TW202304505A - Lipid nanoparticles - Google Patents

Lipid nanoparticles Download PDF

Info

Publication number
TW202304505A
TW202304505A TW110126420A TW110126420A TW202304505A TW 202304505 A TW202304505 A TW 202304505A TW 110126420 A TW110126420 A TW 110126420A TW 110126420 A TW110126420 A TW 110126420A TW 202304505 A TW202304505 A TW 202304505A
Authority
TW
Taiwan
Prior art keywords
mol
lipid
lnp
ionizable
peg
Prior art date
Application number
TW110126420A
Other languages
Chinese (zh)
Inventor
珊尼 貝佛斯
史帝芬 迪寇克
雷蒙麥可 席佛爾斯
桑德亞歷山大安東尼 庫曼斯
Original Assignee
比利時商eRNA生物科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比利時商eRNA生物科技股份有限公司 filed Critical 比利時商eRNA生物科技股份有限公司
Priority to TW110126420A priority Critical patent/TW202304505A/en
Publication of TW202304505A publication Critical patent/TW202304505A/en

Links

Images

Landscapes

  • Medicinal Preparation (AREA)

Abstract

The present invention relates to the field of lipid nanoparticles (LNP); more specifically comprising an ionizable lipid, a phospholipid, a sterol, a PEG lipid and one or more nucleic acids. The LNP's of the present invention are characterized in comprising less than about 1 mol% of a C14-PEG2000 lipid; as well as particular percentages of the other lipids. The present invention provides use of the LNP's for immunogenic delivery of nucleic acid molecules, specifically mRNA; thereby making them highly suitable for use in vaccines, such as for the treatment of cancer or infectious diseases. Finally, methods are provided for preparing such LNP's.

Description

脂質奈米粒子lipid nanoparticles

本發明係關於脂質奈米粒子(LNP)領域;更具體地,包括可離子化的脂質、磷脂、固醇、PEG脂質及一種或多種核酸。本發明之LNP特徵在於包含小於約1mol%的C14-PEG2000脂質;以及特定百分比的其它脂質。本發明提供LNP用於核酸分子的免疫性遞送的用途,特別是用於mRNA;從而使彼等非常適用於疫苗,例如用於治療癌症或傳染病。最後,提供製備此類LNP的方法。The present invention is in the field of lipid nanoparticles (LNPs); more specifically, ionizable lipids, phospholipids, sterols, PEG lipids and one or more nucleic acids. The LNPs of the invention are characterized as comprising less than about 1 mol% C14-PEG2000 lipid; and specified percentages of other lipids. The present invention provides the use of LNPs for the immunological delivery of nucleic acid molecules, in particular mRNA; thus making them very suitable for use in vaccines, for example for the treatment of cancer or infectious diseases. Finally, methods for preparing such LNPs are provided.

生物活性物質的靶向遞送領域中的主要挑戰之一通常是它們的不穩定性和低的細胞穿透潛力。對於核酸分子特別是(m)RNA分子的遞送尤其如此。因此,適當的包裝對於充分的保護和遞送至關重要。因此,對於包裝生物活性物質例如核酸的方法及組成物有著持續的需求。One of the main challenges in the field of targeted delivery of bioactive substances is often their instability and low cell penetration potential. This is especially true for the delivery of nucleic acid molecules, especially (m)RNA molecules. Therefore, proper packaging is critical for adequate protection and delivery. Accordingly, there is a continuing need for methods and compositions for packaging biologically active substances such as nucleic acids.

於此態樣,基於脂質的奈米粒子組成物例如脂化複合物(lipoplex)及脂質體已被用作生物活性物質的包裝載體,以允許轉運到細胞中及/或細胞內腔隙中。此等基於脂質的奈米粒子組成物通常包含不同脂質,例如陽離子脂質、可離子化的脂質、磷脂、結構脂質(例如固醇或膽固醇)、PEG(聚乙二醇)脂質等的混合物(如Reichmuth et al., 2016中評論)。In this regard, lipid-based nanoparticle compositions such as lipoplexes and liposomes have been used as packaging vehicles for biologically active substances to allow transport into cells and/or intracellular compartments. Such lipid-based nanoparticle compositions generally comprise mixtures of different lipids, such as cationic lipids, ionizable lipids, phospholipids, structured lipids (such as sterols or cholesterol), PEG (polyethylene glycol) lipids, etc. (such as Reviewed in Reichmuth et al., 2016).

基於脂質的奈米粒子包含四種脂質(陽離子或可離子化的脂質、磷脂、固醇及聚乙二醇化脂質)的混合物,其已被開發用於在全身投予後向肝臟非免疫性遞送siRNA及mRNA。雖然許多此類脂質組成物是本技術中已知的,但用於活體內mRNA遞送的脂質組成物通常包含至少1.5 mol的PEG脂質濃度,且具有低比例的可離子化的脂質:磷脂,例如約1:1-約5:1。Lipid-based nanoparticles comprising a mixture of four lipids (cationic or ionizable lipids, phospholipids, sterols, and pegylated lipids) have been developed for non-immune delivery of siRNA to the liver following systemic administration and mRNA. While many such lipid compositions are known in the art, lipid compositions for in vivo mRNA delivery typically contain a PEG lipid concentration of at least 1.5 molar and have a low ratio of ionizable lipid:phospholipids, e.g. About 1:1-about 5:1.

然而,現在我們已驚訝地發現,使用低量(即小於約1 mol%)的PEG脂質會引起奈米粒子,此等奈米粒子高度適於在全身注射LNP後mRNA的免疫性遞送。發現藉由將此類低濃度的PEG脂質與相對高濃度的可離子化的脂質(即55-70 mol%)和相對低濃度的磷脂(即低於約10 mol%)相結合而將此等作用更加顯著,因此LNP具有相對較高的可離子化的脂質:磷脂之比例(即6:1-11:1)。此外,本發明的一些具體實施例的特徵在於低百分比的固醇(即小於約30 mol%,例如約25 mol%)。However, we have now surprisingly found that the use of low amounts (ie, less than about 1 mol%) of PEG lipids results in nanoparticles that are highly suitable for immunological delivery of mRNA following systemic injection of LNP. It was found that by combining such low concentrations of PEG lipids with relatively high concentrations of ionizable lipids (i.e., 55-70 mol%) and relatively low concentrations of phospholipids (i.e., less than about 10 mol%), these The effect is more pronounced, so LNPs have a relatively high ionizable lipid:phospholipid ratio (ie 6:1-11:1). Additionally, some embodiments of the invention are characterized by a low percentage of sterols (ie, less than about 30 mol%, eg, about 25 mol%).

於第一態樣,本發明提供一種脂質奈米粒子(LNP),其包含: - 可離子化的脂質; - 磷脂; - 固醇; - PEG脂質;及 - 一種或多種mRNA分子; 特徵在於: 該PEG脂質為C14-PEG脂質; 該LNP包含小於約1 mol%之該PEG脂質; 該可離子化的脂質之莫耳百分比約為且介於50–70 mol%之間;且 該固醇之莫耳百分比約為或高於25 mol%。 In a first aspect, the present invention provides a lipid nanoparticle (LNP), comprising: - ionizable lipids; - Phospholipids; - sterols; - PEG lipids; and - one or more mRNA molecules; Features: The PEG lipid is C14-PEG lipid; The LNP comprises less than about 1 mol% of the PEG lipid; The molar percentage of the ionizable lipid is about and between 50-70 mol %; and The molar percentage of the sterol is about or higher than 25 mol%.

於另一態樣,本發明提供一種脂質奈米粒子(LNP),其包含: - 可離子化的脂質; - 磷脂; - 固醇; - PEG脂質;及 - 一種或多種mRNA分子; 特徵在於: 該PEG脂質為C14-PEG脂質; 該LNP包含小於約1 mol%之該PEG脂質; 該可離子化的脂質之莫耳百分比約為且介於50-60 mol%之間;且 該固醇之莫耳百分比約為或高於30 mol%。 In another aspect, the present invention provides a lipid nanoparticle (LNP), comprising: - ionizable lipids; - Phospholipids; - sterols; - PEG lipids; and - one or more mRNA molecules; Features: The PEG lipid is C14-PEG lipid; The LNP comprises less than about 1 mol% of the PEG lipid; The molar percentage of the ionizable lipid is about and between 50-60 mol %; and The molar percentage of the sterol is about or higher than 30 mol%.

於本發明另一具體實施例中,該LNP包含約0.5 mol%-約0.9 mol%之該PEG脂質。In another embodiment of the present invention, the LNP comprises about 0.5 mol% to about 0.9 mol% of the PEG lipid.

於另一特定具體實施例中,該磷脂之莫耳百分比小於約10 mol%;較佳為約5 mol%。In another specific embodiment, the molar percentage of the phospholipid is less than about 10 mol%; preferably about 5 mol%.

於本發明另一具體實施例中,可離子化的脂質對磷脂之比例高於5:1;較佳介於約6:1至11:1之間;最佳約11:1。In another embodiment of the present invention, the ratio of ionizable lipid to phospholipid is higher than 5:1; preferably between about 6:1 and 11:1; most preferably about 11:1.

於本發明又一具體實施例中,該可離子化的脂質之莫耳百分比約為且介於55-60 mol%之間。In yet another embodiment of the present invention, the molar percentage of the ionizable lipid is about and between 55-60 mol%.

於本發明之具體實施例中,該C14-PEG脂質為二肉豆蔻醯基脂質,即具有2個C14脂肪酸尾端,例如該C14-PEG2000脂質較佳選自包含以下所列:1,2-二肉豆蔻醯基- rac-甘油-3-甲氧基聚乙二醇-2000 (DMG-PEG2000)或2-二肉豆蔻醯基-sn-甘油-3-磷酸乙醇胺乙二醇-2000 (DMPE-PEG2000)。 In a specific embodiment of the present invention, the C14-PEG lipid is dimyristyl lipid, which has two C14 fatty acid tails. For example, the C14-PEG2000 lipid is preferably selected from the following list: 1,2- Dimyrisyl- rac -glycero-3-methoxypolyethylene glycol-2000 (DMG-PEG2000) or 2-dimyristyl-sn-glycero-3-phosphoethanolamine ethylene glycol-2000 (DMPE -PEG2000).

於本發明另一特定實施例中,該可離子化的脂質選自包含以下所列: - 1,1‘-((2-(4-(2-((2-(雙(2-羥基十二烷基)胺基)乙基)(2-羥基十二烷基)胺基)乙基)哌

Figure 110126420-A0101-12-01
-1-基)乙基)氮烷二基)雙(十二烷基-2-醇)(C12-200); - 二亞麻油基甲基-4-二甲基胺基丁酸酯(DLin-MC3-DMA);或 - 式(I)化合物:
Figure 02_image001
其中:RCOO選自包含以下所列:肉豆蔻醯基、α-D-生育酚琥珀醯基、亞油醯基及油醯基;且X選自包含以下所列:
Figure 02_image003
。 In another specific embodiment of the present invention, the ionizable lipid is selected from the group comprising: - 1,1'-((2-(4-(2-((2-(bis(2-hydroxydeca Dialkyl)amino)ethyl)(2-hydroxydodecyl)amino)ethyl)piperene
Figure 110126420-A0101-12-01
-1-yl)ethyl)azanediyl)bis(dodecyl-2-ol) (C12-200); -Dilinoleylmethyl-4-dimethylaminobutyrate (DLin - MC3-DMA); or - a compound of formula (I):
Figure 02_image001
Wherein: RCOO is selected from the group consisting of myristyl, α-D-tocopheryl succinyl, linoleyl, and oleyl; and X is selected from the group consisting of:
Figure 02_image003
.

於較佳具體實施例中,該可離子化的脂質為式(I)之脂質,其中RCOO為α-D-生育酚琥珀醯基,且X為

Figure 02_image005
。 In a preferred embodiment, the ionizable lipid is a lipid of formula (I), wherein RCOO is α-D-tocopheryl succinyl, and X is
Figure 02_image005
.

於本發明又一具體實施例中,該磷脂選自包含以下所列:1,2-二油醯基- sn-甘油-3-磷酸乙醇胺(DOPE)、1,2-二油醯基- sn-甘油-3-磷酸膽鹼(DOPC)、1.2-二硬脂醯基- sn-甘油-3-磷酸膽鹼(DSPC)及其等之混合物;特別是DOPE、DOPC及其等之混合物。 In yet another embodiment of the present invention, the phospholipid is selected from the group consisting of: 1,2-dioleyl- sn -glycero-3-phosphoethanolamine (DOPE), 1,2-dioleyl- sn - Glycero-3-phosphocholine (DOPC), 1.2-distearyl- sn -glycero-3-phosphocholine (DSPC) and mixtures thereof; especially mixtures of DOPE, DOPC and the like.

於本發明又一具體實施例中,該固醇選自包含以下所列:膽固醇、麥角固醇、菜油固醇、氧固醇、樟芝素(antrosterol)、鏈固醇、尼卡固醇(nicasterol)、穀固醇及豆固醇;較佳為膽固醇。In yet another embodiment of the present invention, the sterol is selected from the group consisting of: cholesterol, ergosterol, campesterol, oxysterol, antrosterol, streptosterol, and nikarsterol (nicasterol), sitosterol and stigmasterol; preferably cholesterol.

於本發明又一具體實施例中,該LNP包含約5-15 mol%之間的該磷脂。In yet another embodiment of the present invention, the LNP comprises about 5-15 mol% of the phospholipid.

於本發明特定具體實施例中,該LNP包含: - 約50-70 mol%之該可離子化的脂質; - 約5-15 mol%之該磷脂; - 約0.5-0.9 mol%之該PEG脂質;及 以該固醇之量平衡。 In a specific embodiment of the invention, the LNP comprises: - about 50-70 mol% of the ionizable lipid; - about 5-15 mol% of the phospholipid; - about 0.5-0.9 mol% of the PEG lipid; and Balanced with the amount of the sterol.

於本發明特定具體實施例中,該LNP包含: - 約50-60 mol%之該可離子化的脂質; - 約5-15 mol%之該磷脂; - 約0.5-0.9 mol%之該PEG脂質;及 以該固醇之量平衡。 In a specific embodiment of the invention, the LNP comprises: - about 50-60 mol% of the ionizable lipid; - about 5-15 mol% of the phospholipid; - about 0.5-0.9 mol% of the PEG lipid; and Balanced with the amount of the sterol.

於本發明非常特定之具體實施例中,該LNP包含: - 約50 mol%之該可離子化的脂質; - 約10 mol%之DOPE; - 約39.5 mol%之膽固醇;及 - 約0.5 mol%之DMG-PEG2000。 In a very specific embodiment of the invention, the LNP comprises: - about 50 mol% of the ionizable lipid; - About 10 mol% of DOPE; - about 39.5 mol% cholesterol; and - About 0.5 mol% of DMG-PEG2000.

於本發明另一非常特定之具體實施例中,該LNP包含: - 約56.5 mol%之該可離子化的脂質; - 約5 mol%之DOPE; - 約38 mol%之膽固醇;及 - 約0.5 mol%之DMG-PEG2000。 In another very specific embodiment of the invention, the LNP comprises: - about 56.5 mol% of the ionizable lipid; - About 5 mol% of DOPE; - about 38 mol% cholesterol; and - About 0.5 mol% of DMG-PEG2000.

於本發明另一非常特定之具體實施例中,該LNP包含: - 約65 mol%之該可離子化的脂質; - 約9.5 mol%之DOPE; - 約25 mol%之膽固醇;及 - 約0.5 mol%之DMG-PEG2000。 In another very specific embodiment of the invention, the LNP comprises: - about 65 mol% of the ionizable lipid; - About 9.5 mol% DOPE; - about 25 mol% cholesterol; and - About 0.5 mol% of DMG-PEG2000.

在更特定之具體實施例中,該一種或多種mRNA分子選自包含以下所列:免疫調節多肽編碼之mRNA及/或抗原編碼之mRNA。該免疫調節編碼之mRNA可例如選自包含以下所列:編碼CD40L、CD70及caTLR4之mRNA分子。In a more specific embodiment, the one or more mRNA molecules are selected from the group comprising: mRNA encoding an immunomodulatory polypeptide and/or mRNA encoding an antigen. The immunomodulatory encoded mRNA can, for example, be selected from the list comprising: mRNA molecules encoding CD40L, CD70 and caTLR4.

在另一態樣,本發明提供一種醫藥組成物或疫苗,其包含一種或多種如本文所定義之脂質奈米粒子及可接受的醫藥載劑。In another aspect, the present invention provides a pharmaceutical composition or vaccine comprising one or more lipid nanoparticles as defined herein and an acceptable pharmaceutical carrier.

本發明亦提供如本文所定義之脂質奈米粒子、醫藥組成物或疫苗用於人類或獸醫藥物;特別是用於癌症或傳染性疾病的治療。The invention also provides lipid nanoparticles, pharmaceutical compositions or vaccines as defined herein for use in human or veterinary medicine; in particular for the treatment of cancer or infectious diseases.

現在具體參考圖式,需強調的是,所顯示的細節僅為示例性的,且僅為了舉例說明性地討論本發明的不同具體實施例。提出它們係為了提供被認為是對本發明的原理和概念最有用且最容易描述本發明的原理和概念的內容。在此態樣,沒有試圖以比本發明的基本理解所必需的更多的細節顯示本發明的結構細節。圖式說明使所屬技術領域中具有普通知識者容易知曉如何在實踐中體現本發明的幾種形式。 【圖式簡單説明】 With specific reference now to the drawings, it is emphasized that the particulars shown are exemplary and for purposes of illustration only and discussion of various embodiments of the invention. They are presented in order to provide what is considered to be the most useful and easiest to describe the principles and concepts of the present invention. In this regard, no attempt is made to show structural details of the invention in more detail than is necessary for a fundamental understanding of the invention. The illustrations of the drawings make it easy for those of ordinary skill in the art to see how the several forms of the invention may be embodied in practice. [Simple description of the diagram]

