TW202307578A - Forming multiple aerial images in a single lithography exposure pass - Google Patents

Forming multiple aerial images in a single lithography exposure pass Download PDF

Info

Publication number
TW202307578A
TW202307578A TW111110990A TW111110990A TW202307578A TW 202307578 A TW202307578 A TW 202307578A TW 111110990 A TW111110990 A TW 111110990A TW 111110990 A TW111110990 A TW 111110990A TW 202307578 A TW202307578 A TW 202307578A
Authority
TW
Taiwan
Prior art keywords
energy
pulse
pulses
optical
optical source
Prior art date
Application number
TW111110990A
Other languages
Chinese (zh)
Inventor
趙穎博
約書亞 瓊 索恩斯
Original Assignee
美商希瑪有限責任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商希瑪有限責任公司 filed Critical 美商希瑪有限責任公司
Publication of TW202307578A publication Critical patent/TW202307578A/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70558Dose control, i.e. achievement of a desired dose
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70041Production of exposure light, i.e. light sources by pulsed sources, e.g. multiplexing, pulse duration, interval control or intensity control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/7005Production of exposure light, i.e. light sources by multiple sources, e.g. light-emitting diodes [LED] or light source arrays

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Lasers (AREA)

Abstract

A method for controlling an energy of a pulsed light beam is described. The method includes: producing a plurality of intermingled sets of pulses of the light beam from an optical source, each set of light beam pulses associated with a distinct primary wavelength and a distinct target energy; receiving a measurement of an energy of a prior pulse of the light beam; determining an energy error including: comparing the measured energy of the prior light beam pulse to a particular target energy associated with a particular set of light beam pulses if the prior light beam pulse is in the particular set of light beam pulses; and adjusting at least one component of the optical source to thereby adjust, based on the determined energy error, the energy of a subsequent pulse in the particular set of light beam pulses.

Description

在單一微影曝光遍次中形成多個空間影像Form multiple spatial images in a single lithography exposure pass

本發明係關於在單一微影曝光遍次中形成多個空間影像。舉例而言,可使用下文論述之技術,以形成三維半導體組件。The present invention relates to the formation of multiple aerial images in a single lithographic exposure pass. For example, the techniques discussed below may be used to form three-dimensional semiconductor devices.

光微影為將半導體電路圖案化於諸如矽晶圓之基板上的製程。光微影光學源提供用於曝光晶圓上之光阻的深紫外線(DUV)光。用於光微影之DUV光係由準分子光學源產生。通常,該光學源為雷射源,且脈衝光束為脈衝雷射光束。光束穿過光束遞送單元、倍縮光罩或遮罩,且接著投影至已製備之矽晶圓上。以此方式,晶片設計經圖案化至光阻上,該光阻接著經蝕刻及清潔,且接著重複該處理。Photolithography is the process of patterning semiconductor circuits on substrates such as silicon wafers. Photolithography optical sources provide deep ultraviolet (DUV) light for exposing photoresists on the wafer. The DUV light used for photolithography is generated by an excimer optical source. Typically, the optical source is a laser source and the pulsed beam is a pulsed laser beam. The beam passes through a beam delivery unit, a reticle or mask, and is then projected onto the prepared silicon wafer. In this way, the wafer design is patterned onto the photoresist, which is then etched and cleaned, and the process then repeated.

在一些一般態樣中,描述一種用於控制一脈衝光束之一能量的方法。該方法包括:產生來自一光學源之該光束之脈衝的複數個摻和集合,每一光束脈衝集合與一相異主波長及一相異目標能量相關聯;接收該光束之一先前脈衝之一能量的一量測;判定一能量誤差,其包括若該先前光束脈衝在一特定光束脈衝集合中,則比較該先前光束脈衝之該所量測能量與相關聯於該特定光束脈衝集合之一特定目標能量;及調整該光學源之至少一個分量以藉此基於該經判定能量誤差而調整該特定光束脈衝集合中之一後續脈衝的該能量。In some general aspects, a method for controlling the energy of a pulsed beam of light is described. The method includes: generating a plurality of blended sets of pulses of the beam from an optical source, each set of beam pulses associated with a distinct dominant wavelength and a distinct target energy; receiving one of a previous pulse of the beam A measurement of energy; determining an energy error comprising comparing the measured energy of the previous beam pulse with a specific energy associated with the particular set of beam pulses if the previous beam pulse is in a particular set of beam pulses. a target energy; and adjusting at least one component of the optical source to thereby adjust the energy of a subsequent pulse in the particular set of beam pulses based on the determined energy error.

實施方式可包括以下特徵中之一或多者。舉例而言,該方法可包括接收與每一光束脈衝集合相關聯之每一相異目標能量。該方法可包括分類該先前光束脈衝是否在該特定光束脈衝集合中。該方法可包括判定對該光學源之該至少一個分量的調整量。該方法可包括基於該先前光束脈衝是否在該特定光束脈衝集合中而校正對該光學源之該至少一個分量的該調整量。Implementations can include one or more of the following features. For example, the method may include receiving each distinct target energy associated with each set of beam pulses. The method may include classifying whether the previous beam pulse is in the particular set of beam pulses. The method may include determining an amount to adjust the at least one component of the optical source. The method may include correcting the adjustment of the at least one component of the optical source based on whether the previous beam pulse was in the particular set of beam pulses.

可藉由改變提供至與該光學源之一光學振盪器相關聯之電極的一電壓來調整該光學源之至少一個分量。At least one component of the optical source can be adjusted by varying a voltage supplied to electrodes associated with an optical oscillator of the optical source.

在其他一般態樣中,一種系統包括:一光學源設備及與該光學源設備通信之一能量控制設備。該光學源設備包括:一光學振盪器,其經組態以回應於一激勵信號而產生一光脈衝,該光脈衝具有一光譜屬性;及一光譜調整設備,其經組態以控制該光脈衝之該光譜屬性。該能量控制設備經組態以:判定與該所產生光脈衝之該光譜屬性相關聯的一目標能量;及至少基於該經判定目標能量而判定對該激勵信號之一調整,該調整使得該光學振盪器產生一或多個後續光脈衝以考慮該光譜調整設備之一組態中的一改變。In other general aspects, a system includes an optical source device and an energy control device in communication with the optical source device. The optical source device includes: an optical oscillator configured to generate an optical pulse in response to an excitation signal, the optical pulse having a spectral property; and a spectral adjustment device configured to control the optical pulse of the spectral properties. The energy control device is configured to: determine a target energy associated with the spectral property of the generated light pulse; and determine an adjustment to the excitation signal based at least on the determined target energy, the adjustment causing the optical The oscillator generates one or more subsequent light pulses to account for a change in a configuration of the spectral adjustment device.

實施方式可包括以下特徵中之一或多者。舉例而言,對該激勵信號之該調整可引起對該一或多個後續產生光脈衝之該能量的一調整。Implementations can include one or more of the following features. For example, the adjustment of the excitation signal can cause an adjustment of the energy of one or more subsequently generated light pulses.

與該所產生光脈衝之該光譜屬性相關聯的該目標能量可先前定義為與該所產生光脈衝之該光譜屬性相關聯。The target energy associated with the spectral property of the generated light pulse can be previously defined as being associated with the spectral property of the generated light pulse.

該光學振盪器可與複數個轉移函數相關聯,每一轉移函數與該光譜調整設備之一特定組態及該光譜屬性之一特定值相關聯。並且,該能量控制設備可經組態以基於與用於產生該一或多個後續光脈衝之該光譜調整設備之該特定組態相關聯的該轉移函數而判定對該激勵信號之該調整。The optical oscillator can be associated with a plurality of transfer functions, each transfer function being associated with a specific configuration of the spectral tuning device and a specific value of the spectral property. Also, the energy control device may be configured to determine the adjustment of the excitation signal based on the transfer function associated with the particular configuration of the spectral adjustment device used to generate the one or more subsequent light pulses.

該光譜調整設備可包括彼此光通信地配置的至少一個稜鏡及一繞射元件,且每一轉移函數與至少一個稜鏡之一不同狀態相關聯。The spectral adjustment device may comprise at least one plenum and a diffractive element arranged in optical communication with each other, and each transfer function is associated with a different state of the at least one plenum.

一光脈衝之該光譜屬性可為彼光脈衝之一中心波長,且該光譜調整設備之每一組態可對應於該波長之一特定值。The spectral property of an optical pulse may be a central wavelength of that optical pulse, and each configuration of the spectral adjustment device may correspond to a specific value of this wavelength.

該系統可進一步包括經組態以量測該光脈衝之一能量的一量測設備。該能量控制設備可經組態以藉由比較該目標能量與該所量測能量而判定一能量誤差,且對該激勵信號之該調整的該判定可亦基於該能量誤差。The system can further include a measurement device configured to measure an energy of the light pulse. The energy control device may be configured to determine an energy error by comparing the target energy to the measured energy, and the determination of the adjustment to the excitation signal may also be based on the energy error.

該能量控制設備可經組態以藉由判定對該激勵信號之使得該光學振盪器產生與該所產生光脈衝之該光譜屬性相關聯之一或多個後續光脈衝的該調整來判定對該激勵信號之使得該光學振盪器產生該一或多個後續光脈衝的該調整。The energy control device may be configured to determine the The adjustment of the excitation signal causes the optical oscillator to produce the one or more subsequent light pulses.

該能量控制設備可經組態以藉由自經組態以接收該光脈衝之一微影曝光設備接收一通信來判定與該所產生光脈衝之該光譜屬性相關聯的該目標能量,該通信提供一目標能量集合,該集合中之每一目標能量與一光譜屬性相關聯。The energy control apparatus may be configured to determine the target energy associated with the spectral property of the generated light pulse by receiving a communication from a lithographic exposure apparatus configured to receive the light pulse, the communication A set of target energies is provided, each target energy in the set being associated with a spectral attribute.

在其他一般態樣中,一種能量控制設備包括一控制模組。該控制模組經組態以接收自一光學源發射之一先前光脈衝的一能量值。該控制模組經組態以執行一比較,其包括僅在該先前光脈衝在與一第一主波長相關聯之一第一光束脈衝集合中時才比較該接收到的能量值與一第一目標能量;或僅在該先前光脈衝在與不同於該第一主波長的一第二主波長相關聯之一第二光束脈衝集合中時才比較該接收到的能量值與不同於該第一目標能量之一第二目標能量。該控制模組經組態以基於該比較而調整該光學源之至少一個分量,以藉此調整具有與該先前光脈衝相關聯之該主波長的一後續光脈衝之該能量。In other general aspects, an energy control device includes a control module. The control module is configured to receive an energy value of a previous light pulse emitted from an optical source. The control module is configured to perform a comparison comprising comparing the received energy value to a first set of beam pulses only if the previous light pulse was in a first set of beam pulses associated with a first dominant wavelength. target energy; or comparing the received energy value with a value different from the first dominant wavelength only if the previous light pulse was in a second set of beam pulses associated with a second dominant wavelength different from the first dominant wavelength One of the target energies is the second target energy. The control module is configured to adjust at least one component of the optical source based on the comparison to thereby adjust the energy of a subsequent light pulse having the dominant wavelength associated with the previous light pulse.

實施方式可包括以下特徵中之一或多者。舉例而言,該控制模組可包括一類別模組,該類別模組經組態以分類該先前光脈衝在該第一光束脈衝集合中抑或在該第二光束脈衝集合中。該控制模組可包括一比較器,該比較器經組態以判定該先前光脈衝在該第一光束脈衝集合抑或該第二光束脈衝集合中,且基於該判定而提供該第一目標能量或該第二目標能量。該控制模組可包括一信號模組,該信號模組經組態以判定待對該光學源之該至少一個分量作出之調整量。Implementations can include one or more of the following features. For example, the control module may include a classification module configured to classify the previous light pulses as being in the first set of beam pulses or in the second set of beam pulses. The control module may include a comparator configured to determine whether the previous light pulse is in the first set of beam pulses or the second set of beam pulses, and based on the determination to provide the first target energy or The second target energy. The control module may include a signal module configured to determine an amount of adjustment to be made to the at least one component of the optical source.

該控制模組可包括一校正模組,該校正模組經組態以基於該先前光脈衝在該第一光束脈衝集合抑或該第二光束脈衝集合中而校正待對該光學源之該至少一個分量作出之該調整量。該校正模組可經組態以藉由將一濾波器應用於該調整量而校正該調整量。該濾波器可包括一陷波濾波器,該陷波濾波器傳輸具有在一第一頻帶中之一頻率的資訊且實質上阻擋具有在該第一頻帶之外之一頻率的資訊。該濾波器可包括一卡門(Kalman)濾波器。該校正模組可經組態以藉由將一前授校正應用於該調整量而校正該調整量。The control module may include a calibration module configured to correct the at least one optical source to be based on whether the previous light pulse was in the first set of beam pulses or the second set of beam pulses The adjustment made to the serving size. The correction module can be configured to correct the adjustment by applying a filter to the adjustment. The filter may include a notch filter that transmits information having a frequency in a first frequency band and substantially blocks information having a frequency outside the first frequency band. The filter may include a Kalman filter. The calibration module can be configured to correct the adjustment by applying a forward correction to the adjustment.

該控制模組經組態以基於該比較而調整該光學源之至少一個分量以藉此調整具有與該先前光脈衝相關聯之該主波長的該後續光脈衝之該能量可包括將一信號發送至該光學源,以藉此改變提供至與該光學源之一光學振盪器相關聯之電極的一電壓。該控制模組經組態以接收該先前光脈衝之該能量值可包括該控制模組經組態以接收自該光學源發射之複數個先前光脈衝的該能量值。該控制模組可經組態以基於該比較而調整該光學源之該至少一個分量,以藉此調整具有與該先前光脈衝相關聯之該主波長的複數個後續光脈衝之該能量。該控制模組可經組態以基於該比較而維持不具有與該先前光脈衝相關聯之該主波長的一後續光脈衝之該能量。The control module configured to adjust at least one component of the optical source based on the comparison to thereby adjust the energy of the subsequent optical pulse having the dominant wavelength associated with the previous optical pulse may include sending a signal to the optical source to thereby vary a voltage supplied to electrodes associated with an optical oscillator of the optical source. The control module configured to receive the energy value of the previous light pulse may include the control module configured to receive the energy value of a plurality of previous light pulses emitted from the optical source. The control module can be configured to adjust the at least one component of the optical source based on the comparison to thereby adjust the energy of subsequent light pulses having the dominant wavelength associated with the previous light pulse. The control module can be configured to maintain the energy of a subsequent light pulse without the dominant wavelength associated with the previous light pulse based on the comparison.

本文中論述用於在單一微影遍次中形成各自處於不同平面的多於一個空間影像,及使用該等空間影像形成三維半導體組件之技術。Discussed herein are techniques for forming more than one aerial image, each in a different plane, in a single lithography pass, and using the aerial images to form three-dimensional semiconductor devices.

參考圖1A,光微影系統100包括光學(或光)源105,其將光束160提供至微影曝光設備169,該微影曝光設備169處理由晶圓固持器或載物台171接收到的晶圓170。光束160為包括在時間上彼此分離之光脈衝之脈衝光束。微影曝光設備169包括投影光學系統175及度量衡系統172,光束160在到達晶圓170之前穿過投影光學系統175。度量衡系統172可包括例如能夠擷取晶圓170及/或光束160在晶圓170處之影像的攝影機或其他裝置,或能夠擷取描述光束160之特性(諸如x-y平面中晶圓170處之光束160的強度)之資料的光學偵測器。微影曝光設備169可為液體浸沒系統或乾式系統。光微影系統100亦可包括控制系統150以控制光源105及/或微影曝光設備169。Referring to FIG. 1A , photolithography system 100 includes an optical (or light) source 105 that provides a light beam 160 to a lithography exposure apparatus 169 that processes light received by a wafer holder or stage 171. Wafer 170. The light beam 160 is a pulsed light beam comprising light pulses separated in time from each other. The lithographic exposure equipment 169 includes a projection optical system 175 and a metrology system 172 , and the light beam 160 passes through the projection optical system 175 before reaching the wafer 170 . Metrology system 172 may include, for example, a camera or other device capable of capturing images of wafer 170 and/or beam 160 at wafer 170, or capable of capturing characteristics describing beam 160, such as the beam at wafer 170 in the x-y plane. 160 intensity) data optical detector. The lithographic exposure apparatus 169 can be a liquid immersion system or a dry system. The photolithography system 100 may also include a control system 150 to control the light source 105 and/or the lithography exposure apparatus 169 .

微電子特徵藉由例如使用光束160使輻射敏感光阻材料層曝光於晶圓170上來形成於晶圓170上。亦參考圖1B,投影光學系統175包括狹縫176、遮罩174,及投射物鏡,其包括透鏡177。光束160進入光學系統175且照射於狹縫176上,且至少一些光束160穿過狹縫176。在圖1A及圖1B之實例中,狹縫176為矩形且使光束160成形為細長矩形成形光束。圖案形成於遮罩174上,且圖案判定成形光束之哪些部分由遮罩174透射及哪些由遮罩174阻隔。圖案之設計藉由待形成於晶圓170上之特定微電子電路設計來判定。Microelectronic features are formed on wafer 170 by exposing a layer of radiation-sensitive photoresist material onto wafer 170 , for example, using beam 160 . Referring also to FIG. 1B , the projection optics system 175 includes a slit 176 , a mask 174 , and a projection objective including a lens 177 . The light beams 160 enter the optical system 175 and impinge on the slits 176 , and at least some of the light beams 160 pass through the slits 176 . In the example of FIGS. 1A and 1B , slit 176 is rectangular and shapes beam 160 into an elongated rectangular shaped beam. A pattern is formed on the mask 174 and the pattern determines which portions of the shaped beam are transmitted and which are blocked by the mask 174 . The design of the pattern is dictated by the specific microelectronic circuit design to be formed on wafer 170 .

成形光束與遮罩174相互作用。藉由遮罩174透射之成形光束之部分穿過投影透鏡177 (且可由投影透鏡177聚焦)且曝光晶圓170。藉由遮罩174透射之成形光束之部分在晶圓170中在x-y平面中形成空間影像。空間影像為由在與遮罩174相互作用之後到達晶圓170之光形成的強度圖案。空間影像在晶圓170處,且大體上在x-y平面中延伸。The shaped beam interacts with the mask 174 . A portion of the shaped beam transmitted by mask 174 passes through (and may be focused by) projection lens 177 and exposes wafer 170 . The portion of the shaped beam transmitted by the mask 174 forms an aerial image in the x-y plane in the wafer 170 . The aerial image is the intensity pattern formed by light that reaches wafer 170 after interacting with mask 174 . The aerial image is at wafer 170 and generally extends in the x-y plane.

系統100能夠在單一曝光遍次期間形成複數個空間影像,其中空間影像中之每一者在晶圓170中沿著z軸處於空間上不同之位置。亦參考圖1C,其展示y-z平面中之晶圓170之橫截面圖,投影光學系統175在單一曝光遍次中沿著z軸在不同平面處形成兩個空間影像173a、173b。如下文更詳細地論述,空間影像173a、173b中之每一者由具有不同主波長之光形成。System 100 is capable of forming a plurality of aerial images during a single exposure pass, where each of the aerial images is at a spatially different location in wafer 170 along the z-axis. Referring also to FIG. 1C , which shows a cross-sectional view of wafer 170 in the y-z plane, projection optics 175 form two aerial images 173a, 173b at different planes along the z-axis in a single exposure pass. As discussed in more detail below, each of the aerial images 173a, 173b is formed from light having different dominant wavelengths.

空間影像沿著z軸之位置取決於光學系統175之特性(包括投影透鏡177及遮罩174),及光束160之波長。透鏡177之聚焦定位取決於入射於透鏡177之光的波長。因此,變化或者控制光束160之波長允許控制空間影像之定位。藉由在單一曝光遍次期間提供光之具有不同主波長之脈衝,可在無需使光學系統175 (或光學系統175之任何組件)及晶圓170沿著z軸相對於彼此移動的情況下在單一曝光遍次中形成各自處於沿著z軸之不同位置的複數個(兩個或更多個)空間影像。The position of the aerial image along the z-axis depends on the characteristics of optical system 175 (including projection lens 177 and mask 174 ), and the wavelength of light beam 160 . The focusing position of the lens 177 depends on the wavelength of the light incident on the lens 177 . Thus, varying or controlling the wavelength of light beam 160 allows control of the positioning of the aerial image. By providing pulses of light with different dominant wavelengths during a single exposure pass, the optical system 175 (or any component of the optical system 175) and the wafer 170 can be shifted relative to each other along the z-axis. A plurality (two or more) of spatial images each at a different position along the z-axis are formed in a single exposure pass.

在圖1A的實例中,藉由投影透鏡177將穿過遮罩174之光聚焦至焦平面。投影透鏡177之焦平面在投影透鏡177與晶圓載物台171之間,其中焦平面沿著z軸之定位取決於光學系統175之屬性及光束160之波長。空間影像173a、173b由具有不同波長之光形成,因此,空間影像173a、173b在晶圓170中之不同位置處。空間影像173a、173b沿著z軸彼此分離一分離距離179。分離距離179取決於形成空間影像173a之光的波長與形成空間影像173b之光的波長之間的差。In the example of FIG. 1A , light passing through mask 174 is focused to the focal plane by projection lens 177 . The focal plane of projection lens 177 is between projection lens 177 and wafer stage 171 , where the positioning of the focal plane along the z-axis depends on the properties of optical system 175 and the wavelength of light beam 160 . The aerial images 173 a , 173 b are formed by light having different wavelengths, and thus, the aerial images 173 a , 173 b are at different positions in the wafer 170 . The aerial images 173a, 173b are separated from each other by a separation distance 179 along the z-axis. The separation distance 179 depends on the difference between the wavelength of the light forming the aerial image 173a and the wavelength of the light forming the aerial image 173b.

晶圓載物台171及遮罩174 (或光學系統175之其他部分)在掃描期間大體上在x、y及z方向上相對於彼此移動以用於常規效能校正及操作,例如,運動可用於實現基本調平、透鏡失真之補償及載物台定位誤差之補償。此相對運動稱為附帶操作運動。然而,在圖1A之系統中,並不依賴於晶圓載物台171及光學系統175之相對運動以形成分離距離179。替代地,分離距離179係由於能夠控制在曝光遍次期間穿過遮罩174之脈衝中的主波長而形成。因此,不同於一些先前系統,分離距離179並不僅藉由使光學系統175及晶圓170沿著z方向相對於彼此移動而產生。此外,在同一曝光遍次期間,空間影像173a及173b皆呈現在晶圓170處。換言之,系統100並不需要在第一曝光遍次中形成空間影像173a且在第二後續曝光遍次中形成空間影像173b。The wafer stage 171 and mask 174 (or other parts of the optical system 175) generally move relative to each other in the x, y, and z directions during scanning for routine performance calibration and manipulation, e.g., motion may be used to achieve Compensation for basic leveling, lens distortion and stage positioning errors. This relative motion is called para-operational motion. However, in the system of FIG. 1A , relative motion of wafer stage 171 and optical system 175 is not relied upon to create separation distance 179 . Alternatively, separation distance 179 results from the ability to control the dominant wavelength in the pulses passing through mask 174 during an exposure pass. Thus, unlike some prior systems, separation distance 179 is not created solely by moving optical system 175 and wafer 170 relative to each other along the z-direction. Additionally, aerial images 173a and 173b are both present at wafer 170 during the same exposure pass. In other words, the system 100 does not need to form the aerial image 173a in a first exposure pass and form the aerial image 173b in a second subsequent exposure pass.

第一空間影像173a中之光在部分178a處與晶圓相互作用,且第二空間影像173b中之光在部分178b處與晶圓相互作用。此等相互作用可在晶圓170上形成電子特徵或其他物理特性,諸如開口或孔洞。由於空間影像173a、173b沿著z軸處於不同平面,因此空間影像173a、173b可用於在晶圓170上形成三維特徵。舉例而言,空間影像173a可用於形成周邊區,且空間影像173b可用於形成沿著z軸處於不同位置的溝道、溝槽或凹部。因此,本文中所論述的技術可用於形成三維半導體組件,諸如三維NAND快閃記憶體組件。The light in the first aerial image 173a interacts with the wafer at portion 178a, and the light in the second aerial image 173b interacts with the wafer at portion 178b. These interactions may form electronic features or other physical features, such as openings or holes, on wafer 170 . Since the aerial images 173 a , 173 b are in different planes along the z-axis, the aerial images 173 a , 173 b can be used to form three-dimensional features on the wafer 170 . For example, aerial image 173a can be used to form a perimeter region, and aerial image 173b can be used to form channels, grooves or recesses at different positions along the z-axis. Accordingly, the techniques discussed herein can be used to form three-dimensional semiconductor devices, such as three-dimensional NAND flash memory devices.

在論述與在單一曝光遍次中形成多個空間影像有關之額外細節之前,關於圖2A至圖2C、圖3A至圖3C及圖4論述光源105及光微影系統100之實例實施方式。Example implementations of light source 105 and photolithography system 100 are discussed with respect to FIGS. 2A-2C , 3A-3C , and 4 before discussing additional details related to forming multiple aerial images in a single exposure pass.

參考圖2A,展示光微影系統200之方塊圖。系統200為系統100 (圖1A)之實施方式的實例。舉例而言,在光微影系統200中,光學源205用作光學源105 (圖1A)。光學源205產生提供至微影曝光設備169之脈衝光束260。光學源205可為例如輸出脈衝光束260 (其可為雷射光束)之準分子光學源。隨著脈衝光束260進入微影曝光設備169,其經導引經過投影光學系統175且投影於晶圓170上。以此方式,將一或多個微電子特徵圖案化至晶圓170上之光阻上,且在後續處理步驟之前顯影及清潔該晶圓,且重複該處理。光微影系統200亦包括控制系統250,該控制系統250在圖2A之實例中連接至光學源205之組件以及至微影曝光設備169以控制系統200之各種操作。控制系統250為圖1A之控制系統250之實施方式的實例。Referring to FIG. 2A , a block diagram of a photolithography system 200 is shown. System 200 is an example of an implementation for system 100 (FIG. 1A). For example, in photolithography system 200, optical source 205 is used as optical source 105 (FIG. 1A). Optical source 205 generates pulsed light beam 260 that is provided to lithography exposure apparatus 169 . The optical source 205 may be, for example, an excimer optical source that outputs a pulsed beam 260 (which may be a laser beam). As pulsed beam 260 enters lithography exposure apparatus 169 , it is directed through projection optics 175 and projected onto wafer 170 . In this way, one or more microelectronic features are patterned onto the photoresist on wafer 170, and the wafer is developed and cleaned prior to subsequent processing steps, and the process is repeated. Photolithography system 200 also includes control system 250 , which in the example of FIG. 2A is connected to components of optical source 205 and to lithography exposure apparatus 169 to control various operations of system 200 . Control system 250 is an example of an implementation for control system 250 of FIG. 1A .

