TW202315103A - 感測器、成像系統及用於形成感測器之方法 - Google Patents

感測器、成像系統及用於形成感測器之方法 Download PDF

Info

Publication number
TW202315103A
TW202315103A TW111121975A TW111121975A TW202315103A TW 202315103 A TW202315103 A TW 202315103A TW 111121975 A TW111121975 A TW 111121975A TW 111121975 A TW111121975 A TW 111121975A TW 202315103 A TW202315103 A TW 202315103A
Authority
TW
Taiwan
Prior art keywords
sensor
substrate
sensor die
shape
additional
Prior art date
Application number
TW111121975A
Other languages
English (en)
Inventor
史提夫 札密克
大衛 L 布朗
霍華德 陳
凡卡特曼 伊爾
Original Assignee
美商科磊股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商科磊股份有限公司 filed Critical 美商科磊股份有限公司
Publication of TW202315103A publication Critical patent/TW202315103A/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14618Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/711Time delay and integration [TDI] registers; TDI shift registers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/768Addressed sensors, e.g. MOS or CMOS sensors for time delay and integration [TDI]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • G01N2021/8841Illumination and detection on two sides of object

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Cameras In General (AREA)
  • Air Bags (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

本發明提供感測器、成像系統及用於形成具有一指定深度分佈之一感測器之方法。一種感測器包含一基板及附接至該基板之一或多個組件。該感測器亦包含一感測器晶粒,其具有一薄化背面及經組態用於偵測照射該感測器晶粒之該薄化背面之能量之能敏元件。該感測器進一步包含離散導熱結構,其等藉由一覆晶程序形成於該感測器晶粒之一正面與該基板之間,藉此將該感測器晶粒接合至該基板且引起該感測器晶粒之該薄化背面具有一預選形狀。該等離散導熱結構之至少一部分將該感測器晶粒電連接至該一或多個組件。

