TW202249026A - 認知評估系統 - Google Patents

認知評估系統 Download PDF

Info

Publication number
TW202249026A
TW202249026A TW111121599A TW111121599A TW202249026A TW 202249026 A TW202249026 A TW 202249026A TW 111121599 A TW111121599 A TW 111121599A TW 111121599 A TW111121599 A TW 111121599A TW 202249026 A TW202249026 A TW 202249026A
Authority
TW
Taiwan
Prior art keywords
user
cognitive
performance data
server
computing device
Prior art date
Application number
TW111121599A
Other languages
English (en)
Other versions
TWI813329B (zh
Inventor
李魁安
簡頌恩
張嘉洋
簡韶逸
Original Assignee
見臻科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 見臻科技股份有限公司 filed Critical 見臻科技股份有限公司
Publication of TW202249026A publication Critical patent/TW202249026A/zh
Application granted granted Critical
Publication of TWI813329B publication Critical patent/TWI813329B/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/18Eye characteristics, e.g. of the iris
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/0022Monitoring a patient using a global network, e.g. telephone networks, internet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1113Local tracking of patients, e.g. in a hospital or private home
    • A61B5/1114Tracking parts of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/163Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state by tracking eye movement, gaze, or pupil change
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4076Diagnosing or monitoring particular conditions of the nervous system
    • A61B5/4088Diagnosing of monitoring cognitive diseases, e.g. Alzheimer, prion diseases or dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6814Head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • G06Q10/06393Score-carding, benchmarking or key performance indicator [KPI] analysis
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/70ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/168Evaluating attention deficit, hyperactivity

