TW202321748A - Optical element - Google Patents

Optical element Download PDF

Info

Publication number
TW202321748A
TW202321748A TW111143816A TW111143816A TW202321748A TW 202321748 A TW202321748 A TW 202321748A TW 111143816 A TW111143816 A TW 111143816A TW 111143816 A TW111143816 A TW 111143816A TW 202321748 A TW202321748 A TW 202321748A
Authority
TW
Taiwan
Prior art keywords
optical element
micro
slope
optical
edge coupler
Prior art date
Application number
TW111143816A
Other languages
Chinese (zh)
Other versions
TWI842205B (en
Inventor
古凱寧
吳明憲
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to US18/070,413 priority Critical patent/US20230168433A1/en
Publication of TW202321748A publication Critical patent/TW202321748A/en
Application granted granted Critical
Publication of TWI842205B publication Critical patent/TWI842205B/en

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Abstract

An optical element including a substrate, a first insulating layer, a first optical waveguide layer, a first edge coupler and a first micro-optical element is provided. The first insulating layer is disposed on the substrate. The first optical waveguide layer is disposed on the first insulating layer, and configured to transmit a light beam. The first edge coupler is disposed on the first insulating layer, and coupled to an end of the first optical waveguide layer. The first micro-optical element is disposed on the substrate, and includes a first inclined surface. There is a first groove between the substrate, the first insulating layer, the first optical waveguide layer and the first edge coupler. The first micro-optical element is located within the first groove. The light beam is sequentially transmitted from the first optical waveguide to the first edge coupler, emitted from the first edge coupler, and reflected by the first inclined surface to an optical fiber connector.

Description

光學元件Optical element

本發明是有關於一種光學元件。The present invention relates to an optical element.

資料中心對於設備頻寬及速度的需求與日俱增。近年光學共封裝(co-packaged optics, CPO)架構興起,當網路交換器(switch)的頻寬進入51.2T世代,光纖封裝密度將遇到瓶頸。因此,光晶片(photonic chip)必須引入波長分波多工(Wavelength Division Multiplexing, WDM)元件,以緩解光纖密度議題。Data centers have ever-increasing demands on device bandwidth and speed. In recent years, the optical co-packaged optics (CPO) architecture has risen. When the bandwidth of the network switch (switch) enters the 51.2T generation, the optical fiber packaging density will encounter a bottleneck. Therefore, the photonic chip must introduce wavelength division multiplexing (Wavelength Division Multiplexing, WDM) components to alleviate the issue of fiber density.

光晶片的輸入/輸出耦合器(I/O coupler)過往泛為使用光柵耦合器,但因其光頻寬窄,不適合與波長分波多工元件串接使用。反之,邊緣耦合器的光頻寬大,適合串接波長分波多工元件,但其最大的問題點在於量測效率非常低,難以導入量產。The input/output coupler (I/O coupler) of the optical chip used to be a grating coupler, but because of its narrow optical bandwidth, it is not suitable for use in series with wavelength division multiplexing components. On the contrary, the wide optical frequency of the edge coupler is suitable for cascading wavelength division multiplexing components, but its biggest problem is that the measurement efficiency is very low, and it is difficult to introduce into mass production.

本發明提供一種光學元件,其能簡單進行量測,因此適於量產。The invention provides an optical element, which can be easily measured and is therefore suitable for mass production.

本發明的一實施例提供一種光學元件,其包括基底、第一絕緣層、第一光波導層、第一邊緣耦合器以及第一微光學元件。第一絕緣層設置於基底上。第一光波導層設置在第一絕緣層上,且用以傳遞光束。第一邊緣耦合器設置在第一絕緣層上,且與第一光波導的一端耦接。第一微光學元件設置在基底上,且包括第一斜面。基底、第一絕緣層、第一光波導層及第一邊緣耦合器之間具有第一凹槽。第一微光學元件位於第一凹槽內。光束依序從第一光波導傳遞至第一邊緣耦合器,從第一邊緣耦合器出射,再被第一斜面反射至光纖連接器。An embodiment of the present invention provides an optical element, which includes a substrate, a first insulating layer, a first optical waveguide layer, a first edge coupler, and a first micro-optical element. The first insulating layer is disposed on the base. The first optical waveguide layer is disposed on the first insulating layer and used for transmitting light beams. The first edge coupler is disposed on the first insulating layer and coupled with one end of the first optical waveguide. The first micro-optical element is disposed on the base and includes a first slope. There is a first groove between the base, the first insulating layer, the first optical waveguide layer and the first edge coupler. The first micro-optical element is located in the first groove. The light beam is sequentially transmitted from the first optical waveguide to the first edge coupler, emerges from the first edge coupler, and is reflected by the first slope to the optical fiber connector.

基於上述,在本發明的一實施例中,由於光學元件採用第一邊緣耦合器,因此適於串接波長分波多工元件。而且,光學元件設有第一微光學元件,並利用第一微光學元件將光束耦合至光纖連接器,因此,本發明實施例的光學元件有效解決晶圓級量測效率過低的問題,並有助於整體系統的量產。Based on the above, in an embodiment of the present invention, since the optical element adopts the first edge coupler, it is suitable for connecting wavelength division multiplexing elements in series. Moreover, the optical element is provided with a first micro-optical element, and uses the first micro-optical element to couple the light beam to the optical fiber connector. Therefore, the optical element in the embodiment of the present invention effectively solves the problem of low efficiency of wafer-level measurement, and Contribute to mass production of the overall system.

