一用戶端應用相關聯之一主機應用以自該UE接收該使用者資料。 實例實施例E15。如先前實例實施例之方法,其進一步包括:在該主機處,將輸入資料傳輸至對該UE執行之該用戶端應用,藉由執行該主機應用來提供該輸入資料,其中回應於來自該主機應用之該輸入資料,由該用戶端應用提供該使用者資料。 實例實施例E16。一種經組態以在一通信系統中操作以提供一雲上(OTT)服務之主機,該主機包括:處理電路系統,其經組態以提供使用者資料;及一網路介面,其經組態以起始將該使用者資料傳輸至一蜂窩網路中之一網路節點以傳輸至一使用者設備(UE),該網路節點具有一通信介面及處理電路系統,該網路節點之該處理電路系統經組態以執行B組及D組實例實施例之任何者之該等操作之任何者以將該使用者資料自該主機傳輸至該UE。 實例實施例E17。如先前實例實施例之主機,其中:該主機之該處理電路系統經組態以執行提供該使用者資料之一主機應用;且該UE包括經組態以執行與該主機應用相關聯之一用戶端應用以自該主機接收使用者資料之傳輸之處理電路系統。 實例實施例E18。一種在經組態以在進一步包含一網路節點及一使用者設備(UE)之一通信系統中操作之一主機中實施之方法,該方法包括:為該UE提供使用者資料;及經由包括該網路節點之一蜂巢式網路起始將該使用者資料寫攜帶至該UE之一傳輸,其中該網路節點執行B組及D組實例實施例之任何者之該等操作之任何者以將該使用者資料自該主機傳輸至該UE。 實例實施例E19。如先前實例實施例之方法,其進一步包括在該網路節點處,傳輸由該主機為該UE提供之該使用者資料。 實例實施例E20。如先前2個實例實施例中任一項之方法,其中藉由執行與對該UE執行之一用戶端應用互動之一主機應用,在該主機處提供該使用者資料,該用戶端應用與該主機應用相關聯。 實例實施例E21。一種經組態以提供一雲上服務之通信系統,該通信系統包括:一主機,其包括:處理電路系統,其經組態以為一使用者設備(UE)提供使用者資料,該使用者資料與該雲上服務相關聯;及一網路介面,其經組態以起始朝向一蜂巢式網路節點傳輸該使用者資料以傳輸至該UE,該網路節點具有一通信介面及處理電路系統,該網路節點之該處理電路系統經組態以執行B組及D組實例實施例之任何者之該等操作之任何者以將該使用者資料自該主機傳輸至該UE。 實例實施例E22。如先前實例實施例之通信系統,其進一步包括:該網路節點;及/或該使用者設備。 實例實施例E23。一種經組態以在一通信系統中操作以提供一雲上(OTT)服務之主機,該主機包括:處理電路系統,其經組態以起始使用者資料之接收;及一網路介面,其經組態以自一蜂巢式網路中之一網路節點接收該使用者資料,該網路節點具有一通信介面及處理電路系統,該網路節點之該處理電路系統經組態以執行B組及D組實例實施例之任何者之該等操作之任何者以自該主機之一使用者設備(UE)接收該使用者資料。 實例實施例E24。如先前2個實例實施例之主機,其中:該主機之該處理電路系統經組態以執行一主機應用,藉此提供該使用者資料;且該主機應用經組態以與對該UE執行之一用戶端應用互動,該用戶端應用與該主機應用相關聯。 實例實施例E25。如先前2個實例實施例中任一項之主機,其中起始該使用者資料之接收包括請求該使用者資料。 實例實施例E26。一種由經組態以在進一步包含一網路節點及一使用者設備(UE)之一通信系統中操作之一主機實施之方法,其中該網路節點執行B組及D組實例實施例之任何者之該等步驟之任何者以自該UE接收該主機之該使用者資料。 實例實施例E27。如先前實例實施例之方法,其進一步包括在該網路節點處,將所接收之使用者資料傳輸至該主機。 Group E example embodiment Example Embodiment El. A user equipment for facilitating long uplink transmissions in an IoT NTN, the user equipment comprising: processing circuitry configured to perform any of the steps of any of sets A and C of example embodiments ; and power supply circuitry configured to supply power to the processing circuitry. Example Embodiment E2. A network node for facilitating long uplink transmissions in an IoT NTN, the network node comprising: processing circuitry configured to perform the steps of any one of sets B and D of example embodiments; a power supply A controller circuit configured to supply power to the processing circuitry. Example embodiment E3. A user equipment (UE) for facilitating long uplink transmissions in an IoT NTN, the UE comprising: an antenna configured to transmit and receive wireless signals; radio front-end circuitry connected to the antenna and processing circuitry configured to condition signals communicated between the antenna and the processing circuitry; the processing circuitry configured to perform any of the steps of any of Groups A and C of example embodiments or; an input interface connected to the processing circuitry and configured to allow information to be input into the UE to be processed by the processing circuitry; an output interface connected to the processing circuitry and configured to output from the UE information that has been processed by the processing circuitry; and a battery connected to the processing circuitry and configured to supply power to the UE. Example Embodiment E4. A host configured to operate in a communication system to provide an over-the-cloud (OTT) service, the host comprising: processing circuitry configured to provide user data; and a network interface configured To initiate transmission of the user data to a cellular network for transmission to a user equipment (UE), wherein the UE includes a communication interface and processing circuitry, the communication interface and processing circuitry of the UE are assembled state to perform any of the steps of any of sets A and C of example embodiments to receive the user data from the host. Example Embodiment E5. The host as in the previous example embodiment, wherein the cellular network further comprises a network node configured to communicate with the UE to transmit the user data from the host to the UE. Example Embodiment E6. The host as in the previous two example embodiments, wherein: the processing circuitry of the host is configured to execute a host application, thereby providing the user data; and the host application is configured to communicate with the UE executed A client application interacts, the client application being associated with the host application. Example Embodiment E7. A method implemented by a host operating in a communication system further comprising a network node and a user equipment (UE), the method comprising: providing user data to the UE; and via a network node comprising the network node A cellular network initiates a transmission carrying the user data to the UE, wherein the UE performs any of the operations of any of group A embodiments to receive the user data from the host. Example Embodiment E8. The method as in the previous example embodiment, further comprising: at the host, executing a host application associated with a client application executed on the UE to receive the user profile from the UE. Example Embodiment E9. The method of the previous example embodiment, further comprising: at the host, transmitting input data to the client application executing on the UE, providing the input data by executing the host application, wherein a response from the host The user data is provided by the client application for the input data of the application. Example Embodiment E10. A host configured to operate in a communication system to provide an over-the-cloud (OTT) service, the host comprising: processing circuitry configured to provide user data; and a network interface configured To initiate transmission of the user data to a cellular network for transmission to a user equipment (UE), wherein the UE includes a communication interface and processing circuitry, the communication interface and processing circuitry of the UE are assembled state to perform any of the steps of any of Groups A and C of example embodiments to transmit the user data to the host. Example Embodiment E11. The host as in the previous example embodiment, wherein the cellular network further comprises a network node configured to communicate with the UE to transmit the user data from the UE to the host. Example Embodiment E12. The host as in the previous two example embodiments, wherein: the processing circuitry of the host is configured to execute a host application, thereby providing the user data; and the host application is configured to execute with the UE interact with a client application associated with the host application. Example Embodiment E13. A method implemented by a host configured to operate in a communication system further comprising a network node and a user equipment (UE), the method comprising: at the host, receiving A road node transmits user data to the host, wherein the UE performs any of the steps of any of sets A and C of example embodiments to transmit the user data to the host. Example Embodiment E14. The method as in the previous example embodiment, further comprising: at the host, executing a host application associated with a client application executed on the UE to receive the user data from the UE. Example Embodiment E15. The method of the previous example embodiment, further comprising: at the host, transmitting input data to the client application executing on the UE, providing the input data by executing the host application, wherein a response from the host For the input data of the application, the user data is provided by the client application. Example Embodiment E16. A host configured to operate in a communication system to provide an over-the-cloud (OTT) service, the host comprising: processing circuitry configured to provide user data; and a network interface configured To initiate transmission of the user data to a network node in a cellular network for transmission to a user equipment (UE), the network node having a communication interface and processing circuitry, the network node having the Processing circuitry is configured to perform any of the operations of any of Groups B and D of example embodiments to transmit the user data from the host to the UE. Example Embodiment E17. The host as in the previous example embodiment, wherein: the processing circuitry of the host is configured to execute a host application providing the user data; and the UE includes a user configured to execute a user associated with the host application The processing circuitry used by the end application to receive transmissions of user data from the host. Example Embodiment E18. A method implemented in a host configured to operate in a communication system further comprising a network node and a user equipment (UE), the method comprising: providing user data to the UE; A cellular network of the network node initiates a transmission carrying the user data write to the UE, wherein the network node performs any of the operations of any of sets B and D of example embodiments to transmit the user data from the host to the UE. Example Embodiment E19. The method as in the previous example embodiment, further comprising, at the network node, transmitting the user data provided by the host for the UE. Example Embodiment E20. The method of any one of the previous 2 example embodiments, wherein the user profile is provided at the host by executing a host application that interacts with a client application executing on the UE, the client application interacting with the UE The host application is associated. Example Embodiment E21. A communication system configured to provide a service on the cloud, the communication system includes: a host, including: processing circuitry configured to provide user data for a user equipment (UE), the user data and the cloud service is associated; and a network interface configured to initiate transmission of the user data towards a cellular network node for transmission to the UE, the network node having a communication interface and processing circuitry, The processing circuitry of the network node is configured to perform any of the operations of any of sets B and D of example embodiments to transmit the user data from the host to the UE. Example Embodiment E22. According to the communication system of the previous example embodiment, it further includes: the network node; and/or the user equipment. Example Embodiment E23. A host configured to operate in a communication system to provide an over-the-cloud (OTT) service, the host comprising: processing circuitry configured to initiate receipt of user data; and a network interface that configured to receive the user data from a network node in a cellular network, the network node having a communication interface and processing circuitry, the processing circuitry of the network node being configured to perform B Any of the operations of any of Groups and Groups D example embodiments to receive the user data from a user equipment (UE) of the host. Example Embodiment E24. The host as in the previous two example embodiments, wherein: the processing circuitry of the host is configured to execute a host application, thereby providing the user data; and the host application is configured to communicate with the UE executed A client application interacts, the client application being associated with the host application. Example Embodiment E25. The host as in any one of the preceding two example embodiments, wherein initiating receipt of the user data includes requesting the user data. Example embodiment E26. A method implemented by a host configured to operate in a communication system further comprising a network node and a user equipment (UE), wherein the network node executes any of Groups B and D of example embodiments or any of the steps to receive the user data of the host from the UE. Example Embodiment E27. As in the method of the previous example embodiment, it further includes, at the network node, transmitting the received user data to the host.

