TW202322599A - Managing end-to-end quality of service (qos) in a multi-network communication path - Google Patents

Managing end-to-end quality of service (qos) in a multi-network communication path Download PDF

Info

Publication number
TW202322599A
TW202322599A TW111135152A TW111135152A TW202322599A TW 202322599 A TW202322599 A TW 202322599A TW 111135152 A TW111135152 A TW 111135152A TW 111135152 A TW111135152 A TW 111135152A TW 202322599 A TW202322599 A TW 202322599A
Authority
TW
Taiwan
Prior art keywords
communication network
qos
network
communication
processor
Prior art date
Application number
TW111135152A
Other languages
Chinese (zh)
Inventor
良平 馬
普拉享哈瑞達斯 漢德
尼古拉康拉德 梁
湯瑪仕 史多克漢摩
依梅德 堡爾吉吉
艾柏多 瑞可亞瓦利諾
Original Assignee
美商高通公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/932,149 external-priority patent/US20230132963A1/en
Application filed by 美商高通公司 filed Critical 美商高通公司
Publication of TW202322599A publication Critical patent/TW202322599A/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

In embodiments of systems and methods for managing end-to-end Quality of Service (QoS) in a communication path spanning a first communication network and a second communication network may include determining by a network element of the first communication network an end-to-end QoS requirement for communicating packets from a packet source to a packet destination via the communication path, determining by the network element a QoS provided by the second communication network within the communication path, and configuring the first communication network to provide sufficient QoS to support the end-to-end QoS requirement based on the QoS provided by the second communication network.

Description

管理多網路通訊路徑中的端到端服務品質(QOS)Manage end-to-end Quality of Service (QOS) across multiple network communication paths

本專利申請案主張於2021年11月3日提出申請的標題為「Managing End-To-End Quality Of Service (QoS) In A Multi-Network Communication Path」的美國臨時專利申請案第63/263,495號的優先權,其全部內容經由引用併入本文以用於所有目的。This patent application asserts the benefits of U.S. Provisional Patent Application No. 63/263,495, filed November 3, 2021, entitled "Managing End-To-End Quality Of Service (QoS) In A Multi-Network Communication Path" Priority, the entirety of which is hereby incorporated by reference for all purposes.

本案係關於管理多網路通訊路徑中的端到端服務品質(QoS)。This case is about managing end-to-end Quality of Service (QoS) across multiple network communication paths.

通訊網路可以被配置為為應用、服務或資料流提供服務品質(QoS)。供應網路以提供特定QoS存在資源成本,因此為了滿足特定的QoS要求,網路服務供應商通常試圖提供足夠的網路資源,而又不會過度使用或欠使用網路資源。為涉及跨兩個或兩個以上不同類型網路的通訊的應用、服務或資料流提供QoS甚至更加複雜。Communication networks can be configured to provide quality of service (QoS) for applications, services or data flows. There is a resource cost in provisioning the network to provide a specific QoS, so in order to meet a specific QoS requirement, an Internet Service Provider usually tries to provide sufficient network resources without over- or under-commitment of network resources. Providing QoS for applications, services or data flows that involve communication across two or more different types of networks is even more complex.

各種態樣包括由通訊網路的網路元素執行的用於在跨至少兩個通訊網路的通訊路徑中管理端到端服務品質(QoS)的系統和方法。各個態樣可包括由第一通訊網路的網路元素決定用於經由跨第一通訊網路和第二通訊網路的通訊路徑將封包從封包源通訊到封包目的地的端到端QoS要求,由網路元素決定在通訊路徑內由第二通訊網路提供的QoS,並且基於由第二通訊網路提供的QoS來配置第一通訊網路以提供足夠的QoS來支援端到端QoS要求。Aspects include systems and methods performed by network elements of a communication network for managing end-to-end quality of service (QoS) in a communication path spanning at least two communication networks. Aspects may include an end-to-end QoS requirement determined by a network element of the first communication network for communicating a packet from a packet source to a packet destination via a communication path across the first communication network and the second communication network, determined by the network The path element determines QoS provided by the second communication network within the communication path, and configures the first communication network to provide sufficient QoS to support end-to-end QoS requirements based on the QoS provided by the second communication network.

在一些態樣中,第一通訊網路可以是5G網路,並且第二通訊網路可以不是5G網路(亦即,第二通訊網路可以是非5G網路)。在一些態樣中,由網路元素決定在通訊路徑內由第二通訊網路提供的QoS可包括決定第二通訊網路的封包錯誤率。在一些態樣中,配置第一通訊網路以基於由第二通訊網路提供的QoS提供足夠的QoS來支援端到端QoS要求,可包括基於第二通訊網路的決定的封包錯誤率決定第一通訊網路的所需封包錯誤率。In some aspects, the first communication network may be a 5G network, and the second communication network may not be a 5G network (ie, the second communication network may be a non-5G network). In some aspects, determining, by the network element, QoS provided by the second communication network within the communication path may include determining a packet error rate of the second communication network. In some aspects, configuring the first communication network to provide sufficient QoS to support end-to-end QoS requirements based on the QoS provided by the second communication network may include determining the first communication network based on a determined packet error rate of the second communication network The required packet error rate of the road.

在一些態樣中,由網路元素決定在通訊路徑內由第二通訊網路提供的QoS可包括決定第二通訊網路的可用傳輸量。在一些態樣中,配置第一通訊網路以基於由第二通訊網路提供的QoS提供足夠的QoS來支援端到端QoS要求,可包括基於第二通訊網路的決定的可用傳輸量決定第一通訊網路的傳輸量需求。In some aspects, determining, by the network element, the QoS provided by the second communication network within the communication path may include determining an available throughput of the second communication network. In some aspects, configuring the first communication network to provide sufficient QoS to support end-to-end QoS requirements based on the QoS provided by the second communication network may include determining the first communication network based on the determined available throughput of the second communication network The transmission capacity demand of the road.

在一些態樣中,由網路元素決定在通訊路徑內由第二通訊網路提供的QoS可包括量測端到端實現的QoS,識別由第一通訊網路提供的QoS,並且基於端到端實現的QoS和由第一通訊網路提供的QoS,決定在通訊路徑內由第二通訊網路提供的QoS。在一些態樣中,識別由第一通訊網路提供的QoS可包括將與第一通訊網路中的恆定封包延遲相對應的封包延遲量測5G QoS識別符(5QI)應用到第一通訊網路。在該等態樣中,基於端到端實現的QoS和由第一通訊網路提供的QoS,決定在通訊路徑內由第二通訊網路提供的QoS可包括基於端到端實現的封包延遲和第一通訊網路中的恆定封包延遲,決定在通訊路徑內由第二通訊網路提供的QoS。In some aspects, determining the QoS provided by the second communication network within the communication path by the network element may include measuring the QoS achieved end-to-end, identifying the QoS provided by the first communication network, and based on the end-to-end achieved The QoS provided by the first communication network and the QoS provided by the first communication network determine the QoS provided by the second communication network in the communication path. In some aspects, identifying the QoS provided by the first communication network may include applying a packet delay measurement 5G QoS identifier (5QI) corresponding to a constant packet delay in the first communication network to the first communication network. In these aspects, based on the QoS achieved end-to-end and the QoS provided by the first communication network, determining the QoS provided by the second communication network within the communication path may include packet delay based on the end-to-end realization and the first The constant packet delay in the communication network determines the QoS provided by the second communication network in the communication path.

在一些態樣中,識別由第一通訊網路提供的QoS可包括將與第一通訊網路中的恆定封包丟失率相對應的封包丟失率5QI應用到第一通訊網路。在該等態樣中,基於端到端實現的QoS和由第一通訊網路提供的QoS,決定在通訊路徑內由第二通訊網路提供的QoS可包括基於端到端實現的封包丟失率和第一通訊網路中的恆定封包丟失率,決定在通訊路徑內由第二通訊網路提供的QoS。In some aspects, identifying the QoS provided by the first communication network may include applying a packet loss rate 5QI corresponding to a constant packet loss rate in the first communication network to the first communication network. In these aspects, based on the QoS achieved end-to-end and the QoS provided by the first communication network, determining the QoS provided by the second communication network within the communication path may include the packet loss rate based on the end-to-end realization and the first A constant packet loss rate in a communication network determines the QoS provided by a second communication network in the communication path.

在一些態樣中,識別由第一通訊網路提供的QoS可包括將與排除第一通訊網路中的封包丟失的封包丟失量測程序相關聯的封包丟失率5QI應用到第一通訊網路。在該等態樣中,基於端到端實現的QoS和由第一通訊網路提供的QoS,決定在通訊路徑內由第二通訊網路提供的QoS可包括基於端到端實現的封包丟失和封包丟失量測程序,決定在通訊路徑內由第二通訊網路提供的QoS。In some aspects, identifying the QoS provided by the first communication network may include applying to the first communication network a packet loss rate 5QI associated with a packet loss measurement procedure that excludes packet loss in the first communication network. In these aspects, based on the QoS achieved end-to-end and the QoS provided by the first communication network, determining the QoS provided by the second communication network within the communication path may include packet loss and packet loss based on the end-to-end realization The measurement procedure determines the QoS provided by the second communication network in the communication path.

在一些態樣中,識別由第一通訊網路提供的QoS可以包括將與可用頻寬量測程序相關聯的可用頻寬5QI應用到第一通訊網路,該可用頻寬量測程序配置第一通訊網路的資源使得第一通訊網路的封包丟失相對於第二通訊網路的封包丟失基本上可忽略。在該等態樣中,基於端到端實現的QoS和由第一通訊網路提供的QoS,決定在通訊路徑內由第二通訊網路提供的QoS可包括基於端到端實現的可用頻寬和可用頻寬量測程序,決定在通訊路徑內由第二通訊網路提供的QoS。In some aspects, identifying the QoS provided by the first communication network may include applying to the first communication network an available bandwidth 5QI associated with an available bandwidth measurement procedure that configures the first communication network The resource of the path makes the packet loss of the first communication network substantially negligible relative to the packet loss of the second communication network. In these aspects, based on the QoS achieved end-to-end and the QoS provided by the first communication network, it is determined that the QoS provided by the second communication network in the communication path may include the available bandwidth and the available bandwidth based on the end-to-end realization. The bandwidth measurement program determines the QoS provided by the second communication network in the communication path.

在一些態樣中,識別由第一通訊網路提供的QoS可包括將與可用頻寬量測程序相關聯的可用頻寬5QI應用到第一通訊網路,其中資料封包在第一通訊網路中背靠背地傳輸。在該等態樣中,基於端到端實現的QoS和由第一通訊網路提供的QoS,決定在通訊路徑內由第二通訊網路提供的QoS可包括基於端到端實現的可用頻寬和可用頻寬量測程序,決定在通訊路徑內由第二通訊網路提供的QoS。In some aspects, identifying the QoS provided by the first communication network may include applying an available bandwidth 5QI associated with an available bandwidth measurement procedure to the first communication network, wherein data packets travel back-to-back in the first communication network transmission. In these aspects, based on the QoS achieved end-to-end and the QoS provided by the first communication network, it is determined that the QoS provided by the second communication network in the communication path may include the available bandwidth and the available bandwidth based on the end-to-end realization. The bandwidth measurement program determines the QoS provided by the second communication network in the communication path.

在一些態樣中,識別由第一通訊網路提供的QoS可包括將與用於對沿通訊路徑傳輸的量測封包執行端到端量測的網路量測程序相關聯的網路量測5QI應用到第一通訊網路。在該等態樣中,基於端到端實現的QoS和由第一通訊網路提供的QoS,決定在通訊路徑內由第二通訊網路提供的QoS可包括基於端到端實現的QoS和網路量測程序,決定在通訊路徑內由第二通訊網路提供的QoS。In some aspects, identifying the QoS provided by the first communication network may include associating a network measurement 5QI with a network measurement procedure for performing end-to-end measurements on measurement packets transmitted along the communication path Applied to the first communication network. In these aspects, based on the QoS achieved end-to-end and the QoS provided by the first communication network, the determination of the QoS provided by the second communication network within the communication path may include the QoS based on the end-to-end achieved and the network traffic The test procedure determines the QoS provided by the second communication network in the communication path.

另外的態樣包括具有處理器的網路元素,該處理器被配置為執行以上概括的方法中的任一個的一或多個操作。另外的態樣包括用於網路元素中的處理設備,該網路元素配置有處理器可執行指令以執行以上概括的方法中的任一個的操作。另外的態樣包括其上儲存有處理器可執行指令的非暫態處理器可讀儲存媒體,該指令被配置為使網路元素的處理器執行以上概括的方法中的任一個的操作。另外的態樣包括網路元素,其具有用於執行以上概括的方法中的任一個的功能的構件。另外的態樣包括用於網路元素中的片上系統,並且該網路元素包括處理器被配置為執行以上概括的方法中的任一個的一或多個操作。Additional aspects include a network element having a processor configured to perform one or more operations of any of the methods outlined above. Additional aspects include a processing device for use in a network element configured with processor-executable instructions to perform the operations of any of the methods outlined above. Additional aspects include a non-transitory processor-readable storage medium having stored thereon processor-executable instructions configured to cause a processor of a network element to perform the operations of any one of the methods outlined above. Additional aspects include network elements having means for performing the function of any of the methods outlined above. Additional aspects include a system-on-chip for use in a network element, and the network element includes a processor configured to perform one or more operations of any of the methods outlined above.

將參考附圖詳細描述各種實施例。在可能的情況下,在整個附圖中將使用相同的元件符號來代表相同或相似的部件。對特定實例和實現方式的引用是出於說明目的,並不意欲限制請求項的範圍。Various embodiments will be described in detail with reference to the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts. References to specific examples and implementations are for illustration purposes and are not intended to limit the scope of the claimed items.

各種實施例包括用於管理跨第一通訊網路和第二通訊網路的通訊路徑中的端到端QoS的系統和方法。各種實施例可使網路元素能夠基於端到端QoS要求和第二通訊網路的實現的QoS來決定第一通訊網路的QoS要求,諸如穿過5G網路和一或多個非5G網路的通訊路徑。各種實施例可使網路元素能夠決定(一或多個)第二通訊網路(例如,一或多個非5G網路)的實現的QoS。Various embodiments include systems and methods for managing end-to-end QoS in a communication path across a first communication network and a second communication network. Various embodiments may enable network elements to determine QoS requirements for a first communication network based on end-to-end QoS requirements and implemented QoS for a second communication network, such as across a 5G network and one or more non-5G networks communication path. Various embodiments may enable network elements to determine the implemented QoS of the second communication network(s) (eg, one or more non-5G networks).

術語「網路元素」在本文中被用於指作為通訊網路的一部分或與通訊網路通訊的計算設備中的任一個或全部,諸如伺服器、路由器、閘道、集線器設備、交換機設備、橋接器設備、中繼器設備或包括記憶體、通訊元件和可程式設計處理器的另一電子設備。與網路通訊的無線設備可以被認為是此種網路的網路元素。The term "network element" is used herein to refer to any or all computing devices that are part of or communicate with a communication network, such as servers, routers, gateways, hub devices, switch devices, bridges equipment, repeater equipment or another electronic device including memory, communication components and programmable processors. Wireless devices that communicate with a network may be considered network elements of such a network.

如本文所用,術語「網路」、「通訊網路」和「系統」可以互換地代表通訊網路或互連網路的一部分或全部。網路可以包括複數個網路元素。網路可以包括無線網路及/或可以支援無線網路的一或多個功能或服務。As used herein, the terms "network", "communication network" and "system" may interchangeably refer to a portion or all of a communication network or an internetwork. A network may include a plurality of network elements. A network may include a wireless network and/or may support one or more functions or services of a wireless network.

如本文所用,「無線網路」、「蜂巢網路」和「無線通訊網路」可以互換地指與無線設備及/或無線設備上的訂閱相關聯的服務供應商的無線網路的一部分或全部。本文描述的技術可被用於各種無線通訊網路,諸如分碼多工存取(CDMA)、分時多工存取(TDMA)、FDMA、正交FDMA(OFDMA)、單載波FDMA(SC-FDMA)和其他網路。通常,在給定的地理區域內可以部署任意數目的無線網路。每個無線網路可支援可在一或多個頻率或頻率範圍上操作的至少一種無線電存取技術。例如,CDMA網路可以實現通用陸地無線電存取(UTRA)(包括寬頻分碼多工存取(WCDMA)標準)、CDMA2000(包括IS-2000、IS-95及/或IS-856標準)等。在另一個實例中,TDMA網路可以實現GSM增強資料速率GSM進化(EDGE)。在另一個實例中,OFDMA網路可以實現進化UTRA(E-UTRA)(包括LTE標準)、電機電子工程師學會(IEEE)802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、Flash-OFDM®等。可以參考使用LTE標準的無線網路,並因此術語「進化通用陸地無線電存取」、「E-UTRAN」和「e節點B」在本文中亦可以互換地用於代表無線網路。然而,此類參考僅作為實例提供,並不意欲排除使用其他通訊標準的無線網路。例如,儘管本文論述了各種第三代(3G)系統、第四代(4G)系統和第五代(5G)系統,但該等系統僅作為示例性參考,並且未來下一代系統(例如,第六代(6G)或更高系統)可在各種實例中進行替代。As used herein, "wireless network," "cellular network," and "wireless communication network" may refer interchangeably to any or all of a service provider's wireless network associated with a wireless device and/or a subscription on a wireless device . The techniques described in this paper can be used in various wireless communication networks such as Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), FDMA, Orthogonal FDMA (OFDMA), Single Carrier FDMA (SC-FDMA ) and other networks. In general, any number of wireless networks can be deployed within a given geographic area. Each wireless network may support at least one radio access technology operable on one or more frequencies or frequency ranges. For example, a CDMA network may implement Universal Terrestrial Radio Access (UTRA) (including Wideband Code Division Multiple Access (WCDMA) standards), CDMA2000 (including IS-2000, IS-95 and/or IS-856 standards), and the like. In another example, a TDMA network may implement GSM Enhanced Data Rates for GSM Evolution (EDGE). In another example, OFDMA networks can implement Evolved UTRA (E-UTRA) (including LTE standards), Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Flash-OFDM ® etc. Reference may be made to wireless networks using the LTE standard, and thus the terms "Evolved Universal Terrestrial Radio Access", "E-UTRAN" and "eNodeB" may also be used interchangeably herein to refer to wireless networks. However, such references are provided as examples only and are not intended to exclude wireless networks using other communication standards. For example, although various third-generation (3G) systems, fourth-generation (4G) systems, and fifth-generation (5G) systems are discussed herein, such systems are for exemplary reference only, and future next-generation systems (e.g., 5G Sixth generation (6G) or higher systems) can be substituted in various instances.

術語「無線設備」在本文中用於指無線路由器設備、無線電器、蜂巢式電話、智慧型電話、可攜式計算設備、個人或行動多媒體播放機、膝上型電腦、平板電腦、智慧型電腦、超級本、掌上電腦、無線電子郵件接收器、支援網際網路的多媒體蜂巢式電話、醫療設備和裝備、生物辨識感測器/設備、可穿戴設備(包括智慧手錶、智慧服裝、智慧眼鏡、智慧腕帶、智慧珠寶(例如,智慧戒指、智慧手環))、娛樂設備(例如,無線遊戲控制器、音樂和視訊播放機、衛星收音機等)、支援無線網路的物聯網路(IoT)設備,包括智慧型儀器表/感測器、工業製造裝備、家庭或企業使用的大型和小型機械和電器、自動和半自動車輛內的無線通訊元件、固定在或併入各種行動平臺的無線設備、全球定位系統設備,以及包括記憶體、無線通訊元件和可程式設計處理器的類似電子設備中的任何一種或全部。The term "wireless device" is used herein to refer to wireless router devices, wireless appliances, cellular phones, smartphones, portable computing devices, personal or mobile multimedia players, laptops, tablets, smart computers , ultrabooks, PDAs, wireless email receivers, Internet-enabled multimedia cellular phones, medical equipment and equipment, biometric sensors/devices, wearable devices (including smart watches, smart clothing, smart glasses, Smart wristbands, smart jewelry (e.g., smart rings, smart bracelets), entertainment devices (e.g., wireless game controllers, music and video players, satellite radios, etc.), wireless network-enabled Internet of Things (IoT) Devices, including smart instrumentation/sensors, industrial manufacturing equipment, large and small machinery and appliances for home or business use, wireless communication components in automatic and semi-autonomous vehicles, wireless devices fixed or incorporated into various mobile platforms, Any or all of global positioning system equipment, and similar electronic equipment including memory, wireless communication components, and programmable processors.

術語「片上系統」(SOC)在本文中用於指包含整合在單個基板上的多個資源或處理器的單個積體電路(IC)晶片。單個SOC可能包含用於數位、類比、混合信號和射頻功能的電路。單個SOC亦可包括任意數目的通用或專用處理器(數位訊號處理器、數據機處理器、視訊處理器等)、記憶體塊(諸如ROM、RAM、快閃記憶體等)和資源(諸如計時器、穩壓器、振盪器等)。SOC亦可以包括用於控制積體資源和處理器以及用於控制周邊設備的軟體。The term "system on a chip" (SOC) is used herein to refer to a single integrated circuit (IC) die containing multiple resources or processors integrated on a single substrate. A single SOC may contain circuits for digital, analog, mixed-signal, and radio frequency functions. A single SOC can also include any number of general-purpose or special-purpose processors (digital signal processors, modem processors, video processors, etc.), memory blocks (such as ROM, RAM, flash memory, etc.), and resources (such as timing regulators, regulators, oscillators, etc.). The SOC may also include software for controlling integrated resources and processors and for controlling peripheral devices.

術語「封裝中系統」(SIP)在本文中可被用於指在兩個或兩個以上IC晶片、基板或SOC上包含多個資源、計算單元、核心或處理器的單個模組或封裝。例如,SIP可以包括單個基板,在該基板上以垂直配置堆疊多個IC晶片或半導體晶粒。類似地,SIP可以包括一或多個多晶片模組(MCMs),多個IC或半導體晶粒在其上封裝成統一基板。SIP亦可以包括多個獨立的SOC,該等SOC經由高速通訊電路耦接在一起並緊密封裝,諸如在單個主機板上或單個無線設備中。SOC的鄰近有利於高速通訊以及記憶體和資源的共享。The term "system in package" (SIP) may be used herein to refer to a single module or package containing multiple resources, computing units, cores or processors on two or more IC dies, substrates or SOCs. For example, a SIP may include a single substrate upon which multiple IC wafers or semiconductor dies are stacked in a vertical configuration. Similarly, a SIP may include one or more multi-chip modules (MCMs) on which multiple IC or semiconductor die are packaged into a unified substrate. A SIP may also include multiple independent SOCs coupled together via high-speed communication circuits and tightly packaged, such as on a single motherboard or in a single wireless device. The proximity of the SOC facilitates high-speed communication and sharing of memory and resources.

為涉及跨兩個或更多不同類型網路的通訊的應用、服務或資料流提供QoS是複雜的。通訊網路可能能夠決定關於其自身網路元素的資訊並配置其操作,包括與彼等網路元素通訊或通訊到彼等網路元素的設備(例如,連接到通訊網路的設備)。然而,通訊網路可能不能獲得關於其他通訊網路的操作的資訊。例如,無線設備的應用客戶端可以經由通訊路徑與另一設備(例如,應用伺服器或另一無線設備)通訊。兩個端點設備之間的通訊路徑(「端到端」通訊路徑)可以跨多個網路。Providing QoS for an application, service or data flow that involves communication across two or more different types of networks is complex. A communication network may be able to determine information about and configure the operation of its own network elements, including devices that communicate with or to those network elements (eg, devices connected to the communication network). However, communication networks may not have access to information about the operation of other communication networks. For example, an application client of a wireless device may communicate with another device (eg, an application server or another wireless device) via a communication path. The communication path between two endpoint devices ("peer-to-peer" communication path) can span multiple networks.

作為實例,為了提供增強現實應用,無線智慧眼鏡可以經由跨多個通訊網路的通訊路徑與應用伺服器通訊(向應用伺服器發送信號和從應用伺服器接收信號)。例如,智慧眼鏡可以經由Wi-Fi網路與智慧型電話通訊;智慧型電話可以經由蜂巢通訊鏈路與5G網路基地台通訊;5G網路可以與互連網路(例如,網際網路)通訊;並且網際網路可以使用包括應用伺服器的乙太網路與有線網路通訊。在該實例中,智慧眼鏡和應用伺服器之間的通訊路徑跨Wi-Fi網路、5G網路、互連網路和有線乙太網路。智慧眼鏡的增強現實應用可能需要特定的QoS來滿足一或多個應用要求。一個網路(例如,5G網路)可能能夠根據應用的QoS要求配置其各種網路元素。然而,5G網路通常無法控制Wi-Fi網路、互連網路或有線乙太網路的網路元素的配置或操作。As an example, in order to provide an augmented reality application, the wireless smart glasses may communicate with (send and receive signals to and from) an application server via a communication path across multiple communication networks. For example, smart glasses can communicate with smartphones via Wi-Fi networks; smartphones can communicate with 5G network base stations via cellular communication links; 5G networks can communicate with Internet networks (such as the Internet); And the Internet can use the Ethernet including the application server to communicate with the wired network. In this example, the communication path between the smart glasses and the application server spans Wi-Fi network, 5G network, Internet and wired Ethernet. Augmented reality applications for smart glasses may require specific QoS to satisfy one or more application requirements. A network (eg, 5G network) may be able to configure its various network elements according to the QoS requirements of the application. However, 5G networks typically do not have control over the configuration or operation of network elements of the Wi-Fi network, internetwork, or wired Ethernet.

