TW202308953A - Chemically strengthened uv & blue light blocking anti-microbial bio-glass - Google Patents

Chemically strengthened uv & blue light blocking anti-microbial bio-glass Download PDF

Info

Publication number
TW202308953A
TW202308953A TW111124745A TW111124745A TW202308953A TW 202308953 A TW202308953 A TW 202308953A TW 111124745 A TW111124745 A TW 111124745A TW 111124745 A TW111124745 A TW 111124745A TW 202308953 A TW202308953 A TW 202308953A
Authority
TW
Taiwan
Prior art keywords
glass
range
blue light
ion exchange
light blocking
Prior art date
Application number
TW111124745A
Other languages
Chinese (zh)
Inventor
吉藤德拉 西蓋爾
比斯瓦納斯 森
董立婷
Original Assignee
日商安瀚視特控股股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商安瀚視特控股股份有限公司 filed Critical 日商安瀚視特控股股份有限公司
Publication of TW202308953A publication Critical patent/TW202308953A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/005Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to introduce in the glass such metals or metallic ions as Ag, Cu
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/08Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/08Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
    • C03C4/085Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths for ultraviolet absorbing glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties
    • C03C2204/02Antibacterial glass, glaze or enamel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Glass Compositions (AREA)

Abstract

The present invention describes a chemically strengthened UV and blue light blocking antimicrobial bio-glass and its composition. The bio-glass having a Figure of merit of Bio-friendly Glass (FOMBFG) factor between 0.5 [mu]g/cm2 and 13,500 [mu]g/cm2 exhibits a good UV-blocking (ultraviolet-blocking), blue light-blocking, and anti-microbial properties. The FOMBFG is defined as (Blocking % of UV at 380nm) * (Blocking % of Blue light at 430nm) * (Ag concentration at the surface of glass). The bio-glass exhibits a maximum of 100% UV light-blocking property and a maximum of 45% blue light-blocking property.

Description

化學強化之紫外線及藍光阻斷抗微生物之生物玻璃Chemically strengthened UV and blue light blocking anti-microbial bioglass

本發明描述一種生物玻璃組成。更具體地,本發明集中於一種具有紫外線及藍光阻斷特性之玻璃組成。本發明進一步描述一種具有抗微生物特性之玻璃組成,該玻璃組成藉由離子交換強化法表現出更高強度。The present invention describes a bioglass composition. More specifically, the present invention focuses on a glass composition having UV and blue light blocking properties. The present invention further describes a glass composition with antimicrobial properties that exhibits higher strength through ion exchange strengthening.

近年來,具有顯示螢幕之電子裝置已經被廣泛使用。諸如行動電話及穿戴式裝置等電子裝置在室內環境及室外環境兩者中均有使用。由於此類電子裝置暴露於來自太陽光之紫外線輻射(UV),因此在室外環境中面臨新的挑戰。長時間暴露於紫外線輻射往往會影響顯示螢幕,諸如OLED、LED、LCD及其類似螢幕之壽命。因此,需要存在一種新的解決方案來阻斷蓋玻璃中之紫外光,此保護了蓋玻璃下方之顯示器,防止損壞電子裝置之顯示器。In recent years, electronic devices with display screens have been widely used. Electronic devices, such as cell phones and wearable devices, are used in both indoor and outdoor environments. Since such electronic devices are exposed to ultraviolet radiation (UV) from sunlight, they face new challenges in outdoor environments. Prolonged exposure to ultraviolet radiation tends to affect the life of display screens such as OLED, LED, LCD and the like. Therefore, there is a need for a new solution to block the ultraviolet light in the cover glass, which protects the display under the cover glass and prevents damage to the display of the electronic device.

現代世界之另一個主要問題為電子裝置使用者每天必須處理之螢幕觀看時間量。諸如行動電話、平板電腦或穿戴式裝置等電子裝置會發出人造藍光。由於藍光之強度高於全光譜光中之任何其他光的強度,因此藍光會使眼睛收縮且因眼部肌肉之用力過度而增加眼睛之疲勞。由於人眼不善於阻斷藍光,藍光亦可能直接影響視網膜且造成損害,從而導致白內障。藍光之波長較短,接近於太陽光之紫外線的波長。當人暴露於電子裝置發出之大量藍光時,該藍光可能極大地損害皮膚深層且可能最終導致過早衰老及皮膚癌。因此,需要存在一種解決方案來減少自電子裝置之顯示螢幕發出的藍光。Another major problem in the modern world is the amount of screen viewing time that electronic device users must deal with each day. Electronic devices such as mobile phones, tablets or wearables emit artificial blue light. Because the intensity of blue light is higher than that of any other light in the full spectrum of light, blue light constricts the eyes and increases eye fatigue by overexerting the eye muscles. Since the human eye is not good at blocking blue light, blue light may also directly affect the retina and cause damage, leading to cataracts. The wavelength of blue light is shorter, close to the wavelength of ultraviolet rays of sunlight. When a person is exposed to large amounts of blue light emitted by electronic devices, the blue light can greatly damage the deep layers of the skin and may eventually lead to premature aging and skin cancer. Therefore, there is a need for a solution to reduce blue light emitted from display screens of electronic devices.

由於蓋玻璃已經普遍用於保護電子裝置之顯示螢幕,因此使用具有紫外線及藍光阻斷特性之蓋玻璃可以解決上述問題。眾所周知,蓋玻璃之特性高度依賴於玻璃組成及離子交換條件。因此,需要存在一種具有紫外線及藍光阻斷特性之蓋玻璃。Since cover glass has been commonly used to protect display screens of electronic devices, using a cover glass with ultraviolet and blue light blocking properties can solve the above problems. It is well known that the properties of cover glass are highly dependent on glass composition and ion exchange conditions. Therefore, there is a need for a cover glass with UV and blue light blocking properties.

另外地,觸控式螢幕技術已經由個體在其行動電話及穿戴式裝置上普遍使用,且該觸控式螢幕技術亦已經由無數人在公共場所之諸如資訊亭及提供服務之平板電腦等裝置上使用。由於每天均有無數人在諸如資訊亭等裝置上與觸控式螢幕進行互動,因此觸控式螢幕可能成為各種細菌及病毒之滋生地。每次使用後擦拭螢幕係不切實際的,且亦無法保證人們會遵守衛生習慣。在此類裝置之顯示螢幕上使用抗微生物螢幕蓋可以避免其在醫療中心及醫院使用期間傳播任何感染。因此,亦需要存在一種具有抗微生物特性之蓋玻璃。In addition, touch screen technology is already commonly used by individuals on their mobile phones and wearable devices, and it is also used by countless people in public places such as kiosks and tablet computers that provide services. use on. With millions of people interacting with touchscreens every day on devices such as kiosks, touchscreens can be a breeding ground for all kinds of bacteria and viruses. Wiping the screen after each use is impractical, and there is no guarantee that hygiene practices will be followed. The use of antimicrobial screen covers on the display screens of such devices prevents the spread of any infection during their use in medical centers and hospitals. Therefore, there is also a need for a cover glass with antimicrobial properties.

發明目的本文描述本發明之目的中之一些目的。本發明之目的係提供一種生物玻璃組成。本發明之另一個目的係提供一種紫外線阻斷(UV阻斷)及藍光阻斷生物玻璃組成。 Objects of the Invention Some of the objects of the invention are described herein. The object of the present invention is to provide a bioglass composition. Another object of the present invention is to provide an ultraviolet blocking (UV blocking) and blue light blocking biological glass composition.

本發明之另一個目的係提供紫外光阻斷特性為最高100%之生物玻璃組成,其中紫外光之波長小於或等於380 nm。Another object of the present invention is to provide a bioglass composition with a UV blocking property of up to 100%, wherein the wavelength of the UV light is less than or equal to 380 nm.

本發明之另一個目的係提供藍光阻斷特性為最高45%之生物玻璃組成,其中藍光之波長小於或等於430 nm。Another object of the present invention is to provide a bioglass composition with a blue light blocking property of up to 45%, wherein the wavelength of the blue light is less than or equal to 430 nm.

本發明之另一個目的係提供具有抗微生物特性之生物玻璃組成。本發明之另一個目的係提供紫外線阻斷、藍光阻斷及抗微生物之生物玻璃。Another object of the present invention is to provide bioglass compositions with antimicrobial properties. Another object of the present invention is to provide ultraviolet blocking, blue light blocking and antimicrobial bioglass.

本發明之另一個目的係藉由生物友好玻璃品質因數(FOMBFG)係數提供紫外線阻斷、藍光阻斷及抗微生物之生物玻璃組成。本發明提供之FOMBFG係數在0.5至13,500 µg/cm 2之範圍內。 Another object of the present invention is to provide UV-blocking, blue-light blocking and anti-microbial bioglass composition by Bio-Friendly Glass Figure of Merit (FOMBFG) factor. The present invention provides FOMBFG coefficients in the range of 0.5 to 13,500 µg/cm 2 .

本發明之另一個目的係使生物玻璃組成經受離子交換法。Another object of the present invention is to subject the bioglass composition to the ion exchange process.

本發明之另一個目的係提供強度更高且使用壽命更長之生物玻璃組成。Another object of the present invention is to provide a bioglass composition with higher strength and longer service life.

根據以下不意欲限制本發明之範疇的描述,本發明之其他目的及優點將變得更加顯而易見。 Other objects and advantages of the present invention will become more apparent from the following description, which is not intended to limit the scope of the present invention.

在本發明之一實施例中,已揭示一種生物玻璃組成。本發明揭示具有紫外線阻斷(UV阻斷)特性及藍光阻斷特性之生物玻璃組成。在另一個實施例中,本發明揭示具有紫外線阻斷特性、藍光阻斷特性及抗微生物特性之生物玻璃組成。In one embodiment of the present invention, a bioglass composition is disclosed. The present invention discloses a bioglass composition with ultraviolet blocking (UV blocking) properties and blue light blocking properties. In another embodiment, the present invention discloses bioglass compositions having UV blocking properties, blue light blocking properties, and antimicrobial properties.

在一實施例中,生物玻璃之紫外光阻斷特性為最高100%,該紫外光阻斷特性阻斷波長小於或等於380 nm之紫外光。In one embodiment, the ultraviolet light blocking property of the bioglass is up to 100%, and the ultraviolet light blocking property blocks ultraviolet light with a wavelength less than or equal to 380 nm.

在一實施例中,生物玻璃之藍光阻斷特性為最高45%,該藍光阻斷特性阻斷波長小於或等於430 nm之藍光。In one embodiment, the blue light blocking property of the bioglass is up to 45%, and the blue light blocking property blocks blue light with a wavelength less than or equal to 430 nm.

在一實施例中,本發明揭示描述良好的紫外線阻斷、藍光阻斷及抗微生物之生物玻璃組成的生物友好玻璃品質因數(FOMBFG)係數。在一實施例中,FOMBFG被定義為(在380 nm下之紫外線阻斷%) *(在430 nm下之藍光阻斷%) *(在玻璃之表面處之Ag濃度)。在一實施例中,生物玻璃之FOMBFG之最小值為0.5 µg/cm 2。在一實施例中,生物玻璃之FOMBFG之最大值為13,500 µg/cm 2In one embodiment, the present invention discloses a biofriendly glass figure of merit (FOMBFG) coefficient describing good UV blocking, blue light blocking, and antimicrobial bioglass compositions. In one embodiment, FOMBFG is defined as (% UV blocking at 380 nm) * (% blue blocking at 430 nm) * (Ag concentration at the surface of the glass). In one embodiment, the minimum value of FOMBFG of the bioglass is 0.5 µg/cm 2 . In one embodiment, the maximum value of FOMBFG of the bioglass is 13,500 µg/cm 2 .

在一實施例中,玻璃組成包含在約40 wt.%至約70 wt.%之範圍內之SiO 2;在約5 wt.%至約35 wt.%之範圍內之Al 2O 3;在約0 wt.%至約10 wt.%之範圍內之B 2O 3;在約0 wt.%至約10 wt.%之範圍內之Li 2O;在約5 wt.%至約25 wt.%之範圍內之Na 2O;在約0 wt.%至約5 wt.%之範圍內之K 2O;在約0 wt.%至約7 wt.%之範圍內之MgO;在約0 wt.%至約5 wt.%之範圍內之ZnO;在約0 wt.%至約5 wt.%之範圍內之ZrO 2;在約0 wt.%至約2 wt.%之範圍內之SnO 2;在約0 wt.%至約3 wt.%之範圍內之Fe 2O 3;在約0 wt.%至約3 wt.%之範圍內之CeO 2;在約0 wt.%至約7 wt.%之範圍內之P 2O 5;以及在約0 wt.%至約3 wt.%之範圍內之TiO 2In one embodiment, the glass composition comprises SiO 2 in the range of about 40 wt.% to about 70 wt.%; Al 2 O 3 in the range of about 5 wt.% to about 35 wt.%; B2O3 in the range of about 0 wt.% to about 10 wt.%; Li2O in the range of about 0 wt.% to about 10 wt.%; in the range of about 5 wt.% to about 25 wt .% Na 2 O in the range; K 2 O in the range of about 0 wt.% to about 5 wt.%; MgO in the range of about 0 wt.% to about 7 wt.%; ZnO in the range of 0 wt.% to about 5 wt.%; ZrO in the range of about 0 wt.% to about 5 wt.%; in the range of about 0 wt.% to about 2 wt . % SnO 2 ; Fe 2 O 3 in the range of about 0 wt.% to about 3 wt.%; CeO 2 in the range of about 0 wt.% to about 3 wt.%; at about 0 wt.% P 2 O 5 in the range of to about 7 wt.%; and TiO 2 in the range of about 0 wt.% to about 3 wt.%.