圖1是根據本發明的第一實施例的光學元件的示意圖。請參考圖1,本發明的一實施例提供一種光學元件10,其包括基底100、第一絕緣層200、第一光波導層300、第一邊緣耦合器400以及第一微光學元件500。第一絕緣層200設置於基底100上。第一光波導層300設置在第一絕緣層200上,且用以傳遞光束L1。第一邊緣耦合器400設置在第一絕緣層200上,且與第一光波導300的一端耦接。第一微光學元件500設置在基底100上,且包括第一斜面500S1。基底100、第一絕緣層200、第一光波導層300及第一邊緣耦合器400之間具有第一凹槽G。第一微光學元件500位於第一凹槽G內。光束L1依序從第一光波導300傳遞至第一邊緣耦合器400,從第一邊緣耦合器400出射,再被第一斜面500S1反射至光纖連接器F。在一實施例中,光束L1也可依序從光纖連接器F傳遞至第一斜面500S1,被第一斜面500S1反射至第一邊緣耦合器400,並從第一邊緣耦合器400傳遞至第一光波導300。Fig. 1 is a schematic diagram of an optical element according to a first embodiment of the present invention. Please refer to FIG. 1 , an embodiment of the present invention provides an optical element 10 , which includes a substrate 100 , a first insulating layer 200 , a first optical waveguide layer 300 , a first edge coupler 400 and a first micro-optical element 500 . The first insulating layer 200 is disposed on the substrate 100 . The first optical waveguide layer 300 is disposed on the first insulating layer 200 and used for transmitting the light beam L1. The first edge coupler 400 is disposed on the first insulating layer 200 and coupled to one end of the first optical waveguide 300 . The first micro-optical element 500 is disposed on the substrate 100 and includes a first slope 500S1. There is a first groove G between the substrate 100 , the first insulating layer 200 , the first optical waveguide layer 300 and the first edge coupler 400 . The first micro-optical element 500 is located in the first groove G. As shown in FIG. The light beam L1 is sequentially transmitted from the first optical waveguide 300 to the first edge coupler 400 , emerges from the first edge coupler 400 , and is reflected to the optical fiber connector F by the first slope 500S1 . In an embodiment, the light beam L1 can also be transmitted from the optical fiber connector F to the first slope 500S1 in sequence, reflected by the first slope 500S1 to the first edge coupler 400, and then passed from the first edge coupler 400 to the first Optical waveguide 300 .

詳細來說,上述的第一凹槽G例如是對第一邊緣耦合器400、第一光波導層300及第一絕緣層200的邊緣進行深蝕刻後所形成。而第一微光學元件500例如對半導體材料(如矽(Si)、一氮化矽(SiN)、氮氧化矽(SiON)等材質)或金屬以濕蝕刻方式製作出具有第一斜面500S1的微光學元件後,再利用覆晶接合器(flip chip bonder)等方式高精度封裝於第一凹槽G內。或者是,第一微光學元件500的材質例如聚合物(Polymer),並以3D列印技術形成具有第一斜面500S1的微光學元件。接著再利用取放等方式高精度封裝於第一凹槽G內。在另一實施例中,第一微光學元件500也可是矽、一氮化矽、氮氧化矽、聚合物、金屬等材料的混合結構,且折射率較佳是落在1.45至3.5的範圍內,但本發明不以此為限。In detail, the above-mentioned first groove G is formed by etching back the edges of the first edge coupler 400 , the first optical waveguide layer 300 and the first insulating layer 200 , for example. The first micro-optical element 500, for example, wet-etches semiconductor materials (such as silicon (Si), silicon nitride (SiN), silicon oxynitride (SiON), etc.) After the optical element is packaged in the first groove G with high precision by means of a flip chip bonder or the like. Alternatively, the material of the first micro-optical element 500 is polymer, for example, and the micro-optic element with the first slope 500S1 is formed by 3D printing technology. Then, it is packaged in the first groove G with high precision by means of picking and placing. In another embodiment, the first micro-optical element 500 can also be a mixed structure of silicon, silicon nitride, silicon oxynitride, polymer, metal and other materials, and the refractive index preferably falls within the range of 1.45 to 3.5 , but the present invention is not limited thereto.

在本實施例中,第一斜面500S1上鍍有反射的金屬層520,使光束L1可被第一斜面500S1反射。In this embodiment, the reflective metal layer 520 is coated on the first slope 500S1 , so that the light beam L1 can be reflected by the first slope 500S1 .

在本實施例中,第一微光學元件500更包括底面500S2。底面500S2與第一斜面500S1連接。第一微光學元件500透過底面500S2與基底100連接。第一斜面500S1與底面500S2之間的夾角θ落在30度至60度的範圍。In this embodiment, the first micro-optical element 500 further includes a bottom surface 500S2. The bottom surface 500S2 is connected to the first inclined surface 500S1. The first micro-optical element 500 is connected to the substrate 100 through the bottom surface 500S2. The included angle θ between the first slope 500S1 and the bottom surface 500S2 falls within a range of 30 degrees to 60 degrees.

