TW202303840A - Electronic device and manufacturing method thereof - Google Patents

Electronic device and manufacturing method thereof Download PDF

Info

Publication number
TW202303840A
TW202303840A TW110125181A TW110125181A TW202303840A TW 202303840 A TW202303840 A TW 202303840A TW 110125181 A TW110125181 A TW 110125181A TW 110125181 A TW110125181 A TW 110125181A TW 202303840 A TW202303840 A TW 202303840A
Authority
TW
Taiwan
Prior art keywords
alignment mark
substrate
layer
dielectric layer
orthographic projection
Prior art date
Application number
TW110125181A
Other languages
Chinese (zh)
Other versions
TWI775519B (en
Inventor
黃志弘
林勝結
呂俊麟
Original Assignee
力晶積成電子製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 力晶積成電子製造股份有限公司 filed Critical 力晶積成電子製造股份有限公司
Priority to TW110125181A priority Critical patent/TWI775519B/en
Application granted granted Critical
Publication of TWI775519B publication Critical patent/TWI775519B/en
Publication of TW202303840A publication Critical patent/TW202303840A/en

Links

Images

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Control Of Vending Devices And Auxiliary Devices For Vending Devices (AREA)
  • Coupling Device And Connection With Printed Circuit (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)

Abstract

An electronic device includes a substrate, a dielectric layer, a conductive structure, a metal seed layer pattern, and a conductive metal line. The substrate includes a first alignment mark is laid on a first surface of the substrate. The dielectric layer is deposited on the first surface. The dielectric layer includes a second alignment mark that is laid on a second surface of the dielectric layer. The conductive structure is through the dielectric layer and is embedded in the substrate. The first alignment mark is aligned by the conductive structure. The conductive metal line and the metal seed layer pattern are deposited on the dielectric layer. The conductive metal line and the metal seed layer pattern are aligned to corresponding conductive structure through the second alignment mark. An orthogonal projection of the first alignment mark on the substrate overlaps an orthogonal projection of the second alignment mark on the substrate. A method of electrical device manufacturing was proposed that Al metal line connect with Cu after Cu CMP process.

Description

電子裝置及其製作方法Electronic device and manufacturing method thereof

本發明是有關於一種電子裝置製程,且特別是有關於一種包括對位標記的電子裝置及其製作方法。The present invention relates to an electronic device manufacturing process, and in particular to an electronic device including an alignment mark and a manufacturing method thereof.

在半導體裝置的製程中,會透過化學機械研磨製程(chemical mechanical polish,CMP)研磨矽穿孔(through silicon via,TSV)與介電層。再形成金屬層於介電層上以進行後續的圖案化製程。然而,在上述的CMP製程中,用於對位矽穿孔的對位標記會被磨平,而後製程金屬層沉積於矽穿孔與介電層上會覆蓋對位標記,使得對位標記的對比(contrast)降低而無法被觀察到,導致金屬層對應矽穿孔進行圖案化的對位效果極差。因此,會導致半導體裝置出現電性上的問題(如,斷路)。In the manufacturing process of semiconductor devices, through silicon vias (TSV) and dielectric layers are polished by chemical mechanical polish (CMP). A metal layer is then formed on the dielectric layer for subsequent patterning process. However, in the above-mentioned CMP process, the alignment mark used for aligning the TSV will be ground flat, and then the process metal layer deposited on the TSV and the dielectric layer will cover the alignment mark, so that the contrast of the alignment mark ( contrast) is reduced and cannot be observed, resulting in extremely poor alignment of the metal layer for patterning the TSVs. Therefore, electrical problems (eg, open circuit) may occur in the semiconductor device.

本發明提供一種電子裝置,其具有良好的對位效果及電性品質。The invention provides an electronic device with good alignment effect and electrical quality.

本發明提供一種電子裝置,其可在研磨製程後進行對位,且可簡化製程及降低成本。The invention provides an electronic device, which can be aligned after the grinding process, and can simplify the process and reduce the cost.

本發明提出一種電子裝置,包括基板、介電層、導電結構、晶種層圖案以及導電金屬線。基板具有的一表面。基板包括第一對位標記設置於第一表面。介電層沉積於第一表面上。介電層包括第二對位標記設置於第二表面。介電層位於第一表面與第二表面之間。導電結構貫穿介電層並嵌入基板。導電結構透過第一對位標記進行對位。導電金屬線設置於介電層上。導電金屬線透過第二對位標記進行對位以及對應連接至導電結構。第一對位標記於基板上的正投影重疊第二對位標記於基板上的正投影。The invention provides an electronic device, which includes a substrate, a dielectric layer, a conductive structure, a seed layer pattern and a conductive metal wire. The substrate has a surface. The substrate includes a first alignment mark disposed on the first surface. A dielectric layer is deposited on the first surface. The dielectric layer includes a second alignment mark disposed on the second surface. The dielectric layer is located between the first surface and the second surface. Conductive structures penetrate the dielectric layer and are embedded in the substrate. The conductive structure is aligned through the first alignment mark. The conductive metal lines are disposed on the dielectric layer. The conductive metal lines are aligned and correspondingly connected to the conductive structure through the second alignment mark. The orthographic projection of the first alignment mark on the substrate overlaps the orthographic projection of the second alignment mark on the substrate.

依照本發明的一實施例所述,上述的第二對位標記的寬度小於或等於第一對位標記的寬度。According to an embodiment of the present invention, the width of the above-mentioned second alignment mark is smaller than or equal to the width of the first alignment mark.

依照本發明的一實施例所述,上述的第二對位標記的高度小於或等於第一對位標記的高度。According to an embodiment of the present invention, the height of the second alignment mark is smaller than or equal to the height of the first alignment mark.

依照本發明的一實施例所述,還包括晶種層圖案設置於導電結構與導電金屬線之間。晶種層圖案於基板上的正投影重疊導電金屬線於基板上的正投影。According to an embodiment of the present invention, the seed layer pattern is further provided between the conductive structure and the conductive metal line. The orthographic projection of the seed layer pattern on the substrate overlaps the orthographic projection of the conductive metal lines on the substrate.

依照本發明的一實施例所述,上述的導電結構於基板上的正投影位於導電金屬線於基板上的正投影之內。According to an embodiment of the present invention, the above-mentioned orthographic projection of the conductive structure on the substrate is located within the orthographic projection of the conductive metal line on the substrate.

本發明提出一種電子裝置的製作方法,包括以下步驟。提供基板,且基板具有第一表面。進行第一次圖案化程序以在基板的第一表面上形成第一對位標記。形成介電層於第一表面上。介電層具有第二表面,且介電層位於第一表面與第二表面之間。透過第一對位標記進行對位以進行第二次圖案化程序,以在介電層中形成開口暴露基板。形成導電結構,導電結構貫穿介電層並嵌入基板。形成犧牲層氮化碳化矽(SiCN)於第二表面上並覆蓋導電結構。進行第三次圖案化程序,以在介電層的第二表面上形成第二對位標記。第一對位標記於基板上的正投影重疊第二對位標記於基板上的正投影。形成金屬層於第二表面上。以及,透過第二對位標記進行對位以圖案化金屬層。圖案化後的金屬層形成導電金屬線。導電金屬線於基板上的正投影對應重疊導電結構於基板上的正投影。The invention provides a manufacturing method of an electronic device, which includes the following steps. A substrate is provided, and the substrate has a first surface. A first patterning process is performed to form a first alignment mark on the first surface of the substrate. A dielectric layer is formed on the first surface. The dielectric layer has a second surface, and the dielectric layer is located between the first surface and the second surface. Alignment is performed through the first alignment mark to perform a second patterning process to form an opening in the dielectric layer to expose the substrate. A conductive structure is formed that penetrates the dielectric layer and is embedded in the substrate. A sacrificial layer of silicon carbide nitride (SiCN) is formed on the second surface and covers the conductive structure. A third patterning procedure is performed to form a second alignment mark on the second surface of the dielectric layer. The orthographic projection of the first alignment mark on the substrate overlaps the orthographic projection of the second alignment mark on the substrate. A metal layer is formed on the second surface. And, alignment is performed through the second alignment mark to pattern the metal layer. The patterned metal layer forms conductive metal lines. The orthographic projection of the conductive metal lines on the substrate corresponds to the orthographic projection of the overlapping conductive structure on the substrate.

