TW202306094A - Split die integrated circuit (ic) packages employing die-to-die (d2d) connections in die-substrate standoff cavity, and related fabrication methods - Google Patents

Split die integrated circuit (ic) packages employing die-to-die (d2d) connections in die-substrate standoff cavity, and related fabrication methods Download PDF

Info

Publication number
TW202306094A
TW202306094A TW111121972A TW111121972A TW202306094A TW 202306094 A TW202306094 A TW 202306094A TW 111121972 A TW111121972 A TW 111121972A TW 111121972 A TW111121972 A TW 111121972A TW 202306094 A TW202306094 A TW 202306094A
Authority
TW
Taiwan
Prior art keywords
die
interconnects
package
active side
coupled
Prior art date
Application number
TW111121972A
Other languages
Chinese (zh)
Inventor
安尼奇 佩托
布里漢 那哇賈
弘博 魏
Original Assignee
美商高通公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商高通公司 filed Critical 美商高通公司
Publication of TW202306094A publication Critical patent/TW202306094A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0655Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3135Double encapsulation or coating and encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5385Assembly of a plurality of insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L24/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/96Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68359Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used as a support during manufacture of interconnect decals or build up layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L2224/08Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
    • H01L2224/081Disposition
    • H01L2224/0812Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/08151Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/08221Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/08225Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/12105Bump connectors formed on an encapsulation of the semiconductor or solid-state body, e.g. bumps on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13075Plural core members
    • H01L2224/1308Plural core members being stacked
    • H01L2224/13082Two-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/24137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • H01L23/3128Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation the substrate having spherical bumps for external connection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • H01L23/49816Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5383Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15192Resurf arrangement of the internal vias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Abstract

Split die IC packages employing a D2D interconnect structure in a die-substrate standoff cavity (i.e., cavity) to provide D2D connections, and related fabrication methods. To facilitate D2D communications between multiple dies in the split die IC package, the package substrate also includes a D2D interconnect structure (e.g., interconnect bridge) that contains D2D interconnects (e.g., metal interconnects) coupled to the multiple dies to provide D2D signal routing between the multiple dies. The D2D interconnect structure is disposed in a cavity that is formed in a die standoff area between the dies and the package substrate as a result of the die interconnects being disposed between the dies and the package substrate standing off the dies from the package substrate. The D2D interconnect structure can be provided in the cavity in the IC package outside of the package substrate to reserve more area in the package substrate for other interconnections.

Description

在晶粒-基板支起腔中採用晶粒到晶粒(D2D)連接的拆分式晶粒積體電路(IC)封裝及相關製造方法Split-die integrated circuit (IC) packaging with die-to-die (D2D) connection in die-substrate stand-off cavity and related fabrication methods

本案的領域係關於積體電路(IC)封裝,尤其係關於拆分式半導體晶粒IC封裝。The field of this case is related to integrated circuit (IC) packaging, and in particular to split-type semiconductor die IC packaging.

積體電路(IC)是電子裝置的基石。IC被封裝在IC封裝(亦被稱為「半導體封裝」或「晶片封裝」)中。IC封裝包括作為(諸)IC的一或多個半導體晶粒,這些半導體晶粒被安裝在封裝基板上並與封裝基板電耦合,以提供實體支撐和至(諸)半導體晶粒的電介面。封裝基板包括一或多個金屬化層,這些金屬化層包括具有垂直互連通路(通孔)的電跡線(例如,金屬線),這些垂直互連通路將這些電跡線一起耦合在毗鄰金屬化層之間,以在(諸)半導體晶粒之間提供電介面。(諸)半導體晶粒被安裝到封裝基板的頂層或外層中所暴露的金屬互連並與這些金屬互連電對接,以將(諸)半導體晶粒電耦合到封裝基板的電跡線。封裝基板包括具有金屬互連的外部外層,以提供IC封裝中的半導體晶粒與外部電路系統之間的外部介面。Integrated circuits (ICs) are the building blocks of electronic devices. ICs are packaged in IC packages (also known as "semiconductor packages" or "chip packages"). An IC package includes one or more semiconductor die(s) that are IC(s) mounted on and electrically coupled to a packaging substrate to provide physical support and an electrical interface to the semiconductor die(s). The package substrate includes one or more metallization layers that include electrical traces (eg, metal lines) with vertical interconnects (vias) that couple the electrical traces together in adjacent Between the metallization layers to provide a dielectric interface between the semiconductor die(s). The semiconductor die(s) are mounted to and electrically interface with exposed metal interconnects in the top or outer layers of the packaging substrate to electrically couple the semiconductor die(s) to electrical traces of the packaging substrate. The package substrate includes an outer outer layer with metal interconnects to provide an external interface between the semiconductor die in the IC package and external circuitry.

基於預期應用,有各種各樣的IC封裝。拆分式半導體晶粒IC封裝(「拆分式晶粒」IC封裝)是包含兩(2)個或更多個半導體晶粒的封裝,這些半導體晶粒通常彼此並排佈置。半導體晶粒被安裝在封裝基板上並與封裝基板電耦合,以提供實體支撐並提供至半導體晶粒的電介面。根據拆分式IC封裝的所設計的操作,可能需要在拆分式晶粒之間提供用於晶粒到晶粒(D2D)通訊的訊號介面。例如,每個拆分式晶粒可包括D2D介面電路系統,該D2D介面電路系統提供至內部電路系統和另一晶粒的通訊訊號介面。就此而言,拆分式晶粒IC封裝可包括D2D互連結構,該D2D互連結構將每個晶粒的D2D介面電路系統之間的D2D連接包括在一起以提供這些晶粒之間的訊號介面。一般的拆分式IC封裝採用D2D中介體,以提供D2D互連結構。例如,該D2D中介體可作為封裝基板中充當訊號介面橋的矽中介體來提供。作為另一實例,D2D中介體可以是嵌入式晶片級封裝(eWLP),該eWLP包括多個重分佈層(RDL)作為金屬化層,以支援D2D連接。然而,在任一情形中,提供額外金屬化層以提供D2D連接可能以不期望的方式增加IC封裝的封裝高度。There are various IC packages based on the intended application. A split semiconductor die IC package (“split die” IC package) is a package that contains two (2) or more semiconductor dies, usually arranged side by side with each other. The semiconductor die is mounted on and electrically coupled to the packaging substrate to provide physical support and provide an electrical interface to the semiconductor die. Depending on the designed operation of the split IC package, a signal interface for die-to-die (D2D) communication may need to be provided between the split dies. For example, each split die may include D2D interface circuitry that provides a communication signal interface to the internal circuitry and to another die. In this regard, a split-die IC package may include a D2D interconnect structure that incorporates D2D connections between the D2D interface circuitry of each die to provide signaling between those die interface. A general split IC package uses a D2D interposer to provide a D2D interconnection structure. For example, the D2D interposer may be provided as a silicon interposer in a package substrate acting as a signal interface bridge. As another example, the D2D interposer may be an embedded wafer level package (eWLP) that includes multiple redistribution layers (RDL) as metallization layers to support D2D connectivity. In either case, however, providing additional metallization layers to provide D2D connectivity may increase the package height of the IC package in an undesired manner.

本文中所揭示的各態樣包括示例性拆分式晶粒積體電路(IC)封裝,該IC封裝在晶粒-基板支起腔(亦即,腔)中採用晶粒到晶粒(D2D)互連結構以提供D2D連接。亦揭示相關製造方法。在示例性態樣,拆分式晶粒IC封裝包括耦合到封裝基板的至少兩個半導體晶粒(「晶粒」)。封裝基板包括一或多個金屬化層,每個金屬化層具有金屬互連(例如,金屬線或跡線),這些金屬互連可提供晶粒與外部互連(例如,焊料凸塊)之間的訊號路由。拆分式晶粒IC封裝包括晶粒與封裝基板之間的複數個晶粒互連(例如,具有焊料接頭的晶粒凸塊),這些晶粒互連將晶粒電耦合到封裝基板以進行訊號路由。在示例性態樣,為了促成拆分式晶粒IC封裝中的多個晶粒之間的D2D通訊,封裝基板亦包括D2D互連結構(例如,互連橋),該D2D互連結構包含耦合到多個晶粒的D2D互連(例如,金屬互連)以提供該多個晶粒之間的D2D訊號路由。D2D互連結構被佈置在晶粒與封裝基板之間由於晶粒互連被佈置在晶粒與封裝基板之間以將晶粒從封裝基板支起而導致的晶粒支起區中形成的腔中。以此方式,D2D互連結構可被提供在IC封裝中在封裝基板之外的腔中,以保留封裝基板中的更多區域用於其他互連(諸如在晶粒與外部互連之間)。在封裝基板之外提供D2D互連結構亦能夠降低拆分式晶粒IC封裝的整體高度,這是因為封裝基板的原本會被用於D2D連接的金屬互連所消耗的區域可被用於其他訊號路由及/或其他裝置(例如,被動裝置)。而且,經由在腔中提供D2D互連結構,與在封裝基板中提供D2D互連的情形相比,D2D互連可位於更靠近晶粒,並且由此長度更短,從而降低其電阻以提高D2D訊號傳遞速度。Aspects disclosed herein include an exemplary split-die integrated circuit (IC) package that employs die-to-die (D2D) ) interconnect structures to provide D2D connectivity. Related manufacturing methods are also disclosed. In an exemplary aspect, a split die IC package includes at least two semiconductor die (“die”) coupled to a package substrate. The package substrate includes one or more metallization layers, each metallization layer has metal interconnects (for example, metal lines or traces) that provide a connection between the die and external interconnects (for example, solder bumps). Signal routing between. Split-die IC packages include a plurality of die interconnects (e.g., die bumps with solder joints) between the die and the package substrate that electrically couple the die to the package substrate for signal routing. In an exemplary aspect, to facilitate D2D communication between multiple dies in a split die IC package, the package substrate also includes a D2D interconnect structure (eg, an interconnect bridge) that includes coupling D2D interconnects (eg, metal interconnects) to the plurality of dies to provide D2D signal routing between the plurality of dies. The D2D interconnect structure is placed between the die and the package substrate in the cavity formed in the die lift-off region due to the die interconnect being placed between the die and the package substrate to lift the die from the package substrate middle. In this way, D2D interconnect structures can be provided in IC packages in cavities outside the package substrate to reserve more area in the package substrate for other interconnects (such as between the die and external interconnects) . Providing D2D interconnect structures outside the package substrate can also reduce the overall height of the split die IC package because the area of the package substrate that would otherwise be consumed by metal interconnects for D2D connections can be used for other applications. Signal routing and/or other devices (eg, passive devices). Also, by providing the D2D interconnect structure in the cavity, the D2D interconnect can be located closer to the die than in the case of providing the D2D interconnect in the package substrate, and thus be shorter in length, thereby reducing its resistance to improve D2D Signaling speed.

在某些示例性態樣,D2D互連結構由一或多個重分佈層(RDL)形成,這些重分佈層毗鄰於晶粒的主動側構建在晶粒模組上。RDL被構建在晶粒模組上並被耦合到晶粒的被用於D2D通訊的晶粒互連。RDL亦可在將形成晶粒支起區的有限區域中被構建在晶粒模組上,而無需形成跨越晶粒模組與封裝基板之間的整個水平區域的RDL,這將增加拆分式晶粒IC封裝的高度。將D2D互連結構作為(諸)RDL來提供可促成更薄的金屬化層,其與可以能夠在一般層壓基板中製造的金屬化層相比具有用於D2D互連的更小圖案化尺寸(亦即,線(L)/間距(S)(L/S))的金屬互連。由此,在RDL中提供D2D互連可促成拆分式IC封裝中更高密度的D2D互連。RDL亦不需要使用焊點來將D2D互連結構連接到晶粒的晶粒互連。這對於具有耦合到D2D互連以提供D2D通訊的高密度晶粒互連的晶粒是特別有用的。In certain exemplary aspects, the D2D interconnect structure is formed from one or more redistribution layers (RDLs) built on the die module adjacent to the active side of the die. RDL is built on the die module and is coupled to the die's die interconnect used for D2D communication. The RDL can also be built on the die module in the limited area that will form the die standoff region, without forming an RDL that spans the entire horizontal area between the die module and the package substrate, which would increase the split Die IC package height. Providing the D2D interconnect structures as RDL(s) can lead to thinner metallization layers with smaller patterning dimensions for D2D interconnects than might be able to be fabricated in general laminate substrates (ie, Line (L)/Space (S) (L/S)). Thus, providing D2D interconnects in RDLs can lead to higher density of D2D interconnects in split IC packages. RDL also does not require the die interconnect using solder joints to connect the D2D interconnect structure to the die. This is particularly useful for dies with high density die interconnects coupled to D2D interconnects to provide D2D communication.

在其他實例中,在晶粒模組上形成D2D互連結構的RDL層,作為形成重構晶粒模組的重構晶片。就此而言,作為扇出晶片級封裝(FOLLP)製程的一部分,晶粒可形成在第一晶片上,並且隨後在重構晶片上進行切單和重新定位。可將重構晶片上的晶粒切單以將晶粒模組作為重構晶粒模組來提供。將晶粒模組作為重構晶粒模組來提供可允許良好的晶粒放置控制,以使得這些晶粒可被放置成更靠近在一起,以進一步減小封裝尺寸。而且,將晶粒模組作為重構晶粒模組來提供可在存在多個晶粒的情況下提供用於在重構晶粒模組上為D2D互連構建RDL的便捷程序。以此方式,RDL可在重構晶粒模組上製造RDL時被耦合到晶粒模組的晶粒互連。作為製造拆分式晶粒IC封裝的一部分,具有形成D2D互連的內置RDL的晶粒模組隨後可被耦合到封裝基板。In other examples, the RDL layer of the D2D interconnect structure is formed on the die module as a reconstituted wafer for forming the reconstituted die module. In this regard, as part of a fan-out wafer-level packaging (FOLLP) process, a die may be formed on a first wafer and subsequently singulated and repositioned on a reconstituted wafer. Dies on the reconstituted wafer may be singulated to provide die modules as reconstituted die modules. Providing the die module as a reconfigurable die module allows good die placement control so that the die can be placed closer together to further reduce package size. Furthermore, providing the die module as a reconfigured die module may provide a convenient procedure for building RDL for D2D interconnect on the reconfigured die module in case there are multiple dies. In this way, the RDL can be coupled to the die interconnect of the die module when the RDL is fabricated on the reconfigurable die module. As part of fabricating a split-die IC package, a die module with built-in RDLs forming D2D interconnects may then be coupled to the package substrate.

注意到,在拆分式晶粒IC封裝的封裝基板之外的晶粒支起區中提供D2D互連結構並不排除封裝基板中的金屬化層亦被用來提供D2D互連。將D2D互連結構包括在封裝基板之外的晶粒支起區中可減少或最小化在封裝基板中提供D2D連接的需求。Note that providing the D2D interconnect structure in the die standoff region outside the package substrate of the split die IC package does not exclude that the metallization layer in the package substrate is also used to provide the D2D interconnect. Including the D2D interconnect structure in the die standoff region outside the packaging substrate can reduce or minimize the need to provide D2D connections in the packaging substrate.

就此而言,在一個示例性態樣,提供了一種IC封裝。該IC封裝包括封裝基板;第一晶粒;及第二晶粒;該IC封裝亦包括第一複數個晶粒互連,第一複數個晶粒互連被耦合到該封裝基板和第一晶粒以在第一晶粒與該封裝基板之間建立晶粒支起區。該IC封裝亦包括第二複數個晶粒互連,第二複數個晶粒互連被佈置在該晶粒支起區中並被耦合到該封裝基板和第二晶粒。形成在第一複數個晶粒互連與第二複數個晶粒互連之間的晶粒支起區中的腔。該IC封裝亦包括佈置在該腔中的D2D互連結構。該D2D互連結構包括耦合到第一晶粒和第二晶粒的複數個D2D互連。In this regard, in one exemplary aspect, an IC package is provided. The IC package includes a package substrate; a first die; and a second die; the IC package also includes a first plurality of die interconnects coupled to the package substrate and the first die die to establish a die standoff region between the first die and the packaging substrate. The IC package also includes a second plurality of die interconnects disposed in the die standoff region and coupled to the package substrate and a second die. A cavity is formed in the die standoff region between the first plurality of die interconnects and the second plurality of die interconnects. The IC package also includes a D2D interconnect structure disposed in the cavity. The D2D interconnect structure includes a plurality of D2D interconnects coupled to the first die and the second die.

在另一示例性態樣,提供了一種製造IC封裝的方法。該方法包括形成晶粒模組,該晶粒模組包括主動側、包含毗鄰於該主動側的第一主動側的第一晶粒、以及包含毗鄰於該主動側的第二主動側的第二晶粒,第二晶粒水平地毗鄰於第一晶粒。該方法亦包括 毗鄰於該晶粒模組的主動側形成D2D互連結構,該D2D互連結構包括複數個D2D互連。該方法亦包括形成耦合到第一晶粒的第一主動側的第一複數個晶粒互連。該方法亦包括形成耦合到第二晶粒的第二主動側的第二複數個晶粒互連,以在第一複數個晶粒互連與第二複數個晶粒互連之間形成腔,並且該D2D互連結構被佈置在該腔中。該方法亦包括在封裝基板上佈置該晶粒模組,包括:將第一複數個晶粒互連耦合到該封裝基板;及將第二複數個晶粒互連耦合到該封裝基板。In another exemplary aspect, a method of manufacturing an IC package is provided. The method includes forming a die module including an active side, a first die including a first active side adjacent to the active side, and a second die including a second active side adjacent to the active side. The second die is horizontally adjacent to the first die. The method also includes forming a D2D interconnection structure adjacent to the active side of the die module, the D2D interconnection structure including a plurality of D2D interconnections. The method also includes forming a first plurality of die interconnects coupled to the first active side of the first die. The method also includes forming a second plurality of die interconnects coupled to a second active side of a second die to form a cavity between the first plurality of die interconnects and the second plurality of die interconnects, And the D2D interconnect structure is arranged in the cavity. The method also includes arranging the die module on a packaging substrate, including: coupling a first plurality of die interconnects to the packaging substrate; and coupling a second plurality of die interconnects to the packaging substrate.

現在參照附圖,描述本案的若干示例性態樣。措辭「示例性」在本文中用於表示「用作實例、例子、或圖示」。本文中描述為「示例性」的任何態樣不必被解釋為優於或勝過其他態樣。Referring now to the drawings, several exemplary aspects of the present case are described. The word "exemplary" is used herein to mean "serving as an example, instance, or illustration." Any aspect described herein as "exemplary" is not necessarily to be construed as superior or superior to other aspects.