在圖2A中所展示之實例中,光學源205為二級雷射系統,其包括將種子光束224提供至功率放大器(PA) 230之主控振盪器(MO) 212。可將MO 212及PA 230視為光學源205之子系統,或為光學源205之一部分的系統。功率放大器230自主控振盪器212接收種子光束224且放大種子光束224以產生光束260,以供用於微影曝光設備169中。舉例而言,主控振盪器212可發射脈衝種子光束,其具有大致1毫焦耳(milliJoule;mJ)每脈衝之種子脈衝能量,且此等種子脈衝可藉由功率放大器230放大至約10至15 mJ。In the example shown in FIG. 2A , the optical source 205 is a two-stage laser system that includes a master oscillator (MO) 212 that provides a seed beam 224 to a power amplifier (PA) 230 . MO 212 and PA 230 may be considered subsystems of optical source 205 , or systems that are part of optical source 205 . The power amplifier 230 receives the seed beam 224 from the master oscillator 212 and amplifies the seed beam 224 to generate a beam 260 for use in the lithography exposure apparatus 169 . For example, the master oscillator 212 can emit a pulsed seed beam with a seed pulse energy of approximately 1 milliJoule (mJ) per pulse, and these seed pulses can be amplified by the power amplifier 230 to about 10 to 15 mJ.

主控振盪器212包括放電腔室214,其容納兩個細長電極217、作為混合氣體之增益介質219,及用於使氣體在電極217之間循環的風扇。諧振器形成在放電腔室214之一側上的線窄化模組216與放電腔室214之第二側上的輸出耦合器218之間。線窄化模組216可包括繞射光學件,諸如精細地調諧放電腔室214之光譜輸出的光柵。圖2B及圖2C提供關於線窄化模組216之額外細節。The master oscillator 212 includes a discharge chamber 214 containing two elongated electrodes 217 , a gain medium 219 as a mixed gas, and a fan for circulating the gas between the electrodes 217 . A resonator is formed between line narrowing module 216 on one side of discharge chamber 214 and output coupler 218 on a second side of discharge chamber 214 . Line narrowing module 216 may include diffractive optics, such as a grating, to finely tune the spectral output of discharge chamber 214 . 2B and 2C provide additional details regarding line narrowing module 216 .

圖2B為包括線窄化模組216之一或多個個例的光譜特徵選擇模組258之實施方式之實例的方塊圖。光譜特徵選擇模組258耦合至在光學源205中傳播之光。在一些實施方式中(諸如圖2B中所展示),光譜特徵選擇模組258自主控振盪器212之腔室214接收光,以允許在主控振盪器212內對諸如波長及頻寬的光譜特徵進行精細調諧。FIG. 2B is a block diagram of an example of an implementation of spectral feature selection module 258 including one or more instances of line narrowing module 216 . The spectral feature selection module 258 is coupled to the light propagating in the optical source 205 . In some embodiments, such as shown in FIG. 2B , spectral feature selection module 258 receives light from chamber 214 of master oscillator 212 to allow for spectral features such as wavelength and bandwidth to be analyzed within master oscillator 212 . Perform fine tuning.

光譜特徵選擇模組258可包括控制模組,諸如包括呈韌體與軟體之任何組合的電子設備形式之光譜特徵控制模組254。控制模組254連接至一或多個致動系統,諸如光譜特徵致動系統255_1至255_n。致動系統255_1至255_n中之每一者可包括連接至光學系統257之各別光學特徵256_1至256_n的一或多個致動器。光學特徵256_1至256_n經組態以調整所產生光束260的特定特性,以藉此調整光束260之光譜特徵。控制模組254自控制系統250接收控制信號,控制信號包括操作或控制致動系統255_1至255_n中之一或多者的特定命令。致動系統255_1至255_n可經選擇及設計為在一起工作,亦即串聯地工作,或致動系統255_1至255_n可經組態以單獨地工作。此外,每一致動系統255_1至255_n可經最佳化以對特定干擾類別作出回應。Spectral signature selection module 258 may include a control module, such as spectral signature control module 254 in the form of an electronic device including any combination of firmware and software. The control module 254 is connected to one or more actuation systems, such as spectral signature actuation systems 255_1 to 255_n. Each of the actuation systems 255_1 to 255 — n may include one or more actuators connected to a respective optical feature 256_1 to 256 — n of the optical system 257 . The optical features 256_1 to 256 — n are configured to adjust certain characteristics of the generated light beam 260 to thereby adjust the spectral characteristics of the light beam 260 . The control module 254 receives control signals from the control system 250 , and the control signals include specific commands to operate or control one or more of the actuation systems 255_1 to 255_n. The actuation systems 255_1 to 255_n can be selected and designed to work together, ie in series, or the actuation systems 255_1 to 255_n can be configured to work individually. Furthermore, each actuation system 255_1 to 255_n can be optimized to respond to a particular type of disturbance.

每一光學特徵256_1至256_n光學地耦合至由光學源105產生之光束260。光學系統257可實施為如圖2C中所展示之線窄化模組216C。線窄化模組包括色散光學元件(諸如反射光柵291)及折射光學元件(諸如稜鏡292、293、294、295)作為光學特徵256_1至256_n。稜鏡292、293、294、295中之一或多者可為可旋轉的。此線窄化模組之實例可見於2009年10月23日申請之名稱為「SYSTEM METHOD AN APPARATUS FOR SELECTING AND CONTROLLING LIGHT SOURCE BANDWIDTH」('306申請)且在2012年3月27日作為美國專利8,144,739授予的美國申請案第12/605,306號中,該申請案之內容以引用之方式併入本文中,如同其全文闡述一般。在'306申請中,描述線窄化模組,其包括光束擴展器(包括一或多個稜鏡292、293、294、295)及色散元件,諸如光柵291。圖2C中未展示用於諸如光柵291之可驅動光學特徵及稜鏡292、293、294、295中之一或多者的各別致動系統。Each optical feature 256_1 to 256 — n is optically coupled to the light beam 260 generated by the optical source 105 . Optical system 257 may be implemented as line narrowing module 216C as shown in Figure 2C. The line narrowing module includes dispersive optical elements (such as reflective grating 291 ) and refractive optical elements (such as gratings 292 , 293 , 294 , 295 ) as optical features 256_1 to 256_n. One or more of the bells 292, 293, 294, 295 may be rotatable. An example of this line narrowing module can be found in the application titled "SYSTEM METHOD AN APPARATUS FOR SELECTING AND CONTROLLING LIGHT SOURCE BANDWIDTH" (the '306 application) on October 23, 2009 and as US Patent 8,144,739 on March 27, 2012 In issued US application Ser. No. 12/605,306, the contents of that application are incorporated herein by reference as if set forth in its entirety. In the '306 application, a line narrowing module is described that includes a beam expander (including one or more beams 292 , 293 , 294 , 295 ) and a dispersive element, such as a grating 291 . The respective actuation systems for one or more of the actuatable optical features such as the grating 291 and the gates 292, 293, 294, 295 are not shown in FIG. 2C.

致動系統255_1至255_n之致動器中之每一者為用於移動或控制光學系統257之各別光學特徵256_1至256_n的機械裝置。致動器自模組254接收能量,且將彼能量轉換成經賦予至光學系統257之光學特徵256_1至256_n的某種運動。舉例而言,在'306申請中,描述致動系統,諸如力裝置(將力施加至光柵區)及用於使光束擴展器之稜鏡中之一或多者稜鏡的旋轉載物台。致動系統255_1至255_n可包括例如馬達,諸如步進馬達、閥門、壓力控式裝置、壓電裝置、線性馬達、液壓致動器,及/或話音線圈。Each of the actuators of the actuation systems 255_1 to 255 — n is a mechanical device for moving or controlling a respective optical feature 256_1 to 256 — n of the optical system 257 . The actuator receives energy from the module 254 and converts that energy into a certain motion imparted to the optical features 256_1 to 256_n of the optical system 257 . For example, in the '306 application, actuation systems such as force devices (to apply force to grating regions) and rotating stages for expanding one or more of the beam expander's beams are described. The actuation systems 255_1 to 255_n may include, for example, motors such as stepper motors, valves, pressure-controlled devices, piezoelectric devices, linear motors, hydraulic actuators, and/or voice coils.

返回至圖2A,主控振盪器212亦包括自輸出耦合器218接收輸出光束之線中心分析模組220,及按需要修正輸出光束之大小或形狀以形成種子光束224的光束耦合光學系統222。線中心分析模組220為可用於量測或監視種子光束224之波長的量測系統。線中心分析模組220可置放於光學源205中之其他位置處,或其可置放於光學源205之輸出端處。Returning to FIG. 2A , the master oscillator 212 also includes a line center analysis module 220 that receives the output beam from the output coupler 218 , and a beam coupling optical system 222 that modifies the size or shape of the output beam as needed to form a seed beam 224 . The line center analysis module 220 is a measurement system that can be used to measure or monitor the wavelength of the seed beam 224 . The line center analysis module 220 may be placed elsewhere in the optical source 205 , or it may be placed at the output of the optical source 205 .

用於放電腔室214中之混合氣體可為適用於在應用所需之波長及頻寬下產生光束的任何氣體。對於準分子源,除作為緩衝氣體之氦氣及/或氖氣之外,氣體混合物可含有諸如氬氣或氪氣之惰性氣體(稀有氣體)、諸如氟或氯之鹵素及微量的氙。氣體混合物之特定實例包括在約193 nm之波長下發射光的氟化氬(ArF)、在約248 nm之波長下發射光的氟化氪(KrF),或在約351 nm之波長下發射光的氯化氙(XeCl)。藉由將電壓施加至細長電極217,在高電壓放電中用短(例如奈秒)電流脈衝泵浦準分子增益介質(氣體混合物)。The gas mixture used in the discharge chamber 214 can be any gas suitable for generating a light beam at the wavelength and bandwidth required by the application. For the excimer source, the gas mixture may contain inert gases (noble gases) such as argon or krypton, halogens such as fluorine or chlorine, and traces of xenon, in addition to helium and/or neon as buffer gases. Specific examples of gas mixtures include argon fluoride (ArF) which emits light at a wavelength of about 193 nm, krypton fluoride (KrF) which emits light at a wavelength of about 248 nm, or krypton fluoride (KrF) which emits light at a wavelength of about 351 nm xenon chloride (XeCl). By applying a voltage to the elongate electrode 217, the excimer gain medium (gas mixture) is pumped with short (eg, nanosecond) current pulses in a high voltage discharge.

功率放大器230包括光束耦合光學系統232,該光束耦合光學系統232自主控振盪器212接收種子光束224且將光束導引經過放電腔室240,且導引至光束轉向光學元件248,該光束轉向光學元件248修正或改變種子光束224之方向以使得將該種子光束發送回至放電腔室240。放電腔室240包括一對細長電極241、作為混合氣體之增益介質219,及用於使混合氣體在電極241之間循環的風扇。Power amplifier 230 includes beam coupling optics 232 that receive seed beam 224 from master oscillator 212 and direct the beam through discharge chamber 240 and to beam steering optics 248, which beam steering optics Element 248 modifies or changes the direction of seed beam 224 so that it is sent back to discharge chamber 240 . The discharge chamber 240 includes a pair of elongated electrodes 241 , a gain medium 219 as a mixed gas, and a fan for circulating the mixed gas between the electrodes 241 .

輸出光束260經導引經過頻寬分析模組262,可於其中量測光束260之各種參數(諸如頻寬或波長)。輸出光束260亦可經導引經過光束製備系統263。光束製備系統263可包括例如脈衝伸展器,其中輸出光束260之脈衝中之每一者在時間上(例如在光延遲單元中)伸展,以調整照射微影曝光設備169之光束的效能屬性。光束製備系統263亦可包括能夠作用於光束260之其他組件,諸如反射及/或折射光學元件(諸如透鏡及鏡面)、濾光器,及光學光圈(包括自動快門)。The output beam 260 is directed through a bandwidth analysis module 262, where various parameters of the beam 260 (such as bandwidth or wavelength) can be measured. The output beam 260 may also be directed through a beam preparation system 263 . Beam preparation system 263 may include, for example, a pulse stretcher in which each of the pulses of output beam 260 is stretched in time (eg, in an optical delay unit) to adjust the performance properties of the beam striking lithographic exposure apparatus 169 . Beam preparation system 263 may also include other components capable of acting on beam 260, such as reflective and/or refractive optical elements (such as lenses and mirrors), filters, and optical apertures (including automatic shutters).

光微影系統200亦包括控制系統250。在圖2A中展示之實施方式中,控制系統250連接至光學源205之各種組件。舉例而言,控制系統250可藉由將一或多個信號發送至光學源205來控制光學源205何時發射光脈衝或包括一或多個光脈衝之光脈衝突發。控制系統250亦連接至微影曝光設備169。因此,控制系統250亦可控制微影曝光設備169之各種態樣。舉例而言,控制系統250可控制晶圓170之曝光,且因此可用於控制如何將電子特徵印刷於晶圓170上。在一些實施方式中,控制系統250可藉由控制狹縫176在x-y平面中之運動(圖1B)來控制晶圓170之掃描。此外,控制系統250可與度量衡系統172及/或光學系統175交換資料。The photolithography system 200 also includes a control system 250 . In the embodiment shown in FIG. 2A , a control system 250 is connected to the various components of the optical source 205 . For example, control system 250 may control when optical source 205 emits a pulse of light or a burst of pulses of light comprising one or more pulses of light by sending one or more signals to light source 205 . The control system 250 is also connected to the lithography exposure apparatus 169 . Therefore, the control system 250 can also control various aspects of the lithography exposure apparatus 169 . For example, control system 250 may control the exposure of wafer 170 and thus may be used to control how electronic features are printed on wafer 170 . In some embodiments, the control system 250 can control the scanning of the wafer 170 by controlling the movement of the slit 176 in the x-y plane (FIG. 1B). Additionally, control system 250 may exchange data with metrology system 172 and/or optical system 175 .

微影曝光設備169亦可包括例如溫度控制裝置(諸如空氣調節裝置及/或加熱裝置),及/或用於各種電氣組件之電源供應器。控制系統250亦可控制此等組件。在一些實施方式中,控制系統250實施為包括多於一個子控制系統,且至少一個子控制系統(微影控制器)專用於控制微影曝光設備169之態樣。在此等實施方式中,控制系統250可用於作為使用微影控制器之替代或補充而控制微影曝光設備169之態樣。Lithographic exposure apparatus 169 may also include, for example, temperature control devices, such as air conditioning devices and/or heating devices, and/or power supplies for various electrical components. Control system 250 may also control these components. In some embodiments, the control system 250 is implemented to include more than one sub-control system, and at least one sub-control system (lithography controller) is dedicated to controlling aspects of the lithography exposure apparatus 169 . In such embodiments, the control system 250 may be used to control aspects of the lithography exposure apparatus 169 as an alternative or in addition to using a lithography controller.

控制系統250包括電子處理器251、電子儲存器252及I/O介面253。電子處理器251包括適合於執行電腦程式之一或多個處理器,諸如通用或專用微處理器,及具有任何種類之數位電腦的任一或多個處理器。通常,電子處理器自唯讀記憶體、隨機存取記憶體或其兩者接收指令及資料。電子處理器251可為任何類型之電子處理器。Control system 250 includes electronic processor 251 , electronic storage 252 and I/O interface 253 . Electronic processor 251 includes one or more processors suitable for executing computer programs, such as general or special purpose microprocessors, and any one or more processors of any kind of digital computer. Generally, electronic processors receive instructions and data from read-only memory, random-access memory, or both. Electronic processor 251 may be any type of electronic processor.

電子儲存器252可為諸如RAM之揮發性記憶體,或非揮發性記憶體。在一些實施方式中,且電子儲存器252包括非揮發性及揮發性部分或組件。電子儲存器252可儲存用於控制系統250之操作、控制系統250之組件及/或由控制系統250控制之系統的資料及資訊。資訊可儲存於例如查找表或資料庫中。舉例而言,電子儲存器252可儲存指示光束260在不同操作條件及效能情境下之不同屬性之值的資料。Electronic storage 252 may be volatile memory, such as RAM, or non-volatile memory. In some implementations, and electronic storage 252 includes non-volatile and volatile portions or components. Electronic storage 252 may store data and information for the operation of control system 250 , components of control system 250 , and/or systems controlled by control system 250 . The information may be stored, for example, in a lookup table or a database. For example, electronic storage 252 may store data indicative of values of different properties of light beam 260 under different operating conditions and performance scenarios.

此外,電子儲存器252可儲存指示在使用期間光束260之參數的不同配方或處理程式259。舉例而言,電子儲存器252可儲存指示特定曝光遍次中光束260中之每一脈衝之波長的配方。配方可指示不同曝光遍次之不同波長。下文論述之波長控制技術可在逐脈衝基礎上應用。換言之,可針對曝光遍次中之每一個別脈衝控制波長含量,以促進在沿著z軸之所要位置處形成空間影像。Additionally, electronic storage 252 may store various recipes or processing programs 259 indicative of parameters of light beam 260 during use. For example, electronic storage 252 may store a recipe indicating the wavelength of each pulse in beam 260 in a particular exposure pass. Recipes may dictate different wavelengths for different exposure passes. The wavelength control techniques discussed below can be applied on a pulse-by-pulse basis. In other words, the wavelength content can be controlled for each individual pulse in an exposure pass to facilitate the formation of an aerial image at a desired location along the z-axis.

電子儲存器252亦可儲存指令(可能作為電腦程式),該等指令在執行時使得處理器251與控制系統250、光學系統205及/或微影曝光設備169中之組件通信。Electronic storage 252 may also store instructions (possibly as a computer program) that, when executed, cause processor 251 to communicate with components in control system 250 , optical system 205 , and/or lithographic exposure apparatus 169 .

I/O介面253為允許控制系統250自操作者、光學系統205、微影曝光設備169、光學系統205及/或微影曝光設備169內之任何組件或系統,及/或在另一電子裝置上運行之自動程序接收資料及信號,及/或向該等實體提供資料及信號的任何種類之電子介面。舉例而言,I/O介面253可包括視覺顯示器、鍵盤及通信介面中之一或多者。I/O interface 253 is a function that allows control of system 250 from an operator, optical system 205, lithographic exposure apparatus 169, any component or system within optical system 205 and/or lithographic exposure apparatus 169, and/or in another electronic device Electronic interfaces of any kind that receive data and signals from automated programs running on them and/or provide data and signals to such entities. For example, I/O interface 253 may include one or more of a visual display, a keyboard, and a communication interface.

光束260 (及光束160)為脈衝光束,且可包括在時間上彼此分離的一或多個脈衝突發。每一突發可包括一或多個光脈衝。在一些實施方式中,一突發包括數百個脈衝,例如100至400個脈衝。圖3A至圖3C提供光學源205中之脈衝及突發之產生的概觀。圖3A展示晶圓曝光信號300隨時間變化之振幅,圖3B展示閘信號315隨時間變化之振幅,且圖3C展示觸發信號隨時間變化之振幅。Beam 260 (and beam 160) is a pulsed beam, and may include one or more bursts of pulses that are separated in time from each other. Each burst may include one or more light pulses. In some embodiments, a burst includes hundreds of pulses, such as 100 to 400 pulses. 3A-3C provide an overview of the generation of pulses and bursts in the optical source 205 . FIG. 3A shows the amplitude of the wafer exposure signal 300 over time, FIG. 3B shows the amplitude of the gate signal 315 over time, and FIG. 3C shows the amplitude of the trigger signal over time.

控制系統250可經組態以將晶圓曝光信號300發送至光學源205,以控制光學源205產生光束260。在圖3A中所展示之實例中,晶圓曝光信號300在時間段307具有高位值305 (例如1),在時間段307期間,光學源205產生光脈衝之突發。晶圓曝光信號300另外在晶圓170不經曝光時具有低位值310 (例如0)。Control system 250 may be configured to send wafer exposure signal 300 to optical source 205 to control optical source 205 to generate light beam 260 . In the example shown in FIG. 3A , wafer exposure signal 300 has a high value 305 (eg, 1) during time period 307 during which optical source 205 produces a burst of light pulses. Wafer exposure signal 300 additionally has a low bit value 310 (eg, 0) when wafer 170 is not exposed.

參考圖3B,光束260為脈衝光束,且光束260包括脈衝之突發。控制系統250亦藉由將閘信號315發送至光學源205來控制脈衝之突發的持續時間及頻率。閘信號315在脈衝突發期間具有高位值320 (例如,1),且在連續突發之間的時間期間具有低位值325 (例如,0)。在所展示的實例中,在閘信號315具有高位值時的持續時間亦為突發316之持續時間。該等突發在時間上以突發間時間間隔分離。在突發間時間間隔期間,微影曝光設備169可將下一晶粒定位於晶圓170上以供曝光。Referring to FIG. 3B , beam 260 is a pulsed beam, and beam 260 includes bursts of pulses. The control system 250 also controls the duration and frequency of the burst of pulses by sending a gate signal 315 to the optical source 205 . The gate signal 315 has a high value 320 (eg, 1) during bursts of pulses and a low value 325 (eg, 0) during the time between consecutive bursts. In the example shown, the duration when gate signal 315 has a high value is also the duration of burst 316 . The bursts are separated in time by inter-burst intervals. During the inter-burst intervals, lithography exposure apparatus 169 may position the next die on wafer 170 for exposure.

參考圖3C,控制系統250亦使用觸發信號330來控制脈衝於每一突發內之重複率。觸發信號330包括觸發340,將該等觸發中之一者提供至光學源205以使得光學源205產生光脈衝。每次產生脈衝時,控制系統250可將觸發340發送至源205。因此,由光學源205產生之脈衝的重複率(兩個連續脈衝之間的時間)可藉由觸發信號330設定。Referring to FIG. 3C, the control system 250 also uses the trigger signal 330 to control the repetition rate of pulses within each burst. Trigger signal 330 includes trigger 340, one of which is provided to optical source 205 to cause optical source 205 to generate a pulse of light. The control system 250 may send a trigger 340 to the source 205 each time a pulse is generated. Thus, the repetition rate (time between two consecutive pulses) of the pulses generated by the optical source 205 can be set by the trigger signal 330 .

如上文所論述,當藉由將電壓施加至電極217來泵浦增益介質219時,增益介質219發射光。當電壓以脈衝形式施加至電極217時,自介質219發射的光亦經脈衝。因此,藉由電壓施加至電極217時的速率來判定脈衝光束260之重複率,其中每次施加電壓產生一光脈衝。光脈衝傳播經過增益介質219且離開腔室214,經過輸出耦合器218。因此,藉由將電壓週期性重複施加至電極217來產生脈衝串。觸發信號330例如可用於控制電壓至電極217之施加及脈衝之重複率,對於大部分應用而言,該等脈衝之重複率的範圍可介於約500與6,000 Hz之間。在一些實施方式中,重複頻率可大於6,000 Hz,且可為例如12,000 Hz或更大。As discussed above, when the gain medium 219 is pumped by applying a voltage to the electrodes 217, the gain medium 219 emits light. When a voltage is applied to electrode 217 in pulses, the light emitted from medium 219 is also pulsed. Thus, the repetition rate of the pulsed beam 260 is determined by the rate at which a voltage is applied to the electrode 217, wherein each application of the voltage produces a pulse of light. The light pulse propagates through gain medium 219 and exits chamber 214 through output coupler 218 . Thus, a pulse train is generated by periodically repeating the application of a voltage to the electrode 217 . Trigger signal 330 may be used, for example, to control the application of voltage to electrodes 217 and the repetition rate of pulses, which for most applications may range between about 500 and 6,000 Hz. In some embodiments, the repetition rate may be greater than 6,000 Hz, and may be, for example, 12,000 Hz or greater.

來自控制系統250之信號亦可用於分別控制主控振盪器212及功率放大器230內之電極217、241,以用於控制主控振盪器212及功率放大器230之各別脈衝能量,且因此控制光束260之能量。提供至電極217之信號與提供至電極241之信號之間可存在延遲。延遲量可影響光束260之屬性,諸如脈衝光束260中之相干性的量。Signals from the control system 250 may also be used to control the electrodes 217, 241 within the master oscillator 212 and the power amplifier 230, respectively, for controlling the respective pulse energies of the master oscillator 212 and the power amplifier 230, and thus control the beam 260 energy. There may be a delay between the signal provided to electrode 217 and the signal provided to electrode 241 . The amount of delay can affect properties of beam 260 , such as the amount of coherence in pulsed beam 260 .

脈衝光束260可具有在數十瓦特範圍內,例如約50 W至約130 W之平均輸出功率。光束260在輸出端之輻照度(亦即,每單位面積之平均功率)的範圍可介於60 W/cm 2至90 W/cm 2Pulsed beam 260 may have an average output power in the range of tens of watts, eg, about 50 W to about 130 W. The irradiance (ie, the average power per unit area) of the beam 260 at the output can range from 60 W/cm 2 to 90 W/cm 2 .

亦參考圖4,晶圓170由光束260輻照。微影曝光設備169包括光學系統175 (圖1A及圖1B)。在圖4的實例中,光學系統175 (圖中未展示)包括照明器系統429,其包括物鏡配置432。物鏡配置432包括投影透鏡177 (圖1B),且使得影像傳送能夠自遮罩174至晶圓170上之光阻而進行。照明器系統429調節光束260照射於遮罩174上之角度的範圍。照明器系統429亦可跨遮罩174使光束260在x-y平面中之強度分佈均勻化(使強度分佈均一)。Referring also to FIG. 4 , wafer 170 is irradiated by beam 260 . The lithographic exposure apparatus 169 includes an optical system 175 (FIGS. 1A and 1B). In the example of FIG. 4 , optical system 175 (not shown) includes illuminator system 429 that includes objective lens arrangement 432 . Objective arrangement 432 includes projection lens 177 ( FIG. 1B ) and enables image transfer from mask 174 to photoresist on wafer 170 . The illuminator system 429 adjusts the range of angles at which the light beam 260 impinges on the mask 174 . The illuminator system 429 can also homogenize (make uniform) the intensity distribution of the light beam 260 in the x-y plane across the mask 174 .

在一些實施方式中,一浸沒介質可經供應以覆蓋晶圓170。浸沒介質可為用於液體浸沒微影術之液體(諸如水)。在微影為乾式系統之其他實施方式中,浸沒介質可為氣體,諸如乾氮氣、乾空氣或乾淨空氣。在其他實施方式中,晶圓170可在壓力控環境(諸如真空或部分真空)內曝光。In some embodiments, an immersion medium may be supplied to cover the wafer 170 . The immersion medium may be a liquid such as water used in liquid immersion lithography. In other embodiments where the lithography is a dry system, the immersion medium can be a gas, such as dry nitrogen, dry air, or clean air. In other embodiments, wafer 170 may be exposed in a pressure-controlled environment, such as a vacuum or partial vacuum.