依照本發明的一實施例所述,上述的第三次圖案化程序包括以下步驟。對犧牲層進行微影製程以在犧牲層形成開口並暴露第二表面。犧牲層的開口於基板上的正投影對應重疊第一對位標記於基板上的正投影,透過犧牲層的開口對介電層進行蝕刻製程,以形成第二對位標記。According to an embodiment of the present invention, the above-mentioned third patterning process includes the following steps. A lithography process is performed on the sacrificial layer to form an opening in the sacrificial layer and expose the second surface. The orthographic projection of the opening of the sacrificial layer on the substrate corresponds to the orthographic projection of the superimposed first alignment mark on the substrate, and the dielectric layer is etched through the opening of the sacrificial layer to form the second alignment mark.

依照本發明的一實施例所述,上述的金屬層具有第三對位標記設置於金屬層的第三表面上。金屬層位於第二表面與第三表面之間,且第三對位標記於基板上的正投影重疊第二對位標記於基板上的正投影。According to an embodiment of the present invention, the above metal layer has a third alignment mark disposed on the third surface of the metal layer. The metal layer is located between the second surface and the third surface, and the orthographic projection of the third alignment mark on the substrate overlaps the orthographic projection of the second alignment mark on the substrate.

依照本發明的一實施例所述,上述的在形成金屬層的步驟之前,更包括形成晶種層於第二表面上並覆蓋導電結構。晶種層位於介電層與金屬層之間。According to an embodiment of the present invention, before the above step of forming the metal layer, it further includes forming a seed layer on the second surface and covering the conductive structure. The seed layer is located between the dielectric layer and the metal layer.

依照本發明的一實施例所述,上述的圖案化金屬層的步驟包括以下步驟。透過對位於第二對位標記的第三對位標記進行對位以光阻圖案於第三表面上。光阻圖案於基板上的正投影對應重疊導電結構於基板上的正投影。透過光阻圖案對金屬層及晶種層進行蝕刻製程,以分別形成導電金屬線及晶種層圖案。晶種層圖案電性連接導電結構與導電金屬線。最後移除光阻圖案。According to an embodiment of the present invention, the above-mentioned step of patterning the metal layer includes the following steps. A photoresist pattern is formed on the third surface by aligning the third alignment mark located on the second alignment mark. The orthographic projection of the photoresist pattern on the substrate corresponds to the orthographic projection of the overlapping conductive structure on the substrate. The metal layer and the seed layer are etched through the photoresist pattern to form conductive metal lines and patterns of the seed layer respectively. The seed layer pattern is electrically connected to the conductive structure and the conductive metal line. Finally remove the photoresist pattern.

基於上述,在本發明所提出的電子裝置及其製作方法中,由於在研磨製程形成導電結構後仍能觀察到第一對位標記,且能對位於第一對位標記形成第二對位標記與第三對位標記,因此可以提升導電金屬線與導電結構的對位效果。此外,對位標記還具有高度差以提升對比與可見度。使電子裝置具有良好的對位效果與電性品質。另外,對位標記的形成簡單且可以有效解決CMP後平坦化所帶來的無法對位問題,此電子裝置的製造方法可以簡化並降低成本。Based on the above, in the electronic device and its manufacturing method proposed by the present invention, since the first alignment mark can still be observed after the conductive structure is formed in the grinding process, and the second alignment mark can be formed on the first alignment mark and the third alignment mark, so the alignment effect between the conductive metal line and the conductive structure can be improved. In addition, the registration marks have a height difference to improve contrast and visibility. The electronic device has a good alignment effect and electrical quality. In addition, the formation of alignment marks is simple and can effectively solve the problem of alignment failure caused by planarization after CMP, and the manufacturing method of the electronic device can simplify and reduce costs.

圖1至圖6為本發明一實施例的電子裝置的製造流程剖面圖。請先參考圖6,本實施例的電子裝置10包括基板110、介電層120、導電結構V1以及導電金屬線152。基板110包括第一對位標記114。介電層120設置於基板110上。介電層120包括第二對位標記124。導電結構V1貫穿介電層120並嵌入基板110。導電金屬線152覆蓋於介電層120上,且導電金屬線152電性連接至導電結構V1。值得注意的是,本實施例的電子裝置10的第一對位標記114於基板110上的正投影重疊第二對位標記124於基板110上的正投影。因此,當導電結構V1透過第一對位標記114進行對位後,導電金屬線152可透過重疊第一對位標記114的第二對位標記124進行對位,以對應重疊導電結構V1。如此一來,電子裝置10於製程中可以提升對位標記的對比及可見度,以在圖案化製程中提供良好的對位效果。此外,電子裝置10可以確保導電金屬線152電性連接至導電結構V1,以提供良好的電性品質。上述電子裝置10的製程可有效簡化並降低成本。1 to 6 are cross-sectional views of the manufacturing process of an electronic device according to an embodiment of the present invention. Please refer to FIG. 6 , the electronic device 10 of the present embodiment includes a substrate 110 , a dielectric layer 120 , a conductive structure V1 and a conductive metal wire 152 . The substrate 110 includes a first alignment mark 114 . The dielectric layer 120 is disposed on the substrate 110 . The dielectric layer 120 includes a second alignment mark 124 . The conductive structure V1 penetrates the dielectric layer 120 and is embedded in the substrate 110 . The conductive metal line 152 covers the dielectric layer 120, and the conductive metal line 152 is electrically connected to the conductive structure V1. It should be noted that the orthographic projection of the first alignment mark 114 on the substrate 110 of the electronic device 10 in this embodiment overlaps the orthographic projection of the second alignment mark 124 on the substrate 110 . Therefore, after the conductive structure V1 is aligned through the first alignment mark 114 , the conductive metal line 152 can be aligned through the second alignment mark 124 overlapping the first alignment mark 114 to correspond to the overlapping conductive structure V1 . In this way, the electronic device 10 can improve the contrast and visibility of the alignment marks during the manufacturing process, so as to provide a good alignment effect during the patterning process. In addition, the electronic device 10 can ensure that the conductive metal wire 152 is electrically connected to the conductive structure V1 to provide good electrical quality. The manufacturing process of the above-mentioned electronic device 10 can be effectively simplified and reduced in cost.

在一些實施例中,電子裝置10可以是半導體結構,例如包括矽晶片或矽晶圓。電子裝置10的導電結構V1可為銅的矽穿孔(through silicon via,TSV)。在基板110的上表面(例如為主動區),導電結構V1可以連接至鋁電路線或鋁接墊(又稱為導電金屬線152)。導電結構V1可以嵌入(embedded)於矽的基板110中以達成後續無凸塊(bumpless)對接的技術。在上述的設置下,本發明一實施例的電子裝置10可以是具有矽穿孔與電路線或接墊的矽晶片,且矽穿孔與導電金屬線為異質金屬,但不以此為限。電子裝置10可應用於三維晶片(3DIC)領域,但不以此為限。以下將簡單說明電子裝置10的製作方法。In some embodiments, the electronic device 10 may be a semiconductor structure, such as including a silicon wafer or a silicon wafer. The conductive structure V1 of the electronic device 10 may be a copper through silicon via (TSV). On the upper surface of the substrate 110 (for example, the active area), the conductive structure V1 may be connected to an aluminum circuit line or an aluminum pad (also referred to as a conductive metal line 152 ). The conductive structure V1 can be embedded in the silicon substrate 110 to achieve subsequent bumpless connection technology. Under the above configuration, the electronic device 10 according to an embodiment of the present invention may be a silicon wafer with TSVs and circuit lines or pads, and the TSVs and conductive metal lines are heterogeneous metals, but not limited thereto. The electronic device 10 can be applied in the field of three-dimensional chip (3DIC), but not limited thereto. The manufacturing method of the electronic device 10 will be briefly described below.

