TW202315076A - Three-dimensional flash memory and method of forming the same - Google Patents

Three-dimensional flash memory and method of forming the same Download PDF

Info

Publication number
TW202315076A
TW202315076A TW110135278A TW110135278A TW202315076A TW 202315076 A TW202315076 A TW 202315076A TW 110135278 A TW110135278 A TW 110135278A TW 110135278 A TW110135278 A TW 110135278A TW 202315076 A TW202315076 A TW 202315076A
Authority
TW
Taiwan
Prior art keywords
slit
openings
flash memory
layer
vertical channel
Prior art date
Application number
TW110135278A
Other languages
Chinese (zh)
Other versions
TWI794988B (en
Inventor
黃珈擇
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW110135278A priority Critical patent/TWI794988B/en
Application granted granted Critical
Publication of TWI794988B publication Critical patent/TWI794988B/en
Publication of TW202315076A publication Critical patent/TW202315076A/en

Links

Images

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

Provided is a three-dimensional flash memory including a substrate, a stack structure, a stop layer, two slit trenches, a plurality of vertical channel structures, and a plurality of slit holes. The stack structure is disposed on the substrate. The stack structure includes a plurality of dielectric layers and a plurality of conductive layers stacked alternately. The stop layer is disposed between the substrate and the stack structure. The two slit trenches penetrate through the stack structure to expose the stop layer. The vertical channel structures are disposed between the two slit trenches and penetrate through the stack structure and the stop layer. The slit holes are discretely disposed between the vertical channel structures, and penetrate through the stack structure to expose the stop layer. A method of forming the three-dimensional flash memory is also provided.

Description

三維快閃記憶體及其形成方法Three-dimensional flash memory and method of forming the same

本發明是有關於一種記憶體及其形成方法,且特別是有關於一種三維快閃記憶體及其形成方法。The present invention relates to a memory and its forming method, and in particular to a three-dimensional flash memory and its forming method.

非揮發性記憶體(例如快閃記憶體)由於具有使存入的資料在斷電後也不會消失的優點,因此成為個人電腦和其他電子設備所廣泛採用的一種記憶體。Non-volatile memory (such as flash memory) has the advantage that the stored data will not disappear after power failure, so it has become a type of memory widely used in personal computers and other electronic devices.

目前業界較常使用的三維快閃記憶體包括反或式(NOR)快閃記憶體以及反及式(NAND)快閃記憶體。此外,另一種三維快閃記憶體為及式(AND)快閃記憶體,其可應用在多維度的快閃記憶體陣列中而具有高積集度與高面積利用率,且具有操作速度快的優點。因此,三維快閃記憶體的發展已逐漸成為目前的趨勢。Currently, the 3D flash memory commonly used in the industry includes a negative-or (NOR) flash memory and a negative-and-type (NAND) flash memory. In addition, another type of 3D flash memory is AND flash memory, which can be applied in a multi-dimensional flash memory array and has high integration and high area utilization, and has fast operation speed. The advantages. Therefore, the development of 3D flash memory has gradually become the current trend.

本發明提供一種三維快閃記憶體包括:基底、堆疊結構、相鄰兩個狹縫溝渠、多個垂直通道結構以及多個狹縫開孔。堆疊結構配置在基底上。堆疊結構包括交替堆疊的多個介電層與多個導體層。相鄰兩個狹縫溝渠貫穿堆疊結構。相鄰兩個狹縫溝渠具有平均寬度30w。多個垂直通道結構配置在相鄰兩個狹縫溝渠之間,且貫穿堆疊結構。多個狹縫開孔離散配置在多個垂直通道結構之間,且貫穿堆疊結構。多個狹縫開孔的平均寬度W大於或等於相鄰兩個狹縫溝渠的平均寬度30w。The invention provides a three-dimensional flash memory including: a base, a stack structure, two adjacent slit trenches, multiple vertical channel structures and multiple slit openings. The stack structure is configured on the base. The stack structure includes a plurality of dielectric layers and a plurality of conductor layers stacked alternately. Two adjacent slit ditches run through the stacked structure. Two adjacent slit trenches have an average width of 30w. Multiple vertical channel structures are arranged between two adjacent slit trenches and run through the stacked structure. A plurality of slit openings are discretely arranged between the plurality of vertical channel structures and run through the stacked structure. The average width W of the plurality of slit openings is greater than or equal to the average width 30w of two adjacent slit trenches.

本發明提供一種三維快閃記憶體的形成方法,包括:在基底上形成停止層與堆疊結構,其中堆疊結構包括交替堆疊的多個介電層與多個犧牲層;在堆疊結構與停止層中形成多個第一開口;在多個第一開口中分別形成多個垂直通道結構;在堆疊結構中形成暴露出停止層的多個第二開口,其中多個第二開口至少包括具有平均寬度30w的相鄰兩個狹縫溝渠與具有平均寬度W的多個狹縫開孔,多個垂直通道結構形成在兩個狹縫溝渠之間,且多個狹縫開孔離散形成在多個垂直通道結構之間,其中多個狹縫開孔的平均寬度W大於或等於相鄰兩個狹縫溝渠的平均寬度30w;以及通過多個第二開口進行閘極替換製程,以將多個犧牲層替換為多個導體層。The invention provides a method for forming a three-dimensional flash memory, comprising: forming a stop layer and a stack structure on a substrate, wherein the stack structure includes a plurality of dielectric layers and a plurality of sacrificial layers stacked alternately; in the stack structure and the stop layer forming a plurality of first openings; forming a plurality of vertical channel structures in the plurality of first openings; forming a plurality of second openings exposing the stop layer in the stacked structure, wherein the plurality of second openings at least include an average width of 30w Two adjacent slit trenches and a plurality of slit openings with an average width W, a plurality of vertical channel structures are formed between the two slit trenches, and a plurality of slit openings are discretely formed in the plurality of vertical channels Between the structures, the average width W of the plurality of slit openings is greater than or equal to the average width 30w of two adjacent slit trenches; and a gate replacement process is performed through the plurality of second openings to replace the plurality of sacrificial layers for multiple conductor layers.

基於上述,本實施例將多個狹縫開孔離散形成在所述多個垂直通道結構之間,以增加閘極替換製程中犧牲層的移除效率以及導體層的填入效率,進而提升三維快閃記憶體的良率。在此情況下,本實施例不僅可解決現有記憶體的製程瓶頸,還可增加單位晶片面積的記憶單元的數量,進而提升記憶體的積集度與面積利用率。Based on the above, in this embodiment, a plurality of slit openings are discretely formed between the plurality of vertical channel structures, so as to increase the removal efficiency of the sacrificial layer and the filling efficiency of the conductor layer in the gate replacement process, thereby improving the three-dimensional Yield of flash memory. In this case, this embodiment can not only solve the bottleneck of the existing memory manufacturing process, but also increase the number of memory units per unit chip area, thereby improving the integration degree and area utilization rate of the memory.

參照本實施例之圖式以更全面地闡述本發明。然而,本發明亦可以各種不同的形式體現,而不應限於本文中所述之實施例。圖式中的層與區域的厚度會為了清楚起見而放大。相同或相似之元件標號表示相同或相似之元件,以下段落將不再一一贅述。The present invention will be described more fully with reference to the drawings of this embodiment. However, the present invention can also be embodied in various forms and should not be limited to the embodiments described herein. The thicknesses of layers and regions in the drawings may be exaggerated for clarity. The same or similar component numbers represent the same or similar components, and the following paragraphs will not repeat them one by one.

