TW202303313A - 程序狀態預測系統 - Google Patents

程序狀態預測系統 Download PDF

Info

Publication number
TW202303313A
TW202303313A TW111120861A TW111120861A TW202303313A TW 202303313 A TW202303313 A TW 202303313A TW 111120861 A TW111120861 A TW 111120861A TW 111120861 A TW111120861 A TW 111120861A TW 202303313 A TW202303313 A TW 202303313A
Authority
TW
Taiwan
Prior art keywords
reservoir
unit
program state
learning
prediction
Prior art date
Application number
TW111120861A
Other languages
English (en)
Inventor
斉藤友貴哉
筒井拓郎
凌元傑
大和田伸
浅井哲也
赤井恵
Original Assignee
日商東京威力科創股份有限公司
國立大學法人北海道大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商東京威力科創股份有限公司, 國立大學法人北海道大學 filed Critical 日商東京威力科創股份有限公司
Publication of TW202303313A publication Critical patent/TW202303313A/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • Medical Informatics (AREA)
  • Artificial Intelligence (AREA)
  • Data Mining & Analysis (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Mathematical Physics (AREA)
  • Evolutionary Computation (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

本發明之課題係使基於時間序列之感測器資料預測程序狀態時之預測精度提高。 本發明之程序狀態預測系統具有:儲層,其具有POM分子與奈米碳管,且輸入基於規定程序中測定之時間序列之感測器資料之電壓信號,並輸出電流信號;讀出部,其讀出上述電流信號,並輸出儲層特徵值;及預測部,其基於以上述儲層特徵值與上述規定程序之狀態相關聯之方式學習到之權重參數、及儲層特徵值,預測上述規定程序之狀態,並輸出預測結果,其中,於學習後,基於上述規定程序中測定之時間序列之感測器資料之電壓信號被輸入至上述儲層,並由上述讀出部讀出電流信號,藉此,輸出上述儲層特徵值。