圖1:顯示以指定莫耳比的由SS-EC/DOPE/chol/DMG-PEG2000所構成之E7 mRNA LNPs進行3次靜脈內免疫的結果。 圖2:顯示以指定莫耳比的由SS-EC/DOPE/chol/DMG-PEG2000所構成的E7 mRNA LNPs進行3次靜脈內免疫的結果。 圖3:顯示以包裹於低百分比PEG LNP(50/10/39.5/0.5可離子化的脂質/DOPE/膽固醇/PEG-脂質)的10μg ADPGK mRNA或以50μg ADPGK合成長肽(SLP)4次靜脈內投予的結果。 圖4:用於最大化T細胞反應的LNP組成物DOE驅動優化。A,以DOE庫之E7 mRNA LNPs進行三次免疫(每週間隔)後血液中的E7-特異性T細胞。B,對於DOE庫的11個LNPs在%DMG-PEG2000之功能上的E7-特異性CD8 T細胞反應。C,顯示具有預測的最佳LNP34和非最佳LNP35的三次免疫(每週間隔)後血液中的E7-特異性T細胞的平均值±SD。統計數據藉由單向變異數分析(One-Way ANOVA)和Sidak多重比較測試進行評估。***p<0.001。 圖5:優化的mRNA LNP疫苗誘導定性的T細胞反應和強化抗腫瘤功效。A,血液中E7-特異性CD8 +T細胞的動力學。B,血清中的IFN-γ隨重複免疫而增加。C,在三次免疫後脾臟中之CD8+E7-特異性T細胞產生IFN-γ及TNF-α。D,LNP34 免疫小鼠中的平均TC-1腫瘤生長。E,LNP34 免疫小鼠的存活率。F,以LNP34進行兩次免疫後的TC-1腫瘤浸潤淋巴細胞(TIL)。G,TIL的E7-特異性。A、B、F、G顯示平均值±SD。C顯示平均值±SEM。D,藉由Mantel-Cox 對數秩檢定評估統計數據。F、G,統計數據藉由單向變異數分析(One-Way ANOVA)和Tukey多重比較試驗進行評估。**,p<0.01,***p<0.001,ns=不顯著。 圖6:LNPs被各種(先天)免疫細胞吸收並活化。A.腎臟、肺、心臟、肝臟和脾臟中的螢光素酶活性佔總螢光素酶活性的百分比。B. LNPs在多種細胞類型中的吸收,藉由LNP注射小鼠相對於TBS緩衝液注射小鼠的Cy5 MFI差異所測量。C. 腎臟、肺、心臟、肝臟和脾臟中的螢光素酶活性佔總螢光素酶活性的百分比。相較於非最佳LNPs (LNP35),最佳LNP34在脾臟中顯示出更高的螢光素酶活性。D. 相較於非最佳LNP35,最佳LNP34之細胞攝取更高。E. 觀察到血清中IFN-α和IP-10細胞激素的瞬時增加(LNP給藥後6小時與24小時相比)。F. cDC1及cDC2上的CD86表現受非最佳LNP35微弱上調,而受最佳LNP34強烈上調。A-D. 顯示平均值±SD。D,統計數據藉由單向變異數分析(One-Way ANOVA)和Sidak多重比較試驗進行評估。**,p<0.01,***p<0.001,ns=不顯著。 圖7:以替代的最佳(LNP59)及非最佳(LNP53) DMG-PEG2000 LNPs進行兩次免疫(每週間隔)後血液中的E7-特異性T細胞,以平均值±SD顯示。統計數據藉由單向變異數分析(One-Way ANOVA)和Sidak多重比較試驗進行評估。***p<0.001。 Figure 1: Shows the results of three intravenous immunizations with E7 mRNA LNPs composed of SS-EC/DOPE/chol/DMG-PEG2000 at the indicated molar ratios. Figure 2: shows the results of three intravenous immunizations with E7 mRNA LNPs composed of SS-EC/DOPE/chol/DMG-PEG2000 at the indicated molar ratios. Figure 3: Shows four intravenous injections of 10 μg ADPGK mRNA encapsulated in low percentage PEG LNP (50/10/39.5/0.5 ionizable lipid/DOPE/cholesterol/PEG-lipid) or 50 μg ADPGK synthetic long peptide (SLP) results of internal administration. Figure 4: DOE-driven optimization of LNP composition for maximizing T cell responses. A, E7-specific T cells in blood after three immunizations (weekly intervals) with E7 mRNA LNPs from the DOE pool. B, E7-specific CD8 T cell responses to the function of %DMG-PEG2000 for 11 LNPs of the DOE pool. C, Mean ± SD of E7-specific T cells in blood after three immunizations (weekly intervals) with predicted optimal LNP34 and non-optimal LNP35 are shown. Statistics were assessed by One-Way ANOVA with Sidak's multiple comparison test. ***p<0.001. Figure 5: Optimized mRNA LNP vaccine induces qualitative T cell responses and potentiates antitumor efficacy. A, Kinetics of E7-specific CD8 + T cells in blood. B, IFN-γ in serum increases with repeated immunizations. C, IFN-γ and TNF-α production by CD8+E7-specific T cells in the spleen after three immunizations. D, Mean TC-1 tumor growth in LNP34-immunized mice. E, Survival rate of LNP34-immunized mice. F, TC-1 tumor infiltrating lymphocytes (TIL) after two immunizations with LNP34. G, E7-specificity of TILs. A, B, F, G show mean ± SD. C shows mean ± SEM. D, Statistics evaluated by Mantel-Cox log-rank test. F, G, Statistical data were evaluated by One-Way ANOVA and Tukey's multiple comparison test. **, p<0.01, ***p<0.001, ns=not significant. Figure 6: LNPs are taken up and activated by various (innate) immune cells. A. Luciferase activity in kidney, lung, heart, liver and spleen as a percentage of total luciferase activity. B. Uptake of LNPs in various cell types as measured by the difference in Cy5 MFI in LNP-injected mice versus TBS-buffer-injected mice. C. Luciferase activity in kidney, lung, heart, liver, and spleen as a percentage of total luciferase activity. Optimal LNP34 showed higher luciferase activity in spleen compared to non-optimal LNPs (LNP35). D. Cellular uptake of optimal LNP34 is higher compared to non-optimal LNP35. E. A transient increase in serum IFN-α and IP-10 cytokines was observed (6 hours vs. 24 hours after LNP administration). F. CD86 expression on cDC1 and cDC2 is weakly upregulated by non-optimal LNP35 but strongly upregulated by optimal LNP34. AD. Mean ± SD is shown. D, Statistics evaluated by One-Way ANOVA and Sidak's multiple comparison test. **, p<0.01, ***p<0.001, ns=not significant. Figure 7: E7-specific T cells in blood after two immunizations (weekly intervals) with alternative optimal (LNP59) and non-optimal (LNP53) DMG-PEG2000 LNPs, shown as mean ± SD. Statistical data were evaluated by One-Way ANOVA and Sidak's multiple comparison test. ***p<0.001.

如上所詳述,本發明提供包含以相對較低的量存在(例如小於約1 mol%)之C14-PEG脂質(例如C14-PEG2000脂質)的LNP,對此我們已驚訝地發現其非常適合於核酸的免疫性遞送,特別是mRNA。As detailed above, the present invention provides LNPs comprising C14-PEG lipids (e.g., C14-PEG2000 lipids) present in relatively low amounts (e.g., less than about 1 mol%), for which we have surprisingly found that they are well suited for use in Immunological delivery of nucleic acids, especially mRNA.

於本發明的上下文中,「核酸分子的免疫性遞送」意指將核酸分子遞送至細胞從而與細胞接觸,該核酸分子的內化及/或在細胞內表現導致誘導免疫反應。In the context of the present invention, "immunological delivery of a nucleic acid molecule" means the delivery of a nucleic acid molecule into contact with a cell, the internalization and/or intracellular expression of which nucleic acid molecule leads to the induction of an immune response.

因此,於第一態樣,本發明提供一種脂質奈米粒子(LNP),其包含: - 可離子化的脂質; - 磷脂; - 固醇; - PEG脂質;及 - 一種或多種mRNA分子; 特徵在於: 該PEG脂質為C14-PEG脂質; 該LNP包含小於約1 mol%之該PEG脂質; 該可離子化的脂質之莫耳百分比為約50-70 mol%之間;及 該固醇之莫耳百分比為約25 mol%或25 mol%以上。 Therefore, in the first aspect, the present invention provides a lipid nanoparticle (LNP), which comprises: - ionizable lipids; - Phospholipids; - sterols; - PEG lipids; and - one or more mRNA molecules; Features: The PEG lipid is C14-PEG lipid; The LNP comprises less than about 1 mol% of the PEG lipid; The molar percentage of the ionizable lipid is between about 50-70 mol %; and The molar percentage of the sterol is about 25 mol% or more.

於另外的具體實施例中,本發明提供一種脂質奈米粒子(LNP),其包含: - 可離子化的脂質; - 磷脂; - 固醇; - PEG脂質;及 - 一種或多種核酸分子;特別是mRNA分子; 特徵在於: 該PEG脂質為C14-PEG脂質; 該LNP包含小於約1 mol%之該PEG脂質; 該可離子化的脂質之莫耳百分比為約50-60 mol%之間;及 該固醇之莫耳百分比約30 mol%或30 mol%以上。 In another specific embodiment, the present invention provides a lipid nanoparticle (LNP), which comprises: - ionizable lipids; - Phospholipids; - sterols; - PEG lipids; and - one or more nucleic acid molecules; in particular mRNA molecules; Features: The PEG lipid is C14-PEG lipid; The LNP comprises less than about 1 mol% of the PEG lipid; The molar percentage of the ionizable lipid is between about 50-60 mol %; and The molar percentage of the sterol is about 30 mol% or more.

於本發明進一步之特定具體實施例中,該LNP包含約0.5 mol%-約0.9 mol%之該PEG脂質。In further specific embodiments of the invention, the LNP comprises about 0.5 mol% to about 0.9 mol% of the PEG lipid.

脂質奈米粒子(LNP)通常已知為由不同脂質的組合所構成的奈米級顆粒。儘管此種LNP中可包括許多不同類型的脂質,但是本發明的LNP通常由可離子化的脂質、磷脂、固醇和PEG脂質的組合所構成。Lipid nanoparticles (LNPs) are generally known as nanoscale particles composed of combinations of different lipids. Although many different types of lipids can be included in such LNPs, the LNPs of the invention are generally composed of a combination of ionizable lipids, phospholipids, sterols, and PEG lipids.

如本文所使用,術語「奈米粒子」係指具有使顆粒適合於(特別是)核酸的全身投予,尤其是靜脈投予之直徑的任何顆粒,其通常具有小於1000奈米(nm)的直徑,較佳小於500 nm,甚至更佳地小於200 nm,舉例而言例如50至200 nm之間;較佳為80至160 nm之間。As used herein, the term "nanoparticle" refers to any particle having a diameter that renders the particle suitable, inter alia, for systemic administration, especially intravenous administration, of nucleic acids, typically having a particle size of less than 1000 nanometers (nm). The diameter is preferably less than 500 nm, even more preferably less than 200 nm, for example, between 50 and 200 nm; preferably between 80 and 160 nm.

於本發明的上下文中,術語「PEG脂質」或者「PEG化脂質」意指以PEG(聚乙二醇)基團修飾的任何適合脂質。本發明之PEG脂質之特徵在於為C14-PEG脂質。此等脂質含有聚乙二醇部分,其定義脂質的分子量,以及含有包含14個碳原子的脂肪酸尾端。在特定具體實施例中,該C14-PEG2000脂質是以二肉豆蔻醯基為基礎,即具有2個C14尾端,例如選自包含以下所列:(二肉豆蔻醯基-為基礎的)-PEG2000脂質,例如DMG-PEG2000脂質(1,2-二肉豆蔻醯基- rac-甘油-3-甲氧基聚乙二醇-2000)或2-二肉豆蔻醯基- sn-甘油-3-磷酸乙醇胺乙二醇-2000(DMPE-PEG2000)。

Figure 02_image007
In the context of the present invention, the term "PEG lipid" or "PEGylated lipid" means any suitable lipid modified with a PEG (polyethylene glycol) group. The PEG lipid of the present invention is characterized in that it is a C14-PEG lipid. These lipids contain a polyethylene glycol moiety, which defines the molecular weight of the lipid, and a fatty acid tail comprising 14 carbon atoms. In certain embodiments, the C14-PEG2000 lipid is dimyrisyl-based, i.e. has 2 C14 tails, for example selected from the group comprising: (dimyrisyl-based)- PEG2000 lipids, such as DMG-PEG2000 lipid (1,2-dimyristoyl- rac -glycerol-3-methoxypolyethylene glycol-2000) or 2-dimyristoyl- sn -glycerol-3- Phosphoethanolamine ethylene glycol-2000 (DMPE-PEG2000).
Figure 02_image007

於本發明的上下文中,在化合物或脂質的上下文中的術語「可離子化的」(或者是陽離子的)意指化合物或脂質中存在任何不帶電荷的基團,其能夠藉由產生離子(通常為H +離子)而解離並因此本身帶正電。或者,該化合物或脂質中的任何不帶電荷的基團可產生電子並因此帶負電。 In the context of the present invention, the term "ionizable" (or cationic) in the context of a compound or lipid means the presence of any uncharged group in the compound or lipid which is capable of generating ions ( usually H + ions) and are therefore themselves positively charged. Alternatively, any uncharged groups in the compound or lipid can generate electrons and thus be negatively charged.

於本發明的上下文中,可適當地使用任何類型的可離子化的脂質。具體而言,適合的可離子化的脂質是可離子化的胺基脂質,其包含經S-S鍵連接的兩個相同或不同的尾端,各該尾端含有可離子化的胺,例如由以下所表示:

Figure 02_image009
。 Any type of ionizable lipid may suitably be used in the context of the present invention. In particular, suitable ionizable lipids are ionizable amine-based lipids comprising two identical or different tails linked by SS bonds, each of which tails contain an ionizable amine, for example by means:
Figure 02_image009
.

於特定具體實施例中,該可離子化的脂質為式(I)化合物:

Figure 02_image011
其中: RCOO選自包含以下所列:肉豆蔻醯基、α-D-生育酚琥珀醯基、亞油醯基及油醯基;且 X選自包含以下所列:
Figure 02_image013
。 In certain embodiments, the ionizable lipid is a compound of formula (I):
Figure 02_image011
wherein: RCOO is selected from the group consisting of myristyl, α-D-tocopheryl succinyl, linoleyl, and oleyl; and X is selected from the group consisting of:
Figure 02_image013
.

此類可離子化的脂質具體地可以下式中之任一者表示:

Figure 02_image015
。 Such ionizable lipids may specifically be represented by any of the following formulae:
Figure 02_image015
.

上述脂質的後者代表Coatsome SS-EC,如實施例部分所使用。The latter of the aforementioned lipids represents Coatsome SS-EC, as used in the Examples section.

更具體而言,該可離子化的脂質為式(I)之脂質,其中RCOO為α-D-生育酚琥珀醯基,且X為

Figure 02_image017
, 例如以下所示
Figure 02_image019
。 More specifically, the ionizable lipid is a lipid of formula (I), wherein RCOO is α-D-tocopheryl succinyl, and X is
Figure 02_image017
, for example as shown below
Figure 02_image019
.

其它適合的可離子化的脂質可選自1,1‘-((2-(4-(2-((2-(雙(2-羥基十二烷基)胺基)乙基)(2-羥基十二烷基)胺基)乙基)哌

Figure 110126420-A0101-12-01
-1-基)乙基)氮烷二基)雙(十二烷基-2-醇)(C12-200);及二亞麻油基甲基-4-二甲基胺基丁酸酯(DLin-MC3-DMA)。
Figure 02_image021
Other suitable ionizable lipids may be selected from 1,1'-((2-(4-(2-((2-(bis(2-hydroxydodecyl)amino)ethyl)(2- Hydroxydodecyl)amino)ethyl)piperene
Figure 110126420-A0101-12-01
-1-yl)ethyl)azanediyl)bis(dodecyl-2-ol) (C12-200); and dilinoleylmethyl-4-dimethylaminobutyrate (DLin -MC3-DMA).
Figure 02_image021

因此,於特定具體實施例中,本發明提供一種脂質奈米粒子,其包含: - 式(I)化合物:

Figure 02_image023
其中: RCOO選自包含以下所列:肉豆蔻醯基、α-D-生育酚琥珀醯基、亞油醯基及油醯基;且X選自包含以下所列:
Figure 02_image025
- 磷脂; - 固醇; - PEG脂質;及 - 一種或多種核酸分子;特別是mRNA分子; 特徵在於: 該PEG脂質為C14-PEG脂質; 該LNP包含小於約1 mol%之該PEG脂質; 該可離子化的脂質之莫耳百分比為約50–70 mol%之間;及 該固醇之莫耳百分比為約25 mol%或25 mol%以上。 Therefore, in a specific embodiment, the present invention provides a lipid nanoparticle comprising: - a compound of formula (I):
Figure 02_image023
wherein: RCOO is selected from the group consisting of myristyl, α-D-tocopheryl succinyl, linoleyl, and oleyl; and X is selected from the group consisting of:
Figure 02_image025
- phospholipids; - sterols; - PEG lipids; and - one or more nucleic acid molecules; in particular mRNA molecules; characterized in that: the PEG lipids are C14-PEG lipids; the LNP comprises less than about 1 mol% of the PEG lipids; the The molar percentage of ionizable lipids is between about 50-70 mol %; and the molar percentage of sterols is about 25 mol % or more.

因此,於特定具體實施例中,本發明提供一種脂質奈米粒子,其包含: - 式(I)化合物:

Figure 02_image027
其中: RCOO選自包含以下所列:肉豆蔻醯基、α-D-生育酚琥珀醯基、亞油醯基及油醯基;且X選自包含以下所列:
Figure 02_image029
- 磷脂; - 固醇; - PEG脂質;及 - 一種或多種核酸分子;特別是mRNA分子; 特徵在於: 該PEG脂質為C14-PEG脂質; 該LNP包含小於約1 mol%之該PEG脂質; 該可離子化的脂質之莫耳百分比為約50–60 mol%之間;及 該固醇之莫耳百分比為約30 mol%或30 mol%以上。 Therefore, in a specific embodiment, the present invention provides a lipid nanoparticle comprising: - a compound of formula (I):
Figure 02_image027
wherein: RCOO is selected from the group consisting of myristyl, α-D-tocopheryl succinyl, linoleyl, and oleyl; and X is selected from the group consisting of:
Figure 02_image029
- phospholipids; - sterols; - PEG lipids; and - one or more nucleic acid molecules; in particular mRNA molecules; characterized in that: the PEG lipids are C14-PEG lipids; the LNP comprises less than about 1 mol% of the PEG lipids; the The molar percentage of ionizable lipid is between about 50-60 mol %; and the molar percentage of the sterol is about 30 mol % or more.

於較佳具體實施例中,該可離子化的脂質為式(I)之脂質,其中RCOO為α-D-生育酚琥珀醯基,且X為

Figure 02_image031
。 In a preferred embodiment, the ionizable lipid is a lipid of formula (I), wherein RCOO is α-D-tocopheryl succinyl, and X is
Figure 02_image031
.

於本發明的上下文中,術語「磷脂」意指由兩個疏水性脂肪酸「尾部」和親水性「頭部」所組成之脂質分子,其中該親水性「頭部」則由磷酸基團所組成。此兩種組分最常藉由甘油分子結合在一起,因此,本發明的磷脂較佳為甘油-磷脂。此外,磷酸基團經常被簡單的有機分子修飾,例如膽鹼(即產生磷酸膽鹼)或乙醇胺(即產生磷酸乙醇胺)。In the context of the present invention, the term "phospholipid" means a lipid molecule consisting of two hydrophobic fatty acid "tails" and a hydrophilic "head" consisting of phosphate groups . These two components are most often bound together by glycerol molecules, therefore, the phospholipid of the present invention is preferably a glycerol-phospholipid. In addition, phosphate groups are frequently modified with simple organic molecules such as choline (ie, yielding phosphorylcholine) or ethanolamine (ie, yielding phosphoethanolamine).