在一實施例中,Fe 2O 3及CeO 2之量影響生物玻璃組成之特性。特定數量之鐵及鈰之存在使得生物玻璃具有改良之紫外線及藍光阻斷特性。類似地,生物玻璃組成中銀(Ag)之量描述具有更佳抗微生物特性之玻璃。 In one embodiment, the amounts of Fe2O3 and CeO2 affect the properties of the bioglass composition . The presence of specific amounts of iron and cerium endows the bioglass with improved UV and blue light blocking properties. Similarly, the amount of silver (Ag) in a bioglass composition describes a glass with better antimicrobial properties.

在一實施例中,可藉由多次離子交換之化學強化處理來為蓋玻璃提供高強度。在一實施例中,生物玻璃可經受單離子交換法或雙離子交換法以及銀離子交換法。離子交換法基於離子之大小。當在玻璃中用較大離子交換較小離子時,較大離子會填充先前由較小離子佔據之表面區域,從而在玻璃之內部表面上產生壓縮應力,此與玻璃之強度增加相對應。據報導,所產生之壓縮應力與已發生離子交換之玻璃體積成正比。一旦玻璃經受離子交換法,則該玻璃表現出高抗裂性。In one embodiment, high strength can be provided to the cover glass by chemical strengthening with multiple ion exchanges. In one embodiment, the bioglass can be subjected to a single ion exchange method or a dual ion exchange method and a silver ion exchange method. The ion exchange method is based on the size of the ions. When larger ions are exchanged for smaller ions in glass, the larger ions fill the surface area previously occupied by smaller ions, creating compressive stress on the interior surfaces of the glass, which corresponds to an increase in the strength of the glass. The resulting compressive stress is reported to be proportional to the volume of ion-exchanged glass. Once the glass is subjected to the ion exchange process, the glass exhibits high resistance to cracking.

在一實施例中,本發明中所描述之生物玻璃組成為鋁矽酸鹽玻璃組成或鋰鋁矽酸鹽玻璃組成。鋰鋁矽酸鹽玻璃組成係可雙離子交換的,而鋁矽酸鹽玻璃組成係可單離子交換的。然後將可離子交換的玻璃添加至銀鹽浴中以進行銀離子交換法以獲得抗微生物特性。本發明中所描述之可離子交換的玻璃組成使用鉀鹽及銀鹽增加了對紫外光及藍光之阻斷。另外地,其為玻璃組成提供了更高的強度。In one embodiment, the bioglass composition described in the present invention is an aluminosilicate glass composition or a lithium aluminosilicate glass composition. Lithium aluminosilicate glass compositions are dual ion exchangeable, while aluminosilicate glass compositions are single ion exchangeable. The ion exchangeable glass is then added to the silver salt bath for silver ion exchange to obtain antimicrobial properties. The ion-exchangeable glass compositions described in this invention use potassium and silver salts to increase the blocking of UV and blue light. Additionally, it provides greater strength to the glass composition.

在一實施例中,生物玻璃具有更佳的耐用性、更高的抗裂性、更高的損傷後殘留強度及更高的急劇衝擊強度,且玻璃在失效前可承受更大量的裝置掉落。In one embodiment, the bioglass has better durability, higher crack resistance, higher post-damage residual strength, and higher sharp impact strength, and the glass can withstand a greater number of device drops before failure .

在一實施例中,生物玻璃可用作觸控面板顯示器之基板及此等顯示器之後蓋,該等顯示器諸如液晶顯示器(LCD)、場發射顯示器(FED)、電漿顯示器(PD)、電致發光顯示器(ELD)、有機發光二極體(OLED)顯示器、微型LED及其類似顯示器。生物玻璃用作保護具有顯示螢幕之電子裝置,諸如行動電話、娛樂裝置、平板電腦、膝上型電腦、數位相機、穿戴式裝置及其類似裝置。In one embodiment, the bioglass can be used as a substrate and back cover for touch panel displays such as liquid crystal displays (LCDs), field emission displays (FEDs), plasmonic displays (PDs), electroluminescent Light Emitting Displays (ELD), Organic Light Emitting Diode (OLED) displays, Micro LEDs and the like. Bioglass is used to protect electronic devices with display screens, such as mobile phones, entertainment devices, tablet computers, laptop computers, digital cameras, wearable devices, and the like.

根據以下詳細描述,本發明之此等及其他態樣、優點及顯著特徵將變得顯而易見。These and other aspects, advantages and salient features of the invention will become apparent from the following detailed description.

在以下描述中,貫穿附圖中所示之若干個視圖,相似的參考字元指代相似或對應之部分。亦應理解,除非另有指定,否則諸如「頂部」、「底部」、「向外」、「向內」及其類似者之術語係出於方便而使用之詞語,且不應解釋為限制性術語。另外,每當組被描述為包含要素及其組合之組中之至少一者時,應當理解,該組可包含單獨或彼此組合之任意數量的所陳述之彼等要素、基本上由其組成或由其組成。類似地,每當組被描述為由要素或其組合之組中之至少一者組成時,應當理解,該組可由單獨或彼此組合之任意數量的所陳述之彼等要素組成。除非另有指定,否則在陳述時,值之範圍包括該範圍之上限及下限以及其間的任何範圍。如本文所使用,除非另有指定,否則不定冠詞「一個/一種(a/an)」及對應之定冠詞「該(the)」意謂「至少一個/種」或「一或多個/種」。亦應理解,說明書及附圖中揭示之各種特徵可以任何及所有組合使用。 In the following description, like reference characters designate like or corresponding parts throughout the several views shown in the drawings. It should also be understood that, unless otherwise specified, terms such as "top," "bottom," "outward," "inward," and the like are words of convenience and should not be construed as limiting the term. Additionally, whenever a group is described as comprising at least one of a group of elements and combinations thereof, it is to be understood that the group may comprise, consist essentially of, or consists of it. Similarly, whenever a group is described as consisting of at least one of a group of elements or combinations thereof, it is to be understood that the group may consist of any number of those stated elements alone or in combination with each other. When stated, unless otherwise specified, a range of values includes the upper and lower limits of that range and any range therebetween. As used herein, unless specified otherwise, the indefinite article "a/an" and the corresponding definite article "the" mean "at least one" or "one or more" . It should also be understood that the various features disclosed in the specification and drawings can be used in any and all combinations.

如本文所使用,術語「一種玻璃製品」及「多種玻璃製品」以其最廣泛之意義使用,以包括完全或部分由玻璃製成之任何物體。除非另有指定,否則所有組成均以重量百分比(wt.%)之形式表示。除非另有指定,否則所有溫度均以攝氏度(℃)之形式表示。除非另有指定,否則熱膨脹係數(CTE)以10 - 7/℃之形式表示且表示在約50℃至約300℃之溫度範圍內測得的值。如本文所使用,術語「退火點」係指玻璃之黏度為大約1 × 10 13.2泊時之溫度。 As used herein, the terms "glass article" and "glass articles" are used in their broadest sense to include any object made entirely or in part of glass. All compositions are expressed in weight percent (wt.%) unless otherwise specified. All temperatures are expressed in degrees Celsius (°C) unless otherwise specified. Unless otherwise specified, the coefficient of thermal expansion (CTE) is expressed in the form of 10 −7 /° C. and represents the value measured in the temperature range of about 50° C. to about 300° C. As used herein, the term "annealing point" refers to the temperature at which the viscosity of the glass is about 1 x 1013.2 poise hours.

應當注意,術語「實質上」及「約」在本文中可用於表示可歸因於任何定量比較、值、量測結果或其他表示之固有不確定性程度。本文中亦利用此等術語來表示在不導致所關注之主題之基本功能改變的情況下,定量表示可與所陳述之參考不同的程度。It should be noted that the terms "substantially" and "about" may be used herein to denote the degree of inherent uncertainty attributable to any quantitative comparison, value, measurement or other representation. These terms are also utilized herein to denote the degree to which a quantitative representation may vary from a stated reference without resulting in a change in the basic function of the subject matter at issue.

最近,隨著科技之進步,電子裝置,諸如行動電話、平板電腦、穿戴式裝置、數位相機及其類似裝置已經得到了廣泛的使用。此等電子裝置具有顯示螢幕,且受不同組成之蓋玻璃的保護。本發明描述一種具有良好的紫外線阻斷(UV阻斷)特性及藍光阻斷特性之生物玻璃組成。此類玻璃組成為顯示螢幕提供了更佳的使用壽命。同樣地,生物玻璃減少了由於持續暴露於電子裝置而對使用者眼睛造成之傷害。本發明之另一個實施例描述一種具有良好的紫外線阻斷特性、藍光阻斷特性及抗微生物特性的生物玻璃組成。Recently, with the advancement of technology, electronic devices such as mobile phones, tablet computers, wearable devices, digital cameras and the like have been widely used. These electronic devices have display screens protected by cover glasses of various compositions. The present invention describes a bioglass composition with good ultraviolet blocking (UV blocking) properties and blue light blocking properties. This type of glass composition provides a better lifespan for the display screen. Likewise, bioglass reduces damage to the user's eyes due to continuous exposure to electronic devices. Another embodiment of the present invention describes a bioglass composition with good UV blocking properties, blue light blocking properties and antimicrobial properties.

在室外環境中使用之電子裝置暴露於太陽光之紫外線(UV)輻射。暴露於紫外線輻射可能會縮短電子裝置之顯示螢幕之壽命。因此,本發明提出了一種用於保護顯示螢幕之具有紫外光阻斷特性的生物玻璃組成。本發明描述表現出最小9%之紫外光阻斷特性的生物玻璃組成,該紫外光阻斷特性阻斷波長小於或等於380 nm之紫外光。Electronic devices used in outdoor environments are exposed to ultraviolet (UV) radiation from sunlight. Exposure to ultraviolet radiation may shorten the life of display screens in electronic devices. Therefore, the present invention proposes a bioglass composition with ultraviolet light blocking properties for protecting display screens. The present invention describes bioglass compositions that exhibit a minimum of 9% UV blocking properties that block UV light with a wavelength less than or equal to 380 nm.

諸如行動電話、膝上型電腦及其類似裝置之電子裝置的螢幕觀看時間較長會導致人眼持續暴露於藍光。由於人眼不能阻斷有害的藍光,因此該藍光會導致眼部肌肉及神經緊張。因此,本發明提出了一種減少人眼暴露於藍光之具有藍光阻斷特性的生物玻璃組成。本發明描述表現出最小8%之藍光阻斷特性的生物玻璃組成,該藍光阻斷特性阻斷波長小於或等於430 nm之藍光。在具體實施例中,本發明描述表現出(30±3)%之藍光阻斷特性的生物玻璃組成,該藍光阻斷特性阻斷波長小於或等於430 nm之藍光。在具體實施例中,本發明描述表現出45%之藍光阻斷特性的生物玻璃組成,該藍光阻斷特性阻斷波長小於或等於430 nm之藍光。Longer screen viewing times of electronic devices such as mobile phones, laptops, and similar devices result in continuous exposure of the human eye to blue light. Since the human eye cannot block harmful blue light, this blue light can cause tension in the eye muscles and nerves. Therefore, the present invention proposes a bioglass composition with blue light blocking properties that reduces the exposure of the human eye to blue light. The present invention describes bioglass compositions that exhibit a minimum of 8% blue light blocking properties that block blue light with a wavelength less than or equal to 430 nm. In a specific embodiment, the present invention describes bioglass compositions exhibiting (30±3)% blue light blocking properties that block blue light with a wavelength less than or equal to 430 nm. In a specific embodiment, the present invention describes a bioglass composition that exhibits a blue light blocking property of 45% that blocks blue light having a wavelength less than or equal to 430 nm.

觸控式螢幕技術已經由個體在其行動電話及穿戴式裝置上普遍使用,且該觸控式螢幕技術亦已經由無數人在公共場所之諸如資訊亭及提供服務之平板電腦等裝置上使用。由於每天均有無數人在諸如資訊亭等裝置上與觸控式螢幕進行互動,因此觸控式螢幕可能成為各種細菌及病毒之滋生地。因此,重要的是為生物玻璃組成提供抗微生物特性。銀奈米顆粒在不可逆地破壞細菌細胞膜方面的有效性為此項技術中所熟知。銀奈米顆粒可結合且穿透細胞膜,由此阻斷宿主細胞。因此,本發明描述使用銀離子充當抗微生物劑以使玻璃遠離細菌及病毒。本發明描述玻璃中銀(Ag)濃度在0.001至3 wt.%之範圍內的生物玻璃組成。較佳地,Ag濃度之量可在0.01至0.07 wt.%之範圍內,以在生物玻璃組成中獲得良好的抗微生物特性。亦發現,在玻璃組成中添加ZnO改良抗微生物行為。較佳地,玻璃組成之ZnO為約0 wt.%至5 wt.%。ZnO為在玻璃中會變成成網離子之中間氧化物。此項技術中亦熟知,較低濃度之ZnO影響革蘭氏陰性細菌及革蘭氏陽性細菌之存活率。因此,玻璃組成中ZnO之存在允許玻璃充當抗微生物劑。Touchscreen technology is already commonly used by individuals on their mobile phones and wearable devices, and it is also used by countless people on devices such as kiosks and service-providing tablets in public places. With millions of people interacting with touchscreens every day on devices such as kiosks, touchscreens can be a breeding ground for all kinds of bacteria and viruses. Therefore, it is important to provide antimicrobial properties to bioglass compositions. The effectiveness of silver nanoparticles in irreversibly disrupting bacterial cell membranes is well known in the art. Silver nanoparticles can bind and penetrate cell membranes, thereby blocking host cells. Accordingly, the present invention describes the use of silver ions to act as an antimicrobial agent to keep glass free from bacteria and viruses. The present invention describes bioglass compositions with silver (Ag) concentrations in the glass in the range of 0.001 to 3 wt.%. Preferably, the amount of Ag concentration can be in the range of 0.01 to 0.07 wt.%, in order to obtain good antimicrobial properties in the bioglass composition. It was also found that the addition of ZnO to the glass composition improves antimicrobial behavior. Preferably, the ZnO of the glass composition is about 0 wt.% to 5 wt.%. ZnO is an intermediate oxide that becomes a network-forming ion in the glass. It is also well known in the art that lower concentrations of ZnO affect the survival of Gram-negative and Gram-positive bacteria. Thus, the presence of ZnO in the glass composition allows the glass to act as an antimicrobial agent.