Description

程序狀態預測系統
本發明係關於一種使用奈米分子儲層進行之儲層計算之程序狀態預測系統。
先前以來,於製造程序之領域中,使用由各種感測器測定之時間序列之感測器資料,預測程序之狀態(執行製造程序之過程中之裝置之狀態(例如,裝置有無異常等)),並報知預測結果,藉此,監視程序狀態。又,最近,為了提高預測程序狀態時之預測精度,亦提出利用機器學習模型。 [先前技術文獻] [專利文獻]
[專利文獻1]日本專利特開2018-77779號公報 [非專利文獻]
[非專利文獻1]Tanaka H., Akai-Kasaya M., Termeh A.Y., Hong L., Fu L., Tamu koh H., Tanaka D., Asai T., and Ogawa T., A molecular neuromorphic network device consisting of single-walled carbon nanotubes complexed with polyoxomet alate Nature Communications, vol. 9, p. 2693 (2018) [非專利文獻2]Shaohua Kan, Kohei Nakajima, Yuki Takeshima, Tetsuya Asai, Yuji Kuwahara, and Megumi Akai-Kasaya Simple reservoir computing capitalizing on the nonlinear response of materials: Theory and physical implementations Phys. Rev. Applied, Accepted, 13 January (2021) [非專利文獻3]Minamikawa K., Suzuki S., Akai-Kasaya M., and Asai T., "26-bits 400-neurons 0.3-ksps FORCE learning FPGA core for reservoir computing," The 2020 RISP International Workshop on Nonlinear Circuits, Communications and Signal Processing, Hilton Waikiki Beach Hotel, Honolulu, USA (Feb. 28-Mar. 2, 2020) [非專利文獻4]Jaeger, Herbert., The" echo state" approach to analyzing and training recurrent neural networks-with an erratum note'. Bonn, Germany: German National Research Center for Information Technology GMD Technical Report. 148 (2001)
[發明所欲解決之問題]
然而,搭載機器學習模型之裝置一般處理週期較時間序列之感測器資料之測定週期長,無法捕捉時間序列之感測器資料中出現之短週期之行為來執行機器學習。因此,於先前之機器學習模型中,難以獲得充分之預測精度,又,亦設想於製造程序發生經時變化之情形時,預測精度進一步降低之事態。
本發明使基於時間序列之感測器資料預測程序狀態時之預測精度提高。 [解決問題之技術手段]
本發明之一態樣之程序狀態預測系統例如具有如下構成。即,具有: 儲層,其具有POM(Polyoxymethylene,聚甲醛)分子與奈米碳管,且輸入基於規定程序中測定之時間序列之感測器資料之電壓信號,並輸出電流信號; 讀出部,其讀出上述電流信號,並輸出儲層特徵值;及 預測部,其基於以上述儲層特徵值與上述規定程序之狀態相關聯之方式學習到之權重參數及儲層特徵值,預測上述規定程序之狀態,並輸出預測結果,其中,於學習後,基於上述規定程序中測定之時間序列之感測器資料之電壓信號被輸入至上述儲層,並由上述讀出部讀出電流信號,藉此,輸出上述儲層特徵值。 [發明之效果]
能夠使基於時間序列之感測器資料預測程序狀態時之預測精度提高。
以下,參照隨附之圖式對各實施方式進行說明。再者,於本說明書及圖式中,關於具有實質上相同之功能構成之構成要素,藉由標註相同符號而省略重複之說明。
[第1實施方式] <程序狀態預測系統之應用例> 首先,對第1實施方式之程序狀態預測系統之應用例進行說明。圖1A係表示程序狀態預測系統之應用例之圖。
再者,於圖1A之例中,對將程序狀態預測系統應用於基板處理裝置之情形進行說明,但程序狀態預測系統之應用對象並不限定於基板處理裝置,亦可為執行其他製造程序之裝置。
又,於圖1A中,除了示出應用程序狀態預測系統之基板處理裝置((b))以外,亦示出未應用程序狀態預測系統之基板處理裝置((a))作為比較例,適當對比兩者之差異進行說明。
如圖1A(a)、(b)所示,基板處理裝置110、120具有處理基板之腔室111、121、感測器a112a、122a、以及感測器b112b、122b。又,基板處理裝置110、120具有管理裝置113、123、控制裝置115、125、以及致動器117、127。
如作為比較例之圖1A(a)所示,於基板處理裝置110中,由感測器a112a、感測器b112b測定正在腔室111中處理基板時之物理量,並作為時間序列之感測器資料a、感測器資料b輸出。自感測器a112a及感測器b112b輸出之時間序列之感測器資料a及感測器資料b於管理裝置113之狀態預測及管理部114中被處理,以預測程序狀態,並作為預測結果資料輸出至控制裝置115。
又,自感測器a112a輸出之時間序列之感測器資料a於控制裝置115之控制部116中被處理,以計算控制量。此時,控制部116亦可基於預測結果資料對控制量施加修正。由控制部116計算出之控制量輸出至致動器117,致動器117基於控制量將控制命令通知給腔室111。
於圖1A(a)中,曲線圖130係自感測器a112a輸出之時間序列之感測器資料a之一例,橫軸表示時間,縱軸表示信號強度。又,於圖1A(a)中,曲線圖140係於管理裝置113之狀態預測及管理部114中處理時之時間序列之感測器資料a',橫軸表示時間,縱軸表示信號強度。
一般地,管理裝置113預測程序狀態時之處理週期T(b)較感測器a112a測定時間序列之感測器資料a時之測定週期T(a)長。因此,狀態預測及管理部114無法捕捉如曲線圖130所示之時間序列之感測器資料a中出現之短暫行為(參照曲線圖140),於預測程序狀態之情形時,結果上難以獲得充分之預測精度。
另一方面,如圖1A(b)所示,於基板處理裝置120中,由感測器a122a、感測器b122b測定正在腔室121中處理基板時之物理量,並作為時間序列之感測器資料a、感測器資料b輸出。此時,自感測器a122a輸出之時間序列之感測器資料a於程序狀態預測系統128中被處理,以預測程序狀態。然後,於程序狀態預測系統128中預測出之預測結果資料輸出至管理部124及控制部126。
又,自感測器122a輸出之時間序列之感測器資料a於控制裝置125之控制部126中被處理,以計算控制量。此時,控制部126亦可基於預測結果資料對控制量施加修正。由控制部126計算出之控制量輸出至致動器127,致動器127基於控制量將控制命令通知給腔室121。
此處,於圖1A(b)中,曲線圖131係自感測器a122a輸出之時間序列之感測器資料a之一例,橫軸表示時間,縱軸表示信號強度。又,於圖1A(b)中,曲線圖141係於程序狀態預測系統128中處理時之時間序列之感測器資料a',橫軸表示時間,縱軸表示信號強度。
於第1實施方式之程序狀態預測系統128之情形時,藉由儲層計算對時間序列之感測器資料a'進行處理,預測程序狀態。因此,預測程序狀態時之處理週期T(c)明顯短於圖1A(a)之管理裝置113預測程序狀態時之處理週期T(b)。其結果,根據第1實施方式之程序狀態預測系統128,能夠捕捉曲線圖131所示之時間序列之感測器資料a中出現之短暫行為,從而能夠提高預測精度。
又,藉由對捕捉到短暫行為之曲線圖141之時間序列之感測器資料a'進行處理來預測程序狀態而實現的預測精度之提高表示為預測結果資料與正解資料之平方誤差超過容許閾值為止之「有效預測時間」。有效預測時間係表示程序狀態預測系統128(或狀態預測及管理部114)能夠預測未來多長時間之程序狀態的時間。
圖1B係表示有效預測時間之一例之圖。如圖1B所示, ・相比使用如曲線圖140般之比較例之時間序列之感測器資料a'預測程序狀態時之有效預測時間(t a-t s), ・使用曲線圖141之時間序列之感測器資料a'預測程序狀態時之有效預測時間(t b-t s)更長。 這表明與比較例相比,程序狀態預測系統128不易因經時變化而發生預測降低。此時,基板處理裝置120亦可將運用之日誌(例如,運用中之溫度、濕度、電壓信號等歷程)加以累積,使用累積之日誌進行用於進一步延長有效預測時間(t b-t s)之解析。
又,於第1實施方式之程序狀態預測系統128之情形時,即便於預測精度隨著腔室121等之經時變化而降低時,亦可藉由進行再學習處理而改善預測精度。具體而言,藉由使用程序狀態預測系統128輸出之預測結果資料、儲層特徵值及感測器資料b,管理部124可管理程序狀態預測系統128進行之再學習處理。
再者,對程序狀態預測系統128進行學習處理或再學習處理時使用之程序狀態資料(正解資料)中亦可包含執行基板處理程序過程中基板處理裝置120有無異常等。或者,程序狀態資料(正解資料)中亦可包含自感測器b122b輸出之感測器資料b(本實施方式中,設為程序狀態資料(正解資料)為自感測器b122b輸出之感測器資料b而進行說明)。再者,正解資料一般亦被稱為「因變數」或「教師資料」。
管理部124在與程序狀態預測系統128之間進行各種資訊(切換資訊、結束資訊等)之收發,以於程序狀態預測系統128進行再學習處理時,管理程序狀態預測系統128之期間。
其結果,根據第1實施方式之程序狀態預測系統128,能夠抑制預測精度隨著製造程序之經時變化而降低。
如此,根據第1實施方式,能夠使基於時間序列之感測器資料預測程序狀態時之預測精度提高。
<程序狀態預測系統之系統構成> 接下來,對程序狀態預測系統128之系統構成進行說明。圖2係表示程序狀態預測系統之系統構成之一例之圖。程序狀態預測系統128例如藉由FPGA(Field-Programmable Gate Array,現場可程式化閘陣列)板等實現。
如圖2所示,程序狀態預測系統128具有I/O(Input/Output,輸入/輸出)控制部201、電壓調變部202、多電極I/O晶片203、及程序狀態預測部204。
I/O控制部201控制數位信號之輸入輸出。具體而言,I/O控制部201將自感測器a122a輸出之時間序列之感測器資料a輸入,並通知給電壓調變部202。
再者,輸入至I/O控制部201之時間序列之感測器資料a可為1種時間序列之感測器資料,亦可為包括複數種時間序列之感測器資料之感測器資料集。此處,為了簡化說明,設為輸入1種時間序列之感測器資料而進行說明。
又,I/O控制部201獲取由程序狀態預測部204輸出之預測結果資料(預測程序狀態所得之結果之資料)與自多電極I/O晶片203輸出之儲層特徵值,並發送至管理裝置123。又,I/O控制部201將於程序狀態預測系統128中進行學習處理(或再學習處理)時所使用之程序狀態資料(正解資料)自管理裝置123輸入,並通知給程序狀態預測部204。
進而,I/O控制部201在與管理裝置123之間收發用於切換程序狀態預測部204之期間之切換資訊、及表示切換後之期間之程序狀態預測部204之處理結束之結束資訊。
電壓調變部202係調變部之一例,將由I/O控制部201通知之時間序列之感測器資料a'轉換成用於輸入至多電極I/O晶片203之電壓資料。具體而言,電壓調變部202藉由以1 MHz以上之抽樣頻率獲取感測器資料a'並對其進行調變,而將其轉換成電壓資料。
再者,電壓調變部202亦可將由I/O控制部201通知之時間序列之感測器資料a'轉換成例如與由程序狀態預測部204輸出之預測結果資料對應之電壓資料。
多電極I/O晶片203係輸出儲層特徵值之晶片。多電極I/O晶片203係對奈米分子儲層(下述)輸入基於電壓資料之電壓信號,並讀出基於自奈米分子儲層輸出之電流信號之電流資料,藉此,輸出儲層特徵值。再者,儲層特徵值係指當將時間序列之感測器資料a'之各值輸入至奈米分子儲層時,奈米分子儲層基於時間序列之感測器資料a'之從過去到當前之各值而輸出的數值,該數值定量地表示時間序列之感測器資料a'之特性。
程序狀態預測部204於根據切換資訊切換之複數個期間(本實施方式中為學習期間、預測期間、再學習期間)下進行動作。學習期間係指學習權重參數之期間。又,再學習期間係指對學習到之權重參數進行再學習之期間。
於移行至學習期間或再學習期間之情形時,程序狀態預測部204係以使預測結果資料與由I/O控制部201輸入之程序狀態資料(正解資料)相關聯之方式,計算權重參數。又,程序狀態預測部204於權重參數之計算結束時,輸出結束資訊。
另一方面,預測期間係指於學習期間或再學習期間內學習到之權重參數下,基於儲層特徵值輸出預測結果資料的期間。
當根據已輸出結束資訊而輸入切換資訊時,程序狀態預測部204移行至預測期間,基於自多電極I/O晶片203輸出的儲層特徵值而預測程序狀態。又,程序狀態預測部204將預測結果資料輸出至I/O控制部201及電壓調變部202。
再者,程序狀態預測部204對I/O控制部201輸出預測結果資料時之輸出週期例如亦可為管理裝置123之處理週期以下(即,現場匯流排之傳輸週期以下)。
<程序狀態預測系統之詳情> 接下來,對圖2之程序狀態預測系統128之各部之詳情進行說明。
(1)電壓調變部202進行之電壓調變處理之詳情 首先,對電壓調變部202進行之電壓調變處理之詳情進行說明。圖3係表示電壓調變部進行之電壓調變處理之流程的流程圖之一例。
於步驟S301中,電壓調變部202判定是否有預測結果資料之反饋。於自程序狀態預測部204輸出預測結果資料之情形時,電壓調變部202判定為有預測結果資料之反饋(步驟S301中為是之情形),並進入步驟S302。
於步驟S302中,電壓調變部202自程序狀態預測部204獲取預測結果資料,然後進入步驟S303。
另一方面,於步驟S301中判定為無預測結果資料之反饋之情形(步驟S301中為否之情形)時,直接進入步驟S303。
於步驟S303中,電壓調變部202自I/O控制部201獲取時間序列之感測器資料。
於步驟S304中,電壓調變部202將所獲取之時間序列之感測器資料轉換成電壓資料。此時,電壓調變部202係於已在步驟S302中獲取預測結果資料之情形時,轉換成與該預測結果資料對應之電壓資料。
具體而言,電壓調變部202轉換成將預測結果資料疊加在時間序列之感測器資料上所得之電壓資料。於該情形時,與轉換後之電壓資料對應之電壓信號輸入至多電極I/O晶片203之各輸入側電極(下述)。或者,電壓調變部202亦可將時間序列之感測器資料與預測結果資料轉換成各自之電壓資料。於該情形時,與轉換後之各電壓資料對應之電壓信號分別輸入至多電極I/O晶片203之對應之輸入側電極。
於步驟S305中,電壓調變部202將電壓資料輸入至多電極I/O晶片203。
(2)多電極I/O晶片203之功能構成之詳情及輸入輸出處理之詳情 接下來,對多電極I/O晶片203之功能構成之詳情及多電極I/O晶片203執行之輸入輸出處理之詳情進行說明。
(2-1)多電極I/O晶片203之功能構成之詳情 首先,對多電極I/O晶片203之功能構成之詳情進行說明。圖4係表示多電極I/O晶片之功能構成之一例之圖。
如圖4所示,多電極I/O晶片203具有D/A(Digital-to-Analog,數位/類比)轉換部401、奈米分子儲層402、及讀出功能部403。
D/A轉換部401係轉換部之一例,藉由對利用電壓調變部202輸入之電壓資料進行D/A轉換而產生類比之電壓信號,並輸入至奈米分子儲層402。
奈米分子儲層402係包括POM分子與奈米碳管之"物理儲層"之一種。
再者,所謂"物理儲層",係指現實世界中物理性地存在(或可能存在)之"儲層",而並非存在於電腦上之儲層。
又,"儲層"係指使複數個"儲層節點"相互結合而成之複雜系統之網格,保持對於從過去到當前之電壓信號之輸入之儲層特徵值。一般地,儲層之輸入側電極數少於儲層節點之數量,低維之輸入映射至多維之儲層。
又,"儲層節點"係指儲層中之基本構成要素。儲層節點接收1個或複數個電壓信號之輸入,對其值(或其等之值)進行線性轉換或非線性轉換,並輸出電流信號。儲層節點並非靜態元件而是動態元件(由當前之自身節點之狀態及所結合之其他節點之狀態來決定下一時刻之自身節點之狀態)。再者,儲層節點之電流信號之輸出係追隨當前之電壓信號之輸入,同時忘記了過去之電壓信號之輸入。
讀出功能部403係讀出部之一例,自奈米分子儲層402讀出電流信號並轉換成電壓資料之後,作為儲層特徵值輸出至程序狀態預測部204。
如此,藉由設為使用奈米分子儲層之構成,根據多電極I/O晶片203,可捕捉感測器資料中出現之短暫行為並輸出儲層特徵值。再者,根據本案申請人,作為將電壓信號輸入至奈米分子儲層402之後,由讀出功能部403讀出電流信號並將其作為儲層特徵值輸出為止的週期,實現了1 μ秒以下。