各種實施例包括被配置為在跨第一通訊網路和第二通訊網路(其可以包括一或多個其他通訊網路)的通訊路徑中執行管理端到端QoS的方法的方法和網路設備。例如,第一通訊網路可以包括5G網路,並且第二通訊網路可以不是5G網路。可以由用作量測實體的通訊網路的網路元素執行各種操作。在各種實施例中,第一通訊網路的網路元素可決定經由通訊路徑將封包從封包源通訊到封包目的地的端到端QoS要求。例如,應用、服務或資料流可以請求QoS要求,或者可以與QoS要求相關聯。在各種實施例中,QoS要求可反映應用、服務或資料流的效能要求。第一通訊網路的網路元素可以決定在通訊路徑內由第二通訊網路提供的QoS。基於由第二通訊網路提供的QoS,第一通訊網路的網路元素可以配置第一通訊網路以提供足夠的QoS來支援端到端QoS要求。Various embodiments include methods and network devices configured to perform methods of managing end-to-end QoS in a communication path across a first communication network and a second communication network (which may include one or more other communication networks). For example, the first communication network may include a 5G network, and the second communication network may not be a 5G network. Various operations may be performed by network elements of the communication network serving as measurement entities. In various embodiments, network elements of the first communication network may determine end-to-end QoS requirements for communicating packets from a packet source to a packet destination via the communication path. For example, an application, service or data flow may request a QoS requirement, or may be associated with a QoS requirement. In various embodiments, QoS requirements may reflect performance requirements of applications, services, or data flows. Network elements of the first communication network may determine the QoS provided by the second communication network within the communication path. Based on the QoS provided by the second communication network, the network elements of the first communication network may configure the first communication network to provide sufficient QoS to support end-to-end QoS requirements.

在一些實施例中,網路元素可決定第二通訊網路的封包錯誤率。在該等實施例中,網路元素可基於第二通訊網路的決定的封包錯誤率來決定第一通訊網路的所需封包錯誤率。術語「封包錯誤率」和「封包丟失率」在本文中可以互換使用。在一些實施例中,網路元素可決定第二通訊網路的可用傳輸量。在該等實施例中,網路元素可基於第二通訊網路的決定的可用傳輸量來決定第一通訊網路的傳輸量要求。在一些實施例中,網路元素可以量測端到端實現的QoS,識別由第一通訊網路提供的QoS,並且基於端到端實現的QoS和由第一通訊網路提供的QoS,決定在通訊路徑內由第二通訊網路提供的QoS。In some embodiments, the network element can determine the packet error rate of the second communication network. In these embodiments, the network element may determine a desired PER for the first communication network based on the determined PER for the second communication network. The terms "packet error rate" and "packet loss rate" are used interchangeably in this document. In some embodiments, the network element may determine the available throughput of the second communication network. In these embodiments, the network element may determine the throughput requirement of the first communication network based on the determined available throughput of the second communication network. In some embodiments, the network element may measure the end-to-end achieved QoS, identify the QoS provided by the first communication network, and based on the end-to-end achieved QoS and the QoS provided by the first communication network, determine the QoS provided by the second communication network within the path.

在一些實施例中,網路元素可將與一或多個網路元素配置及/或與一或多個量測操作相關聯的5G QoS識別符(5QI)應用到第一通訊網路的一或多個網路元素,以配置(一或多個)網路元素來執行操作,以使得網路元素能夠決定在通訊路徑內由第二通訊網路提供的QoS。在一些實施例中,本文描述的任何或所有5QI可在通訊標準或技術標準中進行定義。在一些實施例中,5QI可與一或多個屬性或參數相關聯,包括恆定封包延遲、封包延遲預算、封包錯誤率、預設優先順序、預設最大資料短脈衝量或另一屬性或參數中的至少一個。In some embodiments, the network element may apply a 5G QoS Identifier (5QI) associated with one or more network element configurations and/or with one or more measurement operations to one or more of the first communication network. A plurality of network elements to configure the network element(s) to perform operations such that the network elements can determine QoS provided by the second communication network within the communication path. In some embodiments, any or all of the 5QIs described herein may be defined in a communication standard or technical standard. In some embodiments, a 5QI may be associated with one or more attributes or parameters, including constant packet delay, packet delay budget, packet error rate, preset priority, preset maximum data burst size, or another attribute or parameter at least one of the

在一些實施例中,網路元素可以應用與第一通訊網路中的恆定封包延遲相對應的封包延遲量測5QI,並且基於端到端實現的封包延遲和第一通訊網路中的恆定封包延遲,可以決定在通訊路徑內由第二通訊網路提供的QoS。In some embodiments, the network element may apply a packet delay measure 5QI corresponding to a constant packet delay in the first communication network, and based on the end-to-end realized packet delay and the constant packet delay in the first communication network, The QoS provided by the second communication network within the communication path may be determined.

在一些實施例中,網路元素可以應用與第一通訊網路中的恆定封包丟失率相對應的封包丟失率5QI,並且基於端到端實現的封包丟失率和第一通訊網路中的恆定封包丟失率,可以決定在通訊路徑內由第二通訊網路提供的QoS。In some embodiments, the network element may apply a packet loss rate 5QI corresponding to a constant packet loss rate in the first communication network and based on the packet loss rate achieved end-to-end and the constant packet loss in the first communication network The rate can determine the QoS provided by the second communication network in the communication path.

在一些實施例中,網路元素可以應用與排除第一通訊網路中的封包丟失的封包丟失量測程序相關聯的封包丟失率5QI,並且基於端到端實現的封包丟失和封包丟失量測程序,可以決定在通訊路徑內由第二通訊網路提供的QoS。In some embodiments, the network element may apply a packet loss rate 5QI associated with a packet loss measurement procedure that excludes packet loss in the first communication network, and based on the packet loss and packet loss measurement procedure implemented end-to-end , can determine the QoS provided by the second communication network in the communication path.

在一些實施例中,網路元素可以應用與可用頻寬量測程序相關聯的可用頻寬5QI,該可用頻寬量測程序配置第一通訊網路的資源使得第一通訊網路的封包丟失相對於第二通訊網路的封包丟失基本上可忽略,並且基於端到端實現的可用頻寬和可用頻寬量測程序,可以決定在通訊路徑內由第二通訊網路提供的QoS。In some embodiments, the network element may apply an available bandwidth 5QI associated with an available bandwidth measurement procedure that configures resources of the first communication network such that packet loss of the first communication network is relative to The packet loss of the second communication network is basically negligible, and the QoS provided by the second communication network in the communication path can be determined based on the end-to-end available bandwidth and the available bandwidth measurement procedure.

在一些實施例中,網路元素可以應用與可用頻寬量測程序相關聯的可用頻寬5QI,其中資料封包在第一通訊網路中背靠背地傳輸,並且基於端到端實現的可用頻寬和可用頻寬量測程序,可以決定在通訊路徑內由第二通訊網路提供的QoS。In some embodiments, the network element may apply the available bandwidth 5QI associated with the available bandwidth measurement procedure, wherein data packets are transmitted back-to-back in the first communication network, and based on the available bandwidth and The available bandwidth measurement program can determine the QoS provided by the second communication network in the communication path.

在一些實施例中,網路元素可以應用與網路量測程序相關聯的網路量測5QI,該程序用於執行沿通訊路徑傳輸的量測封包的端到端量測,並且基於端到端實現的QoS和網路量測程序,可以決定在通訊路徑內由第二通訊網路提供的QoS。In some embodiments, a network element may apply a network measurement 5QI associated with a network measurement procedure for performing end-to-end measurements of measurement packets transmitted along a communication path, based on an end-to-end The QoS and network measurement procedures implemented by the terminal can determine the QoS provided by the second communication network in the communication path.

各種實施例可以藉由使網路元素的配置能夠提供滿足設備、應用或服務的QoS要求的QoS,來改良通訊網路的操作。各種實施例可以藉由使得能夠決定由另一通訊網路提供的QoS來改良第一通訊網路的操作,該另一通訊網可以包括不受第一通訊網路控制,或者可能不另外向第一通訊網路提供資訊的網路元素。Various embodiments may improve the operation of communication networks by enabling the configuration of network elements to provide QoS that meets the QoS requirements of devices, applications, or services. Various embodiments may improve the operation of a first communication network by enabling the determination of QoS provided by another communication network, which may include QoS not controlled by the first communication network, or which may not otherwise be provided to the first communication network. Informational web element.

圖1A是示出適合於實現各種實施例中的任一個的示例性通訊系統100的系統方塊圖。通訊系統100可以是5G新無線電(NR)網路,或任何其他合適的網路,諸如長期進化(LTE)網路。儘管圖1圖示5G網路,但下一代網路可能包括相同或相似的元素。因此,以下描述中對5G網路和5G網路元素的引用是出於說明的目的,並非意欲進行限制。FIG. 1A is a system block diagram illustrating an exemplary communication system 100 suitable for implementing any of the various embodiments. The communication system 100 may be a 5G New Radio (NR) network, or any other suitable network, such as a Long Term Evolution (LTE) network. Although Figure 1 illustrates a 5G network, next-generation networks may include the same or similar elements. Therefore, references to 5G networks and 5G network elements in the following description are for illustrative purposes and are not intended to be limiting.

通訊系統100可以包括異質網路架構,該架構包括核心網路140和各種無線設備(在圖1中示出為使用者裝備(UE)120a-120e)。通訊系統100亦可以包括多個基地台(示出為BS 110a、BS 110b、BS 110c和BS 110d)和其他網路實體。基地台是與無線設備進行通訊的實體,亦可以稱為節點B、LTE進化節點B(e節點B或eNB)、存取點(AP)、無線電頭、發送接收點(TRP)、新無線電基地台(NR BS)、5G節點B(NB)、下一代節點B(g節點B或gNB)或類似。每個基地台可以為特定地理區域提供通訊覆蓋。在3GPP中,術語「細胞服務區」可以指基地台的覆蓋區域、服務於該覆蓋區域的基地台子系統或其組合,此舉取決於使用該術語的上下文。核心網路140可以是任何類型的核心網路,諸如LTE核心網路(例如,EPC網路)、5G核心網路等。The communication system 100 may include a heterogeneous network architecture including a core network 140 and various wireless devices (shown in FIG. 1 as user equipment (UE) 120a - 120e ). Communication system 100 may also include multiple base stations (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities. A base station is an entity that communicates with wireless devices, and can also be called a Node B, LTE Evolved Node B (eNode B or eNB), Access Point (AP), Radio Head, Transceiver Point (TRP), New Radio Base Station (NR BS), 5G Node B (NB), Next Generation Node B (gNode B or gNB) or similar. Each base station can provide communication coverage for a specific geographic area. In 3GPP, the term "cell service area" may refer to a coverage area of a base station, a base station subsystem serving the coverage area, or a combination thereof, depending on the context in which the term is used. Core network 140 may be any type of core network, such as an LTE core network (eg, EPC network), a 5G core network, and the like.

基地台110a-110d可以為巨集細胞服務區、微微細胞服務區、毫微微細胞服務區、另一種類型的細胞服務區或其組合提供通訊覆蓋。巨集細胞服務區可以覆蓋相對較大的地理區域(例如,半徑幾公里)並且可以允許具有服務訂閱的無線設備不受限制地存取。微微細胞服務區可以覆蓋相對小的地理區域並且可以允許具有服務訂閱的無線設備不受限制地存取。毫微微細胞服務區可以覆蓋相對小的地理區域(例如,家庭)並且可以允許與毫微微細胞服務區相關聯的無線設備(例如,封閉用戶群組(CSG)中的無線設備)的受限存取。巨集細胞服務區的基地台可以被稱為巨集BS。微微細胞服務區的基地台可以被稱為微微BS。毫微微細胞服務區的基地台可以被稱為毫微微BS或家庭BS。在圖1中所示的實例中,基地台110a可以是用於巨集細胞服務區102a的巨集BS,基地台110b可以是用於微微細胞服務區102b的微微BS,並且基地台110c可以是用於毫微微細胞服務區102c的毫微微BS。基地台110a-110d可以支援一個或多個(例如,三個)細胞服務區。術語「eNB」、「基地台」、「NR-BS」、「gNB」、「TRP」、「AP」、「節點B」、「5G NB」和「細胞服務區」可在本文中互換使用。The base stations 110a-110d may provide communication coverage for a macrocell service area, a picocell service area, a femtocell service area, another type of cell service area, or a combination thereof. A macrocell service area may cover a relatively large geographic area (eg, several kilometers in radius) and may allow unrestricted access by wireless devices with service subscriptions. A picocell service area may cover a relatively small geographic area and may allow unrestricted access by wireless devices with service subscriptions. A femtocell service area may cover a relatively small geographic area (e.g., a home) and may allow limited storage of wireless devices associated with the femtocell service area (e.g., wireless devices in a Closed Subscriber Group (CSG)). Pick. A base station in a macro cell service area may be called a macro BS. A base station in a pico cell service area may be referred to as a pico BS. A base station in a femto cell service area may be called a femto BS or a home BS. In the example shown in FIG. 1, base station 110a may be a macro BS for macrocell service area 102a, base station 110b may be a pico BS for picocell service area 102b, and base station 110c may be a Femto BS for femto cell service area 102c. The base stations 110a-110d can support one or more (eg, three) cell service areas. The terms "eNB", "base station", "NR-BS", "gNB", "TRP", "AP", "Node B", "5G NB" and "cell service area" are used interchangeably herein.

在一些實例中,細胞服務區可能不是靜止的,並且細胞服務區的地理區域可能根據行動基地台的位置而移動。在一些實例中,基地台110a-110d可以經由各種類型的回載介面(諸如直接實體連接、虛擬網路或者使用任何合適的傳輸網路的組合)彼此互連,以及與通訊系統100中的一或多個其他基地台或網路節點(未圖示)互連。In some instances, the cell service area may not be static, and the geographic area of the cell service area may move depending on the location of the mobile base station. In some examples, the base stations 110a-110d can be interconnected with each other and with one of the communication system 100 via various types of backhaul interfaces, such as direct physical connections, virtual networks, or using any suitable combination of transport networks. or multiple other base stations or network nodes (not shown).

基地台110a-110d可以經由有線或無線通訊鏈路126與核心網路140通訊。無線設備120a-120e可以經由無線通訊鏈路122與基地台110a-110d通訊。Base stations 110 a - 110 d may communicate with core network 140 via wired or wireless communication links 126 . Wireless devices 120a-120e may communicate with base stations 110a-110d via wireless communication link 122.

有線通訊鏈路126可以使用多種有線網路(諸如乙太網路、電視電纜、電話、光纖和其他形式的實體網路連接),該等網路可以使用一或多個有線通訊協定,諸如乙太網路、點對點通訊協定、高階資料連結控制(HDLC)、高級資料通訊控制協定(ADCCP)和傳輸控制協定/網際網路協定(TCP/IP)。Wired communication link 126 can use a variety of wired networks (such as Ethernet, television cable, telephone, fiber optics, and other forms of physical network connections) that can use one or more wired communication protocols, such as Ethernet Ethernet, Point-to-Point Protocol, High-level Data Link Control (HDLC), Advanced Data Communication Control Protocol (ADCCP), and Transmission Control Protocol/Internet Protocol (TCP/IP).

通訊系統100亦可以包括中繼站(諸如中繼BS 110d)。中繼站是可以從上游站(例如,基地台或無線設備)接收資料傳輸並將資料發送到下游站(例如,無線設備或基地台)的實體。中繼站亦可以是可以為其他無線設備中繼傳輸的無線設備。在圖1中所示的實例中,中繼站110d可以與巨集基地台110a和無線設備120d通訊以便於基地台110a和無線設備120d之間的通訊。中繼站亦可被稱為中繼基地台、中繼基地台、中繼等。The communication system 100 may also include a relay station (such as the relay BS 110d). A relay station is an entity that can receive data transmissions from upstream stations (eg, base stations or wireless devices) and send data to downstream stations (eg, wireless devices or base stations). A relay station may also be a wireless device that can relay transmissions for other wireless devices. In the example shown in FIG. 1 , relay station 110d may communicate with macro base station 110a and wireless device 120d to facilitate communication between base station 110a and wireless device 120d. A relay station may also be called a relay base station, a relay base station, a relay, etc.

通訊系統100可以是異質網路,其包括不同類型的基地台,例如巨集基地台、微微基地台、毫微微基地台、中繼基地台等。該等不同類型的基地台可能具有不同的發送功率位準、不同的覆蓋區域以及對通訊系統100中干擾的不同影響。例如,巨集基地台可能具有較高的發送功率位準(例如,5到40瓦),而微微基地台、毫微微基地台和中繼基地台可能具有較低的發送功率位準(例如,0.1到2瓦)。The communication system 100 may be a heterogeneous network including different types of base stations, such as macro base stations, pico base stations, femto base stations, relay base stations, and so on. The different types of base stations may have different transmit power levels, different coverage areas, and different effects on interference in the communication system 100 . For example, macro base stations may have higher transmit power levels (e.g., 5 to 40 watts), while pico, femto, and relay base stations may have lower transmit power levels (e.g., 0.1 to 2 watts).

網路控制器130可以耦接到一組基地台並且可以為該等基地台提供協調和控制。網路控制器130可以經由回載與基地台通訊。基地台亦可以例如經由無線或有線回載直接或間接地彼此通訊。A network controller 130 may be coupled to a group of base stations and may provide coordination and control for the base stations. The network controller 130 can communicate with the base stations via backhaul. Base stations may also communicate with each other directly or indirectly, eg, via wireless or wired backhaul.

無線設備120a、120b、120c可以分散在整個通訊系統100中,並且每個無線設備可以是固定的或行動的。無線設備亦可以被稱為存取終端、終端、行動站、用戶單元、站、使用者裝備(UE)等。Wireless devices 120a, 120b, 120c may be dispersed throughout communication system 100, and each wireless device may be stationary or mobile. A wireless device may also be called an access terminal, terminal, mobile station, subscriber unit, station, user equipment (UE), and so on.

巨集基地台110a可以經由有線或無線通訊鏈路126與通訊網路140通訊。無線設備120a、120b、120c可以經由無線通訊鏈路122與基地台110a-110d通訊。The macro base station 110 a can communicate with the communication network 140 via a wired or wireless communication link 126 . The wireless devices 120a, 120b, 120c may communicate with the base stations 110a-110d via the wireless communication link 122.

無線通訊鏈路122和124可以包括複數個載波信號、頻率或頻帶,每個載波信號、頻率或頻帶可以包括複數個邏輯通道。無線通訊鏈路122和124可以利用一或多個無線電存取技術(RATs)。可以在無線通訊鏈路中使用的RAT的實例包括3GPP LTE、3G、4G、5G(諸如NR)、GSM、分碼多工存取(CDMA)、寬頻分碼多工存取(WCDMA)、全球互通微波存取性(WiMAX)、分時多工存取(TDMA)),以及其他行動電話通訊技術蜂巢RAT。可以在通訊系統100內的各種無線通訊鏈路中的一或多個中使用的RAT的進一步實例包括中程協定,諸如Wi-Fi、LTE-U、LTE-Direct、LAA、MuLTEfire,以及相對短程RAT,例如ZigBee、藍牙和低功耗藍牙(LE)。The wireless communication links 122 and 124 may include a plurality of carrier signals, frequencies or frequency bands, and each carrier signal, frequency or frequency band may include a plurality of logical channels. Wireless communication links 122 and 124 may utilize one or more radio access technologies (RATs). Examples of RATs that can be used in wireless communication links include 3GPP LTE, 3G, 4G, 5G (such as NR), GSM, Code Division Multiple Access (CDMA), Wideband Code Division Multiple Access (WCDMA), Global Interoperable microwave access (WiMAX), time-division multiple access (TDMA), and other cellular RATs for mobile phone communication technologies. Further examples of RATs that may be used in one or more of the various wireless communication links within the communication system 100 include medium-range protocols such as Wi-Fi, LTE-U, LTE-Direct, LAA, MuLTEfire, and relatively short-range RATs such as ZigBee, Bluetooth, and Bluetooth Low Energy (LE).

某些無線網路(例如,LTE)在下行鏈路上使用正交分頻多工(OFDM),在上行鏈路上使用單載波分頻多工(SC-FDM)。OFDM和SC-FDM將系統頻寬劃分為多個(K)個正交次載波,該等次載波通常亦稱為音調、頻段等。每個次載波可以用資料進行調制。通常,調制符號在頻域中使用OFDM發送,在時域中使用SC-FDM發送。相鄰次載波之間的間隔可以是固定的,並且次載波的總數(K)可以取決於系統頻寬。例如,次載波的間隔可以是15 kHz,最小資源分配(稱為「資源區塊」)可以是12個次載波(或180 kHz)。因此,對於1.25、2.5、5、10或20兆赫(MHz)的系統頻寬,標稱快速檔案傳輸(FFT)大小可能分別等於128、256、512、1024或2048。系統頻寬亦可以被劃分為次頻帶。例如,一個次頻帶可以覆蓋1.08 MHz(亦即,6個資源區塊),並且對於1.25、2.5、5、10或20 MHz的系統頻寬,可以分別有1、2、4、8或16個次頻帶。Some wireless networks (eg, LTE) use Orthogonal Frequency Division Multiplexing (OFDM) on the downlink and Single Carrier Frequency Division Multiplexing (SC-FDM) on the uplink. OFDM and SC-FDM divide the system bandwidth into multiple (K) orthogonal subcarriers, which are usually also called tones, frequency bands, etc. Each subcarrier can be modulated with data. In general, modulation symbols are sent in the frequency domain using OFDM and in the time domain using SC-FDM. The spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may depend on the system bandwidth. For example, the spacing of subcarriers may be 15 kHz, and the minimum resource allocation (called a "resource block") may be 12 subcarriers (or 180 kHz). Thus, for a system bandwidth of 1.25, 2.5, 5, 10, or 20 megahertz (MHz), the nominal fast file transfer (FFT) size might be equal to 128, 256, 512, 1024, or 2048, respectively. The system bandwidth can also be divided into sub-bands. For example, a sub-band may cover 1.08 MHz (i.e., 6 resource blocks), and there may be 1, 2, 4, 8 or 16 resource blocks for a system bandwidth of 1.25, 2.5, 5, 10 or 20 MHz, respectively sub-band.

儘管一些實現的描述可以使用與LTE技術相關聯的術語和實例,但是一些實現可以適用於其他無線通訊系統,諸如新無線電(NR)或5G網路。NR可以在上行鏈路(UL)和下行鏈路(DL)上使用帶有循環字首(CP)的OFDM,並且包括對使用分時雙工(TDD)的半雙工操作的支援。可以支援100 MHz的單個分量載波頻寬。NR資源區塊可以橫跨12個次載波,在0.1毫秒(ms)持續時間內具有75 kHz的次載波頻寬。每個無線電訊框可以由長度為10 ms的50個子訊框組成。因此,每個子訊框可以具有0.2 ms的長度。每個子訊框可以指示用於資料傳輸的鏈路方向(亦即,DL或UL),並且每個子訊框的鏈路方向可以動態切換。每個子訊框可以包括DL/UL資料以及DL/UL控制資料。可以支援波束成形並且可以動態配置波束方向。亦可以支援具有預編碼的多輸入多輸出(MIMO)傳輸。DL中的MIMO配置可以支援多達八個發送天線,多層DL傳輸多達八個串流,並且每個無線設備多達兩個串流。可以支援每個無線設備具有多達2個串流的多層傳輸。最多可以支援八個服務細胞服務區的多個細胞服務區的聚合。替代地,NR可以支援不同的空中介面,而不是基於OFDM的空中介面。Although some implementation descriptions may use terms and examples associated with LTE technology, some implementations may be applicable to other wireless communication systems, such as New Radio (NR) or 5G networks. NR can use OFDM with cyclic prefix (CP) on the uplink (UL) and downlink (DL), and includes support for half-duplex operation using time division duplex (TDD). A single component carrier bandwidth of 100 MHz can be supported. An NR resource block may span 12 subcarriers, with a subcarrier bandwidth of 75 kHz for a 0.1 millisecond (ms) duration. Each radio frame may consist of 50 subframes with a length of 10 ms. Therefore, each subframe may have a length of 0.2 ms. Each subframe can indicate the link direction (ie, DL or UL) used for data transmission, and the link direction of each subframe can be dynamically switched. Each subframe can include DL/UL data and DL/UL control data. Beamforming can be supported and the beam direction can be dynamically configured. Multiple-input multiple-output (MIMO) transmission with precoding may also be supported. MIMO configurations in DL can support up to eight transmit antennas, multi-layer DL transmissions up to eight streams, and up to two streams per wireless device. Multi-layer transmission with up to 2 streams per wireless device can be supported. Aggregation of multiple cell service areas that can support up to eight service cell service areas. Alternatively, NR may support a different air interface than OFDM-based air interface.

一些無線設備可被視為機器類型通訊(MTC)或進化或增強型機器類型通訊(eMTC)無線設備。MTC和eMTC無線設備包括例如機器人、無人機、遠端設備、感測器、儀錶、監視器、位置標籤等,其可以與基地台、另一個設備(例如,遠端設備)或一些其他實體進行通訊。例如,無線計算平臺可以經由有線或無線通訊鏈路為網路(例如,諸如網際網路或蜂巢網路之類的廣域網路)或到網路提供連線性。一些無線設備可能被認為是物聯網路(IoT)設備,亦可能被實現為NB-IoT(窄頻物聯網)設備。無線設備120a-120e可以被包括在容納無線設備120a-120e的元件(諸如處理器元件、記憶體元件、類似元件或其組合)的外殼內。Some wireless devices may be considered machine type communication (MTC) or evolved or enhanced machine type communication (eMTC) wireless devices. MTC and eMTC wireless devices include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, etc., which may interact with a base station, another device (e.g., a remote device), or some other entity communication. For example, a wireless computing platform may provide connectivity to or to a network (eg, a wide area network such as the Internet or a cellular network) via wired or wireless communication links. Some wireless devices may be considered Internet of Things (IoT) devices, and may also be implemented as NB-IoT (Narrowband Internet of Things) devices. The wireless devices 120a-120e may be included within housings that house elements of the wireless devices 120a-120e, such as processor elements, memory elements, similar elements, or combinations thereof.