於本發明的上下文中,合適的磷脂可以選自包含以下所列:1,2-二油醯基- sn-甘油-3-磷酸乙醇胺(DOPE)、1,2-二油醯基- sn-甘油-3-磷酸膽鹼(DOPC)、1,2-二硬脂醯基-sn-甘油-3-磷酸膽鹼(DSPC)、1,2-二亞油醯基-sn-甘油-3-磷酸膽鹼(DLPC)、1,2-二肉豆蔻醯基-sn-甘油-磷酸膽鹼(DMPC)、1,2-二油醯基-sn-甘油-3-磷酸膽鹼(DOPC)、1,2-二棕櫚醯基-sn-甘油-3-磷酸膽鹼(DPPC)、1,2-二硬脂醯基-sn-甘油-3-磷酸膽鹼(DSPC)、1,2-雙十一醯基-sn-甘油-磷酸膽鹼(DUPC)、1-棕櫚醯基-2-油醯基-sn-甘油-3-磷酸膽鹼(POPC)、1,2-二-O-十八烯基-sn-甘油-3-磷酸膽鹼(18:0二醚PC)、1-油醯基-2-膽固醇半琥珀醯基-sn-甘油-3-磷酸膽鹼(OChemsPC)、1-十六基-sn-甘油-3-磷酸膽鹼(C 16 Lyso PC)、1,2-二亞油醯基-sn-甘油-3-磷酸膽鹼、1,2-二花生四烯醯基-sn-甘油-3-磷酸膽鹼、1,2-雙二十二碳六烯醯基-sn-甘油-3-磷酸膽鹼、1,2-二植烷醯基-sn-甘油-3-磷酸乙醇胺(ME 16.0 PE)、1,2-二硬脂醯基-sn-甘油-3-磷酸乙醇胺、1,2-二亞油醯基-sn-甘油-3-磷酸乙醇胺、1,2-二亞油醯基-sn-甘油-3-磷酸乙醇胺、1,2-二花生四烯醯基-sn-甘油-3-磷酸乙醇胺、1,2-雙二十二碳六烯醯基-sn-甘油-3-磷酸乙醇胺、1,2-二油醯基-sn-甘油-3-磷-rac-(1-甘油)鈉鹽(DOPG)、神經鞘磷脂及其等之混合物。 In the context of the present invention, suitable phospholipids may be selected from the list comprising: 1,2-dioleyl- sn -glycero-3-phosphoethanolamine (DOPE), 1,2-dioleyl- sn- Glyceryl-3-phosphocholine (DOPC), 1,2-Distearoyl-sn-glycero-3-phosphocholine (DSPC), 1,2-Dilinoleyl-sn-glycero-3- Phosphocholine (DLPC), 1,2-Dimyrisyl-sn-glycero-phosphocholine (DMPC), 1,2-dioleyl-sn-glycero-3-phosphocholine (DOPC), 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), 1,2-bis Undecyl-sn-glycero-phosphocholine (DUPC), 1-palmityl-2-oleyl-sn-glycero-3-phosphocholine (POPC), 1,2-di-O-deca Octenyl-sn-glycero-3-phosphocholine (18:0 diether PC), 1-oleyl-2-cholesterol hemisuccinyl-sn-glycero-3-phosphocholine (OChemsPC), 1 - Hexadecyl-sn-glycero-3-phosphocholine (C 16 Lyso PC), 1,2-Dilinoleoyl-sn-glycero-3-phosphocholine, 1,2-diarachidonoyl base-sn-glycero-3-phosphocholine, 1,2-didocosahexaenoyl-sn-glycero-3-phosphocholine, 1,2-diphytanyl-sn-glycerol- 3-Phosphoethanolamine (ME 16.0 PE), 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine, 1,2-Dilinoleyl-sn-glycero-3-phosphoethanolamine, 1, 2-Dilinoleoyl-sn-glycero-3-phosphoethanolamine, 1,2-diarachidonoyl-sn-glycero-3-phosphoethanolamine, 1,2-didocosahexaenoyl - sn-glycero-3-phosphoethanolamine, 1,2-dioleyl-sn-glycero-3-phospho-rac-(1-glycerol) sodium salt (DOPG), sphingomyelin and mixtures thereof.

於本發明特定具體實施例中,當磷脂被選為DSPC,則可離子化的脂質可有利地為DLin-MC3-DMA。In a particular embodiment of the invention, when the phospholipid is chosen as DSPC, the ionizable lipid may advantageously be DLin-MC3-DMA.

於更特定之具體實施例中,該磷脂選自包含以下所列:1,2-二油醯基- sn-甘油-3-磷酸乙醇胺(DOPE)、1,2-二油醯基- sn-甘油-3-磷酸膽鹼(DOPC)、1,2-二硬脂醯基-sn-甘油-3-磷酸膽鹼(DSPC)及其等之混合物;特別是DOPE、DOPC及其等之混合物。 In a more specific embodiment, the phospholipid is selected from the group consisting of: 1,2-dioleyl- sn -glycero-3-phosphoethanolamine (DOPE), 1,2-dioleyl- sn- Glycero-3-phosphocholine (DOPC), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and mixtures thereof; especially DOPE, DOPC and mixtures thereof.

因此,在特定具體實施例中,本發明提供一種脂質奈米粒子,其包含: - 可離子化的式(I)之脂質;

Figure 02_image033
其中: RCOO選自包含以下所列:肉豆蔻醯基、α-D-生育酚琥珀醯基、亞油醯基及油醯基;且 X選自包含以下所列:
Figure 02_image035
; 特別是,式(I)之脂質,其中RCOO為α-D-生育酚琥珀醯基,且X為
Figure 02_image037
- 磷脂,其選自DOPC及DOPE或其等之混合物; - 固醇; - 以小於約1 mol%存在之C14-PEG2000脂質;及 - 一種或多種核酸分子;特別是mRNA分子; 特徵在於: 該可離子化的脂質之莫耳百分比為約50–70 mol%之間;及 該固醇之莫耳百分比為約25 mol%或25 mol%以上。 Therefore, in a particular embodiment, the invention provides a lipid nanoparticle comprising: - an ionizable lipid of formula (I);
Figure 02_image033
wherein: RCOO is selected from the group consisting of myristyl, α-D-tocopheryl succinyl, linoleyl, and oleyl; and X is selected from the group consisting of:
Figure 02_image035
; especially, the lipid of formula (I), wherein RCOO is α-D-tocopheryl succinyl, and X is
Figure 02_image037
- phospholipids selected from DOPC and DOPE or mixtures thereof; - sterols; - C14-PEG2000 lipids present in less than about 1 mol %; and - one or more nucleic acid molecules; in particular mRNA molecules; characterized in that: the The molar percentage of ionizable lipids is between about 50-70 mol %; and the molar percentage of sterols is about 25 mol % or more.

因此,於特定具體實施例中,本發明提供一種脂質奈米粒子,其包含: - 可離子化的式(I)之脂質;

Figure 02_image039
其中: RCOO選自包含以下所列:肉豆蔻醯基、α-D-生育酚琥珀醯基、亞油醯基及油醯基;且 X選自包含以下所列:
Figure 02_image041
; 特別是,式(I)之脂質,其中RCOO為α-D-生育酚琥珀醯基且X為
Figure 02_image043
- 磷脂,其選自DOPC及DOPE或其等之混合物; - 固醇; - 以小於約1 mol%存在之C14-PEG2000脂質;及 - 一種或多種核酸分子;特別是mRNA分子; 特徵在於: 該可離子化的脂質之莫耳百分比為約50-60 mol%之間;及 該固醇之莫耳百分比為約30 mol%或30 mol%以上。 Therefore, in a specific embodiment, the invention provides a lipid nanoparticle comprising: - an ionizable lipid of formula (I);
Figure 02_image039
wherein: RCOO is selected from the group consisting of myristyl, α-D-tocopheryl succinyl, linoleyl, and oleyl; and X is selected from the group consisting of:
Figure 02_image041
in particular, lipids of formula (I), wherein RCOO is α-D-tocopheryl succinyl and X is
Figure 02_image043
- phospholipids selected from DOPC and DOPE or mixtures thereof; - sterols; - C14-PEG2000 lipids present in less than about 1 mol %; and - one or more nucleic acid molecules; in particular mRNA molecules; characterized in that: the The molar percentage of ionizable lipids is between about 50-60 mol%; and the molar percentage of sterols is about 30 mol% or more.

於本發明的上下文中,術語「固醇」,亦稱為甾醇,是類固醇的一個亞類,其天然存在於植物、動物和真菌中,或可由一些細菌產生。於本發明的上下文中,可使用任何適合的固醇,例如選自包含以下所列:膽固醇、麥角固醇、菜油固醇、氧固醇、樟芝素、鏈固醇、尼卡固醇、穀固醇及豆固醇;較佳為膽固醇。In the context of the present invention, the term "sterols", also known as sterols, is a subclass of steroids that occur naturally in plants, animals and fungi, or can be produced by some bacteria. In the context of the present invention, any suitable sterol may be used, for example selected from the list comprising: cholesterol, ergosterol, campesterol, oxysterol, antrocardine, streptosterol, nicarsterol , sitosterol and stigmasterol; preferably cholesterol.

因此,在特定具體實施例中,本發明提供一種脂質奈米粒子,其包含: - 可離子化的式(I)之脂質;

Figure 02_image045
其中: RCOO選自包含以下所列:肉豆蔻醯基、α-D-生育酚琥珀醯基、亞油醯基及油醯基;且 X選自包含以下所列:
Figure 02_image047
; 特別是,式(I)之脂質,其中RCOO為α-D-生育酚琥珀醯基,且X為
Figure 02_image049
- 磷脂,其選自DOPC及DOPE,或其等之混合物; - 膽固醇; - 以小於約1 mol%存在之C14-PEG2000脂質;及 - 一種或多種核酸分子;特別是mRNA分子 特徵在於: 該可離子化的脂質之莫耳百分比 為約50–70 mol%之間;及 該固醇之莫耳百分比 為約25 mol%或25 mol%以上。 Therefore, in a particular embodiment, the invention provides a lipid nanoparticle comprising: - an ionizable lipid of formula (I);
Figure 02_image045
wherein: RCOO is selected from the group consisting of myristyl, α-D-tocopheryl succinyl, linoleyl, and oleyl; and X is selected from the group consisting of:
Figure 02_image047
; especially, the lipid of formula (I), wherein RCOO is α-D-tocopheryl succinyl, and X is
Figure 02_image049
- phospholipids selected from DOPC and DOPE, or mixtures thereof; - cholesterol; - C14-PEG2000 lipids present in less than about 1 mol %; and - one or more nucleic acid molecules; in particular mRNA molecules characterized in that: The molar percentage of ionized lipid is between about 50-70 mol %; and the molar percentage of the sterol is about 25 mol % or more.

因此,於特定具體實施例中,本發明提供一種脂質奈米粒子,其包含: - 可離子化的式(I)之脂質;

Figure 02_image051
其中: RCOO選自包含以下所列:肉豆蔻醯基、α-D-生育酚琥珀醯基、亞油醯基及油醯基;及 X選自包含以下所列:
Figure 02_image053
; 特別是,式(I)之脂質,其中RCOO為α-D-生育酚琥珀醯基,且X為
Figure 02_image055
- 磷脂,其選自DOPC及DOPE,或其等之混合物; - 膽固醇; - 以小於約1 mol%存在之C14-PEG2000脂質;及 - 一種或多種核酸分子;特別是mRNA分子 特徵在於: 該可離子化的脂質之莫耳百分比為約50-60 mol%之間;及 該固醇之莫耳百分比為約30 mol%或30 mol%以上。 Therefore, in a specific embodiment, the invention provides a lipid nanoparticle comprising: - an ionizable lipid of formula (I);
Figure 02_image051
wherein: RCOO is selected from the group consisting of myristyl, α-D-tocopheryl succinyl, linoleyl, and oleyl; and X is selected from the group consisting of:
Figure 02_image053
; especially, the lipid of formula (I), wherein RCOO is α-D-tocopheryl succinyl, and X is
Figure 02_image055
- phospholipids selected from DOPC and DOPE, or mixtures thereof; - cholesterol; - C14-PEG2000 lipids present in less than about 1 mol %; and - one or more nucleic acid molecules; in particular mRNA molecules characterized in that: The molar percentage of ionized lipids is between about 50-60 mol%; and the molar percentage of sterols is about 30 mol% or more.

於本發明之非常特定的具體實施例中,該脂質奈米粒子包含: - 可離子化的式(I)之脂質;

Figure 02_image057
其中: RCOO選自包含以下所列:肉豆蔻醯基、α-D-生育酚琥珀醯基、亞油醯基及油醯基;及 X選自包含以下所列:
Figure 02_image059
; 特別是,式(I)之脂質,其中RCOO為α-D-生育酚琥珀醯基,且X為
Figure 02_image061
- 磷脂,其選自DOPC及DOPE,或其等之混合物; - 膽固醇; - 以小於約1 mol%存在之DMG-PEG2000脂質;及 - 一種或多種核酸分子;特別是mRNA分子; 特徵在於: 該可離子化的脂質之莫耳百分比為約50–70 mol%之間;及 該固醇之莫耳百分比為約25 mol%或25 mol%以上。 In a very specific embodiment of the invention, the lipid nanoparticles comprise: - an ionizable lipid of formula (I);
Figure 02_image057
wherein: RCOO is selected from the group consisting of myristyl, α-D-tocopheryl succinyl, linoleyl, and oleyl; and X is selected from the group consisting of:
Figure 02_image059
; especially, the lipid of formula (I), wherein RCOO is α-D-tocopheryl succinyl, and X is
Figure 02_image061
- phospholipids selected from DOPC and DOPE, or mixtures thereof; - cholesterol; - DMG-PEG2000 lipids present in less than about 1 mol %; and - one or more nucleic acid molecules; in particular mRNA molecules; characterized in that: the The molar percentage of ionizable lipids is between about 50-70 mol %; and the molar percentage of sterols is about 25 mol % or more.

於本發明之非常特定的具體實施例中,該脂質奈米粒子包含: - 可離子化的式(I)之脂質;

Figure 02_image063
其中: RCOO選自包含以下所列:肉豆蔻醯基、α-D-生育酚琥珀醯基、亞油醯基及油醯基;及 X選自包含以下所列:
Figure 02_image065
; 特別是,式(I)之脂質,其中RCOO為α-D-生育酚琥珀醯基,且X為
Figure 02_image067
- 磷脂,其選自DOPC及DOPE,或其等之混合物; - 膽固醇; - 以小於約1 mol%存在之DMG-PEG2000脂質;及 - 一種或多種核酸分子;特別是mRNA分子; 特徵在於: 該可離子化的脂質之莫耳百分比為約50–60 mol%之間;及 該固醇之莫耳百分比為約30 mol%或30 mol%以上。 In a very specific embodiment of the invention, the lipid nanoparticles comprise: - an ionizable lipid of formula (I);
Figure 02_image063
wherein: RCOO is selected from the group consisting of myristyl, α-D-tocopheryl succinyl, linoleyl, and oleyl; and X is selected from the group consisting of:
Figure 02_image065
; especially, the lipid of formula (I), wherein RCOO is α-D-tocopheryl succinyl, and X is
Figure 02_image067
- phospholipids selected from DOPC and DOPE, or mixtures thereof; - cholesterol; - DMG-PEG2000 lipids present in less than about 1 mol %; and - one or more nucleic acid molecules; in particular mRNA molecules; characterized in that: the The molar percentage of ionizable lipid is between about 50-60 mol %; and the molar percentage of the sterol is about 30 mol % or more.

我們還發現,甚至可藉由使用低濃度的PEG脂質與相對高濃度的可離子化的脂質(即50-70 mol%之間;例如50-65 mol%或55-60 mol%)及相對低濃度的磷脂(即小於約10 mol%)來進一步增加本發明的LNPs之免疫性效果,因此,用於具有相對較高的可離子化的脂質:磷脂比率(即5:1-10:1;或約6:1至約11:1之間)的LNPs。因此,高濃度的可離子化的脂質可為例如約50 mol%、約51 mol%、約52 mol%、約53 mol%、約54 mol%、約55 mol%、約56 mol%、約57 mol%、約58 mol%、約59 mol%、約60 mol%、約61 mol%、約62 mol%、約63 mol%、約64 mol%、約65 mol%;約66 mol%、約67 mol%、約68 mol%、約69 mol%;約70 mol%。We have also found that by using low concentrations of PEG lipids with relatively high concentrations of ionizable lipids (ie between 50-70 mol%; eg 50-65 mol% or 55-60 mol%) and relatively low Concentrations of phospholipids (i.e., less than about 10 mol%) are used to further increase the immunogenic effect of the LNPs of the present invention, therefore, for relatively high ionizable lipid:phospholipid ratios (i.e., 5:1-10:1; or LNPs between about 6:1 and about 11:1). Thus, a high concentration of ionizable lipids can be, for example, about 50 mol%, about 51 mol%, about 52 mol%, about 53 mol%, about 54 mol%, about 55 mol%, about 56 mol%, about 57 mol%. mol%, about 58 mol%, about 59 mol%, about 60 mol%, about 61 mol%, about 62 mol%, about 63 mol%, about 64 mol%, about 65 mol%; about 66 mol%, about 67 mol%, about 68 mol%, about 69 mol%; about 70 mol%.

因此,於另一特定具體實施例中,該磷脂的莫耳百分比為約5-15 mol%之間的磷脂;特別是約5-10 mol%之間;更特別是小於約10 mol%;例如約9 mol%、約8 mol%、約7 mol%、約6 mol%;約5 mol%;較佳約5 mol%。Therefore, in another specific embodiment, the molar percentage of the phospholipids is between about 5-15 mol% phospholipids; especially between about 5-10 mol%; more particularly less than about 10 mol%; for example About 9 mol%, about 8 mol%, about 7 mol%, about 6 mol%; about 5 mol%; preferably about 5 mol%.

於本發明之特定具體實施例中,該LNP包含可離子化的脂質對磷脂之比例為約5:1或5:1以上;較佳約6:1或6:1以上;更佳為8:1以上,最佳約10:1;或者約6:1至11:1之間;最較佳約11:1,例如約10.76:1。In certain embodiments of the present invention, the LNP comprises ionizable lipids to phospholipids in a ratio of about 5:1 or greater; preferably about 6:1 or greater; more preferably 8:1 More than 1, preferably about 10:1; or about 6:1 to 11:1; most preferably about 11:1, such as about 10.76:1.

於本發明又一具體實施例中,該可離子化的脂質之莫耳百分比為約50-70 mol%之間;例如50-65 mol%之間,特別是約55-60 mol%之間。In yet another embodiment of the present invention, the molar percentage of the ionizable lipid is between about 50-70 mol%, such as between 50-65 mol%, especially between about 55-60 mol%.

固醇通常用作平衡脂質,並在一些具體實施例中其量約25 mol%或25 mol%以上,例如約25 mol%、約26 mol%、約27 mol%、約28 mol%、約29 mol%。或者,其量約30 mol%或30 mol%以上;例如約30 mol%;約31 mol%;約32 mol%;約33 mol%;約34 mol%;約35 mol%,…。在特定具體實施例中,膽固醇的量為約25 mol%至29 mol%之間。因此,固醇的濃度通常與其它脂質的濃度進行權衡,以構成完整的100%。因此,固醇的量可計算為100 mol%減去磷脂之mol%減去PEG脂質之mol%減去可離子化的脂質之mol%。Sterols are generally used as balancing lipids, and in some embodiments are in an amount of about 25 mol % or more, such as about 25 mol %, about 26 mol %, about 27 mol %, about 28 mol %, about 29 mol % mol%. Alternatively, the amount is about 30 mol% or more; for example about 30 mol%; about 31 mol%; about 32 mol%; about 33 mol%; about 34 mol%; about 35 mol%, .... In certain embodiments, the amount of cholesterol is between about 25 mol% and 29 mol%. Therefore, the concentration of sterols is usually weighed against the concentrations of other lipids to make up the complete 100%. Thus, the amount of sterols can be calculated as 100 mol% minus mol% phospholipids minus mol% PEG lipids minus mol% ionizable lipids.

因此,於本發明特定具體實施例中,適用以下一者或多者: - 該LNP包含約50 mol%至70 mol%之間的該可離子化的脂質;或者,約50–65 mol%之間;或50–60 mol%;例如約55–60 mol%之間; - 該LNP包含約5 mol%至15 mol%之間的該磷脂;較佳小於約10 mol%;最佳約5 mol%; - 該LNP包含約0.5 mol%至0.9 mol%之間的該PEG脂質; 以該固醇之量平衡。 Therefore, in specific embodiments of the present invention, one or more of the following applies: - the LNP comprises between about 50 mol% and 70 mol% of the ionizable lipid; or, between about 50-65 mol%; or 50-60 mol%; for example between about 55-60 mol%; - the LNP comprises between about 5 mol% and 15 mol% of the phospholipid; preferably less than about 10 mol%; optimally about 5 mol%; - the LNP comprises the PEG lipid between about 0.5 mol% to 0.9 mol%; Balanced with the amount of the sterol.