為了量測玻璃組成之需求特性,本發明揭示描述良好的紫外線阻斷、藍光阻斷及抗微生物之生物玻璃組成的生物友好玻璃品質因數(FOMBFG)係數。FOMBFG可由以下等式(1)表示:

Figure 02_image001
In order to measure desirable properties of glass compositions, the present invention discloses Bio-Friendly Glass Figure of Merit (FOMBFG) coefficients that describe good UV blocking, blue light blocking, and antimicrobial bioglass compositions. FOMBFG can be expressed by the following equation (1):
Figure 02_image001

生物玻璃之FOMBFG之最小值為0.5 µg/cm 2且最大值為13,500 µg/cm 2。生物玻璃之表面處之最小Ag濃度為0.001 wt.%,且生物玻璃之表面處之最大Ag濃度為3 wt.%。 The FOMBFG of bioglass has a minimum value of 0.5 µg/cm 2 and a maximum value of 13,500 µg/cm 2 . The minimum Ag concentration at the surface of the bioglass was 0.001 wt.%, and the maximum Ag concentration at the surface of the bioglass was 3 wt.%.

本發明詳細描述各種生物玻璃組成。本發明主要描述鹼鋁矽酸鹽玻璃及其組成。玻璃組成包含一或多種化學組分,諸如SiO 2、B 2O 3及Al 2O 3。進一步地,鹼金屬氧化物選自由Li 2O、Na 2O及K 2O組成之群。進一步地,玻璃組成包括鹼性氧化物,諸如MgO、CaO、SrO及BaO。其亦可包含其他化學組分,諸如ZnO、ZrO 2、Fe 2O 3、CeO 2、P 2O 5、TiO 2及其類似物。其亦可包含澄清劑,諸如SnO 2、氯化物、硫酸鹽及其類似物。進一步地,其亦可包含Fe 2O 3及CeO 2。生物玻璃之特性受到玻璃組成之組分之wt.%的高度影響。 The present invention describes in detail various bioglass compositions. This invention primarily describes alkali aluminosilicate glasses and their compositions. Glass compositions include one or more chemical components such as SiO 2 , B 2 O 3 and Al 2 O 3 . Further, the alkali metal oxide is selected from the group consisting of Li 2 O, Na 2 O and K 2 O. Further, the glass composition includes basic oxides such as MgO, CaO, SrO and BaO. It may also contain other chemical components such as ZnO, ZrO 2 , Fe 2 O 3 , CeO 2 , P 2 O 5 , TiO 2 and the like. It may also contain fining agents such as SnO 2 , chlorides, sulfates, and the like. Further, it may also contain Fe 2 O 3 and CeO 2 . The properties of bioglass are highly influenced by the wt.% of the constituents of the glass composition.

本發明描述組成之各種組分之最佳wt.%。生物玻璃組成包含在約40 wt.%至約70 wt.%之範圍內之SiO 2;在約5 wt.%至約35 wt.%之範圍內之Al 2O 3;在約0 wt.%至約10 wt.%之範圍內之B 2O 3;在約0 wt.%至約10 wt.%之範圍內之Li 2O;在約5 wt.%至約25 wt.%之範圍內之Na 2O;在約0 wt.%至約5 wt.%之範圍內之K 2O;在約0 wt.%至約7 wt.%之範圍內之MgO;在約0 wt.%至約5 wt.%之範圍內之ZnO;在約0 wt.%至約5 wt.%之範圍內之ZrO 2;在約0 wt.%至約2 wt.%之範圍內之SnO 2;在約0 wt.%至約3 wt.%之範圍內之Fe 2O 3;在約0 wt.%至約3 wt.%之範圍內之CeO 2;在約0 wt.%至約7 wt.%之範圍內之P 2O 5以及在約0 wt.%至約3 wt.%之範圍內之TiO 2。生物玻璃可為鋰鋁矽酸鹽玻璃或鈉鋁矽酸鹽玻璃。 The present invention describes the optimal wt.% of the various components of the composition. The bioglass composition comprises SiO 2 in the range of about 40 wt.% to about 70 wt.%; Al 2 O 3 in the range of about 5 wt.% to about 35 wt.%; Al 2 O 3 in the range of about 0 wt.% B2O3 in the range of to about 10 wt.%; Li2O in the range of about 0 wt.% to about 10 wt.%; in the range of about 5 wt.% to about 25 wt.% Na 2 O; K 2 O in the range of about 0 wt.% to about 5 wt.%; MgO in the range of about 0 wt.% to about 7 wt.%; ZnO in the range of about 5 wt.%; ZrO in the range of about 0 wt.% to about 5 wt . %; SnO in the range of about 0 wt.% to about 2 wt.%; Fe2O3 in the range of about 0 wt.% to about 3 wt.%; CeO2 in the range of about 0 wt.% to about 3 wt.%; in the range of about 0 wt.% to about 7 wt. % in the range of P 2 O 5 and in the range of about 0 wt.% to about 3 wt.% of TiO 2 . The bioglass can be lithium aluminosilicate glass or sodium aluminosilicate glass.

表1展示了非限制性例示性玻璃組成,如下所示: Wt.% 1 2 3 4 5 6 7 8 9 10 SiO 2 59.00 55.70 59.67 59.04 59.04 59.01 59.70 58.67 58.74 59.70 Al 2O 3 18.36 25.20 18.57 18.37 18.37 18.36 18.58 18.26 18.28 18.58 B 2O 3 1.86 0.19 1.88 1.86 1.86 1.86 1.88 1.85 1.85 1.88 Li 2O 3.06 3.66 3.09 3.06 3.06 3.06 3.10 3.04 3.05 3.10 Na 2O 7.81 8.32 7.89 7.81 7.81 7.81 7.90 7.76 7.77 7.90 K 2O 0.00 1.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 MgO 0.00 0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ZnO 4.29 0.01 4.34 4.29 4.29 4.29 4.34 4.26 4.27 4.34 ZrO 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 SnO 2 0.185 0.150 0.188 0.186 0.186 0.186 0.167 0.184 0.185 0.17 Fe 2O 3 0.078 0.094 0.061 0.000 0.000 0.060 0.022 0.113 0.000 0.019 CeO 2 1.110 0.000 0.000 1.112 1.112 1.111 0.000 1.613 1.620 0.000 P 2O 5 4.26 5.39 4.31 4.26 4.26 4.26 4.31 4.24 4.24 4.31 TiO 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 總計 100.00 100.09 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 表1:例示性玻璃組成 Table 1 presents non-limiting exemplary glass compositions as follows: Wt.% 1 2 3 4 5 6 7 8 9 10 SiO 2 59.00 55.70 59.67 59.04 59.04 59.01 59.70 58.67 58.74 59.70 Al 2 O 3 18.36 25.20 18.57 18.37 18.37 18.36 18.58 18.26 18.28 18.58 B 2 O 3 1.86 0.19 1.88 1.86 1.86 1.86 1.88 1.85 1.85 1.88 Li 2 O 3.06 3.66 3.09 3.06 3.06 3.06 3.10 3.04 3.05 3.10 Na 2 O 7.81 8.32 7.89 7.81 7.81 7.81 7.90 7.76 7.77 7.90 K 2 O 0.00 1.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 MgO 0.00 0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ZnO 4.29 0.01 4.34 4.29 4.29 4.29 4.34 4.26 4.27 4.34 ZrO2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 SnO2 0.185 0.150 0.188 0.186 0.186 0.186 0.167 0.184 0.185 0.17 Fe2O3 _ 0.078 0.094 0.061 0.000 0.000 0.060 0.022 0.113 0.000 0.019 CeO2 1.110 0.000 0.000 1.112 1.112 1.111 0.000 1.613 1.620 0.000 P 2 O 5 4.26 5.39 4.31 4.26 4.26 4.26 4.31 4.24 4.24 4.31 TiO 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 total 100.00 100.09 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Table 1: Exemplary Glass Compositions

表2展示了非限制性例示性玻璃組成,如下所示: Wt.% 11 12 13 14 15 16 17 18 19 SiO 2 61.95 61.79 61.99 61.58 60.49 60.46 60.48 62.10 62.07 Al 2O 3 19.65 19.60 18.69 17.95 17.74 19.18 18.24 19.70 18.71 B 2O 3 3.59 3.58 3.72 2.91 4.15 3.50 3.63 3.60 3.72 Li 2O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 2O 13.06 13.03 13.99 14.75 13.84 12.75 13.64 13.10 14.01 K 2O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 MgO 1.40 1.39 1.14 0.98 0.97 1.36 1.11 1.40 1.14 ZnO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ZrO 2 0.06 0.06 0.06 0.00 0.00 0.00 0.06 0.00 0.06 SnO 2 0.183 0.183 0.184 0.187 0.185 0.136 0.179 0.14 0.18 Fe 2O 3 0.046 0.046 0.049 0.000 0.048 0.047 0.048 0.000 0.050 CeO 2 0.000 0.261 0.131 1.633 2.563 2.556 2.561 0.000 0.000 TiO 2 0.06 0.06 0.06 0.00 0.00 0.00 0.06 0.00 0.06 P 2O 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 總計 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.04 100.00 表2:例示性玻璃組成 Table 2 presents non-limiting exemplary glass compositions as follows: Wt.% 11 12 13 14 15 16 17 18 19 SiO 2 61.95 61.79 61.99 61.58 60.49 60.46 60.48 62.10 62.07 Al 2 O 3 19.65 19.60 18.69 17.95 17.74 19.18 18.24 19.70 18.71 B 2 O 3 3.59 3.58 3.72 2.91 4.15 3.50 3.63 3.60 3.72 Li 2 O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 2 O 13.06 13.03 13.99 14.75 13.84 12.75 13.64 13.10 14.01 K 2 O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 MgO 1.40 1.39 1.14 0.98 0.97 1.36 1.11 1.40 1.14 ZnO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ZrO2 0.06 0.06 0.06 0.00 0.00 0.00 0.06 0.00 0.06 SnO2 0.183 0.183 0.184 0.187 0.185 0.136 0.179 0.14 0.18 Fe2O3 _ 0.046 0.046 0.049 0.000 0.048 0.047 0.048 0.000 0.050 CeO2 0.000 0.261 0.131 1.633 2.563 2.556 2.561 0.000 0.000 TiO 2 0.06 0.06 0.06 0.00 0.00 0.00 0.06 0.00 0.06 P 2 O 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.04 100.00 Table 2: Exemplary Glass Compositions

表3展示了非限制性例示性玻璃組成,如下所示: Wt.% 20 (173) 21 22 23 24 25 26 27 28 SiO 2 62.09 62.00 62.60 62.12 61.87 62.00 48.11 52.95 52.56 Al 2O 3 18.72 18.69 18.25 18.22 19.63 19.00 26.04 19.97 26.07 B 2O 3 3.72 3.72 2.96 4.26 3.99 3.70 4.28 4.54 4.29 Li 2O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 2O 14.01 13.99 15.00 14.22 13.41 13.80 18.54 15.39 13.96 K 2O 0.00 0.00 0.00 0.00 0.00 0.00 0.10 3.86 0.20 MgO 1.14 1.14 1.00 1.00 0.92 1.15 0.67 0.75 0.67 ZnO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ZrO 2 0.06 0.06 0.00 0.00 0.00 0.06 0.00 0.00 0.00 SnO 2 0.184 0.18 0.19 0.19 0.19 0.18 0.05 0.05 0.05 Fe 2O 3 0.022 0.02 0.00 0.00 0.00 0.05 0.00 0.00 0.00 CeO 2 0.000 0.130 0.000 0.000 0.000 0.000 0.000 0.000 0.000 TiO 2 0.06 0.06 0.00 0.00 0.00 0.06 0.00 0.00 0.00 P 2O 5 0.00 0.00 0.00 0.00 0.00 0.00 2.21 2.48 2.21 總計 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 表3:例示性玻璃組成 Table 3 presents non-limiting exemplary glass compositions as follows: Wt.% 20 (173) twenty one twenty two twenty three twenty four 25 26 27 28 SiO 2 62.09 62.00 62.60 62.12 61.87 62.00 48.11 52.95 52.56 Al 2 O 3 18.72 18.69 18.25 18.22 19.63 19.00 26.04 19.97 26.07 B 2 O 3 3.72 3.72 2.96 4.26 3.99 3.70 4.28 4.54 4.29 Li 2 O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 2 O 14.01 13.99 15.00 14.22 13.41 13.80 18.54 15.39 13.96 K 2 O 0.00 0.00 0.00 0.00 0.00 0.00 0.10 3.86 0.20 MgO 1.14 1.14 1.00 1.00 0.92 1.15 0.67 0.75 0.67 ZnO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ZrO2 0.06 0.06 0.00 0.00 0.00 0.06 0.00 0.00 0.00 SnO2 0.184 0.18 0.19 0.19 0.19 0.18 0.05 0.05 0.05 Fe2O3 _ 0.022 0.02 0.00 0.00 0.00 0.05 0.00 0.00 0.00 CeO2 0.000 0.130 0.000 0.000 0.000 0.000 0.000 0.000 0.000 TiO 2 0.06 0.06 0.00 0.00 0.00 0.06 0.00 0.00 0.00 P 2 O 5 0.00 0.00 0.00 0.00 0.00 0.00 2.21 2.48 2.21 total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Table 3: Exemplary Glass Compositions

