TW202320931A - System and method for automatically generating a feeder - Google Patents

System and method for automatically generating a feeder Download PDF

Info

Publication number
TW202320931A
TW202320931A TW110144260A TW110144260A TW202320931A TW 202320931 A TW202320931 A TW 202320931A TW 110144260 A TW110144260 A TW 110144260A TW 110144260 A TW110144260 A TW 110144260A TW 202320931 A TW202320931 A TW 202320931A
Authority
TW
Taiwan
Prior art keywords
model
solidification
casting
riser
hot spot
Prior art date
Application number
TW110144260A
Other languages
Chinese (zh)
Other versions
TWI823196B (en
Inventor
洪啟銘
馮玉麟
許富淵
Original Assignee
財團法人金屬工業研究發展中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人金屬工業研究發展中心 filed Critical 財團法人金屬工業研究發展中心
Priority to TW110144260A priority Critical patent/TWI823196B/en
Publication of TW202320931A publication Critical patent/TW202320931A/en
Application granted granted Critical
Publication of TWI823196B publication Critical patent/TWI823196B/en

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Road Repair (AREA)
  • Preliminary Treatment Of Fibers (AREA)

Abstract

A system and a method for automatically generating a feeder are provided. The system includes a storage device, a memory and a processor. The storage device is configured to store a feeder model data base. The processor is configured to load instructions stored in the memory to perform the method for automatically generating a feeder. The method includes: calculating a moduli and a center position of a cast model of a cast prototype; performing a solidification analysis on the cast model and calculating a position of a hot spot of the cast model; selecting a target data set from data sets of relationships between various values of moduli and feeder modules in accordance with the center position and the value of the moduli; determining a feeder module in accordance with the target data set and mounting the feeder module on the hot spot of the caster model; performing a solidification analysis on the caster model having the feeder module to determine whether the feeder module is capable of being the feeder of the cast prototype.

Description

自動生成冒口之系統與方法System and method for automatically generating risers

本發明是有關於一種自動生成冒口之系統與方法。The invention relates to a system and method for automatically generating risers.

在金屬鑄造製程中,鑄件成型時的凝固熱點通常會形成縮孔缺陷,因此在進行鑄造方案設計時,需判斷凝固熱點位置,並在此位置設計冒口(Feeder),以消除縮孔的發生。例如,運用鑄造成型的模擬軟體(例如:FLOW-3D Cast)來判讀出鑄件成型的縮孔位置,然後再設計冒口在此位置上。然而,這樣的冒口設計方法,通常需要採用試誤法來進行大量的冒口設計與模擬計算,因此需要耗費數個小時以上的時間才能完成冒口的設計。In the metal casting process, the hot spot of solidification during casting molding usually forms shrinkage cavity defects. Therefore, when designing the casting plan, it is necessary to judge the position of the solidification hot spot and design the feeder at this position to eliminate the occurrence of shrinkage cavity. . For example, use casting modeling simulation software (such as FLOW-3D Cast) to interpret the shrinkage cavity position of casting molding, and then design the riser at this position. However, such a riser design method usually requires a large amount of riser design and simulation calculations by using the trial and error method, so it takes more than several hours to complete the riser design.

為了解決上述問題,本發明之實施例提出一種自動生成冒口之系統與方法,其可大幅減少冒口設計的時間,並自動化地生成與鑄件相符的冒口。In order to solve the above problems, the embodiment of the present invention proposes a system and method for automatically generating risers, which can greatly reduce the time for designing risers, and automatically generate risers that conform to castings.

根據本發明之一實施例,上述自動生成冒口之系統包含:儲存裝置、記憶體以及處理器。儲存裝置係用以儲存一冒口模型資料庫,其中此冒口模型資料庫包含複數筆凝固模數值與凝固時間關係資料,這些凝固模數值與凝固時間關係資料對應至複數個候選幾何模型。記憶體係用以儲存複數個指令。處理器係用以載入這些指令,以進行:提供一鑄件原型之一鑄件模型;計算鑄件模型之一凝固模數值以及一鑄件中心位置;對鑄件模型進行凝固分析(無冒口凝固分析),以得到一分析結果;根據此分析結果來計算出鑄件模型之至少一熱點之位置;根據鑄件模型之凝固模數值以及鑄件熱點中心位置來從凝固模數值與凝固時間關係資料中選擇出至少一筆目標資料;根據此至少一目標資料來從候選幾何模型中決定出至少一個冒口模型,並將此至少一冒口模型組合於鑄件模型之熱點中心軸上,以獲得一組合模型;對此組合模型進行凝固分析,以判斷此組合模型之至少一熱點位置是否滿足一預設條件;以及當組合模型之熱點位置滿足預設條件時,決定此冒口模型為鑄件原型之冒口。According to an embodiment of the present invention, the above-mentioned system for automatically generating risers includes: a storage device, a memory, and a processor. The storage device is used to store a riser model database, wherein the riser model database includes a plurality of solidification modulus values and solidification time relationship data, and the solidification modulus values and solidification time relationship data correspond to a plurality of candidate geometric models. The memory system is used to store a plurality of instructions. The processor is used to load these instructions to: provide a casting model of a casting prototype; calculate a solidification modulus value of the casting model and a casting center position; perform a solidification analysis (no riser solidification analysis) on the casting model, To obtain an analysis result; calculate the position of at least one hot spot of the casting model according to the analysis result; select at least one target from the solidification modulus value and the solidification time relationship data according to the solidification modulus value of the casting model and the center position of the casting hot spot Data; determine at least one riser model from the candidate geometric model according to the at least one target data, and combine the at least one riser model on the central axis of the hot spot of the casting model to obtain a combined model; for the combined model Carrying out solidification analysis to judge whether at least one hot spot position of the combined model satisfies a preset condition; and when the hot spot position of the combined model satisfies the preset condition, it is determined that the riser model is the riser of the casting prototype.