在曝光遍次期間,光束260之複數個N個脈衝照射晶圓170之相同區域。N可為大於一之任何整數。照射相同區域的光束110之脈衝的數目N可稱為曝光窗口或曝光遍次400。窗口400之大小可由狹縫176控制。舉例而言,狹縫176可包括複數個可移動葉片,以使得葉片在一個組態中形成孔口,且在另一組態中封閉該孔口。藉由配置狹縫176之葉片以形成特定大小之孔口,亦可控制窗口400之大小。During an exposure pass, a plurality N of pulses of beam 260 illuminate the same area of wafer 170 . N can be any integer greater than one. The number N of pulses of the beam 110 illuminating the same area may be referred to as the exposure window or exposure pass 400 . The size of the window 400 can be controlled by the slit 176 . For example, the slot 176 may include a plurality of movable vanes such that the vanes form an aperture in one configuration and close the aperture in another configuration. The size of the window 400 can also be controlled by configuring the vanes of the slit 176 to form an orifice of a specific size.

N個脈衝亦判定用於曝光遍次之照明劑量。照明劑量為在曝光遍次期間遞送至晶圓的光學能量之量。因此,N個脈衝之屬性,諸如每一脈衝中之光學能量,判定照明劑量。此外,且如下文更詳細地論述,N個脈衝亦可用於判定空間影像173a、173b中之每一者中之光的量。特定而言,配方可指定在N個脈衝中,某一數目個脈衝具有形成空間影像173a之第一主波長,且某一數目個脈衝具有形成空間影像173b之第二主波長。The N pulses also determine the illumination dose for the exposure pass. Illumination dose is the amount of optical energy delivered to the wafer during an exposure pass. Thus, properties of the N pulses, such as the optical energy in each pulse, determine the illumination dose. Furthermore, and as discussed in more detail below, N pulses may also be used to determine the amount of light in each of the aerial images 173a, 173b. In particular, the recipe may specify that of the N pulses, a certain number of pulses have a first dominant wavelength forming aerial image 173a and a certain number of pulses have a second dominant wavelength forming aerial image 173b.

另外,狹縫176及/或遮罩174可在x-y平面中在掃描方向上移動,使得晶圓170之僅一部分在給定時間下或在特定曝光掃描(或曝光遍次)期間曝光。由光束160曝光的晶圓170上之區域之大小係藉由在非掃描方向上的葉片之間的距離及在掃描方向上之掃描的長度(距離)來判定。在一些實施方式中,N之值為幾十,例如自10至100個脈衝。在其他實施方式中,N之值大於100個脈衝,例如自100至500個脈衝。晶圓170之曝光場479為晶圓170在微影曝光設備169內的曝光狹縫或窗口的一個掃描中經曝光的物理區域。Additionally, slit 176 and/or mask 174 may be moved in the scan direction in the x-y plane such that only a portion of wafer 170 is exposed at a given time or during a particular exposure scan (or exposure pass). The size of the area on wafer 170 exposed by beam 160 is determined by the distance between the blades in the non-scanning direction and the length (distance) of the scan in the scanning direction. In some embodiments, the value of N is several tens, such as from 10 to 100 pulses. In other embodiments, the value of N is greater than 100 pulses, eg, from 100 to 500 pulses. Exposure field 479 of wafer 170 is the physical area of wafer 170 that is exposed in one scan of an exposure slit or window within lithography exposure apparatus 169 .

晶圓載物台171、遮罩174及物鏡配置432固定至相關聯致動系統,藉此形成掃描配置。在掃描配置中,遮罩174、物鏡配置432及晶圓170中之一或多者(經由載物台171)可在x-y平面中相對於彼此移動。然而,除晶圓載物台171、遮罩174及物鏡配置432之間的附帶相對操作運動以外,此等元件在曝光遍次或曝光遍次期間不沿著z軸相對於彼此移動。The wafer stage 171 , mask 174 and objective lens arrangement 432 are secured to associated actuation systems, thereby forming a scanning arrangement. In the scanning configuration, one or more of mask 174, objective lens arrangement 432, and wafer 170 (via stage 171) are movable relative to each other in the x-y plane. However, apart from incidental relative operational motion between wafer stage 171, mask 174, and objective lens arrangement 432, these elements do not move relative to each other along the z-axis during or during an exposure pass.

參考圖5,展示過程500之流程圖。過程500為用於形成三維半導體組件或此類組件之一部分的過程之實例。可使用光微影系統100或200來執行過程500。關於圖2A中展示之系統200論述過程500。亦關於圖6A至圖10B論述過程500。Referring to FIG. 5 , a flow diagram of a process 500 is shown. Process 500 is an example of a process for forming a three-dimensional semiconductor component or a portion of such a component. Process 500 may be performed using photolithography system 100 or 200 . Process 500 is discussed with respect to system 200 shown in FIG. 2A. Process 500 is also discussed with respect to FIGS. 6A-10B .

將光束260朝著遮罩174導引(510)。光束260為包括複數個脈衝的脈衝光束,其中之每一者在時間上彼此分離,諸如圖3C中所展示。圖6A及圖6B展示作為光束260之一部分的單一脈衝之光譜的實例。光束260中之其他脈衝可具有不同光譜。Light beam 260 is directed toward mask 174 (510). Beam 260 is a pulsed beam comprising a plurality of pulses, each of which is separated in time from each other, such as shown in Figure 3C. 6A and 6B show an example of the spectrum of a single pulse as part of beam 260 . Other pulses in beam 260 may have different spectra.

參考圖6A,展示光脈衝600A之光譜601A。光脈衝600A在一波長帶內具有非零強度。波長帶亦可稱為脈衝600A之頻寬。Referring to FIG. 6A , a spectrum 601A of a light pulse 600A is shown. Light pulse 600A has a non-zero intensity within a wavelength band. The wavelength band may also be referred to as the bandwidth of the pulse 600A.

圖6A中展示之資訊為脈衝600A之瞬時光譜601A (或發射光譜)。光譜601A含有關於光束260之脈衝的光學能量或功率遍及不同波長(或頻率)如何分佈的資訊。光譜601A係以圖式之形式來描繪,其中依據波長或光學頻率標繪光譜強度(未必具有絕對校準)。光譜601A可稱為光束260之脈衝的光譜形狀或強度光譜。脈衝600A具有主波長602A,其在圖6A之實例中為峰值強度。儘管光束260之脈衝及藉由光束260之脈衝形成的空間影像之論述參考脈衝之主波長,但脈衝包括除主波長外之波長,且脈衝具有有限頻寬,其可藉由一度量表徵。舉例而言,在光譜601A形狀之最大峰值強度之分率(X)處之光譜的全寬(稱作FWXM)可用於表徵光束頻寬。作為另一實例,含有經積分光譜強度(稱作EY)之分率(Y)的光譜之寬度可用於表徵光束頻寬。The information shown in FIG. 6A is the instantaneous spectrum 601A (or emission spectrum) of pulse 600A. Spectrum 601A contains information about how the optical energy or power of the pulses of beam 260 is distributed over different wavelengths (or frequencies). Spectrum 601A is depicted in graphical form, where spectral intensity is plotted against wavelength or optical frequency (not necessarily with absolute calibration). Spectrum 601A may be referred to as the spectral shape or intensity spectrum of the pulses of beam 260 . Pulse 600A has a dominant wavelength 602A, which in the example of FIG. 6A is a peak intensity. Although the discussion of the pulses of the beam 260 and the spatial image formed by the pulses of the beam 260 refer to the dominant wavelength of the pulse, the pulses include wavelengths other than the dominant wavelength, and the pulses have a finite bandwidth that can be characterized by a metric. For example, the full width of the spectrum at the fraction of maximum peak intensity (X) of the shape of spectrum 601A (referred to as FWXM) can be used to characterize the beam bandwidth. As another example, the width of the spectrum containing the fraction (Y) of the integrated spectral intensity (referred to as EY) can be used to characterize the beam bandwidth.

脈衝600A展示為可能在光束260中之脈衝的實例。在脈衝600A用於曝光晶圓120之一部分時,脈衝中之光形成空間影像。空間影像在z方向上之位置(圖1C及圖4)係藉由主波長602A之值而判定。光束260中之不同脈衝可具有不同主波長。舉例而言,為在單一曝光遍次期間產生兩個空間影像,光束260之脈衝中之一些具有一個主波長(第一主波長),且光束260之其他脈衝具有另一主波長(第二主波長)。第一及第二主波長為不同波長。第一與第二主波長之間的波長差可稱為光譜分離。舉例而言,光譜分離可為200飛米(fm)至50皮米(pm)。雖然光束260中之各種脈衝的波長可能不同,但脈衝之光譜形狀可為相同的。Pulse 600A is shown as an example of a pulse that may be in beam 260 . When pulse 600A is used to expose a portion of wafer 120, the light in the pulse forms an aerial image. The position of the aerial image in the z direction (FIGS. 1C and 4) is determined by the value of the dominant wavelength 602A. Different pulses in beam 260 may have different dominant wavelengths. For example, to produce two spatial images during a single exposure pass, some of the pulses of the beam 260 have one dominant wavelength (the first dominant wavelength) and other pulses of the beam 260 have the other dominant wavelength (the second dominant wavelength). wavelength). The first and second dominant wavelengths are different wavelengths. The wavelength difference between the first and second dominant wavelengths may be referred to as spectral separation. For example, the spectral separation may be 200 femtometer (fm) to 50 picometer (pm). Although the wavelengths of the various pulses in beam 260 may be different, the spectral shape of the pulses may be the same.

光源205可在脈衝間基礎上顫動或切換第一與第二主波長之間的主波長,使得每一脈衝具有與在時間上緊接在脈衝之前或在脈衝之後的脈衝不同的主波長。在此等實施方式中,假定光束260中之所有脈衝具有相同強度,則以此方式分佈第一及第二主波長在z方向上的不同位置處產生具有相同強度的兩個空間影像。The light source 205 may dither or switch the dominant wavelength between the first and second dominant wavelengths on a pulse-to-pulse basis such that each pulse has a different dominant wavelength than the pulse immediately preceding or following the pulse in time. In these embodiments, distributing the first and second dominant wavelengths in this way produces two spatial images with the same intensity at different positions in the z-direction, assuming that all pulses in beam 260 have the same intensity.

在一些實施方式中,脈衝之某一部分(例如33%)具有第一主波長,且其餘部分(在此實例中為67%)具有第二主波長。在此等實施方式中,假定光束260中之所有脈衝具有相同強度,則兩個空間影像形成為不同強度。藉由具有第一主波長之脈衝形成的空間影像具有藉由具有第二主波長之脈衝形成的空間影像之強度的大約一半。以此方式,可藉由控制具有第一及第二主波長中之每一者的N個脈衝之部分來控制沿著z軸提供至晶圓170中之特定位置的劑量。In some implementations, some portion of the pulses (eg, 33%) has the first dominant wavelength and the remainder (67% in this example) has the second dominant wavelength. In these embodiments, assuming that all pulses in beam 260 have the same intensity, the two aerial images are formed with different intensities. The aerial image formed by the pulse having the first dominant wavelength has approximately half the intensity of the aerial image formed by the pulse having the second dominant wavelength. In this way, the dose provided to a particular location in wafer 170 along the z-axis can be controlled by controlling the fraction of N pulses having each of the first and second dominant wavelengths.

可在儲存於電子儲存器252上的配方檔案259中指定具有用於曝光遍次之特定主波長的脈衝部分。配方259指定用於曝光遍次之各種主波長的比率。配方259亦可指定其他曝光遍次之比率,使得不同比率可用於其他曝光遍次,且可在逐場基礎上調整或控制空間影像。Pulse portions having a particular dominant wavelength for an exposure pass may be specified in a recipe file 259 stored on electronic storage 252 . Recipe 259 specifies ratios of the various dominant wavelengths for exposure passes. Recipe 259 can also specify ratios for other exposure passes so that different ratios can be used for other exposure passes and the spatial image can be adjusted or controlled on a field-by-field basis.

參考圖6B,展示脈衝600B之光譜601B。脈衝600B為光束260之脈衝的另一實例。脈衝600B之光譜601B具有與光譜601A不同的形狀。特定而言,光譜601B具有對應於脈衝600B之兩個主波長602B_1及602B_2的兩個峰值。脈衝600B為光束260的一部分。在脈衝600B用於曝光晶圓120之一部分時,脈衝中之光在晶圓上沿著z軸在不同位置處形成兩個空間影像。空間影像之位置藉由主波長602B_1及602B_2之波長來判定。Referring to Figure 6B, a spectrum 601B of pulse 600B is shown. Pulse 600B is another example of a pulse for beam 260 . Spectrum 601B of pulse 600B has a different shape than spectrum 601A. In particular, spectrum 601B has two peaks corresponding to the two dominant wavelengths 602B_1 and 602B_2 of pulse 600B. Pulse 600B is a portion of beam 260 . When pulse 600B is used to expose a portion of wafer 120, the light in the pulse forms two aerial images at different locations on the wafer along the z-axis. The position of the spatial image is determined by the wavelengths of the dominant wavelengths 602B_1 and 602B_2.

圖6A及圖6B中所展示之脈衝可由能夠形成此等脈衝的任何硬體形成。舉例而言,可使用與圖2C之線窄化模組216C類似的線窄化模組形成脈衝(諸如脈衝600A)之脈衝串。藉由光柵291繞射之光的波長取決於入射於光柵上之光的角度。用以改變與光柵291相互作用之光的入射角之機構可與此線窄化模組一起使用,以產生具有N個脈衝之脈衝串以用於曝光遍次,其中N個脈衝中之至少一者具有不同於N個脈衝中之另一脈衝之主波長的主波長。舉例而言,稜鏡292、293、294、295中之一者可旋轉以在逐脈衝基礎上改變入射於光柵291上之光的角度。在一些實施方式中,線窄化模組包括鏡面,其處於光束260之路徑中且可移動以改變入射於光柵291上之光的角度。舉例而言,在2001年2月20日發佈之名稱為「NARROW BAND LASER WITH FINE WAVELENGTH CONTROL」之美國專利第6,192,064號中論述此實施方式之實例。The pulses shown in Figures 6A and 6B can be formed by any hardware capable of forming such pulses. For example, a line narrowing module similar to line narrowing module 216C of FIG. 2C may be used to form a pulse train of pulses such as pulse 600A. The wavelength of the light diffracted by the grating 291 depends on the angle of the light incident on the grating. A mechanism to vary the angle of incidence of light interacting with the grating 291 can be used with this line narrowing module to generate a pulse train of N pulses for an exposure pass, wherein at least one of the N pulses One has a dominant wavelength different from that of another of the N pulses. For example, one of the beams 292, 293, 294, 295 may be rotated to change the angle of light incident on the grating 291 on a pulse-by-pulse basis. In some embodiments, the line narrowing module includes a mirror that is in the path of the light beam 260 and is movable to change the angle of light incident on the grating 291 . An example of such an implementation is discussed, for example, in US Patent No. 6,192,064, issued February 20, 2001, entitled "NARROW BAND LASER WITH FINE WAVELENGTH CONTROL."

可使用與圖2C之線窄化模組216C類似的線窄化模組形成脈衝,諸如脈衝600B (圖6B)。舉例而言,經刺激光學元件(諸如聲光調變器)可在線窄化模組216C中置放於光束260之路徑中。聲光調變器使入射光以取決於用於激發調變器之聲波之頻率的一角度偏轉。聲調變器包括允許聲波傳播的材料,諸如玻璃或石英,及耦合至該材料的轉換器。轉換器回應於激勵信號而振動,且振動在材料中產生聲波。聲波形成改變材料之折射率的膨脹及壓縮之移動平面。因而,聲波充當繞射光柵,使得入射光同時以若干不同角度繞射及離開材料。可允許來自兩個或更多個階之光到達光柵291,且各種繞射階中之每一者中的光在光柵291上具有不同入射角。以此方式,可形成包括兩個或更多個主波長的單一脈衝。舉例而言,在2006年12月26日發佈之名稱為「LASER OUTPUT BEAM WAVEFRONT SPLITTER FOR BANDWIDTH SPECTRUM CONTROL」之美國專利第7,154,928號中論述包括聲光調變器的線窄化模組之實例。A pulse, such as pulse 600B (FIG. 6B), may be formed using a line narrowing module similar to line narrowing module 216C of FIG. 2C. For example, a stimulated optical element such as an acousto-optic modulator may be placed in the path of beam 260 in line narrowing module 216C. An acousto-optic modulator deflects incident light at an angle that depends on the frequency of the acoustic wave used to excite the modulator. An acoustic modulator includes a material, such as glass or quartz, that allows sound waves to propagate, and a transducer coupled to the material. The transducer vibrates in response to the excitation signal, and the vibration generates sound waves in the material. The sound waves create moving planes of expansion and compression that change the refractive index of the material. Thus, the acoustic waves act as a diffraction grating, causing incident light to diffract and exit the material at several different angles simultaneously. Light from two or more orders may be allowed to reach the grating 291 with light in each of the various diffracted orders having different angles of incidence on the grating 291 . In this way, a single pulse comprising two or more dominant wavelengths can be formed. Examples of line narrowing modules including acousto-optic modulators are discussed, for example, in US Patent No. 7,154,928, issued December 26, 2006, entitled "LASER OUTPUT BEAM WAVEFRONT SPLITTER FOR BANDWIDTH SPECTRUM CONTROL."

在單一曝光遍次期間,使光脈衝集合朝著晶圓170穿過遮罩174 (520)。如上文所論述,在曝光遍次期間可將N個光脈衝提供至晶圓170。N個光脈衝可為光束260中之連續光脈衝。晶圓170之經曝光部分在曝光遍次中看到N個脈衝中之每一者之光譜的平均值。因此,若N個脈衝之一部分具有第一主波長,且其餘N個脈衝具有第二主波長,則晶圓170處之平均光譜將為包括第一主波長處之峰值及第二主波長處之峰值的光譜。類似地,若N個脈衝之全部或部分個別脈衝具有多於一個主波長,則彼等主波長可在平均光譜中形成峰值。圖7展示晶圓170處之平均光譜701之實例。平均光譜701包括第一主波長702_1及第二主波長702_2。在圖7的實例中,第一主波長702_1及第二主波長702_2藉由約500 fm之光譜分離703分離,然而,亦可考慮其他組合。光譜分離703使得第一主波長702_1及第二主波長702_2為相異的,且平均光譜701包括在波長702_1與702_2之間具有極小強度至無強度的光譜區704。During a single exposure pass, a set of light pulses is directed toward wafer 170 through mask 174 (520). As discussed above, N light pulses may be provided to wafer 170 during an exposure pass. The N light pulses may be consecutive light pulses in beam 260 . The exposed portion of wafer 170 sees the average of the spectra of each of the N pulses in the exposure pass. Thus, if a portion of the N pulses has a first dominant wavelength and the remaining N pulses have a second dominant wavelength, the average spectrum at wafer 170 will include a peak at the first dominant wavelength and a peak at the second dominant wavelength spectrum. Similarly, if all or some individual pulses of the N pulses have more than one dominant wavelength, those dominant wavelengths may form a peak in the averaged spectrum. FIG. 7 shows an example of an averaged spectrum 701 at wafer 170 . The average spectrum 701 includes a first dominant wavelength 702_1 and a second dominant wavelength 702_2. In the example of FIG. 7 , the first dominant wavelength 702_1 and the second dominant wavelength 702_2 are separated by a spectral separation 703 of about 500 fm, however, other combinations are also contemplated. The spectral separation 703 is such that the first dominant wavelength 702_1 and the second dominant wavelength 702_2 are distinct, and the averaged spectrum 701 includes a spectral region 704 with little to no intensity between the wavelengths 702_1 and 702_2.

舉例而言,基於平均光譜,在晶圓170處形成兩個或更多個空間影像,第一影像係基於第一主波長,且第二影像係基於第二主波長(530)。繼續平均光譜701之實例,且亦參考圖8A,基於N個脈衝在單一曝光遍次中形成兩個空間影像873a及873b。N個脈衝包括具有第一主波長702_1之第一脈衝集合及具有第二主波長702_2之第二脈衝集合。舉例而言,此等脈衝為諸如圖6A中所展示之單峰值脈衝。具有第一主波長702_1之脈衝形成第一空間影像873a,且具有第二主波長702_2之脈衝形成第二空間影像873b。空間影像873a形成於第一平面878a處,且空間影像873b形成於第二平面878b處。平面878a及878b垂直於晶圓170處的光束260之傳播方向。平面878a及878b沿著z方向分離一分離距離879。For example, based on the averaged spectrum, two or more spatial images are formed at wafer 170, a first image based on the first dominant wavelength and a second image based on the second dominant wavelength (530). Continuing with the example of averaging spectrum 701 , and referring also to FIG. 8A , two aerial images 873a and 873b are formed in a single exposure pass based on N pulses. The N pulses include a first set of pulses with a first dominant wavelength 702_1 and a second set of pulses with a second dominant wavelength 702_2. For example, such pulses are single peak pulses such as shown in Figure 6A. Pulses with the first dominant wavelength 702_1 form a first aerial image 873a, and pulses with a second dominant wavelength 702_2 form a second aerial image 873b. Aerial image 873a is formed at first plane 878a, and aerial image 873b is formed at second plane 878b. Planes 878a and 878b are perpendicular to the direction of propagation of beam 260 at wafer 170 . Planes 878a and 878b are separated by a separation distance 879 along the z-direction.

對於具有單一主波長之平均光譜,分離距離879大於微影設備169之聚焦深度。聚焦深度可針對劑量值(提供至晶圓之光學能量的量)定義為沿著z方向之聚焦範圍,在該劑量值下提供在應用於晶圓170之程序的特徵大小之可接受範圍內的特徵大小。過程500能夠藉由在單一曝光遍次期間在晶圓170處提供多於一個相異空間影像來增大微影曝光設備169之聚焦深度。此係因為複數個空間影像皆能夠在z方向上之不同位置處曝光晶圓,其特徵在特徵大小之可接受範圍內。換言之,過程500能夠在單一曝光遍次期間向微影曝光設備169提供更大範圍聚焦深度。如上文所論述,微影曝光設備169之操作者可經由配方檔案259控制曝光程序之不同參數。在一些實施方式中,微影曝光設備169之操作者可自模擬程式接收資訊,該模擬程式諸如購自Brion (ASML公司)的迅子源遮罩最佳化(Tachyon Source-Mask Optimization;SMO),且此資訊可用於程式化或以其他方式指定配方檔案259之參數。舉例而言,微影曝光設備169之操作者可知曉即將到來之批次並不需要如先前曝光批次那麼多的聚焦深度。在此實例中,操作者可指定模擬程式之聚焦深度及劑量變化,且模擬程式返回光譜分離703之值以實現所要參數。操作者接著可藉由經由I/O介面253程式化配方檔案259而指定即將到來之批次的光譜分離703之值。在一些實施方式中,操作者可使用模擬來判定特定曝光遍次是否需要更大聚焦深度(諸如可能藉由在相異平面處用複數個空間影像曝光晶圓170)。在不需要更大聚焦深度來形成半導體組件之特定部分的情況下,可結構化配方檔案259,使得例如用於形成半導體組件之彼特定部分的曝光遍次具有包括單一主波長之平均光譜。For an averaged spectrum with a single dominant wavelength, the separation distance 879 is greater than the depth of focus of the lithography apparatus 169 . Depth of focus can be defined as the range of focus along the z-direction for the dose value (the amount of optical energy delivered to the wafer) at which to provide 170 within an acceptable range of feature sizes for the process applied to wafer 170. feature size. Process 500 can increase the depth of focus of lithographic exposure apparatus 169 by providing more than one distinct spatial image at wafer 170 during a single exposure pass. This is because the plurality of aerial images can all expose the wafer at different positions in the z-direction, with features within acceptable ranges of feature sizes. In other words, process 500 is able to provide lithography exposure apparatus 169 with a greater range of depth of focus during a single exposure pass. As discussed above, the operator of the lithography exposure apparatus 169 can control various parameters of the exposure process via the recipe file 259 . In some embodiments, the operator of the lithography exposure apparatus 169 may receive information from a simulation program such as Tachyon Source-Mask Optimization (SMO) available from Brion (ASML Corporation) , and this information can be used to program or otherwise specify the parameters of the recipe file 259 . For example, an operator of lithography exposure apparatus 169 may know that an upcoming batch does not require as much depth of focus as a previous exposure batch. In this example, the operator can specify the depth of focus and dose variation for the simulation program, and the simulation program returns values for spectral separation 703 to achieve the desired parameters. The operator can then specify values for the spectral separation 703 for the upcoming batch by programming the recipe file 259 via the I/O interface 253 . In some embodiments, an operator may use simulations to determine whether a greater depth of focus is required for a particular exposure pass (such as perhaps by exposing wafer 170 with multiple aerial images at different planes). In cases where a greater depth of focus is not required to form a particular portion of a semiconductor device, the recipe file 259 may be structured such that, for example, the exposure passes used to form that particular portion of the semiconductor device have an average spectrum that includes a single dominant wavelength.

此外,操作者及/或模擬器可接收如藉由度量衡系統172或藉由另一感測器所量測的關於所形成三維組件的資訊。舉例而言,度量衡系統172可提供與所形成3D半導體組件之側壁角有關的資料,且資料可用於程式化配方檔案259中之參數以用於後續曝光遍次。In addition, the operator and/or simulator may receive information about the formed three-dimensional component as measured by the metrology system 172 or by another sensor. For example, metrology system 172 may provide data related to sidewall angles of formed 3D semiconductor devices, and the data may be used to program parameters in recipe file 259 for subsequent exposure passes.

圖8B展示在平面878a處的在x-y平面中的空間影像873a (見圖8A中之頁面)。空間影像873a及873b大體上為形成於x-y平面中的二維強度圖案。強度圖案之性質取決於遮罩174之特性。第一平面878a及第二平面878b為晶圓170之部分。如圖8B中所說明,第一平面878a可僅為整個晶圓170之小部分。Figure 8B shows aerial image 873a in the x-y plane at plane 878a (see page in Figure 8A). Aerial images 873a and 873b are generally two-dimensional intensity patterns formed in the x-y plane. The nature of the intensity pattern depends on the characteristics of the mask 174 . The first plane 878 a and the second plane 878 b are part of the wafer 170 . As illustrated in FIG. 8B , the first plane 878a may be only a small portion of the entire wafer 170 .