F組實例實施例 實例實施例F1。一種由一使用者設備(UE)用於促進eMTC NTN中之長上行鏈路傳輸之方法,該方法包括:自一網路節點接收指示一傳輸片段持續時間之資訊。 實例實施例F2。如實例實施例F1之方法,其中該傳輸片段持續時間包括至少一個傳輸片段之一最大重複次數。 實例實施例F3。如實例實施例F1至F2中任一項之方法,其中該至少一個傳輸片段用於在一實體上行鏈路控制通道(PUCCH)上傳輸。 實例實施例F4。如實例實施例F1之方法,其中該PUCCH包括一eMTC PUCCH。 實例實施例F5。如實例實施例F1至F4中任一項之方法,其中該資訊使用一k位元欄指示該傳輸片段持續時間之至少一個K值,其中該值取決於該CE模式而不同:CE模式A:1位元欄用於指示K = 2個候選值:{2,4}(單位:子訊框),及/或CE模式B:3位欄位用於指示K = 5個候選值:{4,8,16,32,64}(單位:子訊框)。 實例實施例F6。如實例實施例F1至F5中任一項之方法,其中該資訊不指示一PUCCH之該傳輸片段持續時間之一值。 實例實施例F7。如實例實施例F6之方法,其進一步包括基於不指示該PUCCH之該傳輸片段持續時間之一值之該資訊而判定不對該至少一個傳輸片段執行分段預補償。 實例實施例F8。如實例實施例F1至F5中任一項之方法,其中該資訊指示一PUCCH之該傳輸片段持續時間之一值。 實例實施例F9。如實例實施例F8之方法,其進一步包括基於指示該PUCCH之該傳輸片段持續時間之該值之該資訊而對該至少一個傳輸片段執行分段預補償。 實例實施例F10。如實例實施例F1至F9中任一項之方法,其進一步包括基於該資訊而判定不對該PUCCH之該至少一個傳輸片段執行分段預補償。 實例實施例F11。如實例實施例F10之方法,其中該資訊使用一k位元欄指示該傳輸片段持續時間之至少一個K值,其中該值取決於該CE模式而不同:CE模式A:2位元欄用於指示K = 3個候選值:{2,4,8}(單位:子訊框);或CE模式B:3位元欄用於指示K = 6個候選值:{4,8,16,32,64,128}(單位:子訊框)。 實例實施例F12。如實例實施例F1至F11中任一項之方法,其進一步包括:判定一跳頻時間間隔小於該傳輸片段持續時間,及調整該至少一個傳輸片段之一上行鏈路傳輸計時及/或一上行鏈路頻率同時自一第一窄頻重新調諧至一第二窄頻。 實例實施例F13。如實例實施例F12之方法,其進一步包括基於該跳頻時間間隔小於該傳輸片段持續時間來判定不在相鄰傳輸片段之間插入一間隙。 實例實施例F14。如實例實施例F1至F11中任一項之方法,其進一步包括:自該網路節點接收組態資訊,基於該組態資訊而判定是否在各跳頻例項處調整一傳輸計時及/或頻率,及基於該組態資訊而判定是否在相鄰傳輸片段之間插入一間隙。 實例實施例F15。如實例實施例F14之方法,其中經由RRC發訊接收該組態資訊。 實例實施例F16。如實例實施例F12至F15中任一項之方法,其中該(等)傳輸片段用於在一實體上行鏈路控制通道(PUCCH)、一實體上行鏈路共用通道(PUSCH)或一實體隨機存取通道(PRACH)上傳輸。 實例實施例F17。如實例實施例F1至F16之方法,其進一步包括:提供使用者資料;及經由至該網路節點之該傳輸將該使用者資料轉發至一主機。 實例實施例F18。一種使用者設備,其包括經組態以執行實例實施例F1至F17之方法之任何者之處理電路系統。 實例實施例F19。一種無線裝置,其包括經組態以執行實例實施例F1至F17之方法之任何者之處理電路系統。 實例實施例F20。一種電腦程式,其包括當在一電腦上執行時執行實例實施例F1至F17之方法之任何者之指令。 實例實施例F21。一種包括電腦程式之電腦程式產品,該電腦程式包括當在一電腦上執行時執行實例實施例F1至F17之方法之任何者之指令。 實例實施例F22。一種儲存指令之非暫時性電腦可讀媒體,當由一電腦執行時,該等指令執行實例實施例F1至F17之方法之任何者。 Group F example embodiment Example Embodiment F1. A method by a user equipment (UE) for facilitating long uplink transmissions in eMTC NTN, the method comprising: receiving information indicative of a transmission segment duration from a network node. Example Embodiment F2. The method of example embodiment F1, wherein the transmission segment duration includes a maximum number of repetitions of at least one transmission segment. Example Embodiment F3. The method as in any one of example embodiments F1 to F2, wherein the at least one transmission segment is for transmission on a physical uplink control channel (PUCCH). Example Embodiment F4. The method of example embodiment F1, wherein the PUCCH includes an eMTC PUCCH. Example Embodiment F5. The method of any of example embodiments F1 to F4, wherein the information indicates at least one K value of the transmission segment duration using a k-bit field, wherein the value differs depending on the CE mode: CE Mode A: 1-bit field for indicating K = 2 candidate values: {2, 4} (unit: subframe), and/or CE mode B: 3-bit field for indicating K = 5 candidate values: {4 , 8, 16, 32, 64} (unit: subframe). Example Embodiment F6. The method as in any one of example embodiments F1 to F5, wherein the information does not indicate a value of the transmission segment duration of a PUCCH. Example Embodiment F7. The method of example embodiment F6, further comprising determining not to perform segment precompensation for the at least one transmission segment based on the information not indicating a value for the transmission segment duration of the PUCCH. Example Embodiment F8. The method as in any one of example embodiments F1 to F5, wherein the information indicates a value of the transmission segment duration of a PUCCH. Example Embodiment F9. The method of example embodiment F8, further comprising performing segment precompensation on the at least one transmission segment based on the information indicative of the value of the transmission segment duration of the PUCCH. Example Embodiment F10. The method of any one of example embodiments F1 to F9, further comprising determining not to perform segment precompensation for the at least one transmission segment of the PUCCH based on the information. Example Embodiment F11. The method of example embodiment F10, wherein the information indicates at least one K value of the transmission segment duration using a k-bit field, wherein the value differs depending on the CE mode: CE Mode A: 2-bit field for Indicate K = 3 candidate values: {2, 4, 8} (unit: subframe); or CE mode B: 3-bit column is used to indicate K = 6 candidate values: {4, 8, 16, 32 , 64, 128} (unit: subframe). Example Embodiment F12. The method according to any one of example embodiments F1 to F11, further comprising: determining that a frequency hopping time interval is less than the transmission segment duration, and adjusting an uplink transmission timing of the at least one transmission segment and/or an uplink The link frequency is simultaneously retuned from a first narrow frequency to a second narrow frequency. Example Embodiment F13. The method of example embodiment F12, further comprising determining not to insert a gap between adjacent transmission segments based on the frequency hopping time interval being less than the transmission segment duration. Example Embodiment F14. The method of any one of example embodiments F1 to F11, further comprising: receiving configuration information from the network node, determining whether to adjust a transmission timing and/or at each frequency hopping instance based on the configuration information frequency, and determine whether to insert a gap between adjacent transmission segments based on the configuration information. Example Embodiment F15. The method of example embodiment F14, wherein the configuration information is received via RRC signaling. Example Embodiment F16. The method of any one of example embodiments F12 to F15, wherein the transmission segment(s) are used in a Physical Uplink Control Channel (PUCCH), a Physical Uplink Shared Channel (PUSCH) or a Physical Random Access Channel Transmission on access channel (PRACH). Example Embodiment F17. The method of example embodiments F1 to F16, further comprising: providing user data; and forwarding the user data to a host via the transmission to the network node. Example Embodiment F18. A user equipment comprising processing circuitry configured to perform any of the methods of example embodiments F1-F17. Example Embodiment F19. A wireless device comprising processing circuitry configured to perform any of the methods of example embodiments F1-F17. Example Embodiment F20. A computer program comprising instructions for performing any of the methods of example embodiments F1 to F17 when executed on a computer. Example Embodiment F21. A computer program product comprising a computer program comprising instructions for performing any of the methods of example embodiments F1 to F17 when executed on a computer. Example Embodiment F22. A non-transitory computer-readable medium storing instructions that, when executed by a computer, perform any of the methods of example embodiments F1 to F17.