本文中所揭示的各態樣包括在晶粒-基板支起腔(亦即,腔)中採用晶粒到晶粒(D2D)互連結構以提供D2D連接的示例性拆分式晶粒積體電路(IC)封裝。亦揭示相關製造方法。在示例性態樣,拆分式晶粒IC封裝包括耦合到封裝基板的至少兩個半導體晶粒(「晶粒」)。封裝基板包括一或多個各自具有金屬互連的金屬化層,該金屬互連可提供晶粒與外部互連(例如,焊料凸塊)之間的訊號路由。拆分式晶粒IC封裝包括晶粒與封裝基板之間的複數個晶粒互連(例如,具有焊料接頭的晶粒凸塊),這些晶粒互連將晶粒電耦合到封裝基板以進行訊號路由。在示例性態樣,為了促成拆分式晶粒IC封裝中的多個晶粒之間的D2D通訊,封裝基板亦包括D2D互連結構(例如,互連橋),該D2D互連結構包含耦合到該多個晶粒的D2D互連(例如,金屬線)以提供該多個晶粒之間的D2D訊號路由。D2D互連結構被佈置在晶粒與封裝基板之間由於晶粒互連被佈置在晶粒與封裝基板之間以使晶粒從封裝基板支起而導致的晶粒支起區中形成的腔中。以此方式,D2D互連結構可被提供在IC封裝中在封裝基板之外的腔中,以保留封裝基板中的更多區域用於其他互連(諸如在晶粒與外部互連之間)。在封裝基板之外提供D2D互連結構亦能夠降低拆分式晶粒IC封裝的整體高度,因為封裝基板的原本會被用於D2D連接的金屬互連所消耗的區域可被用於其他訊號路由及/或其他裝置(例如,被動裝置)。而且,經由在腔中提供D2D互連結構,與在封裝基板中提供D2D互連的情形相比,D2D互連可位於更靠近晶粒,並且由此長度更短,從而降低其電阻以提高D2D訊號傳遞速度。Aspects disclosed herein include an exemplary split-die integration employing a die-to-die (D2D) interconnect structure in a die-substrate standoff cavity (i.e., cavity) to provide D2D connectivity Circuit (IC) packaging. Related manufacturing methods are also disclosed. In an exemplary aspect, a split die IC package includes at least two semiconductor die (“die”) coupled to a package substrate. The package substrate includes one or more metallization layers each having metal interconnects that provide signal routing between the die and external interconnects (eg, solder bumps). Split-die IC packages include a plurality of die interconnects (e.g., die bumps with solder joints) between the die and the package substrate that electrically couple the die to the package substrate for signal routing. In an exemplary aspect, to facilitate D2D communication between multiple dies in a split die IC package, the package substrate also includes a D2D interconnect structure (eg, an interconnect bridge) that includes coupling D2D interconnects (eg, metal lines) to the plurality of dies provide D2D signal routing between the plurality of dies. The D2D interconnect structure is placed between the die and the package substrate in the cavity formed in the die stand-off region due to the die interconnect being placed between the die and the package substrate to support the die from the package substrate middle. In this way, D2D interconnect structures can be provided in IC packages in cavities outside the package substrate to reserve more area in the package substrate for other interconnects (such as between the die and external interconnects) . Providing D2D interconnect structures outside the package substrate can also reduce the overall height of the split die IC package because the area of the package substrate that would otherwise be consumed by metal interconnects for D2D connections can be used for other signal routing and/or other devices (eg, passive devices). Also, by providing the D2D interconnect structure in the cavity, the D2D interconnect can be located closer to the die than in the case of providing the D2D interconnect in the package substrate, and thus be shorter in length, thereby reducing its resistance to improve D2D Signaling speed.

在從圖2A開始論述在腔中採用D2D互連結構以在封裝中的多個晶粒之間提供D2D連接的拆分式晶粒IC封裝的實例之前,下文首先關於圖1A和1B描述了不將D2D互連結構包括在腔中的拆分式晶粒IC封裝。Before discussing an example of a split-die IC package that employs a D2D interconnect structure in the cavity to provide D2D connections between multiple die in the package, starting with FIG. A split die IC package including a D2D interconnect structure in a cavity.

就此而言,圖1A和1B分別是拆分式半導體晶粒(「晶粒」)IC封裝100的俯視圖和橫截面側視圖,IC封裝100包括封裝基板104中用於提供D2D連接的D2D中介體102。圖1B中的拆分式晶粒IC封裝100被示為沿圖1A中的A 1-A 1’線的橫截面。參照圖1A和1B,拆分式晶粒IC封裝100包括耦合到封裝基板104的至少兩個半導體晶粒(「晶粒」)106(1)、106(2)。在該實例中,晶粒106(1)、106(2)在X軸方向上彼此水平毗鄰佈置,其中在晶粒106(1)、106(2)之間形成晶粒分隔區108。封裝基板104包括一或多個各自具有金屬互連(例如,金屬線或跡線)的金屬化層,這些金屬互連可提供晶粒106(1)、106(2)與外部互連110(例如,焊球)之間的訊號路由。如圖1B中所示,拆分式晶粒IC封裝100包括晶粒106(1)、106(2)與封裝基板104之間的複數個晶粒互連112(例如,具有焊料接頭的晶粒凸塊),這些晶粒互連112將晶粒106(1)、106(2)電耦合到封裝基板104以進行訊號路由。在該實例中,晶粒互連112包括金屬柱114,金屬柱114被耦合到相應晶粒106(1)、106(2)的主動側116(1)、116(2)上的晶粒焊盤(未圖示)。金屬柱114用在金屬柱114上形成並耦合到封裝基板104的焊料接頭118來耦合到封裝基板104。 In this regard, FIGS. 1A and 1B are top and cross-sectional side views, respectively, of a split semiconductor die (“die”) IC package 100 including a D2D interposer in a package substrate 104 for providing D2D connectivity. 102. Split die IC package 100 in FIG. 1B is shown as a cross-section along line A 1 -A 1 ′ in FIG. 1A . Referring to FIGS. 1A and 1B , split die IC package 100 includes at least two semiconductor die (“die”) 106 ( 1 ), 106 ( 2 ) coupled to package substrate 104 . In this example, the dies 106(1), 106(2) are arranged horizontally adjacent to each other in the X-axis direction, with a die separation region 108 formed between the dies 106(1), 106(2). Package substrate 104 includes one or more metallization layers each having metal interconnects (eg, metal lines or traces) that provide dies 106(1), 106(2) and external interconnects 110 ( For example, signal routing between solder balls). As shown in FIG. 1B , split die IC package 100 includes a plurality of die interconnects 112 (e.g., die with solder joints) between die 106(1), 106(2) and package substrate 104. bumps), these die interconnects 112 electrically couple the dies 106(1), 106(2) to the package substrate 104 for signal routing. In this example, the die interconnect 112 includes metal pillars 114 that are coupled to die bond wires on the active sides 116(1), 116(2) of the respective die 106(1), 106(2). disk (not shown). Metal posts 114 are coupled to package substrate 104 with solder joints 118 formed on metal posts 114 and coupled to package substrate 104 .

為了促成圖1A和1B中的拆分式晶粒IC封裝100中的多個晶粒106(1)、106(2)之間的D2D通訊,封裝基板104亦包括D2D中介體102。在該實例中,D2D中介體102被佈置在晶粒分隔區108下方的封裝基板104中。D2D中介體102包含耦合到與相應晶粒106(1)、106(2)耦合的特定晶粒互連112的D2D互連120(例如,金屬線),其專用於晶粒106(1)、106(2)之間針對D2D通訊的D2D訊號路由。作為實例,這種D2D訊號路由可以是通訊訊號以及共用電源軌的耦合。D2D中介體102通常位於封裝基板104的上部金屬化層中以減小D2D互連120的長度,從而減小電阻並提高訊號傳遞速度。To facilitate D2D communication between the plurality of dies 106 ( 1 ), 106 ( 2 ) in the split die IC package 100 of FIGS. 1A and 1B , the package substrate 104 also includes a D2D interposer 102 . In this example, D2D interposer 102 is disposed in encapsulation substrate 104 below die separation region 108 . The D2D interposer 102 includes D2D interconnects 120 (eg, metal lines) coupled to the specific die interconnects 112 coupled to the respective dies 106(1), 106(2), which are dedicated to the dies 106(1), 106(2), D2D signal routing between 106(2) for D2D communication. As an example, such D2D signal routing may be the coupling of communication signals and common power rails. The D2D interposer 102 is usually located in the upper metallization layer of the packaging substrate 104 to reduce the length of the D2D interconnect 120 , thereby reducing resistance and increasing signal transmission speed.

將D2D中介體102包括在封裝基板104中消耗了封裝基板104的金屬化層中的空間。這可貢獻於增加封裝基板在Z軸方向上的高度H 1,並由此增加拆分式晶粒IC封裝在Z軸方向上的總高度H 2,如圖1B中所示。而且,將D2D互連120包括在封裝基板104中可能位於靠近封裝基板104中的其他金屬互連(諸如電源軌),這可產生訊號干擾。在D2D互連120上攜帶的D2D通訊訊號可能對干擾特別敏感,因為這些訊號可能是作為晶粒106(1)、106(2)之間的D2D匯流排介面的一部分的較高速訊號。而且,D2D中介體102的位置在晶粒分隔區108下方且毗鄰於晶粒分隔區108可能影響封裝基板104中的佈線空間。封裝基板104中對除D2D通訊訊號之外的訊號進行路由的其他金屬互連與D2D中介體102隔離,並且由此必須在D2D中介體102區域之外的其他區域中佈線。這可能影響封裝基板104中的佈線選項和能力。例如,D2D中介體102可能干擾封裝基板104中的配電網的佈線路徑,從而產生更長的配電路徑。這能夠貢獻於增加封裝基板104中的配電網的壓降。此外,隨著D2D互連120的數目及/或密度增加,D2D中介體102更有可能被佈置在封裝基板104的額外金屬化層中,由此進一步消耗可被用於其他訊號路由的區域。或者替換地,來自一個晶粒106(1)、106(2)的額外D2D互連可能必須經由封裝基板104路由到外部互連110並回到另一個晶粒106(2)、106(1),以避免D2D中介體102消耗封裝基板104中的額外空間。 Including the D2D interposer 102 in the packaging substrate 104 consumes space in the metallization layers of the packaging substrate 104 . This can contribute to increasing the height H 1 of the package substrate in the Z-axis direction, and thereby increasing the overall height H 2 of the split die IC package in the Z-axis direction, as shown in FIG. 1B . Also, including the D2D interconnect 120 in the package substrate 104 may be located close to other metal interconnects in the package substrate 104 , such as power rails, which can create signal interference. The D2D communication signals carried on the D2D interconnect 120 may be particularly sensitive to interference because these signals may be higher speed signals that are part of the D2D bus interface between the dies 106(1), 106(2). Furthermore, the location of the D2D interposer 102 below and adjacent to the die separation region 108 may affect the routing space in the package substrate 104 . Other metal interconnects in the package substrate 104 that route signals other than D2D communication signals are isolated from the D2D interposer 102 and thus have to be routed in areas other than the area of the D2D interposer 102 . This may affect routing options and capabilities in the packaging substrate 104 . For example, the D2D interposer 102 may interfere with the routing paths of the power distribution network in the packaging substrate 104, resulting in longer power distribution paths. This can contribute to increasing the voltage drop of the power distribution grid in the packaging substrate 104 . Furthermore, as the number and/or density of D2D interconnects 120 increases, D2D interposers 102 are more likely to be disposed in additional metallization layers of packaging substrate 104, thereby further consuming area that could be used for other signal routing. Or alternatively, additional D2D interconnects from one die 106(1), 106(2) may have to be routed via packaging substrate 104 to external interconnects 110 and back to the other die 106(2), 106(1) , so as to prevent the D2D interposer 102 from consuming additional space in the packaging substrate 104 .

圖2A和2B分別是另一示例性拆分式晶粒IC封裝200的俯視圖和橫截面側視圖,該封裝200採用圖1A和1B中的拆分式晶粒IC封裝100中的D2D中介體102的替換D2D連接結構以能夠避免為了D2D連接而消耗封裝基板中的空間。就此而言並如下文更詳細地論述的,圖2A和2B中的拆分式晶粒IC封裝200包括D2D互連結構202,以提供被佈置在晶粒-基板支起腔(亦即,腔)204中的D2D連接。晶粒-基板支起腔204是在半導體晶粒(「晶粒」)206(1)、206(2)與封裝基板208之間由於晶粒互連210被佈置在晶粒206(1)、206(2)與封裝基板208之間而導致的晶粒支起區228中形成的區域,這些晶粒互連210將晶粒206(1)、206(2)耦合到封裝基板208。在一個實例中,晶粒-基板支起腔204不包括封裝基板208或晶粒206(1)、206(2)內部的空間。晶粒互連210將晶粒206(1)、206(2)從封裝基板208「支起」晶粒互連210的相應高度H3,以形成佈置在晶粒206(1)、206(2)與封裝基板208之間的晶粒-基板支起腔204。2A and 2B are top and cross-sectional side views, respectively, of another exemplary split die IC package 200 employing the D2D interposer 102 in the split die IC package 100 of FIGS. 1A and 1B. An alternative D2D connection structure can avoid consuming space in the package substrate for the D2D connection. In this regard and as discussed in more detail below, the split die IC package 200 in FIGS. 2A and 2B includes a D2D interconnect structure 202 to provide a die-substrate standoff cavity (ie, cavity ) D2D connection in 204 . Die-substrate standoff cavity 204 is between semiconductor die ("die") 206(1), 206(2) and packaging substrate 208 as die interconnect 210 is disposed between die 206(1), 206(1), These die interconnects 210 couple dies 206 ( 1 ), 206 ( 2 ) to the packaging substrate 208 . In one example, the die-substrate standoff cavity 204 does not include the space inside the package substrate 208 or the dies 206(1), 206(2). Die interconnect 210 "supports" die 206(1), 206(2) from package substrate 208 by a corresponding height H3 of die interconnect 210 to form an arrangement between die 206(1), 206(2) Die-substrate support cavity 204 between package substrate 208 .

以此方式,如圖2B中所示,D2D互連結構202被提供在拆分式晶粒IC封裝200中在封裝基板208之外的晶粒-基板支起腔204中。這可保留封裝基板208中的更多區域用於其他互連(諸如在晶粒206(1)、206(2)與外部互連211(例如,焊球)之間)。相對於原本在D2D互連結構202被包括在封裝基板208中的情況下封裝基板208的高度,在封裝基板208之外提供D2D互連結構202亦可降低封裝基板208的高度H 4。封裝基板208的降低的高度H 4降低了拆分式晶粒IC封裝200的總高度H 5,因為封裝基板208的原本會被用於D2D連接的互連(例如,金屬線、金屬跡線、垂直互連通路(通孔)、焊盤)所消耗的區域可被用於其他訊號路由及/或其他裝置(例如,被動裝置)。而且,經由在拆分式晶粒IC封裝200的晶粒-基板支起腔204中提供D2D互連結構202,與在封裝基板208中提供D2D互連的情形相比,D2D互連結構202中的D2D互連可位於更靠近晶粒206(1)、206(2)。這可減小D2D互連的長度,由此減少其電阻以提高晶粒206(1)、206(2)之間的D2D訊號傳遞速度。 In this way, as shown in FIG. 2B , D2D interconnect structure 202 is provided in die-substrate standoff cavity 204 outside of package substrate 208 in split die IC package 200 . This may reserve more area in the package substrate 208 for other interconnects, such as between the dies 206(1), 206(2) and external interconnects 211 (eg, solder balls). Providing the D2D interconnection structure 202 outside the packaging substrate 208 also reduces the height H 4 of the packaging substrate 208 relative to the height H 4 of the packaging substrate 208 would have been included in the packaging substrate 208 . The reduced height H4 of the package substrate 208 reduces the overall height H5 of the split die IC package 200 because of the interconnects (eg, metal lines, metal traces, The area consumed by vertical interconnects (vias, pads) can be used for other signal routing and/or other devices (eg, passive devices). Also, by providing the D2D interconnect structure 202 in the die-substrate support cavity 204 of the split die IC package 200, compared to the case where the D2D interconnect is provided in the package substrate 208, the D2D interconnect structure 202 The D2D interconnects may be located closer to the die 206(1), 206(2). This reduces the length of the D2D interconnect, thereby reducing its resistance to increase the speed of D2D signaling between the dies 206(1), 206(2).

繼續參照圖2A和2B,圖2B中的拆分式晶粒IC封裝200被示為沿圖2A中的A 2-A 2’線的橫截面。晶粒206(1)、206(2)被耦合到封裝基板208。在該實例中,晶粒206(1)、206(2)在X軸方向上彼此水平毗鄰佈置,其中晶粒分隔區212為晶粒206(1)、206(2)之間距離D 1的區域。在該實例中,晶粒206(1)、206(2)被包括在晶粒模組214中。在該實例中,第一和第二晶粒206(1)、206(1)在Z軸方向上的垂直方向上被佈置在封裝基板208上方,該垂直方向與X軸方向上的水平方向正交。晶粒模組214包括晶粒206(1)、206(2)以及在晶粒206(1)、206(2)周圍和晶粒分隔區212中形成的包塑化合物216(例如,環氧樹脂)。例如,如下文更詳細地論述的,晶粒模組214可包括根據扇出晶片級封裝(FOWLP)製程製造的重構晶片218。將晶粒模組214作為重構晶片218來提供可允許良好的晶粒放置控制,以使得晶粒206(1)、206(2)可被更靠近地放置在一起,以進一步減小晶粒分隔區212在水平X軸方向上的寬度,以減小封裝尺寸。介電層220被佈置在晶粒模組214的頂部。封裝化合物222(諸如模製化合物)作為拆分式晶粒IC封裝200的一部分被佈置在介電層220上。 Continuing to refer to FIGS. 2A and 2B , split die IC package 200 in FIG. 2B is shown as a cross-section along line A 2 -A 2 ′ in FIG. 2A . Dies 206 ( 1 ), 206 ( 2 ) are coupled to packaging substrate 208 . In this example, the dies 206(1), 206(2) are arranged horizontally adjacent to each other in the X-axis direction, with the die separation region 212 being the distance D1 between the dies 206(1), 206(2). area. In this example, dies 206 ( 1 ), 206 ( 2 ) are included in die module 214 . In this example, the first and second die 206(1), 206(1) are arranged above the package substrate 208 in a vertical direction in the Z-axis direction, which is positive to a horizontal direction in the X-axis direction. pay. Die module 214 includes die 206(1), 206(2) and an overmolding compound 216 (e.g., epoxy resin) formed around die 206(1), 206(2) and in die separation region 212 ). For example, as discussed in more detail below, the die module 214 may include a reconstituted die 218 fabricated according to a fan-out wafer-level packaging (FOWLP) process. Providing die module 214 as reconstituted wafer 218 allows good die placement control so that dies 206(1), 206(2) can be placed closer together for further die reduction The width of the separation region 212 in the horizontal X-axis direction is used to reduce the size of the package. A dielectric layer 220 is disposed on top of the die module 214 . A packaging compound 222 , such as a molding compound, is disposed on the dielectric layer 220 as part of the split die IC package 200 .