Description

感測器、成像系統及用於形成感測器之方法
本發明大體上係關於感測器、成像系統及用於形成一感測器之方法。某些實施例係關於經由感測器總成之感測器形狀控制。
以下描述及實例不因其包含於本節中而被承認為先前技術。
背照式影像感測器可達成高量子效率(QE)及良好調變轉移函數(MTF)且廣泛用於檢測各種半導體及其他基板。為實現快速操作,此等感測器緊密連接至可執行以下功能之一或若干者之專用積體電路(ASIC):類比轉數位(A/D)轉換、信號調節、數位信號處理及與一外部電腦通信。
此一感測器組態面對適當控制感測器之光活性區域之形狀提出挑戰。例如,在一背照式感測器之情況中,光活性區域係一薄膜且可變得機械不穩定。感測器晶粒之覆晶組裝實現可與背面照明相容之快速操作。在將一感測器覆晶組裝至一陶瓷基板上之後,感測器可變得凸起、凹下或起皺。覆晶組裝對感測器形狀之影響可對其中需要高度控制及簡單形狀之光學系統提出挑戰。在光學應用中,具有特定曲率之一彎曲影像平面可為較佳的。因此,能夠在組裝期間控制感測器形狀且能夠將組裝設計為以一特定感測器形狀為目標對此等系統之成像效能至關重要。
光學系統設計通常產生負曲率、正曲率或平面影像場。另一方面,影像感測器可組裝於一陶瓷基板上,且歸因於基板製程,難以控制陶瓷基板之形狀。不能夠控制一感測器總成之形狀可減小有用視域,減小系統級光學容限,且增加光學像差量。
因此,當前使用之感測器組裝方法之缺點包含無法容易地控制陶瓷基板形狀,而高效能光學設計需要高感測器平面度或一特定感測器形狀。當前使用之組裝方法之一額外缺點係相對不佳晶粒共面性可使感測器晶粒難以適當附接,其影響總成之熱效能。當前使用之感測器組裝方法之另一缺點係散熱,其對高速、低雜訊操作而言很重要。當前使用之感測器組裝方法之另一缺點係場曲率可使一遠心影像空間難以達成,其在度量應用中可為很重要。此外,當前組裝方法不允許感測器形狀之良好控制或重複性。
當前提出若干方法用於控制行動電話及天文應用之一背照式薄化感測器晶粒之形狀。然而,在所有該等應用中,使用引線接合感測器晶粒。引線接合感測器晶粒限制互連件之數目及讀出速度且不太適合於上述光學檢測應用。當前用於感測器形狀控制之此等方法可能亦不適合於實現良好熱接觸、具有高密度互連之覆晶或真空應用。
因此,開發不具有一或多個上述缺點之感測器、成像系統及形成一感測器之方法之系統及方法將係有利的。
各種實施例之以下描述決不應被解釋為限制隨附申請專利範圍之標的。
一個實施例係關於一種感測器,其包含一基板及附接至該基板之一或多個組件。該感測器亦包含一感測器晶粒,其具有一薄化背面及經組態用於偵測照射該感測器晶粒之該薄化背面之能量之能量回應元件。該感測器進一步包含離散導熱結構,其等藉由一覆晶程序形成於該感測器晶粒之一正面與該基板之間,藉此將該感測器晶粒接合至該基板且引起該感測器晶粒之該薄化背面具有一預選形狀。該等離散導熱結構之至少一部分將該感測器晶粒電連接至該一或多個組件。該感測器可如本文所描述般進一步組態。
另一實施例係關於一種成像系統,其包含經組態用於產生由一照明子系統導引至一樣品之能量之一能源。該成像系統亦包含經組態用於偵測來自該樣品之能量且回應於該偵測能量而產生輸出之一感測器。該感測器如上文所描述般進一步組態。該成像系統可如本文所描述般進一步組態。
另一實施例係關於一種用於形成一感測器之方法。該方法包含:使離散導熱結構形成於一基板上;及基於一感測器晶粒之一薄化背面之一預選形狀來更改該等離散導熱結構之一形狀。該方法亦包含經由該等離散導熱結構將該感測器晶粒之一正面接合至該基板,藉此引起該感測器晶粒之該薄化背面具有該預選形狀。該等離散導熱結構之至少一部分將該感測器晶粒電連接至附接至該基板之一或多個組件。該感測器晶粒具有經組態用於偵測照射該感測器晶粒之該薄化背面之能量之能敏元件。
該方法之各步驟可如本文所描述般進一步執行。該方法可包括本文所描述之(若干)任何其他方法之(若干)任何其他步驟。該方法可由本文所描述之系統之任何者執行。
現轉至圖式,應注意,圖未按比例繪製。特定言之,圖之一些元件之比例被大幅放大以突顯元件之特性。亦應注意,圖未按相同比例繪製。可類似組態之一個以上圖中所展示之元件已使用相同元件符號指示。除非本文另有說明,否則所描述及展示之任何元件可包含任何適合市售元件。
一般而言,本文所描述之實施例係感測器、成像系統及用於形成一感測器之方法。更具體而言,本文所描述之實施例係用於諸如檢測及度量之應用之感測器組裝及形狀控制之方法。實施例提供影像感測器,其包含(但不限於)可在部分真空或其他受控環境中操作且組裝於各種陶瓷基板上之用於深紫外(DUV)及極紫外(EUV)應用之時延積分(TDI)感測器。本文所描述之實施例有利地展示如何使用受控感測器形狀實施此等感測器,同時維持相對高速、相對低雜訊操作。另外,本文所描述之實施例提供用於感測器形狀控制之方法,同時實現感測器晶粒覆晶總成與實質上高密度互連之良好熱接觸及對一真空中之應用之適合性。
本文所使用之術語「能敏元件」界定為對本文所描述之能量之類型之一者(包含光、電子、其他帶電粒子及其類似者)敏感或有反應之感測器元件。此等能敏元件可由不同組件形成,取決於其將用於偵測之能量之類型。儘管本文使用術語「光敏元件」來描述諸多實施例及實例,但該術語之任何使用不意謂排除該等實施例及實例用於本文所描述之任何其他類型之能敏元件。換言之,為方便起見,術語「能敏元件」及「光敏元件」在本文中可互換使用,且術語「光敏元件」之任何例項應更廣義解譯為本文所描述之「能敏元件」。
實施例亦包含諸如基於此等感測器之檢測系統之成像系統以藉此達成相較於當前可用檢測系統之優異成像效能且因此達成更高缺陷敏感度及處理量。如本文所描述,實現具有一受控曲率之感測器總成可有利地增大一成像系統之光學視域(FOV)、放寬成像系統級光學容限及減少系統中之光學像差量。本文所描述之實施例亦有利地實現針對彎曲影像空間或其他非平坦影像空間設計之相對較大感測器及平鋪感測器陣列,其提供諸如檢測之應用之更高敏感度及足夠處理量(且因此降低擁有成本)。
如將自各種實施例之以下描述看出,本文所描述之感測器具有相較於當前使用感測器之若干額外優點。此等額外優點包含:儘管一陶瓷基板之形狀可能不容易控制,但感測器晶粒可以實質上高感測器晶粒平面度或一預選特定感測器晶粒形狀接合至本文所描述之此等基板,藉此使感測器特別適合於實質上高效能光學設計。本文所描述之實施例之另一優點係:不管一預選感測器晶粒形狀如何,本文所描述之實施例實現與感測器晶粒充分接觸,其繼而最佳化總成之熱效能,藉此實現感測器晶粒之相對高速、相對低雜訊操作。本文所描述之實施例之另一優點係:儘管一成像系統中存在任何場彎曲,但感測器晶粒可實現對度量應用很重要之一遠心影像空間。本文所描述之此等及其他優點由允許實質上準確控制感測器晶粒形狀之本文所描述之感測器組裝方法提供。
如本文進一步描述,感測器晶粒實施例具有一薄化背面及經組態用於偵測照射感測器晶粒之薄化背面之能量之光敏元件。將由感測器晶粒偵測之能量導引至薄化背面且接著通過感測器晶粒之本體,使得電荷可由形成於正面上之元件收集。背面輪廓界定感測器之影像平面之位置。因此,感測器晶粒之形狀可以說是感測器晶粒之一個最重要特性,由於包含本文進一步描述之原因之原因。
如本文所使用,術語「感測器晶粒之薄化背面之預選形狀」在本文中可與術語「感測器形狀」及「感測器晶粒形狀」互換使用。本文將「感測器晶粒之薄化背面之預選形狀」界定為感測器晶粒之薄化背面相對於某個參考或座標系之位置及依據跨感測器晶粒之位置而變化。例如,「感測器晶粒之薄化背面之預選形狀」可由依據跨感測器晶粒之位置而變化之感測器晶粒之薄化背面之深度或垂直高度界定。此深度或高度函數可界定於跨感測器晶粒之兩個維度(2D)中。因此,「感測器晶粒之薄化背面之預選形狀」亦界定感測器背面高度或深度之一2D輪廓。換言之,「感測器晶粒之薄化背面之預選形狀」有效界定在z上且依據x及y而變化之感測器晶粒之背面之位置。
如本文進一步描述,「感測器晶粒之薄化背面之預選形狀」由本文所描述之新穎及有利感測器組裝方法實現,其較佳地不依任何方式更改感測器膜(光敏元件)之厚度或垂直高度。膜之形狀係恆定的,且其他維度上之形狀係固定的。換言之,本文所描述之感測器組裝方法不藉由更改光敏元件之任何特性來更改感測器晶粒之一形狀(但一些可忽略更改可發生)。相反地,光敏元件較佳地在感測器組裝之前及之後具有相同特性。依此方式,在感測器組裝之後感測器晶粒之背面之高度(或深度)之改變將導致感測器晶粒之正面之高度(或深度)之一類似改變。相反地,歸因於附接至另一組件之正面輪廓之改變將導致背面輪廓之類似改變。
一感測器之一個實施例包含一基板、附接至基板之一或多個組件及接合至基板之一感測器晶粒。因此,在一個實施例中,影像感測器晶粒與組裝至一共同基板上之其他晶粒共同封裝,如圖1中所展示。圖1包含一感測器總成之側視圖100及感測器總成之仰視圖102。如側視圖中所展示,感測器總成之此實施例包含其中形成有電互連件106之基板104。電互連件106之至少一部分電連接附接至基板之一側之感測器晶粒108及附接至基板之另一側之一或多個組件110。基板亦可附接至與感測器晶粒對置之基板之側上之散熱器112。仰視圖102展示不具有散熱器之感測器總成以藉此進一步展示附接至基板104之一或多個組件110。儘管此圖中展示四個組件,但感測器可包含可如本文進一步描述般組態之一或多個組件之任何數目及配置。
如側視圖100中進一步展示,感測器晶粒108具有經薄化(圖1中未展示)之背面114及經組態用於偵測照射感測器晶粒之薄化背面之能量120 (例如光或電子)之能敏元件116。本文非常一般地展示能敏元件116,因為實施例可應用於諸多不同感測器組態。一般而言,能敏元件116可包含不同元件(圖中未展示)之一組合,一些具有不同功能。例如,能敏元件可包含實際上偵測能量之元件以及儲存回應於偵測能量之一信號或電荷之元件。在一個此實例中,能敏元件可經組態使得能量在感測器晶粒之背面114附近某處(或針對一些情況可能在感測器晶粒之塊體中更深)轉換為電荷且收集信號電荷且將其儲存於感測器晶粒之正面118上或附近之元件中。
如本文進一步描述,實施例特別適合於其中感測器晶粒在一真空內操作之情形,諸如其中能敏元件經組態用於偵測DUV光、真空或極紫外(VUV/EUV)光、一電子束及/或x射線之環境。實施例亦適合於非真空應用,諸如當能敏元件經組態用於偵測可見或紅外(IR)光時。
感測器晶粒可組態為一電荷耦合裝置(CCD)、一TDI感測器或一互補金屬氧化物半導體(CMOS)影像感測器晶粒。感測器晶粒亦可由矽(Si)、砷化銦鎵(InGaAs)、銻化銦(InSb)、碲化鎘(CdTe)或用於跨一光譜(包含(但不限於) x射線、VUV光、DUV光、可見光及IR光)之能量偵測之任何其他適合化合物製成。儘管本文可相對於矽基感測器晶粒描述一些實施例,但本文所描述之實施例可應用於由(若干)任何其他適合材料製成之感測器。
在一個實施例中,一或多個組件110經組態用於回應於由能敏元件偵測到之能量而對由能敏元件116產生之輸出執行一或多個功能。一或多個其他組件(或其他晶粒)可為類比轉數位(A/D)晶片、數位轉類比組件(DAC)、影像信號處理晶粒、專用積體電路(ASIC)或其等之一組合。由一或多個組件執行之一或多個功能可包含(例如)放大、A/D轉換、信號調節、數位影像處理及與一外部電腦之通信。因此,一或多個功能可如將感測器晶粒之輸出轉移至感測器總成外部之一組件般簡單或可涉及將輸出自一種類型變換為另一類型、依某種方式更改感測器輸出等等。總成可使用各種介面(圖1中未展示,但在本文所描述之其他圖中展示),包含(但不限於)針柵陣列(PGA)、球柵陣列(BGA)、撓性電路及地柵陣列(LGA)。在一個實施例中,基板由一陶瓷材料形成。例如,基板係較佳地基於玻璃、氧化鋁、氮化鋁或如本文進一步描述般選擇之其他材料之一陶瓷。
圖2展示用於形成一感測器之一方法之一個實施例。儘管此圖包含用於製作一陶瓷基板及自基板產生一感測器總成之步驟,但本文所描述之實施例可包含比圖2中所展示之所有步驟少之步驟。例如,不是在下文進一步描述之步驟a)開始方法,而是方法可在下文所描述之步驟g)開始且步驟g)之前的步驟可由另一方法或系統執行。
如步驟a)中所展示,製作陶瓷基板200。在此步驟中,基板一般將被製成比標稱設計厚以包含在下一步驟中移除之犧牲材料。在步驟b)中,將基板之頂側拋光至所要形狀,藉此形成具有一拋光頂側之陶瓷基板202。此拋光程序可暴露形成於基板中之內部通路(圖2中未展示)。在步驟c)中,將基板之底側拋光至一平坦表面,藉此形成具有兩個拋光側之陶瓷基板204。儘管陶瓷基板在圖2中展示為在基板之兩側拋光成一特定形狀,但基板之兩側之形狀可自圖2中所展示之形狀變動且可如本文進一步描述般選擇。
在步驟d)中,將金屬206沈積及圖案化於基板之頂側上。一平坦表面上之圖案化可使用本技術中已知之一標準微影方法達成。一凹面上之圖案化可使用本技術中亦已知之用於圖案化之一直接成像方法(諸如直接成像)達成。在步驟e)中,可在基板之底側上實施相同於步驟d)之程序,藉此使金屬208形成於基板之底側上。金屬206及208可由本技術中已知之任何適合材料形成且可具有本技術中已知之任何適合組態。在步驟f)中,使用本技術中已知之任何適合覆晶程序將一或多個組件210 (諸如ASIC晶片)組裝至基板之底側上。
方法包含使離散導熱結構形成於一基板上。例如,在步驟g)中,對頂面執行焊料凸塊製程以藉此使離散導熱結構212形成於基板之頂側上。方法亦包含基於一感測器晶粒之一薄化背面之一預選形狀更改離散導熱結構之一形狀。例如,在步驟h)中,可由工具214衝壓(壓印)離散導熱結構(例如焊球),其中拋光成所要形狀(圖2中所展示之一彎曲形狀)之表面216在由箭頭218展示之方向上降低,直至表面216與離散導熱結構接觸且對其施加力。
方法進一步包含經由離散導熱結構將感測器晶粒之正面接合至基板,藉此引起感測器晶粒之薄化背面具有預選形狀。依此方式,感測器包含藉由一覆晶程序形成於感測器晶粒之正面與基板之間的離散導熱結構,藉此將感測器晶粒接合至基板且引起感測器晶粒之薄化背面具有一預選形狀。離散導熱結構之至少一部分將感測器晶粒電連接至附接至基板204之一或多個組件210。例如,並非所有離散導熱結構可電連接至組件或裝置。在其中形成光敏元件之區域(例如膜區域)中,傳導結構可提供機械及熱益處,但可不具有一電用途。感測器晶粒可如本文所描述般進一步組態。例如,如步驟i)中所展示,感測器晶粒220可具有薄化背面222、正面224及經組態用於偵測照射感測器晶粒之薄化背面之能量之能敏元件(圖2中未展示)。
在步驟i)中,使用一接觸法(諸如熱壓機或其類似者)將感測器晶粒220之周邊焊接至基板。例如,熱壓機226可在由箭頭228指示之方向上下壓至感測器晶粒之背面222上,使得感測器晶粒之周邊僅與感測器晶粒之周邊附近之離散導熱結構接觸且焊接至該等離散導熱結構。依此方式,在此步驟之後,感測器晶粒可僅接合至離散導熱結構之一部分,且感測器晶粒可在一稍後步驟中接合至剩餘離散導熱結構。