分離距離879之值取決於光譜分離703且取決於光學系統275之屬性。舉例而言,分離距離879之值可取決於光學系統275中之透鏡及其他光學元件的焦距、像差及其他屬性。對於具有色像差C之掃描儀透鏡,可自等式1判定分離距離879:

Figure 02_image001
等式(1), 其中ΔD為以奈米(nm)為單位之分離距離879,C為色像差(定義為焦平面在傳播方向上針對波長改變而移動之距離,該波長改變為投影透鏡177之已知屬性),且Δλ為以皮米為單位之光譜分離873。對於具有C = 500 nm/pm之值的透鏡177,為實現5000 nm (5 µm)之聚焦分離距離875,光譜分離873可為約10 fm。 The value of separation distance 879 depends on spectral separation 703 and on the properties of optical system 275 . For example, the value of separation distance 879 may depend on the focal length, aberrations, and other properties of the lenses and other optical elements in optical system 275 . For a scanner lens with chromatic aberration C, the separation distance 879 can be determined from Equation 1:
Figure 02_image001
Equation (1), where ΔD is the separation distance 879 in nanometers (nm), and C is the chromatic aberration (defined as the distance the focal plane moves in the direction of propagation for a change in the wavelength that the projection lens 177), and Δλ is the spectral separation 873 in picometers. For a lens 177 with a value of C = 500 nm/pm, to achieve a focus separation distance 875 of 5000 nm (5 μm), the spectral separation 873 may be about 10 fm.

此外,對於某一類型的曝光設備169的特定個例,由於製造及安裝過程中之變化及/或終端使用者作出的修正,可需要不同主波長以實現所要分離距離879。如上文所論述,配方或程序控制程式259可儲存於控制系統250之電子儲存器252上。配方259可經修正或程式化,以對於特定曝光設備或一種類型之曝光設備而定製。在微影系統200經製造時可程式化配方259,及/或配方259可由終端使用者或熟習系統200之效能的其他操作者經由例如I/O介面253程式化。Furthermore, for a particular instance of a certain type of exposure apparatus 169, a different dominant wavelength may be required to achieve the desired separation distance 879 due to variations in the manufacturing and installation process and/or modifications made by the end user. As discussed above, recipe or program control program 259 may be stored on electronic storage 252 of control system 250 . Recipe 259 can be modified or programmed to be customized for a particular exposure equipment or type of exposure equipment. Recipe 259 may be programmed when lithography system 200 is manufactured, and/or may be programmed by an end user or other operator familiar with the performance of system 200 via, for example, I/O interface 253 .

配方259亦可對於用於曝光晶圓170之不同區域的不同曝光遍次指定不同分離距離879。另外或替代地,配方259可在每批次或每層基礎上或在每晶圓基礎上指定分離距離879。批次或層為在相同標稱條件下由相同曝光設備處理的晶圓群組。配方259亦允許指定與空間影像873a、873b有關之其他參數,諸如藉由每一影像提供的劑量。舉例而言,配方259可指定具有第一主波長702_1之N個脈衝中之脈衝數目與具有第二主波長702_2之脈衝數目的比率。亦可在每場、每批次(或每層)及/或每晶圓基礎上指定此等其他參數。Recipe 259 may also specify different separation distances 879 for different exposure passes used to expose different regions of wafer 170 . Additionally or alternatively, recipe 259 may specify separation distance 879 on a per-lot or per-layer basis, or on a per-wafer basis. A lot or layer is a group of wafers processed by the same exposure equipment under the same nominal conditions. The recipe 259 also allows specifying other parameters related to the aerial images 873a, 873b, such as the dose provided by each image. For example, the recipe 259 may specify a ratio of the number of pulses out of N pulses having the first dominant wavelength 702_1 to the number of pulses having the second dominant wavelength 702_2. These other parameters may also be specified on a per field, per lot (or per layer) and/or per wafer basis.

此外,配方259可指定一些層不藉由第一主波長702_1及第二主波長702_2曝光,且替代地藉由具有包括單一主波長之光譜的脈衝曝光。舉例而言,當應形成平面半導體組件而非三維半導體組件時,可使用此光譜。I/O介面253允許終端使用者及/或製造者程式化或產生配方以指定主波長之數目,包括例如對於特定層或批次使用單一主波長的情境。Furthermore, the recipe 259 may specify that some layers are not exposed by the first dominant wavelength 702_1 and the second dominant wavelength 702_2, and are instead exposed by pulses having a spectrum comprising a single dominant wavelength. This spectrum can be used, for example, when planar rather than three-dimensional semiconductor components should be formed. I/O interface 253 allows end users and/or manufacturers to program or generate recipes to specify the number of dominant wavelengths, including, for example, scenarios where a single dominant wavelength is used for a particular layer or lot.

另外,雖然上文實例論述具有兩個主波長之平均光譜701,但在其他實例中,平均光譜701可具有多於兩個主波長(例如三個、四個或五個主波長),其中之每一者藉由光譜分離及諸如區704之區與最接近的其他主波長分離。I/O介面253允許終端使用者及/或製造者程式化或產生配方以指定此等參數。Additionally, while the examples above discuss averaged spectrum 701 having two dominant wavelengths, in other examples averaged spectrum 701 may have more than two dominant wavelengths (e.g., three, four, or five dominant wavelengths), of which Each is separated from the nearest other dominant wavelength by spectral separation and regions such as region 704 . I/O interface 253 allows end users and/or manufacturers to program or generate recipes to specify these parameters.

形成三維(3D)半導體組件(540)。圖9A展示3D半導體組件995之實例的橫截面圖。圖9B展示在第一平面878a處的x-y平面中之晶圓170及組件995。3D半導體組件995可為完整組件或為較大組件之一部分。3D半導體組件995可為具有未全部形成於晶圓170中之一個z位置處的特徵的任何類型之半導體組件。舉例而言,3D半導體組件可為包括沿著z軸延伸的凹部或開口的裝置。3D半導體組件可用於任何類型的電子應用。舉例而言,3D半導體組件可為3D NAND快閃記憶體組件的全部或部分。3D NAND快閃記憶體為其中記憶體單元沿著z軸分層堆疊的記憶體。A three-dimensional (3D) semiconductor component is formed (540). FIG. 9A shows a cross-sectional view of an example of a 3D semiconductor component 995 . Figure 9B shows wafer 170 and component 995 in the x-y plane at first plane 878a. 3D semiconductor component 995 may be a complete component or part of a larger component. 3D semiconductor component 995 may be any type of semiconductor component that has features that are not all formed at one z-position in wafer 170 . For example, a 3D semiconductor component may be a device comprising a recess or opening extending along the z-axis. 3D semiconductor components can be used in any type of electronic application. For example, the 3D semiconductor device can be all or part of a 3D NAND flash memory device. 3D NAND flash memory is memory in which memory cells are stacked in layers along the z-axis.

在圖9A的實例中,3D半導體組件995包括形成於周邊999中的凹部996。凹部996包括底面997及側壁998,側壁998大體上在周邊999與底面997之間沿著z軸延伸。底面997係藉由利用第二空間影像873b (圖8A)中之光曝光平面878b處的光阻而形成。周邊999上之特徵係使用第一空間影像873a (圖8A)中之光形成。In the example of FIG. 9A , a 3D semiconductor component 995 includes a recess 996 formed in a perimeter 999 . Recess 996 includes a bottom surface 997 and a sidewall 998 extending generally along the z-axis between perimeter 999 and bottom surface 997 . Bottom surface 997 is formed by exposing the photoresist at plane 878b with light in second aerial image 873b (FIG. 8A). Features on perimeter 999 are formed using light in first aerial image 873a (FIG. 8A).

使用過程500亦可能產生等於90º或相較於其他過程可能產生之側壁角更接近於90º的側壁角992。側壁角992為底面997與側壁998之間的角。若側壁998在x-z平面中延伸且底面在x-y平面中延伸,則側壁角992為90º,且在此實例中可被視為豎直。更接近於豎直之側壁角為合乎需要的,此係因為例如其可允許3D半導體組件中之更明確界定之特徵。過程500實現等於或接近於90º之側壁角992,此係因為第一空間影像873a及第二空間影像873b之位置(分別為第一平面878a及第二平面878b)為在晶圓170之不同部分處的單獨影像。在單一曝光遍次中形成單獨空間影像允許改良影像中之每一者之品質,從而產生相比於藉由較低品質之單一空間形成之特徵更豎直地定向的更確定之特徵。It is also possible to use process 500 to produce side wall angles 992 equal to or closer to 90° than other processes may produce. Side wall angle 992 is the angle between bottom surface 997 and side wall 998 . If the sidewalls 998 extend in the x-z plane and the bottom surface extends in the x-y plane, the sidewall angle 992 is 90° and can be considered vertical in this example. Sidewall angles that are closer to vertical are desirable because, for example, they may allow for more well-defined features in 3D semiconductor devices. Process 500 achieves sidewall angle 992 equal to or close to 90° because the locations of first aerial image 873a and second aerial image 873b (first plane 878a and second plane 878b, respectively) are on different parts of wafer 170 Individual images at . Forming separate spatial images in a single exposure pass allows improving the quality of each of the images, resulting in more defined features that are more vertically oriented than features formed by lower quality single spatial images.

圖10A及圖10B為與過程500有關之模擬資料的實例。圖10A展示空間影像強度與沿著y軸之遮罩定位(圖9A)的三個標繪圖1001、1002、1003。標繪圖1001、1002、1003中之每一者表示對於一個空間影像之強度與遮罩定位。在圖10A中,標繪圖1001表示在單一曝光遍次期間形成兩個空間影像之平均光譜的模擬,諸如上文關於圖5所論述。標繪圖1002表示晶圓載物台根據ASML之EFESE技術傾斜的情況之模擬,其為用於增加聚焦深度以促進在晶圓上印刷三維特徵(諸如通孔及孔洞)的程序。在EFESE技術中,晶圓載物台以一角度傾斜,以在曝光晶圓時經由焦點掃描空間影像。EFESE技術大體上產生更大聚焦深度。在圖10A中,僅標繪圖1002表示使用EFESE技術模擬的資料。圖10A上展示的其餘資料並不採用EFESE技術。標繪圖1003表示自基於劑量之最佳焦點之模擬的資料。10A and 10B are examples of simulation data related to process 500 . Figure 1OA shows three plots 1001, 1002, 1003 of spatial image intensity versus mask positioning (Figure 9A) along the y-axis. Each of the plots 1001, 1002, 1003 represents the intensity and mask positioning for an aerial image. In FIG. 10A , plot 1001 represents a simulation of the average spectrum forming two aerial images during a single exposure pass, such as discussed above with respect to FIG. 5 . Plot 1002 represents a simulation of wafer stage tilting according to ASML's EFESE technique, a procedure for increasing depth of focus to facilitate printing of three-dimensional features such as vias and holes on a wafer. In the EFESE technique, the wafer stage is tilted at an angle to scan the aerial image through the focal point when exposing the wafer. The EFESE technique generally produces a greater depth of focus. In FIG. 1OA, only plot 1002 represents data simulated using the EFESE technique. The rest of the data shown in Figure 10A does not use the EFESE technique. Plot 1003 represents data from a dose-based best focus simulation.

隨圖10A中所展示之遮罩定位而變化之空間影像強度說明在單一曝光遍次中形成兩個或更多個空間影像可產生與傾斜晶圓載物台類似的對比度。更大對比度指示更可能恰當地形成處於沿著z軸(圖8A)之不同位置的三維特徵。The spatial image intensity as a function of mask positioning shown in Figure 10A illustrates that forming two or more aerial images in a single exposure pass can produce contrast similar to tilting the wafer stage. Greater contrast indicates that three-dimensional features at different locations along the z-axis (FIG. 8A) are more likely to be properly formed.

圖10B展示隨三個不同空間影像之聚焦位置而變化的臨界尺寸之三個標繪圖1004、1005、1006,其中每一空間影像遍及曝光遍次而平均化。在圖10B中,標繪圖10004表示來自未應用EFESE技術且形成單一空間影像之模擬的資料。標繪圖1005表示來自應用EFESE技術之模擬的資料。如所展示,EFESE技術相較於無EFESE模擬增大聚焦深度,此係因為在距零聚焦更遠距離內,臨界尺寸值保持不變。標繪圖1005表示來自在單一曝光遍次中產生兩個空間影像且不採用EFESE技術之模擬的資料。使用多個空間影像的無EFESE模擬的聚焦深度等於或優於EFESE技術。因此,過程500可用於在單一曝光遍次中達成更大聚焦深度,而不依賴於諸如EFESE的技術。Figure 10B shows three plots 1004, 1005, 1006 of critical dimension as a function of focus position for three different aerial images, each averaged over exposure passes. In Figure 10B, plot 10004 represents data from a simulation that did not apply the EFESE technique and formed a single spatial image. Plot 1005 represents data from a simulation applying the EFESE technique. As shown, the EFESE technique increases the depth of focus compared to the no-EFESE simulation because the critical dimension value remains constant at greater distances from zero focus. Plot 1005 represents data from a simulation that produced two aerial images in a single exposure pass and did not employ the EFESE technique. Depth of focus for EFESE-free simulations using multiple aerial images is equal to or better than EFESE techniques. Thus, process 500 can be used to achieve greater depth of focus in a single exposure pass without relying on techniques such as EFESE.

參考圖11A,控制系統250之實施方式1150展示為光微影系統1100的一部分。控制系統1150包括處理器251、電子儲存器252及I/O介面253,該等組件一起經組態以與光學源1105內之光譜特徵選擇模組258介接,以藉此實現對自光學源1105輸出之脈衝光束1160之光譜特徵的調整。此外,控制系統1150包括經組態以將激勵信號1168E提供至光學源1105之能量控制模組1161E,該激勵信號1168E用於控制光學源1105之主控振盪器(諸如圖2A之主控振盪器212)內的電極。能量控制模組1161E亦可經組態以將激勵信號提供至光學源1105內之一或多個其他振盪器。控制系統1150可與任何類型之光學源1105一起使用。控制系統1150可與包括單一光學振盪器之光學源1105一起使用。控制系統1150可與包括一或多個光學振盪器及一或多個功率放大器之多級光學源1105 (諸如圖2A之光學源205)一起使用。Referring to FIG. 11A , an embodiment 1150 of a control system 250 is shown as part of a photolithography system 1100 . Control system 1150 includes processor 251, electronic storage 252, and I/O interface 253, which together are configured to interface with spectral feature selection module 258 within optical source 1105 to thereby enable Adjustment of the spectral characteristics of the pulsed beam 1160 output by 1105. Additionally, control system 1150 includes an energy control module 1161E configured to provide an excitation signal 1168E to optical source 1105 for controlling a master oscillator of optical source 1105 (such as the master oscillator of FIG. 2A ). 212) within the electrodes. The energy control module 1161E may also be configured to provide an excitation signal to one or more other oscillators within the optical source 1105 . The control system 1150 can be used with any type of optical source 1105 . Control system 1150 may be used with optical source 1105 comprising a single optical oscillator. Control system 1150 may be used with multi-stage optical source 1105, such as optical source 205 of FIG. 2A, including one or more optical oscillators and one or more power amplifiers.

光學源1105將脈衝光束1160提供至微影曝光設備1169。能量控制設備1160E由能量控制模組1161E及光學偵測系統1145E形成。光學偵測系統1145E經組態以感測光(諸如脈衝光束1160)且產生能量屬性信號1146E。光學偵測系統1145E為能夠量測脈衝光束1160中之光學能量且基於此量測產生能量屬性信號1146E之任何類型的光學感測器或偵測器。能量屬性信號1146E包括關於光束1160之一或多個脈衝中之能量的資訊。能量屬性可為例如脈衝光束1160中之光學脈衝的光學能量或與脈衝光束1160中之光學脈衝相關聯的能量誤差。Optical source 1105 provides pulsed beam 1160 to lithography exposure apparatus 1169 . Energy control device 1160E is formed by energy control module 1161E and optical detection system 1145E. Optical detection system 1145E is configured to sense light, such as pulsed beam 1160, and generate energy property signal 1146E. Optical detection system 1145E is any type of optical sensor or detector capable of measuring optical energy in pulsed beam 1160 and generating an energy property signal 1146E based on this measurement. Energy attribute signal 1146E includes information about the energy in one or more pulses of beam 1160 . The energy attribute may be, for example, the optical energy of the optical pulses in the pulsed beam 1160 or an energy error associated with the optical pulses in the pulsed beam 1160 .

能量控制模組1161E產生激勵信號1168E或使得激勵信號1168E由分離裝置(諸如源供應器1197E)產生,該分離裝置經組態以放大信號且將電壓施加至一或多個電極217,如圖2A中所展示。在激勵信號1168E施加至光學源1105中之一或多個光學振盪器時,彼光學振盪器產生光脈衝。激勵信號1168E及光束1160中之脈衝為時變信號。在以下論述中,激勵信號1168E、脈衝及能量屬性信號1146E之個別個例可由k索引化,其中k為整數數目。舉例而言,激勵信號1168E之第k個例(激勵信號1168E(k))產生光束1160之脈衝k。能量控制模組1161E接收能量屬性信號1146E之個例,且針對光束1160中之每一脈衝產生激勵信號1168E之個例。Energy control module 1161E generates excitation signal 1168E or causes excitation signal 1168E to be generated by a separate device, such as source supply 1197E, configured to amplify the signal and apply a voltage to one or more electrodes 217, as shown in FIG. 2A shown in . When an excitation signal 1168E is applied to one or more optical oscillators in optical source 1105, that optical oscillator generates a pulse of light. The excitation signal 1168E and the pulses in the light beam 1160 are time-varying signals. In the following discussion, individual instances of excitation signal 1168E, pulse and energy property signal 1146E may be indexed by k, where k is an integer number. For example, the kth instance of excitation signal 1168E (excitation signal 1168E(k)) produces pulse k of beam 1160 . Energy control module 1161E receives an instance of energy attribute signal 1146E and generates an instance of excitation signal 1168E for each pulse in beam 1160 .

回應於激勵信號1168E之應用而產生的光學能量(亦即,光束1160之脈衝中的能量)之量取決於激勵信號1168E之特性。舉例而言,激勵信號1168E可為電壓脈衝串,且激勵信號1168E之特性可包括電壓脈衝之振幅及/或時間持續時間。能量控制模組1161E判定激勵信號1168E或激勵信號1168E之特性。在以下論述中,能量控制模組1161E及其各種實施方式經描述為產生或判定激勵信號1168E。然而,在一些實施方式中,能量控制模組1161E (或其各種實施方式中之任一者)產生提供至基於特性產生信號1168E之源供應器1197E的信號1168E之特性。舉例而言,激勵信號1168E可為由源供應器1197E產生之高電壓信號。The amount of optical energy (ie, the energy in the pulses of light beam 1160) produced in response to application of excitation signal 1168E depends on the characteristics of excitation signal 1168E. For example, the excitation signal 1168E may be a train of voltage pulses, and characteristics of the excitation signal 1168E may include the amplitude and/or temporal duration of the voltage pulses. The energy control module 1161E determines the excitation signal 1168E or a characteristic of the excitation signal 1168E. In the following discussion, energy control module 1161E and its various implementations are described as generating or determining excitation signal 1168E. However, in some implementations, the energy control module 1161E (or any of its various implementations) generates the characteristic of the signal 1168E that is provided to the source provider 1197E that generates the signal 1168E based on the characteristic. For example, the excitation signal 1168E may be a high voltage signal generated by the source supply 1197E.

能量控制模組1161E經實施以在微影曝光設備1169處實現光譜特徵相依(例如波長相依)劑量或能量控制。特定言之,能量控制模組1161E使得光束1160中之當前脈衝之劑量及/或能量能夠相對於光束1160中之先前及鄰近脈衝而改變。可針對光束1160之每一脈衝執行此改變,使得能量隨著光束1160之每一脈衝而改變。藉由改變及校正提供至光學源1105之激勵信號1168E,能量控制模組1161E經組態以提供對光束1160中之脈衝之劑量及/或能量的脈衝間控制。The energy control module 1161E is implemented to achieve spectral feature dependent (eg, wavelength dependent) dose or energy control at the lithography exposure apparatus 1169 . In particular, energy control module 1161E enables the dose and/or energy of a current pulse in beam 1160 to be varied relative to previous and adjacent pulses in beam 1160 . This change may be performed for each pulse of the beam 1160 such that the energy changes with each pulse of the beam 1160 . The energy control module 1161E is configured to provide pulse-to-pulse control of the dose and/or energy of the pulses in the beam 1160 by varying and correcting the excitation signal 1168E provided to the optical source 1105 .

可能需要以取決於針對不同脈衝選擇之波長的方式針對彼脈衝產生不同能量。以此方式,可能期望脈衝之劑量及/或能量之值取決於脈衝之波長(或其他光譜特徵或僅脈衝數目或時間)。舉例而言,參考圖7,可能需要在第一目標能量Etarget1處產生具有第一主波長702_1之第一脈衝集合,且在不同於第一目標能量Etarget1之第二目標能量Etarget2處產生具有第二主波長702_2之第二脈衝集合。以此方式,可在場內之每一空間影像873a、873b處最佳化光束1160之脈衝的劑量及/或能量。It may be desirable to generate different energies for different pulses in a manner dependent on the wavelength selected for that pulse. In this way, it may be desirable that the value of the dose and/or energy of the pulses depend on the wavelength of the pulses (or other spectral characteristics or simply the number or timing of pulses). For example, referring to FIG. 7 , it may be necessary to generate a first pulse set with a first dominant wavelength 702_1 at a first target energy Etarget1, and generate a set of pulses with a second dominant wavelength 702_1 at a second target energy Etarget2 different from the first target energy Etarget1. The second pulse set of dominant wavelength 702_2. In this way, the dose and/or energy of the pulses of the light beam 1160 can be optimized at each aerial image 873a, 873b within the field.

如上文參考圖2A至圖2C所論述,光學源1105包括光譜特徵選擇模組258,其耦合至在光學源1105中傳播之光以使得能夠精細調諧光譜特徵,諸如主控振盪器212內之波長及頻寬。在多焦點成像中,光譜特徵選擇模組258可藉由每一脈衝或藉由每一第n個脈衝改變其組態,其中n為大於1之整數。光學振盪器212與複數個轉移函數相關聯,每一轉移函數與光譜特徵選擇模組258之特定組態相關聯,且每一轉移函數與彼組態之效率特性有關。特定轉移函數將激勵信號1168E之特性與在彼特定組態中時由光學振盪器212產生的光學輸出之量(脈衝光束224或260內)相關。作為參考圖2A之特定實例,光學振盪器212之特定組態(及光譜特徵選擇模組258之特定組態)的轉移函數將施加至腔室214中之電極217的電壓的量與由腔室214內之增益介質產生的光學能量相關。As discussed above with reference to FIGS. 2A-2C , optical source 1105 includes spectral feature selection module 258 coupled to light propagating in optical source 1105 to enable fine tuning of spectral features, such as wavelength within master oscillator 212 and bandwidth. In multi-focus imaging, the spectral feature selection module 258 can change its configuration by every pulse or by every nth pulse, where n is an integer greater than 1. Optical oscillator 212 is associated with a plurality of transfer functions, each transfer function is associated with a particular configuration of spectral signature selection module 258, and each transfer function is related to an efficiency characteristic of that configuration. A particular transfer function relates the characteristics of the excitation signal 1168E to the amount of optical output (within the pulsed beam 224 or 260) produced by the optical oscillator 212 when in that particular configuration. As a specific example with reference to FIG. 2A , the transfer function for a particular configuration of the optical oscillator 212 (and a particular configuration of the spectral feature selection module 258) relates the magnitude of the voltage applied to the electrode 217 in the chamber 214 to the voltage generated by the chamber 214. The optical energy generated by the gain medium in 214 is related.

參考圖11B,轉移函數TF (由單一光學振盪器212產生之隨所提供激勵能量而變化的光學能量)隨著所發射脈衝光束之波長而變化。圖11B包括:轉移函數TF(1),其為脈衝之中心或主波長為第一波長(λp1)時的光學振盪器212之效率;及轉移函數TF(2),其為脈衝之中心或主波長為第二波長(λp2)時的光學振盪器212之效率。轉移函數TF(1)及TF(2)使施加至光學振盪器212之激勵機構的電壓V與由光學振盪器212產生之光束1160之脈衝的光學能量相關。轉移函數TF(1)及TF(2)兩者均局部地接近於線性,但具有不同斜率及不同y-截距。脈衝能量(Epulse)取決於轉移函數TF,如下:Epulse = TF × [HVSetPoint - OffsetV] + OffsetE + 雜訊,其中HVSetPoint為放電電壓設定點,OffsetV為施加至光學振盪器212之激勵機構之電壓偏移,且OffsetE為能量偏移。Referring to FIG. 11B , the transfer function TF (the optical energy generated by the single optical oscillator 212 that varies with the supplied excitation energy) varies with the wavelength of the emitted pulsed beam. 11B includes: transfer function TF(1), which is the efficiency of the optical oscillator 212 when the center or dominant wavelength of the pulse is the first wavelength (λp1); and transfer function TF(2), which is the center or dominant wavelength of the pulse Efficiency of the optical oscillator 212 at the second wavelength (λp2). The transfer functions TF(1) and TF(2) relate the voltage V applied to the excitation mechanism of the optical oscillator 212 to the optical energy of the pulses of the light beam 1160 generated by the optical oscillator 212 . Both transfer functions TF(1) and TF(2) are locally close to linear, but have different slopes and different y-intercepts. The pulse energy (Epulse) depends on the transfer function TF, as follows: Epulse = TF × [HVSetPoint - OffsetV] + OffsetE + noise, where HVSetPoint is the discharge voltage set point, and OffsetV is the voltage bias applied to the excitation mechanism of the optical oscillator 212 shift, and OffsetE is the energy offset.

在一個實例中,光學振盪器212在產生處於第一主波長(λp1)之光脈衝與處於第二主波長(λp2)之光脈衝之間交替,以產生具有處於第一主波長之光譜峰值及處於第二主波長之光譜峰值的脈衝光束1160。以此方式,處於第一主波長(λp1)之光脈衝通常與處於第二主波長(λp2)之光脈衝摻和(且在一些實施方式中,交錯)。In one example, the optical oscillator 212 alternates between generating light pulses at a first dominant wavelength (λp1) and light pulses at a second dominant wavelength (λp2) to generate light with a spectral peak at the first dominant wavelength and Pulsed beam 1160 at the spectral peak of the second dominant wavelength. In this way, light pulses at the first dominant wavelength (λp1) are generally blended (and in some embodiments, interleaved) with light pulses at the second dominant wavelength (λp2).