請參考圖1,提供基板110。基板110具有上表面及下表面。如圖1所示,上表面可定義為第一表面111。在一些實施例中,第一表面111可以是電子裝置10(繪示於圖6)的主動區,但不以此為限。基板110可為半導體基板,如矽基板或砷化鋁鎵(AlGaAs)基板等,但不以此為限。Referring to FIG. 1 , a substrate 110 is provided. The substrate 110 has an upper surface and a lower surface. As shown in FIG. 1 , the upper surface can be defined as a first surface 111 . In some embodiments, the first surface 111 may be an active area of the electronic device 10 (shown in FIG. 6 ), but not limited thereto. The substrate 110 can be a semiconductor substrate, such as a silicon substrate or an aluminum gallium arsenide (AlGaAs) substrate, but not limited thereto.

在一些實施例中,基板110的高度可定義為:於Z軸上,上表面至下表面之間的最大距離。Z軸例如為垂直基板110的第一表面111的法線方向(normal direction)。基板110的高度例如為700微米至850微米,但不以此為限。In some embodiments, the height of the substrate 110 can be defined as: the maximum distance between the upper surface and the lower surface on the Z-axis. The Z axis is, for example, a normal direction perpendicular to the first surface 111 of the substrate 110 . The height of the substrate 110 is, for example, 700 microns to 850 microns, but not limited thereto.

接著,進行第一次圖案化程序以在基板110的第一表面111上形成第一對位標記114。第一圖案化製程可為黃光微影蝕刻製程,包括在第一表面111上形成光阻材料後對光阻材料進行圖案化以形成罩幕(mask)。再以罩幕對基板110的第一表面111進行蝕刻以圖案化出具有高度差的第一對位標記114。在另一些實施例中,第一次圖案化程序也包括使用刀具或雷射在第一表面111上進行鑽削,以形成第一對位標記114。然後,移除罩幕。Next, a first patterning procedure is performed to form a first alignment mark 114 on the first surface 111 of the substrate 110 . The first patterning process may be a photolithography etching process, including patterning the photoresist material after forming the photoresist material on the first surface 111 to form a mask. The first surface 111 of the substrate 110 is then etched with a mask to pattern the first alignment marks 114 with height differences. In some other embodiments, the first patterning process also includes drilling on the first surface 111 with a cutter or a laser to form the first alignment mark 114 . Then, remove the mask.

在一些實施例中,第一對位標記114具有高度H1。高度H1可定義為:於Z軸上,第一表面111至第一對位標記114的底面113之間的最大距離。在一些實施例中,高度H1例如包括100奈米至500奈米,但不以此為限。在一些實施例中,第一對位標記114與基板110的高度比例如為200:750000,但不以此為限。In some embodiments, the first alignment mark 114 has a height H1. The height H1 can be defined as: the maximum distance between the first surface 111 and the bottom surface 113 of the first alignment mark 114 on the Z axis. In some embodiments, the height H1 includes, for example, 100 nm to 500 nm, but is not limited thereto. In some embodiments, the height ratio of the first alignment mark 114 to the substrate 110 is, for example, 200:750000, but not limited thereto.

在一些實施例中,第一對位標記114具有寬度W1。寬度W1可定義為:在垂直Z軸的方向上,第一對位標記114的相對兩個側壁之間的最大距離。在一些實施例中,寬度W1例如包括300奈米至5000奈米,但不以此為限。在一些實施例中,第一對位標記114的深寬比例如為1:10,但不以此為限。In some embodiments, the first alignment mark 114 has a width W1. The width W1 can be defined as: the maximum distance between two opposite sidewalls of the first alignment mark 114 in the direction perpendicular to the Z-axis. In some embodiments, the width W1 includes, for example, 300 nm to 5000 nm, but is not limited thereto. In some embodiments, the aspect ratio of the first alignment mark 114 is, for example, 1:10, but not limited thereto.

請參考圖2,接著形成介電層120於第一表面111上。介電層120具有第二表面121。介電層120位於第一表面111與第二表面121之間。在一些實施例中,第二表面121為介電層120遠離第一表面111的上表面。介電層120的材料例如是氧化矽、氮化矽或氮氧化矽,但不以此為限。介電層120的形成方法例如是化學氣相沉積法(chemical vapor deposition,CVD),但不以此為限。Referring to FIG. 2 , a dielectric layer 120 is then formed on the first surface 111 . The dielectric layer 120 has a second surface 121 . The dielectric layer 120 is located between the first surface 111 and the second surface 121 . In some embodiments, the second surface 121 is an upper surface of the dielectric layer 120 away from the first surface 111 . The material of the dielectric layer 120 is, for example, silicon oxide, silicon nitride or silicon oxynitride, but not limited thereto. The method for forming the dielectric layer 120 is, for example, chemical vapor deposition (CVD), but not limited thereto.

在一些實施例中,介電層120具有高度。介電層120的高度可定義為:於Z軸上,第一表面111至第二表面121之間的最大距離。介電層120的高度例如為50奈米至200奈米,但不以此為限。在一些實施例中,介電層120的部分覆蓋並填入第一對位標記114。In some embodiments, dielectric layer 120 has a height. The height of the dielectric layer 120 can be defined as: the maximum distance between the first surface 111 and the second surface 121 on the Z axis. The height of the dielectric layer 120 is, for example, 50 nm to 200 nm, but not limited thereto. In some embodiments, a portion of the dielectric layer 120 covers and fills the first alignment mark 114 .

接著,透過第一對位標記114進行對位以進行第二次圖案化程序,以在介電層120中形成開口126。第二圖案化製程可為黃光微影蝕刻製程,包括在第二表面121上形成光阻材料後對光阻材料進行圖案化以形成罩幕。再以罩幕對介電層120進行蝕刻以圖案化出開口126。開口126可貫穿介電層120並暴露出基板110的第一表面111。如圖2所示,開口126可為多個,但不以圖2所示的數量為限。Next, alignment is performed through the first alignment marks 114 to perform a second patterning process to form openings 126 in the dielectric layer 120 . The second patterning process may be a photolithography etching process, including patterning the photoresist material after forming the photoresist material on the second surface 121 to form a mask. The dielectric layer 120 is then etched with a mask to pattern the opening 126 . The opening 126 can penetrate through the dielectric layer 120 and expose the first surface 111 of the substrate 110 . As shown in FIG. 2 , there may be multiple openings 126 , but not limited to the number shown in FIG. 2 .

接著,可以透過罩幕與介電層120對基板110進行蝕刻製程以圖案化出開口116。開口116對應重疊開口126設置。開口116具有底面115。開口116的底面115與第一表面111之間具有高度差,以定義出開口116的高度H2。高度H2例如為3微米至48微米,但不以此為限。開口116的高度H2小於基板110的高度。也就是說,開口116不貫穿基板110,且底面115位於基板110中。Next, an etching process may be performed on the substrate 110 through the mask and the dielectric layer 120 to pattern the opening 116 . The opening 116 is disposed corresponding to the overlapping opening 126 . The opening 116 has a bottom surface 115 . There is a height difference between the bottom surface 115 of the opening 116 and the first surface 111 to define a height H2 of the opening 116 . The height H2 is, for example, 3 microns to 48 microns, but not limited thereto. The height H2 of the opening 116 is smaller than the height of the substrate 110 . That is to say, the opening 116 does not penetrate through the substrate 110 , and the bottom surface 115 is located in the substrate 110 .