在一個實施例中,感測器包含圍繞離散導熱結構且在感測器晶粒之正面與基板之間形成之一底膠材料。在一個此實施例中,底膠材料經組態以在感測器晶粒經受一真空時穩定感測器晶粒。例如,本文所描述之實施例之一個新及有利特徵係使用一底膠封裝至一陶瓷基板上之一彎曲影像感測器允許基於真空之操作。如步驟j)中所展示,在感測器晶粒220與基板之間施加底膠樹脂230以加強焊料接頭。依此方式,底膠樹脂可穩定焊料接頭,藉此有助於維持感測器晶粒之形狀,即使存在施加於感測器或否則感測器暴露之一真空或其他壓力。感測器之此真空暴露可為必需的,例如,若偵測能量係VUV光、EUV光、電子等等。在步驟k)中,使用液流單電池232來對感測器晶粒220施壓且在感測器晶粒之較薄部分與基板之間建立一接觸。亦可在此步驟中施加底膠之固化。
如步驟j及k)中所展示,在將感測器晶粒接合至已經衝壓或壓印以組合具有預選形狀之所有離散導熱結構之後,感測器晶粒之背面可具有一彎曲形狀。因此,本文所描述之實施例之一個新及有利特徵係可經由一覆晶程序組裝一背面薄化彎曲影像感測器,其允許DUV、VUV等等之背面照明及實質上高速操作兩者。
圖2中所展示之步驟可依本文進一步描述之一或多種方式修改。例如,在步驟b)中,可將陶瓷之正面拋光為一平坦表面而非一彎曲表面,當一應用需要一實質上平坦感測器晶粒時,情況可為如此。在該情況中,可同樣很好地應用圖2中所展示之方法,但可顯著簡化陶瓷製程及組裝程序。
方法之各步驟可如本文所描述般進一步執行。方法亦可包含可由本文所描述之感測器、成像系統、電腦子系統、(若干)組件等等執行之(若干)任何其他步驟。由上述方法形成之感測器及其中包含感測器之一成像系統可根據本文所描述之任何實施例來組態。方法可由本文所描述之系統實施例之任何者執行。
由Sri-Jayantha等人在2012年12月6日公開之美國專利公開申請案第2012/0309187號中描述將一積體電路(IC)組裝至具有壓印焊料凸塊之一基板上之一般構想,該案以宛如全文闡述引用的方式併入本文中。然而,針對一影像感測器實施此一方法之一挑戰源於以下事實:感測器晶粒表面之機械接觸係非所要的,因為其可損壞像素陣列且導致相對較低組裝良率。圖3展示可如何形成基板之一個實施例,且圖4展示感測器總成之一程序流程之一個實施例。
在圖3之步驟300中,使用可為本技術中已知之任何適合此程序之一共燒程序製作陶瓷基板302。歸因於陶瓷層及陶瓷內之導電油墨(圖中未展示)之差異收縮,基板將展現弧度及不平坦性。在下一步驟中,施加一介面材料。較佳地,介面材料足夠軟以能夠藉由衝壓或壓印形成。此等介面材料之實例包含(但不限於)焊料凸塊及金柱。例如,在步驟304中,可使焊料凸塊306形成於陶瓷基板302上。在金柱之情況中,在步驟308中,可使金柱310形成於陶瓷基板302上。
接著,將使用一成型工具壓印介面材料。例如,在步驟312中,可由工具314衝壓或壓印焊料凸塊306,工具314在由箭頭316展示之一方向上移動以使工具與焊料凸塊接觸且對焊料凸塊施加力。依一類似方式,在步驟318中,可由工具320衝壓或壓印金柱310,工具320在由箭頭322展示之一方向上移動以使工具與金柱接觸且對金柱施加力。
本文所描述之實施例之一個新及有利特徵係其能夠使用膜下凸塊之衝壓/壓印來實質上精確控制背面薄化影像感測器形狀,其允許感測器形狀適應一特定場曲率。例如,在一個實施例中,在覆晶程序中將感測器晶粒接合至基板之前,離散導熱結構形成於基板上且離散導熱結構之一或多者之一形狀經修改使得離散導熱結構組合具有實質上相同於預選形狀之一形狀。在另一實施例中,在覆晶程序之前判定預選形狀,且基於預選形狀更改在覆晶程序中將感測器晶粒接合至基板之前形成於基板上之離散導熱結構之一或多者之一形狀。如圖3中所展示,用於衝壓或壓印離散導熱結構之工具之表面之形狀可因不同實施例而不同且可取決於預選形狀來變動。特定言之,接觸焊料凸塊或金柱之工具之表面之形狀可實質上相同於預選形狀,使得預選形狀在其接合至焊料凸塊或金柱時轉印至焊料凸塊或金柱且接著轉印至感測器晶粒。
在一個實施例中,離散導熱結構形成於其上之基板之一表面具有不同於預選形狀之一形狀。例如,在圖3中所展示之實施例中,焊料凸塊之形狀藉由使用具有一實質上平坦表面之一工具執行衝壓或壓印來更改,使得焊料凸塊組合在衝壓或壓印之後具有一實質上平坦表面。焊料凸塊之此衝壓或壓印將適合於其中預選形狀係一實質上平坦形狀之例項。如圖3中可見,儘管陶瓷基板存在不平坦性或弧度,但經衝壓或壓印之焊料凸塊亦可跨焊料凸塊之組合具有一實質上平坦表面。依此方式,當感測器晶粒之正面接合至經衝壓或壓印之焊料凸塊時,儘管陶瓷基板存在不平坦性或弧度,但感測器總成可具有一實質上平坦輪廓。
相比而言,如圖3中所展示,金柱之形狀藉由使用具有一彎曲表面之一工具執行衝壓或壓印來更改,使得金柱組合在衝壓或壓印之後具有一彎曲表面。金柱之此衝壓或壓印將適合於其中預選形狀係一彎曲形狀之例項。如圖3中可見,經衝壓或壓印之金柱亦可跨金柱之組合具有不同於陶瓷基板之形狀之一彎曲表面。依此方式,當感測器晶粒之正面接合至經衝壓或壓印之金柱時,儘管陶瓷基板存在不平坦性或弧度且儘管感測器晶粒之背面之預選彎曲形狀與陶瓷基板之表面之形狀之間存在差異,但感測器總成可具有一彎曲形狀。因而,如本文所描述般更改離散導熱結構之形狀減少對陶瓷基板之形狀之約束。
圖4進一步展示可如何將焊料壓印成一凹形(頂部)、凸形(底部)或任意形狀之任何其他表面。換言之,實施例400展示符合一凹形焊球輪廓之一感測器組裝方法,且實施例402展示符合一凸形焊球輪廓之一感測器組裝方法。在兩個例項中,焊球404可形成於基板406上。如兩個實施例中所展示,基板具有既非凹形亦非凸形之一形狀,因為其不必具有相同於針對感測器晶粒選擇之形狀之形狀。焊球及基板可如本文所描述般形成且可如本文進一步描述般組態。儘管圖4相對於焊球展示及描述,但本文所描述之其他離散導熱結構可如此圖中所展示般更改形狀。
成型工具及離散導熱結構之形狀將判定感測器晶粒之確切形狀,其將因此組裝至基板上。當將感測器晶粒放置至成形離散導熱結構上時,加熱離散導熱結構以回焊離散導熱結構且在感測器晶粒與基板之間建立一永久連接。當被加熱時,感測器晶粒必須緊貼基板,其可由各種方式執行,諸如使用一熱壓機按壓感測器晶粒之周邊或藉由透過一專用夾具施加一氣壓。在圖4之實施例中,部分封閉體408與密封環410 (其與感測器晶粒412接觸)之組合形成流動室414。透過流動室施加壓力(例如經由控制在流動室內且至感測器晶粒上之壓力之氣流416)將迫使感測器晶粒符合經壓印之離散導熱結構之形狀。
本文進一步描述之實施例展示其中感測器晶粒經設計為具有特定形狀之實際實例。如本文進一步描述,在一個實施例中,預選形狀係一彎曲形狀。在另一實施例中,預選形狀由一高階多項式界定。例如,其中感測器形狀可由高階多項式描述以實現一光學系統設計之較大靈活性之實例係值得強調的。
在一些實施例中,離散導熱結構形成於其上之基板之一表面具有基於預選形狀判定之一形狀。例如,若陶瓷基板實質上偏離所要形狀且焊球無法橋接所要感測器晶粒形狀與陶瓷之形狀之間的間隙,則可將陶瓷基板拋光至所要形狀且可將界定焊墊之頂部金屬圖案圖案化於表面上。此可如上文參考圖2所描述之步驟b)及d)中所描述及展示般執行。
在一些實施例中,基板由基於自感測器晶粒之一大小及預選形狀判定之材料之一熱膨脹係數(CTE)選擇之一材料形成。在另一實施例中,離散導熱結構由基於自感測器晶粒之一大小及預選形狀判定之材料之一回焊溫度選擇之一材料形成。現描述用於選擇基板及焊接材料之方法,其可有助於確保經組裝感測器能夠滿足效能要求。
由於焊料之回焊發生在一高溫,因此感測器晶粒及陶瓷基板兩者在冷卻至室溫或操作溫度時收縮。此溫度改變對達成所要晶粒形狀及亦保證歸因於應力之焊料接頭可靠性提出若干挑戰。可基於幾何考量使用一簡單1D模型來判定實質上無應力焊料接頭之條件。
圖5中展示一實施例,其展示一初始平坦感測器晶粒及完全順應最終形狀。在相對高溫處圖2之步驟i)中之焊料回焊期間,感測器晶粒可能具有一初始長度Ls,如由圖5中之尺寸500所展示。在冷卻至目標溫度及圖2之後續步驟j)及k)之後,感測器晶粒將符合經壓印凸塊輪廓,假定最終長度係 Ls',如由圖5中之尺寸502所展示。基板亦將歸因於溫差而經歷收縮,使得外凸塊墊之間的長度將自由尺寸504展示之 Lc收縮至由尺寸506展示之 Lc'。差異收縮之間的失配將導致焊料接頭中之殘餘應力,其對靠近晶粒周邊之外凸塊而言將係最糟的。
在此實例中,當差( Lc'- Ls')可最小化時,外焊料接頭中之應力將最小化。當 Lc'- Ls'=0時,達成無應力焊料接頭。滿足此條件之要求可自簡單幾何考量修改。針對1D中所繪示且假定陶瓷基板無彎曲之實例,吾人獲得
Figure 02_image001
其中R係晶粒之目標曲率半徑, α c α s 係陶瓷及矽晶粒之熱膨脹係數(CTE),且 ΔT係圖2之步驟j)至步驟k)中來自回焊之溫差。參數 L' S R由應用要求設定。參數 α c ΔT可藉由選擇適當陶瓷材料及焊料來選擇。具有大於矽晶粒之CTE之CTE之陶瓷材料係市售的。 ΔT由焊料選擇判定。具有各種回焊溫度之焊料亦係市售的。
儘管實例係具有若干近似值之一簡化情況,但其繪示選擇關鍵程序條件以最小化所提出總成中之焊接應力之方法。針對一實際2D幾何形狀,可使用數值建模獲得條件。在一平坦感測器晶粒( R係無窮大)之簡單情況中,當感測器晶粒與陶瓷基板之間存在一緊密CTE匹配時,獲得最佳條件。具有CTE緊密匹配矽之陶瓷IC基板亦可購自多個供應商。此等材料跨越CTE之一範圍且包含氧化物及非氧化物陶瓷兩者。非氧化物陶瓷包含氮化鋁(CTE約為4.4 ppm/°C至4.7 ppm/°C)、碳化矽(CTE約為3.7 ppm/°C至3.9 ppm/°C)及氮化矽(CTE約為2.8 ppm/°C至3.5 ppm/°C)。範圍指示針對各類型具有不同CTE之各種組合物。基於氧化物之陶瓷(諸如可購自日本京都之Kyocera公司之陶瓷)包含具有自3.4 ppm/°C至12.3 ppm/°C之範圍內之一CTE之材料。針對矽晶粒,CTE係2.6 ppm/°C。針對一給定晶粒大小及曲率,可經由本技術中已知之任何適合數值建模來選擇具有一最佳CTE之材料。
為進一步最小化失配,使用具有所要回焊溫度之焊料。跨越自約60°C至超過220°C之整個溫度範圍之各種焊接材料係市售的。此等包含可購自多個供應商之銦-鉍-錫(In-Bi-Sn)、銦-鉍(In-Bi)、銦-錫(In-Sn)、錫-銀-銅(SACx)及其他合金。顯而易見,如何選擇適當焊料及陶瓷材料能夠選擇參數 α c ΔT且因此接近實質上無應力焊料接頭之條件。由焊料製成之離散導熱結構亦可含有具有可區分熔點差之多種材料。材料之一者可有利地為具有將更容易維持其所要形狀之一較高熔點之一焊料,且材料之另一者可為可在一明顯更低溫度與組件或裝置進行電連接之具有一較低熔點之一焊料。材料之此等組合可依任何適合方式自任何適合市售焊接材料選擇。
為了實質上快速操作,需要使相對大量互連信號自感測器晶粒至一或多個組件,例如ASIC。驅動諸多電路需要電晶體。Chuang等人在2020年9月1日發佈之美國專利第10,764,527號中提供此一實施方案之一實例,該專利以宛如全文闡述引用的方式併入本文中。本文所描述之感測器可如本專利中所描述般進一步組態。為實現實質上快速操作及相對大量信號,封裝技術必須在陶瓷基板中提供相對高密度之佈線及相對低通道寄生電容。兩者藉由在一低溫共燒陶瓷(LTCC)上覆晶組裝感測器晶粒來同時實現。在此技術中,可使用150 um節距及以下之互連件。此等互連件可使超過10吉樣本/秒(GS/s)之資料跨陶瓷基板傳送至ASIC。
圖6展示包含感測器晶粒600、陶瓷基板602、散熱器604、包含樹脂606及介面材料608之介面材料及將感測器晶粒接合至基板之凸塊610之一完整感測器總成之一橫截面。圖6中所展示之實施例可包含此圖中未展示但本文將進一步描述之其他元件。例如,圖6中所展示之完整感測器總成之部分對應於電互連件與一或多個組件(例如ASIC)之間的圖1中所展示之感測器總成之中心部分。圖6中僅展示整個感測器總成之一部分,使得可更清楚展示與感測器總成內之熱轉移相關之額外細節。
此圖中之重疊箭頭指示感測器總成內熱通量之量值及方向。本文所描述之組裝方法實施例具有感測器總成之熱優點。例如,支撐感測器晶粒之凸塊610不僅界定感測器晶粒形狀,且亦充當由影像感測器晶粒產生之熱之一高效熱導管。感測器晶粒與陶瓷基板之間的間隙可填充固化且加強焊料連接之一樹脂用於可靠性。電子行業中為了該目的開發之所有樹脂展現相對較低熱導率,通常低於1 W/mK (瓦特每米克耳文)。焊料凸塊或金柱之熱導率實質上較高,意謂大多數熱通量將由此等離散導熱結構傳導。圖6展示包含樹脂及焊料凸塊之此等介面之熱建模之結果。為清楚起見,總成之橫截面中所展示之厚度未按比例繪製。重疊箭頭展示熱流之方向且箭頭之長度與熱通量之量值成比例。如此圖中所展示,自感測器晶粒至陶瓷基板之熱導率將主要由凸塊而非樹脂判定。
在一個實施例中,感測器包含形成於基板中之導熱及導電通路,其中至少一子集經組態用於將離散導熱結構之至少部分連接至一或多個組件,藉此將感測器晶粒連接至一或多個組件。例如,為進一步提高感測器總成之熱效能,陶瓷基板602可包含一導熱及導電通路陣列(圖6中未展示)。在另一實施例中,底膠材料包含含有由具有高熱導率之一介電材料形成之分散粒子之一樹脂。例如,底膠樹脂606可較佳地包含分散粒子(圖中未展示)。此等粒子較佳地由具有高熱導率之介電材料製成,諸如氮化鋁、藍寶石或金剛石。一般而言,本文所使用之該術語「高熱導率」界定為自30 W/mK至2000 W/mK之一熱導率。
另一實施例係關於一種成像系統。一般而言,成像系統包含經組態用於產生由一照明子系統導引至一樣品之能量之一能源(例如一光源、一電子束源等等)。此一能源及照明子系統可如本文進一步描述及圖11及圖11a中所展示般組態。在一些實施例中,樣品係一晶圓。晶圓可包含半導體技術中已知之任何晶圓。儘管本文中可相對於一晶圓或若干晶圓描述一些實施例,但實施例不受限於其可用於之樣品。例如,本文所描述之實施例可用於諸如倍縮光罩、平板、個人電腦(PC)板及其他半導體樣品之樣品。
系統亦包含經組態用於偵測來自樣品之能量且回應於偵測能量而產生輸出之一感測器。感測器如本文進一步描述般組態。由感測器偵測之能量可包含本文所描述之任何能量,諸如電子、帶電粒子、x射線、VUV光、EUV光、DUV光、可見光及IR光。如本文進一步描述,由感測器偵測之能量之類型亦可取決於系統之組態來包含鏡面反射光、散射光或兩者。由感測器產生之輸出可包含任何適合輸出,諸如影像資料、影像信號、非影像資料、非影像信號等等或其等之一些組合。感測器及耦合至其之成像系統之一或多個元件可如本文所描述般進一步組態。