在一些實施例中,凝固模數值與凝固時間關係資料係一對一地對應至複數個凝固模數與凝固時間關係曲線,這些凝固模數與凝固時間關係曲線係一對一地對應至候選幾何模型。In some embodiments, the freeze modulus value and freeze time relationship data are mapped one-to-one to a plurality of freeze modulus and freeze time curves, and the freeze modulus and freeze time curves are mapped one-to-one to candidate geometries. Model.

在一些實施例中,當該處理器根據分析結果來計算出鑄件模型之熱點之位置時,處理器進行:根據分析結果之一最晚達到完全固化所對應之鑄件模型位置來決定鑄件模型之熱點位置。In some embodiments, when the processor calculates the position of the hot spot of the casting model according to the analysis results, the processor performs: determine the hot spot of the casting model according to the position of the casting model corresponding to one of the analysis results that reaches complete solidification at the latest Location.

在一些實施例中,當處理器判斷組合模型之至少一熱點位置是否滿足預設條件時,處理器進行:判斷組合模型之至少一熱點位置與鑄件中心位置之間的距離是否大於預設距離;以及當組合模型之熱點位置與鑄件中心位置之間的距離大於預設距離時,判定前述之預設條件被滿足。In some embodiments, when the processor judges whether the at least one hot spot position of the combined model satisfies a preset condition, the processor proceeds to: determine whether the distance between the at least one hot spot position of the combined model and the central position of the casting is greater than a preset distance; And when the distance between the hot spot position of the combined model and the center position of the casting is greater than a preset distance, it is determined that the aforementioned preset condition is satisfied.

在一些實施例中,處理器係應用查沃里諾夫設計法則(Chvorinov’s Rule)來根據鑄件模型之凝固模數值以及鑄件中心位置從凝固模數值與凝固時間關係資料中選擇出目標資料。In some embodiments, the processor applies Chvorinov's Rule to select the target data from the solidification modulus value and solidification time relationship data according to the solidification modulus value of the casting model and the center position of the casting.

根據本發明之一實施例,上述自動生成冒口之方法係由一自動生成冒口系統所執行,且包含:提供一冒口模型資料庫,其中此冒口模型資料庫包含複數筆凝固模數值與凝固時間關係資料,這些凝固模數值與凝固時間關係資料對應至複數個候選幾何模型;提供一鑄件原型之一鑄件模型;計算鑄件模型之一凝固模數值以及一鑄件中心位置;對鑄件模型進行凝固分析(無冒口凝固分析),以得到一分析結果;根據此分析結果來計算出鑄件模型之至少一熱點之位置;根據鑄件模型之凝固模數值以及鑄件熱點中心位置來從凝固模數值與凝固時間關係資料中選擇出至少一筆目標資料;根據此至少一目標資料來從候選幾何模型中決定出至少一個冒口模型,並將此至少一冒口模型組合於鑄件模型之熱點中心軸上,以獲得一組合模型;對此組合模型進行凝固分析,以判斷此組合模型之至少一熱點位置是否滿足一預設條件;以及當組合模型之熱點位置滿足預設條件時,決定此冒口模型為鑄件原型之冒口。According to an embodiment of the present invention, the above-mentioned method for automatically generating a riser is executed by an automatic riser generation system, and includes: providing a riser model database, wherein the riser model database contains a plurality of solidification modulus values and solidification time relationship data, these solidification modulus values and solidification time relationship data correspond to a plurality of candidate geometric models; provide a casting model of a casting prototype; calculate a solidification modulus value of a casting model and a casting center position; Solidification analysis (no riser solidification analysis) to obtain an analysis result; calculate the position of at least one hot spot of the casting model according to the analysis result; according to the solidification modulus value of the casting model and the center position of the casting hot spot, the solidification modulus value and Select at least one target data from the solidification time relationship data; determine at least one riser model from the candidate geometric models according to the at least one target data, and combine the at least one riser model on the central axis of the hot spot of the casting model, A combination model is obtained; solidification analysis is performed on the combination model to determine whether at least one hot spot position of the combination model satisfies a preset condition; and when the hot spot position of the combination model meets the preset condition, it is determined that the riser model is The riser of the casting prototype.

在一些實施例中,凝固模數值與凝固時間關係資料係一對一地對應至複數個凝固模數與凝固時間關係曲線,這些凝固模數與凝固時間關係曲線係一對一地對應至候選幾何模型。In some embodiments, the freeze modulus value and freeze time relationship data are mapped one-to-one to a plurality of freeze modulus and freeze time curves, and the freeze modulus and freeze time curves are mapped one-to-one to candidate geometries. Model.

在一些實施例中,根據該分析結果來計算出該鑄件模型之該至少一熱點之步驟包含:根據上述分析結果之一最晚達到完全凝固所對應之鑄件模型位置來決定鑄件模型之熱點位置。In some embodiments, the step of calculating the at least one hot spot of the casting model according to the analysis result includes: determining the position of the hot spot of the casting model according to the position of the casting model corresponding to the latest complete solidification of one of the above analysis results.

