TW202318469A - Source-conversion unit, multi-beam apparatus and method to configure a multi-beam apparatus - Google Patents
Source-conversion unit, multi-beam apparatus and method to configure a multi-beam apparatus Download PDFInfo
- Publication number
- TW202318469A TW202318469A TW111144648A TW111144648A TW202318469A TW 202318469 A TW202318469 A TW 202318469A TW 111144648 A TW111144648 A TW 111144648A TW 111144648 A TW111144648 A TW 111144648A TW 202318469 A TW202318469 A TW 202318469A
- Authority
- TW
- Taiwan
- Prior art keywords
- beams
- lens
- sample
- objective lens
- electron
- Prior art date
Links
Images
Landscapes
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Abstract
Description
本發明係關於一種具有多帶電粒子束的裝置,更關於一種利用多重帶電粒子束以同時獲得多個掃描區域的影像的裝置。因此,本發明提供的裝置可被用於以高解析和高產量的方式,檢測(inspect)及/或再檢查(review)半導體製造領域的晶圓或光罩。The present invention relates to a device with multiple charged particle beams, and more to a device that uses multiple charged particle beams to obtain images of multiple scanning areas simultaneously. Therefore, the apparatus provided by the present invention can be used to inspect and/or review wafers or reticles in the field of semiconductor manufacturing in a high-resolution and high-throughput manner.
本章節中以下的描述與舉例的內容並不是被本申請案所承認的習知技術。The following descriptions and examples in this section are not the prior art admitted by this application.
在製造半導體電路晶片的過程中,圖案(pattern)缺陷或不被允許的微粒(例如殘餘物)無可避免地會出現在晶圓或光罩的表面,造成產率大幅下降。因此,必須以產率管理工具檢測或再檢查缺陷或者微粒。為了使晶片的性能達到愈來愈高的要求,採用了更小的圖案以及更小的關鍵特徵尺寸。如此,由於衍射效應(diffraction effect),傳統利用光束的產率管理工具逐漸變得無法勝任,而逐漸被利用粒子束的產率管理工具所取代。與光子(photon)束相較,電子束的波長較短因此可提供較好的空間分辨率(spatial resolution)。目前,使用電子束的產率管理工具採用掃描電子顯微鏡(Scanning Electron Microscope,SEM)的單電子束的原理,其被公知的缺點是處理樣品的能力無法應付大量生產。雖然增加電子束電流可改善產量,但隨者電流的增加,庫倫效應(Coulomb Effect)會造成空間分辨率會大幅降低。In the process of manufacturing semiconductor circuit wafers, pattern defects or unacceptable particles (such as residues) will inevitably appear on the surface of the wafer or the mask, resulting in a significant drop in yield. Therefore, defects or particles must be detected or re-inspected with yield management tools. In order to make the performance of the wafer meet the higher and higher requirements, smaller patterns and smaller critical feature sizes are adopted. Thus, due to the diffraction effect, the traditional yield management tools using light beams gradually become incompetent, and are gradually replaced by yield management tools using particle beams. Compared with photon beams, electron beams have shorter wavelengths and thus provide better spatial resolution. At present, the yield management tool using electron beams adopts the single electron beam principle of a Scanning Electron Microscope (SEM), which is known to have the disadvantage that the ability to process samples cannot cope with mass production. Although increasing the electron beam current can improve the yield, but with the increase of the current, the Coulomb Effect (Coulomb Effect) will cause the spatial resolution to be greatly reduced.
為了提升生產力,一種比較好的方法是使用多電子束,其中每個電子束具有小電流。多電子束在待測樣品的觀測表面上形成了多個探測點(probe spots),或簡稱為一探測陣列(a probe spot array)。此多個探測點可分別、同時掃描在樣品的表面上的一大觀測區域內複數個小的掃描區域。每個探測點的電子打到樣品的表面並由此產生二次電子(secondary electrons)。二次電子包含慢的二次電子(能量小於50 eV)以及背散射(backscatter)電子(其能量接近電子的著陸能量(landing energy))。從多個小掃描區域反射的二次電子可分別、同時被多個電子偵測器所收集。從而,相較於使用單一電子束的掃描,多電子束掃描可更快獲得具有多個小掃描區域的大觀測區域的影像。To increase productivity, a better approach is to use multiple electron beams, where each electron beam has a small current. The multiple electron beams form a plurality of probe spots on the observation surface of the sample to be tested, or a probe spot array for short. The plurality of detection points can respectively and simultaneously scan a plurality of small scanning areas within a large observation area on the surface of the sample. Electrons from each probe point strike the surface of the sample and thereby generate secondary electrons. Secondary electrons include slow secondary electrons (with energies less than 50 eV) and backscatter electrons (with energies close to the landing energy of electrons). The secondary electrons reflected from multiple small scanning areas can be separately and simultaneously collected by multiple electron detectors. Thus, multi-beam scanning can obtain images of a large viewing area with multiple small scanning areas faster than scanning using a single electron beam.
多電子束可以分別由來自多個電子源,或者來自單一電子源。對於多電子源而言,多個電子束通常分別透過個別的電子腔(column)聚焦、掃描多個小掃描區域,而從每個小掃描區域產生的二次電子,是由設置於所對應的電子腔內的電子偵測器所偵測。因此,此類裝置通常被稱為多電子腔設備或裝置。在樣品表面,多電子束彼此之間的間距為數個或數十個公釐(mm)的量階。Multiple electron beams can come from multiple electron sources, respectively, or from a single electron source. For multi-electron sources, multiple electron beams are usually focused and scanned through individual electron cavities (columns), and scan multiple small scanning areas, and the secondary electrons generated from each small scanning area are provided by the corresponding Detected by the electron detector in the electron cavity. Therefore, such devices are often referred to as multi-chamber devices or devices. On the sample surface, the distance between multiple electron beams is on the order of several or tens of millimeters (mm).
對於單一電子源而言,通常利用一電子源轉換單元將單一電子源轉換成多個次電子源(sub-sources)。電子源轉換單元包含具有多個射束限制開口的用於射束限制(beamlet-limit)或射束形成(beamlet-forming)的工具或方法,以及一個具有多電子光學元件的用於影像形成的工具或方法。該多個射束限制開口分別將單一電子源產生的一次電子束(primary-electron beam)分成多個次電子束(sub-beams)或射束。該多個電子光學元件影響該多個射束,以分別形成該單一電子源的多個第一平行(虛擬或真實)影像。每個第一影像是一個射束的交叉並且可被看作是發射出對應射束的次電子源。為了增加射束的量,射束之間的間距為微米(micro meter)等級。此外,使用一個一次投影成像系統以及設置在電子腔內的一偏斜掃描單元以分別投影複數個第一平行影像以及分別掃描該多個小掃描區域。而從掃描產生的二次電子由一射束分離器導向至一二次投影成像系統,接著第二投影成像系將二次電子聚焦以分別由設置於單一電子腔內一電子偵測裝置的複數個偵測單元所偵測。該複數個偵測單元可以是邊靠邊設置的多個電子偵測器,或者是一個電子偵測器的多個畫素。由於具有以上特色,上述裝置常被稱為多電子束裝置。For a single electron source, an electron source conversion unit is usually used to convert the single electron source into a plurality of sub-sources. The electron source conversion unit includes a beamlet-limiting or beamlet-forming means or method having a plurality of beam-limiting openings, and a beamlet-forming beamlet-forming device having multiple electron optical elements. tool or method. The plurality of beam-limiting openings respectively divide a primary-electron beam generated by a single electron source into a plurality of sub-beams or beams. The plurality of electron optical elements affect the plurality of beams to respectively form a plurality of first parallel (virtual or real) images of the single electron source. Each first image is a beam intersection and can be considered as a secondary electron source emitting the corresponding beam. In order to increase the amount of beams, the spacing between the beams is on the order of micrometers. In addition, a one-time projection imaging system and an oblique scanning unit disposed in the electronic chamber are used to respectively project a plurality of first parallel images and scan the plurality of small scanning areas respectively. The secondary electrons generated from the scanning are guided to a secondary projection imaging system by a beam splitter, and then the secondary projection imaging system focuses the secondary electrons to be respectively detected by a plurality of electron detection devices arranged in a single electron cavity. detected by a detection unit. The plurality of detection units can be a plurality of electronic detectors arranged side by side, or a plurality of pixels of an electronic detector. Due to the above characteristics, the above-mentioned device is often referred to as a multi-electron beam device.
用於射束限制的工具或方法,通常是一個具有多個穿孔的導電板,其中多個穿孔是作為多個射束限制開口。而影像形成的工作或方法,每個電子光學元件是將一個射束聚焦以形成一個真實影像(如美國專利US7,244,949以及本案所提相關申請案中的第四個申請案),或者將一射束偏斜以形成一個虛擬影像(如美國專利US7,244,949以及本案所提相關申請案中的其他申請案)。圖1和圖2顯示本案所提的第五個相關申請案中的兩個範例。為使表達清楚,圖中只顯示三個射束,並且省略掉偏斜掃描單元、射束分離器、二次投影成像系統,以及電子偵測裝置。The means or method used for beam confinement is typically a conductive plate with a plurality of perforations serving as beam confinement openings. As for the work or method of image formation, each electro-optical element focuses a beam to form a real image (such as US Pat. The beams are deflected to form a virtual image (eg, US Pat. No. 7,244,949 and others in this filed related application). Figures 1 and 2 show two examples from the fifth related application filed in this case. For clarity, only three beams are shown in the figure, and the skew scanning unit, beam splitter, secondary projection imaging system, and electronic detection device are omitted.
如圖1A所示,由電子源101所產生的一次電子束102,被聚光透鏡110聚焦而入射至電子源轉換單元120。電子源轉換單元120包含具有三個預先彎曲微偏斜器(123_1、123_2、123_3)的預先射束彎曲工具123、三個射束限制開口(121_1、121_2、121_3)的射束限制工具121,以及三個電子光學元件(122_1、122_2、122_3)的影像形成工具122。三個預先彎曲微偏斜器(123_1、123_2、123_3)分別將三個射束(102_1、102_2、102_3)偏斜,使其分別正交於三個射束限制開口(121_1、121_2、121_3)。而每個射束限制開口(121_1、121_2、121_3)作為射束限制開口以限制所對應射束的電流。三個電子光學元件(122_1、122_2、122_3)分別將三個射束(102_1、102_2、102_3)偏斜使其朝向光軸100_1,並形成電子源101的三個第一虛擬影像,亦即,每個射束具有一個虛擬交叉(virtual crossover)。一次投影成像系統是物鏡131構成,其將三個被偏斜的射束102_1~3聚焦在樣品8的表面7上,亦即,將三個第一虛擬影像投影在表面7上。因此,三個射束102_1~3在表面7形成三個探測點(102_1s、102_2s、102_3s)。探測點(102_1s、102_2s、102_3s)的電流可以透過調整聚光透鏡110的放大率(power)而改變。如圖1B所示,可動聚光透鏡210將一次電子束102聚焦使其法線入射於電子源轉換單元220的射束限制工具121,因此不需要如圖1A所示的預先射束彎曲工具123。因此,探測點(102_1s、102_2s、102_3s)的電流,可透過調整可動聚光透鏡210的放大率以及位置而改變。如圖1A和圖1B所示,射束(102_1、102_2、102_3)衝擊樣品的表面7的著陸能量(landing energy),其大小可透過調整電子源101及/或樣品表面7的電位而改變。As shown in FIG. 1A , the
在一多電子束裝置,每個射束掃描樣品表面7的一個次視野(sub-FOV(field of view)),而總視野是所有射束的次視野的總和。每個次視野等於或小於樣品表面的射束間距(Ps,圖1A)。為了增加生產力,每個次視野最好可選擇其成像解析度,從而使得其射束間距被改變,以保持次視野的編結。如果是高影像解析度,則使用較小尺寸的畫素且需要較小的次視野,以避免過多的畫素數量。如果是低影像解析度,則使用較大尺寸的畫素且需要較大的次視野,以提高生產力。圖2A顯示低影像解析度的範例。如圖2A的虛線表示,如果探測點102_2s和102_3s可分別被移動到右邊和左邊,則射束間距Ps會由P1變成P2,而總視野會從3×P1增加到3×P2,使得生產力增加。因此,使得射束間距Ps成為可選擇的將是一個較優選的功能。In a multi-beam setup, each beam scans a sub-FOV (field of view) of the
連續掃描模式(一樣品連續移動使正交於一個一次電子束的一掃描方向)是一種習知的方法,使提高傳統單電子束裝置的生產力。如果將這種方法使用在多電子束裝置,則最好將總視野或者探測點陣列的方位,與平台的移動方向匹配。如果在一次投影成像系統內具有一個磁性透鏡,其磁場會旋轉射束以及總視野,這是被眾所周知的。由於磁場會隨著觀測條件,例如著陸能量和多個射束的電流而改變,總視野的旋轉角度也會跟著改變。圖2B顯示一個範例,其中圖1A的物鏡131被一磁性或電磁複合透鏡所取代。例如,當射束102_1~102_3的著陸能量由1 keV變更為2 keV,則探測點102_2S和102_3S會繞著以虛線表示的光軸100_1旋轉一個角度θ。而總視野的方位改變會衝擊連續掃描模式的特性。將探測點陣列的方位保持一致或者使其為可選擇的,可提供改善生產力的更多彈性,因此也是一種較優選的功能。Continuous scan mode (a sample continuously moved such that it is orthogonal to a scan direction of a primary electron beam) is a known method to increase the productivity of conventional single beam setups. If this approach is used in a multi-beam setup, it is desirable to match the overall field of view, or orientation of the array of detection points, to the direction of stage movement. If you have a magnetic lens in a primary projection imaging system, its magnetic field will rotate the beam and therefore the overall field of view, which is well known. As the magnetic field changes with viewing conditions such as landing energy and current across multiple beams, the rotation angle of the overall field of view also changes. FIG. 2B shows an example where the
對於一些樣品,樣品上的圖案的方位與探測點陣列的方位可能需要特定的匹配。將探測點陣列的方位變成可選擇的,可補償因為有限的衝擊精確度(landing accuracy)所造成的不匹配,從而避免再次衝擊所耗的時間,如此可增加生產力。此外,為了有效觀察一樣品的一些圖案,多個射束可能需要以特定的入射角度打在該樣品的表面上。如果使得入射角的角度變成可以選擇的,將可提供各種樣品的可觀察性,因此這將是一種更優選的功能。For some samples, the orientation of the pattern on the sample may need to be specifically matched to the orientation of the probe point array. Making the orientation of the array of detection points selectable compensates for mismatches due to limited landing accuracy, thereby avoiding the time it takes to re-landing, which increases productivity. Furthermore, in order to effectively observe some patterns of a sample, multiple beams may need to hit the surface of the sample at specific angles of incidence. If the angle of incidence could be made selectable, it would provide observability of various samples, so this would be a more preferred function.