如圖2B中所示,第一和第二複數個晶粒互連210(1)、210(2)被耦合到封裝基板208以及相應的第一和第二晶粒206(1)、206(2)。第一和第二晶粒206(1)、206(2)具有相應的主動側224(1)、224(2)以及背側226(1)、226(2)。晶粒互連210(1)被耦合到晶粒206(1)的主動側224(1)以及封裝基板208。晶粒互連210(2)被耦合到晶粒206(2)的主動側224(2)以及封裝基板208。耦合到封裝基板208的第一和第二複數個晶粒互連210(1)、210(2)以及相應的第一和第二晶粒206(1)、206(2)在第一和第二晶粒206(1)、206(2)與封裝基板208之間建立晶粒支起區228。晶粒-基板支起腔204被形成在晶粒互連210(1)、210(2)之間的晶粒支起區228中。D2D互連結構202被佈置在晶粒-基板支起腔204中。如下文關於圖3更詳細地論述的,D2D互連結構202包括耦合到第一晶粒206(1)和第二晶粒206(2)的D2D互連232以提供晶粒206(1)、206(2)之間的D2D連接。在該實例中,晶粒206(1)包括D2D介面電路系統234(1),其提供至晶粒206(2)的D2D通訊介面。D2D介面電路系統234(1)水平地毗鄰於晶粒分隔區212。同樣,在該實例中,晶粒206(2)包括D2D介面電路系統234(2),其提供至晶粒206(1)的D2D通訊介面。D2D介面電路系統234(2)亦水平地毗鄰於晶粒分隔區212。D2D介面電路系統234(1)、234(2)被佈置在D2D互連結構202上方並與D2D互連結構202接觸以耦合到其中的D2D互連232,以將D2D介面電路系統234(1)、234(2)耦合在一起以用於D2D通訊。As shown in FIG. 2B, first and second plurality of die interconnects 210(1), 210(2) are coupled to package substrate 208 and corresponding first and second die 206(1), 206( 2). The first and second die 206(1), 206(2) have respective active sides 224(1), 224(2) and backsides 226(1), 226(2). Die interconnect 210 ( 1 ) is coupled to active side 224 ( 1 ) of die 206 ( 1 ) and to packaging substrate 208 . Die interconnect 210 ( 2 ) is coupled to active side 224 ( 2 ) of die 206 ( 2 ) and to packaging substrate 208 . The first and second plurality of die interconnects 210(1), 210(2) coupled to the package substrate 208 and the corresponding first and second dies 206(1), 206(2) A die support region 228 is established between the two dies 206 ( 1 ), 206 ( 2 ) and the packaging substrate 208 . Die-substrate standoff cavities 204 are formed in die standoff regions 228 between die interconnects 210(1), 210(2). D2D interconnect structure 202 is arranged in die-substrate standoff cavity 204 . As discussed in more detail below with respect to FIG. 3 , D2D interconnect structure 202 includes D2D interconnect 232 coupled to first die 206(1) and second die 206(2) to provide die 206(1), D2D connections between 206(2). In this example, die 206(1) includes D2D interface circuitry 234(1) that provides a D2D communication interface to die 206(2). D2D interface circuitry 234 ( 1 ) is horizontally adjacent to die separation region 212 . Also, in this example, die 206(2) includes D2D interface circuitry 234(2) that provides a D2D communication interface to die 206(1). D2D interface circuitry 234( 2 ) is also horizontally adjacent to die separation region 212 . The D2D interface circuitry 234(1), 234(2) is disposed over and in contact with the D2D interconnect structure 202 to couple to the D2D interconnect 232 therein to connect the D2D interface circuitry 234(1) , 234(2) are coupled together for D2D communication.

在該實例中,D2D互連結構202及其D2D互連232未被佈置在封裝基板208中。在該實例中,D2D互連232未被耦合到封裝基板208(其將金屬互連(例如,金屬線、金屬跡線、垂直互連通路(通孔)、焊盤)包括在金屬化層中)以避免為了由D2D互連結構202提供的D2D連接而消耗封裝基板208中的區域。In this example, the D2D interconnect structure 202 and its D2D interconnect 232 are not arranged in the packaging substrate 208 . In this example, D2D interconnects 232 are not coupled to package substrate 208 (which includes metal interconnects (e.g., metal lines, metal traces, vertical interconnect vias (vias), pads) in metallization layers ) to avoid consuming area in the packaging substrate 208 for the D2D connectivity provided by the D2D interconnect structure 202 .

圖3是圖2A和2B中的拆分式晶粒IC封裝200的另一橫截面側視圖,以圖示將D2D互連結構202包括在晶粒-基板支起腔204中的額外示例性細節。圖3中的拆分式晶粒IC封裝200的橫截面側視圖同樣沿圖2A中的拆分式晶粒IC封裝200的A 2-A 2’線。 3 is another cross-sectional side view of the split die IC package 200 of FIGS. 2A and 2B to illustrate additional exemplary details of including the D2D interconnect structure 202 in the die-substrate standoff cavity 204. . The cross-sectional side view of the split die IC package 200 in FIG. 3 is also along the line A 2 -A 2 ′ of the split die IC package 200 in FIG. 2A .

如圖3中所示,在該實例中,晶粒模組214具有與封裝基板208毗鄰的主動側236。第一和第二晶粒206(1)、206(2)的第一和第二主動側224(1)、224(2)被佈置在封裝基板208的主動側236上,以使得可以在第一和第二晶粒206(1)、206(2)與封裝基板208之間經由相應的第一和第二晶粒互連210(1)、210(2)建立連接。第一晶粒互連210(1)被耦合到第一晶粒206(1)的第一主動側224(1)。第二晶粒互連210(2)被耦合到第二晶粒206(2)的第二主動側224(2)。第一和第二晶粒互連210(1)、210(2)各自包括耦合到相應第一和第二晶粒206(1)、206(2)的相應第一和第二主動側224(1)、224(2)上的晶粒焊盤的金屬柱238(1)、238(2)(例如,銅柱)。互連凸塊240(1)、240(2)(例如,焊料凸塊或焊帽)被佈置在金屬柱238(1)、238(2)上以形成至封裝基板208的電連接。封裝基板208包括用於在晶粒206(1)、206(2)之間經由晶粒互連210(1)、210(2)建立電連接的一或多個金屬化層242(1)-242(3)。晶粒互連210(1)、210(2)被耦合到封裝基板208的金屬化層242(1)-242(3)中的一或多個金屬互連243(1)-243(3)(例如,金屬線、金屬跡線、垂直互連通路(通孔)、焊盤)。晶粒互連210(1)、210(1)的高度H 3定義了晶粒-基板支起腔204在Z軸上的垂直方向上的高度H 3。D2D互連結構202在Z軸上的的垂直方向上具有小於晶粒-基板支起腔204的高度H 3的高度H 6,以使得D2D互連結構202可以被佈置在晶粒-基板支起腔204中,而無需消耗封裝基板208中的區域(若期望的話)。包塑化合物216被佈置成毗鄰於第一和第二晶粒206(1)、206(2)的第一和第二背側226(1)、226(2)。 As shown in FIG. 3 , in this example, the die module 214 has an active side 236 adjacent to the package substrate 208 . The first and second active sides 224(1), 224(2) of the first and second die 206(1), 206(2) are arranged on the active side 236 of the package substrate 208 such that the Connections between the first and second die 206(1), 206(2) and the package substrate 208 are established via respective first and second die interconnects 210(1), 210(2). The first die interconnect 210(1) is coupled to the first active side 224(1) of the first die 206(1). The second die interconnect 210(2) is coupled to the second active side 224(2) of the second die 206(2). The first and second die interconnects 210(1), 210(2) each include respective first and second active sides 224( Metal pillars 238(1), 238(2) (eg, copper pillars) of die pads on 1), 224(2). Interconnect bumps 240 ( 1 ), 240 ( 2 ) (eg, solder bumps or solder caps) are disposed on metal pillars 238 ( 1 ), 238 ( 2 ) to form electrical connections to package substrate 208 . Package substrate 208 includes one or more metallization layers 242(1) for establishing electrical connections between die 206(1), 206(2) via die interconnects 210(1), 210(2)— 242(3). Die interconnects 210(1), 210(2) are coupled to one or more metal interconnects 243(1)-243(3) in metallization layers 242(1)-242(3) of package substrate 208 (eg, metal lines, metal traces, vertical interconnects (vias), pads). The height H 3 of the die interconnects 210( 1 ), 210( 1 ) defines the height H 3 of the die-substrate standoff cavity 204 in the vertical direction on the Z-axis. The D2D interconnect structure 202 has a height H6 in the vertical direction on the Z axis that is smaller than the height H3 of the die-substrate support cavity 204, so that the D2D interconnect structure 202 can be arranged on the die-substrate support cavity. cavity 204 without consuming area in package substrate 208 (if desired). The overmolding compound 216 is disposed adjacent to the first and second backsides 226(1), 226(2) of the first and second dies 206(1), 206(2).

作為實例,如下文更詳細地論述的,晶粒模組214可以是根據FOWLP製程製造的重構晶粒模組。這可允許D2D互連結構202更容易地構建在一或多個金屬化層中的晶粒模組214上,作為拆分式晶粒IC封裝200的製造程序的一部分。例如,D2D互連結構202可包括一或多個金屬化層244(1)-244(3),這些金屬化層各自為RDL 246(1)-246(3),這些RDL各自包括金屬互連248(1)-248(3)(例如,金屬線、金屬跡線、垂直互連通路(通孔)、焊盤)。例如,若金屬化層244(1)-244(3)是RDL 246(1)-246(3),則在金屬化層244(1)-244(3)中的金屬互連248(1)-248(3)中可更容易實現較小的L/S比。例如,金屬互連248(1)-248(3)的L/S比為2/2或1/1。作為實例,晶粒互連210(1)、210(2)的高度H 3可以在30-40微米(µm)之間,RDL 246(1)-246(3)中的每一者的高度可小於或等於7 µm,而金屬互連248(1)-248(3)可具有2/2或更小的L/S比。 As an example, as discussed in more detail below, die module 214 may be a reconstituted die module fabricated according to a FOWLP process. This may allow the D2D interconnect structure 202 to be more easily built on the die module 214 in one or more metallization layers as part of the split die IC package 200 manufacturing process. For example, D2D interconnect structure 202 may include one or more metallization layers 244(1)-244(3), each of which is an RDL 246(1)-246(3), each of which includes a metal interconnect 248(1)-248(3) (eg, metal lines, metal traces, vertical interconnect vias (vias), pads). For example, if metallization layers 244(1)-244(3) are RDLs 246(1)-246(3), then metal interconnects 248(1) in metallization layers 244(1)-244(3) Smaller L/S ratios are easier to achieve in -248(3). For example, the L/S ratio of metal interconnects 248(1)-248(3) is 2/2 or 1/1. As an example, the height H3 of the die interconnects 210(1), 210(2) may be between 30-40 micrometers (µm), the height of each of the RDLs 246(1)-246(3) may be 7 µm or less, while metal interconnects 248(1)-248(3) may have an L/S ratio of 2/2 or less.

第一晶粒206(1)(尤其是D2D介面電路系統234(1))可被耦合到第一RDL 246(1)中的金屬互連248(1),以耦合到D2D互連結構202。第二晶粒206(1)(尤其是D2D介面電路系統234(2))亦可被耦合到第一RDL 246(1)中的金屬互連248(1),以耦合到D2D互連結構202。以此方式,D2D介面電路系統234(1)、234(2)可耦合在一起以經由D2D互連結構202進行D2D通訊。為了使連通性在空間上更高效,第一和第二晶粒206(1)、206(2)中的D2D介面電路系統234(1)、234(2)可被定位成在Z軸上的垂直方向上佈置在晶粒-基板支起腔204上方及/或與晶粒-基板支起腔204交疊或部分地交疊以建立至D2D互連結構202的連接。The first die 206 ( 1 ), in particular the D2D interface circuitry 234 ( 1 ), may be coupled to a metal interconnect 248 ( 1 ) in the first RDL 246 ( 1 ) for coupling to the D2D interconnect structure 202 . The second die 206(1) (in particular the D2D interface circuitry 234(2)) may also be coupled to the metal interconnect 248(1) in the first RDL 246(1) for coupling to the D2D interconnect structure 202 . In this way, the D2D interface circuitry 234( 1 ), 234( 2 ) can be coupled together for D2D communication via the D2D interconnect structure 202 . To make the connectivity more space efficient, the D2D interface circuitry 234(1), 234(2) in the first and second dies 206(1), 206(2) can be positioned as Vertically disposed above and/or overlapping or partially overlapping the die-substrate support cavity 204 to establish a connection to the D2D interconnect structure 202 .

圖4是圖示用於製造在晶粒-基板支起腔中採用D2D互連結構以提供D2D連接的拆分式晶粒IC封裝(包括但不限於圖2A-3中的示例性拆分式晶粒IC封裝200)的示例性程序400的流程圖。作為實例,關於圖2A-3中的拆分式晶粒IC封裝200描述了圖4中的示例性程序400,但該程序亦適用於在晶粒-基板支起腔中採用D2D互連結構以提供D2D連接的其他拆分式晶粒IC封裝。4 is a diagram illustrating a method for fabricating a split-die IC package (including but not limited to the exemplary split-die IC package in FIGS. A flowchart of an exemplary process 400 for die IC package 200 ). As an example, the exemplary procedure 400 in FIG. 4 is described with respect to the split die IC package 200 in FIGS. Other split-die IC packages that offer D2D connectivity.

就此而言,參照圖4,第一製造步驟包括:形成晶粒模組214,晶粒模組214包括主動側236、包含毗鄰於主動側236的第一主動側224(1)的第一晶粒206(1)、以及包含毗鄰於主動側236的第二主動側224(1)的第二晶粒206(2),第二晶粒206(2)水平地毗鄰於第一晶粒206(1)(圖4中的方塊402)。程序400中的下一製造步驟包括:毗鄰於晶粒模組214的主動側236形成D2D互連結構202,D2D互連結構202包括複數個D2D互連232(圖4中的方塊404)。程序400中的下一製造步驟包括:形成耦合到第一晶粒206(1)的第一主動側224(1)的第一複數個晶粒互連210(1)(圖4中的方塊406)。程序400中的下一製造步驟包括:形成耦合到第二晶粒206(2)的第二主動側224(2)的第二複數個晶粒互連210(2),以在第一複數個晶粒互連210(1)與第二複數個晶粒互連210(2)之間形成晶粒-基板支起腔204,其中D2D互連結構202被佈置在晶粒-基板支起腔204中(圖4中的方塊408)。程序400中的下一製造步驟包括:在封裝基板208上佈置晶粒模組214的主動側236(圖4中的方塊410)。在封裝基板208上佈置晶粒模組214的主動側236包括:將第一複數個晶粒互連210(1)耦合到封裝基板208(圖4中的方塊412),並且將第二複數個晶粒互連210(2)耦合到封裝基板208(圖4中的方塊414)。In this regard, referring to FIG. 4 , the first fabrication step includes forming a die module 214 including an active side 236 , a first die comprising a first active side 224 ( 1 ) adjacent to the active side 236 . grain 206(1), and a second die 206(2) comprising a second active side 224(1) adjacent to the active side 236, the second die 206(2) being horizontally adjacent to the first die 206( 1) (Block 402 in Figure 4). The next fabrication step in the process 400 includes forming the D2D interconnect structure 202 adjacent to the active side 236 of the die module 214 , the D2D interconnect structure 202 including the plurality of D2D interconnects 232 (block 404 in FIG. 4 ). The next fabrication step in routine 400 includes forming the first plurality of die interconnects 210(1) coupled to the first active side 224(1) of the first die 206(1) (block 406 in FIG. 4 ). The next fabrication step in routine 400 includes forming a second plurality of die interconnects 210(2) coupled to a second active side 224(2) of a second die 206(2) to A die-substrate support cavity 204 is formed between the die interconnect 210(1) and the second plurality of die interconnects 210(2), wherein the D2D interconnect structure 202 is disposed in the die-substrate support cavity 204 (block 408 in FIG. 4). The next fabrication step in process 400 includes disposing active side 236 of die module 214 on packaging substrate 208 (block 410 in FIG. 4 ). Arranging the active side 236 of the die module 214 on the package substrate 208 includes coupling a first plurality of die interconnects 210(1) to the package substrate 208 (block 412 in FIG. 4 ), and coupling a second plurality of Die interconnect 210(2) is coupled to package substrate 208 (block 414 in FIG. 4).

圖5A-5C是圖示用於製造在晶粒-基板支起腔中採用的D2D互連結構以提供D2D連接的拆分式晶粒IC封裝(包括但不限於圖2A-3中的示例性拆分式晶粒IC封裝)的另一示例性程序500的流程圖。圖6A-6H圖示了用於根據圖5A-5C中的示例性製造程序500的在晶粒-基板支起腔中採用D2D互連結構以提供D2D連接的拆分式晶粒IC封裝的示例性製造階段600A-600H。現在將結合圖6A-6H中的示例性製造階段600A-600H來論述圖5A-5C中的製造程序500。5A-5C are diagrams illustrating split-die IC packages (including but not limited to the exemplary ones in FIGS. A flowchart of another exemplary process 500 for split die IC packaging). 6A-6H illustrate an example for a split-die IC package employing a D2D interconnect structure in a die-substrate standoff cavity to provide D2D connectivity according to the exemplary fabrication sequence 500 in FIGS. 5A-5C. Sexual manufacturing stages 600A-600H. Manufacturing sequence 500 in FIGS. 5A-5C will now be discussed in conjunction with exemplary manufacturing stages 600A- 600H in FIGS. 6A-6H .

