TW202312731A - Angular light sensor and eye-tracking - Google Patents

Angular light sensor and eye-tracking Download PDF

Info

Publication number
TW202312731A
TW202312731A TW111130233A TW111130233A TW202312731A TW 202312731 A TW202312731 A TW 202312731A TW 111130233 A TW111130233 A TW 111130233A TW 111130233 A TW111130233 A TW 111130233A TW 202312731 A TW202312731 A TW 202312731A
Authority
TW
Taiwan
Prior art keywords
light
angle
grating
photodiode
sensor
Prior art date
Application number
TW111130233A
Other languages
Chinese (zh)
Inventor
莉莉安納 路伊茲 狄耶茲
黃瑞亭
強納森 羅伯特 彼得森
克里斯托弗 元庭 廖
安德魯 約翰 奧德克爾克
吉安卡羅 錫古 山提 努奇
克雷爾 喬伊斯 羅賓森
羅賓 夏爾瑪
Original Assignee
美商元平台技術有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/878,634 external-priority patent/US11860358B2/en
Application filed by 美商元平台技術有限公司 filed Critical 美商元平台技術有限公司
Publication of TW202312731A publication Critical patent/TW202312731A/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0093Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for monitoring data relating to the user, e.g. head-tracking, eye-tracking
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/013Eye tracking input arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features

Abstract

Angular sensors that may be used in eye-tracking systems are disclosed. An eye-tracking system may include a plurality of light sources to emit illumination light and a plurality of angular light sensors to receive returning light that is the illumination light reflecting from an eyebox region. The angular light sensors may output angular signals representing an angle of incidence of the returning light.

Description

角度光感測器和眼動追蹤Angle light sensor and eye tracking

本發明一般係關於光學件,且特定言之,係關於角度光感測器。 相關申請案之交叉參考 The present invention relates generally to optics, and in particular to angle light sensors. Cross References to Related Applications

本申請案主張2021年8月13日申請之美國臨時申請案第63/232,674號及2022年8月1日申請之美國非臨時申請案第17/878,634號之優先權,這些申請案特此以引用之方式併入。This application claims priority to U.S. Provisional Application No. 63/232,674, filed August 13, 2021, and U.S. Non-Provisional Application No. 17/878,634, filed August 1, 2022, which are hereby incorporated by reference incorporated in a manner.

角度光感測器可用於多種情境中,諸如成像、顯示及光伏打。現有角度光感測器可能體積大、功率效率低及/或具有緩慢的處理時間。因此,可部署現有角度光感測器之應用可能受到限制。Angle light sensors can be used in various scenarios, such as imaging, display and photovoltaic. Existing angle light sensors may be bulky, power inefficient, and/or have slow processing times. Therefore, the applications in which existing angle light sensors can be deployed may be limited.

本發明的一態樣為一種眼動追蹤系統,其包含:複數個紅外光源,其配置以將紅外照射光發射至視窗區;及複數個角度光感測器,其配置以接收返回紅外光,該返回紅外光為自該視窗區反射之該紅外照射光,其中該複數個角度光感測器配置以輸出表示該返回紅外光相對於這些角度光感測器之位置之入射角的角度信號。An aspect of the present invention is an eye tracking system, which includes: a plurality of infrared light sources configured to emit infrared light to the window area; and a plurality of angle light sensors configured to receive returned infrared light, The returned infrared light is the infrared irradiation light reflected from the window area, wherein the plurality of angle photosensors are configured to output angle signals representing the incident angles of the returned infrared light relative to the positions of the angle photosensors.

在本發明的所述態樣之眼動追蹤系統中,這些角度光感測器具有相對於這些角度光感測器之光電偵測器表面在1度與85度之間的角度偵測範圍。In the eye-tracking system of the described aspect of the present invention, the angle light sensors have an angle detection range between 1 degree and 85 degrees relative to the photodetector surface of the angle light sensors.

在本發明的所述態樣之眼動追蹤系統中,這些角度光感測器具有小於150微米×150微米之感測器面積。In the eye-tracking system of the described aspect of the invention, the angle light sensors have a sensor area of less than 150 microns by 150 microns.

在本發明的所述態樣之眼動追蹤系統中,這些角度光感測器包括:第一光電二極體,其配置以接收該返回紅外光;第二光電二極體,其配置以接收該返回紅外光;及傾斜光障壁,其安置於該第一光電二極體與該第二光電二極體之間,該傾斜光障壁相對於該第一光電二極體及該第二光電二極體兩者共同的感測平面的表面法線傾斜,其中由該第一光電二極體產生之第一信號與由該第二光電二極體產生之第二信號的比率指示該返回紅外光之該入射角。In the eye tracking system of said aspect of the present invention, the angle light sensors include: a first photodiode configured to receive the returned infrared light; a second photodiode configured to receive the return infrared light; and an inclined light barrier disposed between the first photodiode and the second photodiode, the inclined light barrier is opposite to the first photodiode and the second photodiode The surface normal to the sensing plane common to both polar bodies is tilted, wherein the ratio of the first signal generated by the first photodiode to the second signal generated by the second photodiode is indicative of the returned infrared light The angle of incidence.

在本發明的所述態樣之眼動追蹤系統中,這些角度光感測器包括:光障壁;第一光電二極體,其配置以接收該返回紅外光;第二光電二極體,其配置以接收該返回紅外光,其中該第一光電二極體安置於該光障壁與該第二光電二極體之間;及處理邏輯,其配置以接收由該第一光電二極體產生之第一信號及由該第二光電二極體產生之第二信號,其中該處理邏輯基於該第一信號及該第二信號產生質心值,其中該第一信號經指派第一加權因數,該第一加權因數小於在產生該質心值時指派給該第二信號之第二加權因數。In the eye tracking system according to the aspect of the present invention, the angle light sensors include: a light barrier; a first photodiode configured to receive the returned infrared light; a second photodiode configured to receive the returned infrared light; configured to receive the returned infrared light, wherein the first photodiode is disposed between the light barrier and the second photodiode; and processing logic configured to receive light generated by the first photodiode a first signal and a second signal generated by the second photodiode, wherein the processing logic generates a centroid value based on the first signal and the second signal, wherein the first signal is assigned a first weighting factor, the The first weighting factor is smaller than the second weighting factor assigned to the second signal when generating the centroid value.

在本發明的所述態樣之眼動追蹤系統中,這些角度光感測器之角度偵測範圍之視場(FOV)相對於這些角度光感測器之光電偵測器之表面法線傾斜。In the eye-tracking system of the described aspect of the present invention, the field of view (FOV) of the angular detection range of the angular photosensors is inclined with respect to the surface normal of the photodetectors of the angular photosensors .

本發明的所述態樣之眼動追蹤系統進一步包含:傾斜機構,其配置以動態地使這些角度光感測器之角度偵測範圍之視場(FOV)傾斜。The eye tracking system of the aspect of the present invention further includes: a tilt mechanism configured to dynamically tilt the field of view (FOV) of the angle detection range of the angle photosensors.

在本發明的所述態樣之眼動追蹤系統中,該傾斜機構包括微機電系統(MEMS)裝置。In the eye-tracking system of said aspect of the invention, the tilt mechanism includes a micro-electro-mechanical system (MEMS) device.

在本發明的所述態樣之眼動追蹤系統中,各紅外光源與角度光感測器配對且間隔開小於500微米。In the eye-tracking system of said aspect of the present invention, each infrared light source is paired with an angle light sensor and spaced apart by less than 500 microns.

本發明的另一態樣為一種頭戴式裝置,其包含:框架,其用於將該頭戴式裝置固定於使用者之頭部上;及眼動追蹤系統,其包括:複數個紅外光源,其配置以將紅外照射光發射至視窗區;及複數個角度光感測器,其配置以接收返回紅外光,該返回紅外光為自該視窗區反射之該紅外照射光,其中該複數個角度光感測器配置以輸出表示該返回紅外光相對於這些角度光感測器之位置之入射角的角度信號。Another aspect of the present invention is a head-mounted device, which includes: a frame, which is used to fix the head-mounted device on the user's head; and an eye-tracking system, which includes: a plurality of infrared light sources , which is configured to emit infrared irradiating light to the window area; and a plurality of angle photosensors, which are configured to receive return infrared light, which is the infrared irradiating light reflected from the window area, wherein the plurality of The angle light sensors are configured to output angle signals representing the angle of incidence of the returning infrared light relative to the positions of the angle light sensors.

在本發明的所述另一態樣之頭戴式裝置中,該複數個紅外光源及該複數個角度光感測器安裝至該頭戴式裝置之該框架。In the head-mounted device according to another aspect of the present invention, the plurality of infrared light sources and the plurality of angle light sensors are installed on the frame of the head-mounted device.

本發明的所述另一態樣之頭戴式裝置進一步包含:透鏡,其由該框架固持,其中該透鏡將來自外部環境之可見場景光傳遞至該視窗區,且其中該複數個紅外光源及該複數個角度光感測器安置於該透鏡上。The head-mounted device according to another aspect of the present invention further includes: a lens held by the frame, wherein the lens transmits visible scene light from the external environment to the window area, and wherein the plurality of infrared light sources and The plurality of angle light sensors are arranged on the lens.

本發明的又一態樣為角度光感測器,其包含:第一光偵測器,其包括第一光電二極體、第一高光柵及第一低光柵,其中該第一低光柵安置於該第一高光柵與該第一光電二極體之間;及第二光偵測器,其包括第二光電二極體、第二高光柵及第二低光柵,其中該第二低光柵安置於該第二高光柵與該第二光電二極體之間,其中該第二低光柵相對於該第二高光柵離心,且其中該第一低光柵相對於該第一高光柵定心。Another aspect of the present invention is an angle light sensor, which includes: a first light detector, which includes a first photodiode, a first high grating and a first low grating, wherein the first low grating is arranged between the first high grating and the first photodiode; and a second photodetector comprising a second photodiode, a second high grating, and a second low grating, wherein the second low grating Disposed between the second high grating and the second photodiode, wherein the second low grating is centrifugal relative to the second high grating, and wherein the first low grating is centered relative to the first high grating.

在本發明的所述又一態樣之角度光感測器中,該第二低光柵相對於該第二高光柵以 d/4之移位因數離心,其中 d係該第二高光柵、該第二低光柵、該第一低光柵及該第一高光柵之間距。 In the angular light sensor according to another aspect of the present invention, the second low grating is centrifugal with a shift factor of d /4 relative to the second high grating, where d is the second high grating, the The distance between the second low grating, the first low grating and the first high grating.

本發明的所述又一態樣之角度光感測器進一步包含:第三光偵測器,其包括第三光電二極體、第三高光柵及第三低光柵,其中該第三低光柵安置於該第三高光柵與該第三光電二極體之間,其中該第三低光柵相對於該第三高光柵以3 d/8之移位因數離心,其中 d係該第三高光柵與該第三低光柵之間距。 The angle light sensor of another aspect of the present invention further includes: a third light detector, which includes a third photodiode, a third high grating and a third low grating, wherein the third low grating disposed between the third high grating and the third photodiode, wherein the third low grating is centrifugal with respect to the third high grating by a shift factor of 3 d /8, where d is the third high grating Distance from the third low raster.

在本發明的所述又一態樣之角度光感測器中,該間距具有50%工作週期。In the still further aspect of the angle photosensor of the present invention, the spacing has a 50% duty cycle.