在本實施例中,第一微光學元件500與第一邊緣耦合器400之間具有空氣間隙A。由於不希望光束L1在空氣中的傳輸距離太長,因此第一微光學元件500與第一邊緣耦合器400之間的距離d落在0.5微米(μm)至10微米的範圍內。In this embodiment, there is an air gap A between the first micro-optical element 500 and the first edge coupler 400 . Since the transmission distance of the light beam L1 in the air is not expected to be too long, the distance d between the first micro-optical element 500 and the first edge coupler 400 falls within a range of 0.5 micrometers (μm) to 10 micrometers.

圖2是圖1中在第一微光學元件處的放大示意圖。請同時參考圖1與圖2,在本實施例中,第一微光學元件500在垂直於光束L1於第一光波導層300的傳遞方向且垂直於基底100往第一光波導層300的方向上的長度L落在10微米至1毫米(mm)的範圍內。第一微光學元件500設置在第一邊緣耦合器400旁,其斜面500S1功能是將光束L1反射,將光束L1轉折向上,朝光纖連接器F傳遞,此第一微光學元件500的幾何結構長度L落在10微米(μm)至1毫米(mm)範圍內。FIG. 2 is an enlarged schematic view of the first micro-optical element in FIG. 1 . Please refer to FIG. 1 and FIG. 2 at the same time. In this embodiment, the first micro-optical element 500 is perpendicular to the transmission direction of the light beam L1 in the first optical waveguide layer 300 and perpendicular to the direction from the substrate 100 to the first optical waveguide layer 300. The length L on falls within the range of 10 micrometers to 1 millimeter (mm). The first micro-optical element 500 is arranged beside the first edge coupler 400, and the function of its slope 500S1 is to reflect the light beam L1, turn the light beam L1 upward, and pass it toward the optical fiber connector F. The geometric structure length of the first micro-optical element 500 L falls within a range of 10 micrometers (μm) to 1 millimeter (mm).

在本實施例中,第一微光學元件500在沿光束L1於第一光波導層300的傳遞方向上的寬度W2落在5微米至125微米的範圍內。In this embodiment, the width W2 of the first micro-optical element 500 along the transmission direction of the light beam L1 in the first optical waveguide layer 300 falls within a range of 5 micrometers to 125 micrometers.

在本實施例中,第一微光學元件500在沿基底100往第一光波導層300的方向上的高度H落在1微米至62.5微米的範圍內。In this embodiment, the height H of the first micro-optical element 500 along the direction from the substrate 100 to the first optical waveguide layer 300 falls within a range of 1 μm to 62.5 μm.

基於上述,在本發明的一實施例中,由於光學元件10採用第一邊緣耦合器400,因此適於串接波長分波多工元件。而且,光學元件10設有第一微光學元件500,並利用第一微光學元件500將光束L1耦合至光纖連接器F。因此,相較於傳統使用邊緣耦合器的光學元件需切割晶圓才能對光晶片進行量測,本發明實施例的光學元件10有效解決晶圓級(Wafer-level)量測效率過低的問題,並有助於整體系統的量產。Based on the above, in an embodiment of the present invention, since the optical element 10 adopts the first edge coupler 400 , it is suitable for connecting wavelength division multiplexing elements in series. Furthermore, the optical element 10 is provided with a first micro-optical element 500 , and the light beam L1 is coupled to the optical fiber connector F by using the first micro-optic element 500 . Therefore, compared to the traditional optical elements using edge couplers that need to cut the wafer to measure the optical wafer, the optical element 10 of the embodiment of the present invention effectively solves the problem of low wafer-level measurement efficiency , and contribute to the mass production of the overall system.

此外,微光學元件500的製作過程除了可利用蝕刻製程直接在光學元件10形成斜面500S1,本案也採用封裝方式(例如flip-chip bonder)將微光學元件500整合在邊緣耦合器400側邊,形成45度反射斜面500S1,其具有幾個優點:(1)微光學元件500的幾何結構彈性度大(如圖3、圖4、圖5A、圖5B、圖6、圖7);(2)不需用酸、鹼溶液濕式蝕刻出反射斜面500S1,製程相對簡單;(3) 微光學元件500與底面500S2接合溫度低(例如以PDMS bonding 80~100度C),不會影響其他前段製程已做好的元件(註:一般CMOS後段製程的熱預算約在400度C以下)。In addition, in addition to forming the bevel 500S1 directly on the optical element 10 through the etching process, the fabrication process of the micro-optical element 500 also adopts a packaging method (such as flip-chip bonder) to integrate the micro-optical element 500 on the side of the edge coupler 400 to form The 45-degree reflective slope 500S1 has several advantages: (1) the geometric structure of the micro-optical element 500 has a large degree of elasticity (as shown in Figures 3, 4, 5A, 5B, 6, and 7); (2) it does not The reflective slope 500S1 needs to be wet-etched with acid and alkali solutions, and the manufacturing process is relatively simple; (3) The bonding temperature of the micro-optical element 500 and the bottom surface 500S2 is low (for example, PDMS bonding 80~100 degrees C), which will not affect other previous processes. Completed components (Note: The thermal budget of the general CMOS back-end process is about 400 degrees C or less).

