TW202308245A - Multi-color visible light source including integrated vcsels and integrated photonic cavities - Google Patents

Multi-color visible light source including integrated vcsels and integrated photonic cavities Download PDF

Info

Publication number
TW202308245A
TW202308245A TW111115451A TW111115451A TW202308245A TW 202308245 A TW202308245 A TW 202308245A TW 111115451 A TW111115451 A TW 111115451A TW 111115451 A TW111115451 A TW 111115451A TW 202308245 A TW202308245 A TW 202308245A
Authority
TW
Taiwan
Prior art keywords
visible light
microresonator
light source
reflector
light
Prior art date
Application number
TW111115451A
Other languages
Chinese (zh)
Inventor
詹姆士 羅納德 邦納爾
麥克 安德烈 薛勒爾
蓋瑞斯 約翰 瓦倫汀
志民 錫
Original Assignee
美商元平台技術有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/344,744 external-priority patent/US20220345220A1/en
Application filed by 美商元平台技術有限公司 filed Critical 美商元平台技術有限公司
Publication of TW202308245A publication Critical patent/TW202308245A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/39Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves
    • G02F1/395Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves in optical waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0092Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/15Function characteristic involving resonance effects, e.g. resonantly enhanced interaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/1083Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering using parametric generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • H01S5/18363Structure of the reflectors, e.g. hybrid mirrors comprising air layers
    • H01S5/18366Membrane DBR, i.e. a movable DBR on top of the VCSEL

Abstract

A visible light source includes a substrate, a vertical-cavity surface-emitting laser including an active semiconductor region configured to emit infrared light and a first reflector configured to reflect the infrared light emitted by the active semiconductor region, a second reflector configured to reflect the infrared light and form a vertical cavity for the infrared light with the first reflector, and one or more micro-resonators configured to receive the infrared light and generate visible light in one or more colors using the infrared light through optical parametric oscillation. The visible light source also includes one or more output couplers configured to couple the visible light in one or more colors from the one or more micro-resonators into free space or into a photonic integrated circuit.

Description

包括整合的垂直腔面射型雷射及整合的光子腔的多色可見光源Multicolor visible light source including integrated vertical-cavity surface-emitting laser and integrated photonic cavity

本發明關於一種包括整合的垂直腔面射型雷射及整合的光子腔的多色可見光源。 相關申請案之交叉參考 The present invention relates to a multicolor visible light source including an integrated vertical cavity surface-emitting laser and an integrated photonic cavity. Cross References to Related Applications

本專利申請案主張2021年4月26日申請之名稱為「包括整合的垂直腔面射型雷射及整合的光子腔的可見光源(VISIBLE LIGHT SOURCE INCLUDING INTEGRATED VCSELS AND INTEGRATED PHOTONIC CAVITIES)」的美國臨時專利申請案第63/179,913號及2021年6月10日申請之美國非臨時申請案第17/344744號之權益及優先權。上述申請案之揭示內容出於所有目的特此以全文引用之方式併入本文中。This patent application claims the U.S. provisional application titled "VISIBLE LIGHT SOURCE INCLUDING INTEGRATED VCSELS AND INTEGRATED PHOTONIC CAVITIES" filed on April 26, 2021. Benefit and Priority of Patent Application No. 63/179,913 and U.S. Non-Provisional Application No. 17/344744, filed June 10, 2021. The disclosure of the above application is hereby incorporated by reference in its entirety for all purposes.

半導體發光裝置將電能轉換成光能,且提供優於其他光源之許多益處,諸如減小之大小、改良之耐久性及提高之效率及亮度,所述半導體發光裝置諸如發光二極體(light-emitting diode;LED)、微LED、諧振腔LED(resonant cavity LED;RCLED)、垂直腔面射型雷射(vertical-cavity surface-emitting laser;VCSEL)及垂直外部腔面射型雷射(vertical external cavity surface emitting laser;VECSEL)。半導體發光裝置可用作許多顯示系統中之光源,所述顯示系統諸如電視、電腦監視器、膝上型電腦、平板電腦、智慧型手機、投影系統及可穿戴電子裝置。舉例而言,發射不同色彩(例如,紅色、綠色及藍色)之光的微LED或VCSEL可用於形成諸如近眼顯示系統的顯示系統中之顯示面板之子像素。微LED、VCSEL及其他半導體發光裝置亦可部署於各種感測器系統中,諸如用於深度感測、三維感測、物件追蹤(例如,手部追蹤或人臉追蹤)及其類似者的系統。Semiconductor light-emitting devices, such as light-emitting diodes (light-emitting diodes), convert electrical energy into light energy and provide many benefits over other light sources, such as reduced size, improved durability, and increased efficiency and brightness. emitting diode (LED), micro LED, resonant cavity LED (RCLED), vertical-cavity surface-emitting laser (VCSEL) and vertical external cavity surface-emitting laser (vertical external cavity surface emitting laser; VECSEL). Semiconductor light emitting devices can be used as light sources in many display systems, such as televisions, computer monitors, laptops, tablets, smartphones, projection systems, and wearable electronic devices. For example, micro LEDs or VCSELs that emit light of different colors (eg, red, green, and blue) can be used to form sub-pixels of display panels in display systems such as near-eye display systems. Micro LEDs, VCSELs, and other semiconductor light emitting devices can also be deployed in various sensor systems, such as those for depth sensing, three-dimensional sensing, object tracking (e.g., hand tracking or face tracking), and the like .

本發明大體上係關於可見光源。更特定而言,且非限制性地,本發明係關於整合的垂直腔面射型雷射(VCSEL)泵浦之可見光源,其包括經配置以經由光參數振盪(optical parametric oscillation;OPO)產生可見光的光學諧振器。本文中所揭示之可見光源可用於例如背光單元(backlight unit;BLU)顯示器及主動顯示面板中。本文中描述各種發明性具體實例,包括裝置、組件、系統、方法、結構、材料、程序及其類似者。The present invention generally relates to visible light sources. More particularly, and without limitation, the present invention relates to integrated vertical-cavity surface-emitting laser (VCSEL)-pumped visible light sources comprising optical parametric oscillations (OPO) configured to generate Optical resonators for visible light. The visible light sources disclosed herein can be used, for example, in backlight unit (BLU) displays and active display panels. Various inventive embodiments are described herein, including apparatuses, assemblies, systems, methods, structures, materials, procedures, and the like.

根據某些具體實例,一種可見光源可包括:一基板;一第一反射器及一第二反射器,其位於該基板上,其中該第一反射器及該第二反射器經配置以反射紅外光且經垂直地配置以形成一垂直腔;一主動區,其位於該垂直腔中且經配置以發射紅外光;一微諧振器,其位於該基板上且經配置以接收由該主動區發射的該紅外光且經由光參數振盪產生可見光;及一輸出耦合器,其經配置以將在該微諧振器中產生的該可見光耦合出該微諧振器。According to some embodiments, a visible light source may include: a substrate; a first reflector and a second reflector on the substrate, wherein the first reflector and the second reflector are configured to reflect infrared light and vertically arranged to form a vertical cavity; an active region positioned in the vertical cavity and configured to emit infrared light; a microresonator positioned on the substrate and configured to receive light emitted by the active region and an output coupler configured to couple the visible light generated in the microresonator out of the microresonator.

根據某些具體實例,一種可見光源陣列可包括:一CMOS底板,其包括形成於其上之驅動電路;及一可見光源陣列,其形成於一基板上且直接地或間接地接合至該CMOS底板。該可見光源陣列中之每一可見光源可由所述驅動電路個別地定址且包含:一第一反射器及一第二反射器,其經配置以反射紅外光及形成一垂直腔;一主動區,其位於該垂直腔中且經配置以發射紅外光;一微諧振器,其經配置以接收由該主動區發射的該紅外光且經由光參數振盪產生可見光;及一輸出耦合器,其經配置以將在該微諧振器中產生的該可見光耦合出該微諧振器。According to some embodiments, a visible light source array may include: a CMOS base plate including driving circuits formed thereon; and a visible light source array formed on a substrate and directly or indirectly bonded to the CMOS base plate . Each visible light source in the visible light source array is individually addressable by the drive circuit and includes: a first reflector and a second reflector configured to reflect infrared light and form a vertical cavity; an active region, located in the vertical cavity and configured to emit infrared light; a microresonator configured to receive the infrared light emitted by the active region and generate visible light via optical parametric oscillation; and an output coupler configured to to couple the visible light generated in the microresonator out of the microresonator.

根據某些具體實例,一種可見光源可包括:一基板;一垂直腔面射型雷射,其位於該基板上且包含經配置以發射紅外光的一主動半導體區及經配置以反射由該主動半導體區發射的該紅外光之一第一反射器;一第二反射器,其經配置以反射該紅外光,該第一反射器及該第二反射器形成用於該紅外光之一垂直腔;一或多個微諧振器,其位於該基板上且經配置以接收該紅外光且使用該紅外光經由光參數振盪產生呈現一或多種色彩之可見光;及一或多個輸出耦合器,其經配置以將來自該一或多個微諧振器之呈現一或多種色彩的該可見光耦合至自由空間中或耦合至一光子積體電路中。According to some embodiments, a visible light source may include: a substrate; a vertical cavity surface-emitting laser on the substrate and including an active semiconductor region configured to emit infrared light and configured to reflect light emitted by the active semiconductor region. A first reflector of the infrared light emitted by the semiconductor region; a second reflector configured to reflect the infrared light, the first reflector and the second reflector forming a vertical cavity for the infrared light one or more microresonators located on the substrate and configured to receive the infrared light and use the infrared light to produce visible light exhibiting one or more colors through optical parametric oscillation; and one or more output couplers that Configured to couple the visible light in one or more colors from the one or more microresonators into free space or into a photonic integrated circuit.

根據某些具體實例,一種可見光源陣列可包括:一基板,其包括形成於其上之驅動電路;及一晶粒或一晶圓,其直接地或間接地接合至所述驅動電路。該晶粒或晶圓可包括形成於其上之一可見光源陣列。該可見光源陣列中之每一可見光源可由所述驅動電路個別地定址且包含:一垂直腔,其由一第一反射器及一第二反射器形成,該第一反射器及該第二反射器經配置以反射紅外光;一主動區,其位於該垂直腔中且經配置以發射紅外光;一或多個微諧振器,其經配置以接收該紅外光且使用該紅外光經由光參數振盪產生呈現一或多種色彩之可見光;及一或多個輸出耦合器,其經配置以將來自該一或多個微諧振器之呈現一或多種色彩的該可見光耦合至自由空間中或一或多個波導中。According to some embodiments, a visible light source array may include: a substrate including a driving circuit formed thereon; and a die or a wafer directly or indirectly bonded to the driving circuit. The die or wafer may include an array of visible light sources formed thereon. Each visible light source in the array of visible light sources is individually addressable by the drive circuitry and includes: a vertical cavity formed by a first reflector and a second reflector, the first reflector and the second reflector a device configured to reflect infrared light; an active region located in the vertical cavity and configured to emit infrared light; one or more microresonators configured to receive the infrared light and use the infrared light to pass an optical parameter oscillating to produce visible light in one or more colors; and one or more output couplers configured to couple the visible light in one or more colors from the one or more microresonators into free space or one or more in multiple waveguides.

根據某些具體實例,一種可見光源陣列可包括:一基板,其包括形成於其上之驅動電路;及一晶粒或一晶圓,其直接地或間接地接合至所述驅動電路。該晶粒或晶圓可包括形成於其上之一可見光源陣列。該可見光源陣列中之每一可見光源可由所述驅動電路個別地定址且包含:一垂直腔,其由一第一反射器及一第二反射器形成,該第一反射器及該第二反射器經配置以反射紅外光;一主動區,其位於該垂直腔中且經配置以發射紅外光;一微諧振器,其經配置以接收該紅外光且使用該紅外光經由光參數振盪產生可見光;及一輸出耦合器,其經配置以將來自該微諧振器之該可見光耦合至自由空間或一波導中。該可見光源陣列中之一第一可見光源中之一第一微諧振器及該可見光源陣列中之一第二可見光源中之一第二微諧振器可具有不同大小、不同形狀、不同材料或其一組合,且經配置以產生不同色彩之可見光。According to some embodiments, a visible light source array may include: a substrate including a driving circuit formed thereon; and a die or a wafer directly or indirectly bonded to the driving circuit. The die or wafer may include an array of visible light sources formed thereon. Each visible light source in the array of visible light sources is individually addressable by the drive circuitry and includes: a vertical cavity formed by a first reflector and a second reflector, the first reflector and the second reflector a device configured to reflect infrared light; an active region located in the vertical cavity and configured to emit infrared light; a microresonator configured to receive the infrared light and use the infrared light to generate visible light via optical parametric oscillation and an output coupler configured to couple the visible light from the microresonator into free space or a waveguide. A first microresonator in a first visible light source in the array of visible light sources and a second microresonator in a second visible light source in the array of visible light sources may have different sizes, different shapes, different materials, or A combination and configured to produce visible light of different colors.

此發明內容既不意欲識別所主張主題之關鍵或基本特徵,亦不意欲單獨使用以判定所主張主題之範圍。應參考本揭示內容之整篇說明書之適當部分、任何或所有圖式及每一申請專利範圍來理解該主題。下文將在以下說明書、申請專利範圍及隨附圖式中更詳細地描述前述內容連同其他特徵及實例。This Summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used in isolation to determine the scope of the claimed subject matter. The subject matter should be understood by reference to this disclosure, in appropriate portions, of the entire specification, any or all drawings and each claim. The foregoing, along with other features and examples, will be described in more detail below in the following specification, claims, and accompanying drawings.

本發明大體上係關於可見光源。更特定而言,且非限制性地,本發明係關於整合的垂直腔面射型雷射(VCSEL)泵浦之可見光源,其包括經配置以使用紅外經由光參數振盪(OPO)產生可見光的光學諧振器。本文中描述各種發明性具體實例,包括裝置、系統、組件、晶圓、晶粒、方法、結構、材料、程序及其類似者。The present invention generally relates to visible light sources. More particularly, and without limitation, the present invention relates to integrated vertical-cavity surface-emitting laser (VCSEL)-pumped visible light sources comprising optical parametric oscillation (OPO) configured to generate visible light using infrared optical resonator. Various inventive embodiments are described herein, including devices, systems, components, wafers, dies, methods, structures, materials, procedures, and the like.

半導體發光裝置可用於許多光學系統中,諸如顯示系統及感測器系統。舉例而言,在一些顯示系統中,自可見光源(例如,二極體雷射陣列或微發光二極體(微LED)陣列)發射之可見顯示光可經引導投影至使用者之眼睛。在波導顯示器系統中,自可見光源發射之可見顯示光可經耦合至顯示器(例如,波導顯示器)中以用於將影像遞送至觀看者之眼睛。波導顯示器系統之總效率 η tot 可藉由

Figure 02_image001
判定,其中 η EQE 為光源(例如,雷射或微LED)之外部量子效率(external quantum efficiency;EQE)且可與載子(例如,電子)注入效率、內部量子效率及光萃取效率(light extraction efficiency;LEE)之乘積成比例。 η in 為可見顯示光自光源至波導中之入耦效率。 η out 為可見顯示光自波導朝向觀看者之眼睛的出耦效率。為了改良例如光學系統(例如,顯示系統)之亮度、解析度及效率,通常需要具有小像素間距(例如,小於約20或約10 μm)、高亮度、高動態範圍、可控制發射方向、可個別定址能力、大色域及製造可擴展性之可見光源陣列。 Semiconductor light emitting devices can be used in many optical systems, such as display systems and sensor systems. For example, in some display systems, visible display light emitted from a visible light source (eg, a diode laser array or a micro light emitting diode (micro LED) array) can be directed to project onto a user's eye. In a waveguide display system, visible display light emitted from a visible light source can be coupled into a display (eg, a waveguide display) for delivering images to the eyes of a viewer. The total efficiency η tot of the waveguide display system can be obtained by
Figure 02_image001
Determined, where η EQE is the external quantum efficiency (external quantum efficiency; EQE) of the light source (for example, laser or micro LED) and can be compared with carrier (for example, electron) injection efficiency, internal quantum efficiency and light extraction efficiency (light extraction efficiency; LEE) proportional to the product. η in is the incoupling efficiency of visible display light from the light source to the waveguide. ηout is the outcoupling efficiency of visible display light from the waveguide towards the viewer's eye. To improve, for example, the brightness, resolution, and efficiency of optical systems (eg, display systems), it is generally desirable to have a small pixel pitch (eg, less than about 20 or about 10 μm), high brightness, high dynamic range, controllable emission direction, Arrays of visible light sources with individual addressability, large color gamut and manufacturing scalability.

然而,製造此類可見光源可具有挑戰性。舉例而言,LED及有機LED(organic LED;OLED)可在亮度方面具有基本限制。可能極難以製造針對一些可見色彩(例如,綠色)具有高效率之VCSEL。在同一晶片或晶圓上製造用於多種色彩之可見光雷射源可甚至更具有挑戰性。此外,當前可見光源架構通常可具有較大佔據面積且可能不適合於高解析度顯示器之可個別定址之高密度源陣列。III-V半導體裝置與光子積體電路(photonic integrated circuit;PIC)之整合可提出額外製造挑戰。However, fabricating such visible light sources can be challenging. For example, LEDs and organic LEDs (OLEDs) may have fundamental limitations in brightness. It can be extremely difficult to manufacture VCSELs with high efficiency for some visible colors (eg, green). Fabricating visible laser sources for multiple colors on the same chip or wafers can be even more challenging. Furthermore, current visible light source architectures can often have large footprints and may not be suitable for individually addressable high density source arrays for high resolution displays. The integration of III-V semiconductor devices with photonic integrated circuits (PICs) may present additional manufacturing challenges.

根據某些具體實例,可見光源可包括可以高效率發射近紅外(near-infrared;NIR)或其他紅外(infrared;IR)頻帶中之光的VCSEL。在下文中NIR光可通常稱為IR光。可見光源亦可包括微諧振器,該微諧振器可歸因於微諧振器內之簡併四波混合(亦稱為光參數振盪(OPO)之三階非線性光學程序)而將IR光轉換成可見光。在一些具體實例中,微諧振器可定位於VCSEL腔內部或外部且與VCSEL對準,其中可直接或藉由耦合結構(例如,光柵耦合器或奈米諧振器)將由VCSEL發射的IR光耦合至微諧振器中。在一些具體實例中,由VCSEL發射的IR光可藉由耦合結構(例如,光柵耦合器或奈米諧振器)耦合至波導中,且可接著例如經由波導耦合器自波導耦合至微諧振器中。微諧振器可包括例如微環諧振器、光子晶體點缺陷腔、光子晶體環(線缺陷)腔、電漿子諧振器及其類似者。由微諧振器中之簡併四波混合產生之可見光可藉由耦合結構(例如,光柵,或置放於微諧振器附近之介電或金屬散射器)經由邊耦合耦合出微諧振器進入波導,或經由垂直耦合而耦合至自由空間中。According to some embodiments, the visible light source may include a VCSEL that can emit light in the near-infrared (NIR) or other infrared (IR) bands with high efficiency. NIR light may generally be referred to as IR light hereinafter. Visible light sources can also include microresonators that can convert IR light due to degenerate four-wave mixing within the microresonator (a third-order nonlinear optical process also known as optical parametric oscillation (OPO)) into visible light. In some embodiments, a microresonator can be positioned inside or outside the VCSEL cavity and aligned with the VCSEL, where the IR light emitted by the VCSEL can be coupled directly or through a coupling structure (e.g., a grating coupler or nanoresonator). into the microresonator. In some embodiments, IR light emitted by a VCSEL can be coupled into a waveguide by a coupling structure (e.g., a grating coupler or a nanoresonator), and can then be coupled from the waveguide into a microresonator, e.g., via a waveguide coupler . Microresonators may include, for example, microring resonators, photonic crystal point defect cavities, photonic crystal ring (line defect) cavities, plasmonic resonators, and the like. Visible light generated by degenerate four-wave mixing in a microresonator can be coupled out of the microresonator into a waveguide via edge coupling by a coupling structure (e.g., a grating, or a dielectric or metallic scatterer placed near the microresonator) , or coupled into free space via a vertical coupling.

在一些具體實例中,裝置可包括可見光源陣列,其中可見光源可發射不同色彩(諸如紅色、藍色及綠色)之可見光。在一個實例中,每一可見光源可包括一個微諧振器,且一些可見光源中之微諧振器(及/或VCSEL)可不同於一些其他可見光源中之微諧振器(及/或VCSEL),使得不同可見光源可發射不同色彩之光。在一些具體實例中,可見光源陣列中之每一可見光源可經配置以或可以可配置以發射不同色彩之光。在一個實例中,可見光源陣列中之每一可見光源可包括泵浦VCSEL及具有不同參數之多個微諧振器(例如,垂直地配置),其中多個微諧振器中之每一者可經配置以產生不同色彩之可見光,且在一些具體實例中,多個微諧振器中之每一微諧振器可經調諧(例如,藉由熱光或電光調諧器)以獨立地調整由微諧振器產生之對應可見光之強度。在一些具體實例中,可見光源陣列中之可見光源可包括具有可調諧腔且可經調諧以發射具有不同波長之泵浦光的泵浦VCSEL,且可見光源亦可包括具有多個諧振模式且因此可使用具有不同波長之泵浦光產生不同色彩之可見光的微諧振器。In some embodiments, the device can include an array of visible light sources, where the visible light sources can emit visible light of different colors, such as red, blue, and green. In one example, each visible light source may include a microresonator, and the microresonators (and/or VCSELs) in some visible light sources may be different from the microresonators (and/or VCSELs) in some other visible light sources, Different visible light sources can emit light of different colors. In some embodiments, each visible light source in the array of visible light sources can be configured or can be configurable to emit light of a different color. In one example, each visible light source in an array of visible light sources can include a pumped VCSEL and multiple microresonators (e.g., vertically arranged) with different parameters, where each of the multiple microresonators can be configured to produce different colors of visible light, and in some embodiments, each microresonator in a plurality of microresonators can be tuned (e.g., by a thermo-optic or electro-optic tuner) to independently adjust the light emitted by the microresonator The corresponding intensity of visible light produced. In some embodiments, the visible light source in the visible light source array can include a pumped VCSEL having a tunable cavity and can be tuned to emit pump light having different wavelengths, and the visible light source can also include a VCSEL having multiple resonant modes and thus Microresonators that generate visible light of different colors can be produced using pump light having different wavelengths.

本文中所揭示之技術可達成顯示器應用所需之效能。舉例而言,由於每一可見光源之垂直配置及可見光源陣列之配置之緊密性,可達成小間距多色像素化陣列,其可用作液晶顯示器(liquid crystal display;LCD)之具有局部調暗能力的背光單元(BLU),或可用作主動顯示面板。來自可見光源之輸出光之偏振係可例如藉由輸出耦合結構(例如,光柵、散射器等)之設計而高度控制的。可見光源之結構可經設計以使用OPO程序產生任何可見波長處之光,且因此可用於藉由產生多於3個原色而提供國際電信聯盟(International Telecommunication Union;ITU)推薦BT.2020(Rec. 2020)色域或甚至更大色域。每一可見光源之直接電子控制可提供個別可定址能力、高對比度及快速回應。泵浦光及OPO組件之整合提供適合於AR/VR應用之整體緊密、低輪廓平面結構。當使用邊耦合時,本文中所揭示之可見光源亦可用於將紅色、綠色及藍色光提供至其他晶片上光子積體電路。The techniques disclosed herein can achieve the performance required for display applications. For example, due to the vertical configuration of each visible light source and the compactness of the configuration of the visible light source array, a small-pitch multi-color pixelated array can be achieved, which can be used as a liquid crystal display (liquid crystal display; LCD) with local dimming capable backlight unit (BLU), or can be used as an active display panel. The polarization of output light from a visible light source can be highly controlled, for example, by the design of the outcoupling structures (eg, gratings, diffusers, etc.). The structure of visible light sources can be designed to generate light at any visible wavelength using the OPO process, and thus can be used to provide International Telecommunication Union (ITU) Recommendation BT.2020 (Rec. 2020) color gamut or even larger. Direct electronic control of each visible light source provides individual addressability, high contrast and fast response. The integration of pump light and OPO components provides an overall compact, low-profile planar structure suitable for AR/VR applications. The visible light sources disclosed herein can also be used to provide red, green, and blue light to other on-wafer photonic integrated circuits when edge coupling is used.

另外,本文中所揭示之可見光源可具有可調式可製造性。舉例而言,本文中所揭示之可見光源可使用用於將近紅外(NIR)VCSEL與用於光子積體電路之SiN、SiC、AlN、LiNbO 3或SiON材料整合(例如,接合)之已建立整合技術來製造。本文中所揭示之可見光源使用適合於基板起離之VCSEL結構以實現整合。像素化陣列可以可調式晶圓級製造,包括製造VCSEL及PIC裝置、接合或其類似者。 Additionally, the visible light sources disclosed herein may have tunable manufacturability. For example, the visible light sources disclosed herein can use established integration methods for integrating (e.g., bonding) near-infrared (NIR) VCSELs with SiN, SiC, AlN, LiNbO 3 , or SiON materials for photonic integrated circuits. technology to manufacture. The visible light sources disclosed herein use a VCSEL structure suitable for substrate liftoff for integration. Pixelated arrays can be fabricated at the tunable wafer level, including fabrication of VCSEL and PIC devices, bonding, or the like.

如本文中所使用,可見光可指人眼可見之光,諸如波長在約400 nm與約750 nm之間的光。紅外光通常可指波長大於約750 nm之光。近紅外(NIR)光可指波長在例如約750 nm與約2500 nm之間的IR光。As used herein, visible light may refer to light visible to the human eye, such as light having a wavelength between about 400 nm and about 750 nm. Infrared light may generally refer to light having a wavelength greater than about 750 nm. Near infrared (NIR) light may refer to IR light having a wavelength between, for example, about 750 nm and about 2500 nm.

本文中所描述之可見光源可結合諸如人工實境系統之各種技術來使用。諸如頭戴式顯示器(HMD)或抬頭顯示器(heads-up display;HUD)系統之人工實境系統通常包括經配置以呈現描繪虛擬環境中之物件之人工影像的顯示器。顯示器可呈現虛擬物件或將真實物件之影像與虛擬物件組合,如在虛擬實境(VR)、擴增實境(AR)或混合實境(MR)應用中。舉例而言,在AR系統中,使用者可藉由例如透視透明顯示眼鏡或透鏡(常常稱為光學透視)或觀看由攝影機俘獲的周圍環境之所顯示影像(常常稱為視訊透視)來觀看虛擬物件之所顯示影像(例如,電腦產生影像(computer-generated image;CGI))及周圍環境之所顯示影像兩者。在一些AR系統中,可使用基於LED之顯示子系統將人工影像呈現給使用者。The visible light sources described herein can be used in conjunction with various technologies such as artificial reality systems. Artificial reality systems, such as head-mounted display (HMD) or heads-up display (HUD) systems, typically include a display configured to present artificial images depicting objects in the virtual environment. The display can present virtual objects or combine images of real objects with virtual objects, such as in virtual reality (VR), augmented reality (AR) or mixed reality (MR) applications. For example, in an AR system, a user can view a virtual reality through, for example, see-through transparent display glasses or lenses (often referred to as optical see-through) or by viewing a displayed image of the surrounding environment captured by a camera (often referred to as video see-through). Both the displayed image of the object (eg, computer-generated image (CGI)) and the displayed image of the surrounding environment. In some AR systems, an LED-based display subsystem may be used to present artificial images to the user.

在以下描述中,出於解釋之目的,闡述特定細節以便提供對本公開之實例的透徹理解。然而,將顯而易見的,可在無此等特定細節之情況下實踐各種實例。舉例而言,裝置、系統、結構、組合件、方法及其他組件可以方塊圖形式展示為組件,以免以不必要的細節混淆實例。在其他情況下,可在無必要細節之情況下展示熟知裝置、程序、系統、結構及技術,以免混淆實例。圖式及描述並不意欲為限定性的。已在本發明中使用之術語及表述用作描述之術語且不為限制性的,且在使用此類術語及表述中,不欲排除所展示及描述之特徵的任何等效者或其部分。字詞「實例」在本文中用於意謂「充當實例、例項或說明」。本文中描述為「實例」的任何具體實例或設計未必解釋為比其他具體實例或設計較佳或有利。In the following description, for purposes of explanation, specific details are set forth in order to provide a thorough understanding of examples of the present disclosure. It will be apparent, however, that various examples may be practiced without these specific details. For example, devices, systems, structures, assemblies, methods, and other components may be shown in block diagram form as components in order not to obscure the examples with unnecessary detail. In other instances, well-known devices, procedures, systems, structures and techniques may be shown without unnecessary detail in order not to obscure the examples. The drawings and descriptions are not intended to be limiting. The terms and expressions which have been used in the present invention are terms of description and not of limitation, and in the use of such terms and expressions, there is no intention to exclude any equivalents or parts of the features shown and described. The word "example" is used herein to mean "serving as an example, instance, or illustration." Any particular example or design described herein as an "example" is not necessarily to be construed as preferred or advantageous over other particular examples or designs.

1為根據某些具體實例之包括近眼顯示器120之人工實境系統環境100之實例的簡化方塊圖。圖1中所展示之人工實境系統環境100可包括近眼顯示器120、視情況選用之外部成像裝置150及視情況選用之輸入/輸出介面140,其中之每一者可耦合至視情況選用之控制台110。雖然圖1展示包括一個近眼顯示器120、一個外部成像裝置150及一個輸入/輸出介面140之人工實境系統環境100的實例,但可在人工實境系統環境100中包括任何數目個此等組件,或可省略所述組件中之任一者。舉例而言,可存在多個近眼顯示器120,其可由與控制台110通信之一或多個外部成像裝置150監視。在一些配置中,人工實境系統環境100可不包括外部成像裝置150、視情況選用之輸入/輸出介面140及視情況選用之控制台110。在替代配置中,不同組件或額外組件可包括於人工實境系統環境100中。 1 is a simplified block diagram of an example of an artificial reality system environment 100 including a near- eye display 120 according to certain embodiments. The artificial reality system environment 100 shown in FIG. 1 can include a near-eye display 120, an optional external imaging device 150, and an optional input/output interface 140, each of which can be coupled to an optional control Taiwan 110. Although FIG. 1 shows an example of an AR environment 100 including a near-eye display 120, an external imaging device 150, and an input/output interface 140, any number of these components may be included in the AR environment 100, Or any of the components may be omitted. For example, there may be multiple near-eye displays 120 , which may be monitored by one or more external imaging devices 150 in communication with console 110 . In some configurations, the augmented reality environment 100 may not include the external imaging device 150 , the optional input/output interface 140 , and the optional console 110 . In alternative configurations, different or additional components may be included in the augmented reality system environment 100 .

近眼顯示器120可為向使用者呈現內容之頭戴式顯示器。由近眼顯示器120呈現之內容的實例包括影像、視訊、音訊或其任何組合中之一或多者。在一些具體實例中,音訊可經由外部裝置(例如,揚聲器及/或頭戴式耳機)呈現,該外部裝置自近眼顯示器120、控制台110或兩者接收音訊資訊,且基於該音訊資訊呈現音訊資料。近眼顯示器120可包括一或多個剛性主體,其可剛性地或非剛性地彼此耦合。剛性主體之間的剛性耦合可使得經耦合之剛性主體充當單一剛性實體。剛性主體之間的非剛性耦合可允許剛性主體相對於彼此移動。在各種具體實例中,近眼顯示器120可以任何合適的外觀尺寸來實施,包括一副眼鏡。下文關於圖2及3進一步描述近眼顯示器120之一些具體實例。另外,在各種具體實例中,本文中所描述之功能性可用於將在近眼顯示器120外部之環境之影像與人工實境內容(例如,電腦產生之影像)組合之耳機中。因此,近眼顯示器120可利用所產生之內容(例如,影像、視訊、聲音等)擴增在近眼顯示器120外部之實體真實世界環境之影像,以將擴增實境呈現給使用者。The near-eye display 120 may be a head-mounted display that presents content to the user. Examples of content presented by the near-eye display 120 include one or more of images, video, audio, or any combination thereof. In some embodiments, audio may be presented via an external device (e.g., speakers and/or headphones) that receives audio information from near-eye display 120, console 110, or both, and presents the audio based on that audio information. material. The near-eye display 120 may include one or more rigid bodies, which may be rigidly or non-rigidly coupled to each other. Rigid couplings between rigid bodies may cause the coupled rigid bodies to act as a single rigid entity. A non-rigid coupling between rigid bodies allows the rigid bodies to move relative to each other. In various embodiments, near-eye display 120 may be implemented in any suitable form factor, including a pair of glasses. Some specific examples of near-eye display 120 are described further below with respect to FIGS. 2 and 3 . Additionally, in various embodiments, the functionality described herein may be used in headsets that combine images of the environment external to near-eye display 120 with artificial reality content (eg, computer-generated images). Therefore, the near-eye display 120 can use the generated content (eg, image, video, sound, etc.) to amplify the image of the physical real-world environment outside the near-eye display 120 to present the augmented reality to the user.

在各種具體實例中,近眼顯示器120可包括顯示電子件122、顯示光學件124及眼睛追蹤單元130中之一或多者。在一些具體實例中,近眼顯示器120亦可包括一或多個定位器126、一或多個位置感測器128及慣性量測單元(inertial measurement unit;IMU)132。在各種具體實例中,近眼顯示器120可省略眼睛追蹤單元130、定位器126、位置感測器128及IMU 132中之任一者,或包括額外元件。另外,在一些具體實例中,近眼顯示器120可包括組合結合圖1所描述之各種元件之功能的元件。In various embodiments, the near-eye display 120 may include one or more of the display electronics 122 , the display optics 124 , and the eye-tracking unit 130 . In some embodiments, the near-eye display 120 may also include one or more positioners 126 , one or more position sensors 128 and an inertial measurement unit (IMU) 132 . In various embodiments, the near-eye display 120 may omit any of the eye-tracking unit 130, the locator 126, the position sensor 128, and the IMU 132, or include additional elements. Additionally, in some embodiments, near-eye display 120 may include elements that combine the functionality of the various elements described in connection with FIG. 1 .

顯示電子件122可根據自例如控制台110接收到之資料而向使用者顯示影像或促進向使用者顯示影像。在各種具體實例中,顯示電子件122可包括一或多個顯示面板,諸如液晶顯示器(liquid crystal display;LCD)、有機發光二極體(OLED)顯示器、無機發光二極體(inorganic light-emitting diode;ILED)顯示器、微發光二極體(micro light-emitting diode;μLED)顯示器、主動矩陣OLED顯示器(active-matrix OLED;AMOLED)、透明OLED顯示器(transparent OLED;TOLED)或一些其他顯示器。舉例而言,在近眼顯示器120之一個實施方式中,顯示電子件122可包括前TOLED面板、後顯示面板及在前顯示面板與後顯示面板之間的光學組件(例如,衰減器、偏振器,或繞射或光譜膜)。顯示電子件122可包括像素以發射諸如紅色、綠色、藍色、白色或黃色之主導色彩的光。在一些實施方式中,顯示電子件122可經由由二維面板產生之立體效應來顯示三維(three-dimensional;3D)影像以產生影像深度之主觀感知。舉例而言,顯示電子件122可包括分別定位於使用者之左眼及右眼前方的左側顯示器及右側顯示器。左側顯示器及右側顯示器可呈現相對於彼此水平地移位之影像的複本,以產生立體效應(亦即,觀看影像之使用者對影像深度的感知)。Display electronics 122 may display images to a user or facilitate displaying images to a user based on data received from, for example, console 110 . In various specific examples, the display electronics 122 may include one or more display panels, such as a liquid crystal display (liquid crystal display; LCD), an organic light-emitting diode (OLED) display, an inorganic light-emitting diode (inorganic light-emitting diode (ILED) display, micro light-emitting diode (μLED) display, active-matrix OLED (AMOLED), transparent OLED (TOLED) or some other display. For example, in one embodiment of the near-eye display 120, the display electronics 122 may include a front TOLED panel, a rear display panel, and optical components (e.g., attenuators, polarizers, or diffractive or spectral film). Display electronics 122 may include pixels to emit light of a dominant color such as red, green, blue, white or yellow. In some embodiments, the display electronics 122 can display a three-dimensional (3-dimensional; 3D) image through the stereoscopic effect generated by the two-dimensional panel to generate a subjective perception of image depth. For example, the display electronics 122 may include left and right displays positioned in front of the user's left and right eyes, respectively. The left and right displays may present copies of the image that are shifted horizontally relative to each other to create a stereoscopic effect (ie, the user viewing the image's perception of depth).

在某些具體實例中,顯示光學件124可以光學方式顯示影像內容(例如,使用光波導及耦合器),或放大自顯示電子件122接收到之影像光,校正與影像光相關聯之光學誤差,且向近眼顯示器120之使用者呈現經校正之影像光。在各種具體實例中,顯示光學件124可包括一或多個光學元件,諸如基板、光波導、光圈、菲涅爾(Fresnel)透鏡、凸透鏡、凹透鏡、濾光片、輸入/輸出耦合器,或可能影響自顯示電子件122發射之影像光的任何其他合適的光學元件。顯示光學件124可包括不同光學元件之組合,以及用以維持組合中之光學元件之相對間隔及定向的機械耦合件。顯示光學件124中之一或多個光學元件可具有光學塗層,諸如抗反射塗層、反射塗層、濾光塗層,或不同光學塗層之組合。In some embodiments, display optics 124 may optically display image content (e.g., using optical waveguides and couplers), or amplify image light received from display electronics 122, correcting optical errors associated with image light , and present the corrected image light to the user of the near-eye display 120 . In various embodiments, display optics 124 may include one or more optical elements, such as substrates, optical waveguides, apertures, Fresnel lenses, convex lenses, concave lenses, filters, input/output couplers, or Any other suitable optical elements that may affect the image light emitted from the display electronics 122 . Display optics 124 may include a combination of different optical elements, as well as mechanical couplings to maintain the relative spacing and orientation of the optical elements in the combination. One or more optical elements in display optics 124 may have an optical coating, such as an anti-reflective coating, a reflective coating, a filter coating, or a combination of different optical coatings.

影像光由顯示光學件124之放大可允許相比於較大顯示器,顯示電子件122在實體上較小,重量較輕且消耗較少功率。另外,放大可增加所顯示之內容的視場。影像光由顯示光學件124放大之量可藉由調整、添加光學元件或自顯示光學件124移除光學元件來改變。在一些具體實例中,顯示光學件124可將經顯示影像投射至可比近眼顯示器120更遠離使用者之眼睛之一或多個影像平面。Amplification of image light by display optics 124 may allow display electronics 122 to be physically smaller, weigh less and consume less power than larger displays. Additionally, zooming in increases the field of view of the displayed content. The amount by which image light is magnified by display optics 124 can be varied by adjusting, adding, or removing optical elements from display optics 124 . In some embodiments, display optics 124 may project a displayed image to one or more image planes that may be farther away from the user's eyes than near-eye display 120 .

顯示光學件124亦可經設計以校正一或多種類型之光學誤差,諸如二維光學誤差、三維光學誤差或其任何組合。二維誤差可包括在兩個維度中出現之光學像差。二維誤差之實例類型可包括桶形失真、枕形失真、縱向色像差及橫向色像差。三維誤差可包括在三個維度中出現之光學誤差。三維誤差之實例類型可包括球面像差、慧形像差、場曲及像散。Display optics 124 may also be designed to correct for one or more types of optical errors, such as two-dimensional optical errors, three-dimensional optical errors, or any combination thereof. Two-dimensional errors may include optical aberrations that occur in two dimensions. Example types of two-dimensional errors may include barrel distortion, pincushion distortion, longitudinal chromatic aberration, and lateral chromatic aberration. Three-dimensional errors may include optical errors that occur in three dimensions. Example types of three-dimensional errors may include spherical aberration, coma, curvature of field, and astigmatism.

定位器126可為相對於彼此且相對於近眼顯示器120上之參考點而位於近眼顯示器120上之特定位置中的物件。在一些實施方式中,控制台110可在由外部成像裝置150俘獲之影像中識別定位器126,以判定人工實境耳機之位置、定向或兩者。定位器126可為LED、角隅稜鏡(corner cube)反射器、反射標誌、與近眼顯示器120進行操作所處之環境形成對比的一種類型之光源,或其任何組合。在定位器126為主動組件(例如,LED或其他類型之發光裝置)之具體實例中,定位器126可發射在可見光頻帶(例如,約380 nm至750 nm)中、紅外(IR)頻帶(例如,約750 nm至1 mm)中、紫外頻帶(例如,約10 nm至約380 nm)中、電磁波譜之另一部分中或電磁波譜之部分之任何組合中的光。Locators 126 may be objects that are located in particular locations on near-eye display 120 relative to each other and relative to a reference point on near-eye display 120 . In some implementations, the console 110 may identify the locator 126 in images captured by the external imaging device 150 to determine the location, orientation, or both of the artificial reality headset. Locators 126 may be LEDs, corner cube reflectors, reflective markers, a type of light source that contrasts with the environment in which near-eye display 120 operates, or any combination thereof. In embodiments where locator 126 is an active component such as an LED or other type of light emitting device, locator 126 may emit light in the visible light band (eg, approximately 380 nm to 750 nm), the infrared (IR) band (eg, , about 750 nm to 1 mm), in the ultraviolet band (eg, about 10 nm to about 380 nm), in another part of the electromagnetic spectrum, or any combination of parts of the electromagnetic spectrum.