圖1、圖2、圖3、圖4A以及圖5是依照本發明一實施例的一種三維及式(AND)快閃記憶體的製造流程的剖面示意圖。圖4B是沿著圖4A的A-A切線的平面示意圖。雖然以下實施例是以三維及式快閃記憶體為例來說明,但本發明不以此為限。在其他實施例中,所得的記憶體結構亦可以是三維反及式(NAND)快閃記憶體或是三維反或式(NOR)快閃記憶體。FIG. 1 , FIG. 2 , FIG. 3 , FIG. 4A and FIG. 5 are schematic cross-sectional views of a manufacturing process of a three-dimensional AND (AND) flash memory according to an embodiment of the present invention. Fig. 4B is a schematic plan view along the line A-A of Fig. 4A. Although the following embodiments are described by taking the three-dimensional flash memory as an example, the present invention is not limited thereto. In other embodiments, the obtained memory structure can also be a three-dimensional inverting-or (NAND) flash memory or a three-dimensional inverting-or (NOR) flash memory.

請參照圖1,首先,提供初始結構10。具體來說,初始結構10可包括基底100、蓋層106、停止層108、堆疊結構110以及垂直通道結構130。在一實施例中,基底100包括介電基底。介電基底可以是形成在矽基板上的介電層,例如是氧化矽層。在一實施例中,蓋層106的材料包括介電材料,例如是氧化矽。在一實施例中,停止層108的材料包括摻雜多晶矽材料。舉例來說,停止層108可以是P型摻雜(P+)多晶矽層。Referring to FIG. 1 , first, an initial structure 10 is provided. Specifically, the initial structure 10 may include a substrate 100 , a cap layer 106 , a stop layer 108 , a stack structure 110 and a vertical channel structure 130 . In one embodiment, the substrate 100 includes a dielectric substrate. The dielectric substrate may be a dielectric layer formed on a silicon substrate, such as a silicon oxide layer. In one embodiment, the material of the capping layer 106 includes a dielectric material, such as silicon oxide. In one embodiment, the material of the stop layer 108 includes doped polysilicon material. For example, the stop layer 108 can be a P-type doped (P+) polysilicon layer.

堆疊結構110可包括交替堆疊的多個介電層112與多個犧牲層114。在一實施例中,介電層112與犧牲層114可以是不同的介電材料。舉例來說,介電層112可以是氧化矽層;犧牲層114可以是氮化矽層。介電層112與犧牲層114的數量可以依據需求來調整,本發明不以此為限。The stack structure 110 may include a plurality of dielectric layers 112 and a plurality of sacrificial layers 114 stacked alternately. In one embodiment, the dielectric layer 112 and the sacrificial layer 114 may be different dielectric materials. For example, the dielectric layer 112 can be a silicon oxide layer; the sacrificial layer 114 can be a silicon nitride layer. The quantities of the dielectric layer 112 and the sacrificial layer 114 can be adjusted according to requirements, and the present invention is not limited thereto.

垂直通道結構130可形成在開口20中。如圖1所示,開口20(亦可稱為第一開口)可貫穿堆疊結構110、停止層108、蓋層106且部分延伸至基底100中。具體來說,垂直通道結構130可包括通道層132、絕緣柱134、介電材料135、第一源極/汲極柱136以及第二源極/汲極柱138。第一源極/汲極柱136與第二源極/汲極柱138貫穿介電材料135,並部分延伸至基底100中。在本實施例中,多晶矽材料142、144與多晶矽層102、104具有相同的材料,例如是N型摻雜(N+)多晶矽材料。在此情況下,第一源極/汲極柱136可包括內埋在基底100中的多晶矽層102(亦可稱為第一部分)以及配置在多晶矽層102上的多晶矽材料142(亦可稱為第二部分)。同樣地,第二源極/汲極柱138亦可包括內埋在基底100中的多晶矽層104(亦可稱為第一部分)以及配置在多晶矽層104上的多晶矽材料144(亦可稱為第二部分)。在本實施例中,多晶矽層102、104的橫截面積可小於多晶矽材料142、144的橫截面積。也就是說,多晶矽層102、104的周界可位於多晶矽材料142、144的範圍內,如圖4B所示。絕緣柱134配置在第一源極/汲極柱136與第二源極/汲極柱138之間,以分隔第一源極/汲極柱136與第二源極/汲極柱138。另外,通道層132位於開口20的側壁上且可橫向環繞絕緣柱134、介電材料135、第一源極/汲極柱136以及第二源極/汲極柱138。A vertical channel structure 130 may be formed in the opening 20 . As shown in FIG. 1 , the opening 20 (also referred to as the first opening) may penetrate through the stack structure 110 , the stopper layer 108 , the cover layer 106 and partially extend into the substrate 100 . Specifically, the vertical channel structure 130 may include a channel layer 132 , an insulating pillar 134 , a dielectric material 135 , a first source/drain pillar 136 and a second source/drain pillar 138 . The first source/drain column 136 and the second source/drain column 138 penetrate the dielectric material 135 and partially extend into the substrate 100 . In this embodiment, the polysilicon material 142 , 144 has the same material as the polysilicon layer 102 , 104 , such as N-type doped (N+) polysilicon material. In this case, the first source/drain column 136 may include a polysilicon layer 102 (also referred to as a first portion) embedded in the substrate 100 and a polysilicon material 142 (also referred to as a first portion) disposed on the polysilicon layer 102 (also referred to as a first portion). the second part). Similarly, the second source/drain column 138 may also include a polysilicon layer 104 embedded in the substrate 100 (also referred to as a first portion) and a polysilicon material 144 disposed on the polysilicon layer 104 (also referred to as a second portion). part two). In this embodiment, the cross-sectional area of the polysilicon layer 102 , 104 may be smaller than the cross-sectional area of the polysilicon material 142 , 144 . That is, the perimeter of the polysilicon layers 102, 104 may lie within the confines of the polysilicon material 142, 144, as shown in FIG. 4B. The insulating column 134 is disposed between the first source/drain column 136 and the second source/drain column 138 to separate the first source/drain column 136 and the second source/drain column 138 . In addition, the channel layer 132 is located on the sidewall of the opening 20 and can laterally surround the insulating pillar 134 , the dielectric material 135 , the first source/drain pillar 136 and the second source/drain pillar 138 .

如圖1所示,初始結構10可選擇性地包括多個氧化物層124、128。氧化物層124可配置在犧牲層114與通道層132之間,而氧化物層128可配置在停止層108與通道層132之間。氧化物層124可通過對犧牲層114的側壁進行氧化處理來形成,而氧化物層128可通過對停止層108的側壁進行氧化處理來形成。在一實施例中,氧化物層124與氧化物層128具有不同材料。舉例來說,氧化物層124可以是氮氧化矽層,而氧化物層128則可以是氧化矽層。在一實施例中,氧化處理包括熱氧化法,濕式氧化法或其組合。值得注意的是,由於停止層108的氧化速度快於犧牲層114的氧化速度,因此,氧化物層128的厚度可大於氧化物層124的厚度。As shown in FIG. 1 , the initial structure 10 may optionally include a plurality of oxide layers 124 , 128 . The oxide layer 124 can be disposed between the sacrificial layer 114 and the channel layer 132 , and the oxide layer 128 can be disposed between the stop layer 108 and the channel layer 132 . The oxide layer 124 may be formed by oxidizing the sidewall of the sacrificial layer 114 , and the oxide layer 128 may be formed by oxidizing the sidewall of the stop layer 108 . In one embodiment, the oxide layer 124 and the oxide layer 128 have different materials. For example, the oxide layer 124 may be a silicon oxynitride layer, and the oxide layer 128 may be a silicon oxide layer. In one embodiment, the oxidation treatment includes thermal oxidation, wet oxidation or a combination thereof. It should be noted that since the oxidation rate of the stop layer 108 is faster than that of the sacrificial layer 114 , the thickness of the oxide layer 128 may be greater than the thickness of the oxide layer 124 .