圖3是根據本發明的第二實施例的光學元件的示意圖。請參考圖3,光學元件10A與圖1的光學元件10大致相同,其主要差異如下。在本實施例中,第一微光學元件500A更包括第二斜面500S3。第二斜面500S3相對於第一斜面500S1,且朝向基底100。其中,第二斜面500S3有助於在第一微光學元件500A的取放過程中對準於第一凹槽G,使第一微光學元件500A自動滑入第一凹槽G。Fig. 3 is a schematic diagram of an optical element according to a second embodiment of the present invention. Please refer to FIG. 3 , the optical element 10A is substantially the same as the optical element 10 in FIG. 1 , the main differences are as follows. In this embodiment, the first micro-optical element 500A further includes a second slope 500S3. The second slope 500S3 is opposite to the first slope 500S1 and faces the substrate 100 . Wherein, the second slope 500S3 helps to align with the first groove G during the pick-and-place process of the first micro-optical element 500A, so that the first micro-optic element 500A slides into the first groove G automatically.

在本實施例中,在第一光波導層300往基底100的方向上,第一斜面500S1的底部位置P1低於第一光波導層300的底部P2,其有助於提升光束L1從第一邊緣耦合器400至第一斜面500S1的光耦合效率。In this embodiment, in the direction from the first optical waveguide layer 300 to the substrate 100, the bottom position P1 of the first slope 500S1 is lower than the bottom P2 of the first optical waveguide layer 300, which helps to lift the light beam L1 from the first The optical coupling efficiency of the edge coupler 400 to the first slope 500S1.

此外,在本實施例中,第一斜面500S1上鍍有反射的金屬層520,使光束L1可被第一斜面500S1反射。而光學元件10A的其餘優點相似於光學元件10,在此不再贅述。In addition, in this embodiment, the reflective metal layer 520 is coated on the first slope 500S1 , so that the light beam L1 can be reflected by the first slope 500S1 . The rest of the advantages of the optical element 10A are similar to those of the optical element 10 and will not be repeated here.

圖4是根據本發明的第三實施例的光學元件的示意圖。請參考圖4,光學元件10B與圖3的光學元件10A大致相同,其主要差異如下。在本實施例中,光學元件10B更包括懸臂結構600。懸臂結構600與第一微光學元件500A相連接。在另一實施例中,懸臂結構600可與第一微光學元件500A一體成形。其中,懸臂結構600用以承靠在第一邊緣耦合器400上,使第一斜面500S1的底部位置低於第一光波導層300的底部,進而提升光束L1從第一邊緣耦合器400至第一斜面500S1的光耦合效率。舉例來說,當進行蝕刻製程後使第一凹槽G太深時,第一斜面500S1的設置高度會太低而影響光學元件的光耦合效率。因此,設有懸臂結構600可避免前述第一凹槽G太深的問題。Fig. 4 is a schematic diagram of an optical element according to a third embodiment of the present invention. Please refer to FIG. 4 , the optical element 10B is substantially the same as the optical element 10A in FIG. 3 , the main differences are as follows. In this embodiment, the optical element 10B further includes a cantilever structure 600 . The cantilever structure 600 is connected to the first micro-optical element 500A. In another embodiment, the cantilever structure 600 can be integrally formed with the first micro-optical element 500A. Wherein, the cantilever structure 600 is used to lean on the first edge coupler 400, so that the bottom of the first inclined surface 500S1 is lower than the bottom of the first optical waveguide layer 300, so as to elevate the light beam L1 from the first edge coupler 400 to the second Optical coupling efficiency of a bevel 500S1. For example, when the first groove G is too deep after the etching process, the setting height of the first slope 500S1 will be too low, which will affect the light coupling efficiency of the optical element. Therefore, providing the cantilever structure 600 can avoid the aforementioned problem that the first groove G is too deep.

此外,在本實施例中,第一斜面500S1上鍍有反射的金屬層520,使光束L1可被第一斜面500S1反射。而光學元件10B的其餘優點相似於光學元件10A,在此不再贅述。In addition, in this embodiment, the reflective metal layer 520 is coated on the first slope 500S1 , so that the light beam L1 can be reflected by the first slope 500S1 . The remaining advantages of the optical element 10B are similar to those of the optical element 10A, and will not be repeated here.