G組實例實施例 實例實施例G1。一種由一網路節點用於促進eMTC NTN中之長上行鏈路傳輸之方法,該方法包括:將指示一傳輸片段持續時間之資訊傳輸至一使用者設備(UE)。 實例實施例G2。如實例實施例G1之方法,其中該傳輸片段持續時間包括至少一個傳輸片段之一最大重複次數。 實例實施例G3。如實例實施例G1至G2中任一項之方法,其中該至少一個傳輸片段用於在一實體上行鏈路控制通道(PUCCH)上傳輸。 實例實施例G4。如實例實施例G1之方法,其中該PUCCH包括一eMTC PUCCH。 實例實施例G5。如實例實施例G1至G4中任一項之方法,其中該資訊使用一k位元欄指示該至少一個傳輸片段持續時間之至少一個K值,其中該值取決於該CE模式而不同:CE模式A:1位元欄用於指示K = 2個候選值:{2,4}(單位:子訊框),及/或CE模式B:3位元欄用於指示K = 5個候選值:{4,8,16,32,64}(單位:子訊框)。 實例實施例G6。如實例實施例G1至G5中任一項之方法,其中該資訊不指示一PUCCH之該至少一個傳輸片段持續時間之一值。 實例實施例G7。如實例實施例G6之方法,其進一步包括組態該UE以基於不指示該PUCCH之該傳輸片段持續時間之一值之該資訊而不對該至少一個傳輸片段執行分段預補償。 實例實施例G8。如實例實施例G1至G5中任一項之方法,其中該資訊指示一PUCCH之該傳輸片段持續時間之一值。 實例實施例G9。如實例實施例G8之方法,其進一步包括組態該UE以基於指示該PUCCH之該傳輸片段持續時間之該值之該資訊而對該至少一個傳輸片段執行分段預補償。 實例實施例G10。如實例實施例G1至G9中任一項之方法,其進一步包括組態該UE以基於該資訊而判定不對該PUCCH之一上行鏈路傳輸執行分段預補償。 實例實施例G11。如實例實施例G10之方法,其中該資訊使用一k位元欄指示該至少一個傳輸片段持續時間之至少一個K值,其中該值取決於該CE模式而不同:CE模式A:2位元欄用於指示K = 3個候選值:{2,4,8}(單位:子訊框);及/或CE模式B:3位元欄用於指示K = 6個候選值:{4,8,16,32,64,128}(單位:子訊框)。 實例實施例G12。如根據實例實施例G1至G11中任一項之方法,其中一跳頻時間間隔小於該傳輸片段持續時間,且該方法進一步包括組態該UE以調整一上行鏈路傳輸計時及/或一上行鏈路頻率同時自一第一窄頻重新調諧至一第二窄頻。 實例實施例G13。如實例實施例G12之方法,其進一步包括基於小於該傳輸片段持續時間之該跳頻時間間隔而組態該UE以不在該等相鄰傳輸片段之間插入一間隙。 實例實施例G14。如實例實施例G1至G11中任一項之方法,其進一步包括:將組態資訊傳輸至該UE,且其中該UE經組態以基於該組態資訊來判定是否在各跳頻例項處調整一傳輸計時及/或頻率,且其中該UE經組態以基於該組態資訊判定是否在相鄰傳輸片段之間插入一間隙。 實例實施例G15。如實例實施例G14之方法,其中經由RRC發訊傳輸該組態資訊。 實例實施例G16。如實例實施例G12至G15中任一項之方法,其中該(等)傳輸片段用於在一實體上行鏈路控制通道(PUCCH)、一實體上行鏈路共用通道(PUSCH)或一實體隨機存取通道(PRACH)上傳輸。 實例實施例G17。如實例實施例G1至G16中任一項之方法,其中該網路節點包括一gNodeB (gNB)。 實例實施例G18。如先前實例實施例中任一項之方法,其進一步包括:獲得使用者資料;及將該使用者資料轉發至一主機或一使用者設備。 實例實施例G19。一種網路節點,其包括經組態以執行實例實施例G1至G18之方法之任何者之處理電路系統。 實例實施例G20。一種電腦程式,其包括當在一電腦上執行時執行實例實施例G1至G18之方法之任何者之指令。 實例實施例G21。一種包括電腦程式之電腦程式產品,該電腦程式包括當在一電腦上執行時執行實例實施例G1至G18之方法之任何者之指令。 實例實施例G22。一種儲存指令之非暫時性電腦可讀媒體,當由一電腦執行時,該等指令執行實例實施例G1至G18之方法之任何者。 Group G example embodiment Example Embodiment G1. A method by a network node for facilitating long uplink transmissions in an eMTC NTN, the method comprising: transmitting information indicative of a transmission segment duration to a user equipment (UE). Example Embodiment G2. The method of example embodiment G1, wherein the transmission segment duration includes a maximum number of repetitions of at least one transmission segment. Example Embodiment G3. The method of any one of example embodiments G1 to G2, wherein the at least one transmission segment is for transmission on a physical uplink control channel (PUCCH). Example Embodiment G4. The method of example embodiment G1, wherein the PUCCH includes an eMTC PUCCH. Example Embodiment G5. The method of any one of example embodiments G1 to G4, wherein the information indicates at least one K value of the at least one transmission segment duration using a k-bit field, wherein the value differs depending on the CE mode: CE mode A: 1-bit field for indicating K = 2 candidate values: {2, 4} (unit: subframe), and/or CE mode B: 3-bit field for indicating K = 5 candidate values: {4, 8, 16, 32, 64} (unit: subframe). Example Embodiment G6. The method as in any one of example embodiments G1 to G5, wherein the information does not indicate a value of the at least one transmission segment duration of a PUCCH. Example Embodiment G7. The method of example embodiment G6, further comprising configuring the UE to not perform segment precompensation for the at least one transmission segment based on the information not indicating a value for the transmission segment duration of the PUCCH. Example Embodiment G8. The method as in any one of example embodiments G1 to G5, wherein the information indicates a value of the transmission segment duration of a PUCCH. Example Embodiment G9. The method of example embodiment G8, further comprising configuring the UE to perform segment precompensation on the at least one transmission segment based on the information indicating the value of the transmission segment duration of the PUCCH. Example Embodiment G10. The method of any one of example embodiments G1 to G9, further comprising configuring the UE to determine not to perform segment precompensation for an uplink transmission of the PUCCH based on the information. Example Embodiment G11. The method of example embodiment G10, wherein the information indicates at least one K value of the at least one transmission segment duration using a k-bit field, wherein the value differs depending on the CE mode: CE Mode A: 2-bit field Used to indicate K = 3 candidate values: {2, 4, 8} (unit: subframe); and/or CE mode B: 3-bit field is used to indicate K = 6 candidate values: {4, 8 , 16, 32, 64, 128} (unit: subframe). Example Embodiment G12. The method according to any one of example embodiments G1 to G11, wherein a frequency hopping time interval is less than the transmission segment duration, and the method further comprises configuring the UE to adjust an uplink transmission timing and/or an uplink The link frequency is simultaneously retuned from a first narrow frequency to a second narrow frequency. Example Embodiment G13. The method of example embodiment G12, further comprising configuring the UE to not insert a gap between the adjacent transmission segments based on the hopping time interval less than the transmission segment duration. Example Embodiment G14. The method of any one of example embodiments G1 to G11, further comprising: transmitting configuration information to the UE, and wherein the UE is configured to determine whether to be at each frequency hopping instance based on the configuration information A transmission timing and/or frequency is adjusted, and wherein the UE is configured to determine whether to insert a gap between adjacent transmission segments based on the configuration information. Example Embodiment G15. The method of example embodiment G14, wherein the configuration information is transmitted via RRC signaling. Example Embodiment G16. The method of any one of example embodiments G12 to G15, wherein the transmission segment(s) are used in a Physical Uplink Control Channel (PUCCH), a Physical Uplink Shared Channel (PUSCH) or a Physical Random Access Channel Transmission on access channel (PRACH). Example Embodiment G17. The method of any one of example embodiments G1 to G16, wherein the network node comprises a gNodeB (gNB). Example Embodiment G18. The method according to any one of the previous example embodiments, further comprising: obtaining user data; and forwarding the user data to a host or a user device. Example Embodiment G19. A network node comprising processing circuitry configured to perform any of the methods of example embodiments G1-G18. Example Embodiment G20. A computer program comprising instructions for performing any of the methods of example embodiments G1 to G18 when executed on a computer. Example Embodiment G21. A computer program product comprising a computer program comprising instructions for performing any of the methods of example embodiments G1 to G18 when executed on a computer. Example Embodiment G22. A non-transitory computer-readable medium storing instructions that, when executed by a computer, perform any of the methods of example embodiments G1-G18.