因此,於本發明之非常特定的具體實施例,該LNP包含: - 約50-70 mol%之可離子化的式(I)之脂質;

Figure 02_image069
其中: RCOO選自包含以下所列:肉豆蔻醯基、α-D-生育酚琥珀醯基、亞油醯基及油醯基;及 X選自包含以下所列:
Figure 02_image071
; 特別是,式(I)之脂質,其中RCOO為α-D-生育酚琥珀醯基,且X為
Figure 02_image073
- 約5-15 mol%之磷脂,其選自DOPC及DOPE,或其等之混合物; - 膽固醇,用於平衡; - 約0.5-0.9 mol%之DMG-PEG2000脂質;及 - 一種或多種核酸分子,特別是mRNA分子。 Thus, in a very specific embodiment of the invention, the LNP comprises: - about 50-70 mol% of ionizable lipids of formula (I);
Figure 02_image069
wherein: RCOO is selected from the group consisting of myristyl, α-D-tocopheryl succinyl, linoleyl, and oleyl; and X is selected from the group consisting of:
Figure 02_image071
; especially, the lipid of formula (I), wherein RCOO is α-D-tocopheryl succinyl, and X is
Figure 02_image073
- about 5-15 mol% of phospholipids selected from DOPC and DOPE, or mixtures thereof; - cholesterol, for equilibrium; - about 0.5-0.9 mol% of DMG-PEG2000 lipids; and - one or more nucleic acid molecules , especially mRNA molecules.

因此,於本發明之非常特定的具體實施例中,該LNP包含: - 約50-60 mol%之可離子化的式(I)之脂質;

Figure 02_image075
其中: RCOO選自包含以下所列:肉豆蔻醯基、α-D-生育酚琥珀醯基、亞油醯基及油醯基;及 X選自包含以下所列:
Figure 02_image077
; 特別是,式(I)之脂質,其中RCOO為α-D-生育酚琥珀醯基,且X為
Figure 02_image079
- 約5-15 mol%之磷脂,其選自DOPC及DOPE,或其等之混合物; - 膽固醇,用於平衡; - 約0.5-0.9 mol%之DMG-PEG2000脂質;及 - 一種或多種核酸分子,特別是mRNA分子。 Thus, in a very specific embodiment of the invention, the LNP comprises: - about 50-60 mol% of ionizable lipids of formula (I);
Figure 02_image075
wherein: RCOO is selected from the group consisting of myristyl, α-D-tocopheryl succinyl, linoleyl, and oleyl; and X is selected from the group consisting of:
Figure 02_image077
; especially, the lipid of formula (I), wherein RCOO is α-D-tocopheryl succinyl, and X is
Figure 02_image079
- about 5-15 mol% of phospholipids selected from DOPC and DOPE, or mixtures thereof; - cholesterol, for equilibrium; - about 0.5-0.9 mol% of DMG-PEG2000 lipids; and - one or more nucleic acid molecules , especially mRNA molecules.

當於本發明上下文中使用mol%時,其是指特定組分相對於空的奈米粒子(即沒有核酸)的mol%。此意指相對於存在於該LNP中的可離子化的脂質、磷脂、固醇及PEG脂質的總量來計算組分的mol%。When mol % is used in the context of the present invention, it refers to the mol % of a particular component relative to the empty nanoparticles (ie without nucleic acid). This means that the mol% of components is calculated relative to the total amount of ionizable lipids, phospholipids, sterols and PEG lipids present in the LNP.

在本發明特定具體實施例中,該LNP包含: - 約50-60 mol%之該可離子化的脂質; - 約5-15 mol%之該磷脂; - 約0.5-0.9 mol%之該DMG-PEG2000脂質;及 以該固醇之量平衡。 In a specific embodiment of the invention, the LNP comprises: - about 50-60 mol% of the ionizable lipid; - about 5-15 mol% of the phospholipid; - about 0.5-0.9 mol% of the DMG-PEG2000 lipid; and Balanced with the amount of the sterol.

於本發明之非常特定的具體實施例中,該LNP包含: - 約56.5 mol%之該可離子化的脂質; - 約5.25 mol%之DOPE; - 約37.75 mol%之膽固醇;及 - 約0.5 mol%之DMG-PEG2000。 In a very specific embodiment of the invention, the LNP comprises: - about 56.5 mol% of the ionizable lipid; - About 5.25 mol% of DOPE; - about 37.75 mol% cholesterol; and - About 0.5 mol% of DMG-PEG2000.

於本發明另一非常特定之具體實施例中,該LNP包含: - 約50 mol%之該可離子化的脂質; - 約10 mol%之DOPE; - 約39.5 mol%之膽固醇;及 - 約0.5 mol%之DMG-PEG2000。 In another very specific embodiment of the invention, the LNP comprises: - about 50 mol% of the ionizable lipid; - About 10 mol% of DOPE; - about 39.5 mol% cholesterol; and - About 0.5 mol% of DMG-PEG2000.

於本發明另一非常特定之具體實施例中,該LNP包含: - 約50 mol%之該可離子化的脂質; - 約11 mol%之DOPE; - 約38.5 mol%之膽固醇;及 - 約0.5 mol%之DMG-PEG2000。 In another very specific embodiment of the invention, the LNP comprises: - about 50 mol% of the ionizable lipid; - About 11 mol% of DOPE; - about 38.5 mol% cholesterol; and - About 0.5 mol% of DMG-PEG2000.

於本發明另一非常特定之具體實施例中,該LNP包含: - 約50 mol%之該可離子化的脂質; - 約7.76 mol%之DOPE; - 約41.66 mol% 之膽固醇;及 - 約0.58 mol%之DMG-PEG2000。 In another very specific embodiment of the invention, the LNP comprises: - about 50 mol% of the ionizable lipid; - About 7.76 mol% DOPE; - about 41.66 mol% cholesterol; and - About 0.58 mol% of DMG-PEG2000.

於本發明另一非常特定之具體實施例中,該LNP包含: - 約65 mol%之該可離子化的脂質; - 約9.5 mol%之DOPE; - 約25 mol%之膽固醇;及 - 約0.5 mol%之DMG-PEG2000。 In another very specific embodiment of the invention, the LNP comprises: - about 65 mol% of the ionizable lipid; - About 9.5 mol% DOPE; - about 25 mol% cholesterol; and - About 0.5 mol% of DMG-PEG2000.

因此,於本發明之非常特定的具體實施例中,該LNP包含: - 約50 mol%之可離子化的式(I)之脂質;

Figure 02_image081
其中: RCOO為α-D-生育酚琥珀醯基,且X為
Figure 02_image083
- 約10 mol%之磷脂,其選自DOPC及DOPE,或其等之混合物; - 約39.5 mol%之膽固醇; - 約0.5 mol%之DMG-PEG2000脂質;及 - 一種或多種核酸分子,特別是mRNA分子。 Thus, in a very specific embodiment of the invention, the LNP comprises: - about 50 mol% of ionizable lipids of formula (I);
Figure 02_image081
where: RCOO is α-D-tocopheryl succinyl, and X is
Figure 02_image083
- about 10 mol% of phospholipids selected from DOPC and DOPE, or mixtures thereof; - about 39.5 mol% of cholesterol; - about 0.5 mol% of DMG-PEG2000 lipids; and - one or more nucleic acid molecules, in particular mRNA molecule.

於本發明另一非常特定之具體實施例中,該LNP包含: - 約56.5 mol%之可離子化的式(I)之脂質;

Figure 02_image085
其中: RCOO為α-D-生育酚琥珀醯基,且X為
Figure 02_image087
- 約5.25 mol%之磷脂,其選自DOPC及DOPE,或其等之混合物; - 約37.75 mol%之膽固醇; - 約0.5 mol%之DMG-PEG2000脂質;及 - 一種或多種核酸分子,特別是mRNA分子。 In another very specific embodiment of the invention, the LNP comprises: - about 56.5 mol% of ionizable lipids of formula (I);
Figure 02_image085
where: RCOO is α-D-tocopheryl succinyl, and X is
Figure 02_image087
- about 5.25 mol% of phospholipids selected from DOPC and DOPE, or mixtures thereof; - about 37.75 mol% of cholesterol; - about 0.5 mol% of DMG-PEG2000 lipids; and - one or more nucleic acid molecules, in particular mRNA molecule.

於本發明另一非常特定之具體實施例中,該LNP包含: - 約65 mol%之可離子化的式(I)之脂質;

Figure 02_image089
其中: RCOO為α-D-生育酚琥珀醯基,且X為
Figure 02_image091
- 約9.5 mol%之磷脂,其選自DOPC及DOPE,或其等之混合物; - 約25 mol%之膽固醇; - 約0.5 mol%之DMG-PEG2000脂質;及 - 一種或多種核酸分子,特別是mRNA分子。 In another very specific embodiment of the invention, the LNP comprises: - about 65 mol% of ionizable lipids of formula (I);
Figure 02_image089
where: RCOO is α-D-tocopheryl succinyl, and X is
Figure 02_image091
- about 9.5 mol% of phospholipids selected from DOPC and DOPE, or mixtures thereof; - about 25 mol% of cholesterol; - about 0.5 mol% of DMG-PEG2000 lipids; and - one or more nucleic acid molecules, in particular mRNA molecules.

於本發明另一非常特定之具體實施例中,該LNP包含: - 約50 mol%之可離子化的式(I)之脂質;

Figure 02_image093
其中: RCOO為α-D-生育酚琥珀醯基,且X為
Figure 02_image095
- 約11 mol%之磷脂,其選自DOPC及DOPE,或其等之混合物; - 約38.5 mol%之膽固醇; - 約0.5 mol%之DMG-PEG2000脂質;及 - 一種或多種核酸分子,特別是mRNA分子。 In another very specific embodiment of the invention, the LNP comprises: - about 50 mol% of ionizable lipids of formula (I);
Figure 02_image093
where: RCOO is α-D-tocopheryl succinyl, and X is
Figure 02_image095
- about 11 mol% of phospholipids selected from DOPC and DOPE, or mixtures thereof; - about 38.5 mol% of cholesterol; - about 0.5 mol% of DMG-PEG2000 lipids; and - one or more nucleic acid molecules, in particular mRNA molecule.

於本發明另一非常特定之具體實施例中,該LNP包含: - 約50 mol%之可離子化的式(I)之脂質;

Figure 02_image097
其中: RCOO為α-D-生育酚琥珀醯基,且X為
Figure 02_image099
- 約7.76 mol%之磷脂,其選自 DOPC及DOPE,或其等之混合物; - 約41.66 mol%之膽固醇; - 約0.58 mol%之DMG-PEG2000脂質;及 - 一種或多種核酸分子,特別是mRNA分子。 In another very specific embodiment of the invention, the LNP comprises: - about 50 mol% of ionizable lipids of formula (I);
Figure 02_image097
where: RCOO is α-D-tocopheryl succinyl, and X is
Figure 02_image099
- about 7.76 mol% of phospholipids selected from DOPC and DOPE, or mixtures thereof; - about 41.66 mol% of cholesterol; - about 0.58 mol% of DMG-PEG2000 lipids; and - one or more nucleic acid molecules, in particular mRNA molecule.

於本發明上下文中其它特別適合的LNP的組成物如表1中所示。 1 適合的LNP的組成物 可離子化的脂質 (mol%) 磷脂 (mol%) 膽固醇 (mol%) C14-PEG2000 脂質 (mol%) 1 50 10,0 39,5 0,5 2 50 8,3 41,2 0,5 3 50 7,1 42,4 0,5 4 50 6,3 43,3 0,5 5 50 5,6 43,9 0,5 6 50 5,0 44,5 0,5 7 50 10,0 39,3 0,7 8 50 8,3 41,0 0,7 9 50 7,1 42,2 0,7 10 50 6,3 43,1 0,7 11 50 5,6 43,7 0,7 12 50 5,0 44,3 0,7 13 50 10,0 39,1 0,9 14 50 8,3 40,8 0,9 15 50 7,1 42,0 0,9 16 50 6,3 42,9 0,9 17 50 5,6 43,5 0,9 18 50 5,0 44,1 0,9 19 55 11,0 33,5 0,5 20 55 9,2 35,3 0,5 21 55 7,9 36,6 0,5 22 55 6,9 37,6 0,5 23 55 6,1 38,4 0,5 24 55 5,5 39,0 0,5 25 55 11,0 33,3 0,7 26 55 9,2 35,1 0,7 27 55 7,9 36,4 0,7 28 55 6,9 37,4 0,7 29 55 6,1 38,2 0,7 30 55 5,5 38,8 0,7 31 55 11,0 33,1 0,9 32 55 9,2 34,9 0,9 33 55 7,9 36,2 0,9 34 55 6,9 37,2 0,9 35 55 6,1 38,0 0,9 36 55 5,5 38,6 0,9 37 60 12,0 27,5 0,5 38 60 10,0 29,5 0,5 39 60 8,6 30,9 0,5 40 60 7,5 32,0 0,5 41 60 6,7 32,8 0,5 42 60 6,0 33,5 0,5 43 60 12,0 27,3 0,7 44 60 10,0 29,3 0,7 45 60 8,6 30,7 0,7 46 60 7,5 31,8 0,7 47 60 6,7 32,6 0,7 48 60 6,0 33,3 0,7 49 60 12,0 27,1 0,9 50 60 10,0 29,1 0,9 51 60 8,6 30,5 0,9 52 60 7,5 31,6 0,9 53 60 6,7 32,4 0,9 54 60 6,0 33,1 0,9 55 60 12,0 27,5 0,5 56 60 10,0 29,5 0,5 57 60 8,6 30,9 0,5 58 60 7,5 32,0 0,5 59 60 6,7 32,8 0,5 60 60 6,0 33,5 0,5 61 60 12,0 27,3 0,7 62 60 10,0 29,3 0,7 63 60 8,6 30,7 0,7 64 60 7,5 31,8 0,7 65 60 6,7 32,6 0,7 66 60 6,0 33,3 0,7 67 60 12,0 27,1 0,9 68 60 10,0 29,1 0,9 69 60 8,6 30,5 0,9 70 60 7,5 31,6 0,9 71 60 6,7 32,4 0,9 72 60 6,0 33,1 0,9 73 65 10,0 24.5 0,5 74 65 8,3 26.2 0,5 75 65 7,1 27.4 0,5 76 65 6,3 28.2 0,5 77 65 5,6 28.9 0,5 78 65 5,0 29.5 0,5 79 65 10,0 24.3 0.7 80 65 8,3 26.0 0.7 81 65 7,1 27.2 0.7 82 65 6,3 28.0 0.7 83 65 5,6 28.7 0.7 85 65 5,0 29.3 0.7 86 65 10,0 24.1 0.9 87 65 8,3 25.8 0.9 88 65 7,1 27.0 0.9 89 65 6,3 27.8 0.9 90 65 5,6 28.5 0.9 91 65 5,0 29.1 0.9 The compositions of other particularly suitable LNPs in the context of the present invention are shown in Table 1. Table 1 : Composition of suitable LNPs No. Ionizable lipid (mol%) Phospholipids (mol%) Cholesterol (mol%) C14-PEG2000 lipid (mol%) 1 50 10,0 39,5 0,5 2 50 8,3 41,2 0,5 3 50 7,1 42,4 0,5 4 50 6,3 43,3 0,5 5 50 5,6 43,9 0,5 6 50 5,0 44,5 0,5 7 50 10,0 39,3 0,7 8 50 8,3 41,0 0,7 9 50 7,1 42,2 0,7 10 50 6,3 43,1 0,7 11 50 5,6 43,7 0,7 12 50 5,0 44,3 0,7 13 50 10,0 39,1 0,9 14 50 8,3 40,8 0,9 15 50 7,1 42,0 0,9 16 50 6,3 42,9 0,9 17 50 5,6 43,5 0,9 18 50 5,0 44,1 0,9 19 55 11,0 33,5 0,5 20 55 9,2 35,3 0,5 twenty one 55 7,9 36,6 0,5 twenty two 55 6,9 37,6 0,5 twenty three 55 6,1 38,4 0,5 twenty four 55 5,5 39,0 0,5 25 55 11,0 33,3 0,7 26 55 9,2 35,1 0,7 27 55 7,9 36,4 0,7 28 55 6,9 37,4 0,7 29 55 6,1 38,2 0,7 30 55 5,5 38,8 0,7 31 55 11,0 33,1 0,9 32 55 9,2 34,9 0,9 33 55 7,9 36,2 0,9 34 55 6,9 37,2 0,9 35 55 6,1 38,0 0,9 36 55 5,5 38,6 0,9 37 60 12,0 27,5 0,5 38 60 10,0 29,5 0,5 39 60 8,6 30,9 0,5 40 60 7,5 32,0 0,5 41 60 6,7 32,8 0,5 42 60 6,0 33,5 0,5 43 60 12,0 27,3 0,7 44 60 10,0 29,3 0,7 45 60 8,6 30,7 0,7 46 60 7,5 31,8 0,7 47 60 6,7 32,6 0,7 48 60 6,0 33,3 0,7 49 60 12,0 27,1 0,9 50 60 10,0 29,1 0,9 51 60 8,6 30,5 0,9 52 60 7,5 31,6 0,9 53 60 6,7 32,4 0,9 54 60 6,0 33,1 0,9 55 60 12,0 27,5 0,5 56 60 10,0 29,5 0,5 57 60 8,6 30,9 0,5 58 60 7,5 32,0 0,5 59 60 6,7 32,8 0,5 60 60 6,0 33,5 0,5 61 60 12,0 27,3 0,7 62 60 10,0 29,3 0,7 63 60 8,6 30,7 0,7 64 60 7,5 31,8 0,7 65 60 6,7 32,6 0,7 66 60 6,0 33,3 0,7 67 60 12,0 27,1 0,9 68 60 10,0 29,1 0,9 69 60 8,6 30,5 0,9 70 60 7,5 31,6 0,9 71 60 6,7 32,4 0,9 72 60 6,0 33,1 0,9 73 65 10,0 24.5 0,5 74 65 8,3 26.2 0,5 75 65 7,1 27.4 0,5 76 65 6,3 28.2 0,5 77 65 5,6 28.9 0,5 78 65 5,0 29.5 0,5 79 65 10,0 24.3 0.7 80 65 8,3 26.0 0.7 81 65 7,1 27.2 0.7 82 65 6,3 28.0 0.7 83 65 5,6 28.7 0.7 85 65 5,0 29.3 0.7 86 65 10,0 24.1 0.9 87 65 8,3 25.8 0.9 88 65 7,1 27.0 0.9 89 65 6,3 27.8 0.9 90 65 5,6 28.5 0.9 91 65 5,0 29.1 0.9

其它特別適合的LNP的特徵為可離子化的脂質/磷脂/固醇/C14-PEG2000脂質之比例為: 50/10/39.5/0.5 56.5/5/38/0.5 50/11/38.5/0.5 50/7.76/41.66/0.58 65/9.5/25/0.5 Other particularly suitable LNPs are characterized by a ratio of ionizable lipid/phospholipid/sterol/C14-PEG2000 lipid of: 50/10/39.5/0.5 56.5/5/38/0.5 50/11/38.5/0.5 50/7.76/41.66/0.58 65/9.5/25/0.5

本案發明人已經發現,本發明之LNP特別適合於核酸的免疫性遞送。因此,本發明提供LNP,其包含一種或多種核酸分子,例如DNA或RNA,更特別是mRNA。The inventors of the present case have found that the LNPs of the present invention are particularly suitable for the immunological delivery of nucleic acids. Accordingly, the present invention provides LNPs comprising one or more nucleic acid molecules, such as DNA or RNA, more particularly mRNA.

該LNP中的核酸量通常以莫耳比表示,即陽離子脂質(可離子化的脂質)對RNA磷酸鹽的比。於本發明的上下文中,LNP的莫耳比為約4:1至16:1之間。The amount of nucleic acid in the LNP is usually expressed as a molar ratio, ie, the ratio of cationic lipid (ionizable lipid) to RNA phosphate. In the context of the present invention, the molar ratio of LNP is between about 4:1 and 16:1.

或者,該LNP中的核酸量可以N/P比表示,即在可離子化的脂質中之氮原子與核酸中之磷酸基團的比。於本發明的上下文中,LNP的N/P比為約4:1至16:1之間。Alternatively, the amount of nucleic acid in the LNP can be expressed as the N/P ratio, ie the ratio of nitrogen atoms in the ionizable lipid to phosphate groups in the nucleic acid. In the context of the present invention, the N/P ratio of LNP is between about 4:1 and 16:1.