在一個實施例中,成像系統包含經組態以將能量自樣品導引至感測器之一攝影機鏡頭子系統。例如,具有一預選彎曲形狀之一影像感測器可用於圖7a中所展示之一攝影機鏡頭系統中,且具有一預選平坦形狀之一影像感測器可用於圖7b中所展示之一攝影機鏡頭系統中。在圖7a中,攝影機鏡頭子系統包含組合地將光712聚焦至具有一彎曲形狀之影像感測器710之四個折射透鏡700、702、704及706及孔徑光闌708。依一類似方式,在圖7b中,攝影機鏡頭子系統包含組合地將光726聚焦至具有一實質上平坦形狀之影像感測器724之四個折射透鏡714、716、718及720及孔徑光闌722。圖7a及圖7b展示針對彎曲對平坦影像感測器最佳化之兩個設計。在前一情況中,亦最佳化感測器曲率。舉例而言,可針對此一系統選擇以下系統規格:±14°之FOV、20 mm之孔徑光闌直徑、感測器格式50 mm對角線、影像空間F數(f/#)=5.5及100 mm之有效焦距(EFL) 728。此等參數表示可用於DUV、可見或IR光譜中之關注波長之一窄帶設計之典型應用要求之一實例。
儘管攝影機鏡頭子系統在圖7a及圖7b中展示為包含四個折射透鏡,但攝影機鏡頭子系統可包含不同數目個折射透鏡。另外,圖7a及圖7b中所展示之攝影機鏡頭子系統可經修改以包含一或多個反射透鏡元件(圖中未展示)來替代或組合一或多個折射透鏡元件。此外,如圖7a及圖7b中可見,在此等圖中僅大體展示之折射透鏡元件之形狀可取決於影像感測器之形狀來修改。特定言之,如自圖7a及圖7b可見,折射透鏡704及718具有實質上不同形狀,且甚至折射透鏡706及720具有至少稍微不同形狀。圖7a及圖7b中所展示之所有折射元件之形狀不意欲限制或指示可與影像感測器一起使用之任何實際折射透鏡或反射鏡性質。相反地,如一般技術者將清楚,除其中將使用感測器之應用(例如散射光對鏡面反射光、檢測對度量、DUV光對VUV光等等)之外,亦可取決於感測器之組態及成像系統之總組態最佳化包含於攝影機鏡頭子系統中之折射透鏡及任何其他元件。
圖7c將影像感測器晶粒之曲率展示為表面下陷730,其係最佳化之結果。此表面輪廓可使用上述方法達成。關於此作圖中所展示之準確值及其對應之準確曲率,其等對理解本實施例不重要。此等值及表面下陷可基於本文進一步描述之考量依本技術中已知之任何適合方式判定及最佳化,且本文包含此作圖來圖形繪示如何判定及最佳化感測器晶粒形狀之特性。圖7d展示跨FOV之幾何均方根(RMS)光斑大小。RMS光斑大小係由系統引入之像差量之量測。兩個作圖對應於平坦感測器晶粒(實線)對彎曲感測器晶粒(包括短劃及點兩者)之兩種情況。此圖中所展示之另一線(僅包括短劃)對應於將係成像系統中之繞射限制成像之內容。如自作圖中清楚可見,彎曲感測器晶粒能夠比平坦狀感測器晶粒顯著減少影像模糊。在一檢測系統中,減少模糊轉化為一更高水平之缺陷偵測,即,更高檢測敏感度。此外,關於此圖7d作圖中所展示之準確值及其對應之準確像差,其等對理解本實施例不重要。本文包含此作圖僅用於圖形繪示不同感測器晶粒形狀可如何影響成像系統中之像差。
基於一彎曲影像感測器晶粒之一設計之孔徑光闌亦可自基於一平坦感測器晶粒之設計增大。在圖7a中所提供之實例中,孔徑光闌可增大至高達26 mm直徑,同時匹配初始設計之像差。此意謂攝像機鏡頭子系統之集光能力將增加(26/20) 2之一因數或約70%。此增加集光能力改良偵測光信號,藉此導致一更高水平之缺陷偵測。此一透鏡可經最佳化用於晶圓、面板或IC基板成像之應用以用於相對較大缺陷之視覺檢測及複查之膜度量。
在另一實施例中,系統包含經組態以將能量自樣品導引至感測器之一管透鏡子系統。此一組態可用於與一顯微鏡一起使用之一DUV攝影機中之一管透鏡。在此實施例中,具有一預選形狀之一影像感測器與一管透鏡子系統一起使用,如圖8a及圖8b中所展示。例如,具有一預選彎曲形狀之一影像感測器晶粒可用於圖8a中所展示之一管透鏡子系統中,且具有一預選平坦形狀之一影像感測器晶粒可用於圖8b中所展示之一管透鏡子系統中。在圖8a中,光可經由孔隙800進入管透鏡子系統,且管透鏡子系統包含組合地將光808聚焦至具有一彎曲形狀之影像感測器晶粒810之三個折射透鏡802、804及806。依一類似方式,在圖8b中,光可經由孔隙814進入此管透鏡子系統實施例,且管透鏡子系統包含組合地將光822聚焦至具有一實質上平坦形狀之影像感測器晶粒824之三個折射透鏡816、818及820。舉例而言,選擇以下系統規格:FOV=±10°、孔徑光闌直徑=8 mm、12 mm對角線之感測器格式、影像空間F數(f/#) 4.2、34 mm之EFL 828及<40 mm之總透鏡軌跡。
儘管管透鏡子系統在圖8a及圖8b中展示為包含三個折射透鏡,但管透鏡子系統可包含不同數目個透鏡。另外,圖8a及圖8b中所展示之管透鏡子系統可經修改以包含一或多個反射及/或繞射透鏡元件(圖中未展示)來替代或組合一或多個折射元件。此外,如圖8a及圖8b中可見,此等圖中僅大體展示之元件之性質可取決於影像感測器晶粒之形狀來修改。特定言之,如自圖8a及圖8b可見,折射透鏡806及820具有不同形狀。圖8a及圖8b中所展示之設計實例不意欲限制或指示影像感測器所需之任何設計或透鏡材料。相反地,一般技術者將清楚,除將使用感測器之應用(例如散射光對鏡面反射光、檢測對度量、DUV光對VUV光等等)之外,亦可取決於感測器之組態以及成像系統之總組態來最佳化包含於管透鏡子系統中之元件。
包含三個元件之一管透鏡子系統針對兩種情況最佳化:圖8a中所展示之其中允許感測器晶粒曲率之情況及圖8b中所展示之其中感測器晶粒被約束為平坦之情況。此等最佳化之結果分別展示於圖8c及圖8d中。圖8c繪示以mm為單位之一感測器表面下陷之等值線圖830,其係最佳化之結果。此對應於約50 mm之一曲率半徑。具有此一形狀之一感測器晶粒可再次使用本文所描述之方法實施例獲得。使用具有兩個圓錐面(L1-L及L3-L)之僅三個光學元件導致整個FOV上限制繞射之一設計。
此等設計之像差比基於一平面影像感測器晶粒之一等效設計低約10倍,如圖8d中RMS光斑大小之作圖832中所展示。最重要地,設計達成超過2倍失真減少及跨FOV之更均勻感測器回應度之實質上低主光線角。幾何像差在亞微米範圍內,其實質上低於任何實際影像感測器之像素大小。較低像差對圖案化晶圓、面板或IC基板之光學檢測應用特別有利。實例展示如何使用一彎曲影像感測器晶粒來實現該等應用之一簡單管透鏡設計。特定言之,使用感測器曲率可減少所需反射元件之數目且增大使用EUV照明之系統之實際可能場大小。此等系統受到高度約束且需要昂貴元件及製造方法。
關於圖8c之作圖中所展示之準確值及其對應之準確曲率,其對理解本實施例不重要。此等值及表面下陷可基於本文進一步描述之考量依本技術中已知之任何適合方式判定及最佳化,且本文包含此作圖來圖形繪示如何判定及最佳化感測器晶粒形狀之特性。圖8d展示跨FOV之幾何RMS光斑大小。RMS光斑大小係對由系統引入之像差量之量測。兩個作圖對應於平坦感測器晶粒(實線)對彎曲感測器晶粒(虛線)之兩種情況。如自此作圖清楚可見,彎曲感測器晶粒可比平坦狀感測器晶粒實現顯著減少模糊。此外,此圖8d作圖中所展示之特定值對理解本實施例不重要。包含此作圖來圖形繪示不同感測器晶粒形狀可如何影響成像系統中之像差。
本文所描述之實施例可包含一彎曲感測器陣列。例如,本文所描述之實施例可包含本文所描述之感測器之兩者或更多者,其感測器晶粒可具有諸如相同預選形狀、大小等等之相同特性或可具有諸如不同預選形狀及/或不同大小之一或多個不同特性。在一個此實施例中,成像系統包含經組態用於偵測來自樣品之額外能量且用於回應於額外偵測能量而產生輸出之一額外感測器。額外感測器可經組態用於偵測額外能量且產生輸出,如本文進一步描述。由兩個感測器偵測到之能量可具有一或多個不同特性,諸如能量之類型(散射對鏡面反射)、波長、偏振等等。例如,如下文進一步描述,不同偵測通道可包含不同感測器,且感測器之各者可如本文所描述般組態。然而,多感測器實施例之一個特別有利實施方案係使多個感測器耦合至相同集光器或收集子系統,使得多個感測器在相同影像平面中偵測能量,即使該影像平面係彎曲的或具有一些其他非平坦形狀。
額外感測器包含一額外基板及附接至額外基板之一或多個額外組件。額外感測器亦包含具有一薄化背面之一額外感測器晶粒及經組態用於偵測自樣品照射額外感測器晶粒之薄化背面之額外能量之額外能敏元件。另外,額外感測器包含藉由一覆晶程序在額外感測器晶粒之一正面與額外基板之間形成之額外離散導熱結構,藉此將額外感測器晶粒接合至額外基板且引起額外感測器晶粒之薄化背面具有一額外預選形狀。額外離散導熱結構之至少一部分將額外感測器晶粒電連接至一或多個額外組件。額外感測器之此等元件之各者可如本文所描述般進一步組態。
在一些情形中(諸如當將來自樣品之光導引至影像平面中之一相對較大區域時及/或當影像平面具有不易由一單一感測器達成之一曲率時),在一單一偵測通道中使用超過一個本文所描述之感測器實施例可為特別有利的。無論何種情況,預選形狀及額外預選形狀(不同感測器中感測器晶粒之背面之預選形狀)可不同或相同。另外,如本文進一步描述,在一些實施例中,成像系統經組態以獨立控制感測器及額外感測器在成像系統中之位置。成像系統可經組態以使用影像系統控制技術中已知之任何適當軟體及/或硬體依任何適合方式控制感測器之各者之位置。
圖9a繪示具有各種曲率之多個影像感測器之平鋪之一個實施例。在此實施例中,影像平面之前的成像系統(圖9a中未展示)之最後光學元件900將光902導引至四個影像感測器904、906、908及910。在此實施例中,一彎曲感測器陣列放置於焦平面中。感測器之可能配置及其檢測應用之實例可見於Cavan在2004年9月9日公開之美國專利公開申請案第2004/0175028號及Brown等人在2015年7月7日發佈之美國專利第9,077,862號中,其等以宛如全文闡述引用的方式併入本文中。成像系統可如此等參考文獻中所描述般進一步組態。針對具有相對較大FOV及相對較高放大率之一系統,影像空間可變得實質上很大且可使用多個感測器來覆蓋全影像。此影像空間通常將具有由澤尼克函數之一疊加或本技術中已知之奇偶多項式之一疊加描述之一相對較高曲率。為獲得一實質上高品質影像,可根據場曲率彎曲焦平面。
圖9a展示四個影像感測器之一陣列之一實例。該等影像感測器將較佳地具有緊密模擬圖9b中所展示之場曲率之一曲率。此圖式展示表面下陷之等值線圖912。等值線圖描述針對最佳光學效能最佳化之表面形狀。儘管準確最佳形狀將取決於特定成像系統設計來變動,但大部分成像系統將產生實際上類似於圖中所展示之曲率之一曲率。由於上述參考文獻中所描述之原因,焦平面(或焦面)由一感測器陣列成像。圖9c展示圖9a中所展示之影像感測器904、906、908及910分別可具有以接近最佳焦面之曲率916、918、920及922之實例914。
圖9c中針對各個別感測器所展示之表面下陷量可能太大以致無法使用本文所描述之組裝程序達成。類似地,由等高線之密度表示之跨各感測器之表面下陷之偏差可能太大以致無法使用所提出之方法達成。為解決此問題,可實施以下增強。不同影像感測器無需組裝至一共同基板上,而是各感測器自身可具有允許其位置在所有六個自由度上相對於所有其他感測器改變之基板。例如,圖9中所展示之感測器904、906、908及910之各者可形成於其自身基板上。替代地,感測器904、906、908及910之兩者或更多者可形成於一單一基板上,且形成於相同基板上之任何感測器可(例如)藉由切割基板來分離以藉此在四個單獨基板上產生四個單獨感測器。在任一情況中,可操縱各感測器沿光軸(Z軸)之位置及其在XZ及YZ平面中之傾角以達成影像感測器相對於其基板之最小表面下陷。圖9d展示此最佳化之結果。在此情況中,作圖924展示圖9a中所展示之影像感測器904、906、908及910之各自曲率926、928、930及932及在樣品上掃描行跡之方向934。此圖(與圖9c比較)中表面下陷之稀疏等高線指示可使用所提出之方法更容易達成之影像感測器之實質上輕微曲率及表面下陷。
儘管圖9a至圖9d展示一特定組態,但影像感測器形狀最佳化之方法實際上係通用的。焦面之形狀可始終針對最佳成像效能最佳化。個別影像感測器沿Z軸之位置及傾角可始終經最佳化以最小化曲率及表面下陷。此最佳化通常將導致表面下陷之一數量級減小以使利用本文所概述之組裝方法更容易。因此,在最一般情況中,各感測器之準確表面形狀可由澤尼克係數描述。表面一般不會軸對稱,因為各感測器相對於光學系統離軸。
亦應注意,圖9b至圖9d中之各種數值與本文所描述之實施例之理解及完全揭示無關。數值不會特別難辨認,而是歸因於此等作圖之原始版本之性質及其可再現性。使其包含於本申請案中僅係為了繪示如何基於影像平面中之場之形狀來組態及最佳化多感測器實施例。
此實施例中所展示之棋盤感測器圖案一般用於光柵掃描及分步重複檢測系統中。在一光柵掃描之前一情況中,所檢測之樣品在y方向上移動(參考圖9a),且其影像將相對於影像感測器沿y軸移動。影像感測器在x方向上之重疊將產生樣品之影像行跡且檢測場中沿x方向無間隙。在一分步重複檢測系統中,感測器位置可經選擇使得針對每兩個順向檢測步驟,將不存在覆蓋間隙。
本文所描述之實施例亦有效減少掃描檢測系統中之失真誘發模糊。在一些實施例中,成像系統包含經組態以在樣品上掃描由照明子系統導引至樣品之能量之一掃描子系統,照明子系統在樣品上具有實質上不具有場曲率之一FOV,且感測器晶粒之預選形狀係一彎曲形狀。掃描及照明子系統可如本文所描述般進一步組態。
為繪示此一實施例之優點,圖10展示一掃描系統中之光學失真及其對光學解析度之影響。投射至物件空間上之影像空間中之一「完美」網格及彎曲網格導致失真反轉,分別為彎曲網格1000及完美網格1002。一「完美」網格在本文界定為跨網格實質上不具有曲率之一網格。換言之,本文所使用之該術語「完美」網格界定為實質上平坦或跨網格具有一可忽略非平坦度量之一網格。具有相對較大FOV之掃描成像系統通常展現實質場曲率,如由彎曲網格1000所展示。正如物件空間中之一完美網格對應於影像空間中之一失真網格,反之亦然。其意謂投射至其中保持檢測樣品之物件空間上之一完美像素陣列將導致彎曲網格1000。
由於相對於光學器件及感測器掃描樣品,因此場之邊緣處之關注缺陷(DOI)可跨多個像素塗抹。例如,若來自一樣品(圖10中未展示)上之缺陷1004及1006之光分別在行跡1008及1010中跨彎曲網格1000掃描,則來自缺陷之光跨具有不同曲率之網格之不同部分掃描。特定言之,缺陷1004在很少或不具有水平失真之場之中心上掃描,且缺陷1006在具有相對較大水平失真之場之邊緣上掃描。因此,即使缺陷1004及1006具有所有相同特性且使用具有所有相同特性之光照射,但由感測器針對缺陷產生之輸出信號可不同。例如,如圖10中所展示,歸因於來自缺陷1006之光跨場之邊緣處之多個像素塗抹(其由場之失真引起),缺陷1004之影像1012實質上不同於缺陷1006之影像1014。