就此而言,參照圖5A中的程序500,製造拆分式晶粒IC封裝200的第一步驟可以是:將晶粒模組214製造為重構晶粒模組。如圖6A中的製造階段600A中所示,這涉及提供包括第一表面604的載體602,該第一表面604用於將重構晶粒模組214形成為重構晶片606,以及將晶粒206(1)、206(2)在X軸方向上彼此水平毗鄰放置(和定位)在載體602上(圖5A中的方塊502)。載體602提供允許定位和操縱晶粒206(1)、206(2)以形成晶粒模組214的結構。如下文所論述的,將晶粒模組214作為重構晶片606來提供可提供在晶粒模組214被佈置在封裝基板208上之前在晶粒模組214上毗鄰於晶粒206(1)、206(2)的主動側224(1)、224(2)形成D2D互連結構202的能力。例如,D2D互連結構202可優選地在晶粒模組214上被形成為一或多個RDL,諸如圖3中的RDL 246(1)-246(3)。可在載體602的第一表面604上放置臨時黏合膜608,隨後在黏合膜608上佈置晶粒206(1)、206(2),以為晶粒206(1)、206(2)提供黏合劑以牢固地附連到載體602。In this regard, referring to procedure 500 in FIG. 5A , the first step in fabricating split die IC package 200 may be to fabricate die module 214 as a reconstituted die module. As shown in fabrication stage 600A in FIG. 6A, this involves providing a carrier 602 comprising a first surface 604 for forming the reconstituted die module 214 into a reconstituted wafer 606, and forming the die 206(1), 206(2) are placed (and positioned) horizontally adjacent to each other in the X-axis direction on the carrier 602 (block 502 in FIG. 5A ). Carrier 602 provides a structure that allows die 206 ( 1 ), 206 ( 2 ) to be positioned and manipulated to form die module 214 . As discussed below, providing the die module 214 as a reconstituted wafer 606 may provide the die 206(1) on the die module 214 adjacent to the die 206 before the die module 214 is disposed on the packaging substrate 208. The active sides 224(1), 224(2) of , 206(2) form the capability of the D2D interconnect structure 202 . For example, D2D interconnect structure 202 may preferably be formed on die module 214 as one or more RDLs, such as RDLs 246(1)-246(3) in FIG. 3 . A temporary adhesive film 608 may be placed on the first surface 604 of the carrier 602 and the die 206(1), 206(2) subsequently disposed on the adhesive film 608 to provide an adhesive for the die 206(1), 206(2) To be firmly attached to the carrier 602.

如圖6B中的下一製造階段600B中所示,將晶粒模組214形成為重構晶片606的下一步驟是:在該載體的第一表面604上以及相應第一和第二晶粒206(1)、206(2)的第一和第二背側226(1)、226(2)上及上方佈置包塑化合物216(例如,環氧樹脂模製件),以固牢晶粒206(1)、206(2)並提供與晶粒206(1)、206(2)的介電隔離(圖5A中的方塊504)。如圖6C中的下一製造階段600C中所示,將晶粒模組214形成為重構晶片606的下一步驟是:朝向晶粒206(1)、206(2)的背側226(1)、226(2)將包塑化合物216的頂表面612(圖6B)磨除至減小的表面614,至期望的厚度D 2(圖5A中的方塊506)。替換地,可將包塑化合物216磨除至晶粒206(1)、206(2)的背側226(1)、226(2)。 As shown in the next fabrication stage 600B in FIG. 6B , the next step in forming the die module 214 into a reconstituted wafer 606 is to form the first surface 604 of the carrier and the corresponding first and second die An overmolding compound 216 (eg, epoxy molding) is disposed on and over the first and second backsides 226(1), 226(2) of the 206(1), 206(2) to secure the die 206(1), 206(2) and provide dielectric isolation from the die 206(1), 206(2) (block 504 in Figure 5A). As shown in the next fabrication stage 600C in FIG. 6C , the next step in forming die module 214 into reconstituted wafer 606 is: ), 226(2) Grind away the top surface 612 ( FIG. 6B ) of the overmolding compound 216 to the reduced surface 614 to the desired thickness D 2 (block 506 in FIG. 5A ). Alternatively, the overmolding compound 216 may be ground down to the backsides 226(1), 226(2) of the dies 206(1), 206(2).

如圖6D中的下一個製造階段600D中所示,其中的下一步驟是:從重構晶片606移除載體602,並將第二載體616毗鄰於晶粒206(1)、206(2)的背側226(1)、226(2)附連到重構晶片606(圖5B中的方塊508)。載體602被移除以暴露晶粒206(1)、206(2)的主動側224(1)、224(2)(更具體地,暴露D2D介面電路系統234(1)、234(2)),以為D2D互連結構202將形成在重構晶片606上並耦合到晶粒206(1)、206(2)的主動側224(1)、224(2)和D2D介面電路系統234(1)、234(2)做好準備。可首先在第二載體616上佈置黏合層618,隨後將重構晶片606附連到第二載體616以將重構晶片606固牢到第二載體616,如圖6D中所示。As shown in the next fabrication stage 600D in FIG. 6D , the next steps are to remove the carrier 602 from the reconstituted wafer 606 and place the second carrier 616 adjacent to the die 206(1), 206(2) The backsides 226(1), 226(2) of the 226(2) are attached to the reconstituted wafer 606 (block 508 in FIG. 5B). The carrier 602 is removed to expose the active sides 224(1), 224(2) of the dies 206(1), 206(2) (and more specifically, to expose the D2D interface circuitry 234(1), 234(2)) , thinking that the D2D interconnect structure 202 will be formed on the reconstituted wafer 606 and coupled to the active sides 224(1), 224(2) of the die 206(1), 206(2) and the D2D interface circuitry 234(1) , 234(2) Get ready. Adhesive layer 618 may be first disposed on second carrier 616, and then reconstituted wafer 606 is attached to second carrier 616 to secure reconstituted wafer 606 to second carrier 616, as shown in FIG. 6D.

隨後,如圖6E中的下一製造階段600E中所示,下一步驟是:在第一晶粒206(1)的第一主動側224(1)的一部分以及第二晶粒206(2)的第二主動側224(2)的一部分上在將在稍晚製造階段中被形成為晶粒-基板支起腔204的地方形成D2D互連結構202(圖5B中的方塊510)。D2D互連結構202被佈置成在Z軸方向上垂直地毗鄰於第一晶粒206(1)與第二晶粒206(2)之間水平晶粒分隔區212。製造階段600E圖示:第一RDL 246(1)被形成在耦合到晶粒206(1)、206(2)的D2D介面電路系統234(1)、234(2)的重構晶片606上,作為D2D互連結構202的一部分。如圖6F中的下一製造階段600F中所示,(諸)額外RDL 246(2)可被形成在第一RDL 246(1)上以形成D2D互連結構202的一部分(圖5B中的方塊512)。在該實例中,形成RDL 246(1)、246(2)可包括用於形成RDL的一般程序,包括在晶粒模組214上提供塗層,用圖案化製程移除塗敷的部分以暴露D2D介面電路系統234(1)、234(2)的晶粒焊盤,沉積晶種層,以及執行光刻製程以在RDL 246(1)、246(2)中形成金屬互連。當完全構建時,亦可在D2D互連結構202上形成阻焊層620以在形成晶粒互連210(1)、210(2)時保護RDL 246(1)、246(2)免受焊料暴露。Subsequently, as shown in the next fabrication stage 600E in FIG. 6E , the next step is: a portion of the first active side 224 ( 1 ) of the first die 206 ( 1 ) and the The D2D interconnect structure 202 is formed on a portion of the second active side 224(2) of the D2D (block 510 in FIG. 5B ) where it will be formed as a die-substrate standoff cavity 204 at a later stage of fabrication. The D2D interconnect structure 202 is arranged vertically adjacent to the horizontal die separation region 212 between the first die 206(1) and the second die 206(2) in the Z-axis direction. Manufacturing stage 600E illustrates: first RDL 246(1) is formed on reconstituted wafer 606 coupled to D2D interface circuitry 234(1), 234(2) of die 206(1), 206(2), As part of the D2D interconnect structure 202 . As shown in the next fabrication stage 600F in FIG. 6F, additional RDL(s) 246(2) may be formed on the first RDL 246(1) to form part of the D2D interconnect structure 202 (block in FIG. 5B 512). In this example, forming RDLs 246(1), 246(2) may include the general procedure for forming RDLs, including providing a coating on die module 214, removing coated portions with a patterning process to expose Die pads for D2D interface circuitry 234(1), 234(2), seed layers are deposited, and photolithographic processes are performed to form metal interconnects in RDLs 246(1), 246(2). When fully constructed, a solder mask 620 may also be formed on the D2D interconnect structure 202 to protect the RDLs 246(1), 246(2) from solder as the die interconnects 210(1), 210(2) are formed. exposed.

如圖6G中的下一製造階段600G中所示,下一步驟是:在重構晶片606上形成晶粒互連210(1)、210(2)並與晶粒206(1)、206(2)接觸(圖5C中的方塊514)。這涉及形成金屬柱238(1)、238(2)和互連凸塊240(1)、240(2)。如以上所論述的,這將在從重構晶片606形成晶粒模組214時在晶粒互連210(1)、210(2)之間的區域中產生晶粒支起區228。由晶粒模組214與封裝基板208之間的晶粒支起區228(圖2B和3)形成的腔將產生晶粒-基板支起腔204,晶粒-基板支起腔204為最終拆分式晶粒IC封裝200中將存在的D2D互連結構202保留餘地和空間,而無需消耗封裝基板208中的區域。若多個晶粒模組214被形成為重構晶片606的一部分,則可使用晶粒切單來分隔晶粒模組214。如圖6H中的下一製造階段600H中所示,下一步驟是:移除第二載體616並在封裝基板208上佈置晶粒模組214的主動側236,以將晶粒互連210(1)、210(2)耦合到封裝基板208以形成拆分式晶粒IC封裝200(圖5C中的方塊516)。As shown in the next fabrication stage 600G in FIG. 6G, the next step is to form die interconnects 210(1), 210(2) on reconstituted wafer 606 and connect them with dies 206(1), 206( 2) Contact (block 514 in Figure 5C). This involves forming metal pillars 238(1), 238(2) and interconnect bumps 240(1), 240(2). As discussed above, this will create die stand-off region 228 in the region between die interconnects 210(1), 210(2) when die module 214 is formed from reconstituted wafer 606. Referring now to FIG. The cavity formed by the die standoff region 228 (FIGS. 2B and 3) between the die module 214 and the package substrate 208 will create the die-substrate standoff cavity 204, which is essential for final disassembly. The existing D2D interconnect structure 202 reserves headroom and space in the fractional die IC package 200 without consuming area in the package substrate 208 . If multiple die modules 214 are formed as part of the reconstituted wafer 606 , die singulation may be used to separate the die modules 214 . As shown in the next fabrication stage 600H in FIG. 6H , the next step is to remove the second carrier 616 and place the active side 236 of the die module 214 on the package substrate 208 to interconnect the die 210 ( 1 ), 210(2) are coupled to the package substrate 208 to form the split die IC package 200 (block 516 in FIG. 5C ).

根據圖4-6H中的示例性製造程序的在晶粒-基板支起腔中採用D2D互連結構以提供D2D連接的(諸)拆分式晶粒IC封裝(包括但不限於圖2A-3中的示例性拆分式晶粒IC封裝)可被提供在或整合到任何基於處理器的設備中。不作為限定的實例包括:機上盒、娛樂單元、導航設備、通訊設備、固定位置資料單元、行動位置資料單元、全球定位系統(GPS)設備、行動電話、蜂巢式電話、智慧型電話、對話啟動協定(SIP)電話、平板設備、平板手機、伺服器、電腦、可攜式電腦、行動計算裝置、可穿戴計算設備(例如,智慧手錶、健康或健身追蹤器、眼鏡,等等)、桌上型電腦、個人數位助理(PDA)、監視器、電腦監視器、電視機、調諧器、無線電、衛星無線電、音樂播放機、數位音樂播放機、可攜式音樂播放機、數位視訊播放機、視訊播放機、數位視訊碟(DVD)播放機、可攜式數位視訊播放機、汽車、交通工具部件、航空電子系統、無人機、以及多旋翼飛行器。Split-die IC package(s) employing a D2D interconnect structure in a die-substrate standoff cavity to provide D2D connectivity according to the exemplary fabrication sequence in FIGS. 4-6H (including but not limited to FIGS. 2A-3 The exemplary split die IC package in ) can be provided in or integrated into any processor-based device. Non-limiting examples include: set-top boxes, entertainment units, navigation devices, communication devices, fixed location information units, mobile location information units, Global Positioning System (GPS) devices, mobile phones, cellular phones, smart phones, conversation initiation Protocol (SIP) phones, tablets, phablets, servers, computers, laptops, mobile computing devices, wearable computing devices (e.g., smart watches, health or fitness trackers, glasses, etc.), desktop mini computer, personal digital assistant (PDA), monitor, computer monitor, television, tuner, radio, satellite radio, music player, digital music player, portable music player, digital video player, video Players, DVD Players, Portable Digital Video Players, Automobiles, Vehicle Components, Avionics Systems, Drones, and Multicopters.

就此而言,圖7圖示了基於處理器的系統700的實例。基於處理器的系統700的部件是IC 702。基於處理器的系統700中的部分或全部IC 702可被提供在根據本文中所揭示的任何態樣並且根據圖4-6H中的示例性製造程序的在晶粒-基板支起腔(亦即,腔)中採用D2D互連結構以提供D2D連接的(諸)拆分式晶粒IC封裝704(包括但不限於圖2A-3中的示例性拆分式晶粒IC封裝)中。在該實例中,基於處理器的系統700可被形成為拆分式晶粒IC封裝704並被形成為片上系統(SoC)706。基於處理器的系統700包括CPU 708,CPU 708包括一或多個處理器710,這些處理器710亦可被稱為CPU核或處理器核。CPU 708可具有被耦合至CPU 708以用於對臨時儲存的資料進行快速存取的快取緩衝記憶體712。CPU 708耦合到系統匯流排714,且可將被包括在基於處理器的系統700中的主設備和從設備相互耦合。如眾所周知的,CPU 708經由在系統匯流排714上交換位址、控制和資料資訊來與這些其他設備通訊。例如,CPU 708可向作為從設備的實例的記憶體控制器716傳達匯流排事務請求。儘管在圖7中未圖示,但可提供多個系統匯流排714,其中每個系統匯流排714構成不同的織構。In this regard, FIG. 7 illustrates an example of a processor-based system 700 . A component of processor-based system 700 is IC 702 . Some or all of the ICs 702 in the processor-based system 700 may be provided in die-substrate stand-off cavities (i.e. , cavity) in a split die IC package(s) 704 (including but not limited to the exemplary split die IC package in FIGS. 2A-3 ) employing a D2D interconnect structure to provide D2D connectivity. In this example, processor-based system 700 may be formed as a split die IC package 704 and as a system on a chip (SoC) 706 . The processor-based system 700 includes a CPU 708 that includes one or more processors 710, which may also be referred to as CPU cores or processor cores. CPU 708 may have cache memory 712 coupled to CPU 708 for fast access to temporarily stored data. CPU 708 is coupled to system bus 714 and may couple masters and slaves included in processor-based system 700 to each other. CPU 708 communicates with these other devices by exchanging address, control and data information over system bus 714, as is well known. For example, CPU 708 may communicate a bus transaction request to memory controller 716, which is an example of a slave device. Although not shown in FIG. 7 , multiple system bus bars 714 may be provided, where each system bus bar 714 constitutes a different texture.

其他主設備和從設備可被連接到系統匯流排714。如圖7中所圖示的,作為實例,這些設備可包括包含記憶體控制器716和(諸)記憶體陣列718的記憶體系統720、一或多個輸入設備722、一或多個輸出設備724、一或多個網路周邊設備726、以及一或多個顯示控制器728。記憶體系統720、一或多個輸入設備722、一或多個輸出設備724、一或多個網路周邊設備726、以及一或多個顯示控制器728中的每一者可被提供在相同或不同的IC封裝中。(諸)輸入設備722可包括任何類型的輸入設備,包括但不限於輸入鍵、開關、語音處理器等。(諸)輸出設備724可包括任何類型的輸出設備,包括但不限於音訊、視訊、其他視覺指示器等。(諸)網路周邊設備726可以是配置成允許往來於網路730的資料交換的任何設備。網路730可以是任何類型的網路,包括但不限於有線或無線網路、私有或公共網路、區域網路(LAN)、無線區域網路(WLAN)、廣域網(WAN)、藍芽™網路、以及網際網路。(諸)網路周邊設備726可被配置成支援所期望的任何類型的通訊協定。Other masters and slaves may be connected to system bus 714 . As illustrated in FIG. 7, these devices may include, by way of example, a memory system 720 including a memory controller 716 and memory array(s) 718, one or more input devices 722, one or more output devices 724 , one or more network peripheral devices 726 , and one or more display controllers 728 . Each of the memory system 720, one or more input devices 722, one or more output devices 724, one or more network peripherals 726, and one or more display controllers 728 may be provided on the same or different IC packages. Input device(s) 722 may include any type of input device including, but not limited to, input keys, switches, voice processors, and the like. Output device(s) 724 may include any type of output device including, but not limited to, audio, video, other visual indicators, and the like. Network perimeter device(s) 726 may be any device configured to allow the exchange of data to and from network 730 . Network 730 may be any type of network including, but not limited to, wired or wireless, private or public, local area network (LAN), wireless local area network (WLAN), wide area network (WAN), Bluetooth™ network, and the Internet. Network peripheral device(s) 726 may be configured to support any type of communication protocol desired.

CPU 708亦可被配置成經由系統匯流排714存取(諸)顯示控制器728以控制發送給一或多個顯示器732的資訊。(諸)顯示控制器728經由一或多個視訊處理器734向(諸)顯示器732發送要顯示的資訊,視訊處理器734將要顯示的資訊處理成適於(諸)顯示器732的格式。作為實例,(諸)顯示控制器728和(諸)視訊處理器734可被包括作為拆分式晶粒IC封裝704和相同或不同IC封裝,並且在包含CPU 708的相同或不同IC封裝中。(諸)顯示器732可包括任何類型的顯示器,包括但不限於陰極射線管(CRT)、液晶顯示器(LCD)、電漿顯示器、發光二極體(LED)顯示器等。CPU 708 may also be configured to access display controller(s) 728 via system bus 714 to control information sent to one or more displays 732 . Display controller(s) 728 sends information to be displayed to display(s) 732 via one or more video processors 734 , which process the information to be displayed into a format suitable for display(s) 732 . As an example, display controller(s) 728 and video processor(s) 734 may be included as split die IC package 704 and the same or different IC package, and in the same or different IC package that contains CPU 708 . Display(s) 732 may include any type of display including, but not limited to, cathode ray tube (CRT), liquid crystal display (LCD), plasma display, light emitting diode (LED) display, and the like.