表4展示了非限制性例示性玻璃組成,如下所示: Wt.% 29 30 31 32 33 34 35 36 37 SiO 2 42.64 50.77 52.73 62.08 62.16 63.85 55.71 55.26 58.68 Al 2O 3 31.27 27.48 26.08 19.69 18.74 13.98 25.20 24.58 18.56 B 2O 3 4.19 4.52 6.01 3.60 3.73 0.00 0.19 0.00 1.58 Li 2O 0.00 5.27 3.28 0.00 0.00 5.83 3.66 2.89 2.95 Na 2O 18.15 8.64 8.34 13.09 14.03 10.39 8.32 10.93 9.40 K 2O 0.10 0.11 0.20 0.00 0.00 0.00 1.16 0.00 0.00 MgO 1.31 0.70 0.29 1.40 1.14 0.00 0.21 0.00 0.00 ZnO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.47 4.34 ZrO 2 0.00 0.00 0.00 0.00 0.00 5.755 0.00 0.00 0.00 SnO 2 0.17 0.049 0.169 0.14 0.184 0.194 0.15 0.11 0.187 Fe 2O 3 0.00 0.000 0.000 0.05 0.022 0.000 0.000 0.000 0.000 CeO 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 TiO 2 0.00 0.13 0.0007 0.00 0.00 0.00 0.00 0.00 0.00 P 2O 5 2.16 2.33 2.91 0.00 0.00 0.00 5.39 4.75 4.31 總計 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 表4:例示性玻璃組成 Table 4 presents non-limiting exemplary glass compositions as follows: Wt.% 29 30 31 32 33 34 35 36 37 SiO 2 42.64 50.77 52.73 62.08 62.16 63.85 55.71 55.26 58.68 Al 2 O 3 31.27 27.48 26.08 19.69 18.74 13.98 25.20 24.58 18.56 B 2 O 3 4.19 4.52 6.01 3.60 3.73 0.00 0.19 0.00 1.58 Li 2 O 0.00 5.27 3.28 0.00 0.00 5.83 3.66 2.89 2.95 Na 2 O 18.15 8.64 8.34 13.09 14.03 10.39 8.32 10.93 9.40 K 2 O 0.10 0.11 0.20 0.00 0.00 0.00 1.16 0.00 0.00 MgO 1.31 0.70 0.29 1.40 1.14 0.00 0.21 0.00 0.00 ZnO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.47 4.34 ZrO2 0.00 0.00 0.00 0.00 0.00 5.755 0.00 0.00 0.00 SnO2 0.17 0.049 0.169 0.14 0.184 0.194 0.15 0.11 0.187 Fe2O3 _ 0.00 0.000 0.000 0.05 0.022 0.000 0.000 0.000 0.000 CeO2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 TiO 2 0.00 0.13 0.0007 0.00 0.00 0.00 0.00 0.00 0.00 P 2 O 5 2.16 2.33 2.91 0.00 0.00 0.00 5.39 4.75 4.31 total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Table 4: Exemplary Glass Compositions

在一例示性實施例中,玻璃樣品7之玻璃組成包含約59.70 wt.%之SiO 2;約18.58 wt.%之Al 2O 3;約1.88 wt.%之B 2O 3;約3.10 wt.%之Li 2O;約7.90 wt.%之Na 2O;約4.34 wt.%之ZnO;約0.167 wt.%之SnO 2;約0.022 wt.%之Fe 2O 3及約4.31 wt.%之P 2O 5In an exemplary embodiment, glass sample 7 has a glass composition comprising about 59.70 wt.% SiO 2 ; about 18.58 wt.% Al 2 O 3 ; about 1.88 wt.% B 2 O 3 ; about 3.10 wt. % of Li 2 O; about 7.90 wt.% of Na 2 O; about 4.34 wt.% of ZnO; about 0.167 wt.% of SnO 2 ; about 0.022 wt.% of Fe 2 O 3 and about 4.31 wt.% of P 2 O 5 .

在另一個例示性實施例中,玻璃樣品14之玻璃組成包含約61.58 wt.%之SiO 2;約17.95 wt.%之Al 2O 3;約2.91 wt.%之B 2O 3;約14.75 wt.%之Na 2O;約0.98 wt.%之MgO;約0.187 wt.%之SnO 2及約1.633 wt.%之CeO 2In another exemplary embodiment, glass sample 14 has a glass composition comprising about 61.58 wt.% SiO 2 ; about 17.95 wt.% Al 2 O 3 ; about 2.91 wt.% B 2 O 3 ; about 14.75 wt .% of Na 2 O; about 0.98 wt.% of MgO; about 0.187 wt.% of SnO 2 and about 1.633 wt.% of CeO 2 .

具有良好紫外線及藍光阻斷特性之玻璃組成亦應具有更高之強度。因此,本發明描述離子交換玻璃以獲得高強化特性及更佳的使用壽命。同樣地,已經發現該玻璃在隨後使用鉀鹽及銀鹽之組合在高溫下進行離子交換後,協同地增加了對紫外光及藍光之阻斷。Glass compositions with good UV and blue light blocking properties should also have higher strength. Accordingly, the present invention describes ion-exchanged glasses for high strengthening properties and better service life. Likewise, it has been found that the glass synergistically increases the blocking of ultraviolet and blue light after subsequent ion exchange at high temperature using a combination of potassium and silver salts.

玻璃可經受單離子交換法或雙離子交換法。在一實施例中,離子交換法基於離子之大小。當在玻璃中用較大離子交換較小離子時,較大離子填充先前由較小離子佔據之表面區域,從而在玻璃材料之表面上產生壓縮應力,此與玻璃材料之強度增加相對應。通常的方法係將玻璃浸入在鹼金屬無機鹽或鹼金屬無機鹽與其他無機鹽之混合物的熔融鹽浴中。浸入時間足以在玻璃製品之僅表面層處引起此交換。藉由離子交換法獲得之高壓縮應力有助於玻璃在失效前承受更大量之裝置掉落。此外,玻璃壓縮應力之增加表現出高抗裂性。因此,本發明產生之玻璃可具有更佳的耐久性、高抗裂性、高損壞後保持強度及高猛烈衝擊強度。The glass can be subjected to a single ion exchange process or a double ion exchange process. In one embodiment, the ion exchange method is based on the size of the ions. When larger ions are exchanged for smaller ions in glass, the larger ions fill the surface area previously occupied by smaller ions, creating compressive stress on the surface of the glass material, which corresponds to an increase in the strength of the glass material. The usual method is to immerse the glass in a molten salt bath of an alkali metal inorganic salt or a mixture of an alkali metal inorganic salt and other inorganic salts. The immersion time is sufficient to cause this exchange at only the surface layer of the glass article. The high compressive stress achieved by ion exchange helps the glass withstand a greater number of device drops before failure. In addition, the increase in the compressive stress of the glass exhibits high crack resistance. Therefore, the glass produced by the present invention can have better durability, high crack resistance, high post-damage retention strength and high violent impact strength.

在一實施例中,當玻璃為鋰鋁矽酸鹽玻璃時,玻璃可經受雙離子交換法,隨後經受銀離子交換法。本發明之雙離子交換法包含將玻璃組成中存在之鋰離子與鈉離子進行離子交換之第一步驟。進一步地,第二步驟描述將玻璃組成中存在之鈉離子與鉀離子進行離子交換。雙離子交換法不僅增加了玻璃之阻斷特性,且亦為生物玻璃組成提供了合適的強度。然後可將可雙離子交換之玻璃添加至銀鹽浴中以進行銀離子交換法。In one embodiment, when the glass is a lithium aluminosilicate glass, the glass may be subjected to a double ion exchange process followed by a silver ion exchange process. The double ion exchange method of the present invention comprises a first step of ion-exchanging lithium ions and sodium ions present in the glass composition. Further, the second step describes the ion exchange of sodium ions and potassium ions present in the glass composition. The double ion exchange method not only increases the barrier properties of the glass, but also provides suitable strength for the bioglass composition. The double ion exchangeable glass can then be added to the silver salt bath for the silver ion exchange process.

在另一個實施例中,當玻璃為不含鋰之鋁矽酸鹽玻璃時,玻璃可經受單離子交換法,隨後經受銀離子交換法。本發明之單離子交換法包含將玻璃組成中存在之鈉離子與鉀離子進行離子交換之步驟。此單離子交換法不僅增加了玻璃之阻斷特性,且亦為生物玻璃組成提供了合適的強度。然後可將可單離子交換之玻璃添加至銀鹽浴中以進行銀離子交換法。In another embodiment, when the glass is a lithium-free aluminosilicate glass, the glass can be subjected to a single ion exchange process followed by a silver ion exchange process. The single ion exchange method of the present invention includes the step of ion-exchanging sodium ions and potassium ions present in the glass composition. This single ion exchange method not only increases the barrier properties of the glass, but also provides suitable strength for the bioglass composition. The single ion exchangeable glass can then be added to the silver salt bath for the silver ion exchange process.

表5展示了例示性樣品,其描述厚度為0.7 mm的玻璃樣品7之雙離子交換法及抗微生物交換法以及針對各步驟之對應層深度(DOL_ZERO)、壓縮應力(CS)、中心張力(CT)、玻璃中Ag之wt.%及Ag深度。 序號 1 步驟 2 步驟 抗微生物離子交換 1 步驟 (SLP) 2 步驟 (FSM) PMC CT (MPa) 玻璃中之 Ag (wt.%)    (wt.%) 溫度 ( ) 時間 ( 分鐘 ) (wt.%) 溫度 ( ) 時間 ( 分鐘 ) (wt.%) 溫度 ( ) 時間 ( 分鐘 ) CS (MPa) DOL_ zero (µm) CS (MPa) DOL (µm) CS (MPa) DOL_ zero (µm) CS_TP (MPa) DOL_ TP (µm)         1 60% KNO 3 390 240 100% KNO 3 390 12 100% KNO 3+ 0.003% AgNO 3 390 30 58.41 142.23 1188.42 9.91 1189.89 138.78 52.33 9.5 30 0.0026   2 60% KNO 3 390 240 100% KNO 3 390 12 100% KNO 3+ 0.004% AgNO 3 390 30 60.52 154.84 1188.08 9.99 1189.23 149.21 54.33 9.6 34 0.0026   3 60% KNO 3 390 240 100% KNO 3 390 12 100% KNO 3+ 0.005% AgNO 3 390 30 58.41 142.23 1188.42 9.91 1189.89 138.78 52.33 9.5 30 0.0026   4 60% KNO 3 390 240 100% KNO 3 390 12 100% KNO 3+ 0.006% AgNO 3 390 30 91.11 150.09 1231.76 9.13 1233.34 148.22 74.21 10.10 36 0.0026   5 60% KNO 3 390 240 100% KNO 3 390 12 100% KNO 3+ 0.006% AgNO 3 390 30 101.90 144.04 1228.64 9.08 1230.62 139.81 73.98 10.25 37 0.00213   6 60% KNO 3 390 240 100% KNO 3 390 12 100% KNO 3+ 0.066% AgNO 3 390 30 89.46 158.99 1291.16 8.55 1292.93 151.64 79.89 8.83 47 0.0326   7 60% KNO 3 390 240 100% KNO 3 390 12 100% KNO 3+ 0.066% AgNO 3 390 30 - - - - - - - - - -   8 60% KNO 3 390 240 100% KNO 3 390 12 100% KNO 3+ 0.150% AgNO 3 390 30 - - 1289.53 11.82 - - - - - 0.0552   9 60% KNO 3 390 240 100% KNO 3 390 12 100% KNO 3+ 0.100% AgNO 3 390 30 91.13 151.12 1218.40 8.00 1220.10 145.56 86.64 8.90 48 0.0377   表5:離子交換法之具有針對各步驟之DOL及CS的例示性樣品 Exemplary samples are shown in Table 5 describing the dual ion exchange and antimicrobial exchange methods for glass sample 7 with a thickness of 0.7 mm and the corresponding layer depth (DOL_ZERO), compressive stress (CS), central tension (CT ), wt.% of Ag in glass and Ag depth. serial number Step 1 _ Step 2 _ Antimicrobial Ion Exchange Step 1 ( SLP ) Step 2 ( FSM ) PMC CT (MPa) Ag in glass (wt.%) Salt (wt.%) temperature ( °C ) time ( minutes ) Salt (wt.%) temperature ( °C ) time ( minutes ) Salt (wt.%) temperature ( °C ) time ( minutes ) CS (MPa) DOL_zero (µm) CS (MPa) DOL (µm) CS (MPa) DOL_zero (µm) CS_TP (MPa) DOL_TP (µm) 1 60% KNO 3 390 240 100% KNO 3 390 12 100% KNO 3 + 0.003% AgNO 3 390 30 58.41 142.23 1188.42 9.91 1189.89 138.78 52.33 9.5 30 0.0026 2 60% KNO 3 390 240 100% KNO 3 390 12 100% KNO 3 + 0.004% AgNO 3 390 30 60.52 154.84 1188.08 9.99 1189.23 149.21 54.33 9.6 34 0.0026 3 60% KNO 3 390 240 100% KNO 3 390 12 100% KNO 3 + 0.005% AgNO 3 390 30 58.41 142.23 1188.42 9.91 1189.89 138.78 52.33 9.5 30 0.0026 4 60% KNO 3 390 240 100% KNO 3 390 12 100% KNO 3 + 0.006% AgNO 3 390 30 91.11 150.09 1231.76 9.13 1233.34 148.22 74.21 10.10 36 0.0026 5 60% KNO 3 390 240 100% KNO 3 390 12 100% KNO 3 + 0.006% AgNO 3 390 30 101.90 144.04 1228.64 9.08 1230.62 139.81 73.98 10.25 37 0.00213 6 60% KNO 3 390 240 100% KNO 3 390 12 100% KNO 3 + 0.066% AgNO 3 390 30 89.46 158.99 1291.16 8.55 1292.93 151.64 79.89 8.83 47 0.0326 7 60% KNO 3 390 240 100% KNO 3 390 12 100% KNO 3 + 0.066% AgNO 3 390 30 - - - - - - - - - - 8 60% KNO 3 390 240 100% KNO 3 390 12 100% KNO 3 + 0.150% AgNO 3 390 30 - - 1289.53 11.82 - - - - - 0.0552 9 60% KNO 3 390 240 100% KNO 3 390 12 100% KNO 3 + 0.100% AgNO 3 390 30 91.13 151.12 1218.40 8.00 1220.10 145.56 86.64 8.90 48 0.0377 Table 5: Exemplary samples of the ion exchange method with DOL and CS for each step