系統1160試圖維持用於處於第一主波長(λp1)之光脈衝的第一目標能量Etarget1及用於處於第二主波長(λp2)之光脈衝的第二目標能量Etarget2。舉例而言,第k個脈衝具有能量E1及為λp2之主波長。在產生第k個脈衝之後,光譜特徵選擇模組258內之光學元件經致動以使得第k+1個脈衝之主波長將為λp2。因此,系統1160基於轉移函數TF(2)之估計判定適用於光學振盪器212以產生第k+1個脈衝之電壓,該估計為在光學振盪器212經組態以產生其中主波長為第二主波長(λp2)之脈衝時該光學振盪器212之組態的效率之準確表示。System 1160 attempts to maintain a first target energy Etarget1 for light pulses at a first dominant wavelength (λp1) and a second target energy Etarget2 for light pulses at a second dominant wavelength (λp2). For example, the kth pulse has energy E1 and a dominant wavelength of λp2. After the kth pulse is generated, the optical elements within the spectral feature selection module 258 are activated such that the dominant wavelength of the k+1th pulse will be λp2. Thus, the system 1160 determines the voltage suitable for the optical oscillator 212 to generate the k+1th pulse based on an estimate of the transfer function TF(2) that is configured to generate the k+1th pulse where the dominant wavelength is the second An accurate representation of the efficiency of the optical oscillator 212 configuration for pulses at the dominant wavelength (λp2).

能量控制模組1161E可經組態以基於與用於產生後續光脈衝之光譜特徵選擇模組258的特定組態相關聯之轉移函數判定激勵信號1168E。舉例而言,光譜特徵選擇模組258包括至少一個稜鏡,且每一轉移函數可與至少一個稜鏡之不同定位相關聯。The energy control module 1161E can be configured to determine the excitation signal 1168E based on a transfer function associated with a particular configuration of the spectral feature selection module 258 used to generate subsequent light pulses. For example, the spectral feature selection module 258 includes at least one sputum, and each transfer function can be associated with a different location of the at least one scallop.

每當當前脈衝之能量相對於先前及鄰近脈衝改變時,因轉移函數中之差異導致的能量干擾及其與光學源1105之光譜特徵選擇模組258之每一狀態相關聯的不完美估計出現。此外,光束1160之脈衝之能量的不合需要之振盪可歸因於光束1160之脈衝之能量與波長之間的耦合而出現。在無快速考慮此等能量干擾之任何類別之校正機構的情況下,光束1160之脈衝之劑量及/或能量可為錯誤或非最佳的,且此進一步引起晶圓170處之誤差。能量控制模組1161E使用校正模組及亦模型化模組校正或調整激勵信號1168E,該模型化模組估計光譜特徵選擇模組258之每一狀態之轉移函數以使得能量控制模組1161E可移除或減少能量干擾。此外,能量控制模組1161E在脈衝間基礎上執行此控制,以考慮在每一脈衝情況下出現的誤差。Energy disturbances and their associated imperfect estimates for each state of the spectral feature selection module 258 of the optical source 1105 arise due to differences in transfer functions whenever the energy of the current pulse changes relative to previous and neighboring pulses. Furthermore, undesirable oscillations in the energy of the pulses of beam 1160 may occur due to coupling between the energy of the pulses of beam 1160 and the wavelength. Without any sort of correction mechanism to quickly account for such energy disturbances, the dose and/or energy of the pulses of beam 1160 may be wrong or non-optimal, and this further causes errors at wafer 170 . The energy control module 1161E corrects or adjusts the excitation signal 1168E using a calibration module and also a modeling module that estimates the transfer function for each state of the spectral feature selection module 258 such that the energy control module 1161E can move Eliminate or reduce energy interference. In addition, the energy control module 1161E performs this control on a pulse-to-pulse basis to account for errors that occur on a per-pulse basis.

參考圖12,能量控制模組1161E之實施方式1261E展示為與光學振盪器1212E一起使用。能量控制模組1261E經組態以實施為控制系統1150或250之一部分。光學振盪器1212E可為多級光學源(諸如圖2A之光學源205)中之兩個或更多個光學振盪器中之一者。光學振盪器1212E之輸出為脈衝光束,諸如種子光束224或輸出光束260 (圖2A)。在一些實施方式中,可能具有經組態用於多級光學源中之每一光學振盪器的分離能量控制模組1261E。舉例而言,第一能量控制模組1261E可經組態用於主控振盪器212,而第二能量控制模組1261E可經組態用於功率放大器230 (參見圖2A)。在其他實施方式中,單一能量控制模組1261E可經組態用於主控振盪器212及功率放大器230兩者(參見圖2A)。Referring to Figure 12, an implementation 1261E of an energy control module 1161E is shown for use with an optical oscillator 1212E. Energy control module 1261E is configured to be implemented as part of control system 1150 or 250 . Optical oscillator 1212E may be one of two or more optical oscillators in a multi-stage optical source, such as optical source 205 of FIG. 2A . The output of optical oscillator 1212E is a pulsed beam, such as seed beam 224 or output beam 260 (FIG. 2A). In some embodiments, it is possible to have separate energy control modules 1261E configured for each optical oscillator in a multi-level optical source. For example, the first energy control module 1261E can be configured for the master oscillator 212, and the second energy control module 1261E can be configured for the power amplifier 230 (see FIG. 2A). In other embodiments, a single energy control module 1261E may be configured for both the master oscillator 212 and the power amplifier 230 (see FIG. 2A ).

能量控制模組1261E包括比較器1263E及能量控制器1262E。能量控制模組1261E亦包括目標能量產生器1270E。比較器1263E自光學偵測系統1145E接收能量屬性信號1246E,且亦自目標能量產生器1270E接收目標能量Etarget 1271E。比較器1263E實施比較功能,諸如用以判定誤差信號1266E之減法。能量控制器1262E包括一或多個經組態以判定激勵信號1268E之模組,其對應於圖11A中參考之激勵信號1168E。激勵信號1268E考慮誤差信號1266E,且亦考慮光學振盪器1212E之轉移函數中的變化,如下文所論述。The energy control module 1261E includes a comparator 1263E and an energy controller 1262E. The energy control module 1261E also includes a target energy generator 1270E. Comparator 1263E receives energy attribute signal 1246E from optical detection system 1145E and also receives target energy Etarget 1271E from target energy generator 1270E. Comparator 1263E implements a comparison function, such as subtraction to determine error signal 1266E. Energy controller 1262E includes one or more modules configured to determine excitation signal 1268E, which corresponds to excitation signal 1168E referenced in FIG. 11A. The excitation signal 1268E takes into account the error signal 1266E, and also takes into account changes in the transfer function of the optical oscillator 1212E, as discussed below.

參考圖13,展示主控振盪器212之更詳細視圖。兩個細長電極217包括放電腔室214中含有之陰極217-a及陽極217-b。陰極217-a與陽極217-b之間的電位差在氣態增益介質219中形成電場。藉由控制源供應器1197E以將電壓施加至陰極217-a及/或陽極217-b來產生電位差。在此實例中,源供應器1197E藉由激勵信號1168E控制。激勵信號1168E包括足以使源供應器1197E產生電壓信號1168Ev且根據觸發信號330 (圖3C)將該電壓信號1168Ev施加至主控振盪器212的資訊。電壓信號1168Ev具有由激勵信號1168E指定之振幅。源供應器1197E施加電壓信號1168Ev以藉此將特定振幅之電壓施加至陰極217-a及/或陽極217-b,使得電場將足以引起粒子數反轉且使得能夠藉助於受激發射產生光束224之脈衝的能量提供至增益介質219。重複產生此電位差形成脈衝串,該等脈衝串作為光束224發射且因此作為光束260發射(圖2A)。Referring to Figure 13, a more detailed view of the master oscillator 212 is shown. The two elongated electrodes 217 include a cathode 217 - a and an anode 217 - b contained in the discharge chamber 214 . The potential difference between cathode 217 - a and anode 217 - b creates an electric field in gaseous gain medium 219 . The potential difference is created by controlling the source supplier 1197E to apply a voltage to the cathode 217-a and/or the anode 217-b. In this example, source provider 1197E is controlled by excitation signal 1168E. The excitation signal 1168E includes information sufficient to cause the source provider 1197E to generate a voltage signal 1168Ev and apply the voltage signal 1168Ev to the master oscillator 212 in accordance with the trigger signal 330 (FIG. 3C). Voltage signal 1168Ev has an amplitude specified by excitation signal 1168E. Source supplier 1197E applies voltage signal 1168Ev to thereby apply a voltage of a particular amplitude to cathode 217-a and/or anode 217-b such that the electric field will be sufficient to cause population inversion and enable generation of light beam 224 by means of stimulated emission The energy of the pulse is provided to the gain medium 219. Repeated generation of this potential difference forms pulse trains that are emitted as light beam 224 and thus as light beam 260 (FIG. 2A).

再次參考12,比較器1263E實施諸如減法之比較函數。比較器1263E自光學偵測系統1145E接收能量屬性信號1246E,且自目標能量產生器1270E接收目標能量Etarget 1271E之值。能量屬性信號1246E包括脈衝k-1中之光學能量的量之指示,脈衝k-1為緊接在脈衝k之前的脈衝。Referring again to 12, comparator 1263E implements a comparison function such as subtraction. Comparator 1263E receives energy attribute signal 1246E from optical detection system 1145E, and receives the value of target energy Etarget 1271E from target energy generator 1270E. Energy attribute signal 1246E includes an indication of the amount of optical energy in pulse k-1, which is the pulse immediately preceding pulse k.

目標能量Etarget 1271E為光束1160中之光學脈衝子集的目標或所要光學能量之值。目標能量Etarget 1271E為與光微影系統1100之可接受或最佳效能相關聯之預定義光學能量。Etarget 1271E之值可儲存於電子儲存器252或光學源1105內之另一位置中,且在需要時可準備好由比較器1263E使用。在一些實施方式中,可藉由微影曝光設備1169指示Etarget 1271E之值(如由箭頭1165所展示)。如上文所論述,能量控制模組1161E經實施以在微影曝光設備1169處實現光譜特徵相依劑量或能量控制。為了實施波長相依劑量或能量控制,目標能量產生器1270E提供或判定目標能量Etarget 1271E,其與由光學振盪器1212E產生之光束1160之脈衝的光譜屬性(諸如主波長λp)相關聯。Target energy Etarget 1271E is the target or desired optical energy value for a subset of optical pulses in beam 1160 . The target energy Etarget 1271E is a predefined optical energy associated with acceptable or optimal performance of the photolithography system 1100 . The value of Etarget 1271E may be stored in electronic storage 252 or another location within optical source 1105 and may be ready for use by comparator 1263E when needed. In some embodiments, the value of Etarget 1271E may be indicated by lithography exposure apparatus 1169 (as shown by arrow 1165). As discussed above, the energy control module 1161E is implemented to achieve spectral feature dependent dose or energy control at the lithography exposure apparatus 1169 . To implement wavelength-dependent dose or energy control, a target energy generator 1270E provides or determines a target energy Etarget 1271E, which correlates to a spectral property, such as the dominant wavelength λp, of the pulses of the light beam 1160 generated by the optical oscillator 1212E.

舉例而言,圖14展示其中每一目標能量Etarget 1271E_i與光束1160之脈衝集合中的每一可能主波長λp 1402_i相關性的表,其中i為大於1之整數且具有M之最大值。此表可儲存於光學源1105或微影曝光設備1169內,且在產生光束1160之脈衝後由目標能量產生器1270E存取。For example, FIG. 14 shows a table in which each target energy Etarget 1271E_i is related to each possible dominant wavelength λp 1402_i in the pulse set of beam 1160, where i is an integer greater than 1 and has a maximum value of M. This table may be stored within optical source 1105 or lithographic exposure apparatus 1169 and accessed by target energy generator 1270E after generating a pulse of light beam 1160 .

作為另一實例,圖15A展示目標能量Etarget 1571E相對於四個主波長1502之圖表,該等主波長1502中之每一者與光束脈衝集合相關聯。因此,主波長1502a與目標能量Etarget 1571Ea相關聯;主波長1502b與目標能量Etarget 1571Eb相關聯;主波長1502c與目標能量Etarget 1571Ec相關聯;且主波長1502d與目標能量Etarget 1571Ed相關聯。在此實例中,如圖15B中所展示,四個相異空間影像1573a、1573b、1573c、1573d在同一曝光遍次期間形成在晶圓170處,每一空間影像1573a、1573b、1573c、1573d沿著z軸形成在各別及相異平面1578a、1578b、1578c、1578d處。平面之位置取決於主波長1502。因此,舉例而言,空間影像1573a形成於平面1578a處,沿著z軸之位置取決於主波長1502a。因此,每一空間影像1573a、1573b、1573c、1573d與各別相異能量1571Ea、1571Eb、1571Ec、1571Ed相關聯。在圖15B中,每一相異能量1571Ea、1571Eb、1571Ec、1571Ed由各別空間影像1573a、1573b、1573c、1573d內之不同明暗位準表示。As another example, Figure 15A shows a graph of target energy Etarget 1571E versus four dominant wavelengths 1502, each of which is associated with a set of beam pulses. Thus, dominant wavelength 1502a is associated with target energy Etarget 1571Ea; dominant wavelength 1502b is associated with target energy Etarget 1571Eb; dominant wavelength 1502c is associated with target energy Etarget 1571Ec; and dominant wavelength 1502d is associated with target energy Etarget 1571Ed. In this example, as shown in FIG. 15B, four distinct aerial images 1573a, 1573b, 1573c, 1573d are formed at wafer 170 during the same exposure pass, each aerial image 1573a, 1573b, 1573c, 1573d along The z-axes are formed at separate and distinct planes 1578a, 1578b, 1578c, 1578d. The location of the plane depends on the dominant wavelength 1502 . Thus, for example, aerial image 1573a is formed at plane 1578a, the position along the z-axis being dependent on dominant wavelength 1502a. Thus, each aerial image 1573a, 1573b, 1573c, 1573d is associated with a respective distinct energy 1571Ea, 1571Eb, 1571Ec, 1571Ed. In Figure 15B, each distinct energy 1571Ea, 1571Eb, 1571Ec, 1571Ed is represented by a different light and dark level within a respective spatial image 1573a, 1573b, 1573c, 1573d.

再次參考圖12,為了判定與光束1160之脈衝k-1之主波長相關聯的目標能量Etarget 1271E,目標能量產生器1270E可存取來自光學源1105之關於脈衝k-1之主波長的資訊或資料。舉例而言,若能量屬性信號1246E與脈衝k-1相關聯,則目標能量產生器1270E可輸出與脈衝k-1之主波長相關聯的目標能量Etarget 1271E。作為另一實例,目標能量產生器1270E可基於脈衝數目或索引輸出目標能量Etarget 1271E。舉例而言,參考圖15A及圖15B,若脈衝k-1具有主波長1502c (對應於由c指定之脈衝集合),則目標能量產生器1270E判定用於脈衝k-1之目標能量Etarget 1271E為1571Ec。另一方面,若脈衝k-1具有主波長1502a (對應於由a指定之脈衝集合),則目標能量產生器1270E判定用於脈衝k-1之目標能量Etarget 1271E為1571Ea。Referring again to FIG. 12 , to determine the target energy Etarget 1271E associated with the dominant wavelength of pulse k−1 of beam 1160, target energy generator 1270E may access information from optical source 1105 about the dominant wavelength of pulse k−1 or material. For example, if energy attribute signal 1246E is associated with pulse k-1, target energy generator 1270E may output target energy Etarget 1271E associated with the dominant wavelength of pulse k-1. As another example, the target energy generator 1270E may output the target energy Etarget 1271E based on the pulse number or index. For example, referring to FIGS. 15A and 15B , if pulse k−1 has a dominant wavelength 1502c (corresponding to the set of pulses specified by c), target energy generator 1270E determines that target energy Etarget 1271E for pulse k−1 is 1571Ec. On the other hand, if pulse k−1 has dominant wavelength 1502a (corresponding to the set of pulses specified by a), target energy generator 1270E determines target energy Etarget 1271E for pulse k−1 to be 1571Ea.

此外,Etarget 1271E之值及/或能量屬性信號1246E中之光學能量之量的指示可在由比較器1246E接收到之前經處理。舉例而言,若Etarget 1271E之值以能量(焦耳)為單位且能量屬性信號1246E中之光學能量之量的指示以功率(瓦特)為單位,則指示可在於比較器1263E處接收到之前轉換成能量(焦耳)單位。比較器1263E判定與光束1160之脈衝k-1相關聯之能量誤差1266E,能量誤差1266E對應於脈衝k-1中之能量之量與Etarget 1271E之間的差。Additionally, the value of Etarget 1271E and/or an indication of the amount of optical energy in energy attribute signal 1246E may be processed prior to being received by comparator 1246E. For example, if the value of Etarget 1271E is in units of energy (joules) and the indication of the amount of optical energy in energy attribute signal 1246E is in units of power (watts), the indication may be converted to A unit of energy (joule). Comparator 1263E determines energy error 1266E associated with pulse k-1 of beam 1160, energy error 1266E corresponding to the difference between the amount of energy in pulse k-1 and Etarget 1271E.

能量誤差1266E提供至能量控制器1272E,其判定激勵信號1268E。激勵信號1268E之特性係基於能量誤差1266E (其又係基於能量屬性信號1246E中之能量之量的指示)。此外,能量控制器1272E校正激勵信號1268E以考慮光學振盪器1212E之轉移函數中的變化。轉移函數由於光束1160中之脈衝之光譜屬性(波長)有意地並非全部相同而變化。舉例而言,每一脈衝之中心或主波長可在產生脈衝之前在逐脈衝基礎上改變,從而改變光譜特徵選擇模組258之組態。主波長可在複數個值之間交替以形成在每一主要波長下具有光譜峰值之脈衝光束1160,其中任何兩個峰值彼此分離一光譜距離,該光譜距離為兩個峰值之主波長之間的差。在兩個鄰近主波長之間的波長下,脈衝光束中存在極少或不存在光。Energy error 1266E is provided to energy controller 1272E, which evaluates excitation signal 1268E. The characteristic of excitation signal 1268E is based on energy error 1266E (which in turn is based on an indication of the amount of energy in energy property signal 1246E). In addition, energy controller 1272E corrects excitation signal 1268E to account for changes in the transfer function of optical oscillator 1212E. The transfer function varies due to the fact that the spectral properties (wavelengths) of the pulses in beam 1160 are intentionally not all the same. For example, the center or dominant wavelength of each pulse can be changed on a pulse-by-pulse basis before the pulse is generated, thereby changing the configuration of the spectral feature selection module 258 . The dominant wavelengths can be alternated between a plurality of values to form a pulsed beam 1160 having spectral peaks at each dominant wavelength, wherein any two peaks are separated from each other by a spectral distance which is the distance between the dominant wavelengths of the two peaks. Difference. At wavelengths between two adjacent dominant wavelengths, little or no light is present in the pulsed beam.

將經校正激勵信號1268E施加至光學振盪器1212E以校正光學振盪器1212E之效率的變化。藉由校正激勵信號1268E,能量控制模組1261E使得脈衝光束1160中之特定主波長的脈衝能量處於與彼特定主波長相關聯之目標能量1271E之可接受範圍或在該可接受範圍內。Corrected excitation signal 1268E is applied to optical oscillator 1212E to correct for variations in the efficiency of optical oscillator 1212E. By correcting the excitation signal 1268E, the energy control module 1261E causes the pulse energy of a particular dominant wavelength in the pulsed beam 1160 to be at or within an acceptable range of a target energy 1271E associated with that particular dominant wavelength.

參考圖16,能量控制模組1161E之實施方式1661E展示為與光學振盪器1212E一起使用。在此實施方式中,能量控制模組1661E包括複數個能量控制器1672E,每一主波長λp一個能量控制器。在此實施方式中,展示兩個能量控制器1672E_1及1672E_2,兩個主波長中之每一者一個能量控制器,使得光學振盪器1212E產生具有處於第一目標能量1671E_1之第一主波長λp1及處於第二目標能量1671E_2之第二主波長λp2的脈衝。在其他實施方式中,能量控制模組1661E可包括多於兩個能量控制器1672E,且與在光束1160中存在主波長一樣多的能量控制器1672E。能量控制器1672E中之每一者可具有任何適合之設計或操作。此外,能量控制模組1661E內之任何一個能量控制器1672E可具有與能量控制模組1661E內之其他能量控制器1672E不同的設計或操作。Referring to FIG. 16, an implementation 1661E of an energy control module 1161E is shown for use with an optical oscillator 1212E. In this embodiment, the energy control module 1661E includes a plurality of energy controllers 1672E, one for each dominant wavelength λp. In this embodiment, two energy directors 1672E_1 and 1672E_2 are shown, one energy director for each of the two dominant wavelengths, such that the optical oscillator 1212E produces a first dominant wavelength λp1 and A pulse at a second dominant wavelength λp2 at a second target energy 1671E_2. In other embodiments, the energy control module 1661E may include more than two energy directors 1672E, and as many energy directors 1672E as there are dominant wavelengths in the light beam 1160 . Each of energy directors 1672E may have any suitable design or operation. Furthermore, any one energy director 1672E within the energy control module 1661E may have a different design or operation than the other energy directors 1672E within the energy control module 1661E.

能量控制模組1661E包括比較器1663E之集合,每一能量控制器1672E一個比較器。在所展示之實施方式中,第一比較器1663E_1與第一能量控制器1672E_1相關聯,且第二比較器1663E_2與第二能量控制器1672E_2相關聯。能量控制模組1661E亦包括針對每一主波長λp產生目標能量Etarget之目標能量產生器1670E。因此,在此實施方式中,目標能量產生器1670E針對第一主波長λp1產生第一目標能量Etarget 1671E_1,第一目標能量Etarget 1671E_1經提供至第一比較器1663E_1,且針對第二主波長λp2產生第二目標能量Etarget 1671E_2,第二目標能量Etarget 1671E_2經提供至第二比較器1663E_1。Energy control module 1661E includes a set of comparators 1663E, one comparator for each energy controller 1672E. In the embodiment shown, the first comparator 1663E_1 is associated with the first energy controller 1672E_1 and the second comparator 1663E_2 is associated with the second energy controller 1672E_2. The energy control module 1661E also includes a target energy generator 1670E for generating a target energy Etarget for each dominant wavelength λp. Therefore, in this embodiment, the target energy generator 1670E generates the first target energy Etarget 1671E_1 for the first dominant wavelength λp1, the first target energy Etarget 1671E_1 is provided to the first comparator 1663E_1, and is generated for the second dominant wavelength λp2 The second target energy Etarget 1671E_2, the second target energy Etarget 1671E_2 is provided to the second comparator 1663E_1.

能量控制模組1661E包括經組態以判定在何處發送能量屬性信號1646E之切換器1646Es。特定而言,若當前脈衝具有第一主波長λp1,則切換器1646Es將能量屬性信號1646E提供至第一比較器1663E_1,且若當前脈衝具有第二主波長λp2,則切換器1646Es將能量屬性信號1646E提供至第二比較器1663E_2。在其他實施方式中,替代光學偵測系統1145E處之切換器,各別切換器可實施於比較器1663E_1、1663E_2處。The energy control module 1661E includes a switch 1646Es configured to determine where to send the energy attribute signal 1646E. Specifically, if the current pulse has the first dominant wavelength λp1, the switch 1646Es provides the energy attribute signal 1646E to the first comparator 1663E_1, and if the current pulse has the second dominant wavelength λp2, the switch 1646Es provides the energy attribute signal 1646E 1646E is provided to the second comparator 1663E_2. In other embodiments, instead of a switch at the optical detection system 1145E, respective switches may be implemented at the comparators 1663E_1, 1663E_2.

能量控制器(諸如經組態以對所有主波長λp進行操作之能量控制器1272E,或能量控制器1672E_1、1672E_2,其各自經組態以對單一主波長λp進行操作)可具有任何適合的設計或操作。接下來,參考圖17至圖20論述適合能量控制器之若干實施方式。此等能量控制器中之任一者可實施為能量控制器1272E、1672E_1或1672E_2中之任一者。此外,可能將複數個能量控制器之操作組合至能量控制器1272E、1672E_1、1672E_2中之單一能量控制器中。An energy director, such as energy director 1272E configured to operate on all dominant wavelengths λp, or energy directors 1672E_1, 1672E_2 each configured to operate on a single dominant wavelength λp, may be of any suitable design or operation. Next, several embodiments of suitable energy controllers are discussed with reference to FIGS. 17-20 . Any of these energy directors may be implemented as any of energy directors 1272E, 1672E_1 or 1672E_2. Furthermore, it is possible to combine the operations of multiple energy directors into a single energy director in the energy directors 1272E, 1672E_1, 1672E_2.

參考圖17,能量控制器之實施方式1772E使用陷波濾波器。能量控制器1772E包括延遲模組1767E、激勵判定模組1762E及校正模組1764E。延遲模組1767E自比較器1763E接收能量誤差1766E,該比較器1763E可為比較器1263E、1663E_1、1663E_2中之任一者。延遲模組1767E將時間延遲引入至能量誤差1766E中以便確保恰當因果關係;使得由能量控制器1772E採取之動作並不施加至接收到量測之脈衝(自能量屬性信號1246E)。當延遲模組1767E展示為分離區塊時,其功能可實施於光學偵測系統1145E或激勵判定模組1762E內。Referring to Figure 17, an implementation of the energy controller 1772E uses a notch filter. The energy controller 1772E includes a delay module 1767E, an excitation determination module 1762E, and a correction module 1764E. Delay module 1767E receives energy error 1766E from comparator 1763E, which can be any one of comparators 1263E, 1663E_1, 1663E_2. Delay module 1767E introduces a time delay into energy error 1766E to ensure proper causality; so that actions taken by energy controller 1772E are not applied to received measured pulses (from energy attribute signal 1246E). While delay module 1767E is shown as a separate block, its functionality may be implemented within optical detection system 1145E or stimulus decision module 1762E.

能量誤差1766E經提供至激勵判定模組1762E,其判定激勵信號1768Ep。激勵信號1768Ep之特性係基於能量誤差1766E,其又係基於能量屬性信號1246E、1646E中之能量之量的指示。因此,舉例而言,激勵判定模組1762E可判定調整振盪器1212E之電極之電壓的多少以使自振盪器1212E輸出之光束之能量中的誤差偏移。Energy error 1766E is provided to excitation decision module 1762E, which determines excitation signal 1768Ep. The characteristic of the excitation signal 1768Ep is based on the energy error 1766E, which in turn is based on an indication of the amount of energy in the energy property signal 1246E, 1646E. Thus, for example, the excitation determination module 1762E may determine how much to adjust the voltage of the electrodes of the oscillator 1212E to offset the error in the energy of the beam output from the oscillator 1212E.