在一個此實施例中,感測器組態為一TDI感測器。例如,本文所描述之經組態用於檢測之成像系統通常將採用一TDI感測器,其隨著影像跨像素陣列掃描而累積光學信號。此將導致一較大有效點擴散函數(PSF)及因此較低解析度及較低信噪比(SNR)。相反地,將一影像感測器組裝至一彎曲表面上將模擬系統之失真。因此,投射至物件平面上之此一感測器將對應於由完美網格1002展示之一近乎完美網格,藉此提高遠離場之中心之解析度及SNR。例如,如圖10中所展示,缺陷1004之影像1016實質上相同於缺陷1006之影像1018,因為歸因於網格1002之實質上完美性質,在場之邊緣處跨多個像素不存在來自缺陷1006之光之塗抹。因此,本文所描述之實施例實現基於TDI掃描架構之系統之甚至更顯著改良。
圖11中展示一成像系統之一個實施例。成像系統1100可包含及/或耦合至一電腦子系統,例如電腦子系統1102及/或一或多個電腦系統1104,其可如本文進一步描述般組態。此成像系統基於本文所描述之覆晶感測器實施例且可經組態用於不同應用,諸如檢測或度量。
一般而言,本文所描述之成像系統包含至少一能源、一感測器及一掃描子系統。能源經組態用於產生由一照明子系統導引至一樣品之能量。感測器經組態用於偵測來自樣品之能量且用於回應於偵測能量而產生輸出。掃描子系統經組態以改變能量導引至其及能量自其偵測之樣品上之一位置。在一個實施例中,如圖11中所展示,導引至樣品之能量係光,且因此成像系統組態為一基於光之成像系統。
在圖11中所展示之成像系統之實施例中,成像系統包含經組態以將光導引至樣品1106之一照明子系統。能源包含至少一個光源,例如光源1108。照明子系統經組態以依可包含一或多個斜角及/或一或多個法線角之一或多個入射角將光導引至樣品。例如,如圖11中所展示,來自光源1108之光依一斜入射角被導引穿過光學元件1110且接著穿過透鏡1112而至樣品1106。斜入射角可包含任何適合斜入射角,其可取決於(例如)樣品之特性及對樣品執行之程序來變動。
照明子系統可經組態以在不同時間依不同入射角將光導引至樣品。例如,成像系統可經組態以更改照明子系統之一或多個元件之一或多個特性,使得光可依不同於圖11中所展示之入射角之一入射角導引至樣品。在一個此實例中,成像系統可經組態以移動光源1108、光學元件1110及透鏡1112,使得光依一不同斜入射角或一法線(或近法線)入射角導引至樣品。
在一些例項中,成像系統可經組態以同時依一個以上入射角將光導引至樣品。例如,照明子系統可包含一個以上照明通道,照明通道之一者可包含光源1108、光學元件1110及透鏡1112 (如圖11中所展示)且照明通道之另一者(圖中未展示)可包含類似元件,其可不同或相同組態或可包含至少一光源及可能一或多個其他組件,諸如本文進一步描述之組件。若此光在相同於其他光之時間導引至樣品,則依不同入射角導引至樣品之光之一或多個特性(例如波長、偏振等等)可不同,使得由依不同入射角照射樣品產生之光可在(若干)感測器處彼此區分。
在另一例項中,成像系統可僅包含一個光源(例如圖11中所展示之源1108)且來自光源之光可由照明子系統之一或多個光學元件(圖中未展示)分離成不同光學路徑(例如基於波長、偏振等等)。接著,可將不同光學路徑之各者中之光導引至樣品。多個照明通道可經組態以在相同時間或不同時間(例如當使用不同照明通道依序照射樣品時)將光導引至樣品。在另一例項中,相同照明通道可經組態以在不同時間將具有不同特性之光導引至樣品。例如,光學元件1110可組態為一光譜濾波器且光譜濾波器之性質可依各種不同方式改變(例如藉由用另一光譜濾波器換出一個光譜濾波器),使得不同波長之光可在不同時間導引至樣品。照明子系統可具有本技術中已知之任何其他適合組態用於依不同或相同入射角依序或同時將具有不同或相同特性之光導引至樣品。照明子系統亦可經組態使得光自下方進入樣品(圖11中未展示)且在感測器處接收之前透射穿過樣品。
光源1108可包含一窄頻源(諸如一雷射)或一電漿源(諸如一EUV或寬頻電漿(BBP)光源)。依此方式,由光源產生且導引至樣品之光可包含窄頻或寬頻光。光源亦可包含本技術中已知且經組態以產生(若干)任何適合波長之光之一雷射設計。雷射可經組態以產生單色或近單色光。依此方式,雷射可為一窄頻雷射。光源亦可包含產生多個離散波長或波段之光之一多色光源。
來自光學元件1110之光可由透鏡1112聚焦至樣品1106上。儘管透鏡1112在圖11中展示為一單一折射光學元件,但實際上,透鏡1112可包含組合地將光自光學元件聚焦至樣品之若干折射、繞射及/或反射光學元件。圖11中所展示及本文所描述之照明子系統可包含其他適合光學元件(圖中未展示)。此等光學元件之實例包含(但不限於)(若干)偏振組件、(若干)光譜濾波器、(若干)空間濾波器、(若干)反射光學元件、(若干)變跡器、(若干)分束器、(若干)孔隙及其類似者,其可包含本技術中已知之任何此等適合光學元件。另外,成像系統可經組態以基於用於成像之照明類型來更改照明子系統之元件之一或多者。
成像系統亦可包含經組態以改變光導引至其及光自其偵測之樣品上之位置且可能引起光在樣品上掃描之一掃描子系統。例如,成像系統可包含在成像期間樣品1106安置於其上之載台1114。掃描子系統可包含任何適合機械及/或機器人總成(其包含載台1114),其可經組態以移動樣品,使得光可導引至樣品上之不同位置且自該等不同位置偵測。另外或替代地,成像系統可經組態使得成像系統之一或多個光學元件對樣品執行一些光掃描,使得光可導引至樣品上之不同位置且自該等不同位置偵測。在其中光掃描樣品之例項中,光可依任何適合方式(諸如依一蛇形路徑或一螺旋路徑)掃描樣品。
成像系統進一步包含一或多個偵測通道。(若干)偵測通道之至少一者包含經組態以偵測歸因於成像系統照射樣品之來自樣品之光且回應於偵測光而產生輸出之一感測器。例如,圖11中所展示之成像系統包含兩個偵測通道:一個由集光器1116、元件1118及感測器1120形成且另一個由集光器1122、元件1124及感測器1126形成。如圖11中所展示,兩個偵測通道經組態以依不同收集角收集及偵測光。在一些例項中,兩個偵測通道經組態以偵測散射光,且偵測通道經組態以偵測自樣品依不同角度散射之光。然而,偵測通道之一或多者可經組態以偵測來自樣品之另一類型之光(例如反射光)。
如圖11中進一步展示,兩個偵測通道展示為定位於紙面中且照明子系統亦展示為定位於紙面中。因此,在此實施例中,兩個偵測通道定位於(例如居中於)入射面中。然而,偵測通道之一或多者可定位於入射面外。例如,由集光器1122、元件1124及感測器1126形成之偵測通道可經組態以收集及偵測自入射面散射出之光。因此,此一偵測通道通常可指稱一「側」通道,且此一側通道可居中於實質上垂直於入射面之一平面中。
儘管圖11展示包含兩個偵測通道之成像系統之一實施例,但成像系統可包含不同數目個偵測通道(例如僅一個偵測通道或兩個或更多個偵測通道)。在一個此例項中,由集光器1122、元件1124及感測器1126形成之偵測通道可形成一個上述側通道,且成像系統可包含形成為定位於入射面之對置側上之另一側通道之一額外偵測通道(圖中未展示)。因此,成像系統可包含偵測通道,其包含集光器1116、元件1118及感測器1120且居中於入射面中且經組態以依法向於或接近法向於樣品表面之(若干)散射角收集及偵測光。因此,此偵測通道通常可指稱一「頂部」通道,且成像系統亦可包含如上文所描述般組態之兩個或更多個側通道。因而,成像系統可包含至少三個通道(即,一個頂部通道及兩個側通道),且至少三個通道之各者自身具有集光器,集光器之各者經組態以依不同於其他集光器之各者之散射角收集光。
如上文進一步描述,包含於成像系統中之偵測通道之各者可經組態以偵測散射光。因此,圖11中所展示之成像系統可經組態用於樣品之暗場(DF)成像。然而,成像系統亦可或替代地包含經組態用於樣品之明場(BF)成像之(若干)偵測通道。換言之,成像系統可包含經組態以偵測自樣品鏡面反射之光之至少一個偵測通道。因此,本文所描述之成像系統可經組態用於僅DF、僅BF或DF及BF兩者成像。儘管集光器之各者在圖11中展示為單一折射光學元件,但集光器之各者可包含一或多個折射光學元件及/或一或多個反射光學元件。圖11中所展示之集光器亦可組態為或替換為本文所描述之攝影機鏡頭子系統或管透鏡子系統實施例。
包含於一或多個偵測通道中之感測器可根據本文所描述之任何實施例組態。由包含於成像系統之各偵測通道中之各感測器產生之輸出可為影像信號或影像資料或本技術中已知之任何其他適合輸出。另外,儘管偵測通道之各者在圖11中展示為包含一單一感測器,但偵測通道之各者可包含如圖9a中所展示及如本文中進一步描述般組態之多個感測器。此外,包含於成像系統中之不同偵測通道可包含本文所描述之不同感測器實施例。例如,感測器1120可經組態以具有不同於感測器1126之一預選形狀。
應注意,本文提供圖11來大體上繪示可包含本文所描述之感測器實施例之一或多者之一成像系統之一組態之一個實施例。顯然,本文所描述之成像系統組態可經更改以最佳化成像系統之效能,如在設計一商用成像系統時通常所執行。另外,本文所描述之成像系統可使用一既有系統實施(例如藉由將本文所描述之功能性添加至一既有檢測系統),諸如可購自KLA公司(加州米尓皮塔斯)之29xx/39xx系列工具。針對一些此等成像系統,本文所描述之感測器可提供為成像系統之選用元件(例如以及成像系統之其他既有感測器)。替代地,本文所描述之成像系統可「從頭開始」設計以提供一全新成像系統。
電腦子系統1102可依任何適合方式(例如經由一或多個傳輸媒體,其可包含「有線」及/或「無線」傳輸媒體)耦合至成像系統之感測器,使得電腦子系統可接收由感測器產生之輸出。電腦子系統1102可經組態以使用或不使用感測器之輸出來執行若干功能,包含本文進一步描述之步驟及功能。因而,本文所描述之步驟可藉由耦合至一成像系統或為一成像系統之部分之一電腦子系統「在工具上」執行。另外或替代地,(若干)電腦系統1104可執行本文所描述之步驟之一或多者。因此,本文所描述之步驟之一或多者可藉由未直接耦合至成像系統之一電腦系統「在工具外」執行。電腦子系統1102及(若干)電腦系統1104可如本文所描述般進一步組態。
電腦子系統1102 (以及本文所描述之其他電腦子系統)在本文中亦可指稱(若干)電腦系統。本文所描述之(若干)電腦子系統或系統之各者可採取各種形式,包含一個人電腦系統、影像電腦、主機電腦系統、工作站、網路設備、網際網路設備或其他裝置。一般而言,術語「電腦系統」可廣義界定為涵蓋具有一或多個處理器之任何裝置,其執行來自一記憶體媒體之指令。(若干)電腦子系統或系統亦可包含本技術中已知之任何適合處理器,諸如一並行處理器。另外,(若干)電腦子系統或系統可包含具有高速處理及軟體之一電腦平台作為一獨立或網路工具。
若系統包含一個以上電腦子系統,則不同電腦子系統可彼此耦合,使得可在電腦子系統之間發送影像、資料、資訊、指令等等。例如,電腦子系統1102可藉由可包含本技術中已知之任何適合有線及/或無線傳輸媒體之任何適合傳輸媒體來耦合至(若干)電腦系統1104,如由圖11中之虛線中所展示。此等電腦子系統之兩者或更多者亦可由一共用電腦可讀儲存媒體(圖中未展示)有效耦合。
儘管成像系統在上文描述為包含一光學或基於光之能源,但在另一實施例中,能源組態為一電子束源。在此一成像系統中,導引至樣品之能量包含電子,且自樣品偵測之能量包含電子。在圖11a中所展示之一個此實施例中,成像系統包含電子柱1128,其可耦合至電腦子系統1130。電腦子系統1130可如上文所描述般組態。另外,此一成像系統可依上述及圖11中所展示之相同方式耦合至另外一或多個電腦系統。
亦如圖11a中所展示,電子柱包含經組態以產生由一或多個元件1136聚焦至樣品1134之電子之電子束源1132。電子束源可包含(例如)一陰極源或一射極尖端,且一或多個元件1136可包含(例如)一槍透鏡、一陽極、一射束限制孔隙、一閘閥、一射束電流選擇孔隙、適合於帶電粒子成像之一靜電或磁性物鏡及一掃描子系統,其等所有可包含本技術中已知之任何此等元件。
自樣品返回之電子可由一或多個元件1138聚焦至感測器1140。一或多個元件1138可包含(例如)一攝影機鏡頭子系統或一管透鏡子系統,其可如本文所描述般組態。感測器1140可根據本文所描述之任何實施例組態。另外,感測器1140可替換為一感測器陣列,諸如圖9a中所展示及上文進一步描述之感測器陣列。
電子柱可包含本技術中已知之任何其他適合元件。另外,電子柱可如以下中所描述般進一步組態:Jiang等人在2014年4月4日發佈之美國專利第8,664,594號、Kojima等人在2014年4月8日發佈之美國專利第8,692,204號、Gubbens等人在2014年4月15日發佈之美國專利第8,698,093號及MacDonald等人在2014年5月6日發佈之美國專利第8,716,662號,該等專利以宛如全文闡述引用的方式併入本文中。
儘管電子柱在圖11a展示為經組態使得電子依一斜入射角導引至樣品且依另一斜角自樣品散射,但電子束可依任何適合角度導引至樣品及自樣品散射。另外,成像系統可經組態以使用各種模式來產生本文進一步描述之樣品之輸出(例如具有不同照明角、收集角等等)。成像系統之多種模式在成像系統之任何輸出產生參數中可不同。
電腦子系統1130可如上文所描述般耦合至感測器1140。感測器可偵測自樣品之表面返回之電子,藉此形成樣品之影像(或其他輸出)。電腦子系統1130可經組態以對由感測器1140產生之輸出執行一或多個功能,其可如本文進一步描述般執行。電腦子系統1130可經組態以執行本文所描述之(若干)任何額外步驟。包含圖11a中所展示之成像系統之一系統可如本文所描述般進一步組態。
應注意,本文提供圖11a來大體上繪示可包含本文所描述之感測器實施例之一或多者之一成像系統之一組態之另一實施例。如同圖11中所展示之成像系統,圖11a中所展示之成像系統組態可經更改以最佳化成像系統之效能,如在設計一商用系統時通常所執行。另外,本文所描述之成像系統可使用一既有系統實施(例如藉由將本文所描述之感測器添加至一既有系統),諸如可購自KLA之工具。針對一些此等系統,本文所描述之感測器可提供為系統之一選用元件(例如以及系統之既有感測器)。替代地,本文所描述之成像系統可「從頭開始」設計以提供一全新成像系統。
儘管成像系統在上文描述為包含一光或電子束能源,但成像子系統可包含一離子束能源。此一成像系統可如圖11a中所展示般組態,只是電子束源可替換為本技術中已知之任何適合離子束源。另外,成像系統可包含任何其他適合離子束成像系統,諸如包含於市售聚焦離子束(FIB)系統、氦離子顯微鏡(HIM)系統及二次離子質譜(SIMS)系統中之離子束成像系統。
如上文進一步提及,成像系統可經組態以具有多種模式。一般而言,一「模式」由用於產生樣品之輸出之成像系統之參數值界定。因此,不同模式可具有成像系統之成像參數之至少一者之不同值(除其中產生輸出之樣品上之位置之外)。例如,針對一基於光之成像系統,不同模式可使用不同波長之光。如本文進一步描述,模式可具有導引至樣品之光之不同波長(例如藉由使用不同光源、不同光譜濾波器等等用於不同模式)。在另一實施例中,不同模式可使用不同照明通道。例如,如上文所提及,成像系統可包含一個以上照明通道。因而,不同照明通道可用於不同模式。