外部成像裝置150可包括一或多個攝影機、一或多個視訊攝影機、能夠俘獲包括定位器126中之一或多者之影像的任何其他裝置,或其任何組合。另外,外部成像裝置150可包括一或多個濾波器(例如,以增大信雜比)。外部成像裝置150可經配置以偵測外部成像裝置150之視場中自定位器126發射或反射之光。在定位器126包括被動元件(例如,回反射器(retroreflector))之具體實例中,外部成像裝置150可包括照明定位器126中之一些或全部的光源,所述定位器126可將光回反射至外部成像裝置150中之光源。慢速校準資料可自外部成像裝置150傳達至控制台110,且外部成像裝置150可自控制台110接收一或多個校準參數以調整一或多個成像參數(例如,焦距、焦點、圖框率、感測器溫度、快門速度、光圈等)。External imaging device 150 may include one or more cameras, one or more video cameras, any other device capable of capturing images including one or more of locators 126, or any combination thereof. Additionally, external imaging device 150 may include one or more filters (eg, to increase the signal-to-noise ratio). External imaging device 150 may be configured to detect light emitted or reflected from locator 126 in the field of view of external imaging device 150 . In specific examples where locators 126 include passive elements (e.g., retroreflectors), external imaging device 150 may include a light source that illuminates some or all of locators 126 that can retroreflect light to the light source in the external imaging device 150 . Slow calibration data may be communicated from external imaging device 150 to console 110, and external imaging device 150 may receive one or more calibration parameters from console 110 to adjust one or more imaging parameters (e.g., focal length, focus, frame rate, sensor temperature, shutter speed, aperture, etc.).

位置感測器128可回應於近眼顯示器120之運動而產生一或多個量測信號。位置感測器128之實例可包括加速計、陀螺儀、磁力計、其他運動偵測或誤差校正感測器,或其任何組合。舉例而言,在一些具體實例中,位置感測器128可包括用以量測平移運動(例如,向前/後、上/下或左/右)之多個加速計及用以量測旋轉運動(例如,俯仰、橫偏或橫搖)之多個陀螺儀。在一些具體實例中,各種位置感測器可彼此正交地定向。The position sensor 128 can generate one or more measurement signals in response to the movement of the near-eye display 120 . Examples of position sensors 128 may include accelerometers, gyroscopes, magnetometers, other motion detection or error correction sensors, or any combination thereof. For example, in some embodiments, position sensor 128 may include multiple accelerometers to measure translational motion (e.g., forward/backward, up/down, or left/right) and to measure rotational Multiple gyroscopes for motion such as pitch, yaw or roll. In some specific examples, the various position sensors may be oriented orthogonally to each other.

IMU 132可為基於自位置感測器128中之一或多者接收到之量測信號而產生快速校準資料的電子裝置。位置感測器128可位於IMU 132外部、IMU 132內部或其任何組合。基於來自一或多個位置感測器128之一或多個量測信號,IMU 132可產生快速校準資料,該快速校準資料指示相對於近眼顯示器120之初始位置的近眼顯示器120之估計位置。舉例而言,IMU 132可隨時間推移整合自加速計接收到之量測信號以估計速度向量,且隨時間推移整合速度向量以判定近眼顯示器120上之參考點的估計位置。替代地,IMU 132可將經取樣量測信號提供至控制台110,該控制台110可判定快速校準資料。雖然參考點通常可界定為空間中之點,但在各種具體實例中,參考點亦可界定為近眼顯示器120內之點(例如,IMU 132之中心)。IMU 132 may be an electronic device that generates rapid calibration data based on measurement signals received from one or more of position sensors 128 . Position sensor 128 may be located external to IMU 132, internal to IMU 132, or any combination thereof. Based on one or more measurement signals from one or more position sensors 128 , IMU 132 may generate quick calibration data indicating an estimated position of near-eye display 120 relative to an initial position of near-eye display 120 . For example, IMU 132 may integrate measurement signals received from accelerometers over time to estimate a velocity vector, and integrate the velocity vector over time to determine an estimated location of a reference point on near-eye display 120 . Alternatively, IMU 132 may provide the sampled measurement signal to console 110, which may determine quick calibration data. While a reference point may generally be defined as a point in space, in various embodiments, a reference point may also be defined as a point within near-eye display 120 (eg, the center of IMU 132 ).

眼睛追蹤單元130可包括一或多個眼睛追蹤系統。眼睛追蹤可指判定眼睛相對於近眼顯示器120之位置,包括眼睛之定向及方位。眼睛追蹤系統可包括成像系統以對一或多隻眼睛進行成像,且可視情況包括光發射器,該光發射器可產生導向眼睛之光,使得由眼睛反射之光可由成像系統俘獲。舉例而言,眼睛追蹤單元130可包括發射在可見光譜或紅外光譜中之光的非相干或相干光源(例如,雷射二極體),及俘獲由使用者眼睛反射之光的攝影機。作為另一實例,眼睛追蹤單元130可俘獲由微型雷達單元發射之經反射無線電波。眼睛追蹤單元130可使用低功率光發射器,所述低功率光發射器在不會損傷眼睛或引起身體不適之頻率及強度下發射光。眼睛追蹤單元130可經配置以增加由眼睛追蹤單元130俘獲之眼睛影像的對比度,同時減小由眼睛追蹤單元130消耗之總功率(例如,減小由包括於眼睛追蹤單元130中之光發射器及成像系統消耗的功率)。舉例而言,在一些實施方式中,眼睛追蹤單元130可消耗小於100毫瓦之功率。Eye tracking unit 130 may include one or more eye tracking systems. Eye tracking may refer to determining the position of an eye relative to the near-eye display 120, including the orientation and orientation of the eye. An eye tracking system may include an imaging system to image one or more eyes, and optionally include a light emitter that can generate light directed toward the eye so that light reflected by the eye can be captured by the imaging system. For example, eye-tracking unit 130 may include an incoherent or coherent light source (eg, a laser diode) that emits light in the visible or infrared spectrum, and a camera that captures the light reflected by the user's eyes. As another example, eye-tracking unit 130 may capture reflected radio waves emitted by a miniature radar unit. Eye tracking unit 130 may use low power light transmitters that emit light at frequencies and intensities that do not damage the eyes or cause physical discomfort. Eye tracking unit 130 may be configured to increase the contrast of eye images captured by eye tracking unit 130 while reducing the overall power consumed by eye tracking unit 130 (e.g., reducing and power consumed by the imaging system). For example, in some implementations, eye tracking unit 130 may consume less than 100 milliwatts of power.

近眼顯示器120可使用眼睛之定向以例如判定使用者之瞳孔間距離(inter-pupillary distance;IPD)、判定凝視方向、引入深度提示(例如,在使用者之主視線外部的模糊影像)、收集關於VR媒體中之使用者交互作用的啟發資訊(例如,花費在任何特定個體、物件或圖框上之時間,其依據所暴露之刺激而變化)、部分地基於使用者之眼睛中之至少一者之定向的一些其他功能,或其任何組合。由於可判定使用者之兩隻眼睛的定向,故眼睛追蹤單元130可能夠判定使用者看向何處。舉例而言,判定使用者之凝視方向可包括基於使用者左眼及右眼之經判定定向來判定會聚點。會聚點可為使用者眼睛之兩個視窩軸線(foveal axis)相交的點。使用者之凝視方向可為穿過會聚點及在使用者之眼睛之瞳孔之間的中點的線之方向The near-eye display 120 may use the orientation of the eyes to, for example, determine the user's inter-pupillary distance (IPD), determine gaze direction, introduce depth cues (e.g., blurry images outside the user's primary line of sight), collect information about Heuristic information for user interaction in VR media (e.g., time spent on any particular entity, object, or frame that varies depending on the stimulus to which it is exposed), based in part on at least one of the user's eyes some other function of the orientation, or any combination thereof. Since the orientation of the user's two eyes can be determined, the eye tracking unit 130 may be able to determine where the user is looking. For example, determining the gaze direction of the user may include determining a point of convergence based on the determined orientations of the user's left and right eyes. The point of convergence may be the point where two foveal axes of the user's eyes intersect. The user's gaze direction may be the direction of a line passing through the point of convergence and the midpoint between the pupils of the user's eyes

輸入/輸出介面140可為允許使用者將動作請求發送至控制台110之裝置。動作請求可為進行特定動作之請求。舉例而言,動作請求可為開始或結束應用程式或進行應用程式內之特定動作。輸入/輸出介面140可包括一或多個輸入裝置。實例輸入裝置可包括鍵盤、滑鼠、遊戲控制器、手套、按鈕、觸控螢幕,或用於接收動作請求且將所接收動作請求傳達至控制台110的任何其他合適裝置。可將由輸入/輸出介面140接收之動作請求傳達至可進行對應於所請求動作之動作的控制台110。在一些具體實例中,輸入/輸出介面140可根據自控制台110接收到之指令將觸覺回饋提供至使用者。舉例而言,輸入/輸出介面140可在接收到動作請求時或在控制台110已進行所請求動作且將指令傳達至輸入/輸出介面140時提供觸覺回饋。在一些具體實例中,外部成像裝置150可用於追蹤輸入/輸出介面140,諸如追蹤控制器(其可包括例如IR光源)或使用者之手部之方位或位置以判定使用者之運動。在一些具體實例中,近眼顯示器120可包括一或多個成像裝置以追蹤輸入/輸出介面140,諸如追蹤控制器或使用者之手部的方位或位置以判定使用者之運動。The input/output interface 140 may be a device that allows a user to send action requests to the console 110 . An action request may be a request to perform a specific action. For example, an action request may start or end an application or perform a specific action within an application. The input/output interface 140 may include one or more input devices. Example input devices may include a keyboard, mouse, game controller, glove, buttons, touch screen, or any other suitable device for receiving action requests and communicating the received action requests to console 110 . Action requests received by input/output interface 140 may be communicated to console 110 where actions corresponding to the requested actions may be performed. In some embodiments, the input/output interface 140 can provide haptic feedback to the user according to commands received from the console 110 . For example, the input/output interface 140 may provide haptic feedback when an action request is received or when the console 110 has performed the requested action and communicated the command to the input/output interface 140 . In some embodiments, an external imaging device 150 may be used to track the input/output interface 140, such as tracking the orientation or position of a controller (which may include, for example, an IR light source) or a user's hand to determine the user's motion. In some embodiments, the near-eye display 120 may include one or more imaging devices to track the input/output interface 140, such as tracking the orientation or position of a controller or a user's hand to determine the user's motion.

控制台110可根據自外部成像裝置150、近眼顯示器120及輸入/輸出介面140中之一或多者接收到之資訊而將內容提供至近眼顯示器120以供呈現給使用者。在圖1中所展示之實例中,控制台110可包括應用程式商店112、耳機追蹤模組114、人工實境引擎116及眼睛追蹤模組118。控制台110之一些具體實例可包括與結合圖1所描述之模組不同的模組或額外模組。下文進一步所描述之功能可以與此處所描述之方式不同的方式分佈於控制台110之組件當中。Console 110 may provide content to near-eye display 120 for presentation to the user based on information received from one or more of external imaging device 150 , near-eye display 120 , and input/output interface 140 . In the example shown in FIG. 1 , the console 110 may include an app store 112 , a headset tracking module 114 , an artificial reality engine 116 , and an eye tracking module 118 . Some embodiments of console 110 may include different or additional modules than those described in connection with FIG. 1 . The functionality described further below may be distributed among the components of console 110 in different ways than described here.

在一些具體實例中,控制台110可包括處理器及儲存可由該處理器執行之指令的非暫時性電腦可讀取儲存媒體。處理器可包括並行地執行指令之多個處理單元。非暫時性電腦可讀取儲存媒體可為諸如硬碟驅動機、抽取式記憶體或固態驅動器(例如,快閃記憶體或動態隨機存取記憶體(dynamic random access memory;DRAM))之任何記憶體。在各種具體實例中,結合圖1所描述之控制台110之模組可經編碼為非暫時性電腦可讀取儲存媒體中的指令,所述指令在由處理器執行時使得處理器進行下文進一步所描述之功能。In some embodiments, console 110 may include a processor and a non-transitory computer-readable storage medium storing instructions executable by the processor. A processor may include multiple processing units that execute instructions in parallel. A non-transitory computer-readable storage medium can be any memory such as a hard drive, removable memory, or solid-state drive (eg, flash memory or dynamic random access memory (DRAM)) body. In various embodiments, the modules of the console 110 described in connection with FIG. 1 can be encoded as instructions in a non-transitory computer-readable storage medium that, when executed by the processor, cause the processor to perform the following steps: function described.

應用程式商店112可儲存一或多個應用程式以供控制台110執行。應用程式可包括在由處理器執行時產生內容以供呈現給使用者之指令群組。由應用程式產生之內容可為回應於經由使用者之眼睛之移動而自使用者接收到之輸入,或自輸入/輸出介面140接收到之輸入。應用程式之實例可包括遊戲應用程式、會議應用程式、視訊播放應用程式或其他合適應用程式。The application store 112 can store one or more application programs for the console 110 to execute. An application program may include a set of instructions that, when executed by a processor, generate content for presentation to a user. The content generated by the application may be input received from the user in response to movement of the user's eyes, or input received from the input/output interface 140 . Examples of applications may include gaming applications, conferencing applications, video playback applications, or other suitable applications.

耳機追蹤模組114可使用來自外部成像裝置150之慢速校準資訊來追蹤近眼顯示器120之移動。舉例而言,耳機追蹤模組114可使用來自慢速校準資訊之觀測到之定位器及近眼顯示器120之模型來判定近眼顯示器120之參考點的位置。耳機追蹤模組114亦可使用來自快速校準資訊之位置資訊來判定近眼顯示器120之參考點的位置。另外,在一些具體實例中,耳機追蹤模組114可使用快速校準資訊、慢速校準資訊或其任何組合之部分來預測近眼顯示器120之未來方位。耳機追蹤模組114可將近眼顯示器120之所估計位置或所預測未來位置提供至人工實境引擎116。The headphone tracking module 114 can use the slow calibration information from the external imaging device 150 to track the movement of the near-eye display 120 . For example, the headset tracking module 114 may use the observed locators from the slow calibration information and a model of the near-eye display 120 to determine the location of a reference point for the near-eye display 120 . The headset tracking module 114 can also use the location information from the quick calibration information to determine the location of the reference point of the near-eye display 120 . Additionally, in some embodiments, the headset tracking module 114 may use portions of the fast calibration information, the slow calibration information, or any combination thereof to predict the future position of the near-eye display 120 . The headset tracking module 114 may provide the estimated location or the predicted future location of the near-eye display 120 to the artificial reality engine 116 .

人工實境引擎116可執行人工實境系統環境100內之應用程式,且自耳機追蹤模組114接收近眼顯示器120之位置資訊、近眼顯示器120之加速度資訊、近眼顯示器120之速度資訊、近眼顯示器120之所預測未來位置,或其任何組合。人工實境引擎116亦可自眼睛追蹤模組118接收所估計之眼睛位置及定向資訊。基於接收到之資訊,人工實境引擎116可判定用以提供至近眼顯示器120以供呈現給使用者的內容。舉例而言,若接收到之資訊指示使用者已向左看,則人工實境引擎116可產生用於近眼顯示器120之內容,該內容反映使用者之眼睛在虛擬環境中之移動。另外,人工實境引擎116可回應於自輸入/輸出介面140接收到之動作請求而進行在控制台110上執行之應用程式內的動作,且將指示該動作已進行之回饋提供至使用者。回饋可為經由近眼顯示器120之視覺或聽覺回饋,或經由輸入/輸出介面140之觸覺回饋。The artificial reality engine 116 can execute the application program in the artificial reality system environment 100, and receive the position information of the near-eye display 120, the acceleration information of the near-eye display 120, the speed information of the near-eye display 120, and the near-eye display 120 from the headset tracking module 114. The predicted future location, or any combination thereof. The artificial reality engine 116 may also receive estimated eye position and orientation information from the eye tracking module 118 . Based on the received information, the artificial reality engine 116 may determine content to provide to the near-eye display 120 for presentation to the user. For example, if the received information indicates that the user has looked to the left, the artificial reality engine 116 may generate content for the near-eye display 120 that reflects the movement of the user's eyes in the virtual environment. In addition, the augmented reality engine 116 can take an action within an application executing on the console 110 in response to an action request received from the input/output interface 140 and provide feedback to the user indicating that the action has been taken. The feedback can be visual or auditory feedback via the near-eye display 120 , or tactile feedback via the input/output interface 140 .

眼睛追蹤模組118可自眼睛追蹤單元130接收眼睛追蹤資料,且基於該眼睛追蹤資料來判定使用者的眼睛之位置。眼睛之位置可包括眼睛相對於近眼顯示器120或其任何元件之定向、方位或兩者。由於眼睛之旋轉軸線依據眼睛在其眼窩中之方位而改變,故判定眼睛在其眼窩中之方位可允許眼睛追蹤模組118更準確地判定眼睛之定向。The eye tracking module 118 can receive eye tracking data from the eye tracking unit 130 and determine the position of the user's eyes based on the eye tracking data. The position of the eye may include the orientation, orientation, or both of the eye relative to the near-eye display 120 or any element thereof. Since the axis of rotation of the eye changes depending on the orientation of the eye in its socket, determining the orientation of the eye in its socket may allow the eye tracking module 118 to more accurately determine the orientation of the eye.

2為用於實施本文中所揭示之實例中之一些的HMD裝置200之形式的近眼顯示器之實例的透視圖。HMD裝置200可為例如VR系統、AR系統、MR系統或其任何組合之一部分。HMD裝置200可包括主體220及頭部綁帶230。圖2在透視圖中展示主體220之底側223、前側225及左側227。頭部綁帶230可具有可調整或可延伸的長度。在HMD裝置200之主體220與頭部綁帶230之間可存在足夠的空間,以允許使用者將HMD裝置200安裝至使用者之頭部上。在各種具體實例中,HMD裝置200可包括額外組件、較少組件或不同組件。舉例而言,在一些具體實例中,HMD裝置200可包括如例如以下圖3中所展示之眼鏡鏡腿及鏡腿尖端,而非頭部綁帶230。 2 is a perspective view of an example of a near - eye display in the form of an HMD device 200 for implementing some of the examples disclosed herein. The HMD device 200 may be part of, for example, a VR system, an AR system, an MR system, or any combination thereof. The HMD device 200 may include a main body 220 and a head strap 230 . Figure 2 shows the bottom side 223, the front side 225 and the left side 227 of the main body 220 in a perspective view. The head strap 230 may have an adjustable or extendable length. There may be sufficient space between the main body 220 of the HMD device 200 and the head strap 230 to allow the user to mount the HMD device 200 on the user's head. In various embodiments, HMD device 200 may include additional components, fewer components, or different components. For example, instead of head strap 230 , in some embodiments, HMD device 200 may include eyeglass temples and temple tips as shown, for example, in FIG. 3 below.

HMD裝置200可將包括具有電腦產生元素之實體真實世界環境之虛擬及/或擴增視圖的媒體呈現給使用者。由HMD裝置200呈現之媒體的實例可包括影像(例如,二維(2D)或三維(3D)影像)、視訊(例如,2D或3D視訊)、音訊,或其任何組合。所述影像及視訊可由圍封於HMD裝置200之主體220中的一或多個顯示器組合件(圖2中未顯示)呈現給使用者之每隻眼睛。在各種具體實例中,一或多個顯示器組合件可包括單一電子顯示面板或多個電子顯示面板(例如,使用者之每隻眼睛一個顯示面板)。電子顯示面板之實例可包括例如LCD、OLED顯示器、ILED顯示器、µLED顯示器、AMOLED、TOLED、某一其他顯示器,或其任何組合。HMD裝置200可包括兩個眼眶區。HMD device 200 may present media to a user that includes virtual and/or augmented views of a physical real-world environment with computer-generated elements. Examples of media presented by HMD device 200 may include images (eg, two-dimensional (2D) or three-dimensional (3D) images), video (eg, 2D or 3D video), audio, or any combination thereof. The images and videos may be presented to each eye of the user by one or more display assemblies (not shown in FIG. 2 ) enclosed in the body 220 of the HMD device 200 . In various embodiments, one or more display assemblies may include a single electronic display panel or multiple electronic display panels (eg, one display panel for each eye of a user). Examples of electronic display panels may include, for example, LCDs, OLED displays, ILED displays, µLED displays, AMOLEDs, TOLEDs, some other display, or any combination thereof. HMD device 200 may include two orbital regions.

在一些實施方式中,HMD裝置200可包括各種感測器(未顯示),諸如深度感測器、運動感測器、位置感測器及眼睛追蹤感測器。此等感測器中之一些可使用結構化之光圖案以用於感測。在一些實施方式中,HMD裝置200可包括用於與控制台進行通信之輸入/輸出介面。在一些實施方式中,HMD裝置200可包括虛擬實境引擎(未顯示),該虛擬實境引擎可執行HMD裝置200內之應用程式,且自各種感測器接收HMD裝置200之深度資訊、位置資訊、加速度資訊、速度資訊、所預測未來位置或其任何組合。在一些實施方式中,由虛擬實境引擎接收到之資訊可用於為一或多個顯示器組合件產生信號(例如,顯示指令)。在一些實施方式中,HMD裝置200可包括相對於彼此且相對於參考點位於主體220上之固定位置中的定位器(未顯示,諸如定位器126)。定位器中之每一者可發射可由外部成像裝置偵測到的光。In some embodiments, the HMD device 200 may include various sensors (not shown), such as depth sensors, motion sensors, position sensors, and eye tracking sensors. Some of these sensors can use structured light patterns for sensing. In some implementations, the HMD device 200 may include an input/output interface for communicating with a console. In some embodiments, the HMD device 200 may include a virtual reality engine (not shown), which can execute applications in the HMD device 200 and receive depth information, position information of the HMD device 200 from various sensors. information, acceleration information, velocity information, predicted future position, or any combination thereof. In some implementations, information received by the virtual reality engine may be used to generate signals (eg, display commands) for one or more display assemblies. In some implementations, HMD device 200 may include locators (not shown, such as locator 126 ) located in fixed positions on body 220 relative to each other and relative to a reference point. Each of the locators can emit light that can be detected by an external imaging device.

3為用於實施本文中所揭示之實例中之一些的一副眼鏡之形式的近眼顯示器300之實例的透視圖。近眼顯示器300可為圖1之近眼顯示器120的特定實施方式,且可經配置以作為虛擬實境顯示器、擴增實境顯示器及/或混合實境顯示器來操作。近眼顯示器300可包括框架305及顯示器310。顯示器310可經配置以將內容呈現給使用者。在一些具體實例中,顯示器310可包括顯示電子件及/或顯示光學件。舉例而言,如上文關於圖1之近眼顯示器120所描述,顯示器310可包括LCD顯示面板、LED顯示面板或光學顯示面板(例如,波導顯示組合件)。 3 is a perspective view of an example of a near - eye display 300 in the form of a pair of glasses for implementing some of the examples disclosed herein. Near-eye display 300 may be a particular implementation of near-eye display 120 of FIG. 1 and may be configured to operate as a virtual reality display, an augmented reality display, and/or a mixed reality display. The near-eye display 300 may include a frame 305 and a display 310 . Display 310 may be configured to present content to a user. In some embodiments, display 310 may include display electronics and/or display optics. For example, as described above with respect to near-eye display 120 of FIG. 1 , display 310 may include an LCD display panel, an LED display panel, or an optical display panel (eg, a waveguide display assembly).

近眼顯示器300可進一步包括在框架305上或內之各種感測器350a、350b、350c、350d及350e。在一些具體實例中,感測器350a至350e可包括一或多個深度感測器、運動感測器、位置感測器、慣性感測器或環境光感測器。在一些具體實例中,感測器350a至350e可包括一或多個影像感測器,該一或多個影像感測器經配置以產生表示不同方向上之不同視場的影像資料。在一些具體實例中,感測器350a至350e可用作輸入裝置以控制或影響近眼顯示器300之所顯示內容,及/或向近眼顯示器300之使用者提供交互式VR/AR/MR體驗。在一些具體實例中,感測器350a至350e亦可用於立體成像。The near-eye display 300 may further include various sensors 350 a , 350 b , 350 c , 350 d , and 350 e on or within the frame 305 . In some embodiments, the sensors 350a to 350e may include one or more depth sensors, motion sensors, position sensors, inertial sensors, or ambient light sensors. In some embodiments, the sensors 350a-350e may include one or more image sensors configured to generate image data representing different fields of view in different directions. In some embodiments, sensors 350 a - 350 e can be used as input devices to control or affect displayed content of near-eye display 300 and/or provide an interactive VR/AR/MR experience to a user of near-eye display 300 . In some embodiments, the sensors 350a-350e can also be used for stereoscopic imaging.

在一些具體實例中,近眼顯示器300可進一步包括一或多個照明器330以將光投影至實體環境中。所投影光可與不同頻帶(例如,可見光、紅外光、紫外光等)相關聯,且可用於各種目的。舉例而言,照明器330可將光投影於黑暗環境中(或具有低強度之紅外光、紫外光等的環境中),以輔助感測器350a至350e俘獲黑暗環境內之不同物件的影像。在一些具體實例中,照明器330可用於將某些光圖案投影至環境內之物件上。在一些具體實例中,照明器330可用作定位器,諸如上文關於圖1所描述之定位器126。In some embodiments, the near-eye display 300 may further include one or more illuminators 330 to project light into the physical environment. The projected light can be associated with different frequency bands (eg, visible, infrared, ultraviolet, etc.) and can be used for various purposes. For example, the illuminator 330 can project light into a dark environment (or an environment with low intensity infrared light, ultraviolet light, etc.) to assist the sensors 350a to 350e in capturing images of different objects in the dark environment. In some embodiments, illuminators 330 may be used to project certain light patterns onto objects within the environment. In some embodiments, illuminator 330 may be used as a locator, such as locator 126 described above with respect to FIG. 1 .

在一些具體實例中,近眼顯示器300亦可包括高解析度攝影機340。攝影機340可俘獲視場中之實體環境的影像。所俘獲影像可例如由虛擬實境引擎(例如,圖1之人工實境引擎116)處理,以將虛擬物件添加至所俘獲影像或修改所俘獲影像中之實體物件,且經處理影像可由顯示器310顯示給使用者以用於AR或MR應用。In some specific examples, the near-eye display 300 may also include a high-resolution camera 340 . Camera 340 may capture images of the physical environment in the field of view. The captured image can be processed, for example, by a virtual reality engine (e.g., artificial reality engine 116 of FIG. Displayed to the user for AR or MR applications.

4說明根據某些具體實例之包括波導顯示器之光學透視擴增實境系統400之實例。擴增實境系統400可包括投影器410及組合器415。投影器410可包括光源或影像源412及投影器光學件414。在一些具體實例中,光源或影像源412可包括上文所描述之一或多個微LED裝置。在一些具體實例中,影像源412可包括顯示虛擬物件之複數個像素,諸如LCD顯示面板或LED顯示面板。在一些具體實例中,影像源412可包括產生相干或部分相干光之光源。舉例而言,影像源412可包括雷射二極體、垂直腔面射型雷射、LED及/或上文所描述之微LED。在一些具體實例中,影像源412可包括各自發射對應於原色(例如,紅色、綠色或藍色)之單色影像光的複數個光源(例如,上文所描述之微LED陣列)。在一些具體實例中,影像源412可包括三個二維微LED陣列,其中每一二維微LED陣列可包括經配置以發射原色(例如,紅色、綠色或藍色)之光的微LED。在一些具體實例中,影像源412可包括光學圖案產生器,諸如空間光調變器。投影器光學件414可包括可調節來自影像源412之光,諸如擴展、準直、掃描或將光自影像源412投影至組合器415的一或多個光學組件。一或多個光學組件可包括例如一或多個透鏡、液體透鏡、鏡面、光圈及/或光柵。舉例而言,在一些具體實例中,影像源412可包括一或多個一維微LED陣列或細長二維微LED陣列,且投影器光學件414可包括經配置以掃描一維微LED陣列或細長二維微LED陣列以產生影像圖框的一或多個一維掃描器(例如,微鏡或稜鏡)。在一些具體實例中,投影器光學件414可包括具有複數個電極之液體透鏡(例如,液晶透鏡),該液體透鏡允許掃描來自影像源412之光。 4 illustrates an example of an optical see-through augmented reality system 400 including a waveguide display , according to certain embodiments. The augmented reality system 400 may include a projector 410 and a combiner 415 . Projector 410 may include a light source or image source 412 and projector optics 414 . In some embodiments, the light source or image source 412 may include one or more of the micro LED devices described above. In some embodiments, the image source 412 may include a plurality of pixels for displaying virtual objects, such as an LCD display panel or an LED display panel. In some embodiments, image source 412 may include a light source that produces coherent or partially coherent light. For example, the image source 412 may include laser diodes, VCSELs, LEDs, and/or micro LEDs as described above. In some embodiments, image source 412 may include a plurality of light sources (eg, the micro LED arrays described above) each emitting monochromatic image light corresponding to a primary color (eg, red, green, or blue). In some embodiments, image source 412 can include three two-dimensional micro-LED arrays, where each two-dimensional micro-LED array can include micro-LEDs configured to emit light of a primary color (eg, red, green, or blue). In some embodiments, image source 412 may include an optical pattern generator, such as a spatial light modulator. Projector optics 414 may include one or more optical components that may condition light from image source 412 , such as expand, collimate, scan, or project light from image source 412 to combiner 415 . The one or more optical components may include, for example, one or more lenses, liquid lenses, mirrors, apertures and/or gratings. For example, in some embodiments, image source 412 can include one or more one-dimensional micro-LED arrays or elongated two-dimensional micro-LED arrays, and projector optics 414 can include one or more one-dimensional micro-LED arrays configured to scan or One or more 1D scanners (eg, micromirrors or micromirrors) that elongate a 2D array of micro-LEDs to produce an image frame. In some embodiments, projector optics 414 may include a liquid lens (eg, a liquid crystal lens) having a plurality of electrodes that allows light from image source 412 to be scanned.

組合器415可包括用於將來自投影器410之光耦合至組合器415之基板420中的輸入耦合器430。組合器415可透射第一波長範圍內之光的至少50%且反射第二波長範圍內之光的至少25%。舉例而言,第一波長範圍可為自約400 nm至約650 nm之可見光,且第二波長範圍可在例如自約800 nm至約1000 nm之紅外頻帶中。輸入耦合器430可包括體積全像光柵、繞射光學元件(diffractive optical element;DOE)(例如,表面起伏光柵)、基板420之傾斜表面或折射耦合器(例如,楔狀物或稜鏡)。舉例而言,輸入耦合器430可包括反射體積布拉格(Bragg)光柵或透射體積布拉格光柵。對於可見光,輸入耦合器430可具有大於30%、50%、75%、90%或更高之耦合效率。耦合至基板420中之光可經由例如全內反射(total internal reflection;TIR)在基板420內傳播。基板420可為一副眼鏡之透鏡的形式。基板420可具有平坦或彎曲表面,且可包括一或多種類型之介電材料,諸如玻璃、石英、塑膠、聚合物、聚(甲基丙烯酸甲酯)(poly(methyl methacrylate);PMMA)、晶體或陶瓷。基板之厚度可在例如小於約1 mm至約10 mm或更大之範圍內。基板420對於可見光可為透明的。The combiner 415 may include an input coupler 430 for coupling light from the projector 410 into the substrate 420 of the combiner 415 . The combiner 415 can transmit at least 50% of the light in the first wavelength range and reflect at least 25% of the light in the second wavelength range. For example, the first wavelength range may be visible light from about 400 nm to about 650 nm, and the second wavelength range may be in the infrared band, eg, from about 800 nm to about 1000 nm. The input coupler 430 may include a volume holographic grating, a diffractive optical element (DOE) (eg, a surface relief grating), a sloped surface of the substrate 420 , or a refractive coupler (eg, a wedge or a dimple). For example, the input coupler 430 may comprise a reflective volume Bragg (Bragg) grating or a transmissive volume Bragg grating. For visible light, the input coupler 430 can have a coupling efficiency greater than 30%, 50%, 75%, 90%, or higher. The light coupled into the substrate 420 may propagate within the substrate 420 via, for example, total internal reflection (TIR). Substrate 420 may be in the form of a lens of a pair of eyeglasses. Substrate 420 may have a flat or curved surface, and may include one or more types of dielectric materials, such as glass, quartz, plastic, polymer, poly(methyl methacrylate) (PMMA), crystal or ceramic. The thickness of the substrate can range, for example, from less than about 1 mm to about 10 mm or more. Substrate 420 may be transparent to visible light.

基板420可包括或可耦合至複數個輸出耦合器440,該複數個輸出耦合器440各自經配置以自基板420提取由基板420導引且在其內傳播的光之至少一部分,且將所提取光460引導至擴增實境系統400之使用者的眼睛490在擴增實境系統400處於使用中時可位於的眼眶495。複數個輸出耦合器440可複製出射光瞳以增大眼眶495之大小,使得所顯示影像在較大區域中可見。與輸入耦合器430一樣,輸出耦合器440可包括光柵耦合器(例如,體積全像光柵或表面起伏光柵)、其他繞射光學元件、稜鏡等。舉例而言,輸出耦合器440可包括反射體積布拉格光柵或透射體積布拉格光柵。輸出耦合器440可在不同方位處具有不同的耦合(例如,繞射)效率。基板420亦可允許來自組合器415前方之環境的光450在損失極少或無損失之情況下穿過。輸出耦合器440亦可允許光450在損失極少之情況下穿過。舉例而言,在一些實施方式中,輸出耦合器440可對於光450具有極低繞射效率,使得光450可在損失極少之情況下折射或以其他方式穿過輸出耦合器440,且因此可具有高於所提取光460之強度。在一些實施方式中,輸出耦合器440可對光450具有高繞射效率,且可在損失極少之情況下在某些所要方向(亦即,繞射角)上繞射光450。因此,使用者可能夠觀看組合器415前方之環境與由投影器410投影之虛擬物件之影像的經組合影像。Substrate 420 may include or be coupled to a plurality of output couplers 440 each configured to extract from substrate 420 at least a portion of the light guided by and propagating within substrate 420 and to extract Light 460 is directed to eye sockets 495 where eyes 490 of a user of augmented reality system 400 may be located when augmented reality system 400 is in use. Multiple output couplers 440 can duplicate the exit pupil to increase the size of the eye socket 495 so that the displayed image is visible in a larger area. Like the input coupler 430, the output coupler 440 may include a grating coupler (eg, a volume hologram or a surface relief grating), other diffractive optical elements, gratings, or the like. For example, output coupler 440 may comprise a reflective volume Bragg grating or a transmissive volume Bragg grating. Output coupler 440 may have different coupling (eg, diffraction) efficiencies at different orientations. Substrate 420 may also allow light 450 from the environment in front of combiner 415 to pass through with little or no loss. Output coupler 440 may also allow light 450 to pass through with very little loss. For example, in some implementations, output coupler 440 may have very low diffraction efficiency for light 450 such that light 450 may be refracted or otherwise pass through output coupler 440 with very little loss, and thus may Has a higher intensity than the extracted light 460 . In some implementations, the output coupler 440 can have high diffraction efficiency for the light 450 and can diffract the light 450 in certain desired directions (ie, diffraction angles) with very little loss. Thus, the user may be able to view a combined image of the environment in front of the combiner 415 and the image of the virtual object projected by the projector 410 .

5A說明根據某些具體實例之包括波導顯示器530之近眼顯示器(near-eye display;NED)裝置500之實例。NED裝置500可為近眼顯示器120、擴增實境系統400或另一類型之顯示裝置的實例。NED裝置500可包括光源510、投影光學件520及波導顯示器530。光源510可包括不同色彩之多組光發射器,諸如一組紅光發射器512、一組綠光發射器514及一組藍光發射器516。紅光發射器512經組織成陣列;綠光發射器514經組織成陣列;且藍光發射器516經組織成陣列。光源510中之光發射器之尺寸及間距可能較小。舉例而言,每一光發射器可具有小於2 μm(例如,約1.2 μm)之直徑,且間距可小於2 μm(例如,約1.5 μm)。因此,每一紅光發射器512、綠光發射器514及藍光發射器516中之光發射器之數目可等於或大於顯示影像中之像素之數目,諸如960×720、1280×720、1440×1080、1920×1080、2160×1080或2560×1080像素。因此,顯示影像可由光源510同時產生。掃描元件可不用於NED裝置500中。 5A illustrates an example of a near-eye display (NED) device 500 including a waveguide display 530 according to certain embodiments . NED device 500 may be an example of near-eye display 120, augmented reality system 400, or another type of display device. NED device 500 may include light source 510 , projection optics 520 and waveguide display 530 . The light source 510 may include sets of light emitters of different colors, such as a set of red light emitters 512 , a set of green light emitters 514 , and a set of blue light emitters 516 . Red emitters 512 are organized in an array; green emitters 514 are organized in an array; and blue emitters 516 are organized in an array. The size and spacing of the light emitters in light source 510 may be small. For example, each light emitter can have a diameter of less than 2 μm (eg, about 1.2 μm), and the pitch can be less than 2 μm (eg, about 1.5 μm). Therefore, the number of light emitters in each of red emitter 512, green emitter 514, and blue emitter 516 may be equal to or greater than the number of pixels in a displayed image, such as 960×720, 1280×720, 1440× 1080, 1920×1080, 2160×1080, or 2560×1080 pixels. Therefore, display images can be generated by the light sources 510 simultaneously. Scanning elements may not be used in NED device 500 .

在到達波導顯示器530之前,由光源510發射之光可由可包括透鏡陣列之投影光學件520進行調節。投影光學件520可準直由光源510發射之光或將該光聚焦至波導顯示器530,該波導顯示器530可包括用於將由光源510發射之光耦合至波導顯示器530中的耦合器532。耦合至波導顯示器530中之光可經由例如如上文關於圖4所描述之全內反射在波導顯示器530內傳播。耦合器532亦可將在波導顯示器530內傳播之光的部分耦合出波導顯示器530且導向使用者之眼睛590。Before reaching waveguide display 530, light emitted by light source 510 may be conditioned by projection optics 520, which may include an array of lenses. Projection optics 520 may collimate or focus light emitted by light source 510 into waveguide display 530 , which may include a coupler 532 for coupling light emitted by light source 510 into waveguide display 530 . Light coupled into waveguide display 530 may propagate within waveguide display 530 via, for example, total internal reflection as described above with respect to FIG. 4 . The coupler 532 can also couple a portion of the light propagating within the waveguide display 530 out of the waveguide display 530 and toward the user's eye 590 .

5B說明根據某些具體實例之包括波導顯示器580的近眼顯示器(NED)裝置550之實例。在一些具體實例中,NED裝置550可使用掃描鏡面570以將來自光源540之光投影至影像場,其中使用者之眼睛590可位於該影像場中。NED裝置550可為近眼顯示器120、擴增實境系統400或另一類型之顯示裝置的實例。光源540可包括一或多列或一或多行不同色彩之光發射器,諸如多列紅光發射器542、多列綠光發射器544及多列藍光發射器546。舉例而言,紅光發射器542、綠光發射器544及藍光發射器546可各自包括N個列,每一列包括例如2560個光發射器(像素)。紅光發射器542組織成陣列;綠光發射器544組織成陣列;且藍光發射器546組織成陣列。在一些具體實例中,光源540可包括用於每一色彩的單行光發射器。在一些具體實例中,光源540可包括用於紅色、綠色及藍色中之每一者的多行光發射器,其中每一行可包括例如1080個光發射器。在一些具體實例中,光源540中之光發射器之尺寸及/或間距可相對較大(例如,約3至5 μm),且因此光源540可不包括用於同時產生完整顯示影像之足夠光發射器。舉例而言,用於單一色彩之光發射器之數目可少於顯示影像中之像素之數目(例如,2560×1080個像素)。由光源540發射之光可為準直或發散光束之集合。 5B illustrates an example of a near - eye display (NED) device 550 including a waveguide display 580 according to certain embodiments. In some embodiments, NED device 550 may use scanning mirror 570 to project light from light source 540 into an image field where user's eyes 590 may be located. NED device 550 may be an example of near-eye display 120, augmented reality system 400, or another type of display device. The light source 540 may include one or more columns or rows of light emitters of different colors, such as multiple columns of red light emitters 542 , multiple columns of green light emitters 544 and multiple columns of blue light emitters 546 . For example, red light emitter 542, green light emitter 544, and blue light emitter 546 may each include N columns, each column including, for example, 2560 light emitters (pixels). Red emitters 542 are organized in an array; green emitters 544 are organized in an array; and blue emitters 546 are organized in an array. In some embodiments, light source 540 may include a single row of light emitters for each color. In some embodiments, light source 540 can include multiple rows of light emitters for each of red, green, and blue, where each row can include, for example, 1080 light emitters. In some embodiments, the size and/or pitch of light emitters in light source 540 may be relatively large (e.g., about 3 to 5 μm), and thus light source 540 may not include sufficient light emission to simultaneously produce a complete display image device. For example, the number of light emitters for a single color may be less than the number of pixels in a displayed image (eg, 2560x1080 pixels). The light emitted by light source 540 may be a collection of collimated or diverging beams.