在一些實施例中,判斷組合模型之熱點位置是否滿足預設條件之步驟包含:判斷組合模型之至少一熱點位置與鑄件中心位置之間的距離是否大於一預設距離;以及當組合模型之熱點位置與鑄件中心位置之間的距離大於預設距離時,判定該預設條件被滿足。In some embodiments, the step of judging whether the hot spot position of the combined model satisfies the preset condition includes: judging whether the distance between at least one hot spot position of the combined model and the center of the casting is greater than a preset distance; and when the hot spot of the combined model When the distance between the position and the central position of the casting is greater than a preset distance, it is determined that the preset condition is met.

在一些實施例中,根據鑄件模型之凝固模數值以及鑄件中心位置從凝固模數值與凝固時間關係資料中選擇出筆目標資料之步驟係利用查沃里諾夫設計法則來進行。In some embodiments, the step of selecting a target data from the solidification modulus value and solidification time relationship data according to the solidification modulus value of the casting model and the center position of the casting is performed by using Chavorinov's design rule.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail together with the accompanying drawings.

下文是以實施方式配合附圖作詳細說明,但所提供的實施方式並非用以限制本發明所涵蓋的範圍,而結構運作的描述非用以限制其執行的順序,任何由元件重新組合的結構,所產生具有均等功效的裝置,皆為本發明所涵蓋的範圍。此外,圖式僅以說明為目的,並未依照原尺寸作圖。The following is a detailed description of the embodiment with accompanying drawings, but the provided embodiment is not used to limit the scope of the present invention, and the description of the structure and operation is not used to limit the order of its execution, any structure recombined by components , the resulting devices with equal efficacy are all within the scope of the present invention. In addition, the drawings are for illustrative purposes only and are not drawn to original scale.

請參照圖1,其係繪示根據本發明實施例之自動生成冒口之系統100的功能方塊示意圖。自動生成冒口之系統100包含儲存裝置110、記憶體120以及處理器130。儲存裝置110用以儲存冒口模型資料庫。記憶體120用以儲存複數個指令。處理器130係用以載入記憶體120所儲存之指令,以利用儲存裝置110所儲存之冒口模型資料庫來進行鑄件冒口的自動生成。自動生成冒口之系統100可以,例如個人電腦來實現,其中儲存裝置110可為電腦硬碟以儲存冒口模型資料庫。當處理器130載入記憶體120的指令來進行鑄件冒口的自動生成時,處理器130可存取儲存裝置110,以提供冒口模型資料庫的資料。Please refer to FIG. 1 , which is a functional block diagram of a system 100 for automatically generating risers according to an embodiment of the present invention. The system 100 for automatically generating risers includes a storage device 110 , a memory 120 and a processor 130 . The storage device 110 is used for storing a riser model database. The memory 120 is used for storing a plurality of instructions. The processor 130 is used to load the instruction stored in the memory 120 to use the riser model database stored in the storage device 110 to automatically generate the riser of the casting. The system 100 for automatically generating risers can be realized, for example, by a personal computer, wherein the storage device 110 can be a computer hard disk to store a riser model database. When the processor 130 loads the instructions from the memory 120 to automatically generate the casting riser, the processor 130 can access the storage device 110 to provide the data of the riser model database.

請參照圖2,其係繪示根據本發明實施例之自動生成冒口之方法200的流程示意圖。自動生成冒口之方法200係由自動生成冒口之系統100來執行,以自動化地生成與鑄件相符的冒口。在自動生成冒口之方法200中,首先進行步驟210,以提供冒口模型資料庫以及欲處理之鑄件模型。在本實施例中,鑄件模型係由電腦輔助設計(Computer Aided Design;CAD)軟體以及凝固分析軟體來提供。例如,在本實施例中,如圖3所示,利用電腦輔助設計軟體來建立鑄件的模型,其中電腦輔助設計軟體可提供鑄件模型每個點的座標 。然後,透過外掛的轉換程式(例如,外掛在凝固分析軟體上),將這些座標對應至凝固分析軟體所建立的鑄件模型,如圖4所示,其中顏色越接近藍色的區域代表越靠近固體,顏色越接近(橘)紅色的區域代表越靠近液體。例如,透過凝固分析軟體的網格製造器來使電腦輔助設計軟體(例如Solidworks)提供實體的幾何座標與凝固分析軟體(例如Flow 3D Cast)對應。如此,使用者便可透過轉換程式得到凝固分析軟體中鑄件模型的每個點(網格點)的座標。在本實施例中,鑄件原型為壺鈴,因此其模型也為壺鈴外型,但本發明之實施例並不受限於此。在本發明之其他實施例中,鑄件原型可為其他的幾何形狀或幾何形狀的組成。Please refer to FIG. 2 , which is a schematic flowchart of a method 200 for automatically generating risers according to an embodiment of the present invention. The method 200 for automatically generating risers is performed by the system for automatically generating risers 100 to automatically generate risers conforming to castings. In the method 200 for automatically generating risers, step 210 is first performed to provide a riser model database and a casting model to be processed. In this embodiment, the casting model is provided by computer aided design (Computer Aided Design; CAD) software and solidification analysis software. For example, in this embodiment, as shown in FIG. 3 , a computer-aided design software is used to establish a casting model, wherein the computer-aided design software can provide the coordinates of each point of the casting model. Then, through the plug-in conversion program (for example, plug-in to the solidification analysis software), these coordinates are mapped to the casting model established by the solidification analysis software, as shown in Figure 4, where the color closer to blue represents the closer to the solid , areas closer to (orange) red in color represent closer to the liquid. For example, the geometric coordinates of the entity provided by the computer-aided design software (such as Solidworks) correspond to the solidification analysis software (such as Flow 3D Cast) through the grid generator of the solidification analysis software. In this way, the user can obtain the coordinates of each point (grid point) of the casting model in the solidification analysis software through the conversion program. In this embodiment, the prototype of the casting is a kettlebell, so its model is also the shape of a kettlebell, but the embodiments of the present invention are not limited thereto. In other embodiments of the present invention, the casting prototype may have other geometric shapes or combinations of geometric shapes.