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Data Mining & Analysis (AREA)
  • Business, Economics & Management (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Databases & Information Systems (AREA)
  • Human Resources & Organizations (AREA)
  • Psychiatry (AREA)
  • Child & Adolescent Psychology (AREA)
  • Developmental Disabilities (AREA)
  • Physiology (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychology (AREA)
  • Neurology (AREA)
  • Educational Technology (AREA)
  • Social Psychology (AREA)
  • Development Economics (AREA)
  • General Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Theoretical Computer Science (AREA)
  • Economics (AREA)
  • Educational Administration (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)

Abstract

一種認知評估系統,包含運算裝置、伺服器耦接於該運算裝置,及眼動追蹤裝置耦接於運算裝置。運算裝置包含認知評估程式,用以執行至少一認知評估作業以評估使用者的認知功能。伺服器包含資料庫。資料庫儲存有該使用者的歷史表現資料、使用者的歷史表現模型、健康群體的作業表現資料及病患群體的作業表現資料。眼動追蹤裝置用以擷取使用者的眼動訊息。

Description

認知評估系統
本發明係關於一種認知評估系統,尤指一種使用眼動追蹤裝置的認知評估系統。
認知能力容易隨著年齡的增長而逐漸下降。據統計,65歲以上的老年人中,每十二人中就有一人患有失智症,而且這數字還在繼續增長。認知能力異常的人口比例迅速增加,隨之而來的就是社會沉重的看護負擔。因此,如何有效地發現認知衰退,維持老齡個體的認知健康是眾多研究作業的重點。
認知評估是指通過訪談、問卷調查、測試等多種方法和工具對個體的認知能力進行評估。傳統的認知功能評估大多以訪談和紙筆問卷的形式進行,如蒙特利爾認知評估(Montreal Cognitive Assessment, MoCA)測試和簡易精神智能量表(Mini-mental state examination, MMSE)。這些測試的優點是他們可以在短時間內得到結果。然而,紙筆測試不適合在短時間內對同一個體重複測試。此局限性使得傳統的紙筆測試不適合長期持續評估個體認知能力的變化。針對上述限制,出現了越來越多的基於電腦系統評估測試。基於電腦系統的評估測試的優點是測試的執行不受時間和空間的限制。使用者可以通過自己的電腦裝置進行認知功能評估,例如平板電腦、智能手機和個人電腦。也可以在家中或實驗室環境中進行評估。此外,基於電腦系統的評估測試在測試問題的出題類型可以更加靈活,因此結果可以更準確。
隨著最近各種感測技術的進步,感測器輕鬆測量心率、呼吸頻率、膚電活動,甚至腦電波和眼球運動。其中,眼球運動是評估認知功能最合適且最被廣泛討論的指標。因其不僅反映了個體的注意力方向,而且提供了具有高時間空間分辨率的動態資料。與傳統評估相比,眼球運動可以更有效地衡量個人的行為決策過程,並提供更準確的認知能力評估。
當今有許多基於眼動的認知評估系統。然而,這些系統仍處於開發階段,需要克服許多限制。尤其是眼動追蹤評估的潛力尚未完全被實現。大多數基於眼動的認知評估系統採用單一作業,這些系統難以區分不同認知功能隨著時間的變化。此外,現有的基於眼動的認知評估大多透過將使用者單次測驗的結果與病患或健康群體的常模比較來檢測認知功能異常,缺乏監測和預測個體認知隨時間變化的功能。