通常,可以在給定的地理區域中部署任意數目的通訊系統和任意數目的無線網路。每個通訊系統和無線網路可以支援特定的無線電存取技術(RAT)並且可以在一或多個頻率上操作。RAT亦可以被稱為無線電技術、空中介面等。頻率亦可以稱為載波、頻道等。每個頻率可以支援給定地理區域中的單個RAT以避免不同RAT的通訊系統之間的干擾。在一些情況下,可能會部署4G/LTE及/或5G/NR RAT網路。例如,5G非獨立(NSA)網路可以在5G NSA網路的4G/LTE RAN側使用4G/LTE RAT,在5G NSA網路的5G/NR RAN側使用5G/NR RAT。4G/LTE RAN和5G/NR RAN可以彼此連接並且連接到5G NSA網路中的4G/LTE核心網路(例如,進化封包核心(EPC)網路)。其他示例性網路配置可以包括5G獨立(SA)網路,其中5G/NR RAN連接到5G核心網路。In general, any number of communication systems and any number of wireless networks may be deployed in a given geographic area. Each communication system and wireless network can support a specific radio access technology (RAT) and can operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, and the like. Frequency may also be called carrier, channel, etc. Each frequency can support a single RAT in a given geographic area to avoid interference between communication systems of different RATs. In some cases, 4G/LTE and/or 5G/NR RAT networks may be deployed. For example, a 5G non-standalone (NSA) network can use 4G/LTE RAT on the 4G/LTE RAN side of the 5G NSA network and 5G/NR RAT on the 5G/NR RAN side of the 5G NSA network. The 4G/LTE RAN and 5G/NR RAN may be connected to each other and to the 4G/LTE core network (eg, Evolved Packet Core (EPC) network) in the 5G NSA network. Other exemplary network configurations may include 5G Standalone (SA) networks, where the 5G/NR RAN is connected to the 5G core network.

在一些實現中,兩個或兩個以上無線設備120a-120e(例如,示出為無線設備120a和無線設備120e)可以使用一或多個側鏈通道124直接通訊(例如,沒有使用基地台110a-110d作為中介來相互通訊)。例如,無線設備120a-120e可以使用同級間(P2P)通訊、設備到設備(D2D)通訊、車輛到一切(V2X)協定(其可以包括車輛到車輛(V2V)協定、車輛到基礎設施(V2I)協定或類似協定)、網狀網路或類似網路,或其組合。在此種情況下,無線設備120a-120e可以執行排程操作、資源選擇操作以及本文別處描述的由基地台110a-110d執行的其他操作。In some implementations, two or more wireless devices 120a-120e (eg, shown as wireless device 120a and wireless device 120e) can communicate directly using one or more sidechain channels 124 (eg, without using base station 110a -110d as an intermediary to communicate with each other). For example, wireless devices 120a-120e may use peer-to-peer (P2P) communication, device-to-device (D2D) communication, vehicle-to-everything (V2X) protocol (which may include vehicle-to-vehicle (V2V) protocol, vehicle-to-infrastructure (V2I) protocol or similar), a mesh or similar network, or a combination thereof. In such cases, wireless devices 120a-120e may perform scheduling operations, resource selection operations, and other operations described elsewhere herein as performed by base stations 110a-110d.

圖1B-圖1D是示出適用於實現各種實施例中的任一個的示例性通訊系統150、160、170和180的系統方塊圖。參考圖1A-1D,通訊系統150、160、170和180圖示跨多個通訊網路的兩個端點設備之間的示例性端到端通訊路徑。應當理解,通訊系統150、160、170和180中示出的實例是非限制性的,並且跨多個通訊網路的兩個端點設備之間的端到端通訊路徑的其他實現亦是可能的。1B-1D are system block diagrams illustrating exemplary communication systems 150, 160, 170, and 180 suitable for implementing any of the various embodiments. Referring to Figures 1A-1D, communication systems 150, 160, 170, and 180 illustrate exemplary end-to-end communication paths between two endpoint devices across multiple communication networks. It should be understood that the examples shown in communication systems 150, 160, 170, and 180 are non-limiting and that other implementations of an end-to-end communication path between two end-point devices across multiple communication networks are possible.

參考圖1B,在UE 152a(例如,無線設備120a-120e)上執行的應用客戶端可以與在UE 158(例如,無線設備120a-120e)上執行的應用客戶端通訊。UE 152a和UE 158之間的通訊路徑可以跨兩個網路,例如5G網路151a和非5G網路151b。在一些實施例中,5G網路151a可包括UE 152a(其可經由蜂巢通訊鏈路153與gNB 152b通訊)、5G核心網路152c以及使用者平面功能(UPF)152d(其可實現5G網路151a與非5G網路151b之間的通訊)。非5G網路151b可以包括互連網路(諸如網際網路154)、Wi-Fi存取點(AP)156以及無線設備158(其可經由Wi-Fi無線通訊鏈路157與Wi-Fi存取點156通訊)。Referring to FIG. 1B, an application client executing on UE 152a (eg, wireless devices 120a-120e) may communicate with an application client executing on UE 158 (eg, wireless devices 120a-120e). The communication path between UE 152a and UE 158 may span two networks, such as 5G network 151a and non-5G network 151b. In some embodiments, 5G network 151a may include UE 152a (which may communicate with gNB 152b via cellular communication link 153), 5G core network 152c, and User Plane Function (UPF) 152d (which may implement 5G network 151a and non-5G network 151b). The non-5G network 151b may include an interconnection network (such as the Internet 154), a Wi-Fi access point (AP) 156, and a wireless device 158 (which can communicate with the Wi-Fi access point via a Wi-Fi wireless communication link 157). 156 Communications).

參考圖1C,在UE 162a(例如,無線設備120a-120e)上執行的應用客戶端可以與在UE 168(例如,無線設備120a-120e)上執行的應用客戶端通訊。UE 162a和UE 168之間的通訊路徑可以跨兩個網路,例如5G網路161a和非5G網路161b。在一些實施例中,5G網路161a可包括UE 162a(其可經由蜂巢通訊鏈路163與gNB 162b通訊)、5G核心網路162c以及使用者平面功能162d(其可實現5G網路161a與非5G網路161b之間的通訊)。非5G網路161b可以包括互連網路(諸如網際網路164)、4G網路166a、4G基地台(諸如eNB 166b)以及可經由4G無線通訊鏈路167與eNB 166b通訊的無線設備168。Referring to FIG. 1C, an application client executing on UE 162a (eg, wireless devices 120a-120e) may communicate with an application client executing on UE 168 (eg, wireless devices 120a-120e). The communication path between UE 162a and UE 168 may span two networks, such as 5G network 161a and non-5G network 161b. In some embodiments, 5G network 161a may include UE 162a (which may communicate with gNB 162b via cellular communication link 163), 5G core network 162c, and user plane function 162d (which may enable communication between 5G network 161a and non- communication between the 5G network 161b). The non-5G network 161b may include an internetwork (such as the Internet 164 ), a 4G network 166a , a 4G base station (such as an eNB 166b ), and a wireless device 168 capable of communicating with the eNB 166b via a 4G wireless communication link 167 .

參照圖1D,通訊系統170可以包括三個網路。在第一非5G網路171b中的無線設備174(示出為智慧眼鏡)上執行的應用客戶端可以經由5G網路171a與第二非5G網路171c中的應用伺服器176通訊。以此種方式,無線設備174和應用伺服器176之間的通訊路徑可以跨三個通訊網路。在一些實施例中,第一非5G網路171b可包括無線設備174,其可經由Wi-Fi通訊鏈路173與無線設備(UE)172a通訊。5G網路171a可包括UE 172a(其可經由蜂巢通訊鏈路175與gNB 172b通訊)、5G核心網路172c以及使用者平面功能172d(其可實現5G網路171a與第二非5G網路171c之間的通訊)。第二非5G網路171c可包括應用伺服器176,其可經由有線通訊鏈路177與5G網路通訊。Referring to FIG. 1D , the communication system 170 may include three networks. An application client executing on a wireless device 174 (shown as smart glasses) in the first non-5G network 171b can communicate with an application server 176 in the second non-5G network 171c via the 5G network 171a. In this way, the communication path between the wireless device 174 and the application server 176 can span three communication networks. In some embodiments, the first non-5G network 171b can include a wireless device 174 that can communicate with a wireless device (UE) 172a via a Wi-Fi communication link 173 . 5G network 171a may include UE 172a (which can communicate with gNB 172b via cellular communication link 175), 5G core network 172c, and user plane function 172d (which enables 5G network 171a to communicate with a second non-5G network 171c communications between). The second non-5G network 171c can include an application server 176 that can communicate with the 5G network via a wired communication link 177 .

參照圖1E,通訊系統180可以包括三個網路。在第一非5G網路181b中的無線設備184(示出為智慧眼鏡)上執行的應用客戶端可以經由5G網路181a與第二非5G網路181c中的應用伺服器188通訊。以此種方式,無線設備184和應用伺服器188之間的通訊路徑可以跨三個通訊網路。在一些實施例中,第一非5G網路181b可包括無線設備184,其可經由Wi-Fi通訊鏈路181b與無線設備(UE)182a通訊。5G網路181a可包括UE 182a(其可經由蜂巢通訊鏈路183與gNB 182b通訊)、5G核心網路182c以及使用者平面功能182d(其可實現5G網路181a與第二非5G網路181c之間的通訊)。第二非5G網路181c可包括互連網路(諸如網際網路)186(其可經由有線通訊鏈路185與5G網路通訊)和應用伺服器188(其可經由有線通訊鏈路187與互連網路186通訊)。Referring to FIG. 1E, the communication system 180 may include three networks. An application client executing on a wireless device 184 (shown as smart glasses) in the first non-5G network 181b can communicate with an application server 188 in the second non-5G network 181c via the 5G network 181a. In this manner, the communication path between the wireless device 184 and the application server 188 can span three communication networks. In some embodiments, the first non-5G network 181b can include a wireless device 184, which can communicate with a wireless device (UE) 182a via a Wi-Fi communication link 181b. 5G network 181a may include UE 182a (which can communicate with gNB 182b via cellular communication link 183), 5G core network 182c, and user plane function 182d (which enables 5G network 181a to communicate with a second non-5G network 181c communications between). The second non-5G network 181c may include an internetwork (such as the Internet) 186 (which can communicate with the 5G network via a wired communication link 185) and an application server 188 (which can communicate with the internetwork via a wired communication link 187). 186 Communications).

圖2是示出適合於實施各種實施例中的任一個的示例性計算和無線數據機系統200的元件方塊圖。各種實施例可以在多個單一處理器和多處理器電腦系統上實現,包括片上系統(SOC)或封裝中系統(SIP)。FIG. 2 is a block diagram illustrating elements of an exemplary computing and wireless modem system 200 suitable for implementing any of the various embodiments. Various embodiments may be implemented on a number of single-processor and multi-processor computer systems, including system-on-chip (SOC) or system-in-package (SIP).

參考圖1和圖2,示出的示例性計算設備200(在一些實施例中可以是SIP)包括耦接到時鐘206的兩個SOC 202、204、電壓調節器208和無線收發器266,其被配置為經由天線(未圖示)向/從無線設備(例如,120a-120e)或基地台(例如,110a-110d)發送和接收無線通訊。在一些實現中,第一SOC 202可以作為無線設備的中央處理單元(CPU)操作,其藉由執行由指令指定的算術、邏輯、控制和輸入/輸出(I/O)操作來執行軟體應用程式指令。在一些實現中,第二SOC 204可以作為專用處理單元操作。例如,第二SOC 204可以作為專門的5G處理單元操作,負責管理高容量、高速(諸如5 Gbps等)及/或超高頻短波長(諸如28 GHz毫米波頻譜等)通訊。1 and 2, an exemplary computing device 200 (which may be a SIP in some embodiments) is shown including two SOCs 202, 204 coupled to a clock 206, a voltage regulator 208, and a wireless transceiver 266, which Configured to send and receive wireless communications to/from a wireless device (eg, 120a-120e) or base station (eg, 110a-110d) via an antenna (not shown). In some implementations, the first SOC 202 can operate as a wireless device's central processing unit (CPU), which executes software applications by performing arithmetic, logic, control, and input/output (I/O) operations specified by instructions instruction. In some implementations, the second SOC 204 can operate as a dedicated processing unit. For example, the second SOC 204 may operate as a dedicated 5G processing unit responsible for managing high-capacity, high-speed (such as 5 Gbps, etc.) and/or ultra-high frequency short-wavelength (such as 28 GHz mmWave spectrum, etc.) communications.

第一SOC 202可以包括數位訊號處理器(DSP)210、數據機處理器212、圖形處理器214、應用處理器216、連接到一或多個處理器的一或多個共處理器218(諸如向量共處理器)、記憶體220、定製電路222、系統元件和資源224、互連/匯流排模組226、一或多個溫度感測器230、熱管理單元232以及熱功率封裝(TPE)元件234。第二SOC 204可以包括5G數據機處理器252、電源管理單元254、互連/匯流排模組264、複數個毫米波收發器256、記憶體258以及各種附加處理器260,諸如應用處理器、封包處理器等。The first SOC 202 may include a digital signal processor (DSP) 210, a modem processor 212, a graphics processor 214, an application processor 216, one or more coprocessors 218 connected to one or more processors, such as vector coprocessor), memory 220, custom circuitry 222, system components and resources 224, interconnect/bus module 226, one or more temperature sensors 230, thermal management unit 232, and thermal power package (TPE ) element 234. The second SOC 204 may include a 5G modem processor 252, a power management unit 254, an interconnect/bus module 264, a plurality of millimeter wave transceivers 256, a memory 258, and various additional processors 260, such as application processors, packet processor, etc.

每個處理器210、212、214、216、218、252、260可以包括一或多個核心,並且每個處理器/核心可以獨立於其他處理器/核心執行操作。例如,第一SOC 202可以包括執行第一類型作業系統(諸如FreeBSD、LINUX、OS X等)的處理器和執行第二類型作業系統(諸如MICROSOFT WINDOWS 10)的處理器。此外,處理器210、212、214、216、218、252、260中的任何一個或全部可以被包括作為處理器叢集架構(諸如同步處理器叢集架構、非同步或異質處理器叢集架構等)的一部分。Each processor 210, 212, 214, 216, 218, 252, 260 may include one or more cores, and each processor/core may perform operations independently of the other processors/cores. For example, the first SOC 202 may include a processor executing a first type of operating system (such as FreeBSD, LINUX, OS X, etc.) and a processor executing a second type of operating system (such as MICROSOFT WINDOWS 10). Additionally, any or all of the processors 210, 212, 214, 216, 218, 252, 260 may be included as part of a processor cluster architecture (such as a synchronous processor cluster architecture, an asynchronous or heterogeneous processor cluster architecture, etc.) part.

第一和第二SOC 202、204可以包括各種系統元件、資源和定製電路,用於管理感測器資料、類比數位轉換、無線資料傳輸以及用於執行其他專門操作,諸如解碼資料封包和處理編碼音訊和用於在Web瀏覽器中呈現的視訊訊號。例如,第一SOC 202的系統元件和資源224可以包括功率放大器、電壓調節器、振盪器、鎖相迴路、周邊橋接器、資料控制器、記憶體控制器、系統控制器、存取埠、計時器和用於支援在無線設備上執行的處理器和軟體客戶端的其他類似元件。系統元件和資源224及/或定製電路222亦可以包括與周邊設備介面連接的電路,諸如相機、電子顯示器、無線通訊設備、外部記憶體晶片等。The first and second SOCs 202, 204 may include various system elements, resources, and custom circuitry for managing sensor data, analog-to-digital conversion, wireless data transfer, and for performing other specialized operations such as decoding data packets and processing Encodes audio and video signals for rendering in web browsers. For example, system components and resources 224 of the first SOC 202 may include power amplifiers, voltage regulators, oscillators, phase-locked loops, peripheral bridges, data controllers, memory controllers, system controllers, access ports, timing processors and other similar components for supporting processors and software clients executing on wireless devices. System components and resources 224 and/or custom circuits 222 may also include circuits that interface with peripheral devices, such as cameras, electronic displays, wireless communication devices, external memory chips, and the like.

第一和第二SOC 202、204可以經由互連/匯流排模組250進行通訊。各種處理器210、212、214、216、218可以經由互連/匯流排模組226互連到一或多個記憶體元件220、系統元件和資源224、以及定製電路222和熱管理單元232。類似地,處理器252可以經由互連/匯流排模組264互連到功率管理單元254、毫米波收發器256、記憶體258和各種附加處理器260。互連/匯流排模組226、250、264可以包括可重構邏輯閘陣列及/或實現匯流排架構(諸如CoreConnect、AMBA等)。通訊可以由高級互連提供,諸如高效能片上網路(NoC)。The first and second SOCs 202 , 204 may communicate via an interconnect/bus module 250 . Various processors 210 , 212 , 214 , 216 , 218 may be interconnected to one or more memory components 220 , system components and resources 224 , custom circuitry 222 and thermal management unit 232 via interconnect/bus module 226 . Similarly, processor 252 may be interconnected to power management unit 254 , mmWave transceiver 256 , memory 258 , and various additional processors 260 via interconnect/bus module 264 . The interconnect/bus modules 226, 250, 264 may include reconfigurable logic gate arrays and/or implement a bus architecture (such as CoreConnect, AMBA, etc.). Communications can be provided by advanced interconnects, such as high performance on-chip networks (NoCs).

第一及/或第二SOC 202、204亦可以包括用於與SOC外部的資源(諸如時鐘206和電壓調節器208)通訊的輸入/輸出模組(未圖示)。SOC外部的資源(諸如時鐘206、電壓調節器208)可由兩個或兩個以上內部SOC處理器/核心共享。The first and/or second SOC 202, 204 may also include input/output modules (not shown) for communicating with resources external to the SOC, such as the clock 206 and the voltage regulator 208 . Resources external to the SOC, such as clock 206, voltage regulator 208, may be shared by two or more internal SOC processors/cores.

除了上文論述的示例性SIP 200之外,一些實現可以在各種各樣的計算系統中實現,該等計算系統可以包括單個處理器、多個處理器、多核心處理器或其任何組合。In addition to the exemplary SIP 200 discussed above, some implementations may be implemented in a wide variety of computing systems that may include a single processor, multiple processors, multi-core processors, or any combination thereof.

圖3是示出適合於實施各種實施例中的任何一個的軟體架構300的元件方塊圖,其包括無線通訊中的使用者和控制平面的無線電協定堆疊。參考圖1-圖3,無線設備320可以實現軟體架構300以促進通訊系統(例如,100)的無線設備320(例如,無線設備120a-120e、200)和基地台350(例如,基地台110a-110d)之間的通訊。在各種實施例中,軟體架構300中的層可以與基地台350的軟體中的相應層形成邏輯連接。軟體架構300可以分佈在一或多個處理器(例如、處理器212、214、216、218、252、260)中。儘管關於一個無線電協定堆疊進行說明,但在多SIM(使用者身份模組)無線設備中,軟體架構300可以包括多個協定堆疊,每個協定堆疊可以與不同的SIM(例如,兩個協定堆疊分別與雙SIM卡無線通訊設備中的兩個SIM卡相關聯)相關聯。儘管下文參考LTE通訊層進行描述,但軟體架構300可以支援用於無線通訊的多種標準和協定中的任何一種,及/或可以包括支援多種無線通訊標準和協定中的任何一種的附加協定堆疊。FIG. 3 is a block diagram illustrating components of a software architecture 300 suitable for implementing any of the various embodiments, including a radio protocol stack for user and control planes in wireless communications. Referring to FIGS. 1-3 , a wireless device 320 may implement a software architecture 300 to facilitate communication system (eg, 100) wireless devices 320 (eg, wireless devices 120a-120e, 200) and base stations 350 (eg, base stations 110a- 110d). In various embodiments, layers in the software architecture 300 may form logical connections with corresponding layers in the software of the base station 350 . Software architecture 300 may be distributed among one or more processors (eg, processors 212, 214, 216, 218, 252, 260). Although described with respect to one radio protocol stack, in a multi-SIM (Subscriber Identity Module) wireless device, software architecture 300 may include multiple protocol stacks, each protocol stack may communicate with a different SIM (e.g., two protocol stacks) respectively associated with the two SIM cards in the dual-SIM card wireless communication device). Although described below with reference to LTE communication layers, the software architecture 300 may support any of a variety of standards and protocols for wireless communication, and/or may include additional protocol stacks that support any of a variety of wireless communication standards and protocols.

軟體架構300可以包括非存取層(NAS)302和存取層(AS)304。NAS 302可以包括支援封包過濾、安全管理、行動性控制、通信期管理以及無線設備的(一或多個)SIM(諸如(一或多個)SIM 204)與其核心網路140之間的訊務和訊號傳遞的功能和協定。AS 304可以包括支援(一或多個)SIM(諸如(一或多個)SIM 204)與支援的存取網路的實體(諸如基地台)之間的通訊的功能和協定。特別地,AS 304可以包括至少三層(層1、層2和層3),其中的每一層可以包含各種子層。The software architecture 300 may include a non-access layer (NAS) 302 and an access layer (AS) 304 . NAS 302 may include support for packet filtering, security management, mobility control, session management, and communication between the SIM(s) of the wireless device (such as SIM(s) 204 ) and its core network 140 and signaling functions and protocols. AS 304 may include functions and protocols to support communication between SIM(s) such as SIM(s 204 ) and supported entities accessing the network such as base stations. In particular, AS 304 may include at least three layers (Layer 1, Tier 2, and Tier 3), each of which may contain various sub-layers.

在使用者和控制平面中,AS 304的第1層(L1)可以是實體層(PHY)306,其可以監督經由無線收發器(例如,266)經由空中介面實現發送及/或接收的功能。此類實體層306功能的實例可包括循環冗餘檢查(CRC)附件、編碼區塊、擾頻和解擾頻、調制和解調、信號量測、MIMO等。實體層可以包括各種邏輯通道,包括實體下行鏈路控制通道(PDCCH)和實體下行鏈路共享通道(PDSCH)。In the user and control planes, Layer 1 (L1) of AS 304 may be a physical layer (PHY) 306, which may oversee the function of transmitting and/or receiving over the air interface via a wireless transceiver (eg, 266). Examples of such physical layer 306 functions may include cyclic redundancy check (CRC) attachment, coding blocks, scrambling and descrambling, modulation and demodulation, signal measurement, MIMO, and the like. The physical layer may include various logical channels, including a physical downlink control channel (PDCCH) and a physical downlink shared channel (PDSCH).

在使用者和控制平面中,AS 304的第2層(L2)可以負責無線設備320和基地台350之間經由實體層306的鏈路。在一些實現中,第2層可包括媒體存取控制(MAC)子層308、無線電鏈路控制(RLC)子層310、封包資料收斂協定(PDCP)312子層和服務資料適配協定(SDAP)317子層,每個子層形成終止於基地台350的邏輯連接。Layer 2 (L2) of AS 304 may be responsible for the link between wireless device 320 and base station 350 via physical layer 306 in the user and control planes. In some implementations, Layer 2 may include a Medium Access Control (MAC) sublayer 308, a Radio Link Control (RLC) sublayer 310, a Packet Data Convergence Protocol (PDCP) 312 sublayer, and a Service Data Adaptation Protocol (SDAP ) 317 sublayers, each sublayer forming a logical connection terminating at the base station 350.

在控制平面中,AS 304的第3層(L3)可以包括無線電資源控制(RRC)子層3。儘管未圖示,但軟體架構300可以包括額外的第3層子層,以及第3層之上的各種上層。在一些實現中,RRC子層313可以提供包括廣播系統資訊、傳呼以及在無線設備320和基地台350之間建立和釋放RRC訊號傳遞連接的功能。In the control plane, Layer 3 (L3) of AS 304 may include Radio Resource Control (RRC) sublayer 3 . Although not shown, software architecture 300 may include additional Layer 3 sub-layers, as well as various upper layers above Layer 3. In some implementations, the RRC sublayer 313 may provide functions including broadcasting system information, paging, and establishing and releasing RRC signaling connections between the wireless device 320 and the base station 350 .

在各種實施例中,SDAP子層317可提供服務品質(QoS)流與資料無線電承載(DRBs)之間的映射。在一些實現中,PDCP子層312可以提供上行鏈路功能,包括不同無線電承載和邏輯通道之間的多工、序號添加、交遞資料處理、完整性保護、加密和標頭壓縮。在下行鏈路中,PDCP子層312可以提供包括資料封包的按序傳遞、重複資料包偵測、完整性驗證、解密和標頭解壓縮的功能。In various embodiments, the SDAP sublayer 317 may provide mapping between quality of service (QoS) flows and data radio bearers (DRBs). In some implementations, the PDCP sublayer 312 can provide uplink functions including multiplexing between different radio bearers and logical channels, sequence number appending, handover data handling, integrity protection, encryption, and header compression. In the downlink, the PDCP sublayer 312 may provide functions including in-sequence delivery of data packets, duplicate data packet detection, integrity verification, decryption and header decompression.

在上行鏈路中,RLC子層310可以提供上層資料封包的分段和級聯、丟失資料封包的重傳以及自動重複請求(ARQ)。在下行鏈路中,而RLC子層310的功能可以包括重新排序資料封包以補償無序接收、重新組裝上層資料封包和ARQ。In the uplink, the RLC sublayer 310 may provide segmentation and concatenation of upper layer data packets, retransmission of lost data packets, and automatic repeat request (ARQ). In the downlink, the functions of the RLC sublayer 310 may include reordering data packets to compensate for out-of-order reception, reassembling upper layer data packets, and ARQ.

在上行鏈路中,MAC子層308可以提供包括邏輯和傳輸通道之間的多工、隨機存取程序、邏輯通道優先順序和混合ARQ(HARQ)操作的功能。在下行鏈路中,MAC層功能可以包括細胞服務區內的通道映射、解多工、非連續接收(DRX)和HARQ操作。In the uplink, the MAC sublayer 308 may provide functions including multiplexing between logical and transport lanes, random access procedures, logical lane prioritization, and hybrid ARQ (HARQ) operation. In the downlink, MAC layer functions may include channel mapping, demultiplexing, discontinuous reception (DRX) and HARQ operation within the cell service area.

儘管軟體架構300可以提供經由實體媒體發送資料的功能,但是軟體架構300進一步可以包括至少一個主機層314,以向無線設備320中的各種應用提供資料傳輸服務。在一些實現中,由至少一個主機層314提供的應用特定功能可以提供軟體架構和通用處理器206之間的介面。Although the software architecture 300 can provide the function of transmitting data via physical media, the software architecture 300 can further include at least one host layer 314 to provide data transmission services to various applications in the wireless device 320 . In some implementations, application-specific functionality provided by at least one host layer 314 may provide an interface between the software architecture and the general-purpose processor 206 .