在到達掃描鏡面570之前,由光源540發射之光可由諸如準直透鏡或自由形式光學元件560之各種光學裝置來調節。自由形式光學元件560可包括例如多琢面稜鏡或另一光摺疊元件,該多琢面稜鏡或另一光摺疊元件可將由光源540發射之光導向掃描鏡面570,諸如使由光源540發射之光之傳播方向改變例如約90°或更大。在一些具體實例中,自由形式光學元件560可為可旋轉的以掃描光。掃描鏡面570及/或自由形式光學元件560可將由光源540發射之光反射及投影至波導顯示器580,該波導顯示器580可包括用於將由光源540發射之光耦合至波導顯示器580中之耦合器582。耦合至波導顯示器580中之光可經由例如如上文關於圖4所描述之全內反射在波導顯示器580內傳播。耦合器582亦可將在波導顯示器580內傳播之光的部分耦合出波導顯示器580且朝向使用者之眼睛590。Light emitted by light source 540 may be conditioned by various optical devices such as collimating lenses or freeform optics 560 before reaching scan mirror 570 . Free-form optical element 560 may comprise, for example, a faceted facet or another light-folding element that may direct light emitted by light source 540 toward scanning mirror 570, such as to direct light emitted by light source 540 The direction of propagation of the light changes, for example, by about 90° or more. In some embodiments, freeform optics 560 can be rotatable to scan light. Scanning mirror 570 and/or freeform optics 560 may reflect and project light emitted by light source 540 to waveguide display 580, which may include coupler 582 for coupling light emitted by light source 540 into waveguide display 580 . Light coupled into waveguide display 580 may propagate within waveguide display 580 via, for example, total internal reflection as described above with respect to FIG. 4 . The coupler 582 may also couple a portion of the light propagating within the waveguide display 580 out of the waveguide display 580 and toward the user's eye 590 .

掃描鏡面570可包括微機電系統(micro-electro-mechanical system;MEMS)鏡面或任何其他合適之鏡面。掃描鏡面570可旋轉以在一或兩個維度上進行掃描。在掃描鏡面570旋轉時,由光源540發射之光可經引導至波導顯示器580之不同區域,使得完整顯示影像可在每一掃描循環中投影至波導顯示器580上且由波導顯示器580引導至使用者之眼睛590。舉例而言,在光源540包括用於一或多列或行中之所有像素之光發射器的具體實例中,掃描鏡面570可在行或列方向(例如,x或y方向)上旋轉以掃描影像。在光源540包括用於一或多列或行中之一些但非所有像素之光發射器的具體實例中,掃描鏡面570可在列及行方向兩者(例如,x及y方向兩者)上旋轉以投影顯示影像(例如,使用光柵型掃描圖案)。The scanning mirror 570 may include a micro-electro-mechanical system (MEMS) mirror or any other suitable mirror. Scanning mirror 570 is rotatable to scan in one or two dimensions. As scanning mirror 570 rotates, light emitted by light source 540 can be directed to different areas of waveguide display 580 so that a complete display image can be projected onto waveguide display 580 and directed by waveguide display 580 to the user in each scan cycle. Eyes 590. For example, in embodiments where light source 540 includes light emitters for all pixels in one or more columns or rows, scanning mirror 570 may be rotated in a row or column direction (e.g., x or y direction) to scan image. In embodiments where light source 540 includes light emitters for some but not all pixels in one or more columns or rows, scanning mirror 570 may be in both column and row directions (e.g., both x and y directions) Rotate to project a display image (for example, using a raster-type scan pattern).

NED裝置550可在預定義顯示週期中操作。顯示週期(例如,顯示循環)可指掃描或投影全影像之持續時間。舉例而言,顯示週期可為所要圖框率之倒數。在包括掃描鏡面570之NED裝置550中,顯示週期亦可稱為掃描週期或掃描循環。由光源540進行之光產生可與掃描鏡面570之旋轉同步。舉例而言,每一掃描循環可包括多個掃描步驟,其中光源540可在每一各別掃描步驟中產生不同光圖案。The NED device 550 can operate in a predefined display period. A display period (eg, a display cycle) may refer to the duration for which a full image is scanned or projected. For example, the display period may be the inverse of the desired frame rate. In the NED device 550 including the scanning mirror 570, the display period may also be referred to as a scanning period or a scanning cycle. Light generation by light source 540 may be synchronized with the rotation of scanning mirror 570 . For example, each scan cycle may include multiple scan steps, wherein the light source 540 may generate a different light pattern in each respective scan step.

在每一掃描循環中,在掃描鏡面570旋轉時,顯示影像可經投影至波導顯示器580及使用者之眼睛590上。顯示影像之給定像素方位之實際色彩值及光強度(例如,亮度)可為在掃描週期期間照明該像素方位之三種色彩(例如,紅色、綠色及藍色)之光束的平均值。在完成掃描週期之後,掃描鏡面570可回復至初始位置以投影用於下一顯示影像之前幾列的光,或可在反方向上或以掃描圖案旋轉以投影用於下一顯示影像之光,其中新的驅動信號集合可經饋送至光源540。當掃描鏡面570在每一掃描循環中旋轉時,可重複相同程序。因此,可在不同掃描循環中將不同影像投影至使用者之眼睛590。During each scan cycle, as the scan mirror 570 rotates, a displayed image may be projected onto the waveguide display 580 and the user's eye 590 . The actual color value and light intensity (eg, brightness) of a given pixel location of a displayed image may be the average of the three colored (eg, red, green and blue) light beams illuminating that pixel location during a scan period. After a scan cycle is complete, scan mirror 570 may return to an initial position to project light for the previous columns of the next displayed image, or may rotate in the reverse direction or in a scan pattern to project light for the next displayed image, wherein The new set of drive signals may be fed to light source 540 . The same procedure may be repeated as the scan mirror 570 rotates in each scan cycle. Thus, different images can be projected to the user's eye 590 in different scan cycles.

6說明根據某些具體實例的在近眼顯示器系統600中之影像源組合件610之實例。影像源組合件610可包括例如可產生待投影至使用者之眼睛之顯示影像的顯示面板640,及可將由顯示面板640產生之顯示影像投影至如上文關於圖4至5B所描述之波導顯示器的投影器650。顯示面板640可包括光源642及用於光源642之驅動器電路644。光源642可包括例如光源510或540。投影器650可包括例如上文所描述之自由形式光學元件560、掃描鏡面570及/或投影光學件520。近眼顯示器系統600亦可包括同步地控制光源642及投影器650(例如,掃描鏡面570)之控制器620。影像源組合件610可產生影像光且將影像光輸出至波導顯示器(圖6中未顯示),諸如波導顯示器530或580。如上文所描述,波導顯示器可在一或多個輸入耦合元件處接收影像光,且將接收到之影像光導引至一或多個輸出耦合元件。輸入及輸出耦合元件可包括例如繞射光柵、全像光柵、稜鏡或其任何組合。輸入耦合元件可經選擇以使得利用波導顯示器發生全內反射。輸出耦合元件可將全體經全內反射之影像光之部分耦合出波導顯示器。 6 illustrates an example of an image source assembly 610 in a near-eye display system 600 , according to certain embodiments. Image source assembly 610 can include, for example, a display panel 640 that can generate a display image to be projected to a user's eye, and can project the display image generated by display panel 640 onto a waveguide display as described above with respect to FIGS. 4-5B . Projector 650. The display panel 640 may include a light source 642 and a driver circuit 644 for the light source 642 . Light source 642 may include, for example, light source 510 or 540 . Projector 650 may include freeform optics 560, scanning mirror 570, and/or projection optics 520, such as those described above. The near-eye display system 600 may also include a controller 620 that controls the light source 642 and the projector 650 (eg, the scanning mirror 570 ) synchronously. Image source assembly 610 can generate image light and output the image light to a waveguide display (not shown in FIG. 6 ), such as waveguide display 530 or 580 . As described above, a waveguide display can receive image light at one or more input coupling elements and guide the received image light to one or more output coupling elements. The input and output coupling elements may include, for example, diffraction gratings, holographic gratings, oscillating gratings, or any combination thereof. The input coupling element can be chosen such that total internal reflection occurs with a waveguide display. The output coupling element couples a portion of the total total internally reflected image light out of the waveguide display.

如上文所描述,光源642可包括以陣列或矩陣配置之複數個光發射器。每一光發射器可發射單色光,諸如紅色光、藍色光、綠色光、紅外光或其類似者。雖然在本發明中常常論述RGB色彩,但本文中所描述之具體實例不限於將紅色、綠色及藍色用作原色。其他色彩亦可用作近眼顯示器系統600之原色。在一些具體實例中,根據一具體實例之顯示面板可使用多於三種原色。光源642中之每一像素可包括三個子像素,所述三個子像素包括紅色光源、綠色光源及藍色光源,其中每一光源可包括例如雷射(例如,VCSEL)、微LED、諧振腔LED(RCLED)或其類似者。在一些具體實例中,光源可包括半導體光源,諸如半導體雷射或半導體LED。半導體LED通常包括多個半導體材料層內之主動發光層。多個半導體材料層可包括不同化合物材料或具有不同摻雜劑及/或不同摻雜密度之相同基底材料。舉例而言,多個半導體材料層可包括n型材料層、可包括異質結構(例如,一或多個量子井)之主動區及p型材料層。多個半導體材料層可生長於具有某一定向之基板之表面上。在一些具體實例中,為了提高光提取效率,可形成包括所述半導體材料層中之至少一些之台面。As described above, light source 642 may include a plurality of light emitters configured in an array or matrix. Each light emitter may emit monochromatic light, such as red light, blue light, green light, infrared light, or the like. While RGB colors are often discussed in this disclosure, the embodiments described herein are not limited to using red, green, and blue as primary colors. Other colors may also be used as primary colors for the near-eye display system 600 . In some embodiments, a display panel according to an embodiment can use more than three primary colors. Each pixel in light source 642 may include three sub-pixels including a red light source, a green light source, and a blue light source, where each light source may include, for example, a laser (e.g., VCSEL), a micro LED, a resonant cavity LED (RCLED) or similar. In some embodiments, the light source may include a semiconductor light source, such as a semiconductor laser or a semiconductor LED. Semiconductor LEDs typically include active light emitting layers within layers of semiconductor material. Multiple layers of semiconductor material may comprise different compound materials or the same base material with different dopants and/or different doping densities. For example, the plurality of layers of semiconductor material can include a layer of n-type material, an active region that can include a heterostructure (eg, one or more quantum wells), and a layer of p-type material. Multiple layers of semiconductor material can be grown on the surface of a substrate with a certain orientation. In some embodiments, to improve light extraction efficiency, mesas including at least some of the semiconductor material layers may be formed.

控制器620可控制影像源組合件610之影像顯現操作,諸如光源642及/或投影機650之操作。舉例而言,控制器620可判定用於影像源組合件610以顯現一或多個顯示影像之指令。指令可包括顯示指令及掃描指令。在一些具體實例中,顯示指令可包括影像檔案(例如,位元映像檔案)。可自例如控制台接收顯示指令,該控制台諸如上文關於圖1所描述之控制台110。掃描指令可由影像源組合件610使用以產生影像光。掃描指令可指定例如影像光源之類型(例如,單色或多色)、掃描速率、掃描設備之定向、一或多個照明參數,或其任何組合。控制器620可包括此處未顯示以免混淆本發明之其他態樣的硬體、軟體及/或韌體之組合。The controller 620 can control the image presentation operation of the image source assembly 610 , such as the operation of the light source 642 and/or the projector 650 . For example, controller 620 may determine instructions for image source assembly 610 to render one or more display images. The instructions may include display instructions and scan instructions. In some embodiments, the display command may include an image file (eg, a bitmap file). Display instructions may be received, for example, from a console, such as console 110 described above with respect to FIG. 1 . The scan command may be used by image source assembly 610 to generate image light. A scan instruction may specify, for example, the type of image light source (eg, monochrome or multicolor), scan rate, orientation of the scanning device, one or more illumination parameters, or any combination thereof. Controller 620 may include a combination of hardware, software, and/or firmware not shown here so as not to obscure other aspects of the invention.

在一些具體實例中,控制器620可為顯示裝置之圖形處理單元(graphics processing unit;GPU)。在其他具體實例中,控制器620可為其他種類之處理器。由控制器620進行之操作可包括獲取用於顯示之內容且將內容劃分成離散區段。控制器620可將掃描指令提供至光源642,所述掃描指令包括對應於光源642之個別源元件的位址及/或經施加至個別源元件之電偏置。控制器620可指示光源642使用對應於最終顯示給使用者的影像中之一或多列像素之光發射器來依序呈現離散區段。控制器620亦可指示投影器650進行對光之不同調整。舉例而言,控制器620可控制投影器650掃描離散區段至波導顯示器(例如,波導顯示器580)之耦合元件之不同區域,如上文關於圖5B所描述。因此,在波導顯示器之出射光瞳處,每一離散部分呈現於不同各別方位中。雖然每一離散區段呈現於不同各別時間,但離散區段之呈現及掃描足夠快速地進行,使得使用者之眼睛可將不同區段整合成單一影像或一系列影像。In some embodiments, the controller 620 may be a graphics processing unit (graphics processing unit; GPU) of a display device. In other specific examples, the controller 620 may be other types of processors. Operations by controller 620 may include obtaining content for display and dividing the content into discrete segments. Controller 620 may provide scan instructions to light source 642 that include addresses corresponding to individual source elements of light source 642 and/or electrical biases applied to the individual source elements. Controller 620 may instruct light source 642 to sequentially render discrete segments using light emitters corresponding to one or more columns of pixels in the image that is ultimately displayed to the user. Controller 620 may also instruct projector 650 to make different adjustments to the light. For example, controller 620 may control projector 650 to scan discrete segments to different areas of a coupling element of a waveguide display (eg, waveguide display 580 ), as described above with respect to FIG. 5B . Thus, at the exit pupil of the waveguide display, each discrete portion appears in a different distinct orientation. Although each discrete segment is presented at a distinct time, the presentation and scanning of the discrete segments occurs quickly enough that the user's eye can integrate the different segments into a single image or series of images.

影像處理器630可為專用於進行本文中所描述之特徵的通用處理器及/或一或多個特殊應用電路。在一個具體實例中,通用處理器可耦合至記憶體以執行使得處理器進行本文中所描述之某些程序的軟體指令。在另一具體實例中,影像處理器630可為專用於進行某些特徵之一或多個電路。雖然影像處理器630在圖6中展示為與控制器620及驅動器電路644分開之獨立單元,但在其他具體實例中,影像處理器630可為控制器620或驅動器電路644之子單元。換言之,在彼等具體實例中,控制器620或驅動器電路644可進行影像處理器630之各種影像處理功能。影像處理器630亦可稱為影像處理電路。Image processor 630 may be a general purpose processor and/or one or more application specific circuits dedicated to performing the features described herein. In one embodiment, a general-purpose processor can be coupled to memory to execute software instructions that cause the processor to perform certain procedures described herein. In another embodiment, the image processor 630 may be one or more circuits dedicated to performing certain features. Although image processor 630 is shown in FIG. 6 as a separate unit from controller 620 and driver circuit 644 , in other embodiments image processor 630 may be a sub-unit of controller 620 or driver circuit 644 . In other words, in these embodiments, the controller 620 or the driver circuit 644 can perform various image processing functions of the image processor 630 . The image processor 630 can also be called an image processing circuit.

在圖6中所展示之實例中,可由驅動器電路644基於自控制器620或影像處理器630發送之資料或指令(例如,顯示及掃描指令)來驅動光源642。在一個具體實例中,驅動器電路644可包括電路面板,該電路面板連接至光源642之各種光發射器且機械地固持所述光發射器。光源642可根據由控制器620設定且由影像處理器630及驅動器電路644潛在地調整之一或多個照明參數來發射光。可由光源642使用照明參數以產生光。照明參數可包括例如源波長、脈衝速率、脈衝振幅、光束類型(連續或脈衝式)、可影響所發射光之其他參數,或其任何組合。在一些具體實例中,由光源642產生之源光可包括多個紅光、綠光及藍光光束,或其任何組合。In the example shown in FIG. 6 , light source 642 may be driven by driver circuit 644 based on data or instructions sent from controller 620 or image processor 630 (eg, display and scan instructions). In one particular example, driver circuit 644 may include a circuit panel that connects to and mechanically holds the various light emitters of light source 642 . Light source 642 may emit light according to one or more lighting parameters set by controller 620 and potentially adjusted by image processor 630 and driver circuit 644 . The lighting parameters may be used by light source 642 to generate light. Illumination parameters can include, for example, source wavelength, pulse rate, pulse amplitude, beam type (continuous or pulsed), other parameters that can affect emitted light, or any combination thereof. In some embodiments, the source light generated by light source 642 can include a plurality of red, green, and blue light beams, or any combination thereof.

投影器650可進行一組光學功能,諸如聚焦、組合、調節或掃描由光源642產生之影像光。在一些具體實例中,投影器650可包括組合組合件、光調節組合件或掃描鏡面組合件。投影器650可包括以光學方式調整且潛在地重新引導來自光源642之光的一或多個光學組件。光調整之一個實例可包括調節光,諸如擴展、準直、校正一或多個光學誤差(例如,場曲、色像差等)、一些其他光調整,或其任何組合。投影器650之光學組件可包括例如透鏡、鏡面、光圈、光柵,或其任何組合。Projector 650 may perform a set of optical functions, such as focusing, combining, conditioning, or scanning the image light generated by light source 642 . In some embodiments, projector 650 may include a combination assembly, a light adjustment assembly, or a scanning mirror assembly. Projector 650 may include one or more optical components that optically adjust and potentially redirect light from light source 642 . One example of light adjustment may include adjusting light, such as spreading, collimating, correcting one or more optical errors (eg, field curvature, chromatic aberration, etc.), some other light adjustment, or any combination thereof. Optical components of projector 650 may include, for example, lenses, mirrors, apertures, gratings, or any combination thereof.

投影器650可經由影像光之一或多個反射及/或折射部分重新引導該影像光,使得影像光以某些定向朝向波導顯示器投影。影像光經重新引導朝向波導顯示器之方位可取決於一或多個反射及/或折射部分之特定定向。在一些具體實例中,投影器650包括在至少兩個維度上掃描之單一掃描鏡面。在其他具體實例中,投影器650可包括各自在彼此正交之方向上掃描之複數個掃描鏡面。投影器650可進行光柵掃描(水平地或垂直地)、雙諧振掃描,或其任何組合。在一些具體實例中,投影器650可以特定振盪頻率沿水平及/或垂直方向進行受控振動,以沿兩個維度掃描且產生呈現給使用者之眼睛的媒體之二維經投影影像。在其他具體實例中,投影器650可包括可用於與一或多個掃描鏡面類似或相同之功能的透鏡或稜鏡。在一些具體實例中,影像源組合件610可不包括投影器,其中由光源642發射之光可直接入射於波導顯示器上。Projector 650 may redirect the image light via one or more reflective and/or refracted portions of the image light such that the image light is projected toward the waveguide display in certain orientations. The orientation at which image light is redirected toward the waveguide display may depend on the particular orientation of one or more reflective and/or refractive portions. In some embodiments, projector 650 includes a single scanning mirror that scans in at least two dimensions. In other embodiments, projector 650 may include a plurality of scanning mirrors that each scan in directions orthogonal to each other. Projector 650 may raster scan (horizontally or vertically), dual resonant scan, or any combination thereof. In some embodiments, projector 650 may vibrate in a controlled horizontal and/or vertical direction at a specific oscillation frequency to scan in two dimensions and generate a two-dimensional projected image of the media presented to the user's eyes. In other embodiments, projector 650 may include a lens or lens that may serve a similar or the same function as one or more scanning mirrors. In some embodiments, the image source assembly 610 may not include a projector, wherein the light emitted by the light source 642 may be directly incident on the waveguide display.

光子積體電路或基於波導之顯示器(例如,位於擴增實境系統400或NED裝置500或550中)之總效率可為個別組件之效率的乘積,且亦可取決於組件連接方式。舉例而言,擴增實境系統400中的基於波導之顯示器之總效率

Figure 02_image003
可取決於影像源412之發光效率、藉由投影器光學件414及輸入耦合器430自影像源412至組合器415中的光耦合效率及輸出耦合器440之輸出耦合效率,且因此可判定為:
Figure 02_image005
(1)
其中
Figure 02_image007
為影像源412之外部量子效率,
Figure 02_image009
為自影像源412至波導(例如,基板420)中之光之入耦效率,且
Figure 02_image011
為藉由輸出耦合器440自波導朝向使用者之眼睛之光之出耦效率。因此,可藉由改良
Figure 02_image007
Figure 02_image009
Figure 02_image011
中之一或多者來改良基於波導之顯示器之總效率
Figure 02_image013
。 The overall efficiency of a photonic integrated circuit or waveguide-based display (eg, in augmented reality system 400 or NED device 500 or 550 ) can be the product of the efficiencies of the individual components, and can also depend on how the components are connected. For example, the overall efficiency of a waveguide-based display in augmented reality system 400
Figure 02_image003
may depend on the luminous efficiency of image source 412, the light coupling efficiency from image source 412 into combiner 415 via projector optics 414 and input coupler 430, and the output coupling efficiency of output coupler 440, and thus may be determined as :
Figure 02_image005
(1)
in
Figure 02_image007
is the external quantum efficiency of the image source 412,
Figure 02_image009
is the incoupling efficiency of light from image source 412 into the waveguide (e.g., substrate 420), and
Figure 02_image011
is the outcoupling efficiency of light through the output coupler 440 from the waveguide towards the user's eye. Therefore, by improving
Figure 02_image007
,
Figure 02_image009
and
Figure 02_image011
one or more of them to improve the overall efficiency of waveguide-based displays
Figure 02_image013
.

將所發射光自光源耦合至波導的光學耦合器(例如,輸入耦合器430或耦合器532)可包括例如光柵、透鏡、微透鏡、稜鏡。在一些具體實例中,來自小光源(例如,微LED)之光可自光源直接(例如,端對端)耦合至波導,而無需使用光學耦合器。在一些具體實例中,可在光源上製造光學耦合器(例如,透鏡或拋物線形反射器)。An optical coupler (eg, input coupler 430 or coupler 532 ) that couples emitted light from the light source to the waveguide may include, for example, a grating, lens, microlens, aperture. In some embodiments, light from a small light source (eg, a micro LED) can be coupled directly (eg, end-to-end) from the light source to the waveguide without the use of an optical coupler. In some embodiments, optical couplers (eg, lenses or parabolic reflectors) can be fabricated on the light source.

本文中所描述之可見光源、影像源或其他顯示器可包括一或多個LED、一或多個有機LED(OLED)、一或多個VCSEL、一或多個RCLED或其類似者。通常合乎需要的是,可見光源具有小像素大小、高亮度、高動態範圍、可控制發射方向、個別可定址能力、大色域覆蓋範圍及製造可擴展性。LED及OLED可在亮度方面具有基本限制。A visible light source, image source, or other display described herein may include one or more LEDs, one or more organic LEDs (OLEDs), one or more VCSELs, one or more RC LEDs, or the like. It is generally desirable for visible light sources to have small pixel size, high brightness, high dynamic range, controllable emission direction, individual addressability, large color gamut coverage, and manufacturing scalability. LEDs and OLEDs can have fundamental limitations in brightness.

VCSEL通常包括形成雷射諧振器之雷射腔中之發光主動區。發光主動區可包括在適當地偏置時發射光子之量子井(quantum well;QW)。光子可藉由一對鏡面(諸如分佈式布拉格反射(distributed Bragg reflection;DBR)鏡面或高對比度光柵(high-contrast grating;HCG)鏡面)而受限於雷射腔中。在一些具體實例中,一個DBR鏡面可經n摻雜且其他DBR鏡面可經p摻雜。在一些具體實例中,p摻雜層及n摻雜層可用於雷射腔中且發光主動區可在p摻雜層與n摻雜層之間。VCSEL可基於多種材料。舉例而言,具有自約650 nm至約1300 nm之波長的VCSEL可基於砷化鎵(GaAs)晶圓,其具有由交錯之GaAs及砷化鋁鎵(AlGaAs)層形成的DBR。在GaAs/AlGaAs VCSEL中,材料之晶格常數不隨組成改變而顯著改變,因此允許多個晶格匹配磊晶層在GaAs基板上生長。基於AlGaAs之DBR可具有接近100%之反射率,其可高效地限制雷射腔中之光子。AlGaAs之折射率可隨著Al分數增大而變化,因此將用於形成具有高反射率之DBR鏡面之層的數目減至最小。摻雜有p型或n型雜質之基於AlGaAs之DBR亦可充當電流路徑。選擇性地氧化鄰近於QW之AlGaAs層可橫向地限制光子及載子。VCSELs generally include a light emitting active region in a laser cavity forming a laser resonator. The light-emitting active region may include a quantum well (QW) that emits photons when properly biased. Photons can be confined in the laser cavity by a pair of mirrors, such as distributed Bragg reflection (DBR) mirrors or high-contrast grating (HCG) mirrors. In some embodiments, one DBR mirror can be n-doped and the other DBR mirror can be p-doped. In some embodiments, a p-doped layer and an n-doped layer can be used in the laser cavity and the light-emitting active region can be between the p-doped layer and the n-doped layer. VCSELs can be based on a variety of materials. For example, VCSELs having wavelengths from about 650 nm to about 1300 nm may be based on gallium arsenide (GaAs) wafers with DBRs formed of interleaved GaAs and aluminum gallium arsenide (AlGaAs) layers. In GaAs/AlGaAs VCSELs, the lattice constant of the material does not change significantly with compositional changes, thus allowing multiple lattice-matched epitaxial layers to be grown on GaAs substrates. AlGaAs-based DBRs can have a reflectivity close to 100%, which can efficiently confine photons in the laser cavity. The refractive index of AlGaAs can vary with increasing Al fraction, thus minimizing the number of layers used to form a DBR mirror with high reflectivity. AlGaAs-based DBRs doped with p-type or n-type impurities can also act as current paths. Selective oxidation of the AlGaAs layer adjacent to the QW can laterally confine photons and carriers.

7A說明VCSEL 700之實例。VCSEL 700可包括基板710,諸如GaAs基板或GaN基板。在所說明實例中,視情況選用之塊體DBR 720可形成(例如,磊晶生長)於基板710上。塊體DBR 720可包括具有不同折射率之不同材料之多個交錯層,諸如多對AlGaAs/GaAs或AlAs/GaAs層,且因此可反射不同材料層之間的界面處之光以達成較高總反射率。底部DBR 730可形成於塊體DBR 720上或可為塊體DBR 720之部分。底部DBR 730可類似地包括具有不同折射率之不同材料之多個交錯層。VCSEL 700亦可包括包覆層740、主動區750及包覆層760,其中包覆層740及760可經p摻雜或n摻雜且可將載子注入至主動區750中。主動區750可包括一或多個量子井或量子點,及QW障壁層。載子可在主動區750中重組以發射光子。頂部DBR 770可形成於包覆層760上,且可類似於底部DBR 730。頂部DBR 770及底部DBR 730(及塊體DBR 720)可形成可限制光子之平面平行雷射腔。頂部DBR 770、包覆層760、主動區750、包覆層740及底部DBR 730可經垂直蝕刻以在塊體DBR 720及基板710上形成具有所要間距之所要大小的個別VCSEL。 FIG. 7A illustrates an example of a VCSEL 700 . VCSEL 700 may include a substrate 710, such as a GaAs substrate or a GaN substrate. In the illustrated example, an optional bulk DBR 720 may be formed (eg, epitaxially grown) on substrate 710 . The bulk DBR 720 may include multiple alternating layers of different materials with different indices of refraction, such as pairs of AlGaAs/GaAs or AlAs/GaAs layers, and thus may reflect light at the interface between layers of different materials to achieve a higher overall Reflectivity. The bottom DBR 730 may be formed on the bulk DBR 720 or may be part of the bulk DBR 720 . The bottom DBR 730 may similarly include multiple alternating layers of different materials with different refractive indices. The VCSEL 700 can also include a cladding layer 740 , an active region 750 and a cladding layer 760 , wherein the cladding layers 740 and 760 can be p-doped or n-doped and can inject carriers into the active region 750 . The active region 750 may include one or more quantum wells or quantum dots, and a QW barrier layer. Carriers can recombine in the active region 750 to emit photons. Top DBR 770 may be formed on cladding layer 760 and may be similar to bottom DBR 730 . The top DBR 770 and bottom DBR 730 (and bulk DBR 720) can form a plane-parallel laser cavity that can confine photons. The top DBR 770 , cladding layer 760 , active region 750 , cladding layer 740 and bottom DBR 730 can be etched vertically to form individual VCSELs of desired size with desired pitch on bulk DBR 720 and substrate 710 .

VCSEL 700可具有小於約100 μm、50 μm、30 μm、20 μm或10 μm之線性尺寸。舉例而言,在一些具體實例中,平行雷射腔可具有約10 μm之長度。在圖7A中所展示之實例中,底部DBR 730及塊體DBR 720可組合地具有接近100%之反射率以反射幾乎所有入射光子。頂部DBR 770可具有小於100%之反射率,使得所發射光子之一部分可經由頂部DBR 770透射出雷射腔。VCSEL 700可以高效率及高功率(諸如自約1 mW至約10 mW或更高)發射紅外光。VCSEL 700 may have linear dimensions of less than about 100 μm, 50 μm, 30 μm, 20 μm, or 10 μm. For example, in some embodiments, the parallel laser cavity can have a length of about 10 μm. In the example shown in FIG. 7A , the bottom DBR 730 and bulk DBR 720 may have a reflectivity close to 100% in combination to reflect nearly all incident photons. The top DBR 770 can have a reflectivity of less than 100%, so that a portion of the emitted photons can be transmitted out of the laser cavity through the top DBR 770 . VCSEL 700 can emit infrared light with high efficiency and high power, such as from about 1 mW to about 10 mW or more.

圖7B說明根據某些具體實例之可調諧VCSEL 705之實例。可調諧VCSEL 705中之垂直腔可由第一反射器724及第二反射器752形成,其中第一反射器724及第二反射器752對於IR光可具有高反射率(例如,>80%、>85%、>90%、>95%、>99%或更高),且第二反射器752可具有低反射率或對於可見光可為抗反射的。Figure 7B illustrates an example of a tunable VCSEL 705 according to certain embodiments. The vertical cavity in the tunable VCSEL 705 can be formed by the first reflector 724 and the second reflector 752, where the first reflector 724 and the second reflector 752 can have a high reflectivity (e.g., >80%, > 85%, >90%, >95%, >99% or higher), and the second reflector 752 may have low reflectivity or may be anti-reflective for visible light.

可調諧VCSEL 705可包括驅動電路712,該驅動電路712可藉由例如晶粒至晶圓接合或晶圓至晶圓接合直接地或間接地(例如,經由插入件或薄膜電晶體層)接合至VCSEL 722。驅動電路712可包括形成於矽基板上之各種電路,如上文例如關於圖6所描述。驅動電路712可接合至VCSEL 722之電極以驅動VCSEL 722產生具有足夠長持續時間的連續波(continuous-wave;CW)或脈衝式IR光。由VCSEL 722發射之IR光的強度及因此來自可調諧VCSEL 705之可見光的強度可藉由由驅動電路712供應至VCSEL 722之驅動電流或電壓控制。The tunable VCSEL 705 may include a driver circuit 712 that may be bonded directly or indirectly (eg, via an interposer or thin film transistor layer) to the VCSEL 722. Driver circuitry 712 may include various circuits formed on a silicon substrate, as described above, for example, with respect to FIG. 6 . The driving circuit 712 can be coupled to the electrodes of the VCSEL 722 to drive the VCSEL 722 to generate continuous-wave (CW) or pulsed IR light with a sufficiently long duration. The intensity of the IR light emitted by VCSEL 722 and thus the intensity of visible light from tunable VCSEL 705 can be controlled by the drive current or voltage supplied to VCSEL 722 by drive circuit 712 .

VCSEL 722可包括第一電極732(例如,陽極或陰極)、第二電極734,及形成於第一電極732與第二電極734之間的半導體結構(例如,磊晶層)。半導體結構可包括例如第一反射器724、可發射IR光之主動區726,及其他半導體層(未標記於圖7B中),諸如包覆層或可經p摻雜或n摻雜之載子注入層,如上文關於圖7所描述。The VCSEL 722 may include a first electrode 732 (eg, an anode or a cathode), a second electrode 734 , and a semiconductor structure (eg, an epitaxial layer) formed between the first electrode 732 and the second electrode 734 . The semiconductor structure can include, for example, a first reflector 724, an active region 726 that can emit IR light, and other semiconductor layers (not labeled in FIG. 7B ), such as cladding layers or carriers that can be p-doped or n-doped Injection layer, as described above with respect to FIG. 7 .

第一反射器724及第二反射器752可各自包括由具有不同折射率及/或厚度之多對介電層、半導體層或金屬材料層(經摻雜或未摻雜)(諸如GaAs及AlAs(或AlGaAs)層、氧化物層(例如,氧化矽及另一氧化物層)或其類似者)形成的DBR反射器。在一些具體實例中,第一反射器724或第二反射器752中之至少一者可包括高對比度光柵(HCG),其可包括由具有大折射率對比度之材料製成之子波長光柵層。HCG可具有高反射率之寬頻寬,且可使用作為可調諧鏡面。主動區726可包括例如InGaAs量子井層及GaAs障壁層、InAlGaAs量子井層及AlGaAs障壁層或其類似者。The first reflector 724 and the second reflector 752 may each comprise pairs of dielectric layers, semiconductor layers, or metallic material layers (doped or undoped) having different refractive indices and/or thicknesses, such as GaAs and AlAs. (or AlGaAs) layer, oxide layer (for example, silicon oxide and another oxide layer) or the like). In some embodiments, at least one of the first reflector 724 or the second reflector 752 can include a high contrast grating (HCG), which can include a sub-wavelength grating layer made of a material having a large refractive index contrast. HCG can have a wide bandwidth with high reflectivity and can be used as a tunable mirror. The active region 726 may include, for example, an InGaAs quantum well layer and a GaAs barrier layer, an InAlGaAs quantum well layer and an AlGaAs barrier layer, or the like.

在所說明實例中,可調諧VCSEL 705包括由第一反射器724及第二反射器形成之可調諧垂直腔中之微機電系統(micro-electro-mechanical-system;MEMS)裝置762,其中第二反射器752可形成於MEMS裝置762上且因此可為可由MEMS裝置762移動的。在一些具體實例中,其他微致動器或奈米致動器(諸如微馬達、壓電致動器、鐵電致動器、磁性致動器、超音波致動器或其類似者)可用於移動第二反射器752。由VCSEL 722發射且在由第一反射器724及第二反射器752形成之垂直腔內振盪的光可藉由使用MEMS裝置762或另一致動器調諧第二反射器752之方位以調諧光學路徑長度且因此調諧垂直腔之諧振波長而連續地調諧。In the illustrated example, the tunable VCSEL 705 includes a micro-electro-mechanical-system (MEMS) device 762 in a tunable vertical cavity formed by a first reflector 724 and a second reflector, where the second Reflector 752 may be formed on MEMS device 762 and thus may be movable by MEMS device 762 . In some embodiments, other microactuators or nanoactuators (such as micromotors, piezoelectric actuators, ferroelectric actuators, magnetic actuators, ultrasonic actuators, or the like) can be used to move the second reflector 752 . Light emitted by VCSEL 722 and oscillating within the vertical cavity formed by first reflector 724 and second reflector 752 can be tuned by tuning the orientation of second reflector 752 using MEMS device 762 or another actuator to tune the optical path length and thus tune the resonant wavelength of the vertical cavity to be tuned continuously.

如上文所描述,基於III-V半導體(例如,InGaN或AlGaAs)之雷射之光譜覆蓋範圍可受可用增益介質之性質(例如,帶隙)限制。可能極難以製造用於一些色彩(例如,綠色)且具有高效率之VCSEL。在同一晶片或晶圓上製造用於多種色彩之可見光雷射源可甚至更具有挑戰性。此外,當前可見光源通常可具有較大大小,且因此可能不適合於可個別定址之高密度可見光源陣列。III-V半導體裝置與光子積體電路(PIC)之整合可向製造提出額外挑戰。As described above, the spectral coverage of lasers based on III-V semiconductors (eg, InGaN or AlGaAs) can be limited by the properties of the available gain medium (eg, bandgap). It can be extremely difficult to manufacture VCSELs for some colors (eg, green) with high efficiency. Fabricating visible laser sources for multiple colors on the same chip or wafers can be even more challenging. Furthermore, current visible light sources may typically be of large size and thus may not be suitable for individually addressable high density arrays of visible light sources. The integration of III-V semiconductor devices with photonic integrated circuits (PICs) may present additional challenges to fabrication.

根據某些具體實例,某些非線性增益介質之非線性效應可用於使用來自VCSEL之IR泵浦光產生寬光譜範圍中之可見光。在一個實例中,可見半導體光源可包括可以高效率發射近紅外(NIR)或其他紅外(IR)頻帶中之光的VCSEL。可見半導體光源亦可包括微諧振器,該微諧振器包括三階非線性材料且因此可使用由微諧振器之非線性光學效應(例如,三階非線性效應χ (3))引起之簡併四波混合(亦稱為三階光參數振盪(OPO))將IR光轉換成可見光。 According to some embodiments, the nonlinear effect of certain nonlinear gain media can be used to generate visible light in a broad spectral range using IR pump light from a VCSEL. In one example, the visible semiconductor light source may include a VCSEL that can emit light in the near infrared (NIR) or other infrared (IR) bands with high efficiency. Visible semiconductor light sources can also include microresonators that include third-order nonlinear materials and thus can use degenerate Four-wave mixing, also known as third-order optical parametric oscillation (OPO), converts IR light into visible light.

四波混合為由藉由χ (3)係數描述之三階光學件非線性(克爾效應(Kerr effect))引起之非線性效應。四波混合可在具有兩個頻率分量ν 1及ν 2之光在包括三階非線性介質之光波導中共同傳播時發生。歸因於三階非線性效應之折射率調變可引起具有兩個額外頻率分量ν 3及ν 4之光的產生,其中ν 4= ν 1+ ν 2− ν 3,且具有頻率ν3及ν4之光可經歷非線性介質中之參數化放大。此程序可稱為非簡併四波混合。當四個頻率中之兩個頻率分量ν 1及ν 2一致時,可發生簡併四波混合(degenerate four-wave mixing;DFWM),其中單一頻率泵浦波(例如,具有頻率ν p)可引起信號波(具有頻率ν s)及惰輪波(具有頻率ν i)之產生及放大,且其中可符合頻率相位匹配條件2ν p= ν si。信號波及惰輪波通常可具有不同頻率。 Four-wave mixing is a nonlinear effect caused by third-order optical nonlinearity (Kerr effect) described by the χ (3) coefficient. Four-wave mixing can occur when light with two frequency components v1 and v2 co-propagates in an optical waveguide comprising a third-order nonlinear medium. Refractive index modulation due to third-order nonlinear effects can lead to the generation of light with two additional frequency components ν3 and ν4 , where ν4 = ν1 + ν2ν3 , with frequencies ν3 and ν4 Light can undergo parametric amplification in nonlinear media. This procedure may be called nondegenerate four-wave mixing. When two of the four frequency components ν 1 and ν 2 coincide, degenerate four-wave mixing (DFWM) can occur, where a single frequency pump wave (eg, with frequency ν p ) can Cause the generation and amplification of signal wave (with frequency ν s ) and idler wave (with frequency ν i ), and the frequency-phase matching condition 2ν p = ν si can be met. The signal wave and the idler wave can generally have different frequencies.

8A8B說明使用低頻率泵浦光經由簡併四波混合產生較高頻率光信號之實例。具有頻率ν p之兩個泵浦光子810可加總以產生虛擬激發態815,該虛擬激發態815可用於產生分別具有頻率ν s及ν i之一對光子820及830。歸因於能量守恆,光子820及830之頻率ν s及ν i可關於泵浦光子810之頻率ν p對稱(亦即,|ν s−ν p|=|ν p−ν i|),如圖8B中所展示。 8A and 8B illustrate an example of generating a higher frequency optical signal via degenerate four - wave mixing using low frequency pump light. Two pump photons 810 with frequency νp can be summed to produce a virtual excited state 815, which can be used to generate a pair of photons 820 and 830 with frequencies νs and νi , respectively. Due to conservation of energy, the frequencies νs and νi of the photons 820 and 830 can be symmetric about the frequency νp of the pump photon 810 (i.e., | νs −νp |=| νpνi |), as Shown in Figure 8B.