然後,移除罩幕。Then, remove the mask.

在一些實施例中,也可以透過一次蝕刻形成開口126與開口116。開口126的側壁與開口116的側壁可以切齊或連續地延伸而形成一體成形的表面,但不以此為限。在一些實施例中,開口126的頂面寬度可在Z軸上往開口116逐漸減小。開口116的頂面寬度可在Z軸上往開口116的底面115逐漸減小。在剖面上,開口126與開口116的側面輪廓可以是上寬下窄的圓錐形或梯形,但不以此為限。In some embodiments, the opening 126 and the opening 116 can also be formed by one etch. The sidewalls of the opening 126 and the sidewalls of the opening 116 may be aligned or extend continuously to form an integrally formed surface, but not limited thereto. In some embodiments, the width of the top surface of the opening 126 may gradually decrease toward the opening 116 along the Z-axis. The width of the top surface of the opening 116 may gradually decrease toward the bottom surface 115 of the opening 116 along the Z axis. In section, the side profiles of the opening 126 and the opening 116 may be conical or trapezoidal with a wide top and a narrow bottom, but not limited thereto.

接著,在開口126與開口116中形成導電結構V1。形成導電結構V1的方式包括先在開口126與開口116的側壁以及底面115上形成種子層(seed layer)(未繪示),再以電鍍法形成導電材料層(未繪示)於開口126與開口116中。在一些實施例中,導電材料層的部分也可以設置於第二表面121上。在另一些實施例中,也可以不形成種子層而直接將導電材料層填入開口126與開口116中。舉例來說,導電材料層可透過物理氣相沉積法(physical vapor deposition)或化學氣相沉積法形成。在一些實施例中,導電材料層的材料包括金屬或金屬合金,例如為銅(Cu)、銅合金或其他合適的金屬或金屬合金,但不以此為限。Next, a conductive structure V1 is formed in the opening 126 and the opening 116 . The method of forming the conductive structure V1 includes first forming a seed layer (not shown) on the opening 126 and the side walls of the opening 116 and the bottom surface 115, and then forming a conductive material layer (not shown) on the opening 126 and the opening 116 by electroplating. opening 116. In some embodiments, portions of the conductive material layer may also be disposed on the second surface 121 . In other embodiments, the conductive material layer may be directly filled into the opening 126 and the opening 116 without forming a seed layer. For example, the conductive material layer can be formed by physical vapor deposition or chemical vapor deposition. In some embodiments, the material of the conductive material layer includes metal or metal alloy, such as copper (Cu), copper alloy or other suitable metal or metal alloy, but not limited thereto.

接著,進行研磨程序。研磨程序包括透過化學機械研磨(CMP)製程對介電層120與導電材料層進行研磨。研磨後的導電材料層可形成導電結構V1。圖2繪示了兩個導電結構V1,但數量不以此為限。Next, a grinding procedure is performed. The polishing process includes polishing the dielectric layer 120 and the conductive material layer through a chemical mechanical polishing (CMP) process. The ground conductive material layer can form the conductive structure V1. FIG. 2 shows two conductive structures V1, but the number is not limited thereto.

導電結構V1形成並填入開口126與開口116中。導電結構V1貫穿介電層120並嵌入基板110。在本發明的一實施例,導電結構V1可以是矽穿孔(TSV)。在研磨製程後,導電結構V1的頂面與介電層120的第二表面121切齊。在一些實施例中,導電結構V1的高度可定義為:於Z軸上,第二表面121與底面115之間的最大距離。導電結構V1的高度可以是開口116的高度與介電層120的高度的和,但不以此為限。導電結構V1的高度例如為5微米至50微米,但不以此為限。The conductive structure V1 is formed and filled in the opening 126 and the opening 116 . The conductive structure V1 penetrates the dielectric layer 120 and is embedded in the substrate 110 . In an embodiment of the present invention, the conductive structure V1 may be a through-silicon via (TSV). After the polishing process, the top surface of the conductive structure V1 is aligned with the second surface 121 of the dielectric layer 120 . In some embodiments, the height of the conductive structure V1 can be defined as: the maximum distance between the second surface 121 and the bottom surface 115 on the Z axis. The height of the conductive structure V1 may be the sum of the height of the opening 116 and the height of the dielectric layer 120 , but is not limited thereto. The height of the conductive structure V1 is, for example, 5 microns to 50 microns, but not limited thereto.

在此需注意的是,由於研磨形成導電結構V1的步驟在形成介電層120覆蓋第一對位標記114之後,因此CMP製程不會對第一對位標記114進行研磨。藉此,研磨程序不會影響第一對位標記114,可以維持第一對位標記114的高度差及可見度。It should be noted here that the CMP process will not grind the first alignment mark 114 because the step of grinding to form the conductive structure V1 is after the dielectric layer 120 is formed to cover the first alignment mark 114 . In this way, the grinding process will not affect the first alignment mark 114 , and the height difference and visibility of the first alignment mark 114 can be maintained.

接著,在第二表面121上形成犧牲層130並覆蓋導電結構V1。犧牲層130的材料包括氮化矽(SiN)或氮化碳化矽(SiCN),但不以此為限。犧牲層130可以做為頂蓋層保護導電結構V1,以減少後續製程汙染導電結構V1的材料的風險。Next, a sacrificial layer 130 is formed on the second surface 121 and covers the conductive structure V1. The material of the sacrificial layer 130 includes silicon nitride (SiN) or silicon carbide nitride (SiCN), but not limited thereto. The sacrificial layer 130 can be used as a top cover layer to protect the conductive structure V1 to reduce the risk of contamination of the material of the conductive structure V1 in subsequent processes.

然後,請參考圖3,進行第三次圖案化程序,以在介電層120的第二表面121上形成第二對位標記124。詳細來說,第三次圖案化程序包括以下步驟。透過第一對位標記114進行對位,以對犧牲層130進行黃光微影製程,包括在犧牲層130上形成光阻材料後對光阻材料進行圖案化以形成罩幕。再以罩幕對犧牲層130進行蝕刻以圖案化出開口134並暴露介電層120的第二表面121。具體來說,可將開口134對位於第一對位標記114。如此一來,犧牲層130的開口134於基板110上的正投影對應重疊第一對位標記114於基板110上的正投影。Then, referring to FIG. 3 , a third patterning process is performed to form a second alignment mark 124 on the second surface 121 of the dielectric layer 120 . In detail, the third patterning procedure includes the following steps. The alignment is performed through the first alignment mark 114 to perform a lithography process on the sacrificial layer 130 , including forming a photoresist material on the sacrificial layer 130 and then patterning the photoresist material to form a mask. The sacrificial layer 130 is then etched with a mask to pattern the opening 134 and expose the second surface 121 of the dielectric layer 120 . Specifically, the opening 134 can be aligned to the first alignment mark 114 . In this way, the orthographic projection of the opening 134 of the sacrificial layer 130 on the substrate 110 corresponds to the orthographic projection of the overlapping first alignment mark 114 on the substrate 110 .

接著,透過犧牲層130的開口134對介電層120進行蝕刻製程,以在第二表面121上形成具有高度差的第二對位標記124。然後,移除罩幕。Next, an etching process is performed on the dielectric layer 120 through the opening 134 of the sacrificial layer 130 to form a second alignment mark 124 with a height difference on the second surface 121 . Then, remove the mask.