圖5A是根據本發明的第四實施例的光學元件的示意圖。圖5B是圖5A中在透鏡處的放大示意圖。請參考圖5A與圖5B,光學元件10C與圖4的光學元件10B大致相同,其主要差異如下。在本實施例中,光學元件10C更包括透鏡700。透鏡700配置於第一斜面500S1上,設置於光束L1的傳遞路徑上,且用於準直光束L1。在另一實施例中,透鏡700可與懸臂結構600一體成形,或透鏡700可與懸臂結構600及第一微光學元件500A一體成形。其中,光束L1從第一邊緣耦合器400出射後被第一斜面500S1反射至透鏡700,穿透透鏡700後再傳遞至光纖連接器F。或者是,光束L1依序從光纖連接器F傳遞至透鏡700,穿透透鏡700後傳遞至第一斜面500S1,再被第一斜面500S1反射至第一邊緣耦合器400。Fig. 5A is a schematic diagram of an optical element according to a fourth embodiment of the present invention. FIG. 5B is an enlarged schematic view of the lens in FIG. 5A . Please refer to FIG. 5A and FIG. 5B , the optical element 10C is substantially the same as the optical element 10B in FIG. 4 , and the main differences are as follows. In this embodiment, the optical element 10C further includes a lens 700 . The lens 700 is disposed on the first slope 500S1 , disposed on the transmission path of the light beam L1 , and used for collimating the light beam L1 . In another embodiment, the lens 700 can be integrally formed with the cantilever structure 600 , or the lens 700 can be integrally formed with the cantilever structure 600 and the first micro-optical element 500A. Wherein, the light beam L1 emerges from the first edge coupler 400 and is reflected by the first slope 500S1 to the lens 700 , passes through the lens 700 and then is transmitted to the optical fiber connector F. Alternatively, the light beam L1 is sequentially transmitted from the optical fiber connector F to the lens 700 , passes through the lens 700 , is transmitted to the first slope 500S1 , and is reflected by the first slope 500S1 to the first edge coupler 400 .

在本實施例中,透鏡700的直徑D較佳是對應於光纖連接器F的直徑,例如是落在單模(single-mode)光纖連接器與多模(multi-mode)光纖連接器的直徑大小之間。在一實施例中,透鏡700的直徑D落在8微米至62.5微米的範圍內。In this embodiment, the diameter D of the lens 700 preferably corresponds to the diameter of the fiber optic connector F, for example, the diameter of a single-mode fiber optic connector and a multi-mode fiber optic connector. between sizes. In one embodiment, the diameter D of the lens 700 falls within a range of 8 microns to 62.5 microns.

在本實施例中,透鏡700與第一邊緣耦合器400重疊區域的距離S落在0微米至D/2的範圍內。透鏡700的厚度t落在50微米至1毫米的範圍內。由於光學元件10C設有透鏡700,其可提高光耦合效率。In this embodiment, the distance S between the overlapping area of the lens 700 and the first fringe coupler 400 falls within a range of 0 μm to D/2. The thickness t of the lens 700 falls within a range of 50 μm to 1 mm. Since the optical element 10C is provided with the lens 700, it can improve the light coupling efficiency.

此外,在本實施例中,第一斜面500S1上鍍有反射的金屬層520,使光束L1可被第一斜面500S1反射。而光學元件10C的其餘優點相似於光學元件10B,在此不再贅述。In addition, in this embodiment, the reflective metal layer 520 is coated on the first slope 500S1 , so that the light beam L1 can be reflected by the first slope 500S1 . The remaining advantages of the optical element 10C are similar to those of the optical element 10B, and will not be repeated here.

圖6是根據本發明的第五實施例的光學元件的示意圖。請參考圖6,光學元件10D與圖3的光學元件10A大致相同,其主要差異如下。在本實施例中,第一微光學元件500D中的第一斜面500S1與第二斜面500S3直接相連接。Fig. 6 is a schematic diagram of an optical element according to a fifth embodiment of the present invention. Please refer to FIG. 6 , the optical element 10D is substantially the same as the optical element 10A in FIG. 3 , the main differences are as follows. In this embodiment, the first slope 500S1 in the first micro-optical element 500D is directly connected to the second slope 500S3 .

此外,在本實施例中,第一斜面500S1上鍍有反射的金屬層520,使光束L1可被第一斜面500S1反射。而光學元件10D的其餘優點相似於光學元件10A,在此不再贅述。In addition, in this embodiment, the reflective metal layer 520 is coated on the first slope 500S1 , so that the light beam L1 can be reflected by the first slope 500S1 . The remaining advantages of the optical element 10D are similar to those of the optical element 10A, and will not be repeated here.

圖7是根據本發明的第六實施例的光學元件的示意圖。請參考圖7,光學元件10E與圖1的光學元件10大致相同,其主要差異如下。在本實施例中,第一微光學元件500E更包括垂直面500S4。垂直面500S4的兩端分別連接至第一斜面500S1與底面500S3。Fig. 7 is a schematic diagram of an optical element according to a sixth embodiment of the present invention. Please refer to FIG. 7 , the optical element 10E is substantially the same as the optical element 10 in FIG. 1 , the main differences are as follows. In this embodiment, the first micro-optical element 500E further includes a vertical surface 500S4. Two ends of the vertical surface 500S4 are connected to the first inclined surface 500S1 and the bottom surface 500S3 respectively.

此外,在本實施例中,第一斜面500S1上鍍有反射的金屬層520,使光束L1可被第一斜面500S1反射。而光學元件10E的其餘優點相似於光學元件10,在此不再贅述。In addition, in this embodiment, the reflective metal layer 520 is coated on the first slope 500S1 , so that the light beam L1 can be reflected by the first slope 500S1 . The rest of the advantages of the optical element 10E are similar to those of the optical element 10 and will not be repeated here.