圖8圖示了包括由一或多個IC 802形成的射頻(RF)部件的示例性無線通訊設備800,其中任何IC 802皆可包括根據本文中所揭示的任何態樣並且根據圖4-6H中的示例性製造程序的在晶粒-基板支起腔(亦即,腔)中採用D2D互連結構以提供D2D連接的拆分式晶粒IC封裝803(包括但不限於圖2A-3中的示例性拆分式晶粒IC封裝)。作為實例,無線通訊設備800可包括或設在任何上述設備中。如圖8中所示,無線通訊設備800包括收發機804和資料處理器806。資料處理器806可包括記憶體以儲存資料和程式碼。收發機804包括支援雙向通訊的發射器808和接收器810。一般而言,無線通訊設備800可包括用於任意數目的通訊系統和頻帶的任意數目的發射器808及/或接收器810。收發機804的全部或一部分可被實現在一或多個模擬IC、RFIC、混合訊號IC等上。FIG. 8 illustrates an exemplary wireless communication device 800 including radio frequency (RF) components formed from one or more ICs 802, any of which may include any aspect disclosed herein and according to FIGS. 4-6H A split die IC package 803 employing a D2D interconnect structure in a die-substrate standoff cavity (i.e., cavity) to provide D2D connectivity in an exemplary fabrication process (including but not limited to those shown in FIGS. 2A-3 Exemplary Split Die IC Package). As an example, wireless communication device 800 may include or be included in any of the devices described above. As shown in FIG. 8 , the wireless communication device 800 includes a transceiver 804 and a data processor 806 . Data processor 806 may include memory to store data and program codes. Transceiver 804 includes a transmitter 808 and a receiver 810 that support two-way communication. In general, wireless communication device 800 may include any number of transmitters 808 and/or receivers 810 for any number of communication systems and frequency bands. All or a portion of transceiver 804 may be implemented on one or more analog ICs, RFICs, mixed signal ICs, and the like.

發射器808或接收器810可使用超外差式架構或直接變頻式架構來實現。在超外差式架構中,訊號在RF和基頻之間多級變頻,例如對於接收器810而言,在一級中從RF到中頻(IF),隨後在另一級中從IF到基頻。在直接變頻式架構中,訊號在一級中在RF和基頻之間變頻。超外差式以及直接變頻式架構可以使用不同的電路塊及/或具有不同的要求。在圖8中的無線通訊設備800中,發射器808和接收器810使用直接變頻式架構來實現。Transmitter 808 or receiver 810 may be implemented using a superheterodyne architecture or a direct conversion architecture. In a superheterodyne architecture, the signal is converted between RF and fundamental frequency in multiple stages, such as for receiver 810, from RF to intermediate frequency (IF) in one stage and then from IF to fundamental frequency in another stage . In a direct conversion architecture, the signal is converted between RF and fundamental frequency in one stage. Superheterodyne and direct conversion architectures may use different circuit blocks and/or have different requirements. In the wireless communication device 800 in FIG. 8 , the transmitter 808 and the receiver 810 are implemented using a direct conversion architecture.

在發射路徑中,資料處理器806處理要被傳送的資料並且向發射器808提供I和Q類比輸出訊號。在示例性無線通訊設備800中,資料處理器806包括數位類比轉換器(DAC)812(1)、812(2)以將由資料處理器806產生的數位訊號轉換成I和Q類比輸出訊號(例如,I和Q輸出電流)以供進一步處理。In the transmit path, the data processor 806 processes the data to be transmitted and provides I and Q analog output signals to the transmitter 808 . In the exemplary wireless communication device 800, the data processor 806 includes digital-to-analog converters (DACs) 812(1), 812(2) to convert digital signals generated by the data processor 806 into I and Q analog output signals (e.g. , I and Q output currents) for further processing.

在發射器808內,低通濾波器814(1)、814(2)分別對I和Q類比輸出訊號進行濾波以移除由在前的數位類比轉換引起的不期望訊號。放大器(AMP)816(1)、816(2)分別放大來自低通濾波器814(1)、814(2)的訊號並且提供I和Q基頻訊號。升頻轉換器818經由混頻器820(1)、820(2)用來自發射(TX)本端振盪器(LO)訊號產生器822的I和Q TX LO訊號來升頻轉換I和Q基頻訊號,以提供經升頻轉換訊號824。濾波器826對經升頻轉換訊號824進行濾波以移除由升頻轉換引起的不期望訊號以及接收頻帶中的雜訊。功率放大器(PA)828放大來自濾波器826的經升頻轉換訊號824,以獲得期望的輸出功率位準並提供發射RF訊號。該發射RF訊號被路由經過雙工器或開關830並經由天線832被發射。Within transmitter 808, low pass filters 814(1), 814(2) filter the I and Q analog output signals, respectively, to remove undesired signals caused by previous digital-to-analog conversions. Amplifiers (AMPs) 816(1), 816(2) amplify the signals from low pass filters 814(1), 814(2), respectively, and provide I and Q fundamental frequency signals. Upconverter 818 upconverts the I and Q bases with I and Q TX LO signals from transmit (TX) local oscillator (LO) signal generator 822 via mixers 820(1), 820(2). frequency signal to provide up-converted signal 824. A filter 826 filters the upconverted signal 824 to remove undesired signals caused by upconversion and noise in the receive frequency band. A power amplifier (PA) 828 amplifies the upconverted signal 824 from filter 826 to obtain a desired output power level and provide a transmit RF signal. The transmit RF signal is routed through a diplexer or switch 830 and transmitted via an antenna 832 .

在接收路徑中,天線832接收由基地台傳送的訊號並提供收到RF訊號,該收到RF訊號被路由經過雙工器或開關830並被提供給低雜訊放大器(LNA)834。雙工器或開關830被設計成用特定的接收(RX)與TX雙工器頻率分隔來操作,使得RX訊號與TX訊號隔離。該收到RF訊號由LNA 834放大並且由濾波器836濾波,以獲得期望的RF輸入訊號。降頻轉換混頻器838(1)、838(2)將濾波器836的輸出與來自RX LO訊號產生器840的I和Q RX LO訊號(亦即,LO_I和LO_Q)進行混頻以產生I和Q基頻訊號。I和Q基頻訊號由AMP 842(1)、842(2)放大並且進一步由低通濾波器844(1)、844(2)濾波以獲得I和Q類比輸入訊號,該I和Q類比輸入訊號被提供給資料處理器806。在該實例中,資料處理器806包括類比數位轉換器(ADC)846(1)、846(2)以將類比輸入訊號轉換成要進一步由資料處理器806處理的數位訊號。In the receive path, antenna 832 receives the signal transmitted by the base station and provides a received RF signal, which is routed through a duplexer or switch 830 and provided to a low noise amplifier (LNA) 834 . The duplexer or switch 830 is designed to operate with a specific receive (RX) and TX duplexer frequency separation such that the RX signal is isolated from the TX signal. The received RF signal is amplified by LNA 834 and filtered by filter 836 to obtain the desired RF input signal. Down conversion mixers 838(1), 838(2) mix the output of filter 836 with the I and Q RX LO signals (i.e., LO_I and LO_Q) from RX LO signal generator 840 to generate I and Q fundamental frequency signal. The I and Q baseband signals are amplified by AMPs 842(1), 842(2) and further filtered by low pass filters 844(1), 844(2) to obtain I and Q analog input signals which The signal is provided to a data processor 806 . In this example, data processor 806 includes analog-to-digital converters (ADCs) 846 ( 1 ), 846 ( 2 ) to convert analog input signals into digital signals to be further processed by data processor 806 .

在圖8的無線通訊設備800中,TX LO訊號產生器822產生用於升頻轉換的I和Q TX LO訊號,而RX LO訊號產生器840產生用於降頻轉換的I和Q RX LO訊號。每個LO訊號是具有特定基頻的週期性訊號。TX鎖相迴路(PLL)電路848從資料處理器806接收定時資訊,並且產生用於調整來自TX LO訊號產生器822的TX LO訊號的頻率及/或相位的控制訊號。類似地,RX PLL電路850從資料處理器806接收定時資訊,並且產生用於調整來自RX LO訊號產生器840的RX LO訊號的頻率及/或相位的控制訊號。In wireless communication device 800 of FIG. 8, TX LO signal generator 822 generates I and Q TX LO signals for up-conversion, and RX LO signal generator 840 generates I and Q RX LO signals for down-conversion . Each LO signal is a periodic signal with a specific fundamental frequency. TX phase locked loop (PLL) circuitry 848 receives timing information from data processor 806 and generates control signals for adjusting the frequency and/or phase of the TX LO signal from TX LO signal generator 822 . Similarly, RX PLL circuit 850 receives timing information from data processor 806 and generates control signals for adjusting the frequency and/or phase of the RX LO signal from RX LO signal generator 840 .

本發明所屬領域中具有通常知識者將進一步領會,結合本文所揭示的諸態樣描述的各種說明性邏輯區塊、模組、電路和演算法可被實現為電子硬體、儲存在記憶體中或另一電腦可讀取媒體中並由處理器或其他處理設備執行的指令、或這兩者的組合。本文中所揭示的記憶體可以是任何類型和大小的記憶體,並且可被配置成儲存所期望的任何類型的資訊。為了清楚地圖示這種可互換性,各種說明性部件、方塊、模組、電路和步驟在上文已經以其功能性的形式一般性地作了描述。此類功能性如何被實現取決於具體應用、設計選擇、及/或加諸於整體系統上的設計約束。技藝人士可針對每種特定應用以不同方式來實現所描述的功能性,但此類實現決策不應被解讀為致使脫離本案的範疇。It will be further appreciated by those of ordinary skill in the art that the various illustrative logic blocks, modules, circuits, and algorithms described in conjunction with the aspects disclosed herein may be implemented as electronic hardware, stored in memory or another computer readable medium and executed by a processor or other processing device, or a combination of both. The memory disclosed herein can be of any type and size, and can be configured to store any type of information desired. To clearly illustrate this interchangeability, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. How such functionality is implemented depends upon the particular application, design choices, and/or design constraints imposed on the overall system. Artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of this case.

結合本文中所揭示的各態樣描述的各種說明性邏輯區塊、模組、以及電路可用被設計成執行本文所描述的功能的處理器、數位訊號處理器(DSP)、特殊應用積體電路(ASIC)、現場可程式設計閘陣列(FPGA)或其他可程式設計邏輯裝置、個別閘門或電晶體邏輯、個別的硬體部件、或其任何組合來實現或執行。處理器可以是微處理器,但在替換方案中,處理器可以是任何一般處理器、控制器、微控制器或狀態機。處理器亦可以被實現為計算設備的組合(例如DSP與微處理器的組合、複數個微處理器、與DSP核協調的一或多個微處理器、或任何其他此類配置)。The various illustrative logic blocks, modules, and circuits described in connection with the aspects disclosed herein may be used with processors, digital signal processors (DSPs), application specific integrated circuits designed to perform the functions described herein (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, individual gate or transistor logic, individual hardware components, or any combination thereof. A processor can be a microprocessor, but in the alternative the processor can be any general processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (eg, a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors coordinated with a DSP core, or any other such configuration).

本文中所揭示的各態樣可被實施在硬體和儲存在硬體中的指令中,並且可常駐在例如隨機存取記憶體(RAM)、快閃記憶體、唯讀記憶體(ROM)、電可程式設計ROM(EPROM)、電子可抹除可程式設計ROM(EEPROM)、暫存器、硬碟、可移除磁碟、CD-ROM、或本發明所屬領域中所知的任何其他形式的電腦可讀取媒體中。示例性儲存媒體被耦合至處理器,以使得處理器能從/向該儲存媒體讀取/寫入資訊。在替換方案中,儲存媒體可被整合到處理器。處理器和儲存媒體可常駐在ASIC中。ASIC可常駐在遠程站中。在替換方案中,處理器和儲存媒體可作為個別部件常駐在遠端站、基地台或伺服器中。Aspects disclosed herein can be implemented in hardware and instructions stored in hardware and can be resident in, for example, random access memory (RAM), flash memory, read only memory (ROM) , Electrically Programmable ROM (EPROM), Electronically Erasable Programmable ROM (EEPROM), scratchpad, hard disk, removable disk, CD-ROM, or any other in the form of computer-readable media. An exemplary storage medium is coupled to the processor such that the processor can read information from/write to the storage medium. In the alternative, the storage medium may be integrated into the processor. The processor and storage medium can be resident in the ASIC. The ASIC may be resident in the remote station. In the alternative, the processor and storage medium may reside as separate components in a remote station, base station, or server.

亦注意到,本文任何示例性態樣中所描述的操作步驟是為了提供實例和論述而被描述的。所描述的操作可按除了所圖示的順序之外的眾多不同順序來執行。此外,在單個操作步驟中描述的操作實際上可在多個不同步驟中執行。另外,可組合示例性態樣中論述的一或多個操作步驟。應理解,如對本發明所屬領域中具有通常知識者顯而易見地,在流程圖中圖示的操作步驟可進行眾多不同的修改。本發明所屬領域中具有通常知識者亦將理解,可使用各種不同技術和技藝中的任何一種來表示資訊和訊號。例如,貫穿上面說明始終可能被述及的資料、指令、命令、資訊、訊號、位元、符號和碼片可由電壓、電流、電磁波、磁場或磁粒子、光場或光粒子、或其任何組合來表示。Note also that the steps described in any exemplary aspect herein are described for the purpose of providing example and discussion. The described operations may be performed in numerous different orders than the illustrated order. Furthermore, operations described in a single operational step may actually be performed in a plurality of different steps. Additionally, one or more operational steps discussed in the exemplary aspects may be combined. It should be understood that the operational steps illustrated in the flowcharts may be modified in many different ways, as would be apparent to those having ordinary skill in the art to which the present invention pertains. Those of ordinary skill in the art will also understand that information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referred to throughout the above description may be composed of voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof. To represent.

提供對本案的先前描述是為使得本領域任何技藝人士皆能夠製作或使用本案。對本案的各種修改對於本發明所屬領域中具有通常知識者將是顯而易見的,並且本文中所定義的普適原理可被應用於其他變形。由此,本案並非意欲被限定於本文中所描述的實例和設計,而是應被授予與本文中所揭示的原理和新穎特徵一致的最廣義的範疇。The preceding description of this application is provided to enable any person skilled in the art to make or use this application. Various modifications to the present disclosure will be readily apparent to those having ordinary skill in the art to which the invention pertains, and the general principles defined herein may be applied to other variations. Thus, the present case is not intended to be limited to the examples and designs described herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