本發明的所述又一態樣之角度光感測器進一步包含:第四光偵測器,其配置為該第一光偵測器;第五光偵測器,其配置為該第二光偵測器;及第六光偵測器,其配置為該第三光偵測器,其中該第四光偵測器、該第五光偵測器及該第六光偵測器相對於該第一光偵測器、該第二光偵測器及該第三光偵測器旋轉90度。The angle photodetector according to another aspect of the present invention further includes: a fourth photodetector configured as the first photodetector; a fifth photodetector configured as the second photodetector detector; and a sixth photodetector configured as the third photodetector, wherein the fourth photodetector, the fifth photodetector and the sixth photodetector are relative to the The first light detector, the second light detector and the third light detector are rotated 90 degrees.

在本發明的所述又一態樣之角度光感測器中,光柵材料係用於該第二高光柵、該第二低光柵、該第一低光柵及該第一高光柵之鉻或銅。In the angular light sensor of said still another aspect of the present invention, the grating material is chrome or copper for the second high grating, the second low grating, the first low grating, and the first high grating .

在本發明的所述又一態樣之角度光感測器中,所述角度光感測器配置以量測具有波長λ之光的入射角,且其中該第一低光柵與第一高光柵間隔開距離 z,其中 z係2 d 2/λ,且此外其中該第二低光柵亦與第二高光柵間隔開該距離 zIn the angle light sensor according to another aspect of the present invention, the angle light sensor is configured to measure an incident angle of light having a wavelength λ, and wherein the first low grating and the first high grating separated by a distance z , where z is 2 d 2 /λ, and further wherein the second lower grating is also spaced apart from the second upper grating by the distance z .

在本發明的所述又一態樣之角度光感測器中,光學透明基板安置於該第一高光柵與該第一低光柵之間,且其中該光學透明基板亦安置於該第二高光柵與該第二低光柵之間。In the angular light sensor according to another aspect of the present invention, an optically transparent substrate is disposed between the first high grating and the first low grating, and wherein the optically transparent substrate is also disposed between the second high grating between the raster and the second low raster.

本文中描述角度光感測器及眼動追蹤之具體實例。在以下描述中,闡述了許多特定細節,以提供對具體實例之透徹理解。然而,相關技術領域中具有通常知識者將認識到,可在無特定細節中之一或多者的情況下或藉由其他方法、組件、材料等實踐本文中所描述之技術。在其他情況下,未詳細展示或描述熟知結構、材料或操作以避免混淆某些態樣。Specific examples of angle light sensors and eye tracking are described herein. In the following description, numerous specific details are set forth in order to provide a thorough understanding of specific examples. One having ordinary skill in the relevant art will recognize, however, that the techniques described herein may be practiced without one or more of the specific details, or with other methods, components, materials, and the like. In other instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring certain aspects.

貫穿於本說明書中的對「一個具體實例」或「一具體實例」的參考意謂結合具體實例所描述的特定特徵、結構或特性包括於本發明的至少一個具體實例中。因此,貫穿本說明書在各處出現之片語「在一個具體實例中」或「在一具體實例中」未必皆指代同一具體實例。此外,可在一或多個具體實例中以任何適合之方式組合特定特徵、結構或特性。Reference throughout this specification to "one embodiment" or "an embodiment" means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, appearances of the phrases "in one embodiment" or "in an embodiment" in various places throughout this specification do not necessarily all refer to the same embodiment. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments.

在本發明之一些實施中,術語「近眼」可界定為包括配置以在利用近眼裝置時置放於距離使用者之眼睛50 mm內的元件。因此,「近眼光學元件」或「近眼系統」將包括配置以置放於距離使用者之眼睛50 mm內的一或多個元件。In some implementations of the invention, the term "near-to-eye" may be defined to include elements configured to be placed within 50 mm of a user's eye when utilizing a near-to-eye device. Thus, a "near-eye optic" or "near-eye system" would include one or more elements configured to be placed within 50 mm of a user's eye.

在本發明之態樣中,可見光可界定為具有大約380 nm至700 nm之波長範圍。非可見光可界定為具有在可見光範圍外的波長之光,諸如紫外光及紅外光。具有大約700 nm至1 mm之波長範圍的紅外光包括近紅外光。在本發明之態樣中,近紅外光可界定為具有大約700 nm至1.6 µm之波長範圍。In aspects of the invention, visible light can be defined as having a wavelength range of approximately 380 nm to 700 nm. Invisible light can be defined as light having wavelengths outside the visible range, such as ultraviolet light and infrared light. Infrared light having a wavelength range of about 700 nm to 1 mm includes near-infrared light. In aspects of the invention, near-infrared light can be defined as having a wavelength range of approximately 700 nm to 1.6 μm.

在本發明之態樣中,術語「透明的」可界定為具有大於90%的光透射率。在一些態樣中,術語「透明的」可界定為材料具有大於90%之可見光透射率。In aspects of the invention, the term "transparent" may be defined as having a light transmittance greater than 90%. In some aspects, the term "transparent" may be defined as a material having a visible light transmission of greater than 90%.

在包括擴增實境(augmented reality;AR)及虛擬實境(virtual reality;VR)之某些領域中,開發比目前可商購的光感測器具有更低功耗、更小外觀尺寸及/或更短處理時間的光感測器合乎需要。不需要諸如光感測器眼動描記(photosensor oculography;PSOG)或位置敏感偵測器之相機的解決方案尤具吸引力,此係因為其需要較短處理時間且能夠比基於相機之眼動追蹤系統更快地偵測眼睛移動。另外,能夠偵測固定眼睛移動(最細微的眼睛移動類型)更受關注,因為其承載了可用於AR/VR系統的有意義的認知及注意資訊。In certain fields, including augmented reality (AR) and virtual reality (VR), the development of light sensors with lower power consumption, smaller form factor and Light sensors with/or shorter processing times are desirable. Solutions that do not require cameras such as photosensor oculography (PSOG) or position-sensitive detectors are particularly attractive because they require less processing time and can be compared to camera-based eye-tracking. The system detects eye movement faster. Additionally, being able to detect fixed eye movement (the most subtle type of eye movement) is of further interest as it carries meaningful cognitive and attentional information that can be used in AR/VR systems.

用於小外觀尺寸、低功率、低計算、快速眼動追蹤之潛在無創解決方案係使用微型大小之角度感測器來自近眼光源偵測已反射至眼角膜表面上之光。光源及感測器兩者可置放於諸如智慧型眼鏡或AR眼鏡之頭戴式裝置之近眼光學元件上(例如透鏡中)的場內。「場內」意味著可將光源及感測器置放於頭戴式裝置(諸如由頭戴式裝置之框架固持的近眼光學元件之透鏡)之使用者的視場中,其中使用者將透過透鏡以查看其外部環境。A potential non-invasive solution for small form factor, low power, low computation, fast eye tracking is to use a miniature sized angle sensor to detect light from a near-eye light source that has been reflected onto the surface of the cornea. Both the light source and the sensor may be placed in-field on (eg, in the lens of) the near-eye optics of a head-mounted device such as smart glasses or AR glasses. "In-field" means that light sources and sensors can be placed in the field of view of the user of the headset, such as the lens of near-eye optics held by the frame of the headset, where the user will see through the lens to view its external environment.

圖1示出根據本發明之實施的用於判定眼凝視角之光源感測器對。圖1包括光源110及感測器120。光源110可為LED、垂直共振腔面射型雷射(vertical-cavity surface-emitting laser;VCSEL)、具有發光之發射孔隙之光子積體電路(photonic integrated circuit;PIC)或其他。光源110可為紅外光源。光源110可為近紅外光源。根據本發明之實施,感測器120可為角度光感測器。感測器120及光源110充當感測器光源對以藉由量測感測器120上之入射角而獲取y方向上之眼凝視角。若干感測器及光源可同時使用或藉由暫時控制發光來使用。在一些實施中,光源及感測器不在「場內」,而是置放於智慧型眼鏡、AR眼鏡或VR頭戴式裝置之框架上。FIG. 1 shows a light source sensor pair for determining eye gaze angle according to an implementation of the present invention. FIG. 1 includes a light source 110 and a sensor 120 . The light source 110 can be an LED, a vertical-cavity surface-emitting laser (VCSEL), a photonic integrated circuit (PIC) with a luminous emission aperture, or others. The light source 110 may be an infrared light source. The light source 110 may be a near-infrared light source. According to the implementation of the present invention, the sensor 120 can be an angle light sensor. The sensor 120 and the light source 110 act as a sensor light source pair to obtain the eye gaze angle in the y direction by measuring the incident angle on the sensor 120 . Several sensors and light sources can be used simultaneously or by temporarily controlling the light emission. In some implementations, the light sources and sensors are not "in-field," but placed on the frame of smart glasses, AR glasses, or VR headsets.

供AR/VR應用使用的角度光感測器之合乎需要的屬性可包括微型感測器(若其置放於場內)、高角解析度、相對較大角度範圍、軸外靈敏度峰值及/或增加的計算速度。此等屬性對於在眼動追蹤情境中之角度光感測器將尤其合乎需要。Desirable attributes of an angular light sensor for use in AR/VR applications may include a miniature sensor (if it is placed in-field), high angular resolution, relatively large angular range, peak off-axis sensitivity, and/or Increased calculation speed. These properties would be especially desirable for angular light sensors in eye-tracking contexts.

圖1展示運用照射光113照射視窗區195的光源110。照射光113可作為返回光117自佔據視窗區195之眼睛190之角膜194反射/散射。點192表示眼睛190之旋轉中心且可用作量測眼凝視角θ gy之參考。光源110可選擇性地經啟動以發射照射光113,使得光源110可接通及斷開。使用光源110及角度光感測器120來量測直視時之眼凝視角θ gy,其中光源110及角度光感測器安置於具有適眼(eye-relief)距離181之適眼平面處。在一些實例中,適眼距離181可為大約16 mm或20 mm。在圖1所示出之實例中,角度光感測器120安置於距表示眼睛190直視之向量173的距離182處,且光源110安置於距向量173之距離183處。角度光感測器120量測返回光117之入射角θ yFIG. 1 shows a light source 110 that illuminates a window region 195 with illuminating light 113 . The illuminating light 113 may be reflected/scattered as return light 117 from the cornea 194 of the eye 190 occupying the window region 195 . Point 192 represents the center of rotation of eye 190 and can be used as a reference for measuring eye gaze angle θ gy . The light source 110 is selectively actuatable to emit illumination light 113 such that the light source 110 can be switched on and off. The gaze angle θ gy of direct viewing is measured by using the light source 110 and the angle light sensor 120 , wherein the light source 110 and the angle light sensor are arranged at an eye-relief plane with an eye-relief distance 181 . In some examples, eye distance 181 may be approximately 16 mm or 20 mm. In the example shown in FIG. 1 , angle light sensor 120 is positioned at distance 182 from vector 173 representing eye 190 looking directly at, and light source 110 is positioned at distance 183 from vector 173 . The angle light sensor 120 measures the incident angle θ y of the returning light 117 .