本發明將提供實現上述所需功能的方法或裝置,以多重電子束裝置的方式實踐,特別是那些本案所提的相關申請案中實現,並且在半導體製造領域中作為一種產率管理工具。The present invention will provide methods or apparatus for accomplishing the desired functions described above, practiced in the form of multiple electron beam apparatuses, particularly those implemented in the related applications filed in this application, and as a yield management tool in the field of semiconductor manufacturing.
以下列出與本案相關的申請案:The applications related to this case are listed below:
(1)美國專利申請案,公告號US 6,943,349,申請日2001年04月,發明人Pavel Adanec等。(1) US patent application, announcement number US 6,943,349, application date April 2001, inventor Pavel Adanec et al.
(2) 美國專利申請案,公告號US 7,244,949,申請日2006年03月,發明人Ranier Knippelmeyer等。(2) US patent application, announcement number US 7,244,949, application date March 2006, inventor Ranier Knippelmeyer et al.
(3) 美國專利申請案,申請號15/065,342,申請日2016年03月,發明人Weiming Ren等。(3) US patent application, application number 15/065,342, filing date March 2016, inventor Weiming Ren et al.
(4) 美國專利申請案,申請號15/078,369,申請日2016年03月,發明人Weiming Ren等。(4) US patent application, application number 15/078,369, filing date March 2016, inventor Weiming Ren et al.
(5) 美國專利申請案,申請號15/150,858,申請日2016年05月,發明人Xuedong Liu等。(5) US patent application, application number 15/150,858, filing date May 2016, inventor Xuedong Liu et al.
(6) 美國專利申請案,申請號15/213,781,申請日2016年07月,發明人Shuai Li等。(6) US patent application, application number 15/213,781, application date July 2016, inventor Shuai Li et al.
(7) 美國專利申請案,申請號15/216,258,申請日2016年07月,發明人Weiming Ren等。(7) US patent application, application number 15/216,258, application date July 2016, inventor Weiming Ren et al.
(8) 美國專利申請案,申請號15/365,145,申請日2016年11月,發明人Weiming Ren等。(8) US patent application, application number 15/365,145, filing date in November 2016, inventor Weiming Ren et al.
本發明的目的在於提供一種新的多帶電粒子束裝置,以更高的分析率和生產力觀察一樣品,並且增加改變觀測條件的彈性。基於在本案相關申請案所提出的習知多電子束裝置,本發明提供幾種方法以完成一種具有可變視野的新多帶電粒子束裝置。此新的多帶電粒子束裝置具有可變尺寸、方位以及入射角等特徵。因次,該新穎的多帶電粒子束裝置可提供更多彈性,以加速樣品的觀測,並使更多樣品具有可觀測性。更特別的是,該新穎的多帶電粒子束裝置可作為半導體製造產業的一產率管理工具,以檢測及/或再檢查晶圓/光罩,該新穎的多帶電粒子束裝置將很可能可以達到高生產力,並且檢測更多種類的缺陷。The object of the present invention is to provide a new multi-charged particle beam device to observe a sample with higher analysis rate and productivity, and to increase flexibility in changing observation conditions. Based on the conventional multi-electron beam device proposed in the related application of this case, the present invention provides several methods to realize a new multi-charged particle beam device with variable field of view. This new multi-charged particle beam device features variable size, orientation, and angle of incidence. Therefore, the novel multi-charged particle beam device can provide more flexibility to accelerate the observation of samples and make more samples observable. More particularly, the novel multiple charged particle beam device can be used as a yield management tool in the semiconductor manufacturing industry to inspect and/or re-inspect wafers/masks, and the novel multiple charged particle beam device will likely be able to Achieve high productivity and detect a wider variety of defects.
根據上述目的,本發明實施例提供一種多帶電粒子束裝置,用以觀測一樣品的一表面,其包含一電子源、一聚光透鏡、一電子源轉換單元、一物鏡、一偏斜掃描單元、一樣品台、一射束分離器、一二次投影成像系統,以及一電子偵測裝置。該聚光透鏡位於該電子源下方。該電子源轉換單元位於該聚光透鏡下方。該物位於該電子源轉換單元下方。該偏斜掃描單元位於該電子源轉換單元下方。該樣品台位於該物鏡下方。該射束分離器位於該電子源轉換單元下方。該電子偵測裝置具有複數個偵測元件。該電子源,該聚光透鏡,以及該物鏡與該多帶電粒子束裝置的一光軸排列,該樣品台支撐該樣品,該樣品的該表面面向該物鏡。該電子源轉換單元包含具有多個射束限制開口的一射束限制工具,以及具有多個電子光學元件的一影像形成工具,該影像形成工具可沿著光軸移動。該電子源產生一次電子束沿著該光軸,該聚光透鏡聚焦該一次電子束。該一次電子束的多個射束分別通過該些射束限制開口,並且被該些電子光學元件偏斜使其朝向該光軸,以分別形成該電子源的複數個虛擬影像。該物鏡將該多個射束聚焦在該樣品的該表面,以在該表面上形成複數個探測點,該偏斜掃描單元使該多個射束偏斜,以在該表面的一觀測區域內的一複數個掃描區域中掃描該複數個探測點。該複數個探測點分別從該複數個掃描區域產生複數個二次電子束,該些二次電子束被該射束分離器導向該二次投影成像系統,該二次投影成像系統聚焦並保持該複數個二次電子束,使其分別被該複數個偵測元件所偵測,每個該偵測元件因此提供對應一個該掃描區域的一影像訊號。According to the above purpose, an embodiment of the present invention provides a multi-charged particle beam device for observing a surface of a sample, which includes an electron source, a condenser lens, an electron source conversion unit, an objective lens, and a deflection scanning unit , a sample stage, a beam splitter, a secondary projection imaging system, and an electronic detection device. The condenser lens is located below the electron source. The electron source conversion unit is located under the condenser lens. The object is located below the electron source conversion unit. The skew scanning unit is located below the electron source conversion unit. The sample stage is located below the objective lens. The beam splitter is located below the electron source conversion unit. The electronic detection device has a plurality of detection elements. The electron source, the condenser lens, and the objective lens are aligned with an optical axis of the multi-charged particle beam device, the sample stage supports the sample, and the surface of the sample faces the objective lens. The electron source conversion unit includes a beam confining tool with a plurality of beam confining openings, and an image forming tool with a plurality of electron optical elements, the image forming tool is movable along an optical axis. The electron source generates a primary electron beam along the optical axis, and the condenser lens focuses the primary electron beam. Multiple beams of the primary electron beam respectively pass through the beam limiting openings and are deflected toward the optical axis by the electron optical elements to respectively form a plurality of virtual images of the electron source. The objective lens focuses the plurality of beams on the surface of the sample to form a plurality of detection points on the surface, and the deflection scanning unit deflects the plurality of beams to be within an observation area of the surface The plurality of detection points are scanned in a plurality of scanning areas. The plurality of detection points respectively generate a plurality of secondary electron beams from the plurality of scanning areas, and the secondary electron beams are guided by the beam splitter to the secondary projection imaging system, and the secondary projection imaging system focuses and maintains the The plurality of secondary electron beams are respectively detected by the plurality of detection elements, and each detection element therefore provides an image signal corresponding to one scanning area.
在一實施例,上述多帶電粒子束裝置中由於該複數個電子光學元件所致的複數個射束的偏斜角分別被設定,以降低該複數個探測點的離軸偏差。透過沿著該光軸移動該影像形成工具,複數個探測點之間的間距可以一起被調整。該物鏡包含一磁透鏡以及一靜電透鏡,該複數個探測點的方位是可選擇的,透過變更該磁透鏡與該靜電透鏡的變焦倍率而改變探測點的方位。In an embodiment, the deflection angles of the plurality of beams caused by the plurality of electron optical elements in the above-mentioned multi-charged particle beam device are respectively set to reduce the off-axis deviation of the plurality of detection points. By moving the image forming tool along the optical axis, the spacing between a plurality of detection points can be adjusted together. The objective lens includes a magnetic lens and an electrostatic lens. The orientations of the plurality of detection points are optional, and the orientations of the detection points can be changed by changing the zoom ratio of the magnetic lens and the electrostatic lens.
在一實施例,上述多帶電粒子束裝置中偏斜角可確保複數個射束以正交或實質上正交於該表面的方向著陸於該表面。偏斜角可確保複數個射束以一個特定角度著陸於該表面。偏斜掃描單元位於該物鏡的一前聚焦面上。偏斜掃描單元將複數個射束傾斜,使每個射束以相同或實質相同的著陸角著陸於該表面。該多帶電粒子束裝置還可包含位於該電子源轉換單元和該物鏡的前聚焦面之間的一射束傾斜偏斜器。該射束傾斜偏斜器將複數個射束傾斜,使每個射束以相同或實質相同的著陸角著陸於該表面。In one embodiment, the deflection angle in the multiple charged particle beam device can ensure that the plurality of beams land on the surface in a direction normal or substantially normal to the surface. The deflection angle ensures that the beams land on the surface at a specific angle. The skew scanning unit is located on a front focus plane of the objective lens. The skew scan unit tilts the plurality of beams so that each beam lands on the surface at the same or substantially the same landing angle. The multiple charged particle beam device may further include a beam tilt deflector located between the electron source conversion unit and the front focal plane of the objective lens. The beam tilt deflector tilts the plurality of beams so that each beam lands on the surface at the same or substantially the same landing angle.
根據上述目的,本發明實施例提供一種多帶電粒子束裝置,用以觀測一樣品的一表面,其包含一電子源、一聚光透鏡、一電子源轉換單元、一物鏡、一偏斜掃描單元、一樣品台、一射束分離器、一二次投影成像系統,以及一電子偵測裝置。該電子源轉換單元位於該聚光透鏡下方。該物鏡位於該電子源轉換單元下方。該偏斜掃描單元位於該電子源轉換單元下方。該樣品台位於該物鏡下方。該射束分離器位於該電子源轉換單元下方。該電子偵測裝置具有複數個偵測元件。該電子源,該聚光透鏡,以及該物鏡與該多帶電粒子束裝置的一光軸排列,該樣品台支撐該樣品,該樣品的該表面面向該物鏡。該電子源轉換單元包含具有多個射束限制開口的一射束限制工具、一具有複數個第一電子光學元件的第一影像形成工具,以及一具有複數個第二電子光學元件的第二影像形成工具,該第二影像形成工具位於該第一影像形成工具下方並且沿著一徑向移動,且該第一影像形成工具或該第二影像形成工具是作為一主動影像形成工具。該電子源產生一次電子束沿著該光軸,該聚光透鏡聚焦該一次電子束。該一次電子束的多個射束分別通過該些射束限制開口,並且被該些電子光學元件偏斜使其朝向該光軸,以分別形成該電子源的複數個虛擬影像。該物鏡將該多個射束聚焦在該樣品的該表面,以在該表面上形成複數個探測點,該偏斜掃描單元使該多個射束偏斜,以在該表面的一觀測區域內的一複數個掃描區域中掃描該複數個探測點。該複數個探測點分別從該複數個掃描區域產生複數個二次電子束,該些二次電子束被該射束分離器導向該二次投影成像系統,該二次投影成像系統聚焦並保持該複數個二次電子束,使其分別被該複數個偵測元件所偵測,每個該偵測元件因此提供對應一個該掃描區域的一影像訊號。According to the above purpose, an embodiment of the present invention provides a multi-charged particle beam device for observing a surface of a sample, which includes an electron source, a condenser lens, an electron source conversion unit, an objective lens, and a deflection scanning unit , a sample stage, a beam splitter, a secondary projection imaging system, and an electronic detection device. The electron source conversion unit is located under the condenser lens. The objective lens is located below the electron source conversion unit. The skew scanning unit is located below the electron source conversion unit. The sample stage is located below the objective lens. The beam splitter is located below the electron source conversion unit. The electronic detection device has a plurality of detection elements. The electron source, the condenser lens, and the objective lens are aligned with an optical axis of the multi-charged particle beam device, the sample stage supports the sample, and the surface of the sample faces the objective lens. The electron source conversion unit includes a beam confining tool having a plurality of beam confining openings, a first image forming tool having a plurality of first electron optical elements, and a second image forming tool having a plurality of second electron optical elements A forming tool, the second image forming tool is located below the first image forming tool and moves along a radial direction, and the first image forming tool or the second image forming tool is used as an active image forming tool. The electron source generates a primary electron beam along the optical axis, and the condenser lens focuses the primary electron beam. Multiple beams of the primary electron beam respectively pass through the beam limiting openings and are deflected toward the optical axis by the electron optical elements to respectively form a plurality of virtual images of the electron source. The objective lens focuses the plurality of beams on the surface of the sample to form a plurality of detection points on the surface, and the deflection scanning unit deflects the plurality of beams to be within an observation area of the surface The plurality of detection points are scanned in a plurality of scanning areas. The plurality of detection points respectively generate a plurality of secondary electron beams from the plurality of scanning areas, and the secondary electron beams are guided by the beam splitter to the secondary projection imaging system, and the secondary projection imaging system focuses and maintains the The plurality of secondary electron beams are respectively detected by the plurality of detection elements, and each detection element therefore provides an image signal corresponding to one scanning area.
在一實施例,上述多帶電粒子束裝置中由於該主動影像形成工具所致的複數個射束的偏斜角分別被設定,以降低該複數個探測點的離軸偏差。透過於該第一影像形成工具和第二影向形成工具之間切換成該主動影像形成工具,複數個探測點之間的間距可以一起被調整。當第一影像形成工具被選擇,則第二影像形成工具被移出,以避免擋住該複數個射束。該物鏡包含一磁透鏡以及一靜電透鏡。透過改變該磁透鏡和該靜電透鏡的一變焦倍率比,可改變複數個探測點的方位。In an embodiment, the deflection angles of the plurality of beams caused by the active image forming tool in the multi-charged particle beam device are respectively set to reduce the off-axis deviation of the plurality of detection points. By switching between the first image forming tool and the second shadow forming tool to the active image forming tool, the distances between the plurality of detection points can be adjusted together. When the first image forming tool is selected, the second image forming tool is moved out to avoid blocking the plurality of beams. The objective lens includes a magnetic lens and an electrostatic lens. By changing a zoom ratio of the magnetic lens and the electrostatic lens, the orientations of a plurality of detection points can be changed.
在一實施例,上述多帶電粒子束裝置中偏斜角可確保複數個射束以正交或實質上正交於該表面的方向著陸於該表面。偏斜角可確保複數個射束以一個特定角度著陸於該表面。偏斜掃描單元位於該物鏡的一前聚焦面上。偏斜掃描單元將複數個射束傾斜,使每個射束以相同或實質相同的著陸角著陸於該表面。該多帶電粒子束裝置還可包含位於該電子源轉換單元和該物鏡的前聚焦面之間的一射束傾斜偏斜器。該射束傾斜偏斜器將複數個射束傾斜,使每個射束以相同或實質相同的著陸角著陸於該表面。In one embodiment, the deflection angle in the multiple charged particle beam device can ensure that the plurality of beams land on the surface in a direction normal or substantially normal to the surface. The deflection angle ensures that the beams land on the surface at a specific angle. The skew scanning unit is located on a front focus plane of the objective lens. The skew scan unit tilts the plurality of beams so that each beam lands on the surface at the same or substantially the same landing angle. The multiple charged particle beam device may further include a beam tilt deflector located between the electron source conversion unit and the front focal plane of the objective lens. The beam tilt deflector tilts the plurality of beams so that each beam lands on the surface at the same or substantially the same landing angle.
根據上述目的,本發明實施例提供一種多帶電粒子束裝置,用以觀測一樣品的一表面,包含一電子源、一聚光透鏡、一電子源轉換單元、一物鏡、一偏斜掃描單元、一樣品台、一射束分離器、一二次投影成像系統,以及一電子偵測裝置。該聚光透鏡,位於該電子源下方。該電子源轉換單元位於該聚光透鏡下方。該物鏡位於該電子源轉換單元下方。該偏斜掃描單元位於該電子源轉換單元下方。該樣品台位於該物鏡下方。該射束分離器位於該電子源轉換單元下方。該電子偵測裝置具有複數個偵測元件。該電子源,該聚光透鏡,以及該物鏡與該多帶電粒子束裝置的一光軸排列,該物鏡的一第一原理平面可沿著該光軸移動,該樣品台支撐該樣品,該樣品的該表面面向該物鏡。該電子源轉換單元包含具有多個射束限制開口的一射束限制工具,以及具有多個電子光學元件的一影像形成工具。該電子源產生一次電子束沿著該光軸,該聚光透鏡聚焦該一次電子束。該一次電子束的多個射束分別通過該些射束限制開口,並且被該些電子光學元件偏斜使其朝向該光軸,以分別形成該電子源的複數個虛擬影像。該物鏡將該多個射束聚焦在該樣品的該表面,以在該表面上形成複數個探測點,該偏斜掃描單元使該多個射束偏斜,以在該表面的一觀測區域內的一複數個掃描區域中掃描該複數個探測點。該複數個探測點分別從該複數個掃描區域產生複數個二次電子束,該些二次電子束被該射束分離器導向該二次投影成像系統,該二次投影成像系統聚焦並保持該複數個二次電子束,使其分別被該複數個偵測元件所偵測,每個該偵測元件因此提供對應一個該掃描區域的一影像訊號。According to the above purpose, an embodiment of the present invention provides a multi-charged particle beam device for observing a surface of a sample, including an electron source, a condenser lens, an electron source conversion unit, an objective lens, a deflection scanning unit, A sample stage, a beam splitter, a secondary projection imaging system, and an electronic detection device. The condenser lens is located below the electron source. The electron source conversion unit is located under the condenser lens. The objective lens is located below the electron source conversion unit. The skew scanning unit is located below the electron source conversion unit. The sample stage is located below the objective lens. The beam splitter is located below the electron source conversion unit. The electronic detection device has a plurality of detection elements. The electron source, the condenser lens, and the objective lens are arranged on an optical axis of the multi-charged particle beam device, a first principle plane of the objective lens can move along the optical axis, the sample stage supports the sample, and the sample The surface of the lens faces the objective. The electron source conversion unit includes a beam confinement tool with a plurality of beam confinement openings, and an image forming tool with a plurality of electron optical elements. The electron source generates a primary electron beam along the optical axis, and the condenser lens focuses the primary electron beam. Multiple beams of the primary electron beam respectively pass through the beam limiting openings and are deflected toward the optical axis by the electron optical elements to respectively form a plurality of virtual images of the electron source. The objective lens focuses the plurality of beams on the surface of the sample to form a plurality of detection points on the surface, and the deflection scanning unit deflects the plurality of beams to be within an observation area of the surface The plurality of detection points are scanned in a plurality of scanning areas. The plurality of detection points respectively generate a plurality of secondary electron beams from the plurality of scanning areas, and the secondary electron beams are guided by the beam splitter to the secondary projection imaging system, and the secondary projection imaging system focuses and maintains the The plurality of secondary electron beams are respectively detected by the plurality of detection elements, and each detection element therefore provides an image signal corresponding to one scanning area.
在一實施例,上述多帶電粒子束裝置中由於該複數個電子光學元件所致的複數個射束的偏斜角分別被設定,以降低該複數個探測點的離軸偏差。透過沿著該光軸移動該第一原理平面,複數個探測點之間的間距可以一起被調整。In an embodiment, the deflection angles of the plurality of beams caused by the plurality of electron optical elements in the above-mentioned multi-charged particle beam device are respectively set to reduce the off-axis deviation of the plurality of detection points. By moving the first principle plane along the optical axis, the spacing between the plurality of detection points can be adjusted together.
在一實施例,上述多帶電粒子束裝置中偏斜角可確保複數個射束以正交或實質上正交於該表面的方向著陸於該表面。偏斜角可確保複數個射束以一個特定角度著陸於該表面。偏斜掃描單元位於該物鏡的一前聚焦面上。偏斜掃描單元將複數個射束傾斜,使每個射束以相同或實質相同的著陸角著陸於該表面。該多帶電粒子束裝置還可包含位於該電子源轉換單元和該物鏡的前聚焦面之間的一射束傾斜偏斜器。該射束傾斜偏斜器將複數個射束傾斜,使每個射束以相同或實質相同的著陸角著陸於該表面。該物鏡包含一磁透鏡以及一靜電透鏡。靜電透鏡包含一場控電極以及一場移動電極,並且產生一靜電場。場控電極的電位被設定,以控制在該表面上的靜電場,以確保該表面不發生電擊穿(electrical breakdown)。場移動電極的電位被設定,以移動該靜電場以移動第一原理平面。該複數個探測點的方位,可透過變更場電極及/或場移動電極的電位而改變。該多帶電粒子束裝置更包含位於下磁透鏡上方的一上磁透鏡。透過改變上磁透鏡和下磁透鏡的變焦倍率比,可移動該第一原理平面。藉由設定該上磁透鏡和下磁透鏡的極性,可改變複數個探測點的方位。In one embodiment, the deflection angle in the multiple charged particle beam device can ensure that the plurality of beams land on the surface in a direction normal or substantially normal to the surface. The deflection angle ensures that the beams land on the surface at a specific angle. The skew scanning unit is located on a front focus plane of the objective lens. The skew scan unit tilts the plurality of beams so that each beam lands on the surface at the same or substantially the same landing angle. The multiple charged particle beam device may further include a beam tilt deflector located between the electron source conversion unit and the front focal plane of the objective lens. The beam tilt deflector tilts the plurality of beams so that each beam lands on the surface at the same or substantially the same landing angle. The objective lens includes a magnetic lens and an electrostatic lens. The electrostatic lens includes a field control electrode and a field moving electrode, and generates an electrostatic field. The potential of the field control electrodes is set to control the electrostatic field on the surface to ensure that the surface does not undergo electrical breakdown. The potential of the field moving electrodes is set to move the electrostatic field to move the first principle plane. The orientations of the plurality of detection points can be changed by changing the potential of the field electrode and/or the field moving electrode. The multi-charged particle beam device further includes an upper magnetic lens located above the lower magnetic lens. The first principle plane can be moved by changing the zoom ratio of the upper magnetic lens and the lower magnetic lens. By setting the polarity of the upper magnetic lens and the lower magnetic lens, the orientations of a plurality of detection points can be changed.
根據上述目的,本發明實施例提供一種多帶電粒子束裝置,用以觀測一樣品的一表面,包含一電子源、一聚光透鏡、一電子源轉換單元、一轉換透鏡、一場透鏡、一物鏡、一偏斜掃描單元、一樣品台、一射束分離器、一二次投影成像系統,以及一電子偵測裝置。該電子源轉換單元位於該聚光透鏡下方。該轉換透鏡位於該電子源轉換單元下方。該場透鏡位於該轉換透鏡下方。該物鏡位於該場透鏡下方。該偏斜掃描單元位於該電子源轉換單元下方。該樣品台位於該物鏡下方。該射束分離器位於該電子源轉換單元下方。該電子偵測裝置具有複數個偵測元件。該電子源,該聚光透鏡,該轉換透鏡,該場透鏡,以及該物鏡與該多帶電粒子束裝置的一光軸排列,該樣品台支撐該樣品,該樣品的該表面面向該物鏡。該電子源轉換單元包含具有多個射束限制開口的一射束限制工具,以及具有多個電子光學元件的一影像形成工具。該電子源產生一次電子束沿著該光軸,該聚光透鏡聚焦該一次電子束。該一次電子束的多個射束分別通過該些射束限制開口,並且被該些電子光學元件偏斜使其朝向該光軸,以分別形成該電子源的複數個第一虛擬影像。該轉換透鏡將該複數個第一虛擬影像成像於一中間影像平面上,因此於該中間影像平面上形成複數個第二真實影像,該場透鏡位於該中間影像平面上並將該多個射束彎曲,該透鏡將該複數個第二真實影像成像在該樣品的該表面從而在該表面形成複數個探測點,該偏斜掃描單元使該多個射束偏斜,以在該表面的一觀測區域內的一複數個掃描區域中掃描該複數個探測點。該複數個探測點分別從該複數個掃描區域產生複數個二次電子束,該些二次電子束被該射束分離器導向該二次投影成像系統,該二次投影成像系統聚焦並保持該複數個二次電子束,使其分別被該複數個偵測元件所偵測,每個該偵測元件因此提供對應一個該掃描區域的一影像訊號。According to the above purpose, an embodiment of the present invention provides a multi-charged particle beam device for observing a surface of a sample, including an electron source, a condenser lens, an electron source conversion unit, a conversion lens, a field lens, and an objective lens , a skew scanning unit, a sample stage, a beam splitter, a secondary projection imaging system, and an electronic detection device. The electron source conversion unit is located under the condenser lens. The conversion lens is located below the electron source conversion unit. The field lens is located below the conversion lens. The objective lens is located below the field lens. The skew scanning unit is located below the electron source conversion unit. The sample stage is located below the objective lens. The beam splitter is located below the electron source conversion unit. The electronic detection device has a plurality of detection elements. The electron source, the condenser lens, the conversion lens, the field lens, and the objective lens are aligned with an optical axis of the multi-charged particle beam device, the sample stage supports the sample, and the surface of the sample faces the objective lens. The electron source conversion unit includes a beam confinement tool with a plurality of beam confinement openings, and an image forming tool with a plurality of electron optical elements. The electron source generates a primary electron beam along the optical axis, and the condenser lens focuses the primary electron beam. A plurality of beams of the primary electron beam respectively pass through the beam limiting openings, and are deflected by the electron optical elements to be directed toward the optical axis, so as to respectively form a plurality of first virtual images of the electron source. The conversion lens images the plurality of first virtual images on an intermediate image plane, thereby forming a plurality of second real images on the intermediate image plane, and the field lens is located on the intermediate image plane and directs the plurality of beams curved, the lens images the plurality of second real images on the surface of the sample to form a plurality of detection points on the surface, and the deflection scanning unit deflects the plurality of beams for an observation on the surface The plurality of detection points are scanned in a plurality of scanning areas within the area. The plurality of detection points respectively generate a plurality of secondary electron beams from the plurality of scanning areas, and the secondary electron beams are guided by the beam splitter to the secondary projection imaging system, and the secondary projection imaging system focuses and maintains the The plurality of secondary electron beams are respectively detected by the plurality of detection elements, and each detection element therefore provides an image signal corresponding to one scanning area.
在一實施例,上述多帶電粒子束裝置中由於該場透鏡所致的複數個射束的彎曲角分別被設定,以降低該複數個探測點的離軸偏差。由於該複數個光學電子元件所致的複數個射束的偏斜角分別被設定,以調整複數個探測點之間的間距。該物鏡包含一第一磁透鏡以及一第一靜電透鏡。透過改變第一磁透鏡和第一靜電透鏡的變焦倍率比,可改變複數個探測點的方位。該場透鏡包含一第三磁透鏡以及一第三靜電透鏡。透過改變第三磁透鏡和第三靜電透鏡的變焦倍率比,可改變複數個探測點的方位。In an embodiment, the bending angles of the multiple beams caused by the field lens in the multiple charged particle beam device are respectively set to reduce the off-axis deviation of the multiple detection points. The deflection angles of the plurality of beams caused by the plurality of optical and electronic components are respectively set to adjust the distance between the plurality of detection points. The objective lens includes a first magnetic lens and a first electrostatic lens. By changing the zoom ratio of the first magnetic lens and the first electrostatic lens, the orientations of the plurality of detection points can be changed. The field lens includes a third magnetic lens and a third electrostatic lens. By changing the zoom ratio of the third magnetic lens and the third electrostatic lens, the orientations of the plurality of detection points can be changed.
在一實施例,上述多帶電粒子束裝置中由於該複數個光元件所致的複數個射束的偏斜角和彎曲角可確保複數個射束以正交或實質上正交於該表面的方向著陸於該表面。由於該複數個光元件所致的複數個射束的偏斜角和彎曲角可確保複數個射束以一個特定角度著陸於該表面。偏斜掃描單元位於該物鏡的一前聚焦面上。偏斜掃描單元將複數個射束傾斜,使每個射束以相同或實質相同的著陸角著陸於該表面。該多帶電粒子束裝置還可包含位於該電子源轉換單元和該物鏡的前聚焦面之間的一射束傾斜偏斜器。該射束傾斜偏斜器將複數個射束傾斜,使每個射束以相同或實質相同的著陸角著陸於該表面。In one embodiment, the deflection angle and bending angle of the plurality of beams caused by the plurality of optical elements in the above-mentioned multi-charged particle beam device can ensure that the plurality of beams are perpendicular or substantially perpendicular to the surface. direction to land on the surface. The deflection and bending angles of the beams due to the optical elements ensure that the beams land on the surface at a specific angle. The skew scanning unit is located on a front focus plane of the objective lens. The skew scan unit tilts the plurality of beams so that each beam lands on the surface at the same or substantially the same landing angle. The multiple charged particle beam device may further include a beam tilt deflector located between the electron source conversion unit and the front focal plane of the objective lens. The beam tilt deflector tilts the plurality of beams so that each beam lands on the surface at the same or substantially the same landing angle.
根據上述目的,本發明實施例提供一種配置於一多帶電粒子束裝置的方法,用於觀測一樣品的一表面,包含下列步驟:配置一電子源轉換單元的一影像形成工具,其可沿著一光軸移動;以該影像形成工具分別形成一電子源的複數個虛擬影像;以一物鏡將複數個虛擬影像成像於該表面並在該表面上形成複數個探測點;以及移動該影像形成工具以改變該複數個探測點之間的間距。According to the above purpose, an embodiment of the present invention provides a method configured in a multi-charged particle beam device for observing a surface of a sample, comprising the following steps: configuring an image forming tool of an electron source conversion unit, which can be along moving an optical axis; forming a plurality of virtual images of an electron source with the image forming tool; imaging the plurality of virtual images on the surface with an objective lens and forming a plurality of detection points on the surface; and moving the image forming tool to change the distance between the plurality of detection points.
根據上述目的,本發明實施例提供一種配置於一多帶電粒子束裝置的方法,用於觀測一樣品的一表面,包含下列步驟:配置具有一第一影像形成工具和一第二影像形成工具的一電子源轉換單元,其中該第二影像形成工具與一電子源的距離比該第一影像形成工具與該電子源的距離更長,該第二影像形成工具可沿著該多帶電粒子束裝置的徑向移動;以該第一影像形成工具或該第二影像形成工具作為一主動影像形成工具,其中當使用第一影像形成工具,則該第二影像形成工具被移開;以該主動影像形成工具分別形成該電子源的複數個虛擬影像;以一物鏡將複數個虛擬影像成像於該表面並在該表面上形成複數個探測點;以及改變該主動影像形成工具為該第一影像形成工具或該第二影像形成工具,以改變該複數個探測點之間的間距。According to the above purpose, an embodiment of the present invention provides a method configured in a multi-charged particle beam device for observing a surface of a sample, comprising the following steps: configuring a device having a first image forming tool and a second image forming tool An electron source conversion unit, wherein the distance between the second image-forming tool and an electron source is longer than the distance between the first image-forming tool and the electron source, the second image-forming tool can be moved along the multiple charged particle beam device the radial movement of the first image forming tool or the second image forming tool as an active image forming tool, wherein when the first image forming tool is used, the second image forming tool is removed; the active image forming tool The forming tool respectively forms a plurality of virtual images of the electron source; uses an objective lens to image the plurality of virtual images on the surface and forms a plurality of detection points on the surface; and changes the active image forming tool to the first image forming tool or the second image forming tool to change the distance between the plurality of detection points.
根據上述目的,本發明實施例提供一種配置於一多帶電粒子束裝置的方法,用於觀測一樣品的一表面,包含下列步驟:配置一具有一第一原理平面的物鏡,該物鏡可沿著多帶電粒子束裝置的一光軸移動;以一電子源轉換單元的一影像形成工具分別形成一電子源的複數個虛擬影像;以該物鏡將複數個虛擬影像成像於該表面並在該表面上形成複數個探測點;以及移動該第一原理平面以改變該複數個探測點之間的間距。According to the above purpose, an embodiment of the present invention provides a method configured in a multi-charged particle beam device for observing a surface of a sample, comprising the following steps: configuring an objective lens with a first principle plane, the objective lens can be moved along An optical axis movement of a multi-charged particle beam device; a plurality of virtual images of an electron source are respectively formed by an image forming tool of an electron source conversion unit; a plurality of virtual images are imaged on the surface by the objective lens and on the surface forming a plurality of detection points; and moving the first principle plane to change the distance between the plurality of detection points.
根據上述目的,本發明實施例提供一種配置於一多帶電粒子束裝置的方法,用於觀測一樣品的一表面,包含下列步驟:在該多帶電粒子束裝置中配置一具有一下磁透鏡以及一靜電透鏡的物鏡;以一電子源轉換單元的一影像形成工具分別形成一電子源的複數個虛擬影像;以該物鏡將複數個虛擬影像成像於該表面並在該表面上形成複數個探測點;以及改變該下磁透鏡以及該靜電透鏡的變焦倍率的一比例,以選擇該複數個探測點的一方位。According to the above purpose, an embodiment of the present invention provides a method configured in a multi-charged particle beam device for observing a surface of a sample, comprising the following steps: configuring a multi-charged particle beam device with a lower magnetic lens and a An objective lens of an electrostatic lens; a plurality of virtual images of an electron source are respectively formed by an image forming tool of an electron source conversion unit; a plurality of virtual images are imaged on the surface by the objective lens and a plurality of detection points are formed on the surface; And changing a ratio of the zoom ratio of the lower magnetic lens and the electrostatic lens to select an azimuth of the plurality of detection points.
在一實施例,上述方法更包含一配置於該物鏡的一上磁透鏡,該上磁透鏡相較於該下磁透鏡遠離於該表面。在一實施例,上述方法更包含以改變上磁透鏡和下磁透鏡的極性,以改變探測點的方位。In one embodiment, the method further includes an upper magnetic lens disposed on the objective lens, the upper magnetic lens being farther from the surface than the lower magnetic lens. In one embodiment, the above method further includes changing the polarity of the upper magnetic lens and the lower magnetic lens to change the orientation of the detection point.
根據上述目的,本發明實施例提供一種配置於一多帶電粒子束裝置的方法,用於觀測一樣品的一表面,包含下列步驟:以一電子源轉換單元的一影像處理工具將一電子源的複數個射束偏斜,以形成該電子源的複數個第一虛擬影像;以一物鏡將該複數個第一虛擬影像成像於該表面並在該表面上形成複數個探測點;以及設定由於該影像處理工具所致的該複數個射束的偏斜角,使得該複數個射束以相同或實質相同的著陸角著陸於該表面。According to the above purpose, an embodiment of the present invention provides a method configured in a multi-charged particle beam device for observing a surface of a sample, comprising the following steps: using an image processing tool of an electron source conversion unit to convert an electron source to A plurality of beams are deflected to form a plurality of first virtual images of the electron source; an objective lens is used to image the plurality of first virtual images on the surface and form a plurality of detection points on the surface; and setting due to the The deflection angle of the plurality of beams caused by the image processing tool makes the plurality of beams land on the surface at the same or substantially the same landing angle.
在一實施例,上述方法更包含利用改變偏斜角,以相同改變量改變著陸角的步驟。在一實施例,上述方法更包含一利用傾斜掃描單元的步驟,該傾斜掃描單元將複數個射束傾斜,以同樣的改變量改變著陸角。在一實施例,上述方法更包含一利用射束傾斜偏斜器的步驟,該射束傾斜偏斜器將複數個射束傾斜,以同樣的改變量改變複數個射束的著陸角。In one embodiment, the above method further includes the step of changing the landing angle by the same amount by changing the deflection angle. In one embodiment, the above method further includes a step of using the tilt scanning unit to tilt the plurality of beams to change the landing angle by the same amount. In one embodiment, the above method further includes a step of using a beam tilting deflector to tilt the plurality of beams to change the landing angles of the plurality of beams by the same amount.
根據上述目的,本發明實施例提供一種配置於一多帶電粒子束裝置的方法,用於觀測一樣品的一表面,包含下列步驟:以一電子源轉換單元的一影像處理工具將一電子源的複數個射束偏斜,以形成該電子源的複數個第一虛擬影像;以一轉換透鏡將該複數個第一虛擬影像成像於一中間影像平面並且形成複數個第二真實影像;將一場透鏡設於該中間影像平面上以將該複數個射束彎曲;以及以一物鏡將複數個第二真實影像成像於該表面並且在該表面上形成複數個探測點。According to the above purpose, an embodiment of the present invention provides a method configured in a multi-charged particle beam device for observing a surface of a sample, comprising the following steps: using an image processing tool of an electron source conversion unit to convert an electron source to A plurality of beams are deflected to form a plurality of first virtual images of the electron source; a conversion lens is used to image the plurality of first virtual images on an intermediate image plane and form a plurality of second real images; a field lens It is arranged on the intermediate image plane to bend the plurality of beams; and an objective lens is used to image a plurality of second real images on the surface and form a plurality of detection points on the surface.
在一實施例,上述方法更包含改變由於影像形成工具造成的複數個射束的偏斜角以改變複數個探測點的間距的步驟。在一實施例,上述方法更包含改變由於影像形成工具造成的複數個射束的偏斜角以及由於場透鏡造成的複數個射束的彎曲角的步驟,使得該複數個射束以相同或實質相同的著陸角著陸於該表面。在一實施例,上述方法更包含改變傾斜角,以相同變化量改變複數個射束的著陸角的步驟。在一實施例,上述方法更包含利用一偏斜掃描單元,以將複數個射束的偏斜角等量的偏斜的步驟。在一實施例,上述方法更包含利用一射束傾斜偏斜器,以將複數個射束的偏斜角等量的偏斜的步驟。在一實施例,上述方法更包含配置具有一第一磁透鏡和一第一靜電透鏡的物鏡的步驟。在一實施例,上述方法更包含改變該第一磁透鏡和該第一靜電透鏡的變焦倍率比,以選擇該複數個探測點的一方位的步驟。在一實施例,上述方法更包含配置具有一第二磁透鏡以及一第二靜電透鏡的轉換透鏡的一步驟。在一實施例,上述方法更包含透過改變第二磁透鏡和第二靜電透鏡的變焦倍率,以選擇該複數個探測點的一方位的步驟。在一實施例,上述方法更包含配置具有一第三磁透鏡以及一第三靜電透鏡的場透鏡的一步驟。在一實施例,上述方法更包含透過改變第三磁透鏡和第三靜電透鏡的變焦倍率,以選擇該複數個探測點的一方位的步驟。In one embodiment, the above method further includes a step of changing the deflection angles of the plurality of beams caused by the image forming tool to change the distance between the plurality of detection points. In one embodiment, the above method further includes the step of changing the deflection angle of the plurality of beams caused by the image forming tool and the bending angle of the plurality of beams caused by the field lens, so that the plurality of beams have the same or substantially The same landing angle lands on the surface. In one embodiment, the above method further includes a step of changing the tilt angles to change the landing angles of the plurality of beams by the same amount. In one embodiment, the above method further includes a step of using a deflection scanning unit to deflect the deflection angles of the plurality of beams by an equal amount. In one embodiment, the above method further includes a step of using a beam tilting deflector to deflect the plurality of beams by an equal amount of deflection angles. In one embodiment, the above method further includes the step of configuring an objective lens having a first magnetic lens and a first electrostatic lens. In one embodiment, the above method further includes a step of changing the zoom ratio of the first magnetic lens and the first electrostatic lens to select an orientation of the plurality of detection points. In one embodiment, the method further includes a step of configuring a conversion lens having a second magnetic lens and a second electrostatic lens. In one embodiment, the above method further includes a step of selecting an orientation of the plurality of detection points by changing the zoom ratio of the second magnetic lens and the second electrostatic lens. In one embodiment, the method further includes a step of configuring a field lens having a third magnetic lens and a third electrostatic lens. In one embodiment, the above method further includes a step of selecting an orientation of the plurality of detection points by changing the zoom ratio of the third magnetic lens and the third electrostatic lens.
根據上述目的,本發明實施例提供一種裝置,包含一粒子源、一粒子源轉換單元,以及一物鏡。該粒子源用以提供一一次帶電粒子束。該粒子源轉換單元將該一次帶電粒子束分為複數個帶電粒子射束,並形成該粒子源的複數個影像。該物鏡位於該粒子源轉換單元,用於將該複數個影像投影在一樣品的一表面上。該複數個帶電粒子射束在該表面上的間距,透過改變該複數個帶電粒子射束在進入該物鏡之前的傾斜角而調整。According to the above purpose, an embodiment of the present invention provides a device including a particle source, a particle source conversion unit, and an objective lens. The particle source is used to provide a beam of primary charged particles. The particle source conversion unit divides the primary charged particle beam into a plurality of charged particle beams, and forms a plurality of images of the particle source. The objective lens is located in the particle source conversion unit and is used for projecting the plurality of images on a surface of a sample. The spacing of the plurality of charged particle beams on the surface is adjusted by changing the tilt angle of the plurality of charged particle beams before entering the objective lens.
根據上述目的,本發明實施例提供一種裝置,包含一用以提供一一次帶電粒子束的粒子源、一用於將該一次帶電粒子束分為複數個帶電粒子射束並形成該粒子源的複數個影像的工具、一用以將複數個影像投影至一樣品的一表面,而在該表面上形成複數個探測點的物鏡,以及一用於調整在該表面上複數個探測點之間的間距的工具。According to the above purpose, an embodiment of the present invention provides a device, including a particle source for providing a primary charged particle beam, a particle source for dividing the primary charged particle beam into a plurality of charged particle beams and forming the particle source A tool for a plurality of images, an objective lens for projecting a plurality of images onto a surface of a sample to form a plurality of detection points on the surface, and an objective lens for adjusting the distance between the plurality of detection points on the surface Spacing tool.
根據上述目的,本發明實施例提供一種用於觀測一樣品表面的方法,包含下列步驟:提供具有複數個交叉的複數個帶電粒子束;投影該複數個交叉於該樣品表面,以在該樣品表面上形成複數個探測點;掃描該樣品表面上的該複數個探測點;以及改變該複數個帶電粒子束的偏斜角,使得該複數個探測點之間的間距被調整。According to the above purpose, an embodiment of the present invention provides a method for observing a sample surface, comprising the following steps: providing a plurality of charged particle beams with a plurality of intersections; projecting the plurality of intersections on the sample surface, so that forming a plurality of detection points; scanning the plurality of detection points on the surface of the sample; and changing the deflection angle of the plurality of charged particle beams, so that the distance between the plurality of detection points is adjusted.
本發明的其他優點與特徵,由以下圖式與其相關文字說明的各實施範例中,可更清楚明瞭。Other advantages and features of the present invention can be more clearly understood from the various implementation examples described in the following drawings and related texts.
以下將詳述本案的各實施例,並配合圖式作為例示。作為例示而非限制,各圖式與描述是以電子束作為範例。然而,在本發明其他實施例中,也可以使用其他的帶電粒子束。Various embodiments of the present application will be described in detail below, and the accompanying drawings are used as examples. By way of illustration and not limitation, the drawings and descriptions are based on electron beams as an example. However, in other embodiments of the invention, other charged particle beams may also be used.
在圖式中,為了清楚表達,元件的尺寸可能會被誇大繪出,元件與元件之間可能未依照比例顯示。圖式中相同或相似的元件符號代表相同或相似的元件,個別元件之間僅描述其差異。In the drawings, for the sake of clarity, the size of elements may be drawn exaggeratedly, and elements may not be shown in proportion to each other. The same or similar component symbols in the drawings represent the same or similar components, and only the differences between individual components are described.
本說明書所揭露的每個/全部實施例,本領域熟悉技藝人士可據此做各種修飾、變化、結合、交換、省略、替代、相等變化,只要不會互斥者,皆屬於本發明的概念,屬於本發明的範圍。本發明實施例中所做的詳盡描述是例示而非限制。For each/all embodiments disclosed in this specification, those skilled in the art can make various modifications, changes, combinations, exchanges, omissions, substitutions, and equivalent changes, as long as they are not mutually exclusive, they all belong to the concept of the present invention , belonging to the scope of the present invention. The detailed descriptions made in the embodiments of the present invention are for illustration rather than limitation.
在本說明書中,「軸向(axial)」指的是一電子光學元件,例如一球形透鏡(round lens)或多極透鏡(multipole lens),或一成像系統或一裝置的光軸方向。「徑向(radial)」指的是與光軸正交的半徑方向。「軸上(on-axial)」指的是在光軸上或與光軸排列。「離軸(off-axial)」指的是未在光軸上或者未與光軸排列。In this specification, "axial" refers to the optical axis direction of an electro-optical element, such as a round lens or a multipole lens, or an imaging system or a device. "Radial" refers to a radial direction perpendicular to the optical axis. "On-axis" means on or aligned with the optical axis. "Off-axis" means not on or aligned with the optical axis.
在本說明書中,「一成像系統與一光軸排列」指的是所有的電子光學元件,例如球形透鏡(round lens)或多極透鏡(multipole lens),皆與光軸排列。In this specification, "an imaging system is aligned with an optical axis" means that all electro-optical components, such as round lenses or multipole lenses, are aligned with the optical axis.
在本說明書中,X、Y、X座標形成直角坐標(Cartesian coordinate),而一次投影成像系統的光軸是在Z座標,一次電子束沿著Z軸行進。In this specification, the X, Y, and X coordinates form a Cartesian coordinate, and the optical axis of the primary projection imaging system is at the Z coordinate, and the primary electron beam travels along the Z axis.
在本說明書中,「一次電子(primary electrons)」指的是從電子源發射出的電子並入射至一樣品的待觀測或待檢表面。「二次電子(secondary electrons)」指的是一次電子入射該樣品的待測表面後所產生的電子。In this specification, "primary electrons" refer to electrons emitted from an electron source and incident on a surface of a sample to be observed or tested. "Secondary electrons" refers to the electrons generated after the primary electrons are incident on the surface of the sample to be tested.
在本說明書中,「間距」指的是在一平面上兩個相鄰射束(beamlet)或帶電粒子束的距離。In this specification, "spacing" refers to the distance between two adjacent beamlets or charged particle beams on a plane.
在本說明書中,「偏斜器的有效偏斜平面」指的是偏斜器的等同於總偏斜功能的平面(the plane where the total deflection function of the deflector can be equivalent to happen)。In this specification, "the effective deflection plane of the deflector" refers to the plane where the total deflection function of the deflector can be equivalent to happen.
基於本案相關申請案中所提的一些多電子束裝置,本發明提出一種新的多帶電粒子束裝置,其具有可變的總視野(field of view,FOV)。其中,該新的多帶電粒子束裝置的總視野可改變大小、方位,以及照射角(illumination angle)。為了清楚表達本案的方法,本實施例是以圖1B的多電子束裝置作為範例。為使描述簡化,該新的多帶電粒子束裝置的射束的數量簡化為三個,然而在本發明其他實施例中射束的數量並沒有限制,可以是任意個。此外,三個射束的其中之一為軸上,但在其他實施例,三個射束可以都離軸。此外,與本發明無關的元件,例如偏斜掃描單元以及射束分離器,並未顯示在圖上,甚至也未被在說明書中提到。Based on some multiple electron beam devices proposed in related applications of this application, the present invention proposes a new multiple charged particle beam device with a variable overall field of view (FOV). Among other things, the total field of view of the new multi-charged particle beam device can be changed in size, orientation, and illumination angle. In order to express the method of this application clearly, this embodiment takes the multi-electron beam device of FIG. 1B as an example. To simplify the description, the number of beams of the new multi-charged particle beam device is simplified to three. However, in other embodiments of the present invention, the number of beams is not limited and can be any number. Also, one of the three beams is on-axis, but in other embodiments all three beams can be off-axis. Furthermore, elements that are not relevant to the invention, such as the skew scanning unit and the beam splitter, are not shown in the drawing, nor are they even mentioned in the description.
在每個習知的多電子束裝置中,利用影像形成工具將多個射束偏斜而朝向光軸。多個射束的偏斜角被設定使得多個探測點由於物鏡所致的離軸偏差被最小化。因此,多個被偏差的射束通常穿過或接近物鏡的前焦點(front focal point),亦即,在物鏡的前聚焦面(front focal plane)上或接近前聚焦面處形成一軸上交叉(on-axis crossover)。因此,多個探測點之間的間距,取決於多個射束的偏斜角度以及該物鏡的第一焦距(first or object focal length)。因此,射束的間距可透過改變偏斜角度及/或物鏡的第一焦距而調整。例如,如圖1A和圖1B所示,兩個離軸射束102_2和102_3的偏斜角度α2和α3可被設定使得探測點102_2s和102_3s由於物鏡131所致的離軸偏差被最小化。因此,射束102_2和102_3通常通過或接近物鏡131的前焦點,亦即,在物鏡131的前聚焦面或接近前聚焦面處與光軸形成交叉(crossover,CV)。而探測點102_1s和102_2s的間距是由偏斜角α2以及物鏡131的第一焦距f所決定,並可簡單表示成
。同理,探測點102_1s和102_3s的間距是由偏斜角α3以及物鏡131的第一焦距f所決定,並可簡單表示成
。
In each conventional multiple electron beam arrangement, multiple beams are deflected toward the optical axis using an image forming tool. The deflection angles of the plurality of beams are set such that the off-axis deviation of the plurality of detection points due to the objective lens is minimized. Therefore, a plurality of deflected beams usually pass through or approach the front focal point (front focal point) of the objective lens, that is, form an on-axis crossing ( on-axis crossover). Therefore, the spacing between the detection points depends on the deflection angles of the beams and the first or object focal length of the objective lens. Therefore, the spacing of the beams can be adjusted by changing the deflection angle and/or the first focal length of the objective lens. For example, as shown in FIGS. 1A and 1B , the deflection angles α2 and α3 of the two off-axis beams 102_2 and 102_3 can be set so that the off-axis deviation of the detection points 102_2s and 102_3s due to the
圖3A、圖4A和圖5A顯示根據本發明實施例多帶電粒子束裝置300A、400A、500A透過變更偏斜角度調整探測點間距的實施例,而圖6A顯示根據本發明實施例600A透過變更第一焦距調整探測點間距的實施例。如圖3A所示,多帶電粒子束裝置300A的電子源轉換單元320包含一射束限制工具121,其具有三個射束限制開口121_1、121_2、121_3。電子源轉換單元320還包含一可動影像形成工具322,其具有三個電子光學元件322_1、322_2、322_3。可動影像形成工具322的有效偏斜平面322_0可沿著光軸300_1在變動範圍322_or內移動。當有效偏斜平面322_0移動至靠近物鏡131,探測點之間的間距將會變大,若反過來則變小。Fig. 3A, Fig. 4A and Fig. 5A show an embodiment in which multiple charged
圖3B顯示當有效偏斜平面322_0在位置D1時三個射束102_1、102_2、102_3的路徑。可動聚光透鏡210在變動範圍210_2內準直(collimate)一次電子束102使其正交入射進入電子源轉換單元320。射束限制開口121_1、121_2、121_3將電子源分成軸上射束102_1以及兩個離軸射束102_2、102_3。兩個離軸電子光學元件322_2、322_3分別使射束102_2、102_3偏斜,使其朝向光軸300_1。物鏡131將三個射束102_1、102_2、102_3聚焦於樣品8的表面7,從而分別形成三個探測點102_1s、102_1s、102_3s。射束102_2和102_3的偏斜角α2和α3分別被設定,使得探測點102_2和102_3的離軸偏差達到最小。因此射束102_2和102_3通過物鏡131的前焦點,亦即,在物鏡131的前聚焦面的光軸300_1上形成交叉。而三個探測點所形成的兩個間距,分別大約為
和
,其中f是物鏡131的第一焦距。圖3C的有效偏斜平面322_0是在靠近物鏡131的D2位置上,而不是D1位置。因此,偏斜角α2和α3被增加,而偵測點之間的間距變大。如圖3C所示,探測點102_2s和102_3s由原先的圖3B的虛線位置向外移動。
FIG. 3B shows the paths of the three beams 102_1 , 102_2 , 102_3 when the effective deflection plane 322_0 is at position D1 . The
相較於圖1B的習知技術,如圖4A所示,本實施例多帶電粒子束裝置400A的電子源轉換單元420更包含影像形成工具124,其具有三個電子光學元件124_1、124_2、124_3。影像形成工具124位於影像形成工具122下方,並且可以在徑向移動;因此,電子源轉換單元420有兩種運作模式。如圖4B所示,在第一種模式,影像形成工具122是用於形成單電子源101的三個第一虛擬影像,而影像形成工具124被移出射束102_1、102_2、102_3的路徑之外。如圖4B所示,在第二種模式,影像形成工具122被關閉,而影像形成工具124被移回原來位置,以形成電子源101的三個第一虛擬影像。在第一種模式中,射束102_2和102_3的偏斜角α2和α3小於第二種模式中的偏斜角α2和α3。因此,第二種模式之三個探測點的兩個間距會比第一種模式的兩間距更大。Compared with the conventional technology in FIG. 1B , as shown in FIG. 4A , the electron
如圖5A所示,相較於圖1B的多電子束裝置,本實施例多帶電粒子束裝置500A在電子源轉換單元220與物鏡之間更包含一轉換透鏡533以及一場透鏡534。因此,轉換透鏡533、場透鏡534,以及物鏡131構成一次投影成像系統。圖5B顯示射束102_1、102_2、102_3的路徑。可動聚光透鏡210準直一次電子束102,使其正交入射進入電子源轉換單元220。射束限制開口121_1、121_2、121_3將一次電子束分為一個軸上射束102_1,以及兩個離軸射束102_2和102_3。兩個離軸電子光學元件122_2和122_3分別將射束102_2和102_3偏斜,使其朝向光軸500_1。接著形成單電子源的三個第一虛擬影像。接著轉換透鏡533將三個射束102_1、102_2、102_3聚焦在中間影像平面PP1,亦即,將三個虛擬第一影像投影在其上。因此,單電子源101的三個第二真實影像102_1m、102_2m、102_3m被形成。場透鏡534位於中間影像平面PP1上,並將離軸射束102_2和102_3轉向使其朝向光軸500_1但沒有影響其聚焦情形。之後,物鏡131將三個射束102_1、102_2、102_3聚焦在樣品8的表面7上,亦即,將三個第二真實影像投影在表面7上。接著,在樣品8的表面7上,分別形成三個探測點102_1s、102_2s、102_3s。As shown in FIG. 5A , compared with the multi-electron beam device in FIG. 1B , the multi-charged
如圖5B所示,射束102_2和102_3由於場透鏡534所致的彎曲角γ2和γ3分別被設定,使得探測點102_2s和102_3s的離軸偏差被最小化。從而射束102_2和102_3通過或接近物鏡131的前焦點,亦即,在物鏡131的前聚焦平面或接近聚焦平面處的光軸500_1上形成交叉。探測點102_1s和102_2s是由彎曲角γ2以及物鏡131的第一焦距f決定,亦可以簡單表示成
。同理,探測點102_1s和102_3s是由彎曲角γ3以及物鏡131的第一焦距f決定,亦可以簡單表示成
。彎曲角γ2和γ3會隨著第二真實影像102_2m和102_3m的徑向移動而改變,而由於電子光學元件122_2和122_3,徑向移動會隨著射束102_2和102_3的偏斜角α2和α3而改變。因此,探測點之間的兩個間距可透過調整偏斜角α1和α2而改變。如圖5C所示,偏斜角α1和α2被調整使其大於圖5B的偏斜角α1和α2,使兩個離軸的探測點102_2s和102_3s由原先的虛線位置(圖5B)移動到現在圖5C所示的位置,造成探測點之間的兩個間距變大。
As shown in FIG. 5B , the bending angles γ2 and γ3 of the beams 102_2 and 102_3 due to the
如圖6A顯示,多帶電粒子束裝置600A的物鏡631的第一原理平面631_2在變動範圍631_2r內可沿著光軸600_1位移。此軸向位移可藉由機械式的移動物鏡631的位置,或透過電子式改變物鏡像場(objective lens field)的形狀或位置而完成。當第一原理平面接近樣品8的表面7,第一焦距f變小,而第一聚焦面將朝向表面7移動。此外,當第一聚焦面往下移動,多個射束的偏斜角變小;因此,造成多個探測點之間的間距變小。As shown in FIG. 6A , the first principle plane 631_2 of the
圖6B和圖6C分別顯示當第一原理平面631_2分別在位置D3以及D4時,三個射束的路徑。D3位置相較於D4位置更靠近樣品8的表面7。因此,圖6B的第一焦距f以及射束102_2和102_3的偏斜角α2和α3小於圖6C的第一焦距f以及射束102_2和102_3的偏斜角α2和α3。如圖6C所示,探測點102_2s和102_3s由原先的虛線位置(圖6B)向外移動,相較於圖6B,兩個探測點的間距變得更大。FIG. 6B and FIG. 6C respectively show the paths of the three beams when the first principle plane 631_2 is at positions D3 and D4 respectively. The D3 position is closer to the
如圖1C所示,習知多電子束裝置的物鏡131-1是一種電磁複合透鏡。該物鏡包含一磁透鏡以及一靜電透鏡,並由於低幾何像差以及對樣品低放射破壞,以一延遲模式運作(電子的著陸能量(landing energy)低於電子通過物鏡的能量)。磁透鏡是由線圈131_c1以及具有磁極131_mp1和131_mp2的軛鐵131_y1構成。靜電透鏡是由磁極131_mp1、場控電極131_e1以及樣品8構成。磁極131_mp1的電位高於樣品8的電位。場控電極131_e1的電位被設定,以控制樣品8的表面7的電場。電場可確保表面7不發生電擊穿(electrical breakdown)、降低多個探測點的幾何像差、藉由反射部分二次電子以控制表面7的電荷,或增加二次電子的收取。如圖1C所示,磁場的形狀是不能改變的,而靜電場的形狀僅能在有限的範圍內做改變。從而,習知的物鏡幾乎無法透過電控制,亦即,改變電極的電位及/或改變線圈的激磁電流(excitation current)使其移動。As shown in FIG. 1C, the objective lens 131-1 of a conventional multi-electron beam device is an electromagnetic compound lens. The objective consists of a magnetic lens and an electrostatic lens, and operates in a delay mode (the landing energy of electrons is lower than that of electrons passing through the objective) due to low geometrical aberrations and low radiation damage to the sample. The magnetic lens is composed of a coil 131_c1 and a yoke 131_y1 having magnetic poles 131_mp1 and 131_mp2. The electrostatic lens is composed of a magnetic pole 131_mp1 , a field control electrode 131_e1 and a
根據圖1C的習知物鏡131-1,本發明圖7A、7B和7C分別提供三種新穎可動的物鏡631-1、631-2、631-3。如圖7A所示,相較於圖1C,物鏡631-1還包含介於磁極131_mp1和場控電極131_e1之間的電極631-1_e2。因此,靜電透鏡是由磁極131_mp1、電極631-1_e2、場控電極131_e1,以及樣品8構成。靜電透鏡的靜電場的形狀,可藉由調整場控電極131_e1的電位以及電極631-1_e2的電位而改變。當電極631-1_e2的電位被調整到接近磁極131_mp1的電位,靜電場被壓縮而朝向樣品8,此相當於移動物鏡631-1朝向樣品8。因此,電極631-1_e2也可以被稱為場移動電極。According to the conventional objective lens 131-1 in FIG. 1C, the present invention provides three novel movable objective lenses 631-1, 631-2, and 631-3 in FIGS. 7A, 7B and 7C, respectively. As shown in FIG. 7A , compared with FIG. 1C , the objective lens 631 - 1 further includes an electrode 631 - 1_e2 between the magnetic pole 131_mp1 and the field control electrode 131_e1 . Therefore, the electrostatic lens is composed of the magnetic pole 131_mp1 , the electrode 631 - 1_e2 , the field control electrode 131_e1 , and the
如圖7B所示,相較於圖1C,物鏡631-2還包含了位於軛鐵131_y1凹槽內以及位於場控制電極131_e1上的兩個電極631-2_e2和631-2_e3。因此,靜電透鏡是由電極631-2_e3和631-2_e2、場控制電極131_e1,以及樣品8構成。電極631-2_e3的電位高於樣品8的電位,且也可等於磁極131_mp1的電位。靜電透鏡的靜電場的形狀,可透過調整電極131_e1的電位和電極631-2_e2的電位而改變。與圖7A實施例類似,在圖7B實施例,當電極631-2_e2的電位被調整到接近電極631-1_e3的電位,靜電場被壓縮而朝向樣品8,此相當於移動物鏡631-2朝向樣品8。因此,電極631-2_e2也可以被稱為場移動電極。與圖7A的物鏡631-1相較,圖7B實施例的磁透鏡可放在更靠近樣品8的位置,因此提供樣品8更深的磁浸漬(magnetic immersion),使得偏差更小。As shown in FIG. 7B , compared with FIG. 1C , the objective lens 631 - 2 further includes two electrodes 631 - 2_e2 and 631 - 2_e3 located in the groove of the yoke 131_y1 and located on the field control electrode 131_e1 . Therefore, the electrostatic lens is constituted by the electrodes 631-2_e3 and 631-2_e2, the field control electrode 131_e1, and the