激勵信號1768Ep經提供至校正模組1764E。校正模組1764E基於激勵信號1768Ep判定經校正激勵信號1768E。特定言之,校正模組1764E校正激勵信號1768Ep以考慮光學振盪器1212E之轉移函數中的變化。轉移函數由於光束1160中之脈衝之光譜屬性有意地並非全部相同而變化。舉例而言,每一脈衝之中心或主波長λp可在產生脈衝之前在逐脈衝基礎上改變,從而改變光譜特徵選擇模組258之組態。主波長可在複數個值之間交替以形成在每一主要波長下具有光譜峰值之脈衝光束1160,其中任何兩個峰值彼此分離一光譜距離,該光譜距離為兩個峰值之主波長之間的差。在兩個鄰近主波長之間的波長下,脈衝光束中存在極少或不存在光。The excitation signal 1768Ep is provided to the correction module 1764E. Correction module 1764E determines corrected excitation signal 1768E based on excitation signal 1768Ep. In particular, correction module 1764E corrects excitation signal 1768Ep to account for variations in the transfer function of optical oscillator 1212E. The transfer function varies due to the fact that the spectral properties of the pulses in beam 1160 are intentionally not all identical. For example, the center or dominant wavelength λp of each pulse may be changed on a pulse-by-pulse basis before the pulse is generated, thereby changing the configuration of the spectral feature selection module 258 . The dominant wavelengths can be alternated between a plurality of values to form a pulsed beam 1160 having spectral peaks at each dominant wavelength, wherein any two peaks are separated from each other by a spectral distance which is the distance between the dominant wavelengths of the two peaks. Difference. At wavelengths between two adjacent dominant wavelengths, little or no light is present in the pulsed beam.

校正模組1764E實施濾波器(諸如陷波濾波器),其至少基於以下各者而判定經校正激勵信號1768E:在光學振盪器1212E產生第k個脈衝時之轉移函數TF(k)、第k個脈衝之能量誤差1766E、第k個脈衝之累積能量誤差、針對具有與第k個脈衝相同之主波長的脈衝的先前激勵信號之一或多個值及與能量及/或劑量誤差有關之一或多個調諧參數或增益。大體而言,陷波濾波器拒絕具有在頻帶中之頻率的信號且傳輸具有在頻帶外之頻率的信號。陷波濾波器經組態以拒絕可歸因於使用來自光學振盪器1212E之不同組態(不同轉移函數)的光脈衝而出現的能量干擾。陷波濾波器可由以下等式表達:

Figure 02_image003
Figure 02_image005
等式(2), 其中k為將脈衝數目索引化之整數數目,V sp為經校正激勵信號1768E,且特定言之,V sp(k+1)為用於k+1脈衝之經校正激勵信號1768E,G N為K H/K E,其中K H為與劑量誤差有關之增益的調諧參數,K E為與能量誤差有關之調諧參數或增益,且Vservo為根據如下等式(3)計算之電壓命令:
Figure 02_image007
等式(3), 其中e(k)為第k個脈衝之能量誤差1766E,D(k)為第k個脈衝之累積能量誤差或劑量誤差,且dEdV(k)為在光學振盪器1212E產生第k個脈衝時的轉移函數。 Correction module 1764E implements a filter, such as a notch filter, that determines corrected excitation signal 1768E based on at least the transfer function TF(k) at which the optical oscillator 1212E generates the kth pulse, the kth Energy error 1766E for pulses, cumulative energy error for the kth pulse, one or more values of the previous excitation signal for a pulse having the same dominant wavelength as the kth pulse, and one related to energy and/or dose error or multiple tuning parameters or gains. In general, a notch filter rejects signals with frequencies that are in-band and passes signals with frequencies that are out-of-band. The notch filter is configured to reject energy disturbances that may arise due to using optical pulses of different configurations (different transfer functions) from the optical oscillator 1212E. The notch filter can be expressed by the following equation:
Figure 02_image003
Figure 02_image005
Equation (2), where k is an integer number indexing the number of pulses, Vsp is the corrected excitation signal 1768E, and in particular, Vsp (k+1) is the corrected excitation for k+1 pulses Signal 1768E, G N is K H /K E , wherein K H is the tuning parameter of the gain related to the dose error, K E is the tuning parameter or gain related to the energy error, and Vservo is calculated according to the following equation (3) The voltage command:
Figure 02_image007
Equation (3), where e(k) is the energy error 1766E of the kth pulse, D(k) is the cumulative energy error or dose error of the kth pulse, and dEdV(k) is the energy error generated in the optical oscillator 1212E The transfer function at the kth pulse.

將經校正激勵信號1768E施加至光學振盪器1212E以校正光學振盪器1212E之效率的變化。藉由校正激勵信號1268E,能量控制模組1261E使得脈衝光束1160中之特定主波長的脈衝能量處於與特定主波長相關聯之目標能量(諸如Etarget 1271E,或Etarget 1671E_1、Etarget 1671E_2)的可接受範圍或在該可接受範圍內。Corrected excitation signal 1768E is applied to optical oscillator 1212E to correct for variations in the efficiency of optical oscillator 1212E. By correcting the excitation signal 1268E, the energy control module 1261E makes the pulse energy of the specific dominant wavelength in the pulsed beam 1160 within the acceptable range of the target energy (such as Etarget 1271E, or Etarget 1671E_1, Etarget 1671E_2) associated with the specific dominant wavelength or within that acceptable range.

參考圖18,能量控制器之實施方式1872E使用卡門濾波器(Kalman filter),該卡門濾波器使用線性二次估計。能量控制器1872E包括自比較器1863E接收誤差信號之延遲模組1867E,該比較器1863E可為比較器1263E、1663E_1、1663E_2中之任一者。如上文所論述,延遲模組1767E將時間延遲引入至能量誤差1866E中以便確保恰當因果關係;使得由能量控制器1872E採取之動作並不施加至接收到量測之脈衝(自能量屬性信號1246E)。當延遲模組1867E展示為分離區塊時,其功能可實施於光學偵測系統1145E或能量控制器1872E之另一組件內。能量控制器1872E包括激勵判定模組1862E、校正模組1864E及第二比較器1869E。Referring to Figure 18, an energy controller implementation 1872E uses a Kalman filter that uses linear quadratic estimation. The energy controller 1872E includes a delay module 1867E that receives an error signal from a comparator 1863E, which can be any one of the comparators 1263E, 1663E_1, 1663E_2. As discussed above, the delay module 1767E introduces a time delay into the energy error 1866E in order to ensure proper causality; so that actions taken by the energy controller 1872E are not applied to the received measured pulse (from the energy attribute signal 1246E) . While delay module 1867E is shown as a separate block, its functionality may be implemented within another component of optical detection system 1145E or energy controller 1872E. The energy controller 1872E includes an excitation determination module 1862E, a correction module 1864E and a second comparator 1869E.

與激勵判定模組1762E類似,激勵判定模組1862E基於自延遲模組1867E輸出之能量誤差1866E判定激勵信號1868Ep。特定而言,激勵判定模組1862E包括轉移函數模型集合,其中每一轉移函數模型與光學振盪器1212E之狀態中的各別者相關聯。特定言之,光學振盪器1212E之每一轉移函數TF與產生相異主波長λp之光譜特徵選擇模組258的特定組態相關聯,且每一轉移函數TF與彼組態之效率特性有關。激勵判定模組1862E選擇與產生第k個脈衝之光學振盪器1212E之轉移函數TF相關聯的模型M(TF)以便計算激勵信號1868Ep。以等式形式,此可由以下表示:

Figure 02_image009
等式(4), 其中k為表示光束1160之脈衝的脈衝數目的大於或等於1之整數,Ch k為在光束1160中產生第k個脈衝之光學振盪器1212E的狀態,且dedv(Ch k)為模型化產生第k個脈衝之光學振盪器1212E之轉移函數的模型M(TF)。V *及E *作為模型化之部分而判定。V(k+1)為針對k+1脈衝而判定之激勵信號1868Ep。 Similar to the stimulus decision module 1762E, the stimulus decision module 1862E decides the stimulus signal 1868Ep based on the energy error 1866E output from the delay module 1867E. In particular, excitation decision module 1862E includes a set of transfer function models, where each transfer function model is associated with a respective one of the states of optical oscillator 1212E. In particular, each transfer function TF of optical oscillator 1212E is associated with a particular configuration of spectral feature selection module 258 that produces a distinct dominant wavelength λp, and each transfer function TF is related to the efficiency characteristics of that configuration. The excitation decision module 1862E selects the model M(TF) associated with the transfer function TF of the optical oscillator 1212E generating the kth pulse for computing the excitation signal 1868Ep. In equation form, this can be represented by:
Figure 02_image009
Equation (4), where k is an integer greater than or equal to 1 representing the number of pulses of the pulses of beam 1160, Ch k is the state of optical oscillator 1212E generating the kth pulse in beam 1160, and dedv(Ch k ) is the model M(TF) modeling the transfer function of the optical oscillator 1212E generating the kth pulse. V * and E * are determined as part of the modeling. V(k+1) is the excitation signal 1868Ep asserted for the k+1 pulse.

校正模組1864E實施為卡門濾波器,其高效地拒絕具有已知週期之脈衝間能量干擾。卡門濾波器1864E使用來自比較器1863E之能量誤差1866E及來自激勵判定模組1862E之激勵信號1868Ep來判定輸出信號1864Eo。輸出信號1864Eo經提供至第二比較器1869E。第二比較器1869E基於輸出信號1864Eo及激勵信號1868Ep判定經校正激勵信號1868E。Correction module 1864E is implemented as a Kalman filter that efficiently rejects interpulse energy interference with a known period. Kalman filter 1864E uses energy error 1866E from comparator 1863E and excitation signal 1868Ep from excitation decision module 1862E to determine output signal 1864Eo. The output signal 1864Eo is provided to a second comparator 1869E. The second comparator 1869E determines the corrected excitation signal 1868E based on the output signal 1864Eo and the excitation signal 1868Ep.

卡門濾波器1864E之輸出信號1864Eo係基於與第k個脈衝之能量誤差1866E直接有關之因子、與光譜特徵選擇模組258之組態改變所在之週期相關聯的模型M(TF),及施加以產生第k個脈衝之激勵信號1868E。卡門濾波器1864E之輸出信號1864Eo亦將卡門濾波器1864E之增益及調諧參數考慮在內。The output signal 1864Eo of the Karman filter 1864E is based on a factor directly related to the energy error 1866E of the kth pulse, a model M(TF) associated with the period in which the configuration of the spectral feature selection module 258 changes, and applying An excitation signal 1868E for the kth pulse is generated. The output signal 1864Eo of the Kalman filter 1864E also takes into account the gain and tuning parameters of the Kalman filter 1864E.

卡門濾波器之輸出信號1864Eo可根據以下等式來表達:

Figure 02_image011
等式(5), 其中A = -1,且KXpost(k)為針對第k個脈衝之卡門濾波器1864E之輸出的估計且藉由以下給出: KXpost(k)=KXpred(k)+K_K(k)*Ke(k)          等式(6), 其中K_K為卡門濾波器1864E之增益,藉由以下給出:
Figure 02_image013
等式(7), 且Ke(k)藉由以下給出:
Figure 02_image015
等式(8), 其中誤差(k)為第k個脈衝之能量誤差1866E,dedv(M(TF))為與用於在光束1160中產生第k個脈衝的光學振盪器1212E相關聯之模型,且HVcommand(k)為施加以產生第k個脈衝之激勵信號。 The output signal 1864Eo of the Karman filter can be expressed according to the following equation:
Figure 02_image011
Equation (5), where A = -1, and KXpost(k) is the estimate of the output of the Kalman filter 1864E for the kth pulse and is given by: KXpost(k) = KXpred(k) + K_K (k)*Ke(k) Equation (6), where K_K is the gain of the Kalman filter 1864E, given by:
Figure 02_image013
Equation (7), and Ke(k) is given by:
Figure 02_image015
Equation (8), where error(k) is the energy error 1866E for the kth pulse and dedv(M(TF)) is the model associated with the optical oscillator 1212E used to generate the kth pulse in the beam 1160 , and HVcommand(k) is the excitation signal applied to generate the kth pulse.

K_S(k)藉由K_S(k) = KPpred(k) + R給出,其中R為調諧參數。並且,KPpred(k)為KXpred(k)之協方差。KPpred(k)亦可被視為判定卡門濾波器1864E之增益K_K的置信度。因此,若KPpred(k)為0,則K_K = 0,且此意謂吾人對模型預測極為確信且將不需要來自光學偵測系統1145E之輸出。另一方面,若KPpred(k)相比於光學偵測系統1145E中之雜訊R極大,則K_K = 1,且此意謂吾人可僅信任光學偵測系統1145E。KPpred(k+1)藉由以下給出: KPpred(k+1) = A * KPpost(k) *A′ +Q      等式(9), 其中A = -1,Q為卡門濾波器1864E之調諧參數,且KPpost(k)藉由以下給出:

Figure 02_image017
等式(10), 其中C為卡門濾波器1864E之調諧參數且在此實施方式中可等於1,且R為調諧參數。 K_S(k) is given by K_S(k) = KPpred(k) + R, where R is a tuning parameter. And, KPpred(k) is the covariance of KXpred(k). KPpred(k) can also be regarded as the confidence level for determining the gain K_K of the Kalman filter 1864E. Therefore, if KPpred(k) is 0, then K_K = 0, and this means that we are very confident in the model prediction and will not need the output from the optical detection system 1145E. On the other hand, if KPpred(k) is very large compared to the noise R in the optical detection system 1145E, then K_K = 1, and this means that one can only trust the optical detection system 1145E. KPpred(k+1) is given by: KPpred(k+1) = A * KPpost(k) *A' + Q Equation (9), where A = -1 and Q is the tuning of the Karman filter 1864E parameters, and KPpost(k) is given by:
Figure 02_image017
Equation (10), where C is the tuning parameter of the Kalman filter 1864E and may be equal to 1 in this embodiment, and R is the tuning parameter.

第二比較器1869E判定經校正激勵信號1868E如下: HVSP(k) = HVCommand(k) + HVDefault - KXpred(k),       等式(11), 其中HVSP(k)為經校正激勵信號1868E,HVCommand(k)為針對第k個脈衝之藉由激勵判定模組1862E判定的未校正激勵信號1868Ep,HVDefault為估計針對第k個脈衝之光學振盪器1212E之轉移函數TF的標稱激勵信號的參數,且KXpred(k)為針對第k個脈衝之卡門濾波器1864E的輸出信號1864Eo。HVDefault之值在需要時可儲存於電子儲存器中且由能量控制器1872E擷取。HVDefault之值可為電壓之量值,且可為例如大於100伏特之值。 The second comparator 1869E determines the corrected excitation signal 1868E as follows: HVSP(k) = HVCommand(k) + HVDefault - KXpred(k), Equation (11), Wherein HVSP(k) is the corrected excitation signal 1868E, HVCommand(k) is the uncorrected excitation signal 1868Ep determined by the excitation determination module 1862E for the kth pulse, and HVDefault is the estimated optical oscillator for the kth pulse Parameters of the nominal excitation signal of the transfer function TF of 1212E, and KXpred(k) is the output signal 1864Eo of the Kalman filter 1864E for the kth pulse. The value of HVDefault may be stored in electronic storage and retrieved by energy controller 1872E as needed. The value of HVDefault may be a magnitude of voltage, and may be a value greater than 100 volts, for example.

參考圖19A,能量控制模組1161E之實施方式1961E使用前授方法以拒絕或減少脈衝間能量干擾或能量變化,該等脈衝間能量干擾或能量變化歸因於有意地改變與光學振盪器1212E相關聯之光譜特徵選擇模組258的組態而出現,以便改變由光學振盪器1212E產生之光束1160的光譜屬性。能量控制模組1961E依賴於估計EvsV(λp)之集合,每一估計具有針對每一主波長λp之至光學振盪器1212E之輸入(激勵信號或V)與來自光學振盪器1212E之輸出(光束1160之能量E)之間的關係。能量控制模組1961E包括目標能量產生器1970E (其類似於目標能量產生器1270E操作)、比較器1963E及能量控制器1972E。Referring to FIG. 19A , an embodiment 1961E of the energy control module 1161E uses a feedforward approach to reject or reduce interpulse energy disturbances or energy variations due to intentional changes associated with the optical oscillator 1212E. This occurs in conjunction with the configuration of the spectral feature selection module 258 to alter the spectral properties of the light beam 1160 produced by the optical oscillator 1212E. Energy control module 1961E relies on a set of estimates EvsV(λp), each estimate having an input (excitation signal or V) to optical oscillator 1212E and an output from optical oscillator 1212E (beam 1160 The relationship between the energy E). The energy control module 1961E includes a target energy generator 1970E (which operates similarly to the target energy generator 1270E), a comparator 1963E, and an energy controller 1972E.

參考圖19B及圖19C,展示能量控制器1972E之細節。能量控制器1972E包括延遲模組1967E及激勵判定模組1962E。延遲模組1967E之輸出為自比較器1963E輸出之能量誤差1966E,能量誤差1966E對應於能量屬性信號1946E (其為先前脈衝中之能量,參見圖19A)與能量目標1971E之間的差的量度。激勵判定模組1962E判定經校正激勵信號1968E,且將經校正激勵信號1968E提供至光學振盪器1212E。Referring to Figures 19B and 19C, details of the energy controller 1972E are shown. The energy controller 1972E includes a delay module 1967E and an excitation determination module 1962E. The output of delay module 1967E is energy error 1966E output from comparator 1963E, which corresponds to a measure of the difference between energy attribute signal 1946E (which is the energy in the previous pulse, see FIG. 19A ) and energy target 1971E. The excitation determination module 1962E determines the corrected excitation signal 1968E and provides the corrected excitation signal 1968E to the optical oscillator 1212E.

圖19C為激勵判定模組1962E之方塊圖。激勵判定模組1962E可包括回饋控制器FC。在一些實施方式中,回饋控制器FC為比例-積分-導數(PID)控制器,其接收誤差信號1966E且產生施加至在下游經選擇之轉移函數中之一者的輸出(如接下來所論述)。舉例而言,PID控制器包括比例項、積分項及導數項。雖然論述PID控制器,但任何回饋控制器可用作回饋控制器FC。Figure 19C is a block diagram of the stimulus determination module 1962E. The incentive determination module 1962E may include a feedback controller FC. In some embodiments, feedback controller FC is a proportional-integral-derivative (PID) controller that receives error signal 1966E and produces an output that is applied to one of downstream selected transfer functions (as discussed next ). For example, a PID controller includes a proportional term, an integral term, and a derivative term. Although a PID controller is discussed, any regenerative controller can be used as the regenerative controller FC.

激勵判定模組1962E包括轉移函數選擇器1974E,其選擇一個轉移函數TF(1)、TF(2)…..TF(N)。轉移函數TF(1)、TF(2)…..TF(N)中之每一者為針對特定主波長λp之光學振盪器1212E之經估計轉移函數,且轉移函數TF(1)、TF(2)…..TF(N)中之每一者與光譜特徵選擇模組258之特定組態(圖13)相關聯。光譜特徵選擇模組258具有N個不同組態,其中之每一者與輸出光束1160之不同光譜參數(例如中心或主波長或頻寬)相關聯。N為大於一且將與特定應用程式有關的光譜特徵選擇模組258之所有可能組態索引化之整數數目。光譜特徵選擇模組258之N個組態中之每一者與光學振盪器1212E之各別轉移函數TF(1)、TF(2)…..TF(N)相關聯。舉例而言,與轉移函數TF(1)、TF(2)…..TF(N)中之特定者相關聯的N之索引值可藉由定義轉移函數TF之資料及藉由光譜特徵選擇模組258之彼組態產生的中心或主要波長λp儲存於查找表或資料庫中。轉移函數TF(1)、TF(2)…..TF(N)可儲存於電子儲存器252上且可由能量控制模組1961E存取。轉移函數TF(1)、TF(2)…..TF(N)可藉由製造者與N個組態相關聯,或可藉由系統1100之操作者提供,或可使用輸入(放電電壓)及輸出(所量測能量)之歷史而線上估計及更新。The stimulus decision module 1962E includes a transfer function selector 1974E, which selects a transfer function TF(1), TF(2), . . . TF(N). Each of the transfer functions TF(1), TF(2)...TF(N) is an estimated transfer function of the optical oscillator 1212E for a particular dominant wavelength λp, and the transfer functions TF(1), TF( 2) Each of...TF(N) is associated with a particular configuration of spectral feature selection module 258 (FIG. 13). Spectral feature selection module 258 has N different configurations, each of which is associated with a different spectral parameter of output beam 1160 (eg, central or dominant wavelength or bandwidth). N is an integer number greater than one that indexes all possible configurations of the spectral feature selection module 258 that are relevant to a particular application. Each of the N configurations of spectral feature selection module 258 is associated with a respective transfer function TF(1), TF(2)...TF(N) of optical oscillator 1212E. For example, the index value of N associated with a particular one of the transfer functions TF(1), TF(2)...TF(N) can be obtained by defining the data of the transfer function TF and by the spectral feature selection model The central or principal wavelength λp resulting from this configuration of group 258 is stored in a lookup table or database. The transfer functions TF(1), TF(2), . . . TF(N) may be stored on electronic storage 252 and may be accessed by energy control module 1961E. The transfer functions TF(1), TF(2)...TF(N) may be associated with the N configurations by the manufacturer, or may be provided by the operator of the system 1100, or may use an input (discharge voltage) And the history of output (measured energy) is estimated and updated online.

轉移函數選擇器1974E判定轉移函數TF(1)、TF(2)…..TF(N)中之哪一者與產生自光學振盪器1212E發射之輸出光束1160之第k個脈衝的組態相關聯。轉移函數選擇器1974E可藉由實施餘數函數自轉移函數TF(1)、TF(2)…..TF(N)當中選擇,該餘數函數返回將k除以M之除法運算之餘數,其中M為表示光譜特徵選擇模組258之N個組態之數目的整數,該等組態在產生光學脈衝之間交替或循環以產生光學脈衝且k索引化脈衝數目。因此,M為二、N或大於2且小於或等於N之任何數目。若轉移函數選擇器1974E實施為餘數函數且M=2,則轉移函數選擇器1974E針對具有偶數k索引數目之脈衝返回0,且針對具有奇數k索引數目之脈衝返回1。在此等實施方式中,在轉移函數選擇器1974E返回0時,選擇轉移函數TF(1),且在轉移函數選擇器1974E返回1時,選擇轉移函數TF(2)。The transfer function selector 1974E determines which of the transfer functions TF(1), TF(2)....TF(N) is associated with the configuration of the kth pulse generated from the output beam 1160 emitted by the optical oscillator 1212E couplet. Transfer function selector 1974E can select from among transfer functions TF(1), TF(2).....TF(N) by implementing a remainder function that returns the remainder of a division operation that divides k by M, where M is an integer representing the number of N configurations of spectral feature selection module 258 that alternate or cycle between generating optical pulses to generate optical pulses and k indexes the number of pulses. Thus, M is two, N, or any number greater than 2 and less than or equal to N. If transfer function selector 1974E is implemented as a remainder function and M=2, then transfer function selector 1974E returns 0 for pulses with even k-index numbers and 1 for odd k-index numbers. In these embodiments, transfer function TF(1) is selected when transfer function selector 1974E returns 0, and transfer function TF(2) is selected when transfer function selector 1974E returns 1.

在另一實例中,藉由光學振盪器1212E產生之光學脈衝的中心或主波長λp根據預定配方而逐脈衝變化。舉例而言,光學振盪器1212E及光譜特徵選擇模組258可經控制,使得主波長λp在四個預定主波長(諸如圖15A及圖15B中所展示之彼等波長)當中以依序方式循環。因此,轉移函數選擇器1974E針對第二及第六脈衝選擇轉移函數TF(2),且針對第三及第七脈衝選擇轉移函數TF(3),等等。In another example, the center or dominant wavelength λp of the optical pulses generated by the optical oscillator 1212E varies pulse-by-pulse according to a predetermined recipe. For example, optical oscillator 1212E and spectral feature selection module 258 may be controlled such that the dominant wavelength λp cycles in a sequential fashion among four predetermined dominant wavelengths such as those shown in FIGS. 15A and 15B . Thus, transfer function selector 1974E selects transfer function TF(2) for the second and sixth pulses, and selects transfer function TF(3) for the third and seventh pulses, and so on.

誤差信號1966E經提供至所選轉移函數TF (經由轉移函數選擇器1974E),且所選轉移函數TF之輸出經提供至增益1984E且接著經提供至積分器1985E。前授校正信號1967E經提供至積分器1985E,且係基於基於光束1160之下一脈衝之主波長而選擇的EvsV曲線。前授校正信號1967E移除、減少或拒絕能量干擾。信號1967E校正由改變光譜特徵選擇模組258之組態及在光學振盪器1212E之操作期間改變Etarget而引起的能量差,且判定經校正激勵信號1968E。經校正激勵信號1968E (V(k+1))係基於以下等式而判定:

Figure 02_image019
等式(12), 其中k為大於或等於1且表示由光學振盪器1212E輸出之光束中的脈衝之脈衝數目的整數,λ k為由光學振盪器1212E產生之第k個脈衝的波長,E為能量值,V為電壓值,且TF(λ k)為在第k個脈衝中產生波長之光學振盪器1212E之轉移函數TF(1)、TF(2)…..TF(N)中之一者。V*及E*為經濾波版本,分別如原始電壓及能量值之移動平均值。 Error signal 1966E is provided to selected transfer function TF (via transfer function selector 1974E), and the output of selected transfer function TF is provided to gain 1984E and then to integrator 1985E. Forward correction signal 1967E is provided to integrator 1985E and is based on an EvsV curve selected based on the dominant wavelength of the next pulse of beam 1160 . The forward correction signal 1967E removes, reduces or rejects energy interference. Signal 1967E corrects for energy differences caused by changing the configuration of spectral feature selection module 258 and changing Etarget during operation of optical oscillator 1212E, and determines corrected excitation signal 1968E. Corrected excitation signal 1968E (V(k+1)) is determined based on the following equation:
Figure 02_image019
Equation (12), wherein k is an integer greater than or equal to 1 and represents the pulse number of the pulse in the beam output by the optical oscillator 1212E, λk is the wavelength of the k-th pulse generated by the optical oscillator 1212E, E is the energy value, V is the voltage value, and TF(λ k ) is one of the transfer functions TF(1), TF(2)...TF(N) of the optical oscillator 1212E that generates the wavelength in the kth pulse one. V* and E* are filtered versions, like moving averages of raw voltage and energy values, respectively.

參考圖20,能量控制模組1161E之實施方式2061E使用重複控制方法,該重複控制方法依賴於前授以反轉或消除任意重複干擾(其展示為能量屬性信號2046E中之圖案)的能量,該重複干擾歸因於有意地改變與光學振盪器1212E相關聯之光譜特徵選擇模組258的組態而發生,以便改變由光學振盪器1212E產生之光束1160的光譜屬性。能量控制模組2061E包括目標能量產生器2070E (其類似於目標能量產生器1270E操作)、比較器2063E及能量控制器2072E。Referring to FIG. 20, an implementation 2061E of the energy control module 1161E uses a repetitive control method that relies on forwarding energy to invert or cancel any repetitive interference (shown as a pattern in the energy attribute signal 2046E), which Repeat interference occurs due to intentionally changing the configuration of spectral feature selection module 258 associated with optical oscillator 1212E in order to change the spectral properties of beam 1160 produced by optical oscillator 1212E. The energy control module 2061E includes a target energy generator 2070E (which operates similarly to the target energy generator 1270E), a comparator 2063E, and an energy controller 2072E.

為了反轉或消除任意重複干擾,能量控制器2072E需要任意重複干擾之屬性的演繹知識,以模型化干擾且成批地對激勵信號2068E進行改變(亦即,對設定數目個未來脈衝進行改變)。能量控制器2072E可包括演繹模組2072ED,其經組態以藉由例如量測脈衝之每一突發上的干擾來獲得此演繹知識,且接著使用此資訊來產生干擾之模型。能量控制器2072E亦可包括校正模組2072EC,其經組態以基於干擾模型對激勵信號2068E作出改變。To invert or cancel any repetitive disturbance, the energy controller 2072E requires deductive knowledge of the properties of the random repetitive disturbance to model the disturbance and make changes to the excitation signal 2068E in batches (i.e., for a set number of future pulses) . The energy controller 2072E may include a deductive module 2072ED configured to obtain this deductive knowledge by, for example, measuring the disturbance on each burst of pulses, and then use this information to generate a model of the disturbance. The energy controller 2072E may also include a correction module 2072EC configured to make changes to the excitation signal 2068E based on the disturbance model.

能量控制器2072E極大地依賴於此等干擾之直接觀察;因此,重要的為併入關於干擾之演繹知識,包括干擾如何變化或改變。舉例而言,若已知干擾隨著光束1160之脈衝之重複率顯著地變化,則確保演繹模組考慮此相依性可能為有用的。Energy Director 2072E relies heavily on direct observation of these disturbances; therefore, it is important to incorporate deductive knowledge about disturbances, including how disturbances vary or change. For example, if interference is known to vary significantly with the repetition rate of the pulses of beam 1160, it may be useful to ensure that the derivation module takes this dependency into account.

在一些實施方式中,能量控制器2072E內之演繹模組2072ED可在某一時間段內獲取能量屬性信號2046E,例如針對光束1160之突發中的設定數目個脈衝(稱作干擾週期)。接著,演繹模組2072ED可比較此等能量屬性信號2046E中之每一者與目標能量Etarget 2071E,以藉此針對干擾週期中之每一脈衝產生能量誤差(其為能量信號2066E之一部分)。演繹模組2072ED可計算能量控制器2072E內之其他回饋控制器估計已移除了多少此能量誤差,且將其添加回至所量測能量誤差以獲得總誤差。其他回饋控制器可包括本文中所論述的控制器。剩餘的為其他回饋控制器將不會移除或無法移除且能量演繹模組2072ED將移除的能量誤差之量。對於干擾週期期間之每一脈衝,演繹模組2072ED更新干擾之量值及(替代地)標誌,且誤差穿過具有小於一之增益的積分器(在演繹模組2072ED內)以得到將反轉之干擾形狀。獨立地處理干擾週期中之每一脈衝,且假定脈衝之間不存在相關性。在下一干擾週期上,校正模組2072EC將最新干擾形狀添加至激勵信號2068E。針對每一干擾週期重複此技術,且該技術導致前授控制之訓練。In some embodiments, the derivation module 2072ED within the energy controller 2072E may acquire the energy property signal 2046E over a certain period of time, such as for a set number of pulses in a burst of the light beam 1160 (referred to as a disturbance period). Deduction module 2072ED may then compare each of these energy attribute signals 2046E to target energy Etarget 2071E to thereby generate an energy error (which is part of energy signal 2066E) for each pulse in the disturbance cycle. The deduction module 2072ED can calculate how much of this energy error the other feedback controllers within the energy controller 2072E estimate have removed, and add it back to the measured energy error to obtain the total error. Other feedback controllers may include the controllers discussed herein. The remainder is the amount of energy error that the other feedback controllers will not remove or cannot remove and the energy derivation module 2072ED will remove. For each pulse during the glitch period, the deduction module 2072ED updates the magnitude and (alternatively) flag of the glitch, and the error is passed through an integrator (inside the deduction module 2072ED) with a gain of less than one to obtain the The interference shape. Each pulse in the interference period is processed independently, and no correlation between pulses is assumed. On the next disturbance cycle, the correction module 2072EC adds the latest disturbance shape to the excitation signal 2068E. This technique is repeated for each jamming cycle and results in training of the forward control.

參考圖21,程序2100由光微影系統1100執行。程序2100判定經校正輸入信號(激勵信號1168E),其用於施加至光學源1105,且特定言之施加至光學振盪器1212E。程序2100至少部分地由包括能量控制模組1161E之控制系統1150實施。控制系統1150及/或控制系統1150之部分(諸如能量控制模組1161E)可實施為光學源1105的一部分、實施為微影曝光設備1169的一部分,或與光學源1105及/或微影曝光設備1169兩者分離(但與其通信)。Referring to FIG. 21 , the procedure 2100 is executed by the photolithography system 1100 . Routine 2100 determines a corrected input signal (excitation signal 1168E) for application to optical source 1105, and in particular optical oscillator 1212E. Process 2100 is implemented at least in part by control system 1150 including energy control module 1161E. Control system 1150 and/or portions of control system 1150, such as energy control module 1161E, may be implemented as part of optical source 1105, as part of lithographic exposure apparatus 1169, or in conjunction with optical source 1105 and/or lithographic exposure apparatus 1169 The two separate (but communicate with them).

產生光束1160之複數個脈衝集合(2105)。特定而言,光學源1105產生光束1160,使得光束1160中之每一脈衝與相異主波長λp相關聯,且亦可能與相異目標能量Etarget相關聯。基於光譜特徵選擇模組258之組態判定相異主波長λp。A plurality of pulse sets of beam 1160 are generated (2105). In particular, optical source 1105 generates beam 1160 such that each pulse in beam 1160 is associated with a different dominant wavelength λp, and possibly also a different target energy Etarget. The distinct dominant wavelength λp is determined based on the configuration of the spectral feature selection module 258 .

接下來,接收光束1160之先前脈衝之能量的量測(2110)。舉例而言,控制系統1150 (且特定言之,能量控制模組1161E)自偵測系統1145E接收用於第k個脈衝(其可被視為先前脈衝)之能量屬性信號1146E。Next, a measurement of the energy of the previous pulse of beam 1160 is received (2110). For example, control system 1150 (and in particular energy control module 1161E) receives energy attribute signal 1146E for the kth pulse (which may be considered a previous pulse) from detection system 1145E.

判定先前脈衝之能量誤差(2115)。舉例而言,參考圖12,誤差信號1266E自比較器1263E輸出,或參考圖16,誤差信號1666E_1自比較器1663E_1輸出。若第k個脈衝具有主波長λp2,則比較器(諸如1263E或1663E_2)比較先前光束脈衝之所量測能量(自能量屬性信號1146E判定)與第二目標能量Etarget2,此係因為第二目標能量Etarget2與第二脈衝集合相關聯。另一方面,若第k個脈衝具有主波長λp1,則比較器(諸如1263E或1663E_1)比較先前光束脈衝之所量測能量(自能量屬性信號1146E判定)與第一目標能量Etarget1,此係因為第一目標能量Etarget1與第一脈衝集合相關聯。The energy error of the previous pulse is determined (2115). For example, referring to FIG. 12, the error signal 1266E is output from the comparator 1263E, or referring to FIG. 16, the error signal 1666E_1 is output from the comparator 1663E_1. If the kth pulse has a dominant wavelength λp2, a comparator (such as 1263E or 1663E_2) compares the measured energy of the previous beam pulse (determined from the energy attribute signal 1146E) with the second target energy Etarget2, which is due to the second target energy Etarget2 is associated with the second set of pulses. On the other hand, if the kth pulse has a dominant wavelength λp1, then a comparator (such as 1263E or 1663E_1) compares the measured energy of the previous beam pulse (determined from the energy attribute signal 1146E) with the first target energy Etarget1 because A first target energy Etarget1 is associated with a first set of pulses.

光學源1105之至少一個分量經調整以藉此基於經判定誤差(2115)調整光束1160之後續脈衝之能量(2120)。經調整之後續脈衝具有與先前脈衝之主波長相同的主波長。因此,舉例而言,若光譜特徵選擇模組258經組態以在產生具有第一主波長λp1之脈衝與產生具有第二主波長λp2之脈衝(諸如圖7及圖8A中所展示)之間交替,且先前脈衝(其為第k個脈衝)具有第一主波長λp1,則由於k+2x脈衝亦具有第一主波長λp1而調整k+2x脈衝(其中x為正整數)。At least one component of optical source 1105 is adjusted to thereby adjust the energy of subsequent pulses of beam 1160 (2120) based on the determined error (2115). The adjusted subsequent pulse has the same dominant wavelength as that of the previous pulse. Thus, for example, if spectral feature selection module 258 is configured to generate pulses with a first dominant wavelength λp1 between generating pulses with a second dominant wavelength λp2 (such as shown in FIGS. 7 and 8A ) Alternately, and the previous pulse (which is the kth pulse) has the first dominant wavelength λp1, then the k+2x pulse (where x is a positive integer) is adjusted since the k+2x pulse also has the first dominant wavelength λp1.

特定而言,經校正激勵信號1168E施加至光學振盪器1212E。舉例而言,基於此經校正激勵信號1168E而調整電極217-a、217-b之電壓。In particular, corrected excitation signal 1168E is applied to optical oscillator 1212E. For example, the voltage of electrodes 217-a, 217-b is adjusted based on this corrected excitation signal 1168E.

可使用以下條項進一步描述實施例: 1.一種用於控制脈衝光束之能量的方法,該方法包含: 產生來自光學源之光束之脈衝的複數個摻和集合,每一光束脈衝集合與相異主波長及相異目標能量相關聯; 接收光束之先前脈衝之能量的量測; 判定能量誤差,其包括若先前光束脈衝在特定光束脈衝集合中,則比較先前光束脈衝之所量測能量與相關聯於特定光束脈衝集合之特定目標能量;及 調整光學源之至少一個分量以藉此基於經判定能量誤差而調整特定光束脈衝集合中之後續脈衝的能量。 2.如條項1之方法,其進一步包含接收與每一光束脈衝集合相關聯之每一相異目標能量。 3.如條項1之方法,其進一步包含分類先前光束脈衝是否在特定光束脈衝集合中。 4.如條項1之方法,其進一步包含判定對光學源之至少一個分量的調整量。 5.如條項1之方法,其進一步包含基於先前光束脈衝是否在特定光束脈衝集合中而校正對光學源之至少一個分量的調整量。 6.如條項1之方法,其中調整光學源之至少一個分量包含改變提供至與光學源之光學振盪器相關聯之電極的電壓。 7.一種系統,其包含: 光學源設備,其包含: 光學振盪器,其經組態以回應於激勵信號而產生光脈衝,該光脈衝具有光譜屬性;及 光譜調整設備,其經組態以控制光脈衝之光譜屬性;及 能量控制設備,其與光學源設備通信,該能量控制設備經組態以: 判定與所產生光脈衝之光譜屬性相關聯的目標能量;及 至少基於經判定目標能量而判定對激勵信號之調整,該調整使得光學振盪器產生一或多個後續光脈衝以考慮光譜調整設備之組態中的改變。 8.如條項7之系統,其中對激勵信號之調整引起對一或多個後續產生光脈衝之能量的調整。 9.如條項7之系統,其中與所產生光脈衝之光譜屬性相關聯的目標能量先前定義為與所產生光脈衝之光譜屬性相關聯。 10.如條項7之系統,其中光學振盪器與複數個轉移函數相關聯,每一轉移函數與光譜調整設備之特定組態及光譜屬性之特定值相關聯;及能量控制設備經組態以基於與用於產生一或多個後續光脈衝之光譜調整設備之特定組態相關聯的轉移函數而判定對激勵信號之調整。 11.如條項7之系統,其中光譜調整設備包含彼此光通信地配置的至少一個稜鏡及繞射元件,且每一轉移函數與至少一個稜鏡之不同狀態相關聯。 12.如條項7之系統,其中光脈衝之光譜屬性為彼光脈衝之中心波長,且光譜調整設備之每一組態對應於波長之特定值。 13.如條項7之系統,其進一步包含經組態以量測光脈衝之能量的量測設備。 14.如條項13之系統,其中能量控制設備經組態以藉由比較目標能量與所量測能量而判定能量誤差,且對激勵信號之調整的判定亦基於能量誤差。 15.如條項7之系統,其中能量控制設備經組態以藉由判定對激勵信號之使得光學振盪器產生與所產生光脈衝之光譜屬性相關聯之一或多個後續光脈衝的調整來判定對激勵信號之使得光學振盪器產生一或多個後續光脈衝的調整。 16.如條項7之系統,其中能量控制設備經組態以藉由自經組態以接收光脈衝之微影曝光設備接收通信來判定與所產生光脈衝之光譜屬性相關聯的目標能量,該通信提供目標能量集合,該集合中之每一目標能量與光譜屬性相關聯。 17.一種能量控制設備,其包含: 控制模組,其經組態以: 接收自光學源發射之先前光脈衝的能量值; 執行比較,其包括: 僅在先前光脈衝在與第一主波長相關聯之第一光束脈衝集合中時才比較接收到的能量值與第一目標能量;或 僅在先前光脈衝在與不同於第一主波長的第二主波長相關聯之第二光束脈衝集合中時才比較接收到的能量值與不同於第一目標能量之第二目標能量;及 基於比較而調整光學源之至少一個分量,以藉此調整具有與先前光脈衝相關聯之主波長的後續光脈衝之能量。 18.如條項17之能量控制設備,其中控制模組包含類別模組,該類別模組經組態以分類先前光脈衝在第一光束脈衝集合中抑或在第二光束脈衝集合中。 19.如條項17之能量控制設備,其中控制模組包含比較器,該比較器經組態以判定先前光脈衝在第一光束脈衝集合抑或第二光束脈衝集合中,且基於該判定而提供第一目標能量或第二目標能量。 20.如條項17之能量控制設備,其中控制模組包含信號模組,該信號模組經組態以判定待對光學源之至少一個分量作出之調整量。 21.如條項17之能量控制設備,其中控制模組包含校正模組,該校正模組經組態以基於先前光脈衝在第一光束脈衝集合抑或第二光束脈衝集合中而校正待對光學源之至少一個分量作出之調整量。 22.如條項21之能量控制設備,其中校正模組經組態以藉由將濾波器應用於調整量而校正調整量。 23.如條項22之能量控制設備,其中濾波器包括陷波濾波器,該陷波濾波器傳輸具有在第一頻帶中之頻率的資訊且實質上阻擋具有在第一頻帶之外之頻率的資訊。 24.如條項22之能量控制設備,其中濾波器包括卡門濾波器。 25.如條項21之能量控制設備,其中校正模組經組態以藉由將前授校正應用於調整量而校正調整量。 26.如條項17之能量控制設備,其中控制模組經組態以基於比較而調整光學源之至少一個分量以藉此調整具有與先前光脈衝相關聯之主波長的後續光脈衝之能量包含將信號發送至光學源,以藉此改變提供至與光學源之光學振盪器相關聯之電極的電壓。 27.如條項17之能量控制設備,其中控制模組經組態以接收先前光脈衝之能量值包含控制模組經組態以接收自光學源發射之複數個先前光脈衝的能量值。 28.如條項17之能量控制設備,其中控制模組經組態以基於比較而調整光學源之至少一個分量,以藉此調整具有與先前光脈衝相關聯之主波長的複數個後續光脈衝之能量。 29.如條項17之能量控制設備,其中控制模組經組態以基於比較而維持不具有與先前光脈衝相關聯之主波長的後續光脈衝之能量。 Embodiments can be further described using the following terms: 1. A method for controlling the energy of a pulsed light beam, the method comprising: generating a plurality of blended sets of pulses from a beam of light from the optical source, each set of beam pulses associated with a different dominant wavelength and a different target energy; Measurement of the energy of previous pulses of the received beam; determining an energy error comprising, if the previous beam pulse is in the particular set of beam pulses, comparing the measured energy of the previous beam pulse to a particular target energy associated with the particular set of beam pulses; and At least one component of the optical source is adjusted to thereby adjust the energy of subsequent pulses in a particular set of beam pulses based on the determined energy error. 2. The method of clause 1, further comprising receiving each distinct target energy associated with each set of beam pulses. 3. The method of clause 1, further comprising classifying whether a previous beam pulse is in the particular set of beam pulses. 4. The method of clause 1, further comprising determining an adjustment amount to at least one component of the optical source. 5. The method of clause 1, further comprising correcting an adjustment to at least one component of the optical source based on whether a previous beam pulse was in a particular set of beam pulses. 6. The method of clause 1, wherein adjusting at least one component of the optical source comprises varying a voltage provided to an electrode associated with an optical oscillator of the optical source. 7. A system comprising: Optical source equipment comprising: an optical oscillator configured to generate an optical pulse in response to an excitation signal, the optical pulse having spectral properties; and a spectral tuning device configured to control the spectral properties of the light pulses; and An energy control device in communication with the optical source device, the energy control device configured to: Determining target energies associated with spectral properties of the generated light pulses; and An adjustment to the excitation signal is determined based at least on the determined target energy, the adjustment causing the optical oscillator to generate one or more subsequent light pulses to account for changes in the configuration of the spectral adjustment device. 8. The system of clause 7, wherein the adjustment of the excitation signal results in an adjustment of the energy of one or more subsequently generated light pulses. 9. The system of clause 7, wherein the target energy associated with the spectral property of the generated light pulse was previously defined as being associated with the spectral property of the generated light pulse. 10. The system of clause 7, wherein the optical oscillator is associated with a plurality of transfer functions, each transfer function associated with a specific configuration of the spectral tuning device and a specific value of a spectral property; and the energy control device is configured to Adjustments to the excitation signal are determined based on a transfer function associated with the particular configuration of the spectral adjustment device used to generate the one or more subsequent light pulses. 11. The system of clause 7, wherein the spectral adjustment device comprises at least one smelt and a diffractive element arranged in optical communication with each other, and each transfer function is associated with a different state of at least one smelt. 12. The system of clause 7, wherein the spectral property of the light pulse is the center wavelength of that light pulse, and each configuration of the spectral adjustment device corresponds to a specific value of the wavelength. 13. The system of clause 7, further comprising a measurement device configured to measure the energy of the light pulse. 14. The system of clause 13, wherein the energy control device is configured to determine the energy error by comparing the target energy to the measured energy, and the determination of the adjustment to the excitation signal is also based on the energy error. 15. The system of clause 7, wherein the energy control device is configured to determine by determining an adjustment to the excitation signal that causes the optical oscillator to produce one or more subsequent light pulses associated with the spectral properties of the generated light pulse. An adjustment to the excitation signal to cause the optical oscillator to generate one or more subsequent light pulses is determined. 16. The system of clause 7, wherein the energy control device is configured to determine a target energy associated with a spectral property of the generated light pulse by receiving a communication from a lithography exposure device configured to receive the light pulse, The communication provides a set of target energies, each target energy in the set being associated with a spectral property. 17. An energy control device comprising: A control module configured to: received energy values of previous light pulses emitted from the optical source; Perform a comparison, which includes: comparing the received energy value to the first target energy only if the previous light pulse was in the first set of beam pulses associated with the first dominant wavelength; or comparing the received energy value to a second target energy different from the first target energy only if the previous light pulse was in a second set of light beam pulses associated with a second dominant wavelength different from the first dominant wavelength; and At least one component of the optical source is adjusted based on the comparison to thereby adjust the energy of a subsequent light pulse having a dominant wavelength associated with the previous light pulse. 18. The energy control apparatus of clause 17, wherein the control module comprises a classification module configured to classify whether the previous light pulses are in the first set of beam pulses or in the second set of beam pulses. 19. The energy control device of clause 17, wherein the control module includes a comparator configured to determine whether the previous light pulse was in the first set of beam pulses or the second set of beam pulses, and based on the determination to provide The first target energy or the second target energy. 20. The energy control device of clause 17, wherein the control module includes a signal module configured to determine an amount of adjustment to be made to at least one component of the optical source. 21. The energy control apparatus of clause 17, wherein the control module comprises a correction module configured to correct the optical beam to be treated based on whether the previous light pulse was in the first set of beam pulses or the second set of beam pulses The amount of adjustment made to at least one component of the source. 22. The energy control apparatus of clause 21, wherein the correction module is configured to correct the adjustment amount by applying a filter to the adjustment amount. 23. The energy management device of clause 22, wherein the filter comprises a notch filter that transmits information having frequencies in the first frequency band and substantially blocks information having frequencies outside the first frequency band Information. 24. The energy control device of clause 22, wherein the filter comprises a Kalman filter. 25. The energy control apparatus of clause 21, wherein the correction module is configured to correct the adjustment amount by applying a feed-forward correction to the adjustment amount. 26. The energy control device of clause 17, wherein the control module is configured to adjust at least one component of the optical source based on the comparison to thereby adjust the energy of a subsequent light pulse having a dominant wavelength associated with a previous light pulse comprising A signal is sent to the optical source to thereby vary a voltage provided to an electrode associated with an optical oscillator of the optical source. 27. The energy control device of clause 17, wherein the control module is configured to receive energy values of previous light pulses comprises the control module configured to receive energy values of a plurality of previous light pulses emitted from the optical source. 28. The energy control device of clause 17, wherein the control module is configured to adjust at least one component of the optical source based on the comparison to thereby adjust a plurality of subsequent light pulses having a dominant wavelength associated with a previous light pulse of energy. 29. The energy control apparatus of clause 17, wherein the control module is configured to maintain the energy of a subsequent light pulse that does not have a dominant wavelength associated with a previous light pulse based on the comparison.

其他實施方式在申請專利範圍之範疇內。Other implementations are within the scope of the patent application.