額外訊息 eMTC PUCCH之傳輸片段持續時間 類似於eMTC PUSCH/PRACH,網路應能夠組態PUCCH之一傳輸片段持續時間使得在假定其等TA漂移係~100 μs/s且仰角較小之最差場景下,支援至少12 * T S= 0.39 μs之一計時準確度(TS 36.133中之表7.26.2-1)。可注意一較長傳輸片段持續時間對於一更有利之TA漂移或仰角等係足夠的。 Additional information The transmission segment duration of eMTC PUCCH is similar to that of eMTC PUSCH/PRACH, the network should be able to configure the transmission segment duration of PUCCH such that in the worst case scenario assuming their TA drift is ~100 μs/s and the elevation angle is small , support a timing accuracy of at least 12 * T S = 0.39 μs (Table 7.26.2-1 in TS 36.133). It may be noted that a longer transmission segment duration is sufficient for a more favorable TA drift or elevation etc.

eMTC PUCCH之傳輸片段持續時間提供於下表5中。應注意PUCCH之最大傳輸持續時間對於CE模式A係8 ms而對於CE模式B係128 ms,兩者均小於256 ms。因此,與eMTC PUSCH不同,吾人不需要支援高達256 ms之一傳輸片段持續時間。選擇下限以滿足0.39 μs之一計時誤差要求。對於上限,足以支援最大可能分段持續時間。例如,對於為PUCCH組態8次重複之CE模式A,最大傳輸片段可由4次重複組成。 表5:eMTC PUCCH之傳輸片段持續時間。 CE模式 基本重複單元持續時間 重複之序號 傳輸片段持續時間 (單位:重複之信號) A 1 ms 1, 2, 4, 8 2, 4 B 1 ms 4, 8, 16, 32, 64, 128 4, 8, 16, 32, 64 Transmission segment durations for eMTC PUCCH are provided in Table 5 below. It should be noted that the maximum transmission duration of PUCCH is 8 ms for CE mode A and 128 ms for CE mode B, both of which are less than 256 ms. Therefore, unlike eMTC PUSCH, we do not need to support a transmission segment duration up to 256 ms. The lower limit is chosen to meet the timing error requirement of 0.39 μs. For the upper limit, enough to support the maximum possible segment duration. For example, for CE mode A with 8 repetitions configured for PUCCH, the maximum transmission segment may consist of 4 repetitions. Table 5: Transmission segment duration of eMTC PUCCH. CE mode basic repeating unit duration repeat number Transmission segment duration (unit: repeated signal) A 1ms 1, 2, 4, 8 twenty four B 1ms 4, 8, 16, 32, 64, 128 4, 8, 16, 32, 64