在形成垂直通道結構130之後,可進行閘極替換製程,以將堆疊結構110中的犧牲層114替換成導體層154,如圖2至圖4B所示。After the vertical channel structure 130 is formed, a gate replacement process may be performed to replace the sacrificial layer 114 in the stacked structure 110 with the conductor layer 154 , as shown in FIGS. 2 to 4B .

首先,請參照圖2,在垂直通道結構130旁的堆疊結構110中形成開口30(亦可稱為第二開口)。開口30貫穿堆疊結構110,以停在停止層108上並暴露出停止層108。雖然圖2所繪示的開口30的底面與停止層108的頂面齊平,但本發明不以此為限。在其他實施例中,開口30的底面亦可高於或是低於停止層108的頂面。First, please refer to FIG. 2 , an opening 30 (also referred to as a second opening) is formed in the stack structure 110 next to the vertical channel structure 130 . The opening 30 penetrates the stack structure 110 to stop on and expose the stop layer 108 . Although the bottom surface of the opening 30 is flush with the top surface of the stop layer 108 as shown in FIG. 2 , the invention is not limited thereto. In other embodiments, the bottom surface of the opening 30 may also be higher or lower than the top surface of the stop layer 108 .

值得注意的是,在本實施例中,開口30至少包括兩個狹縫溝渠30T與多個狹縫開孔30H,如圖8A所示。具體來說,從剖面角度來看,狹縫溝渠30T可貫穿堆疊結構110並暴露出停止層108,如圖2的標號30所示。從圖8A的上視角度來看,狹縫溝渠30T可沿著X方向延伸並沿著Y方向排列,以將多個垂直通道結構130分隔成沿著Y方向排列的多個陣列區AR。在此實施例中,垂直通道結構130形成在兩個狹縫溝渠30T之間。另一方面,狹縫開孔30H可離散形成在每一個陣列區AR的垂直通道結構130之間。在本實施例中,狹縫開孔30H的形狀可以是點狀。在此情況下,狹縫開孔30H的平均直徑30d可大於或等於狹縫溝渠30T的平均寬度30w,即30d≧30w。狹縫開孔30H的平均直徑30d可大於或等於垂直通道結構130的平均直徑130d,即30d≧130d。在一實施例中,垂直通道結構130的平均直徑130d可介於100 nm至350 nm之間。It should be noted that, in this embodiment, the opening 30 includes at least two slit trenches 30T and a plurality of slit openings 30H, as shown in FIG. 8A . Specifically, from a cross-sectional perspective, the slit trench 30T can penetrate through the stack structure 110 and expose the stop layer 108 , as shown by reference numeral 30 in FIG. 2 . From the top view of FIG. 8A , the slit trenches 30T may extend along the X direction and be arranged along the Y direction, so as to separate the plurality of vertical channel structures 130 into a plurality of array regions AR arranged along the Y direction. In this embodiment, the vertical channel structure 130 is formed between two slit trenches 30T. On the other hand, the slit openings 30H may be discretely formed between the vertical channel structures 130 of each array region AR. In this embodiment, the shape of the slit opening 30H may be a dot shape. In this case, the average diameter 30d of the slit opening 30H may be greater than or equal to the average width 30w of the slit trench 30T, that is, 30d≧30w. The average diameter 30d of the slit opening 30H may be greater than or equal to the average diameter 130d of the vertical channel structure 130 , ie, 30d≧130d. In one embodiment, the average diameter 130d of the vertical channel structure 130 may be between 100 nm and 350 nm.

回頭參照圖8A,一般而言,倘若沒有狹縫開孔30H,相鄰兩個狹縫溝渠30T之間的距離35可介於1 μm至20 μm之間,或是小於垂直通道結構130的平均直徑130d的200倍。當相鄰兩個狹縫溝渠30T之間的距離35過大,則可能會導致後續蝕刻製程無法完全移除陣列區AR的中間區域的犧牲層114。在此情況下,氮化矽殘留問題會出現在陣列區AR的中間區域,進而導致後續導體層(或是閘極)填入不良問題。因此,在習知方法中,相鄰兩個狹縫溝渠30T之間的距離35無法增加以容納更多的垂直通道結構130,進而無法提升記憶體元件的積集度。Referring back to FIG. 8A , in general, if there is no slit opening 30H, the distance 35 between two adjacent slit trenches 30T may be between 1 μm and 20 μm, or less than the average of the vertical channel structure 130 200 times the diameter of 130d. When the distance 35 between two adjacent slit trenches 30T is too large, the subsequent etching process may not completely remove the sacrificial layer 114 in the middle region of the array region AR. In this case, the residual silicon nitride problem will appear in the middle region of the array region AR, which will lead to poor filling of the subsequent conductor layer (or gate). Therefore, in the conventional method, the distance 35 between two adjacent slit trenches 30T cannot be increased to accommodate more vertical channel structures 130 , and thus the accumulation degree of memory elements cannot be improved.

另一方面,當圖2的堆疊結構110的高度愈高,則會因高深寬比的原因而使得開口20的上部寬度大於下部寬度。在開口20的上部寬度過大的情況下,相鄰兩個垂直通道結構130(或相鄰兩個開口20)之間的上部間距130s(如圖8A所示)會變得過小,其可能會導致後續蝕刻製程無法完全移除此處的犧牲層114。在此情況下,氮化矽殘留問題也會出現在相鄰兩個垂直通道結構130之間的區域,進而導致後續導體層(或是閘極)填入不良問題。On the other hand, when the height of the stacked structure 110 in FIG. 2 is higher, the upper width of the opening 20 is larger than the lower width due to the high aspect ratio. When the upper width of the opening 20 is too large, the upper spacing 130s (as shown in FIG. 8A ) between two adjacent vertical channel structures 130 (or two adjacent openings 20 ) will become too small, which may cause Subsequent etching processes cannot completely remove the sacrificial layer 114 here. In this case, the residual silicon nitride problem will also appear in the area between two adjacent vertical channel structures 130 , which will lead to poor filling of subsequent conductor layers (or gate electrodes).

為了解決上述問題,本實施例將多個狹縫開孔30H離散形成在多個垂直通道結構130之間,以增加閘極替換製程中犧牲層114的移除效率以及導體層154(圖4A)的填入效率,進而提升記憶體元件的良率。在此情況下,相鄰兩個狹縫溝渠30T之間的距離35可大於或等於20 μm,進而容納更多的垂直通道結構130。因此,本實施例還可提升記憶體元件的積集度。In order to solve the above problems, in this embodiment, a plurality of slit openings 30H are discretely formed between the plurality of vertical channel structures 130, so as to increase the removal efficiency of the sacrificial layer 114 and the conductor layer 154 in the gate replacement process ( FIG. 4A ). Fill efficiency, thereby improving the yield of memory components. In this case, the distance 35 between two adjacent slit trenches 30T may be greater than or equal to 20 μm, thereby accommodating more vertical channel structures 130 . Therefore, this embodiment can also improve the integration of memory elements.