(2-2)多電極I/O晶片203進行之輸入輸出處理之詳情 接下來,對多電極I/O晶片203進行之輸入輸出處理之詳情進行說明。圖5係表示多電極I/O晶片進行之輸入輸出處理之流程的流程圖之一例。
於步驟S501中,多電極I/O晶片203對電壓資料進行D/A轉換,產生電壓信號。
於步驟S502中,多電極I/O晶片203將電壓信號輸入至奈米分子儲層402。
於步驟S503中,多電極I/O晶片203自奈米分子儲層402讀出電流信號。
於步驟S504中,多電極I/O晶片203對讀出之電流信號進行A/D轉換,產生電流資料。
於步驟S505中,多電極I/O晶片203將電流資料作為儲層特徵值輸出至程序狀態預測部204。
(3)多電極I/O晶片203之硬體構成 接下來,對多電極I/O晶片203之硬體構成進行說明。
(3-1)多電極I/O晶片203之硬體構成之詳情1 圖6係表示多電極I/O晶片之硬體構成之一例之第1圖,(a)~(c)分別表示多電極I/O晶片203之俯視圖、A-A'剖視圖、仰視圖。又,(d)表示特定出多電極I/O晶片203之構成之調整項目。一般地,特定出多電極I/O晶片203之構成之調整項目中包含複數個調整項目(參照調整項目600)。其中,於圖6中,一面參照(a)~(d),一面對以下內容進行說明,即, ・輸入側電極數、 ・儲層節點數、 ・對儲層節點之輸入權重參數、 ・儲層節點間之結合權重參數、 ・輸出側電極數。
於圖6所示之多電極I/O晶片203中,D/A轉換部401以白色長方形表示(參照圖6(b))。D/A轉換部401向輸入側電極610輸入電壓信號。於圖6(a)之俯視圖之例之情形時,「輸入側電極數」(多電極I/O晶片203之輸入側電極610之數量)為16個。
又,於圖6所示之多電極I/O晶片203中,黑色圓形記號表示儲層節點(參照圖6(b))。該黑色圓形記號之數量成為構成網格之「儲層節點數」。
又,於圖6所示之多電極I/O晶片203中,複數個儲層節點相互結合(參照圖6(b))。並且,對於與輸入側電極610相接之複數個儲層節點,於「對儲層節點之輸入權重參數」下自D/A轉換部401輸入電壓信號。具體而言,對圖6(b)所示之A-A'剖視圖之位於輸入側電極610之正下方之儲層節點,於對儲層節點之輸入權重參數下輸入電壓信號。
進而,對於相互結合之複數個儲層節點,於「儲層節點間之結合權重參數」下輸入其他儲層節點之輸出信號(參照圖6(b)所示之A-A'剖視圖中自黑色圓形記號朝向其他黑色圓形記號之實線)。
再者,「對儲層節點之輸入權重參數」具體係根據輸入電壓信號之輸入側電極與電壓源之間之電阻值之倒數而決定。又,「儲層節點間之結合權重參數」具體係由POM分子間之距離之倒數決定。
又,於圖6所示之多電極I/O晶片203中,讀出功能部403內示出之白色長方形表示讀出儲層特徵值之輸出側電極620之外部輸出端。並且,複數個儲層節點中,讀出節點之輸出信號(電流信號)自讀出功能部403之外部輸出端讀出。於圖6(c)之仰視圖之例之情形時,「輸出側電極數」為16個。
(3-2)多電極I/O晶片203之硬體構成之詳情2 對多電極I/O晶片203內之硬體構成之詳情進一步進行說明。圖7係表示多電極I/O晶片之硬體構成之一例之第2圖,且係用於特定出多電極I/O晶片203之構成之調整項目600(圖6)之圖。於圖7中,其中,對如下內容進行說明,即, ・POM分子之電荷累積數、 ・對地電容。
圖7(a)係奈米分子儲層402之俯視圖。如圖7(a)所示,奈米分子儲層402包含POM分子(黑色圓形記號),藉由奈米碳管(POM分子間示出之直線)而結合。所謂POM分子係指聚酸分子,具有累積電荷並於累積量超過閾值時釋放所累積之電荷的特性。「POM分子之電荷累積數」係指此時之累積量之閾值(POM分子累積、釋放電荷時之電荷量之閾值)。該閾值藉由奈米分子儲層402所處之環境(有可能對電荷累積數造成影響之環境值(濕度等))而得以調整。再者,為了調整為適當之閾值,亦可構成為於奈米分子儲層402之製作時及/或運用時,將環境值(濕度等)控制為固定。
圖7(b)係表示自側面觀察奈米分子儲層402時之POM分子與基板之電極(未圖示)之間所存在之介電體之厚度與對地電容之關係的曲線圖。如圖7(b)所示,於POM分子與基板之電極(未圖示)之間之介電體較薄之情形時,「對地電容」變大,1個POM分子之電壓變動經由基板影響其他POM分子。另一方面,於POM分子與基板之電極(未圖示)之間之介電體較厚之情形時,「對地電容」變小,1個POM分子之電壓變動不會經由基板影響其他POM分子。
若更具體地進行說明,則於1個POM分子之電壓發生變動之情形時,基板之電壓經由具有對地電容之寄生電容器(介電體夾於POM分子與基板之間之構造中產生之電容器)而發生變動。由於基板亦與其他POM分子共通,故而基板之電壓發生變動時,其變動亦影響其他POM分子之電壓變動。並且,此時之影響程度由對地電容(即,介電體之厚度)決定。
因此,於多電極I/O晶片203中,適當地調整介電體之厚度,以輸出對程序狀態之預測最佳之儲層特徵值作為POM分子之電流信號。
再者,奈米分子儲層402之「對地電容」係決定儲層節點中之過去資料之貢獻率(洩漏率)之調整項目。
(3-3)多電極I/O晶片203之硬體構成之詳情3 對多電極I/O晶片203內之硬體構成之詳情進一步進行說明。圖8及圖9係表示多電極I/O晶片之硬體構成之一例之第3及第4圖,且係用於說明特定出多電極I/O晶片203之構成之調整項目600(圖6)之圖。於圖8及圖9中,其中,對如下內容進行說明,即, ・網格形狀(奈米碳管之連結數、POM分子之濃度分佈)。
圖8(a)模式性地表示奈米分子儲層402中之POM分子(黑色圓形記號)與奈米碳管(POM分子間示出之直線,圖中記載為CNT)之關係。但是,為了簡化說明,於圖8(a)中示出一維地排列之情形。若奈米分子儲層402中之POM分子及奈米碳管之連結數增加,則儲層節點數增加。
此處,POM分子與奈米碳管分別具有電阻。又,奈米碳管之電阻值並不均勻而具有偏差(R1、R2、R3、R4、…)。因此,於經由輸入側電極輸入電壓信號之情形時,經由輸出側電極輸出之電流信號具有如下特性,即, ・當輸入側電極610與輸出側電極620之間之POM分子與奈米碳管之連結數較少時,隨時間隨機變動, ・當輸入側電極610與輸出側電極620之間之POM分子與奈米碳管之連結數較多時,不會隨時間隨機變動而成為固定值。
此處,於使用奈米分子儲層402輸出儲層特徵值之情形時,電流信號必須不隨時間隨機變動。因此,輸入側電極610與輸出側電極620之間之POM分子與奈米碳管之連結數調整為電流信號不隨時間隨機變動之級別。
圖8(b)係將輸入側電極610與輸出側電極620之間之POM分子與奈米碳管之連結數和電流信號之時間變動之大小的關係曲線圖化所得者。於本實施方式中,基於圖8(b)所示之曲線圖,預先導出時間變動低於規定閾值之連結數,以超過所導出之連結數之方式調整「網格形狀(CNT之連結數)」。
繼而,對網格形狀(POM分子之濃度分佈)進行說明。圖9(a)表示「網格形狀(POM分子之濃度分佈)」不均勻之情形時之網格形狀。藉由如此以POM分子之液滴濃度不均勻之方式製作奈米分子儲層402,而奈米分子儲層402中包含POM分子稀落之區域及密集區域。又,藉由設為此種根據POM分子之濃度分佈配置電極之構成,能夠增加1個儲層節點中包含之POM分子之數量(參照符號901、902)。藉此,能夠使對奈米分子儲層402不佳之有概率之儲層節點之非線性特性為非概率性。
另一方面,圖9(b)表示具有「網格形狀(POM分子之濃度分佈)」均勻之情形時之網格構成的奈米分子儲層402。藉由如此以POM分子之液滴濃度均勻之方式製作奈米分子儲層402,可於奈米分子儲層402中實現複數階層之網格構成。
(3-4)多電極I/O晶片203之硬體構成之詳情4 對多電極I/O晶片203內之硬體構成之詳情進一步進行說明。圖10係表示多電極I/O晶片之硬體構成之一例之第5圖,且係用於說明特定出多電極I/O晶片203之構成之調整項目600(圖6)之圖。於圖10中,其中,對如下內容進行說明,即, ・電極之形狀、 ・讀出電流之積分時間。
圖10表示自側面觀察於多電極I/O晶片203中對圖6所示之奈米分子儲層402輸入電壓信號並輸出電流信號之輸入輸出電路之電路構成的情況。
如圖10所示,電壓源1001、1002經由開關1003、電阻1004、輸入側電極610對奈米分子儲層402施加電壓。此時,藉由開關1003之接通/斷開而調整對儲層節點之電壓信號之輸入。又,藉由調整電阻1004之值而調整「輸入權重參數」。
又,如圖10所示,電流信號經由輸出側電極620輸出。以圖10(b)之符號1010表示輸出側電極620周邊之詳細構成。
如圖10(b)之符號1010所示,電流信號經由輸出側電極620、低雜訊放大器1011、使用電壓控制型振盪器之A/D轉換器1012而自所有POM分子讀出。
再者,輸入側電極610及輸出側電極620之「電極之形狀」構成為尖端形狀,使得輸入側電極610與輸出側電極620之間之電場集中於POM分子之網格。
又,如圖10(b)所示,輸出側電極620連接於nMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor,金氧半導體場效電晶體)1020。於nMOSFET1020中,若對閘極1023(
Figure 02_image013
RST)施加電壓,則汲極1022與源極1021之間電性連接(成為接通狀態)。又,於nMOSFET1020中,若閘極1023(
Figure 02_image013
RST)接地,則汲極1022與源極1021之間被電性切斷(成為斷開狀態)。
並且,當nMOSFET1020成為斷開狀態時,源極1021成為電性浮動狀態(低雜訊放大器1011之輸入端子(-)、及輸出側電極620亦成為電性浮動狀態)。
此處,由於源極1021為擴散層,故具有該構成之源極被稱為FD(Floating Diffusion,浮動擴散)。並且,藉由在作為浮動擴散區域之源極1021中將電流信號積分,而進行電流信號之雜訊去除及平滑化。再者,此時之積分時間即「讀出電流之積分時間」可任意調整。
圖10(c)表示nMOSFET1020之動作例。如圖10(c)所示,nMOSFET1020按照以下之順序進行動作。 (I)使nMOSFET1020為接通狀態,將源極1021之電壓設定為V RST(將源極1021完全充電)。 (II)使nMOSFET1020為斷開狀態,將源極1021自汲極1022電性切斷(藉此,源極1021成為電性浮動狀態)。 (III)若源極1021中累積之電荷經由輸出側電極620發生變動,則源極1021之電壓產生變化。由於源極1021之電容極小,故源極1021之電壓變動量變大。 (IV)上述(III)之源極1021之電流信號被輸入至低雜訊放大器1011,於A/D轉換器1012中進行A/D轉換。
(4)程序狀態預測部204之功能構成之詳情 接下來,對程序狀態預測部204之功能構成之詳情進行說明。如上所述,程序狀態預測部204於複數個期間下進行動作。因此,以下,首先,利用各期間之變遷圖對各期間之關係進行說明,繼而,對每個期間之程序狀態預測部204之功能構成進行說明。
(4-1)各期間之關係 圖11係程序狀態預測部變遷之各期間之變遷圖之一例。如圖11所示,程序狀態預測系統128開始處理時,程序狀態預測部204移行至任一期間(學習期間、預測期間、再學習期間內之任一期間)並開始動作。但是,此處,為了簡化說明,對移行至學習期間後開始動作之情形進行說明。
自管理裝置123輸入切換資訊,並移行至學習期間時(箭頭1101),程序狀態預測部204係使用儲層特徵值與程序狀態資料(正解資料),以規定之學習時間進行學習處理,計算權重參數。
程序狀態預測部204於學習處理結束時輸出結束資訊,並自管理裝置123輸入切換資訊,藉此,移行至預測期間(箭頭1102)。於預測期間內,程序狀態預測部204於計算出之權重參數下進行預測處理,藉此,基於儲層特徵值輸出預測結果資料。
於程序狀態預測部204在預測期間進行預測處理之期間,管理裝置123判定是否需要再學習,於判定為需要再學習之情形時,將切換資訊輸入至程序狀態預測部204。藉此,程序狀態預測部204移行至再學習期間(箭頭1103)。
於再學習期間,程序狀態預測部204一面變更學習參數集(詳情將於下文進行敍述),一面進行再學習處理,藉此,對每個學習參數集計算權重參數。繼而,程序狀態預測部204於已設定計算出之各權重參數之狀態下進行預測處理,並輸出預測結果資料。又,管理裝置123特定出在容許範圍內且預測精度最高之預測結果資料對應之權重參數,並將切換資訊輸入至程序狀態預測部204。藉此,程序狀態預測部204移行至預測期間(箭頭1104)。
(4-2)學習期間之程序狀態預測部204之功能構成 接下來,對各期間之程序狀態預測部204之功能構成進行說明。首先,對學習期間之程序狀態預測部204之功能構成進行說明。圖12係表示程序狀態預測部之學習期間之功能構成之一例之圖。
如圖12所示,程序狀態預測部204於學習期間作為利用遞迴最小平方法之FORCE學習部1200發揮功能。再者,於本實施方式中,於利用遞迴最小平方法之FORCE學習部1200設定有"學習參數集0",FORCE學習部1200按照以下之處理步序(參照符號1201),利用遞迴最小平方法進行FORCE學習處理。再者,以下各圖之圖中之"τ"表示程序狀態預測部204之時間軸,其成為相較實際時間(t)延遲1個時鐘之時刻(τ=t-1)。因此,例如,若以實際時間表示圖中之S(τ+1),則成為S(t)。
1)輸出資料之計算 FORCE學習部1200獲取儲層特徵值(R向量)時,藉由乘以對遞迴權重參數(W向量)進行轉置所得之轉置向量而計算輸出資料(Z)。再者,於本實施方式中,遞迴權重參數(W向量)係指於利用遞迴最小平方法進行FORCE學習處理之過程中遞迴更新之權重參數。
2)誤差之計算 FORCE學習部1200計算輸出資料(Z)與程序狀態資料(S)之間之誤差(e)。
3)係數矩陣之計算 FORCE學習部1200計算用於計算遞迴權重參數(W向量)之係數矩陣(P矩陣)。
4)遞迴權重參數之計算 FORCE學習部1200基於計算出之誤差(e)、所獲取之儲層特徵值(R向量)、以及計算出之係數矩陣(P矩陣)而更新遞迴權重參數(W向量)。
FORCE學習部1200藉由以規定之學習時間重複上述1)~4)之處理而計算權重參數。
(4-3)預測期間之程序狀態預測部204之功能構成 接下來,對預測期間之程序狀態預測部204之功能構成進行說明。圖13係表示程序狀態預測部之預測期間之功能構成之一例的圖。
如圖13所示,程序狀態預測部204於預測期間作為利用遞迴最小平方法之FORCE學習部1300發揮功能。於本實施方式中,FORCE學習部1300係指設定藉由在FORCE學習部1200中進行FORCE學習處理而計算出之權重參數,能夠輸出預測結果資料(Z)的狀態。FORCE學習部1300係按照以下之處理步序(參照符號1301)進行預測處理。
1)FORCE學習部1300設定藉由進行FORCE學習處理而計算出之權重參數(W向量)。
2)FORCE學習部1300獲取儲層特徵值(R向量)時,藉由乘以對權重參數(W向量)進行轉置所得之轉置向量而輸出預測結果資料(Z)。
(4-4)再學習期間之程序狀態預測部204之功能構成 接下來,對再學習期間之程序狀態預測部204之功能構成進行說明。圖14及圖15係表示程序狀態預測部之再學習期間之功能構成之一例的第1及第2圖。
如圖14、圖15所示,程序狀態預測部204於再學習期間作為利用遞迴最小平方法之FORCE學習部1200_1~1200_M、及利用遞迴最小平方法之FORCE學習部1300_1~1300_M發揮功能。
於本實施方式中,於圖14之FORCE學習部1200_1設定有"學習參數集1",按照圖12中所說明之處理步序(參照符號1201),利用遞迴最小平方法進行FORCE學習處理。
又,於本實施方式中,圖15之FORCE學習部1300_1係指設定藉由在FORCE學習部1200_1中進行FORCE學習處理而計算出之權重參數,能夠輸出預測結果資料(Z)的狀態。FORCE學習部1300_1獲取儲層特徵值時,藉由乘以對權重參數進行轉置所得之轉置向量而輸出預測結果資料。
同樣地,於圖14之FORCE學習部1200_2設定有"學習參數集2",按照圖12中所說明之處理步序(參照符號1201),利用遞迴最小平方法進行FORCE學習處理。
又,於本實施方式中,圖15之FORCE學習部1300_2係指設定藉由在FORCE學習部1200_2中進行FORCE學習處理而計算出之權重參數,能夠輸出預測結果資料(Z)的狀態。FORCE學習部1300_2獲取儲層特徵值時,藉由乘以對權重參數進行轉置所得之轉置向量而輸出預測結果資料。
同樣地,於圖14之FORCE學習部1200_M設定有"學習參數集M",按照圖12中所說明之處理步序(參照符號1201),利用遞迴最小平方法進行FORCE學習處理。
又,於本實施方式中,圖15之FORCE學習部1300_M係指設定藉由在FORCE學習部1200_M中進行FORCE學習處理而計算出之權重參數,能夠輸出預測結果資料(Z)的狀態。FORCE學習部1300_M獲取儲層特徵值時,藉由乘以對權重參數進行轉置所得之轉置向量而輸出預測結果資料。