在一特定實施例中,對於eMTC PUCCH,網路使用一k位元欄為上行鏈路傳輸片段持續時間組態K個值之一者,其中值取決於CE模式而不同: -CE模式A:1位元欄用於指示K = 2個候選值:{2,4}(單位:子訊框) -CE模式B:3位元欄用於指示K = 5個候選值:{4,8,16,32,64}(單位:子訊框) In a particular embodiment, for eMTC PUCCH, the network uses a k-bit field to configure one of K values for the uplink transmission segment duration, where the value differs depending on the CE mode: - CE mode A: 1 bit field is used to indicate K = 2 candidate values: {2, 4} (unit: subframe) - CE mode B: 3-bit column is used to indicate K = 5 candidate values: {4, 8, 16, 32, 64} (unit: subframe)

在另一特定實施例中,若網路不意欲為PUCCH組態分段預補償,則其不指示SI或UE特定RRC發訊中之傳輸片段持續時間之任何值。In another specific embodiment, if the network does not intend to configure segment pre-compensation for PUCCH, it does not indicate any value of SI or transmission segment duration in UE-specific RRC signaling.

在另一特定實施例中,若網路尚未在SI或UE特定RRC發訊中指示傳輸片段持續時間之任何值,則UE不需要對PUCCH上之上行鏈路傳輸執行分段預補償。In another particular embodiment, the UE does not need to perform segment precompensation for uplink transmissions on PUCCH if the network has not indicated any value for the transmission segment duration in SI or UE-specific RRC signaling.

在先前實施例中,當網路不期望為上行鏈路組態分段預補償時,其隱式地將此資訊指示至UE。替代地,網路可藉由傳輸片段持續時間添加另一值來向UE明確地指示這一點。In the previous embodiments, when the network does not wish to configure fragmentation pre-compensation for the uplink, it implicitly indicates this information to the UE. Alternatively, the network can explicitly indicate this to the UE by adding another value to the transmission segment duration.

在一特定實施例中,對於eMTC PUCCH,網路使用一k位元欄為上行鏈路傳輸片段持續時間組態K個值之一者,其中值取決於CE模式而不同: -CE模式A:2位元欄用於指示K = 3個候選值:{2,4,8}(單位:子訊框) -CE模式B:3位欄位用於指示K = 6個候選值:{4,8,16,32,64,128}(單位:子訊框) In a particular embodiment, for eMTC PUCCH, the network uses a k-bit field to configure one of K values for the uplink transmission segment duration, where the value differs depending on the CE mode: - CE mode A: 2-bit field is used to indicate K = 3 candidate values: {2, 4, 8} (unit: subframe) - CE mode B: 3-bit field is used to indicate K = 6 candidate values: {4, 8, 16, 32, 64, 128} (unit: subframe)

在一進一步特定實施例中,若針對CE模式A將PUCCH之傳輸片段持續時間設定為8個子訊框(或針對CE模式B設定為128個子訊框),則UE不需要針對PUCCH執行分段預補償。In a further specific embodiment, if the transmission segment duration of PUCCH is set to 8 subframes for CE mode A (or 128 subframes for CE mode B), the UE does not need to perform segment pre-segmentation for PUCCH compensate.

eMTC跳頻及預補償間隙 在eMTC中,對於PUCCH總是啟動跳頻且亦可由網路為PUSCH/PRACH組態。若跳頻時間間隔小於經組態之傳輸片段持續時間,則UE可調整上行鏈路傳輸計時及頻率同時重新調諧至一不同窄頻。為促進跳頻,eMTC允許相鄰窄頻之間高達2個SC-FDMA上行鏈路符號之一頻率重新調諧間隙。 eMTC frequency hopping and precompensation gap In eMTC, frequency hopping is always enabled for PUCCH and can also be configured by the network for PUSCH/PRACH. If the frequency hopping time interval is less than the configured transmission segment duration, the UE may adjust uplink transmission timing and frequency while retuning to a different narrow frequency. To facilitate frequency hopping, eMTC allows a frequency retuning gap of up to one of 2 SC-FDMA uplink symbols between adjacent narrow frequencies.

在一個實施例中,若針對一上行鏈路通道啟動跳頻且由網路將跳頻時間間隔設定為小於傳輸片段持續時間,則允許UE在各跳頻例項處調整其傳輸計時及頻率且不允許UE在傳輸片段之間插入一間隙。此係因為UE可使用相鄰窄頻之間高達2個SC-FDMA上行鏈路符號之既有窄頻重新調諧時間週期來調整其時序。In one embodiment, if frequency hopping is enabled for an uplink channel and the frequency hopping time interval is set by the network to be smaller than the transmission segment duration, the UE is allowed to adjust its transmission timing and frequency at each frequency hopping instance and The UE is not allowed to insert a gap between transmission segments. This is because the UE can use the existing narrowband retuning time period of up to 2 SC-FDMA uplink symbols between adjacent narrowbands to adjust its timing.

實例:總是針對LTE-M PUCCH啟動跳頻。網路為CE模式A自[1,2,4,8](ms)或為CE模式B自[2,4,8,16](ms)組態一跳頻時間間隔。若PUCCH之經組態之調頻間隔小於PUCCH之經組態之傳輸片段持續時間,則一A型或一B型UE可使用用於跳頻之重新調諧間隙來調整其跳躍至一不同窄頻時之時序/頻率且不需要在傳輸片段之間插入額外間隙。Example: Frequency hopping is always enabled for LTE-M PUCCH. The network configures a frequency hopping time interval from [1, 2, 4, 8] (ms) for CE mode A or [2, 4, 8, 16] (ms) for CE mode B. If the configured frequency modulation interval of PUCCH is less than the configured transmission segment duration of PUCCH, a type A or type B UE can use the retuning gap for frequency hopping to adjust its time to hop to a different narrow frequency timing/frequency without inserting additional gaps between transmission segments.

在另一實施例中,網路由RRC為跳頻組態以下UE行為: ·若組態,則UE在各跳頻例項處調整其傳輸計時及頻率且UE不在相鄰傳輸片段之間插入一間隙。 ·若組態,則UE在各跳頻例項處調整其傳輸計時及頻率且UE在相鄰傳輸片段之間插入一間隙且UE不在各跳頻例項處調整其傳輸計時及頻率。 ·否則,UE在相鄰傳輸片段之間插入一間隙且UE不在各跳頻例項處調整其傳輸計時及頻率。 In another embodiment, the network router RRC configures the following UE behavior for frequency hopping: • If configured, the UE adjusts its transmission timing and frequency at each frequency hopping instance and the UE does not insert a gap between adjacent transmission segments. • If configured, the UE adjusts its transmission timing and frequency at each frequency hopping instance and the UE inserts a gap between adjacent transmission segments and the UE does not adjust its transmission timing and frequency at each frequency hopping instance. • Otherwise, the UE inserts a gap between adjacent transmission segments and the UE does not adjust its transmission timing and frequency at each frequency hopping instance.