接著,請參照圖3,通過開口30進行蝕刻製程,移除犧牲層114,以在介電層112之間形成多個空隙34。空隙34橫向暴露出氧化物層124。也就是說,空隙34是由介電層112與氧化物層124所定義的。值得注意的是,氧化物層124可視為上述的蝕刻製程用以移除犧牲層114的蝕刻停止層,以避免過度蝕刻進而損壞通道層132。在一實施例中,所述蝕刻製程可以是濕式蝕刻製程。舉例來說,當犧牲層114為氮化矽時,所述蝕刻製程可以是使用含有磷酸的蝕刻液,並將所述蝕刻液倒入開口30(其包括狹縫溝渠30T與狹縫開孔30H)中,從而移除犧牲層114。由於所述蝕刻液對於犧牲層114具有高蝕刻選擇性,因此,犧牲層114可被完全移除,而介電層112、停止層108以及蓋層106未被移除或僅少量移除。Next, referring to FIG. 3 , an etching process is performed through the opening 30 to remove the sacrificial layer 114 to form a plurality of gaps 34 between the dielectric layers 112 . Void 34 laterally exposes oxide layer 124 . That is, the void 34 is defined by the dielectric layer 112 and the oxide layer 124 . It should be noted that the oxide layer 124 can be regarded as an etch stop layer for removing the sacrificial layer 114 in the above etching process, so as to avoid excessive etching and thus damage the channel layer 132 . In one embodiment, the etching process may be a wet etching process. For example, when the sacrificial layer 114 is silicon nitride, the etching process may be to use an etching solution containing phosphoric acid, and pour the etching solution into the opening 30 (which includes the slit trench 30T and the slit opening 30H ), thereby removing the sacrificial layer 114. Since the etchant has high etch selectivity to the sacrificial layer 114 , the sacrificial layer 114 can be completely removed, while the dielectric layer 112 , the stop layer 108 and the capping layer 106 are not removed or only slightly removed.

圖8B繪示出圖8A中的區域40的放大示意圖。在一實施例中,如圖8B所示,多個狹縫開孔30H中的第一部分在閘極替換製程中移除犧牲層114的第一移除極限面積A1具有移除極限長度K1。多個狹縫開孔30H中的第二部分在閘極替換製程中移除犧牲層114的第二移除極限面積A2具有移除極限長度K2。第一移除極限面積A1與第二移除極限面積A2部分重疊。也就是說,相鄰兩個狹縫開孔30H在閘極替換製程中移除犧牲層114的移除極限長度的加總(即,相當於總移除限制直徑2(K1+K2))可大於相鄰兩個狹縫開孔30H之間的距離D1,即2(K1+K2)>D1。在此情況下,本實施例可確保位於陣列區AR的中間區域的犧牲層114通過狹縫開孔30H而被完全移除。FIG. 8B shows an enlarged schematic view of the region 40 in FIG. 8A . In one embodiment, as shown in FIG. 8B , the first portion of the plurality of slit openings 30H in which the sacrificial layer 114 is removed in the gate replacement process has a first removal limit area A1 having a removal limit length K1 . The second removal limit area A2 of the second portion of the plurality of slit openings 30H for removing the sacrificial layer 114 in the gate replacement process has a removal limit length K2 . The first removal limited area A1 partially overlaps the second removal limited area A2. That is to say, the sum of the removal limit lengths of two adjacent slit openings 30H in the gate replacement process for removing the sacrificial layer 114 (that is, equivalent to the total removal limit diameter 2 (K1+K2)) can be It is greater than the distance D1 between two adjacent slit openings 30H, that is, 2(K1+K2)>D1. In this case, this embodiment can ensure that the sacrificial layer 114 located in the middle region of the array region AR is completely removed through the slit opening 30H.

圖8C繪示出圖8A中的區域50的放大示意圖。在一實施例中,如圖8B與圖8C所示,多個狹縫開孔30H中的一者在閘極替換製程中移除犧牲層114的移除極限面積A1/A2與兩個狹縫溝渠30T中的一者在閘極替換製程中移除犧牲層114的移除極限面積A3部分重疊。也就是說,在閘極替換製程中從狹縫開孔30H到狹縫溝渠30T移除犧牲層114的移除極限長度的加總(K1+K3)可大於狹縫開孔30H與狹縫溝渠30T之間的距離D2,即K1+K3>D2。FIG. 8C shows an enlarged schematic view of the region 50 in FIG. 8A . In one embodiment, as shown in FIG. 8B and FIG. 8C , one of the plurality of slit openings 30H removes the removal limit area A1/A2 of the sacrificial layer 114 and two slits during the gate replacement process. One of the trenches 30T partially overlaps the removal limit area A3 of the sacrificial layer 114 during the gate replacement process. That is to say, the sum (K1+K3) of the removal limit length of the sacrificial layer 114 from the slit opening 30H to the slit trench 30T in the gate replacement process may be greater than that of the slit opening 30H and the slit trench 30T. The distance D2 between 30T, that is, K1+K3>D2.

從圖8A至圖8C可知,在本實施例中,離散配置在相鄰兩個狹縫溝渠30T之間的狹縫開孔30H可用來移除位於陣列區AR的中間區域的犧牲層114,而狹縫溝渠30T則是用來移除位於陣列區AR的周邊區域的犧牲層114。在狹縫開孔30H搭配狹縫溝渠30T的情況下,本實施例可確保位於陣列區AR的所有犧牲層114通過狹縫開孔30H與狹縫溝渠30T而被完全移除。因此,本實施例不僅可解決習知氮化矽殘留問題,還可增加陣列區AR中的垂直通道結構130的數量,進而提升記憶體的積集度與面積利用率。It can be seen from FIG. 8A to FIG. 8C that, in this embodiment, the slit openings 30H discretely arranged between two adjacent slit trenches 30T can be used to remove the sacrificial layer 114 located in the middle region of the array region AR, and The slit trench 30T is used to remove the sacrificial layer 114 located in the peripheral area of the array area AR. In the case of the slit opening 30H and the slit trench 30T, this embodiment can ensure that all the sacrificial layers 114 in the array area AR are completely removed through the slit opening 30H and the slit trench 30T. Therefore, this embodiment can not only solve the conventional silicon nitride residue problem, but also increase the number of vertical channel structures 130 in the array region AR, thereby improving the density and area utilization of the memory.

圖9至圖12繪示出依照本發明各種實施例的狹縫開孔的排列的布局。9 to 12 illustrate the layout of the arrangement of slit openings according to various embodiments of the present invention.

雖然圖8A繪示出狹縫開孔30H沿著X方向交錯排列,但本發明不以此為限。在其他實施例中,狹縫開孔30H亦可沿著X方向呈單線排列,如圖9所示。在替代實施例中,狹縫開孔30H亦可沿著X方向呈雙線排列或是多線排列,如圖10所示。Although FIG. 8A shows that the slit openings 30H are staggered along the X direction, the present invention is not limited thereto. In other embodiments, the slit holes 30H may also be arranged in a single line along the X direction, as shown in FIG. 9 . In an alternative embodiment, the slit openings 30H may also be arranged in double lines or multi-lines along the X direction, as shown in FIG. 10 .