四波混合為相位敏感程序。若滿足用於相長干擾之相位匹配條件(其可受色散及/或非線性相移影響),則四波混合之效應可在較長距離內累積(例如,經由環諧振器中之許多迴路)。環諧振器可包括耦合至輸入耦合器及/或輸出耦合器之封閉迴路波導。當環諧振器之諧振波長處的光傳播穿過封閉迴路波導時,其強度由於迴路之間的相長干擾而在多個往返內積累。僅幾個波長之光可在封閉迴路波導內諧振。環諧振器之光學路徑長度可為2πr×n eff,其中r為環諧振器之半徑且n eff為環諧振器之有效折射率。為符合用於相長干擾之諧振條件,環(迴路)之光學路徑長度可為諧振光之波長的整數倍:m×λ m=2πr×n eff,其中λ m為諧振波長且 m為環諧振器之模數(正整數)。諧振頻率或波長可藉由改變環諧振器之有效折射率n eff及/或藉由改變泵浦光之波長來調諧。 Four-wave mixing is a phase-sensitive procedure. The effects of four-wave mixing can accumulate over longer distances (e.g. via many loops in a ring resonator) if the phase-matching conditions for constructive interference are met (which can be affected by dispersion and/or nonlinear phase shifts) ). A ring resonator may include a closed loop waveguide coupled to an input coupler and/or an output coupler. As light at the resonant wavelength of the ring resonator propagates through the closed loop waveguide, its intensity builds up over multiple round trips due to constructive interference between the loops. Only a few wavelengths of light can resonate within a closed loop waveguide. The optical path length of the ring resonator may be 2πr×n eff , where r is the radius of the ring resonator and n eff is the effective index of refraction of the ring resonator. In order to meet the resonance condition for constructive interference, the optical path length of the ring (loop) can be an integer multiple of the wavelength of the resonant light: m×λ m =2πr×n eff , where λ m is the resonance wavelength and m is the ring resonance Modulus of the device (positive integer). The resonance frequency or wavelength can be tuned by changing the effective refractive index n eff of the ring resonator and/or by changing the wavelength of the pump light.

8C說明微諧振器(例如,環諧振器)之實例之多個縱向諧振模式。圖8C展示三個縱向諧振模式m-1、m及m+1。縱向模式之傳輸頻譜之全寬半幅值(full-width half-magnitude;FWHM)為

Figure 02_image015
。兩個鄰近模式之頻率之間的差為自由頻譜範圍
Figure 02_image017
。微諧振器之品質因數Q及精細度F可藉由以下描述:
Figure 02_image019
,及
Figure 02_image021
其中λ為工作波長。品質因數可用於判定給定環諧振器之諧振條件之頻譜範圍,且亦適用於量化諧振器中往返損失之量。低Q因數可由較大損失造成。精細度F亦可與諧振器損失相關,且因此可指示往返諧振器損失。 Figure 8C illustrates multiple longitudinal resonant modes of an example of a microresonator (eg, a ring resonator). Figure 8C shows three longitudinal resonant modes m-1, m and m+1. The full-width half-magnitude (FWHM) of the transmission spectrum in the longitudinal mode is
Figure 02_image015
. The difference between the frequencies of two adjacent modes is the free spectral range
Figure 02_image017
. The quality factor Q and fineness F of a microresonator can be described by the following:
Figure 02_image019
,and
Figure 02_image021
Where λ is the working wavelength. The figure of merit can be used to determine the spectral extent of the resonance conditions for a given ring resonator, and is also useful for quantifying the amount of round trip losses in the resonator. A low Q-factor can be caused by large losses. Fineness F can also be related to resonator losses, and thus can be indicative of round-trip resonator losses.

OPO為光學諧振器(例如,諧振光學腔)內之光參數放大(optical parametric amplification;OPA)。舉例而言,在環諧振器中,OPO為腔增強型DFWM,其中全部三個光波(泵浦波、信號波及惰輪波)均符合同一腔之諧振條件,且因此可在環諧振器中諧振以經由諧振增強型場強度積累極大地增強非線性轉換。因此,泵浦波之頻率可限於藉由環諧振器在泵浦波長處之光學路徑長度判定之一組縱向諧振模式。類似地,信號波之頻率可限於藉由環諧振器在信號波長處之光學路徑長度判定之一組縱向諧振模式,且惰輪波之頻率可限於藉由環諧振器在惰輪波長處之光學路徑長度判定之一組縱向諧振模式。使用低損失光學諧振器(例如,環諧振器),非線性轉換效率可在具有緊密佔據面積(例如,針對諸如SiC之一些高折射率材料,具有<10 μm之半徑)之諧振器內顯著提昇(>10%)。由於所產生信號波之波長(色彩)可藉由腔之光學路徑長度控制以符合諧振條件,因此諧振光學腔(例如,環諧振器)可經設計以產生可見範圍內之任何色彩的光。OPO is optical parametric amplification (OPA) within an optical resonator (eg, a resonant optical cavity). For example, in a ring resonator, OPO is a cavity-enhanced DFWM, where all three light waves (pump, signal, and idler waves) meet the resonance conditions of the same cavity, and thus can resonate in the ring resonator To greatly enhance nonlinear conversion via resonance-enhanced field strength accumulation. Thus, the frequency of the pump wave can be limited to a set of longitudinal resonant modes determined by the optical path length of the ring resonator at the pump wavelength. Similarly, the frequency of the signal wave can be limited to a set of longitudinally resonant modes determined by the optical path length of the ring resonator at the signal wavelength, and the frequency of the idler wave can be limited to the optical path length by the ring resonator at the idler wavelength. A set of longitudinal resonant modes for path length determination. Using low-loss optical resonators (e.g., ring resonators), nonlinear conversion efficiency can be significantly improved within resonators with tight footprints (e.g., <10 μm radius for some high-index materials such as SiC) (>10%). Resonant optical cavities (eg, ring resonators) can be designed to generate light of any color in the visible range, since the wavelength (color) of the generated signal wave can be controlled by the optical path length of the cavity to meet the resonance conditions.

根據某些具體實例,用於諧振光學腔(例如,微諧振器)中之DFWM的泵浦光可為由VCSEL產生之IR光,其中微諧振器可分別以腔內配置或腔外配置定位在VCSEL腔內部或外部。由VCSEL發射之IR光可直接地或藉由耦合結構(例如,光柵耦合器)耦合至微諧振器中。在一些具體實例中,由VCSEL發射之IR光可藉由VCSEL腔內部或外部之耦合結構(例如,光柵耦合器或奈米諧振器)耦合至波導中且可接著自波導耦合至微諧振器中。在一些具體實例中,光柵耦合器可包括變跡(apodized)、啁啾(chirped)及/或傾斜光柵以達成所要耦合方向及所要耦合效率。在一些具體實例中,可見光源可包括處於腔外或腔內配置之多個耦合結構。According to some embodiments, the pump light for DFWM in a resonant optical cavity (e.g., a microresonator) can be IR light generated by a VCSEL, where the microresonator can be positioned in an intracavity configuration or an extracavity configuration, respectively. inside or outside the VCSEL cavity. The IR light emitted by the VCSEL can be coupled into the microresonator directly or through a coupling structure (eg, a grating coupler). In some embodiments, IR light emitted by a VCSEL can be coupled into a waveguide by a coupling structure inside or outside the VCSEL cavity (e.g., a grating coupler or a nanoresonator) and can then be coupled from the waveguide into a microresonator . In some embodiments, grating couplers can include apodized, chirped, and/or tilted gratings to achieve desired coupling directions and desired coupling efficiencies. In some embodiments, a visible light source can include multiple coupling structures in extracavity or intracavity configurations.

微諧振器可包括低損失結構,其中光可在經吸收、散射或轉換之前長時間行進。如上文所描述,經由OPO程序產生之光的色彩可藉由微諧振器之幾何形狀及材料(且因此有效折射率)來控制。根據某些具體實例,微諧振器可包括例如如上文所描述之微環諧振器、光子晶體點缺陷腔、光子晶體環(線缺陷)腔、電漿子諧振器、基於波導光柵之諧振器或其類似者。舉例而言,當在光子晶體中產生點缺陷時,缺陷可將光模式拉至帶隙中且捕獲光模式(形成諧振腔),此係由於禁止此狀態在塊體晶體中傳播,且在諧振頻率下之狀態密度在諧振腔中可極高以達成高效率。光子晶體線缺陷腔可藉由例如省略光子晶體平板中之多個孔來形成。Microresonators can include low-loss structures where light can travel for long periods of time before being absorbed, scattered, or converted. As described above, the color of light produced by the OPO process can be controlled by the geometry and material (and thus effective refractive index) of the microresonator. According to some embodiments, microresonators may include, for example, microring resonators as described above, photonic crystal point defect cavities, photonic crystal ring (line defect) cavities, plasmonic resonators, waveguide grating based resonators, or its analogues. For example, when a point defect is created in a photonic crystal, the defect can pull the optical mode into the bandgap and trap the optical mode (forming a resonant cavity), since this state is prohibited from propagating in the bulk crystal, and in the resonant The density of states at frequency can be extremely high in the resonator to achieve high efficiency. Photonic crystal line defect cavities can be formed by, for example, omitting multiple holes in a photonic crystal slab.

根據某些具體實例,藉由微諧振器之諧振腔中之簡併四波混合產生之可見光可經由邊耦合耦合出微諧振器進入PIC之波導,或可經由藉由諸如光柵耦合器之耦合結構的垂直耦合耦合出微諧振器進入自由空間。在一些具體實例中,光柵耦合器可包括變跡、啁啾及/或傾斜光柵以達成所要耦合方向及高耦合效率。According to some embodiments, visible light generated by degenerate four-wave mixing in the cavity of the microresonator can be coupled out of the microresonator into the waveguide of the PIC via edge coupling, or can be coupled via a coupling structure such as a grating coupler. The vertical coupling couples out of the microresonator into free space. In some embodiments, grating couplers can include apodized, chirped, and/or tilted gratings to achieve desired coupling directions and high coupling efficiencies.

9A展示根據某些具體實例之包括經配置以將在光學諧振器910中產生的光垂直地耦合出光學諧振器910的耦合結構920之結構900的實例之橫截面視圖。 9B展示根據某些具體實例之圖9A之結構900的實例之俯視圖。在所說明實例中,光學諧振器910可包括微環諧振器。在一些具體實例中,光學諧振器910可具有不同於環形狀之形狀,諸如橢圓形形狀、軌道形狀、螺旋形形狀(例如,阿基米德(Archimedean)螺旋形形狀)或另一封閉迴路。光學諧振器910可包括具有三階非線性之低損失材料。在一些具體實例中,為減小光學諧振器910之佔據面積,光學諧振器910可包括高折射率材料,諸如SiN或SiC。耦合結構920可包括形成於光學諧振器910上之光柵耦合器,其中光柵耦合器可沿光學諧振器910之內圓周、在光學諧振器910之頂部或底部上、沿光學諧振器910之外圓周或前述位置之任何組合。光柵耦合器可包括傾斜光柵,該傾斜光柵具有在z方向上包括分量之光柵向量,使得在光學諧振器910中之x-y平面中的環中傳播之光可藉由光柵耦合器垂直地耦合出光學諧振器910。 9A shows a cross-sectional view of an example of a structure 900 including a coupling structure 920 configured to couple light generated in an optical resonator 910 out of the optical resonator 910 vertically, according to certain embodiments. Figure 9B shows a top view of an example of the structure 900 of Figure 9A, according to certain embodiments. In the illustrated example, optical resonator 910 may comprise a microring resonator. In some embodiments, optical resonator 910 may have a shape other than a ring shape, such as an elliptical shape, an orbital shape, a spiral shape (eg, an Archimedean spiral shape), or another closed loop. Optical resonator 910 may include low loss materials with third order nonlinearity. In some embodiments, to reduce the footprint of the optical resonator 910, the optical resonator 910 may include a high refractive index material, such as SiN or SiC. The coupling structure 920 may include a grating coupler formed on the optical resonator 910, wherein the grating coupler may be along the inner circumference of the optical resonator 910, on the top or bottom of the optical resonator 910, along the outer circumference of the optical resonator 910 or any combination of the preceding positions. The grating coupler may include a tilted grating having a grating vector that includes a component in the z-direction such that light propagating in a ring in the xy plane in the optical resonator 910 can be coupled out of the optics vertically by the grating coupler. Resonator 910.

9C說明根據某些具體實例之經配置以將在光學諧振器930中產生的光耦合至輸出波導950中的結構902之實例之俯視圖。在圖9C中所展示之實例中,來自VCSEL之IR泵浦光可自泵浦波導940耦合至光學諧振器930中,且所產生可見光(例如,信號波)可耦合至輸出波導950中。惰輪波可經耦合至泵浦波導940或輸出波導950中。在一些具體實例中,波長劃分解多工器可用於分離信號波及惰輪波。 9C illustrates a top view of an example of a structure 902 configured to couple light generated in an optical resonator 930 into an output waveguide 950 , according to certain embodiments. In the example shown in FIG. 9C , IR pump light from the VCSEL can be coupled from pump waveguide 940 into optical resonator 930 and the resulting visible light (eg, signal wave) can be coupled into output waveguide 950 . The idler wave can be coupled into the pump waveguide 940 or the output waveguide 950 . In some embodiments, a wavelength division demultiplexer may be used to separate the signal wave from the idler wave.

9D說明根據某些具體實例之經配置以將在光學諧振器中產生的光耦合至波導980中的結構904之實例之俯視圖。在所說明實例中,來自VCSEL之IR泵浦光可至少部分地自波導980耦合至光學諧振器960中,且所產生可見光(例如,信號波)可耦合回至波導980中。惰輪波可經耦合至波導980或另一波導970中。在一些具體實例中,波長劃分解多工器可用於分離波導980中之信號波及未耦合泵浦波。在一些具體實例中,未耦合泵浦波可循環回至波導980中且耦合至光學諧振器960中。 9D illustrates a top view of an example of a structure 904 configured to couple light generated in an optical resonator into a waveguide 980 , according to certain embodiments. In the illustrated example, IR pump light from the VCSEL can be coupled at least partially from waveguide 980 into optical resonator 960 , and the resulting visible light (eg, a signal wave) can be coupled back into waveguide 980 . The idler wave may be coupled into waveguide 980 or another waveguide 970 . In some embodiments, a wavelength division demultiplexer may be used to separate the signal wave and the uncoupled pump wave in waveguide 980 . In some embodiments, uncoupled pump waves can be recycled back into waveguide 980 and coupled into optical resonator 960 .

10A說明根據某些具體實例之包括在垂直腔中且由垂直腔中之紅外光VCSEL 1020直接泵浦之微諧振器1040的可見光源1000之實例,其中將在微諧振器1040中產生的可見光垂直地耦合出垂直腔。 10B說明圖10A之可見光源1000之實例之俯視圖。可見光源1000中之垂直腔可由第一反射器1022及第二反射器1050形成,其中第一反射器1022及第二反射器1050對於IR光可具有高反射率(例如,>80%、>85%、>90%、>95%、>99%或更高),且第二反射器1050可具有低反射率或對於可見光可為抗反射的。 10A illustrates an example of a visible light source 1000 including a microresonator 1040 in a vertical cavity and directly pumped by an infrared light VCSEL 1020 in the vertical cavity, wherein visible light to be generated in the microresonator 1040, according to certain embodiments. Vertically coupled out of the vertical cavity. FIG. 10B illustrates a top view of an example of the visible light source 1000 of FIG. 10A. The vertical cavity in the visible light source 1000 can be formed by the first reflector 1022 and the second reflector 1050, where the first reflector 1022 and the second reflector 1050 can have high reflectivity (e.g., >80%, >85% for IR light) %, >90%, >95%, >99% or higher), and the second reflector 1050 may have low reflectivity or may be anti-reflective for visible light.

可見光源1000可包括驅動電路1010,該驅動電路1010可藉由例如晶粒至晶圓接合或晶圓至晶圓接合直接地或間接地(例如,經由插入件或薄膜電晶體層)接合至VCSEL 1020。驅動電路1010可包括形成於矽基板上之各種電路,如上文例如關於圖6所描述。驅動電路1010可接合至VCSEL 1020之電極以驅動VCSEL 1020產生具有足夠長持續時間的連續波(CW)或脈衝式IR光。由VCSEL 1020發射之IR光的強度及因此來自可見光源1000之可見光的強度可藉由由驅動電路1010供應至VCSEL 1020之驅動電流或電壓控制。The visible light source 1000 can include a driver circuit 1010 that can be bonded to the VCSEL directly or indirectly (eg, via an interposer or thin film transistor layer) by, for example, die-to-wafer bonding or wafer-to-wafer bonding. 1020. The driver circuit 1010 may include various circuits formed on a silicon substrate, as described above, for example, with respect to FIG. 6 . The driver circuit 1010 may be coupled to the electrodes of the VCSEL 1020 to drive the VCSEL 1020 to generate continuous wave (CW) or pulsed IR light of sufficiently long duration. The intensity of the IR light emitted by VCSEL 1020 and thus the intensity of visible light from visible light source 1000 can be controlled by the drive current or voltage supplied to VCSEL 1020 by drive circuit 1010 .

VCSEL 1020可包括第一電極1030(例如,陽極或陰極)、第二電極1032,及形成於第一電極1030與第二電極1032之間的半導體結構(例如,磊晶層)。半導體結構可包括例如第一反射器1022、可發射IR光之主動區1024,及其他半導體層(未標記於圖10A中),諸如包覆層或可經p摻雜或n摻雜之載子注入層,如上文關於圖7所描述。第一反射器1022可包括例如如關於圖7所描述之高對比度光柵(HCG),或由具有不同折射率及/或厚度之多對介電層、半導體層或金屬材料層(經摻雜或未摻雜)(諸如GaAs及AlAs(或AlGaAs)層、氧化物層(例如,氧化矽及另一氧化物層)或其類似者)形成的DBR反射器。主動區1024可包括例如InGaAs量子井層及GaAs障壁層、InAlGaAs量子井層及AlGaAs障壁層,或其類似者。The VCSEL 1020 may include a first electrode 1030 (eg, an anode or a cathode), a second electrode 1032 , and a semiconductor structure (eg, an epitaxial layer) formed between the first electrode 1030 and the second electrode 1032 . The semiconductor structure can include, for example, a first reflector 1022, an active region 1024 that can emit IR light, and other semiconductor layers (not labeled in FIG. 10A ), such as cladding layers or carrier layers that can be p-doped or n-doped. Injection layer, as described above with respect to FIG. 7 . The first reflector 1022 may comprise, for example, a high-contrast grating (HCG) as described with respect to FIG. undoped) (such as GaAs and AlAs (or AlGaAs) layers, oxide layers (eg, silicon oxide and another oxide layer) or the like). The active region 1024 may include, for example, an InGaAs quantum well layer and a GaAs barrier layer, an InAlGaAs quantum well layer and an AlGaAs barrier layer, or the like.

在一些具體實例中,VCSEL 1020可包括用於IR光之部分反射器1026,其中該部分反射器可部分反射且部分透射在主動區1024中發射之IR光以與第一反射器1022形成VCSEL 1020之諧振腔。由部分反射器1026及第一反射器1022形成之諧振腔可幫助變窄及選擇IR光之輸出波長範圍且改良所發射IR光之增益及強度。在一些具體實例中,VCSEL 1020可包括偏振器1028。偏振器1028可用於控制由VCSEL 1020發射之IR光的偏振狀態,且藉由例如光柵耦合器或奈米諧振器(例如,後設結構)改良IR光進入微諧振器1040之耦合效率,此可為偏振相依的。在一些具體實例中,可改為使用諸如波板、空間變異偏振器或空間變異波板之其他偏振組件來控制由VCSEL 1020發射之IR光的偏振狀態。In some embodiments, the VCSEL 1020 can include a partial reflector 1026 for the IR light, wherein the partial reflector can partially reflect and partially transmit the IR light emitted in the active region 1024 to form the VCSEL 1020 with the first reflector 1022 the resonant cavity. The resonant cavity formed by partial reflector 1026 and first reflector 1022 can help narrow and select the output wavelength range of IR light and improve the gain and intensity of emitted IR light. In some embodiments, VCSEL 1020 may include polarizer 1028 . Polarizer 1028 can be used to control the polarization state of IR light emitted by VCSEL 1020 and improve the coupling efficiency of IR light into microresonator 1040 by, for example, a grating coupler or a nanoresonator (e.g., metastructure), which can is polarization dependent. In some embodiments, other polarization components such as waveplates, spatially varying polarizers, or spatially varying waveplates may be used instead to control the polarization state of the IR light emitted by VCSEL 1020 .

由VCSEL 1020發射之IR光可直接或經由耦合結構(諸如傾斜光柵或奈米諧振器)耦合至微諧振器1040中。如上文所描述,微諧振器1040可包括封閉循環波導,該封閉循環波導具有任何合適形狀(例如,環、橢圓形、螺旋形或軌道形狀)且具有低損失,使得光子可在經吸收、散射或轉換之前在封閉循環波導中傳播較長時段(例如,約一千個或更多個迴路)。波導材料可具有三階非線性,使得OPO(例如,DFWM)程序可發生於封閉循環波導中。微諧振器1040之材料及幾何結構可經選擇,使得耦合至微諧振器1040中之IR光及藉由DFWM程序產生之可見光(信號波)及惰輪波可在微諧振器1040中諧振,此可增強DFWM程序。在一些具體實例中,微諧振器1040可包括具有高折射率之材料,使得微諧振器1040之實體尺寸可減小,同時達成封閉循環波導之所要光學路徑長度。VCSEL 1020及微諧振器1040可由介電材料1060包圍,該介電材料1060可包括例如諸如二氧化矽之氧化物,或聚合物材料。在一些具體實例中,可見光源1000可包括垂直地配置且經配置以產生相同色彩之可見光的兩個或更多個微諧振器。The IR light emitted by the VCSEL 1020 can be coupled into the microresonator 1040 directly or via a coupling structure such as a tilted grating or a nanoresonator. As described above, the microresonator 1040 may comprise a closed loop waveguide having any suitable shape (e.g., a ring, ellipse, helix, or orbital shape) with low loss such that photons can be absorbed, scattered, Or propagate in a closed loop waveguide for a longer period of time (eg, about a thousand or more loops) before switching. The waveguide material can have a third order nonlinearity such that OPO (eg, DFWM) procedures can occur in closed loop waveguides. The materials and geometry of the microresonator 1040 can be selected such that IR light coupled into the microresonator 1040 and visible light (signal wave) and idler waves generated by the DFWM procedure can resonate in the microresonator 1040, whereby The DFWM program can be enhanced. In some embodiments, the microresonator 1040 can include a material with a high refractive index such that the physical size of the microresonator 1040 can be reduced while achieving the desired optical path length of the closed loop waveguide. VCSEL 1020 and microresonator 1040 may be surrounded by a dielectric material 1060, which may include, for example, an oxide such as silicon dioxide, or a polymer material. In some embodiments, visible light source 1000 can include two or more microresonators arranged vertically and configured to generate visible light of the same color.

在微諧振器1040中藉由DFWM程序產生之可見光可藉由耦合結構1042垂直地耦合出微諧振器1040,該耦合結構1042可包括如上文例如關於圖9A及9B所描述之光柵或奈米諧振器。耦合出微諧振器1040之可見光可在極小損失或無損失之情況下由第二反射器1050透射,此係由於第二反射器1050對於可見光可為抗反射的,如上文所描述。如同第一反射器1022,第二反射器1050可包括例如HCG,或由具有交替折射率之多個介電層、半導體層或金屬材料層形成的DBR結構。DBR結構中之介電層、半導體層或金屬材料層之厚度及折射率可經選擇,使得在不同材料之間的鄰近界面處反射之IR光可建設性地干擾以增大第二反射器1050對於IR光之總反射率,同時在不同材料之間的鄰近界面處反射之可見光可破壞性地干擾以減小第二反射器1050對於可見光之總反射率。因而,由VCSEL 1020發射且未耦合至微諧振器1040中之IR光可由第二反射器1050及/或第一反射器1022反射回至微諧振器1040,且可至少部分地耦合至微諧振器1040中以改良IR光耦合至微諧振器1040中之效率且因此改良可見光源1000之效率。微諧振器1040、耦合結構1042及第二反射器1050可在將VCSEL 1020接合至驅動電路1010之前或之後形成。Visible light generated by the DFWM procedure in microresonator 1040 can be coupled out of microresonator 1040 vertically by coupling structure 1042, which can include a grating or nanoresonator as described above, for example, with respect to FIGS. 9A and 9B. device. Visible light coupled out of the microresonator 1040 can be transmitted with little or no loss by the second reflector 1050 because the second reflector 1050 can be antireflective for visible light, as described above. Like the first reflector 1022, the second reflector 1050 may comprise, for example, HCG, or a DBR structure formed of multiple layers of dielectric, semiconductor or metallic material with alternating refractive indices. The thickness and index of refraction of the dielectric layer, semiconductor layer, or metallic material layer in the DBR structure can be selected such that IR light reflected at adjacent interfaces between different materials can constructively interfere to enlarge the second reflector 1050 With respect to the total reflectivity of IR light, visible light reflected at adjacent interfaces between different materials at the same time can destructively interfere to reduce the total reflectivity of the second reflector 1050 for visible light. Thus, IR light emitted by VCSEL 1020 and not coupled into microresonator 1040 may be reflected back to microresonator 1040 by second reflector 1050 and/or first reflector 1022 and may be at least partially coupled into microresonator 1040. 1040 to improve the efficiency of IR light coupling into the microresonator 1040 and thus improve the efficiency of the visible light source 1000 . Microresonator 1040 , coupling structure 1042 and second reflector 1050 may be formed before or after bonding VCSEL 1020 to driver circuit 1010 .

11A說明根據某些具體實例之包括在垂直腔外部且由紅外光VCSEL 1120直接泵浦之微諧振器1150的可見光源1100之實例。 11B說明圖11A之可見光源1100之實例之俯視圖。可見光源1100可包括驅動電路1110,該驅動電路1110可藉由例如晶粒至晶圓接合或晶圓至晶圓接合直接地或間接地(例如,經由插入件或薄膜電晶體層)接合至VCSEL 1120。驅動電路1110可包括形成於矽基板上之各種電路,如上文例如關於圖6所描述。驅動電路1110可接合至VCSEL 1120之電極以驅動VCSEL 1120產生具有足夠長持續時間及所要強度的連續波(CW)或脈衝式IR光。由VCSEL 1120發射之IR光的強度及因此來自可見光源1100之可見光的強度可藉由由驅動電路1110供應至VCSEL 1120之驅動電流或電壓控制。 11A illustrates an example of a visible light source 1100 including a microresonator 1150 outside the vertical cavity and directly pumped by an infrared light VCSEL 1120, according to certain embodiments. 11B illustrates a top view of an example of the visible light source 1100 of FIG . 11A. Visible light source 1100 may include driver circuitry 1110 that may be bonded to the VCSEL directly or indirectly (eg, via an interposer or thin film transistor layer) by, for example, die-to-wafer bonding or wafer-to-wafer bonding. 1120. Driver circuit 1110 may include various circuits formed on a silicon substrate, as described above, for example, with respect to FIG. 6 . Driver circuit 1110 may be coupled to the electrodes of VCSEL 1120 to drive VCSEL 1120 to generate continuous wave (CW) or pulsed IR light of sufficiently long duration and desired intensity. The intensity of the IR light emitted by VCSEL 1120 and thus the intensity of visible light from visible light source 1100 can be controlled by the drive current or voltage supplied to VCSEL 1120 by drive circuit 1110 .

VCSEL 1120可包括第一電極1140(例如,陽極或陰極)、第二電極1142,及形成於第一電極1140與第二電極1142之間的半導體結構(例如,磊晶層)。半導體結構可包括例如第一反射器1122、可發射IR光之主動區1124,及其他半導體層(未標記於圖11A中),諸如包覆層或可經p摻雜或n摻雜之載子注入層,如上文關於圖7所描述。第一反射器1122可包括例如HCG,或由具有不同折射率及厚度之多對介電層、半導體層或金屬材料層(經摻雜或未摻雜)(諸如GaAs及AlAs(或AlGaAs)層、氧化物層(例如,氧化矽及另一氧化物層)或其類似者)形成的DBR反射器。第一反射器1122對於IR光可具有高反射率(例如,>80%、>85%、>90%、>95%、>99%或更高)。主動區1124可包括例如InGaAs量子井層及GaAs障壁層、InAlGaAs量子井層及AlGaAs障壁層,或其類似者。VCSEL 1120亦可包括第二反射器1130,該第二反射器1130可為部分反射器,該部分反射器經配置以反射由主動區1124發射之IR光之一部分,同時透射由主動區1124發射之IR光之一部分。第二反射器1130可包括例如HCG,或由諸如GaAs及AlAs(或AlGaAs)之導電材料形成的DBR結構。第一反射器1122及第二反射器1130可形成可見光源1100中之垂直腔。垂直腔可幫助變窄及選擇IR光之輸出波長範圍且改良所發射IR光之增益及強度。在一些具體實例中,VCSEL 1120可包括偏振器(圖11A中未顯示),如上文關於圖10A所描述。偏振器可用於控制由VCSEL 1120發射之IR光的偏振模式,且藉由例如光柵耦合器或奈米諧振器(例如,後設結構)改良IR光進入微諧振器1150之耦合效率,此可為偏振相依的。The VCSEL 1120 may include a first electrode 1140 (eg, an anode or a cathode), a second electrode 1142 , and a semiconductor structure (eg, an epitaxial layer) formed between the first electrode 1140 and the second electrode 1142 . The semiconductor structure can include, for example, a first reflector 1122, an active region 1124 that can emit IR light, and other semiconductor layers (not labeled in FIG. 11A ), such as cladding layers or carrier layers that can be p-doped or n-doped. Injection layer, as described above with respect to FIG. 7 . The first reflector 1122 may include, for example, HCG, or be made of pairs of dielectric, semiconductor, or metallic material layers (doped or undoped) (such as GaAs and AlAs (or AlGaAs) layers having different refractive indices and thicknesses. , an oxide layer (eg, silicon oxide and another oxide layer) or the like). The first reflector 1122 may have a high reflectivity (eg, >80%, >85%, >90%, >95%, >99% or higher) for IR light. The active region 1124 may include, for example, an InGaAs quantum well layer and a GaAs barrier layer, an InAlGaAs quantum well layer and an AlGaAs barrier layer, or the like. VCSEL 1120 may also include second reflector 1130, which may be a partial reflector configured to reflect a portion of the IR light emitted by active region 1124 while transmitting the IR light emitted by active region 1124. Part of the IR light. The second reflector 1130 may include, for example, HCG, or a DBR structure formed of a conductive material such as GaAs and AlAs (or AlGaAs). The first reflector 1122 and the second reflector 1130 may form a vertical cavity in the visible light source 1100 . The vertical cavity can help narrow and select the output wavelength range of IR light and improve the gain and intensity of emitted IR light. In some embodiments, VCSEL 1120 can include a polarizer (not shown in Figure 11A), as described above with respect to Figure 10A. A polarizer can be used to control the polarization mode of the IR light emitted by the VCSEL 1120 and improve the coupling efficiency of IR light into the microresonator 1150 by, for example, a grating coupler or a nanoresonator (e.g., a metastructure), which can be Polarization dependent.

由VCSEL 1120發射之IR光可直接或經由耦合結構(諸如傾斜光柵或奈米諧振器)耦合至微諧振器1150中。如上文所描述,微諧振器1150可包括封閉循環波導,該封閉循環波導具有任何合適形狀(例如,環、橢圓形、螺旋形或軌道形狀)且具有低損失,使得光子可在經吸收、散射或轉換之前在封閉循環波導中傳播較長時段(例如,約一千個或更多個迴路)。波導材料可具有三階非線性,使得OPO(例如,DFWM)程序可發生於封閉循環波導中。微諧振器1150之大小及材料可經選擇以使得耦合至微諧振器1150中之IR光及藉由DFWM程序產生之可見光(信號波)及惰輪波可在微諧振器1150中諧振,此可增強DFWM程序。在一些具體實例中,微諧振器1150可包括具有高折射率之材料(例如,SiN、SiC等),使得微諧振器1150之實體尺寸可減小,同時達成封閉循環波導之所要光學路徑長度。VCSEL 1120及微諧振器1150可由介電材料1160包圍,該介電材料1160可包括例如諸如二氧化矽之氧化物。The IR light emitted by the VCSEL 1120 can be coupled into the microresonator 1150 directly or via a coupling structure such as a tilted grating or a nanoresonator. As described above, the microresonator 1150 may comprise a closed loop waveguide having any suitable shape (e.g., ring, ellipse, helical, or orbital shape) with low loss such that photons can be absorbed, scattered, Or propagate in a closed loop waveguide for a long period of time (eg, about a thousand or more loops) before switching. The waveguide material can have a third order nonlinearity such that OPO (eg, DFWM) procedures can occur in closed loop waveguides. The size and material of the microresonator 1150 can be selected such that IR light coupled into the microresonator 1150 and visible light (signal wave) and idler waves generated by the DFWM procedure can resonate in the microresonator 1150, which can Enhanced DFWM program. In some embodiments, the microresonator 1150 can include a material with a high refractive index (eg, SiN, SiC, etc.) so that the physical size of the microresonator 1150 can be reduced while achieving the desired optical path length of the closed loop waveguide. VCSEL 1120 and microresonator 1150 may be surrounded by a dielectric material 1160, which may include, for example, an oxide such as silicon dioxide.

在微諧振器1150中藉由DFWM程序產生之可見光可藉由耦合結構1152垂直地耦合出微諧振器1150,該耦合結構1152可包括如上文例如關於圖9A及9B所描述之光柵或奈米諧振器。耦合出微諧振器1150的可見光可垂直地耦合出可見光源1100。微諧振器1150及耦合結構1152可在將VCSEL 1120接合至驅動電路1110之前或之後形成。在一些具體實例中,在微諧振器1150中產生之可見光可耦合至波導,如關於圖9C及9D所描述。Visible light generated by the DFWM procedure in microresonator 1150 can be coupled out of microresonator 1150 vertically by coupling structure 1152, which can include a grating or nanoresonator as described above, for example, with respect to FIGS. 9A and 9B. device. Visible light coupled out of microresonator 1150 may be coupled out of visible light source 1100 vertically. Microresonator 1150 and coupling structure 1152 may be formed before or after bonding VCSEL 1120 to driver circuit 1110 . In some embodiments, visible light generated in microresonator 1150 can be coupled to a waveguide, as described with respect to Figures 9C and 9D.

在一些具體實例中,回饋腔結構(DBR結構或反射IR光且透射可見光之熱鏡面)可形成於微諧振器1150及耦合結構1152之頂部上以將尚未耦合至微諧振器1150中的IR光重新引導回至微諧振器1150,以改良將IR泵浦光耦合至微諧振器1150中之效率及可見光源1100之效率。In some embodiments, a feedback cavity structure (DBR structure or a thermal mirror that reflects IR light and transmits visible light) can be formed on top of microresonator 1150 and coupling structure 1152 to recouple IR light that has not been coupled into microresonator 1150. Redirected back to microresonator 1150 to improve the efficiency of coupling the IR pump light into microresonator 1150 and the efficiency of visible light source 1100 .

12A說明根據某些具體實例之包括由紅外光VCSEL 1220泵浦之微諧振器1260的可見光源1200之實例,其中紅外光經由輸入耦合結構及與微諧振器1260在相同層上之波導耦合至微諧振器中。 12B說明圖12A之可見光源1200的實例之俯視圖。可見光源1200可包括驅動電路1210,該驅動電路1210可藉由例如晶粒至晶圓接合或晶圓至晶圓接合直接地或間接地(例如,經由插入件或薄膜電晶體層)接合至VCSEL 1220。驅動電路1210可包括形成於矽基板上之各種電路,如上文例如關於圖6所描述。驅動電路1210可接合至VCSEL 1220之電極以驅動VCSEL 1220產生具有足夠長持續時間及所要強度的連續波(CW)或脈衝式IR光。由VCSEL 1220發射之IR光的強度及因此來自可見光源1200之可見光的強度可藉由由驅動電路1210供應至VCSEL 1220之驅動電流或電壓控制。 12A illustrates an example of a visible light source 1200 including a microresonator 1260 pumped by an infrared light VCSEL 1220, wherein the infrared light is coupled to in the microresonator. 12B illustrates a top view of an example of the visible light source 1200 of FIG . 12A. Visible light source 1200 may include driver circuitry 1210 that may be bonded to the VCSEL directly or indirectly (eg, via an interposer or thin film transistor layer) by, for example, die-to-wafer bonding or wafer-to-wafer bonding. 1220. Driver circuit 1210 may include various circuits formed on a silicon substrate, as described above, for example, with respect to FIG. 6 . Driver circuit 1210 may be coupled to the electrodes of VCSEL 1220 to drive VCSEL 1220 to generate continuous wave (CW) or pulsed IR light of sufficiently long duration and desired intensity. The intensity of the IR light emitted by VCSEL 1220 and thus the intensity of visible light from visible light source 1200 can be controlled by the drive current or voltage supplied to VCSEL 1220 by drive circuit 1210 .

VCSEL 1220可類似於VCSEL 1120且可包括第一電極1240(例如,陽極或陰極)、第二電極1242,及形成於第一電極1240與第二電極1242之間的半導體結構(例如,磊晶層)。半導體結構可包括例如第一反射器1222、可發射IR光之主動區1224,及其他半導體層(未標記於圖12A中),諸如包覆層或可經p摻雜或n摻雜之載子注入層,如上文關於圖7所描述。第一反射器1222可包括例如HCG,或由具有不同折射率及厚度之多對介電質或經摻雜或未摻雜半導體材料(諸如GaAs及AlAs(或AlGaAs)層、氧化物層(例如,氧化矽及另一氧化物層)或其類似者)形成的DBR反射器。第一反射器1222對於IR光可具有高反射率(例如,>80%、>85%、>90%、>95%、>99%或更高)。主動區1224可包括例如InGaAs量子井層及GaAs障壁層、InAlGaAs量子井層及AlGaAs障壁層,或其類似者。VCSEL 1220亦可包括第二反射器1230,該第二反射器1230可為部分反射器,該部分反射器經配置以反射由主動區1224發射之IR光之一部分,同時透射由主動區1224發射之IR光之一部分。第二反射器1230可包括例如HCG,或由諸如經摻雜或未摻雜GaAs及AlAs(或AlGaAs)之導電材料形成的DBR結構。第一反射器1222及第二反射器1230可形成可見光源1200中之垂直腔。垂直腔可幫助選擇IR光之輸出波長範圍且改良所發射IR光之增益及強度。在一些具體實例中,VCSEL 1220可包括偏振元件(例如,偏振器、波板、空間變異偏振器或空間變異波板,圖12A中未顯示),如上文關於圖10A所描述。偏振器可用於控制由VCSEL 1220發射之IR光的偏振模式,且藉由例如光柵耦合器或奈米諧振器(例如,後設結構)改良IR光進入微諧振器1260之耦合效率,此可為偏振相依的。VCSEL 1220 may be similar to VCSEL 1120 and may include a first electrode 1240 (eg, anode or cathode), a second electrode 1242, and a semiconductor structure (eg, an epitaxial layer) formed between first electrode 1240 and second electrode 1242 . ). The semiconductor structure can include, for example, a first reflector 1222, an active region 1224 that can emit IR light, and other semiconductor layers (not labeled in FIG. 12A ), such as cladding layers or carrier layers that can be p-doped or n-doped. Injection layer, as described above with respect to FIG. 7 . The first reflector 1222 may comprise, for example, HCG, or be composed of pairs of dielectric or doped or undoped semiconductor materials (such as GaAs and AlAs (or AlGaAs) layers, oxide layers (such as , silicon oxide and another oxide layer) or the like) to form a DBR reflector. The first reflector 1222 may have a high reflectivity (eg, >80%, >85%, >90%, >95%, >99% or higher) for IR light. The active region 1224 may include, for example, an InGaAs quantum well layer and a GaAs barrier layer, an InAlGaAs quantum well layer and an AlGaAs barrier layer, or the like. The VCSEL 1220 may also include a second reflector 1230, which may be a partial reflector configured to reflect a portion of the IR light emitted by the active region 1224 while transmitting the IR light emitted by the active region 1224. Part of the IR light. The second reflector 1230 may comprise, for example, HCG, or a DBR structure formed from a conductive material such as doped or undoped GaAs and AlAs (or AlGaAs). The first reflector 1222 and the second reflector 1230 may form a vertical cavity in the visible light source 1200 . The vertical cavity can help select the output wavelength range of IR light and improve the gain and intensity of the emitted IR light. In some embodiments, VCSEL 1220 can include polarizing elements (eg, polarizers, waveplates, spatially varying polarizers, or spatially varying waveplates, not shown in FIG. 12A ), as described above with respect to FIG. 10A . A polarizer can be used to control the polarization mode of the IR light emitted by the VCSEL 1220 and improve the coupling efficiency of the IR light into the microresonator 1260 by, for example, a grating coupler or a nanoresonator (e.g., a metastructure), which can be Polarization dependent.