多種模式亦可具有不同照明及/或收集/偵測。例如,如上文進一步描述,成像系統可包含多個感測器。因此,感測器之一者可用於一種模式且感測器之另一者可用於另一模式。此外,模式可依本文所描述之一種以上方式彼此不同(例如,不同模式可具有一或多個不同照明參數及一或多個不同偵測參數)。另外,多種模式可具有不同視角,意謂具有不同入射角及收集角之一或兩者,其可如上文進一步描述般達成。成像系統可經組態以在相同掃描或不同掃描中使用不同模式掃描樣品,例如取決於使用多種模式同時掃描樣品之能力。
在一些例項中,本文所描述之成像系統可組態為檢測系統。然而,本文所描述之成像系統可組態為另一類型之半導體相關品質控制型系統,諸如一缺陷複查系統及一度量系統。例如,本文所描述及圖11及圖11a中所展示之成像系統之實施例可修改一或多個參數以取決於將使用其之應用來提供不同成像能力。在一個此實例中,圖11中所展示之成像系統可經組態以在其用於缺陷複查或度量而非用於檢測時具有一較高解析度。換言之,圖11及圖11a中所展示之成像系統之實施例描述一成像系統之一些通用及各種組態,其可依熟習技術者將明白之若干方式調適以產生幾乎適合於不同應用之具有不同成像能力之成像系統。
如上文所提及,成像系統經組態用於將能量(例如光、電子)導引至樣品之一實體版本及/或使能量掃描樣品之一實體版本,藉此產生樣品之實體版本之實際影像。依此方式,成像系統可組態為一「實際」成像系統而非一「虛擬」系統。然而,圖11中所展示之一儲存媒體(圖中未展示)及(若干)電腦系統1104可組態為一「虛擬」系統。特定言之,儲存媒體及(若干)電腦系統不是成像系統1100之部分且不具有處置樣品之實體版本之任何能力,而是可使用所儲存之感測器輸出組態為執行類檢測功能之一虛擬檢測器、執行類度量功能之一虛擬度量系統、執行類缺陷複查功能之一虛擬缺陷複查工具等等。組態為「虛擬」系統之系統及方法描述於以下中:Bhaskar等人在2012年2月28日發佈之美國專利第8,126,255號、Duffy等人在2015年12月29日發佈之美國專利第9,222,895號及Duffy等人在2017年11月14日發佈之美國專利第9,816,939號,該等專利以宛如全文闡述引用的方式併入本文中。本文所描述之實施例可如此等專利中所描述般進一步組態。例如,本文所描述之一電腦子系統可如此等專利中所描述般進一步組態。
在一個實施例中,成像系統包含經組態以基於由感測器產生之輸出來判定樣品之資訊之一電腦子系統。例如,圖11中所展示之成像系統可包含電腦子系統1102及/或(若干)電腦系統1104,且圖11a中所展示之成像系統可包含電腦子系統1130。此等電腦子系統或系統可耦合至上述成像系統之一或多個感測器,使得電腦子系統或系統接收由(若干)感測器產生之輸出。經判定資訊及使用由感測器或多個感測器產生之輸出用於資訊判定之方式可取決於對樣品執行之程序來變動。判定資訊步驟可由電腦子系統使用一演算法或方法來執行,諸如本文進一步描述之演算法或方法之一者或本技術中已知之任何其他適合演算法或方法。
在另一實施例中,成像系統包含經組態以基於由感測器產生之輸出來偵測樣品上之缺陷之一電腦子系統。一般而言,由感測器產生之輸出可依相同於任何其他影像之方式用於缺陷偵測。換言之,由本文所描述之感測器產生之輸出不是缺陷偵測演算法或方法特定,且使用輸出偵測缺陷可使用本技術中已知之任何適合缺陷偵測演算法或方法來執行。例如,缺陷偵測可藉由自輸出減去一參考以藉此產生一差異影像且將一臨限值應用於差異影像來執行。差異影像中具有高於臨限值之一值之任何像素可識別為一缺陷,且所有其他像素可不識別為一缺陷。當然,此可能為可執行缺陷偵測之最簡單方式且僅作為一非限制性實例包含於本文中。
因此,在一些實施例中,偵測樣品上之缺陷可包含產生或判定樣品之資訊,其可包含在樣品上偵測到之任何缺陷之資訊。在此等例項中,資訊可包含(例如)偵測缺陷之一類型、一偵測缺陷相對於樣品影像、樣品、成像系統及樣品之一設計之一或多者之一位置及由缺陷偵測方法或演算法及/或電腦子系統針對缺陷產生之任何其他資訊。由電腦子系統判定之資訊亦可或替代地包含可自本文所描述之輸出及/或其與樣品之其他資訊(諸如設計資料)之對準判定之任何適合缺陷屬性,例如分類、大小、形狀等等(除所報告之缺陷位置之外)。此資訊可由電腦子系統輸出及/或儲存,如本文進一步描述。
不同於檢測程序,一缺陷複查程序一般再訪樣品其中偵測到一缺陷之一樣品上之離散位置。經組態用於缺陷複查之一成像系統可產生本文所描述之樣品影像,其可輸入至本文所描述之電腦子系統用於一或多個缺陷複查功能,諸如缺陷重新偵測、缺陷屬性判定、缺陷分類及缺陷根本原因判定。針對缺陷複查應用,電腦子系統亦可經組態用於使用在任何適合缺陷複查工具上使用之任何適合缺陷複查方法或演算法來判定來自感測器輸出之缺陷或樣品資訊,可能與由缺陷複查程序判定或來自感測器輸出之任何其他資訊組合。
在一些實施例中,成像系統可經組態用於樣品之度量。在一個此實施例中,資訊包含形成於樣品上之一或多個結構之一量測。例如,本文所描述之成像系統可組態為度量工具,且由此一度量工具產生之感測器輸出可用於判定樣品之度量資訊。度量資訊可包含可取決於樣品上之結構來變動之任何關注度量資訊。此度量資訊之實例包含(但不限於)臨界尺寸(CD),諸如線寬及樣品結構之其他尺寸。針對度量應用,電腦子系統亦可經組態用於使用在任何適合度量工具上使用之任何適合度量方法或演算法來判定來自感測器輸出之樣品之資訊,可能與由度量程序判定或來自感測器輸出之任何其他資訊組合。
電腦子系統亦可經組態用於產生包含判定資訊之結果,其可包含本文所描述之結果或資訊之任何者。判定資訊之結果可由電腦子系統依任何適合方式產生。本文所描述之所有實施例可經組態用於將實施例之一或多個步驟之結果儲存於一電腦可讀儲存媒體中。結果可包含本文所描述之結果之任何者且可依本技術中已知之任何方式儲存。包含判定資訊之結果可具有任何適合形式或格式,諸如一標準檔案類型。儲存媒體可包含本文所描述之任何儲存媒體或本技術中已知之任何其他適合儲存媒體。
在儲存結果之後,結果可存取於儲存媒體中且由本文所描述之方法或系統實施例之任何者使用、經格式化以向一使用者顯示、由另一軟體模組、方法或系統使用等等以對樣品或相同類型之另一樣品執行一或多個功能。例如,由電腦子系統產生之結果可包含在樣品上偵測到之任何缺陷之資訊,諸如偵測缺陷之定界框之位置等等、偵測分數、關於缺陷分類之資訊(諸如類別標籤或ID)、自影像之任何者等等判定之任何缺陷屬性、預測樣品結構量測、尺寸、形狀等等或本技術中已知之任何此適合資訊。該資訊可由電腦子系統或另一系統或方法用於對樣品及/或偵測缺陷執行額外功能,諸如對缺陷取樣以進行缺陷複查或其他分析、判定缺陷之一根本原因等等。
此等功能亦包含(但不限於)更改一程序,諸如依或將依一回饋或前饋方式對樣品執行之製程或步驟等等。例如,電腦子系統可經組態以基於判定資訊來判定對樣品執行之一程序及/或將對樣品執行之一程序之一或多個改變。程序之改變可包含程序之一或多個參數之任何適合改變。在一個此實例中,電腦子系統較佳地判定該等改變,使得可減少或防止對其執行修訂程序之其他樣品上之缺陷,可在對樣品執行之另一程序中校正或消除樣品上之缺陷,可在對樣品執行之另一程序中補償缺陷,等等。電腦子系統可依本技術中已知之任何適合方式判定此等改變。
接著,該等改變可發送至一半導體製造系統(圖中未展示)或電腦子系統及半導體製造系統兩者可存取之一儲存媒體(圖中未展示)。半導體製造系統可或可不為本文所描述之系統實施例之部分。例如,本文所描述之成像子系統及/或電腦子系統可(例如)經由一或多個共同元件(諸如一外殼、一電源供應器、一樣品處置裝置或機構等等)耦合至半導體製造系統。半導體製造系統可包含本技術中已知之任何半導體製造系統,諸如一微影工具、一蝕刻工具、一化學機械拋光(CMP)工具、一沈積工具及其類似者。
上述系統之各者之實施例之各者可一起組合成一個單一實施例。
一額外實施例係關於一種非暫時性電腦可讀媒體,其儲存可在一電腦系統上執行之程式指令用於執行用於判定一樣品之資訊之一電腦實施方法。圖12中展示一個此實施例。特定言之,如圖12中所展示,非暫時性電腦可讀媒體1200包含可在(若干)電腦系統1204上執行之程式指令1202。電腦實施方法可包含本文所描述之(若干)任何方法之(若干)任何步驟。
用於演算法實施方法(諸如本文所描述之方法)之程式指令1202可儲存於電腦可讀媒體1200上。電腦可讀媒體可為一儲存媒體,諸如一磁碟或固態硬碟、一磁帶或本技術中已知之任何其他適合非暫時性電腦可讀媒體。
演算法可依各種方式之任何者實施,包含基於程序之技術、基於組件之技術、物件導向技術、神經網路架構之實施方案等等。例如,程式指令可使用本技術中已知之適合程式設計架構及語言(諸如C、C++或Python)來實施,且在本端、遠端或集中管理運算系統或此等系統之一組合上執行。客製加速器可在專用積體電路裝置(ASIC晶片)、具有客製組態之場可程式化閘陣列(FPGA)或圖形處理單元(GPU)中根據期望單獨或組合實施。
(若干)電腦系統1204可根據本文所描述之實施例之任何者組態。
熟習技術者將鑑於本描述來明白本發明之各種態樣之進一步修改及替代實施例。例如,提供感測器、成像系統及用於形成一感測器之方法。因此,本描述應被解釋為僅供繪示且為了教示熟習技術者實施本發明之一般方式。應理解,本文所展示及描述之本發明之形式應被視為目前較佳實施例。元件及材料可替代本文所展示及描述之元件及材料,部件及程序可反轉,且本發明之某些特徵可獨立利用,其等所有將由熟習技術者藉助於本發明之本描述來明白。可在不背離以下申請專利範圍中所描述之本發明之精神及範疇之情況下對本文所描述之元件進行改變。
100:側視圖 102:仰視圖 104:基板 106:電互連件 108:感測器晶粒 110:組件 112:散熱器 114:背面 116:能敏元件 118:正面 120:能量 200:陶瓷基板 202:陶瓷基板 204:陶瓷基板 206:金屬 208:金屬 210:組件 212:離散導熱結構 214:工具 216:表面 218:方向 220:感測器晶粒 222:背面 224:正面 226:熱壓機 228:方向 230:底膠樹脂 232:液流單電池 300:步驟 302:陶瓷基板 304:步驟 306:焊料凸塊 308:步驟 310:金柱 312:步驟 314:工具 316:方向 318:步驟 320:工具 322:方向 400:實施例 402:實施例 404:焊球 406:基板 408:部分封閉體 410:密封環 412:感測器晶粒 414:流動室 416:氣流 500:尺寸 502:尺寸 504:尺寸 506:尺寸 600:感測器晶粒 602:陶瓷基板 604:散熱器 606:樹脂 608:介面材料 610:凸塊 700:折射透鏡 702:折射透鏡 704:折射透鏡 706:折射透鏡 708:孔徑光闌 710:影像感測器 712:光 714:折射透鏡 716:折射透鏡 718:折射透鏡 720:折射透鏡 722:孔徑光闌 724:影像感測器 726:光 728:有效焦距(EFL) 730:表面下陷 800:孔隙 802:折射透鏡 804:折射透鏡 806:折射透鏡 808:光 810:影像感測器晶粒 814:孔隙 816:折射透鏡 818:折射透鏡 820:折射透鏡 822:光 824:影像感測器晶粒 828:EFL 830:等值線圖 832:作圖 900:最後光學元件 902:光 904:影像感測器 906:影像感測器 908:影像感測器 910:影像感測器 912:等值線圖 914:實例 916:曲率 918:曲率 920:曲率 922:曲率 924:作圖 926:曲率 928:曲率 930:曲率 932:曲率 934:方向 1000:彎曲網格 1002:完美網格 1004:缺陷 1006:缺陷 1008:行跡 1010:行跡 1012:影像 1014:影像 1016:影像 1018:影像 1100:成像系統 1102:電腦子系統 1104:電腦系統 1106:樣品 1108:光源 1110:光學元件 1112:透鏡 1114:載台 1116:集光器 1118:元件 1120:感測器 1122:集光器 1124:元件 1126:感測器 1128:電子柱 1130:電腦子系統 1132:電子束源 1134:樣品 1136:元件 1138:元件 1140:感測器 1200:非暫時性電腦可讀媒體 1202:程式指令 1204:電腦系統 Ls:初始長度 Ls':最終長度
熟習技術者將藉助於較佳實施例之以下詳細描述且在參考附圖之後明白本發明之進一步優點,其中:
圖1係繪示一感測器總成之一個實施例之一橫截面側視圖及一平面仰視圖的一示意圖;
圖2係繪示用於形成一感測器總成之一方法之一實施例的一流程圖;
圖3係繪示使用焊球及金柱形成互連之實施例的一流程圖;
圖4係繪示符合一凹或凸焊球輪廓之一感測器組裝方法之一實施例的一流程圖;
圖5係繪示一獨立感測器晶粒及與焊料凸塊接觸之相同感測器晶粒之幾何形狀之實施例之橫截面圖的一示意圖;
圖6係繪示一完整感測器總成之一部分之一實施例之一橫截面圖的一示意圖,其中重疊箭頭指示感測器總成內熱通量之量值及方向;
圖7a及圖7b係繪示耦合至本文所描述之感測器實施例之一攝影機鏡頭子系統之實施例之一側視圖的示意圖;
圖7c係作為一表面下陷之一感測器實施例之一曲率之一實例之一等值線圖;
圖7d係圖7a及圖7b中所展示之實施例之跨視域(FOV)之一幾何均方根(RMS)光斑大小之一實例之一作圖;
圖8a及圖8b係繪示耦合至本文所描述之感測器實施例之一鏡筒透鏡系統之實施例之一側視圖的示意圖;
圖8c係作為一表面下陷之一感測器實施例之一曲率之一實例之一等值線圖;
圖8d係圖8a及圖8b中所展示之實施例之跨FOV之一幾何RMS光斑大小之一實例之一作圖;
圖9a係包含一個以上如本文所描述般組態之感測器之一成像系統之一部分之一個實施例之一透視圖之一示意圖;
圖9b係作為一表面下陷之圖9a中所展示之成像系統實施例之部分之影像平面之一曲率之一實例之一等值線圖;
圖9c係作為一表面下陷之圖9a中所展示之多感測器實施例之一曲率之一實例之一等值線圖;
圖9d係具有作為一表面下陷之圖9a中所展示之多感測器實施例之最佳化感測器曲率之一實例之一等值線圖;
圖10係繪示可投射至樣品空間上之影像空間中之不同網格之實施例之一平面圖的一示意圖;
圖11及圖11a係繪示如本文所描述般組態之一成像系統之實施例之側視圖的示意圖;及
圖12係繪示儲存用於引起一電腦系統執行本文所描述之一電腦實施方法之程式指令之一非暫時性電腦可讀媒體之一個實施例的一方塊圖。
儘管本發明可接受各種修改及替代形式,但其具體實施例藉由實例展示於圖式中且在本文中詳細描述。圖式可不按比例繪製。然而,應理解,圖式及其詳細描述不意欲使本發明受限於所揭示之特定形式,而是相反地,本發明將涵蓋落入由隨附申請專利範圍界定之本發明之精神及範疇內之所有修改、等效物及替代。
100:側視圖
102:仰視圖
104:基板
106:電互連件
108:感測器晶粒
110:組件
112:散熱器
114:背面
116:能敏元件
118:正面
120:能量