在其他實現中,軟體架構300可以包括提供主機層功能的一或多個更高邏輯層(諸如傳輸、通信期、呈現、應用等)。例如,在一些實現中,軟體架構300可以包括網路層(諸如網際網路協定(IP)層),其中邏輯連接終止於封包資料網路(PDN)閘道(PGW)。在一些實現中,軟體架構300可以包括應用層,其中邏輯連接終止於另一設備(諸如最終使用者設備、伺服器等)。在一些實現中,軟體架構300進一步可以在AS 304中包括實體層306和通訊硬體(諸如一或多個射頻(RF)收發器)之間的硬體介面316。In other implementations, the software architecture 300 may include one or more higher logical layers (such as transport, communication phase, presentation, application, etc.) that provide host layer functionality. For example, in some implementations, software architecture 300 may include a network layer, such as an Internet Protocol (IP) layer, where logical connections terminate at a packet data network (PDN) gateway (PGW). In some implementations, the software architecture 300 may include an application layer where a logical connection terminates at another device (such as an end user device, server, etc.). In some implementations, software architecture 300 may further include a hardware interface 316 in AS 304 between physical layer 306 and communication hardware, such as one or more radio frequency (RF) transceivers.

圖4是示出根據各種實施例的被配置用於管理跨第一通訊網路和第二通訊網路的通訊路徑中的端到端QoS的系統400的元件方塊圖。參考圖1-圖4,系統400可包括5G網路的網路元素402,諸如無線設備(例如,110a-110d、200、320)、基地台(例如,120a-120e、200、350)或5G網路中的另一網路元素,包括核心網路140或5G網路151a、161a、171a和181a的任何網路元素。4 is a block diagram illustrating elements of a system 400 configured to manage end-to-end QoS in a communication path across a first communication network and a second communication network, according to various embodiments. 1-4, system 400 may include network elements 402 of a 5G network, such as wireless devices (eg, 110a-110d, 200, 320), base stations (eg, 120a-120e, 200, 350) or 5G Another network element in the network, including core network 140 or any network element of 5G networks 151a, 161a, 171a, and 181a.

網路元素402可以是計算設備(例如,伺服器或類似電腦),包括耦接到電子儲存器426和收發器427(其可以是有線收發器及/或無線收發器,例如,266)的一或多個處理器428。在網路元素402中,收發器427可被配置為接收在傳輸中發送的訊息,並將此種訊息傳遞給(一或多個)處理器428進行處理。類似地,處理器428可被配置為將用於傳輸的訊息發送到收發器427。網路元素402可以經由有線及/或無線通訊鏈路向通訊網路424發送訊息或從通訊網路接收訊息。Network element 402 may be a computing device (e.g., a server or similar computer) including a computer coupled to electronic storage 426 and transceiver 427 (which may be a wired transceiver and/or a wireless transceiver, e.g., 266). or multiple processors 428 . In network element 402, transceiver 427 may be configured to receive messages sent in transit and to pass such messages to processor(s) 428 for processing. Similarly, processor 428 may be configured to send a message to transceiver 427 for transmission. The network element 402 can send messages to and receive messages from the communication network 424 via wired and/or wireless communication links.

參考基地台402,可由機器可讀取指令406配置(一或多個)處理器428。機器可讀取指令406可以包括一或多個指令模組。指令模組可以包括電腦程式模組。指令模組可以包括端到端QoS模組408、QoS決定模組410、網路量測模組412、QoS配置模組414或其他指令模組中的一或多個。Referring to base station 402 , processor(s) 428 may be configured by machine readable instructions 406 . Machine-readable instructions 406 may include one or more instruction modules. The instruction modules may include computer program modules. The command module may include one or more of the end-to-end QoS module 408, the QoS decision module 410, the network measurement module 412, the QoS configuration module 414, or other command modules.

端到端QoS模組408可被配置為決定經由通訊路徑將封包從封包源通訊到封包目的地的端到端QoS要求。The end-to-end QoS module 408 can be configured to determine the end-to-end QoS requirements for communicating packets from a packet source to a packet destination via a communication path.

QoS決定模組410可被配置為決定在通訊路徑內由第二通訊網路提供的QoS。QoS決定模組410可被配置為決定第二通訊網路的封包錯誤率。QoS決定模組410可被配置為決定第二通訊網路的可用傳輸量。QoS決定模組410可被配置為量測端到端實現的QoS,識別由第一通訊網路提供的QoS,並且基於端到端實現的QoS和由第一通訊網路提供的QoS,決定在通訊路徑內由第二通訊網路提供的QoS。The QoS determining module 410 can be configured to determine the QoS provided by the second communication network within the communication path. The QoS determining module 410 can be configured to determine the packet error rate of the second communication network. The QoS determining module 410 can be configured to determine the available traffic of the second communication network. The QoS decision module 410 can be configured to measure the QoS achieved end-to-end, identify the QoS provided by the first communication network, and determine the communication path based on the QoS achieved end-to-end and the QoS provided by the first communication network. QoS provided by the second communication network.

網路量測模組412可被配置為將與第一通訊網路中的恆定封包延遲相對應的封包延遲量測5QI應用到第一通訊網路,並且基於端到端實現的QoS和第一通訊網路中的恆定封包延遲,決定在通訊路徑內由第二通訊網路提供的QoS。在一些實施例中,網路量測模組412可被配置為將與第一通訊網路中的恆定封包丟失率相對應的封包丟失率5QI應用到第一通訊網路,並且基於端到端實現的QoS和第一通訊網路中的恆定封包丟失率,決定在通訊路徑內由第二通訊網路提供的QoS。在一些實施例中,網路量測模組412可被配置為將與排除第一通訊網路中的封包丟失的封包丟失量測程序相關聯的封包丟失率5QI應用到第一通訊網路,並且基於端到端實現的QoS和封包丟失量測程序,決定在通訊路徑內由第二通訊網路提供的QoS。The network measurement module 412 may be configured to apply a packet delay measurement 5QI corresponding to a constant packet delay in the first communication network to the first communication network, and based on the QoS achieved end-to-end and the first communication network The constant packet delay in determines the QoS provided by the second communication network in the communication path. In some embodiments, the network measurement module 412 may be configured to apply a packet loss rate 5QI corresponding to a constant packet loss rate in the first communication network to the first communication network, and based on the end-to-end implementation The QoS and the constant packet loss rate in the first communication network determine the QoS provided by the second communication network in the communication path. In some embodiments, the network measurement module 412 may be configured to apply a packet loss rate 5QI associated with a packet loss measurement procedure that excludes packet loss in the first communication network to the first communication network, and based on The end-to-end implemented QoS and packet loss measurement procedures determine the QoS provided by the second communication network within the communication path.

在一些實施例中,網路量測模組412可被配置為將與可用頻寬量測程序相關聯的可用頻寬5QI應用到第一通訊網路,該可用頻寬量測程序配置第一通訊網路的資源使得第一通訊網路的封包丟失相對於第二通訊網路的封包丟失基本上可忽略,並且基於端到端實現的QoS和可用頻寬量測程序,決定在通訊路徑內由第二通訊網路提供的QoS。在一些實施例中,網路量測模組412可被配置為將與可用頻寬量測程序相關聯的可用頻寬5QI應用到第一通訊網路,其中資料封包在第一通訊網路中背靠背地傳輸,並且基於端到端實現的QoS和可用頻寬量測程序,決定在通訊路徑內由第二通訊網路提供的QoS。在一些實施例中,網路量測模組412可被配置為將與網路量測程序相關聯的網路量測5QI應用到第一通訊網路,該程序用於執行沿通訊路徑傳輸的量測封包的端到端量測,並且基於端到端實現的QoS和網路量測程序,決定在通訊路徑內由第二通訊網路提供的QoS。在一些態樣中,量測封包可以是測試封包、探測封包或兩個端點設備之間的應用封包。In some embodiments, the network measurement module 412 may be configured to apply to the first communication network the available bandwidth 5QI associated with the available bandwidth measurement procedure configuring the first communication network The resources of the path make the packet loss of the first communication network basically negligible compared with the packet loss of the second communication network, and based on the end-to-end QoS and available bandwidth measurement procedures, it is determined that the second communication network in the communication path QoS provided by the road. In some embodiments, the network measurement module 412 can be configured to apply the available bandwidth 5QI associated with the available bandwidth measurement procedure to the first communication network, wherein the data packets are back-to-back in the first communication network transmit, and determine the QoS provided by the second communication network in the communication path based on the end-to-end realized QoS and the available bandwidth measurement procedure. In some embodiments, the network measurement module 412 may be configured to apply to the first communication network a network measurement 5QI associated with a network measurement procedure for performing a quantity transmitted along a communication path The end-to-end measurement of the packet is measured, and the QoS provided by the second communication network in the communication path is determined based on the end-to-end realized QoS and the network measurement procedure. In some aspects, the measurement packet may be a test packet, a probe packet, or an application packet between two endpoint devices.

QoS配置模組414可被配置為基於由第二通訊網路提供的QoS來配置第一通訊網路以提供足夠的QoS來支援端到端QoS要求。QoS配置模組414可被配置為基於第二通訊網路的決定的封包錯誤率來決定第一通訊網路的所需封包錯誤率。QoS配置模組414可被配置為基於第二通訊網路的決定的可用傳輸量來決定第一通訊網路的傳輸量要求。The QoS configuration module 414 can be configured to configure the first communication network to provide sufficient QoS to support end-to-end QoS requirements based on the QoS provided by the second communication network. The QoS configuration module 414 can be configured to determine a desired PER of the first communication network based on the determined PER of the second communication network. The QoS configuration module 414 may be configured to determine the throughput requirement of the first communication network based on the determined available throughput of the second communication network.

電子儲存器426可以包括電子地儲存資訊的非暫態儲存媒體。電子儲存器426的電子儲存媒體可以包括與網路元素402整合地(亦即,基本上不可移動)提供的系統儲存器及/或可移除儲存器(其可經由例如埠(例如,通用串列匯流排(USB)埠、火線埠等)或驅動器(例如,磁碟機等)可移動地連接到網路元素402)中的一個或兩個。電子儲存器426可以包括一或多個光學可讀儲存媒體(例如,光碟等)、磁性可讀儲存媒體(例如,磁帶、硬碟、軟碟機等)、基於電荷的儲存媒體(例如,EEPROM、RAM等)、固態儲存媒體(例如,快閃記憶體驅動器等)及/或其他電子可讀儲存媒體。電子儲存器426可以包括一或多個虛擬儲存資源(例如,雲端儲存、虛擬私人網網路及/或其他虛擬儲存資源)。電子儲存器426可儲存軟體演算法、由(一或多個)處理器428決定的資訊、從網路元素402接收的資訊或使網路元素402能夠如本文所述執行的其他資訊。Electronic storage 426 may include non-transitory storage media that store information electronically. Electronic storage media for electronic storage 426 may include system storage provided integrally (i.e., substantially non-removable) with network element 402 and/or removable storage (which may be accessed via, for example, a port (e.g., Universal Serial A serial bus (USB port, firewire port, etc.) or a drive (eg, a disk drive, etc.) is removably connected to one or both of the network elements 402). Electronic storage 426 may include one or more optically readable storage media (e.g., optical discs, etc.), magnetically readable storage media (e.g., magnetic tape, hard disk, floppy disk, etc.), charge-based storage media (e.g., EEPROM , RAM, etc.), solid-state storage media (eg, flash memory drives, etc.) and/or other electronically readable storage media. Electronic storage 426 may include one or more virtual storage resources (eg, cloud storage, VPN networks, and/or other virtual storage resources). Electronic storage 426 may store software algorithms, information determined by processor(s) 428, information received from network element 402, or other information that enables network element 402 to perform as described herein.

(一或多個)處理器428可以被配置為在網路元素402中提供資訊處理能力。因此,(一或多個)處理器428可包括數位處理器、類比處理器、設計用於處理資訊的數位電路、設計用於處理資訊的類比電路、狀態機及/或用於電子處理資訊的其他機制中的一或多個。儘管(一或多個)處理器428被示出為單個實體,但這僅用於說明目的。在一些實施例中,(一或多個)處理器428可包括複數個處理單元及/或處理器核心。處理單元可以實體上位於同一設備內,或者(一或多個)處理器428可以表示協同操作的複數個設備的處理功能。(一或多個)處理器428可以被配置為經由軟體;硬體;韌體;軟體、硬體及/或韌體的一些組合;及/或用於在(一或多個)處理器428上配置處理能力的其他機制,來執行模組408-414及/或其他模組。如本文所用,術語「模組」可指執行歸屬於模組的功能的任何元件或元件集。這可以包括在執行處理器可讀取指令、電路、硬體、儲存媒體或任何其他元件期間的一或多個實體處理器。Processor(s) 428 may be configured to provide information processing capabilities in network element 402 . Thus, processor(s) 428 may include digital processors, analog processors, digital circuits designed to process information, analog circuits designed to process information, state machines, and/or One or more of the other mechanisms. Although processor(s) 428 are shown as a single entity, this is for illustration purposes only. In some embodiments, processor(s) 428 may include a plurality of processing units and/or processor cores. The processing units may be physically located within the same device, or the processor(s) 428 may represent the processing functionality of a plurality of devices operating in conjunction. Processor(s) 428 may be configured via software; hardware; firmware; some combination of software, hardware, and/or firmware; and/or for Other mechanisms for disposing processing power on top to execute modules 408-414 and/or other modules. As used herein, the term "module" may refer to any element or collection of elements that performs the functionality attributed to the module. This may include one or more physical processors during execution of processor-readable instructions, circuits, hardware, storage media, or any other element.

下文描述的不同模組408-414提供的功能的描述是為了說明的目的,而不是為了限制,因為模組408-414中的任何模組可以提供比所述更多或更少的功能。例如,可排除模組408-414中的一或多個,其部分或全部功能可由其他模組408-414提供。作為另一個實例,(一或多個)處理器428可被配置為執行一或多個附加模組,其可執行以下歸屬於模組408-414中的一個的部分或全部功能。The descriptions of functionality provided by the various modules 408-414 described below are for purposes of illustration and not limitation, as any of the modules 408-414 may provide more or less functionality than described. For example, one or more of the modules 408-414 may be excluded and some or all of their functionality may be provided by other modules 408-414. As another example, processor(s) 428 may be configured to execute one or more additional modules, which may perform some or all of the functionality ascribed below to one of modules 408-414.

圖5是示出根據各種實施例的由用作網路元素的計算設備的處理器執行的用於增強初始存取的覆蓋的方法500的處理流程圖。參考圖1-圖5,方法500的操作可由被配置為用作核心網路140或5G網路151a、161a、171a和181a的網路元素(例如,402)、基地台設備(諸如基地台110a-110d、200、350)或無線設備(例如110a-110a、200、320)的計算設備的處理器(諸如處理器210、212、214、216、218、252、260、428)執行。5 is a process flow diagram illustrating a method 500 performed by a processor of a computing device acting as a network element for enhancing coverage for initial access, according to various embodiments. Referring to FIGS. 1-5 , the operations of method 500 may be performed by network elements (eg, 402 ), base station equipment (such as base station 110a - 110d, 200, 350) or a processor (such as processor 210, 212, 214, 216, 218, 252, 260, 428) of a computing device of a wireless device (eg, 110a-110a, 200, 320).

在各種實施例中,處理器可按任何順序或基本上同時(由虛線框指示)執行方塊502和504的操作。In various embodiments, a processor may perform the operations of blocks 502 and 504 in any order or substantially simultaneously (indicated by dashed boxes).

在方塊502中,處理器可決定經由通訊路徑將封包從封包源通訊到封包目的地的端到端QoS要求。在一些實施例中,通訊路徑可以跨兩個或兩個以上通訊網路,諸如第一通訊網路和第二通訊網路。在一些實施例中,第一通訊網路可以包括5G網路,並且第二通訊網路可以包括非5G網路。在一些實施例中,處理器可決定與在端點設備(例如,152a、162a、172a、182a)上執行的應用或應用客戶端相關聯的端到端QoS要求。在一些實施例中,處理器可從應用或應用客戶端接收包括端到端QoS要求的訊息。在一些實施例中,處理器可基於來自應用、應用客戶端及/或端點設備的一或多個訊息來決定端到端QoS要求。用於執行方塊502的操作的構件可以包括用作網路元素的計算設備的處理器210、212、214、216、218、252、260、428、無線收發器266、收發器427和端到端QoS模組408。In block 502, the processor may determine an end-to-end QoS requirement for communicating a packet from a packet source to a packet destination via a communication path. In some embodiments, the communication path may span two or more communication networks, such as a first communication network and a second communication network. In some embodiments, the first communication network may include a 5G network, and the second communication network may include a non-5G network. In some embodiments, a processor may determine end-to-end QoS requirements associated with an application or application client executing on an endpoint device (eg, 152a, 162a, 172a, 182a). In some embodiments, the processor may receive a message including an end-to-end QoS requirement from an application or an application client. In some embodiments, the processor may determine the end-to-end QoS requirements based on one or more messages from applications, application clients, and/or endpoint devices. Means for performing the operations of block 502 may include processors 210, 212, 214, 216, 218, 252, 260, 428, wireless transceivers 266, transceivers 427, and peer-to-peer QoS module 408 .

在方塊504中,處理器可決定在通訊路徑內由第二通訊網路提供的QoS。在一些實施例中,處理器可決定第二通訊網路的封包錯誤率。在一些聯合中,處理器可決定第二通訊網路的可用傳輸量。在一些實施例中,處理器可以量測端到端實現的QoS,識別由第一通訊網路提供的QoS,並且基於端到端實現的QoS和由第一通訊網路提供的QoS,決定在通訊路徑內由第二通訊網路提供的QoS。用於執行方塊504的操作的構件可以包括用作網路元素的計算設備的處理器210、212、214、216、218、252、260、428、無線收發器266、收發器427和QoS決定模組410。In block 504, the processor may determine QoS provided by the second communication network within the communication path. In some embodiments, the processor can determine the packet error rate of the second communication network. In some associations, the processor may determine the available throughput of the second communication network. In some embodiments, the processor can measure the QoS achieved end-to-end, identify the QoS provided by the first communication network, and based on the QoS achieved end-to-end and the QoS provided by the first communication network, determine the QoS provided by the second communication network. Means for performing the operations of block 504 may include processors 210, 212, 214, 216, 218, 252, 260, 428, wireless transceivers 266, transceivers 427, and QoS decision modules of computing devices acting as network elements. Group 410.

在方塊506中,處理器可以基於由第二通訊網路提供的QoS來配置第一通訊網路以提供足夠的QoS來支援端到端QoS要求。在一些實施例中,處理器可以向第一通訊網路的一或多個網路元素發送一或多個訊息,以配置第一通訊網路的一或多個網路元素的操作,以執行QoS操作來提供足夠的QoS支援端到端QoS要求。用於執行方塊506的操作的構件可以包括用作網路元素的計算設備的處理器210、212、214、216、218、252、260、428、無線收發器266、收發器427和QoS配置模組414。In block 506, the processor may configure the first communication network to provide sufficient QoS to support the end-to-end QoS requirement based on the QoS provided by the second communication network. In some embodiments, the processor may send one or more messages to one or more network elements of the first communication network to configure operation of the one or more network elements of the first communication network to perform QoS operations To provide sufficient QoS to support end-to-end QoS requirements. Means for performing the operations of block 506 may include processors 210, 212, 214, 216, 218, 252, 260, 428, wireless transceivers 266, transceivers 427, and QoS configuration modules of computing devices acting as network elements. Group 414.

圖6A-圖6I是示出根據各種實施例的操作600a-600i的處理流程圖,其可以由被配置為充當網路元素的計算設備的處理器執行,作為用於在跨第一通訊網路和第二通訊網路的通訊路徑中管理端到端QoS的方法500的一部分。圖6J和6K是示出示例性封包丟失量測的概念圖。圖6L是示出示例性可用頻寬量測的概念圖。參考圖1-圖6L,操作600a-600i可由核心網路140或5G網路151a、161a、171a和181a的網路元素(例如,402)、基地台設備(諸如基地台110a-110d、200、350)或無線設備(例如,110a-110d、200、320)的處理器(諸如處理器210、212、214、216、218、252、260、428)執行。FIGS. 6A-6I are process flow diagrams illustrating operations 600a-600i that may be performed by a processor of a computing device configured to act as a network element, according to various embodiments, as a method for communicating across a first communication network and Part of method 500 of managing end-to-end QoS in a communication path of the second communication network. 6J and 6K are conceptual diagrams illustrating exemplary packet loss measurements. FIG. 6L is a conceptual diagram illustrating exemplary available bandwidth measurements. 1-6L, operations 600a-600i may be performed by core network 140 or network elements (eg, 402) of 5G networks 151a, 161a, 171a, and 181a, base station equipment (such as base stations 110a-110d, 200, 350) or a processor (such as processor 210, 212, 214, 216, 218, 252, 260, 428) of a wireless device (eg, 110a-110d, 200, 320).

參考圖6A,方塊602和604是可分別作為圖5中方塊502和504的一部分執行的操作的實例。在各種實施例中,處理器可按任何順序或基本上同時(由虛線框指示)執行方塊602和604的操作。Referring to FIG. 6A, blocks 602 and 604 are examples of operations that may be performed as part of blocks 502 and 504 in FIG. 5, respectively. In various embodiments, a processor may perform the operations of blocks 602 and 604 in any order or substantially simultaneously (indicated by dashed boxes).

在方塊602中,處理器可決定經由通訊路徑將封包從封包源通訊到封包目的地的端到端封包錯誤率。在一些實施例中,通訊路徑可以跨兩個或兩個以上通訊網路,諸如第一通訊網路和第二通訊網路。在一些實現中,第一通訊網路和第二通訊網路可以是不同類型的網路及/或實現不同的通訊協定(例如,5G網路和非5G網路)。用於執行方塊602的操作的構件可以包括用作網路元素的計算設備的處理器210、212、214、216、218、252、260、428、無線收發器266、收發器427和端到端QoS模組408。In block 602, the processor may determine an end-to-end packet error rate for communicating packets from a packet source to a packet destination via a communication path. In some embodiments, the communication path may span two or more communication networks, such as a first communication network and a second communication network. In some implementations, the first communication network and the second communication network may be different types of networks and/or implement different communication protocols (eg, 5G network and non-5G network). Means for performing the operations of block 602 may include processors 210, 212, 214, 216, 218, 252, 260, 428, wireless transceivers 266, transceivers 427, and peer-to-peer QoS module 408 .

在方塊604中,處理器可決定方塊602中的第二通訊網路的封包錯誤率。用於執行方塊604的操作的構件可以包括用作網路元素的計算設備的處理器210、212、214、216、218、252、260、428、無線收發器266、收發器427和網路量測模組410。In block 604, the processor may determine the packet error rate of the second communication network in block 602. Means for performing the operations of block 604 may include processors 210, 212, 214, 216, 218, 252, 260, 428, wireless transceivers 266, transceivers 427, and network traffic Measuring module 410.

在方塊606中,處理器可基於第二通訊網路的決定的封包錯誤率來決定第一通訊網路的所需封包錯誤率。用於執行方塊606的操作的構件可以包括用作網路元素的計算設備的處理器210、212、214、216、218、252、260、428、無線收發器266、收發器427和QoS決定模組410。In block 606, the processor may determine a desired PER for the first communication network based on the determined PER for the second communication network. Means for performing the operations of block 606 may include processors 210, 212, 214, 216, 218, 252, 260, 428, wireless transceivers 266, transceivers 427, and QoS decision modules of computing devices acting as network elements. Group 410.

處理器可以隨後基於在所述方法500的方塊506中由第二通訊網路提供的QoS來配置第一通訊網路以提供足夠的QoS來支援端到端QoS要求。The processor may then configure the first communication network to provide sufficient QoS to support the end-to-end QoS requirement based on the QoS provided by the second communication network at block 506 of the method 500 .

參考圖6B,方塊610和612是可分別作為圖5中方塊502和504的一部分執行的操作的實例。在各種實施例中,處理器可按任何順序或基本上同時(由虛線方塊指示)執行方塊610和612的操作。Referring to FIG. 6B, blocks 610 and 612 are examples of operations that may be performed as part of blocks 502 and 504 in FIG. 5, respectively. In various embodiments, the processor may perform the operations of blocks 610 and 612 in any order or substantially simultaneously (indicated by dashed squares).

在方塊610中,處理器可決定經由通訊路徑將封包從封包源通訊到封包目的地的端到端傳輸量要求。在一些實施例中,通訊路徑可以跨兩個或兩個以上通訊網路,諸如第一通訊網路和第二通訊網路。在一些實現中,第一通訊網路和第二通訊網路可以是不同類型的網路及/或實現不同的通訊協定(例如,5G網路和非5G網路)。用於執行方塊610的操作的構件可以包括用作網路元素的計算設備的處理器210、212、214、216、218、252、260、428、無線收發器266、收發器427和端到端QoS模組408。In block 610, the processor may determine an end-to-end throughput requirement for communicating the packet from the packet source to the packet destination via the communication path. In some embodiments, the communication path may span two or more communication networks, such as a first communication network and a second communication network. In some implementations, the first communication network and the second communication network may be different types of networks and/or implement different communication protocols (eg, 5G network and non-5G network). Means for performing the operations of block 610 may include processors 210, 212, 214, 216, 218, 252, 260, 428, wireless transceivers 266, transceivers 427, and peer-to-peer QoS module 408 .

在方塊612中,處理器可決定方塊610中的第二通訊網路的可用傳輸量。用於執行方塊612的操作的構件可以包括用作網路元素的計算設備的處理器210、212、214、216、218、252、260、428、無線收發器266、收發器427和網路量測模組410。In block 612, the processor may determine the available throughput of the second communication network in block 610. Means for performing the operations of block 612 may include processors 210, 212, 214, 216, 218, 252, 260, 428, wireless transceivers 266, transceivers 427, and network traffic Measuring module 410.

在方塊614中,處理器可基於第二通訊網路的決定的可用傳輸量來決定第一通訊網路的傳輸量要求。用於執行方塊614的操作的構件可以包括用作網路元素的計算設備的處理器210、212、214、216、218、252、260、428、無線收發器266、收發器427和QoS決定模組410。In block 614, the processor may determine a throughput requirement of the first communication network based on the determined available throughput of the second communication network. Means for performing the operations of block 614 may include processors 210, 212, 214, 216, 218, 252, 260, 428, wireless transceivers 266, transceivers 427, and QoS decision modules of computing devices acting as network elements. Group 410.