接著,進行步驟220,以計算鑄件模型之凝固模數值以及鑄件中心位置。例如,透過前述的座標值來計算出鑄件模型的鑄件中心位置。又例如,利用查沃里諾夫設計法則(Chvorinov’s Rule)來計算凝固模數值M。Next, step 220 is performed to calculate the solidification modulus value of the casting model and the center position of the casting. For example, the casting center position of the casting model is calculated through the aforementioned coordinate values. As another example, the solidification modulus value M is calculated using Chvorinov's Rule.

然後,進行步驟230和240,以利用前述的凝固分析軟體來對鑄件模型進行凝固分析,並根據分析結果來計算出鑄件模型之至少一熱點之位置,如圖5所示。Then, steps 230 and 240 are performed to perform solidification analysis on the casting model by using the aforementioned solidification analysis software, and calculate the position of at least one hot spot of the casting model according to the analysis results, as shown in FIG. 5 .

在圖5中,外掛程式顯示了鑄件模型每個座標點的凝固分析數據,並計算出鑄件模型的熱點位置以及數量。在本實施例中,以數值解(疊代分析)的方式來找出鑄件模型的熱點位置以及數量。具體而言,鑄件模型的熱點位置為鑄件模型中最後凝固的位置點。例如,設定一凝固時間臨界值,當某些位置點的凝固時間超過此凝固時間閥值,即可視為鑄件模型的熱點位置。在一些實施例中,可根據最晚凝固所對應之位置來決定鑄件模型的熱點位置。如圖5所示,當凝固分析的網格點資訊中,出現3個成對的資訊,例如60、60、47、47、52、52時,代表其為最晚凝固的時間(6307.49271秒),故其對應的網格點(0.00075, 0.00511, -0.00225)為熱點位置。另外,雖然本實施例僅計算出一個熱點,但本發明之實施例並不受限於此。在本發明之其他實施例中,可能計算出2個以上的熱點。In Figure 5, the plug-in program displays the solidification analysis data of each coordinate point of the casting model, and calculates the location and number of hot spots of the casting model. In this embodiment, the position and number of hot spots of the casting model are found out by means of numerical solution (iterative analysis). Specifically, the hot spot position of the casting model is the last solidified point in the casting model. For example, a solidification time critical value is set, and when the solidification time of some position points exceeds the solidification time threshold value, it can be regarded as a hot spot position of the casting model. In some embodiments, the position of the hot spot of the casting model can be determined according to the position corresponding to the latest solidification. As shown in Figure 5, when three pairs of information appear in the grid point information of the solidification analysis, such as 60, 60, 47, 47, 52, and 52, it represents the latest solidification time (6307.49271 seconds) , so the corresponding grid point (0.00075, 0.00511, -0.00225) is the hotspot position. In addition, although this embodiment only calculates one hotspot, the embodiments of the present invention are not limited thereto. In other embodiments of the invention, more than 2 hot spots may be calculated.

接著,進行步驟250,以指定冒口模型與模型組合來產生組合模型。在步驟250中,首先進行步驟251,以根據鑄件模型之凝固模數值M以及鑄件熱點中心位置來從冒口模型資料庫中選擇出至少一筆目標資料。請參照圖6,其係繪示根據本發明實施例之冒口模型資料庫所儲存的資料。冒口模型資料庫包含複數筆凝固模數值與凝固時間關係資料,每一筆資料係對應至一條曲線610,而每條曲線610則對應至一種冒口模型。在本實施例中,冒口模型資料庫包含9筆凝固模數值與凝固時間關係資料(即9條曲線610),而這9筆資料分別對應至盒形LL3L(BOX LL3L)幾何模型、盒形L3L6L(BOX L3L6L) 幾何模型、立方體形(Cube) 幾何模型、卡鉗形(Clipper) 幾何模型、盒形L6L6L(BOX L6L6L) 幾何模型、圓柱形(Cylinder) 幾何模型、明冒口形(Feeder opened) 幾何模型、球形(Sphere) 幾何模型以及暗冒口形(Feeder closed) 幾何模型。上述之9個幾何模型可稱為候選幾何模型。Next, step 250 is performed to generate a combined model by specifying the riser model and combining the models. In step 250, step 251 is firstly performed to select at least one piece of target data from the riser model database according to the solidification modulus value M of the casting model and the center position of the hot spot of the casting. Please refer to FIG. 6 , which shows the data stored in the riser model database according to the embodiment of the present invention. The riser model database includes a plurality of sets of relationship data between solidification modulus and solidification time, each set of data corresponds to a curve 610 , and each curve 610 corresponds to a riser model. In this embodiment, the riser model database contains 9 pieces of data on the relationship between solidification modulus and solidification time (that is, 9 curves 610), and these 9 pieces of data correspond to the box-shaped LL3L (BOX LL3L) geometric model, box-shaped L3L6L (BOX L3L6L) geometric model, cubic (Cube) geometric model, caliper (Clipper) geometric model, box-shaped L6L6L (BOX L6L6L) geometric model, cylindrical (Cylinder) geometric model, open riser (Feeder opened) geometric model Model, Sphere geometry, and Feeder closed geometry. The above nine geometric models can be called candidate geometric models.