由VCSEL 1220發射之IR光可直接或經由耦合結構1252(其可在波導1250上方或下方)耦合至波導1250中,該耦合結構1252諸如傾斜光柵或奈米諧振器。在波導1250中傳播之IR光可耦合至微諧振器1260中。在所說明實例中,波導1250及微諧振器1260可在同一波導材料層(例如,SiN或SiC層)上。如上文所描述,微諧振器1260可包括封閉循環波導,該封閉循環波導具有任何合適形狀(例如,環、橢圓形、螺旋形或軌道形狀)且具有低損失,使得光子可在經吸收、散射或轉換之前在封閉循環波導中傳播較長時段(例如,約一千個或更多個迴路)。波導材料可具有三階非線性,使得OPO(例如,DFWM)程序可發生於封閉循環波導中。微諧振器1260之幾何形狀及材料可經選擇以使得耦合至微諧振器1260中之IR光及藉由DFWM程序產生之可見光(信號波)及惰輪波可在微諧振器1260中諧振,此可增強DFWM程序。在一些具體實例中,微諧振器1260可包括具有高折射率之材料(例如,SiN、SiC等),使得微諧振器1260之實體尺寸可減小,同時達成封閉循環波導之所要光學路徑長度。VCSEL 1220、波導1250及微諧振器1260可由介電材料1270包圍,該介電材料1270可包括例如諸如二氧化矽之氧化物。IR light emitted by the VCSEL 1220 may be coupled into the waveguide 1250 directly or via a coupling structure 1252 (which may be above or below the waveguide 1250), such as a tilted grating or a nanoresonator. IR light propagating in waveguide 1250 may be coupled into microresonator 1260 . In the illustrated example, waveguide 1250 and microresonator 1260 may be on the same waveguide material layer (eg, SiN or SiC layer). As described above, the microresonator 1260 may comprise a closed loop waveguide having any suitable shape (e.g., ring, ellipse, helical, or orbital shape) with low loss such that photons can be absorbed, scattered, Or propagate in a closed loop waveguide for a long period of time (eg, about a thousand or more loops) before switching. The waveguide material can have a third order nonlinearity such that OPO (eg, DFWM) procedures can occur in closed loop waveguides. The geometry and materials of the microresonator 1260 can be selected such that IR light coupled into the microresonator 1260 and visible light (signal wave) and idler waves generated by the DFWM procedure can resonate in the microresonator 1260, thus The DFWM program can be enhanced. In some embodiments, microresonator 1260 can include a material with a high refractive index (eg, SiN, SiC, etc.), so that the physical size of microresonator 1260 can be reduced while achieving the desired optical path length of the closed loop waveguide. VCSEL 1220, waveguide 1250, and microresonator 1260 may be surrounded by a dielectric material 1270, which may include, for example, an oxide such as silicon dioxide.

在一些具體實例中,在微諧振器1260中藉由DFWM程序產生之可見光可藉由耦合結構垂直地耦合出微諧振器1260,該耦合結構諸如上文所描述之光柵或奈米諧振器。耦合出微諧振器1260的可見光可垂直地耦合出可見光源1200進入自由空間。在一些具體實例中,在微諧振器1260中產生的可見光可耦合至波導(例如,波導1250或緊密地耦合至微諧振器1260之另一波導)及光子積體電路,如關於圖9C及9D所描述。In some embodiments, visible light generated by the DFWM process in microresonator 1260 can be vertically coupled out of microresonator 1260 through a coupling structure, such as a grating or nanoresonator as described above. Visible light coupled out of microresonator 1260 may be coupled vertically out of visible light source 1200 into free space. In some embodiments, visible light generated in microresonator 1260 can be coupled to a waveguide (e.g., waveguide 1250 or another waveguide closely coupled to microresonator 1260) and a photonic integrated circuit, as with respect to FIGS. 9C and 9D Described.

在一些具體實例中,回饋腔結構(DBR結構或反射IR光且透射可見光之熱鏡面)可形成於波導1250及耦合結構1252之頂部上以將尚未耦合至波導1250中的IR光重新引導回至波導1250,以改良將IR泵浦光耦合至波導1250中之效率及可見光源1200之效率。In some embodiments, feedback cavity structures (DBR structures or thermal mirrors that reflect IR light and transmit visible light) can be formed on top of waveguide 1250 and coupling structure 1252 to redirect IR light that has not been coupled into waveguide 1250 back into waveguide 1250 to improve the efficiency of coupling the IR pump light into the waveguide 1250 and the efficiency of the visible light source 1200.

12C說明根據某些具體實例之包括由紅外光VCSEL 1220泵浦之微諧振器1262的可見光源1202之實例,其中紅外光經由耦合結構1252及與微諧振器1262在不同垂直層上之波導1250耦合至微諧振器1262中。 12D說明圖12C之可見光源1202之實例之俯視圖。可見光源1202可類似於可見光源1200,但不同之處可在於例如在可見光源1202中,微諧振器1262及波導1250在不同波導層上。在所說明實例中,微諧振器1262可在波導1250上方。在一些具體實例中,微諧振器1262可在波導1250下方。儘管圖12C及12D中未顯示,但可見光源1202可包括經配置以將在微諧振器1262中產生之可見光垂直地耦合出微諧振器1262的耦合結構(例如,光柵或奈米諧振器),或可包括緊密地耦合至微諧振器1262且經配置以將在微諧振器1262中產生之可見光耦合至光子積體電路中的波導。 12C illustrates an example of a visible light source 1202 including a microresonator 1262 pumped by an infrared light VCSEL 1220 through a coupling structure 1252 and a waveguide 1250 on a different vertical layer than the microresonator 1262 , according to some embodiments. Coupled into the microresonator 1262. Figure 12D illustrates a top view of an example of the visible light source 1202 of Figure 12C. Visible light source 1202 may be similar to visible light source 1200, but may differ in that, for example, in visible light source 1202, microresonator 1262 and waveguide 1250 are on different waveguide layers. In the illustrated example, microresonator 1262 may be above waveguide 1250 . In some embodiments, microresonator 1262 may be below waveguide 1250 . Although not shown in FIGS. 12C and 12D , visible light source 1202 may include a coupling structure (e.g., a grating or nanoresonator) configured to vertically couple visible light generated in microresonator 1262 out of microresonator 1262, Or a waveguide closely coupled to the microresonator 1262 and configured to couple visible light generated in the microresonator 1262 into a photonic integrated circuit may be included.

13A說明根據某些具體實例之包括由垂直腔中之紅外光VCSEL 1320泵浦之微諧振器1370的可見光源1300之又一實例,其中紅外光經由垂直腔中之輸入耦合結構1352及與微諧振器1370在相同垂直層上之波導1350耦合至微諧振器1370中。 13B說明圖13A之可見光源1300之實例之俯視圖。可見光源1300中之垂直腔可由第一反射器1322及第二反射器1330形成,其中第一反射器1322及第二反射器1330對於IR光可具有高反射率(例如,>80%、>85%、>90%、>95%、>99%或更高)。 13A illustrates yet another example of a visible light source 1300 including a microresonator 1370 pumped by an infrared light VCSEL 1320 in a vertical cavity through an in-coupling structure 1352 in the vertical cavity and with the microresonator, according to certain embodiments. Resonator 1370 is coupled into microresonator 1370 on the same vertical layer as waveguide 1350 . Figure 13B illustrates a top view of an example of the visible light source 1300 of Figure 13A. The vertical cavity in visible light source 1300 can be formed by first reflector 1322 and second reflector 1330, where first reflector 1322 and second reflector 1330 can have high reflectivity (e.g., >80%, >85% for IR light) %, >90%, >95%, >99% or higher).

可見光源1300可包括驅動電路1310,該驅動電路1310可藉由例如晶粒至晶圓接合或晶圓至晶圓接合直接地或間接地(例如,經由插入件或薄膜電晶體層)接合至VCSEL 1320。驅動電路1310可包括形成於矽基板上之各種電路,如上文例如關於圖6所描述。驅動電路1310可接合至VCSEL 1320之電極以驅動VCSEL 1320產生具有足夠長持續時間及所要強度的連續波(CW)或脈衝式IR光。由VCSEL 1320發射之IR光的強度及因此來自可見光源1300之可見光的強度可藉由由驅動電路1310供應至VCSEL 1320之驅動電流或電壓控制。Visible light source 1300 may include driver circuitry 1310, which may be bonded to the VCSEL directly or indirectly (eg, via an interposer or thin film transistor layer) by, for example, die-to-wafer bonding or wafer-to-wafer bonding. 1320. Driver circuit 1310 may include various circuits formed on a silicon substrate, as described above, for example, with respect to FIG. 6 . Driver circuit 1310 may be coupled to the electrodes of VCSEL 1320 to drive VCSEL 1320 to generate continuous wave (CW) or pulsed IR light of sufficiently long duration and desired intensity. The intensity of the IR light emitted by VCSEL 1320 and thus the intensity of visible light from visible light source 1300 can be controlled by the drive current or voltage supplied to VCSEL 1320 by drive circuit 1310 .

VCSEL 1320可包括第一電極1340(例如,陽極或陰極)、第二電極1342,及形成於第一電極1340與第二電極1342之間的半導體結構(例如,磊晶層)。半導體結構可包括例如第一反射器1322、可發射IR光之主動區1324,及其他半導體層(未標記於圖13A中),諸如包覆層或可經p摻雜或n摻雜之載子注入層,如上文關於圖7所描述。第一反射器1322可包括例如HCG,或由具有不同折射率及厚度之多對介電層、半導體層或金屬材料層(經摻雜或未摻雜)(諸如GaAs及AlAs(或AlGaAs)層、氧化物層(例如,氧化矽及另一氧化物層)或其類似者)形成的DBR反射器。主動區1324可包括例如InGaAs量子井層及GaAs障壁層、InAlGaAs量子井層及AlGaAs障壁層,或其類似者。The VCSEL 1320 may include a first electrode 1340 (eg, an anode or a cathode), a second electrode 1342 , and a semiconductor structure (eg, an epitaxial layer) formed between the first electrode 1340 and the second electrode 1342 . The semiconductor structure can include, for example, a first reflector 1322, an active region 1324 that can emit IR light, and other semiconductor layers (not labeled in FIG. 13A ), such as cladding layers or carrier layers that can be p-doped or n-doped. Injection layer, as described above with respect to FIG. 7 . The first reflector 1322 may include, for example, HCG, or be made of pairs of dielectric, semiconductor, or metallic material layers (doped or undoped) (such as GaAs and AlAs (or AlGaAs) layers having different refractive indices and thicknesses. , an oxide layer (eg, silicon oxide and another oxide layer) or the like). The active region 1324 may include, for example, an InGaAs quantum well layer and a GaAs barrier layer, an InAlGaAs quantum well layer and an AlGaAs barrier layer, or the like.

在一些具體實例中,VCSEL 1320可包括用於IR光之部分反射器1326,其中該部分反射器可部分反射且部分透射在主動區1324中發射之IR光以與第一反射器1322形成VCSEL 1320之諧振腔。由部分反射器1326及第一反射器1322形成之諧振腔可幫助變窄及選擇IR光之輸出波長範圍且改良所發射IR光之增益及強度。在一些具體實例中,VCSEL 1320可包括偏振器1328。偏振器1328可用於控制由VCSEL 1320發射之IR光的偏振模式,且藉由輸入耦合結構1352(例如,光柵耦合器或奈米諧振器)改良IR光進入波導1350之耦合效率,此可為偏振相依的。在一些具體實例中,可改為使用諸如波板、空間變異偏振器或空間變異波板之其他偏振組件來控制由VCSEL 1320發射之IR光的偏振狀態。In some embodiments, the VCSEL 1320 can include a partial reflector 1326 for the IR light, wherein the partial reflector can partially reflect and partially transmit the IR light emitted in the active region 1324 to form the VCSEL 1320 with the first reflector 1322 the resonant cavity. The resonant cavity formed by partial reflector 1326 and first reflector 1322 can help narrow and select the output wavelength range of IR light and improve the gain and intensity of emitted IR light. In some embodiments, VCSEL 1320 may include polarizer 1328 . Polarizer 1328 can be used to control the polarization mode of the IR light emitted by VCSEL 1320 and improve the coupling efficiency of IR light into waveguide 1350 by input coupling structure 1352 (e.g., a grating coupler or nanoresonator), which can be polarized Dependent. In some embodiments, other polarization components such as waveplates, spatially varying polarizers, or spatially varying waveplates may be used instead to control the polarization state of the IR light emitted by VCSEL 1320 .

由VCSEL 1320發射之IR光可藉由輸入耦合結構1352(諸如傾斜光柵或奈米諧振器(例如,後設結構))耦合至波導1350中。在波導1350中傳播之IR光可耦合至微諧振器1370中。在所說明實例中,波導1350及微諧振器1370可在同一波導材料層(例如,SiN或SiC層)上。如上文所描述,微諧振器1370可包括封閉循環波導,該封閉循環波導具有任何合適形狀(例如,環、橢圓形、螺旋形或軌道形狀)且具有低損失,使得光子可在經吸收、散射或轉換之前在封閉循環波導中傳播較長時段(例如,約1百萬個或更多個迴路)。波導材料可具有三階非線性,使得OPO(例如,DFWM)程序可發生於封閉循環波導中。微諧振器1370之大小及材料可經選擇以使得耦合至微諧振器1370中之IR光及藉由DFWM程序產生之可見光(信號波)及惰輪波可在微諧振器1370中諧振,此可增強DFWM程序。在一些具體實例中,微諧振器1370可包括具有高折射率之材料(例如,SiN、SiC或其類似者),使得微諧振器1370之實體尺寸可減小,同時仍達成封閉循環波導之所要光學路徑長度。VCSEL 1320、波導1350及微諧振器1370可由介電材料1360包圍,該介電材料1360可包括例如諸如二氧化矽之氧化物。IR light emitted by the VCSEL 1320 can be coupled into the waveguide 1350 by an incoupling structure 1352 such as a tilted grating or nanoresonator (eg, metastructure). IR light propagating in waveguide 1350 may be coupled into microresonator 1370 . In the illustrated example, waveguide 1350 and microresonator 1370 may be on the same waveguide material layer (eg, SiN or SiC layer). As described above, the microresonator 1370 may comprise a closed loop waveguide having any suitable shape (e.g., ring, ellipse, helical, or orbital shape) with low loss such that photons can be absorbed, scattered, Or propagate in a closed loop waveguide for a longer period of time (eg, about 1 million loops or more) before switching. The waveguide material can have a third order nonlinearity such that OPO (eg, DFWM) procedures can occur in closed loop waveguides. The size and material of the microresonator 1370 can be selected such that IR light coupled into the microresonator 1370 and visible light (signal wave) and idler waves generated by the DFWM process can resonate in the microresonator 1370, which can Enhanced DFWM program. In some embodiments, microresonator 1370 can include a material with a high refractive index (e.g., SiN, SiC, or the like), so that the physical size of microresonator 1370 can be reduced while still achieving the desired closed loop waveguide. Optical path length. VCSEL 1320, waveguide 1350, and microresonator 1370 may be surrounded by a dielectric material 1360, which may include, for example, an oxide such as silicon dioxide.

在一些具體實例中,在微諧振器1370中藉由DFWM程序產生之可見光可藉由耦合結構垂直地耦合出微諧振器1370,該耦合結構諸如上文所描述之光柵或奈米諧振器。耦合出微諧振器1370的可見光可垂直地耦合出可見光源1300。在一些具體實例中,在微諧振器1370中產生的可見光可耦合至波導(例如,波導1350或緊密地耦合至微諧振器1370之另一波導)及光子積體電路,如關於圖9C及9D所描述。In some embodiments, visible light generated by the DFWM process in microresonator 1370 can be vertically coupled out of microresonator 1370 through a coupling structure, such as a grating or nanoresonator as described above. Visible light coupled out of microresonator 1370 may be coupled out of visible light source 1300 vertically. In some embodiments, visible light generated in microresonator 1370 can be coupled to a waveguide (e.g., waveguide 1350 or another waveguide closely coupled to microresonator 1370) and a photonic integrated circuit, as with respect to FIGS. 9C and 9D Described.

如同第一反射器1322,第二反射器1330可包括例如HCG,或由具有交替折射率之多個介電層、半導體層或金屬材料層形成的DBR結構。DBR結構中之介電層、半導體層或金屬材料層之厚度及折射率可經選擇,使得在不同材料之間的鄰近界面處反射之IR光可建設性地干擾以增大第二反射器1330對於IR光之總反射率。因此,可藉由第二反射器1330及/或第一反射器1322將由VCSEL 1320發射且尚未耦合至波導1350中的IR光反射回至波導1350,且可至少部分地耦合至波導1350中以改良將IR泵浦光耦合至微諧振器1370中之效率及可見光源1300之效率。Like the first reflector 1322, the second reflector 1330 may include, for example, HCG, or a DBR structure formed of multiple layers of dielectric, semiconductor, or metallic material with alternating refractive indices. The thickness and index of refraction of the dielectric, semiconductor, or metallic material layers in the DBR structure can be selected such that IR light reflected at adjacent interfaces between different materials can constructively interfere to enlarge the second reflector 1330 Total reflectance for IR light. Accordingly, IR light emitted by the VCSEL 1320 and not yet coupled into the waveguide 1350 may be reflected back to the waveguide 1350 by the second reflector 1330 and/or the first reflector 1322, and may be at least partially coupled into the waveguide 1350 to improve The efficiency of coupling IR pump light into the microresonator 1370 and the efficiency of the visible light source 1300.

圖13C說明根據某些具體實例之包括由紅外光VCSEL 1320泵浦之微諧振器1372的可見光源1302之實例,其中由紅外光VCSEL 1320發射之紅外光經由垂直腔中之輸入耦合結構1352及與微諧振器1372在不同垂直層上之波導1350耦合至微諧振器1372中。圖13D說明圖13C之可見光源1302之實例之俯視圖。可見光源1302可類似於可見光源1300,但不同之處可在於例如在可見光源1302中,微諧振器1372及波導1350位於不同波導層上。在所說明實例中,微諧振器1372可在波導1350上方。在一些具體實例中,微諧振器1372可在波導1350下方。儘管圖13C及13D中未顯示,但可見光源1302可包括經配置以將在微諧振器1372中產生之可見光垂直地耦合出微諧振器1372的耦合結構(例如,光柵或奈米諧振器),或可包括緊密地耦合至微諧振器1372且經配置以將在微諧振器1372中產生之可見光耦合至光子積體電路中的波導。13C illustrates an example of a visible light source 1302 including a microresonator 1372 pumped by an infrared VCSEL 1320 through an in-coupling structure 1352 in a vertical cavity and with a microresonator 1372 in accordance with certain embodiments. The waveguides 1350 on different vertical layers of the microresonator 1372 are coupled into the microresonator 1372 . Figure 13D illustrates a top view of an example of the visible light source 1302 of Figure 13C. Visible light source 1302 may be similar to visible light source 1300, but may differ in that, for example, in visible light source 1302, microresonator 1372 and waveguide 1350 are located on different waveguide layers. In the illustrated example, microresonator 1372 may be above waveguide 1350 . In some embodiments, microresonator 1372 may be below waveguide 1350 . Although not shown in FIGS. 13C and 13D , visible light source 1302 may include a coupling structure (e.g., a grating or nanoresonator) configured to vertically couple visible light generated in microresonator 1372 out of microresonator 1372, Or a waveguide closely coupled to the microresonator 1372 and configured to couple visible light generated in the microresonator 1372 into the photonic integrated circuit may be included.

在色彩影像顯示系統中,可能需要在同一晶片上整合用於多種色彩之可見光源。為改良所顯示影像之解析度,亦可能需要使用具有大量可個別定址光源之高密度源陣列。當前可見光源通常可具有較大佔據面積,且可能不適合於具有個別可定址光源之高密度源陣列。上文所描述之VCSEL泵浦之可見光源可用於製造高密度源陣列,其包括用於不同色彩之可見光的個別可定址光源。In a color image display system, it may be necessary to integrate visible light sources for multiple colors on the same chip. To improve the resolution of the displayed image, it may also be desirable to use a high density source array with a large number of individually addressable light sources. Current visible light sources can typically have large footprints and may not be suitable for high density source arrays with individually addressable light sources. The VCSEL pumped visible light sources described above can be used to fabricate high density source arrays including individually addressable light sources for different colors of visible light.

根據某些具體實例,裝置可包括可見光源陣列,其中可見光源可發射不同色彩(諸如紅色、藍色或綠色)之可見光。在一個實例中,每一可見光源可包括一個微諧振器,且一些可見光源中之微諧振器(及/或VCSEL)可不同於一些其他可見光源中之微諧振器(及/或VCSEL),使得可見光源可發射不同色彩之光。在一些具體實例中,可見光源陣列中之每一可見光源可經配置或可調諧以發射不同色彩之光。舉例而言,每一可見光源可包括泵浦VCSEL及具有不同參數之多個微諧振器,其中多個微諧振器中之每一者可經配置以產生不同各別色彩之可見光,且在一些具體實例中,多個微諧振器中之每一者可經調諧以調整由微諧振器產生之可見光的強度。在一些具體實例中,可見光源可包括:可調諧泵浦VCSEL(具有可調諧腔),其可經調諧以發射具有不同波長之泵浦光;及微諧振器,其可具有多個諧振模式且可使用具有不同波長之泵浦光產生不同色彩之可見光。According to some embodiments, the device can include an array of visible light sources, wherein the visible light sources can emit visible light of different colors, such as red, blue, or green. In one example, each visible light source may include a microresonator, and the microresonators (and/or VCSELs) in some visible light sources may be different from the microresonators (and/or VCSELs) in some other visible light sources, The visible light source can emit light of different colors. In some embodiments, each visible light source in the array of visible light sources can be configured or tuned to emit light of a different color. For example, each visible light source can include a pumped VCSEL and multiple microresonators with different parameters, where each of the multiple microresonators can be configured to generate visible light of a different distinct color, and at some In a specific example, each of the plurality of microresonators can be tuned to adjust the intensity of visible light generated by the microresonator. In some embodiments, a visible light source can include: a tunable pump VCSEL (with a tunable cavity) that can be tuned to emit pump light with different wavelengths; and a microresonator that can have multiple resonant modes and Visible light of different colors can be generated using pump light with different wavelengths.

14A說明根據某些具體實例之經配置以發射不同色彩之可見光的可見光源陣列1400之實例,其中陣列中之每一可見光源包括在垂直腔中且由垂直腔中之紅外光VCSEL直接泵浦的微諧振器,且將在微諧振器中產生的可見光垂直地耦合出垂直腔。圖14A展示可見光源陣列1400中之紅色光源1406、綠色光源1404及藍色光源1402。展示於圖14A中之每一光源可為可見光源1000或1100之實例,且可見光源陣列中之可見光源可製造於同一晶圓或同一晶粒上。晶圓或晶粒可使用各種晶圓至晶圓接合技術或晶粒至晶圓接合技術直接地或間接地(例如,經由插入件或薄膜電晶體層)接合至驅動電路1410,諸如CMOS底板。 14A illustrates an example of an array 1400 of visible light sources configured to emit different colors of visible light, where each visible light source in the array is included in a vertical cavity and is directly pumped by an infrared light VCSEL in the vertical cavity, according to certain embodiments. The microresonator, and the visible light generated in the microresonator is vertically coupled out of the vertical cavity. FIG. 14A shows red light source 1406 , green light source 1404 , and blue light source 1402 in visible light source array 1400 . Each light source shown in Figure 14A can be an example of visible light source 1000 or 1100, and the visible light sources in an array of visible light sources can be fabricated on the same wafer or on the same die. The wafer or die may be bonded directly or indirectly (eg, via an interposer or thin film transistor layer) to drive circuitry 1410 , such as a CMOS backplane, using various wafer-to-wafer bonding techniques or die-to-wafer bonding techniques.

每一光源1402、1404或1406可包括發射IR光之VCSEL 1420。如上文關於例如圖10及11所描述,VCSEL 1420可包括第一電極1430(例如,陽極或陰極)、第二電極1432,及形成於第一電極1430與第二電極1432之間的半導體結構(例如,磊晶層)。半導體結構可包括例如第一反射器1422、可發射IR光之主動區1424,及其他半導體層(未標記於圖14A中),諸如包覆層或可經p摻雜或n摻雜之載子注入層,如上文關於圖7所描述。第一反射器1422可包括例如HCG,或由具有不同折射率及厚度之多對介電層、半導體層或金屬材料層(經摻雜或未摻雜)(諸如GaAs及AlAs(或AlGaAs)層、氧化物層(例如,氧化矽及另一氧化物層)或其類似者)形成的DBR反射器。主動區1424可包括例如InGaAs量子井層及GaAs障壁層、InAlGaAs量子井層及AlGaAs障壁層,或其類似者。光源1402、1404及1406中之VCSEL 1420可具有相同結構且可以約相同波長發射IR光。在一些具體實例中,VCSEL 1420可包括用於IR光之部分反射器(諸如部分反射器1026,圖14A中未顯示),其中該部分反射器可部分反射且部分透射在主動區1424中發射之IR光以與第一反射器1422形成VCSEL 1420之諧振腔。由部分反射器及第一反射器1422形成之諧振腔可幫助變窄及選擇由VCSEL 1420發射之IR光之輸出波長範圍且改良所發射IR光之增益及強度。在一些具體實例中,VCSEL 1420可包括偏振器(圖14A中未顯示),諸如偏振器1028。偏振器可用於控制由VCSEL 1420發射之IR光的偏振模式,且藉由例如光柵耦合器或奈米諧振器(例如,後設結構)改良IR光進入微諧振器之耦合效率,此可為偏振相依的。Each light source 1402, 1404 or 1406 may include a VCSEL 1420 that emits IR light. As described above with respect to, eg, FIGS. 10 and 11 , the VCSEL 1420 may include a first electrode 1430 (eg, an anode or a cathode), a second electrode 1432, and a semiconductor structure formed between the first electrode 1430 and the second electrode 1432 ( For example, epitaxial layers). The semiconductor structure can include, for example, a first reflector 1422, an active region 1424 that can emit IR light, and other semiconductor layers (not labeled in FIG. 14A ), such as cladding layers or carrier layers that can be p-doped or n-doped. Injection layer, as described above with respect to FIG. 7 . The first reflector 1422 may include, for example, HCG, or be made of pairs of dielectric, semiconductor, or metallic material layers (doped or undoped) (such as GaAs and AlAs (or AlGaAs) layers having different refractive indices and thicknesses. , an oxide layer (eg, silicon oxide and another oxide layer) or the like). The active region 1424 may include, for example, an InGaAs quantum well layer and a GaAs barrier layer, an InAlGaAs quantum well layer and an AlGaAs barrier layer, or the like. VCSELs 1420 in light sources 1402, 1404, and 1406 may have the same structure and may emit IR light at about the same wavelength. In some embodiments, VCSEL 1420 can include a partial reflector for IR light (such as partial reflector 1026, not shown in FIG. 14A ), where the partial reflector can partially reflect and partially transmit light emitted in active region 1424. The IR light forms a resonant cavity of the VCSEL 1420 with the first reflector 1422 . The resonant cavity formed by the partial reflector and the first reflector 1422 can help narrow and select the output wavelength range of the IR light emitted by the VCSEL 1420 and improve the gain and intensity of the emitted IR light. In some embodiments, VCSEL 1420 may include a polarizer (not shown in FIG. 14A ), such as polarizer 1028 . A polarizer can be used to control the polarization mode of the IR light emitted by the VCSEL 1420 and improve the coupling efficiency of the IR light into the microresonator by, for example, a grating coupler or a nanoresonator (e.g., metastructure), which can be polarized Dependent.

在所說明實例中,每一光源1402、1404或1406可包括微諧振器,其中每一光源1402、1404或1406之微諧振器可具有不同各別設計且因此可產生不同波長之可見光。不同各別設計可包括例如迴路形狀(例如,環、橢圓形、螺旋形、軌道等)、尺寸、材料(且因此折射率)及其類似者之不同組合。舉例而言,紅色光源1406可包括微諧振器1444,該微諧振器1444之形狀、尺寸及材料可經選擇以使得紅色光可藉由DFWM使用由VCSEL 1420發射之IR光作為泵浦光在微諧振器1444中產生。紅色光源1406亦可包括經配置以將在微諧振器1444中產生之紅色光垂直地耦合出微諧振器1444的耦合結構1454。類似地,綠色光源1404可包括微諧振器1442,該微諧振器1442經配置以使得可藉由DFWM使用由VCSEL 1420發射之IR光作為泵浦光在微諧振器1442中產生綠色光,且可包括耦合結構1452,該耦合結構1452經配置以將在微諧振器1442中產生之綠色光垂直地耦合出微諧振器1442。藍色光源1402可包括微諧振器1440,該微諧振器1440經配置以使得可藉由DFWM使用由VCSEL 1420發射之IR光作為泵浦光在微諧振器1440中產生藍色光,且可包括耦合結構1450,該耦合結構1450經配置以將在微諧振器1440中產生之藍色光垂直地耦合出微諧振器1440。In the illustrated example, each light source 1402, 1404, or 1406 can include a microresonator, wherein the microresonator of each light source 1402, 1404, or 1406 can have a different respective design and thus can generate different wavelengths of visible light. Different individual designs may include, for example, different combinations of loop shapes (eg, loops, ellipses, spirals, orbits, etc.), dimensions, materials (and thus refractive indices), and the like. For example, the red light source 1406 can include a microresonator 1444 whose shape, size, and material can be selected such that red light can be radiated by DFWM using IR light emitted by the VCSEL 1420 as pump light in the microresonator 1444. generated in resonator 1444. Red light source 1406 may also include coupling structure 1454 configured to vertically couple red light generated in microresonator 1444 out of microresonator 1444 . Similarly, the green light source 1404 can include a microresonator 1442 configured such that green light can be generated in the microresonator 1442 by DFWM using IR light emitted by the VCSEL 1420 as pump light, and can A coupling structure 1452 is included that is configured to vertically couple green light generated in the microresonator 1442 out of the microresonator 1442 . The blue light source 1402 may include a microresonator 1440 configured such that blue light may be generated in the microresonator 1440 by DFWM using IR light emitted by the VCSEL 1420 as pump light, and may include coupling Structure 1450 configured to vertically couple blue light generated in microresonator 1440 out of microresonator 1440 .

如所說明,每一光源1402、1404或1406亦可包括第二反射器1460、1462或1464,該第二反射器1460、1462或1464經配置以將由VCSEL 1420發射但尚未耦合至微諧振器中之IR光反射回至微諧振器或用於將IR光耦合至微諧振器中的耦合結構。第二反射器1460、1462或1464對於由VCSEL 1420發射之IR光可具有接近100%反射率,且對於在對應微諧振器中產生且藉由對應耦合結構耦合出對應微諧振器之可見光可具有接近0%反射率。舉例而言,第二反射器1460對於藍色光可為抗反射的,第二反射器1462對於綠色光可為抗反射的,且第二反射器1464對於紅色光可為抗反射的。As illustrated, each light source 1402, 1404, or 1406 may also include a second reflector 1460, 1462, or 1464 configured to be emitted by the VCSEL 1420 but not yet coupled into the microresonator The IR light is reflected back to the microresonator or to a coupling structure used to couple the IR light into the microresonator. The second reflector 1460, 1462 or 1464 may have nearly 100% reflectivity for the IR light emitted by the VCSEL 1420, and may have a reflectivity for the visible light generated in the corresponding microresonator and coupled out of the corresponding microresonator by the corresponding coupling structure. Close to 0% reflectance. For example, second reflector 1460 can be antireflective for blue light, second reflector 1462 can be antireflective for green light, and second reflector 1464 can be antireflective for red light.

14B14C說明可見光源陣列1400之實例之俯視圖。展示於圖14B及14C中之可見光源陣列1400之實例可用作主動顯示面板或可用作液晶顯示器(諸如矽上液晶(liquid crystal on silicon;LCOS)顯示器)之背光單元的光源。在所說明實例中,可將紅色光源1406分組於一些行中,可將綠色光源1404分組於一些其他行中,且可將藍色光源1402分組於一些其他行中,其中不同色彩之光源之行可為交錯的。在一些具體實例中,光源1402、1404及1406可以其他方式配置。舉例而言,可見光源陣列可包括以二維陣列配置之像素單元,其中每一像素單元可包括配置於三角形之頂點上的紅色光源1406、綠色光源1404及藍色光源1402。光源陣列中之不同色彩的光源可使用相同程序製造於同一晶圓或同一晶粒上,而非分別製造且接著拾取及置放於CMOS底板上。可見光源陣列1400之間距及每一光源之大小可基於應用而選擇。在一些具體實例中,每一光源之直徑可小於約50 μm、小於約30 μm、小於約20 μm或小於約10 μm。可見光源陣列1400之間距亦可小於約50 μm、小於約30 μm、小於約20 μm或小於約10 μm。 14B and 14C illustrate top views of an example of an array 1400 of visible light sources . An example of a visible light source array 1400 shown in FIGS. 14B and 14C can be used as an active display panel or as a light source for a backlight unit of a liquid crystal display such as a liquid crystal on silicon (LCOS) display. In the illustrated example, red light sources 1406 may be grouped in some rows, green light sources 1404 may be grouped in some other rows, and blue light sources 1402 may be grouped in some other rows, where rows of light sources of different colors Can be interleaved. In some embodiments, light sources 1402, 1404, and 1406 may be configured in other ways. For example, the visible light source array may include pixel units arranged in a two-dimensional array, wherein each pixel unit may include a red light source 1406 , a green light source 1404 and a blue light source 1402 arranged on vertices of a triangle. Light sources of different colors in a light source array can be fabricated on the same wafer or on the same die using the same process, rather than being fabricated separately and then picked and placed on a CMOS substrate. The spacing between visible light source array 1400 and the size of each light source can be selected based on the application. In some embodiments, the diameter of each light source can be less than about 50 μm, less than about 30 μm, less than about 20 μm, or less than about 10 μm. The distance between the visible light source array 1400 may also be less than about 50 μm, less than about 30 μm, less than about 20 μm, or less than about 10 μm.

15A15B說明根據某些具體實例之可見光源陣列1500之實例,其中每一可見光源1502可發射呈現多種色彩之可見光。可見光源陣列1500中之每一可見光源1502包括定位於由第一反射器1522及第二反射器1530形成之垂直腔中之多個微諧振器,其中多個微諧振器由垂直腔中之同一IR發光VCSEL 1520泵浦以產生不同色彩之可見光。第一反射器1522及第二反射器1530對於IR光可具有高反射率(例如,>80%、>85%、>90%、>95%、>99%或更高)。在一些具體實例中,第一反射器1522對於可見光可具有高反射率(例如,>80%、>85%、>90%、>95%、>99%或更高)。第二反射器1530對於可見光可為抗反射的。在微諧振器中產生之不同色彩之可見光藉由各別耦合結構垂直地耦合出微諧振器,且可經由第二反射器1530透射出垂直腔。 15A and 15B illustrate an example of an array of visible light sources 1500 in which each visible light source 1502 can emit visible light in multiple colors , according to certain embodiments. Each visible light source 1502 in the visible light source array 1500 includes a plurality of microresonators positioned in a vertical cavity formed by the first reflector 1522 and the second reflector 1530, wherein the plurality of microresonators are controlled by the same microresonator in the vertical cavity. The IR emitting VCSEL 1520 is pumped to generate visible light of different colors. The first reflector 1522 and the second reflector 1530 may have high reflectivity (eg, >80%, >85%, >90%, >95%, >99% or higher) for IR light. In some embodiments, the first reflector 1522 can have a high reflectivity (eg, >80%, >85%, >90%, >95%, >99%, or higher) for visible light. The second reflector 1530 may be anti-reflection for visible light. Visible light of different colors generated in the microresonator is vertically coupled out of the microresonator by the respective coupling structures and can be transmitted out of the vertical cavity through the second reflector 1530 .

如所說明,可見光源1502可包括形成於CMOS底板上之驅動電路1510,其中CMOS底板可直接地或間接地(例如,經由插入件或薄膜電晶體層)接合至包括製造於其上之VCSEL 1520的晶圓。多個微諧振器及第二反射器1530可在將包括VCSEL 1520之晶圓接合至CMOS底板之前或之後形成。VCSEL 1520可包括第一電極1540(例如,陽極或陰極)、第二電極1542,及形成於第一電極1540與第二電極1542之間的半導體結構(例如,磊晶層)。半導體結構可包括例如第一反射器1522、可發射IR光之主動區1524,及其他半導體層(未標記於圖15A中),諸如包覆層或可經p摻雜或n摻雜之載子注入層。第一反射器1522可包括例如HCG,或由具有不同折射率及厚度之多對介電層、半導體層或金屬材料層(經摻雜或未摻雜)(諸如GaAs及AlAs(或AlGaAs)層、氧化物層(例如,氧化矽及另一氧化物層)或其類似者)形成的DBR反射器。主動區1524可包括例如InGaAs量子井層及GaAs障壁層、InAlGaAs量子井層及AlGaAs障壁層,或其類似者。在一些具體實例中,VCSEL 1520可包括用於IR光之部分反射器1526,其中部分反射器1526可部分反射且部分透射在主動區1524中發射之IR光以與第一反射器1522形成VCSEL 1520之諧振腔。由部分反射器1526及第一反射器1522形成之諧振腔可幫助變窄及選擇由VCSEL 1520發射之IR光之輸出波長範圍且改良所發射IR光之增益及強度。在一些具體實例中,VCSEL 1520可包括偏振器1528。偏振器1528可用於控制由VCSEL 1520發射之IR光的偏振模式,且藉由例如光柵耦合器或奈米諧振器(例如,後設結構)改良IR光進入微諧振器之耦合效率,此可為偏振相依的。在一些具體實例中,可改為使用諸如波板、空間變異偏振器或空間變異波板之其他偏振組件來控制由VCSEL 1520發射之IR光的偏振狀態。As illustrated, visible light source 1502 may include driver circuitry 1510 formed on a CMOS backplane, where the CMOS backplane may be bonded directly or indirectly (e.g., via an interposer or thin film transistor layer) to VCSELs 1520 including VCSELs fabricated thereon. of wafers. The plurality of microresonators and the second reflector 1530 can be formed before or after bonding the wafer including the VCSEL 1520 to the CMOS backplane. The VCSEL 1520 may include a first electrode 1540 (eg, an anode or a cathode), a second electrode 1542 , and a semiconductor structure (eg, an epitaxial layer) formed between the first electrode 1540 and the second electrode 1542 . The semiconductor structure can include, for example, a first reflector 1522, an active region 1524 that can emit IR light, and other semiconductor layers (not labeled in FIG. 15A ), such as cladding layers or carrier layers that can be p-doped or n-doped. Inject layer. The first reflector 1522 may comprise, for example, HCG, or be made of pairs of dielectric, semiconductor, or metallic material layers (doped or undoped) (such as GaAs and AlAs (or AlGaAs) layers having different refractive indices and thicknesses. , an oxide layer (eg, silicon oxide and another oxide layer) or the like). The active region 1524 may include, for example, an InGaAs quantum well layer and a GaAs barrier layer, an InAlGaAs quantum well layer and an AlGaAs barrier layer, or the like. In some embodiments, the VCSEL 1520 can include a partial reflector 1526 for the IR light, wherein the partial reflector 1526 can partially reflect and partially transmit the IR light emitted in the active region 1524 to form the VCSEL 1520 with the first reflector 1522 the resonant cavity. The resonant cavity formed by partial reflector 1526 and first reflector 1522 can help narrow and select the output wavelength range of the IR light emitted by VCSEL 1520 and improve the gain and intensity of the emitted IR light. In some embodiments, VCSEL 1520 may include polarizer 1528 . The polarizer 1528 can be used to control the polarization mode of the IR light emitted by the VCSEL 1520 and improve the coupling efficiency of the IR light into the microresonator by, for example, a grating coupler or a nanoresonator (e.g., metastructure), which can be Polarization dependent. In some embodiments, other polarization components such as waveplates, spatially varying polarizers, or spatially varying waveplates may be used instead to control the polarization state of the IR light emitted by VCSEL 1520 .