在本發明之實施中,複數個光源及複數個角度光感測器可用於眼動追蹤系統中以判定頭戴式裝置之配戴者之眼睛的眼凝視角。角度光感測器可置放於頭戴式裝置之透明或半透明近眼光學元件上的框架上或「場內」。對於「場內」置放,角度光感測器及光源可能需要對於使用者而言為不顯眼的。此意謂在一些實施中,感測器區域可小於150×150微米。In the implementation of the present invention, a plurality of light sources and a plurality of angle light sensors can be used in an eye-tracking system to determine the gaze angle of the eyes of the wearer of the head-mounted device. Angular light sensors may be placed on the frame or "in-field" on the transparent or translucent near-eye optics of the headset. For "in-field" placement, the angle light sensor and light source may need to be unobtrusive to the user. This means that in some implementations, the sensor area can be smaller than 150x150 microns.

用於AR/VR的基於角度光感測器之眼動追蹤之其他合乎需要的屬性係具有高角解析度(在1弧分至60弧分之間)及/或相對較大角度偵測範圍(例如1度至90度)。角度光感測器之角度偵測範圍亦可稱為本發明中之角度光感測器之視場(FOV)。角度光感測器之另一合乎需要的屬性可包括軸外角峰值靈敏度,同時阻擋不合乎需要的信號及雜散光。Other desirable attributes of angular light sensor based eye tracking for AR/VR are high angular resolution (between 1 arcmin to 60 arcmin) and/or relatively large angular detection range ( eg 1 degree to 90 degrees). The angle detection range of the angle light sensor can also be referred to as the field of view (FOV) of the angle light sensor in the present invention. Another desirable attribute of an angular light sensor may include off-axis angular peak sensitivity while blocking undesirable signal and stray light.

圖2A示出具有感測平面(y)及垂直於光感測器250之感測平面的表面法向量251之光感測器250。光感測器250具有大約160度且圍繞表面法向量251定心的較大FOV 253。感測器250具有低角解析度。大多數當前可商購之太陽追蹤感測器類似於感測器250。FIG. 2A shows a light sensor 250 with a sensing plane (y) and a surface normal vector 251 perpendicular to the sensing plane of the light sensor 250 . The light sensor 250 has a larger FOV 253 of approximately 160 degrees and is centered around the surface normal vector 251 . Sensor 250 has low angular resolution. Most currently commercially available sun tracking sensors are similar to sensor 250 .

圖2B示出相比於感測器250具有較小FOV及較高角解析度的光感測器260。光感測器260具有感測平面(y)及垂直於光感測器260之感測平面的表面法向量261。光感測器260具有大約10度且圍繞表面法向量261定心的FOV 263。此等類型之光感測器架構通常用於雷射校準或微機電系統(micro-electro-mechanical system;MEMS)鏡像回饋,且通常需要使用稜鏡或光柵之多次反射以達成高度角度精度。FIG. 2B shows light sensor 260 having a smaller FOV and higher angular resolution than sensor 250 . The light sensor 260 has a sensing plane (y) and a surface normal vector 261 perpendicular to the sensing plane of the light sensor 260 . Light sensor 260 has a FOV 263 of approximately 10 degrees and is centered about surface normal vector 261 . These types of photosensor architectures are typically used for laser calibration or micro-electro-mechanical system (MEMS) mirror feedback, and often require multiple reflections using a grating or grating to achieve high angular accuracy.

圖2C示出根據本發明之實施的具有較高解析度且相對較大的FOV 273之角度光感測器270。角度光感測器270具有感測平面(y)及垂直於角度光感測器270之感測平面的表面法向量271。角度光感測器270具有大約30度且相對於表面法向量271傾斜之FOV 273。詳言之,在圖2C中,FOV 273圍繞中心向量272定心(centered),且中心向量272相對於表面法向量271傾斜。在一些實施中,角度光感測器270具有相對於感測器270之光電偵測器表面在1度與85度之間的角度偵測範圍。FIG. 2C illustrates an angular light sensor 270 with a higher resolution and relatively larger FOV 273 in accordance with an implementation of the present invention. The angle light sensor 270 has a sensing plane (y) and a surface normal vector 271 perpendicular to the sensing plane of the angle light sensor 270 . The angle light sensor 270 has a FOV 273 of about 30 degrees and is inclined relative to the surface normal vector 271 . In detail, in FIG. 2C , the FOV 273 is centered around the center vector 272 , and the center vector 272 is inclined relative to the surface normal vector 271 . In some implementations, the angular light sensor 270 has an angular detection range of between 1 degree and 85 degrees relative to the photodetector surface of the sensor 270 .

圖3A及圖3B示出根據本發明之實施的具有第一光電二極體311、第二光電二極體312及傾斜光障壁333之角度光感測器300。傾斜光障壁333安置於第一光電二極體311與第二光電二極體312之間。由第一光電二極體311產生之第一信號316與由第二光電二極體312產生之第二信號317的比率指示返回光(例如返回光117)之入射角。3A and 3B illustrate an angle photosensor 300 having a first photodiode 311 , a second photodiode 312 and an inclined light barrier 333 according to an implementation of the present invention. The inclined light barrier 333 is disposed between the first photodiode 311 and the second photodiode 312 . The ratio of the first signal 316 generated by the first photodiode 311 to the second signal 317 generated by the second photodiode 312 indicates the incident angle of the returned light (eg, the returned light 117 ).

圖3B示出傾斜光障壁333相對於第一光電二極體311及第二光電二極體312兩者共同之感測平面373之表面法向量371傾斜。在一些實例中,傾斜光障壁相對於向量371偏移之角度α係大約15度。可使用其他角度。在一實施中,傾斜光障壁之長度L係3 mm。FIG. 3B shows that the inclined light barrier 333 is inclined relative to the surface normal vector 371 of the common sensing plane 373 of both the first photodiode 311 and the second photodiode 312 . In some examples, the angle a by which the slanted light barriers are offset relative to vector 371 is about 15 degrees. Other angles may be used. In one implementation, the length L of the inclined light barrier is 3 mm.

圖3C示出根據本發明之實施的說明由傾斜光障壁間隔開之光電二極體之預期功率的實例圖表380。線381示出左側光電二極體(例如光電二極體311)在不同入射角θ內之實例功率輸出,且線382示出右側光電二極體(例如光電二極體312)在不同入射角θ內之實例功率輸出。 3C shows an example graph 380 illustrating the expected power of photodiodes separated by sloped light barriers, according to an implementation of the invention. Line 381 shows an example power output of a left photodiode (such as photodiode 311 ) at different angles of incidence θ, and line 382 shows a right photodiode (such as photodiode 312 ) at different angles of incidence Example power output within θ.

圖4A示出根據本發明之實施的頭戴式裝置400之一部分,其包括框架414及由框架414固定之近眼光學元件421A及421B。儘管未特定說明,但頭戴式裝置400可包括耦接至框架414之臂,這些臂將頭戴式裝置固定至使用者頭部。圖4A示出眼睛490可藉由透明或半透明的近眼光學元件421A或421B檢視頭戴式裝置400之外部環境。換言之,來自外部環境之場景光可傳播通過近眼光學元件421A及/或近眼光學元件421B。在一些實施中,近眼光學元件421A及/或421B可包括近眼顯示器系統之全部或一部分,以向眼睛490提供擴增實境影像。近眼光學元件421A及421B可稱為頭戴式裝置400之「透鏡」。 4A shows a portion of a head mounted device 400 including a frame 414 and near-eye optics 421A and 421B secured by the frame 414, in accordance with an implementation of the present invention. Although not specifically illustrated, the headset 400 may include arms coupled to the frame 414 that secure the headset to the user's head. FIG. 4A shows that the eyes 490 can view the external environment of the head-mounted device 400 through the transparent or translucent near-eye optical element 421A or 421B. In other words, scene light from the external environment can propagate through the near-eye optical element 421A and/or the near-eye optical element 421B. In some implementations, near-eye optical elements 421A and/or 421B may include all or a portion of a near-eye display system to provide augmented reality images to eye 490 . Near-eye optical elements 421A and 421B may be referred to as “lenses” of head mounted device 400 .

圖4A示出近眼光學元件421B包括安置於「場內」之三個感測器光源對430A、430B及430C。然而,感測器光源對可足夠小以對於頭戴式裝置400之配戴者而言不顯眼且不明顯。感測器光源對430A包括光源433A及角度光感測器431A。感測器光源對430B包括光源433B及角度光感測器431B,且感測器光源對430C包括光源433C及角度光感測器431C。另外,圖4A示出安裝至頭戴式裝置400之框架414的感測器光源對430D。感測器光源對430D包括光源433D及角度光感測器431D。雖然僅一個感測器光源對示出為安裝至框架414,但在一些實施中,複數個感測器光源對可安裝至框架414(例如圍繞框架)。光源433A、433B、433C及433D(統稱為光源433)及角度光感測器431A、431B、431C及431D(統稱為角度光感測器431)可具有關於圖1至圖3B描述之角度光感測器及光源之特徵。在給定感測器光源對中,光源可與角度光感測器間隔開小於500微米。在一實施中,光源及角度光感測器間隔開大約200微米。 FIG. 4A shows near-eye optics 421B including three sensor light source pairs 430A, 430B, and 430C disposed "in-field." However, the pair of sensor light sources may be small enough to be unobtrusive and unobtrusive to the wearer of the head mounted device 400 . The sensor light source pair 430A includes a light source 433A and an angle light sensor 431A. The sensor light source pair 430B includes a light source 433B and an angle light sensor 431B, and the sensor light source pair 430C includes a light source 433C and an angle light sensor 431C. In addition, FIG. 4A shows a sensor light source pair 430D mounted to the frame 414 of the head mounted device 400 . The sensor light source pair 430D includes a light source 433D and an angle light sensor 431D. Although only one sensor light source pair is shown mounted to the frame 414, in some implementations, a plurality of sensor light source pairs may be mounted to the frame 414 (eg, around the frame). Light sources 433A, 433B, 433C, and 433D (collectively referred to as light sources 433 ) and angular light sensors 431A, 431B, 431C, and 431D (collectively referred to as angular light sensors 431 ) may have angular light sensing as described with respect to FIGS. 1-3B . The characteristics of the detector and light source. In a given sensor light source pair, the light source may be spaced less than 500 microns from the angular light sensor. In one implementation, the light source and angle light sensor are spaced about 200 microns apart.

圖4B示出根據本發明之實施的包括感測器光源對430B之近眼光學元件421B的截塊。圖4B展示來自外部環境之可見場景光497可傳播通過近眼光學元件421B至眼睛490。因此,近眼光學元件421B可用於AR情境中。 FIG. 4B shows a section of near-eye optics 421B including sensor light source pair 430B, in accordance with an implementation of the invention. FIG. 4B shows that visible scene light 497 from the external environment can propagate through near-eye optics 421B to eye 490 . Thus, near-eye optics 421B may be used in an AR context.

光源433B可將照射光413發射至眼睛490佔據的視窗區。照射光413作為返回光417由眼睛490反射或散射且由角度光感測器431B量測/偵測。處理邏輯499可自角度光感測器431B接收一或多個角度信號419B。角度信號可表示返回光相對於角度光感測器之位置的入射角。角度信號可自角度光感測器之光電偵測器(例如光電二極體)產生。處理邏輯499亦可自額外角度光感測器接收一或多個角度信號(例如來自感測器431A之角度信號419A及來自感測器431C之角度信號419C)。處理邏輯499亦可驅動光源433以選擇性地發射照射光413。處理邏輯499可安置於框架414或頭戴式裝置400之臂(未特定示出)中。The light source 433B can emit the illumination light 413 to the window area occupied by the eye 490 . The illuminating light 413 is reflected or scattered by the eye 490 as return light 417 and is measured/detected by the angle light sensor 431B. Processing logic 499 may receive one or more angle signals 419B from angle light sensor 431B. The angle signal can represent the incident angle of the returning light relative to the position of the angle light sensor. The angle signal can be generated from a photodetector (such as a photodiode) of the angle light sensor. Processing logic 499 may also receive one or more angle signals from additional angle light sensors (eg, angle signal 419A from sensor 431A and angle signal 419C from sensor 431C). Processing logic 499 may also drive light source 433 to selectively emit illumination light 413 . Processing logic 499 may reside in frame 414 or in an arm of headset 400 (not specifically shown).