在以下經編號態樣/條款中描述了各實現實例: 1.       一種積體電路(IC)封裝,包括: 封裝基板; 第一晶粒; 第二晶粒; 第一複數個晶粒互連,第一複數個晶粒互連被耦合到該封裝基板和第一晶粒以在第一晶粒與該封裝基板之間產生晶粒支起區; 第二複數個晶粒互連,第二複數個晶粒互連被佈置在該晶粒支起區中並被耦合到該封裝基板和第二晶粒; 形成在第一複數個晶粒互連與第二複數個晶粒互連之間的晶粒支起區中的腔;及 佈置在該腔中的晶粒到晶粒(D2D)互連結構,該D2D互連結構包括耦合到第一晶粒和第二晶粒的複數個D2D互連。 2.       如條款1的IC封裝,其中該複數個D2D互連未被耦合到該封裝基板。 3.       如條款1和2中的任一項的IC封裝,其中: 第二晶粒在水平方向上水平地毗鄰於第一晶粒; 第一晶粒的第一主動側被佈置成在與該水平方向正交的垂直方向上毗鄰於該封裝基板;並且 第二晶粒的第二主動側被佈置成在該垂直方向上毗鄰於該封裝基板。 4.       如條款3的IC封裝,其中該D2D互連結構在該垂直方向上的高度小於晶粒-基板支起腔在該垂直方向上的高度。 5.       如條款3和4中的任一項的IC封裝,其中: 第二晶粒與第一晶粒水平相鄰一間隔距離以在第一晶粒與第二晶粒之間形成水平晶粒分隔區;並且 該晶粒-基板支起腔被部分地佈置成在該垂直方向上毗鄰於該水平晶粒分隔區。 6.       如條款3-5中的任一項的IC封裝,其中第一複數個晶粒互連和第二複數個晶粒互連在該垂直方向上的高度定義該腔在該垂直方向上的高度。 7.       如條款3-6中的任一項的IC封裝,其中該D2D互連結構包括重分佈層(RDL),該RDL包括耦合到第一晶粒和第二晶粒的至少一個金屬互連。 8.       如條款7的IC封裝,其中該RDL包括具有2/2或更小的線間距(L/S)比的複數個金屬互連。 9.       如條款7和8中的任一項的IC封裝,其中: 第一複數個晶粒互連和第二複數個晶粒互連的高度在30-40微米(µm)之間; 該RDL的高度小於或等於7 µm;並且 該RDL包括具有2/2或更小的線間距(L/S)比的複數個金屬互連。 10.     如條款1-9中的任一項的IC封裝,其中: 第一晶粒包括第一主動側和第一背側; 第二晶粒包括第二主動側和第二背側; 第一複數個晶粒互連將第一晶粒的第一主動側耦合到該封裝基板;並且 第二複數個晶粒互連將第二晶粒的第二主動側耦合到該封裝基板。 11.     如條款1-10中的任一項的IC封裝,進一步包括:重構晶粒模組,該重構晶粒模組包括: 毗鄰於該封裝基板的主動側; 包括在該主動側上的第一主動側以及第一背側的第一晶粒; 包括在該主動側上的第二主動側以及第二背側的第二晶粒;及 模製化合物,該模製化合物被佈置成毗鄰於第一晶粒的第一背側以及第二晶粒的第二背側。 12.     如條款1-11中的任一項的IC封裝,其中: 第二晶粒與第一晶粒水平相鄰一間隔距離以在第一晶粒與第二晶粒之間形成水平晶粒分隔區; 第一晶粒包括水平地毗鄰於該水平晶粒分隔區的第一D2D介面電路系統; 第二晶粒包括水平地毗鄰於該水平晶粒分隔區的第二D2D介面電路系統; 第一D2D介面電路系統被耦合到該D2D互連結構; 第二D2D介面電路系統被耦合到該D2D互連結構;並且 該D2D互連結構將第一D2D介面電路系統耦合到第二D2D介面電路系統。 13.     如條款12的IC封裝,其中: 該D2D互連結構包括一或多個金屬化層,每個金屬化層包括一或多個金屬互連; 第一晶粒被耦合到該D2D互連結構的該一或多個金屬化層中的一或多個金屬互連;並且 第二晶粒被耦合到該D2D互連結構的該一或多個金屬化層中的一或多個金屬互連。 14.     如條款13的IC封裝,其中: 該一或多個金屬化層包括一或多個重分佈層(RDL),每個重分佈層包括一或多個金屬互連; 第一晶粒被耦合到該D2D互連結構的該一或多個RDL中的一或多個金屬互連;並且 第二晶粒被耦合到該D2D互連結構的該一或多個RDL中的一或多個金屬互連。 15.     如條款12-14中的任一項的IC封裝,其中: 第二晶粒在水平方向上水平地毗鄰於第一晶粒; 第一D2D介面電路系統在與該水平方向正交的垂直方向上被佈置在該腔上方;並且 第二D2D介面電路系統在該垂直方向上被佈置在該腔上方。 16.     如條款1和-15中的任一項的IC封裝,其中: 第一複數個晶粒互連包括複數個金屬柱;並且 第二複數個晶粒互連包括複數個金屬柱。 17.     如條款1-16中的任一項的IC封裝,其中該封裝基板包括一或多個金屬化層,每個金屬化層包括複數個金屬互連; 第一複數個晶粒互連被耦合到該封裝基板中的該複數個金屬互連之中的一或多個金屬互連;並且 第二複數個晶粒互連被耦合到該封裝基板中的該複數個金屬互連之中的一或多個金屬互連。 18.     如條款1-17中的任一項的IC封裝,該IC封裝被整合到選自包括以下各項的群的設備中:機上盒、娛樂單元、導航設備、通訊設備、固定位置資料單元、移動位置資料單元、全球定位系統(GPS)設備、行動電話、蜂巢式電話、智慧型電話、對話啟動協定(SIP)電話、平板設備、平板手機、伺服器、電腦、可攜式電腦、行動計算裝置、可穿戴計算設備、桌上型電腦、個人數位助理(PDA)、監視器、電腦監視器、電視機、調諧器、無線電、衛星無線電、音樂播放機、數位音樂播放機、可攜式音樂播放機、數位視訊播放機、視訊播放機、數位視訊碟(DVD)播放機,可攜式數位視訊播放機、汽車、交通工具部件、航空電子系統、無人機、以及多旋翼飛行器。 19.     一種製造積體電路(IC)封裝的方法,包括: 形成晶粒模組,該晶粒模組包括主動側、包含毗鄰於該主動側的第一主動側的第一晶粒、以及包含毗鄰於該主動側的第二主動側的第二晶粒,第二晶粒水平地毗鄰於第一晶粒; 毗鄰於該晶粒模組的主動側形成晶粒到晶粒(D2D)互連結構,該D2D互連結構包括複數個D2D互連; 形成耦合到第一晶粒的第一主動側的第一複數個晶粒互連;及 形成耦合到第二晶粒的第二主動側的第二複數個晶粒互連,以在第一複數個晶粒互連與第二複數個晶粒互連之間形成腔,並且該D2D互連結構被佈置在該腔中; 在封裝基板上佈置該晶粒模組的主動側,包括: 將第一複數個晶粒互連耦合到該封裝基板;及 將第二複數個晶粒互連耦合到該封裝基板。 20.     如條款19的方法,進一步包括:不將該複數個D2D互連耦合到該封裝基板。 21.     如條款19和20中的任一項的方法,其中形成該D2D互連結構進一步包括: 將第一晶粒中的第一D2D介面電路系統水平地耦合到該D2D互連結構;及 將第二晶粒中的第二D2D介面電路系統耦合到該D2D互連結構,以將第二D2D介面電路系統耦合到第一D2D介面電路系統。 22.     如條款19-21中的任一項的方法,其中形成該晶粒模組包括: 提供包括第一表面的載體; 在該載體的第一表面上放置第一晶粒;及 在該載體的第一表面上且水平地毗鄰於第一晶粒放置第二晶粒。 23.     如條款22該的方法,其中形成該晶粒模組進一步包括: 將黏合膜敷設到該載體的第一表面;並且 其中: 在該載體的第一表面上放置第一晶粒包括:在該黏合膜上放置第一晶粒;並且 在該載體的第一表面上放置第二晶粒包括:在該黏合膜上水平地毗鄰於第一晶粒放置第二晶粒。 24.     如條款22和23中的任一項的方法,進一步包括:在該載體的第一表面上以及在第一晶粒的第一背側和第二晶粒的第二背側上佈置包塑化合物。 25.     如條款24的方法,進一步包括:朝向第一晶粒的第一背側以及第二晶粒的第二背側磨除該包塑化合物的頂表面。 26.     如條款24和25中的任一項的方法,進一步包括: 從該晶粒模組移除該載體;及 毗鄰於第一晶粒的第一背側以及第二晶粒的第二背側將第二載體附連到該晶粒模組。 27.     如條款26的方法,進一步包括:在該腔中在第一晶粒的第一主動側的一部分以及第二晶粒的第二主動側的一部分上形成該D2D互連結構。 28.     如條款27該的方法,其中該D2D互連結構被佈置成垂直地毗鄰於第一晶粒與第二晶粒之間的水平晶粒分隔區。 29.     如條款27和28中的任一項的方法,其中形成該D2D互連結構包括: 在該腔中在第一晶粒的第一主動側以及第二晶粒的第二主動側上形成第一重分佈層(RDL);及 在第一RDL上形成一或多個額外RDL。 30.     如條款27-29中的任一項的方法,進一步包括:從該晶粒模組移除第二載體。 31.     如條款27-30中的任一項的方法,進一步包括:將第一複數個晶粒互連和第二複數個晶粒互連耦合到該封裝基板。 Implementation examples are described in the following numbered aspects/clauses: 1. An integrated circuit (IC) package comprising: package substrate; first die; second grain; a first plurality of die interconnects coupled to the packaging substrate and the first die to create a die standoff region between the first die and the packaging substrate; a second plurality of die interconnects disposed in the die standoff region and coupled to the packaging substrate and a second die; a cavity formed in the die standoff region between the first plurality of die interconnects and the second plurality of die interconnects; and A die-to-die (D2D) interconnect structure disposed in the cavity, the D2D interconnect structure including a plurality of D2D interconnects coupled to the first die and the second die. 2. The IC package of clause 1, wherein the plurality of D2D interconnects are not coupled to the package substrate. 3. An IC package as in any one of clauses 1 and 2, wherein: the second die is horizontally adjacent to the first die in the horizontal direction; The first active side of the first die is disposed adjacent to the packaging substrate in a vertical direction orthogonal to the horizontal direction; and The second active side of the second die is arranged adjacent to the package substrate in the vertical direction. 4. The IC package of clause 3, wherein the height of the D2D interconnect structure in the vertical direction is less than the height of the die-substrate standoff cavity in the vertical direction. 5. An IC package as in any one of clauses 3 and 4, wherein: the second die is horizontally adjacent to the first die by a separation distance to form a horizontal die separation region between the first die and the second die; and The die-substrate standoff cavity is partially disposed adjacent to the horizontal die separation region in the vertical direction. 6. The IC package of any one of clauses 3-5, wherein the heights of the first plurality of die interconnects and the second plurality of die interconnects in the vertical direction define the height of the cavity in the vertical direction high. 7. The IC package of any of clauses 3-6, wherein the D2D interconnect structure includes a redistribution layer (RDL) including at least one metal interconnect coupled to the first die and the second die . 8. The IC package of clause 7, wherein the RDL includes a plurality of metal interconnects having a line-to-space (L/S) ratio of 2/2 or less. 9. An IC package as in any one of clauses 7 and 8, wherein: the height of the first plurality of die interconnects and the second plurality of die interconnects is between 30-40 micrometers (µm); The height of the RDL is less than or equal to 7 µm; and The RDL includes a plurality of metal interconnections having a line-to-space (L/S) ratio of 2/2 or less. 10. The IC package of any one of clauses 1-9, wherein: the first die includes a first active side and a first backside; the second die includes a second active side and a second backside; a first plurality of die interconnects coupling a first active side of a first die to the packaging substrate; and A second plurality of die interconnects couples the second active side of the second die to the packaging substrate. 11. The IC package of any one of clauses 1-10, further comprising: a reconstructed die module, the reconstructed die module comprising: adjacent to the active side of the packaging substrate; including a first active side on the active side and a first die on a first backside; including a second active side on the active side and a second die on a second backside; and A molding compound is disposed adjacent to the first backside of the first die and the second backside of the second die. 12. The IC package of any one of clauses 1-11, wherein: the second die is horizontally adjacent to the first die by a separation distance to form a horizontal die separation region between the first die and the second die; The first die includes first D2D interface circuitry horizontally adjacent to the horizontal die separation region; the second die includes second D2D interface circuitry horizontally adjacent to the horizontal die separation region; first D2D interface circuitry coupled to the D2D interconnect structure; second D2D interface circuitry coupled to the D2D interconnect structure; and The D2D interconnect structure couples the first D2D interface circuitry to the second D2D interface circuitry. 13. The IC package of clause 12, wherein: The D2D interconnection structure includes one or more metallization layers, each metallization layer includes one or more metal interconnections; a first die coupled to one or more metal interconnects in the one or more metallization layers of the D2D interconnect structure; and A second die is coupled to one or more metal interconnects in the one or more metallization layers of the D2D interconnect structure. 14. The IC package of clause 13, wherein: The one or more metallization layers include one or more redistribution layers (RDLs), each RDL including one or more metal interconnects; the first die is coupled to one or more metal interconnects in the one or more RDLs of the D2D interconnect structure; and The second die is coupled to one or more metal interconnects in the one or more RDLs of the D2D interconnect structure. 15. The IC package of any one of clauses 12-14, wherein: the second die is horizontally adjacent to the first die in the horizontal direction; the first D2D interface circuitry is arranged above the cavity in a vertical direction orthogonal to the horizontal direction; and The second D2D interface circuitry is arranged above the cavity in the vertical direction. 16. An IC package as in any one of clauses 1 and -15, wherein: the first plurality of die interconnects includes a plurality of metal pillars; and The second plurality of die interconnects includes a plurality of metal pillars. 17. The IC package of any one of clauses 1-16, wherein the package substrate includes one or more metallization layers, each metallization layer including a plurality of metal interconnections; a first plurality of die interconnects coupled to one or more metal interconnects among the plurality of metal interconnects in the package substrate; and A second plurality of die interconnects is coupled to one or more metal interconnects of the plurality of metal interconnects in the package substrate. 18. An IC package according to any one of clauses 1-17, which IC package is incorporated into a device selected from the group consisting of: set-top box, entertainment unit, navigation device, communication device, fixed location data cell, mobile location data unit, global positioning system (GPS) device, mobile phone, cellular phone, smart phone, session initiation protocol (SIP) phone, tablet device, phablet phone, server, computer, portable computer, Mobile Computing Devices, Wearable Computing Devices, Desktop Computers, Personal Digital Assistants (PDAs), Monitors, Computer Monitors, Televisions, Tuners, Radios, Satellite Radios, Music Players, Digital Music Players, Portable portable music players, digital video players, video players, digital video disc (DVD) players, portable digital video players, automobiles, vehicle components, avionics systems, drones, and multirotor aircraft. 19. A method of manufacturing an integrated circuit (IC) package comprising: forming a die module comprising an active side, a first die comprising a first active side adjacent to the active side, and a second die comprising a second active side adjacent to the active side, the second die is horizontally adjacent to the first die; forming a die-to-die (D2D) interconnection structure adjacent to the active side of the die module, the D2D interconnection structure including a plurality of D2D interconnections; forming a first plurality of die interconnects coupled to the first active side of the first die; and forming a second plurality of die interconnects coupled to a second active side of a second die to form a cavity between the first plurality of die interconnects and the second plurality of die interconnects, and the D2D interconnects A connecting structure is arranged in the cavity; The active side of the die module is arranged on the packaging substrate, including: coupling a first plurality of die interconnects to the packaging substrate; and A second plurality of die interconnects is coupled to the packaging substrate. 20. The method of clause 19, further comprising: not coupling the plurality of D2D interconnects to the packaging substrate. 21. The method of any one of clauses 19 and 20, wherein forming the D2D interconnect structure further comprises: horizontally coupling first D2D interface circuitry in the first die to the D2D interconnect structure; and The second D2D interface circuitry in the second die is coupled to the D2D interconnect structure to couple the second D2D interface circuitry to the first D2D interface circuitry. 22. The method of any one of clauses 19-21, wherein forming the die module comprises: providing a carrier comprising a first surface; placing a first die on the first surface of the carrier; and A second die is placed on the first surface of the carrier and horizontally adjacent to the first die. 23. The method of clause 22, wherein forming the die module further comprises: applying an adhesive film to the first surface of the carrier; and in: Placing a first die on the first surface of the carrier includes: placing a first die on the adhesive film; and Placing a second die on the first surface of the carrier includes placing a second die horizontally adjacent to the first die on the adhesive film. 24. The method of any one of clauses 22 and 23, further comprising: arranging packages on the first surface of the carrier and on the first backside of the first die and the second backside of the second die plastic compound. 25. The method of clause 24, further comprising: abrading the top surface of the overmolding compound toward the first backside of the first die and the second backside of the second die. 26. The method of any one of clauses 24 and 25, further comprising: removing the carrier from the die module; and A second carrier is attached to the die module adjacent to the first backside of the first die and the second backside of the second die. 27. The method of clause 26, further comprising: forming the D2D interconnect structure in the cavity on a portion of the first active side of the first die and a portion of the second active side of the second die. 28. The method of clause 27, wherein the D2D interconnect structure is arranged vertically adjacent to a horizontal die separation region between the first die and the second die. 29. The method of any one of clauses 27 and 28, wherein forming the D2D interconnect structure comprises: forming a first redistribution layer (RDL) in the cavity on a first active side of a first die and a second active side of a second die; and One or more additional RDLs are formed on the first RDL. 30. The method of any one of clauses 27-29, further comprising: removing the second carrier from the die module. 31. The method of any one of clauses 27-30, further comprising: coupling the first plurality of die interconnects and the second plurality of die interconnects to the packaging substrate.

100:拆分式半導體晶粒(「晶粒」)IC封裝 102:D2D中介體 104:封裝基板 106(1):晶粒 106(2):晶粒 108:晶粒分隔區 110:外部互連 112:晶粒互連 114:金屬柱 116(1):主動側 116(2):主動側 118:焊料接頭 120:D2D互連 200:封裝 202:D2D互連結構 204:支起腔 206(1):晶粒 206(2):晶粒 208:封裝基板 210:晶粒互連 210(1):晶粒互連 210(2):晶粒互連 211:外部互連 212:晶粒分隔區 214:晶粒模組 216:包塑化合物 218:重構晶片 220:介電層 222:封裝化合物 224(1):主動側 224(2):主動側 226(1):背側 226(2):背側 228:晶粒支起區 232:D2D互連 234(1):D2D介面電路系統 234(2):D2D介面電路系統 236:主動側 238(1):金屬柱 238(2):金屬柱 240(1):互連凸塊 240(2):互連凸塊 242(1):金屬化層 242(2):金屬化層 242(3):金屬化層 243(1):金屬互連 243(2):金屬互連 243(3):金屬互連 244(1):金屬化層 244(2):金屬化層 244(3):金屬化層 246(1):RDL 246(2):RDL 246(3):RDL 248(1):金屬互連 248(2):金屬互連 248(3):金屬互連 400:程序 402:方塊 404:方塊 406:方塊 408:方塊 410:方塊 412:方塊 414:方塊 500:程序 502:方塊 504:方塊 506:方塊 508:方塊 510:方塊 512:方塊 514:方塊 516:方塊 600A:製造階段 600B:製造階段 600C:製造階段 600D:製造階段 600E:製造階段 600F:製造階段 600G:製造階段 600H:製造階段 602:載體 604:第一表面 606:重構晶片 608:黏合膜 612:頂表面 614:表面 616:第二載體 618:黏合層 700:系統 702:IC 704:拆分式晶粒IC封裝 706:片上系統(SoC) 708:CPU 710:處理器 712:快取緩衝記憶體 714:系統匯流排 716:記憶體控制器 718:記憶體陣列 720:記憶體系統 722:輸入設備 724:輸出設備 726:網路周邊設備 728:顯示控制器 730:網路 732:顯示器 734:視訊處理器 800:無線通訊設備 802:IC 803:拆分式晶粒IC封裝 804:收發機 806:資料處理器 808:發射器 810:接收器 812(1):數位類比轉換器(DAC) 812(2):數位類比轉換器(DAC) 814(1):低通濾波器 814(2):低通濾波器 816(1):放大器(AMP) 816(2):放大器(AMP) 818:升頻轉換器 820(1):混頻器 820(2):混頻器 822:發射(TX)本端振盪器(LO)訊號產生器 824:經升頻轉換訊號 826:濾波器 828:功率放大器(PA) 830:雙工器或開關 832:天線 834:低雜訊放大器(LNA) 836:濾波器 838(1):降頻轉換混頻器 838(2):降頻轉換混頻器 840:RX LO訊號產生器 842(1):AMP 842(2):AMP 844(1):低通濾波器 844(2):低通濾波器 846(1):類比數位轉換器(ADC) 846(2):類比數位轉換器(ADC) 848:TX鎖相迴路(PLL)電路 850:RX PLL電路 A 1:線 A 1':線 A 2:線 A 2':線 D 1:距離 D 2:厚度 H 1:高度 H 2:高度 H 3:高度 H 4:高度 H 5:高度 H 6:高度 X:軸 Y:軸 Z:軸 100: Split semiconductor die ("die") IC package 102: D2D interposer 104: Package substrate 106(1): Die 106(2): Die 108: Die separation area 110: External interconnect 112: grain interconnection 114: metal pillar 116 (1): active side 116 (2): active side 118: solder joint 120: D2D interconnection 200: package 202: D2D interconnection structure 204: support cavity 206 (1 ): Die 206(2): Die 208: Package Substrate 210: Die Interconnect 210(1): Die Interconnect 210(2): Die Interconnect 211: External Interconnect 212: Die Separation Area 214: Die Module 216: Overmolding Compound 218: Reconstituted Die 220: Dielectric Layer 222: Encapsulation Compound 224(1): Active Side 224(2): Active Side 226(1): Backside 226(2) : back side 228: grain support area 232: D2D interconnection 234 (1): D2D interface circuit system 234 (2): D2D interface circuit system 236: active side 238 (1): metal column 238 (2): metal Post 240(1): Interconnect Bump 240(2): Interconnect Bump 242(1): Metallization Layer 242(2): Metallization Layer 242(3): Metallization Layer 243(1): Metal Interconnect Connect 243(2): Metal Interconnect 243(3): Metal Interconnect 244(1): Metallization Layer 244(2): Metallization Layer 244(3): Metallization Layer 246(1): RDL 246(2 ):RDL 246(3):RDL 248(1):Metal Interconnect 248(2):Metal Interconnect 248(3):Metal Interconnect 400:Program 402:Block 404:Block 406:Block 408:Block 410: Block 412: Block 414: Block 500: Program 502: Block 504: Block 506: Block 508: Block 510: Block 512: Block 514: Block 516: Block 600A: Manufacturing Stage 600B: Manufacturing Stage 600C: Manufacturing Stage 600D: Manufacturing Stage 600E: Manufacturing Stage 600F: Manufacturing Stage 600G: Manufacturing Stage 600H: Manufacturing Stage 602: Carrier 604: First Surface 606: Reconstituted Wafer 608: Adhesive Film 612: Top Surface 614: Surface 616: Second Carrier 618: Adhesive Layer 700 : System 702: IC 704: Split IC package 706: System on Chip (SoC) 708: CPU 710: Processor 712: Cache buffer memory 714: System bus 716: Memory controller 718: Memory Array 720: memory system 722: input device 724: output device 726: network peripheral device 728: display controller 730: network 732: display 734: video processor 800: wireless communication device 802: IC 803: split type Die IC package 804: transceiver 806: capital Material processor 808: transmitter 810: receiver 812(1): digital analog converter (DAC) 812(2): digital analog converter (DAC) 814(1): low pass filter 814(2): low pass filter Pass Filter 816(1): Amplifier (AMP) 816(2): Amplifier (AMP) 818: Upconverter 820(1): Mixer 820(2): Mixer 822: Transmit (TX) Terminal Oscillator (LO) Signal Generator 824: Upconverted Signal 826: Filter 828: Power Amplifier (PA) 830: Duplexer or Switch 832: Antenna 834: Low Noise Amplifier (LNA) 836: Filter 838(1):Down conversion mixer 838(2):Down conversion mixer 840:RX LO signal generator 842(1):AMP 842(2):AMP 844(1):Low pass filter 844(2): Low-pass filter 846(1): Analog-to-digital converter (ADC) 846(2): Analog-to-digital converter (ADC) 848: TX phase-locked loop (PLL) circuit 850: RX PLL circuit A 1 : Line A 1 ': Line A 2 ': Line A 2 ': Line D 1 : Distance D 2 : Thickness H 1 : Height H 2 : Height H 3: Height H 4 : Height H 5 : Height H 6 : Height X: Axis Y: Axis Z: Axis