在一些實施例中,第二對位標記124具有高度H3。高度H3可定義為:於Z軸上,第二表面121至第二對位標記124的底面123之間的最大距離。在一些實施例中,高度H3例如包括100奈米至200奈米,但不以此為限。在一些實施例中,第二對位標記124與介電層120的高度比例如為1:10,但不以此為限。In some embodiments, the second alignment mark 124 has a height H3. The height H3 can be defined as: the maximum distance between the second surface 121 and the bottom surface 123 of the second alignment mark 124 on the Z axis. In some embodiments, the height H3 includes, for example, 100 nm to 200 nm, but is not limited thereto. In some embodiments, the height ratio of the second alignment mark 124 to the dielectric layer 120 is, for example, 1:10, but not limited thereto.

在一些實施例中,第二對位標記124的高度H3可以小於或等於第一對位標記114的高度H1,但不以此為限。在其他實施例中,第二對位標記124的高度H3可以大於第一對位標記114的高度H1。In some embodiments, the height H3 of the second alignment mark 124 may be less than or equal to the height H1 of the first alignment mark 114 , but not limited thereto. In other embodiments, the height H3 of the second alignment mark 124 may be greater than the height H1 of the first alignment mark 114 .

在一些實施例中,第二對位標記124具有寬度W2。寬度W2可定義為:在垂直Z軸的方向上,第二對位標記124的相對兩個側壁之間的最大距離。在一些實施例中,寬度W2例如包括0.3微米至5微米,但不以此為限。在一些實施例中,第二對位標記124的深寬比例如為1:10,但不以此為限。In some embodiments, the second alignment mark 124 has a width W2. The width W2 can be defined as: the maximum distance between two opposite sidewalls of the second alignment mark 124 in the direction perpendicular to the Z-axis. In some embodiments, the width W2 includes, for example, 0.3 microns to 5 microns, but is not limited thereto. In some embodiments, the aspect ratio of the second alignment mark 124 is, for example, 1:10, but not limited thereto.

在一些實施例中,開口134的寬度可以等於第二對位標記124的寬度W2。換句話說,開口134的側壁可以切齊第二對位標記124的側壁,但不以此為限。在另一些實施例中,開口134的寬度可以大於或小於第二對位標記124的寬度W2。In some embodiments, the width of the opening 134 may be equal to the width W2 of the second alignment mark 124 . In other words, the sidewall of the opening 134 may be aligned with the sidewall of the second alignment mark 124 , but not limited thereto. In other embodiments, the width of the opening 134 may be larger or smaller than the width W2 of the second alignment mark 124 .

在上述的設置下,由於開口134可以對位於第一對位標記114設置,且第二對位標記124係透過開口134設置並對應重疊開口134,因此第一對位標記114於基板110上的正投影重疊第二標記124於基板110上的正投影。藉此,第二對位標記124對位於第一對位標記114。Under the above-mentioned setting, since the opening 134 can be arranged on the first alignment mark 114, and the second alignment mark 124 is set through the opening 134 and corresponds to the overlapping opening 134, so the first alignment mark 114 on the substrate 110 The orthographic projection overlaps the orthographic projection of the second mark 124 on the substrate 110 . Accordingly, the second alignment mark 124 is aligned with the first alignment mark 114 .

在一些實施例中,第二對位標記124的寬度W2可以小於或等於第一對位標記114的寬度W1,但不以此為限。在其他實施例中,第二對位標記124的寬度W2可以大於第一對位標記114的寬度W1。In some embodiments, the width W2 of the second alignment mark 124 may be smaller than or equal to the width W1 of the first alignment mark 114 , but not limited thereto. In other embodiments, the width W2 of the second alignment mark 124 may be greater than the width W1 of the first alignment mark 114 .

接著,移除犧牲層130。Next, the sacrificial layer 130 is removed.

然後,請參考圖4,形成晶種層140在第二表面121上。晶種層140覆蓋介電層120與導電結構V1。晶種層140的部分形成於第二對位標記124中。在一些實施例中,設置於第二對位標記124中的晶種層140的高度可以小於或等於第二對位標記124的高度H3,但不以此為限。晶種層140可應用為銅製程的阻障層以保護導電結構V1,以減少後續製程汙染導電結構V1的材料的風險。Then, referring to FIG. 4 , a seed layer 140 is formed on the second surface 121 . The seed layer 140 covers the dielectric layer 120 and the conductive structure V1. Portions of the seed layer 140 are formed in the second alignment marks 124 . In some embodiments, the height of the seed layer 140 disposed in the second alignment mark 124 may be less than or equal to the height H3 of the second alignment mark 124 , but not limited thereto. The seed layer 140 can be used as a barrier layer for copper process to protect the conductive structure V1, so as to reduce the risk of contamination of the material of the conductive structure V1 in subsequent processes.

晶種層140的材料例如是鈦(Ti)、氮化鈦(TiN)、鉭(Ta)、氮化鉭(TaN)或其組合。在本實施例中,導電層140的材料是以氮化鈦為例,但本發明並不以此為限。晶種層140的形成方法例如是物理氣相沉積法或化學氣相沉積法,但不以此為限。The material of the seed layer 140 is, for example, titanium (Ti), titanium nitride (TiN), tantalum (Ta), tantalum nitride (TaN) or a combination thereof. In this embodiment, the material of the conductive layer 140 is titanium nitride as an example, but the invention is not limited thereto. The method for forming the seed layer 140 is, for example, physical vapor deposition or chemical vapor deposition, but not limited thereto.

接著,形成金屬層150於第二表面121上。具體來說,形成金屬層150於晶種層140上。晶種層140位於介電層120與金屬層150之間。金屬層150具有第三表面151。金屬層150位於第二表面121與第三表面151之間。金屬層150的材料例如是鋁金屬(Al)或鋁銅合金(AlCu),但不以此為限。在本實施例中,金屬層150的材料是以鋁銅合金為例,但本發明並不以此為限。Next, a metal layer 150 is formed on the second surface 121 . Specifically, the metal layer 150 is formed on the seed layer 140 . The seed layer 140 is located between the dielectric layer 120 and the metal layer 150 . The metal layer 150 has a third surface 151 . The metal layer 150 is located between the second surface 121 and the third surface 151 . The material of the metal layer 150 is, for example, aluminum metal (Al) or aluminum copper alloy (AlCu), but not limited thereto. In this embodiment, the material of the metal layer 150 is aluminum-copper alloy as an example, but the invention is not limited thereto.

在一些實施例中,金屬層150的高度可定義為:於Z軸上,第三表面151至導電層140的上表面之間的最大距離。金屬層150的高度例如為0.2微米至1微米,但不以此為限。In some embodiments, the height of the metal layer 150 can be defined as: the maximum distance between the third surface 151 and the upper surface of the conductive layer 140 on the Z-axis. The height of the metal layer 150 is, for example, 0.2 micron to 1 micron, but not limited thereto.