在所說明實例中,每一可見光源1502可包括第一微諧振器1550、第二微諧振器1560及第三微諧振器1570,以用於在DFWM程序中使用由VCSEL 1520發射之IR光作為泵浦光產生不同色彩之可見光。第一微諧振器1550、第二微諧振器1560及第三微諧振器1570可具有不同各別設計,且因此可使用相同泵浦光產生不同色彩之可見光。不同各別設計可包括例如迴路形狀(例如,環、橢圓形、螺旋形、軌道等)、尺寸、材料(且因此折射率)及其類似者之不同組合。舉例而言,第三微諧振器1570之形狀、尺寸及材料可經選擇,使得可藉由DFWM使用由VCSEL 1520發射之IR光作為泵浦光在第三微諧振器1570中產生紅色光。耦合結構1572(例如,光柵或奈米諧振器)可經配置以將在第三微諧振器1570中產生之紅色光垂直地耦合出第三微諧振器1570。類似地,第二微諧振器1560之形狀、尺寸及材料可經選擇,使得可藉由DFWM使用由VCSEL 1520發射之IR光作為泵浦光在第二微諧振器1560中產生綠色光。耦合結構1562(例如,光柵或奈米諧振器)可經配置以將在第二微諧振器1560中產生之綠色光垂直地耦合出第二微諧振器1560。第一微諧振器1550之形狀、尺寸及材料可經選擇,使得可藉由DFWM使用由VCSEL 1520發射之IR光作為泵浦光在第一微諧振器1550中產生藍色光。耦合結構1552(例如,光柵或奈米諧振器)可經配置以將在第一微諧振器1550中產生之藍色光垂直地耦合出第一微諧振器1550。第一微諧振器1550、第二微諧振器1560及第三微諧振器1570可以任何合適的次序垂直地配置。在一些具體實例中,每一可見光源1502可包括經配置以產生呈現兩種或更多種色彩之可見光的兩個或更多個不同微諧振器。在一些具體實例中,每一可見光源1502可包括多個微諧振器,其中微諧振器中之至少兩者可經配置以產生相同色彩之可見光。In the illustrated example, each visible light source 1502 may include a first microresonator 1550, a second microresonator 1560, and a third microresonator 1570 for using the IR light emitted by the VCSEL 1520 as The pump light produces visible light of different colors. The first microresonator 1550, the second microresonator 1560, and the third microresonator 1570 can have different individual designs, and thus can generate visible light of different colors using the same pump light. Different individual designs may include, for example, different combinations of loop shapes (eg, loops, ellipses, spirals, orbits, etc.), dimensions, materials (and thus refractive indices), and the like. For example, the shape, size and material of the third microresonator 1570 can be selected such that red light can be generated in the third microresonator 1570 by DFWM using IR light emitted by the VCSEL 1520 as pump light. A coupling structure 1572 (eg, a grating or a nanoresonator) may be configured to vertically couple red light generated in the third microresonator 1570 out of the third microresonator 1570 . Similarly, the shape, size and material of the second microresonator 1560 can be selected such that green light can be generated in the second microresonator 1560 by DFWM using the IR light emitted by the VCSEL 1520 as pump light. A coupling structure 1562 (eg, a grating or a nanoresonator) can be configured to vertically couple the green light generated in the second microresonator 1560 out of the second microresonator 1560 . The shape, size and material of the first microresonator 1550 can be selected such that blue light can be generated in the first microresonator 1550 by DFWM using the IR light emitted by the VCSEL 1520 as pump light. A coupling structure 1552 (eg, a grating or a nanoresonator) may be configured to vertically couple blue light generated in the first microresonator 1550 out of the first microresonator 1550 . The first microresonator 1550, the second microresonator 1560, and the third microresonator 1570 may be arranged vertically in any suitable order. In some embodiments, each visible light source 1502 can include two or more different microresonators configured to generate visible light in two or more colors. In some embodiments, each visible light source 1502 can include multiple microresonators, where at least two of the microresonators can be configured to generate visible light of the same color.

耦合出第一微諧振器1550、第二微諧振器1560及第三微諧振器1570之可見光可在極小損失或無損失之情況下經由第二反射器1530耦合出可見光源1502,此係由於第二反射器1530對於可見光可為抗反射的,如上文所描述。如同第一反射器1522,第二反射器1530可包括例如HCG,或由具有交替折射率之多個介電層、半導體層或金屬材料層形成的DBR結構。DBR結構中之介電層、半導體層或金屬材料層之厚度及折射率可經選擇,使得在不同材料之間的鄰近界面處反射之IR光可建設性地干擾以增大第二反射器1530對於IR光之總反射率,同時在不同材料之間的鄰近界面處反射之可見光可破壞性地干擾以減小第二反射器1530對於可見光之總反射率。因而,由VCSEL 1520發射且尚未耦合至微諧振器中之IR光可由第二反射器1530及/或第一反射器1522反射回至微諧振器,且可至少部分地耦合至微諧振器中以改良將IR泵浦光耦合至微諧振器中之效率及可見光源1502之效率。因此,每一可見光源1502可同時發射呈現不同色彩之可見光,其中呈現不同色彩的所發射可見光之強度可藉由來自驅動電路1510之驅動電壓或電流控制。在圖15A及15B中所展示之實例中,由同一可見光源發射之呈現每一色彩的可見光之各別強度可能並非為可個別控制的。因此,可見光源陣列1500可用作BLU顯示器中之光源,但不可用作主動顯示面板之顯示像素。可見光源1502中之微諧振器、耦合結構及第二反射器1530可在將VCSEL 1520接合至驅動電路1510之前或之後形成。Visible light coupled out of first microresonator 1550, second microresonator 1560, and third microresonator 1570 can be coupled out of visible light source 1502 via second reflector 1530 with little or no loss due to the second Second reflector 1530 may be anti-reflective for visible light, as described above. Like the first reflector 1522, the second reflector 1530 may include, for example, HCG, or a DBR structure formed of multiple layers of dielectric, semiconductor, or metallic material with alternating refractive indices. The thickness and index of refraction of the dielectric, semiconductor, or metallic material layers in the DBR structure can be selected such that IR light reflected at adjacent interfaces between different materials can constructively interfere to enlarge the second reflector 1530 With respect to the total reflectivity of IR light, visible light reflected at adjacent interfaces between different materials at the same time can destructively interfere to reduce the total reflectivity of the second reflector 1530 for visible light. Thus, IR light emitted by VCSEL 1520 and not yet coupled into the microresonator may be reflected back to the microresonator by second reflector 1530 and/or first reflector 1522 and may be at least partially coupled into the microresonator to The efficiency of coupling the IR pump light into the microresonator and the efficiency of the visible light source 1502 is improved. Therefore, each visible light source 1502 can simultaneously emit visible light in different colors, wherein the intensity of the emitted visible light in different colors can be controlled by the driving voltage or current from the driving circuit 1510 . In the example shown in Figures 15A and 15B, the separate intensities of visible light representing each color emitted by the same visible light source may not be individually controllable. Therefore, visible light source array 1500 can be used as a light source in a BLU display, but not as a display pixel of an active display panel. The microresonators, coupling structures, and second reflector 1530 in visible light source 1502 can be formed before or after bonding VCSEL 1520 to driver circuit 1510 .

16A16B說明根據某些具體實例之可見光源陣列1600之實例,其中每一可見光源1602經配置以發射呈現多種色彩之可見光且呈現每一色彩之可見光之各別強度可個別地控制。相較於可見光源陣列1500,可見光源陣列1600可不僅具有對每一可見光源1602之個別控制,且亦具有對同一可見光源1602中之微諧振器的個別控制,使得所發射之呈現每一色彩之可見光的各別強度可為可個別調諧的。 16A and 16B illustrate an example of an array of visible light sources 1600 in which each visible light source 1602 is configured to emit visible light in multiple colors and the respective intensity of visible light in each color can be individually controlled, according to certain embodiments. Compared to the array of visible light sources 1500, the array of visible light sources 1600 can not only have individual control of each visible light source 1602, but also have individual control of the microresonators in the same visible light source 1602, so that the emitted light exhibits each color The individual intensities of visible light can be individually tuned.

如圖16A中所說明,可見光源陣列1600中之每一可見光源1602包括由第一反射器1622及第二反射器1630形成之垂直腔中之多個微諧振器,其中多個微諧振器由垂直腔中之同一IR VCSEL 1620泵浦以產生不同色彩之可見光。第一反射器1622及第二反射器1630對於IR光可具有高反射率(例如,>80%、>85%、>90%、>95%、>99%或更高)。在一些具體實例中,第一反射器1622對於可見光可具有高反射率(例如,>80%、>85%、>90%、>95%、>99%或更高)。第二反射器1630對於可見光可為抗反射的。在微諧振器中產生之不同色彩之可見光藉由各別耦合結構垂直地耦合出微諧振器,且可經由第二反射器1630透射出垂直腔。As illustrated in FIG. 16A , each visible light source 1602 in an array of visible light sources 1600 includes a plurality of microresonators in a vertical cavity formed by a first reflector 1622 and a second reflector 1630, wherein the plurality of microresonators are formed by The same IR VCSEL 1620 in the vertical cavity is pumped to produce visible light of different colors. The first reflector 1622 and the second reflector 1630 may have high reflectivity (eg, >80%, >85%, >90%, >95%, >99% or higher) for IR light. In some embodiments, the first reflector 1622 can have a high reflectivity (eg, >80%, >85%, >90%, >95%, >99%, or higher) for visible light. The second reflector 1630 may be anti-reflective for visible light. Visible light of different colors generated in the microresonator is vertically coupled out of the microresonator by the respective coupling structures and can be transmitted out of the vertical cavity through the second reflector 1630 .

可見光源1602可包括形成於CMOS底板上之驅動電路1610,其中CMOS底板可直接地或間接地(例如,經由插入件或薄膜電晶體層)接合至包括製造於其上之VCSEL 1620的晶圓。多個微諧振器及第二反射器1630可在將包括VCSEL 1620之晶圓接合至CMOS底板之前或之後形成。VCSEL 1620可包括第一電極1640(例如,陽極或陰極)、第二電極1642,及形成於第一電極1640與第二電極1642之間的半導體結構(例如,磊晶層)。半導體結構可包括例如第一反射器1622、可發射IR光之主動區1624,及其他半導體層(未標記於圖16A中),諸如包覆層或可經p摻雜或n摻雜之載子注入層。第一反射器1622可包括例如HCG,或由具有不同折射率及厚度之多對介電層、半導體層或金屬材料層(經摻雜或未摻雜)(諸如GaAs及AlAs(或AlGaAs)層、氧化物層(例如,氧化矽及另一氧化物層)或其類似者)形成的DBR反射器。主動區1624可包括例如InGaAs量子井層及GaAs障壁層、InAlGaAs量子井層及AlGaAs障壁層,或其類似者。在一些具體實例中,VCSEL 1620可包括用於IR光之部分反射器1626,其中部分反射器1626可部分反射且部分透射在主動區1624中發射之IR光以與第一反射器1622形成VCSEL 1620之諧振腔。由部分反射器1626及第一反射器1622形成之諧振腔可幫助變窄及選擇由IR VCSEL 1620發射之IR光之輸出波長範圍且改良所發射IR光之增益及強度。在一些具體實例中,VCSEL 1620可包括偏振器1628。偏振器1628可用於控制由VCSEL 1620發射之IR光的偏振模式,且藉由例如光柵耦合器或奈米諧振器(例如,後設結構)改良IR光進入微諧振器之耦合效率,此可為偏振相依的。在一些具體實例中,可改為使用諸如波板、空間變異偏振器或空間變異波板之其他偏振組件來控制由VCSEL 1620發射之IR光的偏振狀態。Visible light source 1602 may include driver circuitry 1610 formed on a CMOS backplane that may be bonded directly or indirectly (eg, via an interposer or thin film transistor layer) to a wafer including VCSELs 1620 fabricated thereon. The plurality of microresonators and the second reflector 1630 can be formed before or after bonding the wafer including the VCSEL 1620 to the CMOS backplane. The VCSEL 1620 may include a first electrode 1640 (eg, an anode or a cathode), a second electrode 1642 , and a semiconductor structure (eg, an epitaxial layer) formed between the first electrode 1640 and the second electrode 1642 . The semiconductor structure can include, for example, a first reflector 1622, an active region 1624 that can emit IR light, and other semiconductor layers (not labeled in FIG. 16A ), such as cladding layers or carrier layers that can be p-doped or n-doped. Inject layer. The first reflector 1622 may comprise, for example, HCG, or be made of pairs of dielectric, semiconductor, or metallic material layers (doped or undoped) (such as GaAs and AlAs (or AlGaAs) layers having different refractive indices and thicknesses. , an oxide layer (eg, silicon oxide and another oxide layer) or the like). The active region 1624 may include, for example, an InGaAs quantum well layer and a GaAs barrier layer, an InAlGaAs quantum well layer and an AlGaAs barrier layer, or the like. In some embodiments, the VCSEL 1620 can include a partial reflector 1626 for the IR light, wherein the partial reflector 1626 can partially reflect and partially transmit the IR light emitted in the active region 1624 to form the VCSEL 1620 with the first reflector 1622 the resonant cavity. The resonant cavity formed by partial reflector 1626 and first reflector 1622 can help narrow and select the output wavelength range of the IR light emitted by IR VCSEL 1620 and improve the gain and intensity of the emitted IR light. In some embodiments, VCSEL 1620 may include polarizer 1628 . Polarizer 1628 can be used to control the polarization mode of the IR light emitted by VCSEL 1620 and improve the coupling efficiency of IR light into the microresonator by, for example, a grating coupler or nanoresonator (e.g., metastructure), which can be Polarization dependent. In some embodiments, other polarization components such as waveplates, spatially varying polarizers, or spatially varying waveplates may be used instead to control the polarization state of the IR light emitted by VCSEL 1620 .

在所說明實例中,每一可見光源1602可包括第一微諧振器1650、第二微諧振器1660及第三微諧振器1670,以用於在DFWM程序中使用由VCSEL 1620發射之IR光作為泵浦光產生不同色彩之可見光。第一微諧振器1650、第二微諧振器1660及第三微諧振器1670可具有不同各別設計,且因此可使用相同泵浦光產生不同色彩之可見光。不同各別設計可包括例如迴路形狀(例如,環、橢圓形、螺旋形、軌道等)、尺寸、材料(且因此折射率)及其類似者之不同組合。舉例而言,第三微諧振器1670之形狀、尺寸及材料可經選擇,使得可藉由DFWM使用由VCSEL 1620發射之IR光作為泵浦光在第三微諧振器1670中產生紅色光。耦合結構1672(例如,光柵或奈米諧振器)可經配置以將在第三微諧振器1670中產生之紅色光垂直地耦合出第三微諧振器1670。類似地,第二微諧振器1660之形狀、尺寸及材料可經選擇,使得可藉由DFWM使用由VCSEL 1620發射之IR光作為泵浦光在第二微諧振器1660中產生綠色光。耦合結構1662(例如,光柵或奈米諧振器)可經配置以將在第二微諧振器1660中產生之綠色光垂直地耦合出第二微諧振器1660。第一微諧振器1650之形狀、尺寸及材料可經選擇,使得可藉由DFWM使用由VCSEL 1620發射之IR光作為泵浦光在第一微諧振器1650中產生藍色光。耦合結構1652(例如,光柵或奈米諧振器)可經配置以將在第一微諧振器1650中產生之藍色光垂直地耦合出第一微諧振器1650。第一微諧振器1650、第二微諧振器1660及第三微諧振器1670可以任何合適的次序垂直地配置。在一些具體實例中,每一可見光源1602可包括經配置以產生呈現兩種或更多種色彩之可見光的兩個或更多個不同微諧振器。在一些具體實例中,每一可見光源1602可包括多個微諧振器,其中微諧振器中之至少兩者可經配置以產生相同色彩之可見光。In the illustrated example, each visible light source 1602 may include a first microresonator 1650, a second microresonator 1660, and a third microresonator 1670 for using the IR light emitted by the VCSEL 1620 as The pump light produces visible light of different colors. The first microresonator 1650, the second microresonator 1660, and the third microresonator 1670 can have different individual designs, and thus can generate visible light of different colors using the same pump light. Different individual designs may include, for example, different combinations of loop shapes (eg, loops, ellipses, spirals, orbits, etc.), dimensions, materials (and thus refractive indices), and the like. For example, the shape, size and material of the third microresonator 1670 can be selected such that red light can be generated in the third microresonator 1670 by DFWM using IR light emitted by the VCSEL 1620 as pump light. A coupling structure 1672 (eg, a grating or a nanoresonator) can be configured to vertically couple red light generated in the third microresonator 1670 out of the third microresonator 1670 . Similarly, the shape, size and material of the second microresonator 1660 can be selected such that green light can be generated in the second microresonator 1660 by DFWM using the IR light emitted by the VCSEL 1620 as pump light. A coupling structure 1662 (eg, a grating or a nanoresonator) may be configured to vertically couple green light generated in the second microresonator 1660 out of the second microresonator 1660 . The shape, size and material of the first microresonator 1650 can be selected such that blue light can be generated in the first microresonator 1650 by DFWM using the IR light emitted by the VCSEL 1620 as pump light. A coupling structure 1652 (eg, a grating or a nanoresonator) may be configured to vertically couple blue light generated in the first microresonator 1650 out of the first microresonator 1650 . The first microresonator 1650, the second microresonator 1660, and the third microresonator 1670 may be arranged vertically in any suitable order. In some embodiments, each visible light source 1602 can include two or more different microresonators configured to generate visible light in two or more colors. In some embodiments, each visible light source 1602 can include multiple microresonators, where at least two of the microresonators can be configured to generate the same color of visible light.

耦合出第一微諧振器1650、第二微諧振器1660及第三微諧振器1670之可見光可在極小損失或無損失之情況下經由第二反射器1630耦合出可見光源1602,此係由於第二反射器1630對於可見光可為抗反射的,如上文所描述。如同第一反射器1622,第二反射器1630可包括例如HCG,或由具有交替折射率之多個介電層、半導體層或金屬材料層形成的DBR結構。DBR結構中之介電層、半導體層或金屬材料層之厚度及折射率可經選擇,使得在不同材料之間的鄰近界面處反射之IR光可建設性地干擾以增大第二反射器1630對於IR光之總反射率,同時在不同材料之間的鄰近界面處反射之可見光可破壞性地干擾以減小第二反射器1630對於可見光之總反射率。因而,由VCSEL 1620發射且尚未耦合至微諧振器中之IR光可由第二反射器1630及/或第一反射器1622反射回至微諧振器,且可至少部分地耦合至微諧振器中以改良將IR泵浦光耦合至微諧振器中之效率及可見光源1602之效率。可見光源1602中之微諧振器、耦合結構及第二反射器1630可在將VCSEL 1620接合至驅動電路1610之前或之後形成。Visible light coupled out of first microresonator 1650, second microresonator 1660, and third microresonator 1670 can be coupled out of visible light source 1602 via second reflector 1630 with little or no loss due to the second Second reflector 1630 may be anti-reflective for visible light, as described above. Like the first reflector 1622, the second reflector 1630 may include, for example, HCG, or a DBR structure formed of multiple layers of dielectric, semiconductor, or metallic material with alternating refractive indices. The thickness and index of refraction of the dielectric, semiconductor, or metallic material layers in the DBR structure can be selected such that IR light reflected at adjacent interfaces between different materials can constructively interfere to enlarge the second reflector 1630 With respect to the total reflectivity of IR light, visible light reflected at adjacent interfaces between different materials at the same time can destructively interfere to reduce the total reflectivity of the second reflector 1630 for visible light. Thus, IR light emitted by VCSEL 1620 and not yet coupled into the microresonator may be reflected back to the microresonator by second reflector 1630 and/or first reflector 1622 and may be at least partially coupled into the microresonator to The efficiency of coupling the IR pump light into the microresonator and the efficiency of the visible light source 1602 is improved. The microresonators, coupling structures, and second reflector 1630 in visible light source 1602 can be formed before or after bonding VCSEL 1620 to driver circuit 1610 .

可見光源1602可包括用於調諧由對應微諧振器產生且耦合出該對應微諧振器的每一色彩之可見光之各別強度的額外電極。舉例而言,電極1690可用於調變耦合出第一微諧振器1650之藍色光之強度,電極1692可用於調變耦合出第二微諧振器1660之綠色光之強度,且電極1694可用於調變耦合出第三微諧振器1670之紅色光之強度。電極1690可用於調諧以下中之至少一者以調變自可見光源1602發射之藍色光之強度:第一微諧振器1650、用於將由VCSEL 1620發射之IR光耦合至第一微諧振器1650中的耦合結構,或用於耦合在第一微諧振器1650中產生之藍色光的耦合結構1652。舉例而言,電極1690可用於在電光材料上施加電壓或向熱光裝置供應電流信號以改變第一微諧振器1650或耦合結構之折射率,藉此改變第一微諧振器1650之諧振條件或第一微諧振器1650之耦合結構的耦合效率,且因此改變所發射藍色光之強度。類似地,電極1692可用於改變第二微諧振器1660之諧振條件或第二微諧振器1660之耦合結構的耦合效率,且因此改變所發射綠色光之強度。電極1694可用於改變第三微諧振器1670之諧振條件或第三微諧振器1670之耦合結構的耦合效率,且因此改變所發射紅色光之強度。以此方式,由可見光源1602發射之紅色光、綠色光及藍色光之強度可獨立地調諧至所需值以表示如圖16B中所展示之主動顯示面板之色彩像素單元,其中可見光源1602之間距可小於約50 μm、小於約30 μm、小於約20 μm或小於約10 μm。Visible light source 1602 may include additional electrodes for tuning the respective intensity of each color of visible light generated by and coupled out of a corresponding microresonator. For example, electrode 1690 can be used to modulate the intensity of blue light coupled out of first microresonator 1650, electrode 1692 can be used to modulate the intensity of green light coupled out of second microresonator 1660, and electrode 1694 can be used to modulate the intensity of blue light coupled out of first microresonator 1650. The intensity of the red light coupled out of the third microresonator 1670 is varied. Electrode 1690 may be used to tune at least one of the following to modulate the intensity of blue light emitted from visible light source 1602: first microresonator 1650, for coupling IR light emitted by VCSEL 1620 into first microresonator 1650 The coupling structure, or the coupling structure 1652 for coupling the blue light generated in the first microresonator 1650. For example, the electrodes 1690 can be used to apply a voltage across the electro-optic material or supply a current signal to a thermo-optic device to change the refractive index of the first microresonator 1650 or the coupling structure, thereby changing the resonant condition of the first microresonator 1650 or The coupling efficiency of the coupling structure of the first microresonator 1650, and thus changes the intensity of the emitted blue light. Similarly, electrode 1692 can be used to change the resonance conditions of second microresonator 1660 or the coupling efficiency of the coupling structure of second microresonator 1660, and thus change the intensity of emitted green light. The electrodes 1694 can be used to change the resonance conditions of the third microresonator 1670 or the coupling efficiency of the coupling structure of the third microresonator 1670, and thus change the intensity of the emitted red light. In this way, the intensities of red, green, and blue light emitted by visible light source 1602 can be independently tuned to desired values to represent color pixel units of an active display panel as shown in FIG. The pitch can be less than about 50 μm, less than about 30 μm, less than about 20 μm, or less than about 10 μm.

17A17B說明根據某些具體實例之可調諧以發射不同色彩之可見光的可見光源1700之實例。可見光源1700可為可見光源陣列中之可見光源的實例。圖17A展示可見光源1700之橫截面視圖且圖17B說明可見光源1700之俯視圖。可見光源1700包括在可調諧垂直腔中且由可調諧垂直腔中之可調諧紅外光VCSEL直接泵浦以產生不同色彩之可見光的微諧振器。將在微諧振器中產生之可見光垂直地耦合出垂直腔。相較於可見光源1502或1602,可見光源1700可包括可在不同時間產生不同色彩之光的單一微諧振器。 17A and 17B illustrate an example of a visible light source 1700 that is tuneable to emit different colors of visible light , according to certain embodiments. Visible light source 1700 may be an example of a visible light source in an array of visible light sources. FIG. 17A shows a cross-sectional view of visible light source 1700 and FIG. 17B illustrates a top view of visible light source 1700 . Visible light source 1700 includes microresonators in a tunable vertical cavity that are directly pumped by a tunable infrared VCSEL in the tunable vertical cavity to generate visible light of different colors. Visible light generated in the microresonator is coupled vertically out of the vertical cavity. Compared to visible light source 1502 or 1602, visible light source 1700 may include a single microresonator that can generate different colors of light at different times.

在所說明實例中,可見光源1700包括由第一反射器1722及第二反射器1750形成之可調諧垂直腔中之微諧振器1740,其中第二反射器1750可形成於微機電系統(MEMS)裝置1770上且因此可由MEMS裝置1770移動。在一些具體實例中,其他微致動器或奈米致動器(諸如微馬達、壓電致動器、鐵電致動器、磁性致動器、超音波致動器或其類似者)可用於移動第二反射器1750。第一反射器1722及第二反射器1750對於IR光可具有高反射率(例如,>80%、>85%、>90%、>95%、>99%或更高)。在一些具體實例中,第一反射器1722對於可見光可具有高反射率(例如,>80%、>85%、>90%、>95%、>99%或更高)。第二反射器1750對於可見光可為抗反射的。微諧振器1740可由垂直腔中之IR發光VCSEL 1720泵浦以產生可見光。在微諧振器1740中產生之可見光可藉由耦合結構1742垂直地耦合出微諧振器1740,且可經由第二反射器1750透射出垂直腔。In the illustrated example, visible light source 1700 includes a microresonator 1740 in a tunable vertical cavity formed by a first reflector 1722 and a second reflector 1750, which may be formed in a microelectromechanical system (MEMS) on and thus movable by the MEMS device 1770 . In some embodiments, other microactuators or nanoactuators (such as micromotors, piezoelectric actuators, ferroelectric actuators, magnetic actuators, ultrasonic actuators, or the like) can be used to move the second reflector 1750 . The first reflector 1722 and the second reflector 1750 may have high reflectivity (eg, >80%, >85%, >90%, >95%, >99% or higher) for IR light. In some embodiments, the first reflector 1722 can have a high reflectivity (eg, >80%, >85%, >90%, >95%, >99%, or higher) for visible light. The second reflector 1750 may be anti-reflective for visible light. The microresonator 1740 can be pumped by the IR emitting VCSEL 1720 in the vertical cavity to generate visible light. Visible light generated in microresonator 1740 can be vertically coupled out of microresonator 1740 by coupling structure 1742 and can be transmitted out of the vertical cavity through second reflector 1750 .

可見光源1700可包括形成於CMOS底板上之驅動電路1710,其中CMOS底板可直接地或間接地(例如,經由插入件或薄膜電晶體層)接合至包括製造於其上之VCSEL 1720的晶圓。微諧振器1740及第二反射器1750可在將包括VCSEL 1720之晶圓接合至CMOS底板之前或之後形成。VCSEL 1720可包括第一電極1730(例如,陽極或陰極)、第二電極1732,及形成於第一電極1730與第二電極1732之間的半導體結構(例如,磊晶層)。半導體結構可包括例如第一反射器1722、可發射IR光之主動區1724,及其他半導體層(未標記於圖17A中),諸如包覆層或可經p摻雜或n摻雜之載子注入層。第一反射器1722可包括例如HCG,或由具有不同折射率及厚度之多對介電層、半導體層或金屬材料層(經摻雜或未摻雜)(諸如GaAs及AlAs(或AlGaAs)層、氧化物層(例如,氧化矽及另一氧化物層)或其類似者)形成的DBR反射器。主動區1724可包括例如InGaAs量子井層及GaAs障壁層、InAlGaAs量子井層及AlGaAs障壁層,或其類似者。VCSEL 1720可視情況包括用於IR光之部分反射器1726,其中部分反射器1726可部分反射且部分透射在主動區1724中發射之IR光以與第一反射器1722形成VCSEL 1720之諧振腔。由部分反射器1726及第一反射器1722形成之諧振腔可幫助選擇由VCSEL 1720發射之IR光之輸出波長範圍且改良所發射IR光之增益及強度。在一些具體實例中,VCSEL 1720可包括偏振器1728。偏振器1728可用於控制由VCSEL 1720發射之IR光的偏振狀態,且藉由例如光柵耦合器或奈米諧振器(例如,後設結構)改良IR光進入微諧振器之耦合效率,此可為偏振相依的。在一些具體實例中,可改為使用諸如波板、空間變異偏振器或空間變異波板之其他偏振組件來控制由VCSEL 1720發射之IR光的偏振狀態。Visible light source 1700 may include driver circuitry 1710 formed on a CMOS backplane that may be bonded directly or indirectly (eg, via an interposer or TFT layer) to a wafer including VCSELs 1720 fabricated thereon. Microresonator 1740 and second reflector 1750 may be formed before or after bonding the wafer including VCSEL 1720 to the CMOS backplane. The VCSEL 1720 may include a first electrode 1730 (eg, an anode or a cathode), a second electrode 1732 , and a semiconductor structure (eg, an epitaxial layer) formed between the first electrode 1730 and the second electrode 1732 . The semiconductor structure can include, for example, a first reflector 1722, an active region 1724 that can emit IR light, and other semiconductor layers (not labeled in FIG. 17A ), such as cladding layers or carrier layers that can be p-doped or n-doped. Inject layer. The first reflector 1722 may include, for example, HCG, or be made of pairs of dielectric, semiconductor, or metallic material layers (doped or undoped) (such as GaAs and AlAs (or AlGaAs) layers having different refractive indices and thicknesses. , an oxide layer (eg, silicon oxide and another oxide layer) or the like). The active region 1724 may include, for example, an InGaAs quantum well layer and a GaAs barrier layer, an InAlGaAs quantum well layer and an AlGaAs barrier layer, or the like. VCSEL 1720 may optionally include a partial reflector 1726 for IR light, wherein partial reflector 1726 may partially reflect and partially transmit IR light emitted in active region 1724 to form a resonant cavity of VCSEL 1720 with first reflector 1722 . The resonant cavity formed by partial reflector 1726 and first reflector 1722 can help select the output wavelength range of the IR light emitted by VCSEL 1720 and improve the gain and intensity of the emitted IR light. In some embodiments, VCSEL 1720 may include polarizer 1728 . Polarizer 1728 can be used to control the polarization state of the IR light emitted by VCSEL 1720 and improve the coupling efficiency of IR light into the microresonator by, for example, a grating coupler or nanoresonator (e.g., metastructure), which can be Polarization dependent. In some embodiments, other polarization components such as waveplates, spatially varying polarizers, or spatially varying waveplates may be used instead to control the polarization state of the IR light emitted by VCSEL 1720 .

如同第一反射器1722,第二反射器1750可包括例如HCG,或由具有交替折射率之多個介電層、半導體層或金屬材料層形成的DBR結構。DBR結構中之介電層、半導體層或金屬材料層之厚度及折射率可經選擇,使得在不同材料之間的鄰近界面處反射之IR光可建設性地干擾以增大第二反射器1750對於IR光之總反射率,同時在不同材料之間的鄰近界面處反射之可見光可破壞性地干擾以減小第二反射器1750對於可見光之總反射率。因而,由VCSEL 1720發射且尚未耦合至微諧振器1740中之IR光可由第二反射器1750及/或第一反射器1722反射回至微諧振器1740,使得由VCSEL 1720發射之IR光可在由第一反射器1722及第二反射器1750形成之垂直腔內振盪,且可以較高耦合效率耦合至微諧振器1740中以改良可見光源1700之效率。Like the first reflector 1722, the second reflector 1750 may comprise, for example, HCG, or a DBR structure formed of multiple layers of dielectric, semiconductor, or metallic material with alternating refractive indices. The thickness and index of refraction of the dielectric, semiconductor, or metallic material layers in the DBR structure can be selected such that IR light reflected at adjacent interfaces between different materials can constructively interfere to enlarge the second reflector 1750 With respect to the total reflectivity of IR light, visible light reflected at adjacent interfaces between different materials at the same time can destructively interfere to reduce the total reflectivity of the second reflector 1750 for visible light. Thus, IR light emitted by VCSEL 1720 and not yet coupled into microresonator 1740 may be reflected back to microresonator 1740 by second reflector 1750 and/or first reflector 1722 such that IR light emitted by VCSEL 1720 may be reflected at The vertical intracavity oscillation formed by the first reflector 1722 and the second reflector 1750 can be coupled into the microresonator 1740 with higher coupling efficiency to improve the efficiency of the visible light source 1700 .

IR光在垂直腔中諧振之波長可由垂直腔之光學路徑長度判定。因此,當第二反射器1750由MEMS裝置1770移動且因此垂直腔之光學路徑長度改變時,可改變在垂直腔中諧振之IR光的波長。IR光可直接或經由耦合結構(例如,光柵或奈米諧振器)耦合至微諧振器1740中。微諧振器1740之形狀、尺寸及材料可經選擇,使得當藉由使用MEMS裝置1770調諧垂直腔之光學路徑長度來改變泵浦光之波長時,可經由OPO(例如,DFWM)程序在微諧振器1740中產生不同色彩之可見光。耦合結構1742(例如,光柵或奈米諧振器)可經配置以將在微諧振器1740中產生之可見光垂直地耦合出微諧振器1740。耦合出微諧振器1740之可見光可在極小損失或無損失之情況下經由第二反射器1750耦合出可見光源1700,此係由於第二反射器1750對於可見光可為抗反射的,如上文所描述。The wavelength at which IR light resonates in the vertical cavity can be determined from the optical path length of the vertical cavity. Thus, when the second reflector 1750 is moved by the MEMS device 1770 and thus the optical path length of the vertical cavity changes, the wavelength of the IR light resonating in the vertical cavity can be changed. IR light can be coupled into microresonator 1740 directly or via a coupling structure (eg, a grating or nanoresonator). The shape, size, and material of the microresonator 1740 can be selected such that when the wavelength of the pump light is changed by tuning the optical path length of the vertical cavity using the MEMS device 1770, the microresonator can be resonated via an OPO (eg, DFWM) procedure. Visible light of different colors is generated in the device 1740 . Coupling structure 1742 (eg, a grating or nanoresonator) may be configured to vertically couple visible light generated in microresonator 1740 out of microresonator 1740 . Visible light coupled out of microresonator 1740 can be coupled out of visible light source 1700 via second reflector 1750 with little or no loss since second reflector 1750 can be anti-reflective for visible light, as described above .

17C17D說明藉由調諧可見光源1700而產生不同色彩之可見光的實例。圖7C展示由VCSEL 1720發射且在由第一反射器1722及第二反射器1750形成之垂直腔內振盪的泵浦光可為可藉由使用MEMS裝置1770或另一致動器調諧第二反射器1750之方位而連續調諧的,以調諧光學路徑長度且因此調諧垂直腔之諧振波長。在所說明實例中,MEMS裝置1770可由移動第二反射器1750之控制信號驅動,使得由VCSEL 1720發射且在垂直腔內振盪之IR光之波長可在時間上線性地變化,如在圖7C中藉由曲線1780所展示。當IR泵浦光之波長經調諧至第一值時,可符合微諧振器1740之諧振條件且可發生OPO程序以在第一可見波長(例如,紅色光)下產生信號光1790。當IR泵浦光之波長經調諧至第二值時,可再次符合微諧振器1740之諧振條件(針對不同模數m)且可發生OPO程序以在第二可見波長(例如,綠色光)下產生信號光1792。當IR泵浦光之波長經調諧至第三值時,可再次符合微諧振器1740之諧振條件(針對不同模數m)且可發生OPO程序以在第三可見波長(例如,藍色光)下產生信號光1794。以此方式,可由可見光源1700產生呈現許多不同色彩之可見光。 17C and 17D illustrate an example of generating different colors of visible light by tuning the visible light source 1700 . 7C shows that pump light emitted by VCSEL 1720 and oscillating within the vertical cavity formed by first reflector 1722 and second reflector 1750 can be tuned by using MEMS device 1770 or another actuator. The orientation of the 1750 is continuously tuned to tune the optical path length and thus the resonant wavelength of the vertical cavity. In the illustrated example, the MEMS device 1770 can be driven by a control signal that moves the second reflector 1750 such that the wavelength of the IR light emitted by the VCSEL 1720 and oscillating within the vertical cavity can be varied linearly in time, as in FIG. 7C Shown by curve 1780 . When the wavelength of the IR pump light is tuned to a first value, the resonance conditions of the microresonator 1740 can be met and an OPO process can occur to generate signal light 1790 at a first visible wavelength (eg, red light). When the wavelength of the IR pump light is tuned to a second value, the resonance conditions of the microresonator 1740 (for a different mode m) can be met again and the OPO process can occur to operate at a second visible wavelength (e.g., green light) Signal light 1792 is generated. When the wavelength of the IR pump light is tuned to a third value, the resonance conditions of the microresonator 1740 (for a different mode m) can be met again and the OPO process can occur to operate at a third visible wavelength (e.g., blue light) Signal light 1794 is generated. In this way, visible light in many different colors can be generated by visible light source 1700 .

控制信號可為週期性信號或可為非週期性的。在一些具體實例中,控制信號可具有藉由待顯示之影像之像素資料判定的更複雜波形。舉例而言,控制信號可具有對應於不同色彩之多個不同步進位準,其中待顯示之影像圖框中之色彩像素的每一步進位準之持續時間可基於影像圖框之色彩像素之對應色彩(例如,R、G、B值)之所要強度來判定,使得在影像圖框之不同時段期間發射之呈現不同色彩的可見光之時間組合可藉由觀看者之眼睛感知,此係由於可見光具有在Rec. 2020色域或更大色域中之單一色彩。以此方式,每一可見光源1700可個別地受控而以每一影像圖框中之所要強度發射所要色彩之光。因此,可見光源陣列1700可用作主動顯示面板。The control signal may be a periodic signal or may be aperiodic. In some embodiments, the control signal may have a more complex waveform determined by the pixel data of the image to be displayed. For example, the control signal can have a plurality of different synchronization levels corresponding to different colors, wherein the duration of each step level of the color pixels in the image frame to be displayed can be based on the corresponding color pixels of the image frame The desired intensity of the color (e.g., R, G, B values) is determined so that the temporal combination of visible light emitted during different periods of the image frame exhibiting different colors can be perceived by the viewer's eyes because visible light has A single color in the Rec. 2020 color gamut or larger. In this way, each visible light source 1700 can be individually controlled to emit light of a desired color at a desired intensity in each image frame. Therefore, the visible light source array 1700 can be used as an active display panel.

18A18B說明根據某些具體實例之可見光源陣列1800之實例,其中可見光源陣列1800中之每一可見光源1802經配置以發射呈現一或多種色彩之可見光且呈現每一色彩之可見光之各別強度可個別地控制。如圖18A中所說明,可見光源1802可包括由第一反射器1822及第二反射器1830形成之可調諧垂直腔中之一或多個微諧振器,其中第二反射器1830可形成於MEMS裝置1832上且因此可由MEMS裝置1832移動。第一反射器1822及第二反射器1830對於IR光可具有高反射率(例如,>80%、>85%、>90%、>95%、>99%或更高)。在一些具體實例中,第一反射器1822對於可見光可具有高反射率(例如,>80%、>85%、>90%、>95%、>99%或更高)。第二反射器1830對於可見光可為抗反射的。一或多個微諧振器可由可調諧垂直腔中之紅外光VCSEL 1820直接泵浦以產生不同色彩之可見光。可將在一或多個微諧振器中產生之可見光垂直地耦合出垂直腔。 18A and 18B illustrate an example of an array of visible light sources 1800 in which each visible light source 1802 in the array of visible light sources 1800 is configured to emit visible light in one or more colors and to represent each color of visible light in each color, according to certain embodiments. The intensity can be controlled individually. As illustrated in FIG. 18A , the visible light source 1802 can include one or more microresonators in a tunable vertical cavity formed by a first reflector 1822 and a second reflector 1830, which can be formed in a MEMS on and thus movable by the MEMS device 1832 . The first reflector 1822 and the second reflector 1830 may have high reflectivity (eg, >80%, >85%, >90%, >95%, >99% or higher) for IR light. In some embodiments, the first reflector 1822 can have a high reflectivity (eg, >80%, >85%, >90%, >95%, >99%, or higher) for visible light. The second reflector 1830 may be anti-reflective for visible light. One or more microresonators can be directly pumped by the infrared light VCSEL 1820 in the tunable vertical cavity to generate visible light of different colors. Visible light generated in one or more microresonators can be coupled vertically out of the vertical cavity.