實施例提供一種認知評估系統,包含運算裝置、伺服器及眼動追蹤裝置。運算裝置包含認知評估程式,用以執行至少一認知評估作業。至少一認知評估作業用以評估使用者的認知功能。伺服器耦接於該運算裝置,並包含資料庫。資料庫儲存有該使用者的歷史表現資料、使用者的歷史表現模型、健康群體的作業表現資料及病患群體的作業表現資料。眼動追蹤裝置耦接於該運算裝置,用以擷取使用者的眼動訊息。使用者由該運算裝置執行的認知評估程式進行至少一認知評估作業,運算裝置根據至少一認知評估作業產生使用者的作業表現資料,伺服器從運算裝置接收使用者的作業表現資料,伺服器將使用者的作業表現資料和使用者的該歷史表現資料與健康群體的作業表現資料和該病患群體的作業表現資料進行比對以產生比對結果,伺服器根據比對結果產生風險指標,並根據風險指標和比對結果產生認知功能評估報告。使用者的作業表現資料包含一眼動訊息。
圖1是本發明實施例的認知評估系統100的示意圖。認知評估系統100包括伺服器130、眼動追蹤裝置120以及耦接於伺服器130和眼動追蹤裝置120的運算裝置110。
運算裝置110包括處理器112、記憶體裝置114、輸入/輸出裝置116和顯示器118。輸入/輸出裝置116可為鍵盤、麥克風、相機等,也可以是外部裝置,例如滑鼠或遊戲手柄等。顯示器118可以嵌入在運算裝置110中,或者是外部裝置。儲存認知評估程式和相關媒體材料的記憶體裝置114可以是隨機存取記憶體(RAM, random access memory)、快閃記憶體、硬碟或它們的任何組合。處理器112用於根據從使用者或伺服器130接收到的命令來執行記憶體裝置114中的程式。處理器112還可以基於注視相關信息資料計算使用者在認知評估作業中的作業表現資料,將作業表現資料從運算裝置110傳輸到伺服器130,並回應伺服器130的指令。記憶體裝置114還可以儲存眼動追蹤程式。在這樣的實施例中,處理器112還可用以從眼動追蹤裝置120接收圖像資料,並根據接收到的圖像資料和儲存在記憶體裝置114中的眼動追蹤程式計算使用者的注視相關信息資料。注視相關信息資料包括注視位置、瞳孔大小、眼球運動分類(如注視、跳視、眨眼等)。運算裝置110可以是智慧手機、平板電腦、筆記型電腦、擴展實境(例如,AR、VR和MR)裝置及/或智能眼鏡。
眼動追蹤裝置120包括用於捕捉使用者面部或眼睛的圖像的圖像感測器。圖像感測器可以是網路攝像頭、紅外線攝像頭或任何其他可以擷取圖像的感測器。眼動追蹤裝置120可以是外部裝置或嵌入在運算裝置110中。在一實施例中,眼動追蹤裝置120還包括獨立的處理器,其接收由眼動追蹤裝置120擷取的圖像以計算與眼睛的注視相關的信息資料。獨立的處理器可以實現為小型低功耗專用積體電路、數位信號處理器或現場可編程門陣列。在這樣的實施例中,眼動追蹤裝置120將注視相關信息資料發送到運算裝置110。在其他實施例中,眼動追蹤裝置120擷取的圖像將被發送到運算裝置110並由運算裝置110處理。在一些實施例中,眼動追蹤裝置120還可以包括面向使用者的發光裝置,以照亮使用者的面部及/或眼睛,便於圖像擷取。眼動追蹤裝置120可以是遠距眼動追蹤器或可穿戴式眼動追蹤器,例如嵌入在可穿戴裝置(例如,擴展現實裝置、智能眼鏡)中的眼動追蹤裝置、眼鏡式眼動追蹤器或嵌入在使用者自身眼鏡上的眼動追蹤裝置。眼動追蹤裝置120可通過有線網絡、無線網絡(例如:無線熱點、藍芽)及/或通用序列匯流排與運算裝置110連接。
在眼動追蹤裝置120為可穿戴眼動追蹤器的實施例中,眼動追蹤裝置120可進一步包括用於捕捉使用者視野圖像的圖像感測器122。圖像感測器122可以是獨立的圖像感測器,或者是嵌入在運算裝置中的圖像感測器。注視位置由以使用者為中心的坐標(例如,由圖像感測器或可穿戴裝置的嵌入式顯示器定義的坐標系)表示,其中原點將隨著頭部移動而移動。為了更準確地分析使用者的視線相關信息資料,眼動追蹤裝置120需要記錄使用者的頭部運動,並將信息從以使用者為中心的坐標轉換為世界坐標。為了記錄頭部運動,在一些實施例中,認知評估系統100還可以包括一組機器可讀標記,其可以是呈現在運算裝置的顯示器上的數位信號或設置在環境中的物理物件。這種機器可讀標記可以是幾何圖形、文字、符號、特定顏色、顏色梯度或具有特定強度及/或波長的光信號。眼動追蹤裝置120的圖像感測器122可以捕捉包括機器可讀標記的使用者視圖的圖像。運算裝置110或眼動追蹤裝置120可以基於圖像感測器122擷取的連續圖像幀中標記的位移來計算頭部運動。在另一個實施例中,系統還可以包括陀螺儀及/或加速度計,用於記錄使用者的頭部運動。一旦頭部運動被記錄,運算裝置110或眼動追蹤裝置120可以基於頭部運動將注視相關信息資料的坐標從以使用者為中心的坐標轉換為世界坐標。
伺服器130可以是通過有線網路或無線網路與運算裝置110連接的雲端伺服器。伺服器130包括處理器132和記憶體裝置134。記憶體裝置134儲存進行評估的個體(即使用者)的歷史資料、健康群體的認知評估資料和病患群體的認知評估資料。