在本實施例中,由於晶種層140的部分形成於第二對位標記124中,因此晶種層140重疊第二對位標記124的部分會形成一個具有高度差的凹槽。當金屬層150設置於晶種層140上時,金屬層150重疊晶種層140的凹槽的部分會形成一個具有高度差的第三對位標記154。第三對位標記154設置於金屬層150的第三表面151上。由於第三對位標記154重疊導電層140的凹槽,因此第三對位標記154會對位於第二對位標記124。第三對位標記154於基板110上的正投影重疊第二對位標記124於基板110上的正投影。此外,第三對位標記154於基板110上的正投影重疊第一對位標記114於基板110上的正投影。藉此,第三對位標記154的形成具有CMP後製程與鋁金屬製程接合的對準的技術應用,此方法有效改善原本無法對位的窘境。In this embodiment, since the part of the seed layer 140 is formed in the second alignment mark 124 , the part of the seed layer 140 overlapping the second alignment mark 124 forms a groove with a height difference. When the metal layer 150 is disposed on the seed layer 140 , the portion of the metal layer 150 overlapping the groove of the seed layer 140 forms a third alignment mark 154 with a height difference. The third alignment mark 154 is disposed on the third surface 151 of the metal layer 150 . Since the third alignment mark 154 overlaps the groove of the conductive layer 140 , the third alignment mark 154 will be aligned with the second alignment mark 124 . The orthographic projection of the third alignment mark 154 on the substrate 110 overlaps the orthographic projection of the second alignment mark 124 on the substrate 110 . In addition, the orthographic projection of the third alignment mark 154 on the substrate 110 overlaps the orthographic projection of the first alignment mark 114 on the substrate 110 . In this way, the formation of the third alignment mark 154 has the technical application of the alignment between the post-CMP process and the aluminum metal process, and this method effectively improves the dilemma that the original alignment cannot be achieved.

值得注意的是,由於覆蓋第一對位標記114與第二對位標記124的金屬層150可具有第三對位標記154,且第三對位標記154為具有高度差凹槽,因此使用者仍可在金屬層150的第三表面151上觀察到對位標記(即對位於第一對位標記114或第二對位標記124的第三對位標記154)。藉此,對位標記的對比與可見度可被提升。It is worth noting that since the metal layer 150 covering the first alignment mark 114 and the second alignment mark 124 can have a third alignment mark 154, and the third alignment mark 154 has a height difference groove, so the user The alignment mark (ie, the third alignment mark 154 aligned with the first alignment mark 114 or the second alignment mark 124 ) can still be observed on the third surface 151 of the metal layer 150 . Thereby, the contrast and visibility of the registration marks can be improved.

在一些實施例中,第三對位標記154具有高度H4。高度H4可定義為:於Z軸上,第三表面151至第三對位標記154的底面153之間的最大距離。在一些實施例中,高度H4例如包括100奈米至200奈米,但不以此為限。在一些實施例中,第三對位標記154與金屬層150的高度比例如為1:3,但不以此為限。In some embodiments, the third alignment mark 154 has a height H4. The height H4 can be defined as: on the Z axis, the maximum distance between the third surface 151 and the bottom surface 153 of the third alignment mark 154 . In some embodiments, the height H4 includes, for example, 100 nm to 200 nm, but is not limited thereto. In some embodiments, the height ratio of the third alignment mark 154 to the metal layer 150 is, for example, 1:3, but not limited thereto.

在一些實施例中,第三對位標記154具有寬度W3。寬度W3可定義為:在垂直Z軸的方向上,第三對位標記154的相對兩個側壁之間的最大距離。在一些實施例中,寬度W3例如包括0.3微米至5微米,但不以此為限。在一些實施例中,第三對位標記154的深寬比例如為1:20,但不以此為限。In some embodiments, the third alignment mark 154 has a width W3. The width W3 can be defined as: the maximum distance between two opposite sidewalls of the third alignment mark 154 in the direction perpendicular to the Z-axis. In some embodiments, the width W3 includes, for example, 0.3 microns to 5 microns, but is not limited thereto. In some embodiments, the aspect ratio of the third alignment mark 154 is, for example, 1:20, but not limited thereto.

接著,請參考圖5及圖6,對金屬層150進行圖案化。對金屬層150進行圖案化的步驟包括以下步驟。透過對位於第二對位標記124的第三對位標記154進行對位,以形成光阻圖案PR於第三表面151上。形成光阻圖案PR的方法包括形成光阻材料於第三表面151上,再透過第三對位標記154進行對位以對光阻材料進行圖案化形成光阻圖案PR。光阻圖案PR於基板110上的正投影可對位重疊導電結構V1於基板110上的正投影。在一些實施例中,導電結構V1於基板110上的正投影可位於光阻圖案PR於基板110上的正投影內,但不以此為限。Next, referring to FIG. 5 and FIG. 6 , the metal layer 150 is patterned. The step of patterning the metal layer 150 includes the following steps. The photoresist pattern PR is formed on the third surface 151 by aligning the third alignment mark 154 located on the second alignment mark 124 . The method for forming the photoresist pattern PR includes forming a photoresist material on the third surface 151 , and performing alignment through the third alignment mark 154 to pattern the photoresist material to form the photoresist pattern PR. The orthographic projection of the photoresist pattern PR on the substrate 110 can be aligned with the orthographic projection of the conductive structure V1 on the substrate 110 . In some embodiments, the orthographic projection of the conductive structure V1 on the substrate 110 may be located within the orthographic projection of the photoresist pattern PR on the substrate 110 , but not limited thereto.

然後,透過對位於第三對位標記154及第二對位標記124的光阻圖案PR做為罩幕,對金屬層150及晶種層140進行圖案化製程。上述圖案化製程包括蝕刻製程,以分別圖案化金屬層150形成導電金屬線152與圖案化晶種層140形成晶種層圖案142。導電金屬線152與晶種層圖案142設置於介電層120上。晶種層圖案142設置於導電結構V1與導電金屬線152之間,且晶種層圖案142電性連接導電結構V1與導電金屬線152。導電金屬線152可應用為電子裝置10在主動面的接墊(pad)。在上述的設置下,可以達成銅導電結構與鋁銅導電金屬線的異質金屬連接的技術。Then, the metal layer 150 and the seed layer 140 are patterned by using the photoresist pattern PR located on the third alignment mark 154 and the second alignment mark 124 as a mask. The above patterning process includes an etching process to respectively pattern the metal layer 150 to form the conductive metal line 152 and pattern the seed layer 140 to form the seed layer pattern 142 . The conductive metal lines 152 and the seed layer pattern 142 are disposed on the dielectric layer 120 . The seed layer pattern 142 is disposed between the conductive structure V1 and the conductive metal line 152 , and the seed layer pattern 142 is electrically connected to the conductive structure V1 and the conductive metal line 152 . The conductive metal wire 152 can be used as a pad on the active surface of the electronic device 10 . Under the above arrangement, the technology of heterogeneous metal connection between the copper conductive structure and the aluminum-copper conductive metal line can be achieved.

接著,移除光阻圖案PR。至此,大致完成電子裝置10的製作。Next, the photoresist pattern PR is removed. So far, the fabrication of the electronic device 10 is roughly completed.

在一些實施例中,由於可透過光阻圖案PR形成導電金屬線152與晶種層圖案142,因此晶種層圖案142於基板110上的正投影重疊導電金屬線152於基板110上的正投影。此外,導電金屬線152可以完全重疊晶種層圖案142,即導電金屬線152的側壁可以切齊晶種層圖案142的側壁,但不以此為限。In some embodiments, since the conductive metal line 152 and the seed layer pattern 142 can be formed through the photoresist pattern PR, the orthographic projection of the seed layer pattern 142 on the substrate 110 overlaps the orthographic projection of the conductive metal line 152 on the substrate 110 . In addition, the conductive metal lines 152 can completely overlap the seed layer patterns 142 , that is, the sidewalls of the conductive metal lines 152 can be aligned with the sidewalls of the seed layer patterns 142 , but not limited thereto.

在另一些實施例中,導電金屬線152的寬度可以大於導電結構V1的頂面的寬度,但不以此為限。因此,導電結構V1於基板110上的正投影位於導電金屬線152於基板110上的正投影之內。如此一來,可以確保導電金屬線152與導電結構V1的電性連接,使電子裝置10具有良好的電性品質。In other embodiments, the width of the conductive metal line 152 may be greater than the width of the top surface of the conductive structure V1, but not limited thereto. Therefore, the orthographic projection of the conductive structure V1 on the substrate 110 is located within the orthographic projection of the conductive metal line 152 on the substrate 110 . In this way, the electrical connection between the conductive metal wire 152 and the conductive structure V1 can be ensured, so that the electronic device 10 has good electrical quality.