於本發明的上下文中,「核酸」是脫氧核糖核酸(DNA)或較佳為核糖核酸(RNA),更佳為mRNA。根據本發明,核酸包括基因體DNA、cDNA、mRNA、重組產生的和化學合成的分子。根據本發明的核酸可以是單股或雙股且為線性或共價封閉以形成環的分子形式。核酸可用於例如以RNA的形式導入(即轉染)細胞,該RNA可藉由從DNA模板活體外轉錄來製備。此外,可在應用之前藉由穩定序列、加帽及/或多腺苷酸化來修飾RNA。In the context of the present invention, "nucleic acid" is deoxyribonucleic acid (DNA) or preferably ribonucleic acid (RNA), more preferably mRNA. According to the present invention, nucleic acids include genomic DNA, cDNA, mRNA, recombinantly produced and chemically synthesized molecules. The nucleic acids according to the invention may be single- or double-stranded and in the form of molecules that are linear or covalently closed to form circles. Nucleic acids can be used, for example, to introduce (ie, transfect) cells in the form of RNA prepared by in vitro transcription from a DNA template. Furthermore, the RNA can be modified by stabilizing the sequence, capping and/or polyadenylation prior to use.

於本發明的上下文中,術語「RNA」係關於包含核糖核苷酸殘基且較佳完全或基本上由核糖核苷酸殘基所構成的分子。「核糖核苷酸」係關於在β-D-呋喃核糖基的2'-位具有羥基的核苷酸。該術語包括雙股RNA、單股RNA、分離的RNA(例如部分純化的RNA)、基本上純的RNA、合成的RNA、重組產生的RNA及修飾的RNA,其與天然存在的RNA的區別在於一個或多個核苷酸的添加、缺失、取代及/或改變。此類改變可包括將非核苷酸物質添加至例如RNA的末端或內部,例如在RNA的一個或多個核苷酸處。RNA分子中的核苷酸亦可包含非標準核苷酸,例如非天然存在的核苷酸或化學合成的核苷酸或脫氧核苷酸。此等改變的RNA可稱為類似物。核酸可包含在載體中。如本文所使用,術語「載體」包括技術人員已知的任何載體,包括質體載體、黏接質體載體、噬菌體載體(例如λ噬菌體)、病毒載體(例如腺病毒或桿狀病毒(baculoviral)載體)或人工染色體載體(例如細菌人工染色體(bacterial artificial chromosomes,BAC)、酵母人工染色體或天然存在的RNA的類似物。In the context of the present invention, the term "RNA" relates to molecules comprising ribonucleotide residues and preferably consisting entirely or essentially of ribonucleotide residues. "Ribonucleotide" refers to a nucleotide having a hydroxyl group at the 2'-position of β-D-ribofuranosyl. The term includes double-stranded RNA, single-stranded RNA, isolated RNA (e.g., partially purified RNA), substantially pure RNA, synthetic RNA, recombinantly produced RNA, and modified RNA that differ from naturally occurring RNA by Addition, deletion, substitution and/or change of one or more nucleotides. Such alterations may include the addition of non-nucleotide substances, eg, to the ends of the RNA or to the interior, eg, at one or more nucleotides of the RNA. Nucleotides in an RNA molecule may also comprise non-standard nucleotides, such as non-naturally occurring nucleotides or chemically synthesized nucleotides or deoxynucleotides. Such altered RNAs can be referred to as analogs. A nucleic acid can be contained in a vector. As used herein, the term "vector" includes any vector known to the skilled person, including plastid vectors, cohesive plastid vectors, bacteriophage vectors (such as lambda phage), viral vectors (such as adenovirus or baculoviral Vectors) or artificial chromosome vectors (such as bacterial artificial chromosomes (BAC), yeast artificial chromosomes, or analogs of naturally occurring RNAs.

根據本發明,術語「RNA」包括並較佳地關於「mRNA」,其意指「信使RNA」並且關於可以使用DNA作為模板產生並編碼肽或蛋白質的「轉錄物」。mRNA通常包含5'非轉譯區(5'-UTR)、蛋白質或肽編碼區和3'非轉譯區(3'-UTR)。mRNA在細胞中及在體外具有有限的半衰期。較佳地,使用DNA模板通過體外轉錄產生mRNA。於本發明一個具體實施例中,藉由活體外轉錄或化學合成獲得RNA。活體外轉錄方法為技術人員已知的。例如,有許多可商購的活體外轉錄套組。According to the present invention, the term "RNA" includes and preferably relates to "mRNA", which means "messenger RNA" and to "transcripts" which can be produced using DNA as a template and encode peptides or proteins. An mRNA generally comprises a 5' untranslated region (5'-UTR), a protein or peptide coding region, and a 3' untranslated region (3'-UTR). mRNA has a finite half-life in cells and in vitro. Preferably, mRNA is produced by in vitro transcription using a DNA template. In a specific embodiment of the present invention, the RNA is obtained by in vitro transcription or chemical synthesis. In vitro transcription methods are known to the skilled person. For example, there are many in vitro transcription kits commercially available.

於本發明之特定具體實施例中,該mRNA分子是編碼免疫調節蛋白的mRNA分子。In certain embodiments of the invention, the mRNA molecule is an mRNA molecule encoding an immunomodulatory protein.

於本發明的上下文中,術語「編碼免疫調節蛋白的mRNA分子」是指編碼其修飾抗原呈現細胞(更特別地為樹突狀細胞)之功能性的蛋白的mRNA分子。此類分子可選自包含以下所列:CD40L、CD70、caTLR4、IL-12p70、L-選擇蛋白、CCR7及/或4-1BBL、ICOSL、OX40L、IL-21;更特別是CD40L、CD70和caTLR4中的一種或多種。本發明的方法中所使用的免疫刺激因子的較佳組合為CD40L與caTLR4(即「DiMix」)。在另一較佳的具體實施例中,使用CD40L、CD70和caTLR4免疫刺激分子的組合,其在本文中亦稱為「TriMix」。In the context of the present invention, the term "mRNA molecule encoding an immunomodulatory protein" refers to an mRNA molecule encoding a protein which modifies the functionality of antigen presenting cells, more particularly dendritic cells. Such molecules may be selected from the list comprising: CD40L, CD70, caTLR4, IL-12p70, L-selectin, CCR7 and/or 4-1BBL, ICOSL, OX40L, IL-21; more particularly CD40L, CD70 and caTLR4 one or more of. A preferred combination of immunostimulatory factors used in the method of the present invention is CD40L and caTLR4 (ie "DiMix"). In another preferred embodiment, a combination of CD40L, CD70 and caTLR4 immunostimulatory molecules, also referred to herein as "TriMix", is used.

於另一具體實施例中,該mRNA分子為編碼抗原特異性蛋白及/或疾病特異性蛋白的mRNA分子。In another specific embodiment, the mRNA molecule is an mRNA molecule encoding an antigen-specific protein and/or a disease-specific protein.

根據本發明,術語「抗原」包括任何分子,較佳為肽或蛋白質,其包含將引發免疫反應及/或免疫反應所針對的至少一個表位;因此,該語抗原亦包指括來自抗原的最小表位。如本文所定義之「最小表位」意指能夠引發免疫反應的最小結構。較佳地,於本發明上下文中的抗原是可選擇地在處理後誘導免疫反應的分子,該免疫反應較佳地對抗原或表現該抗原的細胞是特異性的。特別是,「抗原」係關於可選擇地在處理後由MHC分子呈現並與T淋巴球(T細胞)特異性反應的分子。According to the present invention, the term "antigen" includes any molecule, preferably a peptide or protein, comprising at least one epitope that will elicit an immune response and/or against which an immune response is directed; thus, the term "antigen" also includes the term "antigen" derived from an antigen. minimal epitope. A "minimal epitope" as defined herein means the smallest structure capable of eliciting an immune response. Preferably, an antigen in the context of the present invention is a molecule which, optionally upon treatment, induces an immune response, preferably specific for the antigen or a cell expressing the antigen. In particular, "antigen" refers to a molecule that is selectively presented by MHC molecules after processing and specifically reacts with T lymphocytes (T cells).

於特定具體實施例中,該抗原是標靶特異性抗原,其可為腫瘤抗原或細菌、病毒或真菌抗原。該靶特異性抗原可源自以下之一者:從靶細胞分離的總mRNA、一種或多種特異性靶mRNA分子、靶細胞之蛋白質裂解物、來自靶細胞的特異性蛋白質、或合成的靶特異性肽或蛋白質及編碼靶特異性抗原或其衍生肽的合成mRNA或DNA。In certain embodiments, the antigen is a target-specific antigen, which may be a tumor antigen or a bacterial, viral or fungal antigen. The target-specific antigen can be derived from one of the following: total mRNA isolated from target cells, one or more specific target mRNA molecules, protein lysates of target cells, specific proteins from target cells, or synthetic target-specific antigens. peptides or proteins, and synthetic mRNA or DNA encoding target-specific antigens or their derived peptides.

為了避免任何誤解,本發明的LNP可包含單個mRNA分子,或其等可包含多種mRNA分子,例如編碼免疫調節蛋白的一種或多種mRNA分子及/或編碼抗原特異性蛋白質及/或疾病特異性蛋白質的一種或多種mRNA分子的組合。To avoid any misunderstanding, the LNPs of the present invention may comprise a single mRNA molecule, or they may comprise multiple mRNA molecules, such as one or more mRNA molecules encoding immunomodulatory proteins and/or encoding antigen-specific and/or disease-specific proteins combination of one or more mRNA molecules.

於非常特定的具體實施例中,該編碼免疫調節分子的mRNA分子可與編碼抗原特異性蛋白及/或疾病特異性蛋白的一種或多種mRNA分子組合。例如,本發明的LNP可包含編碼免疫刺激分子CD40L、CD70及/或caTLR4的mRNA分子(例如Dimix或Trimix);與編碼抗原特異性蛋白及/或疾病特異性蛋白的一種或多種mRNA分子組合。因此,在特定的具體實施例中,本發明的LNP包含編碼CD40L、CD70及/或caTLR4的mRNA分子;與編碼抗原特異性蛋白及/或疾病特異性蛋白的一種或多種mRNA分子組合。In very specific embodiments, the mRNA molecule encoding an immunomodulatory molecule may be combined with one or more mRNA molecules encoding an antigen-specific protein and/or a disease-specific protein. For example, the LNP of the present invention may comprise mRNA molecules (such as Dimix or Trimix) encoding immunostimulatory molecules CD40L, CD70 and/or caTLR4; combined with one or more mRNA molecules encoding antigen-specific proteins and/or disease-specific proteins. Thus, in specific embodiments, the LNPs of the invention comprise mRNA molecules encoding CD40L, CD70 and/or caTLR4; in combination with one or more mRNA molecules encoding antigen-specific and/or disease-specific proteins.

於另一態樣,本發明提供包含一種或多種如本文定義之LNP的醫藥組成物。此類醫藥組成物特別適合作為疫苗。因此,本發明亦提供包含一種或多種根據本發明之LNP的疫苗。In another aspect, the invention provides a pharmaceutical composition comprising one or more LNPs as defined herein. Such pharmaceutical compositions are particularly suitable as vaccines. Accordingly, the invention also provides a vaccine comprising one or more LNPs according to the invention.

於本發明的上下文中,本文所使用的術語「疫苗」意指旨在提供針對疾病的適應性免疫(抗體及/或T細胞反應)的任何製劑。為此,本文所指的疫苗包含編碼抗原的至少一種mRNA分子,其中該抗原引發適應性免疫反應。此抗原可以弱化或經殺滅之形式的微生物、蛋白質或肽或編碼核酸之抗原的樣式存在。於本發明的上下文中,抗原意指被宿主的免疫系統識別為外來的蛋白質或肽,從而刺激針對其的抗體的產生,目的是對抗此類抗原。疫苗可以是預防性的(例如:預防或減輕任何天然或「野生」病原的未來感染的影響)或治療性的(例如,積極治療或減輕正在進行之疾病的症狀)。疫苗的投予稱為疫苗接種。In the context of the present invention, the term "vaccine" as used herein means any preparation intended to provide adaptive immunity (antibody and/or T cell response) against a disease. To this end, vaccines referred to herein comprise at least one mRNA molecule encoding an antigen, wherein the antigen elicits an adaptive immune response. This antigen may be present in a weakened or killed form of the microorganism, protein or peptide or nucleic acid encoding the antigen. In the context of the present invention, an antigen means a protein or peptide that is recognized as foreign by the host's immune system, thereby stimulating the production of antibodies against it, with the aim of combating such antigens. Vaccines can be prophylactic (eg, to prevent or lessen the effects of future infection with any natural or "wild" pathogen) or therapeutic (eg, to actively treat or alleviate the symptoms of an ongoing disease). The administration of vaccines is called vaccination.

本發明的疫苗可用於誘導免疫反應,特別是針對疾病相關抗原或表現疾病相關抗原的細胞的免疫反應,例如針對癌症的免疫反應。因此,疫苗可用於涉及疾病相關抗原或表現疾病相關抗原之細胞的疾病(例如癌症)的預防性及/或治療性處理。較佳地,該免疫反應為T細胞反應。在一個具體實施例中,疾病相關抗原為腫瘤抗原。由包含在本文所述之奈米粒子中的RNA編碼的抗原較佳為疾病相關抗原,或引發針對疾病相關抗原或表現疾病相關抗原的細胞的免疫反應。The vaccines of the invention are useful for inducing an immune response, particularly an immune response against a disease-associated antigen or a cell expressing a disease-associated antigen, eg, against cancer. Thus, vaccines are useful in the prophylactic and/or therapeutic treatment of diseases involving disease-associated antigens or cells expressing disease-associated antigens, such as cancer. Preferably, the immune response is a T cell response. In a specific embodiment, the disease-associated antigen is a tumor antigen. The antigen encoded by the RNA contained in the nanoparticles described herein is preferably a disease-associated antigen, or elicits an immune response against the disease-associated antigen or cells expressing the disease-associated antigen.

本發明的LNP和疫苗特別旨在用於靜脈內投予,亦即將液體物質直接輸注至靜脈中。靜脈內途徑是在整個體內(即全身性)遞送液體和藥物的最快方法。因此,本發明提供靜脈內疫苗,以及所揭示之疫苗和LNP用於靜脈內投予的用途。因此,本發明的疫苗和LNP可靜脈內投予。本發明亦提供根據本發明之疫苗和LNP的用途;其中該疫苗為靜脈內投予。The LNPs and vaccines of the invention are particularly intended for intravenous administration, ie infusion of a liquid substance directly into a vein. The intravenous route is the fastest method of delivering fluids and drugs throughout the body (ie, systemically). Accordingly, the present invention provides intravenous vaccines, and uses of the disclosed vaccines and LNPs for intravenous administration. Thus, the vaccines and LNPs of the invention can be administered intravenously. The present invention also provides the use of the vaccine and LNP according to the invention; wherein the vaccine is administered intravenously.

特別發現,本發明之LNP的免疫原性在多次免疫後增加。因此,在特定具體實施例中,如本文所定義之LNP用於疫苗接種目的,其中該LNP在特定間隔內投予至少兩次,較佳為至少3次。In particular, it was found that the immunogenicity of the LNPs of the invention increases after multiple immunizations. Thus, in certain embodiments, a LNP as defined herein is used for vaccination purposes, wherein the LNP is administered at least two times, preferably at least three times within a certain interval.

本發明亦提供用於人類或獸醫藥物之根據本發明之LNP、醫藥組成物及疫苗。亦考慮到將本發明的LNP、醫藥組成物及疫苗用於人類或獸醫藥物的用途。最後,本發明提供一種用於藉由將根據本發明之LNP、醫藥組成物及疫苗投予至有需要的受試者用以預防及治療人類和獸醫病症的方法。The invention also provides LNPs, pharmaceutical compositions and vaccines according to the invention for use in human or veterinary medicine. Use of the LNPs, pharmaceutical compositions and vaccines of the invention in human or veterinary medicine is also contemplated. Finally, the present invention provides a method for the prevention and treatment of human and veterinary disorders by administering the LNPs, pharmaceutical compositions and vaccines according to the present invention to subjects in need thereof.

本發明進一步提供根據本發明之LNP、醫藥組成物或疫苗用於該一種或多種核酸分子之免疫性遞送的用途。從而,本發明之LNP、醫藥組成物及疫苗在治療許多人類和獸醫疾病中非常有用。因此,本發明提供用於治療癌症或傳染性疾病的本發明之LNP、醫藥組成物及疫苗。The invention further provides the use of the LNP, pharmaceutical composition or vaccine according to the invention for the immunological delivery of the one or more nucleic acid molecules. Thus, the LNPs, pharmaceutical compositions and vaccines of the present invention are very useful in the treatment of many human and veterinary diseases. Accordingly, the present invention provides LNPs, pharmaceutical compositions and vaccines of the present invention for use in the treatment of cancer or infectious diseases.

本發明之脂質奈米粒子可依據實施例部分所指的方案製備。更一般而言,LNP可使用包括以下之方法所製備: - 製備包含該可離子化的脂質、該磷脂、該固醇、該PEG脂質及適合的醇溶劑之第一醇組成物; - 製備包含該一種或多種核酸及水性溶劑之第二水性組成物; - 在微流體混合裝置中混合該第一及第二組成物。 The lipid nanoparticles of the present invention can be prepared according to the protocol indicated in the Examples section. More generally, LNPs can be prepared using methods including: - preparation of a first alcoholic composition comprising the ionizable lipid, the phospholipid, the sterol, the PEG lipid and a suitable alcoholic solvent; - preparing a second aqueous composition comprising the one or more nucleic acids and an aqueous solvent; - mixing the first and second compositions in a microfluidic mixing device.

更詳細地,將脂質組分以適合的濃度組合於例如乙醇之醇媒劑中。對此,添加包含核酸的水性組成物,然後將其裝載在微流體混合裝置中。In more detail, lipid components are combined in an alcoholic vehicle such as ethanol at suitable concentrations. For this, an aqueous composition containing nucleic acids is added, which is then loaded into a microfluidic mixing device.

微流體混合的目標是在微型裝置中達到多個樣品(即脂質相與核酸相)的徹底且快速混合。通常藉由增強不同種類流之間的擴散效果來達到此樣品混合。對此,可使用數種微流體混合裝置,例如參照Lee等人(2011)所述。根據本發明的特別適合的微流體混合裝置為來自Precision Nanosystems的NanoAssemblr。The goal of microfluidic mixing is to achieve thorough and rapid mixing of multiple samples (ie, lipid and nucleic acid phases) in a microdevice. This sample mixing is usually achieved by enhancing the diffusion effect between the different species streams. For this, several microfluidic mixing devices can be used, as described eg with reference to Lee et al. (2011). A particularly suitable microfluidic mixing device according to the invention is the NanoAssemblr from Precision Nanosystems.

適合用於製備本發明之LNP的其它技術包括將組分分散於適合的分散介質中,例如水溶劑及醇溶劑,並應用以下一種或多種方法:乙醇稀釋法、簡單水化法、超音波處理、加熱、渦旋、乙醚注射法、弗氏(French)壓榨法、膽酸法、Ca 2+融合法、凍融法、反相蒸發法、T形接頭混合、微流體流體動力聚焦、交錯人字形混合等。 [實施例] Other techniques suitable for preparing the LNP of the present invention include dispersing the components in a suitable dispersion medium, such as water solvent and alcohol solvent, and applying one or more of the following methods: ethanol dilution method, simple hydration method, ultrasonic treatment , heating, vortexing, ether injection, French press, bile acid method, Ca 2+ fusion method, freeze-thaw method, reversed-phase evaporation method, T-joint mixing, microfluidic hydrodynamic focusing, interleaving human font blending etc. [Example]

用於實施例for example 1-31-3 之材料及方法materials and methods

[小鼠] 雌性C57BL/6小鼠購自Charles River Laboratories (法國)並飼養在具有標準墊料和籠子強化之個別通風籠中。根據機構(Vrije Universiteit Brussel)及歐盟動物實驗指南對動物進行飼養和治療。小鼠可隨意獲取食物及水。實驗在小鼠6至10週齡時開始。小鼠經由尾靜脈接受靜脈注射含10 µg mRNA之LNP(體積為200 µL)。對照組小鼠以相同的時間間隔注射200 µl TBS(Tris 緩衝食鹽水)。每2天監測小鼠的體重。 [mouse] Female C57BL/6 mice were purchased from Charles River Laboratories (France) and housed in individually ventilated cages with standard bedding and cage reinforcement. Animals were housed and treated according to the institutional (Vrije Universiteit Brussel) and European Union guidelines for animal experimentation. Mice had ad libitum access to food and water. Experiments were initiated when mice were 6 to 10 weeks old. Mice received an intravenous injection of LNP containing 10 µg mRNA (in a volume of 200 µL) via the tail vein. Control mice were injected with 200 µl TBS (Tris-buffered saline) at the same time intervals. The body weight of the mice was monitored every 2 days.