處理器可以隨後基於在所述方法500的方塊506中由第二通訊網路提供的QoS來配置第一通訊網路以提供足夠的QoS來支援端到端QoS要求。The processor may then configure the first communication network to provide sufficient QoS to support the end-to-end QoS requirement based on the QoS provided by the second communication network at block 506 of the method 500 .

參考圖6C,在該方法500的方塊502中的決定用於經由通訊路徑將封包從封包源通訊到封包目的地的端到端QoS要求,或在該方法500的方塊504中的決定在通訊路徑內由第二通訊網路提供的QoS之後,在方塊620中處理器可以量測端到端實現的QoS。在一些實施例中,處理器可執行封包延遲、封包丟失、封包離開和到達時間、封包分散及/或另一量測中的一或多個量測,以決定跨第一通訊網路和第二通訊網路的端到端通訊路徑(例如,從一個端點到另一個端點)實現(提供)的QoS。用於執行方塊620的操作的構件可以包括用作網路元素的計算設備的處理器210、212、214、216、218、252、260、428、無線收發器266、收發器427和網路量測模組410。Referring to FIG. 6C, the determination in block 502 of the method 500 is used to communicate the end-to-end QoS requirements of the packet from the packet source to the packet destination via the communication path, or the determination in block 504 of the method 500 is in the communication path After determining the QoS provided by the second communication network, in block 620 the processor may measure the QoS achieved end-to-end. In some embodiments, the processor may perform one or more of packet delay, packet loss, packet departure and arrival time, packet dispersion, and/or another measurement to determine communication across the first communication network and the second communication network. The QoS achieved (provided) by an end-to-end communication path (eg, from one endpoint to another) of a communication network. Means for performing the operations of block 620 may include processors 210, 212, 214, 216, 218, 252, 260, 428, wireless transceivers 266, transceivers 427, and network traffic Measuring module 410.

在方塊622中,處理器可識別由第一通訊網路提供的QoS。在一些實施例中,處理器可決定由第一通訊網路提供的QoS。在一些實施例中,處理器可選擇將由第一通訊網路提供的QoS。在一些實施例中,處理器可識別、選擇或設置由第一通訊網路提供的QoS為基本恆定或基本不變。用於執行方塊622的操作的構件可以包括用作網路元素的計算設備的處理器210、212、214、216、218、252、260、428、無線收發器266、收發器427和QoS決定模組410。In block 622, the processor may identify QoS provided by the first communication network. In some embodiments, the processor can determine the QoS provided by the first communication network. In some embodiments, the processor may select the QoS to be provided by the first communication network. In some embodiments, the processor can identify, select or set the QoS provided by the first communication network to be substantially constant or substantially constant. Means for performing the operations of block 622 may include processors 210, 212, 214, 216, 218, 252, 260, 428, wireless transceivers 266, transceivers 427, and QoS decision modules of computing devices acting as network elements. Group 410.

在方塊624中,處理器可以基於端到端實現的QoS和由第一通訊網路提供的QoS來決定在通訊路徑內由第二通訊網路提供的QoS。在一些實施例中,藉由配置第一通訊網路的一或多個網路元素的操作以提供基本恆定或基本不變的QoS,處理器可以根據端到端實現的QoS和由第一通訊網路提供的基本恆定或基本不變的QoS,來決定在通訊路徑內由第二通訊網路提供的QoS。用於執行方塊624的操作的構件可以包括用作網路元素的計算設備的處理器210、212、214、216、218、252、260、428、無線收發器266、收發器427和QoS決定模組410。In block 624, the processor may determine QoS provided by the second communication network within the communication path based on the end-to-end implemented QoS and the QoS provided by the first communication network. In some embodiments, by configuring the operation of one or more network elements of the first communication network to provide a substantially constant or substantially constant QoS, the processor may be configured based on the QoS achieved end-to-end and by the first communication network The substantially constant or substantially constant QoS provided determines the QoS provided by the second communication network within the communication path. Means for performing the operations of block 624 may include processors 210, 212, 214, 216, 218, 252, 260, 428, wireless transceivers 266, transceivers 427, and QoS decision modules of computing devices acting as network elements. Group 410.

處理器可以隨後基於在所述方法500的方塊506中由第二通訊網路提供的QoS來配置第一通訊網路以提供足夠的QoS來支援端到端QoS要求。The processor may then configure the first communication network to provide sufficient QoS to support the end-to-end QoS requirement based on the QoS provided by the second communication network at block 506 of the method 500 .

參考圖6D,在該方法500的方塊502中的決定用於經由通訊路徑將封包從封包源通訊到封包目的地的端到端QoS要求,或在所述方法500的方塊504中的決定在通訊路徑內由第二通訊網路提供的QoS之後,在方塊630中處理器可以將與第一通訊網路中的恆定封包延遲相對應的封包延遲量測5G QoS識別符(5QI)應用到第一通訊網路。在一些實施例中,可配置封包延遲量測5QI並將其與向由第一通訊網路處理及/或傳輸的封包提供基本恆定或基本不變的封包延遲的操作相關聯。在一些實施例中,回應於封包延遲量測5QI,第一通訊網路的一或多個網路元素可被配置為向由第一通訊網路網路元素處理及/或傳輸的封包提供基本恆定的封包延遲。在一些實施例中,第一通訊網路的一或多個網路元素可包括基地台(其可包括媒體存取控制(MAC)排程器、路由功能等)、一或多個中間節點和使用者平面功能。用於執行方塊630的操作的構件可以包括用作網路元素的計算設備的處理器210、212、214、216、218、252、260、428、無線收發器266、收發器427和QoS配置模組414。Referring to FIG. 6D, the decision in block 502 of the method 500 is used to communicate the end-to-end QoS requirements of the packet from the packet source to the packet destination via the communication path, or the decision in block 504 of the method 500 is used in the communication After in-path QoS provided by the second communication network, in block 630 the processor may apply a packet delay measurement 5G QoS identifier (5QI) corresponding to a constant packet delay in the first communication network to the first communication network . In some embodiments, the packet delay measurement 5QI may be configured and associated with the operation of providing a substantially constant or substantially constant packet delay to packets processed and/or transmitted by the first communication network. In some embodiments, responsive to the packet delay measurement 5QI, one or more network elements of the first communication network may be configured to provide a substantially constant Packet delay. In some embodiments, one or more network elements of the first communication network may include base stations (which may include media access control (MAC) schedulers, routing functions, etc.), one or more intermediate nodes and use Or flat function. Means for performing the operations of block 630 may include processors 210, 212, 214, 216, 218, 252, 260, 428, wireless transceivers 266, transceivers 427, and QoS configuration modules of computing devices acting as network elements. Group 414.

在方塊632中,處理器可量測端到端實現的封包延遲。用於執行方塊632的操作的構件可以包括用作網路元素的計算設備的處理器210、212、214、216、218、252、260、428、無線收發器266、收發器427和網路量測模組412。In block 632, the processor may measure the packet delay achieved end-to-end. Means for performing the operations of block 632 may include processors 210, 212, 214, 216, 218, 252, 260, 428, wireless transceivers 266, transceivers 427, and network traffic Measuring module 412.

在方塊634中,處理器可基於端到端實現的封包延遲和第一通訊網路中的恆定封包延遲來決定在通訊路徑內由第二通訊網路提供的QoS。在一些實施例中,可以沿著跨多個通訊網路(例如,第一通訊網路和第二通訊網路)的通訊路徑端到端地發送量測封包。在一些實施例中,處理器可基於端到端封包延遲和第一通訊網路提供的基本恆定封包延遲來決定第二通訊網路的封包延遲。在一些實施例中,由第二通訊網路提供的(由其引起的、造成的、相關的)封包延遲可被表示為Dn=De2e-Dc,其中Dn表示第二通訊網路(其可以是非5G通訊網路)的封包延遲,De2e表示端到端封包延遲,並且Dc表示第一通訊網路的基本恆定的封包延遲。用於執行方塊634的操作的構件可以包括用作網路元素的計算設備的處理器210、212、214、216、218、252、260、428、無線收發器266、收發器427和網路量測模組412。In block 634, the processor may determine QoS provided by the second communication network within the communication path based on the end-to-end realized packet delay and the constant packet delay in the first communication network. In some embodiments, the measurement packet may be sent end-to-end along a communication path across multiple communication networks (eg, a first communication network and a second communication network). In some embodiments, the processor can determine the packet delay of the second communication network based on the end-to-end packet delay and the substantially constant packet delay provided by the first communication network. In some embodiments, the packet delay provided by (caused by, caused by, related to) the second communication network can be expressed as Dn=De2e-Dc, where Dn represents the second communication network (which may be a non-5G communication network road), De2e represents the end-to-end packet delay, and Dc represents the substantially constant packet delay of the first communication network. Means for performing the operations of block 634 may include processors 210, 212, 214, 216, 218, 252, 260, 428, wireless transceivers 266, transceivers 427, and network traffic Measuring module 412.

處理器可以隨後基於在所述方法500的方塊506中由第二通訊網路提供的QoS來配置第一通訊網路以提供足夠的QoS來支援端到端QoS要求。The processor may then configure the first communication network to provide sufficient QoS to support the end-to-end QoS requirement based on the QoS provided by the second communication network at block 506 of the method 500 .

參考圖6E,在所述方法500的方塊502中的決定用於經由通訊路徑將封包從封包源通訊到封包目的地的端到端QoS要求,或在該方法500的方塊504中的決定在通訊路徑內由第二通訊網路提供的QoS之後,在方塊640中處理器可以將與第一通訊網路中的恆定封包丟失率相對應的封包丟失率5QI應用到第一通訊網路。在一些實施例中,可配置封包丟失率5QI並將其與向由第一通訊網路處理及/或傳輸的封包提供基本恆定或基本不變的封包丟失率的操作相關聯。在一些實施例中,回應於封包丟失率5QI,第一通訊網路的一或多個網路元素可被配置為向由第一通訊網路網路元素處理及/或傳輸的封包提供基本恆定的封包丟失率。用於執行方塊640的操作的構件可以包括用作網路元素的計算設備的處理器210、212、214、216、218、252、260、428、無線收發器266、收發器427和QoS配置模組414。Referring to FIG. 6E, the decision in block 502 of the method 500 is used to communicate the end-to-end QoS requirements of the packet from the packet source to the packet destination via the communication path, or the decision in block 504 of the method 500 is used in the communication Following the in-path QoS provided by the second communication network, in block 640 the processor may apply a packet loss rate 5QI corresponding to a constant packet loss rate in the first communication network to the first communication network. In some embodiments, the packet loss rate 5QI may be configured and associated with the operation of providing a substantially constant or substantially constant packet loss rate to packets processed and/or transmitted by the first communication network. In some embodiments, responsive to the packet loss rate 5QI, one or more network elements of the first communication network may be configured to provide a substantially constant packet loss rate to packets processed and/or transmitted by the network elements of the first communication network loss rate. Means for performing the operations of block 640 may include processors 210, 212, 214, 216, 218, 252, 260, 428, wireless transceivers 266, transceivers 427, and QoS configuration modules of computing devices acting as network elements. Group 414.

在方塊642中,處理器可量測端到端實現的封包丟失率。用於執行方塊642的操作的構件可以包括用作網路元素的計算設備的處理器210、212、214、216、218、252、260、428、無線收發器266、收發器427和網路量測模組412。In block 642, the processor may measure the packet loss rate achieved end-to-end. Means for performing the operations of block 642 may include processors 210, 212, 214, 216, 218, 252, 260, 428, wireless transceivers 266, transceivers 427, and network traffic Measuring module 412.

在方塊644中,處理器可基於端到端實現的封包丟失率和第一通訊網路中的恆定封包丟失率來決定在通訊路徑內由第二通訊網路提供的封包丟失率。在一些實施例中,可以沿著跨多個通訊網路的通訊路徑端到端地發送量測封包。在一些實施例中,處理器可基於端到端封包丟失率和由第一通訊網路引起的(由其造成的、相關的、提供的)基本恆定的封包丟失率來決定第二通訊網路的封包丟失率。在一些實施例中,第二通訊網路提供的封包丟失率可以被表示為:

Figure 02_image001
其中 Pn表示第二通訊網路(其可以是非5G通訊網路)的封包丟失率, Pe2e表示端到端封包丟失率,並且 Pc表示由第一通訊網路提供的基本恆定的封包丟失率。用於執行方塊644的操作的構件可以包括用作網路元素的計算設備的處理器210、212、214、216、218、252、260、428、無線收發器266、收發器427和網路量測模組412。 In block 644, the processor may determine a packet loss rate provided by the second communication network within the communication path based on the end-to-end realized packet loss rate and the constant packet loss rate in the first communication network. In some embodiments, measurement packets may be sent end-to-end along communication paths across multiple communication networks. In some embodiments, the processor may determine the packet loss rate for the second communication network based on an end-to-end packet loss rate and a substantially constant packet loss rate caused by (caused by, related to, provided by) the first communication network loss rate. In some embodiments, the packet loss rate provided by the second communication network can be expressed as:
Figure 02_image001
Where Pn represents the packet loss rate of the second communication network (which may be a non-5G communication network), Pe2e represents the end-to-end packet loss rate, and Pc represents the substantially constant packet loss rate provided by the first communication network. Means for performing the operations of block 644 may include processors 210, 212, 214, 216, 218, 252, 260, 428, wireless transceivers 266, transceivers 427, and network traffic Measuring module 412.

處理器可以隨後基於在所述方法500的方塊506中由第二通訊網路提供的QoS來配置第一通訊網路以提供足夠的QoS來支援端到端QoS要求。The processor may then configure the first communication network to provide sufficient QoS to support the end-to-end QoS requirement based on the QoS provided by the second communication network at block 506 of the method 500 .

參考圖6F,在所述方塊620中量測端到端實現的QoS之前,處理器可將與排除第一通訊網路中的封包丟失的封包丟失量測程序相關聯的封包丟失率5QI應用到第一通訊網路。在一些實施例中,可配置封包丟失率5QI並將其與向由第一通訊網路處理及/或傳輸的封包提供基本恆定或基本不變的封包丟失率的操作相關聯。在一些實施例中,回應於封包丟失率5QI,第一通訊網路的一或多個網路元素可被配置為向由第一通訊網路網路元素處理及/或傳輸的封包提供基本恆定的封包丟失率。用於執行方塊650的操作的構件可以包括用作網路元素的計算設備的處理器210、212、214、216、218、252、260、428、無線收發器266、收發器427和QoS配置模組414。Referring to FIG. 6F, before measuring the QoS achieved end-to-end in said block 620, the processor may apply a packet loss rate 5QI associated with a packet loss measurement procedure that excludes packet loss in the first communication network to the second communication network. a communication network. In some embodiments, the packet loss rate 5QI may be configured and associated with the operation of providing a substantially constant or substantially constant packet loss rate to packets processed and/or transmitted by the first communication network. In some embodiments, responsive to the packet loss rate 5QI, one or more network elements of the first communication network may be configured to provide a substantially constant packet loss rate to packets processed and/or transmitted by the network elements of the first communication network loss rate. Means for performing the operations of block 650 may include processors 210, 212, 214, 216, 218, 252, 260, 428, wireless transceivers 266, transceivers 427, and QoS configuration modules of computing devices acting as network elements. Group 414.

在方塊652中,處理器可量測端到端實現的封包丟失。用於執行方塊652的操作的構件可以包括用作網路元素的計算設備的處理器210、212、214、216、218、252、260、428、無線收發器266、收發器427和網路量測模組412。In block 652, the processor may measure end-to-end achieved packet loss. Means for performing the operations of block 652 may include processors 210, 212, 214, 216, 218, 252, 260, 428, wireless transceivers 266, transceivers 427, and network traffic Measuring module 412.

在方塊654中,處理器可基於端到端實現的封包丟失和封包丟失量測程序來決定在通訊路徑內由第二通訊網路提供的QoS。在一些實施例中,可以沿著跨多個通訊網路的通訊路徑端到端地發送量測封包。在一些實施例中,處理器可量測沿通訊路徑的多個點處的封包丟失,並可執行一或多個操作以排除第一通訊網路中的封包丟失。In block 654, the processor may determine QoS provided by the second communication network within the communication path based on the end-to-end implemented packet loss and packet loss measurement procedures. In some embodiments, measurement packets may be sent end-to-end along communication paths across multiple communication networks. In some embodiments, the processor may measure packet loss at multiple points along the communication path, and may perform one or more operations to rule out packet loss in the first communication network.

例如,參考圖6J,應用客戶端690a(例如,在無線設備174上執行)可以在第一時間段期間發送定址到應用伺服器690e(例如,176、188)的封包的數目N1。中間設備,諸如UE 690b(例如,UE 172a、182a)可以在第二時間段期間接收封包的數目N2。第二時間段可以包括與第一時間段相同的持續時間並且可以具有第一時間偏移(例如,第二時間段可以比第一時間段晚第一時間偏移)。第一時間偏移可以基於從應用客戶端690a到中間設備UE 690b的延遲(例如,封包將經歷的)。5G核心網路的網路元素,諸如UPF 690d(例如,5G核心網路172c的UPF 172d或另一網路元素)可以在第三時間段期間接收封包的數目N3。在一些實施例中,封包的數目N3可反映一或多個網路元素(諸如在gNB 690c)處的封包丟失。第三時間段可以包括與第一時間段和第二時間段相同的持續時間並且可以具有第二時間偏移(例如,第三時間段可以比第二時間段晚第二時間偏移)。應用伺服器690e可以在第四時間段期間接收封包的數目N4。第四時間段可以包括與第一、第二和第三時間段相同的持續時間並且可以具有第三時間偏移(例如,第四時間段可以比第三時間段晚第三時間偏移)。在該實例中,由第二通訊網路(或在該實例中,第二通訊網路171b和171c)引起的(由其提供的、相關的)封包丟失可被表示為:

Figure 02_image003
其中 Pn表示(一或多個)第二通訊網路的封包丟失率。以此種方式,處理器可以經由排除第一通訊網路中的封包丟失的封包丟失量測程序來決定可歸因於(一或多個)第二通訊網路的封包丟失率。 For example, referring to FIG. 6J , application client 690a (eg, executing on wireless device 174 ) may send a number N1 of packets addressed to application server 690e (eg, 176 , 188 ) during a first time period. An intermediary device, such as UE 690b (eg, UE 172a, 182a), may receive the number N2 of packets during the second time period. The second time period may include the same duration as the first time period and may have a first time offset (eg, the second time period may be later than the first time period by the first time offset). The first time offset may be based on the delay (eg, the packet will experience) from the application client 690a to the intermediary UE 690b. A network element of the 5G core network, such as UPF 690d (eg, UPF 172d of 5G core network 172c or another network element) may receive the number N3 of packets during the third time period. In some embodiments, the number N3 of packets may reflect packet loss at one or more network elements, such as at gNB 690c. The third time period may include the same duration as the first and second time periods and may have a second time offset (eg, the third time period may be later than the second time period by the second time offset). The application server 690e may receive the number N4 of packets during the fourth time period. The fourth time period may include the same duration as the first, second, and third time periods and may have a third time offset (eg, the fourth time period may be later than the third time period by the third time offset). In this example, the packet loss caused by (and associated with) the second communication network (or in this example, second communication networks 171b and 171c) can be expressed as:
Figure 02_image003
Wherein Pn represents the packet loss rate of the (one or more) second communication network. In this way, the processor can determine a packet loss rate attributable to the second communication network(s) via a packet loss measurement procedure that excludes packet loss in the first communication network.

在各種實施例中,根據網路的配置,在沿通訊路徑的更多或更少的點(亦即,可以量測到更多或更少N)處的封包丟失率。例如,可以不量測兩個附近或鄰近網路元素(例如,與基地台位於共置的UE)之間的封包丟失率。In various embodiments, the packet loss rate may be measured at more or fewer points along the communication path (ie, more or fewer N may be measured) depending on the configuration of the network. For example, the packet loss rate between two nearby or neighboring network elements (eg, UE co-located with a base station) may not be measured.

作為另一實例,參考圖6K,UE 692a(例如,UE 152a、162a、172a、182a)可以與應用客戶端共置。在一些實施例中,應用客戶端可以在UE 692a(例如,UE 152a、162a)上執行,並且UE 692a可以位於執行應用客戶端的設備(例如,無線設備174、184)附近。在該實例中,UE 692a可以在第一時間段期間發送定址到應用伺服器692de(例如,158、168)的封包的數目N1。中間設備,諸如UPF 692c(例如,UPF 152d、162d)可以在第二時間段期間接收封包的數目N2。第二時間段可以是與第一時間段相同的持續時間並且可以具有第一時間偏移(例如,第二時間段可以比第一時間段晚第一時間偏移)。第一時間偏移可以基於從UE 692a到中間設備UPF 692c的延遲(例如,封包將經歷的)。在一些實施例中,封包的數目N2可反映一或多個網路元素(諸如在gNB 692b)處的封包丟失。應用伺服器692d可以在第三時間段期間接收封包的數目N3。第三時間段可以是與第一和第二時間段相同的持續時間並且可以具有第二時間偏移(例如,第三時間段可以比第二時間段晚第二時間偏移)。在該實例中,由第二通訊網路(或在該實例中,第二通訊網路171b和171c)引起的(由其提供的、相關的)封包丟失可被表示為:

Figure 02_image005
其中 Pn表示(一或多個)第二通訊網路的封包丟失率。以此種方式,處理器可以經由排除第一通訊網路中的封包丟失的封包丟失量測程序來決定可歸因於(一或多個)第二通訊網路的封包丟失率。用於執行方塊652的操作的構件可以包括用作網路元素的計算設備的處理器210、212、214、216、218、252、260、428、無線收發器266、收發器427和網路量測模組412。 As another example, referring to FIG. 6K, UE 692a (eg, UE 152a, 162a, 172a, 182a) may be co-located with an application client. In some embodiments, the application client may execute on UE 692a (eg, UE 152a, 162a), and UE 692a may be located near the device (eg, wireless device 174, 184) executing the application client. In this example, the UE 692a may send a number N1 of packets addressed to the application server 692de (eg, 158, 168) during the first time period. An intermediary device, such as UPF 692c (eg, UPF 152d, 162d), may receive the number N2 of packets during the second time period. The second time period may be the same duration as the first time period and may have a first time offset (eg, the second time period may be later than the first time period by the first time offset). The first time offset may be based on the delay (eg, the packet will experience) from UE 692a to intermediary UPF 692c. In some embodiments, the number N2 of packets may reflect packet loss at one or more network elements, such as at gNB 692b. The application server 692d may receive the number N3 of packets during the third time period. The third time period may be the same duration as the first and second time periods and may have a second time offset (eg, the third time period may be later than the second time period by the second time offset). In this example, the packet loss caused by (and associated with) the second communication network (or in this example, second communication networks 171b and 171c) can be expressed as:
Figure 02_image005
Wherein Pn represents the packet loss rate of the (one or more) second communication network. In this way, the processor can determine a packet loss rate attributable to the second communication network(s) via a packet loss measurement procedure that excludes packet loss in the first communication network. Means for performing the operations of block 652 may include processors 210, 212, 214, 216, 218, 252, 260, 428, wireless transceivers 266, transceivers 427, and network traffic Measuring module 412.

處理器可以隨後基於在所述方法500的方塊506中由第二通訊網路提供的QoS來配置第一通訊網路以提供足夠的QoS來支援端到端QoS要求。The processor may then configure the first communication network to provide sufficient QoS to support the end-to-end QoS requirement based on the QoS provided by the second communication network at block 506 of the method 500 .

參考圖6G,在所述方法500的方塊502中的決定用於經由通訊路徑將封包從封包源通訊到封包目的地的端到端QoS要求,或在所述方法500的方塊504中的決定在通訊路徑內由第二通訊網路提供的QoS之後,在方塊660中處理器可以將與可用頻寬量測程序相關聯的可用頻寬5QI應用到第一通訊網路,該程序配置第一通訊網路的資源使得第一通訊網路的封包丟失相對於第二通訊網路的封包丟失基本上可忽略。6G, the decision in block 502 of the method 500 is used to communicate the end-to-end QoS requirements of the packet from the packet source to the packet destination via the communication path, or the decision in block 504 of the method 500 is After QoS provided by the second communication network within the communication path, the processor may apply to the first communication network the available bandwidth 5QI associated with an available bandwidth measurement procedure configuring the first communication network at block 660. The resources are such that the packet loss of the first communication network is substantially negligible relative to the packet loss of the second communication network.

在一些實施例中,可用頻寬5QI可被配置並與提供在第一網路中相對於由第二通訊網路處理及/或傳輸的封包基本上可忽略的封包丟失的操作相關聯。在一些實施例中,回應於可用頻寬量測5QI,第一通訊網路的一或多個網路元素可被配置為以提供基本上可忽略的封包丟失的方式處理及/或傳輸封包。例如,處理器可以「過量提供」第一通訊網路的傳輸及/或處理資源,使得第一通訊網路中的(一或多個)網路元素相對於第二通訊網路不對端到端通訊路徑造成瓶頸。在一些實施例中,第一通訊網路的網路元素可以以此種方式供應相對較短的時間段,諸如一或多個量測操作的持續時間。用於執行方塊660的操作的構件可以包括用作網路元素的計算設備的處理器210、212、214、216、218、252、260、428、無線收發器266、收發器427和QoS配置模組414。In some embodiments, the available bandwidth 5QI may be configured and associated with operation to provide substantially negligible packet loss in the first network relative to packets processed and/or transmitted by the second communication network. In some embodiments, responsive to the available bandwidth measurement 5QI, one or more network elements of the first communication network may be configured to process and/or transmit packets in a manner that provides substantially negligible packet loss. For example, the processor may "overprovision" the transmission and/or processing resources of the first communication network such that the network element(s) in the first communication network do not contribute to the end-to-end communication path relative to the second communication network. bottleneck. In some embodiments, a network element of the first communication network may in this way supply a relatively short period of time, such as the duration of one or more measurement operations. Means for performing the operations of block 660 may include processors 210, 212, 214, 216, 218, 252, 260, 428, wireless transceivers 266, transceivers 427, and QoS configuration modules of computing devices acting as network elements. Group 414.