圖5示出根據本發明之實施的具有用於二維眼凝視偵測之感測器光源對的3×3陣列的頭戴式裝置500之一部分。頭戴式裝置500包括框架414及藉由框架414固定的近眼光學元件521A及521B。儘管未特定示出,但頭戴式裝置500可包括耦接至框架414之臂,這些臂將頭戴式裝置500固定至使用者頭部。圖5示出眼睛490可藉由透明或半透明的近眼光學元件521A或521B檢視頭戴式裝置500之外部環境。換言之,來自外部環境之場景光可傳播通過近眼光學元件521A及/或近眼光學元件521B。在一些實施中,近眼光學元件521A及/或521B可包括近眼顯示器系統之全部或部分,以向眼睛490提供擴增實境影像。近眼光學元件521A及521B可稱為頭戴式裝置500之「透鏡」。 5 shows a portion of a head mounted device 500 with a 3x3 array of sensor light source pairs for two-dimensional eye gaze detection, according to an implementation of the present invention. The head mounted device 500 includes a frame 414 and near-eye optical elements 521A and 521B fixed by the frame 414 . Although not specifically shown, the headset 500 may include arms coupled to the frame 414 that secure the headset 500 to the user's head. FIG. 5 shows that the eyes 490 can view the external environment of the head-mounted device 500 through the transparent or translucent near-eye optical element 521A or 521B. In other words, scene light from the external environment can propagate through the near-eye optical element 521A and/or the near-eye optical element 521B. In some implementations, near-eye optical elements 521A and/or 521B may include all or part of a near-eye display system to provide augmented reality images to eye 490 . Near-eye optical elements 521A and 521B may be referred to as “lenses” of head mounted device 500 .

圖5示出近眼光學元件521B包括安置於「場內」之九個感測器光源對530A、530B、530C、530D、530E、530F、530G、530H及530I(統稱為感測器光源對530)。然而,感測器光源對530可足夠小以對於頭戴式裝置500之配戴者而言不顯眼且不明顯。 5 shows near-eye optics 521B comprising nine sensor light source pairs 530A, 530B, 530C, 530D, 530E, 530F, 530G, 530H, and 530I (collectively referred to as sensor light source pairs 530) disposed "in-field." . However, sensor light source pair 530 may be small enough to be unobtrusive and unnoticeable to a wearer of head mounted device 500 .

感測器光源對530A包括光源533A及角度光感測器531A。感測器光源對530B包括光源533B及角度光感測器531B;感測器光源對530C包括光源533C及角度光感測器531C;感測器光源對530D包括光源533D及角度光感測器531D;感測器光源對530E包括光源533E及角度光感測器531E;感測器光源對530F包括光源533F及角度光感測器531F;感測器光源對530G包括光源533G及角度光感測器531G;感測器光源對530H包括光源533H及角度光感測器531H;且感測器光源對530I包括光源533I及角度光感測器531I。光源533A、533B、533C、533D、533E、533F、533G、533H及533I(統稱為光源533)及角度光感測器531A、531B、531C、531D、531E、531F、531G、531H及531I(統稱為角度光感測器531)可具有關於圖1至圖3B所描述之角度光感測器及光源之特徵。 The sensor light source pair 530A includes a light source 533A and an angle light sensor 531A. The sensor light source pair 530B includes a light source 533B and an angle light sensor 531B; the sensor light source pair 530C includes a light source 533C and an angle light sensor 531C; the sensor light source pair 530D includes a light source 533D and an angle light sensor 531D The sensor light source pair 530E includes a light source 533E and an angle light sensor 531E; the sensor light source pair 530F includes a light source 533F and an angle light sensor 531F; the sensor light source pair 530G includes a light source 533G and an angle light sensor 531G; the sensor light source pair 530H includes a light source 533H and an angle light sensor 531H; and the sensor light source pair 530I includes a light source 533I and an angle light sensor 531I. Light sources 533A, 533B, 533C, 533D, 533E, 533F, 533G, 533H and 533I (collectively referred to as light sources 533) and angle light sensors 531A, 531B, 531C, 531D, 531E, 531F, 531G, 531H and 531I (collectively referred to as The angle light sensor 531) may have the features of the angle light sensor and light source described with respect to FIGS. 1-3B.

光源533可將照射光發射至由頭戴式裝置500之配戴者的眼睛佔用的視窗區,且角度光感測器531可偵測/量測由眼睛之角膜反射的返回光。類似於處理邏輯499之處理邏輯可接收由複數個角度光感測器531輸出之角度信號。角度信號可自角度光感測器之光電偵測器(例如光電二極體)產生。處理邏輯亦可驅動光源533以選擇性地發射照射光。 The light source 533 can emit illuminating light to the window area occupied by the eyes of the wearer of the head mounted device 500, and the angle light sensor 531 can detect/measure the return light reflected by the cornea of the eye. Processing logic similar to processing logic 499 may receive angle signals output by a plurality of angle light sensors 531 . The angle signal can be generated from a photodetector (such as a photodiode) of the angle light sensor. The processing logic can also drive the light source 533 to selectively emit illumination light.

角度光感測器上之信號視光源感測器置放及使用者之生物測定特性(例如適眼或角膜曲率)而定。 The signal on the angle light sensor depends on the light sensor placement and the user's biometric characteristics (such as eye fit or corneal curvature).

圖6示出根據本發明之實施的具有多於兩個光電偵測器及光障壁630之實例角度光感測器600。角度光感測器600包括光障壁630及光電偵測器(例如光電二極體)641、642、643、644及645。光源601藉由光603照射感測器600,且光電偵測器641、642、643、644及645分別產生信號651、652、653、654及655。在一實施中,質心計算可用於基於在離散步驟處獲得之資料來計算內插位置。出於感光性陣列或一列中之光電偵測器條帶之目的,質心計算可用於判定光在何處最大程度地集中於表面上。在此系統中,因為光障壁630在光電偵測器中之至少一些上投下陰影,所以由一些光電偵測器觀測到的信號強於由其他光電偵測器觀測到的信號。作為實例,假定信號651及652係10,信號653係50,且信號654及信號655係100。基於光電二極體與光障壁630之距離將加權因數指派給光電二極體中之各者。指派至第一信號651之第一加權因數係0,指派至第二信號652之第二加權因數係1,指派至第三信號653之第三加權因數係2,指派至第四信號654之第四加權因數係4,且指派至第五信號655之第五加權因數係4。因此,可形成以下等式: 總信號 = 10 + 10 + 50 + 100 + 100 加權信號 = 0*10 + 1*10 + 2*50 + 3*100 + 4*100 質心 = 加權信號/總信號 FIG. 6 shows an example angle photosensor 600 with more than two photodetectors and a photobarrier 630 according to an implementation of the invention. The angle light sensor 600 includes a light barrier 630 and photodetectors (such as photodiodes) 641 , 642 , 643 , 644 and 645 . The light source 601 illuminates the sensor 600 with light 603, and the photodetectors 641, 642, 643, 644, and 645 generate signals 651, 652, 653, 654, and 655, respectively. In one implementation, centroid calculations may be used to calculate interpolated positions based on data obtained at discrete steps. For the purposes of photosensitive arrays or strips of photodetectors in a column, centroid calculations can be used to determine where light is most concentrated on a surface. In this system, because the light barrier 630 casts a shadow on at least some of the photodetectors, the signal observed by some photodetectors is stronger than the signal observed by other photodetectors. As an example, assume that signals 651 and 652 are 10, signal 653 is 50, and signal 654 and signal 655 are 100. A weighting factor is assigned to each of the photodiodes based on their distance from the light barrier 630 . The first weighting factor assigned to the first signal 651 is 0, the second weighting factor assigned to the second signal 652 is 1, the third weighting factor assigned to the third signal 653 is 2, and the third weighting factor assigned to the fourth signal 654 is 0. The fourth weighting factor is four, and the fifth weighting factor assigned to the fifth signal 655 is four. Therefore, the following equation can be formed: Total signal = 10 + 10 + 50 + 100 + 100 Weighted signal = 0*10 + 1*10 + 2*50 + 3*100 + 4*100 Centroid = Weighted Signal/Total Signal

在本發明之實施中,眼動追蹤系統包括置放於AR或VR裝置之框架上或場內的角度光感測器及光源。各光源可具有引導至眼睛角膜的發射錐。角度光感測器可具有輸出連接件(例如電引腳)以用於計算入射光之入射角。在一些實施中,角度光感測器之FOV相對於垂直於角度光感測器之表面的向量傾斜。角度光感測器可具有大於1弧分但小於60弧分之角解析度。在一些實施中,角度光感測器可具有在5微米×5微米與1 mm×1 mm之間的面積。感測器之厚度可在5微米與500微米之間。In the implementation of the present invention, the eye-tracking system includes an angle light sensor and a light source placed on the frame or in the field of the AR or VR device. Each light source may have an emission cone directed to the cornea of the eye. The angle light sensor may have an output connection (such as an electrical pin) for calculating the angle of incidence of the incident light. In some implementations, the FOV of the angular light sensor is tilted relative to a vector normal to the surface of the angular light sensor. The angular photosensor may have an angular resolution greater than 1 arc minute but less than 60 arc minutes. In some implementations, the angle light sensor can have an area between 5 microns by 5 microns and 1 mm by 1 mm. The thickness of the sensor can be between 5 microns and 500 microns.

在一些實施中,角度光感測器、光源或兩者之FOV可動態地傾斜(例如藉由MEMS裝置)及/或增大/減小(例如在光源上添加透鏡以增大發散)以照射視窗之較大或較小區段。傾斜機構可配置以使角度光感測器之角偵測範圍的FOV動態地傾斜。在一些實施中,傾斜機構可為MEMS裝置。In some implementations, the FOV of the angular light sensor, the light source, or both can be dynamically tilted (e.g., by MEMS devices) and/or increased/decreased (e.g., by adding a lens to the light source to increase divergence) to illuminate The larger or smaller segment of the window. The tilt mechanism can be configured to dynamically tilt the FOV of the angle detection range of the angle light sensor. In some implementations, the tilt mechanism can be a MEMS device.

在本發明之一些實施中,角度光感測器包括塔耳波特(Talbot)感測器。塔耳波特感測器之潛在優點係非基於相機之眼動追蹤、微型尺寸、較大的可偵測的眼動追蹤系統、相對高的角靈敏度及較短處理時間。In some implementations of the invention, the angle light sensor includes a Talbot sensor. Potential advantages of Talbot sensors are non-camera-based eye tracking, miniature size, larger detectable eye tracking systems, relatively high angular sensitivity, and shorter processing times.