在以ADPGK合成長肽(SLP)疫苗接種的情況下,以含50 µg ADPGK SLP (GIPVHLELASMTNMELMSSIVHQQVFPT,(SEQ ID N° 3) Genscript)、50 µg抗CD40 Mab (Clone FJK45,BioXCell)及100 µg pIC HMW (InvivoGen)之200 µl PBS的組合物在相同的時間間隔腹膜內注射小鼠。In the case of vaccination with ADPGK synthetic long peptide (SLP), a vaccine containing 50 µg ADPGK SLP (GIPVHLELASMTNMELMSSIVHQQVFPT, (SEQ ID N° 3) Genscript), 50 µg anti-CD40 Mab (Clone FJK45, BioXCell) and 100 µg pIC HMW (InvivoGen) in 200 µl PBS was injected intraperitoneally into mice at the same time intervals.

[mRNA合成及純化] 根據WO2015071295 中所述方案,藉由從eTheRNA質體pEtherna活體外轉錄(IVT)製備加帽的、非核苷修飾的E7和ADPGK mRNA。將編碼HPV16-E7或ADPGK蛋白的序列選殖至信號序列與人類DC-LAMP之跨膜及細胞質區域之間的框架內。將此嵌合基因選殖至pEtherna質體中,該質體在5'端富含轉譯增強子且在3'端富含RNA穩定序列。IVT後,藉由纖維素純化去除dsRNA。纖維素粉末購自Sigma,並在含16%乙醇的1xSTE(氯化鈉-Tris-EDTA)緩衝液中洗滌。將IVT mRNA(於含16%乙醇之1xSTE緩衝液中)添加至經洗滌的纖維素顆粒中,並於室溫振盪20分鐘。然後將此溶液通過真空過濾器(Corning)。溶析液含有ssRNA濾份,並用於所有實驗。藉由毛細管凝膠電泳(Agilent,比利時)監測mRNA質量。 [mRNA synthesis and purification] Capped, non-nucleoside-modified E7 and ADPGK mRNAs were prepared by in vitro transcription (IVT) from eTheRNA plasmid pEtherna according to the protocol described in WO2015071295. Sequences encoding HPV16-E7 or ADPGK proteins were cloned in frame between the signal sequence and the transmembrane and cytoplasmic regions of human DC-LAMP. This chimeric gene was cloned into pEtherna plastids, which are enriched at the 5' end for translation enhancers and at the 3' end for RNA stabilizing sequences. After IVT, dsRNA was removed by cellulose purification. Cellulose powder was purchased from Sigma and washed in 1xSTE (NaCl-Tris-EDTA) buffer containing 16% ethanol. IVT mRNA (in 1xSTE buffer containing 16% ethanol) was added to washed cellulose pellets and shaken at room temperature for 20 minutes. This solution was then passed through a vacuum filter (Corning). Lysates contained ssRNA fractions and were used for all experiments. mRNA quality was monitored by capillary gel electrophoresis (Agilent, Belgium).

[生成基於mRNA脂質的奈米粒子] 使用NanoAssemblr Benchtop (Precision Nanosystems),以2:1之體積比,藉由微流體混合於乙酸鈉緩衝液(100 mM,pH4)中之mRNA溶液與脂質溶液來生產基於脂質之奈米粒子。脂質溶液含有CoatsomeSS-EC (NOF corporation)、DOPE(Avanti)、膽固醇(Sigma)及DMG-PEG2000 (C14脂質)(Sunbright GM-020,NOF corporation)之混合物。4種脂質以不同的莫耳比混合。使用 Slide-a-lyzer 透析盒(20K MWCO,3mL,ThermoFisher),對LNP進行TBS 透析(TBS體積為LNP體積的10000倍)。 [Generation of mRNA lipid-based nanoparticles] Lipid-based nanoparticles were produced by microfluidically mixing mRNA solutions and lipid solutions in sodium acetate buffer (100 mM, pH 4) at a volume ratio of 2:1 using a NanoAssemblr Benchtop (Precision Nanosystems). The lipid solution contained a mixture of CoatsomeSS-EC (NOF corporation), DOPE (Avanti), cholesterol (Sigma) and DMG-PEG2000 (C14 lipid) (Sunbright GM-020, NOF corporation). The 4 lipids were mixed in different molar ratios. Using Slide-a-lyzer dialysis cassette (20K MWCO, 3 mL, ThermoFisher), the LNP was dialyzed against TBS (TBS volume is 10000 times of LNP volume).

[流式細胞分析術] 免疫後約6天,從經處理之小鼠及對照小鼠中收集血液。根據製造商的說明(MBL International),裂解紅血球並將剩餘的白血球以APC標記的E7 (RAHYNIVTF)-四聚物(SEQ ID N° 1)或ADPGK(ASMTNMELM)-四聚物(SEQ ID N°2)染色。洗去多餘的四聚物。此後,將用於表面分子的抗體混合物(列於表2中)添加至細胞,並在4°C下培育30 分鐘。在LSR Fortessa細胞儀上取得數據並以Flow Jo 軟體進行分析。 結果 [Flow Cytometry] About 6 days after immunization, blood was collected from the treated and control mice. According to the manufacturer's instructions (MBL International), erythrocytes were lysed and the remaining leukocytes were labeled with APC-labeled E7 (RAHYNIVTF) -tetramer (SEQ ID N ° 1) or ADPGK (ASMTNMELM)-tetramer (SEQ ID N ° 2) Dyeing. Wash off excess tetramer. Thereafter, the antibody cocktail for surface molecules (listed in Table 2) was added to the cells and incubated at 4°C for 30 minutes. Data were acquired on an LSR Fortessa cytometer and analyzed with Flow Jo software. result

實施例 1.小鼠接受以指定莫耳比的SS-EC/DOPE/chol/DMG-PEG2000所構成之E7 mRNA LNP的三次靜脈內免疫注射。每次免疫注射後,藉由流式細胞分析術評估血液中由相應mRNA LNP組成物所誘發的E7特異性CD8 T細胞的百分比。從圖1中可明顯看出,與以1 mol% DMG-PEG2000調配的mRNA LNP相比,以0.5 mol% DMG-PEG2000調配的 mRNA LNP誘發更高的E7特異性CD8 T細胞反應。 Example 1. Mice received three intravenous immunization injections of E7 mRNA LNP composed of SS-EC/DOPE/chol/DMG-PEG2000 at specified molar ratios. After each immunization, the percentage of E7-specific CD8 T cells in blood induced by the corresponding mRNA LNP composition was assessed by flow cytometry. As evident from Figure 1, mRNA LNP formulated with 0.5 mol% DMG-PEG2000 induced a higher E7-specific CD8 T cell response compared to mRNA LNP formulated with 1 mol% DMG-PEG2000.

實施例 2.小鼠接受以指定莫耳比的SS-EC/DOPE/chol/DMG-PEG2000所構成之E7 mRNA LNP的三次靜脈內免疫注射。每次免疫注射後,藉由流式細胞分析術評估血液中由相應mRNA LNP組成物所誘發的E7特異性CD8 T細胞的百分比。從圖2中可明顯看出,與以2 mol% DMG-PEG2000調配的mRNA LNP相比,以0.5 mol% DMG-PEG2000調配的 mRNA LNP誘發更高的E7特異性CD8 T細胞反應,3次免疫注射後效果更加明顯。 Example 2. Mice received three intravenous immunization injections of E7 mRNA LNP composed of SS-EC/DOPE/chol/DMG-PEG2000 at specified molar ratios. After each immunization, the percentage of E7-specific CD8 T cells in blood induced by the corresponding mRNA LNP composition was assessed by flow cytometry. It is evident from Figure 2 that mRNA LNP formulated with 0.5 mol% DMG-PEG2000 induced a higher E7-specific CD8 T cell response compared to mRNA LNP formulated with 2 mol% DMG-PEG2000, and three immunizations The effect is more obvious after injection.

實施例 3.小鼠接受四次靜脈投予包裝在低百分比PEG LNP (50/10/39.5/0.5可離子化的脂質/DOPE/膽固醇/PEG-脂質)中的10µg ADPGK mRNA,或50 μg ADPGK合成長肽(SLP)。在第四次免疫注射後 6 天,測定血液中ADPGK特異性CD8 +T細胞的百分比。與SLP相比,以0.5 mol% DMG-PEG2000調配之mRNA LNP在誘發抗原特異性免疫反應方面更為優異(圖3)。 Example 3. Mice received four intravenous administrations of 10 μg ADPGK mRNA packaged in low percentage PEG LNP (50/10/39.5/0.5 ionizable lipid/DOPE/cholesterol/PEG-lipid), or 50 μg ADPGK Synthetic long peptides (SLP). Six days after the fourth immunization injection, the percentage of ADPGK-specific CD8 + T cells in the blood was determined. Compared with SLP, mRNA LNP formulated with 0.5 mol% DMG-PEG2000 was superior in inducing antigen-specific immune response (Figure 3).

用於實施例for example 4-84-8 之材料及方法materials and methods

動物所有小鼠實驗均獲得UMC Utrecht 的 Utrecht Animal Welfare Body或根特大學動物倫理委員會(the Animal Ethics Committee of Ghent University)的批准。動物照護是根據既定的準則進行。所有小鼠可無限制地獲取水及標準實驗動物飼料。雌性C57Bl/6J小鼠獲自Charles River Laboratories, Inc.(德國/法國)。 Animals All mouse experiments were approved by the Utrecht Animal Welfare Body at UMC Utrecht or the Animal Ethics Committee of Ghent University. Animal care was performed according to established guidelines. All mice had unlimited access to water and standard laboratory animal chow. Female C57Bl/6J mice were obtained from Charles River Laboratories, Inc. (Germany/France).

mRNA 合成及純化藉由從eTheRNA質體的體外轉錄(IVT),以eTheRNA製備密碼子優化的E7、TriMix及螢光素酶mRNA。沒有使用核苷酸修飾。DOE中所使用的E7 mRNA為ARCA加帽的。所有後續實驗都使用CleanCapped mRNA進行。IVT 後,藉由纖維素純化去除dsRNA。藉由毛細管凝膠電泳(Agilent,比利時)監測 mRNA質量。Cleancap® Cy5標記的Fluc mRNA(經5-甲氧基尿苷修飾及二氧化矽純化)購自TriLink Biotechnologies。 mRNA Synthesis and Purification Codon- optimized E7, TriMix and luciferase mRNAs were prepared from eTheRNA by in vitro transcription (IVT) from eTheRNA plastids. No nucleotide modifications were used. The E7 mRNA used in DOE was ARCA capped. All subsequent experiments were performed using CleanCapped mRNA. After IVT, dsRNA was removed by cellulose purification. mRNA quality was monitored by capillary gel electrophoresis (Agilent, Belgium). Cleancap® Cy5-labeled Fluc mRNA (5-methoxyuridine modified and silica purified) was purchased from TriLink Biotechnologies.

LNP 生產和表徵對於生物分布和細胞攝取研究,以1:1之比例的螢火蟲螢光素酶(Fluc)編碼mRNA(eTheRNA Immunotherapies NV)與Cleancap® Cy5標記的Fluc mRNA (TriLink Biotechnologies)之混合物加載LNP。對於DoE免疫原性研究,以E7 mRNA加載LNP。使用3:1:1:1比例的E7、小鼠CD40L、小鼠CD70及組成型活性TLR4 mRNA的混合物進行所有其它研究。將mRNA稀釋於100 mM 乙酸鈉緩衝液(pH 4)中,並溶解脂質並稀釋於乙醇中。使用NanoAssemblr Benchtop微流體混合系統(Precision Nanosystems)混合mRNA及脂質溶液,之後用經Tris緩衝的食鹽水(TBS,20 mM Tris,0.9% NaCl,pH 7.4)透析隔夜。Amicon 超離心過濾器(10 kD)用於濃縮LNP。尺寸、聚合度分布性指數和ζ電位以Zetasizer Nano (Malvern)測量。經由RiboGreen分析(ThermoFisher)測定mRNA膠囊化效率。所有LNP的組成物總結於表2中。 LNP Production and Characterization For biodistribution and cellular uptake studies, LNPs were loaded with a 1:1 mixture of firefly luciferase (Fluc) encoding mRNA (eTheRNA Immunotherapies NV) and Cleancap® Cy5-labeled Fluc mRNA (TriLink Biotechnologies) . For DoE immunogenicity studies, LNPs were loaded with E7 mRNA. All other studies were performed using a 3:1:1:1 ratio mixture of E7, mouse CD40L, mouse CD70 and constitutively active TLR4 mRNA. mRNA was diluted in 100 mM sodium acetate buffer (pH 4), and lipids were dissolved and diluted in ethanol. The mRNA and lipid solutions were mixed using the NanoAssemblr Benchtop microfluidic mixing system (Precision Nanosystems), and then dialyzed against Tris-buffered saline (TBS, 20 mM Tris, 0.9% NaCl, pH 7.4) overnight. Amicon ultracentrifugal filters (10 kD) were used to concentrate LNP. Size, polydispersity index and zeta potential were measured with a Zetasizer Nano (Malvern). mRNA encapsulation efficiency was determined via RiboGreen assay (ThermoFisher). The compositions of all LNPs are summarized in Table 2.

T 細胞反應在週間隔內,以含10 µg mRNA之選定的LNP,經由尾靜脈對小鼠進行靜脈免疫注射。免疫注射後5至7天收集用於流式細胞分析術染色的血液。紅血球裂解後,將細胞與 FcR阻斷劑和存活力染劑一起培育。培育並洗滌後,添加APC標記的E7 (RAHYNIVTF)-四聚物,並在室溫培育30分鐘。洗去多餘的四聚物,將用於表面分子CD3和CD8的抗體混合物添加至細胞中,並在4°C下培育30分鐘。在3-雷射AtuneNxt流式細胞儀或4-雷射BD LSRFortessa流式細胞儀上採集樣品。 T Cell Responses Mice were immunized intravenously via the tail vein with selected LNPs containing 10 µg mRNA at weekly intervals. Blood for flow cytometry staining was collected 5 to 7 days after immunization. Following lysis of erythrocytes, cells are incubated with FcR blockers and viability stains. After incubation and washing, APC-tagged E7 (RAHYNIVTF) -tetramer was added and incubated at room temperature for 30 minutes. Excess tetramers were washed away, and an antibody cocktail for the surface molecules CD3 and CD8 was added to the cells and incubated at 4°C for 30 minutes. Samples were collected on a 3-laser AtuneNxt flow cytometer or a 4-laser BD LSRFortessa flow cytometer.

第三次免疫注射後7天測定脾臟中細胞內細胞激素的產生。藉由粉碎脾臟、裂解紅血球並經40 µM細胞過濾器過濾樣品來製備脾細胞的單一細胞懸浮液。200.000個細胞/孔/樣品在96孔平盤中以一式兩份平盤培養。在37°C培育細胞之前,加入4 µg的E7肽(Genscript)進行刺激。肽刺激1小時後,添加GolgiPlug (BD Cytofix/Cytoperm套組(BD Biosciences))。將細胞培養另4小時。之後,將細胞與 FcR阻斷劑和存活力染劑一起培育。培育並洗滌後,添加APC標記的E7 (RAHYNIVTF)-四聚物,並在室溫培育30分鐘。洗去多餘的右聚體(dextramer),並將用於表面分子CD3和CD8的抗體混合物添加至細胞中,並在4°C下培育30分鐘。 進一步的步驟是根據BD Cytofix/Cytoperm套組(BD Biosciences)的製造商說明。通透處理後,對細胞進行 IFN-γ及TNF-α染色。在4-雷射BD LSRFortessa流式細胞儀上採集樣品。使用FlowJo軟體進行分析。 Intracellular cytokine production in the spleen was measured 7 days after the third immunization. Single cell suspensions of splenocytes were prepared by crushing the spleen, lysing red blood cells, and filtering the sample through a 40 µM cell strainer. 200.000 cells/well/sample were plated in duplicate in 96-well plates. Cells were stimulated by adding 4 µg of E7 peptide (Genscript) before incubating at 37°C. One hour after peptide stimulation, GolgiPlug (BD Cytofix/Cytoperm Kit (BD Biosciences)) was added. Cells were incubated for another 4 hours. Afterwards, cells were incubated with FcR blockers and viability stains. After incubation and washing, APC-tagged E7 (RAHYNIVTF) -tetramer was added and incubated at room temperature for 30 minutes. Excess dextramers were washed away and antibody cocktails for the surface molecules CD3 and CD8 were added to the cells and incubated at 4°C for 30 minutes. Further steps were according to the manufacturer's instructions of the BD Cytofix/Cytoperm kit (BD Biosciences). After permeabilization, cells were stained for IFN-γ and TNF-α. Samples were collected on a 4-laser BD LSRFortessa flow cytometer. Analysis was performed using FlowJo software.

炎性細胞激素在每次免疫注射後(第0、7、14和50 天)6小時,將血液樣品收集於具有凝膠凝血因子(Sarstedt)的試管中。將凝固的血液樣品以10.000 g離心5 分鐘以獲得血清。將血清樣品儲存於-80°C直至分析。ProcartaPlex多重分析(ThermoFisher)用於測定IFN-α、IFN-γ、IP-10的濃度。血清樣品在分析緩衝液中3倍稀釋,並與螢光標記的珠粒一起培育120分鐘。根據方案進行進一步的步驟。在MagPix儀(Luminex)上採集樣品。使用 ProcartaPlex Analyst軟體分析數據。 Inflammatory Cytokines Blood samples were collected in tubes with gel coagulation factors (Sarstedt) 6 hours after each immunization injection (days 0, 7, 14 and 50). The clotted blood samples were centrifuged at 10.000 g for 5 minutes to obtain serum. Serum samples were stored at -80°C until analysis. ProcartaPlex multiplex assay (ThermoFisher) was used to determine the concentrations of IFN-α, IFN-γ, IP-10. Serum samples were diluted 3-fold in assay buffer and incubated with fluorescently labeled beads for 120 minutes. Proceed to further steps according to the protocol. Samples were collected on a MagPix instrument (Luminex). Data were analyzed using ProcartaPlex Analyst software.