Claims (32)

  1. 一種感測器,其包括: 一基板; 一或多個組件,其等附接至該基板; 一感測器晶粒,其具有一薄化背面及經組態用於偵測照射該感測器晶粒之該薄化背面之能量之能敏元件;及 離散導熱結構,其等藉由一覆晶程序形成於該感測器晶粒之一正面與該基板之間,藉此將該感測器晶粒接合至該基板且引起該感測器晶粒之該薄化背面具有一預選形狀,其中該等離散導熱結構之至少一部分將該感測器晶粒電連接至該一或多個組件。
  2. 如請求項1之感測器,其中在該覆晶程序中將該感測器晶粒接合至該基板之前,該等離散導熱結構形成於該基板上且該等離散導熱結構之一或多者之一形狀經修改使得該等離散導熱結構組合具有實質上相同於該預選形狀之一形狀。
  3. 如請求項1之感測器,其中在該覆晶程序之前判定該預選形狀,且其中基於該預選形狀更改在該覆晶程序中將該感測器晶粒接合至該基板之前形成於該基板上之該等離散導熱結構之一或多者之一形狀。
  4. 如請求項1之感測器,其中該等離散導熱結構形成於其上之該基板之一表面具有不同於該預選形狀之一形狀。
  5. 如請求項1之感測器,其中該等離散導熱結構形成於其上之該基板之一表面具有基於該預選形狀判定之一形狀。
  6. 如請求項1之感測器,其中該預選形狀係一彎曲形狀。
  7. 如請求項1之感測器,其中該預選形狀由一高階多項式界定。
  8. 如請求項1之感測器,其中該基板由一陶瓷材料形成。
  9. 如請求項1之感測器,其中該基板由一材料形成,該材料基於自該感測器晶粒之一大小及該預選形狀判定之該材料之一熱膨脹係數選擇。
  10. 如請求項1之感測器,其中該等離散導熱結構由一材料形成,該材料基於該感測器晶粒之一大小及該預選形狀判定之該材料之一回焊溫度選擇。
  11. 如請求項1之感測器,其進一步包括圍繞該等離散導熱結構且在該感測器晶粒之該正面與該基板之間形成之一底膠材料。
  12. 如請求項11之感測器,其中該底膠材料經組態以在該感測器晶粒經受一真空時穩定該感測器晶粒。
  13. 如請求項11之感測器,其中該底膠材料包括一樹脂,該樹脂含有由具有高熱導率之一介電材料形成之分散粒子。
  14. 如請求項1之感測器,其進一步包括形成於該基板中之導熱及導電通路,其中至少一子集經組態用於將該等離散導熱結構之該至少部分連接至該一或多個組件,藉此將該感測器晶粒連接至該一或多個組件。
  15. 如請求項1之感測器,其中該一或多個組件經組態用於對由該等能敏元件回應於該偵測能量而產生之輸出執行一或多個功能。
  16. 如請求項1之感測器,其中該等能敏元件經進一步組態用於偵測深紫外光。
  17. 如請求項1之感測器,其中該等能敏元件經進一步組態用於偵測真空紫外光。
  18. 如請求項1之感測器,其中該等能敏元件經進一步組態用於偵測極紫外光。
  19. 如請求項1之感測器,其中該等能敏元件經進一步組態用於偵測x射線。
  20. 一種成像系統,其包括: 一能源,其經組態用於產生由一照明子系統導引至一樣品之能量;及 一感測器,其經組態用於偵測來自該樣品之能量且回應於該偵測能量而產生輸出;其中該感測器包括: 一基板; 一或多個組件,其等附接至該基板; 一感測器晶粒,其具有一薄化背面及經組態用於偵測照射該感測器晶粒之該薄化背面之來自該樣品之該能量之能敏元件;及 離散導熱結構,其等藉由一覆晶程序形成於該感測器晶粒之一正面與該基板之間,藉此將該感測器晶粒接合至該基板且引起該感測器晶粒之該薄化背面具有一預選形狀,其中該等離散導熱結構之至少一部分將該感測器晶粒電連接至該一或多個組件。
  21. 如請求項20之系統,其進一步包括經組態以基於由該感測器產生之該輸出來偵測該樣品上之缺陷之一電腦子系統。
  22. 如請求項20之系統,其進一步包括經組態以基於由該感測器產生之該輸出來判定該樣品之資訊之一電腦子系統。
  23. 如請求項22之系統,其中該資訊包括形成於該樣品上之一或多個結構之一量測。
  24. 如請求項20之系統,其進一步包括經組態以將該能量自該樣品導引至該感測器之一攝影機鏡頭子系統。
  25. 如請求項20之系統,其進一步包括經組態以將該能量自該樣品導引至該感測器之一管透鏡子系統。
  26. 如請求項20之系統,其進一步包括經組態用於偵測來自該樣品之額外能量且回應於該額外偵測能量而產生輸出之一額外感測器;其中該額外感測器包括: 一額外基板; 一或多個額外組件,其等附接至該額外基板; 一額外感測器晶粒,其具有一薄化背面及經組態用於偵測照射該額外感測器晶粒之該薄化背面之來自該樣品之該額外能量之額外能敏元件;及 額外離散導熱結構,其等藉由一覆晶程序形成於該額外感測器晶粒之一正面與該額外基板之間,藉此將該額外感測器晶粒接合至該額外基板且引起該額外感測器晶粒之該薄化背面具有一額外預選形狀,其中該等額外離散導熱結構之至少一部分將該額外感測器晶粒電連接至該一或多個額外組件。
  27. 如請求項26之系統,其中該預選形狀及該額外預選形狀係不同的。
  28. 如請求項26之系統,其中該預選形狀及該額外預選形狀係相同的。
  29. 如請求項26之系統,其中該成像系統經組態以獨立控制該感測器及該額外感測器在該成像系統中之位置。
  30. 如請求項20之系統,其進一步包括經組態以在該樣品上掃描由該照明子系統導引至該樣品之該能量之一掃描子系統,其中該照明子系統在該樣品上具有實質上無場曲率之一視域,且其中該預選形狀係一彎曲形狀。
  31. 如請求項30之系統,其中該感測器經進一步組態為一時延積分感測器。
  32. 一種用於形成一感測器之方法,其包括: 使離散導熱結構形成於一基板上; 基於一感測器晶粒之一薄化背面之一預選形狀來更改該等離散導熱結構之一形狀;及 經由該等離散導熱結構將該感測器晶粒之一正面接合至該基板,藉此引起該感測器晶粒之該薄化背面具有該預選形狀,其中該等離散導熱結構之至少一部分將該感測器晶粒電連接至附接至該基板之一或多個組件;且 其中該感測器晶粒具有經組態用於偵測照射該感測器晶粒之該薄化背面之能量之能敏元件。
TW111121975A 2021-06-14 2022-06-14 感測器、成像系統及用於形成感測器之方法 TW202315103A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202163210082P 2021-06-14 2021-06-14
US63/210,082 2021-06-14
US17/834,767 US20220397536A1 (en) 2021-06-14 2022-06-07 Sensors, imaging systems, and methods for forming a sensor
US17/834,767 2022-06-07