圖7A示出光柵750後方的用以使光793成像之塔耳波特影像平面的位置。圖7A展示塔耳波特影像平面、各種塔耳波特子影像位置及反相塔耳波特影像平面。FIG. 7A shows the location of the Talbot image plane behind grating 750 to image light 793 . FIG. 7A shows a Talbot image plane, various Talbot subimage positions, and an inverse Talbot image plane.

圖7B包括等式781及782,這些等式提供相對於光柵間距 d及塔耳波特感測器上之入射光之波長λ的用於塔耳波特影像之塔耳波特距離 z。圖7B的等式783提供用於離軸塔耳波特成像的相對於光柵間距 d、入射角θ及入射光之波長λ的塔耳波特距離 zFigure 7B includes equations 781 and 782 which provide the Talbot distance z for the Talbot image with respect to the grating spacing d and the wavelength λ of the incident light on the Talbot sensor. Equation 783 of FIG. 7B provides the Talbot distance z with respect to the grating spacing d , the angle of incidence Θ, and the wavelength λ of the incident light for off-axis Talbot imaging.

圖8示出根據本發明之實施的展示在0.88微米的實例週期內的在角度光感測器上之光的入射角(AOI)與塔耳波特感測器之透射比之間的關係的曲線圖800。8 shows graphs showing the relationship between the angle of incidence (AOI) of light on an angular photosensor and the transmittance of a Talbot sensor over an example period of 0.88 microns, in accordance with an implementation of the invention. Graph 800 .

圖9示出根據本發明之實施的實例眼動追蹤系統900,其包括配置以利用近紅外照射光照射角膜狀質心983的四個感測器光源對930A、930B、930C及930D(統稱為感測器光源對930)。感測器光源對930A包括近紅外光源933A(例如LED或VCSEL)及包括至少一個塔耳波特偵測器之角度光感測器931A。感測器光源對930B、930C及930D亦包括近紅外光源及包括至少一個塔耳波特偵測器之角度光感測器931。近紅外照射光照射角膜,且近紅外照射光之至少部分經反射回至感測器931。光源933之視場(FOV)可在5度與20度之間。在一些實施中,光源933之FOV可為大約10度。9 illustrates an example eye-tracking system 900 that includes four sensor light source pairs 930A, 930B, 930C, and 930D (collectively referred to as sensor light source pair 930). Sensor light source pair 930A includes a near-infrared light source 933A (eg, LED or VCSEL) and an angular light sensor 931A including at least one Talbot detector. Sensor light source pairs 930B, 930C, and 930D also include a near-infrared light source and an angular light sensor 931 that includes at least one Talbot detector. The near-infrared illuminating light illuminates the cornea, and at least a portion of the near-infrared illuminating light is reflected back to the sensor 931 . The field of view (FOV) of the light source 933 may be between 5 degrees and 20 degrees. In some implementations, the FOV of light source 933 may be approximately 10 degrees.

在圖示中,沿z軸自座標0,0(在感測器光源對930中間)至角膜頂點之距離在10與25 mm之間。此距離可稱為「適眼距」。在一些實施中,適眼距係大約16 mm。在所示出實例中,感測器光源對930A (-1,-1)與感測器光源對930C (1,1)之間的距離係2 mm,如由其座標所指示。類似地,感測器光源對930B (1,1)與感測器光源對930D (-1,1)之間的距離係2 mm。當然,其他適合之間隔尺寸係可能的。In the illustration, the distance along the z-axis from the coordinate 0,0 (in the middle of the sensor light source pair 930) to the corneal apex is between 10 and 25 mm. This distance can be called "eye distance". In some implementations, the interocular distance is about 16 mm. In the example shown, the distance between sensor light source pair 930A(-1,-1) and sensor light source pair 930C(1,1) is 2 mm, as indicated by their coordinates. Similarly, the distance between sensor light source pair 930B (1,1) and sensor light source pair 930D (−1,1) is 2 mm. Of course, other suitable spacing dimensions are possible.

圖10示出根據本發明之實施的包括第一光偵測器1011、第二光偵測器1012及第三光偵測器1013之實例感測器結構1000。感測器結構1000可視情況包括光偵測器1010,其可用於用於正規化入射功率,而無需安置於光電二極體1070上方的光柵結構。感測器結構1000可包括於圖9之感測器931中。10 shows an example sensor structure 1000 including a first photodetector 1011 , a second photodetector 1012 and a third photodetector 1013 according to an implementation of the invention. The sensor structure 1000 can optionally include a photodetector 1010 that can be used to normalize the incident power without the need for a grating structure disposed over the photodiode 1070 . The sensor structure 1000 may be included in the sensor 931 of FIG. 9 .

圖10示出定向於XY平面中之實例塔耳波特感測器,其負責量測XY平面中的入射角(AOI)。光柵之兩個層(層1050及1060)處於結構中。光柵1060之第二層具有不同離心值。此處,選擇三個離心值0、d/4、3d/8以分別針對光偵測器1011、1012及1013來經構成。在一實例實施中,間距d係2.55微米。在所示出實施中,各光柵之寬度係d/2,使得間距具有50%工作週期。換言之,在圖10之實例圖示中,光柵元件彼此間隔開與光柵元件之寬度相同的距離。在一實施中,光柵元件之長度L係10微米。在一實施中,第一光柵層1050與第二光柵層160間隔開尺寸z,其中z係大約22微米。Figure 10 shows an example Talbot sensor oriented in the XY plane responsible for measuring the angle of incidence (AOI) in the XY plane. Two layers of the grating (layers 1050 and 1060) are in the structure. The second layer of grating 1060 has a different eccentricity value. Here, three centrifugal values 0, d/4, 3d/8 are selected to be configured for photodetectors 1011, 1012, and 1013, respectively. In an example implementation, the pitch d is 2.55 microns. In the implementation shown, the width of each grating is d/2 such that the pitch has a 50% duty cycle. In other words, in the example illustration of FIG. 10, the grating elements are spaced apart from each other by the same distance as the width of the grating elements. In one implementation, the length L of the grating element is 10 microns. In one implementation, the first grating layer 1050 is spaced apart from the second grating layer 160 by a dimension z, where z is about 22 microns.

在圖10中,第一光偵測器1011包括第一高光柵1051、第一低光柵1061及第一光電二極體1071。第一光電二極體1071接收遇到第一高光柵1051且隨後遇到第一低光柵1061之入射光。第一低光柵1061相對於第一高光柵1051以0之移位因數離心(decentered)。In FIG. 10 , the first light detector 1011 includes a first high grating 1051 , a first low grating 1061 and a first photodiode 1071 . The first photodiode 1071 receives incident light that encounters the first upper grating 1051 and then the first lower grating 1061 . The first lower raster 1061 is decentered with a shift factor of 0 relative to the first upper raster 1051 .

第二光偵測器1012包括第二高光柵1052、第二低光柵1062及第二光電二極體1072。第二光電二極體1072接收遇到第二高光柵1052且隨後遇到第二低光柵1062之入射光。第二低光柵1062相對於第二高光柵1052以3d/8之移位因數離心。The second photodetector 1012 includes a second upper grating 1052 , a second lower grating 1062 and a second photodiode 1072 . The second photodiode 1072 receives incident light that encounters the second upper grating 1052 and then the second lower grating 1062 . The second lower raster 1062 is centrifugal by a shift factor of 3d/8 with respect to the second upper raster 1052 .

第三光偵測器1013包括第三高光柵1053、第三低光柵1063及第三光電二極體1073。第三光電二極體1073接收遇到第三高光柵1053且隨後遇到第三低光柵1063之入射光。第三低光柵1063相對於第三高光柵1053以3d/8之移位因數離心。The third light detector 1013 includes a third upper grating 1053 , a third lower grating 1063 and a third photodiode 1073 . The third photodiode 1073 receives incident light that encounters the third upper grating 1053 and then the third lower grating 1063 . The third lower raster 1063 is centrifugal with respect to the third upper raster 1053 by a shift factor of 3d/8.

光電二極體1071、1072及1073可回應於接收入射光而分別產生角度信號1081、1082及1083。在一些實施中,第四光偵測器、第五光偵測器及第六光偵測器相對於第一光偵測器、第二光偵測器及第三光偵測器旋轉90度以形成具有六個光偵測器之感測器。Photodiodes 1071, 1072, and 1073 can generate angle signals 1081, 1082, and 1083, respectively, in response to receiving incident light. In some implementations, the fourth, fifth, and sixth photodetectors are rotated 90 degrees relative to the first, second, and third photodetectors to form a sensor with six photodetectors.

圖11示出根據本發明之實施的感測器結構1100。根據本發明之實施,感測器結構1100與感測器結構1000相同或類似,惟三個感測器定向於YZ平面中且負責量測YZ平面中之AOI除外。感測器結構1100亦可視情況包括光偵測器1110(未示出),該光偵測器可用於正規化入射功率,而無需安置於其光電二極體上方的光柵結構(類似於光偵測器1010)。光電二極體1174、1175及1176可回應於接收入射光而分別產生角度信號1184、1185及1186。Figure 11 shows a sensor structure 1100 according to an implementation of the invention. According to an implementation of the present invention, sensor structure 1100 is the same as or similar to sensor structure 1000 except that three sensors are oriented in the YZ plane and are responsible for measuring the AOI in the YZ plane. The sensor structure 1100 also optionally includes a photodetector 1110 (not shown), which can be used to normalize the incident power without requiring a grating structure (similar to a photodetector) placed over its photodiode. detector 1010). Photodiodes 1174, 1175, and 1176 may generate angle signals 1184, 1185, and 1186, respectively, in response to receiving incident light.

圖11示出安置於第四高光柵1154與第四光電二極體1174之間的第四低光柵1164、安置於第五高光柵1155與第五光電二極體1175之間的第五低光柵1165及安置於第六高光柵1156與第六光電二極體1176之間的第六低光柵1166。Figure 11 shows the fourth lower grating 1164 disposed between the fourth high grating 1154 and the fourth photodiode 1174, the fifth lower grating disposed between the fifth high grating 1155 and the fifth photodiode 1175 1165 and the sixth low grating 1166 disposed between the sixth high grating 1156 and the sixth photodiode 1176 .

圖12示出根據實施之組合感測器結構1200,其將感測器結構1000(XY平面中之感測器)與感測器結構1100(YZ平面中之感測器)組合。左欄中之感測器定向於XY平面中以量測XY平面中之AOI,且右欄中之感測器定向於YZ平面中以量測YZ平面中之AOI。第一列中的感測器具有0個離心值,第二列具有d/4個離心值且最末列具有3d/8個離心值。在所示出實施中,第一光柵層1250可包括光柵1051、1052、1053、1154、1155及1156,而第二光柵層1260可包括光柵1061、1062、1063、1164、1165及1166。FIG. 12 shows a combined sensor structure 1200 that combines sensor structure 1000 (sensors in the XY plane) with sensor structure 1100 (sensors in the YZ plane), according to an implementation. The sensors in the left column are oriented in the XY plane to measure AOI in the XY plane, and the sensors in the right column are oriented in the YZ plane to measure AOI in the YZ plane. The sensors in the first column have 0 eccentric values, the second column has d/4 eccentric values and the last column has 3d/8 eccentric values. In the illustrated implementation, the first grating layer 1250 may include gratings 1051 , 1052 , 1053 , 1154 , 1155 , and 1156 , while the second grating layer 1260 may include gratings 1061 , 1062 , 1063 , 1164 , 1165 , and 1166 .