簡言之,本發明一實施例的電子裝置10可透過第一對位標記114對導電結構V1進行對位設置。接著,可透過形成重疊第一對位標記114的第二對位標記124。再透過第二對位標記124進行對位以圖案化金屬層150。圖案化後的金屬層150形成導電金屬線152,且導電金屬線152於基板110上的正投影對應重疊導電結構V1於基板110上的正投影。因此,本實施例的電子裝置10的製程可以在對導電結構V1進行研磨製程後,仍能觀察到第一對位標記114,且還能透過第二對位標記124與第三對位標記154具有高度差的設置提升對位標記的對比與可見度,降低異質金屬連接對於對位標記之對比的影響。如此一來,導電金屬線152對位至導電結構V1的效果良好,且能有效對位以避免斷線。使電子裝置10具有良好的電性品質。另外,晶種層140應用在銅製程的阻障層還能保護銅的導電結構V1不受鋁銅製程互換所帶來的汙染風險,增加電性品質。In short, the electronic device 10 according to an embodiment of the present invention can perform alignment on the conductive structure V1 through the first alignment mark 114 . Next, the second alignment mark 124 overlapping the first alignment mark 114 can be formed through penetration. Alignment is then performed through the second alignment mark 124 to pattern the metal layer 150 . The patterned metal layer 150 forms conductive metal lines 152 , and the orthographic projection of the conductive metal lines 152 on the substrate 110 corresponds to the orthographic projection of the overlapping conductive structure V1 on the substrate 110 . Therefore, in the manufacturing process of the electronic device 10 of this embodiment, the first alignment mark 114 can still be observed after the conductive structure V1 is polished, and the second alignment mark 124 and the third alignment mark 154 can also be seen through. The arrangement with the height difference improves the contrast and visibility of the registration marks and reduces the effect of the heterogeneous metal connection on the contrast of the registration marks. In this way, the alignment effect of the conductive metal wire 152 to the conductive structure V1 is good, and the alignment can be effective to avoid disconnection. The electronic device 10 has good electrical quality. In addition, the use of the seed layer 140 as a barrier layer in the copper process can also protect the copper conductive structure V1 from the pollution risk caused by the exchange of aluminum and copper processes, and improve the electrical quality.

綜上所述,上述本發明的實施例的電子裝置及其製造方法,由於在研磨製程形成導電結構後仍能觀察到第一對位標記,且能對位於第一對位標記形成第二對位標記與第三對位標記,因此可以提升導電金屬線與導電結構的對位效果,以避免斷線。此外,對位標記還具有高度差以提升對比與可見度。使電子裝置具有良好的對位效果與電性品質。另外,對位標記的形成簡單且具有良好的對比度,使電子裝置的製造方法可以簡化並降低成本。In summary, the electronic device and the manufacturing method thereof according to the above-mentioned embodiments of the present invention can still observe the first alignment mark after the conductive structure is formed in the grinding process, and can form the second alignment mark on the first alignment mark. The alignment mark and the third alignment mark can improve the alignment effect between the conductive metal line and the conductive structure to avoid wire breakage. In addition, the registration marks have a height difference to improve contrast and visibility. The electronic device has a good alignment effect and electrical quality. In addition, the formation of the alignment mark is simple and has good contrast, so that the manufacturing method of the electronic device can be simplified and the cost can be reduced.

10:電子裝置 110:基板 111:第一表面 113、115、123、153:底面 114:第一對位標記 116、126、134:開口 120:介電層 121:第二表面 124:第二對位標記 130:犧牲層 140:晶種層 142:晶種層圖案 150:金屬層 151:第三表面 152:導電金屬線 154:第三對位標記 H1、H2、H3、H4:高度 PR:光阻圖案 V1:導電結構 W1、W2、W3:寬度 Z:軸 10: Electronic device 110: Substrate 111: first surface 113, 115, 123, 153: bottom surface 114: The first alignment mark 116, 126, 134: opening 120: dielectric layer 121: second surface 124: Second alignment mark 130: sacrificial layer 140: Seed layer 142: Seed layer pattern 150: metal layer 151: third surface 152: Conductive metal wire 154: The third alignment mark H1, H2, H3, H4: Height PR: photoresist pattern V1: conductive structure W1, W2, W3: Width Z: axis

圖1至圖6為本發明一實施例的電子裝置的製造流程剖面圖。1 to 6 are cross-sectional views of the manufacturing process of an electronic device according to an embodiment of the present invention.

10:電子裝置 10: Electronic device

110:基板 110: Substrate

114:第一對位標記 114: The first alignment mark

120:介電層 120: dielectric layer

124:第二對位標記 124: Second alignment mark

142:晶種層圖案 142: Seed layer pattern

152:導電金屬線 152: Conductive metal wire

V1:導電結構 V1: conductive structure

Z:軸 Z: axis

Claims (10)