TC-1 腫瘤實驗TC-1細胞獲自Leiden University Medical Center。將含50萬個TC-1細胞之50 μL PBS皮下注射於小鼠的右腹部。使用卡尺進行腫瘤測量。腫瘤體積計算為(最小直徑 2x 最大直徑)/2。將Ant-PD-1及同型對照抗體新鮮稀釋於PBS中至每隻小鼠為200 µL中含200 µg的濃度,並進行腹腔注射。小鼠接受抗PD-1抗體(單一療法或與mRNA LNP免疫組合)或同型對照(與LNP免疫組合)。從第一次mRNA LNP免疫注射後3天開始至最後一次LNP注射後2週結束,每3至4天注射一次抗體。為了分析腫瘤浸潤淋巴球,在第二次mRNA LNP免疫注射後3天分離腫瘤,並將其置於填充MACS組織儲存緩衝液(Miltenyi Biotec)的24孔平盤中。將腫瘤切碎並以規律搖動在消化緩衝液中培育1小時。之後,將紅血球裂解並將所有樣品經70 µM細胞過濾器過濾。在進行染色前,藉由ficoll-paque密度梯度純化來富集淋巴球。首先,將細胞與FcR阻斷劑和存活力染劑一起培育。培育並洗滌後,添加APC標記的E7 (RAHYNIVTF)-四聚物,並在室溫培育30分鐘。洗去多餘的四聚物,並將用於表面分子CD45和CD8的抗體混合物添加至細胞中,並在4°C下培育30分鐘。在3-雷射AtuneNxt流式細胞儀或4-雷射BD LSRFortessa流式細胞儀上採集樣品。使用FlowJo軟體進行分析。 TC-1 Tumor Assay TC-1 cells were obtained from Leiden University Medical Center. 50 μL of PBS containing 500,000 TC-1 cells was subcutaneously injected into the right abdomen of the mouse. Tumor measurements were taken using calipers. Tumor volume was calculated as (minimum diameter2 x maximum diameter)/2. Ant-PD-1 and isotype control antibodies were freshly diluted in PBS to a concentration of 200 µg in 200 µL per mouse and injected intraperitoneally. Mice received anti-PD-1 antibody (monotherapy or in combination with mRNA LNP immunization) or isotype control (combination with LNP immunization). Antibody was injected every 3 to 4 days starting 3 days after the first mRNA LNP immunization injection and ending 2 weeks after the last LNP injection. For analysis of tumor-infiltrating lymphocytes, tumors were isolated 3 days after the second mRNA LNP immunization injection and placed in 24-well flat dishes filled with MACS tissue storage buffer (Miltenyi Biotec). Tumors were minced and incubated in digestion buffer for 1 hour with regular shaking. Afterwards, erythrocytes were lysed and all samples were filtered through a 70 µM cell strainer. Lymphocytes were enriched by ficoll-paque density gradient purification before staining. First, cells are incubated with an FcR blocker and a viability stain. After incubation and washing, APC-tagged E7 (RAHYNIVTF) -tetramer was added and incubated at room temperature for 30 minutes. Excess tetramers were washed away and the antibody cocktail for the surface molecules CD45 and CD8 was added to the cells and incubated at 4°C for 30 min. Samples were collected on a 3-laser AtuneNxt flow cytometer or a 4-laser BD LSRFortessa flow cytometer. Analysis was performed using FlowJo software.

生物分布和細胞攝取在選定的LNP調配物中,小鼠經由尾靜脈靜脈注射10 µg mRNA。4小時後,以250 µL戊巴比妥(6 mg/mL)麻醉小鼠。將血液樣品收集在具有凝膠凝血因子(Sarstedt)的試管中。隨後,打開胸腔,切斷門靜脈,通過右心室向小鼠灌注 7 mL PBS。取出器官並在液態氮中急速冷凍。對於肝臟和脾臟組織,將器官的一部分保存在冰冷的PBS中用於流式細胞分析術分析。 Biodistribution and cellular uptake In selected LNP formulations, mice were injected intravenously with 10 µg of mRNA via the tail vein. After 4 h, mice were anesthetized with 250 µL pentobarbital (6 mg/mL). Blood samples were collected in tubes with gel coagulation factors (Sarstedt). Subsequently, the chest cavity was opened, the portal vein was cut off, and the mouse was perfused with 7 mL of PBS through the right ventricle. Organs were removed and snap frozen in liquid nitrogen. For liver and spleen tissues, a section of the organ was preserved in ice-cold PBS for flow cytometry analysis.

細胞攝取將肝臟和脾臟組織置於具有RPMI 1640 培養基之培養皿中,該RPMI 1640 培養基分別含有1 mg/mL Collagenase A(Roche)或 20 µg/mL Liberase TM(Roche)以及10 µg/mL DNAse I,II 級(Roche)。使用手術刀片切碎組織,並在37°C下培育30分鐘。隨後,將組織懸浮液通過100 µm尼龍細胞過濾器。肝懸浮液以70 x g離心3分鐘以去除實質細胞。上清液和脾懸浮液以500 x g離心7分鐘以沉澱細胞。紅血球在ACK緩衝液(Gibco)中裂解5分鐘,以PBS去活化,然後通過100 µm細胞過濾器。將細胞用含有1%胎牛血清(FBS)之RPMI 1640洗滌,與台盼藍混合並使用Luna-II自動細胞計數器(Logos Biosystems)計數。將3 x 10 5(肝)或6 x 10 5(脾)活細胞接種於96孔平盤,以500 x g沉澱5分鐘,並重新懸浮於含50% Brilliant Stain Buffer (BD Biosciences)及2 µg/mL TruStain FcX (BioLegend)的2% BSA之PBS (2% PBSA)中。將細胞在冰上培育10分鐘,並與含有適用抗體混合物(共三個)之2% PBSA以1:1混合,一式兩份。細胞在室溫下於振盪器上培育15分鐘,以2% PBSA洗滌兩次,然後再懸浮於含有0.25 µg/mL 7-AAD Viability Stain (BioLegend)的2% PBSA中。在4-雷射BD LSRFortessa流式細胞儀上採集樣品。使用FlowJo 軟體分析。 Cellular uptake Liver and spleen tissues were plated in Petri dishes with RPMI 1640 medium containing 1 mg/mL Collagenase A (Roche) or 20 µg/mL Liberase TM (Roche), respectively, and 10 µg/mL DNAse I , Class II (Roche). Mince the tissue using a scalpel blade and incubate at 37°C for 30 min. Subsequently, the tissue suspension was passed through a 100 µm nylon cell strainer. Centrifuge the liver suspension at 70 x g for 3 min to remove parenchymal cells. Centrifuge the supernatant and spleen suspension at 500 x g for 7 min to pellet the cells. Red blood cells were lysed in ACK buffer (Gibco) for 5 min, deactivated with PBS, and passed through a 100 µm cell strainer. Cells were washed with RPMI 1640 containing 1% fetal bovine serum (FBS), mixed with trypan blue and counted using a Luna-II automated cell counter (Logos Biosystems). Seed 3 x 10 5 (liver) or 6 x 10 5 (spleen) living cells in a 96-well plate, pellet at 500 xg for 5 minutes, and resuspend in 50% Brilliant Stain Buffer (BD Biosciences) and 2 µg/ mL of TruStain FcX (BioLegend) in 2% BSA in PBS (2% PBSA). Cells were incubated on ice for 10 minutes and mixed 1:1 in 2% PBSA containing the appropriate antibody mix (three in total) in duplicate. Cells were incubated on a shaker at room temperature for 15 minutes, washed twice with 2% PBSA, and then resuspended in 2% PBSA containing 0.25 µg/mL 7-AAD Viability Stain (BioLegend). Samples were collected on a 4-laser BD LSRFortessa flow cytometer. Analyzed using FlowJo software.

全身分布將各組織約50-100 mg解剖、稱重並放置於具有約5 mm的一層1.4 mm陶瓷珠粒(Qiagen)的2 mL微管中。對於每一毫克的組織,添加3 µL冷的Cell Culture Lysis Reagent (Promega),並使用 Mini-BeadBeater-8 (BioSpec)在4°C下全速均質化60秒。將該均質物儲存在-80°C,解凍,在4°C下以10.000 x g離心10分鐘以去除珠粒和碎片,並將上清液再次儲存在-80°C。將10微升的各裂解物等分在白色96孔平盤中,一式兩份。使用配備進樣器的SpectraMax iD3平盤讀取器,在混合的同時將50 µL Luciferase Assay Reagent (Promega)分配至各孔中,然後延遲2秒及螢光素酶發射記錄10秒。針對從注射TBS的小鼠器官裂解物中獲得的背景信號進行螢光素酶活性正規化。 Systemic Distribution Approximately 50-100 mg of each tissue was dissected, weighed and placed in 2 mL microtubes with an approximately 5 mm layer of 1.4 mm ceramic beads (Qiagen). For each milligram of tissue, 3 µL of cold Cell Culture Lysis Reagent (Promega) was added and homogenized using a Mini-BeadBeater-8 (BioSpec) at full speed for 60 seconds at 4°C. Store the homogenate at -80 °C, thaw, centrifuge at 10.000 x g for 10 min at 4 °C to remove beads and debris, and store the supernatant again at -80 °C. Aliquot 10 microliters of each lysate in a white 96-well plate in duplicate. Using a SpectraMax iD3 plate reader equipped with an injector, 50 µL of Luciferase Assay Reagent (Promega) was dispensed into each well while mixing, followed by a 2 second delay and a 10 second recording of luciferase emission. Luciferase activity was normalized to background signal obtained from TBS-injected mouse organ lysates.

免疫細胞活化小鼠經由尾靜脈進行靜脈注射含5 µg mRNA之選定的LNP。4小時後收集脾臟用於流式細胞分析術染色。製備脾細胞的單一細胞懸浮液,並與消化緩衝液(含有DNAse-1及膠原酶-III的DMEM)一起以規律搖動培育20分鐘。此後,將樣品與Fc阻斷劑和存活力染劑一起培育。培育並洗滌後,將細胞以細胞譜系標記和活化標記染色。在3-雷射AtuneNxt流式細胞儀上採集樣品。使用FlowJo軟體進行分析。 Immune Cell Activation Mice received intravenous injection of selected LNPs containing 5 µg mRNA via the tail vein. Spleens were harvested 4 hours later for flow cytometry staining. A single cell suspension of splenocytes was prepared and incubated with digestion buffer (DMEM containing DNAse-1 and collagenase-III) for 20 minutes with regular shaking. Thereafter, samples were incubated with Fc blockers and viability stains. After incubation and washing, cells were stained for cell lineage and activation markers. Samples were collected on a 3-laser AtuneNxt flow cytometer. Analysis was performed using FlowJo software.

實施例 4– 用於最大 T 細胞反應的 LNP 組成物之 DOE 驅動優化LNP庫是藉由將市售的可離子化的脂質Coatsome SS-EC與膽固醇、DOPE和聚乙二醇化脂質組合而生成的。DOPE已經是幾種已被批准的脂質體產品及正在研究的mRNA疫苗的一部分。對於當前的實驗,探索包含DMG-PEG2000的不同 LNP組成物。 Example 4 - DOE Driven Optimization of LNP Composition for Maximal T Cell Responses A LNP library was generated by combining the commercially available ionizable lipid Coatsome SS-EC with cholesterol, DOPE and PEGylated lipids . DOPE is already part of several approved liposomal products and an investigational mRNA vaccine. For the current experiment, different LNP compositions comprising DMG-PEG2000 were explored.

第一個LNP庫被設計為解決脂質莫耳比是否影響靜脈注射mRNA-LNP-疫苗接種所引起的T細胞反應,因此代表可以優化以提高疫苗效力的變量。SS-EC、DOPE及PEG-脂質的莫耳百分比被認為是獨立變數,而膽固醇被認為是填充脂質以將莫耳百分比平衡至100%。藉由使用DOE方法論,建立涉及11個LNPs的實驗設計(詳見表3中之組成)。 表2:DOE實驗中DMG-PEG2000 LNPs的組成 LNP編號 脂質比 CoatsomeSS-EC/DOPE/膽固醇/DMG-PEG2000 LNP1 50/15/33.75/1.25 LNP2 50/5/43.75/1.25 LNP3 40.5/12.24/46.48/0.78 LNP4 59.5/12.24/46.48/0.78 LNP5 40.5/12.24/45.54/1.72 LNP6 59.5/12.24/26.54/1.72 LNP7 36.6/7.76/54.39/1.25 LNP8 63.4/7.76/27.59/1.25 LNP9 50/7.76/41.66/0.58 LNP10 50/7.76/40.32/1.92 LNP11 50/10/38.75/1.25 The first LNP library was designed to address whether the lipid molar ratio affects T cell responses elicited by intravenous mRNA-LNP-vaccination and thus represents a variable that can be optimized to improve vaccine efficacy. The molar percentages of SS-EC, DOPE, and PEG-lipids were considered as independent variables, while cholesterol was considered as filler lipid to balance the molar percentages to 100%. By using the DOE methodology, an experimental design involving 11 LNPs (see composition in Table 3 for details) was established. Table 2: Composition of DMG-PEG2000 LNPs in DOE experiments LNP number Lipid ratio CoatsomeSS-EC/DOPE/Cholesterol/DMG-PEG2000 LNP1 50/15/33.75/1.25 LNP2 50/5/43.75/1.25 LNP3 40.5/12.24/46.48/0.78 LNP4 59.5/12.24/46.48/0.78 LNP5 40.5/12.24/45.54/1.72 LNP6 59.5/12.24/26.54/1.72 LNP7 36.6/7.76/54.39/1.25 LNP8 63.4/7.76/27.59/1.25 LNP9 50/7.76/41.66/0.58 LNP10 50/7.76/40.32/1.92 LNP11 50/10/38.75/1.25

11種脂質比均勻分布在實驗區域中(數據未顯示)。對於免疫原性篩選,三次i.v.免疫注射後血液中的E7特異性CD8 T細胞的百分比被認為是要被最大化的反應變數。為此,所有LNPs都將編碼人類乳突瘤病毒16 (HPV16)致癌蛋白E7的mRNA包裝作為抗原。結果證實我們的假設,即CD8 T細胞反應的強烈規模依賴於LNP組成。幾種mRNA-LNP疫苗引起超過50%的E7特異性CD8 T細胞反應,而其它mRNA-LNP-疫苗幾乎沒有引起任何反應(圖4a)。DMG-PEG2000的莫耳百分比被確定為與E7特異性CD8 T細胞反應的大小有關的關鍵參數。需要低莫耳百分比的PEG-脂質來達到最大的T細胞反應(圖4c)。The 11 lipid ratios were evenly distributed in the experimental area (data not shown). For the immunogenicity screen, the percentage of E7-specific CD8 T cells in the blood after three i.v. immunization injections was considered as the response variable to be maximized. To this end, all LNPs package mRNA encoding human papillomavirus 16 (HPV16) oncoprotein E7 as an antigen. The results confirm our hypothesis that the robust magnitude of CD8 T cell responses is dependent on LNP composition. Several mRNA-LNP vaccines elicited more than 50% E7-specific CD8 T-cell responses, whereas other mRNA-LNP-vaccines elicited hardly any responses (Fig. 4a). The molar percentage of DMG-PEG2000 was identified as a key parameter related to the magnitude of the E7-specific CD8 T cell response. A low molar percentage of PEG-lipid was required to achieve a maximal T cell response (Fig. 4c).

將貝氏(Bayesian)回歸模型化應用於數據以建立可預測某些LNP組成之免疫原性的反應面模型(數據未顯示)。為了驗證模型的預測價值,評估2種新的LNP組成(表3)。 表3:DOE實驗中DMG-PEG2000 LNPs的組成 LNP編號 脂質比 CoatsomeSS-EC/DOPE/膽固醇/DMG-PEG2000 LNP34 56.5/5.25/37.75/0.5 LNP35 (比較實施例) 42/12/44.5/1.5 Bayesian regression modeling was applied to the data to create a reaction surface model that could predict the immunogenicity of certain LNP components (data not shown). To validate the predictive value of the model, 2 new LNP compositions were evaluated (Table 3). Table 3: Composition of DMG-PEG2000 LNPs in DOE experiments LNP number Lipid ratio CoatsomeSS-EC/DOPE/Cholesterol/DMG-PEG2000 LNP34 56.5/5.25/37.75/0.5 LNP35 (comparative example) 42/12/44.5/1.5

以LNP34 (DMG-PEG2000)免疫的小鼠具有超過90%的概率引發>30% E7特異性CD8 T細胞(最佳LNP),而LNP35 (DMG-PEG2000)被預測產生較差的T細胞反應(非-最佳LNP)。實驗數據在很大程度上與預測相符,因此成功地驗證了模型。以預測的最佳LNP免疫的所有小鼠確實產生高於30%的E7特異性CD8 T細胞反應,而以LNP35免疫的所有小鼠皆未引發高於此閾值的T細胞反應(圖4b)。Mice immunized with LNP34 (DMG-PEG2000) had a greater than 90% probability of eliciting >30% E7-specific CD8 T cells (optimal LNP), whereas LNP35 (DMG-PEG2000) was predicted to produce poorer T cell responses (non- - optimal LNP). The experimental data largely matched the predictions, thus successfully validating the model. All mice immunized with the predicted optimal LNP did generate an E7-specific CD8 T cell response above 30%, whereas none of the mice immunized with LNP35 elicited a T cell response above this threshold (Fig. 4b).

實施例 5–mRNA 疫苗誘導定性的 T 細胞反應癌症免疫療法的成功受多種因素的影響,包括T細胞表型、功能和腫瘤浸潤。我們首先評估LNP34引起的T細胞反應的質量和可增強性。為此,小鼠在第0、7和14天接受三次初始免疫注射,然後在第50天接受了最終免疫注射。將E7 mRNA補充TriMix,此為3種免疫刺激mRNA的混合物(Bonehill et al., 2008),可增加T細胞反應的強度。 Example 5 - mRNA Vaccines Induce Qualitative T Cell Responses The success of cancer immunotherapy is influenced by several factors, including T cell phenotype, function, and tumor infiltration. We first assessed the quality and enhanceability of T cell responses elicited by LNP34. To this end, mice received three initial immunization injections on days 0, 7, and 14, followed by a final immunization injection on day 50. Supplementation of E7 mRNA with TriMix, a mixture of 3 immunostimulatory mRNAs (Bonehill et al., 2008), increases the strength of T cell responses.

在用E7-TriMix進行3次免疫注射後,血液中存在超過70%的E7特異性T細胞(圖5a)。第三次免疫注射後五週,E7特異性CD8 T細胞的百分比保持高度升高。在給予最後的加強免疫注射後,觀察到E7特異性效應子T細胞的快速擴增,因此證實疫苗是可加強的(圖5a)。每次免疫注射都會測量到血清中更高濃度的IFN-γ(圖5b),此反映了E7特異性T細胞數量的增加。After 3 immunization injections with E7-TriMix, more than 70% of E7-specific T cells were present in the blood (Fig. 5a). Five weeks after the third immunization, the percentage of E7-specific CD8 T cells remained highly elevated. A rapid expansion of E7-specific effector T cells was observed after the final booster injection, thus confirming that the vaccine was boostable (Fig. 5a). Higher concentrations of IFN-γ were measured in serum with each immunization injection (Fig. 5b), reflecting increased numbers of E7-specific T cells.

為了評估T細胞功能,我們在三次免疫注射後進行細胞內細胞激素染色。同時產生不止一種細胞激素的多功能CD8 T細胞與更好地控制傳染性疾病和腫瘤相關,且對於最佳LNP,貢獻約28%的CD8 E7特異性T細胞(圖5c)。To assess T cell function, we performed intracellular cytokine staining after three immunization injections. Multifunctional CD8 T cells simultaneously producing more than one cytokine were associated with better control of infectious diseases and tumors, and for optimal LNP, contributed about 28% of CD8 E7-specific T cells (Fig. 5c).

實施例 6–mRNA 疫苗誘導腫瘤消退在先天性小鼠腫瘤模型TC-1中評估治療性抗腫瘤功效,該模型藉由以HPV16 E6/E7抗原的反轉錄病毒轉導產生。當腫瘤平均直徑達到55 mm 3時,開始以藉由LNP34遞送的5μg E7-TriMix進行治療。此外,小鼠以抗 PD-1(或同種型對照抗體)進行治療。PD-1 在活化的T細胞上表現,與PD-L1相互作用後會抑制T細胞功能並誘導耐受。PD-1檢查點阻斷會維持T細胞反應性,且被批准用於轉移性或不可切除的複發性HNSCC病患的一線治療。LNP34疫苗接種導致TC-1腫瘤的完全消退(圖5d)和顯著延長的存活時間(圖5e),但腫瘤在停止治療後復發。抗PD1單一療法對攜帶TC-1的小鼠沒有提供任何治療益處。 Example 6 - mRNA Vaccine Induces Tumor Regression Therapeutic antitumor efficacy was assessed in the congenital mouse tumor model TC-1 generated by retroviral transduction with HPV16 E6/E7 antigens. Treatment with 5 μg of E7-TriMix delivered by LNP34 was started when the average tumor diameter reached 55 mm 3 . Additionally, mice were treated with anti-PD-1 (or an isotype control antibody). PD-1 is expressed on activated T cells and interacts with PD-L1 to inhibit T cell function and induce tolerance. PD-1 checkpoint blockade maintains T cell reactivity and is approved for the first-line treatment of patients with metastatic or unresectable recurrent HNSCC. LNP34 vaccination resulted in complete regression of TC-1 tumors (Fig. 5d) and significantly prolonged survival (Fig. 5e), but tumors recurred after cessation of treatment. Anti-PD1 monotherapy did not provide any therapeutic benefit in TC-1-bearing mice.