圖8是根據本發明的第七實施例的光學元件的示意圖。請參考圖8,光學元件10F與圖1的光學元件10大致相同,其主要差異如下。在本實施例中,光學元件10F更包括至少一第二絕緣層200’、至少一第二光波導層(未顯示於圖中)、至少一第二邊緣耦合器400’以及至少一第二微光學元件500’。第二絕緣層200’設置於基底100上。相似於圖1的第一光波導層300,第二光波導層設置在第二絕緣層200’上。第二邊緣耦合器400’設置在第二絕緣層200’上,且與第二光波導的一端(在垂直於圖6紙面方向上)耦接。第二微光學元件500’設置在基底100上,且第二微光學元件500’位於第一微光學元件500旁。每一第二微光學元件500’包括第三斜面500S1’。基底100、第二絕緣層200’、第二光波導層及第二邊緣耦合器400’之間具有至少一第二凹槽G’,且第二凹槽G’位於第一凹槽G旁。第二微光學元件500’位於第二凹槽G’內。Fig. 8 is a schematic diagram of an optical element according to a seventh embodiment of the present invention. Please refer to FIG. 8 , the optical element 10F is substantially the same as the optical element 10 in FIG. 1 , the main differences are as follows. In this embodiment, the optical element 10F further includes at least one second insulating layer 200', at least one second optical waveguide layer (not shown in the figure), at least one second edge coupler 400' and at least one second micro Optical element 500'. The second insulating layer 200' is disposed on the substrate 100. Similar to the first optical waveguide layer 300 of FIG. 1, the second optical waveguide layer is disposed on the second insulating layer 200'. The second edge coupler 400' is disposed on the second insulating layer 200', and is coupled to one end of the second optical waveguide (in a direction perpendicular to the paper plane of FIG. 6 ). The second micro-optical element 500' is disposed on the substrate 100, and the second micro-optic element 500' is located beside the first micro-optic element 500. Each second micro-optical element 500' includes a third slope 500S1'. There is at least one second groove G' between the substrate 100, the second insulating layer 200', the second optical waveguide layer and the second edge coupler 400', and the second groove G' is located beside the first groove G. The second micro-optical element 500' is located in the second groove G'.

其中,第一微光學元件500及這些第二微光學元件500’在光路上各自對應一個光纖連接器。也就是說,可利用單顆轉移或巨量轉移將第一微光學元件500及第二微光學元件500’整合在光學元件10F,因此提升整體晶圓級量測的資料流通量(throughput)。Wherein, the first micro-optical element 500 and the second micro-optical elements 500' respectively correspond to an optical fiber connector on the optical path. That is to say, the first micro-optical element 500 and the second micro-optical element 500' can be integrated into the optical element 10F by single-chip transfer or mass transfer, thereby improving the overall data throughput of wafer-level measurement.

此外,在本實施例中,第一斜面500S1及第三斜面500S1’上鍍有反射的金屬層520,使光束可被第一斜面500S1或第三斜面500S1’反射。而光學元件10F的其餘優點相似於光學元件10,在此不再贅述。In addition, in this embodiment, the reflective metal layer 520 is coated on the first slope 500S1 and the third slope 500S1', so that the light beam can be reflected by the first slope 500S1 or the third slope 500S1'. The rest of the advantages of the optical element 10F are similar to those of the optical element 10 and will not be repeated here.

綜上所述,在本發明的一實施例中,由於光學元件採用第一邊緣耦合器,因此適於串接波長分波多工元件。而且,光學元件設有第一微光學元件,並利用第一微光學元件將光束耦合至光纖連接器。因此,相較於傳統使用邊緣耦合器的光學元件需切割晶圓才能對光晶片進行量測,本發明實施例的光學元件有效解決晶圓級量測效率過低的問題,並有助於整體系統的量產。To sum up, in an embodiment of the present invention, since the optical element adopts the first edge coupler, it is suitable for connecting wavelength division multiplexing elements in series. Furthermore, the optical element is provided with a first micro-optical element, and uses the first micro-optic element to couple the light beam to the fiber optic connector. Therefore, compared with the traditional optical elements using edge couplers that need to cut the wafer to measure the optical wafer, the optical element of the embodiment of the present invention effectively solves the problem of low measurement efficiency at the wafer level, and contributes to the overall mass production of the system.