可見光源1802可包括形成於CMOS底板上之驅動電路1810,其中CMOS底板可直接地或間接地(例如,經由插入件或薄膜電晶體層)接合至包括製造於其上之VCSEL 1820的晶圓。多個微諧振器及第二反射器1830可在將包括VCSEL 1820之晶圓接合至CMOS底板之前或之後形成。VCSEL 1820可包括第一電極1840(例如,陽極或陰極)、第二電極1842,及形成於第一電極1840與第二電極1842之間的半導體結構(例如,磊晶層)。半導體結構可包括例如第一反射器1822、可發射IR光之主動區1824,及其他半導體層(未標記於圖18A中),諸如包覆層或可經p摻雜或n摻雜之載子注入層。第一反射器1822可包括例如HCG,或由具有不同折射率及厚度之多對介電層、半導體層或金屬材料層(經摻雜或未摻雜)(諸如GaAs及AlAs(或AlGaAs)層、氧化物層(例如,氧化矽及另一氧化物層)或其類似者)形成的DBR反射器。主動區1824可包括例如InGaAs量子井層及GaAs障壁層、InAlGaAs量子井層及AlGaAs障壁層,或其類似者。在一些具體實例中,VCSEL 1820可包括用於IR光之部分反射器1826,其中部分反射器1826可部分反射且部分透射在主動區1824中發射之IR光以與第一反射器1822形成VCSEL 1820之諧振腔。由部分反射器1826及第一反射器1822形成之諧振腔可幫助變窄及選擇由IR VCSEL 1820發射之IR光之輸出波長範圍且改良所發射IR光之增益及強度。在一些具體實例中,VCSEL 1820可包括偏振器1828。偏振器1828可用於控制由VCSEL 1820發射之IR光的偏振模式,且藉由例如光柵耦合器或奈米諧振器(例如,後設結構)改良IR光進入微諧振器之耦合效率,此可為偏振相依的。在一些具體實例中,可改為使用諸如波板、空間變異偏振器或空間變異波板之其他偏振組件來控制由VCSEL 1820發射之IR光的偏振狀態。Visible light source 1802 may include driver circuitry 1810 formed on a CMOS backplane that may be bonded directly or indirectly (eg, via an interposer or thin film transistor layer) to a wafer including VCSELs 1820 fabricated thereon. The plurality of microresonators and the second reflector 1830 may be formed before or after bonding the wafer including the VCSEL 1820 to the CMOS backplane. The VCSEL 1820 may include a first electrode 1840 (eg, an anode or a cathode), a second electrode 1842 , and a semiconductor structure (eg, an epitaxial layer) formed between the first electrode 1840 and the second electrode 1842 . The semiconductor structure can include, for example, a first reflector 1822, an active region 1824 that can emit IR light, and other semiconductor layers (not labeled in FIG. 18A ), such as cladding layers or carrier layers that can be p-doped or n-doped. Inject layer. The first reflector 1822 may include, for example, HCG, or be made of pairs of dielectric, semiconductor, or metallic material layers (doped or undoped) (such as GaAs and AlAs (or AlGaAs) layers having different refractive indices and thicknesses. , an oxide layer (eg, silicon oxide and another oxide layer) or the like). The active region 1824 may include, for example, an InGaAs quantum well layer and a GaAs barrier layer, an InAlGaAs quantum well layer and an AlGaAs barrier layer, or the like. In some embodiments, the VCSEL 1820 can include a partial reflector 1826 for the IR light, wherein the partial reflector 1826 can partially reflect and partially transmit the IR light emitted in the active region 1824 to form the VCSEL 1820 with the first reflector 1822 the resonant cavity. The resonant cavity formed by partial reflector 1826 and first reflector 1822 can help narrow and select the output wavelength range of the IR light emitted by IR VCSEL 1820 and improve the gain and intensity of the emitted IR light. In some embodiments, VCSEL 1820 may include polarizer 1828 . Polarizer 1828 can be used to control the polarization mode of the IR light emitted by VCSEL 1820 and improve the coupling efficiency of IR light into the microresonator by, for example, a grating coupler or nanoresonator (e.g., metastructure), which can be Polarization dependent. In some embodiments, other polarization components such as waveplates, spatially varying polarizers, or spatially varying waveplates may be used instead to control the polarization state of the IR light emitted by VCSEL 1820 .

在所說明實例中,每一可見光源1802可包括第一微諧振器1850、第二微諧振器1860及第三微諧振器1870,以用於在DFWM程序中使用由VCSEL 1820發射之IR光作為泵浦光產生不同色彩之可見光。第一微諧振器1850、第二微諧振器1860及第三微諧振器1870可具有不同各別設計,且因此可使用相同泵浦光產生不同色彩之可見光。不同各別設計可包括例如迴路形狀(例如,環、橢圓形、螺旋形、軌道等)、尺寸、材料(且因此折射率)及其類似者之不同組合。舉例而言,第三微諧振器1870之形狀、尺寸及材料可經選擇,使得可藉由DFWM使用由VCSEL 1820發射之IR光作為泵浦光在第三微諧振器1870中產生紅色光。耦合結構1872(例如,光柵或奈米諧振器)可經配置以將在第三微諧振器1870中產生之紅色光垂直地耦合出第三微諧振器1870。類似地,第二微諧振器1860之形狀、尺寸及材料可經選擇,使得可藉由DFWM使用由VCSEL 1820發射之IR光作為泵浦光在第二微諧振器1860中產生綠色光。耦合結構1862(例如,光柵或奈米諧振器)可經配置以將在第二微諧振器1860中產生之綠色光垂直地耦合出第二微諧振器1860。第一微諧振器1850之形狀、尺寸及材料可經選擇,使得可藉由DFWM使用由VCSEL 1820發射之IR光作為泵浦光在第一微諧振器1850中產生藍色光。耦合結構1852(例如,光柵或奈米諧振器)可經配置以將在第一微諧振器1850中產生之藍色光垂直地耦合出第一微諧振器1850。第一微諧振器1850、第二微諧振器1860及第三微諧振器1870可以任何合適的次序垂直地配置。在一些具體實例中,每一可見光源1802可包括經配置以產生呈現兩種或更多種色彩之可見光的兩個或更多個不同微諧振器。在一些具體實例中,每一可見光源1802可包括多個微諧振器,其中多個微諧振器中之至少兩個微諧振器可經配置以產生相同色彩之可見光。In the illustrated example, each visible light source 1802 may include a first microresonator 1850, a second microresonator 1860, and a third microresonator 1870 for using the IR light emitted by the VCSEL 1820 as The pump light produces visible light of different colors. The first microresonator 1850, the second microresonator 1860, and the third microresonator 1870 can have different individual designs, and thus can generate visible light of different colors using the same pump light. Different individual designs may include, for example, different combinations of loop shapes (eg, loops, ellipses, spirals, orbits, etc.), dimensions, materials (and thus refractive indices), and the like. For example, the shape, size and material of the third microresonator 1870 can be selected such that red light can be generated in the third microresonator 1870 by DFWM using IR light emitted by the VCSEL 1820 as pump light. A coupling structure 1872 (eg, a grating or a nanoresonator) may be configured to vertically couple red light generated in the third microresonator 1870 out of the third microresonator 1870 . Similarly, the shape, size and material of the second microresonator 1860 can be selected such that green light can be generated in the second microresonator 1860 by DFWM using the IR light emitted by the VCSEL 1820 as pump light. A coupling structure 1862 (eg, a grating or a nanoresonator) can be configured to vertically couple the green light generated in the second microresonator 1860 out of the second microresonator 1860 . The shape, size and material of the first microresonator 1850 can be selected such that blue light can be generated in the first microresonator 1850 by DFWM using the IR light emitted by the VCSEL 1820 as pump light. A coupling structure 1852 (eg, a grating or a nanoresonator) can be configured to vertically couple blue light generated in the first microresonator 1850 out of the first microresonator 1850 . The first microresonator 1850, the second microresonator 1860, and the third microresonator 1870 may be arranged vertically in any suitable order. In some embodiments, each visible light source 1802 can include two or more different microresonators configured to generate visible light in two or more colors. In some embodiments, each visible light source 1802 can include a plurality of microresonators, wherein at least two microresonators in the plurality of microresonators can be configured to generate visible light of the same color.

耦合出第一微諧振器1850、第二微諧振器1860及第三微諧振器1870之可見光可在極小損失或無損失之情況下經由第二反射器1830耦合出可見光源1802,此係由於第二反射器1830對於可見光可為抗反射的,如上文所描述。如同第一反射器1822,第二反射器1830可包括例如HCG,或由具有交替折射率之多個介電層、半導體層或金屬材料層形成的DBR結構。DBR結構中之介電層、半導體層或金屬材料層之厚度及折射率可經選擇,使得在不同材料之間的鄰近界面處反射之IR光可建設性地干擾以增大第二反射器1830對於IR光之總反射率,同時在不同材料之間的鄰近界面處反射之可見光可破壞性地干擾以減小第二反射器1830對於可見光之總反射率。因而,由VCSEL 1820發射且尚未耦合至微諧振器中之IR光可由第二反射器1830及/或第一反射器1822反射回至微諧振器,且可至少部分地耦合至微諧振器中以改良將IR泵浦光耦合至微諧振器中之效率及可見光源1802之效率。可見光源1802中之微諧振器、耦合結構及第二反射器1830可在將VCSEL 1820接合至驅動電路1810之前或之後形成。Visible light coupled out of first microresonator 1850, second microresonator 1860, and third microresonator 1870 can be coupled out of visible light source 1802 via second reflector 1830 with little or no loss due to the second Second reflector 1830 may be anti-reflective for visible light, as described above. Like the first reflector 1822, the second reflector 1830 may comprise, for example, HCG, or a DBR structure formed of multiple layers of dielectric, semiconductor, or metallic material with alternating refractive indices. The thickness and index of refraction of the dielectric, semiconductor, or metallic material layers in the DBR structure can be selected such that IR light reflected at adjacent interfaces between different materials can constructively interfere to enlarge the second reflector 1830 With respect to the total reflectivity of IR light, visible light reflected at adjacent interfaces between different materials at the same time can destructively interfere to reduce the total reflectivity of the second reflector 1830 for visible light. Thus, IR light emitted by VCSEL 1820 and not yet coupled into the microresonator may be reflected back to the microresonator by second reflector 1830 and/or first reflector 1822 and may be at least partially coupled into the microresonator to The efficiency of coupling the IR pump light into the microresonator and the efficiency of the visible light source 1802 is improved. The microresonators, coupling structures, and second reflector 1830 in the visible light source 1802 can be formed before or after bonding the VCSEL 1820 to the driver circuit 1810 .

如圖18A中所說明,第二反射器1830可形成於MEMS裝置1832上且因此可為可由MEMS裝置1832移動的。在一些具體實例中,其他微致動器或奈米致動器(諸如微馬達、壓電致動器、鐵電致動器、磁性致動器、超音波致動器或其類似者)可用於移動第二反射器1830。IR光在垂直腔中諧振之波長可由垂直腔之光學路徑長度判定。因此,當第二反射器1830由MEMS裝置1832移動且因此垂直腔之光學路徑長度改變時,可改變在垂直腔中諧振之IR光的波長。當藉由使用MEMS裝置1832調諧垂直腔之光學路徑長度來改變泵浦光之波長時,可亦改變經由OPO(例如,DFWM)程序在微諧振器1850、1860及1870中產生之不同色彩之可見光的波長。As illustrated in FIG. 18A , the second reflector 1830 may be formed on the MEMS device 1832 and thus may be movable by the MEMS device 1832 . In some embodiments, other microactuators or nanoactuators (such as micromotors, piezoelectric actuators, ferroelectric actuators, magnetic actuators, ultrasonic actuators, or the like) can be used to move the second reflector 1830 . The wavelength at which IR light resonates in the vertical cavity can be determined from the optical path length of the vertical cavity. Thus, when the second reflector 1830 is moved by the MEMS device 1832 and thus the optical path length of the vertical cavity changes, the wavelength of the IR light resonating in the vertical cavity can be changed. When the wavelength of the pump light is changed by tuning the optical path length of the vertical cavity using the MEMS device 1832, the different colors of visible light generated in the microresonators 1850, 1860, and 1870 via the OPO (eg, DFWM) process can also be changed wavelength.

在所說明實例中,可見光源1802可包括用於調諧由對應微諧振器產生且耦合出該對應微諧振器的每一色彩之可見光之各別強度的額外電極。舉例而言,電極1890可用於調變耦合出第一微諧振器1850之藍色光之強度,電極1892可用於調變耦合出第二微諧振器1860之綠色光之強度,且電極1894可用於調變耦合出第三微諧振器1870之紅色光之強度。電極1890可用於調諧以下中之至少一者以調變自可見光源1802發射之藍色光之強度:第一微諧振器1850、用於將由VCSEL 1820發射之IR光耦合至第一微諧振器1850中的耦合結構,或用於耦合在第一微諧振器1850中產生之藍色光的耦合結構1852。舉例而言,電極1890可用於在電光材料上施加電壓或向熱光裝置供應電流信號以改變第一微諧振器1850或耦合結構之折射率,藉此改變第一微諧振器1850之諧振條件或第一微諧振器1850之耦合結構的耦合效率,且因此改變所發射藍色光之強度。類似地,電極1892可用於改變第二微諧振器1860之諧振條件或第二微諧振器1860之耦合結構的耦合效率,且因此改變所發射綠色光之強度。電極1894可用於改變第三微諧振器1870之諧振條件或第三微諧振器1870之耦合結構的耦合效率,且因此改變所發射紅色光之強度。以此方式,由可見光源1802發射之紅色光、綠色光及藍色光之強度可獨立地調諧至所需值以表示如圖18B中所展示之主動顯示面板之色彩像素單元,其中可見光源1802之間距可小於約50 μm、小於約30 μm、小於約20 μm或小於約10 μm。In the illustrated example, visible light source 1802 may include additional electrodes for tuning the respective intensities of each color of visible light generated by and coupled out of a corresponding microresonator. For example, electrode 1890 can be used to modulate the intensity of blue light coupled out of first microresonator 1850, electrode 1892 can be used to modulate the intensity of green light coupled out of second microresonator 1860, and electrode 1894 can be used to modulate the intensity of blue light coupled out of first microresonator 1850. The intensity of the red light coupled out of the third microresonator 1870 was varied. Electrode 1890 may be used to tune at least one of the following to modulate the intensity of blue light emitted from visible light source 1802: first microresonator 1850, for coupling IR light emitted by VCSEL 1820 into first microresonator 1850 coupling structure, or a coupling structure 1852 for coupling the blue light generated in the first microresonator 1850. For example, the electrodes 1890 can be used to apply a voltage across the electro-optic material or supply a current signal to a thermo-optic device to change the refractive index of the first microresonator 1850 or the coupling structure, thereby changing the resonant condition of the first microresonator 1850 or The coupling efficiency of the coupling structure of the first microresonator 1850, and thus changes the intensity of the emitted blue light. Similarly, electrode 1892 can be used to change the resonance conditions of second microresonator 1860 or the coupling efficiency of the coupling structure of second microresonator 1860, and thus change the intensity of emitted green light. The electrodes 1894 can be used to change the resonance conditions of the third microresonator 1870 or the coupling efficiency of the coupling structure of the third microresonator 1870, and thus change the intensity of the emitted red light. In this way, the intensities of red, green, and blue light emitted by visible light source 1802 can be independently tuned to desired values to represent color pixel units of an active display panel as shown in FIG. The pitch can be less than about 50 μm, less than about 30 μm, less than about 20 μm, or less than about 10 μm.

描述於圖15A至17B中之可見光源可使用垂直腔中之一個VCSEL以產生多種色彩之光,諸如三原色及組成三原色之組合的其他色彩。由可見光源1502及1602中之空間重疊微諧振器產生之不同色彩之空間多工(重疊)可見光或在不同時段期間由可見光源1700中之單一微諧振器產生之不同色彩之光的時間組合可由觀看者之眼睛感知為色域中之單一色彩。因此,包括描述於圖15A至17B中之可見光源的可見光源陣列可具有比描述於圖14A至14B中之可見光源更小的像素大小及更小的像素間距,其中色彩像素可藉由不同原色之三個可見光源之空間組合達成。The visible light sources described in Figures 15A to 17B can use one VCSEL in a vertical cavity to generate light of multiple colors, such as the three primary colors and other colors that make up combinations of the three primary colors. The temporal combination of different colors of spatially multiplexed (overlapped) visible light produced by spatially overlapping microresonators in visible light sources 1502 and 1602 or different colors of light produced by a single microresonator in visible light source 1700 during different time periods can be determined by The viewer's eyes perceive a single color in the color gamut. Thus, an array of visible light sources including the visible light sources described in FIGS. 15A-17B can have smaller pixel sizes and smaller pixel pitches than the visible light sources described in FIGS. The spatial combination of three visible light sources is achieved.

本文中所揭示之具體實例可用於實施人工實境系統之組件,或可結合人工實境系統實施。人工實境為在呈現給使用者之前已以某一方式調整的實境形式,其可包括例如虛擬實境、擴增實境、混合實境、混雜實境或其某一組合及/或衍生物。人工實境內容可包括完全產生之內容或與所俘獲(例如,真實世界)內容組合之所產生內容。人工實境內容可包括視訊、音訊、觸覺回饋或其某一組合,且其中之任一者可在單一通道中或在多個通道中呈現(諸如對觀看者產生三維效應之立體聲視訊)。另外,在一些具體實例中,人工實境亦可與用於例如在人工實境中產生內容及/或以其它方式用於人工實境中(例如,在人工實境中進行活動)之應用程式、產品、配件、服務或其某一組合相關聯。提供人工實境內容之人工實境系統可實施於各種平台上,包括連接至主機電腦系統之HMD、獨立式HMD、行動裝置或計算系統或能夠將人工實境內容提供給一或多個觀看者之任何其他硬體平台。Embodiments disclosed herein may be used to implement components of an artificial reality system, or may be implemented in conjunction with an artificial reality system. Artificial reality is a form of reality that has been modified in some way before being presented to the user, which may include, for example, virtual reality, augmented reality, mixed reality, hybrid reality, or some combination and/or derivative thereof things. Artificial reality content may include fully generated content or generated content combined with captured (eg, real world) content. Artificial reality content may include video, audio, haptic feedback, or some combination thereof, and any of these may be presented in a single channel or in multiple channels (such as stereoscopic video that creates a three-dimensional effect on the viewer). Additionally, in some embodiments, AR can also be used with applications used, for example, to generate content in AR and/or otherwise used in AR (e.g., to perform activities in AR) , products, accessories, services or a combination thereof. AR systems that provide AR content can be implemented on a variety of platforms including HMDs connected to a host computer system, standalone HMDs, mobile devices or computing systems or capable of delivering AR content to one or more viewers any other hardware platform.

19為用於實施本文中所揭示之實例中之一些的實例近眼顯示器(例如,HMD裝置)之實例電子系統1900的簡化方塊圖。電子系統1900可用作HMD裝置或上文所描述之其他近眼顯示器之電子系統。在此實例中,電子系統1900可包括一或多個處理器1910及記憶體1920。處理器1910可經配置以執行用於在數個組件處進行操作之指令,且可為例如適合於在攜帶型電子裝置內實施之通用處理器或微處理器。處理器1910可與電子系統1900內之複數個組件以通信方式耦合。為實現此通信耦合,處理器1910可跨匯流排1940與其他所說明組件通信。匯流排1940可為適於在電子系統1900內傳送資料之任何子系統。匯流排1940可包括複數個電腦匯流排及額外電路系統以傳送資料。 19 is a simplified block diagram of an example electronic system 1900 for implementing an example near-eye display (eg, an HMD device) some of the examples disclosed herein . Electronic system 1900 may be used as the electronic system of an HMD device or other near-eye display described above. In this example, electronic system 1900 may include one or more processors 1910 and memory 1920 . Processor 1910 may be configured to execute instructions for operations at several components, and may be, for example, a general purpose processor or microprocessor suitable for implementation within a portable electronic device. Processor 1910 may be communicatively coupled with a plurality of components within electronic system 1900 . To achieve this communicative coupling, processor 1910 may communicate across bus 1940 with the other illustrated components. Bus 1940 may be any subsystem suitable for communicating data within electronic system 1900 . Bus 1940 may include a plurality of computer buses and additional circuitry to transmit data.

記憶體1920可耦合至處理器1910。在一些具體實例中,記憶體1920可提供短期儲存及長期儲存兩者,且可劃分成若干單元。記憶體1920可為揮發性的,諸如靜態隨機存取記憶體(static random access memory;SRAM)及/或動態隨機存取記憶體(DRAM),及/或可為非揮發性的,諸如唯讀記憶體(read-only memory;ROM)、快閃記憶體及其類似者。此外,記憶體1920可包括抽取式儲存裝置,諸如安全數位(secure digital;SD)卡。記憶體1920可提供電腦可讀取指令、資料結構、程式模組及用於電子系統1900之其他資料的儲存。在一些具體實例中,記憶體1920可分佈於不同硬體模組中。一組指令及/或程式碼可儲存於記憶體1920上。所述指令可採用可由電子系統1900執行之可執行程式碼之形式,及/或可採用原始程式碼及/或可安裝程式碼之形式,該原始程式碼及/或可安裝程式碼在電子系統1900上編譯及/或安裝於該電子系統上(例如,使用多種通常可用的編譯器、安裝程式、壓縮/解壓公用程式等中之任一者)後,可採用可執行程式碼之形式。The memory 1920 can be coupled to the processor 1910 . In some embodiments, memory 1920 can provide both short-term and long-term storage, and can be divided into units. Memory 1920 may be volatile, such as static random access memory (SRAM) and/or dynamic random access memory (DRAM), and/or may be non-volatile, such as read-only memory (read-only memory; ROM), flash memory, and the like. In addition, the memory 1920 may include a removable storage device, such as a secure digital (SD) card. Memory 1920 may provide storage of computer readable instructions, data structures, program modules, and other data for electronic system 1900 . In some specific examples, the memory 1920 can be distributed among different hardware modules. A set of instructions and/or program code can be stored on memory 1920 . The instructions may be in the form of executable code executable by the electronic system 1900, and/or may be in the form of source code and/or installable code that resides in the electronic system Executable code may be in the form of executable code after being compiled on the 1900 and/or installed on the electronic system (eg, using any of a number of commonly available compilers, installers, compression/decompression utilities, etc.).

在一些具體實例中,記憶體1920可儲存複數個應用程式模組1922至1924,所述應用程式模組1922至1924可包括任何數目個應用程式。應用程式之實例可包括遊戲應用程式、會議應用程式、視訊播放應用程式或其他合適之應用程式。應用程式可包括深度感測功能或眼睛追蹤功能。應用程式模組1922至1924可包括待由處理器1910執行之特定指令。在一些具體實例中,某些應用程式或應用程式模組1922至1924之部分可由其他硬體模組1980執行。在某些具體實例中,記憶體1920可另外包括安全記憶體,該安全記憶體可包括額外安全控制以防止對安全資訊之複製或其他未授權存取。In some embodiments, the memory 1920 can store a plurality of application program modules 1922 to 1924, and the application program modules 1922 to 1924 can include any number of application programs. Examples of applications may include game applications, conference applications, video playback applications, or other suitable applications. Apps can include depth-sensing capabilities or eye-tracking capabilities. Application modules 1922-1924 may include specific instructions to be executed by processor 1910. In some embodiments, certain applications or portions of application modules 1922 - 1924 may be executed by other hardware modules 1980 . In some embodiments, memory 1920 may additionally include secure memory, which may include additional security controls to prevent copying or other unauthorized access to secure information.

在一些具體實例中,記憶體1920可包括加載於其中之作業系統1925。作業系統1925可操作以起始執行由應用程式模組1922至1924提供之指令及/或管理其他硬體模組1980,以及與可包括一或多個無線收發器之無線通信子系統1930介接。作業系統1925可適於跨電子系統1900之組件進行其他操作,包括執行緒處理、資源管理、資料儲存控制及其他類似功能性。In some embodiments, the memory 1920 may include an operating system 1925 loaded therein. Operating system 1925 is operable to initiate execution of instructions provided by application modules 1922-1924 and/or to manage other hardware modules 1980, and to interface with wireless communication subsystem 1930, which may include one or more wireless transceivers . Operating system 1925 may be adapted to perform other operations across components of electronic system 1900, including thread processing, resource management, data storage control, and other similar functionality.

無線通信子系統1930可包括例如紅外通信裝置、無線通信裝置及/或晶片組(諸如,藍牙®裝置、IEEE 802.11裝置、Wi-Fi裝置、WiMax裝置、蜂巢式通信設施等)及/或類似通信介面。電子系統1900可包括用於無線通信之一或多個天線1934作為無線通信子系統1930之部分或作為耦合至該系統之任何部分的單獨組件。取決於所要功能性,無線通信子系統1930可包括獨立收發器以與基地收發器台及其他無線裝置及存取點進行通信,其可包括與諸如無線廣域網路(wireless wide-area network;WWAN)、無線區域網路(wireless local area network;WLAN)或無線個域網路(wireless personal area network;WPAN)之不同資料網路及/或網路類型進行通信。WWAN可為例如WiMax(IEEE 802.16)網路。WLAN可為例如IEEE 802.11x網路。WPAN可為例如藍牙網路、IEEE 802.15x或某一其他類型之網路。本文中所描述之技術亦可用於WWAN、WLAN及/或WPAN之任何組合。無線通信子系統1930可准許與網路、其他電腦系統及/或本文中所描述之任何其他裝置交換資料。無線通信子系統1930可包括用於使用天線1934及無線鏈路1932傳輸或接收資料之構件,該資料諸如HMD裝置之識別符、位置資料、地形圖、熱度圖、相片或視訊。無線通信子系統1930、處理器1910及記憶體1920可一起包含用於進行本文中所揭示之一些功能的構件中之一或多者的至少一部分。Wireless communication subsystem 1930 may include, for example, infrared communication devices, wireless communication devices and/or chipsets (such as Bluetooth® devices, IEEE 802.11 devices, Wi-Fi devices, WiMax devices, cellular communication facilities, etc.) and/or similar communication interface. Electronic system 1900 may include one or more antennas 1934 for wireless communications as part of wireless communications subsystem 1930 or as a separate component coupled to any portion of the system. Depending on desired functionality, the wireless communication subsystem 1930 may include independent transceivers to communicate with base transceiver stations and other wireless devices and access points, which may include communication with wireless wide-area network (WWAN) , wireless local area network (wireless local area network; WLAN) or wireless personal area network (wireless personal area network; WPAN) of different data networks and/or network types to communicate. A WWAN may be, for example, a WiMax (IEEE 802.16) network. The WLAN can be, for example, an IEEE 802.11x network. A WPAN can be, for example, a Bluetooth network, IEEE 802.15x, or some other type of network. The techniques described herein may also be used for any combination of WWAN, WLAN, and/or WPAN. Wireless communication subsystem 1930 may permit the exchange of data with a network, other computer systems, and/or any other devices described herein. Wireless communication subsystem 1930 may include components for transmitting or receiving data using antenna 1934 and wireless link 1932, such as an identifier of the HMD device, location data, topographical maps, heat maps, photos, or video. Together, the wireless communication subsystem 1930, the processor 1910, and the memory 1920 may comprise at least a portion of one or more of the means for performing some of the functions disclosed herein.

電子系統1900之具體實例亦可包括一或多個感測器1990。感測器1990可包括例如影像感測器、加速計、壓力感測器、溫度感測器、近接感測器、磁力計、陀螺儀、慣性感測器(例如,組合加速計與陀螺儀之模組)、環境光感測器,或可操作以提供感測輸出及/或接收感測輸入之任何其他模組,諸如深度感測器或位置感測器。舉例而言,在一些實施方式中,感測器1990可包括一或多個IMU及/或一或多個位置感測器。IMU可基於自位置感測器中之一或多者接收到之量測信號來產生校準資料,該校準資料指示相對於HMD裝置之初始位置的HMD裝置之估計位置。位置感測器可回應於HMD裝置之運動而產生一或多個量測信號。位置感測器之實例可包括但不限於一或多個加速計、一或多個陀螺儀、一或多個磁力計、偵測運動之另一合適類型的感測器、用於IMU之誤差校正的一種類型之感測器或其任何組合。位置感測器可位於IMU外部、IMU內部或其任何組合。至少一些感測器可使用結構化之光圖案以用於感測。Embodiments of electronic system 1900 may also include one or more sensors 1990 . Sensors 1990 may include, for example, image sensors, accelerometers, pressure sensors, temperature sensors, proximity sensors, magnetometers, gyroscopes, inertial sensors (eg, a combination accelerometer and gyroscope) module), an ambient light sensor, or any other module operable to provide a sensory output and/or receive a sensory input, such as a depth sensor or a position sensor. For example, in some implementations, sensors 1990 may include one or more IMUs and/or one or more position sensors. The IMU may generate calibration data indicating an estimated position of the HMD device relative to an initial position of the HMD device based on measurement signals received from one or more of the position sensors. The position sensor may generate one or more measurement signals in response to motion of the HMD device. Examples of position sensors may include, but are not limited to, one or more accelerometers, one or more gyroscopes, one or more magnetometers, another suitable type of sensor to detect motion, error for an IMU Calibration of a type of sensor or any combination thereof. The position sensors can be located external to the IMU, internal to the IMU, or any combination thereof. At least some sensors can use structured light patterns for sensing.

電子系統1900可包括顯示模組1960。顯示模組1960可為近眼顯示器,且可以圖形方式將來自電子系統1900之資訊(諸如影像、視訊及各種指令)呈現給使用者。此資訊可源自一或多個應用程式模組1922至1924、虛擬實境引擎1926、一或多個其他硬體模組1980、其組合,或用於為使用者解析圖形內容(例如,藉由作業系統1925)之任何其他合適構件。顯示模組1960可使用LCD技術、LED技術(包括例如OLED、ILED、μ-LED、AMOLED、TOLED等)、發光聚合物顯示器(light-emitting polymer display;LPD)技術,或某一其他顯示技術。The electronic system 1900 can include a display module 1960 . The display module 1960 can be a near-eye display, and can present information from the electronic system 1900 (such as images, videos, and various instructions) to the user in a graphical manner. This information may originate from one or more application modules 1922-1924, virtual reality engine 1926, one or more other hardware modules 1980, combinations thereof, or be used to parse graphical content for the user (e.g., by by any other suitable component of the operating system 1925). The display module 1960 may use LCD technology, LED technology (including OLED, ILED, μ-LED, AMOLED, TOLED, etc.), light-emitting polymer display (LPD) technology, or some other display technology.

電子系統1900亦包括使用者輸入/輸出模組1970。使用者輸入/輸出模組1970可允許使用者將動作請求發送至電子系統1900。動作請求可為進行特定動作之請求。舉例而言,動作請求可為開始或結束應用程式或進行該應用程式內之特定動作。使用者輸入/輸出模組1970可包括一或多個輸入裝置。實例輸入裝置可包括觸控螢幕、觸控板、麥克風、按鈕、撥號盤、開關、鍵盤、滑鼠、遊戲控制器,或用於接收動作請求及將接收到之動作請求傳達至電子系統1900之任何其他合適裝置。在一些具體實例中,使用者輸入/輸出模組1970可根據自電子系統1900接收到之指令將觸覺回饋提供至使用者。舉例而言,可在接收到動作請求或已進行動作請求時提供觸覺回饋。The electronic system 1900 also includes a user input/output module 1970 . The user input/output module 1970 can allow the user to send action requests to the electronic system 1900 . An action request may be a request to perform a specific action. For example, an action request may start or end an application or perform a specific action within the application. The user input/output module 1970 may include one or more input devices. Example input devices may include touch screens, trackpads, microphones, buttons, dials, switches, keyboards, mice, game controllers, or devices for receiving action requests and communicating received action requests to the electronic system 1900. any other suitable device. In some embodiments, the user input/output module 1970 can provide tactile feedback to the user according to commands received from the electronic system 1900 . For example, haptic feedback may be provided when a motion request is received or has been performed.

電子系統1900可包括攝影機1950,該攝影機1950可用於拍攝使用者之相片或視訊,例如用於追蹤使用者之眼睛位置。攝影機1950亦可用於拍攝環境之相片或視訊,例如用於VR、AR或MR應用。攝影機1950可包括例如具有數百萬或數千萬個像素之互補金屬氧化物半導體(complementary metal-oxide-semiconductor;CMOS)影像感測器。在一些實施方式中,攝影機1950可包括可用於俘獲3-D影像之兩個或更多個攝影機。The electronic system 1900 can include a camera 1950, which can be used to take pictures or videos of the user, for example to track the position of the user's eyes. The camera 1950 can also be used to take pictures or videos of the environment, such as for VR, AR or MR applications. The camera 1950 may include, for example, a complementary metal-oxide-semiconductor (CMOS) image sensor with millions or tens of millions of pixels. In some implementations, camera 1950 may include two or more cameras that may be used to capture 3-D images.

在一些具體實例中,電子系統1900可包括複數個其他硬體模組1980。其他硬體模組1980中之每一者可為電子系統1900內之實體模組。雖然其他硬體模組1980中之每一者可永久地經配置為結構,但其他硬體模組1980中之一些可暫時經配置以進行特定功能或暫時啟動。其他硬體模組1980之實例可包括例如音訊輸出及/或輸入模組(例如,麥克風或揚聲器)、近場通信(near field communication;NFC)模組、可再充電電池、電池管理系統、有線/無線電池充電系統等。在一些具體實例中,其他硬體模組1980之一或多個功能可以軟體實施。In some specific examples, the electronic system 1900 may include a plurality of other hardware modules 1980 . Each of the other hardware modules 1980 may be a physical module within the electronic system 1900 . While each of the other hardware modules 1980 may be permanently configured as a structure, some of the other hardware modules 1980 may be temporarily configured to perform a specific function or temporarily activated. Examples of other hardware modules 1980 may include, for example, audio output and/or input modules (eg, microphones or speakers), near field communication (NFC) modules, rechargeable batteries, battery management systems, wired / wireless battery charging system, etc. In some embodiments, one or more functions of other hardware modules 1980 can be implemented by software.

在一些具體實例中,電子系統1900之記憶體1920亦可儲存虛擬實境引擎1926。虛擬實境引擎1926可執行電子系統1900內之應用程式,且自各種感測器接收HMD裝置之位置資訊、加速度資訊、速度資訊、所預測未來位置,或其任何組合。在一些具體實例中,由虛擬實境引擎1926接收到之資訊可用於為顯示模組1960產生信號(例如,顯示指令)。舉例而言,若接收到之資訊指示使用者已看向左方,則虛擬實境引擎1926可為HMD裝置產生反映使用者在虛擬環境中之移動的內容。另外,虛擬實境引擎1926可回應於自使用者輸入/輸出模組1970接收到之動作請求而進行應用程式內之動作,且將回饋提供給使用者。所提供回饋可為視覺、聽覺或觸覺回饋。在一些實施方式中,處理器1910可包括可執行虛擬實境引擎1926之一或多個GPU。In some specific examples, the memory 1920 of the electronic system 1900 can also store the virtual reality engine 1926 . The virtual reality engine 1926 can execute applications within the electronic system 1900 and receive position information, acceleration information, velocity information, predicted future position, or any combination thereof of the HMD device from various sensors. In some embodiments, information received by the virtual reality engine 1926 may be used to generate signals (eg, display commands) for the display module 1960 . For example, if the received information indicates that the user has looked to the left, the virtual reality engine 1926 may generate content for the HMD device that reflects the user's movement in the virtual environment. Additionally, the virtual reality engine 1926 can perform in-app actions in response to action requests received from the user input/output module 1970 and provide feedback to the user. The feedback provided may be visual, auditory or tactile feedback. In some implementations, the processor 1910 can include one or more GPUs that can execute a virtual reality engine 1926 .

在各種實施方式中,上述硬體及模組可實施於可使用有線或無線連接彼此通信之單一裝置上或多個裝置上。舉例而言,在一些實施方式中,諸如GPU、虛擬實境引擎1926及應用程式(例如,追蹤應用程式)之一些組件或模組可實施於控制台上,該控制台與頭戴式顯示器裝置分開。在一些實施方式中,一個控制台可連接至或支援多於一個HMD。In various implementations, the hardware and modules described above may be implemented on a single device or on multiple devices that can communicate with each other using wired or wireless connections. For example, in some implementations, some components or modules such as a GPU, a virtual reality engine 1926, and applications (e.g., a tracking application) may be implemented on a console that is connected to a head-mounted display device separate. In some implementations, a console can connect to or support more than one HMD.

在替代配置中,不同組件及/或額外組件可包括於電子系統1900中。類似地,組件中之一或多者的功能性可以不同於上文所描述之方式的方式分佈在組件當中。舉例而言,在一些具體實例中,電子系統1900可經修改以包括其他系統環境,諸如AR系統環境及/或MR環境。In alternative configurations, different components and/or additional components may be included in electronic system 1900 . Similarly, the functionality of one or more of the components may be distributed among the components in ways other than that described above. For example, in some embodiments electronic system 1900 may be modified to include other system environments, such as an AR system environment and/or a MR environment.

上文所論述之方法、系統及裝置為實例。在適當時各種具體實例可省略、取代或添加各種程序或組件。舉例而言,在替代配置中,可以不同於所描述次序之次序來進行所描述方法,及/或可添加、省略及/或組合各種階段。此外,可在各種其他具體實例中組合關於某些具體實例所描述之特徵。可以類似方式組合具體實例之不同態樣及元件。此外,技術發展,且因此許多元件為實例,所述實例並不將本發明之範圍限制於彼等特定實例。The methods, systems, and devices discussed above are examples. Various embodiments may omit, substitute, or add various procedures or components as appropriate. For example, in alternative configurations, the methods described may be performed in an order different from that described, and/or various stages may be added, omitted, and/or combined. Furthermore, features described with respect to certain embodiments may be combined in various other embodiments. Different aspects and elements of the embodiments can be combined in a similar manner. In addition, technology evolves, and thus many of the elements are examples that do not limit the scope of the disclosure to those particular examples.

在本說明書中給出特定細節以提供對具體實例的徹底理解。然而,具體實例可在無此等特定細節之情況下實踐。舉例而言,已在無不必要細節之情況下展示熟知之電路、程序、系統、結構及技術,以便避免混淆具體實例。本說明書僅提供實例具體實例,且並不意欲限制本發明之範疇、適用性或配置。實情為,具體實例之前述描述將為所屬技術領域中具有通常知識者提供能夠實施各種具體實例之描述。可在不脫離本發明之精神及範圍的情況下對元件之功能及配置作出各種改變。Specific details are given in the specification to provide a thorough understanding of specific examples. However, specific examples may be practiced without such specific details. For example, well-known circuits, procedures, systems, structures and techniques have been shown without unnecessary detail in order not to obscure the particular example. This description provides example specific examples only, and is not intended to limit the scope, applicability, or configuration of the invention. Rather, the foregoing descriptions of the specific examples will provide those having ordinary skill in the art with a description that can enable the various specific examples to be practiced. Various changes may be made in the function and arrangement of elements without departing from the spirit and scope of the invention.

所屬技術領域中具有通常知識者將顯而易見,可根據特定要求作出實質變化。舉例而言,亦可使用自訂或專用硬體,及/或可以硬體、軟體(包括攜帶型軟體,諸如小程式等)或兩者實施特定元件。此外,可採用與其他計算裝置(諸如網路輸入/輸出裝置)之連接。It will be apparent to those skilled in the art that substantial changes may be made according to particular requirements. For example, custom or dedicated hardware may also be used, and/or particular elements may be implemented in hardware, software (including portable software, such as applets, etc.), or both. Additionally, connections to other computing devices, such as network input/output devices, may be employed.

參考隨附圖式,可包括記憶體之組件可包括非暫時性機器可讀取媒體。術語「機器可讀取媒體」及「電腦可讀取媒體」可指代參與提供使得機器以特定方式操作之資料的任何儲存媒體。在上文所提供之具體實例中,各種機器可讀取媒體可能涉及將指令/程式碼提供至處理單元及/或其他裝置以供執行。另外或替代地,機器可讀取媒體可用於儲存及/或攜載此等指令/程式碼。在許多實施方式中,電腦可讀取媒體為實體及/或有形儲存媒體。此媒體可呈許多形式,包括但不限於非揮發性媒體、揮發性媒體及傳輸媒體。電腦可讀取媒體之常見形式包括例如磁性及/或光學媒體,諸如光碟(compact disk;CD)或數位化通用光碟(digital versatile disk;DVD);打孔卡;紙帶;具有孔圖案之任何其他實體媒體;RAM;可程式化唯讀記憶體(programmable read-only memory;PROM);可抹除可程式化唯讀記憶體(erasable programmable read-only memory;EPROM);FLASH-EPROM;任何其他記憶體晶片或卡匣;如下文中所描述之載波;或可供讀取指令及/或程式碼之任何其他媒體。電腦程式產品可包括程式碼及/或機器可執行指令,所述程式碼及/或機器可執行指令可表示程序、函式、子程式、程式、常式、應用程式(App)、次常式、模組、軟體套件、類別,或指令、資料結構或程式陳述式之任何組合。Referring to the accompanying drawings, components that may include memory may include non-transitory machine-readable media. The terms "machine-readable medium" and "computer-readable medium" may refer to any storage medium that participates in providing data that causes a machine to operate in a specific manner. In the specific examples provided above, various machine-readable media may be involved in providing instructions/code to a processing unit and/or other device for execution. Additionally or alternatively, a machine-readable medium may be used to store and/or carry such instructions/code. In many implementations, a computer readable medium is a physical and/or tangible storage medium. This medium can take many forms, including but not limited to, non-volatile media, volatile media, and transmission media. Common forms of computer readable media include, for example, magnetic and/or optical media such as compact disks (CDs) or digital versatile disks (digital versatile disks (DVDs); punched cards; paper tape; any Other physical media; RAM; programmable read-only memory (PROM); erasable programmable read-only memory (EPROM); FLASH-EPROM; any other memory chips or cartridges; carrier waves as described below; or any other medium from which instructions and/or code can be read. A computer program product may include code and/or machine-executable instructions which may represent a program, function, subroutine, program, routine, application (App), subroutine , module, package, class, or any combination of instructions, data structures, or program statements.