在方塊662中,處理器可量測端到端實現的可用頻寬。用於執行方塊662的操作的構件可以包括用作網路元素的計算設備的處理器210、212、214、216、218、252、260、428、無線收發器266、收發器427和網路量測模組412。In block 662, the processor may measure the available bandwidth of the end-to-end implementation. Means for performing the operations of block 662 may include processors 210, 212, 214, 216, 218, 252, 260, 428, wireless transceivers 266, transceivers 427, and network traffic Measuring module 412.

在方塊664中,處理器可基於端到端實現的可用頻寬和可用頻寬量測程序來決定在通訊路徑內由第二通訊網路提供的QoS。例如,當第一通訊網路的(一或多個)網路元素被配置為在第一網路中提供基本上可忽略的封包丟失時,處理器可量測端到端可用頻寬、資料速率及/或位元速率。在此種實施例中,處理器可決定第二網路的頻寬、資料速率及/或位元速率與量測的頻寬、資料速率及/或者位元速率基本相同。在一些實施例中,此種方法對於決定使用者資料包通訊協定(UDP)訊務流或傳輸控制協定(TCP)訊務流的可用頻寬可能特別有用。用於執行方塊664的操作的構件可以包括用作網路元素的計算設備的處理器210、212、214、216、218、252、260、428、無線收發器266、收發器427和網路量測模組412。In block 664, the processor may determine the QoS provided by the second communication network within the communication path based on the end-to-end realized available bandwidth and the available bandwidth measurement procedure. For example, the processor may measure end-to-end available bandwidth, data rate and/or bit rate. In such an embodiment, the processor may determine that the bandwidth, data rate and/or bit rate of the second network is substantially the same as the measured bandwidth, data rate and/or bit rate. In some embodiments, such an approach may be particularly useful for determining available bandwidth for UDP or TCP traffic. Means for performing the operations of block 664 may include processors 210, 212, 214, 216, 218, 252, 260, 428, wireless transceivers 266, transceivers 427, and network traffic Measuring module 412.

處理器可以隨後基於在所述方法500的方塊506中由第二通訊網路提供的QoS來配置第一通訊網路以提供足夠的QoS來支援端到端QoS要求。The processor may then configure the first communication network to provide sufficient QoS to support the end-to-end QoS requirement based on the QoS provided by the second communication network at block 506 of the method 500 .

參考圖6H,在所述方法500的方塊502中的決定用於經由通訊路徑將封包從封包源通訊到封包目的地的端到端QoS要求,或在所述方法500的方塊504中的決定在通訊路徑內由第二通訊網路提供的QoS之後,在方塊670中處理器可以將與可用頻寬量測程序相關聯的可用頻寬5QI應用到第一通訊網路,其中資料封包在第一通訊網路中背靠背地傳輸。Referring to FIG. 6H, the determination in block 502 of the method 500 is used to communicate the end-to-end QoS requirements of the packet from the packet source to the packet destination via the communication path, or the determination in block 504 of the method 500 is at After the QoS provided by the second communication network in the communication path, the processor may apply the available bandwidth 5QI associated with the available bandwidth measurement procedure to the first communication network in block 670, wherein the data packet is in the first communication network Medium to back-to-back transfers.

在一些實施例中,回應於可用頻寬5QI,第一通訊網路的一或多個網路元素可被配置為以在傳輸的封包之間或之內引入基本上可忽略的封包分散的方式處理及/或背靠背地傳輸封包。例如,可用頻寬5QI可以與封包分散技術相關聯,使得第一通訊網路的網路元素被配置為以不引入或增加傳輸的封包之間的時間間隔的方式傳輸封包。在一些實施例中,第一通訊網路的網路元素可被配置為使用使用者平面中的通用封包無線電服務(GPRS)隧道協定(GTP-U)以封裝封包(例如,量測封包)並經由第一通訊網路中的GTP-U隧道中的GTP-U封包傳輸其,來實現封包之間的基本可忽略的時間間隔。在一些實施例中,傳輸的封包可以背靠背地到達UPF(例如,152d、162、172d、182d)處,以路由到第二通訊網路。用於執行方塊670的操作的構件可以包括用作網路元素的計算設備的處理器210、212、214、216、218、252、260、428、無線收發器266、收發器427和QoS配置模組414。In some embodiments, responsive to available bandwidth 5QI, one or more network elements of the first communication network may be configured to process in a manner that introduces substantially negligible packet dispersion between or within transmitted packets and/or transmit packets back to back. For example, the available bandwidth 5QI may be associated with a packet dispersion technique such that network elements of the first communication network are configured to transmit packets in a manner that does not introduce or increase time intervals between transmitted packets. In some embodiments, the network elements of the first communication network may be configured to use General Packet Radio Service (GPRS) Tunneling Protocol (GTP-U) in the user plane to encapsulate packets (eg, measurement packets) and send them via The GTP-U packets are transmitted in the GTP-U tunnel in the first communication network to achieve a substantially negligible time interval between packets. In some embodiments, transmitted packets may arrive at the UPF (eg, 152d, 162, 172d, 182d) back-to-back for routing to the second communication network. Means for performing the operations of block 670 may include processors 210, 212, 214, 216, 218, 252, 260, 428, wireless transceivers 266, transceivers 427, and QoS configuration modules of computing devices acting as network elements. Group 414.

在方塊672中,處理器可量測端到端實現的可用頻寬。用於執行方塊672的操作的構件可以包括用作網路元素的計算設備的處理器210、212、214、216、218、252、260、428、無線收發器266、收發器427和網路量測模組412。In block 672, the processor may measure the available bandwidth of the end-to-end implementation. Means for performing the operations of block 672 may include processors 210, 212, 214, 216, 218, 252, 260, 428, wireless transceivers 266, transceivers 427, and network traffic Measuring module 412.

在方塊674中,處理器可基於端到端實現的可用頻寬和可用頻寬量測程序來決定在通訊路徑內由第二通訊網路提供的QoS。在一些實施例中,儘管第一通訊網路的(一或多個)網路元素被配置為以在傳輸的封包之間或之內引入基本上可忽略的封包分散的方式背靠背地傳輸封包,但處理器可量測到達端點設備(例如,158、168、176、188)的封包之間的時間間隔。在此種實施例中,處理器可決定到達端點設備(例如,在第二通訊網路中)的封包之間的時間間隔,以指示第二通訊網提供的頻寬。In block 674, the processor may determine QoS provided by the second communication network within the communication path based on the end-to-end realized available bandwidth and the available bandwidth measurement procedure. In some embodiments, although the network element(s) of the first communication network are configured to transmit packets back-to-back in a manner that introduces substantially negligible packet dispersion between or within transmitted packets, The processor may measure the time interval between packets arriving at the endpoint devices (eg, 158, 168, 176, 188). In such an embodiment, the processor may determine the time interval between packets arriving at the endpoint device (eg, in the second communication network) to indicate the bandwidth provided by the second communication network.

例如,參考圖6L,5G網路可以包括UE 694a、gNB 694b和UPF 694c。UE 694a(其可以包括或接近於應用客戶端)可以向gNB 694b(例如,152b、162b、172b、182b)發送兩個封包[1]和[2](例如,量測封包)。gNB 694b可將封包[1]和[2]封裝在GTP-U封包中,並可經由GTP-U隧道(其可由隧道端點識別符(TEID)識別)將GTP-U封包發送到UPF 694c。封包[1]和[2]可以背靠背地到達UPF 694c處,並且UPF 696c可以將封包[1]和[2]發送到非5G網路中的應用伺服器694d。可以在應用伺服器694d處量測封包[1]和[2]之間的時間間隔。由該封包分散技術量測的時間間隔可以反映非5G網路的可用頻寬。For example, referring to Figure 6L, a 5G network may include UE 694a, gNB 694b, and UPF 694c. The UE 694a (which may comprise or be close to the application client) may send two packets [1] and [2] (eg, measurement packets) to the gNB 694b (eg, 152b, 162b, 172b, 182b). The gNB 694b may encapsulate packets [1] and [2] in a GTP-U packet and may send the GTP-U packet to the UPF 694c via a GTP-U tunnel (which may be identified by a tunnel endpoint identifier (TEID)). Packets [1] and [2] can arrive at UPF 694c back-to-back, and UPF 696c can send packets [1] and [2] to application server 694d in the non-5G network. The time interval between packets [1] and [2] may be measured at application server 694d. The time interval measured by the packet dispersion technique can reflect the available bandwidth of the non-5G network.

在此種實施例中,網路元素可將經由封包分散技術量測的可用頻寬決定為第二通訊網路的可用頻寬。在一些實施例中,在通訊路徑跨兩個或兩個以上第二通訊網路的情況下(例如,如在通訊系統170和180中),網路元素可使用例如封包分散技術對每個第二通訊網路執行量測,並且網路元素可以將可用頻寬的最小值決定為所有第二通訊的可用頻寬。用於執行方塊674的操作的構件可以包括用作網路元素的計算設備的處理器210、212、214、216、218、252、260、428、無線收發器266、收發器427和網路量測模組412。In such an embodiment, the network element may determine the available bandwidth measured through the packet distribution technique as the available bandwidth of the second communication network. In some embodiments, where the communication path spans two or more second communication networks (for example, as in communication systems 170 and 180), the network elements may use, for example, packet scatter techniques for each second communication network. The communication network performs the measurement, and the network element can determine the minimum value of the available bandwidth as the available bandwidth of all the second communications. Means for performing the operations of block 674 may include processors 210, 212, 214, 216, 218, 252, 260, 428, wireless transceivers 266, transceivers 427, and network traffic Measuring module 412.

處理器可以隨後基於在所述方法500的方塊506中由第二通訊網路提供的QoS來配置第一通訊網路以提供足夠的QoS來支援端到端QoS要求。The processor may then configure the first communication network to provide sufficient QoS to support the end-to-end QoS requirement based on the QoS provided by the second communication network at block 506 of the method 500 .

參考圖6I,在所述方法500的方塊502中的決定用於經由通訊路徑將封包從封包源通訊到封包目的地的端到端QoS要求,或在所述方法500的方塊504中的決定在通訊路徑內由第二通訊網路提供的QoS之後,在方塊680中處理器可以將與網路量測程序相關聯的網路量測5QI應用到第一通訊網路,用於對沿通訊路徑傳輸的量測封包執行端到端量測。在一些實施例中,網路量測5QI可被配置並與量測專用量測封包(亦即,不通訊其他訊號傳遞或資料的用於量測目的的封包)的操作相關聯。在一些實施例中,回應於封包延遲量測5QI,第一通訊網路的一或多個網路元素可被配置為僅用於網路量測的目的在QoS流中傳輸網路量測封包。用於執行方塊680的操作的構件可以包括用作網路元素的計算設備的處理器210、212、214、216、218、252、260、428、無線收發器266、收發器427和QoS配置模組414。Referring to FIG. 6I, the decision in block 502 of the method 500 is used to communicate the packet from the packet source to the packet destination end-to-end QoS requirements via the communication path, or the decision in block 504 of the method 500 is After the QoS provided by the second communication network within the communication path, in block 680 the processor may apply the network measurement 5QI associated with the network measurement procedure to the first communication network for the QoS transmission along the communication path Measurement packets perform end-to-end measurements. In some embodiments, network measurement 5QI may be configured and associated with the operation of measurement-specific measurement packets (ie, packets used for measurement purposes that do not communicate other signaling or data). In some embodiments, in response to the packet delay measurement 5QI, one or more network elements of the first communication network may be configured to transmit network measurement packets in the QoS flow only for network measurement purposes. Means for performing the operations of block 680 may include processors 210, 212, 214, 216, 218, 252, 260, 428, wireless transceivers 266, transceivers 427, and QoS configuration modules of computing devices acting as network elements. Group 414.

在方塊682中,處理器可量測端到端實現的QoS。用於執行方塊682的操作的構件可以包括用作網路元素的計算設備的處理器210、212、214、216、218、252、260、428、無線收發器266、收發器427和網路量測模組412。In block 682, the processor may measure the QoS achieved end-to-end. Means for performing the operations of block 682 may include processors 210, 212, 214, 216, 218, 252, 260, 428, wireless transceivers 266, transceivers 427, and network traffic Measuring module 412.

在方塊684中,處理器可基於端到端實現的QoS和網路量測程序來決定在通訊路徑內由第二通訊網路提供的QoS。在一些實施例中,網路元素可以用作量測實體來執行量測封包的端到端量測以決定由第二通訊網路提供的QoS。用於執行方塊684的操作的構件可以包括用作網路元素的計算設備的處理器210、212、214、216、218、252、260、428、無線收發器266、收發器427和網路量測模組412。In block 684, the processor may determine the QoS provided by the second communication network within the communication path based on the end-to-end implemented QoS and network measurements. In some embodiments, the network element can be used as a measurement entity to perform end-to-end measurement of measurement packets to determine the QoS provided by the second communication network. Means for performing the operations of block 684 may include processors 210, 212, 214, 216, 218, 252, 260, 428, wireless transceivers 266, transceivers 427, and network traffic Measuring module 412.

處理器可以隨後基於在所述方法500的方塊506中由第二通訊網路提供的QoS來配置第一通訊網路以提供足夠的QoS來支援端到端QoS要求。The processor may then configure the first communication network to provide sufficient QoS to support the end-to-end QoS requirement based on the QoS provided by the second communication network at block 506 of the method 500 .

圖7是適用於各種實施例的網路元素設備的元件方塊圖。此種網路元素設備(例如,核心網路140或5G網路151a、161a、171a和181a的網路元素(例如,402)、基地台設備(諸如基地台110a-110d、200、350)及/或類似)可至少包括圖7中所示的元件。參考圖1-圖7,此種網路元素設備700通常包括耦接到揮發性記憶體702和大容量非揮發性記憶體(諸如磁碟機708)的處理器701。網路元素設備700亦可以包括耦接到處理器701的周邊記憶體存取設備706,諸如軟碟機、壓縮光碟(CD)或數位視訊光碟(DVD)驅動器。網路元素設備700亦可以包括耦接到處理器701的網路存取埠704(或介面),用於與耦接到其他系統電腦和伺服器的諸如網際網路或區域網路的網路建立資料連接。網路元素設備700可包括用於發送和接收可連接到無線通訊鏈路的電磁輻射的一或多個天線707。網路元素設備700可以包括用於耦接到周邊設備、外部記憶體或其他設備的附加存取埠,諸如USB、火線(Firewire)、雷電(Thunderbolt)和類似者。Figure 7 is a block diagram of components of a network element device suitable for various embodiments. Such network element devices (e.g., core network 140 or network elements (e.g., 402) of 5G networks 151a, 161a, 171a, and 181a, base station equipment (such as base stations 110a-110d, 200, 350), and /or similar) may include at least the elements shown in FIG. 7 . Referring to FIGS. 1-7 , such a network element device 700 generally includes a processor 701 coupled to a volatile memory 702 and a large-capacity non-volatile memory (such as a disk drive 708 ). The network element device 700 may also include a peripheral memory access device 706 coupled to the processor 701 , such as a floppy disk drive, compact disk (CD) or digital video disk (DVD) drive. The network element device 700 may also include a network access port 704 (or interface) coupled to the processor 701 for communicating with a network such as the Internet or a local area network coupled to other system computers and servers Create a data connection. The network element device 700 may include one or more antennas 707 for transmitting and receiving electromagnetic radiation that may be coupled to a wireless communication link. Network element device 700 may include additional access ports, such as USB, Firewire, Thunderbolt, and the like, for coupling to peripherals, external memory, or other devices.

圖8是適合與各種實施例一起使用的無線設備800的元件方塊圖。在一些實施例中,無線設備800可以作為網路元素操作。參考圖1-圖8,可以在各種無線設備800(例如,無線設備120a-120e、200、320、404)上實現各種實施例,其中的一個實例以智慧手機的形式在圖8中示出。無線設備800可以包括耦接到第二SOC 204(例如,具有5G能力的SOC)的第一SOC 202(例如,SOC-CPU)。第一和第二SOC 202、204可以耦接到內部記憶體816、顯示器812和揚聲器814。此外,無線設備800可以包括用於發送和接收電磁輻射的天線804,其可以連接到收發器427,無線收發器耦接到第一及/或第二SOC 202、204中的一或多個處理器。無線設備800可包括用於接收使用者輸入的選項單選擇按鈕或船型開關820。FIG. 8 is a block diagram of elements of a wireless device 800 suitable for use with various embodiments. In some embodiments, wireless device 800 may operate as a network element. Referring to Figures 1-8, various embodiments may be implemented on various wireless devices 800 (eg, wireless devices 120a-120e, 200, 320, 404), an example of which is shown in Figure 8 in the form of a smartphone. The wireless device 800 can include a first SOC 202 (eg, a SOC-CPU) coupled to a second SOC 204 (eg, a 5G capable SOC). The first and second SOC 202 , 204 may be coupled to internal memory 816 , display 812 and speaker 814 . In addition, the wireless device 800 may include an antenna 804 for transmitting and receiving electromagnetic radiation, which may be connected to a transceiver 427 coupled to one or more processors in the first and/or second SOC 202, 204 device. The wireless device 800 may include a menu selection button or rocker switch 820 for receiving user input.

無線設備800可包括聲音編碼/解碼(CODEC)電路810,其將從麥克風接收的聲音數位化為適合無線傳輸的資料封包並且解碼接收的聲音資料封包以產生被提供給揚聲器來產生聲音的類比信號。第一和第二SOC 202、204、無線收發器266和CODEC 810中的一或多個處理器可以包括數位訊號處理器(DSP)電路(未單獨示出)。The wireless device 800 may include a sound encoding/decoding (CODEC) circuit 810 that digitizes sound received from a microphone into data packets suitable for wireless transmission and decodes the received sound data packets to produce an analog signal that is provided to a speaker to produce sound . One or more processors in the first and second SOCs 202, 204, wireless transceiver 266, and CODEC 810 may include digital signal processor (DSP) circuitry (not separately shown).

網路元素設備700和無線設備800的處理器可以是任何可程式設計微處理器、微型電腦或多處理器晶片或多個晶片,其可以經由軟體指令(應用)進行配置以執行各種功能,包括下文描述的一些實現的功能。在一些無線設備中,可以提供多個處理器,諸如SOC 204內的一個處理器專用於無線通訊功能,而SOC 202內的一個處理器專用於執行其他應用。軟體應用可以在被存取和載入到處理器之前儲存在記憶體702、816中。處理器可以包括足以儲存應用軟體指令的內部記憶體。The processors of the network element device 700 and the wireless device 800 may be any programmable microprocessor, microcomputer, or multiprocessor chip or chips that may be configured via software instructions (applications) to perform various functions, including Some of the implemented features are described below. In some wireless devices, multiple processors may be provided, such as one processor within SOC 204 dedicated to wireless communication functions and one processor within SOC 202 dedicated to executing other applications. Software applications may be stored in memory 702, 816 before being accessed and loaded into the processor. The processor may include internal memory sufficient to store application software instructions.

所示和描述的各種實施例僅作為實例提供以說明請求項的各種特徵。然而,關於任何給定實施例示出和描述的特徵不一定限於相關聯的實施例並且可以與示出和描述的其他實施例一起使用或組合。此外,請求項不意欲受任何一個示例性實施例的限制。例如,方法和操作500和600a-600i中的一或多個可以替代方法和操作500和600a-600i中的一個或者多個操作,或者與方法和操作500和600a-600i中的一或多個操作組合。The various embodiments shown and described are provided as examples only to illustrate the various features of the claimed item. However, features shown and described with respect to any given embodiment are not necessarily limited to the associated embodiment and may be used or combined with other embodiments shown and described. Furthermore, the claims are not intended to be limited by any one exemplary embodiment. For example, one or more of methods and operations 500 and 600a-600i may replace one or more of methods and operations 500 and 600a-600i, or be combined with one or more of methods and operations 500 and 600a-600i Combination of operations.

以下段落描述了實施例。儘管以下實施例中的一些是根據示例性方法描述的,但進一步的示例性實現可以包括:在以下段落中論述的由基地台實現的示例性方法,包括配置有處理器可執行指令的處理器,以執行以下實施例的方法的操作;在以下段落中論述的由基地台實現的示例性方法,包括用於執行以下實施例的方法的功能的構件;及在以下段落中論述的示例性方法,可以被實現為具有儲存在其上的處理器可執行指令的非暫態處理器可讀儲存媒體,該指令被配置為使基地台的處理器執行以下實施例的方法的操作。The following paragraphs describe examples. Although some of the following embodiments are described in terms of exemplary methods, further exemplary implementations may include: the exemplary methods discussed in the following paragraphs implemented by a base station comprising a processor configured with processor-executable instructions , to perform the operations of the methods of the following embodiments; the exemplary method implemented by the base station discussed in the following paragraphs, including components for performing the functions of the methods of the following embodiments; and the exemplary method discussed in the following paragraphs , may be implemented as a non-transitory processor-readable storage medium having processor-executable instructions stored thereon, the instructions configured to cause a processor of the base station to perform the operations of the methods of the following embodiments.

實例1.一種在跨至少兩個通訊網路的通訊路徑中管理端到端服務品質(QoS)的方法,包括由第一通訊網路的網路元素決定用於經由跨第一通訊網路和第二通訊網路的通訊路徑將封包從封包源通訊到封包目的地的端到端QoS要求,由網路元素決定在通訊路徑內由第二通訊網路提供的QoS,並且基於由第二通訊網路提供的QoS來配置第一通訊網路以提供足夠的QoS來支援端到端QoS要求。Example 1. A method of managing end-to-end quality of service (QoS) in a communication path spanning at least two communication networks, comprising determining by network elements of a first communication network The end-to-end QoS requirements for the communication path of the packet from the packet source to the packet destination are determined by the network elements by the QoS provided by the second communication network in the communication path, and based on the QoS provided by the second communication network. The first communication network is configured to provide sufficient QoS to support end-to-end QoS requirements.

實例2.根據實例1的方法,其中第一通訊網路是5G網路,並且第二通訊網路不是5G網路。Example 2. The method of example 1, wherein the first communication network is a 5G network and the second communication network is not a 5G network.

實例3.根據實例1或2中任一項的方法,其中由網路元素決定在通訊路徑內由第二通訊網路提供的QoS包括決定第二通訊網路的封包錯誤率。Example 3. The method of any of examples 1 or 2, wherein determining, by the network element, QoS provided by the second communication network within the communication path includes determining a packet error rate of the second communication network.

實例4.根據實例3的方法,其中配置第一通訊網路以基於由第二通訊網路提供的QoS提供足夠的QoS來支援端到端QoS要求,包括基於第二通訊網路的決定的封包錯誤率決定第一通訊網路的所需封包錯誤率。Example 4. The method according to example 3, wherein the first communication network is configured to provide sufficient QoS to support end-to-end QoS requirements based on QoS provided by the second communication network, including a packet error rate determination based on a determination of the second communication network The required packet error rate of the first communication network.

實例5.根據實例1至4中任一項的方法,其中由網路元素決定在通訊路徑內由第二通訊網路提供的QoS包括決定第二通訊網路的可用傳輸量。Example 5. The method of any one of examples 1 to 4, wherein determining, by the network element, QoS provided by the second communication network within the communication path includes determining an available throughput of the second communication network.

實例6.根據實例5的方法,其中配置第一通訊網路以基於由第二通訊網路提供的QoS提供足夠的QoS來支援端到端QoS要求,包括基於第二通訊網路的決定的可用傳輸量決定第一通訊網路的傳輸量需求。Example 6. The method according to example 5, wherein the first communication network is configured to provide sufficient QoS to support end-to-end QoS requirements based on QoS provided by the second communication network, including an available throughput determination based on a determination of the second communication network The transmission capacity requirement of the first communication network.

實例7.根據實例1至6中任一項的方法,其中由網路元素決定在通訊路徑內由第二通訊網路提供的QoS包括量測端到端實現的QoS,識別由第一通訊網路提供的QoS,並且基於端到端實現的QoS和由第一通訊網路提供的QoS,決定在通訊路徑內由第二通訊網路提供的QoS。Example 7. The method according to any one of examples 1 to 6, wherein determining by the network element the QoS provided by the second communication network within the communication path comprises measuring the QoS achieved end-to-end, identifying the QoS provided by the first communication network QoS, and based on the QoS realized end-to-end and the QoS provided by the first communication network, determine the QoS provided by the second communication network in the communication path.

實例8.根據實例7的方法,其中識別由第一通訊網路提供的QoS包括將與第一通訊網路中的恆定封包延遲相對應的封包延遲量測5G QoS識別符(5QI)應用到第一通訊網路,並且基於端到端實現的QoS和由第一通訊網路提供的QoS決定在通訊路徑內由第二通訊網路提供的QoS包括基於端到端實現的封包延遲和第一通訊網路中的恆定封包延遲決定在通訊路徑內由第二通訊網路提供的QoS。Example 8. The method of example 7, wherein identifying the QoS provided by the first communication network comprises applying a packet delay measurement 5G QoS Identifier (5QI) corresponding to a constant packet delay in the first communication network to the first communication network path, and based on the QoS achieved end-to-end and the QoS provided by the first communication network, the QoS provided by the second communication network in the communication path is determined based on the packet delay achieved end-to-end and the constant packet in the first communication network The delay determines the QoS provided by the second communication network within the communication path.

實例9.根據實例7的方法,其中識別由第一通訊網路提供的QoS包括將與第一通訊網路中的恆定封包丟失率相對應的封包丟失率5QI應用到第一通訊網路,並且基於端到端實現的QoS和由第一通訊網路提供的QoS決定在通訊路徑內由第二通訊網路提供的QoS包括基於端到端實現的封包丟失率和第一通訊網路中的恆定封包丟失率決定在通訊路徑內由第二通訊網路提供的QoS。Example 9. The method of example 7, wherein identifying the QoS provided by the first communication network comprises applying a packet loss rate 5QI corresponding to a constant packet loss rate in the first communication network to the first communication network, and based on the peer-to-peer The QoS implemented by the end and the QoS provided by the first communication network are determined in the communication path by the second communication network. QoS provided by the second communication network within the path.