從使用者、健康群體和病患群體收集的資料包括認知評估的絕對和相對(即當前表現與第一次評估的作業表現之間的差異)作業表現。通過使用機器學習,上述資料可用於形成模型,以估計使用者被歸類為特定群體(例如,健康群體或病患群體)的概率以及個體患病的風險。模型是基於個人在單次認知評估中的作業表現以及在多次認知評估中的相對作業表現模式而建立。
圖2A及2B是實施例中認知評估程式的方法200的流程圖。方法200包括以下步驟:
S102:使用者輸入運算裝置110的背景信息;
S104:使用者校準眼動追蹤裝置120;
S106:運算裝置110為使用者執行基礎作業,得到使用者的基礎作業表現資料;
S108:運算裝置110將使用者的基礎作業表現資料傳輸給伺服器130;
S110:伺服器130將基礎作業表現資料與儲存的資料進行比對,產生第一比對結果;
S112:伺服器130根據第一比對結果計算第一風險指標;
S114:伺服器130判斷第一風險指標是否大於第一閾值;如果是,則進行步驟S116;若否,則進行步驟S130;
S116:伺服器130根據第一風險指標產生第一異常指標;
S118:運算裝置110為使用者執行進階作業,得到使用者的進階作業表現資料;
S120:運算裝置110將使用者的進階作業表現資料傳輸到伺服器130;
S122:伺服器130將進階作業表現資料與儲存的資料進行比對,產生第二比對結果。
S124,伺服器根據第二比對結果計算第二風險指標;
S126:伺服器130判斷第二風險指標是否大於第二閾值;如果是,則進行步驟S128;若否,則進行步驟S130;
S128:伺服器130根據第二風險指標產生第二異常指標;
S130:伺服器130產生認知評估報告。
在步驟S102中,使用者可通過輸入輸出裝置116輸入背景信息。背景信息可包括姓名、性別、年齡、教育背景、母語等。在另一實施例中,背景信息還可包括指紋及/或使用者的面部身份。運算裝置110可以在識別使用者的指紋及/或面部身份時自動加載儲存的使用者信息。背景信息可以儲存在運算裝置110中或儲存在伺服器130中。
在運算裝置110接收到背景信息後,在步驟S104中,使用者按照運算裝置110的指令完成眼動追蹤裝置120的校準。校準過程包括三個步驟。在第一步中,運算裝置110指示使用者確認眼動追蹤裝置120的位置。使用者可以根據圖形或語音指令將眼動追蹤裝置120移動到正確的位置。此步驟可在眼動追蹤裝置120初始開機後自動執行。如果眼動追蹤裝置120正確定位,則運算裝置110將繼續執行第二步驟。在第二步驟中,使用者查看單個或多個注視點。注視點可以是呈現在屏幕或紙上的虛擬物件。在檢測到使用者凝視注視點後提供視覺及/或音頻反饋。在另一個實施例中,第二步驟也可以以互動遊戲的形式進行。在第三步驟中,運算裝置110會呈現校準的校準結果,以供使用者評估眼動追蹤裝置120的效能。使用者可判斷接收到的視線相關信息資料的品質是否足夠。校準結果可以是在校準過程中查看的所有注視點的平均分數或在校準過程中查看的每個注視點的分數。上述分數可以是基於眼動追蹤算法計算的準確度及/或可靠度的值(例如,接收到的注視位置和特定注視點之間的數值距離)。校準結果可以以視覺信息及/或音頻信息的形式顯示。如果校準結果不夠準確,則可以重複第二步驟以重新校準眼動追蹤裝置120。在一實施例中,如果眼動追蹤裝置120之前已經被校準過,運算裝置110可以根據使用者的背景信息使用先前的校準資料。在眼動追蹤裝置120校準之後,在步驟S106,運算裝置110自動執行基礎作業。以下段落將描述在方法200中採用的作業。根據應用,這些作業可以被分為基礎作業或進階作業。
圖3A和3B是簡單圖像記憶作業的過程和簡單記憶作業的對應示意圖。記憶作業分為兩個階段:(1)記憶階段;(2)回憶階段。在作業執行之前,運算裝置可以預先加載作業的配置資料(configuration data)和媒體素材(media material)。配置資料包括關於圖像呈現的三種時間信息: (1)第一時段是指每個圖像在顯示器上顯示的時間;(2)第二時段是指顯示兩個接續呈現的圖像之間的間隔時間;(3)第三時段是指記憶階段和回憶階段之間的時間。配置資料還包括:(1)第一數字,指在記憶階段預定的嘗試次數;(2)第二數字,指在回憶階段預定的嘗試次數;(3) 作業中執行的嘗試順序。在簡單的圖像記憶作業中,每次嘗試都是指一對特定的兩個圖像的顯示。兩個圖像可以彼此相同或不同。媒體素材包括分別用於記憶階段和回憶階段的第一圖庫(gallery)和第二圖庫。
在記憶階段,運算裝置110從第一圖庫中隨機選擇圖像。每個選定的圖像形成一個嘗試。該選定之圖像將呈現予使用者並維持第一時段(例如,5秒)。之後,會顯示第一空白屏幕並維持第二時段(例如,1秒)。第一空白屏幕結束之後,運算裝置110可確認執行的嘗試次數是否已達到第一數字。如果已經達到第一數字,則運算裝置110可以結束記憶階段並且第二空白屏幕隨後顯示並維持第三時段(例如,1秒)。否則,運算裝置110可以繼續執行一新的嘗試。