圖1A和1B分別是拆分式半導體晶粒(「晶粒」)積體電路(IC)封裝的俯視圖和橫截面側視圖,該IC封裝包括封裝基板中用於提供晶粒到晶粒(D2D)連接的D2D連接中介體;1A and 1B are top and cross-sectional side views, respectively, of a split semiconductor die (“die”) integrated circuit (IC) package that includes a die-to-die (D2D ) connected D2D connection intermediary;

圖2A和2B分別是在晶粒-基板支起腔(亦即,腔)中採用D2D互連結構以提供D2D連接的示例性拆分式晶粒IC封裝的俯視圖和橫截面側視圖;2A and 2B are top and cross-sectional side views, respectively, of an exemplary split-die IC package employing a D2D interconnect structure in a die-substrate standoff cavity (i.e., cavity) to provide D2D connections;

圖3是圖2B中的拆分式晶粒IC封裝的另一側視圖,其圖示了腔中提供D2D連接的D2D互連結構的更多細節;3 is another side view of the split die IC package in FIG. 2B illustrating more details of the D2D interconnect structure in the cavity providing the D2D connection;

圖4是圖示用於製造在腔中採用D2D互連結構以提供D2D連接的拆分式晶粒IC封裝(包括但不限於圖2A-3中的示例性拆分式晶粒IC封裝)的示例性程序的流程圖;4 is a schematic diagram for fabricating a split-die IC package (including but not limited to the exemplary split-die IC package in FIGS. 2A-3 ) employing a D2D interconnect structure in the cavity to provide D2D connectivity. Flowchart of an exemplary procedure;

圖5A-5C是圖示用於製造在腔中採用D2D互連結構以提供D2D連接的拆分式晶粒IC封裝(包括但不限於圖2A-3中的示例性拆分式晶粒IC封裝)的另一示例性程序的流程圖;5A-5C are schematic diagrams for fabricating a split-die IC package (including but not limited to the exemplary split-die IC package in FIGS. A flowchart of another exemplary procedure of );

圖6A-6H圖示了在製造根據圖5A-5C中的示例性製造程序的在腔中採用D2D互連結構以提供D2D連接的拆分式晶粒IC封裝(包括但不限於圖2A-3中的示例性拆分式晶粒IC封裝)期間的示例性製造階段;6A-6H illustrate a split die IC package (including but not limited to, FIGS. Exemplary manufacturing stages during the exemplary split-die IC package in ;

圖7是基於處理器的示例性系統的方塊圖,該系統包括可被封裝在根據圖4-6H中的示例性製造程序的在腔中採用D2D互連結構以提供D2D連接的(諸)拆分式晶粒IC封裝(包括但不限於圖2A-3中的示例性拆分式晶粒IC封裝)中的部件;及FIG. 7 is a block diagram of an example processor-based system including disassembled device(s) employing a D2D interconnect structure in a cavity to provide D2D connectivity that may be packaged according to the example fabrication process in FIGS. 4-6H . Components in fractional die IC packages, including but not limited to the exemplary split die IC packages in Figures 2A-3; and

圖8是示例性無線通訊設備的方塊圖,該無線通訊設備包括可被封裝在根據圖4-6H中的示例性製造程序的在腔中採用D2D互連結構以提供D2D連接的(諸)拆分式晶粒IC封裝(包括但不限於圖2A-3中的示例性拆分式晶粒IC封裝)中的射頻(RF)部件。FIG. 8 is a block diagram of an exemplary wireless communication device including disassembled device(s) employing a D2D interconnect structure in a cavity to provide D2D connectivity that may be packaged according to the exemplary manufacturing process in FIGS. 4-6H . Radio frequency (RF) components in fractional die IC packages, including but not limited to the exemplary split die IC package in FIGS. 2A-3 .

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic deposit information (please note in order of depositor, date, and number) none Overseas storage information (please note in order of storage country, institution, date, and number) none

200:封裝 200: Encapsulation

202:D2D互連結構 202:D2D interconnect structure

204:支起腔 204: support cavity

206(1):晶粒 206(1): grain

208:封裝基板 208: Package substrate

210:晶粒互連 210: Die interconnection

210(1):晶粒互連 210(1): Die Interconnection

210(2):晶粒互連 210(2): Die Interconnection

211:外部互連 211: External interconnection

212:晶粒分隔區 212: Grain separation area

214:晶粒模組 214: Grain module

216:包塑化合物 216: Plastic compound

218:重構晶片 218: Reconstruct the chip

220:介電層 220: dielectric layer

222:封裝化合物 222: Encapsulation compound

224(1):主動側 224(1): active side

224(2):主動側 224(2): active side

226(1):背側 226(1): dorsal side

226(2):背側 226(2): dorsal side

228:晶粒支起區 228: grain support area

232:D2D互連 232: D2D interconnection

234(1):D2D介面電路系統 234(1): D2D interface circuit system

234(2):D2D介面電路系統 234(2):D2D interface circuit system

A2:線 A 2 : Line

A2':線 A 2 ': line

D1:距離 D 1 : distance

H3:高度 H 3 : Height

H4:高度 H 4 : Height

H5:高度 H 5 : Height

Claims (31)

一種積體電路(IC)封裝,包括: 一封裝基板; 一第一晶粒; 一第二晶粒; 第一複數個晶粒互連,該第一複數個晶粒互連被耦合到該封裝基板和該第一晶粒以在該第一晶粒與該封裝基板之間建立一晶粒支起區; 第二複數個晶粒互連,該第二複數個晶粒互連被佈置在該晶粒支起區中並被耦合到該封裝基板和該第二晶粒; 在該第一複數個晶粒互連與該第二複數個晶粒互連之間的該晶粒支起區中形成的一腔;及 佈置在該腔中的一晶粒到晶粒(D2D)互連結構,該D2D互連結構包括耦合到該第一晶粒和該第二晶粒的複數個D2D互連。 An integrated circuit (IC) package comprising: a packaging substrate; a first die; a second die; a first plurality of die interconnects coupled to the packaging substrate and the first die to establish a die standoff region between the first die and the packaging substrate ; a second plurality of die interconnects disposed in the die standoff region and coupled to the packaging substrate and the second die; a cavity formed in the die standoff region between the first plurality of die interconnects and the second plurality of die interconnects; and A die-to-die (D2D) interconnect structure disposed in the cavity, the D2D interconnect structure including a plurality of D2D interconnects coupled to the first die and the second die. 如請求項1之IC封裝,其中該複數個D2D互連未被耦合到該封裝基板。The IC package of claim 1, wherein the plurality of D2D interconnects are not coupled to the package substrate. 如請求項1之IC封裝,其中: 該第二晶粒在一水平方向上水平地毗鄰於該第一晶粒; 該第一晶粒的一第一主動側被佈置成在與該水平方向正交的一垂直方向上毗鄰於該封裝基板;並且 該第二晶粒的一第二主動側被佈置成在該垂直方向上毗鄰於該封裝基板。 Such as the IC packaging of claim item 1, wherein: the second die is horizontally adjacent to the first die in a horizontal direction; A first active side of the first die is disposed adjacent to the package substrate in a vertical direction orthogonal to the horizontal direction; and A second active side of the second die is disposed adjacent to the package substrate in the vertical direction. 如請求項3之IC封裝,其中該D2D互連結構在該垂直方向上的一高度小於該腔在該垂直方向上的一高度。The IC package according to claim 3, wherein a height of the D2D interconnect structure in the vertical direction is smaller than a height of the cavity in the vertical direction. 如請求項3之IC封裝,其中: 該第二晶粒與該第一晶粒水平相鄰一間隔距離以在該第一晶粒與該第二晶粒之間形成一水平晶粒分隔區;並且 該腔被部分地佈置成在該垂直方向上毗鄰於該水平晶粒分隔區。 Such as the IC packaging of claim item 3, wherein: the second die is horizontally adjacent to the first die by a separation distance to form a horizontal die separation region between the first die and the second die; and The cavity is partially disposed adjacent to the horizontal die separation region in the vertical direction. 如請求項3之IC封裝,其中該第一複數個晶粒互連和該第二複數個晶粒互連在該垂直方向上的一高度定義該腔在該垂直方向上的一高度。The IC package according to claim 3, wherein a height of the first plurality of die interconnects and the second plurality of die interconnects in the vertical direction defines a height of the cavity in the vertical direction. 如請求項1之IC封裝,其中該D2D互連結構包括一重分佈層(RDL),該RDL包括耦合到該第一晶粒和該第二晶粒的至少一個金屬互連。The IC package of claim 1, wherein the D2D interconnect structure includes a redistribution layer (RDL), the RDL including at least one metal interconnect coupled to the first die and the second die. 如請求項7之IC封裝,其中該RDL包括具有2/2或更小的一線間距(L/S)比的複數個金屬互連。The IC package of claim 7, wherein the RDL includes a plurality of metal interconnections having a line-to-space (L/S) ratio of 2/2 or less. 如請求項7之IC封裝,其中: 該第一複數個晶粒互連和該第二複數個晶粒互連的一高度在30-40微米(µm)之間; 該RDL的一高度小於或等於7 µm;並且 該RDL包括具有2/2或更小的一線間距(L/S)比的複數個金屬互連。 Such as the IC packaging of claim item 7, wherein: a height of the first plurality of die interconnects and the second plurality of die interconnects is between 30-40 microns (µm); The RDL has a height less than or equal to 7 µm; and The RDL includes a plurality of metal interconnections having a line-to-space (L/S) ratio of 2/2 or less. 如請求項1之IC封裝,其中: 該第一晶粒包括一第一主動側和一第一背側; 該第二晶粒包括一第二主動側和一第二背側; 該第一複數個晶粒互連將該第一晶粒的該第一主動側耦合到該封裝基板;並且 該第二複數個晶粒互連將該第二晶粒的該第二主動側耦合到該封裝基板。 Such as the IC packaging of claim item 1, wherein: The first die includes a first active side and a first backside; The second die includes a second active side and a second backside; the first plurality of die interconnects coupling the first active side of the first die to the packaging substrate; and The second plurality of die interconnects couple the second active side of the second die to the packaging substrate. 如請求項1之IC封裝,進一步包括:一重構晶粒模組,該重構晶粒模組包括: 毗鄰於該封裝基板的一主動側; 包括在該主動側上的一第一主動側以及一第一背側的該第一晶粒; 包括在該主動側上的一第二主動側以及一第二背側的該第二晶粒;及 一模製化合物,該模製化合物被佈置成毗鄰於該第一晶粒的該第一背側以及該第二晶粒的該第二背側。 The IC package of claim 1 further includes: a reconfigured die module, the reconfigured die module includes: Adjacent to an active side of the packaging substrate; including the first die on the active side with a first active side and a first backside; including the second die on the active side with a second active side and a second backside; and A molding compound is disposed adjacent to the first backside of the first die and the second backside of the second die. 如請求項1之IC封裝,其中: 該第二晶粒與該第一晶粒水平相鄰一間隔距離以在該第一晶粒與該第二晶粒之間形成一水平晶粒分隔區; 該第一晶粒包括水平地毗鄰於該水平晶粒分隔區的一第一D2D介面電路系統; 該第二晶粒包括水平地毗鄰於該水平晶粒分隔區的一第二D2D介面電路系統; 該第一D2D介面電路系統被耦合到該D2D互連結構; 該第二D2D介面電路系統被耦合到該D2D互連結構;並且 該D2D互連結構將該第一D2D介面電路系統耦合到該第二D2D介面電路系統。 Such as the IC packaging of claim item 1, wherein: The second die is horizontally adjacent to the first die by a separation distance to form a horizontal die separation region between the first die and the second die; The first die includes a first D2D interface circuitry horizontally adjacent to the horizontal die separation region; The second die includes a second D2D interface circuitry horizontally adjacent to the horizontal die separation region; the first D2D interface circuitry is coupled to the D2D interconnect structure; the second D2D interface circuitry is coupled to the D2D interconnect structure; and The D2D interconnect structure couples the first D2D interface circuitry to the second D2D interface circuitry. 如請求項12之IC封裝,其中: 該D2D互連結構包括一或多個金屬化層,每個金屬化層包括一或多個金屬互連; 該第一晶粒被耦合到該D2D互連結構的該一或多個金屬化層中的一或多個金屬互連;並且 該第二晶粒被耦合到該D2D互連結構的該一或多個金屬化層中的一或多個金屬互連。 Such as the IC packaging of claim item 12, wherein: The D2D interconnection structure includes one or more metallization layers, each metallization layer includes one or more metal interconnections; the first die is coupled to one or more metal interconnects in the one or more metallization layers of the D2D interconnect structure; and The second die is coupled to one or more metal interconnects in the one or more metallization layers of the D2D interconnect structure. 如請求項13之IC封裝,其中: 該一或多個金屬化層包括一或多個重分佈層(RDL),每個RDL包括一或多個金屬互連; 該第一晶粒被耦合到該D2D互連結構的該一或多個RDL中的一或多個金屬互連;並且 該第二晶粒被耦合到該D2D互連結構的該一或多個RDL中的一或多個金屬互連。 Such as the IC package of claim 13, wherein: The one or more metallization layers include one or more redistribution layers (RDLs), each RDL including one or more metal interconnects; the first die is coupled to one or more metal interconnects in the one or more RDLs of the D2D interconnect structure; and The second die is coupled to one or more metal interconnects in the one or more RDLs of the D2D interconnect structure. 如請求項12之IC封裝,其中: 該第二晶粒在一水平方向上水平地毗鄰於該第一晶粒; 該第一D2D介面電路系統在與該水平方向正交的一垂直方向上被佈置在該腔上方;並且 該第二D2D介面電路系統在該垂直方向上被佈置在該腔上方。 Such as the IC packaging of claim item 12, wherein: the second die is horizontally adjacent to the first die in a horizontal direction; the first D2D interface circuitry is arranged above the cavity in a vertical direction orthogonal to the horizontal direction; and The second D2D interface circuitry is arranged above the cavity in the vertical direction. 如請求項1之IC封裝,其中: 該第一複數個晶粒互連包括複數個金屬柱;並且 該第二複數個晶粒互連包括複數個金屬柱。 Such as the IC packaging of claim item 1, wherein: the first plurality of die interconnects includes a plurality of metal pillars; and The second plurality of die interconnects includes a plurality of metal pillars. 如請求項1之IC封裝,其中該封裝基板包括一或多個金屬化層,每個金屬化層包括複數個金屬互連; 該第一複數個晶粒互連被耦合到該封裝基板中的該複數個金屬互連之中的一或多個金屬互連;並且 該第二複數個晶粒互連被耦合到該封裝基板中的該複數個金屬互連之中的一或多個金屬互連。 The IC package according to claim 1, wherein the package substrate includes one or more metallization layers, each metallization layer includes a plurality of metal interconnections; the first plurality of die interconnects coupled to one or more metal interconnects among the plurality of metal interconnects in the package substrate; and The second plurality of die interconnects is coupled to one or more metal interconnects of the plurality of metal interconnects in the package substrate. 如請求項1之IC封裝,該IC封裝被整合到選自包括以下各項的群的一設備中:一機上盒、一娛樂單元、一導航設備、一通訊設備、一固定位置資料單元、一行動位置資料單元、一全球定位系統(GPS)設備、一行動電話、一蜂巢式電話、一智慧型電話、一對話啟動協定(SIP)電話、一平板設備、一平板手機、一伺服器、一電腦、一可攜式電腦、一行動計算裝置、一可穿戴計算設備、一桌上型電腦、一個人數位助理(PDA)、一監視器、一電腦監視器、一電視機、一調諧器、一無線電、一衛星無線電、一音樂播放機、一數位音樂播放機、一可攜式音樂播放機、一數位視訊播放機、一視訊播放機、一數位視訊碟(DVD)播放機、一可攜式數位視訊播放機、一汽車、一交通工具部件、一航空電子系統、一無人機、以及一多旋翼飛行器。Such as the IC package of claim 1, the IC package is integrated into a device selected from the group comprising: a set-top box, an entertainment unit, a navigation device, a communication device, a fixed location data unit, A mobile location data unit, a global positioning system (GPS) device, a mobile phone, a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a tablet device, a tablet phone, a server, A computer, a portable computer, a mobile computing device, a wearable computing device, a desktop computer, a personal digital assistant (PDA), a monitor, a computer monitor, a television, a tuner, A radio, a satellite radio, a music player, a digital music player, a portable music player, a digital video player, a video player, a digital video disc (DVD) player, a portable digital video player, an automobile, a vehicle component, an avionics system, a drone, and a multi-rotor aircraft. 一種製造一積體電路(IC)封裝的方法,包括以下步驟: 形成一晶粒模組,該晶粒模組包括一主動側、包含毗鄰於該主動側的一第一主動側的一第一晶粒、以及包含毗鄰於該主動側的一第二主動側的一第二晶粒,該第二晶粒水平地毗鄰於該第一晶粒; 毗鄰於該晶粒模組的該主動側形成一晶粒到晶粒(D2D)互連結構,該D2D互連結構包括複數個D2D互連; 形成耦合到該第一晶粒的該第一主動側的第一複數個晶粒互連;及 形成耦合到該第二晶粒的該第二主動側的第二複數個晶粒互連以在該第一複數個晶粒互連與該第二複數個晶粒互連之間形成一腔,並且該D2D互連結構被佈置在該腔中; 在一封裝基板上佈置該晶粒模組的該主動側,包括: 將該第一複數個晶粒互連耦合到該封裝基板;及 將該第二複數個晶粒互連耦合到該封裝基板。 A method of manufacturing an integrated circuit (IC) package comprising the steps of: forming a die module, the die module includes an active side, a first die including a first active side adjacent to the active side, and a second active side adjacent to the active side a second die horizontally adjacent to the first die; forming a die-to-die (D2D) interconnection structure adjacent to the active side of the die module, the D2D interconnection structure including a plurality of D2D interconnections; forming a first plurality of die interconnects coupled to the first active side of the first die; and forming a second plurality of die interconnects coupled to the second active side of the second die to form a cavity between the first plurality of die interconnects and the second plurality of die interconnects, and the D2D interconnect structure is arranged in the cavity; Disposing the active side of the die module on a packaging substrate, including: coupling the first plurality of die interconnects to the packaging substrate; and The second plurality of die interconnects are coupled to the packaging substrate. 如請求項19之方法,進一步包括以下步驟:不將該複數個D2D互連耦合到該封裝基板。The method according to claim 19, further comprising the step of: not coupling the plurality of D2D interconnects to the packaging substrate. 如請求項19之方法,其中形成該D2D互連結構進一步包括以下步驟: 將該第一晶粒中的一第一D2D介面電路系統水平地耦合到該D2D互連結構;及 將該第二晶粒中的一第二D2D介面電路系統耦合到該D2D互連結構,以將該第二D2D介面電路系統耦合到該第一D2D介面電路系統。 The method according to claim 19, wherein forming the D2D interconnection structure further comprises the following steps: horizontally coupling a first D2D interface circuitry in the first die to the D2D interconnect structure; and A second D2D interface circuitry in the second die is coupled to the D2D interconnect structure to couple the second D2D interface circuitry to the first D2D interface circuitry. 如請求項19之方法,其中形成該晶粒模組包括以下步驟: 提供包括一第一表面的一載體; 在該載體的該第一表面上放置該第一晶粒;及 在該載體的該第一表面上且水平地毗鄰於該第一晶粒放置該第二晶粒。 The method according to claim 19, wherein forming the die module includes the following steps: providing a carrier including a first surface; placing the first die on the first surface of the carrier; and The second die is positioned on the first surface of the carrier and horizontally adjacent to the first die. 如請求項22之方法,其中形成該晶粒模組進一步包括以下步驟: 將一黏合膜敷設到該載體的該第一表面;並且 其中: 在該載體的該第一表面上放置該第一晶粒包括:在該黏合膜上放置該第一晶粒;並且 在該載體的該第一表面上放置該第二晶粒包括:在該黏合膜上水平地毗鄰於該第一晶粒放置該第二晶粒。 The method of claim 22, wherein forming the die module further comprises the following steps: applying an adhesive film to the first surface of the carrier; and in: Placing the first die on the first surface of the carrier includes: placing the first die on the adhesive film; and Placing the second die on the first surface of the carrier includes placing the second die horizontally adjacent to the first die on the adhesive film. 如請求項22之方法,進一步包括以下步驟:在該載體的該第一表面上以及在該第一晶粒的一第一背側和該第二晶粒的一第二背側上佈置一包塑化合物。As the method of claim 22, further comprising the steps of: arranging a package on the first surface of the carrier and on a first backside of the first die and a second backside of the second die plastic compound. 如請求項24之方法,進一步包括以下步驟:朝向該第一晶粒的該第一背側以及該第二晶粒的該第二背側磨除該包塑化合物的一頂表面。The method of claim 24, further comprising the step of: grinding away a top surface of the overmolding compound toward the first backside of the first die and the second backside of the second die. 如請求項24之方法,進一步包括以下步驟: 從該晶粒模組移除該載體;及 毗鄰於該第一晶粒的該第一背側以及該第二晶粒的該第二背側將一第二載體附連到該晶粒模組。 As the method of claim 24, further comprising the following steps: removing the carrier from the die module; and A second carrier is attached to the die module adjacent to the first backside of the first die and the second backside of the second die. 如請求項26之方法,進一步包括以下步驟:在該腔中在該第一晶粒的該第一主動側的一部分以及該第二晶粒的該第二主動側的一部分上形成該D2D互連結構。The method of claim 26, further comprising the step of: forming the D2D interconnection in the cavity on a portion of the first active side of the first die and a portion of the second active side of the second die structure. 如請求項27之方法,其中該D2D互連結構被佈置成垂直地毗鄰於該第一晶粒與該第二晶粒之間的一水平晶粒分隔區。The method of claim 27, wherein the D2D interconnect structure is arranged vertically adjacent to a horizontal die separation region between the first die and the second die. 如請求項27之方法,其中形成該D2D互連結構包括以下步驟: 在該腔中在該第一晶粒的該第一主動側以及該第二晶粒的該第二主動側上形成一第一重分佈層(RDL);及 在該第一RDL上形成一或多個額外RDL。 The method according to claim 27, wherein forming the D2D interconnection structure includes the following steps: forming a first redistribution layer (RDL) in the cavity on the first active side of the first die and the second active side of the second die; and One or more additional RDLs are formed on the first RDL. 如請求項27之方法,進一步包括以下步驟:從該晶粒模組移除該第二載體。The method according to claim 27, further comprising the step of: removing the second carrier from the die module. 如請求項27之方法,進一步包括以下步驟:將該第一複數個晶粒互連和該第二複數個晶粒互連耦合到該封裝基板。The method of claim 27, further comprising the step of: coupling the first plurality of die interconnects and the second plurality of die interconnects to the packaging substrate.
TW111121972A 2021-07-27 2022-06-14 Split die integrated circuit (ic) packages employing die-to-die (d2d) connections in die-substrate standoff cavity, and related fabrication methods TW202306094A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/443,740 US20230035627A1 (en) 2021-07-27 2021-07-27 Split die integrated circuit (ic) packages employing die-to-die (d2d) connections in die-substrate standoff cavity, and related fabrication methods
US17/443,740 2021-07-27