在一實施例中,玻璃樣品7由玻璃組成形成,該玻璃組成包含約59.70 wt.%之SiO 2、約18.58 wt.%之Al 2O 3、約1.88 wt.%之B 2O 3、約3.10 wt.%之Li 2O、約7.90 wt.%之Na 2O、約4.34 wt.%之ZnO、約0.167 wt.%之SnO 2、約0.022 wt.%之Fe 2O 3及約4.31 wt.%之P 2O 5。玻璃樣品7為鋰鋁矽酸鹽玻璃。鋰鋁矽酸鹽玻璃之強化較佳地藉由雙離子交換法進行。此外,玻璃樣品7經受銀離子交換法以獲得抗微生物特性。在例示性實施例中,第一離子交換之鹽浴包含40 wt.%之NaNO 3及60 wt.%之KNO 3。在390℃之溫度下,將玻璃樣品7之玻璃基板浸入在鹽浴中持續4小時之時段。玻璃基板經受與158.99 µm深度相對應之89.46 MPa之壓縮應力。在浸入在第一離子交換之鹽浴中之後,玻璃基板進一步經受第二離子交換處理。第二離子交換之鹽浴包含100 wt.%之KNO 3。在390℃之溫度下,將玻璃基板浸入在鹽浴中持續12分鐘。玻璃基板經受與8.55 µm深度相對應之1291.16 MPa之壓縮應力。進一步地,兩步離子交換玻璃基板經受銀離子交換法,其中將玻璃基板浸入在含有100 wt.%之KNO 3及0.066 wt.%之AgNO 3之鹽浴中,其在390℃之溫度下維持30分鐘之時段。玻璃基板在其表面處獲得0.0326 wt.%之Ag。 In one embodiment, glass sample 7 was formed from a glass composition comprising about 59.70 wt.% SiO 2 , about 18.58 wt.% Al 2 O 3 , about 1.88 wt.% B 2 O 3 , about 3.10 wt.% Li 2 O, about 7.90 wt.% Na 2 O, about 4.34 wt.% ZnO, about 0.167 wt.% SnO 2 , about 0.022 wt.% Fe 2 O 3 and about 4.31 wt .% of P 2 O 5 . Glass sample 7 is lithium aluminosilicate glass. Strengthening of the lithium aluminosilicate glass is preferably performed by a double ion exchange method. In addition, glass sample 7 was subjected to silver ion exchange to obtain antimicrobial properties. In an exemplary embodiment, the first ion-exchanged salt bath includes 40 wt.% NaNO 3 and 60 wt.% KNO 3 . The glass substrate of glass sample 7 was immersed in a salt bath at a temperature of 390° C. for a period of 4 hours. The glass substrate was subjected to a compressive stress of 89.46 MPa corresponding to a depth of 158.99 µm. After being immersed in the salt bath of the first ion exchange, the glass substrate is further subjected to a second ion exchange treatment. The second ion exchange salt bath contained 100 wt.% KNO3 . The glass substrate was immersed in a salt bath at a temperature of 390° C. for 12 minutes. The glass substrate was subjected to a compressive stress of 1291.16 MPa corresponding to a depth of 8.55 µm. Further, the two-step ion-exchanged glass substrates were subjected to a silver ion exchange method, in which the glass substrates were immersed in a salt bath containing 100 wt.% of KNO3 and 0.066 wt.% of AgNO3 , which was maintained at a temperature of 390 °C 30 minute period. The glass substrate acquired 0.0326 wt.% Ag at its surface.

表6展示了描述厚度為0.7 mm且具有針對每個步驟之對應層深度(DOL_ZERO)、壓縮應力(CS)、中心張力(CT)、玻璃中Ag之wt.%及Ag深度的玻璃樣品7之離子交換法之第一步驟及離子交換法之第二步驟與抗微生物交換法的例示性樣品。 序號 1 步驟 2 步驟 + 抗微生物離子交換 1 步驟 (SLP) 2 步驟 + 抗微生物離子交換 (FSM) PMC CT (MPa) 玻璃中之 Ag (wt.%) (wt.%) 溫度 ( ) 時間 ( 分鐘 ) (wt.%) 溫度 ( ) 時間 ( 分鐘 ) CS (MPa) DOL_ zero (µm) CS (MPa) DOL_ zero (µm) CS (MPa) DOL_ zero (µm) CS_TP (MPa) DOL_ TP (µm) 1 60% KNO 3 390 240 100% KNO 3+ 0.003% AgNO 3 390 12+30 60.52 154.84 1188.08 9.99 1189.23 149.21 54.33 9.6 30 0.0026 2 60% KNO 3 390 240 100% KNO 3+ 0.004% AgNO 3 390 12+30 58.41 142.23 1188.42 9.91 1189.89 138.78 52.33 9.5 34 0.0026 3 60% KNO 3 390 240 100% KNO 3+ 0.005% AgNO 3 390 12+30 101.90 144.04 1228.64 9.08 1230.62 139.81 73.98 10.25 34 0.0026 4 60% KNO 3 390 240 100% KNO 3+ 0.006% AgNO 3 390 12+30 60.52 154.84 1188.08 9.99 1189.23 149.21 54.33 9.6 30 0.0023 5 60% KNO 3 390 240 100% KNO 3+ 0.066% AgNO 3 390 12+30 58.41 142.23 1188.42 9.91 1189.89 138.78 52.33 9.5 34 0.0214 表6:離子交換法之具有針對各步驟之DOL及CS的例示性樣品 Table 6 shows the description of glass sample 7 with a thickness of 0.7 mm and with corresponding layer depth (DOL_ZERO), compressive stress (CS), central tension (CT), wt.% of Ag in the glass and Ag depth for each step. Exemplary samples of the first step of the ion exchange method and the second step of the ion exchange method and the antimicrobial exchange method. serial number Step 1 _ Step 2 + Antimicrobial Ion Exchange Step 1 ( SLP ) Step 2 + Antimicrobial Ion Exchange ( FSM) PMC CT (MPa) Ag in glass (wt.%) Salt (wt.%) temperature ( °C ) time ( minutes ) Salt (wt.%) temperature ( °C ) time ( minutes ) CS (MPa) DOL_zero (µm) CS (MPa) DOL_zero (µm) CS (MPa) DOL_zero (µm) CS_TP (MPa) DOL_TP (µm) 1 60% KNO 3 390 240 100% KNO 3 + 0.003% AgNO 3 390 12+30 60.52 154.84 1188.08 9.99 1189.23 149.21 54.33 9.6 30 0.0026 2 60% KNO 3 390 240 100% KNO 3 + 0.004% AgNO 3 390 12+30 58.41 142.23 1188.42 9.91 1189.89 138.78 52.33 9.5 34 0.0026 3 60% KNO 3 390 240 100% KNO 3 + 0.005% AgNO 3 390 12+30 101.90 144.04 1228.64 9.08 1230.62 139.81 73.98 10.25 34 0.0026 4 60% KNO 3 390 240 100% KNO 3 + 0.006% AgNO 3 390 12+30 60.52 154.84 1188.08 9.99 1189.23 149.21 54.33 9.6 30 0.0023 5 60% KNO 3 390 240 100% KNO 3 + 0.066% AgNO 3 390 12+30 58.41 142.23 1188.42 9.91 1189.89 138.78 52.33 9.5 34 0.0214 Table 6: Exemplary samples of the ion exchange method with DOL and CS for each step

在一實施例中,玻璃樣品7由玻璃組成形成,該玻璃組成包含約59.70 wt.%之SiO 2、約18.58 wt.%之Al 2O 3、約1.88 wt.%之B 2O 3、約3.10 wt.%之Li 2O、約7.90 wt.%之Na 2O、約4.34 wt.%之ZnO、約0.167 wt.%之SnO 2、約0.022 wt.%之Fe 2O 3及約4.31 wt.%之P 2O 5。玻璃樣品7為鋰鋁矽酸鹽玻璃。玻璃樣品7經受第一步驟離子交換法以及第二步驟離子交換法及銀離子交換法之組合法以獲得玻璃強化特性及抗微生物特性。在例示性實施例中,第一離子交換之鹽浴包含40 wt.%之NaNO 3及60 wt.%之KNO 3。在390℃之溫度下,將玻璃樣品7之玻璃基板浸入在鹽浴中持續4小時之時段。玻璃基板經受與144.04 µm深度相對應之101.90 MPa之壓縮應力。在浸入在第一離子交換處理之鹽浴中之後,玻璃基板進一步經受第二離子交換處理及銀離子交換處理之組合法。第二離子交換之鹽浴包含100 wt.%之KNO 3及0.005 wt.%之AgNO 3。在390℃之溫度下,將玻璃基板浸入在鹽浴中持續42分鐘。最初,允許第二離子交換處理持續12分鐘。因此,玻璃基板經受與9.08 µm深度相對應之1228.64 MPa之壓縮應力。隨後,允許銀離子交換處理持續30分鐘。因此,玻璃基板在其表面處獲得0.0026 wt.%之Ag。 In one embodiment, glass sample 7 was formed from a glass composition comprising about 59.70 wt.% SiO 2 , about 18.58 wt.% Al 2 O 3 , about 1.88 wt.% B 2 O 3 , about 3.10 wt.% Li 2 O, about 7.90 wt.% Na 2 O, about 4.34 wt.% ZnO, about 0.167 wt.% SnO 2 , about 0.022 wt.% Fe 2 O 3 and about 4.31 wt .% of P 2 O 5 . Glass sample 7 is lithium aluminosilicate glass. Glass sample 7 was subjected to a first step ion exchange process and a second step combination of ion exchange and silver ion exchange to obtain glass strengthening properties and antimicrobial properties. In an exemplary embodiment, the first ion-exchanged salt bath includes 40 wt.% NaNO 3 and 60 wt.% KNO 3 . The glass substrate of glass sample 7 was immersed in a salt bath at a temperature of 390° C. for a period of 4 hours. The glass substrate was subjected to a compressive stress of 101.90 MPa corresponding to a depth of 144.04 µm. After being immersed in the salt bath of the first ion exchange treatment, the glass substrate was further subjected to a combination of a second ion exchange treatment and a silver ion exchange treatment. The second ion exchange salt bath contained 100 wt.% KNO 3 and 0.005 wt.% AgNO 3 . The glass substrate was immersed in a salt bath at a temperature of 390° C. for 42 minutes. Initially, the second ion exchange treatment was allowed to continue for 12 minutes. Therefore, the glass substrate is subjected to a compressive stress of 1228.64 MPa corresponding to a depth of 9.08 µm. Subsequently, the silver ion exchange treatment was allowed to continue for 30 minutes. Thus, the glass substrate acquires 0.0026 wt.% of Ag at its surface.

表7展示了描述厚度為0.7 mm且具有針對各步驟之對應層深度(DOL_ZERO)、壓縮應力(CS)、中心張力(CT)、玻璃中Ag之wt.%及Ag深度的玻璃樣品14之單離子交換法及抗微生物交換法的例示性樣品。 序號 1 步驟 抗微生物離子交換 1 步驟 (FSM) CT (MPa) 玻璃中之 Ag (wt.%) (wt.%) 溫度 ( ) 時間 ( 分鐘 ) (wt.%) 溫度 ( ) 時間 ( 分鐘 ) CS (MPa) DOL_zero (µm) 1 100% KNO 3 420 210 100% KNO 3+0.003% AgNO 3 420 30 891.30 26.170 31 0.0020 2 100% KNO 3 420 210 100% KNO 3+0.003% AgNO 3 420 30 918.50 26.887 32 0.0020 3 100% KNO 3 430 250 100% KNO 3+0.004% AgNO 3 430 30 948.24 38.420 60 0.0030 4 100% KNO 3 430 250 100% KNO 3+0.005% AgNO 3 430 30 933.51 37.250 57 0.0120 5 100% KNO 3 450 210 100% KNO 3+0.066% AgNO 3 450 30 933.51 37.300 31 0.0214 表7:離子交換法之具有針對各步驟之DOL及CS的例示性樣品 Table 7 presents a list describing glass sample 14 with a thickness of 0.7 mm and with corresponding layer depth (DOL_ZERO), compressive stress (CS), central tension (CT), wt.% of Ag in the glass and Ag depth for each step Exemplary samples for ion exchange and antimicrobial exchange. serial number Step 1 _ Antimicrobial Ion Exchange Step 1 ( FSM) CT (MPa) Ag in glass (wt.%) Salt (wt.%) temperature ( °C ) time ( minutes ) Salt (wt.%) temperature ( °C ) time ( minutes ) CS (MPa) DOL_zero (µm) 1 100% KNO 3 420 210 100% KNO 3 +0.003% AgNO 3 420 30 891.30 26.170 31 0.0020 2 100% KNO 3 420 210 100% KNO 3 +0.003% AgNO 3 420 30 918.50 26.887 32 0.0020 3 100% KNO 3 430 250 100% KNO 3 +0.004% AgNO 3 430 30 948.24 38.420 60 0.0030 4 100% KNO 3 430 250 100% KNO 3 +0.005% AgNO 3 430 30 933.51 37.250 57 0.0120 5 100% KNO 3 450 210 100% KNO 3 +0.066% AgNO 3 450 30 933.51 37.300 31 0.0214 Table 7: Exemplary samples of the ion exchange method with DOL and CS for each step