在第二空白屏幕之後,運算裝置110即執行回憶階段。回憶階段的過程類似於記憶階段,除了在每個圖像呈現(即嘗試)期間,並排顯示兩個不同的圖像。一個是在記憶階段呈現給使用者的圖像(即重複圖像),另一個是從第二個圖庫中隨機選擇在記憶階段尚未顯示的圖像(即新圖像)。然後,運算裝置110要求使用者注視新圖像。類似於記憶階段,在每個第一空白屏幕結束時,運算裝置110確定回憶階段中的嘗試次數是否已達到第二次數。若是,運算裝置110可以結束作業並計算作業表現。作業表現資料是基於作業信息資料和使用者視線相關信息資料的組合計算得出。作業信息資料包括圖像在呈現過程中顯示和消失的時間戳,以及圖像在記憶階段和回憶階段的位置。
作業表現可以通過回憶階段的以下作業表現資料來確定:(1)使用者分別注視重複圖像和新圖像的時間比例;(2)使用者注視重複圖像和新圖像的時間比例差;(3)分別位於重複圖像和新圖像的注視點數;(4)重複圖像和新圖像之間的跳視(saccades)次數;(5)重複圖像中的跳視眼動移動次數;(6)新圖像中的跳視眼動移動次數; (7)圖像呈現開始到第一次注視落在重複圖像上的時間;(8) 從圖像呈現開始到第一次注視落在新圖像上的時間。透過進一步將上述作業表現資料依照同一張圖像於記憶階段和回憶階段呈現之間的時段進行分析,可以進行進一步的詳細評估認知功能。上述的時序分析可包含不同作業表現資料的趨勢分析,及/或是設定一閾值(例如:120秒),依照每個嘗試其所涉及的圖片,於記憶階段與回憶階段呈現之間的時段大於閾值與否進行分組,並比進行組間比較。
例如,對於給定的圖像,在記憶階段呈現的圖像與在回憶階段呈現的相同圖像之間的時間可能是從10s到180s。隨著時間的增加,使用者注視新圖像的時間比例會減小,使用者注視重複圖像和新圖像的時間比例差異會減小。這種現象可能表明隨著時間的增加,使用者將圖像保存在記憶中變得更加困難。記憶力受損的人在較長的時間間隔會有的較差的表現。除了上述注視相關參數外,使用者的表現還可以通過其他參數來確定,例如掃視眼球運動和瞳孔大小。
圖4A和4B是重複視覺搜尋作業的過程和對應示例的示意圖。在執行視覺搜尋作業之前,運算裝置110可以預加載作業的配置資料和媒體素材。配置資料包括作業中每個步驟所花費的時間、單個嘗試中的搜尋次數(例如,每次嘗試兩次搜尋)、每個嘗試中顯示的物件數量以及嘗試總數。
每個嘗試的第一個搜尋目標(search target)和搜尋陣列(search array)由系統隨機產生。搜尋陣列中的物件可以是模型、數字或圖形信息。進入嘗試階段時,在第一個時段,例如1秒,預留位置(placeholder)會在搜尋陣列中顯示。預留位置用於告知使用者物件所在的位置(包括目標物件和非目標物件)。在第一個時段之後,目標指示物件顯示在屏幕上(預留位置仍然存在)。然後,在第二時段後,例如1秒,預留位置可以移除。第一時段可以長於第二時段。在第二時段之後,使用者被要求要盡快從物件中搜尋並注視目標物件。使用者無論是否選對或選錯目標物件,結果都會被發送到運算裝置110。在使用者每次搜尋之後,運算裝置110可以確認在當前嘗試中執行的搜尋次數是否達到了預定的次數。若否,則重複上述嘗試,運算裝置110可根據本次搜尋所收集的注視相關信息資料選擇下一個搜尋目標。例如,如果搜尋陣列包括十個目標物件,並且使用者僅正確注視了三個目標物件,則可以從正確注視的三個目標中選擇下一個搜尋目標物件。
當執行的嘗試次數已達到預定的嘗試總數時,運算裝置110可根據注視相關信息資料和作業信息資料(例如,每個物件的位置和搜尋的時間戳)計算作業表現資料。
以下是在重複視覺搜尋作業中計算的作業表現資料示例,用於估計各種認知能力:(1)注視到非目標物件的所需時間;(2)注視非目標物件前的注視次數;(3)注視非目標物件的次數;(4)對非目標物件的注視時間;(5)注視到目標物件的所需時間;(6)注視目標物件前的注視次數;(7)注視目標物件的次數;(8)對目標物件的注視時間;(9)重新注視目標指示物件的次數。作業表現資料可用於估計使用者的執行功能(executive function)。接續的搜尋之間的差異可用於估計使用者的記憶功能。為了增加作業表現資料的敏感性,也可以改變物件以使重複的視覺搜尋作業更加困難(例如,更多的物件及/或搜尋物件之間的更高的相似性)。此外,在物件選擇中也可以採用聯結搜尋(conjunction search)的概念。如果使用的物件包括語義關係,則重複的視覺搜尋作業也可以用於估計語言相關的能力。最後,重複的視覺搜尋作業可以以具有更高生態效度的方式實現。也就是說,搜尋陣列不僅僅可以是一組抽象的物件。重複的視覺搜尋作業可以要求使用者在一個場景中搜尋一個物件,例如在壁櫥裡找衣服,或者在房間裡找一本特定的書。搜尋可以使用二維或三維圖像,甚至可以在擴展實境中進行。