再者,如上所述,於再學習期間在圖14、圖15所示之功能構成下處理結束時,再次移行至預測期間,於圖13所示之功能構成下進行處理。但是,於再學習後之預測期間之情形時,程序狀態預測部204作為利用遞迴最小平方法之FORCE學習部1300_X發揮功能。此處言及之FORCE學習部1300_X係指FORCE學習部1300_1~1300_M中, ・設定有"學習參數集X"之FORCE學習部,且 ・設定有輸出之預測結果資料在規定之容許範圍內且預測精度最高之權重參數的FORCE學習部。 再者,學習參數集X係計算出輸出之預測結果資料在規定之容許範圍內且預測精度最高之權重參數時的學習參數集。
(4)利用遞迴最小平方法之FORCE學習部之硬體構成之詳情 接下來,對作為利用遞迴最小平方法之FORCE學習部1200、1200_1~1200_M、1300、1300_1~1300_M發揮功能的FORCE學習部之硬體構成進行說明。再者,於本實施方式中,FORCE學習部1200、1200_1~1200_M、1300、1300_1~1300_M使用共通之硬體,因此,以下,作為FORCE學習部1200之硬體構成而進行說明。
(4-1)整體構成 圖16係表示利用遞迴最小平方法之FORCE學習部之硬體構成之一例的圖。
如圖16所示,利用遞迴最小平方法之FORCE學習部1200具有: ・作為PE(Processing Element,處理元件)發揮功能之複數個FPGA(Field Programmable Gate Array,場可程式化閘陣列)(圖16之例中為25個);及 ・作為FPE(Functional PE,功能性PE)發揮功能之複數個FPGA(圖16之例中為5個)。 再者,於圖16中,FPGA之部分亦可藉由專用之晶片實現。
其中,作為PE發揮功能之複數個FPGA分別執行利用圖12所說明之遞迴最小平方法之FORCE學習之處理步序1)~4)中的3)係數矩陣之計算。具體而言,作為PE發揮功能之複數個FPGA分別按照以下之步序計算係數矩陣(P矩陣)。 (i)經由信號線1601輸入儲層特徵值(R向量)之一部分時,計算與係數矩陣(P矩陣)之一部分之積,並將計算結果經由信號線1602傳輸至鄰接之FPGA。 (ii)自作為FPE發揮功能之FPGA經由信號線1603獲取矩陣,該矩陣用於計算對儲層特徵值(R向量)之一部分進行轉置所得之轉置向量與係數矩陣(P矩陣)之一部分之積。又,使用所獲取之矩陣,計算對儲層特徵值(R向量)之一部分進行轉置所得之轉置向量與係數矩陣(P矩陣)之一部分之積。 (iii)自作為FPE發揮功能之FPGA經由信號線1604獲取對儲層特徵值(R向量)之一部分進行轉置所得之轉置向量、係數矩陣(P矩陣)之一部分以及儲層特徵值(R向量)之一部分之積的計算結果。 (iv)使用藉由執行上述(i)~(iii)而計算出之計算結果或所獲取之獲取結果,更新整個係數矩陣(P矩陣)。
再者,作為PE發揮功能之複數個FPGA分別重複執行上述(i)~(iv)。
另一方面,作為FPE發揮功能之複數個FPGA分別執行利用圖12所說明之遞迴最小平方法之FORCE學習處理之處理步序1)~4)中的4)遞迴權重參數之計算及1)輸出資料之計算。具體而言,作為FPE發揮功能之複數個FPGA分別按照以下之步序計算遞迴權重參數及輸出資料。 (i)自作為PE發揮功能之FPGA經由信號線1602獲取係數矩陣(P矩陣)之一部分與儲層特徵值(R向量)之一部分之積的計算結果。 (ii)產生用於計算對儲層特徵值(R向量)之一部分進行轉置所得之轉置向量與係數矩陣(P矩陣)之一部分之積的矩陣,並經由信號線1603發送至作為PE發揮功能之複數個FPGA。 (iii)獲取對儲層特徵值(R向量)之一部分進行轉置所得之轉置向量與係數矩陣(P矩陣)之一部分之積的計算結果。又,將所獲取之計算結果與儲層特徵值(R向量)之一部分相乘所得之計算結果經由信號線1604發送至作為PE發揮功能之複數個FPGA。 (iv)藉由計算對遞迴權重參數(W向量)之一部分進行轉置所得之轉置向量與經由信號線1601所獲取之儲層特徵值(R向量)之一部分之積,而計算輸出資料(Z)之一部分。 (v)獲取誤差(e),使用上述(i)之計算結果,更新整個遞迴權重參數(W向量)。
再者,作為FPE發揮功能之複數個FPGA分別重複執行上述(i)~(v)。
另一方面,作為FPE發揮功能之複數個FPGA中,位於最終層之FPGA除了執行4)遞迴權重參數之計算、1)輸出資料之計算以外,還執行2)誤差之計算。具體而言,作為FPE發揮功能之複數個FPGA中,位於最終層之FPGA按照以下之步序計算誤差。 (i)將自位於上層之FPGA分別獲取之輸出資料(Z)之一部分全部進行合計,並計算與程序狀態資料(S)之差分,藉此計算誤差(e)。又,將計算出之誤差(e)分別發送至位於上層之FPGA。
如此,於利用遞迴最小平方法之FORCE學習部1200中,使用作為PE發揮功能之複數個FPGA、及作為FPE發揮功能之複數個FPGA,執行處理步序1)~4),藉此,實現利用遞迴最小平方法之FORCE學習處理。
(4-2)各FPGA之處理之詳情 接下來,對利用遞迴最小平方法之FORCE學習部1200中包含之各FPGA之處理之詳情進行說明。
(4-2-1)作為PE發揮功能之FPGA之處理詳情之其一 首先,對作為PE發揮功能之FPGA之處理詳情進行說明。如上所述,作為PE發揮功能之FPGA於輸入儲層特徵值(R向量)時,計算與係數矩陣(P矩陣)之積。
此時,於利用遞迴最小平方法之FORCE學習部1200中,於縱向上配置有複數個之作為PE發揮功能之FPGA分別計算係數矩陣(P矩陣)之一部分與儲層特徵值(R向量)之一部分之積。藉此,於利用遞迴最小平方法之FORCE學習部1200中,可並行地進行將互不相同之係數矩陣(P矩陣)之一部分乘以相同儲層特徵值(R向量)之一部分的處理。
又,於利用遞迴最小平方法之FORCE學習部1200中,於橫向上配置有複數個之PE分別串列地進行作為時間序列資料之儲層特徵值(R向量)被分割而成之儲層特徵值(R向量)之一部分之處理。
如此,實現利用遞迴最小平方法之FORCE學習處理時,藉由將並行處理與串列處理組合,可削減1個FPGA進行運算之運算次數。其結果,根據利用遞迴最小平方法之FORCE學習部1200,可使FORCE學習處理高速化。
圖17及圖18係表示於利用遞迴最小平方法之FORCE學習部中實現之並行處理及串列處理的第1及第2圖。再者,於圖17及圖18中,為了簡化說明,將輸出側電極數設為"4"(儲層特徵值(R向量)之要素為4個)。又,示出如下情形,即,將作為PE發揮功能之FPGA於縱向上僅配置2個,且於橫向上僅配置2個(共計4個)(參照FPGA1721、1722、1723、1724)。
此處,假設使用1個FPGA執行係數矩陣(P矩陣)與儲層特徵值(R向量)之積。於該情形時,如符號1710所示,需要進行16次乘法運算。另一方面,藉由將作為PE發揮功能之FPGA於縱向上配置2個,可使乘法運算之次數減半。進而,藉由將作為PE發揮功能之FPGA於橫向上配置2個,將儲層特徵值(R向量)分割成2個部分並輸入至各FPGA,可使乘法運算之次數進一步減半。
於圖17中,符號1730表示如下情況,即,將分割成2個部分之R向量中作為儲層特徵值(R向量)之一部分之(r 1,r 2)分別輸入至FPGA1721、1722,FPGA1721、1722分別執行4次乘法運算。
又,於圖18中,符號1830表示如下情況,即,將分割成2個部分之儲層特徵值(R向量)中作為儲層特徵值(R向量)之一部分之(r 3,r 4)分別輸入至FPGA1723、1724。又,符號1830表示FPGA1723、1724分別執行4次乘法運算之情況。
如此,利用遞迴最小平方法之FORCE學習部1200構成為將作為PE發揮功能之FPGA於縱向及橫向上配置複數個,各FPGA執行FORCE學習處理中執行之複數列且複數行之矩陣運算之一部分。
藉此,利用遞迴最小平方法之FORCE學習部1200可使利用遞迴最小平方法之FORCE學習處理高速化。
(4-2-2)作為PE發揮功能之FPGA之處理詳情之其二 接下來,關於作為PE發揮功能之FPGA之處理,對傳輸處理之詳情進行說明。如上所述,作為PE發揮功能之FPGA將係數矩陣(P矩陣)與儲層特徵值(R向量)之積之計算結果傳輸至鄰接之FPGA。圖19係表示於利用遞迴最小平方法之FORCE學習部中實現之傳輸處理的第1圖。
其中,圖19(a)表示如下情況,即,FPGA1721、1722分別執行分割成2個部分之儲層特徵值(R向量)中作為儲層特徵值(R向量)之一部分之(r 1,r 2)與係數矩陣(P矩陣)之一部分之積。又,圖19(a)表示FPGA1721、1722分別將執行結果傳輸至FPGA1723、1724之情況。
如圖19(a)所示,自FPGA1721將作為計算結果之p 11r 1+p 12r 2與p 21r 1+p 22r 2以1個時鐘傳輸至FPGA1723。又,自FPGA1722將p 31r 1+p 32r 2與p 41r 1+p 42r 2以1個時鐘傳輸至FPGA1724。再者,p 31r 1+p 32r 2與p 41r 1+p 42r 2係作為自FPGA1721以1個時鐘傳輸至FPGA1722之儲層特徵值(R向量)之一部分之(r 1,r 2)與係數矩陣(P矩陣)之一部分之積的計算結果。
另一方面,圖19(b)表示如下情況,即,FPGA1723、1724分別執行分割成2個部分之儲層特徵值(R向量)中作為儲層特徵值(R向量)之一部分之(r 3,r 4)與係數矩陣(P矩陣)之一部分之積。又,圖19(b)表示FPGA1723、1724分別將執行結果傳輸至鄰接於右側之FPGA(未圖示)的情況。
如圖19(b)所示,自FPGA1723將作為計算結果之p 13r 3+p 14r 4與作為傳輸結果之p 11r 1+p 12r 2相加所得之加法結果傳輸至未圖示之FPGA。又,自FPGA1723將作為計算結果之p 23r 3+p 24r 4與作為傳輸結果之p 21r 1+p 22r 2相加所得之加法結果傳輸至未圖示之FPGA。
同樣地,自FPGA1724將作為計算結果之p 33r 3+p 34r 4與作為傳輸結果之p 31r 1+p 32r 2相加所得之加法結果傳輸至未圖示之FPGA。又,自FPGA1724將作為計算結果之p 43r 3+p 44r 4與作為傳輸結果之p 41r 1+p 42r 2相加所得之加法結果傳輸至未圖示之FPGA。
(4-2-3)作為FPE發揮功能之FPGA之處理詳情之其一 接下來,對作為FPE發揮功能之FPGA之處理詳情進行說明。如上所述,作為FPE發揮功能之FPGA執行產生矩陣之「代替處理」,上述矩陣用於計算於計算係數矩陣(P矩陣)時使用的"對儲層特徵值(R向量)之一部分進行轉置所得之轉置向量與係數矩陣(P矩陣)之一部分之積"。
圖20係表示利用遞迴最小平方法之FORCE學習部中實現之代替處理之圖。其中,圖20(a)表示係數矩陣(P矩陣)之計算與代替處理之關係。如圖20(a)所示,計算係數矩陣(P矩陣)時應計算之"對儲層特徵值(R向量)進行轉置所得之轉置矩陣與係數矩陣(P矩陣)之積"(符號2001)中,係數矩陣(P矩陣)為對稱矩陣(具有對稱性)。因此,係數矩陣(P矩陣)與對係數矩陣(P矩陣)進行轉置所得之轉置矩陣相等。
因此, ・"對儲層特徵值(R向量)進行轉置所得之轉置矩陣與係數矩陣(P矩陣)之積"(符號2001)和 ・"對儲層特徵值(R向量)進行轉置所得之轉置矩陣與對係數矩陣(P矩陣)進行轉置所得之轉置矩陣之積"(符號2002)相等。 即,與"對儲層特徵值(R向量)與係數矩陣(P矩陣)之積進行轉置所得之轉置矩陣"(符號2003)相等。
此處,"儲層特徵值(R向量)與係數矩陣(P矩陣)之積"於計算該積之時間點已經計算出(符號2004)。因此,藉由利用對稱性對該計算結果進行轉置,可代替"對儲層特徵值(R向量)進行轉置所得之轉置矩陣與係數矩陣(P矩陣)之積"(符號2001)。
圖20(b)表示於計算係數矩陣(P矩陣)時, ・將"對儲層特徵值(R向量)進行轉置所得之轉置矩陣與係數矩陣(P矩陣)之積"(符號2001), ・利用"對儲層特徵值(R向量)與係數矩陣(P矩陣)之積進行轉置所得之轉置矩陣"(符號2003)代替時之代替後之數式。
又,圖20(c)之右邊表示其計算結果,表示於pr 1、pr 2、pr 3、pr 4中,右邊之矩陣之各要素需要哪個pr。該矩陣之左上要素需要pr 1、pr 2,左下要素與右上要素需要pr 1、pr 2、pr 3、pr 4,右下要素需要pr 3、pr 4
又,圖20(d)中示出了作為FPE發揮功能之FPGA(未圖示)將用於計算 ・"係數矩陣(P矩陣)之一部分與儲層特徵值(R向量)之一部分之積"、及 ・"對係數矩陣(P矩陣)之一部分與儲層特徵值(R向量)之一部分之積進行轉置所得之轉置向量" 之向量經由信號線1603發送至FPGA1721~1724的情況。進而,圖20(d)中示出了FPGA1721~1724計算 ・"係數矩陣(P矩陣)之一部分與儲層特徵值(R向量)之一部分之積"和 ・"對係數矩陣(P矩陣)之一部分與儲層特徵值(R向量)之一部分之積進行轉置所得之轉置向量" 之積的情況。
具體而言,FPGA1721計算圖20(c)之右邊之矩陣之左上要素之積,FPGA1722計算左下要素之積,FPGA1723計算右上要素之積,FPGA1724計算右下要素之積。
如此,於利用遞迴最小平方法之FORCE學習部1200中,進行利用遞迴最小平方法之FORCE學習處理中執行之包含轉置向量的運算時,獲取不包含轉置向量之運算之運算結果,並對所獲取之運算結果進行轉置,藉此進行代替。
藉此,根據利用遞迴最小平方法之FORCE學習部1200,可削減實現利用遞迴最小平方法之FORCE學習處理時之運算次數。其結果,根據利用遞迴最小平方法之FORCE學習部1200,可使FORCE學習處理高速化。
(4-2-4)作為FPE發揮功能之FPGA之處理詳情之其一 接下來,對作為FPE發揮功能之FPGA之傳輸處理之詳情進行說明。如上所述,作為FPE發揮功能之FPGA於輸入儲層特徵值(R向量)之一部分時,計算與遞迴權重參數(W向量)之一部分之積,並將作為計算結果之輸出資料(Z)之一部分傳輸至鄰接之FPGA。圖21係表示於利用遞迴最小平方法之FORCE學習部中實現之傳輸處理之第2圖。
如圖21所示,FPGA2111係計算分割成2個部分之儲層特徵值(R向量)中, ・作為儲層特徵值(R向量)之一部分之(r 1,r 2)與 ・作為遞迴權重參數(W向量)之一部分之(w 1,w 2) 之積,並將計算結果(符號2101)傳輸至FPGA2112。此時,FPGA2111係將作為計算結果(符號2101)之w 1r 1+w 2r 2以1個時鐘傳輸至FPGA2112。
又,FPGA2112計算分割成2個部分之儲層特徵值(R向量)中作為儲層特徵值(R向量)之一部分之(r 3,r 4)與作為遞迴權重參數(W向量)之一部分之(w 3,w 4)之積。又,FPGA2112將計算結果(符號2102)與自FPGA2111傳輸之計算結果(符號2101)相加,獲得加法結果(符號2103)。
(4-2-5)作為FPE發揮功能之FPGA之處理詳情之其二 接下來,對作為FPE發揮功能之FPGA之處理詳情進行說明。如上所述,作為FPE發揮功能之FPGA獲取儲層特徵值(R向量)之一部分與係數矩陣(P矩陣)之一部分之積的計算結果。又,作為FPE發揮功能之FPGA係計算儲層特徵值(R向量)之一部分、係數矩陣(P矩陣)之一部分、以及對經由信號線1601獲取之儲層特徵值(R向量)之一部分進行轉置所得之轉置向量的積。進而,作為FPE發揮功能之FPGA執行將計算結果分發給作為PE發揮功能之FPGA之分發處理。
圖22係表示利用遞迴最小平方法之FORCE學習部中實現之分發處理之圖。如圖22所示,作為FPE發揮功能之FPGA2111自作為PE發揮功能之對應之FPGA獲取係數矩陣(P矩陣)之一部分與R向量之一部分之積之計算結果(符號2201)。又,作為FPE發揮功能之FPGA2111計算所獲取之計算結果(符號2201)與對儲層特徵值(R向量)之一部分(r 1,r 2)進行轉置所得之轉置向量之積,並將計算結果(符號2202)傳輸至FPGA2112。
同樣地,作為FPE發揮功能之FPGA2112自作為PE發揮功能之對應之FPGA獲取係數矩陣(P矩陣)之一部分與R向量之一部分之積之計算結果(符號2203)。又,作為FPE發揮功能之FPGA2112計算所獲取之計算結果(符號2202)與對儲層特徵值(R向量)之一部分(r 3,r 4)進行轉置所得之轉置向量之積。又,作為FPE發揮功能之FPGA2112將計算結果與自FPGA2111傳輸之計算結果(符號2202)相加。進而,作為FPE發揮功能之FPGA2112將加法結果(符號2204)經由信號線1604傳輸至作為PE發揮功能之FPGA1721~1724。