雖然圖8A至圖10繪示出狹縫開孔30H的形狀為點狀,但本發明不以此為限。在其他實施例中,狹縫開孔30S的形狀亦可以是條狀。具體來說,如圖11所示,多個狹縫開孔30S的平均長度L大於多個狹縫開孔30S的平均寬度W的三倍,即L>3W。狹縫開孔30S的平均寬度W可大於或等於狹縫溝渠30T的平均寬度30w,即W≧30w。狹縫開孔30S的平均寬度W可大於或等於垂直通道結構130的平均直徑130d,即W≧130d。在此實施例中,條狀的狹縫開孔30S可視為長度較短的狹縫溝渠。因此,在進行如圖2所示的形成開口30的步驟時,狹縫開孔30S可減少此步驟的負載效應(loading effect),以使狹縫開孔30S與狹縫溝渠30T可幾乎同時停在停止層108上。也就是說,狹縫開孔30S與狹縫溝渠30T可具有相同的深度與剖面輪廓。Although FIG. 8A to FIG. 10 illustrate that the shape of the slit opening 30H is dot-like, the present invention is not limited thereto. In other embodiments, the shape of the slit opening 30S may also be a strip shape. Specifically, as shown in FIG. 11 , the average length L of the plurality of slit openings 30S is greater than three times the average width W of the plurality of slit openings 30S, ie L>3W. The average width W of the slit opening 30S may be greater than or equal to the average width 30w of the slit trench 30T, that is, W≧30w. The average width W of the slit opening 30S may be greater than or equal to the average diameter 130d of the vertical channel structure 130 , ie W≧130d. In this embodiment, the strip-shaped slit openings 30S can be regarded as short slit trenches. Therefore, when performing the step of forming the opening 30 as shown in FIG. on the stop layer 108 . That is to say, the slit opening 30S and the slit trench 30T may have the same depth and cross-sectional profile.

另外,雖然圖11繪示出狹縫開孔30S沿著X方向呈單線排列,但本發明不以此為限。在其他實施例中,狹縫開孔30S亦可沿著X方向交錯排列,如圖12所示。在替代實施例中,狹縫開孔30S亦可沿著X方向呈雙線排列或是多線排列。在另一實施例中,點狀的狹縫溝渠30T與條狀的狹縫開孔30S亦可採用如圖11所示的狹縫開孔排列的相同布局。In addition, although FIG. 11 shows that the slit openings 30S are arranged in a single line along the X direction, the present invention is not limited thereto. In other embodiments, the slit openings 30S may also be staggered along the X direction, as shown in FIG. 12 . In an alternative embodiment, the slit openings 30S may also be arranged in double lines or multi-lines along the X direction. In another embodiment, the dot-shaped slit trenches 30T and the strip-shaped slit openings 30S can also adopt the same arrangement of the slit-openings as shown in FIG. 11 .

請回頭參照圖4A與圖4B,在空隙34中依序形成電荷儲存層120與導體層154,由此完成了本發明的三維及式快閃記憶體1。具體來說,如圖4A所示,電荷儲存層120共形覆蓋空隙34,以環繞導體層154。在一實施例中,電荷儲存層120可以是由穿隧層、電荷儲存層以及阻擋層所構成的複合層。穿隧層、電荷儲存層以及阻擋層可分別被視為氧化物/氮化物/氧化物(ONO)。在一實施例中,導體層154的材料例如為多晶矽、非晶矽、鎢(W)、鈷(Co)、鋁(Al)、矽化鎢(WSi x)或矽化鈷(CoSi x)。此外,在形成電荷儲存層120之後且在形成導體層154之前,可在電荷儲存層120與導體層154之間依序形成緩衝層以及阻障層。緩衝層的材料例如為介電常數大於7的高介電常數的材料,例如氧化鋁(Al 2O 3)、氧化鉿(HfO 2)、氧化鑭(La 2O 5)、過渡金屬氧化物、鑭系元素氧化物或其組合。阻障層的材料例如為鈦(Ti)、氮化鈦(TiN)、鉭(Ta)、氮化鉭(TaN)或其組合。 Referring back to FIG. 4A and FIG. 4B , the charge storage layer 120 and the conductor layer 154 are sequentially formed in the gap 34 , thereby completing the three-dimensional flash memory 1 of the present invention. Specifically, as shown in FIG. 4A , the charge storage layer 120 conformally covers the void 34 to surround the conductive layer 154 . In an embodiment, the charge storage layer 120 may be a composite layer composed of a tunneling layer, a charge storage layer and a blocking layer. The tunneling layer, charge storage layer and blocking layer can be regarded as oxide/nitride/oxide (ONO), respectively. In one embodiment, the material of the conductive layer 154 is, for example, polysilicon, amorphous silicon, tungsten (W), cobalt (Co), aluminum (Al), tungsten silicide ( WSix ) or cobalt silicide ( CoSix ). In addition, after forming the charge storage layer 120 and before forming the conductor layer 154 , a buffer layer and a barrier layer may be sequentially formed between the charge storage layer 120 and the conductor layer 154 . The material of the buffer layer is, for example, a material with a high dielectric constant greater than 7, such as aluminum oxide (Al 2 O 3 ), hafnium oxide (HfO 2 ), lanthanum oxide (La 2 O 5 ), transition metal oxide, Lanthanide oxides or combinations thereof. The material of the barrier layer is, for example, titanium (Ti), titanium nitride (TiN), tantalum (Ta), tantalum nitride (TaN) or a combination thereof.

在本實施例中,三維及式快閃記憶體1具有多個記憶單元160。詳細地說,如圖4A所示,在三維及式快閃記憶體1中,具有彼此堆疊的4個記憶單元160。但本發明不以此為限,在其他實施例中,記憶單元160的數量可隨著堆疊結構210中的導體層154的數量來調整。另外,雖然圖4A與圖4B僅繪示出單一個垂直通道結構130,但本發明不以此為限。在替代實施例中,三維及式快閃記憶體1可包括多個垂直通道結構130,且這些垂直通道結構130可在上視角度中以陣列的方式排列,如圖8A所示。In this embodiment, the three-dimensional flash memory 1 has a plurality of memory units 160 . In detail, as shown in FIG. 4A , in the three-dimensional flash memory 1 , there are four memory cells 160 stacked on top of each other. But the present invention is not limited thereto. In other embodiments, the number of memory units 160 can be adjusted along with the number of conductor layers 154 in the stacked structure 210 . In addition, although FIG. 4A and FIG. 4B only show a single vertical channel structure 130 , the present invention is not limited thereto. In an alternative embodiment, the three-dimensional flash memory 1 may include a plurality of vertical channel structures 130 , and these vertical channel structures 130 may be arranged in an array in a top view, as shown in FIG. 8A .

為了對三維及式快閃記憶體1進行操作,在製造三維及式快閃記憶體1之後,會在三維及式快閃記憶體1上方形成導電線以電性連接至三維及式快閃記憶體1。在本實施例中,在作為源極的第一源極/汲極柱136上方形成並與其電性連接的一些導電線作為源極線,在作為汲極的第二源極/汲極柱138上方形成並與其電性連接的其他導電線作為位元線,且這些源極線與位元線彼此平行排列而彼此不接觸。In order to operate the 3D flash memory 1, after manufacturing the 3D flash memory 1, conductive wires will be formed on the 3D flash memory 1 to electrically connect to the 3D flash memory Body 1. In this embodiment, some conductive lines formed above and electrically connected to the first source/drain column 136 as the source are used as source lines, and some conductive lines are formed on the second source/drain column 138 as the drain. The other conductive lines formed above and electrically connected thereto serve as bit lines, and these source lines and the bit lines are arranged parallel to each other without contacting each other.

以下對三維及式快閃記憶體1中的記憶單元160的操作進行說明。The operation of the memory unit 160 in the three-dimensional flash memory 1 will be described below.