在步驟S108中,運算裝置110將使用者的基本作業表現資料傳送給伺服器130。在步驟S110中,伺服器130將基本作業表現資料與資料庫中群體的基本作業表現資料進行比對,以產生第一比對結果。在步驟S112中,伺服器130根據第一比對結果計算第一風險指標。在一實施例中,為了計算第一風險指標,伺服器130首先在資料庫中選擇與使用者的背景信息(例如,年齡、性別、教育背景)相對應的群體,並將使用者的基礎作業表現資料與一組資料進行比對。該組資料包括使用者的歷史表現資料、健康群體及/或病患群體的作業表現資料(例如,主觀認知能力下降、輕度認知障礙、阿茲海默病等涉及認知障礙的疾病)。此外,作業表現包括總體的絕對作業表現和相對作業表現的分佈,以及個體在多個認知評估中相對作業表現的趨勢,可以此構建歷史表現模型。第一比對結果可以包括使用者在特定群體中的排名,以及使用者被歸類為特定群體的概率。
歷史表現模型可用以估計一段時間內認知功能的變化,歷史表現模型是基於在多個認知評估中的相對作業表現資料產生的。使用者的資料、健康群體的資料及/或患者的資料皆會分別被用以形成一個歷史資料模型。使用者被歸類為健康群體或患者群體的概率則可以基於使用者的相對表現資料與健康群體的歷史表現資料模型,及/或患者群體的歷史表現模型的適配性(goodness-of-fit)來計算適配性可以以可能性、均方根誤差或任何其他可以描述所觀察到的表現資料與歷史表現模型之間差異的統計方法實現。在其他實施例中,作業表現資料還可以包括個體在認知評估中的絕對作業表現的趨勢,並且歷史表現模型也可以基於這些絕對作業表現的趨勢來產生。
伺服器130還包括一基於第一比對結果的區辨模型,用以計算第一風險指標。區辨模型可以將具有一定程度的認知障礙的使用者與健康群體區分開來。實施例可以根據使用者的作業表現資料與區辨模型定義的閾值之間的數值距離來估計風險指標。具體來說,判別模型可以將使用者的表現估計為幾何空間中的位置。第一次比對結果中的每個參數(例如,使用者在每個群體中的排名,以及使用者資料與每個群體的歷史表現模型之間的差異)都可為該空間的一個維度,並且可以通過這些參數之間的關係合併參數來進一步減少空間的維度。根據空間的維度,閾值可以是空間中的點、線或平面。使用者的作業表現資料與閾值之間的數值距離可以計算為歐幾里得距離(Euclidean distance)。累積分佈函數可用於估計風險指標。在函數中,x軸是歐幾里得距離,y軸是將使用者分類為給定群體的概率。估計的風險指標是對應於給定數值距離處的概率。在其他實施例中,伺服器130可根據基礎作業表現資料產生判別模型。
在步驟S114中,伺服器130判斷使用者的第一風險指標是否大於第一閾值。當第一風險指標大於第一閾值時,伺服器130產生第一異常指示,運算裝置110執行進階作業。否則,伺服器130將產生使用者的認知評估報告。若使用者先前已進行認知評估且識別出使用者的第二異常指標,則不論第一風險指標與第二風險指標是否大於前述閾值,認知評估系統100皆會執行步驟S118。
在步驟S118中,運算裝置110回應來自伺服器130的命令並執行進階作業。進階作業可以進一步檢查使用者的認知障礙是否是多面向的。例如,進階作業可以包括(1)反向跳視作業;(2) 空間預測作業;(3)新編重複視覺搜尋作業;(4)閱讀作業;(5)關聯記憶作業。
圖5是反向跳視作業的示意圖。作業配置資料(configuration data)包括注視點持續時間、中心目標持續時間、外圍目標持續時間、回饋標記持續時間、嘗試總數和外圍目標位置。作業配置資料在作業開始之前會被預先加載到運算裝置110。在作業開始後,注視點顯示在屏幕的中心並持續第一預定時間(first predetermined time)。注視點可以是圓盤、十字或其他幾何形狀。然後注視點會被中心目標替換並持續第二預定持續時間(例如,500-1500毫秒)。中心目標可以是與注視點不同的圓盤、靶心或其他幾何形狀。然後,外圍目標會在外圍位置顯示,並維持第三預定時間(例如,1000毫秒)。外圍位置可以是在一定視角內遠離屏幕中心的任何位置。例如,外圍位置可以在水平軸上距屏幕中心6°或12°視角。一旦外圍目標顯示,使用者被要求要盡可能快速地看向指定位置,該指定位置為外圍位置的鏡像位置。在外圍目標顯示時間結束後,認知評估系統100會將結果回饋給使用者。回饋標記可以是通知使用者是否正確注視指定位置的視覺標記。顯示回饋標記後,所有圖像都會從屏幕上消失。運算裝置110可檢查執行的嘗試次數是否已達到嘗試總數。如果是,則作業結束。否則可以重複上述過程。
運算裝置110可以分析作業信息資料和使用者注視相關信息資料。作業信息資料包括上述步驟的時間戳資料(例如,中心目標的顯示時間戳和外圍目標的顯示時間戳)。然後運算裝置110通過計算目標位置與使用者注視相關信息資料之間的對應關係來評估使用者的作業表現資料。用於評價作業表現資料的資料包括:(1)外圍目標顯示後,使用者正確注視屏幕指定位置的次數及/或比例;(2)在開始顯示外圍目標後,使用者先注視外圍目標,後將視線轉移到指定位置的次數及/或比例;(3)使用者在開始顯示回饋標記前,只注視外圍目標而未將視線移至指定位置的次數及/或比例;(4)從開始顯示外圍目標到使用者第一次注視指定位置的反應時間;(5) 開始顯示外圍目標的時間與使用者看到外圍目標後,視線轉移到指定位置的時間點之間的反應時間;(6)注視位置與指定位置之間的數值距離。上述作業表現資料也可以通過作業表現資料隨嘗試次數變化的趨勢分析來評估。
圖6及圖7是實施例中空間預測作業和目標的移動路線的示意圖。作業配置資料包括幾何形狀陣列、實驗總數、目標移動時間、目標移動路線以及移動路線內顯示的每個目標位置的持續時間。目標移動路線可以包括移動方式、移動長度和作業難度。在實施例的空間預測作業中,可以在屏幕上顯示一系列幾何形狀。例如圖6所示之5×8的圓陣列。
每個嘗試開始時,運算裝置110可以在多個目標移動路線中隨機選取一條移動路線,並可以選擇陣列中的一個空心圓作為起始位置(如標記的幾何形狀)。這是為了通知使用者目標的起始位置以嘗試即將開始。標記可以持續顯示一定的時間(例如,1000ms),然後標記的空心圓將被目標(實心圓)替換。實心圓可以顯示一定的時間(例如,1000 毫秒)。然後,按照預設的移動路線,目標在陣列內的不同位置顯示,每次顯示的持續時間不同(例如,800ms-1200ms)。認知評估系統100會要求使用者通過使用輸入/輸出裝置116或其他方式對目標物的移動做出反應。當目標從移動路線的最後一個位置消失時,嘗試即結束。圖7展示了用於空間預測作業的7×10陣列上的一些示例性移動路線。
當嘗試結束時,運算裝置110可以檢查是否已經達到嘗試總數。如果是,則作業完成。否則,將重複上述過程。作業信息資料和使用者視線相關信息資料可用於計算作業表現資料。作業信息資料包括:(1)目標顯示在各個位置的時間戳;(2)所示目標的位置。從使用者的視線相關信息資料與作業信息資料之間的對應關係可以得到使用者的預測行為。在實施例中,主要的預測行為是預測的跳視,其可以定義為在目標移動到下一個位置之前進行的跳視,且跳視的終點落於陣列的其他位置。如果該預測的跳視的終點與下一個目標位置一致則預該測跳視是正確的預測跳視,反之,則是錯誤的預測跳視。
以下是可以從預測跳視中可獲得的作業表現資料,以評估使用者的認知功能。 作業表現資料包括:(1)正確和錯誤的預期跳視次數;(2)正確和錯誤預期跳視的比例。實施例可以通過取所有嘗試的平均值來計算移動路線的每個位置的作業表現資料。此外,移動路線的每個位置的資料可能不是同等重要的。至少在前兩個位置,使用者可能還不知道目標所遵循的移動路線。因此,在某些情況下,使用者的作業表現資料可以通過在移動路線的最後幾個位置檢測到的跳視來確定。最後,實施例還可以將上述的作業表現資料以與移動路線中位置的函數關係來呈現。
圖8A和8B是實施例中關係記憶作業的示意圖。在關係記憶作業中,每個實驗包括((1)搜尋階段;(2)回憶階段。作業配置資料包括:(1)(注視點的呈現時間; (2)縱橫線網格的位置信息;(3)每次嘗試,網格中目標物與參照物的類型、數量、位置; (4) 每次嘗試的設置持續時間; (5) 搜尋階段和回憶階段的持續時間;(6)嘗試次數; (7) 搜尋階段和回憶階段之間的時間;(8)回饋時間;(9)每次嘗試的作業難度。
在關係記憶作業中,目標物可能是幾何形狀,與參照物相似,但在顏色、方向、形狀等至少一個特徵上有所不同。在每次嘗試的開始時,目標物持續顯示在屏幕中心2秒。然後屏幕上會顯示一個搜尋陣列,可持續6秒。在搜尋陣列中,顯示了目標物件和多個參照物件。參照物件的位置、數量和相似度由作業配置資料確定。使用者需要在搜尋陣列中找到並注視目標物件。運算裝置110可以確定使用者是否成功地注視目標物件。接下來,屏幕會顯示一個注視點,持續時間為3秒或更長(例如,6 秒),如圖8A所示。注視點可以是幾何形狀,例如圓盤或十字。注視點的幾何形狀可以不同於目標物件和參照物件的幾何形狀。