藉此,FPGA1721~1724可分別計算係數矩陣(P矩陣)之一部分。例如,於FPGA1721之情形時, ・"儲層特徵值(R向量)之一部分與係數矩陣(P矩陣)之一部分之積"(符號2004)係事先計算。 ・"對儲層特徵值(R向量)之一部分進行轉置所得之轉置向量與係數矩陣(P矩陣)之一部分之積"(符號2001)如利用圖20所說明般,藉由基於經由信號線1603獲取之矩陣之代替處理而計算。 ・"對儲層特徵值(R向量)之一部分進行轉置所得之轉置向量、係數矩陣(P矩陣)之一部分、及儲層特徵值(R向量)之一部分之積"(符號2204)係經由信號線1604而獲取。
藉此,FPGA1721~FPGA1724可計算係數矩陣(P矩陣)。
(4-2-6)作為FPE發揮功能之FPGA之處理詳情之其三 接下來,對作為FPE發揮功能之FPGA之處理詳情進行說明。如上所述,作為FPE發揮功能之FPGA中,位於最終層之FPGA除了執行遞迴權重參數之計算、輸出資料之計算以外,還執行誤差之計算。
圖23係表示於利用遞迴最小平方法之FORCE學習部中實現之權重參數更新處理的圖。如圖23所示,位於最終層之FPGA2112計算輸出資料(Z)之一部分(=w 3r 3+w 4r 4)。又,位於最終層之FPGA2112藉由與自作為FPE發揮功能之FPGA2111獲取之輸出資料(Z)之一部分(=w 1r 1+w 2r 2)相加而對輸出資料(Z)進行合計。
又,位於最終層之FPGA2112藉由計算合計之輸出資料(Z)與程序狀態資料(S)之差分而計算誤差(e)。(符號2301)。進而,位於最終層之FPGA2112將計算出之誤差(e)發送至位於上層之FPGA2111。FPGA2111及FPGA2112係使用計算出之誤差(e),更新遞迴權重參數。
例如,FPGA2111獲取儲層特徵值(R向量)之一部分與係數矩陣(P矩陣)之一部分之積之計算結果(符號2201),並與自FPGA2112獲取之誤差(e)相乘之後,自當前之遞迴權重參數(W向量)中減去。藉此,FPGA2111可更新遞迴權重參數(W向量)(符號2302)。
(4-3)利用遞迴最小平方法之FORCE學習部1200執行之FORCE學習處理之時序圖 接下來,對利用遞迴最小平方法之FORCE學習部1200執行之FORCE學習處理之時序圖進行說明。圖24係利用遞迴最小平方法之FORCE學習部執行之FORCE學習處理之時序圖之一例。
如圖24所示,作為FPE發揮功能之FPGA藉由計算 ・遞迴權重參數(W(τ-1)向量)與 ・儲層特徵值(R(τ)向量) 之積,而計算輸出資料(Z(τ))(符號2401)。
又,作為FPE發揮功能之FPGA基於輸出資料(Z(τ))與程序狀態資料(S(τ)),計算誤差(e(τ))(符號2402)。
又,作為PE發揮功能之FPGA基於 ・對儲層特徵值(R向量(τ))進行轉置所得之轉置向量、係數矩陣(P(τ-1)矩陣)及儲層特徵值(R向量(τ))之積、 ・係數矩陣(P(τ-1)矩陣)與儲層特徵值(R向量(τ))之積、以及 ・係數矩陣(P(τ-1)矩陣), 計算係數矩陣(P(τ)矩陣)(符號2403)。
又,作為PE發揮功能之FPGA計算係數矩陣(P(τ)矩陣)與儲層特徵值(R(τ)向量)之積(符號2404)。又,作為PE發揮功能之FPGA計算係數矩陣(P(τ+1)矩陣)與儲層特徵值(R(τ)向量)之積(符號2405)。
又,作為PE發揮功能之FPGA計算 ・對儲層特徵值(R(τ+1)向量)進行轉置所得之轉置向量和 ・係數矩陣(P(τ)矩陣)與儲層特徵值(R(τ+1)向量)之積之計算結果 的積(符號2406)。
繼而,作為FPE發揮功能之FPGA計算 ・係數矩陣(P(τ)矩陣)與儲層特徵值(R(τ)向量)之積之計算結果和 ・誤差(e(τ)) 之積(符號2407)。
又,作為FPE發揮功能之FPGA基於 ・計算係數矩陣(P(τ)矩陣)、儲層特徵值(R(τ)向量)及誤差(e(τ))之積所得之計算結果、及 ・遞迴權重參數(W(τ-1)向量), 更新遞迴權重參數(W(τ)向量),計算遞迴權重參數(W(τ)向量)(符號2408)。
由此,作為FPE發揮功能之FPGA可計算輸出資料(Z(τ+1))。以下,隨著系統時間經過而重複同樣之處理。
再者,如圖24所示,利用遞迴最小平方法之FORCE學習部1200構成為如下,即, ・遞迴權重參數(W(τ-1)向量)之計算與 ・遞迴權重參數(W(τ)向量)之計算 之間分別執行的儲層特徵值(R向量)與係數矩陣(P矩陣)之積之執行時序相互重疊。具體而言,利用遞迴最小平方法之FORCE學習部1200藉由在作為PE發揮功能之FPGA及作為FPE發揮功能之FPGA中緩衝計算結果而調整執行時序。
藉此,利用遞迴最小平方法之FORCE學習部1200可縮短更新遞迴權重參數所需之時間。
如上所述,由利用遞迴最小平方法進行FORCE學習處理之硬體構成程序狀態預測部204,執行用於高速地更新遞迴權重參數之處理。藉此,根據程序狀態預測部204,可捕捉感測器資料中出現之短暫行為而學習權重參數。
再者,根據本案申請人,作為利用遞迴最小平方法之FORCE學習部1200更新遞迴權重參數所需之時間,使各FPGA以200 MHz動作之情形時,實現了960[ns]。
<管理裝置之詳情> 接下來,對與程序狀態預測系統128連接之管理裝置123之詳情進行說明。
(1)管理裝置123之硬體構成 首先,對管理裝置123之硬體構成進行說明。圖25係表示管理裝置之硬體構成之一例之圖。
如圖25所示,管理裝置123具有處理器2501、記憶體2502、輔助記憶裝置2503、I/F(Interface,介面)裝置2504、UI(User Interface,使用者介面)裝置2505、及通信裝置2506。再者,管理裝置123之各硬體經由匯流排2507而相互連接。
處理器2501具有CPU(Central Processing Unit,中央處理單元)、GPU(Graphics Processing Unit,圖形處理單元)等各種運算設備。處理器2501將各種程式(例如管理程式等)讀出至記憶體2502上並予以執行。
記憶體2502具有ROM(Read Only Memory,唯讀記憶體)、RAM(Random Access Memory,隨機存取記憶體)等主記憶設備。處理器2501與記憶體2502形成所謂電腦,藉由處理器2501執行讀出至記憶體2502上之各種程式,而該電腦實現各種功能。
輔助記憶裝置2503儲存各種程式或藉由處理器2501執行各種程式時使用之各種資料。下述之資料儲存部2607於輔助記憶裝置2503中實現。
I/F裝置2504係與程序狀態預測系統128連接之連接設備。
UI裝置2505係用於管理裝置123之管理者向管理裝置123輸入各種指示之使用者介面裝置。通信裝置2506係用於與外部裝置(未圖示)經由網路進行通信之通信設備。
(2)管理部124之功能構成 接下來,對管理裝置123之管理部124之功能構成進行說明。圖26係表示管理部之功能構成之一例之圖。如上所述,於管理裝置123安裝有管理程式,藉由執行該程式,而管理裝置123之管理部124作為如下各部發揮功能,即, ・程序狀態資料發送部2601、 ・程序狀態資料獲取部2602、 ・期間控制部2603、 ・結束資訊獲取部2604、 ・再學習判定部2605、 ・評價部2606、 ・儲層特徵值獲取部2608、 ・批量學習部2609。
程序狀態資料發送部2601基於來自期間控制部2603之發送開始/停止指示,例如經由程序狀態資料獲取部2602獲取自感測器b122b發送之感測器資料b作為程序狀態資料(正解資料)。又,程序狀態資料發送部2601將所獲取之程序狀態資料(正解資料)發送至程序狀態預測系統128。由程序狀態資料發送部2601發送之程序狀態資料中包含於學習期間內發送之程序狀態資料、及於再學習期間內發送之程序狀態資料。
程序狀態資料獲取部2602獲取自感測器b122b發送之感測器資料b。又,程序狀態資料獲取部2602將所獲取之感測器資料b作為程序狀態資料通知給程序狀態資料發送部2601及批量學習部2609。
期間控制部2603對程序狀態預測系統128發送各種切換資訊。如圖26所示,由期間控制部2603發送之各種切換資訊中包含: ・向學習期間移行之指示、 ・向預測期間移行之指示、 ・向再學習期間移行之指示、 ・學習參數集之切換指示、 ・權重參數之設定指示。
期間控制部2603於開始程序狀態預測系統128之處理時,對程序狀態預測系統128發送向學習期間移行之指示,並且指示程序狀態資料發送部2601開始發送程序狀態資料。
又,期間控制部2603自結束資訊獲取部2604接收FORCE學習處理之結束資訊時,對程序狀態預測系統128發送向預測期間移行之指示。此時,期間控制部2603指示程序狀態資料發送部2601停止發送程序狀態資料。
又,期間控制部2603自再學習判定部2605接收需要再學習之判定結果時,對程序狀態預測系統128發送向再學習期間移行之指示。此時,期間控制部2603指示程序狀態資料發送部2601開始發送程序狀態資料。
又,期間控制部2603自結束資訊獲取部2604獲取再學習用資料獲取之結束資訊及評價用資料獲取之結束資訊時,自資料儲存部2607讀出學習參數集並發送至程序狀態預測系統128。此時,期間控制部2603指示程序狀態資料發送部2601停止發送程序狀態資料。
此處,如圖26所示,於資料儲存部2607儲存有學習參數集1~學習參數集M。於期間控制部2603,將讀出之學習參數集1~學習參數集M發送至程序狀態預測系統128。
再者,如符號2611所示,學習參數集中包含"使用或初始化上次之權重參數"、"過去資料貢獻率"、"學習模型數"等作為資訊之項目。
又,期間控制部2603每當自結束資訊獲取部2604獲取FORCE再學習處理之結束資訊時,便對程序狀態預測系統128發送學習參數集之切換指示。
如圖26所示,於再學習期間,儲層特徵值獲取部2608自程序狀態預測系統128獲取儲層特徵值作為學習用資料及評價用資料,並通知給批量學習部2609。又,如上所述,於再學習期間,程序狀態資料獲取部2602獲取感測器資料b作為學習用資料,並將所獲取之感測器資料b作為程序狀態資料通知給批量學習部2609。
批量學習部2609係於自資料儲存部2607讀出之批量學習參數下,使用將儲層特徵值與程序狀態資料以規定之學習時間累積所得之學習用資料,執行批量學習。此處言及之批量學習係指根據規定之學習時間之儲層特徵值與程序狀態資料來學習權重參數。
再者,批量學習所使用之批量學習參數中包含"學習用標準化參數"、"要累積之資料量(批量大小)"、"學習時間"等作為資訊之項目。
又,批量學習部2609於批量學習完成時,基於作為評價用資料所獲取之儲層特徵值預測程序狀態資料,並將批量學習部2609之預測結果(批量學習預測結果)通知給評價部2606。
又,期間控制部2603自評價部2606接收評價結果,並基於接收到之評價結果對程序狀態預測系統128發送權重參數之設定指示。
再者,評價結果中包含預測精度,其中,於各學習參數集下,使用藉由進行FORCE再學習處理而分別計算出之權重參數,對評價用資料進行預測處理,對各預測結果資料計算出上述預測精度。
又,期間控制部2603係以設定預測結果資料包含於規定之容許範圍內且預測精度最高之權重參數的方式,對程序狀態預測系統128進行設定指示。此時之規定之容許範圍可設定固定值,亦可設定基於批量學習部2609計算出之批量學習預測結果計算出之值。
又,期間控制部2603發送權重參數之設定指示之後,將向預測期間移行之指示發送至程序狀態預測系統128。
結束資訊獲取部2604自程序狀態預測系統128獲取各種結束資訊(FORCE學習處理之結束資訊、再學習用資料獲取之結束資訊、評價用資料獲取之結束資訊、FORCE再學習處理之結束資訊)。又,結束資訊獲取部2604將所獲取之各種結束資訊發送至期間控制部2603。
再學習判定部2605基於預測期間內自程序狀態預測系統128接收到之預測結果資料之預測精度,判定是否需要再學習。又,再學習判定部2605於判定為需要再學習時,對期間控制部2603發送需要再學習之判定結果。再者,此外,於發生如需要再學習之現象之情形時,再學習判定部2605亦對期間控制部2603發送需要再學習之判定結果。
評價部2606於再學習期間內,對每當切換學習參數集時自程序狀態預測系統128接收到之預測結果資料之預測精度進行評價,並作為評價結果發送至期間控制部2603。如上所述,評價部2606對預測結果資料進行評價時,亦可使用基於批量學習部2609所計算出之批量學習預測結果而計算出之容許範圍,對預測結果資料進行評價。
<管理部及程序狀態預測系統進行之程序狀態預測處理> 接下來,對管理部124及程序狀態預測系統128進行之程序狀態預測處理之流程進行說明。
(1)整個程序狀態預測處理之流程 首先,對整個程序狀態預測處理之流程進行說明。圖27係表示管理部及程序狀態預測系統進行之整個程序狀態預測處理之流程的流程圖之一例。藉由程序狀態預測系統128啟動而開始圖27所示之處理。
於步驟S2701中,管理部124將向學習期間移行之指示發送至程序狀態預測系統128。藉此,程序狀態預測系統128之程序狀態預測部204移行至學習期間,使FORCE學習部1200之權重參數初始化。
於步驟S2702中,程序狀態預測系統128之電壓調變部202對由感測器122輸出且由I/O控制部201獲取之時間序列之感測器資料a進行電壓調變處理。再者,電壓調變處理(步驟S2702)之詳情已利用圖3進行了說明,因此,此處省略說明。
於步驟S2703中,程序狀態預測系統128之多電極I/O晶片203進行輸入自電壓調變部202輸出之電壓資料並輸出儲層特徵值的輸入輸出處理。再者,輸入輸出處理(步驟S2703)之詳情已利用圖5進行了說明,因此,此處省略說明。
於步驟S2704中,程序狀態預測系統128之程序狀態預測部204對當前之期間進行判定。自管理裝置123之管理部124接收到向學習期間移行之指示或向預測期間移行之指示時,程序狀態預測部204於步驟S2704中判定當前之期間為學習期間或預測期間。於該情形時,程序狀態預測部204進入步驟S2711。
於步驟S2711中,程序狀態預測系統128之程序狀態預測部204判定FORCE學習處理是否結束。於步驟S2711中判定為FORCE學習處理未結束之情形時(步驟S2711中為否之情形時),進入步驟S2712。
於步驟S2712中,程序狀態預測系統128之程序狀態預測部204進行FORCE學習處理。再者,FORCE學習處理(步驟S2712)之詳情將於下文進行敍述。
另一方面,於步驟S2711中判定為FORCE學習處理結束之情形時(步驟S2711中為是之情形時),進入步驟S2713。
於步驟S2713中,程序狀態預測系統128之程序狀態預測部204進行預測處理。再者,預測處理(步驟S2713)之詳情將於下文進行敍述。
於步驟S2714中,管理裝置123之管理部124判定是否需要再學習。於步驟S2714中判定為不需要再學習之情形(步驟S2714中為否之情形)時,進入步驟S2731。
另一方面,於步驟S2714中判定為需要再學習之情形(步驟S2714中為是之情形)時,進入步驟S2715。再者,步驟S2714中之再學習判定處理之詳情將於下文進行敍述。
於步驟S2715中,管理裝置123之管理部124對程序狀態預測系統128發送向再學習期間移行之指示,並且發送學習參數集1~M。藉此,程序狀態預測系統128之程序狀態預測部204移行至再學習期間,並且獲取學習參數集1~M。
又,於步驟S2704中判定當前之期間為再學習期間之情形時,進入步驟S2721。再者,程序狀態預測部204係於自管理裝置123之管理部124接收到向再學習期間移行之指示時,判定當前之期間為再學習期間。
於步驟S2721中,程序狀態預測系統128之程序狀態預測部204進行FORCE再學習處理。再者,FORCE再學習處理(步驟S2721)之詳情將於下文進行敍述。
於步驟S2731中,管理裝置123之管理部124判定是否結束程序狀態預測處理。於步驟S2731中判定為不結束程序狀態預測處理之情形時(步驟S2731中為否之情形時),返回至步驟S2702。
另一方面,於步驟S2731中判定為結束程序狀態預測處理之情形時,管理裝置123之管理部124及程序狀態預測系統128結束程序狀態預測處理。
(2)學習處理(步驟S2712)之詳情 接下來,對程序狀態預測處理中包含之學習處理(步驟S2712)之詳情進行說明。圖28係表示學習處理之流程之流程圖之一例。
於步驟S2801中,程序狀態預測系統128之程序狀態預測部204獲取自多電極I/O晶片203輸出之儲層特徵值、及自管理裝置123之管理部124發送之程序狀態資料(正解資料)。
於步驟S2802中,程序狀態預測系統128之程序狀態預測部204判定是否「使用」學習參數集中的符號2611之"使用或初始化上次之權重參數"之項目。
於步驟S2802中判定為「使用」"使用或初始化上次之權重參數"之項目之情形時(步驟S2802中為是之情形時),進入步驟S2804。於該情形時,程序狀態預測系統128之程序狀態預測部204將上次FORCE學習處理中計算出之權重參數設為此次FORCE學習處理中之FORCE學習部1200之遞迴權重參數之初始值。
於步驟S2802中判定為"使用或初始化上次之權重參數"之項目為「初始化」之情形時(步驟S2802中為否之情形時),進入步驟S2803。
於步驟S2803中,程序狀態預測系統128之程序狀態預測部204於此次FORCE學習處理之前,使上次FORCE學習處理中計算出之FORCE學習部1200之遞迴權重參數初始化。
於步驟S2804中,FORCE學習部1200藉由將儲層特徵值乘以當前之遞迴權重參數而計算輸出資料。
於步驟S2805中,FORCE學習部1200計算所計算出之輸出資料與對應之程序狀態資料(正解資料)之誤差。又,FORCE學習部1200於判定為計算出之誤差不在閾值以內之情形時(步驟S2805中為否之情形時),進入步驟S2806。
於步驟S2806中,FORCE學習部1200基於計算出之誤差更新遞迴權重參數,進入步驟S2807。
另一方面,於步驟S2805中判定為誤差在閾值以內之情形時(步驟S2807中為是之情形時),直接進入步驟S2807。
於步驟S2807中,FORCE學習部1200判定誤差在閾值以內之狀態是否持續了由學習參數集指定之規定之學習時間。於步驟S2807中判定為未持續之情形時(步驟S2807中為否之情形時),返回至圖27之步驟S2731。
另一方面,於步驟S2807中判定為已持續之情形時(步驟S2807中為是之情形時),進入步驟S2808。
於步驟S2808中,程序狀態預測系統128之程序狀態預測部204將FORCE學習處理之結束資訊發送至管理裝置123。藉此,管理裝置123之管理部124判定為FORCE學習處理已結束,並將向預測期間移行之指示發送至程序狀態預測系統128。
於步驟S2809中,程序狀態預測系統128之程序狀態預測部204對FORCE學習部1300設定FORCE學習處理已結束之時間點之權重參數。
(3)預測處理(步驟S2713)之詳情 接下來,對程序狀態預測處理中包含之預測處理(步驟S2713)之詳情進行說明。圖29係表示預測處理之流程之流程圖之一例。
於步驟S2901中,FORCE學習部1300獲取自多電極I/O晶片203輸出之儲層特徵值。
於步驟S2902中,FORCE學習部1300藉由將所獲取之儲層特徵值乘以權重參數而預測程序狀態。
於步驟S2903中,FORCE學習部1300輸出預測結果資料。
(4)再學習判定處理(步驟S2714)之詳情 接下來,對管理裝置123之管理部124執行之再學習判定處理(步驟S2714)之詳情進行說明。圖30係表示再學習判定處理之流程之流程圖之一例。
於步驟S3001中,管理裝置123之管理部124判定於預測期間由程序狀態預測系統128獲取之時間序列之感測器資料a之種類是否已變更。於步驟S3001中判定為已變更之情形時(步驟S3001中為是之情形時),進入步驟S3004。
另一方面,於步驟S3001中判定為未變更之情形時(步驟S3001中為否之情形時),進入步驟S3002。
於步驟S3002中,管理裝置123之管理部124判定於預測期間由程序狀態預測系統128獲取之時間序列之感測器資料a之值是否變動了規定之閾值以上。於步驟S3002中判定為時間序列之感測器資料a之值變動了規定之閾值以上之情形時(步驟S3002中為是之情形時),進入步驟S3004。
另一方面,於步驟S3002中判定為時間序列之感測器資料a之值未變動規定之閾值以上之情形時(步驟S3002中為否之情形時),進入步驟S3003。
於步驟S3003中,管理裝置123之管理部124判定於預測期間自程序狀態預測系統128發送之預測結果資料之預測精度是否已降低至規定之閾值以下。
於步驟S3003中判定為預測精度已降低至規定之閾值以下之情形時(步驟S3003中為是之情形時),進入步驟S3004。
於步驟S3004中,管理裝置123之管理部124判定為需要再學習。
另一方面,於步驟S3003中判定為預測精度未降低至規定之閾值以下之情形時(步驟S3003中為否之情形時),返回至圖27之步驟S2731。
預測精度降低至規定之閾值以下係指預測結果資料與正解資料之誤差已超過容許閾值(如上所述,在此之前之時間為「有效預測時間」)。因此,管理裝置123之管理部124藉由監視該有效預測時間而判定是否需要再學習。參照圖31進行說明。
圖31係表示有效預測時間之另一例之圖。於圖31中,橫軸表示設定藉由學習計算出之權重參數之後之經過時間。又,於圖31中,縱軸表示預測結果資料與正解資料之平方誤差。
於程序狀態預測系統128,假設預測結果資料與正解資料之平方誤差超過容許閾值為止之有效預測時間例如為圖31之t b所示之時間(初始狀態、最佳狀態)。假設從此處開始運用,然後直至預測結果資料與正解資料之平方誤差超過容許閾值為止之有效預測時間為t a(<t b)。即,當本來能夠預測之時間變短時(t b-t a為規定之閾值以上時),進行再學習。
(5)再學習處理(步驟S2721)之詳情 接下來,對程序狀態預測處理中包含之再學習處理(步驟S2721)之詳情進行說明。圖32係表示再學習處理之流程之流程圖之一例。
開始再學習處理時,程序狀態預測系統128之程序狀態預測部204及管理裝置123之管理部124並行地執行步驟S3201~步驟S3208之處理與步驟S3210~步驟S3215之處理。
首先,對步驟S3201~步驟S3208之處理進行說明。於步驟S3201中,程序狀態預測系統128之程序狀態預測部204獲取自多電極I/O晶片203輸出之儲層特徵值、及自管理裝置123之管理部124發送之程序狀態資料(正解資料)。
再者,程序狀態預測系統128之程序狀態預測部204獲取儲層特徵值與程序狀態資料(正解資料)之組合之一部分作為再學習用資料,並獲取其餘組合作為評價用資料。
於步驟S3202中,程序狀態預測部204對FORCE學習部1200_1設定自管理裝置123之管理部124發送之學習參數集1~M中之任一個(此處為學習參數集1)。
於步驟S3203中,程序狀態預測部204判定是否「使用」對FORCE學習部1200_1設定之學習參數集1之"使用或初始化上次之權重參數"之項目。
於步驟S3203中判定為「使用」"使用或初始化上次之權重參數"之項目之情形時(步驟S3203中為是之情形時),進入步驟S3205。於該情形時,FORCE學習部1200_1係將上次FORCE學習處理中計算出之權重參數作為遞迴權重參數之初始值而進行此次FORCE再學習處理。
另一方面,於步驟S3203中判定為"使用或初始化上次之權重參數"之項目為「初始化」之情形時(步驟S3203中為否之情形時),進入步驟S3204。
於步驟S3204中,程序狀態預測系統128之程序狀態預測部204使FORCE學習部1200_1之遞迴權重參數初始化。
於步驟S3205中,FORCE學習部1200_1使用再學習用資料,進行FORCE學習處理,計算權重參數。又,FORCE學習部1200_1對FORCE學習部1300_1設定計算出之權重參數。
於步驟S3206中,FORCE學習部1300_1使用評價用資料,預測程序狀態。
於步驟S3207中,FORCE學習部1300_1將預測結果資料輸出至管理裝置123之管理部124。
於步驟S3208中,程序狀態預測系統128之程序狀態預測部204判定是否已對FORCE學習部設定自管理裝置123之管理部124發送之所有學習參數集。
於步驟S3208中有尚未設定之學習參數集之情形時,判定為設定下一個學習參數集(步驟S3208中判定為是),返回至步驟S3202。
另一方面,於步驟S3208中判定為已對FORCE學習部設定所有學習參數集之情形時,判定為不設定下一個學習參數(步驟S3208中判定為否),進入步驟S3221。
繼而,對步驟S3210~S3215之處理進行說明。於步驟S3210中,程序狀態預測系統128之程序狀態預測部204將所獲取之儲層特徵值輸出至管理裝置123之管理部124。又,管理裝置123之管理部124將自程序狀態預測部204輸出之儲層特徵值與程序狀態資料(正解資料)之組合之一部分作為再學習用資料進行累積,並將其餘組合作為評價用資料進行累積。
於步驟S3211中,程序狀態預測系統128之程序狀態預測部204判定所累積之再學習用資料及評價用資料是否均達到規定大小。
於步驟S3212中判定為未達到規定大小之情形時(步驟S3211中為否之情形時),返回至步驟S3210。
另一方面,於步驟S3211中判定為已達到規定大小之情形時(步驟S3211中為是之情形時),進入步驟S3212。
於步驟S3212中,管理裝置123之管理部124設定批量學習參數。
於步驟S3213中,管理裝置123之管理部124使用所累積之再學習用資料,進行批量學習處理,計算權重參數。
於步驟S3214中,管理裝置123之管理部124於計算出之權重參數下,使用所累積之評價用資料,預測程序狀態。
於步驟S3215中,管理裝置123之管理部124計算批量學習預測結果資料。
於步驟S3221中,管理裝置123之管理部124判定針對每個學習參數集自程序狀態預測系統128發送之各預測結果資料中是否存在預測精度包含於規定之容許範圍內之預測結果資料。此時,管理裝置123之管理部124基於計算出之批量學習預測結果資料,計算規定之容許範圍。
於步驟S3221中判定為不存在包含於規定之容許範圍內之預測結果資料之情形時(步驟S3221中為否之情形時),進入步驟S3222。
於步驟S3222中,管理裝置123之管理部124產生新的學習參數集,並發送至程序狀態預測系統128,然後返回至步驟S3202。
另一方面,於步驟S3221中判定為存在包含於規定之容許範圍內之預測結果資料之情形時(步驟S3221中為是之情形時),進入步驟S3223。
於步驟S3223中,管理裝置123之管理部124結束再學習期間,並對程序狀態預測系統128發送向預測期間移行之指示。又,管理裝置123之管理部124係以設定預測結果資料包含於規定之容許範圍內且預測結果最高之權重參數的方式,對程序狀態預測系統128進行設定指示。
於步驟S3224中,程序狀態預測系統128之程序狀態預測部204移行至預測期間。又,程序狀態預測系統128之程序狀態預測部204對FORCE學習部1300_X設定預測結果資料包含於規定之容許範圍內且預測精度最高之權重參數。藉此,於再學習後之預測期間,可使用藉由在適當之學習參數集下進行再學習而獲得之權重參數計算預測結果資料。
<總結> 根據以上之說明可明確,第1實施方式之程序狀態預測系統128係 ・具有奈米分子儲層,該奈米分子儲層具有POM分子與奈米碳管,且輸入基於規定之製造程序中由感測器測定之時間序列之感測器資料之電壓信號,並輸出電流信號。 ・具有讀出電流信號並輸出儲層特徵值之讀出功能部。 ・具有程序狀態預測部,該程序狀態預測部基於以儲層特徵值與表示規定之製造程序之狀態之程序狀態資料相關聯之方式學習到之權重參數、及學習後輸出之儲層特徵值,預測規定之製造程序之狀態,並輸出預測結果。
如此,藉由設為使用奈米分子儲層預測程序狀態之構成,根據第1實施方式之程序狀態預測系統128,可捕捉感測器資料中出現之短暫行為而輸出儲層特徵值。
又,於第1實施方式之程序狀態預測系統128中,程序狀態預測部係使用利用遞迴最小平方法進行FORCE學習處理之硬體而學習權重參數。
藉此,根據第1實施方式之程序狀態預測系統128,可捕捉感測器資料中出現之短暫行為而學習權重參數。
其結果,根據第1實施方式,可使基於時間序列之感測器資料預測程序狀態時之預測精度提高。
又,第1實施方式之程序狀態預測系統128係 ・於學習後之預測期間內判定為需要再學習之情形時,再學習權重參數。 ・再學習權重參數時,使學習參數最佳化。
藉此,根據第1實施方式之程序狀態預測系統128,可抑制預測精度隨著製造程序之經時變化而降低。
其結果,根據第1實施方式,可使基於時間序列之感測器資料預測程序狀態時之預測精度提高。
[其他實施方式] 於上述第1實施方式中,對輸出有無異常或感測器資料作為預測程序狀態之預測結果資料之情形進行了說明。然而,由程序狀態預測部204輸出之預測結果資料並不限定於有無異常或感測器資料,例如亦可為表示程序之狀態之級別或執行製造程序之裝置有無故障等。
再者,本發明並不限定於上述實施方式中所列舉之構成等、與其他要素之組合等此處所示之構成。關於該等方面,可於不脫離本發明之主旨之範圍內進行變更,可根據其應用形態適當地規定。
110:基板處理裝置 111:腔室 a112a:感測器 b112b:感測器 113:管理裝置 114:管理部 115:控制裝置 116:控制部 117:致動器 120:基板處理裝置 121:腔室 122:感測器 122a:感測器 a122a:感測器 122b:感測器 b122b:感測器 123:管理裝置 124:管理部 125:控制裝置 126:控制部 127:致動器 128:程序狀態預測系統 130:曲線圖 131:曲線圖 140:曲線圖 141:曲線圖 201:I/O控制部 202:電壓調變部 203:多電極I/O晶片 204:程序狀態預測部 401:D/A轉換部 402:奈米分子儲層 403:讀出功能部 600:調整項目 610:輸入側電極 620:輸出側電極 901:POM分子之數量 902:POM分子之數量 1001:電壓源 1002:電壓源 1003:開關 1004:電阻 1010:輸出側電極之周邊 1011:低雜訊放大器 1012:A/D轉換器 1020:nMOSFET 1021:源極 1022:汲極 1023(
Figure 02_image013
RST):閘極 1101:箭頭 1102:箭頭 1103:箭頭 1104:箭頭 1200:FORCE學習部 1300:FORCE學習部 1200_1~1200_M:FORCE學習部 1300_1~1300_M:FORCE學習部 1601~1604:信號線 1721~1724:FPGA 2101:計算結果 2102:計算結果 2103:加法結果 2111,2112:FPGA 2201:計算結果 2202:計算結果 2203:計算結果 2204:加法結果 2501:處理器 2502:記憶體 2503:輔助記憶裝置 2504:I/F裝置 2505:UI裝置 2506:通信裝置 2507:匯流排 2601:程序狀態資料發送部 2602:程序狀態資料獲取部 2603:期間控制部 2604:結束資訊獲取部 2605:再學習判定部 2606:評價部 2607:資料儲存部 2608:儲層特徵值獲取部 2609:批量學習部 a:感測器資料 a':感測器資料 b:感測器資料 T(a):測定週期 T(b):處理週期 T(c):處理週期
圖1A(a)、(b)係表示程序狀態預測系統之應用例之圖。 圖1B係表示有效預測時間之一例之圖。 圖2係表示程序狀態預測系統之系統構成之一例之圖。 圖3係表示電壓調變部進行之電壓調變處理之流程的流程圖之一例。 圖4係表示多電極I/O晶片之功能構成之一例之圖。 圖5係表示多電極I/O晶片進行之輸入輸出處理之流程的流程圖之一例。 圖6(a)~(d)係表示多電極I/O晶片之硬體構成之一例的第1圖。 圖7(a)、(b)係表示多電極I/O晶片之硬體構成之一例的第2圖。 圖8(a)、(b)係表示多電極I/O晶片之硬體構成之一例的第3圖。 圖9(a)、(b)係表示多電極I/O晶片之硬體構成之一例的第4圖。 圖10(a)~(c)係表示多電極I/O晶片之硬體構成之一例的第5圖。 圖11係程序狀態預測部變遷之各期間之變遷圖之一例。 圖12係表示程序狀態預測部之學習期間之功能構成之一例的圖。 圖13係表示程序狀態預測部之預測期間之功能構成之一例的圖。 圖14係表示程序狀態預測部之再學習期間之功能構成之一例的第1圖。 圖15係表示程序狀態預測部之再學習期間之功能構成之一例的第2圖。 圖16係表示利用遞迴最小平方法之FORCE學習部之硬體構成之一例的圖。 圖17係表示利用遞迴最小平方法之FORCE學習部中實現之並行處理及串列處理的第1圖。 圖18係表示利用遞迴最小平方法之FORCE學習部中實現之並行處理及串列處理的第2圖。 圖19(a)、(b)係表示利用遞迴最小平方法之FORCE學習部中實現之傳輸處理的第1圖。 圖20(a)~(d)係表示利用遞迴最小平方法之FORCE學習部中實現之代替處理的圖。 圖21係表示利用遞迴最小平方法之FORCE學習部中實現之傳輸處理的第2圖。 圖22係表示利用遞迴最小平方法之FORCE學習部中實現之分發處理的圖。 圖23係表示利用遞迴最小平方法之FORCE學習部中實現之權重參數更新處理的圖。 圖24係利用遞迴最小平方法之FORCE學習部進行之FORCE學習處理的時序圖之一例。 圖25係表示管理裝置之硬體構成之一例之圖。 圖26係表示管理部之功能構成之一例之圖。 圖27係表示利用管理部及程序狀態預測系統進行之程序狀態預測處理之整個流程的流程圖之一例。 圖28係表示學習處理之流程之流程圖之一例。 圖29係表示預測處理之流程之流程圖之一例。 圖30係表示再學習判定處理之流程之流程圖之一例。 圖31係表示有效預測時間之另一例之圖。 圖32係表示再學習處理之流程之流程圖之一例。
110:基板處理裝置
111:腔室
a112a:感測器
b112b:感測器
113:管理裝置
114:管理部
115:控制裝置
116:控制部
117:致動器
120:基板處理裝置
121:腔室
122a:感測器
a122a:感測器
122b:感測器
b122b:感測器
123:管理裝置
124:管理部
125:控制裝置
126:控制部
127:致動器
128:程序狀態預測系統
130:曲線圖
131:曲線圖
140:曲線圖
141:曲線圖
a:感測器資料
b:感測器資料
T(a):測定週期
T(b):處理週期
T(c):處理週期

Claims (18)

  1. 一種程序狀態預測系統,其具有: 儲層,其具有POM分子與奈米碳管,且輸入基於規定程序中測定之時間序列之感測器資料之電壓信號,並輸出電流信號; 讀出部,其讀出上述電流信號,並輸出儲層特徵值;及 預測部,其基於以上述儲層特徵值與上述規定程序之狀態相關聯之方式學習到之權重參數、及儲層特徵值,預測上述規定程序之狀態,並輸出預測結果,其中,於學習後,基於上述規定程序中測定之時間序列之感測器資料之電壓信號被輸入至上述儲層,並由上述讀出部讀出電流信號,藉此,輸出上述儲層特徵值。
  2. 如請求項1之程序狀態預測系統,其進而具有: 調變部,其以1 MHz以上之抽樣頻率獲取上述規定程序中測定之時間序列之感測器資料,並對其進行調變,藉此,將其轉換成電壓資料;及 轉換部,其對上述電壓資料進行D/A轉換,產生上述電壓信號;且 將上述轉換部所產生之上述電壓信號經由輸入側電極輸入至上述儲層。
  3. 如請求項2之程序狀態預測系統,其中上述讀出部將上述電流信號經由輸出側電極、低雜訊放大器、A/D轉換器自所有上述POM分子讀出。
  4. 如請求項3之程序狀態預測系統,其中將電壓信號輸入至上述儲層之後至藉由利用上述讀出部讀出上述電流信號而輸出上述儲層特徵值為止的週期為1 μ秒以下。
  5. 如請求項3之程序狀態預測系統,其對輸入側電極數、上述POM分子之電荷累積數、儲層節點數、上述儲層之網格之形狀、對地電容、對儲層節點之輸入權重、儲層節點間之結合權重、輸出側電極數、電極形狀、讀出電流之積分時間中之至少任一個進行調整。
  6. 如請求項5之程序狀態預測系統,其中以上述POM分子之液滴濃度變得不均勻之方式調整上述儲層之網格之形狀時,上述電壓信號經由根據上述POM分子之濃度分佈配置之輸入側電極而輸入,並經由輸出側電極而輸出。
  7. 如請求項5之程序狀態預測系統,其中以上述POM分子之液滴濃度變得均勻之方式調整上述儲層之網格之形狀。
  8. 如請求項6之程序狀態預測系統,其中基於上述POM分子與上述奈米碳管之連結數和藉由上述讀出部讀出之電流信號之時間變動之大小的關係,導出低於規定之時間變動大小之連結數時,以高於該導出之連結數之方式調整上述儲層之網格之形狀。
  9. 如請求項6之程序狀態預測系統,其中上述電極之形狀構成為尖端形狀,使得上述輸入側電極與輸出側電極之間之電場集中於上述POM分子之網格。
  10. 如請求項5之程序狀態預測系統,其中上述對地電容係藉由調整存在於上述POM分子與基板之間之介電體之厚度而得以調整。
  11. 如請求項1之程序狀態預測系統,其中上述預測部藉由利用遞迴最小平方法進行FORCE學習處理而學習上述權重參數。
  12. 如請求項11之程序狀態預測系統,其中上述預測部具有複數個FPGA,各FPGA係執行上述遞迴最小平方法之FORCE學習處理中執行之複數列且複數行之矩陣運算之一部分,並將各FPGA之執行結果進行合計,藉此,學習上述權重參數。
  13. 如請求項12之程序狀態預測系統,其中於上述預測部中,上述各FPGA係利用上述遞迴最小平方法之FORCE學習處理之一部分運算所使用之矩陣之對稱性,對已計算出之向量進行轉置,藉此,代替上述一部分運算。
  14. 如請求項11之程序狀態預測系統,其中上述預測部於學習後之預測期間內判定為需要再學習之情形時,藉由利用上述遞迴最小平方法進行FORCE學習處理而再學習上述權重參數。
  15. 如請求項14之程序狀態預測系統,其中上述預測部於藉由上述遞迴最小平方法之FORCE學習處理再學習上述權重參數時,藉由執行與學習參數之數量對應次數之上述FORCE學習處理,而計算數量與上述學習參數之數量對應之權重參數,將計算出之權重參數中與包含於規定之容許範圍內且預測精度最高之預測結果對應的權重參數設定為用於再學習後之預測之權重參數。
  16. 如請求項15之程序狀態預測系統,其中對上述規定之容許範圍設定固定值,或者設定基於預測結果的值,該預測結果係藉由將上述儲層特徵值累積至規定之資料量後進行批量學習而計算出。
  17. 如請求項15之程序狀態預測系統,其中於判定為任一預測結果之預測精度均不包含於規定之容許範圍內,而產生新的學習參數時,上述預測部將藉由基於上述新的學習參數執行上述FORCE學習處理而計算出之權重參數設定為用於再學習後之預測之權重參數。
  18. 如請求項14之程序狀態預測系統,其中於上述預測部所輸出之預測結果之精度為規定之閾值以下之情形、作為上述電壓信號輸入之上述時間序列之感測器資料之種類已變更之情形、或作為上述電壓信號輸入之上述時間序列之感測器資料之值變動了規定之閾值以上之情形時,判定為需要再學習。
TW111120861A 2021-06-17 2022-06-06 程序狀態預測系統 TW202303313A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021100983 2021-06-17
JP2021-100983 2021-06-17