在一實施例中,玻璃樣品14由玻璃組成形成,該玻璃組成包含約61.58 wt.%之SiO 2、約17.95 wt.%之Al 2O 3、約2.91 wt.%之B 2O 3、約14.75 wt.%之Na 2O、約0.98 wt.%之MgO、約0.187 wt.%之SnO 2及約1.633 wt.%之CeO 2。玻璃樣品7為鈉鋁矽酸鹽玻璃。玻璃樣品14經受第一步驟離子交換法及銀離子交換法以分別獲得玻璃強化特性及抗微生物特性。在例示性實施例種,第一離子交換之鹽浴包含100 wt.%之KNO 3。在430℃之溫度下,將玻璃樣品14之玻璃基板浸入在鹽浴中持續250分鐘之時段。玻璃基板經受與37.250 µm深度相對應之933.51 MPa之壓縮應力。進一步地,兩步離子交換玻璃基板經受銀離子交換法,其中將玻璃基板浸入在含有100 wt.%之KNO 3及0.005 wt.%之AgNO 3之鹽浴中,其在430℃之溫度下維持30分鐘之時段。玻璃基板在其表面處獲得0.0120 wt.%之Ag。 In one embodiment, glass sample 14 is formed from a glass composition comprising about 61.58 wt.% SiO 2 , about 17.95 wt.% Al 2 O 3 , about 2.91 wt.% B 2 O 3 , about 14.75 wt.% of Na 2 O, about 0.98 wt.% of MgO, about 0.187 wt.% of SnO 2 and about 1.633 wt.% of CeO 2 . Glass sample 7 is a soda aluminosilicate glass. Glass sample 14 was subjected to first step ion exchange and silver ion exchange to obtain glass strengthening properties and antimicrobial properties, respectively. In an exemplary embodiment, the first ion-exchange salt bath contains 100 wt.% KNO 3 . The glass substrate of glass sample 14 was immersed in a salt bath at a temperature of 430° C. for a period of 250 minutes. The glass substrate was subjected to a compressive stress of 933.51 MPa corresponding to a depth of 37.250 µm. Further, the two-step ion-exchanged glass substrates were subjected to a silver ion exchange method, in which the glass substrates were immersed in a salt bath containing 100 wt.% of KNO3 and 0.005 wt.% of AgNO3 , which was maintained at a temperature of 430 °C 30 minute period. The glass substrate received 0.0120 wt.% Ag at its surface.

表8展示了描述厚度為0.7 mm且具有針對各步驟之對應層深度(DOL_ZERO)、壓縮應力(CS)、中心張力(CT)、玻璃中Ag之wt.%及Ag深度的玻璃樣品14之第一步驟之離子交換法與抗微生物交換法的例示性樣品。 序號 第1 + 抗微生物離子交換 第1 步驟(FSM) CT (MPa) 玻璃中之Ag (wt.%) (wt.%) 溫度 ( ℃) 時間 ( 分鐘) CS (MPa) DOL_zero (µm) 1 100% KNO 3+0.003% AgNO 3 420 210+30 918.50 26.89 32 0.002 2 100% KNO 3+0.004% AgNO 3 430 250+30 948.24 38.40 60 0.003 3 100% KNO 3+0.005% AgNO 3 450 210+30 933.51 37.30 57 0.012 4 100% KNO 3+0.066% AgNO 3 420 210+30 933.51 37.30 31 0.0214 表8:離子交換法之具有針對各步驟之DOL及CS的例示性樣品 Table 8 shows the first description of glass sample 14 with a thickness of 0.7 mm and with corresponding layer depth (DOL_ZERO), compressive stress (CS), central tension (CT), wt.% of Ag in the glass and Ag depth for each step. Exemplary samples of one-step ion exchange and antimicrobial exchange. serial number 1st + Antimicrobial Ion Exchanger Step 1 (FSM) CT (MPa) Ag in glass (wt.%) Salt (wt.%) temperature ( °C) time ( minutes) CS (MPa) DOL_zero (µm) 1 100% KNO 3 +0.003% AgNO 3 420 210+30 918.50 26.89 32 0.002 2 100% KNO 3 +0.004% AgNO 3 430 250+30 948.24 38.40 60 0.003 3 100% KNO 3 +0.005% AgNO 3 450 210+30 933.51 37.30 57 0.012 4 100% KNO 3 +0.066% AgNO 3 420 210+30 933.51 37.30 31 0.0214 Table 8: Exemplary samples of the ion exchange method with DOL and CS for each step

在一實施例中,玻璃樣品14由玻璃組成形成,該玻璃組成包含約61.58 wt.%之SiO 2、約17.95 wt.%之Al 2O 3、約2.91 wt.%之B 2O 3、約14.75 wt.%之Na 2O、約0.98 wt.%之MgO、約0.187 wt.%之SnO 2及約1.633 wt.%之CeO 2。玻璃樣品7為鈉鋁矽酸鹽玻璃。玻璃樣品14經受第一離子交換處理及銀離子交換處理之組合法。組合法之鹽浴包含100 wt.%之KNO 3及0.005 wt.%之AgNO 3。在450℃之溫度下,將玻璃基板浸入在鹽浴中持續240分鐘。最初,允許第一離子交換處理持續210分鐘。因此,玻璃基板經受與37.30 µm深度相對應之933.51 MPa之壓縮應力。隨後,允許銀離子交換處理持續30分鐘。因此,玻璃基板在其表面處獲得0.012 wt.%之Ag。 In one embodiment, glass sample 14 is formed from a glass composition comprising about 61.58 wt.% SiO 2 , about 17.95 wt.% Al 2 O 3 , about 2.91 wt.% B 2 O 3 , about 14.75 wt.% of Na 2 O, about 0.98 wt.% of MgO, about 0.187 wt.% of SnO 2 and about 1.633 wt.% of CeO 2 . Glass sample 7 is a soda aluminosilicate glass. Glass sample 14 was subjected to a combination of a first ion exchange treatment and a silver ion exchange treatment. The combined salt bath contains 100 wt.% KNO 3 and 0.005 wt.% AgNO 3 . At a temperature of 450° C., the glass substrate was immersed in a salt bath for 240 minutes. Initially, the first ion exchange treatment was allowed to continue for 210 minutes. Therefore, the glass substrate experiences a compressive stress of 933.51 MPa corresponding to a depth of 37.30 µm. Subsequently, the silver ion exchange treatment was allowed to continue for 30 minutes. Therefore, the glass substrate acquires 0.012 wt.% Ag at its surface.

如在表6及表8中所描述,離子交換法可與抗微生物離子交換法組合以減少離子交換法之額外步驟。此方法減少了設置單元空間且最佳化生產成本。As described in Table 6 and Table 8, the ion exchange method can be combined with the antimicrobial ion exchange method to reduce the additional steps of the ion exchange method. This method reduces setup unit space and optimizes production costs.

術語「抗微生物劑」意謂殺死來自由細菌、病毒及真菌組成之至少兩個家族的微生物或抑制其生長之藥劑或材料、或含有該藥劑或材料的表面。抗微生物銀離子之表面濃度係指玻璃表面上之濃度,且以µg/cm 2給出。對數減少(R)為數學術語,其用於表示藉由消毒消除之活微生物之相對數量。其表示為: R = Log 10(C a/C 0), 其中C a=處理前微生物之菌落形成單位(CFU)且C 0=處理後微生物之菌落形成單位(CFU)。例如,對數減少1對應於使90%之目標微生物失活,而對數減少2對應於使99%之目標微生物失活。銀之較高表面濃度之非常重要及獨特的優勢為減少細菌「殺死」時間。此外,對數減少數描述了玻璃對微生物,具體地對細菌之抗性。 The term "antimicrobial agent" means an agent or material, or a surface containing the agent or material, that kills or inhibits the growth of microorganisms from at least two families consisting of bacteria, viruses, and fungi. The surface concentration of antimicrobial silver ions refers to the concentration on the glass surface and is given in µg/ cm2 . Log reduction (R) is a mathematical term used to express the relative number of viable microorganisms eliminated by disinfection. It is expressed as: R = Log 10 (C a /C 0 ), where C a = colony forming unit (CFU) of the microorganism before treatment and C 0 = colony forming unit (CFU) of the microorganism after treatment. For example, a log reduction of 1 corresponds to the inactivation of 90% of the target microorganisms, while a log reduction of 2 corresponds to the inactivation of 99% of the target microorganisms. A very important and unique advantage of the higher surface concentration of silver is to reduce the bacterial "kill" time. Furthermore, the log reduction describes the resistance of the glass to microorganisms, in particular to bacteria.

表9展示了厚度為0.7 mm之生物玻璃7所經受之抗微生物測試的例示性樣品以證明其抗微生物特性以及對應的細菌對數減少數及真菌之生長速率。 序號 AgNO 3(wt.%) 目標 CS (MPa) DOL_Zero/ DOC ( 微米 ) 玻璃中之 Ag (wt.%) 起始細菌計數 (CFU/cm 2) 時間 最終細菌計數 (CFU/cm 2) 對數減少數 (R) 起始真菌範圍 (CFU/ml) 時間 真菌之生長速率 測試結果 1 0.066% 真菌 1304.70 143.53 0.0327 - - - - 8.0 *10 5至1.2 *10 6 28天 0 合格 2 0.066% 細菌 1304.70 143.53 0.0341 1.1 *10 4 24小時 < 0.63 > 5.6 - - - 合格 3 0.100% 真菌 1323.00 140.36 0.0505 - - - - 8.0 *10 5至1.2 *10 6 28天 0 合格 4 0.100% 細菌 1323.00 140.36 0.0489 1.1 *10 4 24小時 < 0.63 > 5.4 - - - 合格 表9:生物玻璃之抗微生物測試的例示性樣品 Table 9 shows exemplary samples of the antimicrobial tests to which Bioglass 7 with a thickness of 0.7 mm was subjected to demonstrate its antimicrobial properties and the corresponding log reduction of bacteria and growth rate of fungi. serial number AgNO 3 (wt.%) Target CS (MPa) DOL_Zero/ DOC ( microns ) Ag in glass (wt.%) Initial bacterial count (CFU/cm 2 ) time Final bacterial count (CFU/cm 2 ) Log reduction (R) Starting fungal range (CFU/ml) time fungal growth rate Test Results 1 0.066% fungus 1304.70 143.53 0.0327 - - - - 8.0 * 105 to 1.2 * 106 28 days 0 qualified 2 0.066% bacteria 1304.70 143.53 0.0341 1.1 * 10 4 24 hours < 0.63 > 5.6 - - - qualified 3 0.100% fungus 1323.00 140.36 0.0505 - - - - 8.0 * 105 to 1.2 * 106 28 days 0 qualified 4 0.100% bacteria 1323.00 140.36 0.0489 1.1 * 10 4 24 hours < 0.63 > 5.4 - - - qualified Table 9: Exemplary samples for antimicrobial testing of bioglass

在例示性實施例中,玻璃樣品7由玻璃組成形成,該玻璃組成包含約59.70 wt.%之SiO 2、約18.58 wt.%之Al 2O 3、約1.88 wt.%之B 2O 3、約3.10 wt.%之Li 2O、約7.90 wt.%之Na 2O、約4.34 wt.%之ZnO、約0.167 wt.%之SnO 2、約0.022 wt.%之Fe 2O 3及約4.31 wt.%之P 2O 5。玻璃樣品7最初經受雙離子交換法以增強其表面。進一步地,將離子交換玻璃樣品浸漬在含有0.066 wt.% Ag之離子交換浴中。玻璃基板經受與143.53 µm深度相對應之1304.70 MPa之壓縮應力。最初,離子交換玻璃樣品7經受真菌測試。將玻璃樣品7暴露於8.0 *10 5至1.2 *10 6cfu/ml之範圍內之真菌持續28天。實驗結果展示,真菌在玻璃表面上之生長速率為零。因此,可以說測試結果係合格的,因為玻璃樣品7之抗微生物特性抑制了真菌之生長速率,由此提供了其對真菌之抗性。進一步地,離子交換玻璃樣品7經受細菌測試。將玻璃樣品7暴露於1.1 *10 4cfu/cm 2之範圍內之細菌持續24小時。實驗結果展示,對數減少數(R)大於5.6,其大於玻璃展示抗微生物特性所需之基本對數減少數(R)。因此,可以說測試結果係合格的,因為玻璃樣品7之抗微生物特性抑制了細菌在其表面上之生長。 In an exemplary embodiment, glass sample 7 was formed from a glass composition comprising about 59.70 wt.% SiO 2 , about 18.58 wt.% Al 2 O 3 , about 1.88 wt.% B 2 O 3 , About 3.10 wt.% of Li 2 O, about 7.90 wt.% of Na 2 O, about 4.34 wt.% of ZnO, about 0.167 wt.% of SnO 2 , about 0.022 wt.% of Fe 2 O 3 and about 4.31 wt.% of P 2 O 5 . Glass sample 7 was initially subjected to a double ion exchange method to strengthen its surface. Further, the ion-exchanged glass samples were immersed in an ion-exchange bath containing 0.066 wt.% Ag. The glass substrate was subjected to a compressive stress of 1304.70 MPa corresponding to a depth of 143.53 µm. Initially, ion-exchanged glass sample 7 was subjected to fungal testing. Glass sample 7 was exposed to fungi in the range of 8.0 * 105 to 1.2 * 106 cfu/ml for 28 days. Experimental results showed that the growth rate of the fungus on the glass surface was zero. Therefore, it can be said that the test results are acceptable because the antimicrobial properties of glass sample 7 suppressed the growth rate of the fungus, thereby providing its resistance to the fungus. Further, ion-exchanged glass sample 7 was subjected to a bacteriological test. Glass sample 7 was exposed to bacteria in the range of 1.1 * 104 cfu/ cm2 for 24 hours. Experimental results show that the log reduction (R) is greater than 5.6, which is greater than the basic log reduction (R) required for glass to exhibit antimicrobial properties. Therefore, it can be said that the test results are acceptable because the antimicrobial properties of glass sample 7 inhibited the growth of bacteria on its surface.