實例10.根據實例7的方法,其中識別由第一通訊網路提供的QoS包括將與排除第一通訊網路中的封包丟失的封包丟失量測程序相關聯的封包丟失率5QI應用於第一通訊網路,並且基於端到端實現的QoS和由第一通訊網路提供的QoS決定在通訊路徑內由第二通訊網路提供的QoS包括基於端到端實現的封包丟失和封包丟失量測程序決定在通訊路徑內由第二通訊網路提供的QoS。Example 10. The method of example 7, wherein identifying the QoS provided by the first communication network comprises applying to the first communication network a packet loss rate 5QI associated with a packet loss measurement procedure that excludes packet loss in the first communication network , and the QoS provided by the second communication network in the communication path is determined based on the QoS achieved end-to-end and the QoS provided by the first communication network, including the packet loss and packet loss measurement procedures determined based on the end-to-end implementation in the communication path QoS provided by the second communication network.

實例11.根據實例7的方法,其中識別由第一通訊網路提供的QoS包括將與可用頻寬量測程序相關聯的可用頻寬5QI應用到第一通訊網路,該程序配置第一通訊網路的資源使得第一通訊網路的封包丟失相對於第二通訊網路的封包丟失基本上可忽略,並且基於端到端實現的QoS和由第一通訊網路提供的QoS決定在通訊路徑內由第二通訊網路提供的QoS包括基於端到端實現的可用頻寬和可用頻寬量測程序決定在通訊路徑內由第二通訊網路提供的QoS。Example 11. The method of example 7, wherein identifying the QoS provided by the first communication network comprises applying to the first communication network an available bandwidth 5QI associated with an available bandwidth measurement procedure that configures a QoS of the first communication network resources such that the packet loss of the first communication network is substantially negligible relative to the packet loss of the second communication network, and based on the QoS achieved end-to-end and the QoS provided by the first communication network, the second communication network within the communication path The provided QoS includes determining the QoS provided by the second communication network within the communication path based on the end-to-end realized available bandwidth and the available bandwidth measurement procedure.

實例12.根據實例7的方法,其中識別由第一通訊網路提供的QoS包括將與可用頻寬量測程序相關聯的可用頻寬5QI應用到第一通訊網路,在該程序中資料封包在第一通訊網路中背靠背地傳輸,並且基於端到端實現的QoS和由第一通訊網路提供的QoS決定在通訊路徑內由第二通訊網路提供的QoS包括基於端到端實現的可用頻寬和可用頻寬量測程序決定在通訊路徑內由第二通訊網路提供的QoS。Example 12. The method of example 7, wherein identifying the QoS provided by the first communication network comprises applying to the first communication network the available bandwidth 5QI associated with an available bandwidth measurement procedure in which the data packet is Back-to-back transmission in a communication network, and based on the QoS realized by end-to-end and the QoS provided by the first communication network, the QoS provided by the second communication network in the communication path includes the available bandwidth and the available bandwidth based on the end-to-end realization. The bandwidth measurement procedure determines the QoS provided by the second communication network in the communication path.

實例13.根據實例7的方法,其中識別由第一通訊網路提供的QoS包括將與網路量測程序相關聯的網路量測5QI應用到第一通訊網路,該程序用於對沿通訊路徑傳輸的量測封包執行端到端量測,並且基於端到端實現的QoS和由第一通訊網路提供的QoS決定在通訊路徑內由第二通訊網路提供的QoS包括基於端到端實現的QoS和網路量測程序決定在通訊路徑內由第二通訊網路提供的QoS。Example 13. The method of example 7, wherein identifying the QoS provided by the first communication network comprises applying to the first communication network a network measurement 5QI associated with a network measurement procedure for measuring QoS along the communication path The transmitted measurement packets perform end-to-end measurements, and determine the QoS provided by the second communication network within the communication path based on the QoS achieved end-to-end and the QoS provided by the first communication network including the QoS based on the end-to-end realization The QoS provided by the second communication network within the communication path is determined with the network measurement procedure.

本案中使用的術語「元件」、「模組」、「系統」和類似意欲包括與電腦相關的實體,諸如但不限於硬體、韌體、硬體和軟體的組合、軟體或正在執行的軟體,其被配置為執行特定的操作或功能。例如,元件可以是但不限於在處理器上執行的過程、處理器、物件、可執行檔、執行執行緒、程式或電腦。作為說明,在無線設備上執行的應用和無線設備皆可以被稱為元件。一或多個元件可常駐在過程或執行執行緒內,並且元件可位於一個處理器或核心上或分佈在兩個或兩個以上處理器或核心之間。此外,該等元件可以從其上儲存有各種指令或資料結構的各種非暫態電腦可讀取媒體執行。元件可以經由本端或遠端過程、函數或程式撥叫、電子信號、資料封包、記憶體讀取/寫入和其他已知的網路、電腦、處理器或過程相關的通訊方法進行通訊。As used herein, the terms "component," "module," "system" and similar terms are intended to include computer-related entities such as, but not limited to, hardware, firmware, a combination of hardware and software, software, or software in execution , which is configured to perform a specific operation or function. For example, an element may be, but is not limited to being limited to, a process executing on a processor, a processor, an object, an executable, a thread of execution, a program, or a computer. As an illustration, both an application executing on a wireless device and a wireless device may be referred to as an element. One or more elements can be resident within a process or thread of execution, and an element can be localized on one processor or core or distributed between two or more processors or cores. In addition, these elements can execute from various non-transitory computer-readable media having various instructions or data structures stored thereon. Components can communicate via local or remote procedures, function or program calls, electrical signals, data packets, memory read/write, and other known network, computer, processor, or process-related communication methods.

許多不同的蜂巢和行動通訊服務和標準在未來是可用的或預期的,所有該等皆可以實施並受益於各種實施例。此類服務和標準包括,例如第三代合作夥伴計劃(3GPP)、長期進化(LTE)系統、第三代無線行動通訊技術(3G)、第四代無線行動通訊技術(4G)、第五代無線行動通訊技術(5G)以及新一代3GPP技術、行動通訊全球系統(GSM)、通用行動電信系統(UMTS)、3GSM、通用封包無線電服務(GPRS)、分碼多工存取(CDMA)系統(例如,cdmaOne、CDMA1020TM)、GSM進化的增強資料速率(EDGE)、高級行動電話系統(AMPS)、數位AMPS(IS-136/TDMA)、進化資料最佳化(EV-DO)、數位增強無線電信(DECT)、全球互通微波存取性(WiMAX)、無線區域網路(WLAN)、Wi-Fi保護存取I和II(WPA、WPA2)和整合數位增強網路(iDEN)。該等技術中的每一種皆涉及例如語音、資料、訊號傳遞及/或內容訊息的傳輸和接收。應當理解,對與單個電信標準或技術相關的術語及/或技術細節的任何引用僅用於說明目的,並且不意欲將請求項的範圍限制到特定的通訊系統或技術,除非在請求項中明確敘述。Many different cellular and mobile communication services and standards are available or expected in the future, all of which can be implemented and benefit from various embodiments. Such services and standards include, for example, 3rd Generation Partnership Project (3GPP), Long Term Evolution (LTE) systems, 3rd Generation Mobile (3G), 4th Generation (4G), 5th Generation Wireless mobile communication technology (5G) and the new generation of 3GPP technology, global system for mobile communication (GSM), universal mobile telecommunications system (UMTS), 3GSM, general packet radio service (GPRS), code division multiple access (CDMA) system ( For example, cdmaOne, CDMA1020TM), Enhanced Data Rates for GSM Evolution (EDGE), Advanced Mobile Phone System (AMPS), Digital AMPS (IS-136/TDMA), Evolution Data Optimized (EV-DO), Digital Enhanced Wireless Telecommunications (DECT), Worldwide Interoperability for Microwave Access (WiMAX), Wireless Local Area Network (WLAN), Wi-Fi Protected Access I and II (WPA, WPA2) and Integrated Digital Enhanced Network (iDEN). Each of these technologies involves the transmission and reception of, for example, voice, data, signaling and/or content information. It should be understood that any reference to terms and/or technical details related to a single telecommunications standard or technology is for illustrative purposes only, and is not intended to limit the scope of the claimed item to a specific communication system or technology, unless expressly stated in the claimed item narrative.

前述方法描述和處理流程圖僅作為說明性根據實施例提供,並不意欲要求或暗示各種實施例的操作必須按所呈現的循序執行。如本領域技藝人士將瞭解的,前述實施例中的操作順序可以以任何循序執行。諸如「之後」、「隨後」、「下一步」等的詞語並非意欲限制操作的順序;該等詞用於指導讀者瞭解對方法的描述。此外,以單數形式對請求項元素的任何引用,例如,使用冠詞「一」、「一個」或「該」不應被解釋為將元素限制為單數。The foregoing method descriptions and process flowcharts are provided as illustrative examples according to the embodiments only, and are not intended to require or imply that the operations of the various embodiments must be performed in the order presented. As will be appreciated by those skilled in the art, the sequence of operations in the foregoing embodiments may be performed in any order. Words such as "thereafter," "then," "next," etc. are not intended to limit the order of operations; such words are used to guide the reader through the description of the methods. Furthermore, any reference to a claim element in the singular, eg, using the articles "a," "an," or "the," shall not be construed as limiting the element to the singular.

結合本文揭示的實施例描述的各種說明性邏輯區塊、模組、元件、電路和演算法操作可以實現為電子硬體、電腦軟體或兩者的組合。為了清楚地說明硬體和軟體的此種可互換性,各種說明性元件、方塊、模組、電路和操作已經在上文大體上就其功能進行了描述。將該等功能實現為硬體還是軟體取決於特定的應用和施加在整體系統上的設計約束。技藝人士可以針對每個特定應用以各種方式來實現所描述的功能,但是此種實施例決定不應被解釋為導致脫離請求項的範圍。The various illustrative logical blocks, modules, components, circuits and algorithmic operations described in connection with the embodiments disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative elements, blocks, modules, circuits, and operations have been described above generally in terms of their functionality. Whether such functions are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the claims.

用於實現結合本文揭示的實施例描述的各種說明性邏輯、邏輯區塊、模組和電路的硬體可以用通用處理器、數位訊號處理器(DSP)、特殊應用積體電路(ASIC)、現場可程式閘陣列(FPGA)或其他可程式邏輯裝置、個別閘門或電晶體邏輯、個別的硬體元件或設計用於執行本文所述的功能的其任何組合來實現或執行。通用處理器可以是微處理器,但可替代地,處理器可以是任何一般處理器、控制器、微控制器或狀態機。處理器亦可以實現為接收器智慧物件的組合,例如DSP和微處理器的組合、複數個微處理器、一或多個微處理器與DSP核心結合,或任何其他此種配置。替代地,一些操作或方法可由特定於給定功能的電路來執行。Hardware for implementing the various illustrative logic, logic blocks, modules, and circuits described in connection with the embodiments disclosed herein may be a general purpose processor, digital signal processor (DSP), application specific integrated circuit (ASIC), A field programmable gate array (FPGA) or other programmable logic device, individual gate or transistor logic, individual hardware elements, or any combination thereof designed to perform the functions described herein may be implemented or performed. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any general processor, controller, microcontroller, or state machine. A processor can also be implemented as a combination of receiver smart objects, such as a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors combined with a DSP core, or any other such configuration. Alternatively, some operations or methods may be performed by circuitry specific to a given function.

在一或多個實施例中,所描述的功能可以以硬體、軟體、韌體或其任何組合來實現。若以軟體實現,則該等功能可以作為一或多個指令或代碼儲存在非暫態電腦可讀取儲存媒體或非暫態處理器可讀儲存媒體上。本文揭示的方法或演算法的操作可以體現在處理器可執行軟體模組或處理器可執行指令中,其可以常駐在非暫態電腦可讀或處理器可讀儲存媒體上。非暫態電腦可讀或處理器可讀儲存媒體可以是可由電腦或處理器存取的任何儲存媒體。舉例而言(但並非限制),此類非暫態電腦可讀或處理器可讀儲存媒體可包括RAM、ROM、EEPROM、快閃記憶體、CD-ROM或其他光碟儲存器、磁碟儲存器或其他磁性儲存智慧物件,或可用於以指令或資料結構的形式儲存所需程式碼並且可由電腦存取的任何其他媒體。本文使用的磁碟和光碟包括CD盤(CD)、雷射光碟、光碟、數位多功能光碟(DVD)、軟碟和藍光光碟,其中磁碟通常以磁性方式再現資料,而光碟則經由雷射光學方式再現資料。以上的組合亦包括在非暫態電腦可讀和處理器可讀取媒體的範圍內。此外,方法或演算法的操作可以作為代碼及/或指令的一個或任何組合或集合常駐在非暫態處理器可讀儲存媒體及/或電腦可讀取儲存媒體上,其可以併入電腦程式產品中。In one or more embodiments, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored as one or more instructions or code on a non-transitory computer-readable storage medium or a non-transitory processor-readable storage medium. The operations of the methods or algorithms disclosed herein may be embodied in processor-executable software modules or processor-executable instructions, which may reside on a non-transitory computer-readable or processor-readable storage medium. A non-transitory computer-readable or processor-readable storage medium can be any storage medium that can be accessed by a computer or a processor. By way of example, and not limitation, such non-transitory computer-readable or processor-readable storage media may include RAM, ROM, EEPROM, flash memory, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage smart objects, or any other medium that can be used to store required code in the form of instructions or data structures and that can be accessed by a computer. Disk and disc, as used in this document, includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disc, and Blu-ray disc, where disks usually reproduce data magnetically, while discs reproduce data via laser Optical reproduction of data. Combinations of the above are also included within the scope of non-transitory computer-readable and processor-readable media. Furthermore, the operations of a method or algorithm may be resident on a non-transitory processor-readable storage medium and/or a computer-readable storage medium as one or any combination or collection of codes and/or instructions, which may be incorporated into a computer program product.

提供所揭示實施例的前述描述以使本領域技藝人士能夠做出或使用請求項。對該等實施例的各種修改對於本領域技藝人士將是顯而易見的,並且在不脫離請求項的範圍的情況下,本文中定義的一般原理可以應用於其他實施例。因此,本案不意欲限於本文所示的實施例,而是符合與所附請求項以及本文揭示的原理和新穎特徵一致的最廣範圍。The foregoing description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the claimed items. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the scope of the claims. Thus, the present case is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the appended claims and the principles and novel features disclosed herein.

100:通訊系統 102a:巨集細胞服務區 102b:微微細胞服務區 102c:毫微微細胞服務區 110a:巨集BS 110b:微微BS 110c:毫微微BS 110d:中繼BS 120a:無線設備 120b:無線設備 120c:無線設備 120d:無線設備 120e:無線設備 122:無線通訊鏈路 124:無線通訊鏈路 126:有線通訊鏈路 130:網路控制器 140:通訊網路 150:通訊系統 151a:5G網路 151b:非5G網路 152a:UE 152b:gNB 152c:5G核心網路 152d:使用者平面功能(UPF) 153:蜂巢通訊鏈路 154:網際網路 156:Wi-Fi存取點(AP) 157:Wi-Fi無線通訊鏈路 158:無線設備 160:通訊系統 161a:5G網路 161b:非5G網路 162a:UE 162b:gNB 162c:5G核心網路 162d:使用者平面功能 163:蜂巢通訊鏈路 164:網際網路 166a:4G網路 166b:4G基地台 167:4G無線通訊鏈路 168:無線設備 170:通訊系統 171a:5G網路 171b:第一非5G網路 171c:第二非5G網路 172a:無線設備(UE) 172b:gNB 172c:5G核心網路 172d:使用者平面功能 173:Wi-Fi通訊鏈路 174:無線設備 175:蜂巢通訊鏈路 176:應用伺服器 177:有線通訊鏈路 180:通訊系統 181a:5G網路 181b:Wi-Fi通訊鏈路 181c:第二非5G網路 182a:UE 182b:gNB 182c:5G核心網路 182d:使用者平面功能 183:蜂巢通訊鏈路 184:無線設備 185:有線通訊鏈路 186:互連網路 187:有線通訊鏈路 188:應用伺服器 200:計算和無線數據機系統 202:第一SOC 204:第二SOC 206:時鐘 208:電壓調節器 210:處理器 212:處理器 214:處理器 216:處理器 218:處理器 220:記憶體 222:定製電路 224:系統元件和資源 226:互連/匯流排模組 230:溫度感測器 232:熱管理單元 234:熱功率封裝(TPE)元件 250:互連/匯流排模組 252:處理器 254:功率管理單元 256:毫米波收發器 258:記憶體 260:附加處理器 264:互連/匯流排模組 266:無線收發器 300:軟體架構 302:非存取層(NAS) 304:存取層(AS) 306:實體層(PHY) 308:媒體存取控制(MAC)子層 310:無線電鏈路控制(RLC)子層 312:封包資料收斂協定(PDCP)子層 313: RRC子層 314:主機層 316:硬體介面 317:服務資料適配協定(SDAP)子層 320:無線設備 350:基地台 400:端到端QoS的系統 402:網路元素 406:機器可讀取指令 408:端到端QoS模組 410:QoS決定模組 412:網路量測模組 414:QoS配置模組 424:通訊網路 426:電子儲存器 427:收發器 428:處理器 500:方法 502:操作 504:操作 506:操作 600a:操作 600b:操作 600c:操作 600d:操作 600e:操作 600f:操作 600g:操作 600h:操作 600i:操作 602:操作 604:操作 606:操作 610:操作 612:操作 614:操作 620:操作 622:操作 624:操作 630:操作 632:操作 634:操作 640:操作 642:操作 644:操作 650:操作 652:操作 654:操作 660:操作 662:操作 664:操作 670:操作 672:操作 674:操作 680:操作 682:操作 684:操作 690a:應用客戶端 690b:UE 690c:gNB 690d:UPF 690e:應用伺服器 692a:UE 692b:gNB 692c:UPF 692d:應用伺服器 694a:UE 694b:gNB 694c:UPF 694d:應用伺服器 700:網路元素設備 701:處理器 702:揮發性記憶體 704:網路存取埠 706:周邊記憶體存取設備 707:天線 708:磁碟機 800:無線設備 804:天線 810:聲音編碼/解碼(CODEC)電路 812:顯示器 814:揚聲器 816:記憶體 820:船型開關 L1:第1層 L2:第2層 L3:第3層 N 1:數目 N 2:數目 N 3:數目 N 4:數目 100: communication system 102a: macro cell service area 102b: pico cell service area 102c: femto cell service area 110a: macro BS 110b: pico BS 110c: femto BS 110d: relay BS 120a: wireless device 120b: wireless Device 120c: wireless device 120d: wireless device 120e: wireless device 122: wireless communication link 124: wireless communication link 126: wired communication link 130: network controller 140: communication network 150: communication system 151a: 5G network 151b: Non-5G Network 152a: UE 152b: gNB 152c: 5G Core Network 152d: User Plane Function (UPF) 153: Cellular Communication Link 154: Internet 156: Wi-Fi Access Point (AP) 157 : Wi-Fi wireless communication link 158: wireless device 160: communication system 161a: 5G network 161b: non-5G network 162a: UE 162b: gNB 162c: 5G core network 162d: user plane function 163: cellular communication link Road 164: Internet 166a: 4G network 166b: 4G base station 167: 4G wireless communication link 168: wireless device 170: communication system 171a: 5G network 171b: first non-5G network 171c: second non-5G network Network 172a: wireless device (UE) 172b: gNB 172c: 5G core network 172d: user plane function 173: Wi-Fi communication link 174: wireless device 175: cellular communication link 176: application server 177: wired Communication link 180: communication system 181a: 5G network 181b: Wi-Fi communication link 181c: second non-5G network 182a: UE 182b: gNB 182c: 5G core network 182d: user plane function 183: cellular communication Link 184: Wireless Device 185: Wired Communication Link 186: Internet 187: Wired Communication Link 188: Application Server 200: Computing and Wireless Modem System 202: First SOC 204: Second SOC 206: Clock 208: Voltage Regulator 210: Processor 212: Processor 214: Processor 216: Processor 218: Processor 220: Memory 222: Custom Circuitry 224: System Components and Resources 226: Interconnect/Bus Module 230: Temperature Sensor 232: Thermal Management Unit 234: Thermal Power Package (TPE) Component 250: Interconnect/Bus Module 252: Processor 254: Power Management Unit 256: Millimeter Wave Transceiver 258: Memory 260: Additional Processor 264: Interconnect/bus module 266: Wireless transceiver 300: Software architecture 302: Non-access layer (NAS) 304: Access layer (AS) 306: Physical layer (PHY) 308: Media access control (MAC ) sublayer 310: radio link control (RLC) sublayer 312: packet data convergence protocol (PDCP) sublayer 313: RRC sublayer 314: host layer 316: hardware interface 317: service data adaptation protocol (SDAP) sublayer Layer 320: wireless device 350: base station 400: end-to-end QoS system 402: network element 406: machine readable instruction 408: end-to-end QoS module 410: QoS decision module 412: network measurement module Group 414: QoS Configuration Module 424: Communication Network 426: Electronic Storage 427: Transceiver 428: Processor 500: Method 502: Operation 504: Operation 506: Operation 600a: Operation 600b: Operation 600c: Operation 600d: Operation 600e: Operation 600f: Operation 600g: Operation 600h: Operation 600i: Operation 602: Operation 604: Operation 606: Operation 610: Operation 612: Operation 614: Operation 620: Operation 622: Operation 624: Operation 630: Operation 632: Operation 634: Operation 640 :operation 642:operation 644:operation 650:operation 652:operation 654:operation 660:operation 662:operation 664:operation 670:operation 672:operation 674:operation 680:operation 682:operation 684:operation 690a:application client 690b :UE 690c:gNB 690d:UPF 690e:Application Server 692a:UE 692b:gNB 692c:UPF 692d:Application Server 694a:UE 694b:gNB 694c:UPF 694d:Application Server 700:Network Element Device 701:Processing Device 702: Volatile memory 704: Network access port 706: Peripheral memory access device 707: Antenna 708: Disk drive 800: Wireless device 804: Antenna 810: Sound encoding/decoding (CODEC) circuit 812: Display 814: loudspeaker 816: memory 820: rocker switch L1: first layer L2: second layer L3: third layer N 1 : number N 2 : number N 3 : number N 4 : number

圖1A是示出適合於實現各種實施例中的任一個的示例性通訊系統100的系統方塊圖。FIG. 1A is a system block diagram illustrating an exemplary communication system 100 suitable for implementing any of the various embodiments.

圖1B-圖1E是示出適合於實現各種實施例中的任一個的示例性通訊系統的系統方塊圖。1B-1E are system block diagrams illustrating exemplary communication systems suitable for implementing any of the various embodiments.

圖2是示出適合於實現各種實施例中的任一個的示例性計算和無線數據機系統的元件方塊圖。Figure 2 is a block diagram illustrating elements of an exemplary computing and wireless modem system suitable for implementing any of the various embodiments.

圖3是示出適合於實現各種實施例中的任一個的軟體架構的元件方塊圖,其包括無線通訊中的使用者和控制平面的無線電協定堆疊。FIG. 3 is a block diagram of elements suitable for implementing any of the various embodiments of a software architecture including a radio protocol stack for user and control planes in wireless communications.

圖4是示出根據各種實施例的被配置用於管理跨第一通訊網路和第二通訊網路的通訊路徑中的端到端QoS的系統的元件方塊圖。4 is a block diagram illustrating elements of a system configured to manage end-to-end QoS in a communication path across a first communication network and a second communication network, according to various embodiments.

圖5是示出根據各種實施例的由網路元素的處理器執行的用於增強初始存取的覆蓋的方法的處理流程圖。Figure 5 is a process flow diagram illustrating a method performed by a processor of a network element for enhancing coverage of an initial access, according to various embodiments.

圖6A-圖6I是示出根據各種實施例的操作600a-600i的處理流程圖,其可以由網路元素的處理器執行,作為用於在跨第一通訊網路和第二通訊網路的通訊路徑中管理端到端QoS的方法的一部分。6A-6I are process flow diagrams illustrating operations 600a-600i that may be performed by a processor of a network element, as used in a communication path across a first communication network and a second communication network, according to various embodiments. Part of the approach to managing end-to-end QoS in .

圖6J和圖6K是示出示例性封包丟失量測的概念圖。6J and 6K are conceptual diagrams illustrating exemplary packet loss measurements.

圖6L是示出示例性可用頻寬量測的概念圖。FIG. 6L is a conceptual diagram illustrating exemplary available bandwidth measurements.

圖7是適用於各種實施例的網路元素設備的元件方塊圖。Figure 7 is a block diagram of components of a network element device suitable for various embodiments.