用於光柵基板中之材料可為銅、鉻或其他適合的材料。兩個光柵層之間的空間可填充有SiO 2或其他適合的光學透明基板。 The material used in the grating substrate can be copper, chrome or other suitable materials. The space between the two grating layers can be filled with SiO2 or other suitable optically transparent substrates.

本發明之具體實例可包括人工實境系統或結合該人工實境系統實施。人工實境係在呈現給使用者之前已以某方式調整之實境形式,其可包括例如虛擬實境(VR)、擴增實境(AR)、混合實境(mixed reality;MR)、混雜實境或其某組合及/或衍生物。人工實境內容可包括所產生之全部內容或與所擷取之(例如現實世界)內容組合之所產生內容。人工實境內容可包括視訊、音訊、觸覺回饋或其某組合,且其中之任一者可在單個通道中或在多個通道中呈現(諸如對檢視者產生三維效應之立體視訊)。另外,在一些具體實例中,人工實境亦可與用以例如在人工實境中創建內容及/或以其他方式用於人工實境中(例如在人工實境中執行活動)之應用程式、產品、配件、服務或其某組合相關聯。提供人工實境內容之人工實境系統可實施於各種平台上,包括連接至主機電腦系統之頭戴式顯示器(HMD)、獨立式HMD、行動裝置或計算系統或能夠將人工實境內容提供至一或多個檢視者之任何其他硬體平台。Embodiments of the invention may include or be implemented in conjunction with an artificial reality system. Artificial reality is a form of reality that has been modified in some way before being presented to the user, which may include, for example, virtual reality (VR), augmented reality (AR), mixed reality (MR), hybrid Reality or some combination and/or derivative thereof. Artificial reality content may include all generated content or generated content combined with captured (eg, real world) content. Artificial reality content may include video, audio, haptic feedback, or some combination thereof, and any of these may be presented in a single channel or in multiple channels (such as stereoscopic video that creates a three-dimensional effect on the viewer). Additionally, in some embodiments, AR can also be used in conjunction with, for example, applications that create content in AR and/or that are otherwise used in AR (such as performing activities in AR), Products, accessories, services or some combination thereof. Artificial reality systems that provide artificial reality content can be implemented on a variety of platforms, including head-mounted displays (HMDs) connected to host computer systems, standalone HMDs, mobile devices or computing systems or capable of delivering artificial reality content to Any other hardware platform for one or more viewers.

本發明中之術語「處理邏輯」(例如499)可包括一或多個處理器、微處理器、多核處理器、特定應用積體電路(application-specific integrated circuit;ASIC)及/或場可程式化閘陣列(Field Programmable Gate Array;FPGA)以執行本文所揭示之操作。在一些具體實例中,記憶體(未示出)經整合至處理邏輯中以儲存用以執行操作之指令及/或儲存資料。處理邏輯亦可包括類比或數位電路系統以執行根據本發明之具體實例的操作。The term "processing logic" (eg, 499) in the present invention may include one or more processors, microprocessors, multi-core processors, application-specific integrated circuits (ASICs) and/or field-programmable A Field Programmable Gate Array (FPGA) is used to perform the operations disclosed herein. In some embodiments, memory (not shown) is integrated into the processing logic to store instructions for performing operations and/or to store data. Processing logic may also include analog or digital circuitry to perform operations in accordance with embodiments of the invention.

本發明中所描述之「記憶體」可包括一或多個揮發性或非揮發性記憶體架構。「記憶體」可為以任何方法或技術實施以用於儲存諸如電腦可讀取指令、資料結構、程式模組或其他資料等資訊的抽取式及非抽取式媒體。實例記憶體技術可包括RAM、ROM、EEPROM、快閃記憶體、CD-ROM、數位多功能光碟(digital versatile disk;DVD)、高清晰度多媒體/資料儲存磁碟或其他光學儲存器、匣式磁帶、磁帶、磁碟儲存器或其他磁性儲存裝置,或可用於儲存資訊以供計算裝置存取之任何其他非傳輸媒體。"Memory" as described herein may include one or more volatile or non-volatile memory structures. "Memory" may be removable or non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. Example memory technologies may include RAM, ROM, EEPROM, flash memory, CD-ROM, digital versatile disk (DVD), high-definition multimedia/data storage disk or other optical storage, cartridge Tape, magnetic tape, disk storage, or other magnetic storage device, or any other non-transmission medium that can be used to store information for access by a computing device.

網路可包括任何網路或網路系統,諸如但不限於以下:對等式網路;區域網路(Local Area Network;LAN);廣域網路(Wide Area Network;WAN);公用網路,諸如網際網路;專用網路;蜂巢式網路;無線網路;有線網路;無線及有線組合網路;及衛星網路。A network may include any network or network system, such as but not limited to the following: peer-to-peer networks; Local Area Networks (LANs); Wide Area Networks (WANs); public networks such as The Internet; private networks; cellular networks; wireless networks; wired networks; combined wireless and wired networks; and satellite networks.

通信通道可包括或利用IEEE 802.11協定、藍牙、串列周邊介面(Serial Peripheral Interface;SPI)、內積體電路(Inter-Integrated Circuit;I 2C)、通用串列埠(Universal Serial Port;USB)、控制器區域網路(Controller Area Network;CAN)、蜂巢資料協定(例如3G、4G、LTE、5G)、光學通信網路、網際網路服務提供者(Internet Service Provider;ISP)、對等式網路、區域網路(Local Area Network;LAN)、廣域網路(Wide Area Network;WAN)、公用網路(例如「網際網路」)、專用網路、衛星網路或以其他方式來藉由一或多個有線或無線通信進行路由。 The communication channel may include or utilize IEEE 802.11 protocol, Bluetooth, Serial Peripheral Interface (SPI), Inter-Integrated Circuit (I 2 C), Universal Serial Port (Universal Serial Port; USB) , Controller Area Network (Controller Area Network; CAN), cellular data protocols (such as 3G, 4G, LTE, 5G), optical communication network, Internet Service Provider (Internet Service Provider; ISP), peer-to-peer network, Local Area Network (LAN), Wide Area Network (WAN), public network (such as the "Internet"), private network, satellite network, or otherwise One or more wired or wireless communications are routed.

計算裝置可包括桌上型電腦、膝上型電腦、平板電腦、平板手機、智慧型手機、功能型手機、伺服器電腦或其他裝置。伺服器電腦可遠端地位於資料中心中或在本端儲存。Computing devices may include desktops, laptops, tablets, phablets, smartphones, feature phones, server computers, or other devices. The server computer can be located remotely in the data center or stored locally.

就電腦軟體及硬體而言描述上文所解釋之程序。所描述之技術可構成體現於有形或非暫時性機器(例如電腦)可讀取儲存媒體內之機器可執行指令,這些機器可執行指令在由機器執行時將使得機器執行所描述之操作。另外,程序可體現於硬體內,諸如特定應用積體電路(「ASIC」)或其他硬體。The procedures explained above are described in terms of computer software and hardware. The described techniques may constitute machine-executable instructions embodied in a tangible or non-transitory machine (eg, computer)-readable storage medium, which, when executed by a machine, will cause the machine to perform the operations described. Additionally, the programs may be embodied in hardware, such as an application specific integrated circuit ("ASIC") or other hardware.

有形非暫時性機器可讀取儲存媒體包括提供(亦即儲存)資訊之任何機構,該資訊呈可由機器(例如電腦、網路裝置、個人數位助理、製造工具、具有一或多個處理器之集合之任何裝置等)存取之形式。舉例而言,機器可讀取儲存媒體包括可記錄/不可記錄媒體(例如唯讀記憶體(read only memory;ROM)、隨機存取記憶體(read access memory;RAM)、磁碟儲存媒體、光學儲存媒體、快閃記憶體裝置等)。Tangible non-transitory machine-readable storage media includes any mechanism that provides (that is, stores) information for display by a machine (such as a computer, network device, personal digital assistant, manufacturing tool, A collection of any device, etc.) form of access. For example, machine-readable storage media include recordable/non-recordable media (such as read only memory (ROM; ROM), random access memory (read access memory; RAM), magnetic disk storage media, optical storage media, flash memory devices, etc.).

本發明之所說明具體實例的以上描述(包括發明摘要中所描述之內容)並不意欲為詳盡的或將本發明限於所揭示之精確形式。儘管本文中出於說明性目的描述本發明之特定具體實例及實例,但如相關技術領域中具有通常知識者將認識到,在本發明之範圍內,各種修改係可能的。The above descriptions of illustrated examples of the invention, including what is described in the Abstract, are not intended to be exhaustive or to limit the invention to the precise forms disclosed. While specific specific instances and examples for the invention are described herein for illustrative purposes, various modifications are possible within the scope of the invention, as those having ordinary skill in the relevant art will recognize.

鑒於以上詳細描述,可對本發明作出此等修改。在以下申請專利範圍中所使用之術語不應視為將本發明限於本說明書中所揭示之特定具體實例。實情為,本發明之範圍應完全由以下申請專利範圍來判定,申請專利範圍將根據請求項解釋之已確立原則來解釋。Such modifications can be made to the invention in light of the above detailed description. The terms used in the following claims should not be construed to limit the invention to the specific embodiments disclosed in this specification. Rather, the scope of the invention should be determined solely by the following claims, which are to be construed in accordance with established principles of claim interpretation.