Publications (1)

Publication Number Publication Date
TW202303313A true TW202303313A (zh) 2023-01-16

Family

ID=84527014

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111120861A TW202303313A (zh) 2021-06-17 2022-06-06 程序狀態預測系統

Country Status (2)

Country Link
TW (1) TW202303313A (zh)
WO (1) WO2022264573A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024018696A1 (ja) * 2022-07-20 2024-01-25 東京エレクトロン株式会社 リザーバ装置及びプロセス状態予測システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220180160A1 (en) * 2019-03-27 2022-06-09 Tdk Corporation Outlier detection device, outlier detection method, and outlier detection program
JP2021060830A (ja) * 2019-10-08 2021-04-15 国立大学法人大阪大学 リザーバコンピューティング用リザーバ及びそれを用いた情報処理装置
US20220391761A1 (en) * 2019-11-14 2022-12-08 Nec Corporation Machine learning device, information processing method, and recording medium
WO2021111573A1 (ja) * 2019-12-05 2021-06-10 Tdk株式会社 リザーバ計算データフロープロセッサ

Also Published As

Publication number Publication date
WO2022264573A1 (ja) 2022-12-22

Similar Documents

Publication Publication Date Title
Sun et al. In-sensor reservoir computing for language learning via two-dimensional memristors
Moon et al. Temporal data classification and forecasting using a memristor-based reservoir computing system
Wang et al. Learning to design circuits
Thissen et al. Using support vector machines for time series prediction
Liberzon et al. Input-to-state stabilization of linear systems with quantized state measurements
JP2023501230A (ja) メモリスタに基づくニューラルネットワークのトレーニング方法及びそのトレーニング装置
Bohra et al. Learning activation functions in deep (spline) neural networks
DE102020107174A1 (de) Selbstheilende dot-product engine
TW202303313A (zh) 程序狀態預測系統
CN117973450A (zh) 神经网络装置、信号生成方法及程序
CN110263972B (zh) 产品质量预测方法及装置
Suma Community based network reconstruction for an evolutionary algorithm framework
Li et al. Simultaneous fault detection and control design for switched systems with two quantized signals
CN115186592A (zh) 功率半导体模块的寿命预测方法、终端设备及存储介质
Kim et al. fuzzy filter for non‐linear sampled‐data systems under imperfect premise matching
Mardani et al. Degrees of freedom analysis of unrolled neural networks
Dong et al. Exponential stabilisation of continuous‐time periodic stochastic systems by feedback control based on periodic discrete‐time observations
Postoyan et al. Parameter and state estimation for a class of neural mass models
Shirmohammadli et al. A Neuromorphic Electrothermal Processor for Near‐Sensor Computing
Capizzi et al. An entropy evaluation algorithm to improve transmission efficiency of compressed data in pervasive healthcare mobile sensor networks
CN110531625B (zh) 有源电子梯形电路的有限频率范围迭代学习容错控制方法
Druckmann et al. A mechanistic model of early sensory processing based on subtracting sparse representations
Jiang et al. Online graph topology learning from matrix-valued time series
Zhang et al. A schmitt trigger based oscillatory neural network for reservoir computing
WO2024018696A1 (ja) リザーバ装置及びプロセス状態予測システム