圖8是適用於各種實施例的無線設備的元件方塊圖。Figure 8 is a block diagram of elements of a wireless device suitable for various embodiments.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic deposit information (please note in order of depositor, date, and number) none Overseas storage information (please note in order of storage country, institution, date, and number) none

500:方法 500: method

502:操作 502: Operation

504:操作 504: Operation

506:操作 506: Operation

Claims (31)

一種用作一網路元素的計算設備,包括: 配置有處理器可執行指令的一處理器,以執行以下操作: 決定用於經由跨一第一通訊網路和一第二通訊網路的一通訊路徑將封包從一封包源通訊到一封包目的地的一端到端服務品質(QoS)要求; 決定在該通訊路徑內由該第二通訊網路提供的一QoS;並且 基於由該第二通訊網路提供的該QoS來配置該第一通訊網路以提供足夠的QoS來支援該端到端QoS要求。 A computing device for use as a network element, comprising: A processor configured with processor-executable instructions to: determining an end-to-end quality of service (QoS) requirement for communicating packets from a packet source to a packet destination via a communication path across a first communication network and a second communication network; determine a QoS provided by the second communication network within the communication path; and The first communication network is configured to provide sufficient QoS to support the end-to-end QoS requirement based on the QoS provided by the second communication network. 如請求項1所述之計算設備,其中該第一通訊網路是一5G網路並且該第二通訊網路不是一5G網路。The computing device as claimed in claim 1, wherein the first communication network is a 5G network and the second communication network is not a 5G network. 如請求項1所述之計算設備,其中該處理器進一步配置有處理器可執行指令,以藉由決定該第二通訊網路的一封包錯誤率來決定在該通訊路徑內由該第二通訊網路提供的該QoS。The computing device as claimed in claim 1, wherein the processor is further configured with processor-executable instructions to determine the second communication network in the communication path by determining a packet error rate of the second communication network The QoS provided. 如請求項3所述之計算設備,其中該處理器進一步配置有處理器可執行指令,藉由基於該第二通訊網路的所決定的封包錯誤率決定該第一通訊網路的一所需封包錯誤率,來配置該第一通訊網路以基於由該第二通訊網路提供的該QoS提供足夠的QoS以支援該端到端QoS要求。The computing device of claim 3, wherein the processor is further configured with processor-executable instructions for determining a desired packet error for the first communication network based on the determined packet error rate for the second communication network rate, to configure the first communication network to provide sufficient QoS to support the end-to-end QoS requirement based on the QoS provided by the second communication network. 如請求項1所述之計算設備,其中該處理器進一步配置有處理器可執行指令,以藉由決定該第二通訊網路的一可用傳輸量來決定在該通訊路徑內由該第二通訊網路提供的該QoS。The computing device as claimed in claim 1, wherein the processor is further configured with processor-executable instructions to determine the transmission rate by the second communication network in the communication path by determining an available transmission capacity of the second communication network The QoS provided. 如請求項5所述之計算設備,其中該處理器進一步配置有處理器可執行指令,藉由基於該第二通訊網路的該所決定的可用傳輸量決定該第一通訊網路的一傳輸量需求,來配置該第一通訊網路以基於由該第二通訊網路提供的該QoS提供足夠的QoS以支援該端到端QoS要求。The computing device as claimed in claim 5, wherein the processor is further configured with processor-executable instructions for determining a throughput requirement of the first communication network based on the determined available throughput of the second communication network , to configure the first communication network to provide sufficient QoS to support the end-to-end QoS requirement based on the QoS provided by the second communication network. 如請求項1所述之計算設備,其中該處理器進一步配置有處理器可執行指令,以經由以下來決定在該通訊路徑內由該第二通訊網路提供的該QoS: 量測一端到端實現的QoS; 識別由該第一通訊網路提供的QoS;並且 基於該端到端實現的QoS和由該第一通訊網路提供的該QoS,決定在該通訊路徑內由該第二通訊網路提供的QoS。 The computing device as claimed in claim 1, wherein the processor is further configured with processor-executable instructions to determine the QoS provided by the second communication network within the communication path by: Measure the QoS achieved end-to-end; identifying QoS provided by the first communication network; and Based on the end-to-end realized QoS and the QoS provided by the first communication network, the QoS provided by the second communication network in the communication path is determined. 如請求項7所述之計算設備,其中該處理器進一步被配置有處理器可執行指令以執行以下操作: 藉由將與該第一通訊網路中的一恆定封包延遲相對應的一封包延遲量測5G QoS識別符(5QI)應用到該第一通訊網路來識別由該第一通訊網路提供的該QoS;並且 藉由基於該端到端實現的封包延遲和該第一通訊網路中的該恆定封包延遲,決定在該通訊路徑內由該第二通訊網路提供的該QoS,來基於該端到端實現的QoS和由該第一通訊網路提供的該QoS,決定在該通訊路徑內由該第二通訊網路提供的該QoS。 The computing device as claimed in claim 7, wherein the processor is further configured with processor-executable instructions to perform the following operations: identifying the QoS offered by the first communication network by applying a packet delay measurement 5G QoS Identifier (5QI) corresponding to a constant packet delay in the first communication network to the first communication network; and by determining the QoS provided by the second communication network within the communication path based on the end-to-end achieved packet delay and the constant packet delay in the first communication network, based on the end-to-end achieved QoS and the QoS provided by the first communication network determine the QoS provided by the second communication network within the communication path. 如請求項7所述之計算設備,其中該處理器進一步被配置有處理器可執行指令以執行以下操作: 藉由將與該第一通訊網路中的恆定封包丟失率相對應的一封包丟失率5QI應用到該第一通訊網路來識別由該第一通訊網路提供的該QoS;並且 藉由基於該端到端實現的封包丟失率和該第一通訊網路中的該恆定封包丟失率,決定在該通訊路徑內由該第二通訊網路提供的該QoS,來基於該端到端實現的QoS和由該第一通訊網路提供的該QoS,決定在該通訊路徑內由該第二通訊網路提供的該QoS。 The computing device as claimed in claim 7, wherein the processor is further configured with processor-executable instructions to perform the following operations: identifying the QoS provided by the first communication network by applying a packet loss rate 5QI corresponding to a constant packet loss rate in the first communication network to the first communication network; and by determining the QoS provided by the second communication network within the communication path based on the end-to-end achieved packet loss rate and the constant packet loss rate in the first communication network based on the end-to-end realization The QoS provided by the first communication network and the QoS provided by the first communication network determine the QoS provided by the second communication network in the communication path. 如請求項7所述之計算設備,其中該處理器進一步被配置有處理器可執行指令以執行以下操作: 藉由將與排除該第一通訊網路中的封包丟失的一封包丟失量測程序相關聯的一封包丟失率5QI應用到該第一通訊網路來識別由該第一通訊網路提供的該QoS;並且 藉由基於該端到端實現的封包丟失和該封包丟失量測程序,決定在該通訊路徑內由該第二通訊網路提供的該QoS,來基於該端到端實現的QoS和由該第一通訊網路提供的該QoS,決定在該通訊路徑內由該第二通訊網路提供的該QoS。 The computing device as claimed in claim 7, wherein the processor is further configured with processor-executable instructions to perform the following operations: identifying the QoS provided by the first communication network by applying to the first communication network a packet loss rate 5QI associated with a packet loss measurement procedure that excludes packet loss in the first communication network; and determining the QoS provided by the second communication network within the communication path based on the end-to-end achieved packet loss and the packet loss measurement procedure based on the end-to-end achieved QoS and by the first The QoS provided by the communication network determines the QoS provided by the second communication network within the communication path. 如請求項7所述之計算設備,其中該處理器進一步被配置有處理器可執行指令以執行以下操作: 藉由將與可用頻寬量測程序相關聯的一可用頻寬5QI應用到該第一通訊網路來識別由該第一通訊網路提供的該QoS,該可用頻寬量測程序配置該第一通訊網路的資源使得該第一通訊網路的封包丟失相對於該第二通訊網路的一封包丟失基本上可忽略;並且 藉由基於該端到端實現的可用頻寬和該可用頻寬量測程序,決定在該通訊路徑內由該第二通訊網路提供的該QoS,來基於該端到端實現的QoS和由該第一通訊網路提供的該QoS,決定在該通訊路徑內由該第二通訊網路提供的該QoS。 The computing device as claimed in claim 7, wherein the processor is further configured with processor-executable instructions to perform the following operations: identifying the QoS provided by the first communication network by applying to the first communication network an available bandwidth 5QI associated with an available bandwidth measurement procedure configuring the first communication network The resources of the path make the packet loss of the first communication network substantially negligible relative to the packet loss of the second communication network; and by determining the QoS provided by the second communication network within the communication path based on the end-to-end realized available bandwidth and the available bandwidth measurement procedure, based on the end-to-end realized QoS and by the The QoS provided by the first communication network determines the QoS provided by the second communication network in the communication path. 如請求項7所述之計算設備,其中該處理器進一步被配置有處理器可執行指令以執行以下操作: 藉由將與一可用頻寬量測程序相關聯的一可用頻寬5QI應用到該第一通訊網路來識別由該第一通訊網路提供的該QoS,其中資料封包在該第一通訊網路中背靠背地傳輸;並且 藉由基於該端到端實現的可用頻寬和該可用頻寬量測程序,決定在該通訊路徑內由該第二通訊網路提供的該QoS,來基於該端到端實現的QoS和由該第一通訊網路提供的該QoS,決定在該通訊路徑內由該第二通訊網路提供的該QoS。 The computing device as claimed in claim 7, wherein the processor is further configured with processor-executable instructions to perform the following operations: identifying the QoS provided by the first communication network by applying an available bandwidth 5QI associated with an available bandwidth measurement procedure to the first communication network in which data packets travel back-to-back in the first communication network transmitted; and by determining the QoS provided by the second communication network within the communication path based on the end-to-end realized available bandwidth and the available bandwidth measurement procedure, based on the end-to-end realized QoS and by the The QoS provided by the first communication network determines the QoS provided by the second communication network in the communication path. 如請求項7所述之計算設備,其中該處理器進一步被配置有處理器可執行指令來: 藉由將與用於對沿該通訊路徑傳輸的量測封包執行端到端量測的網路量測程序相關聯的一網路量測5QI應用到該第一通訊網路來識別由該第一通訊網路提供的該QoS;並且 藉由基於該端到端實現的QoS和該網路量測程序,決定在該通訊路徑內由該第二通訊網路提供的該QoS,來基於該端到端實現的QoS和由該第一通訊網路提供的該QoS,決定在該通訊路徑內由該第二通訊網路提供的該QoS。 The computing device of claim 7, wherein the processor is further configured with processor-executable instructions to: identifying by applying to the first communication network a network measurement 5QI associated with a network measurement procedure for performing end-to-end measurements on measurement packets transmitted along the communication path. the QoS provided by the communication network; and by determining the QoS provided by the second communication network within the communication path based on the end-to-end achieved QoS and the network measurement procedure, based on the end-to-end achieved QoS and by the first communication network The QoS provided by the path determines the QoS provided by the second communication network in the communication path. 一種在跨至少兩個通訊網路的一通訊路徑中管理端到端服務品質(QoS)的方法,包括以下步驟: 由一第一通訊網路的一網路元素決定用於經由跨該第一通訊網路和一第二通訊網路的一通訊路徑將封包從一封包源通訊到一封包目的地的一端到端QoS要求; 由該網路元素決定在該通訊路徑內由該第二通訊網路提供的一QoS;並且 基於由該第二通訊網路提供的該QoS來配置該第一通訊網路以提供足夠的QoS來支援該端到端QoS要求。 A method of managing end-to-end quality of service (QoS) in a communication path spanning at least two communication networks, comprising the steps of: determining, by a network element of a first communication network, an end-to-end QoS requirement for communicating packets from a packet source to a packet destination via a communication path across the first communication network and a second communication network; a QoS provided by the second communication network within the communication path is determined by the network element; and The first communication network is configured to provide sufficient QoS to support the end-to-end QoS requirement based on the QoS provided by the second communication network. 如請求項14所述之方法,其中該第一通訊網路是一5G網路並且該第二通訊網路不是一5G網路。The method according to claim 14, wherein the first communication network is a 5G network and the second communication network is not a 5G network. 如請求項14所述之方法,其中由該網路元素決定在該通訊路徑內由該第二通訊網路提供的該QoS之步驟包括決定該第二通訊網路的一封包錯誤率。The method of claim 14, wherein the step of determining, by the network element, the QoS provided by the second communication network within the communication path includes determining a packet error rate of the second communication network. 如請求項16所述之方法,其中配置該第一通訊網路以基於由該第二通訊網路提供的該QoS提供足夠的QoS以支援該端到端QoS要求之步驟包括基於該第二通訊網路的該所決定的封包錯誤率決定該第一通訊網路的一所需封包錯誤率。The method as recited in claim 16, wherein the step of configuring the first communication network to provide sufficient QoS to support the end-to-end QoS requirement based on the QoS provided by the second communication network includes based on the second communication network The determined packet error rate determines a required packet error rate of the first communication network. 如請求項14所述之方法,其中由該網路元素決定在該通訊路徑內由該第二通訊網路提供的該QoS之步驟包括決定該第二通訊網路的一可用傳輸量。The method of claim 14, wherein the step of determining, by the network element, the QoS provided by the second communication network within the communication path includes determining an available throughput of the second communication network. 如請求項18所述之方法,其中配置該第一通訊網路以基於由該第二通訊網路提供的該QoS提供足夠的QoS以支援該端到端QoS要求之步驟包括基於該第二通訊網路的該所決定的可用傳輸量決定該第一通訊網路的一傳輸量需求。The method as recited in claim 18, wherein the step of configuring the first communication network to provide sufficient QoS to support the end-to-end QoS requirements based on the QoS provided by the second communication network includes based on the second communication network The determined available traffic determines a traffic requirement of the first communication network. 如請求項14所述之方法,其中由該網路元素決定在該通訊路徑內由該第二通訊網路提供的該QoS包括: 量測一端到端實現的QoS; 識別由該第一通訊網路提供的一QoS;並且 基於該端到端實現的QoS和由該第一通訊網路提供的該QoS,決定在該通訊路徑內由該第二通訊網路提供的QoS。 The method as claimed in claim 14, wherein the QoS provided by the second communication network in the communication path determined by the network element comprises: Measure the QoS achieved end-to-end; identifying a QoS provided by the first communication network; and Based on the end-to-end realized QoS and the QoS provided by the first communication network, the QoS provided by the second communication network in the communication path is determined. 如請求項20所述之方法,其中: 識別由該第一通訊網路提供的該QoS之步驟包括將與該第一通訊網路中的一恆定封包延遲相對應的一封包延遲量測5G QoS識別符(5QI)應用到該第一通訊網路;並且 基於該端到端實現的QoS和由該第一通訊網路提供的該QoS,決定在該通訊路徑內由該第二通訊網路提供的該QoS,包括基於該端到端實現的封包延遲和該第一通訊網路中的該恆定封包延遲,決定在該通訊路徑內由該第二通訊網路提供的該QoS。 The method as described in Claim 20, wherein: the step of identifying the QoS offered by the first communication network includes applying a packet delay measurement 5G QoS identifier (5QI) corresponding to a constant packet delay in the first communication network to the first communication network; and determining the QoS provided by the second communication network within the communication path based on the end-to-end achieved QoS and the QoS provided by the first communication network, including based on the end-to-end achieved packet delay and the first communication network The constant packet delay in a communication network determines the QoS provided by the second communication network in the communication path. 如請求項20所述之方法,其中: 識別由該第一通訊網路提供的該QoS之步驟包括將與該第一通訊網路中的一恆定封包丟失率相對應的一封包丟失率5QI應用到該第一通訊網路;並且 基於該端到端實現的QoS和由該第一通訊網路提供的該QoS,決定在該通訊路徑內由該第二通訊網路提供的該QoS之步驟,包括基於該端到端實現的封包丟失率和該第一通訊網路中的該恆定封包丟失率,決定在該通訊路徑內由該第二通訊網路提供的該QoS。 The method as described in Claim 20, wherein: identifying the QoS provided by the first communication network includes applying a packet loss rate 5QI corresponding to a constant packet loss rate in the first communication network to the first communication network; and The step of determining the QoS provided by the second communication network within the communication path based on the end-to-end realized QoS and the QoS provided by the first communication network, including based on the end-to-end realized packet loss rate and the constant packet loss rate in the first communication network determine the QoS provided by the second communication network within the communication path. 如請求項21所述之方法,其中: 識別由該第一通訊網路提供的該QoS包括將與排除該第一通訊網路中的封包丟失的一封包丟失量測程序相關聯的一封包丟失率5QI應用到該第一通訊網路;並且 基於該端到端實現的QoS和由該第一通訊網路提供的該QoS,決定在該通訊路徑內由該第二通訊網路提供的該QoS之步驟,包括基於該端到端實現的封包丟失和該封包丟失量測程序,決定在該通訊路徑內由該第二通訊網路提供的該QoS。 The method as claimed in claim 21, wherein: identifying the QoS provided by the first communication network includes applying to the first communication network a packet loss rate 5QI associated with a packet loss measurement procedure that excludes packet loss in the first communication network; and The step of determining the QoS provided by the second communication network in the communication path based on the QoS achieved by the end-to-end and the QoS provided by the first communication network, including packet loss and The packet loss measurement procedure determines the QoS provided by the second communication network in the communication path. 如請求項21所述之方法,其中: 識別由該第一通訊網路提供的該QoS之步驟包括將與一可用頻寬量測程序相關聯的一可用頻寬5QI應用到該第一通訊網路,該可用頻寬量測程序配置該第一通訊網路的資源使得該第一通訊網路的一封包丟失相對於該第二通訊網路的一封包丟失基本上可忽略;並且 基於該端到端實現的QoS和由該第一通訊網路提供的該QoS,決定在該通訊路徑內由該第二通訊網路提供的該QoS之步驟,包括基於該端到端實現的可用頻寬和該可用頻寬量測程序,決定在該通訊路徑內由該第二通訊網路提供的該QoS。 The method as claimed in claim 21, wherein: The step of identifying the QoS provided by the first communication network includes applying to the first communication network an available bandwidth 5QI associated with an available bandwidth measurement procedure configuring the first resources of the communication network are such that a packet loss of the first communication network is substantially negligible relative to a packet loss of the second communication network; and The step of determining the QoS provided by the second communication network within the communication path based on the QoS achieved end-to-end and the QoS provided by the first communication network, including the available bandwidth based on the end-to-end realization and the available bandwidth measurement procedure to determine the QoS provided by the second communication network within the communication path. 如請求項21所述之方法,其中: 識別由該第一通訊網路提供的該QoS包括將與一可用頻寬量測程序相關聯的一可用頻寬5QI應用到該第一通訊網路,其中資料封包在該第一通訊網路中背靠背地傳輸;並且 基於該端到端實現的QoS和由該第一通訊網路提供的該QoS,決定在該通訊路徑內由該第二通訊網路提供的該QoS之步驟,包括基於該端到端實現的可用頻寬和該可用頻寬量測程序,決定在該通訊路徑內由該第二通訊網路提供的該QoS。 The method as claimed in claim 21, wherein: identifying the QoS provided by the first communication network includes applying to the first communication network an available bandwidth 5QI associated with an available bandwidth measurement procedure in which data packets are transmitted back-to-back in the first communication network ;and The step of determining the QoS provided by the second communication network within the communication path based on the QoS achieved end-to-end and the QoS provided by the first communication network, including the available bandwidth based on the end-to-end realization and the available bandwidth measurement procedure to determine the QoS provided by the second communication network within the communication path. 如請求項21所述之方法,其中: 識別由該第一通訊網路提供的該QoS之步驟包括將與用於對沿該通訊路徑傳輸的量測封包執行端到端量測的一網路量測程序相關聯的一網路量測5QI應用到該第一通訊網路;並且 基於該端到端實現的QoS和由該第一通訊網路提供的該QoS,決定在該通訊路徑內由該第二通訊網路提供的該QoS之步驟,包括基於該端到端實現的QoS和該網路量測程序,決定在該通訊路徑內由該第二通訊網路提供的該QoS。 The method as claimed in claim 21, wherein: The step of identifying the QoS provided by the first communication network includes associating a network measurement 5QI with a network measurement procedure for performing end-to-end measurements on measurement packets transmitted along the communication path applied to the first communication network; and The step of determining the QoS provided by the second communication network within the communication path based on the end-to-end achieved QoS and the QoS provided by the first communication network, including based on the end-to-end achieved QoS and the QoS provided by the second communication network A network measurement program determines the QoS provided by the second communication network in the communication path. 一種用作一網路元素的計算設備,包括: 用於決定用於經由跨一第一通訊網路和一第二通訊網路的一通訊路徑將封包從一封包源通訊到一封包目的地的一端到端服務品質(QoS)要求的構件; 用於由該網路元素決定在該通訊路徑內由該第二通訊網路提供的一QoS的構件;及 用於基於由該第二通訊網路提供的該QoS來配置該第一通訊網路以提供足夠的QoS來支援該端到端QoS要求的構件。 A computing device for use as a network element, comprising: means for determining an end-to-end quality of service (QoS) requirement for communicating packets from a packet source to a packet destination via a communication path across a first communication network and a second communication network; means for determining, by the network element, a QoS provided by the second communication network within the communication path; and Means for configuring the first communication network to provide sufficient QoS to support the end-to-end QoS requirement based on the QoS provided by the second communication network. 如請求項27所述之計算設備,其中: 用於由該網路元素決定在該通訊路徑內由該第二通訊網路提供的該QoS的構件包括用於決定該第二通訊網路的一封包錯誤率的構件;及 用於配置該第一通訊網路以基於由該第二通訊網路提供的該QoS提供足夠的QoS以支援該端到端QoS要求的構件包括用於基於該第二通訊網路的所決定的封包錯誤率決定該第一通訊網路的一所需封包錯誤率的構件。 The computing device as claimed in claim 27, wherein: means for determining, by the network element, the QoS provided by the second communication network within the communication path includes means for determining a packet error rate of the second communication network; and The means for configuring the first communication network to provide sufficient QoS to support the end-to-end QoS requirement based on the QoS provided by the second communication network includes determining a packet error rate based on the second communication network A component for determining a required packet error rate of the first communication network. 如請求項27所述之計算設備,其中用於由該網路元素決定在該通訊路徑內由該第二通訊網路提供的該QoS的構件包括用於決定該第二通訊網路的一可用傳輸量的構件;及 用於配置該第一通訊網路以基於由該第二通訊網路提供的該QoS提供足夠的QoS以支援該端到端QoS要求的構件包括用於基於該第二通訊網路的該所決定的可用傳輸量決定該第一通訊網路的一傳輸量需求的構件。 The computing device of claim 27, wherein the means for determining, by the network element, the QoS provided by the second communication network within the communication path includes determining an available throughput of the second communication network components of the means for configuring the first communication network to provide sufficient QoS to support the end-to-end QoS requirement based on the QoS provided by the second communication network includes for the determined available transport based on the second communication network A component that determines a traffic requirement of the first communication network. 如請求項27所述之計算設備,其中用於由該網路元素決定在該通訊路徑內由該第二通訊網路提供的該QoS的構件包括: 用於量測一端到端實現的QoS的構件; 用於識別由該第一通訊網路提供的一QoS的構件;及 用於基於該端到端實現的QoS和由該第一通訊網路提供的該QoS,決定在該通訊路徑內由該第二通訊網路提供的該QoS的構件。 The computing device as claimed in claim 27, wherein the means for determining the QoS provided by the second communication network within the communication path by the network element comprises: Components for measuring QoS achieved end-to-end; means for identifying a QoS provided by the first communication network; and means for determining the QoS provided by the second communication network within the communication path based on the end-to-end implemented QoS and the QoS provided by the first communication network. 一種非暫態處理器可讀取媒體,其上儲存有處理器可執行指令被配置為使一網路元素的一處理器執行操作,包括: 決定用於經由跨一第一通訊網路和一第二通訊網路的一通訊路徑將封包從一封包源通訊到一封包目的地的一端到端服務品質(QoS)要求; 由該網路元素決定在該通訊路徑內由該第二通訊網路提供的一QoS;並且 基於由該第二通訊網路提供的該QoS來配置該第一通訊網路以提供足夠的QoS來支援該端到端QoS要求。 A non-transitory processor-readable medium having stored thereon processor-executable instructions configured to cause a processor of a network element to perform operations, comprising: determining an end-to-end quality of service (QoS) requirement for communicating packets from a packet source to a packet destination via a communication path across a first communication network and a second communication network; a QoS provided by the second communication network within the communication path is determined by the network element; and The first communication network is configured to provide sufficient QoS to support the end-to-end QoS requirement based on the QoS provided by the second communication network.
TW111135152A 2021-11-03 2022-09-16 Managing end-to-end quality of service (qos) in a multi-network communication path TW202322599A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202163263495P 2021-11-03 2021-11-03
US63/263,495 2021-11-03
US17/932,149 2022-09-14
US17/932,149 US20230132963A1 (en) 2021-11-03 2022-09-14 Managing End-To-End Quality Of Service (QoS) In A Multi-Network Communication Path

Publications (1)

Publication Number Publication Date
TW202322599A true TW202322599A (en) 2023-06-01

Family

ID=83688764

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111135152A TW202322599A (en) 2021-11-03 2022-09-16 Managing end-to-end quality of service (qos) in a multi-network communication path

Country Status (2)

Country Link
TW (1) TW202322599A (en)
WO (1) WO2023080962A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8842578B1 (en) * 2013-05-09 2014-09-23 Yehuda Zisapel End-to-end (E2E) application packet flow visibility
WO2017024100A1 (en) * 2015-08-04 2017-02-09 Convida Wireless, Llc Internet of things end-to-end service layer quality of service management
EP3824613A1 (en) * 2018-08-14 2021-05-26 Huawei Technologies Co., Ltd. Time-aware quality-of-service in communication systems

Also Published As

Publication number Publication date
WO2023080962A1 (en) 2023-05-11

Similar Documents

Publication Publication Date Title
TW201922012A (en) Techniques for providing radio resource control and fronthaul control on a wireless fronthaul link
TW202119849A (en) Uplink and downlink streaming bit rate assistance in 4g and 5g networks
CN114731541A (en) User Equipment (UE) mobility history information management
WO2023080961A1 (en) 5g qos provisioning for an end-to-end connection including non-5g networks
TW202315431A (en) 5g non-seamless wireless local area network offload
US11716749B2 (en) Allocating resources to a plurality of mobile devices
TW202207733A (en) Attention (at) interface for radio access network bitrate recommendations
CN114245974B (en) Providing secure communications between computing devices
TW202322599A (en) Managing end-to-end quality of service (qos) in a multi-network communication path
US20230132963A1 (en) Managing End-To-End Quality Of Service (QoS) In A Multi-Network Communication Path
US20230137968A1 (en) 5G QoS Provisioning For An End-to-End Connection Including Non-5G Networks
US11690022B2 (en) Managing transmit power control
US20230093720A1 (en) Securing Application Communication
US20240056888A1 (en) Quality of Service Management for Protocol Data Unit Sets
US20240154908A1 (en) Delay Reporting For Network Segments In An End-To-End Communication Path
US20210105612A1 (en) User plane integrity protection (up ip) capability signaling in 5g/4g systems
WO2022165826A1 (en) Frames-per-second thermal management
WO2021174435A1 (en) Managing a downlink bit rate
TW202320557A (en) Securing application communication
WO2024102249A1 (en) Delay reporting for network segments in an end-to-end communication path
TW202324964A (en) Generic bootstrapping architecture (gba) signaling to indicate need for key renegotiation
CN117917107A (en) Ensuring application communication security
TW202335521A (en) Securing media stream communications
TW202320560A (en) Attention (at) command for managing data measurement reporting