一種電子裝置,包括: 基板,具有第一表面,所述基板包括第一對位標記設置於所述第一表面; 介電層,設置於所述第一表面上,所述介電層包括第二對位標記設置於所述介電層的第二表面,且所述介電層位於所述第一表面與所述第二表面之間; 導電結構貫穿所述介電層並嵌入所述基板,所述導電結構透過所述第一對位標記進行對位;以及 導電金屬線設置於所述介電層上,所述導電金屬線透過所述第二對位標記進行對位以對應連接至所述導電結構, 其中所述第一對位標記於所述基板上的正投影重疊所述第二對位標記於所述基板上的正投影。 An electronic device comprising: a substrate having a first surface, the substrate including a first alignment mark disposed on the first surface; a dielectric layer disposed on the first surface, the dielectric layer includes a second alignment mark disposed on the second surface of the dielectric layer, and the dielectric layer is located between the first surface and the between said second surfaces; a conductive structure penetrates the dielectric layer and is embedded in the substrate, and the conductive structure performs alignment through the first alignment mark; and a conductive metal wire is disposed on the dielectric layer, and the conductive metal wire is aligned through the second alignment mark so as to be correspondingly connected to the conductive structure, Wherein the orthographic projection of the first alignment mark on the substrate overlaps the orthographic projection of the second alignment mark on the substrate. 如請求項1所述的電子裝置,其中所述第二對位標記的寬度小於或等於所述第一對位標記的寬度。The electronic device according to claim 1, wherein the width of the second alignment mark is smaller than or equal to the width of the first alignment mark. 如請求項1所述的電子裝置,其中所述第二對位標記的高度小於或等於所述第一對位標記的高度。The electronic device according to claim 1, wherein the height of the second alignment mark is smaller than or equal to the height of the first alignment mark. 如請求項1所述的電子裝置,更包括晶種層圖案設置於所述導電結構與所述導電金屬線之間,其中所述晶種層圖案於所述基板上的正投影重疊所述導電金屬線於所述基板上的正投影。The electronic device according to claim 1, further comprising a seed layer pattern disposed between the conductive structure and the conductive metal line, wherein the orthographic projection of the seed layer pattern on the substrate overlaps the conductive The orthographic projection of the metal line on the substrate. 如請求項1所述的電子裝置,其中所述導電結構於所述基板上的正投影位於所述導電金屬線於所述基板上的正投影之內。The electronic device according to claim 1, wherein the orthographic projection of the conductive structure on the substrate is located within the orthographic projection of the conductive metal line on the substrate. 一種電子裝置的製作方法,包括: 提供基板,所述基板具有第一表面; 進行第一次圖案化程序以在所述基板的第一表面上形成第一對位標記; 形成介電層於所述第一表面上,所述介電層具有第二表面,且所述介電層位於所述第一表面與所述第二表面之間; 透過所述第一對位標記進行對位以進行第二次圖案化程序,以在所述介電層中形成開口暴露所述基板; 形成導電結構,所述導電結構貫穿所述介電層並嵌入所述基板; 形成犧牲層於所述第二表面上並覆蓋所述導電結構; 進行第三次圖案化程序,以在所述介電層的所述第二表面上形成第二對位標記,其中所述第一對位標記於所述基板上的正投影重疊所述第二對位標記於所述基板上的正投影; 形成金屬層於所述第二表面上;以及 透過所述第二對位標記進行對位以圖案化所述金屬層,圖案化後的所述金屬層形成導電金屬線,所述導電金屬線於所述基板上的正投影對應重疊所述導電結構於所述基板上的正投影。 A method of manufacturing an electronic device, comprising: providing a substrate having a first surface; performing a first patterning process to form a first alignment mark on the first surface of the substrate; forming a dielectric layer on the first surface, the dielectric layer has a second surface, and the dielectric layer is located between the first surface and the second surface; performing alignment through the first alignment mark to perform a second patterning process to form an opening in the dielectric layer to expose the substrate; forming a conductive structure penetrating through the dielectric layer and embedded in the substrate; forming a sacrificial layer on the second surface and covering the conductive structure; performing a third patterning process to form a second alignment mark on the second surface of the dielectric layer, wherein the orthographic projection of the first alignment mark on the substrate overlaps the second alignment mark an orthographic projection of the alignment mark on the substrate; forming a metal layer on the second surface; and Aligning through the second alignment mark to pattern the metal layer, the patterned metal layer forms a conductive metal line, and the orthographic projection of the conductive metal line on the substrate corresponds to overlapping the conductive An orthographic projection of the structure on the substrate. 如請求項6所述的方法,其中所述第三次圖案化程序包括: 對所述犧牲層進行微影製程以在所述犧牲層形成開口並暴露所述第二表面,所述犧牲層的所述開口於所述基板上的正投影對應重疊所述第一對位標記於所述基板上的所述正投影;以及 透過所述犧牲層的所述開口對所述介電層進行蝕刻製程,以形成所述第二對位標記。 The method according to claim 6, wherein the third patterning procedure comprises: performing a lithography process on the sacrificial layer to form an opening in the sacrificial layer and exposing the second surface, and the orthographic projection of the opening of the sacrificial layer on the substrate corresponds to overlap the first alignment mark said orthographic projection on said substrate; and Etching the dielectric layer through the opening of the sacrificial layer to form the second alignment mark. 如請求項6所述的方法,其中所述金屬層具有第三對位標記設置於所述金屬層的第三表面上,所述金屬層位於所述第二表面與所述第三表面之間,且所述第三對位標記於所述基板上的正投影重疊所述第二對位標記於所述基板上的所述正投影。The method according to claim 6, wherein the metal layer has a third alignment mark disposed on a third surface of the metal layer, and the metal layer is located between the second surface and the third surface , and the orthographic projection of the third alignment mark on the substrate overlaps the orthographic projection of the second alignment mark on the substrate. 如請求項8所述的方法,其中在所述形成所述金屬層的步驟之前,更包括形成晶種層於所述第二表面上並覆蓋所述導電結構,所述晶種層位於所述介電層與所述金屬層之間。The method according to claim 8, wherein before the step of forming the metal layer, further comprising forming a seed layer on the second surface and covering the conductive structure, the seed layer is located on the between the dielectric layer and the metal layer. 如請求項9所述的方法,其中所述圖案化所述金屬層的步驟包括: 透過對位於所述第二對位標記的所述第三對位標記進行對位以形成光阻圖案於所述第三表面上,所述光阻圖案於所述基板上的正投影對應重疊所述導電結構於所述基板上的所述正投影; 透過所述光阻圖案對所述金屬層及所述晶種層進行蝕刻製程,以分別形成所述導電金屬線及晶種層圖案,其中所述晶種層圖案電性連接所述導電結構與所述導電金屬線;以及 移除所述光阻圖案。 The method according to claim 9, wherein said step of patterning said metal layer comprises: By aligning the third alignment mark located on the second alignment mark to form a photoresist pattern on the third surface, the orthographic projection of the photoresist pattern on the substrate corresponds to overlapping the orthographic projection of the conductive structure on the substrate; Etching the metal layer and the seed layer through the photoresist pattern to respectively form the conductive metal line and the seed layer pattern, wherein the seed layer pattern is electrically connected to the conductive structure and the seed layer pattern. the conductive metal wire; and removing the photoresist pattern.
TW110125181A 2021-07-08 2021-07-08 Electronic device and manufacturing method thereof TWI775519B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110125181A TWI775519B (en) 2021-07-08 2021-07-08 Electronic device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110125181A TWI775519B (en) 2021-07-08 2021-07-08 Electronic device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TWI775519B TWI775519B (en) 2022-08-21
TW202303840A true TW202303840A (en) 2023-01-16

Family

ID=83807200

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110125181A TWI775519B (en) 2021-07-08 2021-07-08 Electronic device and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI775519B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5038612B2 (en) * 2005-09-29 2012-10-03 富士通セミコンダクター株式会社 Semiconductor device
US8928159B2 (en) * 2010-09-02 2015-01-06 Taiwan Semiconductor Manufacturing & Company, Ltd. Alignment marks in substrate having through-substrate via (TSV)
US9437550B2 (en) * 2013-12-16 2016-09-06 Globalfoundries Singapore Pte. Ltd. TSV without zero alignment marks
US9899342B2 (en) * 2016-03-15 2018-02-20 Taiwan Semiconductor Manufacturing Co., Ltd. Integrated fan-out package, redistribution circuit structure, and method of fabricating the same

Also Published As

Publication number Publication date
TWI775519B (en) 2022-08-21

Similar Documents

Publication Publication Date Title
US11004832B2 (en) System, structure, and method of manufacturing a semiconductor substrate stack
TWI514442B (en) Single mask via method and device
TWI387018B (en) Interconnect structures with bond-pads and methods of forming bump sites on bond-pads
US7825024B2 (en) Method of forming through-silicon vias
US20170186704A1 (en) Method for manufacturing a semiconductor device having moisture-resistant rings being formed in a peripheral region
US8580682B2 (en) Cost-effective TSV formation
TWI691454B (en) Monolithic integration of mems and ic devices and method of forming the same
CN105374772A (en) Structure and formation method of dual damascene structure
TW201742227A (en) Methods of forming semiconductor structures
US6130149A (en) Approach for aluminum bump process
US11804458B2 (en) Method of fabricating integrated circuit device
US11508619B2 (en) Electrical connection structure and method of forming the same
TWI789814B (en) Semiconductor structure and manufacturing method thereof
US20130020721A1 (en) Semiconductor device and method for manufacturing the same
TWI775519B (en) Electronic device and manufacturing method thereof
KR100620430B1 (en) Alignment key structure of a semiconductor device and method of forming the same
TWI722957B (en) Semiconductor device and method of manufacturing the same
JP4587604B2 (en) Manufacturing method of semiconductor device
JP2737979B2 (en) Semiconductor device
KR102319994B1 (en) Semiconductor structure and manufacturing method for the same
TWI847486B (en) Semiconductor device and method of manufacturing the same
TWI793597B (en) Semiconductor device and method for fabricating the same
US20230377968A1 (en) Redistribution layer metallic structure and method
US20240021470A1 (en) Semiconductor device and manufacturing method therefor
US7833896B2 (en) Aluminum cap for reducing scratch and wire-bond bridging of bond pads

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent