TW202317037A - Magnetic field compatible neural probe and manufacturing method thereof - Google Patents

Magnetic field compatible neural probe and manufacturing method thereof Download PDF

Info

Publication number
TW202317037A
TW202317037A TW110138616A TW110138616A TW202317037A TW 202317037 A TW202317037 A TW 202317037A TW 110138616 A TW110138616 A TW 110138616A TW 110138616 A TW110138616 A TW 110138616A TW 202317037 A TW202317037 A TW 202317037A
Authority
TW
Taiwan
Prior art keywords
layer
polymer film
metal
electrode point
biomedical polymer
Prior art date
Application number
TW110138616A
Other languages
Chinese (zh)
Inventor
李思儒
陳亭潔
張瀞文
林鼎鈞
梁耀文
林怡蓁
賴欣怡
陳右穎
羅伃君
Original Assignee
深腦科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深腦科技有限公司 filed Critical 深腦科技有限公司
Priority to TW110138616A priority Critical patent/TW202317037A/en
Publication of TW202317037A publication Critical patent/TW202317037A/en

Links

Images

Abstract

A magnetic field compatible neural probe and manufacturing method thereof are provided. The method includes: sequentially coating a first biomedical polymer layer, a first metal layer, and a second biomedical polymer layer on a substrate; sputtering a second metal layer and a third metal layer as the base material of a metal circuit layer, which includes at least one electrode point, at least two connection points, at least one reference electrode point and a metal circuit for connecting the electrode point or the reference electrode point and the connection point; Spraying a third biomedical polymer layer; modifying the electrode point, the reference electrode point and the connection points; forming the neural probe basing on a contour pattern. The magnetic field compatible neural probe can be applied to the magnetic resonance imaging environment to stably detect activity of neural signal in the brain and record synchronously with magnetic resonance imaging.

Description

磁相容神經探針及其製造方法Magnetic compatible nerve probe and its manufacturing method

本案係關於一種神經探針及其製造方法。This case is about a neural probe and its manufacturing method.

傳統的神經探針已被廣泛應用於研究腦神經的電生理功能,然而目前發展的傳統微電極探針,仍不易在進行磁振造影(Magnetic Resonance Imaging, MRI)時,可靠地偵測神經細胞活動,其主要歸因於目前電極多用金屬材質電極,不但在低頻區段具高阻抗,削弱電生理信號的收錄強度和範圍;在進行磁振造影的檢查時,金屬部分會在高強度磁場變化下產生渦流電灼燒效果,即使在靜磁場下,也可能由於磁力作用產生位移,損傷神經組織。另外,普通神經電極和探針中含有一些常見的金屬成分會在磁振造影成像時對影像產生不同程度的扭曲和偽影,極大限制其應用範圍。如圖13所示,當使用由2根單絲組成之鎢電極91(總直徑約100微米),或是兩通道鉑銥電極92(總直徑150微米),進行磁振造影成像時,會在電極處產生大面積黑影,影響相關判斷。Traditional neural probes have been widely used to study the electrophysiological functions of cranial nerves. However, the traditional microelectrode probes currently developed are still difficult to reliably detect nerve cells during Magnetic Resonance Imaging (MRI) It is mainly due to the fact that the current electrodes are mostly made of metal electrodes, which not only have high impedance in the low frequency range, but also weaken the strength and range of electrophysiological signal collection; when performing MRI inspection, the metal part will change in the high-intensity magnetic field Even under the static magnetic field, it may cause displacement due to magnetic force and damage nerve tissue. In addition, some common metal components contained in ordinary nerve electrodes and probes will produce different degrees of distortion and artifacts on the image during magnetic resonance imaging, which greatly limits its application range. As shown in Figure 13, when using a tungsten electrode 91 (total diameter of about 100 microns) composed of two monofilaments, or a two-channel platinum-iridium electrode 92 (total diameter of 150 microns), when MRI imaging is performed, the A large area of black shadow is generated at the electrode, which affects the relevant judgment.

神經植入技術開始於1960年代。當時,神經學家與神經外科醫師嘗試使用微電極電刺激神經,以定位腦中的特定部位,同時使用信號處理器分析神經元活動的變化。其間,發現電刺激腦內某部份結構會產生抑制神經疾病症狀(如自發性顫抖與巴金森氏症)的結果。因此研究人員為瞭解腦部神經元如何對特定行為運動進行神經編碼(Neural encoding),進而發展多通道神經植入裝置,開始於不同腦區同時記錄神經元活動,試圖理解神經語言的意義。此技術因同時在大腦內記錄多個腦區神經元細胞活動之訊息,讓研究人員得以獲得神經元如何溝通以及處理資訊的知識,這些知識能用來解決許多神經生物學、行為學及認知科學上的重要問題,是研究神經科學方法學上的一大突破。Neural implant technology began in the 1960s. At the time, neuroscientists and neurosurgeons were experimenting with electrical stimulation of nerves using microelectrodes to target specific parts of the brain, while signal processors were used to analyze changes in neuronal activity. Meanwhile, it was discovered that electrical stimulation of a certain structure in the brain can suppress the symptoms of neurological diseases (such as spontaneous tremor and Parkinson's disease). Therefore, in order to understand how brain neurons perform neural encoding for specific behavioral movements, and then develop multi-channel neural implants, researchers began to record neuron activities in different brain regions simultaneously, trying to understand the meaning of neural language. This technology allows researchers to gain knowledge about how neurons communicate and process information by simultaneously recording information about the activity of neurons in multiple brain regions within the brain. This knowledge can be used to solve many problems in neurobiology, behavior and cognitive science. It is a major breakthrough in the study of neuroscience methodology.

習知的探針有部份是以矽為基材的多通道微電極陣列,這類結構的微電極陣列,通常被稱為密西根電極陣列(Michigan electrode array),是將數個微電極置於柄狀結構上,這些微電極排列也提供高空間解析度用以進行更完整之神經信號記錄。然而,由於大腦結構複雜,佈滿了神經,因此在做相關侵入式的檢測時需要格外地小心注意,尤其是運用神經探針進行特定腦區的神經活動資訊的擷取。如何提高單一神經探針偵測的範圍與減少訊號強弱誤判的發生,是目前極需要克服的問題。Some of the known probes are multi-channel microelectrode arrays based on silicon. The microelectrode arrays of this type are usually called Michigan electrode arrays. On the stalk-like structure, these microelectrode arrangements also provide high spatial resolution for more complete neural signal recording. However, due to the complex structure of the brain, which is full of nerves, it is necessary to be extra careful when doing related invasive tests, especially the use of neural probes to extract information about neural activity in specific brain regions. How to increase the detection range of a single neural probe and reduce the occurrence of misjudgment of signal strength is a problem that needs to be overcome.

本發明的目的在於提供一種磁相容神經探針及其製造方法,可以應用於腦內微電壓或電流的偵測,尤其是適用在與高磁通量的檢測儀器同步使用,可穩定地偵測腦內微電壓或電流狀態,以及對神經細胞實施電流或電壓的刺激,在低頻區段不具高阻抗,不會受到金屬物質的限制而無法與檢測儀器同步記錄。The object of the present invention is to provide a magnetically compatible neural probe and its manufacturing method, which can be applied to the detection of microvoltage or current in the brain, especially suitable for synchronous use with high magnetic flux detection instruments, and can stably detect brain The state of internal micro-voltage or current, as well as the stimulation of current or voltage to nerve cells, does not have high impedance in the low-frequency range, and will not be restricted by metal substances and cannot be recorded synchronously with the detection instrument.

有鑑於此,本案提出一種磁相容神經探針的製造方法,包含在一基底材上塗佈一第一生物醫用高分子薄膜層,在該第一生物醫用高分子薄膜層上覆蓋一第一金屬層,其中,該第一金屬層完全覆蓋在該第一生物醫用高分子薄膜層上,或將該第一金屬層製成為一神經探針的形狀;在該第一金屬層上覆蓋一第二生物醫用高分子薄膜層,在該第二生物醫用高分子薄膜層上依次濺鍍一第二金屬層和一第三金屬層作為一金屬線路結構層基材;經由金屬線路光罩,在該金屬線路結構層基材蝕刻出一金屬線路結構層,該金屬線路結構層包括至少一電極點、至少二連接點、至少一參考電極點和用於連接該電極點或該參考電極點與該連接點的一金屬線路;將一第三生物醫用高分子薄膜層噴塗至該金屬線路結構層,然後將與該電極點、該參考電極點和該連接點處的圖樣設置到該第三生物醫用高分子薄膜層上,再通過蝕刻暴露出該電極點、該參考電極點和該連接點;將一金層或一銀層電鍍到該電極點、該參考電極點和該連接點上,電鍍該金層或該銀層後的該電極點、該參考電極點和該連接點的高度大於該第三生物醫用高分子薄膜層;以電化學方式用氧化銥修飾該電極點、該參考電極點;以及分離該基底材並根據外輪廓圖樣形成該神經探針。In view of this, this case proposes a method for manufacturing a magnetically compatible neural probe, which includes coating a first biomedical polymer film layer on a base material, and covering the first biomedical polymer film layer with a The first metal layer, wherein, the first metal layer completely covers the first biomedical polymer film layer, or the first metal layer is made into the shape of a nerve probe; on the first metal layer Covering a second biomedical polymer film layer, sequentially sputtering a second metal layer and a third metal layer on the second biomedical polymer film layer as a metal circuit structure layer substrate; through the metal circuit A photomask, etching a metal circuit structure layer on the metal circuit structure layer base material, the metal circuit structure layer includes at least one electrode point, at least two connection points, at least one reference electrode point, and is used to connect the electrode point or the reference A metal circuit between the electrode point and the connection point; a third biomedical polymer film layer is sprayed onto the metal circuit structure layer, and then the pattern with the electrode point, the reference electrode point and the connection point is set to On the third biomedical polymer film layer, the electrode point, the reference electrode point and the connection point are exposed by etching; a gold layer or a silver layer is electroplated on the electrode point, the reference electrode point and the connection point. On the connection point, the height of the electrode point, the reference electrode point and the connection point after electroplating the gold layer or the silver layer is greater than the third biomedical polymer film layer; the electrode is electrochemically modified with iridium oxide point, the reference electrode point; and separating the base material and forming the neural probe according to the outline pattern.

依據一些實施例,於分離該基底材並根據外輪廓圖樣形成該神經探針之步驟中,分離基底材後使用雷射微型切割或乾式蝕刻外輪廓圖樣形成神經探針。According to some embodiments, in the step of separating the base material and forming the neural probe according to the outline pattern, laser micro-dissection or dry etching is used to form the neural probe after the base material is separated.

依據一些實施例,於以電化學方式用氧化銥修飾該電極點、該參考電極點之步驟中,將聚對二甲苯層覆蓋在除了電極點、參考電極點和連接點以外的第三生物醫用高分子薄膜層上;以電化學方式用氧化銥修飾電極點、參考電極點後去除聚對二甲苯層。依據一些實施例,於分離該基底材並根據外輪廓圖樣形成該神經探針之步驟中,將神經探針的外輪廓圖樣設置至第三生物醫用高分子薄膜層上,通過蝕刻去除第一生物醫用高分子薄膜層、第二生物醫用高分子薄膜層與第三生物醫用高分子薄膜層中在外輪廓圖樣外的部分;分離基底材後形成神經探針。According to some embodiments, in the step of electrochemically modifying the electrode point, the reference electrode point with iridium oxide, a layer of parylene is covered on the third biomedical point except the electrode point, the reference electrode point and the connection point. On the polymer film layer; the electrode point and the reference electrode point are modified with iridium oxide electrochemically to remove the parylene layer. According to some embodiments, in the step of separating the base material and forming the neural probe according to the outer contour pattern, the outer contour pattern of the neural probe is placed on the third biomedical polymer film layer, and the first one is removed by etching. The biomedical macromolecular film layer, the second biomedical macromolecular film layer and the part of the third biomedical macromolecular film layer outside the outline pattern; the nerve probe is formed after separating the base material.

依據一些實施例,蝕刻技術可以為氧等離子蝕刻技術。According to some embodiments, the etching technique may be an oxygen plasma etching technique.

依據一些實施例,該基底材的材質為玻璃薄片或矽晶圓片。According to some embodiments, the base material is a glass sheet or a silicon wafer.

依據一些實施例,該第一生物醫用高分子薄膜、該第二生物醫用高分子薄膜和該第三生物醫用高分子薄膜的材質係選自聚醯亞胺、聚乙烯、聚丙烯、聚氯乙烯、聚四氟乙烯、聚炳烯酸酯、聚甲基丙烯酸、對苯二甲酸乙二醇酯、聚碳酸酯、聚對二甲苯及其組合所構成的群組。According to some embodiments, the material of the first biomedical polymer film, the second biomedical polymer film and the third biomedical polymer film is selected from polyimide, polyethylene, polypropylene, The group consisting of polyvinyl chloride, polytetrafluoroethylene, polyacrylate, polymethacrylic acid, ethylene terephthalate, polycarbonate, parylene, and combinations thereof.

依據一些實施例,該第一金屬層和第二金屬層的材質係選自鈦、銅、鉻、金、銀及其組合所構成的群組。According to some embodiments, the material of the first metal layer and the second metal layer is selected from the group consisting of titanium, copper, chromium, gold, silver and combinations thereof.

依據一些實施例,該第三金屬層的材質係選自銅、金、銀及其組合所構成的群組。According to some embodiments, the material of the third metal layer is selected from the group consisting of copper, gold, silver and combinations thereof.

依據一些實施例,該第一生物醫用高分子薄膜層與該第二生物醫用高分子薄膜層的厚度介於10微米至60微米之間;該第一金屬層的厚度介於100奈米至500奈米之間;該第二金屬層的厚度介於50奈米至400奈米之間;該第三金屬層的厚度介於500奈米至1000奈米之間;該第三生物醫用高分子薄膜層的厚度介於1微米至20微米之間。較佳地,該第一生物醫用高分子薄膜層與該第二生物醫用高分子薄膜層的厚度為30微米;該第一金屬層的厚度為200奈米;該第二金屬層的厚度為100奈米;該第三生物醫用高分子薄膜層的厚度為3.2微米。According to some embodiments, the thickness of the first biomedical polymer film layer and the second biomedical polymer film layer is between 10 micrometers and 60 micrometers; the thickness of the first metal layer is between 100 nanometers to 500 nanometers; the thickness of the second metal layer is between 50 nanometers and 400 nanometers; the thickness of the third metal layer is between 500 nanometers and 1000 nanometers; the third biomedical The thickness of the polymer film layer is between 1 micron and 20 microns. Preferably, the thickness of the first biomedical polymer film layer and the second biomedical polymer film layer is 30 micrometers; the thickness of the first metal layer is 200 nanometers; the thickness of the second metal layer is 100 nanometers; the thickness of the third biomedical polymer film layer is 3.2 micrometers.

依據一些實施例,該第三金屬層的厚度介於500奈米至1000奈米之間。依據一些實施例,該金層或該銀層的厚度介於2微米至20微米之間。較佳地,該第三金屬層的厚度為700奈米;較佳地,該金層或該銀層的厚度為5微米。According to some embodiments, the thickness of the third metal layer is between 500 nm and 1000 nm. According to some embodiments, the thickness of the gold layer or the silver layer is between 2 μm and 20 μm. Preferably, the third metal layer has a thickness of 700 nm; preferably, the gold layer or the silver layer has a thickness of 5 microns.

本案還提出一種磁相容神經探針,包含一第一生物醫用高分子薄膜層;一第一金屬層,佈設於該第一生物醫用高分子薄膜層上,該第一金屬層為一神經探針的形狀;以及一第二生物醫用高分子薄膜層,佈設於該第一金屬層上,該第二生物醫用高分子薄膜層上佈設有一金屬線路結構層及一第三生物醫用高分子薄膜層,該金屬線路結構層包含至少一電極點、至少二連接點、至少一參考電極點和用於連接該電極點或該參考電極點與該連接點的一金屬線路,該第三生物醫用高分子薄膜層佈設於該第二生物醫用高分子薄膜層上除該電極點、該參考電極點和該連接點以外的區域;其中,該電極點和該參考電極點上依次覆蓋有一金層或一銀層、一氧化銥修飾層,該連接點上覆蓋有一金層或一銀層,該電極點、該參考電極點和該連接點的高度高於該第三生物醫用高分子薄膜層。This case also proposes a magnetically compatible neural probe, which includes a first biomedical polymer film layer; a first metal layer arranged on the first biomedical polymer film layer, and the first metal layer is a The shape of the nerve probe; and a second biomedical polymer film layer, which is arranged on the first metal layer, and a metal circuit structure layer and a third biomedical film layer are arranged on the second biomedical polymer film layer. Using a polymer film layer, the metal circuit structure layer includes at least one electrode point, at least two connection points, at least one reference electrode point and a metal circuit for connecting the electrode point or the reference electrode point and the connection point, the first Three biomedical polymer film layers are arranged on the second biomedical polymer film layer except the electrode point, the reference electrode point and the connection point; wherein, the electrode point and the reference electrode point are sequentially Covered with a gold layer or a silver layer, an iridium oxide modification layer, the connection point is covered with a gold layer or a silver layer, the height of the electrode point, the reference electrode point and the connection point is higher than that of the third biomedical polymer film layer.

依據一些實施例,該金屬線路結構層係由包含一第二金屬層及一第三金屬層之一金屬線路結構層基材所蝕刻而成,該第一生物醫用高分子薄膜層與該第二生物醫用高分子薄膜層的厚度介於10微米至60微米之間;該第一金屬層的厚度介於100奈米至500奈米之間;該第二金屬層的厚度介於50奈米至400奈米之間;該第三生物醫用高分子薄膜層的厚度介於1微米至20微米之間。較佳地,該第一生物醫用高分子薄膜層與該第二生物醫用高分子薄膜層的厚度為30微米;該第一金屬層的厚度為200奈米;該第二金屬層的厚度為100奈米;該第三生物醫用高分子薄膜層的厚度為3.2微米。According to some embodiments, the metal wiring structure layer is etched from a metal wiring structure layer substrate including a second metal layer and a third metal layer, the first biomedical polymer film layer and the second metal layer The thickness of the second biomedical polymer film layer is between 10 microns and 60 microns; the thickness of the first metal layer is between 100 nanometers and 500 nanometers; the thickness of the second metal layer is between 50 nanometers The thickness of the third biomedical polymer film layer is between 1 micron and 20 microns. Preferably, the thickness of the first biomedical polymer film layer and the second biomedical polymer film layer is 30 micrometers; the thickness of the first metal layer is 200 nanometers; the thickness of the second metal layer is 100 nanometers; the thickness of the third biomedical polymer film layer is 3.2 micrometers.

依據一些實施例,該金屬線路結構層係由包含一第二金屬層及一第三金屬層之一金屬線路結構層基材所蝕刻而成,該第三金屬層的厚度介於500奈米至1000奈米之間;該金層或該銀層的厚度介於2微米至20微米之間;該參考電極點的面積為該電極點的面積10倍以上。較佳地,該第三金屬層的厚度為700奈米;該金層或該銀層的厚度為5微米;該參考電極點的面積為該電極點的面積20倍以上。According to some embodiments, the metal wiring structure layer is formed by etching a metal wiring structure layer substrate including a second metal layer and a third metal layer, and the thickness of the third metal layer is between 500 nm and between 1000 nanometers; the thickness of the gold layer or the silver layer is between 2 micrometers and 20 micrometers; the area of the reference electrode point is more than 10 times the area of the electrode point. Preferably, the thickness of the third metal layer is 700 nanometers; the thickness of the gold layer or the silver layer is 5 micrometers; the area of the reference electrode point is more than 20 times the area of the electrode point.

綜上所述,依據一些實施例,本發明所提供的神經探針在不選用鐵磁性材料、儘量縮減金屬成分的基礎上,將傳統的依靠金屬釘和導線的參考/地線功能整合到金屬線路結構層上,當其處在磁振造影成像儀的環境中不會受到磁力的影響,同時進行對應的電流偵測,並克服了現有技術會造成影像缺陷的問題。依據一些實施例,本發明提供的神經探針可用於腦內單一或多重神經元之訊號記錄,亦可用於給予電刺激於特定腦部區域以抑制或促進相對應之神經元活動,更可同時進行電刺激和訊號量測。透過神經探針所記錄到的特定腦區電生理訊號經過分析可用於診斷癲癇、偏頭痛、阿茲海默症等疾患,更有用於給予電刺激於特定腦區或神經元以達到特定神經調節之治療目的。To sum up, according to some embodiments, the nerve probe provided by the present invention integrates the traditional reference/ground wire functions relying on metal nails and wires into metal components without using ferromagnetic materials and minimizing metal components. On the circuit structure layer, when it is in the environment of the MRI imager, it will not be affected by the magnetic force, and at the same time, the corresponding current detection will be performed, and the problem of image defects caused by the prior art will be overcome. According to some embodiments, the neural probes provided by the present invention can be used to record signals from single or multiple neurons in the brain, and can also be used to give electrical stimulation to specific brain regions to inhibit or promote the corresponding neuron activity, and can also be used at the same time Conduct electrical stimulation and signal measurement. The electrophysiological signals of specific brain regions recorded by neural probes can be used to diagnose epilepsy, migraine, Alzheimer's disease and other diseases after analysis, and can also be used to give electrical stimulation to specific brain regions or neurons to achieve specific neuromodulation purpose of treatment.

依據一些實施例,本發明實施例提供的神經探針,可以適用於與磁振造影成像儀同步偵測及實施電刺激,可穩定地偵測腦內神經信號的變化,不會受到磁場的影響限制而無法與磁振造影成像儀同步記錄神經電信號。According to some embodiments, the nerve probe provided by the embodiments of the present invention can be applied to synchronously detect and implement electrical stimulation with a magnetic resonance imaging apparatus, and can stably detect changes in nerve signals in the brain without being affected by magnetic fields Due to limitations, it is impossible to record neuroelectric signals synchronously with the MRI imager.

為易於瞭解本發明磁相容神經探針N的結構與製造方法,以下將配合製作方法及圖式進行說明。In order to easily understand the structure and manufacturing method of the magnetically compatible neural probe N of the present invention, the manufacturing method and drawings will be described below.

如圖1至圖10所示,本實施例提供的磁相容神經探針N:依次包括第一生物醫用高分子薄膜層10、第一金屬層11、第二生物醫用高分子薄膜層20,第一金屬層11為神經探針的形狀,第二生物醫用高分子薄膜層20上佈設有金屬線路結構層22,金屬線路結構層22包括2個電極點222、三個連接點221、一個參考電極點R和用於連接電極點222或參考電極點R與連接點221的金屬線路223;第二生物醫用高分子薄膜層20上除電極點222、參考電極點R和連接點221以外的區域佈設有第三生物醫用高分子薄膜層30;電極點222和參考電極點R上依次覆蓋有金層或銀層31、氧化銥修飾層50;連接點221上覆蓋有金層或銀層31。As shown in Figures 1 to 10, the magnetically compatible neural probe N provided in this embodiment: sequentially includes a first biomedical polymer film layer 10, a first metal layer 11, and a second biomedical polymer film layer 20. The first metal layer 11 is in the shape of a nerve probe, and the second biomedical polymer film layer 20 is provided with a metal circuit structure layer 22. The metal circuit structure layer 22 includes two electrode points 222 and three connection points 221 , a reference electrode point R and a metal line 223 for connecting the electrode point 222 or the reference electrode point R and the connection point 221; on the second biomedical polymer film layer 20, the electrode point 222, the reference electrode point R and the connection point The area other than 221 is provided with a third biomedical polymer film layer 30; the electrode point 222 and the reference electrode point R are sequentially covered with a gold layer or silver layer 31 and an iridium oxide modification layer 50; the connection point 221 is covered with a gold layer or silver layer 31 .

上述磁相容神經探針N的製造方法為:The manufacturing method of the above-mentioned magnetically compatible nerve probe N is as follows:

S1、如圖1所示,將第一生物醫用高分子薄膜層10設置於基底材B上,並在第一生物醫用高分子薄膜層10上覆蓋第一金屬層11。其中,基底材B可為玻璃或是矽晶圓片等材質。另外,如圖2所示,可將第一金屬層11佈設為探針形狀。在本實施例中,將第一金屬層11蝕刻為神經探針形狀。第一金屬層11可加強整個探針的機械強度。S1. As shown in FIG. 1 , the first biomedical polymer film layer 10 is placed on the base material B, and the first metal layer 11 is covered on the first biomedical polymer film layer 10 . Wherein, the base material B can be made of glass or silicon wafer. In addition, as shown in FIG. 2 , the first metal layer 11 may be laid out in a probe shape. In this embodiment, the first metal layer 11 is etched into the shape of a nerve probe. The first metal layer 11 can enhance the mechanical strength of the entire probe.

S2、如圖3所示,將第二生物醫用高分子薄膜層20覆蓋於具有探針形狀的第一金屬層11上,在第二生物醫用高分子薄膜層20上設置第二金屬層與第三金屬層作為金屬線路結構層基材21,金屬線路結構層基材21可通過濺鍍的方式結合覆蓋於第二生物醫用高分子薄膜層20上。S2, as shown in FIG. 3 , cover the second biomedical polymer film layer 20 on the first metal layer 11 having a probe shape, and set the second metal layer on the second biomedical polymer film layer 20 The third metal layer is used as the metal circuit structure layer substrate 21 , and the metal circuit structure layer substrate 21 can be combined and covered on the second biomedical polymer film layer 20 by sputtering.

其中,第一生物醫用高分子薄膜層10與該第二生物醫用高分子薄膜層20之厚度分別介於10微米至60微米,其中皆以30微米最佳。第一金屬層11之厚度介於100奈米至500奈米之間,其最佳為200奈米;第二金屬層之厚度介於50奈米至400奈米之間,其中以100奈米為最佳;第三金屬層之厚度介於500奈米至1000奈米之間,其中以700 奈米最佳。其中,第一生物醫用高分子薄膜層10、第二生物醫用高分子薄膜層20、第三生物醫用高分子薄膜層30可為聚醯亞胺、聚乙烯、聚丙烯、聚氯乙烯、聚四氟乙烯、聚炳烯酸酯、聚甲基丙烯酸、對苯二甲酸乙二醇酯、聚碳酸酯、聚對二甲苯或是任二者以上之組合。又,第一金屬層11可為鉻、銅、鈦、金、銀。第二金屬層與第三金屬層可為銅、金、銀。Wherein, the thicknesses of the first biomedical polymer film layer 10 and the second biomedical polymer film layer 20 are respectively between 10 microns and 60 microns, and 30 microns is the best. The thickness of the first metal layer 11 is between 100 nanometers and 500 nanometers, and its optimum is 200 nanometers; the thickness of the second metal layer is between 50 nanometers and 400 nanometers, wherein 100 nanometers It is the best; the thickness of the third metal layer is between 500nm and 1000nm, among which 700nm is the best. Wherein, the first biomedical polymer film layer 10, the second biomedical polymer film layer 20, and the third biomedical polymer film layer 30 can be polyimide, polyethylene, polypropylene, polyvinyl chloride , polytetrafluoroethylene, polyacrylic acid ester, polymethacrylic acid, ethylene terephthalate, polycarbonate, parylene or a combination of any two or more. Also, the first metal layer 11 can be chromium, copper, titanium, gold, silver. The second metal layer and the third metal layer can be copper, gold, or silver.

S3、如圖4A及圖4B所示,金屬線路圖樣包括至少一個電極點222、至少兩個連接點221、至少一個參考電極點R與至少兩條金屬線路223,將此金屬線路圖樣經由金屬線路光罩被設置(光罩蝕刻印刷技術)至金屬線路結構層基材21上,接著蝕刻未被此金屬線路圖樣覆蓋的金屬線路結構層基材21後,形成位於第二生物醫用高分子薄膜層20上的金屬線路結構層22。金屬線路結構層22包括至少一電極點222、至少兩連接點221、一個參考電極點R與至少兩條金屬線路223,金屬線路223與電極點222、參考電極點R及連接點221電性連接。在本實施例中,金屬線路結構層22包括2個電極點222、三個連接點221、一個參考電極點R,及分別用於連接電極點222和參考電極點R與連接點221的三條金屬線路223。S3. As shown in FIG. 4A and FIG. 4B, the metal circuit pattern includes at least one electrode point 222, at least two connection points 221, at least one reference electrode point R, and at least two metal lines 223, and the metal circuit pattern is passed through the metal line The photomask is set (reticle etching and printing technology) on the metal circuit structure layer substrate 21, and then after etching the metal circuit structure layer substrate 21 not covered by the metal circuit pattern, a second biomedical polymer film is formed. Metal wiring structure layer 22 on layer 20. The metal circuit structure layer 22 includes at least one electrode point 222, at least two connection points 221, a reference electrode point R and at least two metal lines 223, and the metal line 223 is electrically connected to the electrode point 222, the reference electrode point R and the connection point 221 . In this embodiment, the metal circuit structure layer 22 includes two electrode points 222, three connection points 221, one reference electrode point R, and three metal strips for connecting the electrode points 222 and the reference electrode point R to the connection point 221 respectively. Line 223.

S4、如圖5所示,第三生物醫用高分子薄膜層30被噴塗設置於金屬線路結構層22上,然後對應該電極點222、該連接點221處和該參考電極點R的圖樣光罩被設置到第三生物醫用高分子薄膜層30上,再使用氧等離子蝕刻技術暴露出電極點222、參考電極點R和連接點221。S4, as shown in Figure 5, the third biomedical polymer film layer 30 is sprayed and arranged on the metal circuit structure layer 22, and then corresponds to the pattern light of the electrode point 222, the connection point 221 and the reference electrode point R The mask is placed on the third biomedical polymer film layer 30 , and then the electrode point 222 , the reference electrode point R and the connection point 221 are exposed using an oxygen plasma etching technique.

S5、如圖6所示,將金層31(或銀層)電鍍到電極點222、參考電極點R和連接點221上,電鍍金層31後的電極點222、參考電極點R和連接點221的高度高於第三生物醫用高分子薄膜層30。S5, as shown in Figure 6, gold layer 31 (or silver layer) is electroplated on electrode point 222, reference electrode point R and connection point 221, electrode point 222, reference electrode point R and connection point after electroplating gold layer 31 The height of 221 is higher than the third biomedical polymer film layer 30 .

其中:第三生物醫用高分子薄膜層30之厚度介於1微米至20微米之間,其中最佳為3.2 微米;金層31(或銀層)的厚度介於2微米至20微米之間,其中以5微米為最佳。Wherein: the thickness of the third biomedical polymer film layer 30 is between 1 micron and 20 microns, wherein the optimum is 3.2 microns; the thickness of the gold layer 31 (or silver layer) is between 2 microns and 20 microns , of which 5 microns is the best.

S6、如圖7所示,將聚對二甲苯層40覆蓋在第三生物醫用高分子薄膜層30上,除了該電極點222、該參考電極點R和該連接點221所對應的金層31(或銀層)以外,用以保護第三生物醫用高分子薄膜層30在後續的電極點222、參考電極點R的修飾過程中不受破壞。S6. As shown in FIG. 7 , cover the parylene layer 40 on the third biomedical polymer film layer 30, except the gold layer corresponding to the electrode point 222, the reference electrode point R and the connection point 221 31 (or the silver layer), to protect the third biomedical polymer film layer 30 from being damaged during the subsequent modification process of the electrode point 222 and the reference electrode point R.

S7、如圖8至圖10所示,其修飾過程以電化學方式用氧化銥(IrOx)修飾電極點222和該參考電極點R後(即,覆蓋於該電極點222和該參考電極點R對應的金層31(或銀層)上),接著再去除聚對二甲苯層40。依據一些實施例,本發明製造方法之電化學方式選用循環伏安法(Cyclic Voltammetry, CV)。氧化銥為具有導電性之過渡金屬氧化物,透過氧化銥之修飾,電極點222表面形成具耐酸鹼及耐腐蝕之導電薄膜層。此外,本發明製造方法所形成之氧化銥薄膜層之微結構具備多孔且開放的形態,從而具有高表面積特性,能表現更高的電荷存儲容量(CSC)。因此,它們可以用於可植入的神經刺激中提升治療效率且降低組織傷害。探針的外輪廓圖樣被印刷至第三生物醫用高分子薄膜層30上,使用氧等離子蝕刻技術去除第一生物醫用高分子薄膜層10、第二生物醫用高分子薄膜層20、第三生物醫用高分子薄膜層30在外輪廓圖樣外的部分。最後從基底材B分離後形成磁相容神經探針N。S7. As shown in FIGS. 8 to 10, the modification process electrochemically uses iridium oxide (IrOx) to modify the electrode point 222 and the reference electrode point R (that is, cover the electrode point 222 and the reference electrode point R on the corresponding gold layer 31 (or silver layer), and then the parylene layer 40 is removed. According to some embodiments, the electrochemical method of the present invention is cyclic voltammetry (Cyclic Voltammetry, CV). Iridium oxide is a transition metal oxide with conductivity. Through the modification of iridium oxide, a conductive film layer with acid, alkali and corrosion resistance is formed on the surface of the electrode point 222 . In addition, the microstructure of the iridium oxide thin film layer formed by the manufacturing method of the present invention has a porous and open morphology, thereby having a high surface area characteristic and being able to exhibit a higher charge storage capacity (CSC). Therefore, they could be used in implantable neurostimulation to improve therapeutic efficiency and reduce tissue damage. The outline pattern of the probe is printed onto the third biomedical polymer film layer 30, and the first biomedical polymer film layer 10, the second biomedical polymer film layer 20, the The part of the third biomedical polymer film layer 30 outside the outline pattern. Finally, the magnetically compatible neural probe N is formed after being separated from the base material B.

其中,上述步驟中的S6、S7亦可替換為無覆蓋聚對二甲苯層40在第三生物醫用高分子薄膜層30上,而在修飾電極點222、參考電極點R,並分離基底材B後,使用雷射微型切割或乾式蝕刻外輪廓圖樣形成神經探針。藉此可提升製造的速度與尺寸的精準度。Wherein, S6 and S7 in the above steps can also be replaced with the non-covered parylene layer 40 on the third biomedical polymer film layer 30, and the modified electrode point 222, the reference electrode point R, and the separation of the base material After B, the neural probes are patterned using laser microdissection or dry etching. In this way, the manufacturing speed and dimensional accuracy can be improved.

依據一些實施例,本發明提供的磁相容神經探針N的參考電極點R的面積大於電極點222面積的十倍,其中以高於二十倍最佳。According to some embodiments, the area of the reference electrode point R of the magnetically compatible neural probe N provided by the present invention is greater than ten times the area of the electrode point 222 , and preferably greater than twenty times.

如圖11所示,為一種磁相容神經探針的結構示意圖,其上設置有複數個電極點222,這些電極點222用以於植入腦部後接觸待測區。在靠近探針尾端處,設置參考電極點R,參考電極點R將不會接觸待測區,故可取得待測區外的電位值,作為參考電位用。通過本實施例中參考電極點R的設置,可在此磁相容神經探針N植入腦部後作為參考電位,從而可以取代現有技術中必需連接金屬釘於腦表面(或腦骨)的措施,可降低渦電流形成進而克服現有技術中的神經探針無法在高磁場之磁振造影成像儀環境下同步進行造影與神經電信號偵測的缺點。即如圖12所示,本發明的磁相容神經探針N在植入腦內後,進行磁振造影成像儀的檢測,其成像時,不會受到磁力的影響,可持續進行腦內神經電信號的偵測與實施電刺激,並且黑影面積縮小到不易察覺,克服了習知問題。As shown in FIG. 11 , it is a structural diagram of a magnetically compatible neural probe, on which a plurality of electrode points 222 are arranged, and these electrode points 222 are used to contact the area to be tested after being implanted in the brain. Near the end of the probe, set the reference electrode point R. The reference electrode point R will not touch the area to be measured, so the potential value outside the area to be measured can be obtained as a reference potential. Through the setting of the reference electrode point R in this embodiment, the magnetically compatible neural probe N can be used as a reference potential after being implanted in the brain, thereby replacing the need to connect metal nails to the brain surface (or brain bone) in the prior art The measures can reduce the formation of eddy currents and overcome the disadvantage that the nerve probes in the prior art cannot simultaneously perform imaging and nerve electrical signal detection in the environment of a magnetic resonance imaging apparatus with a high magnetic field. That is, as shown in Figure 12, after the magnetically compatible neural probe N of the present invention is implanted in the brain, it is detected by a magnetic resonance imaging instrument. The detection of electrical signals and the implementation of electrical stimulation, and the area of the shadow is reduced to be difficult to detect, which overcomes the conventional problem.

神經探針可用於腦內單一或多重神經元之訊號記錄,亦可用於給予電刺激於特定腦部區域以抑制或促進相對應之神經元活動,更可同時進行電刺激和訊號量測。透過神經探針所記錄到的特定腦區電生理訊號經過分析可用於診斷癲癇、偏頭痛、阿茲海默症、帕金森氏症等疾病,更有用於給予電刺激於特定腦區或神經元以達到特定神經調節之治療目的。Neural probes can be used to record the signals of single or multiple neurons in the brain, and can also be used to give electrical stimulation to specific brain regions to inhibit or promote the corresponding neuron activity, and can also perform electrical stimulation and signal measurement at the same time. The electrophysiological signals of specific brain regions recorded by neural probes can be used for diagnosis of epilepsy, migraine, Alzheimer's disease, Parkinson's disease and other diseases after analysis, and can also be used to give electrical stimulation to specific brain regions or neurons In order to achieve the therapeutic purpose of specific neuromodulation.

10:第一生物醫用高分子薄膜層 11:第一金屬層 20:第二生物醫用高分子薄膜層 21:金屬線路結構層基材 22:金屬線路結構層 222:電極點 221:連接點 223:金屬線路 30:第三生物醫用高分子薄膜層 31:金層(或銀層) 40:聚對二甲苯層 50:氧化銥修飾層 91:鎢電極 92:鉑銥電極 R:參考電極點 B:基底材 N:磁相容神經探針 10: The first biomedical polymer film layer 11: The first metal layer 20: The second biomedical polymer film layer 21: Metal circuit structure layer base material 22: Metal circuit structure layer 222: electrode point 221: Connection point 223: metal line 30: The third biomedical polymer film layer 31: gold layer (or silver layer) 40: Parylene layer 50: iridium oxide modified layer 91: Tungsten electrode 92: Platinum iridium electrode R: reference electrode point B: base material N: Magnetic Compatibility Neural Probe

[圖1]為在第一生物醫用高分子薄膜層上覆蓋第一金屬層的結構示意圖; [圖2]為在第一生物醫用高分子薄膜層上覆蓋第一金屬層的另一種結構示意圖; [圖3]為在第一金屬層上覆蓋第二生物醫用高分子薄膜層的結構示意圖; [圖4A]為尚未蝕刻出金屬線路結構層的剖面示意圖; [圖4B]為蝕刻出金屬線路結構層的結構示意圖; [圖5]為將第三生物醫用高分子薄膜層噴塗至金屬線路結構層的結構示意圖; [圖6]為將金層或銀層電鍍到電極點、參考電極點和連接點上的結構示意圖; [圖7]為將聚對二甲苯層覆蓋在除了電極點、參考電極點和連接點以外的第三生物醫用高分子薄膜層上的結構示意圖; [圖8]為以電化學方式用氧化銥修飾電極點、參考電極點後的結構示意圖; [圖9]為蝕刻去除第一生物醫用高分子薄膜層、第二生物醫用高分子薄膜層與第三生物醫用高分子薄膜層中在外輪廓圖樣外的部分的結構示意圖; [圖10]為分離基底材後形成的神經探針的結構示意圖; [圖11]為一種磁相容神經探針的結構示意圖; [圖12]為本發明實施例運用於MRI時的狀態示意圖;以及 [圖13]為現有技術運用於MRI時的狀態示意圖。 [Fig. 1] is a schematic structural view covering the first metal layer on the first biomedical polymer film layer; [Fig. 2] is another structural schematic diagram of covering the first metal layer on the first biomedical polymer film layer; [Fig. 3] is a schematic structural view of covering the second biomedical polymer film layer on the first metal layer; [FIG. 4A] is a schematic cross-sectional view of a metal circuit structure layer that has not been etched; [FIG. 4B] is a structural schematic diagram of etching out the metal circuit structure layer; [Fig. 5] is a structural schematic diagram of spraying the third biomedical polymer film layer onto the metal circuit structure layer; [Fig. 6] is a structural schematic diagram of electroplating a gold layer or a silver layer onto an electrode point, a reference electrode point and a connection point; [Fig. 7] is a schematic structural view of covering the parylene layer on the third biomedical polymer film layer except electrode points, reference electrode points and connection points; [Fig. 8] is a structural schematic diagram after electrochemically modifying electrode points and reference electrode points with iridium oxide; [FIG. 9] is a structural schematic diagram of etching and removing the first biomedical polymer film layer, the second biomedical polymer film layer and the third biomedical polymer film layer outside the outer contour pattern; [Fig. 10] is a structural schematic diagram of the neural probe formed after separating the base material; [Fig. 11] is a schematic structural diagram of a magnetically compatible neural probe; [Figure 12] is a schematic diagram of the state when the embodiment of the present invention is applied to MRI; and [ Fig. 13 ] is a schematic diagram of the state when the prior art is applied to MRI.

10:第一生物醫用高分子薄膜層 10: The first biomedical polymer film layer

20:第二生物醫用高分子薄膜層 20: The second biomedical polymer film layer

30:第三生物醫用高分子薄膜層 30: The third biomedical polymer film layer

N:磁相容神經探針 N: Magnetic Compatibility Neural Probe

Claims (10)

一種磁相容神經探針的製造方法,包含以下步驟: 在一基底材上塗佈一第一生物醫用高分子薄膜層,在該第一生物醫用高分子薄膜層上覆蓋一第一金屬層,其中,該第一金屬層完全覆蓋在該第一生物醫用高分子薄膜層上,或將該第一金屬層製成為一神經探針的形狀; 在該第一金屬層上覆蓋一第二生物醫用高分子薄膜層,在該第二生物醫用高分子薄膜層上依次濺鍍一第二金屬層和一第三金屬層作為一金屬線路結構層基材;經由金屬線路光罩,在該金屬線路結構層基材蝕刻出一金屬線路結構層,該金屬線路結構層包括至少一電極點、至少二連接點、至少一參考電極點和用於連接該電極點或該參考電極點與該連接點的一金屬線路; 將一第三生物醫用高分子薄膜層噴塗至該金屬線路結構層,然後將與該電極點、該參考電極點和該連接點處的圖樣設置到該第三生物醫用高分子薄膜層上,再通過蝕刻暴露出該電極點、該參考電極點和該連接點; 將一金層或一銀層電鍍到該電極點、該參考電極點和該連接點上,電鍍該金層或該銀層後的該電極點、該參考電極點和該連接點的高度大於該第三生物醫用高分子薄膜層; 以電化學方式用氧化銥修飾該電極點、該參考電極點;以及 分離該基底材並根據外輪廓圖樣形成該神經探針。 A method for manufacturing a magnetically compatible nerve probe, comprising the following steps: A first biomedical polymer film layer is coated on a base material, and a first metal layer is covered on the first biomedical polymer film layer, wherein the first metal layer completely covers the first metal layer. On the biomedical polymer film layer, or make the first metal layer into the shape of a nerve probe; A second biomedical polymer film layer is covered on the first metal layer, and a second metal layer and a third metal layer are sequentially sputtered on the second biomedical polymer film layer as a metal circuit structure layer substrate; through the metal circuit mask, a metal circuit structure layer is etched on the metal circuit structure layer substrate, and the metal circuit structure layer includes at least one electrode point, at least two connection points, at least one reference electrode point and for a metal line connecting the electrode point or the reference electrode point and the connection point; A third biomedical polymer film layer is sprayed onto the metal circuit structure layer, and then the pattern at the electrode point, the reference electrode point and the connection point is set on the third biomedical polymer film layer , and then expose the electrode point, the reference electrode point and the connection point by etching; A gold layer or a silver layer is electroplated on the electrode point, the reference electrode point and the connection point, and the height of the electrode point, the reference electrode point and the connection point after electroplating the gold layer or the silver layer is greater than the height of the electrode point, the reference electrode point and the connection point. The third biomedical polymer film layer; electrochemically modifying the electrode point, the reference electrode point, with iridium oxide; and The base material is separated and the neural probe is formed according to the outline pattern. 如請求項1所述之磁相容神經探針的製造方法,其中,該基底材的材質為玻璃薄片或矽晶圓片。The manufacturing method of the magnetically compatible neural probe according to Claim 1, wherein the material of the base material is a glass sheet or a silicon wafer. 如請求項1所述之磁相容神經探針的製造方法,其中,該第一生物醫用高分子薄膜層、該第二生物醫用高分子薄膜層和該第三生物醫用高分子薄膜層的材質係選自聚醯亞胺、聚乙烯、聚丙烯、聚氯乙烯、聚四氟乙烯、聚炳烯酸酯、聚甲基丙烯酸、對苯二甲酸乙二醇酯、聚碳酸酯、聚對二甲苯及其組合所構成的群組。The manufacturing method of the magnetically compatible neural probe as claimed in item 1, wherein, the first biomedical polymer film layer, the second biomedical polymer film layer and the third biomedical polymer film layer The material of the layer is selected from polyimide, polyethylene, polypropylene, polyvinyl chloride, polytetrafluoroethylene, polyacrylate, polymethacrylic acid, ethylene terephthalate, polycarbonate, The group consisting of parylene and combinations thereof. 如請求項1所述之磁相容神經探針的製造方法,其中,該第一金屬層和第二金屬層的材質係選自鈦、銅、鉻、金、銀及其組合所構成的群組。The manufacturing method of the magnetically compatible neural probe as claimed in item 1, wherein the material of the first metal layer and the second metal layer is selected from the group consisting of titanium, copper, chromium, gold, silver and combinations thereof Group. 如請求項1所述之磁相容神經探針的製造方法,其中,該第三金屬層的材質係選自銅、金、銀及其組合所構成的群組。The manufacturing method of the magnetically compatible neural probe according to claim 1, wherein the material of the third metal layer is selected from the group consisting of copper, gold, silver and combinations thereof. 如請求項1所述之磁相容神經探針的製造方法,其中,該第一生物醫用高分子薄膜層與該第二生物醫用高分子薄膜層的厚度介於10微米至60微米之間;該第一金屬層的厚度介於100奈米至500奈米之間;該第二金屬層的厚度介於50奈米至400奈米之間;該第三金屬層的厚度介於500奈米至1000奈米之間;該第三生物醫用高分子薄膜層的厚度介於1微米至20微米之間。The manufacturing method of the magnetically compatible neural probe as described in Claim 1, wherein the thickness of the first biomedical polymer film layer and the second biomedical polymer film layer is between 10 microns and 60 microns between; the thickness of the first metal layer is between 100 nm and 500 nm; the thickness of the second metal layer is between 50 nm and 400 nm; the thickness of the third metal layer is between 500 nm between nanometers and 1000 nanometers; the thickness of the third biomedical polymer film layer is between 1 micrometer and 20 micrometers. 如請求項1所述之磁相容神經探針的製造方法,其中,該金層或該銀層的厚度介於2微米至20微米之間。The manufacturing method of the magnetically compatible neural probe according to claim 1, wherein the thickness of the gold layer or the silver layer is between 2 microns and 20 microns. 一種磁相容神經探針,包含: 一第一生物醫用高分子薄膜層; 一第一金屬層,佈設於該第一生物醫用高分子薄膜層上,該第一金屬層為一神經探針的形狀;以及 一第二生物醫用高分子薄膜層,佈設於該第一金屬層上,該第二生物醫用高分子薄膜層上佈設有一金屬線路結構層及一第三生物醫用高分子薄膜層,該金屬線路結構層包含至少一電極點、至少二連接點、至少一參考電極點和用於連接該電極點或該參考電極點與該連接點的一金屬線路,該第三生物醫用高分子薄膜層佈設於該第二生物醫用高分子薄膜層上除該電極點、該參考電極點和該連接點以外的區域; 其中,該電極點和該參考電極點上依次覆蓋有一金層或一銀層、一氧化銥修飾層,該連接點上覆蓋有另一金層或另一銀層,該電極點、該參考電極點和該連接點的高度高於該第三生物醫用高分子薄膜層。 A magnetically compatible neural probe comprising: - the first biomedical polymer film layer; a first metal layer arranged on the first biomedical polymer film layer, the first metal layer is in the shape of a nerve probe; and A second biomedical polymer film layer is arranged on the first metal layer, a metal circuit structure layer and a third biomedical polymer film layer are arranged on the second biomedical polymer film layer, the The metal circuit structure layer includes at least one electrode point, at least two connection points, at least one reference electrode point and a metal circuit for connecting the electrode point or the reference electrode point and the connection point, and the third biomedical polymer film The layer is arranged on the area of the second biomedical polymer film layer except the electrode point, the reference electrode point and the connection point; Wherein, the electrode point and the reference electrode point are sequentially covered with a gold layer or a silver layer and an iridium oxide modification layer, the connection point is covered with another gold layer or another silver layer, the electrode point, the reference electrode The point and the connecting point are higher than the third biomedical polymer film layer. 如請求項8所述之磁相容神經探針,其中,該金屬線路結構層係由包含一第二金屬層及一第三金屬層之一金屬線路結構層基材所蝕刻而成,該第一生物醫用高分子薄膜層與該第二生物醫用高分子薄膜層的厚度介於10微米至60微米之間;該第一金屬層的厚度介於100奈米至500奈米之間;該第二金屬層的厚度介於50奈米至400奈米之間;該第三生物醫用高分子薄膜層的厚度介於1微米至20微米之間。The magnetic compatibility nerve probe as described in Claim 8, wherein the metal circuit structure layer is etched from a metal circuit structure layer substrate comprising a second metal layer and a third metal layer, and the first metal circuit structure layer is formed by etching The thickness of a biomedical polymer film layer and the second biomedical polymer film layer is between 10 micrometers and 60 micrometers; the thickness of the first metal layer is between 100 nanometers and 500 nanometers; The thickness of the second metal layer is between 50 nm and 400 nm; the thickness of the third biomedical polymer film layer is between 1 micron and 20 microns. 如請求項8所述之磁相容神經探針,其中,該金屬線路結構層係由包含一第二金屬層及一第三金屬層之一金屬線路結構層基材所蝕刻而成,該第三金屬層的厚度介於500奈米至1000奈米之間;該金層或該銀層的厚度介於2微米至20微米之間;該參考電極點的面積為該電極點的面積10倍以上。The magnetic compatibility nerve probe as described in Claim 8, wherein the metal circuit structure layer is etched from a metal circuit structure layer substrate comprising a second metal layer and a third metal layer, and the first metal circuit structure layer is formed by etching The thickness of the three metal layers is between 500 nanometers and 1000 nanometers; the thickness of the gold layer or the silver layer is between 2 micrometers and 20 micrometers; the area of the reference electrode point is 10 times the area of the electrode point above.
TW110138616A 2021-10-18 2021-10-18 Magnetic field compatible neural probe and manufacturing method thereof TW202317037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110138616A TW202317037A (en) 2021-10-18 2021-10-18 Magnetic field compatible neural probe and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110138616A TW202317037A (en) 2021-10-18 2021-10-18 Magnetic field compatible neural probe and manufacturing method thereof

Publications (1)

Publication Number Publication Date
TW202317037A true TW202317037A (en) 2023-05-01

Family

ID=87378711

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110138616A TW202317037A (en) 2021-10-18 2021-10-18 Magnetic field compatible neural probe and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TW202317037A (en)

Similar Documents

Publication Publication Date Title
CN113545790B (en) Preparation method of magnetic compatible nerve probe
US7706893B2 (en) High density array of micro-machined electrodes for neural stimulation
US9622676B2 (en) Method of making micromachined neural probes
EP1300678B1 (en) Extracellular recording integrated composite electrode
CN112006685B (en) Flexible micro-nano electrode array for positioning cortex epileptic brain function and preparation method thereof
CN106178259B (en) Rat leg muscle electrical stimulation and electromyographic signal acquisition flexible device and preparation method thereof
CN110327544B (en) Implanted high-density electrode point flexible probe electrode and preparation method thereof
Mathieson et al. Large-area microelectrode arrays for recording of neural signals
JP2012508051A (en) Biocompatible electrode
WO2017127551A1 (en) Addressable vertical nanowire probe arrays and fabrication methods
CN113181549A (en) Flexible micro-nano electrode array for positioning deep brain of epileptogenic focus and preparation method thereof
CN107485386B (en) Intracranial cortical neural information detection electrode, electrode array and preparation method thereof
CN112717273B (en) Nerve electric stimulation electrode with micro-columnar structure and preparation method thereof
CN106645346A (en) Multi-site detection region, microelectrode array and preparation method thereof
TW202317037A (en) Magnetic field compatible neural probe and manufacturing method thereof
CN110772251B (en) Soft double-sided nerve probe and preparation method thereof
Lu et al. High-performance flexible microelectrode array with PEDOT: PSS coated 3D micro-cones for electromyographic recording
Chen et al. 32-site microelectrode modified with Pt black for neural recording fabricated with thin-film silicon membrane
TWI569771B (en) 3d structural electrodes having high cell affinity and capacitive coupling and biological probe having the same
Raj et al. High-Density Individually Addressable Platinum Nanoelectrodes for Neuroscience Applications
Branch et al. Micropillar electrode array: from metal to dielectric interface
CN211213134U (en) Nerve excitation probe
Pei et al. Flexible multi-channel electrodes for acute recording in the non-human primates
Fang et al. High magnetic field fmri compliant carbon nanofiber neural probes
Carleo et al. Multi-electrode array (MEASs) to investigate pathogenetic disease mechanisms and pharmacological properties in iPSC-derived neurons modelling neuropsychiatric diseases