本發明集中於更改生物玻璃組成之特性。以具體數量併入Fe 2O 3及CeO 2使得紫外線及藍光阻斷特性得到改良。類似地,生物玻璃組成中銀之存在增強了玻璃之抗微生物特性。 The present invention focuses on modifying the properties of the bioglass composition. Incorporation of Fe 2 O 3 and CeO 2 in specific amounts results in improved UV and blue light blocking properties. Similarly, the presence of silver in the composition of bioglass enhances the antimicrobial properties of the glass.

表10展示了具有不同數量之Fe 2O 3及CeO 2組分之非限制性例示性蓋玻璃組成以及其對應紫外線阻斷%、藍色阻斷%、玻璃中Ag之wt.%及玻璃之FOMBFG值。 玻璃樣品 Fe 2O 3 (wt.%) CeO 2 (wt.%) ppm Fe 實驗結果 玻璃中之 Ag (wt.%) FOMBFG (µg/cm 2) 紫外線阻斷 %/380 nm 藍光阻斷 %/430 nm 1 0.078 1.110 885 56% 25% 0.020 28.0 2 0.094 0.000 940 9% 8% 0.020 1.4 3 0.061 0.000 731 14% 12% 0.025 4.2 4 0.000 1.110 186 50% 23% 0.028 31.6 5 0.000 1.110 183 40% 21% 0.030 25.2 6 0.060 1.110 728 22% 15% 0.033 10.7 7 0.220 0.000 390 13% 10% 0.020 2.6 8 0.113 1.610 1201 73% 34% 0.038 93.1 9 0.000 1.620 185 78% 37% 0.040 115.4 14 0.000 1.633 190 22% 18% 0.040 15.8 15 0.048 2.563 609 41% 28% 0.040 45.9 表10:Fe 2O 3及CeO 2組分之數量以及其對應紫外線阻斷%及藍光阻斷% Table 10 shows non - limiting exemplary cover glass compositions with varying amounts of Fe2O3 and CeO2 components and their corresponding % UV blocking, % blue blocking, wt.% of Ag in the glass, and % of Ag in the glass. FOMBFG value. glass sample Fe 2 O 3 (wt.%) CeO 2 (wt.%) Total ppm Fe Experimental results Ag in glass (wt.%) FOMBFG value (µg/cm 2 ) UV blocking %/380 nm Blue light blocking %/430 nm 1 0.078 1.110 885 56% 25% 0.020 28.0 2 0.094 0.000 940 9% 8% 0.020 1.4 3 0.061 0.000 731 14% 12% 0.025 4.2 4 0.000 1.110 186 50% twenty three% 0.028 31.6 5 0.000 1.110 183 40% twenty one% 0.030 25.2 6 0.060 1.110 728 twenty two% 15% 0.033 10.7 7 0.220 0.000 390 13% 10% 0.020 2.6 8 0.113 1.610 1201 73% 34% 0.038 93.1 9 0.000 1.620 185 78% 37% 0.040 115.4 14 0.000 1.633 190 twenty two% 18% 0.040 15.8 15 0.048 2.563 609 41% 28% 0.040 45.9 Table 10: Quantities of Fe 2 O 3 and CeO 2 components and their corresponding UV blocking % and blue light blocking %

如在表10中所指出,Fe 2O 3在將紫外線透射特性併入至生物玻璃組成中起重要作用。Fe 2O 3為染色玻璃之組分。因此,為了在提高透明度的同時獲得合適的紫外線阻斷特性,按wt.%百分比計,0 wt.%至3 wt.%之Fe 2O 3含量係較佳的。 As noted in Table 10, Fe 2 O 3 plays an important role in incorporating UV transmission properties into bioglass compositions. Fe 2 O 3 is a component of stained glass. Therefore, in order to obtain suitable ultraviolet blocking properties while improving transparency, the content of Fe 2 O 3 is preferably 0 wt.% to 3 wt.% in terms of wt.%.

進一步地,CeO 2之存在在提供對紫外光之強烈阻斷及對藍光之顯著阻斷方面起另一重要作用。較佳地,生物玻璃組成中CeO 2含量在0 wt.%至3 wt.%之範圍內。 Further, the presence of CeO2 plays another important role in providing strong blocking of ultraviolet light and significant blocking of blue light. Preferably, the content of CeO 2 in the bioglass composition is in the range of 0 wt.% to 3 wt.%.

藉由改變玻璃組分之wt.%來即興改變玻璃特性引起紫外線及藍光阻斷特性之增加。圖1展示了指示在200 nm至1100 nm之波長上穿過各種玻璃樣品之光透射百分比的圖。橫軸(X軸線)指示入射在玻璃樣品上之光之波長,而縱軸(Y軸線)指示穿過玻璃樣品之光透射率%。曲線指示各種玻璃樣品,該等玻璃樣品包括玻璃樣品1、玻璃樣品2、玻璃樣品3、玻璃樣品4、玻璃樣品5、玻璃樣品6、玻璃樣品7、玻璃樣品8、玻璃樣品9及玻璃樣品14。光透射率%指示穿過玻璃樣品之光能量。藉由比較自左至右之曲線,觀測到右側曲線之光透射率百分比顯著降低,尤其自250 nm至500 nm。最右側之曲線表示光吸收之顯著改良。與最左側之曲線相比,右側之曲線表示更佳地阻斷紫外線及藍光。Improving the properties of the glass by varying the wt.% of the glass components results in an increase in UV and blue light blocking properties. Figure 1 shows a graph indicating the percent light transmission through various glass samples at wavelengths from 200 nm to 1100 nm. The horizontal axis (X-axis) indicates the wavelength of light incident on the glass sample, while the vertical axis (Y-axis) indicates the % light transmission through the glass sample. The curves indicate various glass samples including glass sample 1, glass sample 2, glass sample 3, glass sample 4, glass sample 5, glass sample 6, glass sample 7, glass sample 8, glass sample 9, and glass sample 14 . Light transmission % indicates the energy of light passing through the glass sample. By comparing the curves from left to right, it is observed that the percent light transmittance of the right curve decreases significantly, especially from 250 nm to 500 nm. The rightmost curve represents a significant improvement in light absorption. Compared with the curve on the far left, the curve on the right indicates better blocking of UV and blue light.

表11定義了在200 nm至1100 nm之波長上穿過各種玻璃組成之光透射率的百分比。 波長 (nm) 不同玻璃樣品之透射率 (%) 1 2 3 4 5 6 7 8 9 14 200 nm 0.00 0.00 0.22 0.08 0.00 0.06 0.07 0.11 0.07 0.01 225 nm 0.00 0.00 0.13 0.06 0.01 0.01 0.08 0.24 0.00 0.00 250 nm 0.00 0.00 0.10 0.04 0.00 0.02 1.06 0.26 0.01 0.00 275 nm 0.00 0.00 1.33 0.00 0.01 0.06 13.90 0.21 0.01 0.00 300 nm 0.01 10.00 29.79 0.10 0.02 0.11 55.42 0.36 0.04 0.00 325 nm 2.58 64.00 70.96 6.35 15.23 24.95 79.73 0.75 0.34 0.01 350 nm 18.53 87.50 83.16 25.71 40.13 66.94 85.70 7.76 4.06 25.79 375 nm 39.81 91.00 86.17 45.69 57.08 77.13 87.54 23.26 18.08 75.50 400 nm 59.70 92.00 87.53 63.21 70.07 82.01 88.51 44.44 40.07 81.12 425 nm 73.23 92.50 88.25 74.94 78.22 84.52 89.07 62.93 59.97 82.29 450 nm 80.81 92.75 88.72 81.35 82.46 85.87 89.56 74.73 72.49 82.89 475 nm 84.67 92.75 89.12 84.50 84.53 86.79 89.99 81.07 79.01 83.40 500 nm 86.53 92.75 89.43 86.00 85.56 87.35 90.29 84.15 82.24 83.84 525 nm 87.55 93.00 89.70 86.61 86.13 87.80 90.53 85.77 83.93 84.25 550 nm 88.22 93.00 89.91 86.64 86.48 88.15 91.74 86.73 85.02 84.63 575 nm 88.69 93.00 90.05 86.50 86.81 88.41 90.79 87.44 85.83 84.97 600 nm 89.11 93.15 90.15 86.63 86.99 88.62 91.01 88.00 86.48 85.21 625 nm 89.51 93.00 90.22 86.90 87.21 88.81 91.06 88.53 87.11 85.49 650 nm 89.90 93.00 90.23 87.41 87.41 88.97 91.15 88.97 87.66 85.71 675 nm 90.15 92.80 90.23 88.06 87.59 89.14 91.17 89.37 88.17 85.99 700 nm 90.42 92.75 90.23 88.78 87.76 89.28 91.17 89.78 88.63 86.16 725 nm 90.70 92.60 90.14 89.32 87.86 89.39 91.13 90.05 88.97 86.31 750 nm 90.93 92.50 90.09 89.66 88.07 89.54 91.14 90.37 89.33 86.55 775 nm 91.13 92.25 89.97 89.87 88.18 89.63 91.01 90.59 89.62 86.70 800 nm 91.33 92.10 89.82 90.06 88.29 89.73 90.96 90.79 89.85 86.84 825 nm 91.47 92.00 89.74 90.23 88.42 89.84 90.89 90.98 90.09 87.01 850 nm 91.65 91.85 89.60 90.37 88.50 89.92 90.85 91.12 90.26 87.13 875 nm 91.80 91.75 89.51 90.48 88.61 90.00 90.80 91.26 90.42 87.29 900 nm 91.96 91.60 89.40 90.58 88.65 90.05 90.69 91.32 90.51 87.30 925 nm 92.10 91.50 89.41 90.78 88.85 90.24 90.73 91.49 90.73 87.54 950 nm 92.22 91.50 89.32 90.79 88.81 90.25 90.62 91.54 90.76 87.62 975 nm 92.28 91.45 89.30 90.89 88.89 90.32 90.62 91.62 90.86 87.71 1000 nm 92.36 91.50 89.37 91.05 89.03 90.47 90.68 91.71 91.00 87.88 1025 nm 92.24 91.50 89.31 91.06 88.99 90.46 90.64 91.75 91.05 87.97 1050 nm 92.09 91.50 89.39 91.18 89.07 90.55 90.70 91.83 91.17 88.18 1075 nm 92.02 91.50 89.43 91.24 89.10 90.58 90.73 91.86 91.17 88.27 1100 nm 91.99 91.50 89.41 91.20 89.04 90.55 90.71 91.84 91.22 88.35 表11:穿過例示性玻璃之光透射率% Table 11 defines the percentage of light transmission through various glass compositions at wavelengths from 200 nm to 1100 nm. wavelength (nm) Transmittance of different glass samples (%) 1 2 3 4 5 6 7 8 9 14 200 nm 0.00 0.00 0.22 0.08 0.00 0.06 0.07 0.11 0.07 0.01 225 nm 0.00 0.00 0.13 0.06 0.01 0.01 0.08 0.24 0.00 0.00 250 nm 0.00 0.00 0.10 0.04 0.00 0.02 1.06 0.26 0.01 0.00 275 nm 0.00 0.00 1.33 0.00 0.01 0.06 13.90 0.21 0.01 0.00 300 nm 0.01 10.00 29.79 0.10 0.02 0.11 55.42 0.36 0.04 0.00 325 nm 2.58 64.00 70.96 6.35 15.23 24.95 79.73 0.75 0.34 0.01 350 nm 18.53 87.50 83.16 25.71 40.13 66.94 85.70 7.76 4.06 25.79 375 nm 39.81 91.00 86.17 45.69 57.08 77.13 87.54 23.26 18.08 75.50 400 nm 59.70 92.00 87.53 63.21 70.07 82.01 88.51 44.44 40.07 81.12 425 nm 73.23 92.50 88.25 74.94 78.22 84.52 89.07 62.93 59.97 82.29 450 nm 80.81 92.75 88.72 81.35 82.46 85.87 89.56 74.73 72.49 82.89 475 nm 84.67 92.75 89.12 84.50 84.53 86.79 89.99 81.07 79.01 83.40 500 nm 86.53 92.75 89.43 86.00 85.56 87.35 90.29 84.15 82.24 83.84 525 nm 87.55 93.00 89.70 86.61 86.13 87.80 90.53 85.77 83.93 84.25 550 nm 88.22 93.00 89.91 86.64 86.48 88.15 91.74 86.73 85.02 84.63 575 nm 88.69 93.00 90.05 86.50 86.81 88.41 90.79 87.44 85.83 84.97 600 nm 89.11 93.15 90.15 86.63 86.99 88.62 91.01 88.00 86.48 85.21 625 nm 89.51 93.00 90.22 86.90 87.21 88.81 91.06 88.53 87.11 85.49 650 nm 89.90 93.00 90.23 87.41 87.41 88.97 91.15 88.97 87.66 85.71 675 nm 90.15 92.80 90.23 88.06 87.59 89.14 91.17 89.37 88.17 85.99 700 nm 90.42 92.75 90.23 88.78 87.76 89.28 91.17 89.78 88.63 86.16 725 nm 90.70 92.60 90.14 89.32 87.86 89.39 91.13 90.05 88.97 86.31 750 nm 90.93 92.50 90.09 89.66 88.07 89.54 91.14 90.37 89.33 86.55 775 nm 91.13 92.25 89.97 89.87 88.18 89.63 91.01 90.59 89.62 86.70 800 nm 91.33 92.10 89.82 90.06 88.29 89.73 90.96 90.79 89.85 86.84 825 nm 91.47 92.00 89.74 90.23 88.42 89.84 90.89 90.98 90.09 87.01 850 nm 91.65 91.85 89.60 90.37 88.50 89.92 90.85 91.12 90.26 87.13 875 nm 91.80 91.75 89.51 90.48 88.61 90.00 90.80 91.26 90.42 87.29 900 nm 91.96 91.60 89.40 90.58 88.65 90.05 90.69 91.32 90.51 87.30 925 nm 92.10 91.50 89.41 90.78 88.85 90.24 90.73 91.49 90.73 87.54 950 nm 92.22 91.50 89.32 90.79 88.81 90.25 90.62 91.54 90.76 87.62 975 nm 92.28 91.45 89.30 90.89 88.89 90.32 90.62 91.62 90.86 87.71 1000 nm 92.36 91.50 89.37 91.05 89.03 90.47 90.68 91.71 91.00 87.88 1025 nm 92.24 91.50 89.31 91.06 88.99 90.46 90.64 91.75 91.05 87.97 1050 nm 92.09 91.50 89.39 91.18 89.07 90.55 90.70 91.83 91.17 88.18 1075 nm 92.02 91.50 89.43 91.24 89.10 90.58 90.73 91.86 91.17 88.27 1100 nm 91.99 91.50 89.41 91.20 89.04 90.55 90.71 91.84 91.22 88.35 Table 11: % Light Transmission Through Exemplary Glasses