110:光源 113:照射光 117:返回光 120:角度光感測器 173:向量 181:適眼距離 182:距離 183:距離 190:眼睛 192:點 194:角膜 195:視窗區 250:光感測器 251:表面法向量 253:FOV 260:光感測器 261:表面法向量 263:FOV 270:角度光感測器 271:表面法向量 272:中心向量 273:FOV 300:角度光感測器 311:第一光電二極體 312:第二光電二極體 316:第一信號 317:第二信號 333:傾斜光障壁 371:表面法向量 373:感測平面 380:實例圖表 381:線 382:線 400:頭戴式裝置 413:照射光 414:框架 417:返回光 419A:角度信號 419B:角度信號 419C:角度信號 421A:近眼光學元件 421B:近眼光學元件 430A:感測器光源對 430B:感測器光源對 430C:感測器光源對 430D:感測器光源對 431A:角度光感測器 431B:角度光感測器 431C:角度光感測器 431D:角度光感測器 433A:光源 433B:光源 433C:光源 433D:光源 490:眼睛 497:可見場景光 499:處理邏輯 500:頭戴式裝置 521A:近眼光學元件 521B:近眼光學元件 530A:感測器光源對 530B:感測器光源對 530C:感測器光源對 530D:感測器光源對 530E:感測器光源對 530F:感測器光源對 530G:感測器光源對 530H:感測器光源對 530I:感測器光源對 531A:角度光感測器 531B:角度光感測器 531C:角度光感測器 531D:角度光感測器 531E:角度光感測器 531F:角度光感測器 531G:角度光感測器 531H:角度光感測器 531I:角度光感測器 533A:光源 533B:光源 533C:光源 533D:光源 533E:光源 533F:光源 533G:光源 533H:光源 533I:光源 600:角度光感測器 601:光源 603:光 630:光障壁 641:光電偵測器 642:光電偵測器 643:光電偵測器 644:光電偵測器 645:光電偵測器 651:信號 652:信號 653:信號 654:信號 655:信號 750:光柵 781:等式 782:等式 783:等式 793:光 800:曲線圖 900:眼動追蹤系統 930A:感測器光源對 930B:感測器光源對 930C:感測器光源對 930D:感測器光源對 931A:角度光感測器 933A:近紅外光源 983:角膜狀質心 1000:感測器結構 1010:光偵測器 1011:第一光偵測器 1012:第二光偵測器 1013:第三光偵測器 1050:層 1051:第一高光柵 1052:第二高光柵 1053:第三高光柵 1060:層 1061:第一低光柵 1062:第二低光柵 1063:第三低光柵 1070:光電二極體 1071:第一光電二極體 1072:第二光電二極體 1073:第三光電二極體 1081:角度信號 1082:角度信號 1083:角度信號 1100:感測器結構 1154:第四高光柵 1155:第五高光柵 1156:第六高光柵 1164:第四低光柵 1165:第五低光柵 1166:第六低光柵 1174:第四光電二極體 1175:第五光電二極體 1176:第六光電二極體 1184:角度信號 1185:角度信號 1186:角度信號 1200:組合感測器結構 1250:第一光柵層 1260:第二光柵層 d:光柵間距 θ:入射角 λ:波長 α:角度 z:距離 110: light source 113: Irradiate light 117: return light 120: Angle light sensor 173: vector 181: Eye distance 182: Distance 183: Distance 190: eyes 192: point 194: Cornea 195: window area 250: light sensor 251: surface normal vector 253:FOV 260: light sensor 261: surface normal vector 263: FOV 270: Angle light sensor 271: surface normal vector 272: Center vector 273:FOV 300: Angle light sensor 311: the first photodiode 312: second photodiode 316: The first signal 317:Second signal 333: Inclined Light Barrier 371: Surface normal vector 373: Sensing plane 380:Example Diagram 381: line 382: line 400: Head Mounted Device 413: Irradiate light 414: frame 417: return light 419A: Angle signal 419B: Angle signal 419C: Angle signal 421A: Near Eye Optical Components 421B: Near Eye Optical Components 430A: sensor light source pair 430B: sensor light source pair 430C: sensor light source pair 430D: sensor light source pair 431A: Angle light sensor 431B: Angle light sensor 431C: Angle light sensor 431D: Angle light sensor 433A: light source 433B: light source 433C: light source 433D: Light source 490: eyes 497:Visible scene light 499: Processing logic 500: Head Mounted Device 521A: near-eye optics 521B: Near-eye optics 530A: sensor light source pair 530B: sensor light source pair 530C: sensor light source pair 530D: sensor light source pair 530E: sensor light source pair 530F: sensor light source pair 530G: sensor light source pair 530H: sensor light source pair 530I: sensor light source pair 531A: Angle light sensor 531B: Angle light sensor 531C: Angle light sensor 531D: Angle light sensor 531E: Angle light sensor 531F: Angle light sensor 531G: Angle light sensor 531H: Angle light sensor 531I: Angle light sensor 533A: light source 533B: light source 533C: light source 533D: light source 533E: light source 533F: light source 533G: light source 533H: light source 533I: light source 600: Angle light sensor 601: light source 603: light 630: light barrier 641: photoelectric detector 642:Photoelectric detector 643: Photoelectric detector 644: photoelectric detector 645: photoelectric detector 651: signal 652:Signal 653:Signal 654:Signal 655:Signal 750: grating 781:equation 782:equation 783:equation 793: light 800: Curve 900:Eye Tracking System 930A: sensor light source pair 930B: sensor light source pair 930C: sensor light source pair 930D: sensor light source pair 931A: Angle light sensor 933A: near infrared light source 983:Corneal Centroid 1000: sensor structure 1010: Light detector 1011: The first light detector 1012: the second light detector 1013: The third light detector 1050: layer 1051: The first high grating 1052: second high grating 1053: The third high grating 1060: layer 1061: The first low raster 1062: second low raster 1063: The third low raster 1070: photodiode 1071: the first photodiode 1072: second photodiode 1073: the third photodiode 1081: Angle signal 1082: Angle signal 1083: Angle signal 1100: Sensor structure 1154: The fourth high grating 1155: fifth high grating 1156: sixth high grating 1164: The fourth low raster 1165: fifth low raster 1166: sixth low raster 1174: The fourth photodiode 1175: fifth photodiode 1176: The sixth photodiode 1184: Angle signal 1185: Angle signal 1186: Angle signal 1200: Combined sensor structure 1250: the first grating layer 1260: second grating layer d: grating spacing θ: angle of incidence λ:wavelength α: angle z: distance

參看以下圖式描述本發明之非限制性及非詳盡性的具體實例,其中除非另外指定,否則貫穿各種視圖,相同參考編號指代相同部分。Non-limiting and non-exhaustive specific examples of the present invention are described with reference to the following drawings, wherein like reference numerals refer to like parts throughout the various views unless otherwise specified.

[圖1]示出根據本發明之態樣之用於判定眼凝視角之光源感測器對。[ Fig. 1 ] shows a light source sensor pair for determining an eye gaze angle according to an aspect of the present invention.

[圖2A]示出具有感測平面及垂直於光感測器之感測平面的表面法向量之光感測器。[ FIG. 2A ] shows a light sensor with a sensing plane and a surface normal vector perpendicular to the sensing plane of the light sensor.

[圖2B]示出相比於圖2A之感測器具有較小視場(field of view;FOV)及較高角解析度的光感測器。[ FIG. 2B ] shows a light sensor with a smaller field of view (FOV) and higher angular resolution than the sensor in FIG. 2A .

[圖2C]示出根據本發明之態樣之具有較高解析度及相對較大FOV之角度光感測器。[ FIG. 2C ] shows an angle light sensor with higher resolution and relatively larger FOV according to an aspect of the present invention.

[圖3A]及[圖3B]示出根據本發明之態樣之具有第一光電二極體、第二光電二極體及傾斜光障壁之角度光感測器。[ FIG. 3A ] and [ FIG. 3B ] illustrate an angle photosensor having a first photodiode, a second photodiode, and an inclined light barrier according to aspects of the present invention.

[圖3C]示出根據本發明之態樣之說明由傾斜光障壁間隔開之光電二極體之預期功率的實例圖表。[ FIG. 3C ] An example graph illustrating the expected power of photodiodes separated by sloped light barriers according to aspects of the present invention is shown.

[圖4A]示出根據本發明之態樣的頭戴式裝置之一部分,其包括框架及由框架固定之近眼光學元件。[ FIG. 4A ] shows a part of a head-mounted device according to an aspect of the present invention, which includes a frame and a near-eye optical element fixed by the frame.

[圖4B]示出根據本發明之態樣的包括感測器光源對之近眼光學元件的截塊。[ FIG. 4B ] shows a section of a near-eye optical element including a sensor light source pair according to an aspect of the present invention.

[圖5]示出根據本發明之態樣的具有用於二維眼凝視偵測之感測器光源對的3×3陣列的頭戴式裝置之一部分。[ FIG. 5 ] Illustrates a portion of a head mounted device with a 3×3 array of sensor light source pairs for two-dimensional eye gaze detection according to an aspect of the present invention.

[圖6]示出根據本發明之態樣的具有多於兩個光電偵測器及光障壁之實例角度光感測器。[ FIG. 6 ] shows an example angle photosensor with more than two photodetectors and light barriers according to aspects of the invention.

[圖7A]示出光柵後方的塔耳波特(Talbot)影像平面之位置。[FIG. 7A] shows the location of the Talbot image plane behind the grating.

[圖7B]包括根據本發明之態樣之提供用於塔耳波特影像的塔耳波特距離 z的等式,該距離 z相對於光柵間距 d及塔耳波特感測器上的入射光的波長λ。 [ FIG. 7B ] An equation including the Talbot distance z for a Talbot image provided according to aspects of the invention, the distance z relative to the grating spacing d and the incidence on the Talbot sensor The wavelength λ of light.

[圖8]示出根據本發明之態樣的展示在0.88微米的實例週期內,在角度光感測器上的光的入射角(angle of incidence;AOI)與塔耳波特感測器之透射比之間的關係的曲線圖。[ FIG. 8 ] shows the difference between the angle of incidence ( AOI ) of light on an angle light sensor and the Talbot sensor during an example period of 0.88 microns according to an aspect of the present invention. Graph of the relationship between transmittance.

[圖9]示出根據本發明之態樣之實例眼動追蹤系統,其包括配置以藉由近紅外照射光照射角膜狀質心的四個感測器光源對。[ FIG. 9 ] shows an example eye-tracking system according to aspects of the present invention, which includes four sensor light source pairs configured to illuminate the corneal-shaped centroid with near-infrared illumination light.

[圖10]示出根據本發明之態樣的包括第一光偵測器、第二光偵測器及第三光偵測器之實例感測器結構。[ FIG. 10 ] shows an example sensor structure including a first photodetector, a second photodetector, and a third photodetector according to aspects of the present invention.

[圖11]示出根據本發明之態樣的具有三個定向於YZ平面中之感測器的感測器結構。[ Fig. 11 ] shows a sensor structure with three sensors oriented in the YZ plane according to an aspect of the present invention.

[圖12]示出根據本發明之態樣的具有用於XY平面之感測器及用於YZ平面之感測器的組合感測器結構。[ Fig. 12 ] Shows a combined sensor structure having a sensor for the XY plane and a sensor for the YZ plane according to an aspect of the present invention.

110:光源 110: light source

113:照射光 113: Irradiate light

117:返回光 117: return light

120:角度光感測器 120: Angle light sensor

173:向量 173: vector

181:適眼距離 181: Eye distance

182:距離 182: Distance

183:距離 183: Distance

190:眼睛 190: eyes

192:點 192: point

194:角膜 194: Cornea

195:視窗區 195: window area

Claims (20)