對於三維及式快閃記憶體1來說,可個別地對每一個記憶單元160進行操作。可對記憶單元160的第一源極/汲極柱136、第二源極/汲極柱138與對應的導體層154(可視為閘極或字元線)施加操作電壓,來進行寫入(程式化)操作、讀取操作或抹除操作。在讀取操作期間,如圖4B所示,將電壓施加在選定的導體層154(可視為閘極或字元線)。當施加的電壓高於對應的記憶單元160的臨界電壓(Vth)時,與選定的導體層154相交的垂直通道結構130的通道層132中的通道區會被導通。在此情況下,電流會從位元線進入第二源極/汲極柱138(可視為汲極柱)通過導通的通道區(例如箭頭E1、E2所指的方向)而流到第一源極/汲極柱136(可視為源極柱),最後流向源極線。同一垂直通道結構130上的每一個記憶單元160為並聯電性連接。For the three-dimensional flash memory 1, each memory unit 160 can be operated individually. An operating voltage can be applied to the first source/drain column 136, the second source/drain column 138, and the corresponding conductor layer 154 (which can be regarded as a gate or a word line) of the memory cell 160 to perform writing ( programming) operation, read operation or erase operation. During a read operation, as shown in FIG. 4B , a voltage is applied to a selected conductor layer 154 (which may be considered a gate or word line). When the applied voltage is higher than the threshold voltage (Vth) of the corresponding memory cell 160 , the channel region in the channel layer 132 of the vertical channel structure 130 intersecting the selected conductor layer 154 will be turned on. In this case, the current will enter the second source/drain column 138 (which can be regarded as the drain column) from the bit line and flow to the first source through the conduction channel region (such as the direction indicated by the arrows E1 and E2). pole/drain post 136 (which can be considered a source post), and finally flows to the source line. Each memory unit 160 on the same vertical channel structure 130 is electrically connected in parallel.

請參照圖5,在進行閘極替換製程之後,可形成介電材料以填入開口30中並延伸覆蓋堆疊結構210的頂面。接著,進行平坦化製程(例如CMP製程),以移除堆疊結構210的頂面上多餘的介電材料,從而在開口30中形成介電層230。在此情況下,介電層230的頂面可與堆疊結構210的頂面共平面。在一實施例中,介電材料包括氧化矽、氮化矽、氮氧化矽或其組合。Referring to FIG. 5 , after the gate replacement process is performed, a dielectric material may be formed to fill the opening 30 and extend to cover the top surface of the stack structure 210 . Next, a planarization process (such as a CMP process) is performed to remove excess dielectric material on the top surface of the stack structure 210 , so as to form a dielectric layer 230 in the opening 30 . In this case, the top surface of the dielectric layer 230 may be coplanar with the top surface of the stack structure 210 . In one embodiment, the dielectric material includes silicon oxide, silicon nitride, silicon oxynitride or a combination thereof.

在另一實施例中,在進行閘極替換製程之後,可共形形成介電材料以填入開口30中並延伸覆蓋堆疊結構210的頂面。之後,在介電材料上形成導體材料。接著,進行平坦化製程(例如CMP製程),以移除堆疊結構210的頂面上多餘的介電材料與導體材料,從而在開口30中形成複合結構330。在此情況下,複合結構330的頂面可與堆疊結構210的頂面共平面。如圖6所示,複合結構330包括導體特徵334與包覆導體特徵334的介電層332。在一實施例中,介電材料包括氧化矽、氮化矽、氮氧化矽或其組合,而導體材料包括多晶矽、非晶矽、鎢(W)、鈷(Co)、鋁(Al)、矽化鎢(WSi x)或矽化鈷(CoSi x)。在本實施例中,介電層332可用以電性隔離導體特徵334與導體層154(或停止層108)。 In another embodiment, after the gate replacement process is performed, a dielectric material can be conformally formed to fill the opening 30 and extend to cover the top surface of the stack structure 210 . Thereafter, a conductive material is formed on the dielectric material. Next, a planarization process (such as a CMP process) is performed to remove excess dielectric material and conductive material on the top surface of the stacked structure 210 , so as to form a composite structure 330 in the opening 30 . In this case, the top surface of the composite structure 330 may be coplanar with the top surface of the stacked structure 210 . As shown in FIG. 6 , composite structure 330 includes conductive features 334 and dielectric layer 332 covering conductive features 334 . In one embodiment, the dielectric material includes silicon oxide, silicon nitride, silicon oxynitride or a combination thereof, and the conductive material includes polysilicon, amorphous silicon, tungsten (W), cobalt (Co), aluminum (Al), silicide Tungsten ( WSix ) or Cobalt Silicide ( CoSix ). In this embodiment, the dielectric layer 332 can be used to electrically isolate the conductor feature 334 from the conductor layer 154 (or the stop layer 108 ).

上述的實施例的三維及式快閃記憶體1是以氧化物/氮化物/氧化物最後(ONO last)製程來形成電荷儲存層120。但本發明不以此為限,在其他實施例中,三維及式快閃記憶體2亦可以ONO優先(ONO first)製程來形成電荷儲存層220,詳細說明請參照以下段落。The three-dimensional flash memory 1 of the above-mentioned embodiment uses an oxide/nitride/oxide last (ONO last) process to form the charge storage layer 120 . But the present invention is not limited thereto. In other embodiments, the three-dimensional flash memory 2 can also form the charge storage layer 220 through an ONO first (ONO first) process. Please refer to the following paragraphs for details.

圖7A與圖7B是依照本發明其他實施例的一種三維反及式(NAND)快閃記憶體的剖面示意圖與平面示意圖。7A and 7B are a schematic cross-sectional view and a schematic plan view of a three-dimensional NAND flash memory according to other embodiments of the present invention.

請參照圖7A,提供一種三維反及式(NAND)快閃記憶體2。3D NAND快閃記憶體2包括基底500。停止層508形成在基底500上。停止層508包括多晶矽層,其可作為3D NAND快閃記憶體2的共用源極平面(或共用源極線)。堆疊結構510形成在停止層508上方。堆疊結構510包括交替堆疊的多個介電層512與多個導體層554。導體層554可視為閘極或字元線。垂直通道結構530可包括電荷儲存層520、通道層532以及絕緣柱534。參照圖7A,絕緣柱534可貫穿蓋層516、堆疊結構510以及停止層508,並且部分地延伸到基底500中。通道層532與導電插塞531物理接觸。通道層532可覆蓋絕緣柱534的側壁與底面,而導電插塞531可密封絕緣柱534的頂面。在此情況下,通道層532可完全包覆絕緣柱534的所有表面。電荷儲存層520可配置在通道層532與堆疊結構510之間。通道層532與停止層508之間的電荷儲存層520被移除。電荷儲存層520直接接觸停止層508。Referring to FIG. 7A , a three-dimensional NAND flash memory 2 is provided. The 3D NAND flash memory 2 includes a substrate 500 . A stop layer 508 is formed on the substrate 500 . The stop layer 508 includes a polysilicon layer, which can be used as a common source plane (or a common source line) of the 3D NAND flash memory 2 . A stack structure 510 is formed over the stop layer 508 . The stack structure 510 includes a plurality of dielectric layers 512 and a plurality of conductive layers 554 stacked alternately. The conductive layer 554 can be regarded as a gate or a word line. The vertical channel structure 530 may include a charge storage layer 520 , a channel layer 532 and insulating pillars 534 . Referring to FIG. 7A , the insulating post 534 may penetrate the cap layer 516 , the stack structure 510 and the stop layer 508 and partially extend into the substrate 500 . The channel layer 532 is in physical contact with the conductive plug 531 . The channel layer 532 can cover the sidewall and the bottom surface of the insulating pillar 534 , and the conductive plug 531 can seal the top surface of the insulating pillar 534 . In this case, the channel layer 532 can completely cover all surfaces of the insulating pillars 534 . The charge storage layer 520 can be disposed between the channel layer 532 and the stack structure 510 . The charge storage layer 520 between the channel layer 532 and the stop layer 508 is removed. The charge storage layer 520 directly contacts the stop layer 508 .