如本文中所使用,術語「及」及「或」可包括多種含義,所述含義亦預期至少部分地取決於使用此類術語之上下文。通常,「或」若用於關聯清單,諸如,A、B或C,則意欲意謂A、B及C(此處以包括性意義使用),以及A、B或C(此處以排他性意義使用)。另外,如本文中所使用,術語「一或多個」可用於以單數形式描述任何特徵、結構或特性,或可用於描述特徵、結構或特性之某一組合。然而,應注意,此僅為說明性實例且所主張之主題不限於此實例。此外,術語「中之至少一者」若用於關聯清單(諸如,A、B或C),則可解釋為意謂A、B、C或A、B及/或C之組合(諸如,AB、AC、BC、AA、ABC、AAB、AABBCCC或其類似者)。As used herein, the terms "and" and "or" may include a variety of meanings that are also expected to depend at least in part on the context in which such terms are used. In general, "or" when used in relation to a list, such as A, B, or C, is intended to mean A, B, and C (herein used inclusively), and A, B, or C (herein used in an exclusive sense) . In addition, as used herein, the term "one or more" may be used to describe any feature, structure or characteristic in the singular or may be used to describe some combination of features, structures or characteristics. It should be noted, however, that this is merely an illustrative example and that claimed subject matter is not limited to this example. In addition, the term "at least one of" when applied to an associated listing (such as A, B or C) may be construed to mean A, B, C or a combination of A, B and/or C (such as AB , AC, BC, AA, ABC, AAB, AABBCCC or the like).

此外,雖然已使用硬體與軟體之特定組合描述某些具體實例,但應認識到,硬體與軟體之其他組合亦為可能的。可僅以硬體或僅以軟體或使用其組合來實施某些具體實例。在一個實例中,可藉由電腦程式產品來實施軟體,該電腦程式產品含有電腦程式碼或指令,所述電腦程式碼或指令可由一或多個處理器執行以用於進行本發明中所描述之步驟、操作或程序中之任一者或全部,其中電腦程式可儲存於非暫時性電腦可讀取媒體上。本文中所描述之各種程序可以任何組合實施於同一處理器或不同處理器上。Furthermore, while certain specific examples have been described using specific combinations of hardware and software, it should be recognized that other combinations of hardware and software are possible. Some embodiments may be implemented in hardware only or software only or using a combination thereof. In one example, the software can be implemented by a computer program product containing computer code or instructions executable by one or more processors for performing the functions described herein. Any or all of the steps, operations or procedures, wherein the computer program can be stored on a non-transitory computer readable medium. The various programs described herein can be implemented in any combination on the same processor or on different processors.

在裝置、系統、組件或模組經描述為經配置以進行某些操作或功能之情況下,可例如藉由設計電子電路以進行操作、藉由程式化可程式化電子電路(諸如微處理器)以進行操作(諸如藉由執行電腦指令或程式碼,或經程式化以執行儲存於非暫時性記憶體媒體上之程式碼或指令的處理器或核心)或其任何組合來實現此配置。程序可使用多種技術進行通信,包括但不限於用於程序間通信之習知技術,且不同對程序可使用不同技術,或同一對程序可在不同時間使用不同技術。Where a device, system, component or module is described as being configured to perform certain operations or functions, it may be possible, for example, by designing electronic circuits to perform the operations, by programming programmable electronic circuits such as microprocessors ) to perform operations such as by executing computer instructions or code, or a processor or core programmed to execute code or instructions stored on a non-transitory memory medium, or any combination thereof. Programs may communicate using a variety of techniques, including but not limited to well-known techniques for communicating between programs, and different pairs of programs may use different techniques, or the same pair of programs may use different techniques at different times.

因此,應在說明性意義上而非限定性意義上看待說明書及圖式。然而,將顯而易見,可在不脫離如申請專利範圍中所闡述的更廣泛精神及範圍之情況下對說明書及圖式進行添加、減去、刪除及其他修改及改變。因此,儘管已描述特定具體實例,但此等具體實例並不意欲為限制性的。各種修改及等效物在以下申請專利範圍之範圍內。Accordingly, the specification and drawings should be regarded in an illustrative sense rather than a restrictive sense. It will be apparent, however, that additions, subtractions, deletions, and other modifications and changes may be made to the specification and drawings without departing from the broader spirit and scope as set forth in the claims. Thus, although certain embodiments have been described, such embodiments are not intended to be limiting. Various modifications and equivalents are within the scope of the following claims.

100:人工實境系統環境 110:控制台 112:應用程式商店 114:耳機追蹤模組 116:人工實境引擎 118:眼睛追蹤模組 120:近眼顯示器 122:顯示電子件 124:顯示光學件 126:定位器 128:位置感測器 130:眼睛追蹤單元 132:慣性量測單元 140:輸入/輸出介面 150:外部成像裝置 200:HMD裝置 220:主體 223:底側 225:前側 227:左側 230:頭部綁帶 300:近眼顯示器 305:框架 310:顯示器 330:照明器 340:高解析度攝影機 350a:感測器 350b:感測器 350c:感測器 350d:感測器 350e:感測器 400:擴增實境系統 410:投影器 412:影像源 414:投影器光學件 415:組合器 420:基板 430:輸入耦合器 440:輸出耦合器 450:光 460:所提取光 490:眼睛 495:眼眶 500:近眼顯示器裝置 510:光源 512:紅光發射器 514:綠光發射器 516:藍光發射器 520:投影光學件 530:波導顯示器 532:耦合器 540:光源 542:紅光發射器 544:綠光發射器 546:藍光發射器 550:近眼顯示器裝置 560:自由形式光學元件 570:掃描鏡面 580:波導顯示器 582:耦合器 590:眼睛 600:近眼顯示器系統 610:影像源組合件 620:控制器 630:影像處理器 640:顯示面板 642:光源 644:驅動器電路 650:投影器 700:VCSEL 705:可調諧VCSEL 710:基板 712:驅動電路 720:塊體DBR 722:VCSEL 724:第一反射器 726:主動區 730:底部DBR 732:第一電極 734:第二電極 740:包覆層 750:主動區 752:第二反射器 760:包覆層 762:微機電系統裝置 770:頂部DBR 810:泵浦光子 815:虛擬激發態 820:光子 830:光子 900:結構 902:結構 904:結構 910:光學諧振器 920:耦合結構 930:光學諧振器 940:泵浦波導 950:輸出波導 960:光學諧振器 970:波導 980:波導 1000:可見光源 1010:驅動電路 1020:VCSEL 1022:第一反射器 1024:主動區 1026:部分反射器 1028:偏振器 1030:第一電極 1032:第二電極 1040:微諧振器 1042:耦合結構 1050:第二反射器 1060:介電材料 1100:可見光源 1110:驅動電路 1120:VCSEL 1122:第一反射器 1124:主動區 1130:第二反射器 1140:第一電極 1142:第二電極 1150:微諧振器 1152:耦合結構 1160:介電材料 1200:可見光源 1202:可見光源 1210:驅動電路 1220:VCSEL 1222:第一反射器 1224:主動區 1230:第二反射器 1240:第一電極 1242:第二電極 1250:波導 1252:耦合結構 1260:微諧振器 1262:微諧振器 1270:介電材料 1300:可見光源 1302:可見光源 1310:驅動電路 1320:VCSEL 1322:第一反射器 1324:主動區 1326:部分反射器 1328:偏振器 1330:第二反射器 1340:第一電極 1342:第二電極 1350:波導 1352:輸入耦合結構 1360:介電材料 1370:微諧振器 1372:微諧振器 1400:可見光源陣列 1402:藍色光源 1404:綠色光源 1406:紅色光源 1410:驅動電路 1420:VCSEL 1422:第一反射器 1424:主動區 1430:第一電極 1432:第二電極 1440:微諧振器 1442:微諧振器 1444:微諧振器 1450:耦合結構 1452:耦合結構 1454:耦合結構 1460:第二反射器 1462:第二反射器 1464:第二反射器 1500:可見光源陣列 1502:可見光源 1510:驅動電路 1520:VCSEL 1522:第一反射器 1524:主動區 1526:部分反射器 1528:偏振器 1530:第二反射器 1540:第一電極 1542:第二電極 1550:第一微諧振器 1552:耦合結構 1560:第二微諧振器 1562:耦合結構 1570:第三微諧振器 1572:耦合結構 1600:可見光源陣列 1602:可見光源 1610:驅動電路 1620:VCSEL 1622:第一反射器 1624:主動區 1626:部分反射器 1628:偏振器 1630:第二反射器 1640:第一電極 1642:第二電極 1650:第一微諧振器 1652:耦合結構 1660:第二微諧振器 1662:耦合結構 1670:第三微諧振器 1672:耦合結構 1690:電極 1692:電極 1694:電極 1700:可見光源 1710:驅動電路 1720:VCSEL 1722:第一反射器 1724:主動區 1726:部分反射器 1728:偏振器 1730:第一電極 1732:第二電極 1740:微諧振器 1742:耦合結構 1750:第二反射器 1770:微機電系統裝置 1780:曲線 1790:信號光 1792:信號光 1794:信號光 1800:可見光源陣列 1802:可見光源 1810:驅動電路 1820:VCSEL 1822:第一反射器 1824:主動區 1826:部分反射器 1828:偏振器 1830:第二反射器 1832:MEMS裝置 1840:第一電極 1842:第二電極 1850:第一微諧振器 1852:耦合結構 1860:第二微諧振器 1862:耦合結構 1870:第三微諧振器 1872:耦合結構 1890:電極 1892:電極 1894:電極 1900:電子系統 1910:處理器 1920:記憶體 1922:應用程式模組 1924:應用程式模組 1925:作業系統 1926:虛擬實境引擎 1930:無線通信子系統 1932:無線鏈路 1934:天線 1940:匯流排 1950:攝影機 1960:顯示模組 1970:使用者輸入/輸出模組 1980:其他硬體模組 1990:感測器 x:方向 y:方向 z:方向 100: Artificial Reality System Environment 110: Console 112: App store 114:Headphone Tracking Module 116: Artificial Reality Engine 118:Eye Tracking Module 120: near-eye display 122: display electronics 124: Display optics 126: Locator 128: Position sensor 130:Eye Tracking Unit 132: Inertial measurement unit 140: input/output interface 150: external imaging device 200: HMD device 220: subject 223: bottom side 225: front side 227: left side 230: head strap 300: near-eye display 305: frame 310: Display 330: illuminator 340: high resolution camera 350a: sensor 350b: sensor 350c: sensor 350d: sensor 350e: sensor 400: Augmented Reality System 410: Projector 412: image source 414: Projector optics 415: Combiner 420: Substrate 430: Input coupler 440: output coupler 450: light 460: extracted light 490: eyes 495: eye socket 500: near-eye display device 510: light source 512: red light emitter 514: Green emitter 516:Blue light emitter 520: Projection optics 530: waveguide display 532:Coupler 540: light source 542: red light emitter 544: Green emitter 546:Blue light emitter 550: Near-eye display device 560: Freeform Optics 570: Scan mirror 580:Waveguide display 582:Coupler 590: eyes 600: near eye display system 610: image source assembly 620: controller 630: image processor 640: display panel 642: light source 644: Driver circuit 650: Projector 700:VCSEL 705: Tunable VCSEL 710: Substrate 712: drive circuit 720:Block DBR 722:VCSEL 724:First reflector 726: active area 730: Bottom DBR 732: first electrode 734: second electrode 740: cladding layer 750: active zone 752:Second reflector 760: cladding layer 762: MEMS Devices 770: top DBR 810:Pump photons 815:Virtual excited state 820: Photon 830: Photon 900: structure 902: structure 904: structure 910: Optical Resonator 920: Coupling structure 930: Optical Resonator 940:Pump waveguide 950: output waveguide 960: Optical Resonators 970: waveguide 980: waveguide 1000: visible light source 1010: drive circuit 1020:VCSEL 1022: first reflector 1024: active area 1026: Partial reflector 1028: Polarizer 1030: the first electrode 1032: second electrode 1040: microresonator 1042: Coupling structure 1050: second reflector 1060: Dielectric material 1100: visible light source 1110: drive circuit 1120:VCSEL 1122: first reflector 1124: active area 1130: second reflector 1140: first electrode 1142: second electrode 1150: microresonator 1152: Coupling structure 1160: Dielectric material 1200: visible light source 1202: visible light source 1210: drive circuit 1220:VCSEL 1222:First reflector 1224: active area 1230: second reflector 1240: first electrode 1242: second electrode 1250: waveguide 1252: Coupling structure 1260: microresonator 1262: Microresonator 1270: Dielectric material 1300: visible light source 1302: visible light source 1310: drive circuit 1320:VCSEL 1322:First reflector 1324: active area 1326: Partial reflector 1328: Polarizer 1330: Second reflector 1340: first electrode 1342: second electrode 1350: waveguide 1352: Input coupling structure 1360: Dielectric material 1370: Microresonator 1372: Microresonator 1400: visible light source array 1402: blue light source 1404: Green light source 1406: red light source 1410: drive circuit 1420:VCSEL 1422: First reflector 1424: active zone 1430: first electrode 1432: second electrode 1440: Microresonator 1442: Microresonator 1444: Microresonator 1450: Coupling structure 1452: Coupling structure 1454: Coupling structure 1460: Second reflector 1462:Second reflector 1464:Second reflector 1500: visible light source array 1502: visible light source 1510: drive circuit 1520:VCSEL 1522: First reflector 1524: active zone 1526: Partial reflector 1528: Polarizer 1530: Second reflector 1540: first electrode 1542: second electrode 1550: First microresonator 1552: Coupling structure 1560: Second microresonator 1562: Coupling Structure 1570: The third microresonator 1572: Coupling structure 1600: visible light source array 1602: visible light source 1610: drive circuit 1620:VCSEL 1622: First reflector 1624: active area 1626: Partial reflector 1628: Polarizer 1630: Second reflector 1640: first electrode 1642: second electrode 1650: First microresonator 1652: Coupling Structure 1660: Second Microresonator 1662: Coupling Structures 1670: The third microresonator 1672: Coupling Structure 1690: electrode 1692: electrode 1694: electrode 1700: visible light source 1710: drive circuit 1720:VCSEL 1722: First reflector 1724: active zone 1726: Partial reflector 1728: Polarizer 1730: first electrode 1732: second electrode 1740: Microresonators 1742: Coupling structure 1750: Second reflector 1770: MEMS devices 1780: curve 1790: signal light 1792: signal light 1794: signal light 1800: Array of Visible Light Sources 1802: Visible light source 1810: Drive circuit 1820:VCSEL 1822: First reflector 1824: active zone 1826: Partial reflector 1828: Polarizer 1830: Second reflector 1832: MEMS devices 1840: First electrode 1842: Second electrode 1850: First microresonator 1852: Coupled Structures 1860: Second microresonator 1862: Coupled Structures 1870: The third microresonator 1872: Coupled Structures 1890: Electrodes 1892: Electrodes 1894: Electrodes 1900: Electronic systems 1910: Processor 1920: Memory 1922: Application modules 1924: Application Mods 1925: Operating system 1926: Virtual reality engine 1930: Wireless Communication Subsystem 1932: Wireless Links 1934: Antenna 1940: Busbar 1950: Camera 1960:Display module 1970: User input/output modules 1980: Other hardware mods 1990: Sensors x: direction y: direction z: direction

下文參考以下諸圖詳細描述說明性具體實例。 [圖1]為根據某些具體實例之包括近眼顯示器之人工實境系統環境之實例的簡化方塊圖。 [圖2]為用於實施本文中所揭示之實例中之一些的頭戴式顯示器(head-mounted display;HMD)裝置之形式的近眼顯示器之實例的透視圖。 [圖3]為用於實施本文中所揭示之實例中之一些的一副眼鏡之形式的近眼顯示器之實例的透視圖。 [圖4]說明根據某些具體實例之包括波導顯示器之光學透視擴增實境系統之實例。 [圖5A]說明根據某些具體實例之包括波導顯示器之近眼顯示器裝置的實例。[圖5B]說明根據某些具體實例之包括波導顯示器之近眼顯示裝置的實例。 [圖6]說明根據某些具體實例的在擴增實境系統中之影像源組合件之實例。 [圖7A]說明垂直腔面射型雷射(VCSEL)之實例。 [圖7B]說明根據某些具體實例之可調諧VCSEL之實例。 [圖8A及圖8B]說明使用較低頻率泵浦光經由簡併四波混合產生較高頻率光信號之實例。 [圖8C]說明微諧振器之實例之多個縱向諧振模式。 [圖9A]展示根據某些具體實例之經配置以將在光學諧振器中產生的光垂直地耦合出光學諧振器的耦合結構之實例之橫截面視圖。 [圖9B]展示根據某些具體實例之圖9A之耦合結構的實例之俯視圖。 [圖9C]說明根據某些具體實例之經配置以將在光學諧振器中產生的光耦合至輸出波導中的結構之實例之俯視圖。 [圖9D]說明根據某些具體實例之經配置以將在光學諧振器中產生的光耦合至輸出波導中的結構之另一實例之俯視圖。 [圖10A及圖10B]說明根據某些具體實例之包括在垂直腔中且由垂直腔中之紅外光VCSEL直接泵浦之微諧振器的可見光源之實例,其中將在微諧振器中產生的可見光垂直地耦合出垂直腔。 [圖11A]說明根據某些具體實例之包括在垂直腔外部且由紅外光VCSEL直接泵浦之微諧振器的可見光源之實例。 [圖11B]說明圖11A之可見光源之實例之俯視圖。 [圖12A及12B]說明根據某些具體實例之包括由紅外光VCSEL泵浦之微諧振器的可見光源之實例,其中紅外光經由輸入耦合結構及與微諧振器在相同層上之波導耦合至微諧振器中。 [圖12C及12D]說明根據某些具體實例之包括由紅外光VCSEL泵浦之微諧振器的可見光源之實例,其中紅外光經由輸入耦合結構及與微諧振器在不同垂直層上之波導耦合至微諧振器中。 [圖13A]說明根據某些具體實例之包括由垂直腔中之紅外光VCSEL泵浦之微諧振器的可見光源之實例,其中紅外光經由垂直腔中之輸入耦合結構及與微諧振器在相同垂直層上之波導耦合至微諧振器中。 [圖13B]說明圖13A之可見光源之實例之俯視圖。 [圖13C]說明根據某些具體實例之包括由垂直腔中之紅外光VCSEL泵浦之微諧振器的可見光源之實例,其中紅外光經由垂直腔中之輸入耦合結構及與微諧振器在不同垂直層上之波導耦合至微諧振器中。 [圖13D]說明圖13C之可見光源之實例之俯視圖。 [圖14A]說明根據某些具體實例之經配置以發射不同色彩之可見光的可見光源陣列之實例,其中陣列中之每一可見光源包括在垂直腔中且由垂直腔中之紅外光VCSEL直接泵浦的微諧振器,且將在微諧振器中產生的可見光垂直地耦合出垂直腔。 [圖14B及14C]說明圖14A之可見光源陣列之實例之俯視圖。 [圖15A]說明根據某些具體實例之可見光源陣列之實例,其中陣列中之每一可見光源經配置以產生不同色彩之可見光。 [圖15B]說明圖15A之可見光源陣列之實例之俯視圖。 [圖16A]說明根據某些具體實例之可見光源陣列之實例,其中每一可見光源經配置以發射呈現多種色彩之可見光且每一色彩中之可見光之各別強度可個別地控制。 [圖16B]說明圖16A之可見光源陣列之實例之俯視圖。 [圖17A]說明根據某些具體實例之可調諧以發射不同色彩之可見光的可見光源之實例。 [圖17B]說明圖17A之可見光源陣列之實例之俯視圖。[圖17C及17D]說明藉由調諧圖17A及17B之可見光源而產生不同色彩之可見光的實例。 [圖18A]說明根據某些具體實例之可見光源陣列之實例,其中每一可見光源可調諧以發射呈現一或多種色彩之可見光且每一色彩中之可見光之各別強度可個別地控制。 [圖18B]說明圖18A之可見光源陣列之實例之俯視圖。 [圖19]為根據某些具體實例之近眼顯示器之實例的電子系統之簡化方塊圖。 圖式僅出於說明之目的描繪本發明之具體實例。所屬技術領域中具有通常知識者依據以下描述將容易認識到,可在不脫離本發明之原理或所主張之權益的情況下採用所說明之結構及方法的替代具體實例。 在附圖中,類似組件及/或特徵可具有相同參考標記。此外,可藉由在參考標記之後加上破折號及在類似組件之間進行區分之第二標記來區分同一類型之各種組件。若在本說明書中僅使用第一參考標記,則本說明書適用於具有相同第一參考標記而與第二參考標記無關的類似組件中之任一者。 Illustrative specific examples are described in detail below with reference to the following figures. [ FIG. 1 ] is a simplified block diagram of an example of an artificial reality system environment including a near-eye display, according to certain embodiments. [ Fig. 2 ] is a perspective view of an example of a near-eye display in the form of a head-mounted display (HMD) device for implementing some of the examples disclosed herein. [ FIG. 3 ] Is a perspective view of an example of a near-eye display in the form of a pair of glasses for implementing some of the examples disclosed herein. [ FIG. 4 ] Illustrates an example of an optical see-through augmented reality system including a waveguide display according to certain embodiments. [ FIG. 5A ] Illustrates an example of a near-eye display device including a waveguide display according to some embodiments. [ FIG. 5B ] Illustrates an example of a near-eye display device including a waveguide display according to some embodiments. [ FIG. 6 ] illustrates an example of an image source assembly in an augmented reality system according to some embodiments. [FIG. 7A] An example of a vertical cavity surface emitting laser (VCSEL) is illustrated. [FIG. 7B] Illustrates an example of a tunable VCSEL according to certain embodiments. [ FIGS. 8A and 8B ] illustrate an example of generating a higher frequency optical signal through degenerate four-wave mixing using lower frequency pump light. [FIG. 8C] Multiple longitudinal resonance modes illustrating an example of a microresonator. [ FIG. 9A ] Shows a cross-sectional view of an example of a coupling structure configured to vertically couple light generated in an optical resonator out of the optical resonator, according to certain embodiments. [ FIG. [ FIG. 9B ] A top view showing an example of the coupling structure of FIG. 9A according to some embodiments. [ FIG. 9C ] A top view illustrating an example of a structure configured to couple light generated in an optical resonator into an output waveguide, according to certain embodiments. [ FIG. 9D ] A top view illustrating another example of a structure configured to couple light generated in an optical resonator into an output waveguide, according to certain embodiments. [ FIGS. 10A and 10B ] illustrate an example of a visible light source of a microresonator included in a vertical cavity and directly pumped by an infrared light VCSEL in the vertical cavity, according to some embodiments, wherein the Visible light is coupled vertically out of the vertical cavity. [ FIG. 11A ] Illustrates an example of a visible light source including a microresonator outside a vertical cavity and directly pumped by an infrared light VCSEL, according to certain embodiments. [FIG. 11B] A plan view illustrating an example of the visible light source of FIG. 11A. [FIGS. 12A and 12B] illustrates an example of a visible light source comprising a microresonator pumped by an infrared light VCSEL, wherein infrared light is coupled to in the microresonator. [FIGS. 12C and 12D] illustrates an example of a visible light source comprising a microresonator pumped by an infrared light VCSEL through in-coupling structures and waveguides coupling to the microresonator on different vertical layers, according to certain embodiments into the microresonator. [FIG. 13A] illustrates an example of a visible light source including a microresonator pumped by an infrared light VCSEL in a vertical cavity through an in-coupling structure in the vertical cavity and in the same state as the microresonator, according to some embodiments. The waveguides on the vertical layers are coupled into the microresonators. [FIG. 13B] A plan view illustrating an example of the visible light source of FIG. 13A. [FIG. 13C] Illustrates an example of a visible light source including a microresonator pumped by an infrared light VCSEL in a vertical cavity through an in-coupling structure in the vertical cavity and at a different distance from the microresonator, according to some embodiments. The waveguides on the vertical layers are coupled into the microresonators. [FIG. 13D] A top view illustrating an example of the visible light source of FIG. 13C. [FIG. 14A] Illustrates an example of an array of visible light sources configured to emit different colors of visible light, wherein each visible light source in the array is included in a vertical cavity and is directly pumped by an infrared light VCSEL in the vertical cavity, according to certain embodiments Pu's microresonator, and the visible light generated in the microresonator is vertically coupled out of the vertical cavity. [FIGS. 14B and 14C] Top views illustrating an example of the visible light source array of FIG. 14A. [FIG. 15A] Illustrates an example of an array of visible light sources according to certain embodiments, wherein each visible light source in the array is configured to generate visible light of a different color. [FIG. 15B] A top view illustrating an example of the visible light source array of FIG. 15A. [ FIG. 16A ] Illustrates an example of an array of visible light sources according to certain embodiments, wherein each visible light source is configured to emit visible light in multiple colors and the respective intensity of visible light in each color can be individually controlled. [FIG. 16B] A top view illustrating an example of the visible light source array of FIG. 16A. [ FIG. 17A ] Illustrates an example of a visible light source that can be tuned to emit different colors of visible light, according to certain embodiments. [FIG. 17B] A top view illustrating an example of the visible light source array of FIG. 17A. [ FIGS. 17C and 17D ] illustrates an example of generating visible light of different colors by tuning the visible light source of FIGS. 17A and 17B . [ FIG. 18A ] Illustrates an example of an array of visible light sources according to certain embodiments, wherein each visible light source is tuneable to emit visible light in one or more colors and the respective intensity of visible light in each color is individually controllable. [FIG. 18B] A top view illustrating an example of the visible light source array of FIG. 18A. [ FIG. 19 ] is a simplified block diagram of an electronic system of an example of a near-eye display according to some embodiments. The drawings depict specific examples of the invention for purposes of illustration only. Those of ordinary skill in the art will readily recognize from the following description that alternative embodiments of the structures and methods described may be employed without departing from the principles of the invention or what is claimed. In the figures, similar components and/or features may have the same reference label. Further, various components of the same type can be distinguished by following the reference label by a dash and a second label that distinguishes among similar components. If only a first reference sign is used in this description, this description applies to any of similar components having the same first reference sign independent of the second reference sign.

1000:可見光源 1000: visible light source

1010:驅動電路 1010: drive circuit

1020:VCSEL 1020:VCSEL

1022:第一反射器 1022: first reflector

1024:主動區 1024: active area

1026:部分反射器 1026: Partial reflector

1028:偏振器 1028: Polarizer

1030:第一電極 1030: the first electrode

1032:第二電極 1032: second electrode

1040:微諧振器 1040: microresonator

1042:耦合結構 1042: Coupling structure

1050:第二反射器 1050: second reflector

1060:介電材料 1060: Dielectric material

Claims (20)

一種可見光源,其包含: 基板; 垂直腔面射型雷射,其位於該基板上且包含: 主動半導體區,其經配置以發射紅外光;及 第一反射器,其經配置以反射由該主動半導體區發射之該紅外光; 第二反射器,其經配置以反射該紅外光,該第一反射器及該第二反射器形成用於該紅外光之垂直腔; 一或多個微諧振器,其位於該基板上且經配置以接收該紅外光且使用該紅外光經由光參數振盪而產生一或多種色彩之可見光;及 一或多個輸出耦合器,其經配置以將來自該一或多個微諧振器之一或多種色彩的該可見光耦合至自由空間中或耦合至光子積體電路中。 A visible light source comprising: Substrate; A vertical cavity surface-emitting laser on the substrate and comprising: an active semiconductor region configured to emit infrared light; and a first reflector configured to reflect the infrared light emitted by the active semiconductor region; a second reflector configured to reflect the infrared light, the first reflector and the second reflector forming a vertical cavity for the infrared light; one or more microresonators on the substrate and configured to receive the infrared light and use the infrared light to produce visible light of one or more colors via optical parameter oscillation; and One or more output couplers configured to couple the visible light of one or more colors from the one or more microresonators into free space or into a photonic integrated circuit. 如請求項1之可見光源,其中: 該一或多個微諧振器包括相對於彼此垂直配置之第一微諧振器及第二微諧振器;且 該第一微諧振器及該第二微諧振器之特徵在於不同大小、不同形狀、不同材料或其之組合,且經配置以產生不同各別色彩之可見光。 Such as the visible light source of claim 1, wherein: the one or more microresonators include a first microresonator and a second microresonator arranged vertically relative to each other; and The first microresonator and the second microresonator are characterized by different sizes, different shapes, different materials, or combinations thereof, and are configured to generate visible light of different distinct colors. 如請求項2之可見光源,其進一步包含: 第一調諧電路,其經配置以調諧該第一微諧振器以控制由該第一微諧振器產生之該可見光之強度;及 第二調諧電路,其經配置以調諧該第二微諧振器以控制由該第二微諧振器產生之該可見光之強度。 Such as the visible light source of claim 2, which further includes: a first tuning circuit configured to tune the first microresonator to control the intensity of the visible light generated by the first microresonator; and A second tuning circuit configured to tune the second microresonator to control the intensity of the visible light generated by the second microresonator. 如請求項1之可見光源,其進一步包含微致動器,該微致動器經配置以移動該第二反射器以改變該垂直腔之光學路徑長度且因此改變由該主動半導體區發射之該紅外光之波長,其中該一或多個微諧振器中之微諧振器經配置以: 使用第一波長之紅外光產生第一色彩之可見光;及 使用第二波長之紅外光產生第二色彩之可見光。 The visible light source as claimed in claim 1, further comprising a microactuator configured to move the second reflector to change the optical path length of the vertical cavity and thus change the light emitted by the active semiconductor region A wavelength of infrared light, wherein a microresonator of the one or more microresonators is configured to: generating visible light of a first color using infrared light of a first wavelength; and Visible light of a second color is generated using infrared light of a second wavelength. 如請求項1之可見光源,其中: 該一或多個微諧振器位於該垂直腔中或位於該垂直腔上;且 該一或多個微諧振器中之每一者經配置以直接或經由輸入耦合器接收由該主動半導體區發射之該紅外光。 Such as the visible light source of claim 1, wherein: the one or more microresonators are located in or on the vertical cavity; and Each of the one or more microresonators is configured to receive the infrared light emitted by the active semiconductor region directly or via an input coupler. 如請求項1之可見光源,其中該一或多個輸出耦合器中之每一者包括光柵耦合器、介電散射器、金屬散射器或奈米諧振器。The visible light source of claim 1, wherein each of the one or more output couplers comprises a grating coupler, a dielectric diffuser, a metallic diffuser, or a nanoresonator. 如請求項6之可見光源,其中該光柵耦合器是傾斜的、變跡的、啁啾的或其之組合。The visible light source of claim 6, wherein the grating coupler is tilted, apodized, chirped or a combination thereof. 如請求項1之可見光源,其中該一或多個微諧振器經配置以經由簡併四波混合(DFWM)產生該可見光。The visible light source of claim 1, wherein the one or more microresonators are configured to generate the visible light via degenerate four-wave mixing (DFWM). 如請求項1之可見光源,其中: 該一或多個微諧振器中之至少一個微諧振器位於該垂直腔外部且不與該垂直腔面射型雷射對準;且 該可見光源進一步包含: 波導,其光學地耦合至該至少一個微諧振器;及 輸入耦合器,其位於該垂直腔中或位於該垂直腔之頂部上且經配置以將由該主動半導體區發射之該紅外光耦合至該波導中。 Such as the visible light source of claim 1, wherein: at least one of the one or more microresonators is located outside the vertical cavity and out of alignment with the vertical cavity surface-emitting laser; and The visible light source further comprises: a waveguide optically coupled to the at least one microresonator; and an input coupler in or on top of the vertical cavity and configured to couple the infrared light emitted by the active semiconductor region into the waveguide. 如請求項1之可見光源,其中該第一反射器及該第二反射器中之每一者包含高對比度光柵或分佈式布拉格(Bragg)反射器,該分佈式布拉格反射器包括介電層、半導體層或兩者。The visible light source of claim 1, wherein each of the first reflector and the second reflector comprises a high-contrast grating or a distributed Bragg (Bragg) reflector, the distributed Bragg reflector comprising a dielectric layer, semiconducting layer or both. 如請求項1之可見光源,其中該第二反射器對於該可見光為抗反射的。The visible light source of claim 1, wherein the second reflector is anti-reflection for the visible light. 如請求項1之可見光源,其中該一或多個微諧振器包括微環、微盤、基於波導之腔、光子晶體點缺陷腔、光子晶體環腔或電漿子諧振器中之至少一者。The visible light source of claim 1, wherein the one or more microresonators comprise at least one of a microring, a microdisk, a waveguide-based cavity, a photonic crystal point defect cavity, a photonic crystal ring cavity, or a plasmonic resonator . 如請求項1之可見光源,其中該一或多個微諧振器之特徵在於圓形環形狀、橢圓形環形狀、螺旋形形狀或軌道形狀。The visible light source of claim 1, wherein the one or more microresonators are characterized by a circular ring shape, an elliptical ring shape, a spiral shape, or a track shape. 如請求項1之可見光源,其中該一或多個輸出耦合器經配置以將該可見光垂直耦合至自由空間中或將該可見光耦合至光子積體電路中。The visible light source of claim 1, wherein the one or more output couplers are configured to vertically couple the visible light into free space or couple the visible light into a photonic integrated circuit. 如請求項1之可見光源,其進一步包含: 第三反射器,其位於該垂直腔中,其中該第三反射器對於該紅外光為部分反射的; 偏振組件,其位於該垂直腔中且經配置以選擇該紅外光之偏振模式;或 該第三反射器及該偏振組件兩者。 Such as the visible light source of claim 1, which further includes: a third reflector located in the vertical cavity, wherein the third reflector is partially reflective to the infrared light; a polarizing component located in the vertical cavity and configured to select a polarization mode of the infrared light; or Both the third reflector and the polarizing component. 如請求項15之可見光源,其中該偏振組件包括偏振器、波板、空間變異偏振器或空間變異波板。The visible light source according to claim 15, wherein the polarizing component comprises a polarizer, a wave plate, a spatially varying polarizer or a spatially varying wave plate. 一種可見光源陣列,其包含: 基板,其包括形成於其上之驅動電路;及 晶粒或晶圓,其直接地或間接地接合至所述驅動電路,該晶粒或晶圓包括形成於其上之可見光源陣列,其中該可見光源陣列中之每一可見光源可由所述驅動電路個別地定址且包含: 垂直腔,其由第一反射器及第二反射器形成,該第一反射器及該第二反射器經配置以反射紅外光; 主動區,其位於該垂直腔中且經配置以發射紅外光; 一或多個微諧振器,其經配置以接收該紅外光且使用該紅外光經由光參數振盪產生一或多種色彩之可見光;及 一或多個輸出耦合器,其經配置以將來自該一或多個微諧振器之一或多種色彩的該可見光耦合至自由空間或是一或多個波導中。 A visible light source array comprising: a substrate including drive circuitry formed thereon; and a die or wafer that is directly or indirectly bonded to the drive circuit, the die or wafer including an array of visible light sources formed thereon, wherein each visible light source in the array of visible light sources can be driven by the Circuits are individually addressed and contain: a vertical cavity formed by a first reflector and a second reflector configured to reflect infrared light; an active region located in the vertical cavity and configured to emit infrared light; one or more microresonators configured to receive the infrared light and use the infrared light to produce visible light of one or more colors via optical parameter oscillation; and One or more output couplers configured to couple the visible light of one or more colors from the one or more microresonators into free space or into one or more waveguides. 如請求項17之可見光源陣列,其中該可見光源陣列中之每一可見光源進一步包含一或多個調諧電路,該一或多個調諧電路經配置以調諧該一或多個微諧振器以控制呈現該一或多種色彩中之每一者的該可見光之各別強度。The visible light source array of claim 17, wherein each visible light source in the visible light source array further comprises one or more tuning circuits configured to tune the one or more microresonators to control The respective intensities of the visible light exhibiting each of the one or more colors. 如請求項17之可見光源陣列,其中: 該可見光源陣列中之每一可見光源進一步包含微致動器,該微致動器經配置以移動該第二反射器以改變該垂直腔之光學路徑長度且因此改變由該主動區發射之該紅外光之波長;且 該一或多個微諧振器中之微諧振器經配置以: 使用第一波長之紅外光產生第一色彩之可見光;及 使用第二波長之紅外光產生第二色彩之可見光。 The visible light source array of claim 17, wherein: Each visible light source in the array of visible light sources further includes a microactuator configured to move the second reflector to change the optical path length of the vertical cavity and thereby change the the wavelength of infrared light; and A microresonator of the one or more microresonators is configured to: generating visible light of a first color using infrared light of a first wavelength; and Visible light of a second color is generated using infrared light of a second wavelength. 一種可見光源陣列,其包含: 基板,其包括形成於其上之驅動電路;及 晶粒或晶圓,其直接地或間接地接合至所述驅動電路,該晶粒或晶圓包括形成於其上之可見光源陣列,其中該可見光源陣列中之每一可見光源可由所述驅動電路個別地定址且包含: 垂直腔,其由第一反射器及第二反射器形成,該第一反射器及該第二反射器經配置以反射紅外光; 主動區,其位於該垂直腔中且經配置以發射紅外光; 微諧振器,其經配置以接收該紅外光且使用該紅外光經由光參數振盪產生可見光;及 輸出耦合器,其經配置以將來自該微諧振器之該可見光耦合至自由空間或波導中, 其中該可見光源陣列中之第一可見光源中之第一微諧振器及該可見光源陣列中之第二可見光源中之第二微諧振器具有不同大小、不同形狀、不同材料或其之組合,且經配置以產生不同色彩之可見光。 A visible light source array comprising: a substrate including drive circuitry formed thereon; and a die or wafer that is directly or indirectly bonded to the drive circuit, the die or wafer including an array of visible light sources formed thereon, wherein each visible light source in the array of visible light sources can be driven by the Circuits are individually addressed and contain: a vertical cavity formed by a first reflector and a second reflector configured to reflect infrared light; an active region located in the vertical cavity and configured to emit infrared light; a microresonator configured to receive the infrared light and use the infrared light to generate visible light via optical parameter oscillation; and an output coupler configured to couple the visible light from the microresonator into free space or a waveguide, Wherein the first microresonator in the first visible light source in the visible light source array and the second microresonator in the second visible light source in the visible light source array have different sizes, different shapes, different materials or combinations thereof, And configured to produce visible light of different colors.
TW111115451A 2021-04-26 2022-04-22 Multi-color visible light source including integrated vcsels and integrated photonic cavities TW202308245A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202163179913P 2021-04-26 2021-04-26
US63/179,913 2021-04-26
US17/344,744 2021-06-10
US17/344,744 US20220345220A1 (en) 2021-04-26 2021-06-10 Multi-color visible light source including integrated vcsels and integrated photonic cavities

Publications (1)

Publication Number Publication Date
TW202308245A true TW202308245A (en) 2023-02-16

Family

ID=81748725

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111115451A TW202308245A (en) 2021-04-26 2022-04-22 Multi-color visible light source including integrated vcsels and integrated photonic cavities

Country Status (3)

Country Link
EP (1) EP4331065A1 (en)
TW (1) TW202308245A (en)
WO (1) WO2022232076A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11709325B1 (en) * 2023-01-06 2023-07-25 Mloptic Corp. Waveguide calibration

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2517321B1 (en) * 2009-12-19 2021-04-14 Lumentum Operations LLC System for combining laser arrays for digital outputs
US8257990B2 (en) * 2009-12-30 2012-09-04 Intel Corporation Hybrid silicon vertical cavity laser with in-plane coupling

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11709325B1 (en) * 2023-01-06 2023-07-25 Mloptic Corp. Waveguide calibration

Also Published As

Publication number Publication date
WO2022232076A1 (en) 2022-11-03
EP4331065A1 (en) 2024-03-06

Similar Documents

Publication Publication Date Title
US11675199B1 (en) Systems, devices, and methods for tiled multi-monochromatic displays
US20210159373A1 (en) Light extraction for micro-leds
JP2023507052A (en) Birefringent polymer-based surface relief gratings
US11245055B2 (en) LED arrays having a reduced pitch
US11749964B2 (en) Monolithic light source with integrated optics based on nonlinear frequency conversion
KR20230053607A (en) Enhanced light outcoupling of micro LEDs using plasmon scattering of metal nanoparticles
US20230101633A1 (en) Achromatic beam deflector for light-efficient display panel
TW202308245A (en) Multi-color visible light source including integrated vcsels and integrated photonic cavities
TW202244551A (en) Visible light source including integrated vcsels and integrated photonic cavities
US20220345220A1 (en) Multi-color visible light source including integrated vcsels and integrated photonic cavities
WO2023163919A1 (en) Multilayer flat lens for ultra-high resolution phase delay and wavefront reshaping
WO2023055894A1 (en) Achromatic beam deflector for light-efficient display panel
US20220209044A1 (en) Carrier confinement in leds by valence band engineering
CN117203866A (en) Multicolor visible light source comprising integrated VCSEL and integrated photon cavity
CN117321867A (en) Visible light source comprising integrated VCSEL and integrated photon cavity
US20230307584A1 (en) Directional light extraction from micro-led via localization of light emitting area using mesa sidewall epitaxy
US20240134115A1 (en) Waveguide coupler for coupling laser beam into photonic integrated circuit
US20220269083A1 (en) Beam combining architectures for scanning display systems
US20230408826A1 (en) Near-eye display architectures
US20240093984A1 (en) Fringe projector for depth sensing
WO2022140176A1 (en) Carrier confinement in leds by valence band engineering