一種眼動追蹤系統,其包含: 複數個紅外光源,其配置以將紅外照射光發射至視窗區;及 複數個角度光感測器,其配置以接收返回紅外光,該返回紅外光為自該視窗區反射之該紅外照射光,其中該複數個角度光感測器配置以輸出表示該返回紅外光相對於這些角度光感測器之位置之入射角的角度信號。 An eye tracking system comprising: a plurality of infrared light sources configured to emit infrared illuminating light into the window area; and A plurality of angle photosensors configured to receive return infrared light, which is the infrared irradiation light reflected from the window area, wherein the plurality of angle photosensors are configured to output to indicate that the return infrared light is relatively The angle signal of the angle of incidence at the position of these angle photosensors. 如請求項1之眼動追蹤系統,其中這些角度光感測器具有相對於這些角度光感測器之光電偵測器表面在1度與85度之間的角度偵測範圍。The eye tracking system of claim 1, wherein the angle light sensors have an angle detection range between 1 degree and 85 degrees relative to the photodetector surface of the angle light sensors. 如請求項1之眼動追蹤系統,其中這些角度光感測器具有小於150微米×150微米之感測器面積。The eye tracking system of claim 1, wherein the angle light sensors have a sensor area smaller than 150 microns x 150 microns. 如請求項1之眼動追蹤系統,其中這些角度光感測器包括: 第一光電二極體,其配置以接收該返回紅外光; 第二光電二極體,其配置以接收該返回紅外光;及 傾斜光障壁,其安置於該第一光電二極體與該第二光電二極體之間,該傾斜光障壁相對於該第一光電二極體及該第二光電二極體兩者共同的感測平面的表面法線傾斜,其中由該第一光電二極體產生之第一信號與由該第二光電二極體產生之第二信號的比率指示該返回紅外光之該入射角。 The eye tracking system as claimed in claim 1, wherein the angle light sensors include: a first photodiode configured to receive the returning infrared light; a second photodiode configured to receive the returning infrared light; and an inclined light barrier, which is disposed between the first photodiode and the second photodiode, and the inclined light barrier is relative to the common surface of both the first photodiode and the second photodiode The surface normal of the sensing plane is inclined, wherein the ratio of the first signal generated by the first photodiode to the second signal generated by the second photodiode is indicative of the angle of incidence of the returning infrared light. 如請求項1之眼動追蹤系統,其中這些角度光感測器包括: 光障壁; 第一光電二極體,其配置以接收該返回紅外光; 第二光電二極體,其配置以接收該返回紅外光,其中該第一光電二極體安置於該光障壁與該第二光電二極體之間;及 處理邏輯,其配置以接收由該第一光電二極體產生之第一信號及由該第二光電二極體產生之第二信號,其中該處理邏輯基於該第一信號及該第二信號產生質心值,其中該第一信號經指派第一加權因數,該第一加權因數小於在產生該質心值時指派給該第二信號之第二加權因數。 The eye tracking system as claimed in claim 1, wherein the angle light sensors include: light barrier; a first photodiode configured to receive the returning infrared light; a second photodiode configured to receive the return infrared light, wherein the first photodiode is disposed between the light barrier and the second photodiode; and processing logic configured to receive a first signal generated by the first photodiode and a second signal generated by the second photodiode, wherein the processing logic generates based on the first signal and the second signal A centroid value, wherein the first signal is assigned a first weighting factor that is less than a second weighting factor assigned to the second signal in generating the centroid value. 如請求項1之眼動追蹤系統,其中這些角度光感測器之角度偵測範圍之視場(FOV)相對於這些角度光感測器之光電偵測器之表面法線傾斜。The eye tracking system according to claim 1, wherein the field of view (FOV) of the angle detection range of the angle light sensors is inclined relative to the surface normal of the photodetectors of the angle light sensors. 如請求項1之眼動追蹤系統,其進一步包含: 傾斜機構,其配置以動態地使這些角度光感測器之角度偵測範圍之視場(FOV)傾斜。 As the eye tracking system of claim 1, it further includes: A tilt mechanism configured to dynamically tilt the field of view (FOV) of the angular detection range of the angular photosensors. 如請求項7之眼動追蹤系統,其中該傾斜機構包括微機電系統(MEMS)裝置。The eye-tracking system of claim 7, wherein the tilt mechanism comprises a micro-electro-mechanical system (MEMS) device. 如請求項1之眼動追蹤系統,其中各紅外光源與角度光感測器配對且間隔開小於500微米。The eye tracking system according to claim 1, wherein each infrared light source is paired with an angle light sensor and spaced apart by less than 500 microns. 一種頭戴式裝置,其包含: 框架,其用於將該頭戴式裝置固定於使用者之頭部上;及 眼動追蹤系統,其包括: 複數個紅外光源,其配置以將紅外照射光發射至視窗區;及 複數個角度光感測器,其配置以接收返回紅外光,該返回紅外光為自該視窗區反射之該紅外照射光,其中該複數個角度光感測器配置以輸出表示該返回紅外光相對於這些角度光感測器之位置之入射角的角度信號。 A head-mounted device comprising: a frame for securing the headset to the user's head; and Eye tracking system, which includes: a plurality of infrared light sources configured to emit infrared illuminating light into the window area; and A plurality of angle photosensors configured to receive return infrared light, which is the infrared irradiation light reflected from the window area, wherein the plurality of angle photosensors are configured to output to indicate that the return infrared light is relatively The angle signal of the angle of incidence at the position of these angle photosensors. 如請求項10之頭戴式裝置,其中該複數個紅外光源及該複數個角度光感測器安裝至該頭戴式裝置之該框架。The head-mounted device according to claim 10, wherein the plurality of infrared light sources and the plurality of angle light sensors are installed on the frame of the head-mounted device. 如請求項10之頭戴式裝置,其進一步包含: 透鏡,其由該框架固持,其中該透鏡將來自外部環境之可見場景光傳遞至該視窗區,且其中該複數個紅外光源及該複數個角度光感測器安置於該透鏡上。 As the head-mounted device of claim 10, it further comprises: A lens is held by the frame, wherein the lens transmits visible scene light from the external environment to the window area, and wherein the plurality of infrared light sources and the plurality of angle light sensors are arranged on the lens. 一種角度光感測器,其包含: 第一光偵測器,其包括第一光電二極體、第一高光柵及第一低光柵,其中該第一低光柵安置於該第一高光柵與該第一光電二極體之間;及 第二光偵測器,其包括第二光電二極體、第二高光柵及第二低光柵,其中該第二低光柵安置於該第二高光柵與該第二光電二極體之間, 其中該第二低光柵相對於該第二高光柵離心,且其中該第一低光柵相對於該第一高光柵定心。 An angle light sensor comprising: a first photodetector comprising a first photodiode, a first high grating and a first low grating, wherein the first low grating is disposed between the first high grating and the first photodiode; and a second photodetector comprising a second photodiode, a second high grating and a second low grating, wherein the second low grating is disposed between the second high grating and the second photodiode, wherein the second low raster is centrifugal relative to the second high raster, and wherein the first low raster is centered relative to the first high raster. 如請求項13之角度光感測器,其中該第二低光柵相對於該第二高光柵以 d/4之移位因數離心,其中 d係該第二高光柵、該第二低光柵、該第一低光柵及該第一高光柵之間距。 The angle light sensor of claim 13, wherein the second low grating is centrifugal with a shift factor of d /4 relative to the second high grating, wherein d is the second high grating, the second low grating, the second high grating The distance between the first low grating and the first high grating. 如請求項14之角度光感測器,其進一步包含: 第三光偵測器,其包括第三光電二極體、第三高光柵及第三低光柵,其中該第三低光柵安置於該第三高光柵與該第三光電二極體之間, 其中該第三低光柵相對於該第三高光柵以3 d/8之移位因數離心,其中 d係該第三高光柵與該第三低光柵之間距。 The angle light sensor according to claim 14, which further includes: a third light detector, which includes a third photodiode, a third high grating and a third low grating, wherein the third low grating is placed on the Between the third high grating and the third photodiode, wherein the third low grating is centrifugal with a shift factor of 3 d /8 relative to the third high grating, where d is the distance between the third high grating and the first high grating Three low raster spacing. 如請求項14之角度光感測器,其中該間距具有50%工作週期。The angle light sensor according to claim 14, wherein the distance has a duty cycle of 50%. 如請求項13之角度光感測器,其進一步包含: 第四光偵測器,其配置為該第一光偵測器; 第五光偵測器,其配置為該第二光偵測器;及 第六光偵測器,其配置為該第三光偵測器,其中該第四光偵測器、該第五光偵測器及該第六光偵測器相對於該第一光偵測器、該第二光偵測器及該第三光偵測器旋轉90度。 As the angle light sensor of claim 13, it further comprises: a fourth photodetector configured as the first photodetector; a fifth photodetector configured as the second photodetector; and a sixth photodetector configured as the third photodetector, wherein the fourth photodetector, the fifth photodetector, and the sixth photodetector are relative to the first photodetector The detector, the second photodetector and the third photodetector are rotated 90 degrees. 如請求項13之角度光感測器,其中光柵材料係用於該第二高光柵、該第二低光柵、該第一低光柵及該第一高光柵之鉻或銅。The angle light sensor according to claim 13, wherein the grating material is chrome or copper for the second high grating, the second low grating, the first low grating, and the first high grating. 如請求項13之角度光感測器,其中所述角度光感測器配置以量測具有波長λ之光的入射角,且其中該第一低光柵與第一高光柵間隔開距離 z,其中 z係2 d 2/λ, 且此外其中該第二低光柵亦與第二高光柵間隔開該距離 zThe angle light sensor of claim 13, wherein the angle light sensor is configured to measure an incident angle of light having a wavelength λ, and wherein the first lower grating is separated from the first upper grating by a distance z , wherein z is 2 d 2 /λ, and furthermore wherein the second lower grating is also spaced apart from the second upper grating by the distance z . 如請求項13之角度光感測器,其中光學透明基板安置於該第一高光柵與該第一低光柵之間,且其中該光學透明基板亦安置於該第二高光柵與該第二低光柵之間。The angle light sensor of claim 13, wherein an optically transparent substrate is disposed between the first high grating and the first low grating, and wherein the optically transparent substrate is also disposed between the second high grating and the second low grating between rasters.
TW111130233A 2021-08-13 2022-08-11 Angular light sensor and eye-tracking TW202312731A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202163232674P 2021-08-13 2021-08-13
US63/232,674 2021-08-13
US17/878,634 2022-08-01
US17/878,634 US11860358B2 (en) 2021-08-13 2022-08-01 Angular light sensor and eye-tracking

Publications (1)

Publication Number Publication Date
TW202312731A true TW202312731A (en) 2023-03-16

Family

ID=83228781

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111130233A TW202312731A (en) 2021-08-13 2022-08-11 Angular light sensor and eye-tracking

Country Status (2)

Country Link
TW (1) TW202312731A (en)
WO (1) WO2023019014A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210409632A1 (en) * 2018-11-12 2021-12-30 Magic Leap, Inc. Depth based dynamic vision sensor
WO2020101895A1 (en) * 2018-11-12 2020-05-22 Magic Leap, Inc. Event-based camera with high-resolution frame output
US20220051441A1 (en) * 2018-12-21 2022-02-17 Magic Leap, Inc. Multi-camera cross reality device
CN113678435A (en) * 2019-02-07 2021-11-19 奇跃公司 Lightweight low-power consumption cross reality device with high temporal resolution
US11067821B2 (en) * 2019-07-08 2021-07-20 Facebook Technologies, Llc Apodized optical elements for optical artifact reduction

Also Published As

Publication number Publication date
WO2023019014A1 (en) 2023-02-16

Similar Documents

Publication Publication Date Title
JP7408621B2 (en) System and method for binocular deformation compensation of displays
US10409057B2 (en) Systems, devices, and methods for laser eye tracking in wearable heads-up displays
JP6718873B2 (en) Virtual focus feedback
US20210344897A1 (en) Method and system for tracking eye movement in conjunction with a light scanning projector
JP2020101831A (en) Beam angle sensor in virtual/augmented reality system
US10133076B2 (en) Hybrid fresnel lens with reduced artifacts
US10025101B2 (en) Dynamic draft for Fresnel lenses
CN112639576B (en) Structured light depth sensing
US10379348B2 (en) Hybrid fresnel lens with increased field of view
US11914162B1 (en) Display devices with wavelength-dependent reflectors for eye tracking
TW202312731A (en) Angular light sensor and eye-tracking
US11860358B2 (en) Angular light sensor and eye-tracking
TW202334702A (en) Display systems with collection optics for disparity sensing detectors
US20230119935A1 (en) Gaze-guided image capture
CN117859087A (en) Angular light sensor and eye tracking
US11205069B1 (en) Hybrid cornea and pupil tracking
US20200310122A1 (en) Compact array light source for scanning display
US20230168506A1 (en) High efficiency optical assembly with folded optical path
US20220350149A1 (en) Waveguide configurations in a head-mounted display (hmd) for improved field of view (fov)
WO2022232236A1 (en) Waveguide configurations in a head-mounted display (hmd) for improved field of view (fov)