圖7B是沿著圖7A的B-B切線的平面示意圖。通道層532側向環繞絕緣柱534。電荷儲存層520側向環繞通道層532。絕緣柱534、通道層532以及電荷儲存層520的材料分別與前面段落中描述的絕緣柱134、通道層132以及電荷儲存層120的材料相同。Fig. 7B is a schematic plan view along the line B-B in Fig. 7A. The channel layer 532 laterally surrounds the insulating post 534 . The charge storage layer 520 laterally surrounds the channel layer 532 . The materials of the insulating pillars 534 , the channel layer 532 and the charge storage layer 520 are the same as those of the insulating pillars 134 , the channel layer 132 and the charge storage layer 120 described in the preceding paragraphs.

綜上所述,本發明本實施例將多個狹縫開孔離散形成在所述多個垂直通道結構之間,以增加閘極替換製程中犧牲層的移除效率以及導體層的填入效率,進而提升三維快閃記憶體的良率。在此情況下,本實施例不僅可解決現有記憶體的製程瓶頸,還可增加單位晶片面積的記憶單元的數量,進而提升記憶體的積集度與面積利用率。To sum up, in this embodiment of the present invention, a plurality of slit openings are discretely formed between the plurality of vertical channel structures, so as to increase the removal efficiency of the sacrificial layer and the filling efficiency of the conductor layer in the gate replacement process. , thereby improving the yield rate of the three-dimensional flash memory. In this case, this embodiment can not only solve the bottleneck of the existing memory manufacturing process, but also increase the number of memory units per unit chip area, thereby improving the integration degree and area utilization rate of the memory.

1:三維及式(AND)快閃記憶體 2:三維反及式(NAND)快閃記憶體 10:初始結構 20、30:開口 30d:平均直徑 30H、30S:狹縫開孔 30T:狹縫溝渠 30w:平均寬度 34:空隙 35、D1、D2:距離 100、500:基底 102、104:多晶矽層 106、516:蓋層 108、508:停止層 110、210、510:堆疊結構 112、512:介電層 114:犧牲層 120、220、520:電荷儲存層 124、128:氧化物層 130、530:垂直通道結構 130d:平均直徑 130s:上部間距 132、532:通道層 134、534:絕緣柱 135:介電材料 136:第一源極/汲極柱 138:第二源極/汲極柱 142、144:多晶矽材料 154、554:導體層 160:記憶單元 230、332:介電層 330:複合結構 334:導體特徵 531:導電插塞 A1、A2、A3:移除極限面積 AR:陣列區 E1:第一電路徑 E2:第二電路徑 L:平均長度 K1、K2、K3:移除極限長度 W:平均寬度 X、Y:方向 1: Three-dimensional and type (AND) flash memory 2: Three-dimensional NAND flash memory 10: Initial structure 20, 30: opening 30d: average diameter 30H, 30S: slit opening 30T: slot trench 30w: average width 34: Gap 35, D1, D2: distance 100, 500: Base 102, 104: polysilicon layer 106, 516: cover layer 108, 508: stop layer 110, 210, 510: stacked structure 112, 512: dielectric layer 114: sacrificial layer 120, 220, 520: charge storage layer 124, 128: oxide layer 130, 530: vertical channel structure 130d: average diameter 130s: upper spacing 132, 532: channel layer 134, 534: insulating column 135: Dielectric material 136: The first source/drain column 138: Second source/drain column 142, 144: polysilicon material 154, 554: conductor layer 160: memory unit 230, 332: dielectric layer 330: Composite structure 334: Conductor Characteristics 531: Conductive plug A1, A2, A3: remove limit area AR: array area E1: the first electrical path E2: Second electrical path L: average length K1, K2, K3: remove limit length W: average width X, Y: direction

圖1、圖2、圖3、圖4A以及圖5是依照本發明一實施例的一種三維及式(AND)快閃記憶體的製造流程的剖面示意圖。 圖4B是沿著圖4A的A-A切線的平面示意圖。 圖6是依照本發明另一實施例的一種三維及式快閃記憶體的剖面示意圖。 圖7A是依照本發明其他實施例的一種三維反及式(NAND)快閃記憶體的剖面示意圖。 圖7B是沿著圖7A的B-B切線的平面示意圖。 圖8A繪示出依照本發明一實施例的狹縫開孔的排列的布局。 圖8B與圖8C分別繪示出圖8A中的區域的放大示意圖。 圖9至圖12繪示出依照本發明各種實施例的狹縫開孔的排列的布局。 FIG. 1 , FIG. 2 , FIG. 3 , FIG. 4A and FIG. 5 are schematic cross-sectional views of a manufacturing process of a three-dimensional AND (AND) flash memory according to an embodiment of the present invention. Fig. 4B is a schematic plan view along the line A-A of Fig. 4A. FIG. 6 is a schematic cross-sectional view of a three-dimensional flash memory according to another embodiment of the present invention. 7A is a schematic cross-sectional view of a three-dimensional NAND flash memory according to another embodiment of the present invention. Fig. 7B is a schematic plan view along the line B-B in Fig. 7A. FIG. 8A illustrates a layout of an arrangement of slit openings according to an embodiment of the present invention. FIG. 8B and FIG. 8C are enlarged schematic diagrams of the regions in FIG. 8A , respectively. 9 to 12 illustrate the layout of the arrangement of slit openings according to various embodiments of the present invention.

30:開口 30: opening

30d:平均直徑 30d: average diameter

30H:狹縫開孔 30H: Slit opening

30T:狹縫溝渠 30T: slot trench

30w:平均寬度 30w: average width

35:距離 35: Distance

130:垂直通道結構 130: Vertical channel structure

130d:平均直徑 130d: average diameter

130s:上部間距 130s: upper spacing

AR:陣列區 AR: array area

X、Y:方向 X, Y: direction

Claims (10)