Publications (1)

Publication Number Publication Date
TW202306094A true TW202306094A (en) 2023-02-01

Family

ID=82702992

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111121972A TW202306094A (en) 2021-07-27 2022-06-14 Split die integrated circuit (ic) packages employing die-to-die (d2d) connections in die-substrate standoff cavity, and related fabrication methods

Country Status (5)

Country Link
US (1) US20230035627A1 (en)
KR (1) KR20240037965A (en)
CN (1) CN117751449A (en)
TW (1) TW202306094A (en)
WO (1) WO2023009919A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116884947A (en) * 2023-09-05 2023-10-13 长电集成电路(绍兴)有限公司 Semiconductor packaging structure and preparation method thereof
CN117215994A (en) * 2023-11-07 2023-12-12 北京数渡信息科技有限公司 Configuration strategy for interconnection between wafers under good conditions of different parts

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8227904B2 (en) * 2009-06-24 2012-07-24 Intel Corporation Multi-chip package and method of providing die-to-die interconnects in same
US9059179B2 (en) * 2011-12-28 2015-06-16 Broadcom Corporation Semiconductor package with a bridge interposer
US8546955B1 (en) * 2012-08-16 2013-10-01 Xilinx, Inc. Multi-die stack package
US8946900B2 (en) * 2012-10-31 2015-02-03 Intel Corporation X-line routing for dense multi-chip-package interconnects
US9190380B2 (en) * 2012-12-06 2015-11-17 Intel Corporation High density substrate routing in BBUL package
US8901748B2 (en) * 2013-03-14 2014-12-02 Intel Corporation Direct external interconnect for embedded interconnect bridge package
US8916981B2 (en) * 2013-05-10 2014-12-23 Intel Corporation Epoxy-amine underfill materials for semiconductor packages
US9041205B2 (en) * 2013-06-28 2015-05-26 Intel Corporation Reliable microstrip routing for electronics components
US10192810B2 (en) * 2013-06-28 2019-01-29 Intel Corporation Underfill material flow control for reduced die-to-die spacing in semiconductor packages
US9076754B2 (en) * 2013-08-02 2015-07-07 Taiwan Semiconductor Manufacturing Company, Ltd. 3DIC packages with heat sinks attached to heat dissipating rings
US9349703B2 (en) * 2013-09-25 2016-05-24 Intel Corporation Method for making high density substrate interconnect using inkjet printing
US9177831B2 (en) * 2013-09-30 2015-11-03 Intel Corporation Die assembly on thin dielectric sheet
US9642259B2 (en) * 2013-10-30 2017-05-02 Qualcomm Incorporated Embedded bridge structure in a substrate
KR20150104467A (en) * 2014-03-05 2015-09-15 앰코 테크놀로지 코리아 주식회사 Manufacturing method of semiconductor device and semiconductor device thereof
US9595496B2 (en) * 2014-11-07 2017-03-14 Qualcomm Incorporated Integrated device package comprising silicon bridge in an encapsulation layer
US20160141234A1 (en) * 2014-11-17 2016-05-19 Qualcomm Incorporated Integrated device package comprising silicon bridge in photo imageable layer
US9583462B2 (en) * 2015-01-22 2017-02-28 Qualcomm Incorporated Damascene re-distribution layer (RDL) in fan out split die application
US9379090B1 (en) * 2015-02-13 2016-06-28 Qualcomm Incorporated System, apparatus, and method for split die interconnection
US9418966B1 (en) * 2015-03-23 2016-08-16 Xilinx, Inc. Semiconductor assembly having bridge module for die-to-die interconnection
US9368450B1 (en) * 2015-08-21 2016-06-14 Qualcomm Incorporated Integrated device package comprising bridge in litho-etchable layer
WO2017074392A1 (en) * 2015-10-29 2017-05-04 Intel Corporation Metal-free frame design for silicon bridges for semiconductor packages
DE112015007213B4 (en) * 2015-12-22 2021-08-19 Intel Corporation SEMICONDUCTOR PACKAGE WITH THROUGH-BRIDGE-DIE-CONNECTIONS AND METHOD FOR MANUFACTURING A SEMICONDUCTOR PACKAGE
US10886228B2 (en) * 2015-12-23 2021-01-05 Intel Corporation Improving size and efficiency of dies
US10170428B2 (en) * 2016-06-29 2019-01-01 Intel Corporation Cavity generation for embedded interconnect bridges utilizing temporary structures
US10304799B2 (en) * 2016-12-28 2019-05-28 Intel Corporation Land grid array package extension
US10510721B2 (en) * 2017-08-11 2019-12-17 Advanced Micro Devices, Inc. Molded chip combination
KR102039710B1 (en) * 2017-10-19 2019-11-01 삼성전자주식회사 Semiconductor package comprising organic interposer
US11011503B2 (en) * 2017-12-15 2021-05-18 Invensas Bonding Technologies, Inc. Direct-bonded optoelectronic interconnect for high-density integrated photonics
DE112018006757T5 (en) * 2018-01-03 2020-10-01 Intel Corporation Stacked semiconductor die architecture with multiple layers of disaggregation
US10593612B2 (en) * 2018-03-19 2020-03-17 Stmicroelectronics S.R.L. SMDs integration on QFN by 3D stacked solution
US11538758B2 (en) * 2018-03-19 2022-12-27 Intel Corporation Waveguide interconnect bridges
US10580738B2 (en) * 2018-03-20 2020-03-03 International Business Machines Corporation Direct bonded heterogeneous integration packaging structures
US10535608B1 (en) * 2018-07-24 2020-01-14 International Business Machines Corporation Multi-chip package structure having chip interconnection bridge which provides power connections between chip and package substrate
US11798894B2 (en) * 2018-10-22 2023-10-24 Intel Corporation Devices and methods for signal integrity protection technique
US10833679B2 (en) * 2018-12-28 2020-11-10 Intel Corporation Multi-purpose interface for configuration data and user fabric data
US11735533B2 (en) * 2019-06-11 2023-08-22 Intel Corporation Heterogeneous nested interposer package for IC chips
US11282806B2 (en) * 2019-10-11 2022-03-22 Marvell Asia Pte, Ltd. Partitioned substrates with interconnect bridge
US11164817B2 (en) * 2019-11-01 2021-11-02 International Business Machines Corporation Multi-chip package structures with discrete redistribution layers
US11282772B2 (en) * 2019-11-06 2022-03-22 Advanced Semiconductor Engineering, Inc. Package structure, assembly structure and method for manufacturing the same
US11728894B2 (en) * 2020-04-13 2023-08-15 Avicenatech Corp. Optically-enhanced multichip packaging
US20210398906A1 (en) * 2020-06-23 2021-12-23 Intel Corporation Scalable and interoperable phyless die-to-die io solution
US20220149005A1 (en) * 2020-11-10 2022-05-12 Qualcomm Incorporated Package comprising a substrate and a high-density interconnect integrated device
US20220199562A1 (en) * 2020-12-22 2022-06-23 Intel Corporation Assembly of 2xd module using high density interconnect bridges

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116884947A (en) * 2023-09-05 2023-10-13 长电集成电路(绍兴)有限公司 Semiconductor packaging structure and preparation method thereof
CN116884947B (en) * 2023-09-05 2024-01-23 长电集成电路(绍兴)有限公司 Semiconductor packaging structure and preparation method thereof
CN117215994A (en) * 2023-11-07 2023-12-12 北京数渡信息科技有限公司 Configuration strategy for interconnection between wafers under good conditions of different parts
CN117215994B (en) * 2023-11-07 2024-01-09 北京数渡信息科技有限公司 Configuration strategy for interconnection between wafers under good conditions of different parts

Also Published As

Publication number Publication date
KR20240037965A (en) 2024-03-22
WO2023009919A1 (en) 2023-02-02
US20230035627A1 (en) 2023-02-02
CN117751449A (en) 2024-03-22

Similar Documents

Publication Publication Date Title
TW202209505A (en) Radio-frequency (rf) integrated circuit (ic) (rfic) packages employing a substrate sidewall partial shield for electro-magnetic interference (emi) shielding, and related fabrication methods
US20210280523A1 (en) Integrated circuit (ic) packages employing split, double-sided metallization structures to facilitate a semiconductor die ("die") module employing stacked dice, and related fabrication methods
TW202306094A (en) Split die integrated circuit (ic) packages employing die-to-die (d2d) connections in die-substrate standoff cavity, and related fabrication methods
US11552055B2 (en) Integrated circuit (IC) packages employing front side back-end-of-line (FS-BEOL) to back side back-end-of-line (BS-BEOL) stacking for three-dimensional (3D) die stacking, and related fabrication methods
US20210242160A1 (en) Integrated circuit (ic) packages employing a thermal conductive package substrate with die region split, and related fabrication methods
TW202318609A (en) Embedded trace substrate (ets) with embedded metal traces having multiple thickness for integrated circuit (ic) package height control
US20230102167A1 (en) Multiple (multi-) die integrated circuit (ic) packages for supporting higher connection density, and related fabrication methods
TW202335240A (en) Semiconductor die employing repurposed seed layer for forming additional signal paths to back end-of-line (beol) structure, and related integrated circuit (ic) packages and fabrication methods
US11456291B2 (en) Integrated circuit (IC) packages employing split, double-sided metallization structures to facilitate a semiconductor die (“die”) module employing stacked dice, and related fabrication methods
US11769732B2 (en) Integrated circuit (IC) with reconstituted die interposer for improved connectivity, and related methods of fabrication
US20230299048A1 (en) Three-dimensional (3d) integrated circuit (ic) (3dic) package with a bottom die layer employing an extended interposer substrate, and related fabrication methods
US20220068780A1 (en) Integrated circuit (ic) package substrate with embedded trace substrate (ets) layer on a substrate, and related fabrication methods
US20230317677A1 (en) Three-dimensional (3d) integrated circuit (ic) (3dic) package employing a redistribution layer (rdl) interposer facilitating semiconductor die stacking, and related fabrication methods
US20230268637A1 (en) Antenna modules employing three-dimensional (3d) build-up on mold package to support efficient integration of radio-frequency (rf) circuitry, and related fabrication methods
KR20240046873A (en) Stacked die integrated circuit (IC) packages employing an interposer to couple top stacked die(s) to the package substrate to reduce package height, and related manufacturing methods
TW202412247A (en) Integrated circuit (ic) packages employing capacitor interposer substrate with aligned external interconnects, and related fabrication methods
TW202226516A (en) Fan-out wafer-level packaging (fowlp) integrated circuits (ics) employing an electro-magnetic interference (emi) shield structure in unused fan-out area for emi shielding, and related fabrication methods
TW202312416A (en) Semiconductor die module packages with void-defined sections in a metal structure(s) in a package substrate to reduce die-substrate mechanical stress, and related methods
TW202406042A (en) Integrated circuit (ic) packages employing wire bond channel over package substrate, and related fabrication methods
CN117957654A (en) Multi-die integrated circuit package for supporting higher connection density and related fabrication methods