Publications (1)

Publication Number Publication Date
TW202315103A true TW202315103A (zh) 2023-04-01

Family

ID=84390378

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111121975A TW202315103A (zh) 2021-06-14 2022-06-14 感測器、成像系統及用於形成感測器之方法

Country Status (7)

Country Link
US (1) US20220397536A1 (zh)
JP (1) JP2024526006A (zh)
KR (1) KR20240021148A (zh)
CN (1) CN116964749A (zh)
IL (1) IL305109A (zh)
TW (1) TW202315103A (zh)
WO (1) WO2022266025A1 (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7507944B1 (en) * 2006-06-27 2009-03-24 Cypress Semiconductor Corporation Non-planar packaging of image sensor
KR20100001799A (ko) * 2008-06-27 2010-01-06 삼성전기주식회사 휴대폰 내장형 이미지센서 모듈 및 이의 제조방법
US10313622B2 (en) * 2016-04-06 2019-06-04 Kla-Tencor Corporation Dual-column-parallel CCD sensor and inspection systems using a sensor
US10062727B2 (en) * 2016-09-09 2018-08-28 Microsoft Technology Licensing, Llc Strain relieving die for curved image sensors
US10103095B2 (en) * 2016-10-06 2018-10-16 Compass Technology Company Limited Fabrication process and structure of fine pitch traces for a solid state diffusion bond on flip chip interconnect

Also Published As

Publication number Publication date
US20220397536A1 (en) 2022-12-15
JP2024526006A (ja) 2024-07-17
KR20240021148A (ko) 2024-02-16
CN116964749A (zh) 2023-10-27
IL305109A (en) 2023-10-01
WO2022266025A1 (en) 2022-12-22

Similar Documents

Publication Publication Date Title
JP6251559B2 (ja) 試料支持装置
CN1940546B (zh) 检测设备和器件制造方法
US20160380014A1 (en) Thermal Imaging Device
TW200302354A (en) Bi-convex solid immersion lens
WO2018216277A1 (ja) 欠陥検査装置及び欠陥検査方法
TW202225864A (zh) 可調諧波長透視層堆疊
Trigg Applications of infrared microscopy to IC and MEMS packaging
JP2024535973A (ja) 測定ツール、マスク測定方法および検査方法
TW202315103A (zh) 感測器、成像系統及用於形成感測器之方法
US9523645B2 (en) Lenticular wafer inspection
US20220059311A1 (en) Printed circuit board for sealing vacuum system
CN107845584B (zh) 用于检测基板表面缺陷的装置、系统和方法
JP4922334B2 (ja) パターン検査装置およびパターン検査方法
O'Connor et al. Characterization of prototype LSST CCDs
Burke et al. Orthogonal transfer arrays for the Pan-STARRS gigapixel camera
Chambion et al. Collective curved CMOS sensor process: application for high-resolution optical design and assembly challenges
Chambion et al. Curved full-frame CMOS sensor: impact on electro-optical performances
US12072181B2 (en) Inspection apparatus and method
US20240369356A1 (en) Inspection apparatus and method
JP6893842B2 (ja) パターン検査方法およびパターン検査装置
Roumégoux et al. Key elements for hybridization technology development of $2000\times 2000$ pixels Infrared Focal Plane Arrays
TW202207765A (zh) 用於相機影像感測器之可靠互連
KR20070017245A (ko) 기판 결함 분류 방법
JP2024159579A (ja) 複数の角度入力面を有するx線回折イメージング検出器
KR20240083800A (ko) 광학 장치 및 광학 측정 방법