如圖7C所示,相較於圖1C,物鏡631-3還包含了位於軛鐵131_y1凹槽內以及位於磁極131_mp1上的線圈631-3_c2和軛鐵631-3_y2。因此,形成一個一下磁透鏡、一上磁透鏡,以及一靜電透鏡。其中,該下磁透鏡由線圈131_c1透過位於軛鐵131_1的磁極131_mp1和磁極131_mp2之間的低磁流間距G1產生一下磁場。而該上磁透鏡由線圈631-3_c2,透過位於磁極131_mp1和軛鐵631-3_y2的磁極631-3_mp3之間的磁流間距G2產生較一上磁場。靜電透鏡由磁極131_ mp1、場控電極131_e1,以及樣品8構成。物鏡631-3的總磁場的分布形狀會隨著上述上磁場和下磁場的結合而改變,因此可透過調整下磁透鏡和上磁透鏡的激勵比,或調整線圈131_c1和631-3_c2的電流比而改變。當調整電流比較高,物鏡631-3的總磁場受擠壓而朝向樣品8,此相當於將物鏡631-3往樣品8方向移動。此處例示兩個極端範例,當線圈131_c1關閉、線圈631-3_c2打開,物鏡631-3的總磁場位於較上方;另外,當線圈131_c1打開、線圈631-3_c2關閉,物鏡631-3的總磁場位於最下方。圖7C的實施例可以和圖7A和圖7B的實施例做任意的結合,以實踐物鏡631更多的實施例。As shown in FIG. 7C , compared with FIG. 1C , the objective lens 631 - 3 further includes a coil 631 - 3_c2 and a yoke 631 - 3_y2 located in the groove of the yoke 131_y1 and on the magnetic pole 131_mp1 . Thus, a lower magnetic lens, an upper magnetic lens, and an electrostatic lens are formed. Wherein, the lower magnetic lens generates a lower magnetic field through the coil 131_c1 through the low magnetic current gap G1 between the magnetic pole 131_mp1 and the magnetic pole 131_mp2 of the yoke 131_1 . The upper magnetic lens generates an upper magnetic field through the magnetic current gap G2 between the magnetic pole 131-3_mp1 and the magnetic pole 631-3_mp3 of the yoke 631-3_y2 through the coil 631-3_c2. The electrostatic lens is composed of a magnetic pole 131_mp1, a field control electrode 131_e1, and a
以下的實施例,將提出旋轉探測點陣列的方法,可用於消除關於觀測條件改變總視野的方位變異,及/或精確匹配樣品圖案的方位和探測點陣列的方位。如先前所述,習知多電子束裝置的物鏡是一種電磁複合透鏡,例如圖1C所示的物鏡131-1。因此,適當結合磁透鏡和靜電透鏡的變焦倍率可使得探測點繞著光軸旋轉一個角度。例如,如果圖1A中的物鏡131是類似於圖1C中的物鏡131-1,則場控電極131_e1可用於旋轉探測點102_2s和102_3s至一個角度,並控制樣品8的表面7的電場。為了維持表面7的電場低於一個基於樣品安全考量的允許值,場控電極131_e1的電位可在一特定範圍內調整,例如相對於樣品的3 kV至5 kV之間調整。靜電透鏡的聚焦倍率會隨著場控電極131_e1的電位變化,因此磁透鏡的聚焦倍率必需做改變,以保持多個射束聚焦在樣品8的表面7。磁透鏡的聚焦倍率改變,造成探測點102_2S和102_3S的旋轉角度改變。因此,探測點102_2s和102_3s的旋轉角度,可透過在特定範圍內調整場控電極131_e1的電位而改變。In the following examples, methods of rotating the array of probe points will be presented that can be used to eliminate azimuth variability as observation conditions change the overall field of view, and/or to precisely match the orientation of the sample pattern to the orientation of the array of probe points. As mentioned earlier, the objective lens of a conventional multi-electron beam device is an electromagnetic compound lens, such as the objective lens 131-1 shown in FIG. 1C. Therefore, a proper combination of the zoom magnifications of the magnetic lens and the electrostatic lens can make the detection point rotate an angle around the optical axis. For example, if the
對於圖3A、4A和5A的多帶電粒子束裝置300A、400A和500A,如果其物鏡131的結構類似於圖1C的物鏡131-1,則可以透過這個方法調整探測點陣列的角度。對於圖6A的多帶電粒子束裝置600A,如果物鏡631具有如圖7A至7C所示的物鏡631-1、631-2、631-3的結構,則場控電極131_e1及/或對應的場移動電極可用於控制探測點陣列的旋轉。對於物鏡631-3,探測點的方位可透過變更上磁透鏡與下磁透鏡的磁場的極性而改變。對於磁透鏡,旋轉角與磁場的極性有關但與聚焦倍率無關,此已被熟知。當上磁透鏡和下磁透鏡的磁場的極性相同,則上磁透鏡和下磁透鏡以同一個方向旋轉探測點陣列。當上磁透鏡和下磁透鏡的磁場的極性相反,則上磁透鏡和下磁透鏡以相反的方向旋轉探測點陣列。因此對於一所需的聚焦倍率以及第一原理平面的對應位置,物鏡631-3可產生兩種不同的探測點陣列旋轉方向。For the multi-charged
如圖5A所示,多帶電粒子束500A的轉換透鏡533和場透鏡534提供旋轉探測點陣列的更多可能性。圖8A顯示根據本發明另一實施例的多帶電粒子束裝置510A,其中電磁複合轉換透鏡533-1包含一個靜電轉換透鏡533_11和一個磁轉換透鏡533_12。磁轉換透鏡533_12的磁場可被調整,以改變探測點陣列的旋轉角度;從而靜電轉換透鏡533_11的靜電場可跟著改變,以保持三個真實影像102_1m、102_2m、102_3m在中間影像平面PP1上。圖8B顯示根據本發明另一實施例的多帶電粒子束裝置520A,其中電磁複合場透鏡534-1包含一靜電場透鏡534_11和一磁場透鏡534_12。磁場透鏡531_12的磁場可被調整,以改變探測點陣列的旋轉角度。而靜電場透鏡534_11的靜電場可跟著改變,以產生多個射束所需的彎曲角。As shown in Figure 5A, the
前述每個實施例中,多個射束是正交或實質上正交入射於樣品8的表面7,亦即,射束的入射角或著陸角(射束和表面7的法向量的夾角)接近零。為了有效觀察樣品8的一些圖案,入射角最好稍微大於零。為了確保多個射束具有相同的表現,多個射束必須具有相同的入射角。為達到此目的,多個射束的交叉(crossover)必須被移出光軸。可利用影像形成工具或再一個射束傾斜偏斜器達到上述目的。In each of the aforementioned embodiments, the plurality of beams are normal or substantially normal incident on the
圖9A顯示在多帶電粒子束裝置100A中如何以影像形成工具122將多個射束102_1、102_2、102_3傾斜的方法。圖1B的偏斜角α1為零,而圖9A的偏斜角α1、α2、α3被增加相同的量,使得射束102_1、102_2、102_3的交叉從光軸100_1中移開,並且移到或接近物鏡131的第一聚焦面上。因此射束102_1、102_2、102_3以同樣的偏斜角或著陸角傾斜地著陸於樣品8的表面7。同樣地,先前所述的多帶電粒子束裝置300A、400A、500A和600A可以對應的影像形成工具使各射束傾斜。對於多帶電粒子束裝置300A、400A,和600A的射束102_1、102_2、102_3,其路徑類似於圖9A各射束的路徑。而多帶電粒子束裝置500A的各射束的路徑會略有不同,如圖9B所示。圖5B的偏斜角α為零,而圖9B的三個射束102_1、102_2、102_3的偏斜角α1、α2、α3在中間影像平面PP1上偏移三個第二真實影像102_1m、102_2m、102_3m 相同或實質相同的距離。從而經過場透鏡534彎曲的射束102_1、102_2、102_3的交叉,仍然在第一聚焦面上或接近第一聚焦面,但偏移於光軸500_1。FIG. 9A shows how to tilt the multiple beams 102_1 , 102_2 , 102_3 with the
圖10顯示根據本發明另一實施例多帶電粒子束裝置700,其利用一射束傾斜偏斜器135使射束102_1、102_2、102_3傾斜。相較於圖1B,射束傾斜偏斜器135同時將射束102_1、102_2、102_3偏斜,使它們的交叉CV皆移出光軸,並移至物鏡131的第一聚焦面或接近第一聚焦面上。同樣地,此射束傾斜偏斜器135也可應用於本案其他實施例,例如多帶電粒子束裝置300A、400A、500A、600A,以將多個射束一起偏斜。射束傾斜偏斜器135可設置於電子源轉換單元以及物鏡的前聚焦面之間,且較佳地,靠近電子源轉換單元。此外,如果前述各實施例的偏斜掃描單元是在物鏡的前聚焦面上,則偏斜掃描單元可移動多個射束的交叉,如此不需要射束傾斜偏斜器135。FIG. 10 shows a multiple charged
雖然本案各實施例的多帶電粒子束裝置分別利用一或兩種方法以改變視野的尺寸、方位,或入射角,但本領域熟悉技藝人士可據此做各種組合,只要不會互斥者,皆屬於本發明的概念和範圍。例如,在一實施例的多帶電粒子束裝置,可使用可動影像形成工具,同時也使用可動物鏡。在另一實施例,使用一可動物鏡、一轉換透鏡,以及一場透鏡。雖然各實施例使以圖2B的多電子束裝置200A做範例,但本發明所提的裝置、元件及/或方法也可以應用在其他習知多電子束裝置,例如圖1A的多電子束裝置,這些變化實施例都屬於本發明的範圍。Although the multi-charged particle beam device in each embodiment of the present case uses one or two methods to change the size, orientation, or incident angle of the field of view, those skilled in the art can make various combinations accordingly, as long as they are not mutually exclusive. All belong to the concept and scope of the present invention. For example, in one embodiment of the multi-charged particle beam device, a movable image forming tool can be used, and a movable objective lens can also be used. In another embodiment, a movable objective lens, a conversion lens, and a field lens are used. Although the various embodiments use the
總之,基於在相關申請案所提出的各種習知多帶電粒子束裝置,本發明提出一種新的多帶電粒子束裝置,其包含以多種方法或元件使裝置的總視野具有可變大小、方位,及/或入射角。因此,該新穎的多帶電粒子束裝置提供更多彈性,使提升樣品的觀測速度,以及樣品的觀測品質。更特別的,該新穎的多帶電粒子裝置作為一產率管理工具時,很有機會可達到高生產力,並檢測更多種類的缺陷。本發明提出三種方法以改變多個射束入射在樣品的表面上的間距。該些方法包含在電子源轉換單元中使用一可動影像形成工具,或包含使用可動物鏡,或者在電子源轉換單元和物鏡之間使用一轉換透鏡以及一場透鏡,以改變總視野的大小。本發明提出三種方法以旋轉探測點陣列,使得總視野的方位被改變。該些方法包含使用電磁複合物鏡並改變其電場,使用具有兩個磁透鏡的物鏡並設定使得兩個磁透鏡具有相反的極性,使用一磁透鏡以及一轉換透鏡或場透鏡,或者磁透鏡加上轉換透鏡及場透鏡。本發明提出三種方法,使多個射束的交叉由光軸上移出,使得多個射束於樣品的表面的著陸角被做相同的改變。該些射束的偏移可透過影像形成工具、或再加上射束傾斜偏斜器,或傾斜掃描單元而完成。In conclusion, based on various conventional multi-charged particle beam devices proposed in related applications, the present invention proposes a new multi-charged particle beam device, which includes various methods or elements to make the total field of view of the device have variable size, orientation, and /or angle of incidence. Therefore, the novel multi-charged particle beam device provides more flexibility, so that the observation speed of the sample and the observation quality of the sample are improved. More particularly, when the novel multi-charged particle device is used as a yield management tool, it is possible to achieve high productivity and detect more types of defects. The present invention proposes three methods to vary the spacing at which the multiple beams are incident on the surface of the sample. These methods include using a movable image forming tool in the electron source conversion unit, or using a movable objective lens, or using a conversion lens and a field lens between the electron source conversion unit and the objective lens to change the size of the total field of view. The present invention proposes three methods to rotate the array of detection points so that the orientation of the overall field of view is changed. These methods include using an electromagnetic compound objective and varying its electric field, using an objective with two magnetic lenses and setting them so that the two magnetic lenses have opposite polarities, using a magnetic lens and a conversion lens or field lens, or using a magnetic lens plus Conversion lens and field lens. The present invention proposes three methods to move the intersection of multiple beams off the optical axis so that the landing angles of the multiple beams on the surface of the sample are changed in the same way. The deflection of the beams can be done by the image forming tool, or by adding a beam tilt deflector, or by tilting the scanning unit.
上述眾實施例僅係為說明本發明之技術思想及特點,其目的在使熟悉此技藝之人士能了解本發明之內容並據以實施,當不能以之限定本發明之專利範圍,即凡其他未脫離本發明所揭示精神所完成之各種等效改變或修飾都涵蓋在本發明所揭露的範圍內,均應包含在下述之申請專利範圍內。The above-mentioned embodiments are only to illustrate the technical ideas and characteristics of the present invention, and its purpose is to enable those familiar with the art to understand the content of the present invention and implement it accordingly, and should not limit the patent scope of the present invention, that is, all other Various equivalent changes or modifications made without departing from the spirit disclosed in the present invention are covered by the scope disclosed in the present invention, and should be included in the scope of the following patent applications.
7:表面 8:樣品 101:電子源 102:一次電子束 110:聚光透鏡 120:電子源轉換單元 121:射束限制工具 122:影像形成工具 123:預先射束彎曲工具 124:影像形成工具 131:物鏡 131-1:物鏡 210:可動聚光透鏡 210_2:變動範圍 220:電子源轉換單元 300:多帶電粒子束裝置 320:電子源轉換單元 322:可動影像形成工具 420:電子源轉換單元 533:轉換透鏡 534:場透鏡 631:物鏡 100_1:光軸 100_1:光軸 100_1:光軸 100A:多帶電粒子束裝置 102_1:射束 102_1:探測點 102_1m:第二真實影像 102_2:射束 102_2:探測點 102_2m:第二真實影像 102_3:射束 102_3:探測點 102_3m:第二真實影像 121_1:電子束限制開口 121_2:電子束限制開口 121_3:電子束限制開口 122_1:電子光學元件 122_2:電子光學元件 122_3:電子光學元件 123_1:預先彎曲微偏斜器 123_2:預先彎曲微偏斜器 123_3:預先彎曲微偏斜器 124_1:電子光學元件 124_2:電子光學元件 124_3:電子光學元件 131_c1:線圈 131_e1:場控電極 131_mp1:磁極 131_mp2:磁極 131_y1:軛鐵 135:射束傾斜偏斜器 300_1:光軸 300A:多帶電粒子束裝置 322_0:有效偏斜平面 322_1:電子光學元件 322_2:電子光學元件 322_3:電子光學元件 322_or:變動範圍 400A:多帶電粒子束裝置 500_1:光軸 500A:多帶電粒子束裝置 510A:多帶電粒子束裝置 520A:多帶電粒子束裝置 533_11:靜電轉換透鏡 533_12:磁轉換透鏡 533-1:電磁複合轉換透鏡 534_11:靜電場透鏡 534_12:磁場透鏡 534-1:電磁複合場透鏡 600_1:光軸 600A:多帶電粒子束裝置 631_1:第一原理平面 631_2r:變動範圍 631-1:物鏡 631-1_e2:電極 631-2:物鏡 631-2_e2:電極 631-2_e3:電極 631-3:物鏡 631-3_2:軛鐵 631-3_c2:線圈 700_1:光軸 700A:多帶電粒子束裝置 G1:磁流間距 G2:磁流間距 PP1:中間影像平面 Ps:間距 α1:偏斜角 α2:偏斜角 α3:偏斜角 γ2:彎曲角 γ3:彎曲角 7: surface 8: Sample 101: Electron source 102: Primary electron beam 110: Concentrating lens 120: Electron source conversion unit 121: Beam Limiting Tool 122:Image forming tool 123:Pre Beam Bending Tool 124:Image forming tool 131: objective lens 131-1: Objective lens 210: Movable condenser lens 210_2: range of change 220: Electron source conversion unit 300:Multiple charged particle beam device 320: Electron source conversion unit 322: Movable image forming tool 420: Electron source conversion unit 533: conversion lens 534: field lens 631: objective lens 100_1: optical axis 100_1: optical axis 100_1: optical axis 100A: Multiple Charged Particle Beam Apparatus 102_1: Beam 102_1: Detection point 102_1m: Second real image 102_2: Beam 102_2: Detection point 102_2m: second real image 102_3: Beam 102_3: Detection point 102_3m: second real image 121_1: Electron beam limiting opening 121_2: Electron beam limiting opening 121_3: Electron beam limiting opening 122_1: Electron optical components 122_2: Electron optical components 122_3: Electron optical components 123_1: Pre-curved micro-skewers 123_2: Pre-curved micro-skewers 123_3: Pre-curved micro-deflector 124_1: Electron optical components 124_2: Electron optical components 124_3: Electron optical components 131_c1: Coil 131_e1: field control electrode 131_mp1: magnetic pole 131_mp2: magnetic pole 131_y1: Iron yoke 135: Beam Tilt Deviator 300_1: optical axis 300A: Multiple charged particle beam device 322_0: effective skew plane 322_1: Electron optical components 322_2: Electron optical components 322_3: Electron optical components 322_or: change range 400A: Multiple charged particle beam device 500_1: optical axis 500A: Multiple charged particle beam device 510A: Multiple Charged Particle Beam Apparatus 520A: Multiple Charged Particle Beam Apparatus 533_11: Electrostatic conversion lens 533_12: Magnetic conversion lens 533-1: Electromagnetic compound conversion lens 534_11: Electrostatic Field Lens 534_12: Magnetic Field Lens 534-1: Electromagnetic Compound Field Lens 600_1: optical axis 600A: Multiple charged particle beam device 631_1: First principles plane 631_2r: Variation range 631-1: objective lens 631-1_e2: electrode 631-2: objective lens 631-2_e2: electrode 631-2_e3: electrode 631-3: objective lens 631-3_2: Iron yoke 631-3_c2: Coil 700_1: optical axis 700A: Multiple Charged Particle Beam Apparatus G1: magnetic current spacing G2: magnetic current spacing PP1: intermediate image plane Ps: Spacing α1: skew angle α2: Skew angle α3: Skew angle Gamma 2: Bend angle #3: Bend Angle
透過下面的描述與圖式,將可容易了解本案的技術內容。圖式中相似的元件編號代表相同或相似的結構元件,圖式包含:Through the following description and drawings, the technical content of this case can be easily understood. Similar element numbers in the drawings represent the same or similar structural elements, and the drawings include:
圖1A和圖1B為示意圖,顯示如本案相關前案中所列的第五個申請案的習知多電子束裝置的結構。1A and 1B are schematic diagrams showing the structure of a conventional multi-electron beam device of the fifth application listed in the related prior application of this application.
圖1C為示意圖,顯示一習知電磁複合物鏡的結構。FIG. 1C is a schematic diagram showing the structure of a conventional electromagnetic composite objective lens.
圖2A和圖2B為示意圖,顯示可變化尺寸和方位的總視野。Figures 2A and 2B are schematic diagrams showing a total field of view of variable size and orientation.
圖3A為示意圖,顯示根據本發明一實施例多帶電粒子束裝置的結構。FIG. 3A is a schematic diagram showing the structure of a multi-charged particle beam device according to an embodiment of the present invention.
圖3B和圖3C為示意圖,顯示根據圖3A實施例多帶電粒子束裝置的可變化尺寸和方位的總視野。3B and 3C are schematic diagrams showing the total field of view of variable size and orientation of the multiple charged particle beam device according to the embodiment of FIG. 3A.
圖4A為示意圖,顯示根據本發明另一實施例多帶電粒子束裝置的結構。FIG. 4A is a schematic diagram showing the structure of a multi-charged particle beam device according to another embodiment of the present invention.
圖4B和圖4C為示意圖,顯示根據圖4A實施例多帶電粒子束裝置的可變化尺寸和方位的總視野。4B and 4C are schematic diagrams showing the total field of view of variable size and orientation of the multi-charged particle beam device according to the embodiment of FIG. 4A.
圖5A為示意圖,顯示根據本發明另一實施例多帶電粒子束裝置的結構。FIG. 5A is a schematic diagram showing the structure of a multi-charged particle beam device according to another embodiment of the present invention.
圖5B和圖5C為示意圖,顯示根據圖5A實施例多帶電粒子束裝置的可變化尺寸和方位的總視野。5B and 5C are schematic diagrams showing the total field of view of variable size and orientation of the multi-charged particle beam device according to the embodiment of FIG. 5A.
圖6A為示意圖,顯示根據本發明另一實施例多帶電粒子束裝置的結構。FIG. 6A is a schematic diagram showing the structure of a multi-charged particle beam device according to another embodiment of the present invention.
圖6B和圖6C為示意圖,顯示根據圖5A實施例多帶電粒子束裝置的可變化尺寸和方位的總視野。6B and 6C are schematic diagrams showing the total field of view of variable size and orientation of the multi-charged particle beam device according to the embodiment of FIG. 5A.
圖7A至7C顯示根據本案另三個實施例之如圖6A中可動物鏡的結構。7A to 7C show the structure of the movable objective lens shown in FIG. 6A according to another three embodiments of the present invention.
圖8A和8B為示意圖,顯示根據本發明另二實施例多帶電粒子束裝置的結構。8A and 8B are schematic diagrams showing the structure of a multi-charged particle beam device according to another embodiment of the present invention.
圖9A顯示根據本發明另一實施例,將如圖1B的多電子束裝置的多電子束傾斜。FIG. 9A shows tilting multiple electron beams of the multiple electron beam device of FIG. 1B according to another embodiment of the present invention.
圖9B顯示根據本發明圖5A實施例的多帶電粒子束裝置的多帶電粒子束的傾斜。FIG. 9B shows the tilt of the multiple charged particle beams of the multiple charged particle beam device according to the embodiment of FIG. 5A of the present invention.
圖10為示意圖,顯示根據本發明另一實施例多帶電粒子束裝置的結構。FIG. 10 is a schematic diagram showing the structure of a multi-charged particle beam device according to another embodiment of the present invention.
7:表面 7: surface
8:樣品 8: Sample
131:物鏡 131: objective lens
210:可動聚光透鏡 210: Movable condenser lens
320:電子源轉換單元 320: Electron source conversion unit
322:可動影像形成工具 322: Movable image forming tool
121_1:電子束限制開口 121_1: Electron beam limiting opening
121_2:電子束限制開口 121_2: Electron beam limiting opening
121_3:電子束限制開口 121_3: Electron beam limiting opening
210_2:變動範圍 210_2: range of change
300_1:光軸 300_1: optical axis
300A:多帶電粒子束裝置 300A: Multiple charged particle beam device
322_0:有效偏斜平面 322_0: effective skew plane
322_1:電子光學元件 322_1: Electron optical components
322_2:電子光學元件 322_2: Electron optical components
322_3:電子光學元件 322_3: Electron optical components
322_or:變動範圍 322_or: change range
Claims (21)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111144648A TW202318469A (en) | 2017-02-08 | 2017-02-08 | Source-conversion unit, multi-beam apparatus and method to configure a multi-beam apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111144648A TW202318469A (en) | 2017-02-08 | 2017-02-08 | Source-conversion unit, multi-beam apparatus and method to configure a multi-beam apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202318469A true TW202318469A (en) | 2023-05-01 |
Family
ID=87378931
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111144648A TW202318469A (en) | 2017-02-08 | 2017-02-08 | Source-conversion unit, multi-beam apparatus and method to configure a multi-beam apparatus |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW202318469A (en) |
-
2017
- 2017-02-08 TW TW111144648A patent/TW202318469A/en unknown
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6989658B2 (en) | Multiple charged particle beam devices | |
JP7427740B2 (en) | Device using multiple charged particle beams | |
CN111681939B (en) | Apparatus for multiple charged particle beams | |
TWI650550B (en) | Multi-beam device for high throughput ebi | |
KR20230010272A (en) | Apparatus of plural charged-particle beams | |
JP2011187447A (en) | Twin-beam charged particle beam column and its operating method | |
TWI767443B (en) | Non-transitory computer readable medium for forming images | |
KR102320860B1 (en) | Apparatus of plural charged-particle beams | |
TWI658487B (en) | Multi-beam apparatus and method for observing a sample surface | |
TWI729368B (en) | Source-conversion unit, multi-beam apparatus and method to configure a multi-beam apparatus | |
TWI787802B (en) | Source-conversion unit, multi-beam apparatus and method to configure a multi-beam apparatus | |
TW202318469A (en) | Source-conversion unit, multi-beam apparatus and method to configure a multi-beam apparatus |