最後,我們評估疫苗引發的T細胞到達腫瘤床的能力。以各自的mRNA-LNP-疫苗免疫接種兩次導致CD8 +腫瘤浸潤性T細胞強烈浸潤到腫瘤中(圖5f),其中超過70%對E7具有特異性(圖5g)。將抗PD-1加至疫苗治療中並未顯著改變進入腫瘤的E7特異性CD8 T細胞的百分比。 Finally, we assessed the ability of vaccine-primed T cells to reach the tumor bed. Two immunizations with the respective mRNA-LNP-vaccine resulted in a strong infiltration of CD8 + tumor-infiltrating T cells into the tumor (Fig. 5f), of which more than 70% were specific for E7 (Fig. 5g). Adding anti-PD-1 to vaccine therapy did not significantly alter the percentage of E7-specific CD8 T cells entering the tumor.

實施例 7– 最佳 LNP 在脾臟中增加攝取並活化免疫細胞為了解決在器官和細胞類型水平上誘發的T細胞反應的規模與mRNA攝取和表現的生物分布之間是否存在相關性,我們將Cy5標記的螢火蟲螢光素酶mRNA封裝在DMG-PEG2000 LNP中,此等LNP先前已篩選免疫原性。注射LNP後4小時,在分離的肝臟、脾臟、肺、心臟和腎臟中測量螢光素酶活性。正如預期,LNP組成物對mRNA表現的強度和器官特異性有很強的影響。肝臟是主要的靶器官,其次是脾臟,但LNP之間的肝臟對脾臟的比例差異很大(圖6a)。第三次免疫注射後E7特異性CD8 T細胞反應的規模與脾臟表現呈正相關。總表現及T細胞反應之間不存在相關性進一步突顯出遞送至脾臟的重要性(數據未顯示)。在LNP大小之間也確認了顯著的相關性(與脂質組成物強烈糾結)。 Example 7 - Optimal LNP Increases Uptake and Activation of Immune Cells in the Spleen Tagged firefly luciferase mRNA was encapsulated in DMG-PEG2000 LNPs that were previously screened for immunogenicity. Four hours after LNP injection, luciferase activity was measured in isolated livers, spleens, lungs, hearts and kidneys. As expected, LNP composition had a strong effect on the strength and organ specificity of mRNA expression. The liver was the main target organ, followed by the spleen, but the ratio of liver to spleen varied widely between LNPs (Fig. 6a). The magnitude of the E7-specific CD8 T cell response after the third immunization was positively correlated with spleen presentation. The lack of correlation between total performance and T cell responses further underscores the importance of delivery to the spleen (data not shown). A significant correlation (strongly entangled with lipid composition) was also confirmed between LNP size.

我們接下來評估免疫原性是否與脾臟中特定免疫細胞類型的早期mRNA吸收及活化有關。LNP主要在巨噬細胞和單核細胞中積累(圖6b)。T細胞反應與脾巨噬細胞、單核細胞、漿細胞樣DC(pDC)及B細胞對LNP的攝取之間存在很強的整體相關性(資料未顯示)。We next assessed whether immunogenicity was associated with early mRNA uptake and activation of specific immune cell types in the spleen. LNP mainly accumulated in macrophages and monocytes (Fig. 6b). There was a strong overall correlation between T cell responses and uptake of LNP by splenic macrophages, monocytes, plasmacytoid DC (pDC), and B cells (data not shown).

為了進一步驗證脾臟中mRNA攝取和表現的重要性,我們比較最佳、高免疫性LNP34與非最佳、免疫性較差的LNP35之生物分布和細胞攝取廓線。相對於LNP35,LNP34顯著增加脾臟中的相對mRNA表現(圖6c),以及脾臟中巨噬細胞、B 細胞和DC的攝取(圖6d)。To further test the importance of mRNA uptake and expression in the spleen, we compared the biodistribution and cellular uptake profiles of optimal, highly immune LNP34 and non-optimal, less immune LNP35. Relative to LNP35, LNP34 significantly increased relative mRNA expression in spleen (Fig. 6c), as well as uptake by macrophages, B cells and DC in spleen (Fig. 6d).

與其次佳的對應物相比,最佳的mRNA LNP組成物LNP34引發血液中更高濃度的炎性細胞激素,表明增加的先天性活化(圖6e)。The optimal mRNA LNP composition, LNP34, elicited higher concentrations of inflammatory cytokines in the blood, indicating increased innate activation, compared to the next-best counterpart (Fig. 6e).

實施例 8– 本發明的其它 DMG-PEG2000 LNPs在此實施例中,測試更多感興趣的LNP(見表4)。對小鼠進行2次靜脈免疫注射,相隔1週。在第二次免疫注射後5天分析血液中的E7特異性T細胞。圖7中顯示的數據證明LNP59的性能明顯優於LNP53;且因此也非常適用於本發明的上下文中。LNP59再次顯示特徵為具有低百分比的PEG脂質,即0.5 mol%,但亦具有顯著較低的膽固醇濃度,即小於30 mol%;特別是約25 mol%。 表4:進一步的DMG-PEG2000 LNPs的組成 LNP編號 脂質比 CoatsomeSS-EC/DOPE/膽固醇/DMG-PEG2000 LNP53 (比較實施例) 50/10/38.5/1.5 LNP59 65/9.5/25/0.5 Example 8 - Other DMG-PEG2000 LNPs of the Invention In this example, more LNPs of interest were tested (see Table 4). Mice were given 2 intravenous immunizations, 1 week apart. E7-specific T cells in the blood were analyzed 5 days after the second immunization injection. The data shown in Figure 7 demonstrates that LNP59 performs significantly better than LNP53; and is therefore also well suited for use in the context of the present invention. LNP59 was again characterized by a low percentage of PEG lipids, ie 0.5 mol%, but also a significantly lower concentration of cholesterol, ie less than 30 mol%; in particular around 25 mol%. Table 4: Composition of further DMG-PEG2000 LNPs LNP number Lipid ratio CoatsomeSS-EC/DOPE/Cholesterol/DMG-PEG2000 LNP53 (comparative example) 50/10/38.5/1.5 LNP59 65/9.5/25/0.5

結論LNP組成物可藉由調整脂質比例來轉變成強的免疫原性。最佳的LNP組成物顯示在脾臟中的表現增加,及增強經多個APC群體的吸收。最佳的LNP誘導高濃度的第I型IFN,其被發現是T細胞反應誘發的關鍵。令人驚訝地,大部分mRNA的注射劑量與B細胞相關。B細胞顯示出活化的表型,並且對於抗原特異性CD8 T細胞的誘導至關重要,此指出B細胞先前未被事實證明的作用。 Conclusion LNP composition can be transformed into strong immunogenicity by adjusting the lipid ratio. Optimal LNP compositions showed increased expression in the spleen and enhanced uptake across multiple APC populations. Optimal LNPs induce high concentrations of type I IFN, which was found to be critical for the induction of T cell responses. Surprisingly, most of the injected doses of mRNA were associated with B cells. B cells display an activated phenotype and are critical for the induction of antigen-specific CD8 T cells, pointing to a previously undocumented role for B cells.

DoE方法成功地預測LNP組成物具有高或低的免疫性。最佳的LNP組成物促進了A)藉由脾臟APC,主要是B細胞的mRNA攝取和表現,B)先天活化,藉由炎性細胞激素的釋放增加和APC上活化標記的表現來證明,C)高規模和定性的T細胞反應,能夠消退已建立的TC-1腫瘤。發現第I型干擾素的誘導對i.v.投予之mRNA疫苗的功效至關重要。此外,B細胞對於T細胞反應的誘導至關重要,此可能部分是由於抗PEG抗體的產生。重要的是,存在抗LNP之抗體並不會干擾引發T細胞反應。考慮到許多人在接種有PEG化LNP之疫苗後會獲得PEG抗體,其係非常相關的。The DoE method successfully predicted LNP compositions with high or low immunity. Optimal LNP composition promotes A) mRNA uptake and expression by splenic APCs, mainly B cells, B) innate activation, evidenced by increased release of inflammatory cytokines and expression of activation markers on APCs, C ) high-scale and qualitative T-cell responses capable of regressing established TC-1 tumors. The induction of type I interferons was found to be critical for the efficacy of i.v. administered mRNA vaccines. Furthermore, B cells are critical for the induction of T cell responses, possibly due in part to the production of anti-PEG antibodies. Importantly, the presence of antibodies against LNP did not interfere with priming T cell responses. This is very relevant considering that many people will acquire PEG antibodies after vaccination with PEGylated LNP.

無。none.

無。none.

Claims (16)

一種脂質奈米粒子(LNP),其包含: - 可離子化的脂質; - 磷脂; - 固醇; - PEG脂質;及 - 一種或多種mRNA分子; 其特徵在於: 該PEG脂質為C14-PEG脂質; 該LNP包含小於約1 mol%之該PEG脂質; 該可離子化的脂質之莫耳百分比為約50~70 mol%之間;及 該固醇之莫耳百分比為約25 mol%或25 mol%以上。 A lipid nanoparticle (LNP) comprising: - ionizable lipids; - Phospholipids; - sterols; - PEG lipids; and - one or more mRNA molecules; It is characterized by: The PEG lipid is C14-PEG lipid; The LNP comprises less than about 1 mol% of the PEG lipid; The mole percentage of the ionizable lipid is between about 50-70 mol%; and The molar percentage of the sterol is about 25 mol% or more. 如請求項1之脂質奈米粒子(LNP),其包含: - 可離子化的脂質; - 磷脂; - 固醇; - PEG脂質;及 - 一種或多種mRNA分子; 其特徵在於: 該PEG脂質為C14-PEG脂質; 該LNP包含小於約1 mol%之該PEG脂質; 該可離子化的脂質之莫耳百分比為約50~60 mol%之間;及 該固醇之莫耳百分比為約30 mol%或30 mol%以上。 The lipid nanoparticle (LNP) of claim 1, which comprises: - ionizable lipids; - Phospholipids; - sterols; - PEG lipids; and - one or more mRNA molecules; It is characterized by: The PEG lipid is C14-PEG lipid; The LNP comprises less than about 1 mol% of the PEG lipid; The molar percentage of the ionizable lipid is between about 50-60 mol%; and The molar percentage of the sterol is about 30 mol% or more. 如請求項1或2之脂質奈米粒子,其中該LNP包含約0.5 mol%~約0.9 mol%之該PEG脂質;較佳為約0.5 mol%。The lipid nanoparticle according to claim 1 or 2, wherein the LNP comprises about 0.5 mol% to about 0.9 mol% of the PEG lipid; preferably about 0.5 mol%. 如請求項1至3中任一項之脂質奈米粒子,其中該磷脂之莫耳百分比小於約10 mol%;較佳為約5 mol%。The lipid nanoparticle according to any one of claims 1 to 3, wherein the molar percentage of the phospholipid is less than about 10 mol%; preferably about 5 mol%. 如請求項1至4中任一項之脂質奈米粒子,其中該可離子化的脂質對該磷脂之比例高於5:1;較佳地為約6:1至11:1之間;最佳為約11:1。The lipid nanoparticle according to any one of claims 1 to 4, wherein the ratio of the ionizable lipid to the phospholipid is higher than 5:1; preferably between about 6:1 and 11:1; most The best is about 11:1. 如請求項1至5中任一項之脂質奈米粒子,其中該可離子化的脂質之莫耳百分比為約55~60 mol%之間。The lipid nanoparticle according to any one of claims 1 to 5, wherein the mole percentage of the ionizable lipid is about 55-60 mol%. 如請求項1至6中任一項之脂質奈米粒子,其中該C14-PEG脂質為C14-PEG2000脂質,較佳為選自包含以下所列:DMG-PEG2000及DMPE-PEG2000,最佳為DMG-PEG2000。The lipid nanoparticle according to any one of claims 1 to 6, wherein the C14-PEG lipid is C14-PEG2000 lipid, preferably selected from the following list: DMG-PEG2000 and DMPE-PEG2000, most preferably DMG -PEG2000. 如請求項1至7中任一項之脂質奈米粒子,其中該可離子化的脂質選自包含以下所列: - 1,1‘-((2-(4-(2-((2-(雙(2-羥基十二烷基)胺基)乙基)(2-羥基十二烷基)胺基)乙基)哌
Figure 110126420-A0101-12-01
-1-基)乙基)氮烷二基)雙(十二烷基-2-醇)(C12-200); - 二亞麻油基甲基-4-二甲基胺基丁酸酯(DLin-MC3-DMA);或 - 式(I)化合物:
Figure 03_image101
其中: RCOO選自包含以下所列:肉豆蔻醯基、α-D-生育酚琥珀醯基、亞油醯基及油醯基;且X選自包含以下所列:
Figure 03_image103
; 較佳系該可離子化的脂質為式(I)之脂質,其中RCOO為α-D-生育酚琥珀醯基,且X為
Figure 03_image105
The lipid nanoparticle according to any one of claims 1 to 7, wherein the ionizable lipid is selected from the group consisting of: - 1,1'-((2-(4-(2-((2- (bis(2-hydroxydodecyl)amino)ethyl)(2-hydroxydodecyl)amino)ethyl)piperene
Figure 110126420-A0101-12-01
-1-yl)ethyl)azanediyl)bis(dodecyl-2-ol) (C12-200); -Dilinoleylmethyl-4-dimethylaminobutyrate (DLin - MC3-DMA); or - a compound of formula (I):
Figure 03_image101
wherein: RCOO is selected from the group consisting of myristyl, α-D-tocopheryl succinyl, linoleyl, and oleyl; and X is selected from the group consisting of:
Figure 03_image103
; Preferably, the ionizable lipid is a lipid of formula (I), wherein RCOO is α-D-tocopheryl succinyl, and X is
Figure 03_image105
.
如請求項1至8中任一項之脂質奈米粒子,其中該磷脂選自包含以下所列:DOPE、DOPC、DSPC及其等之混合物;特別是DOPE、DOPC及其等之混合物。The lipid nanoparticle according to any one of claims 1 to 8, wherein the phospholipid is selected from the following list: mixtures of DOPE, DOPC, DSPC and the like; especially mixtures of DOPE, DOPC and the like. 如請求項1至9中任一項之脂質奈米粒子,其中該固醇選自包含以下所列:膽固醇、麥角固醇、菜油固醇、氧固醇、樟芝素(antrosterol)、鏈固醇(desmosterol)、尼卡固醇(nicasterol)、穀固醇(sitosterol)及豆固醇;較佳為膽固醇。The lipid nanoparticle according to any one of claims 1 to 9, wherein the sterol is selected from the following list: cholesterol, ergosterol, campesterol, oxysterol, antrosterol, chain desmosterol, nicasterol, sitosterol and stigmasterol; preferably cholesterol. 如請求項1至10中任一項之脂質奈米粒子,其中該LNP包含: - 約56.5 mol%之該可離子化的脂質; - 約5 mol%之DOPE; - 約38 mol%之膽固醇;及 - 約0.5 mol%之DMG-PEG2000。 The lipid nanoparticle according to any one of claims 1 to 10, wherein the LNP comprises: - about 56.5 mol% of the ionizable lipid; - About 5 mol% of DOPE; - about 38 mol% cholesterol; and - About 0.5 mol% of DMG-PEG2000. 如請求項1至10中任一項之脂質奈米粒子,其中該LNP包含: - 約65 mol%之該可離子化的脂質; - 約9.5 mol%之DOPE; - 約25 mol%之膽固醇;及 - 約0.5 mol%之DMG-PEG2000。 The lipid nanoparticle according to any one of claims 1 to 10, wherein the LNP comprises: - about 65 mol% of the ionizable lipid; - About 9.5 mol% DOPE; - about 25 mol% cholesterol; and - About 0.5 mol% of DMG-PEG2000. 如請求項1至12中任一項之脂質奈米粒子,其中該一種或多種mRNA分子選自編碼免疫調節多肽之mRNA,例如選自編碼CD40L、CD70及caTLR4之mRNA分子;及/或編碼抗原之mRNA之群組。The lipid nanoparticle according to any one of claims 1 to 12, wherein the one or more mRNA molecules are selected from mRNA molecules encoding immunomodulatory polypeptides, such as mRNA molecules encoding CD40L, CD70 and caTLR4; and/or encoding antigens group of mRNAs. 一種醫藥組成物或疫苗,其包含如請求項1至13中任一項之一種或多種脂質奈米粒子及可接受的醫藥載劑。A pharmaceutical composition or vaccine, comprising one or more lipid nanoparticles according to any one of claims 1 to 13 and an acceptable pharmaceutical carrier. 如請求項1至13中任一項之脂質奈米粒子或如請求項14之醫藥組成物或疫苗,其係用於人類或獸醫之藥物。The lipid nanoparticle according to any one of claims 1 to 13 or the pharmaceutical composition or vaccine according to claim 14, which is used for human or veterinary medicine. 如請求項1至13中任一項之脂質奈米粒子或如請求項14之醫藥組成物或疫苗,其係用於治療癌症或傳染性疾病。The lipid nanoparticle according to any one of claims 1 to 13 or the pharmaceutical composition or vaccine according to claim 14, which is used for treating cancer or infectious diseases.
TW110126420A 2021-07-19 2021-07-19 Lipid nanoparticles TW202304505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110126420A TW202304505A (en) 2021-07-19 2021-07-19 Lipid nanoparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110126420A TW202304505A (en) 2021-07-19 2021-07-19 Lipid nanoparticles

Publications (1)

Publication Number Publication Date
TW202304505A true TW202304505A (en) 2023-02-01

Family

ID=86661277

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110126420A TW202304505A (en) 2021-07-19 2021-07-19 Lipid nanoparticles

Country Status (1)

Country Link
TW (1) TW202304505A (en)

Similar Documents

Publication Publication Date Title
US20230067722A1 (en) Lipid nanoparticles
JP7096282B2 (en) RNA preparation for immunotherapy
JP6716600B2 (en) Lipid particle formulations for delivery of RNA and water soluble therapeutically active compounds to target cells
JP2021511376A (en) Lipid nanoparticles
KR20230050313A (en) lipid nanoparticles
TW202146031A (en) Preparation and storage of liposomal rna formulations suitable for therapy
JP2023520506A (en) Multilayered RNA nanoparticle vaccine against SARS-COV-2
JP2022527830A (en) Preparation and storage of therapeutically suitable liposome RNA preparations
US20230114808A1 (en) Therapeutic rna for prostate cancer
US20220257631A1 (en) Therapeutic rna for ovarian cancer
WO2023111907A1 (en) Polynucleotide compositions and uses thereof
TW202304505A (en) Lipid nanoparticles
TW202245808A (en) Therapeutic rna for treating cancer
Du Lipid Nanoparticle-Messenger RNA for Cancer Immunotherapy and Genetic Disease Treatment
AU2022410694A1 (en) Polynucleotide compositions and uses thereof
TW202412818A (en) Engineered polynucleotides for temporal control of expression
TW202228727A (en) Preparation and storage of liposomal rna formulations suitable for therapy
JP2024522179A (en) Agents and methods for activating and targeting immune effector cells - Patents.com