10、10A、10B、10C、10D、10E、10F:光學元件 100:基底 200:第一絕緣層 200’:第二絕緣層 300:第一光波導層 400:第一邊緣耦合器 400’:第二邊緣耦合器 500、500A、500D、500E:第一微光學元件 500’:第二微光學元件 500S1:第一斜面 500S1’:第三斜面 500S2:底面 500S3:第二斜面 500S4:垂直面 520:金屬層 600:懸臂結構 700:透鏡 A:空氣間隙 d、S:距離 D:直徑 t:厚度 F:光纖連接器 G:第一凹槽 G’:第二凹槽 H:高度 L:長度 L1:光束 P1:底部位置 P2:底部 W2:寬度 θ:夾角 10, 10A, 10B, 10C, 10D, 10E, 10F: Optical components 100: base 200: first insulating layer 200': second insulating layer 300: the first optical waveguide layer 400: First edge coupler 400': Second edge coupler 500, 500A, 500D, 500E: the first micro-optical element 500': second micro optics 500S1: first bevel 500S1’: the third bevel 500S2: Bottom 500S3: second bevel 500S4: vertical plane 520: metal layer 600: cantilever structure 700: lens A: air gap d, S: distance D: diameter t: thickness F: fiber optic connector G: first groove G': second groove H: height L: Length L1: light beam P1: bottom position P2: bottom W2: width θ: included angle

圖1是根據本發明的第一實施例的光學元件的示意圖。 圖2是圖1中在第一微光學元件處的放大示意圖。 圖3是根據本發明的第二實施例的光學元件的示意圖。 圖4是根據本發明的第三實施例的光學元件的示意圖。 圖5A是根據本發明的第四實施例的光學元件的示意圖。 圖5B是圖5A中在透鏡處的放大示意圖。 圖6是根據本發明的第五實施例的光學元件的示意圖。 圖7是根據本發明的第六實施例的光學元件的示意圖。 圖8是根據本發明的第七實施例的光學元件的示意圖。 Fig. 1 is a schematic diagram of an optical element according to a first embodiment of the present invention. FIG. 2 is an enlarged schematic view of the first micro-optical element in FIG. 1 . Fig. 3 is a schematic diagram of an optical element according to a second embodiment of the present invention. Fig. 4 is a schematic diagram of an optical element according to a third embodiment of the present invention. Fig. 5A is a schematic diagram of an optical element according to a fourth embodiment of the present invention. FIG. 5B is an enlarged schematic view of the lens in FIG. 5A . Fig. 6 is a schematic diagram of an optical element according to a fifth embodiment of the present invention. Fig. 7 is a schematic diagram of an optical element according to a sixth embodiment of the present invention. Fig. 8 is a schematic diagram of an optical element according to a seventh embodiment of the present invention.

10:光學元件 10: Optical components

100:基底 100: base

200:第一絕緣層 200: first insulating layer

300:第一光波導層 300: the first optical waveguide layer

400:第一邊緣耦合器 400: First edge coupler

500:第一微光學元件 500: The first micro-optical element

500S1:第一斜面 500S1: first bevel

500S2:底面 500S2: Bottom

520:金屬層 520: metal layer

A:空氣間隙 A: air gap

d:距離 d: distance

F:光纖連接器 F: fiber optic connector

G:第一凹槽 G: first groove

L1:光束 L1: light beam

θ:夾角 θ: included angle

Claims (10)