在本實施例中,步驟251係透過查沃里諾夫設計法則(Chvorinov’s Rule)來進行。例如,選擇出對應至明冒口形(Feeder opened)幾何模型的曲線610。In this embodiment, step 251 is performed by Chvorinov's Rule. For example, a curve 610 corresponding to a feeder opened geometric model is selected.

然後,進行步驟252中,以根據前述之至少一目標資料來從候選幾何模型中決定出至少一個冒口模型,並將冒口模型組合於鑄件模型之熱點的中心軸上,以獲得一組合模型。例如,在步驟250中,選擇出了對應至暗冒口形(Feeder closed)幾何模型的曲線610,因此可以決定冒口模型的外型為暗冒口形。在一些實施例中,可根據熱點的凝固時間來決定冒口模型的大小。例如,決定冒口模型的高度以及寬度大小。在決定冒口模型的形狀和大小後,將此冒口模型組合於鑄件模型之熱點上來獲得組合模型710,如圖7所示。Then, proceed to step 252 to determine at least one riser model from the candidate geometric models according to the aforementioned at least one target data, and combine the riser model on the central axis of the hot spot of the casting model to obtain a combined model . For example, in step 250 , the curve 610 corresponding to the geometric model of the closed feeder is selected, so the shape of the feeder model can be determined to be the closed feeder. In some embodiments, the size of the riser model can be determined according to the solidification time of the hot spot. For example, determine the height and width of the riser model. After determining the shape and size of the riser model, combine the riser model on the hot spot of the casting model to obtain a combined model 710 , as shown in FIG. 7 .

接著,進行步驟260,以對組合模型710進行凝固分析,如圖8所示,以判斷組合模型710之至少一熱點位置是否滿足一預設條件。在圖8中,顏色越接近藍色的區域代表越靠近固體,顏色越接近(橘)紅色的區域代表越靠近液體。在本實施例中,首先判斷組合模型710之熱點位置與鑄件中心位置之間的距離是否大於一預設距離。如果組合模型710之熱點位置與鑄件中心位置之間的距離大於前述之預設距離時,判定預設條件被滿足。換句話說,步驟260係判斷組合模型710之熱點位置是否離鑄件中心位置足夠遠,以滿足鑄件的需求。Next, step 260 is performed to perform solidification analysis on the combination model 710, as shown in FIG. 8, to determine whether at least one hot spot position of the combination model 710 satisfies a preset condition. In Figure 8, areas closer to blue in color represent closer to solids, and areas closer to (orange) red in color represent closer to liquids. In this embodiment, it is firstly determined whether the distance between the hot spot position of the combined model 710 and the center position of the casting is greater than a preset distance. If the distance between the hot spot position of the combination model 710 and the center position of the casting is greater than the aforementioned preset distance, it is determined that the preset condition is satisfied. In other words, step 260 is to determine whether the hot spot position of the combined model 710 is far enough from the center of the casting to meet the requirements of the casting.

當步驟260判斷組合模型710之熱點位置滿足預設條件時,則進行步驟270,以決定選用的冒口模型為鑄件原形的冒口。也就是說選用的冒口模型為最佳化冒口模型。然而,若步驟260判斷組合模型710之熱點位置無法滿足預設條件時,則回到步驟250,並調整冒口模數與鑄件模數比值,以重新產生新的冒口模型並組合於鑄件模型的熱點上,再進行步驟260來對新的組合模型進行熱點分析。When step 260 judges that the hot spot position of the combination model 710 satisfies the preset condition, then proceed to step 270 to determine the selected riser model as the riser of the casting prototype. That is to say, the selected riser model is the optimized riser model. However, if it is determined in step 260 that the hot spot position of the combination model 710 cannot meet the preset conditions, then return to step 250 and adjust the ratio of the riser modulus to the casting modulus to regenerate a new riser model and combine it with the casting model On the hot spot of the new combined model, perform step 260 to perform hot spot analysis on the new combination model.

在一些實施例中,如果計算出鑄件有兩個以上的熱點,則步驟260會判斷相鄰兩熱點位置之間的距離是否小於預設距離。當相鄰兩熱點位置的距離小於預設距離時,則判定預設條件被滿足。In some embodiments, if it is calculated that the casting has more than two hot spots, step 260 will determine whether the distance between two adjacent hot spots is less than a preset distance. When the distance between two adjacent hot spots is less than the preset distance, it is determined that the preset condition is met.

由以上說明可知,本發明實施例之自動生成冒口之系統100與自動生成冒口之方法200可整合電腦輔助設計軟體以及凝固分析軟體,使得電腦輔助設計軟體的座標點能夠應用至凝固分析軟體上,使得凝固分析軟體所產生的凝固分析結果(例如,凝固時間)能夠參照到鑄件模型的各座標點上,如此便可對每個座標點的凝固分析結果進行處理,而進一步得到鑄件模型的熱點。接著,再指定冒口模型結合於鑄件模型的熱點上,並進行凝固分析,即可找出最佳化的冒口模型。藉此,可縮短鑄件的開發時間,以及節省不必要的成本浪費。As can be seen from the above description, the system 100 for automatically generating risers and the method 200 for automatically generating risers in the embodiment of the present invention can integrate computer-aided design software and solidification analysis software, so that the coordinate points of the computer-aided design software can be applied to the solidification analysis software In this way, the solidification analysis results (for example, solidification time) generated by the solidification analysis software can be referred to each coordinate point of the casting model, so that the solidification analysis results of each coordinate point can be processed, and the casting model can be further obtained hotspot. Then, specify the riser model to be combined with the hot spots of the casting model, and conduct solidification analysis to find out the optimal riser model. In this way, the development time of castings can be shortened, and unnecessary cost waste can be saved.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed above with the embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field may make some changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention should be defined by the scope of the appended patent application.

100:自動生成冒口之系統 120:記憶體 130:處理器 200:自動生成冒口之方法 210~270:步驟 251~252:步驟 610:曲線 710:組合模型 100: System for automatic riser generation 120: memory 130: Processor 200: The method of automatic riser generation 210~270: steps 251~252: Steps 610: curve 710: Combined Model

圖1係繪示根據本發明實施例之自動生成冒口之系統的功能方塊示意圖。 圖2係繪示根據本發明實施例之自動生成冒口之方法的流程示意圖。 圖3係繪示根據本發明實施例之電腦輔助設計軟體中的鑄件模型。 圖4係繪示根據本發明實施例之凝固分析軟體中的鑄件模型。 圖5係繪示根據本發明實施例之轉換程式所計算出的熱點。 圖6係繪示根據本發明實施例之冒口模型資料庫所儲存的資料。 圖7係繪示根據本發明實施例之鑄件模型與冒口模型的組合模型。 圖8係繪示根據本發明實施例之組合模型的凝固分析。 FIG. 1 is a schematic functional block diagram of a system for automatically generating risers according to an embodiment of the present invention. FIG. 2 is a schematic flowchart illustrating a method for automatically generating risers according to an embodiment of the present invention. FIG. 3 illustrates a casting model in computer-aided design software according to an embodiment of the present invention. FIG. 4 shows a casting model in the solidification analysis software according to an embodiment of the present invention. FIG. 5 shows the hot spots calculated by the conversion program according to the embodiment of the present invention. FIG. 6 shows the data stored in the riser model database according to the embodiment of the present invention. Fig. 7 is a diagram illustrating a combined model of a casting model and a riser model according to an embodiment of the present invention. FIG. 8 shows a solidification analysis of a combined model according to an embodiment of the present invention.

none

200:自動生成冒口之方法 200: The method of automatic riser generation

210~270:步驟 210~270: steps

251~252:步驟 251~252: Steps

Claims (10)

一種自動生成冒口之系統,包含: 一儲存裝置,用以儲存一冒口模型資料庫,其中該冒口模型資料庫包含複數筆凝固模數值與凝固時間關係資料,該些凝固模數值與凝固時間關係資料對應至複數個候選幾何模型; 一記憶體,用以儲存複數個指令;以及 一處理器,用以載入該些指令,以進行: 提供一鑄件原型之一鑄件模型; 計算該鑄件模型之一凝固模數值以及一鑄件中心位置; 對該鑄件模型進行凝固分析,以得到一分析結果; 根據該分析結果來計算出該鑄件模型之至少一熱點之位置; 根據該鑄件模型之該凝固模數值以及該鑄件之該至少一熱點之中心位置來從該些凝固模數值與凝固時間關係資料中選擇出至少一筆目標資料; 根據該至少一目標資料來從該些候選幾何模型中決定出至少一個冒口模型,並將該至少一冒口模型組合於該鑄件模型之該至少一熱點之中心軸上,以獲得一組合模型; 對該組合模型進行凝固分析,以判斷該組合模型之至少一熱點位置是否滿足一預設條件;以及 當該組合模型之該至少一熱點位置滿足該預設條件時,決定該冒口模型為鑄件原型之冒口。 A system for automatically generating risers, comprising: A storage device for storing a riser model database, wherein the riser model database includes a plurality of solidification modulus values and solidification time relationship data, and the solidification modulus values and solidification time relationship data correspond to a plurality of candidate geometric models ; a memory for storing a plurality of instructions; and A processor loaded with the instructions for: Provide a casting model of a casting prototype; Calculating a solidification modulus value of the casting model and a casting center position; performing a solidification analysis on the casting model to obtain an analysis result; calculating the position of at least one hot spot of the casting model according to the analysis result; selecting at least one target data from the solidification modulus value and solidification time relationship data according to the solidification modulus value of the casting model and the center position of the at least one hot spot of the casting; Determine at least one riser model from the candidate geometric models according to the at least one target data, and combine the at least one riser model on the central axis of the at least one hot spot of the casting model to obtain a combined model ; performing a solidification analysis on the composite model to determine whether at least one hotspot position of the composite model satisfies a preset condition; and When the at least one hot spot position of the combination model satisfies the preset condition, the riser model is determined to be the riser of the casting prototype. 如請求項1所述之自動生成冒口之系統,其中該些凝固模數值與凝固時間關係資料係一對一地對應至複數個凝固模數與凝固時間關係曲線,該些凝固模數與凝固時間關係曲線係一對一地對應至該些候選幾何模型。The system for automatically generating risers as described in claim 1, wherein the solidification modulus values and solidification time relationship data are one-to-one corresponding to a plurality of solidification modulus and solidification time relationship curves, and the solidification modulus and solidification The time relationship curves correspond one-to-one to the candidate geometric models. 如請求項1所述之自動生成冒口之系統,其中當該處理器根據該分析結果來計算出該鑄件模型之該至少一熱點之位置時,該處理器進行: 根據該分析結果之一最晚達到完全固化所對應之鑄件模型位置來決定該鑄件模型之該熱點位置。 The system for automatically generating risers as described in Claim 1, wherein when the processor calculates the position of the at least one hot spot of the casting model according to the analysis result, the processor: The position of the hot spot of the casting model is determined according to the position of the casting model corresponding to one of the analysis results that reaches complete solidification at the latest. 如請求項1所述之自動生成冒口之系統,其中當該處理器判斷該組合模型之該至少一熱點位置是否滿足該預設條件時,該處理器進行: 判斷該組合模型之該至少一熱點位置與該鑄件中心位置之間的距離是否大於一預設距離;以及 當該組合模型之該至少一熱點位置與該鑄件中心位置之間的距離大於該預設距離時,判定該預設條件被滿足。 The system for automatically generating risers as described in Claim 1, wherein when the processor judges whether the at least one hot spot position of the combination model satisfies the preset condition, the processor: judging whether the distance between the at least one hot spot position of the combined model and the center position of the casting is greater than a preset distance; and When the distance between the at least one hot spot position of the combined model and the center position of the casting is greater than the preset distance, it is determined that the preset condition is satisfied. 如請求項1所述之自動生成冒口之系統,其中該處理器係應用查沃里諾夫設計法則(Chvorinov’s Rule)來根據該鑄件模型之該凝固模數值以及該鑄件中心位置從該些凝固模數值與凝固時間關係資料中選擇出該至少一筆目標資料。The system for automatically generating a riser as described in claim 1, wherein the processor applies Chvorinov's Rule to obtain from the solidification modulus value of the casting model and the center position of the casting from the solidification The at least one piece of target data is selected from the data on the relationship between the modulus value and the solidification time. 一種自動生成冒口之方法,由一自動生成冒口系統所執行,且包含: 提供一冒口模型資料庫,其中該冒口模型資料庫包含複數筆凝固模數值與凝固時間關係資料,該些凝固模數值與凝固時間關係資料對應至複數個候選幾何模型; 提供一鑄件原型之一鑄件模型; 計算該鑄件模型之一凝固模數值以及一鑄件中心位置; 對該鑄件模型進行凝固分析,以得到一分析結果; 根據該分析結果來計算出該鑄件模型之至少一熱點之位置; 根據該鑄件模型之該凝固模數值以及該鑄件之該至少一熱點之中心位置來從該些凝固模數值與凝固時間關係資料中選擇出至少一筆目標資料; 根據該至少一目標資料來從該些候選幾何模型中決定出至少一個冒口模型,並將該至少一冒口模型組合於該鑄件模型之該至少一熱點之中心軸上,以獲得一組合模型; 對該組合模型進行凝固分析,以判斷該組合模型之至少一熱點位置是否滿足一預設條件;以及 當該組合模型之該至少一熱點位置滿足該預設條件時,決定該冒口模型為鑄件原型之冒口。 A method for automatically generating a riser is executed by an automatic riser generation system, and includes: A riser model database is provided, wherein the riser model database includes a plurality of solidification modulus values and solidification time relationship data, and the solidification modulus values and solidification time relationship data correspond to a plurality of candidate geometric models; Provide a casting model of a casting prototype; Calculating a solidification modulus value of the casting model and a casting center position; performing a solidification analysis on the casting model to obtain an analysis result; calculating the position of at least one hot spot of the casting model according to the analysis result; selecting at least one target data from the solidification modulus value and solidification time relationship data according to the solidification modulus value of the casting model and the center position of the at least one hot spot of the casting; Determine at least one riser model from the candidate geometric models according to the at least one target data, and combine the at least one riser model on the central axis of the at least one hot spot of the casting model to obtain a combined model ; performing a solidification analysis on the composite model to determine whether at least one hotspot position of the composite model satisfies a predetermined condition; and When the at least one hot spot position of the combination model satisfies the preset condition, the riser model is determined to be the riser of the casting prototype. 如請求項6所述之自動生成冒口之方法,其中該些凝固模數值與凝固時間關係資料係一對一地對應至複數個凝固模數與凝固時間關係曲線,該些凝固模數與凝固時間關係曲線係一對一地對應至該些候選幾何模型。The method for automatically generating risers as described in claim 6, wherein the solidification modulus values and the solidification time relationship data are one-to-one corresponding to a plurality of solidification modulus and solidification time relationship curves, and the solidification modulus and solidification time The time relationship curves correspond one-to-one to the candidate geometric models. 如請求項6所述之自動生成冒口之方法,其中根據該分析結果來計算出該鑄件模型之該至少一熱點之步驟包含: 根據該分析結果之一最晚達到完全固化所對應之鑄件模型位置來決定該鑄件模型之該熱點位置。 The method for automatically generating a riser as described in Claim 6, wherein the step of calculating the at least one hot spot of the casting model according to the analysis result includes: The position of the hot spot of the casting model is determined according to the position of the casting model corresponding to one of the analysis results that reaches complete solidification at the latest. 如請求項6所述之自動生成冒口之方法,其中判斷該組合模型之該至少一熱點位置是否滿足該預設條件之步驟包含: 判斷該組合模型之該至少一熱點位置與該鑄件中心位置之間的距離是否大於一預設距離;以及 當該組合模型之該至少一熱點位置與該鑄件中心位置之間的距離大於該預設距離時,決定該預設條件被滿足。 The method for automatically generating a riser as described in claim 6, wherein the step of judging whether the at least one hot spot position of the combined model satisfies the preset condition includes: judging whether the distance between the at least one hot spot position of the combined model and the center position of the casting is greater than a preset distance; and When the distance between the at least one hot spot position of the combined model and the center position of the casting is greater than the preset distance, it is determined that the preset condition is satisfied. 如請求項6所述之自動生成冒口之方法,其中根據該鑄件模型之該凝固模數值以及該鑄件中心位置從該些凝固模數值與凝固時間關係資料中選擇出該至少一筆目標資料之步驟係利用查沃里諾夫設計法則(Chvorinov’s Rule)來進行。The method for automatically generating risers as described in Claim 6, wherein the step of selecting the at least one piece of target data from the solidification modulus value and solidification time relationship data according to the solidification modulus value of the casting model and the center position of the casting The system uses Chvorinov's Rule to carry out.
TW110144260A 2021-11-26 2021-11-26 System and method for automatically generating a feeder TWI823196B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110144260A TWI823196B (en) 2021-11-26 2021-11-26 System and method for automatically generating a feeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110144260A TWI823196B (en) 2021-11-26 2021-11-26 System and method for automatically generating a feeder

Publications (2)

Publication Number Publication Date
TW202320931A true TW202320931A (en) 2023-06-01
TWI823196B TWI823196B (en) 2023-11-21

Family

ID=87803964

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110144260A TWI823196B (en) 2021-11-26 2021-11-26 System and method for automatically generating a feeder

Country Status (1)

Country Link
TW (1) TWI823196B (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62240138A (en) * 1986-04-11 1987-10-20 Sumitomo Heavy Ind Ltd Optimum shape deciding method for neck-down core of feeder head used to casting
GB0611430D0 (en) * 2006-06-09 2006-07-19 Foseco Int Improved feeder element for metal casting
ES2802262T3 (en) * 2014-05-19 2021-01-18 Casa Maristas Azterlan Sand mold, molding device consisting of an insertable riser base and the sand mold and method of producing the molding device
CN110990980A (en) * 2019-12-30 2020-04-10 西峡县西泵特种铸造有限公司 Design method of spherical riser of heat-resistant steel volute
CN110991093A (en) * 2020-01-07 2020-04-10 大连远景铸造有限公司 Casting simulation method for replacing heat-insulating riser with riser model
CN113255077B (en) * 2021-05-27 2021-09-21 宁波全力机械模具有限公司 Riser design method of automobile motor end cover and casting mold thereof

Also Published As

Publication number Publication date
TWI823196B (en) 2023-11-21

Similar Documents

Publication Publication Date Title
JP7327943B2 (en) Designing parts that can be manufactured by milling
US11256832B2 (en) Replica selection
JP5383791B2 (en) System and method for modifying features of a solid model
JP7049807B2 (en) Database query based on parametric view functions
US20070027665A1 (en) Method of computer-aided design of a modeled object having several faces
US8111256B2 (en) Method of altering a mesh model using model independent dirichlet parametrization
JP6850116B2 (en) Notch detection
CN106227760A (en) Data base is inquired about by thickness calibration
US11604902B2 (en) Modeling using a weak type definition
US20230021239A1 (en) Generative shell design for simulations
JP2019114260A (en) Design for 3d finite element mesh of 3d part including lattice structure
Singh et al. Systematic approach for automated determination of parting line for die-cast parts
TW202320931A (en) System and method for automatically generating a feeder
CN101794337A (en) CAD (Computer-Aided Design)/CAE (Computer-Aided Engineering) system integration method based on layered architecture
CN107526859B (en) Method, device and system for designing the outer surface of a composite part for producing a mould
CN114036788B (en) Design method, system and medium for generating free hollow casting mold based on image
CN110717291B (en) Welding structure deformation simulation method, device, equipment and storage medium
JP4032755B2 (en) Molding simulation method, molding simulation apparatus, molding simulation program, and computer-readable recording medium recording the molding simulation program
EP3674931A1 (en) Flexible modeling using a weak type definition
JP2003345837A (en) Method and apparatus for generating analytic model
JP2008001088A (en) Prediction method, apparatus, its program, storage medium for secondary weld line, manufacturing method of moldings by using them
EP4254252A1 (en) Gradient-based cad model optimization
CN106777530B (en) Method for interactively determining parting surface of casting
JPH0415761A (en) Analysis of temperature of thermal cycle structure and design device for metallic mold device system
Erber et al. Predicting the local solidification time using spherical neural networks