一種三維快閃記憶體,包括: 基底; 堆疊結構,配置在所述基底上,其中所述堆疊結構包括交替堆疊的多個介電層與多個導體層; 相鄰兩個狹縫溝渠,貫穿所述堆疊結構,其中所述相鄰兩個狹縫溝渠具有平均寬度30w; 多個垂直通道結構,配置在所述相鄰兩個狹縫溝渠之間,且貫穿所述堆疊結構;以及 多個狹縫開孔,離散配置在所述多個垂直通道結構之間,且貫穿所述堆疊結構,其中所述多個狹縫開孔的平均寬度W大於或等於所述相鄰兩個狹縫溝渠的所述平均寬度30w。 A three-dimensional flash memory, comprising: base; a stack structure configured on the substrate, wherein the stack structure includes a plurality of dielectric layers and a plurality of conductor layers stacked alternately; Two adjacent slit trenches run through the stacked structure, wherein the two adjacent slit trenches have an average width of 30w; A plurality of vertical channel structures arranged between the two adjacent slit trenches and running through the stacked structure; and A plurality of slit openings are discretely arranged between the plurality of vertical channel structures and run through the stacked structure, wherein the average width W of the plurality of slit openings is greater than or equal to that of the two adjacent slits The average width of the seam trench is 30w. 如請求項1所述的三維快閃記憶體,其中所述相鄰兩個狹縫溝渠沿著第一方向延伸,而所述多個狹縫開孔沿著所述第一方向排列。The three-dimensional flash memory according to claim 1, wherein the two adjacent slit trenches extend along a first direction, and the plurality of slit openings are arranged along the first direction. 如請求項1所述的三維快閃記憶體,其中所述多個狹縫開孔為條狀,所述多個狹縫開孔的平均長度大於所述多個狹縫開孔的所述平均寬度的三倍。The three-dimensional flash memory according to claim 1, wherein the plurality of slit openings are strip-shaped, and the average length of the plurality of slit openings is greater than the average length of the plurality of slit openings three times the width. 如請求項3所述的三維快閃記憶體,其中所述相鄰兩個狹縫溝渠之間的距離介於1 μm至20 μm之間。The three-dimensional flash memory according to claim 3, wherein the distance between two adjacent slit trenches is between 1 μm and 20 μm. 如請求項1所述的三維快閃記憶體,其中每一個垂直通道結構包括被通道層環繞的第一源極/汲極柱與第二源極/汲極柱。The three-dimensional flash memory according to claim 1, wherein each vertical channel structure includes a first source/drain column and a second source/drain column surrounded by a channel layer. 如請求項1所述的三維快閃記憶體,其中在上視角度下所述多個狹縫開孔的形狀包括點狀、條狀或其組合。The three-dimensional flash memory according to claim 1, wherein the shapes of the plurality of slit openings include dots, stripes or a combination thereof in a top viewing angle. 如請求項1所述的三維快閃記憶體,其中當所述多個狹縫開孔的形狀為點狀時,所述多個狹縫開孔的平均直徑大於或等於所述兩個狹縫溝渠的平均寬度,且所述多個狹縫開孔的所述平均直徑大於或等於所述多個垂直通道結構的平均直徑。The three-dimensional flash memory according to claim 1, wherein when the shape of the plurality of slit openings is point-like, the average diameter of the plurality of slit openings is greater than or equal to the two slits The average width of the trench, and the average diameter of the plurality of slit openings is greater than or equal to the average diameter of the plurality of vertical channel structures. 如請求項1所述的三維快閃記憶體,其中所述多個狹縫開孔的所述平均寬度大於或等於所述多個垂直通道結構的平均直徑。The three-dimensional flash memory according to claim 1, wherein the average width of the plurality of slit openings is greater than or equal to an average diameter of the plurality of vertical channel structures. 一種三維快閃記憶體的形成方法,包括: 在基底上形成停止層與堆疊結構,其中所述堆疊結構包括交替堆疊的多個介電層與多個犧牲層; 在所述堆疊結構與所述停止層中形成多個第一開口; 在所述多個第一開口中分別形成多個垂直通道結構; 在所述堆疊結構中形成暴露出所述停止層的多個第二開口,其中所述多個第二開口至少包括具有平均寬度30w的相鄰兩個狹縫溝渠與具有平均寬度W的多個狹縫開孔,所述多個垂直通道結構形成在所述兩個狹縫溝渠之間,且所述多個狹縫開孔離散形成在所述多個垂直通道結構之間,其中所述多個狹縫開孔的所述平均寬度W大於或等於所述相鄰兩個狹縫溝渠的所述平均寬度30w;以及 通過所述多個第二開口進行閘極替換製程,以將所述多個犧牲層替換為多個導體層。 A method for forming a three-dimensional flash memory, comprising: forming a stop layer and a stack structure on the substrate, wherein the stack structure includes a plurality of dielectric layers and a plurality of sacrificial layers stacked alternately; forming a plurality of first openings in the stack structure and the stop layer; forming a plurality of vertical channel structures in the plurality of first openings; A plurality of second openings exposing the stop layer are formed in the stacked structure, wherein the plurality of second openings at least include two adjacent slit trenches with an average width 30w and a plurality of slit trenches with an average width W Slit openings, the plurality of vertical channel structures are formed between the two slit trenches, and the plurality of slit openings are discretely formed between the plurality of vertical channel structures, wherein the plurality of The average width W of each slit opening is greater than or equal to the average width 30w of the two adjacent slit trenches; and A gate replacement process is performed through the plurality of second openings to replace the plurality of sacrificial layers with a plurality of conductor layers. 如請求項9所述的三維快閃記憶體的形成方法,其中所述多個狹縫開孔的所述平均寬度大於或等於所述多個垂直通道結構的平均直徑。The method for forming a three-dimensional flash memory according to claim 9, wherein the average width of the plurality of slit openings is greater than or equal to the average diameter of the plurality of vertical channel structures.
TW110135278A 2021-09-23 2021-09-23 Three-dimensional flash memory and method of forming the same TWI794988B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110135278A TWI794988B (en) 2021-09-23 2021-09-23 Three-dimensional flash memory and method of forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110135278A TWI794988B (en) 2021-09-23 2021-09-23 Three-dimensional flash memory and method of forming the same

Publications (2)

Publication Number Publication Date
TWI794988B TWI794988B (en) 2023-03-01
TW202315076A true TW202315076A (en) 2023-04-01

Family

ID=86692102

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110135278A TWI794988B (en) 2021-09-23 2021-09-23 Three-dimensional flash memory and method of forming the same

Country Status (1)

Country Link
TW (1) TWI794988B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019169510A (en) * 2018-03-22 2019-10-03 東芝メモリ株式会社 Semiconductor memory
CN110112134B (en) * 2019-06-17 2020-05-19 长江存储科技有限责任公司 3D NAND memory and forming method thereof
WO2021035603A1 (en) * 2019-08-29 2021-03-04 Yangtze Memory Technologies Co., Ltd. Three-dimensional memory and fabrication method thereof
JP2021118333A (en) * 2020-01-29 2021-08-10 キオクシア株式会社 Semiconductor storage device and method for manufacturing the same

Also Published As

Publication number Publication date
TWI794988B (en) 2023-03-01

Similar Documents

Publication Publication Date Title
US11678486B2 (en) 3D flash memory with annular channel structure and array layout thereof
KR100598109B1 (en) Non-volatile memory devices and methods of the same
TWI726125B (en) Semiconductor device and method of manufacturing the same
US10600798B2 (en) Manufacturing method of non-volatile memory structure
US20210384211A1 (en) Flash memory structure with enhanced floating gate
JP2011014838A (en) Non-volatile semiconductor memory device
CN114388513A (en) Flash memory
US8264025B2 (en) Nonvolatile memory device and method of forming the nonvolatile memory device including giving an upper portion of an insulating layer an etching selectivity with respect to a lower portion
US9287289B2 (en) Semiconductor device and method of manufacturing the same
US20240147714A1 (en) Flash memory structure with enhanced floating gate
JP2020004855A (en) Semiconductor device and manufacturing method therefor
TWI794988B (en) Three-dimensional flash memory and method of forming the same
JP5319092B2 (en) Semiconductor device and manufacturing method thereof
US20230085996A1 (en) Three-dimensional flash memory and method of forming the same
TWI775534B (en) Three-dimensional and flash memory and method of forming the same
TWI517365B (en) Memory device and method for fabricating the same
CN114335185A (en) Split-gate dual bit non-volatile memory cell with erase gate disposed over word line gate and method of making the same
TWI593086B (en) Memory device and method of manufacturing the same
JP2008034820A (en) Non-volatile memory element, and manufacturing method thereof
TWI805203B (en) Three-dimensional memory device and method of forming the same
US20120104482A1 (en) Semiconductor devices having a control gate electrode including a metal layer filling a gap between adjacent floating gates and methods of fabricating the same
US20220157848A1 (en) Memory device and method of manufacturing the same
TWI762215B (en) Memory device and method of manufacturing the same
US20230363171A1 (en) 3d ferroelectric memory
US20230240071A1 (en) Three-dimensional memory device and method of forming the same