一種光學元件,包括: 一基底; 一第一絕緣層,設置於該基底上; 一第一光波導層,設置在該第一絕緣層上,且用以傳遞一光束; 一第一邊緣耦合器,設置在該第一絕緣層上,且與該第一光波導的一端耦接;以及 一第一微光學元件,設置在該基底上,且包括一第一斜面, 其中該基底、該第一絕緣層、該第一光波導層及該第一邊緣耦合器之間具有一第一凹槽,該第一微光學元件位於該第一凹槽內, 其中該光束依序從該第一光波導傳遞至該第一邊緣耦合器,從該第一邊緣耦合器出射,再被該第一斜面反射至一光纖連接器。 An optical element comprising: a base; a first insulating layer disposed on the base; a first optical waveguide layer, disposed on the first insulating layer, and used to transmit a light beam; a first edge coupler disposed on the first insulating layer and coupled to one end of the first optical waveguide; and A first micro-optical element is disposed on the substrate and includes a first slope, wherein there is a first groove between the substrate, the first insulating layer, the first optical waveguide layer and the first edge coupler, and the first micro-optical element is located in the first groove, The light beam is sequentially transmitted from the first optical waveguide to the first edge coupler, emerges from the first edge coupler, and is reflected by the first slope to a fiber optic connector. 如請求項1所述的光學元件,其中該第一斜面上鍍有一反射的金屬層。The optical element as claimed in claim 1, wherein the first slope is coated with a reflective metal layer. 如請求項1所述的光學元件,其中該第一微光學元件更包括一底面,該底面與該第一斜面連接,該第一微光學元件透過該底面與該基底連接, 其中該第一斜面與該底面之間的夾角落在30度至60度的範圍。 The optical element as claimed in claim 1, wherein the first micro-optical element further includes a bottom surface, the bottom surface is connected to the first inclined surface, and the first micro-optic element is connected to the substrate through the bottom surface, Wherein the included angle between the first slope and the bottom surface is in the range of 30 degrees to 60 degrees. 如請求項1所述的光學元件,其中該第一微光學元件與該第一邊緣耦合器之間具有空氣間隙。The optical element as claimed in claim 1, wherein there is an air gap between the first micro-optical element and the first edge coupler. 如請求項1所述的光學元件,其中該第一微光學元件更包括一第二斜面,該第二斜面相對於該第一斜面,且朝向該基底, 其中在該第一光波導層往該基底的方向上,該第一斜面的底部位置低於該第一光波導層的底部。 The optical element as claimed in claim 1, wherein the first micro-optical element further comprises a second slope, the second slope is opposite to the first slope and faces the substrate, Wherein in the direction from the first optical waveguide layer to the base, the bottom of the first slope is lower than the bottom of the first optical waveguide layer. 如請求項5所述的光學元件,其中該第一斜面與該第二斜面直接相連接。The optical element as claimed in claim 5, wherein the first slope is directly connected to the second slope. 如請求項3所述的光學元件,其中該第一微光學元件更包括一垂直面,該垂直面的兩端分別連接至該第一斜面與該底面。The optical element as claimed in claim 3, wherein the first micro-optical element further includes a vertical surface, and two ends of the vertical surface are respectively connected to the first inclined surface and the bottom surface. 如請求項1所述的光學元件,更包括: 一透鏡,配置於該第一斜面上,設置於該光束的傳遞路徑上,且用於準直該光束, 其中該光束從該第一邊緣耦合器出射後被該第一斜面反射至該透鏡。 The optical element as described in Claim 1, further comprising: a lens, arranged on the first slope, arranged on the transmission path of the light beam, and used to collimate the light beam, Wherein the light beam emerges from the first edge coupler and is reflected by the first slope to the lens. 如請求項7所述的光學元件,其中該透鏡與該第一邊緣耦合器重疊區域的距離落在0微米至D/2的範圍內,其中D為該透鏡的直徑。The optical element as claimed in claim 7, wherein the distance between the lens and the overlapping region of the first edge coupler falls within the range of 0 microns to D/2, wherein D is the diameter of the lens. 如請求項1所述的光學元件,更包括: 至少一第二絕緣層,設置於該基底上; 至少一第二光波導層,設置在該至少一第二絕緣層上; 至少一第二邊緣耦合器,設置在該至少一第二絕緣層上,且與該至少一第二光波導的一端耦接;以及 至少一第二微光學元件,設置在該基底上,每一第二微光學元件包括一第三斜面, 其中該基底、該至少一第二絕緣層、該至少一第二光波導層及該至少一第二邊緣耦合器之間具有至少一第二凹槽,該至少一第二微光學元件位於該至少一第二凹槽內。 The optical element as described in Claim 1, further comprising: at least one second insulating layer disposed on the substrate; at least one second optical waveguide layer disposed on the at least one second insulating layer; at least one second edge coupler disposed on the at least one second insulating layer and coupled to one end of the at least one second optical waveguide; and At least one second micro-optical element is disposed on the substrate, each second micro-optic element includes a third slope, Wherein there is at least one second groove between the substrate, the at least one second insulating layer, the at least one second optical waveguide layer and the at least one second edge coupler, and the at least one second micro-optical element is located at the at least one a second groove.
TW111143816A 2021-11-29 2022-11-16 Optical element TWI842205B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/070,413 US20230168433A1 (en) 2021-11-29 2022-11-28 Optical element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163284002P 2021-11-29 2021-11-29
US63/284,002 2021-11-29

Publications (2)

Publication Number Publication Date
TW202321748A true TW202321748A (en) 2023-06-01
TWI842205B TWI842205B (en) 2024-05-11

Family

ID=

Similar Documents

Publication Publication Date Title
US10215919B2 (en) Optical coupling arrangement
US7218809B2 (en) Integrated planar composite coupling structures for bi-directional light beam transformation between a small mode size waveguide and a large mode size waveguide
JP6172679B2 (en) Optical coupling structure, semiconductor device, optical interconnect structure for multi-chip module, and manufacturing method for optical coupling structure
US9482818B2 (en) Optically coupling waveguides
CN110196473B (en) Photonic integrated circuit package
TW201713976A (en) A fiber to chip optical coupler
CN113474705A (en) Edge coupling through unetched surfaces of photonic chips
JP2014191301A (en) Spot size converter, manufacturing method thereof and optical integrated circuit device
Snyder et al. Packaging and assembly challenges for 50G silicon photonics interposers
US20210333491A1 (en) Photonic chip with integrated collimation structure
US20180031791A1 (en) Electro-optical interconnect platform
JP2004029798A (en) Alignment device
JP2011107384A (en) Method for manufacturing optical coupling device
US11448836B2 (en) Probe device and test device including the same comprising an optical fiber inserted into a hole of an intermediate substrate having a probe mirror
JPH10282364A (en) Assembly of optical device
Romero-Garcia et al. Alignment tolerant couplers for silicon photonics
CN112649918B (en) Edge coupler
Mangal et al. Expanded-beam backside coupling interface for alignment-tolerant packaging of silicon photonics
TW202321748A (en) Optical element
US20230168433A1 (en) Optical element
TWI781035B (en) Devices and systems for optical signal processing, and method for fabricating a semiconductor device
US20230130045A1 (en) Detachable connector for co-packaged optics
JP2019219459A (en) Plane light wave circuit and optical device
TWI805350B (en) Optical probe package structure
JP6427072B2 (en) Optical fiber block