表11精確定義了圖1中之圖所描述之穿過各種玻璃樣品之光透射率的百分比值。參見圖1及表11,根據自左至右之不同玻璃組成之曲線觀測到,在380 nm之波長下,紫外光透射率自大約90%變化至22%。因此,曲線反映了在380 nm之波長下,紫外光阻斷百分比自大約10%增加至78%。類似地,根據自左至右之不同玻璃組成之曲線觀測到,在430 nm之波長下,藍光透射率自大約90%變化至60%。因此,曲線反映了在430 nm之波長下,藍光阻斷百分比自大約10%增加至40%。以上描述為不意欲限制本發明之範疇的一實施例。Table 11 precisely defines the percent values of light transmission through various glass samples described by the graph in FIG. 1 . Referring to Figure 1 and Table 11, according to the curves of different glass compositions from left to right, it is observed that at a wavelength of 380 nm, the UV transmittance varies from about 90% to 22%. Thus, the curve reflects an increase in percent UV light blocking from approximately 10% to 78% at a wavelength of 380 nm. Similarly, the blue light transmittance varies from about 90% to 60% at a wavelength of 430 nm as observed from the curves of different glass compositions from left to right. Thus, the curve reflects an increase in the percent blue light blocking from approximately 10% to 40% at a wavelength of 430 nm. The above description is an example not intended to limit the scope of the present invention.

本發明之紫外線阻斷、藍光阻斷及抗微生物玻璃用作各種電子裝置中之顯示器及觸控式螢幕之蓋玻璃。玻璃之紫外線阻斷特性可保護顯示螢幕免受太陽光,且增加顯示螢幕之壽命。玻璃之藍光阻斷特性可保護使用者在長期使用此等裝置期間免受暴露於有害藍光之影響。玻璃之抗微生物特性使此等電子裝置適於個人使用及公共使用兩者。具有抗微生物特性之觸控式螢幕顯示器玻璃可大量用於諸如資訊亭及公共平板電腦等裝置。另外地,在醫療中心及醫院使用抗微生物玻璃期間可預防感染之傳播。The ultraviolet blocking, blue light blocking and antimicrobial glass of the present invention is used as cover glass for displays and touch screens in various electronic devices. The UV blocking properties of the glass protect the display screen from sunlight and increase the life of the display screen. The blue light blocking properties of glass protect users from exposure to harmful blue light during long-term use of these devices. The antimicrobial properties of glass make these electronic devices suitable for both personal and public use. Touch-screen display glass with anti-microbial properties is widely used in devices such as kiosks and public tablet computers. Additionally, the spread of infection can be prevented during the use of antimicrobial glass in medical centers and hospitals.

生物玻璃可用作觸控面板顯示器之基板及此等顯示器之後蓋,該等顯示器諸如液晶顯示器(LCD)、場發射顯示器(FED)、電漿顯示器(PD)、電致發光顯示器(ELD)、有機發光二極體(OLED)顯示器、微型LED及其類似顯示器。生物玻璃用作保護具有顯示螢幕之電子裝置,諸如行動電話、娛樂裝置、平板電腦、膝上型電腦、數位相機、穿戴式裝置及其類似裝置。Bioglass can be used as the substrate of touch panel displays and the back cover of these displays, such as liquid crystal displays (LCD), field emission displays (FED), plasma displays (PD), electroluminescent displays (ELD), Organic Light Emitting Diode (OLED) displays, Micro LEDs and similar displays. Bioglass is used to protect electronic devices with display screens, such as mobile phones, entertainment devices, tablet computers, laptop computers, digital cameras, wearable devices, and the like.

在具體實施例中,生物玻璃用作與車窗玻璃、車門玻璃及建築幕牆玻璃相關聯之保護性/隔熱屏以降低內部溫度。另外地,生物玻璃亦可用作用於相機及光學儀器中之濾光器、濾光片及鏡頭以獲得清晰的圖像。同樣地,生物玻璃可用作保護人眼之眼鏡鏡片。In particular embodiments, bioglass is used as a protective/thermal shield associated with vehicle window glass, vehicle door glass, and architectural curtain wall glass to reduce internal temperatures. Additionally, bioglass can also be used as filters, filters, and lenses used in cameras and optical instruments to obtain clear images. Likewise, bioglass can be used as spectacle lenses to protect the human eye.

儘管已出於說明之目的闡述了典型實施例,但前述描述不應視為對本發明或所附申請專利範圍之範疇的限制。因此,在不背離本發明之精神及範疇的情況下,熟習此項技術者可想到各種修改、調整及替代。While typical embodiments have been described for purposes of illustration, the foregoing description should not be considered as limiting the scope of the invention or of the appended claims. Therefore, those skilled in the art can think of various modifications, adjustments and substitutions without departing from the spirit and scope of the present invention.

在所附申請專利範圍中具體闡述了本發明之被認為新穎的特徵。本文中將結合所提供之附圖之後描述本發明之實施例,以說明而非限制申請專利範圍之範疇,其中相同的標號表示相同的元件,且在附圖中: 圖1展示了根據本發明之一實施例之指示在介於200與1100奈米之間的波長上通過各種玻璃樣品之光透射百分比的圖。 The novel features of the invention which are believed to be set forth in the appended claims are set forth with particularity. Embodiments of the present invention will be described herein in conjunction with the accompanying drawings, in order to illustrate but not limit the scope of the patent application, wherein the same reference numerals represent the same elements, and in the drawings: Figure 1 shows a graph indicating the percent light transmission through various glass samples at wavelengths between 200 and 1100 nanometers according to one embodiment of the invention.

Claims (7)

一種可離子交換的鋁矽酸鹽玻璃,其包含: 在40 wt.%至70 wt.%之範圍內之SiO 2; 在5 wt.%至35 wt.%之範圍內之Al 2O 3; 在0 wt.%至5 wt.%之範圍內之ZnO; 在0 wt.%至3 wt.%之範圍內之Fe 2O 3;以及 在0 wt.%至3 wt.%之範圍內之CeO 2, 其中當該玻璃之生物友好玻璃品質因數(FOMBFG)係數大於或等於0.5 µg/cm 2且小於或等於13,500 µg/cm 2時,該玻璃有利於具有紫外(UV)光阻斷特性、藍光阻斷特性及抗微生物特性,且其中該FOMBFG由以下表示式定義: FOMBFG = (在380 nm下之紫外線阻斷%) *(在430 nm下之藍光阻斷%) *(在玻璃表面處之Ag濃度)。 An ion-exchangeable aluminosilicate glass comprising: SiO 2 in the range of 40 wt.% to 70 wt.%; Al 2 O 3 in the range of 5 wt.% to 35 wt.%; ZnO in the range of 0 wt.% to 5 wt.%; Fe 2 O 3 in the range of 0 wt.% to 3 wt.%; and Fe 2 O 3 in the range of 0 wt.% to 3 wt.%. CeO 2 , wherein the glass advantageously has ultraviolet (UV) light blocking properties when the glass has a biofriendly glass figure of merit (FOMBFG) coefficient greater than or equal to 0.5 µg/cm 2 and less than or equal to 13,500 µg/cm 2 , Blue light blocking properties and antimicrobial properties, and wherein the FOMBFG is defined by the following expression: FOMBFG = (UV blocking % at 380 nm) * (Blue light blocking % at 430 nm) * (at glass surface of Ag concentration). 如請求項1之可離子交換的鋁矽酸鹽玻璃,其進一步包含: 在0 wt.%至10 wt.%之範圍內之B 2O 3; 在0 wt.%至10 wt.%之範圍內之Li 2O; 在5 wt.%至25 wt.%之範圍內之Na 2O; 在0 wt.%至5 wt.%之範圍內之K 2O; 在0 wt.%至7 wt.%之範圍內之MgO; 在0 wt.%至5 wt.%之範圍內之ZrO 2; 在0 wt.%至2 wt.%之範圍內之SnO 2; 在0 wt.%至7 wt.%之範圍內之P 2O 5;以及 在0 wt.%至3 wt.%之範圍內之TiO 2The ion-exchangeable aluminosilicate glass of claim 1, further comprising: B 2 O 3 in the range of 0 wt.% to 10 wt.%; in the range of 0 wt.% to 10 wt.% Li 2 O within; Na 2 O in the range of 5 wt.% to 25 wt.%; K 2 O in the range of 0 wt.% to 5 wt.%; .% in the range of MgO; in the range of 0 wt.% to 5 wt.% ZrO 2 ; in the range of 0 wt.% to 2 wt.% SnO 2 ; in the range of 0 wt.% to 7 wt .% in the range of P 2 O 5 ; and in the range of 0 wt.% to 3 wt.% of TiO 2 . 如請求項1之可離子交換的鋁矽酸鹽玻璃,其中該鋁矽酸鹽玻璃經受單離子交換法或雙離子交換法與銀離子交換法之組合。The ion-exchangeable aluminosilicate glass of claim 1, wherein the aluminosilicate glass is subjected to a single ion exchange method or a combination of a dual ion exchange method and a silver ion exchange method. 如請求項3之可離子交換的鋁矽酸鹽玻璃,其中當該鋁矽酸鹽玻璃經受該銀離子交換法時,該玻璃之銀(Ag)濃度在0.001 wt.%至3 wt.%之範圍內。The ion-exchangeable aluminosilicate glass of claim 3, wherein when the aluminosilicate glass is subjected to the silver ion exchange method, the silver (Ag) concentration of the glass is between 0.001 wt.% and 3 wt.%. within range. 如請求項1之可離子交換的鋁矽酸鹽玻璃,其中該鋁矽酸鹽玻璃表現出最小9%之紫外光阻斷特性,該紫外光阻斷特性阻斷波長為380 nm之紫外光。The ion-exchangeable aluminosilicate glass of claim 1, wherein the aluminosilicate glass exhibits a minimum of 9% ultraviolet light blocking properties, and the ultraviolet light blocking properties block ultraviolet light with a wavelength of 380 nm. 如請求項1之可離子交換的鋁矽酸鹽玻璃,其中該鋁矽酸鹽玻璃表現出最小8%之藍光阻斷特性,該藍光阻斷特性阻斷波長為430 nm之藍光。The ion-exchangeable aluminosilicate glass of claim 1, wherein the aluminosilicate glass exhibits a blue light blocking property of at least 8%, and the blue light blocking property blocks blue light with a wavelength of 430 nm. 如請求項1之可離子交換的鋁矽酸鹽玻璃,其中該ZnO為該鋁矽酸鹽玻璃提供抗微生物特性。The ion-exchangeable aluminosilicate glass of claim 1, wherein the ZnO provides antimicrobial properties to the aluminosilicate glass.
TW111124745A 2021-07-01 2022-07-01 Chemically strengthened uv & blue light blocking anti-microbial bio-glass TW202308953A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IN202121024457 2021-07-01
IN202121024457 2021-07-01

Publications (1)

Publication Number Publication Date
TW202308953A true TW202308953A (en) 2023-03-01

Family

ID=84736795

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111124745A TW202308953A (en) 2021-07-01 2022-07-01 Chemically strengthened uv & blue light blocking anti-microbial bio-glass

Country Status (2)

Country Link
CN (1) CN115557696A (en)
TW (1) TW202308953A (en)

Also Published As

Publication number Publication date
CN115557696A (en) 2023-01-03

Similar Documents

Publication Publication Date Title
US9731998B2 (en) Antimicrobial glass articles with improved strength and methods of making and using same
US9463996B2 (en) Glass substrate for display cover glass and its production process
US10155691B2 (en) Antimicrobial glass articles and methods of making and using same
JP5589379B2 (en) Manufacturing method of glass substrate for display cover glass
KR102271837B1 (en) Reverse photochromic borosilicate glasses
TWI695821B (en) Glass articles
JP2014141363A (en) Chemically strengthenable glass, glass sheet, and chemically strengthened cover glass
US10723652B2 (en) Tempered and colorless antimicrobial soda lime glass and methods of making and using same
JP2013071878A (en) Antibacterial glass, and method for manufacturing the same
US10683234B2 (en) Methods of making antimicrobial glass articles
TW201446688A (en) Antimicrobial glass articles and methods for making and using same
JP2022050889A (en) Crystallized glass and reinforced crystallized glass
US20210161148A1 (en) Antimicrobial phase-separating glass and glass ceramic articles and laminates
TW202308953A (en) Chemically strengthened uv &amp; blue light blocking anti-microbial bio-glass
TW201821380A (en) Glasses having resistance to photo-darkening