100:光微影系統 105:光學源 150:控制系統 160:光束 169:微影曝光設備 170:晶圓 171:晶圓載物台 172:度量衡系統 173a:空間影像 173b:空間影像 174:遮罩 175:投影光學系統 176:狹縫 177:透鏡 178a:部分 178b:部分 179:分離距離 200:光微影系統 205:光學源 212:主控振盪器 214:放電腔室 216:線窄化模組 216C:線窄化模組 217:電極 217-a:陰極 217-b:陽極 218:輸出耦合器 219:增益介質 220:線中心分析模組 222:光束耦合光學系統 224:種子光束 230:功率放大器 232:光束耦合光學系統 240:放電腔室 241:電極 248:光束轉向光學元件 250:控制系統 251:電子處理器 252:電子儲存器 253:I/O介面 254:光譜特徵控制模組 255_1~255_n:光譜特徵致動系統 256_1~256_n:光學特徵 257:光學系統 258:光譜特徵選擇模組 259:配方檔案 260:光束 262:頻寬分析模組 263:光束製備系統 291:反射光柵 292:稜鏡 293:稜鏡 294:稜鏡 295:稜鏡 300:晶圓曝光信號 305:高位值 307:時間段 310:低位值 315:閘信號 316:突發 320:高位值 325:低位值 330:觸發信號 340:觸發 400:窗口 429:照明器系統 432:物鏡配置 479:曝光場 500:過程 510:操作 520:操作 530:操作 540:操作 600A:脈衝 600B:脈衝 601A:光譜 601B:光譜 602A:主波長 602B_1:主波長 602B_2:主波長 701:平均光譜 702_1:第一主波長 702_2:第二主波長 703:光譜分離 704:光譜區 873:光譜分離 873a:空間影像 873b:空間影像 875:聚焦分離距離 878a:平面 878b:平面 879:分離距離 992:側壁角 995:3D半導體組件 996:凹部 997:底面 998:側壁 999:周邊 1001:標繪圖 1002:標繪圖 1003:標繪圖 1004:標繪圖 1005:標繪圖 1006::標繪圖 1100:光微影系統 1105:光學源 1145E:光學偵測系統 1146E:能量屬性信號 1150:控制系統 1160:脈衝光束 1160E:能量控制設備 1161E:能量控制模組 1165:箭頭 1168E:激勵信號 1168Ev:電壓信號 1169:微影曝光設備 1197E:源供應器 1212E:光學振盪器 1246E:能量屬性信號 1261E:能量控制模組 1263E:比較器 1266E:誤差信號 1268E:激勵信號 1270E:目標能量產生器 1271E:目標能量 1271E_i:目標能量 1272E:能量控制器 1402_i:主波長 1502:主波長 1502a:主波長 1502b:主波長 1502c:主波長 1502d:主波長 1571E:目標能量 1571Ea:目標能量 1571Eb:目標能量 1571Ec:目標能量 1571Ed:目標能量 1573a:空間影像 1573b:空間影像 1573c:空間影像 1573d:空間影像 1578a:平面 1578b:平面 1578c:平面 1578d:平面 1646E:能量屬性信號 1646Es:切換器 1661E:能量控制模組 1663E:比較器 1663E_1:第一比較器 1663E_2:第二比較器 1666E_1:誤差信號 1670E:目標能量產生器 1671E_1:第一目標能量 1671E_2:第二目標能量 1672E:能量控制器 1672E_1:能量控制器 1672E_2:能量控制器 1762E:激勵判定模組 1763E:比較器 1764E:校正模組 1766E:能量誤差 1767E:延遲模組 1768E:經校正激勵信號 1768Ep:激勵信號 1772E:能量控制器 1862E:激勵判定模組 1863E:比較器 1864E:校正模組 1864Eo:輸出信號 1866E:能量誤差 1867E:延遲模組 1868E:經校正激勵信號 1868Ep:激勵信號 1869E:第二比較器 1872E:能量控制器 1946E:能量屬性信號 1961E:能量控制模組 1962E:激勵判定模組 1963E:比較器 1966E:能量誤差 1967E:延遲模組/前授校正信號 1968E:經校正激勵信號 1970E:目標能量產生器 1971E:能量目標 1972E:能量控制器 1974E:轉移函數選擇器 1984E:增益 1985E:積分器 2046E:能量屬性信號 2061E:能量控制模組 2063E:比較器 2066E:能量信號 2068E:激勵信號 2070E:目標能量產生器 2071E:目標能量 2072E:能量控制器 2072EC:校正模組 2072ED:演繹模組 2100:程序 2105:操作 2110:操作 2115:操作 2120:操作 Epulse:脈衝能量 Etarget:目標能量 Etarget1:第一目標能量 Etarget2:第二目標能量 EvsV(λp):估計 FC:回饋控制器 TF(1):轉移函數 TF(2):轉移函數 TF(N):轉移函數 λp:主波長 λp1:第一主波長 λp2:第二主波長 100: Photolithography system 105: Optical source 150: Control system 160: Beam 169:Lithographic exposure equipment 170: Wafer 171: wafer stage 172: Weights and measures system 173a: Spatial imagery 173b: Spatial imagery 174: mask 175:Projection optical system 176: Slit 177: lens 178a: part 178b: part 179: separation distance 200: Photolithography system 205: Optical source 212: master oscillator 214: discharge chamber 216: Line narrowing module 216C: Line narrowing module 217: electrode 217-a: Cathode 217-b: anode 218: output coupler 219: Gain medium 220: Line center analysis module 222: Beam coupling optical system 224: Seed Beam 230: power amplifier 232: Beam coupling optical system 240: discharge chamber 241: electrode 248: Beam steering optics 250: Control system 251: electronic processor 252: Electronic storage 253: I/O interface 254: Spectral feature control module 255_1~255_n: spectral feature actuation system 256_1~256_n: optical features 257: Optical system 258: Spectral feature selection module 259: Recipe file 260: Beam 262:Bandwidth analysis module 263: Beam preparation system 291: Reflective grating 292: 稜鏡 293: 稜鏡 294: 稜鏡 295: 稜鏡 300: wafer exposure signal 305: high value 307: time period 310: low value 315: gate signal 316:burst 320: high value 325: low value 330: trigger signal 340:Trigger 400: window 429: Illuminator system 432: Objective Lens Configuration 479: exposure field 500: process 510: Operation 520: Operation 530: Operation 540: Operation 600A: Pulse 600B: Pulse 601A: Spectrum 601B: Spectrum 602A: Dominant wavelength 602B_1: Dominant wavelength 602B_2: Dominant wavelength 701: average spectrum 702_1: The first dominant wavelength 702_2: Second dominant wavelength 703:Spectrum separation 704: spectral region 873: Spectral Separation 873a: Spatial imagery 873b: Spatial imagery 875: Focus separation distance 878a: plane 878b: plane 879: separation distance 992: side wall angle 995: 3D semiconductor components 996: Concave 997: Bottom 998: side wall 999: Surroundings 1001: Plotting 1002: Plotting 1003: Plotting 1004: Plotting 1005: Plotting 1006::plot 1100: Photolithography system 1105: optical source 1145E: Optical Detection System 1146E: Energy attribute signal 1150: Control system 1160: pulse beam 1160E: Energy Control Equipment 1161E: Energy Control Module 1165: Arrow 1168E: Excitation signal 1168Ev: voltage signal 1169: Lithography Exposure Equipment 1197E: Source Provider 1212E: Optical oscillator 1246E: Energy attribute signal 1261E: Energy Control Module 1263E: Comparator 1266E: error signal 1268E: Excitation signal 1270E: Target Energy Generator 1271E: target energy 1271E_i: target energy 1272E: Energy Controller 1402_i: dominant wavelength 1502: Dominant wavelength 1502a: dominant wavelength 1502b: Dominant wavelength 1502c: dominant wavelength 1502d: dominant wavelength 1571E: target energy 1571Ea: target energy 1571Eb: target energy 1571Ec: target energy 1571Ed: Target energy 1573a: Spatial imagery 1573b: Spatial imagery 1573c: Spatial imagery 1573d: Spatial imagery 1578a: plane 1578b: plane 1578c: plane 1578d: plane 1646E: Energy attribute signal 1646Es: Switcher 1661E: Energy Control Module 1663E: Comparator 1663E_1: The first comparator 1663E_2: second comparator 1666E_1: error signal 1670E: Target Energy Generator 1671E_1: The first target energy 1671E_2: Second target energy 1672E: Energy Controller 1672E_1: Energy Controller 1672E_2: Energy Controller 1762E: Incentive Judgment Module 1763E: Comparator 1764E: Calibration module 1766E: Energy error 1767E: delay module 1768E: Corrected excitation signal 1768Ep: Excitation signal 1772E: Energy Controller 1862E: Incentive Judgment Module 1863E: Comparator 1864E: Calibration module 1864Eo: output signal 1866E: Energy error 1867E: Delay Module 1868E: Corrected excitation signal 1868Ep: Excitation signal 1869E: second comparator 1872E: Energy Controller 1946E: Energy attribute signal 1961E: Energy Control Module 1962E: Incentive Judgment Module 1963E: Comparator 1966E: Energy error 1967E: Delay Module / Forward Correction Signal 1968E: Corrected excitation signal 1970E: Target Energy Generator 1971E: Energy Target 1972E: Energy Controller 1974E: Transfer function selector 1984E: Gain 1985E: Integrator 2046E: Energy attribute signal 2061E: Energy Control Module 2063E: Comparator 2066E: Energy Signal 2068E: Excitation signal 2070E: Target Energy Generator 2071E: target energy 2072E: Energy Controller 2072EC: Calibration module 2072ED: Deduction Module 2100: Procedure 2105: Operation 2110: Operation 2115: Operation 2120: Operation Epulse: pulse energy Etarget: target energy Etarget1: the first target energy Etarget2: Second target energy EvsV(λp): estimate FC: Feedback Controller TF(1): transfer function TF(2): transfer function TF(N): transfer function λp: dominant wavelength λp1: the first dominant wavelength λp2: second dominant wavelength

圖1A為光微影系統之實施方式之實例的方塊圖。1A is a block diagram of an example of an implementation of a photolithography system.

圖1B為用於圖1A之光微影系統的光學系統之實施方式之實例的方塊圖。Figure IB is a block diagram of an example of an implementation of an optical system for the photolithography system of Figure IA.

圖1C為藉由圖1A之光微影系統曝光的晶圓之實例的橫截面圖。1C is a cross-sectional view of an example of a wafer exposed by the photolithography system of FIG. 1A.

圖2A為光微影系統之實施方式之另一實例的方塊圖。2A is a block diagram of another example of an implementation of a photolithography system.

圖2B為可用於光微影系統之光譜特徵選擇模組的實施方式之實例的方塊圖。2B is a block diagram of an example of an implementation of a spectral feature selection module that may be used in a photolithography system.

圖2C為線窄化模組之實施方式之實例的方塊圖。2C is a block diagram of an example of an implementation of a line narrowing module.

圖3A、圖3B及圖3C為與光學源中之脈衝產生及/或脈衝突發有關之資料的標繪圖。3A, 3B and 3C are plots of data related to pulse generation and/or pulse bursts in an optical source.

圖4為光微影系統之實施方式之另一實例的方塊圖。4 is a block diagram of another example of an implementation of a photolithography system.

圖5為用於形成三維半導體組件之過程之實例的流程圖。5 is a flowchart of an example of a process for forming a three-dimensional semiconductor device.

圖6A及圖6B各自展示單一光脈衝之光譜的實例。6A and 6B each show an example of the spectrum of a single light pulse.

圖7展示用於單一曝光遍次之平均光譜的實例。Figure 7 shows an example of an averaged spectrum for a single exposure pass.

圖8A及圖8B分別展示晶圓之實例的側面及頂部橫截面圖。8A and 8B show side and top cross-sectional views, respectively, of an example of a wafer.

圖9A及圖9B分別展示三維半導體組件之實例的側面及頂部橫截面圖。9A and 9B show side and top cross-sectional views, respectively, of an example of a three-dimensional semiconductor device.

圖10A及圖10B展示經模擬資料之實例。Figures 10A and 10B show examples of simulated data.

圖11A為其中控制系統包括經組態以將激勵信號提供至光學源之能量控制模組的光微影系統之方塊圖,激勵信號用於控制光學源之光學振盪器內的電極。11A is a block diagram of a photolithography system in which the control system includes an energy control module configured to provide an excitation signal to an optical source for controlling electrodes within an optical oscillator of the optical source.

圖11B為展示光學能量如何隨著所發射脈衝光束之波長而變化的光學振盪器之轉移函數TF (藉由單一光學振盪器產生之隨所提供激勵能量而變化的光學能量)之實例的圖示。11B is a diagram showing an example of a transfer function TF (optical energy generated by a single optical oscillator that varies with supplied excitation energy) of an optical oscillator showing how optical energy varies with the wavelength of the emitted pulsed beam .

圖12為與光學振盪器一起使用的圖11A之能量控制模組之實施方式的方塊圖。12 is a block diagram of an embodiment of the energy control module of FIG. 11A for use with an optical oscillator.

圖13為可構成光學振盪器之主控振盪器之實施方式的方塊圖。FIG. 13 is a block diagram of an embodiment of a master oscillator that may constitute an optical oscillator.

圖14為展示每一目標能量與自包括光學振盪器之光學源輸出的光束之每一可能主波長之間的相關性的表。14 is a table showing the correlation between each target energy and each possible dominant wavelength of a light beam output from an optical source comprising an optical oscillator.

圖15A為自包括光學振盪器之光學源輸出的光束之四個主波長中之每一者的目標能量集合之圖表。15A is a graph of target energy sets for each of the four dominant wavelengths of a light beam output from an optical source comprising an optical oscillator.

圖15B為圖11之光微影系統中所曝光的晶圓之實例的橫截面圖,其中自包括光學振盪器之光學源輸出的光束係在圖15A所提供之四個主波長下產生。15B is a cross-sectional view of an example of a wafer exposed in the photolithography system of FIG. 11 in which light beams output from an optical source including an optical oscillator are generated at the four dominant wavelengths provided in FIG. 15A.

圖16為與光學振盪器一起使用且包括複數個能量控制器的圖11A之能量控制模組之實施方式的方塊圖,每一能量控制器與自包括光學振盪器之光學源輸出的光束之主波長相關聯。FIG. 16 is a block diagram of an embodiment of the energy control module of FIG. 11A for use with an optical oscillator and including a plurality of energy directors, each associated with a master of a light beam output from an optical source including an optical oscillator. related to the wavelength.

圖17為展示可用於圖11、圖12及圖16中之任何一或多者之能量控制模組中的能量控制器之實施方式的方塊圖。FIG. 17 is a block diagram showing an embodiment of an energy controller that may be used in the energy control module of any one or more of FIGS. 11 , 12 and 16 .

圖18為展示可用於圖11、圖12及圖16中之任何一或多者之能量控制模組中的能量控制器之實施方式的方塊圖。FIG. 18 is a block diagram showing an embodiment of an energy controller that may be used in the energy control module of any one or more of FIGS. 11 , 12 and 16 .

圖19A為與光學振盪器一起使用且包括前授能量控制器的圖11A之能量控制模組之實施方式的方塊圖。19A is a block diagram of an embodiment of the energy control module of FIG. 11A for use with an optical oscillator and including a feed-forward energy controller.

圖19B為圖19A之前授能量控制器之實施方式的方塊圖。FIG. 19B is a block diagram of an embodiment of an energy controller prior to FIG. 19A.

圖19C為圖19B的前授能量控制器之激勵判定模組之實施方式的方塊圖。FIG. 19C is a block diagram of an implementation of the excitation determination module of the feedforward energy controller of FIG. 19B .

圖20為與光學振盪器一起使用且包括重複控制能量控制器的圖11A之能量控制模組之實施方式的方塊圖。20 is a block diagram of an embodiment of the energy control module of FIG. 11A for use with an optical oscillator and including a repetitive control energy controller.

圖21為由圖11A之光微影系統執行之程序的流程圖。FIG. 21 is a flowchart of a process executed by the photolithography system of FIG. 11A.

1502:主波長 1502: Dominant wavelength

1502a:主波長 1502a: dominant wavelength

1502b:主波長 1502b: Dominant wavelength

1502c:主波長 1502c: dominant wavelength

1502d:主波長 1502d: dominant wavelength

1571E:目標能量 1571E: target energy

1571Ea:目標能量 1571Ea: target energy

1571Eb:目標能量 1571Eb: target energy

1571Ec:目標能量 1571Ec: target energy

1571Ed:目標能量 1571Ed: Target Energy

Claims (29)

一種用於控制一脈衝光束之一能量的方法,該方法包含: 產生來自一光學源之該光束之脈衝的複數個摻和集合,每一光束脈衝集合與一相異主波長及一相異目標能量相關聯; 接收該光束之一先前脈衝之一能量的一量測; 判定一能量誤差,其包括若該先前光束脈衝在一特定光束脈衝集合中,則比較該先前光束脈衝之該所量測能量與相關聯於該特定光束脈衝集合之一特定目標能量;及 調整該光學源之至少一個分量以藉此基於該經判定能量誤差而調整該特定光束脈衝集合中之一後續脈衝的該能量。 A method for controlling the energy of one of a pulsed light beam, the method comprising: generating a plurality of blended sets of pulses of the beam from an optical source, each set of beam pulses associated with a distinct dominant wavelength and a distinct target energy; receiving a measure of the energy of a previous pulse of the beam; determining an energy error comprising, if the previous beam pulse is in a particular set of beam pulses, comparing the measured energy of the previous beam pulse to a particular target energy associated with the particular set of beam pulses; and At least one component of the optical source is adjusted to thereby adjust the energy of a subsequent pulse in the particular set of beam pulses based on the determined energy error. 如請求項1之方法,其進一步包含接收與每一光束脈衝集合相關聯之每一相異目標能量。The method of claim 1, further comprising receiving each distinct target energy associated with each set of beam pulses. 如請求項1之方法,其進一步包含分類該先前光束脈衝是否在該特定光束脈衝集合中。The method of claim 1, further comprising classifying whether the previous beam pulse is in the particular set of beam pulses. 如請求項1之方法,其進一步包含判定對該光學源之該至少一個分量的調整量。The method of claim 1, further comprising determining an adjustment amount of the at least one component of the optical source. 如請求項1之方法,其進一步包含基於該先前光束脈衝是否在該特定光束脈衝集合中而校正對該光學源之該至少一個分量的該調整量。The method of claim 1, further comprising correcting the adjustment amount of the at least one component of the optical source based on whether the previous beam pulse is in the particular set of beam pulses. 如請求項1之方法,其中調整該光學源之至少一個分量包含改變提供至與該光學源之一光學振盪器相關聯之電極的一電壓。The method of claim 1, wherein adjusting at least one component of the optical source comprises varying a voltage supplied to an electrode associated with an optical oscillator of the optical source. 一種系統,其包含: 一光學源設備,其包含: 一光學振盪器,其經組態以回應於一激勵信號而產生一光脈衝,該光脈衝具有一光譜屬性;及 一光譜調整設備,其經組態以控制該光脈衝之該光譜屬性;及 一能量控制設備,其與該光學源設備通信,該能量控制設備經組態以: 判定與該所產生光脈衝之該光譜屬性相關聯的一目標能量;及 至少基於該經判定目標能量而判定對該激勵信號之一調整,該調整使得該光學振盪器產生一或多個後續光脈衝以考慮該光譜調整設備之一組態中的一改變。 A system comprising: An optical source device comprising: an optical oscillator configured to generate an optical pulse in response to an excitation signal, the optical pulse having a spectral property; and a spectral tuning device configured to control the spectral property of the light pulse; and an energy control device in communication with the optical source device, the energy control device configured to: determining a target energy associated with the spectral property of the generated light pulse; and An adjustment to the excitation signal is determined based at least on the determined target energy, the adjustment causing the optical oscillator to generate one or more subsequent light pulses to account for a change in a configuration of the spectral adjustment device. 如請求項7之系統,其中對該激勵信號之該調整引起對該一或多個後續產生光脈衝之該能量的一調整。The system of claim 7, wherein the adjustment of the excitation signal causes an adjustment of the energy of one or more subsequently generated light pulses. 如請求項7之系統,其中與該所產生光脈衝之該光譜屬性相關聯的該目標能量先前定義為與該所產生光脈衝之該光譜屬性相關聯。The system of claim 7, wherein the target energy associated with the spectral property of the generated light pulse was previously defined as being associated with the spectral property of the generated light pulse. 如請求項7之系統,其中該光學振盪器與複數個轉移函數相關聯,每一轉移函數與該光譜調整設備之一特定組態及該光譜屬性之一特定值相關聯;且該能量控制設備經組態以基於與用於產生該一或多個後續光脈衝之該光譜調整設備之該特定組態相關聯的該轉移函數而判定對該激勵信號之該調整。The system of claim 7, wherein the optical oscillator is associated with a plurality of transfer functions, each transfer function associated with a specific configuration of the spectral tuning device and a specific value of the spectral property; and the energy control device configured to determine the adjustment of the excitation signal based on the transfer function associated with the particular configuration of the spectral adjustment device used to generate the one or more subsequent light pulses. 如請求項7之系統,其中該光譜調整設備包含彼此光通信地配置的至少一個稜鏡及一繞射元件,且每一轉移函數與至少一個稜鏡之一不同狀態相關聯。The system according to claim 7, wherein the spectral adjustment device comprises at least one indium and a diffractive element arranged in optical communication with each other, and each transfer function is associated with a different state of the at least one indium. 如請求項7之系統,其中一光脈衝之該光譜屬性為彼光脈衝之一中心波長,且該光譜調整設備之每一組態對應於該波長之一特定值。The system according to claim 7, wherein the spectral property of an optical pulse is a central wavelength of the optical pulse, and each configuration of the spectral adjustment device corresponds to a specific value of the wavelength. 如請求項7之系統,其進一步包含經組態以量測該光脈衝之一能量的一量測設備。The system of claim 7, further comprising a measurement device configured to measure an energy of the light pulse. 如請求項13之系統,其中該能量控制設備經組態以藉由比較該目標能量與該所量測能量而判定一能量誤差,且對該激勵信號之該調整的該判定亦基於該能量誤差。The system of claim 13, wherein the energy control device is configured to determine an energy error by comparing the target energy and the measured energy, and the determination of the adjustment to the excitation signal is also based on the energy error . 如請求項7之系統,其中該能量控制設備經組態以藉由判定對該激勵信號之使得該光學振盪器產生與該所產生光脈衝之該光譜屬性相關聯之一或多個後續光脈衝的該調整來判定對該激勵信號之使得該光學振盪器產生該一或多個後續光脈衝的該調整。The system of claim 7, wherein the energy control device is configured to cause the optical oscillator to generate one or more subsequent light pulses associated with the spectral property of the generated light pulse by determining the excitation signal The adjustment of the excitation signal to cause the optical oscillator to generate the one or more subsequent light pulses is determined. 如請求項7之系統,其中該能量控制設備經組態以藉由自經組態以接收該光脈衝之一微影曝光設備接收一通信來判定與該所產生光脈衝之該光譜屬性相關聯的該目標能量,該通信提供一目標能量集合,該集合中之每一目標能量與一光譜屬性相關聯。The system of claim 7, wherein the energy control device is configured to determine the spectral property associated with the generated light pulse by receiving a communication from a lithography exposure device configured to receive the light pulse The communication provides a set of target energies for which each target energy in the set is associated with a spectral property. 一種能量控制設備,其包含: 一控制模組,其經組態以: 接收自一光學源發射之一先前光脈衝的一能量值; 執行一比較,其包括: 僅在該先前光脈衝在與一第一主波長相關聯之一第一光束脈衝集合中時才比較該接收到的能量值與一第一目標能量;或 僅在該先前光脈衝在與不同於該第一主波長的一第二主波長相關聯之一第二光束脈衝集合中時才比較該接收到的能量值與不同於該第一目標能量之一第二目標能量;及 基於該比較而調整該光學源之至少一個分量,以藉此調整具有與該先前光脈衝相關聯之該主波長的一後續光脈衝之該能量。 An energy control device comprising: a control module configured to: receiving an energy value of a previous light pulse emitted from an optical source; Perform a comparison that includes: comparing the received energy value to a first target energy only if the previous light pulse was in a first set of beam pulses associated with a first dominant wavelength; or comparing the received energy value to one different from the first target energy only if the previous light pulse was in a second set of beam pulses associated with a second dominant wavelength different from the first dominant wavelength the second target energy; and At least one component of the optical source is adjusted based on the comparison to thereby adjust the energy of a subsequent light pulse having the dominant wavelength associated with the previous light pulse. 如請求項17之能量控制設備,其中該控制模組包含一類別模組,該類別模組經組態以分類該先前光脈衝在該第一光束脈衝集合中抑或在該第二光束脈衝集合中。The energy control device of claim 17, wherein the control module includes a class module configured to classify whether the previous light pulse is in the first set of beam pulses or in the second set of beam pulses . 如請求項17之能量控制設備,其中該控制模組包含一比較器,該比較器經組態以判定該先前光脈衝在該第一光束脈衝集合抑或該第二光束脈衝集合中,且基於該判定而提供該第一目標能量或該第二目標能量。The energy control device of claim 17, wherein the control module includes a comparator configured to determine whether the previous light pulse is in the first set of beam pulses or the second set of beam pulses, and based on the Determine to provide the first target energy or the second target energy. 如請求項17之能量控制設備,其中該控制模組包含一信號模組,該信號模組經組態以判定待對該光學源之該至少一個分量作出之調整量。The energy control device of claim 17, wherein the control module includes a signal module configured to determine an amount of adjustment to be made to the at least one component of the optical source. 如請求項17之能量控制設備,其中該控制模組包含一校正模組,該校正模組經組態以基於該先前光脈衝在該第一光束脈衝集合抑或該第二光束脈衝集合中而校正待對該光學源之該至少一個分量作出之該調整量。The energy control device of claim 17, wherein the control module includes a calibration module configured to correct based on whether the previous light pulse was in the first set of beam pulses or the second set of beam pulses The amount of adjustment to be made to the at least one component of the optical source. 如請求項21之能量控制設備,其中該校正模組經組態以藉由將一濾波器應用於該調整量而校正該調整量。The energy control device according to claim 21, wherein the correction module is configured to correct the adjustment amount by applying a filter to the adjustment amount. 如請求項22之能量控制設備,其中該濾波器包括一陷波濾波器,該陷波濾波器傳輸具有在一第一頻帶中之一頻率的資訊且實質上阻擋具有在該第一頻帶之外之一頻率的資訊。The energy control device of claim 22, wherein the filter comprises a notch filter that transmits information having a frequency in a first frequency band and substantially blocks information having a frequency outside the first frequency band One frequency information. 如請求項22之能量控制設備,其中該濾波器包括一卡門濾波器。The energy control device of claim 22, wherein the filter comprises a Karman filter. 如請求項21之能量控制設備,其中該校正模組經組態以藉由將一前授校正應用於該調整量而校正該調整量。The energy control device of claim 21, wherein the correction module is configured to correct the adjustment amount by applying a forward correction to the adjustment amount. 如請求項17之能量控制設備,其中該控制模組經組態以基於該比較而調整該光學源之至少一個分量以藉此調整具有與該先前光脈衝相關聯之該主波長的該後續光脈衝之該能量包含將一信號發送至該光學源,以藉此改變提供至與該光學源之一光學振盪器相關聯之電極的一電壓。The energy control device of claim 17, wherein the control module is configured to adjust at least one component of the optical source based on the comparison to thereby adjust the subsequent light having the dominant wavelength associated with the preceding light pulse The energy of the pulse includes sending a signal to the optical source to thereby vary a voltage supplied to electrodes associated with an optical oscillator of the optical source. 如請求項17之能量控制設備,其中該控制模組經組態以接收該先前光脈衝之該能量值包含該控制模組經組態以接收自該光學源發射之複數個先前光脈衝的該能量值。The energy control device of claim 17, wherein the control module is configured to receive the energy value of the previous light pulse comprising the control module configured to receive the energy value of a plurality of previous light pulses emitted from the optical source Energy value. 如請求項17之能量控制設備,其中該控制模組經組態以基於該比較而調整該光學源之該至少一個分量,以藉此調整具有與該先前光脈衝相關聯之該主波長的複數個後續光脈衝之該能量。The energy control device of claim 17, wherein the control module is configured to adjust the at least one component of the optical source based on the comparison to thereby adjust a complex number having the dominant wavelength associated with the previous optical pulse The energy of subsequent light pulses. 如請求項17之能量控制設備,其中該控制模組經組態以基於該比較而維持不具有與該先前光脈衝相關聯之該主波長的一後續光脈衝之該能量。The energy control device of claim 17, wherein the control module is configured to maintain the energy of a subsequent light pulse that does not have the dominant wavelength associated with the previous light pulse based on the comparison.
TW111110990A 2021-04-19 2022-03-24 Forming multiple aerial images in a single lithography exposure pass TW202307578A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163176646P 2021-04-19 2021-04-19
US63/176,646 2021-04-19

Publications (1)

Publication Number Publication Date
TW202307578A true TW202307578A (en) 2023-02-16

Family

ID=81308156

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111110990A TW202307578A (en) 2021-04-19 2022-03-24 Forming multiple aerial images in a single lithography exposure pass

Country Status (4)

Country Link
JP (1) JP2024518258A (en)
CN (1) CN117441133A (en)
TW (1) TW202307578A (en)
WO (1) WO2022225647A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6192064B1 (en) 1997-07-01 2001-02-20 Cymer, Inc. Narrow band laser with fine wavelength control
US7154928B2 (en) 2004-06-23 2006-12-26 Cymer Inc. Laser output beam wavefront splitter for bandwidth spectrum control
US7868999B2 (en) * 2006-08-10 2011-01-11 Asml Netherlands B.V. Lithographic apparatus, source, source controller and control method
US8144739B2 (en) 2008-10-24 2012-03-27 Cymer, Inc. System method and apparatus for selecting and controlling light source bandwidth
JP2013062484A (en) * 2011-08-24 2013-04-04 Gigaphoton Inc Laser device
US10816905B2 (en) * 2015-04-08 2020-10-27 Cymer, Llc Wavelength stabilization for an optical source
US9939732B2 (en) * 2015-10-27 2018-04-10 Cymer, Llc Controller for an optical system

Also Published As

Publication number Publication date
JP2024518258A (en) 2024-05-01
CN117441133A (en) 2024-01-23
WO2022225647A1 (en) 2022-10-27

Similar Documents

Publication Publication Date Title
TWI788944B (en) Light generating systems and control systems for forming multiple aerial images in a single lithography exposure pass
KR102071965B1 (en) Active spectral control during spectrum synthesis
US8520186B2 (en) Active spectral control of optical source
KR102213686B1 (en) Control technology of spectral characteristics of pulsed light beam
CN113826289A (en) Apparatus and method for modulating wavelength of light source
TW202307578A (en) Forming multiple aerial images in a single lithography exposure pass
TWI858556B (en) Light generating systems and control systems for forming multiple aerial images in a single lithography exposure pass
TWI830501B (en) Laser apparatuses and methods of operating the same
JP2024543070A (en) Control voltage threshold selection to facilitate multi-focal imaging
JP2023507070A (en) Energy correction module for light sources