100:通信系統 102:電信網路 104:存取網路 106:核心網路 108:核心網路節點 110a:網路節點 110b:網路節點 112a:使用者設備(UE) 112b:使用者設備(UE) 112c:使用者設備(UE) 112d:使用者設備(UE) 114:集線器 116:主機 200:使用者設備(UE) 202:處理電路系統 204:匯流排 206:輸入/輸出介面 208:電源 210:記憶體 212:通信介面 214:應用程式 216:資料 218:傳輸器 220:接收器 222:天線 300:網路節點 302:處理電路系統 304:記憶體 306:通信介面 308:電源 310:天線 312:射頻(RF)收發器電路 314:基頻處理電路系統 316:埠/終端 318:無線電前端電路系統 320:濾波器 322:放大器 400:主機 402:處理電路系統 404:匯流排 406:輸入/輸出介面 408:網路介面 410:電源 412:記憶體 414:主機應用程式 416:資料 500:虛擬化環境 502:應用/虛擬應用 504:硬體 506:虛擬化層 508a:虛擬機器(VM) 508b:虛擬機器(VM) 510:管理及和弦 512:控制系統 602:主機 604:網路節點 606:使用者設備(UE) 608:步驟 610:步驟 612:步驟 614:步驟 616:步驟 618:步驟 620:步驟 622:步驟 660:連接件 670:無線連接件 700:方法 702:步驟 704:步驟 800:方法 802:步驟 804:步驟 100: Communication system 102: Telecommunication network 104: access network 106: Core network 108: Core network node 110a: network node 110b: network node 112a: User Equipment (UE) 112b: user equipment (UE) 112c: User Equipment (UE) 112d: user equipment (UE) 114: hub 116: Host 200: User Equipment (UE) 202: Processing circuit system 204: busbar 206: input/output interface 208: Power 210: Memory 212: communication interface 214: application 216: Information 218: Transmitter 220: Receiver 222: Antenna 300: network node 302: Processing circuit system 304: memory 306: communication interface 308: Power 310: Antenna 312: Radio Frequency (RF) Transceiver Circuit 314: Baseband processing circuit system 316: port/terminal 318: Radio front-end circuit system 320: filter 322: Amplifier 400: Host 402: Processing circuit system 404: Bus 406: Input/Output Interface 408: Network interface 410: power supply 412: memory 414:Host application 416: data 500: Virtualization environment 502: Application/Virtual Application 504: hardware 506: virtualization layer 508a: Virtual Machine (VM) 508b: Virtual Machine (VM) 510: Management and Chords 512: Control system 602: Host 604: Network node 606: User Equipment (UE) 608: Step 610: Step 612: Step 614:Step 616: Step 618:Step 620: Step 622: Step 660: connector 670: Wireless Connector 700: method 702: Step 704: Step 800: method 802: step 804: step

為更完整地理解所揭示之實施例及其特徵及優點,現結合附圖參考以下描述,其中: 圖1繪示具有彎管詢答器之一衛星網路之一實例架構; 圖2繪示一實例軌道集; 圖3繪示如3GPP TR 38.811 v.15.4.0中所討論之各種NTN存取網路之典型波束圖案; 圖4繪示根據某些實施例之一實例通信系統; 圖5繪示根據某些實施例之一實例UE; 圖6繪示根據某些實施例之一實例網路節點; 圖7繪示根據某些實施例之一主機之一方塊圖; 圖8繪示根據某些實施例之一虛擬化環境,其中由一些實施例實施之功能可虛擬化; 圖9繪示根據某些實施例之通過一部分無線連接經由一網路節點與一UE通信之一主機; 圖10繪示根據某些實施例之由一UE用於促進一IoT NTN中之長UL傳輸之一實例方法;及 圖11繪示根據某些實施例之由一網路節點用於促進一IoT NTN中之長UL傳輸之一實例方法。 For a more complete understanding of the disclosed embodiments, together with features and advantages thereof, reference is now made to the following description taken in conjunction with the accompanying drawings, in which: Figure 1 illustrates an example architecture of a satellite network with bent pipe transponders; Figure 2 depicts an example orbital set; Figure 3 shows typical beam patterns for various NTN access networks as discussed in 3GPP TR 38.811 v.15.4.0; Figure 4 illustrates an example communication system according to certain embodiments; Figure 5 illustrates an example UE according to some embodiments; Figure 6 illustrates an example network node according to some embodiments; Figure 7 illustrates a block diagram of a host according to some embodiments; Figure 8 illustrates a virtualization environment in which functions implemented by some embodiments may be virtualized, according to some embodiments; Figure 9 illustrates a host communicating with a UE via a network node over a portion of a wireless connection according to some embodiments; Figure 10 illustrates an example method used by a UE to facilitate long UL transmissions in an IoT NTN, according to certain embodiments; and Figure 11 illustrates an example method used by a network node to facilitate long UL transmissions in an IoT NTN, according to certain embodiments.

700:方法 700: method

702:步驟 702: Step

704:步驟 704: Step

Claims (28)

一種由一使用者設備UE(112、200)用於促進一物聯網(IoT)非地面網路(NTN)中之長上行鏈路傳輸之方法(700),該方法包括: 將用於判定該UE是否待在至少一個上行鏈路傳輸中之相鄰傳輸片段之間插入至少一個間隙之資訊傳輸(702)至一網路節點(110、300),及 自該網路節點接收(704)組態該UE以進行以下之組態資訊: 當傳輸至該網路節點之該資訊指示待丟棄及/或擊穿至少一個符號、時隙及/或子訊框以實施分段預補償時插入該至少一個間隙,及 當傳輸至該網路節點之該資訊指示待丟棄及/或擊穿至少一個樣本以實施分段預補償時不插入該至少一個間隙。 A method (700) by a user equipment UE (112, 200) for facilitating long uplink transmission in an Internet of Things (IoT) non-terrestrial network (NTN), the method comprising: transmitting (702) to a network node (110, 300) information for determining whether the UE is to insert at least one gap between adjacent transmission segments in at least one uplink transmission, and Configuration information is received (704) from the network node to configure the UE for: inserting the at least one gap when the information transmitted to the network node indicates that at least one symbol, slot and/or subframe is to be discarded and/or punctured for segment precompensation, and The at least one gap is not inserted when the information transmitted to the network node indicates that at least one sample is to be discarded and/or punctured for segment precompensation. 如請求項1之方法,其中當該UE待插入該至少一個間隙時,該資訊指示該UE係一A型UE或當該UE不插入該至少一個間隙時,該資訊指示該UE係一B型UE。The method of claim 1, wherein when the UE is to be inserted into the at least one gap, the information indicates that the UE is a type A UE or when the UE is not inserted into the at least one gap, the information indicates that the UE is a type B UE. 如請求項1至2中任一項之方法,其中當該UE待插入該至少一個間隙時,該資訊指示可插入該等相鄰傳輸片段之間的一間隙持續時間或間隙持續時間之一範圍。The method according to any one of claims 1 to 2, wherein when the UE is to insert the at least one gap, the information indicates a gap duration or a range of gap durations that can be inserted between the adjacent transmission segments . 如請求項1至3中任一項之方法,其中當該UE待插入該至少一個間隙時,該資訊指示待丟棄及/或擊穿以實施分段預補償之若干符號、時隙及/或子訊框。The method according to any one of claims 1 to 3, wherein when the UE is to be inserted into the at least one gap, the information indicates a number of symbols, time slots and/or to be discarded and/or punctured to implement segment pre-compensation subframe. 如請求項1至4中任一項之方法,其中該資訊包括與該UE相關聯之能力資訊。The method of any one of claims 1 to 4, wherein the information includes capability information associated with the UE. 如請求項1至5中任一項之方法,其中當該UE待插入該至少一個間隙時,該資訊指示待為一特定類型之傳輸及/或一特定類型之實體通道插入該至少一個間隙。The method according to any one of claims 1 to 5, wherein when the UE is to insert the at least one gap, the information indicates that the at least one gap is to be inserted for a specific type of transmission and/or a specific type of physical channel. 如請求項6之方法,其中該特定類型之實體通道係一實體上行鏈路共用通道、實體上行鏈路控制通道或窄頻實體上行鏈路共用通道。The method according to claim 6, wherein the specific type of physical channel is a physical uplink shared channel, a physical uplink control channel or a narrowband physical uplink shared channel. 如請求項7之方法,其中當該UE待插入該至少一個間隙時,該資訊指示: 對於具有高於一臨限持續時間之一持續時間之各傳輸,將在該等相鄰傳輸片段之間插入該至少一個間隙,或 對於具有一特定持續時間之各傳輸,將在該等相鄰傳輸片段之間插入該至少一個間隙。 The method of claim 7, wherein when the UE is to be inserted into the at least one gap, the information indicates: for each transmission having a duration higher than a threshold duration, the at least one gap will be inserted between the adjacent transmission segments, or For each transmission of a certain duration, the at least one gap will be inserted between the adjacent transmission segments. 如請求項1至8中任一項之方法,其中該資訊指示一特定類型之NTN且該組態資訊組態該UE以針對與該特定類型之NTN相關聯之各傳輸在該等相鄰傳輸片段之間插入該至少一個間隙。The method as in any one of claims 1 to 8, wherein the information indicates a specific type of NTN and the configuration information configures the UE to transmit in adjacent transmissions for each transmission associated with the specific type of NTN The at least one gap is inserted between the segments. 如請求項9之方法,其中該特定類型之該NTN係低地球軌道或中地球軌道。The method of claim 9, wherein the NTN of the specific type is low earth orbit or medium earth orbit. 如請求項1至10中任一項之方法,其中該資訊指示一計時提前且該方法包括: 當該計時提前增加時,在至少一個上行鏈路傳輸中之相鄰傳輸片段之間插入該至少一個間隙;或 當該計時提前減少時,判定不在該至少一個上行鏈路傳輸中之相鄰傳輸片段之間插入該至少一個間隙。 The method as claimed in any one of claims 1 to 10, wherein the information indicates a timing advance and the method comprises: inserting the at least one gap between adjacent transmission segments in at least one uplink transmission when the timing advance is increased; or When the timing advance decreases, it is determined not to insert the at least one gap between adjacent transmission segments in the at least one uplink transmission. 如請求項1至10中任一項之方法,其中該資訊指示該UE之一位置。The method as in any one of claims 1 to 10, wherein the information indicates a location of the UE. 一種由一網路節點(110、300)用於促進一物聯網(IoT)非地面網路(NTN)中之長上行鏈路傳輸之方法(800),該方法包括: 自一使用者設備(UE)(112、200)接收(802)用於判定該UE是否待在至少一個上行鏈路傳輸中之相鄰傳輸片段之間插入至少一個間隙之資訊,及 基於該資訊,組態(804)該UE以: 當該資訊指示待丟棄及/或擊穿至少一個符號、時隙及/或子訊框以實施分段預補償時,插入該至少一個間隙,及 當該資訊指示待丟棄及/或擊穿至少一個樣本以實施分段預補償時,不插入該至少一個間隙。 A method (800) by a network node (110, 300) for facilitating long uplink transmissions in an Internet of Things (IoT) non-terrestrial network (NTN), the method comprising: receiving (802) from a user equipment (UE) (112, 200) information for determining whether the UE is to insert at least one gap between adjacent transmission segments in at least one uplink transmission, and Based on this information, configure (804) the UE to: inserting at least one gap when the information indicates that at least one symbol, slot and/or subframe is to be discarded and/or punctured for segment precompensation, and The at least one gap is not inserted when the information indicates that at least one sample is to be discarded and/or punctured for segment precompensation. 如請求項13之方法,其包括: 當該資訊指示該UE待插入該至少一個間隙時,判定該UE係一A型UE,或 當該資訊指示該UE不插入該至少一個間隙時,判定該UE係一B型UE。 The method as claimed in item 13, comprising: When the information indicates that the UE is to be inserted into the at least one gap, determining that the UE is a type A UE, or When the information indicates that the UE does not insert the at least one gap, it is determined that the UE is a type B UE. 如請求項13至14中任一項之方法,其中當該UE待插入該至少一個間隙時,該資訊指示待在該等相鄰傳輸片段之間插入之一間隙持續時間或間隙持續時間之一範圍。The method according to any one of claims 13 to 14, wherein when the UE is to insert the at least one gap, the information indicates a gap duration or one of the gap durations to be inserted between the adjacent transmission segments scope. 如請求項13至15中任一項之方法,其中當該UE待插入該至少一個間隙時,該資訊指示待丟棄及/或擊穿以實施分段預補償之若干符號、時隙及/或子訊框。The method according to any one of claims 13 to 15, wherein when the UE is to be inserted into the at least one gap, the information indicates a number of symbols, time slots and/or to be discarded and/or punctured to implement segment pre-compensation subframe. 如請求項13至16中任一項之方法,其中該資訊包括與該UE相關聯之能力資訊。The method of any one of claims 13 to 16, wherein the information includes capability information associated with the UE. 如請求項13至17中任一項之方法,其中該資訊指示一特定類型之傳輸及/或一特定類型之實體通道,且該方法進一步包含基於該特定類型之傳輸及/或該特定類型之實體通道來判定將在該等相鄰傳輸片段之間插入該至少一個間隙。The method according to any one of claims 13 to 17, wherein the information indicates a specific type of transmission and/or a specific type of physical channel, and the method further comprises based on the specific type of transmission and/or the specific type of The physical channel determines to insert the at least one gap between the adjacent transmission segments. 如請求項18之方法,其中該特定類型之實體通道係一實體上行鏈路共用通道、實體上行鏈路控制通道或窄頻實體上行鏈路共用通道。The method of claim 18, wherein the specific type of physical channel is a physical uplink shared channel, a physical uplink control channel or a narrowband physical uplink shared channel. 如請求項19之方法,其中該資訊包括一持續時間,且該方法進一步包括: 判定對於具有高於一臨限持續時間之一持續時間之各傳輸,將在該等相鄰傳輸片段之間插入該至少一個間隙,或 判定對於具有該特定持續時間之各傳輸,將在該等相鄰傳輸片段之間插入該至少一個間隙。 The method of claim 19, wherein the information includes a duration, and the method further comprises: determining that for each transmission having a duration higher than a threshold duration, the at least one gap is to be inserted between the adjacent transmission segments, or It is determined that for each transmission of the particular duration, the at least one gap is to be inserted between the adjacent transmission segments. 如請求項13至20中任一項之方法,其中該資訊指示一特定類型之NTN,且該方法進一步包括判定對於與該特定類型之NTN相關聯之各傳輸,將在該等相鄰傳輸片段之間插入該至少一個間隙。The method of any one of claims 13 to 20, wherein the information is indicative of a particular type of NTN, and the method further comprises determining, for each transmission associated with the particular type of NTN, which segment of the adjacent transmission will be insert the at least one gap therebetween. 如請求項21之方法,其中該特定類型之NTN係低地球軌道或中地球軌道。The method of claim 21, wherein the specific type of NTN is low earth orbit or medium earth orbit. 如請求項13至22中任一項之方法,其中該資訊指示一計時提前,且該方法包括: 當該計時提前增加時,判定該至少一個間隙將插入該至少一個上行鏈路傳輸中之相鄰傳輸片段之間;或 當該計時提前減少時,判定該至少一個間隙將不插入該至少一個上行鏈路傳輸中之相鄰傳輸片段之間。 The method of any one of claims 13 to 22, wherein the information indicates a time advance, and the method comprises: When the timing advance is increased, determining that the at least one gap is to be inserted between adjacent transmission segments in the at least one uplink transmission; or When the timing advance is decreased, it is determined that the at least one gap will not be inserted between adjacent transmission segments in the at least one uplink transmission. 如請求項13至23中任一項之方法,其中該資訊指示該UE之一位置。The method of any one of claims 13 to 23, wherein the information indicates a location of the UE. 一種用於促進一物聯網(IoT)非地面網路(NTN)中之長上行鏈路傳輸之使用者設備(UE)(200、112),該UE包括經組態以進行以下之處理電路系統(202): 將用於判定該UE是否待在至少一個上行鏈路傳輸中之相鄰傳輸片段之間插入至少一個間隙之資訊傳輸(702)至一網路節點(300、110),及 自該網路節點接收(704)組態該UE以進行以下之組態資訊: 當傳輸至該網路節點之該資訊指示待丟棄及/或擊穿至少一個符號、時隙及/或子訊框以實施分段預補償時,插入該至少一個間隙,及 當傳輸至該網路節點之該資訊指示待丟棄及/或擊穿至少一個樣本以實施分段預補償時,不插入至少一個間隙。 A user equipment (UE) (200, 112) for facilitating long uplink transmissions in an Internet of Things (IoT) non-terrestrial network (NTN), the UE comprising processing circuitry configured to: (202): transmitting (702) to a network node (300, 110) information for determining whether the UE is to insert at least one gap between adjacent transmission segments in at least one uplink transmission, and Configuration information is received (704) from the network node to configure the UE for: inserting the at least one gap when the information transmitted to the network node indicates that at least one symbol, slot and/or subframe is to be discarded and/or punctured for segment precompensation, and At least one gap is not inserted when the information transmitted to the network node indicates that at least one sample is to be discarded and/or punctured for segment precompensation. 如請求項25之UE,其中該處理電路系統經組態以執行如請求項2至12之方法之任何者。The UE of claim 25, wherein the processing circuitry is configured to perform any of the methods of claims 2-12. 一種用於促進一物聯網(IoT)非地面網路(NTN)中之長上行鏈路傳輸之網路節點(110、300),該網路節點包括經組態以進行以下之處理電路系統(302): 自一使用者設備(UE)(112、200)接收用於判定該UE是否待在至少一個上行鏈路傳輸中之相鄰傳輸片段之間插入至少一個間隙之資訊,及 基於該資訊,組態該UE以: 當該資訊指示待丟棄及/或擊穿至少一個符號、時隙及/或子訊框以實施分段預補償時,插入該至少一個間隙,及 當該資訊指示待丟棄及/或擊穿至少一個樣本以實施分段預補償時,不插入該至少一個間隙。 A network node (110, 300) for facilitating long uplink transmissions in an Internet of Things (IoT) non-terrestrial network (NTN), the network node comprising processing circuitry configured to: 302): receiving from a user equipment (UE) (112, 200) information for determining whether the UE is to insert at least one gap between adjacent transmission segments in at least one uplink transmission, and Based on this information, configure the UE to: inserting at least one gap when the information indicates that at least one symbol, slot and/or subframe is to be discarded and/or punctured for segment precompensation, and The at least one gap is not inserted when the information indicates that at least one sample is to be discarded and/or punctured for segment precompensation. 如請求項24之網路節點,其中該處理電路系統經組態以執行如請求項14至24之方法之任何者。The network node of claim 24, wherein the processing circuitry is configured to perform any of the methods of claims 14-24.
TW111142983A 2021-11-10 2022-11-10 Systems and methods to facilitate long uplink transmission in internet of things non-terresterial networks TW202325081A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163278088P 2021-11-10 2021-11-10
US63/278,088 2021-11-10

Publications (1)

Publication Number Publication Date
TW202325081A true TW202325081A (en) 2023-06-16

Family

ID=84358418

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111142983A TW202325081A (en) 2021-11-10 2022-11-10 Systems and methods to facilitate long uplink transmission in internet of things non-terresterial networks

Country Status (2)

Country Link
TW (1) TW202325081A (en)
WO (1) WO2023086001A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112990822B (en) * 2021-03-18 2023-12-01 新疆运联创科信息技术有限公司 Internet of things management system based on intelligent tray

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021162613A1 (en) * 2020-02-14 2021-08-19 Telefonaktiebolaget Lm Ericsson (Publ) Systems and methods for supporting coherent transmissions in a non-terrestrial network

Also Published As

Publication number Publication date
WO2023086001A1 (en) 2023-05-19

Similar Documents

Publication Publication Date Title
US20240161634A1 (en) Waypoint based flight declaration signaling
TW202325081A (en) Systems and methods to facilitate long uplink transmission in internet of things non-terresterial networks
WO2023067552A1 (en) Systems and methods for reducing system information acquisition during cell reselection in a non-terrestrial network
KR20240023648A (en) Logging different failure types for on-demand system information request procedures
CN117796127A (en) Random access partitioning and random access reporting
WO2023096556A1 (en) Systems and methods for support of autonomous adjustement of timing advance
WO2023152302A1 (en) Non-terrestrial network access
WO2023203556A1 (en) Systems and methods for system information accumulation in internet of things non-terrestrial networks
WO2024035965A1 (en) Methods for si accumulation in iot ntn with explicit and implicit epoch time indication
WO2023014271A1 (en) Global navigation satellite system data validity in non-terrestrial networks
WO2023059260A1 (en) Minimization of drive testing configuration
WO2023152707A1 (en) Combining time-based cho and rach-less access with restricted preconfigured ul grants
US20240019583A1 (en) Methods and systems for signalling ephemeris data in a non-terrestrial network
WO2024045173A1 (en) Improved contention free random access (cfra) fallback
WO2024060169A1 (en) Techniques for joint non-terrestrial networks and aircraft relaying networks
WO2024035301A1 (en) Location information for mobility in ntn
WO2023059259A1 (en) Minimization of drive testing for non-terrestrial networks
WO2024035316A1 (en) Methods, apparatus and computer-readable media for determining a timing advance in a non-terrestrial network
WO2023135573A1 (en) Systems and methods for time-based handover in non-terrestrial networks
WO2023213984A1 (en) Configuration of ue for time-based handover in wireless network such as a non-terrestrial network
WO2023208787A1 (en) Joint-repeater-ue beam report in repeater-assisted networks
WO2023152708A1 (en) Systems and methods for time-based triggered handover in non-terrestrial networks
WO2023209571A1 (en) Ephemeris data for conditional handover
WO2024033396A1 (en) Signalling for support of mobile integrated access and backhaul
EP4364518A1 (en) Random access in a wireless communication network