接下來,實驗進入回憶階段。回憶陣列會顯示6秒。回憶階段與記憶階段會顯示相同的網格,但僅顯示參照物件並且參照物件的位置會有偏移。這樣網格中參照物件的絕對位置將改變,而它們之間的相對位置會保持一致。使用者需要在網格中找到目標物件的正確相對位置(例如,分別在圖8A和8B中的空心形狀和虛線形狀)。如果使用者成功地注視目標物件的相對位置,運算裝置110可以確認使用者的所注視的位置是正確的。在回憶階段之後,系統100會顯示回饋信息以告知使用者的作業表現。回饋信息可以是視覺信息或音頻信息。類似於上述作業,在每次嘗試結束時,運算裝置110可以檢查是否已經達到預定的嘗試總數。若是,則作業完成,並通過分析作業信息資料和注視相關信息資料之間的對應關係來評估使用者的作業表現資料。否則,可以重複嘗試。嘗試階段的時間長度僅為示例,本發明不限於此。
圖8B示出搜尋階段的示例性搜尋陣列和對應於搜尋陣列的回憶階段的一些回憶陣列。在圖8B上部,黑點表示在搜尋階段使用者應該注視的目標物件位置。在圖8B下部,空心圓表示在回憶階段使用者應該注視之目標物件的相對位置。這些陣列只是示例。在其他實施例中,目標物件和參照物件也可以是光柵圖案,例如Gabor patch。本發明不限於此。
以下是用於作業表現評估的作業表現資料。作業表現資料包括:(1)搜尋階段正確反應的次數及/或比例;(2)在搜尋階段注視目標物件的反應時間; (3)在搜尋階段得到正確反應所需的注視次數;(4)使用者在搜尋階段注視目標物件、參照物件和網格中其他位置的時間比例;(5)搜尋階段對目標物件、參照物件和網格中其他位置的注視次數;(6)回憶階段正確反應的數量及/或比例;(7)在回憶階段尋找目標物件相對位置的反應時間 (8)在回憶階段得到正確反應所需的注視次數;(9)在回憶階段注視目標物件相對位置、參照物件和其他位置的數量及/或比例;(10)使用者在回憶階段注視目標物件相對位置、參照物件和其他位置的時間長度。所有這些作業表現資料都可以按作業難度進一步分組,並且還可以對不同組的作業表現資料進行比對。
每個嘗試的作業難度與目標物件和參照物件的特徵的相似性有關。這些特徵包括方向、形狀和顏色。例如,目標物件和參照物件可以是帶有光柵圖案的圓形圖像。圖像上的光柵圖案可以有不同的方向。例如,0°的目標物件和10°的參照物件之間的相似度高於0°的目標物件和15°的參照物件之間的相似度。此外,作業難度與搜尋階段和回憶階段之間的時間呈正相關。
圖9是另一實施例的視覺搜尋作業的示意圖。作業配置資料包括:(1)目標的設置時間;(2)搜尋階段和測試階段的持續時間;(3)反饋的持續時間;(4)搜尋階段和測試階段之間的時間;(5)搜尋階段和測試階段的嘗試次數;(6)描述搜尋階段和測試階段目標的列表;(7)測試階段各嘗試的情境列表;(8)具有垂直和水平線的陣列,用於顯示每個階段的視覺物件;(9)陣列中顯示的視覺物件的類型;(10)視覺物件在陣列中的位置。作業中使用的視覺物件可以是幾何圖形或圖片等,也可以是具有不同旋轉度的幾何圖形。
當搜尋階段開始時,屏幕會顯示一個目標物件(例如三角形)以告知使用者要搜尋什麼。然後搜尋陣列在屏幕上顯示2秒。使用者需要在此搜尋時間內搜尋目標物件。搜尋時間結束後,陣列中的目標物件將被標記為不同的顏色或粗體做為回饋。在嘗試結束後,運算裝置110可以檢查是否已經達到預定的嘗試總數。如否,可以重複上述嘗試。若已經達到預定的嘗試總數,嘗試可進入測試階段。測試階段的過程類似於搜尋階段的過程,不同之處在於在測試階段,根據情境列表,在部分嘗試中,運算裝置110可以隨機將目標物件與其中一搜尋陣列上的非目標物件調換位置(例如,與目標物件具有相同形狀但具有不同旋轉度的三個物件之一,如圖9所示),並且不向使用者提供回饋。
在作業完成後,運算裝置110可以通過分析作業信息資料和使用者的視線相關信息資料來評估使用者的作業表現。作業信息資料包括每一步驟的時間戳和每一步驟中物體的位置。作業表現資料包括:(1)使用者注視目標物件和非目標物件的時間比例;(2)測試階段注視目標和非目標物件的次數。作業表現資料也可以基於以下條件進行分組:(1)由情境列表確定的測試階段的情境;(2)在搜尋階段搜尋特定物件與在測試階段搜尋同一物件的時間間隔。
在步驟S118完成進階作業後,在步驟S120,運算裝置110將使用者的進階作業表現資料傳送到伺服器130。在步驟S122,伺服器130將使用者的進階作業表現資料與使用者的進階作業表現資料進行比對,以產生第二個比對結果。在步驟S124中,伺服器130根據第二比對結果計算第二風險指標。在一個實施例中,為了計算第二風險指標,伺服器130首先在資料庫中選擇與使用者的背景信息(例如,年齡、性別、教育背景)相對應的群體,並將使用者的進階作業表現資料與一組資料進行比對。該組資料包括使用者的歷史作業表現資料、健康群體及/或病患群體的作業表現資料(例如,主觀認知能力下降、輕度認知障礙、阿茲海默病等涉及認知障礙的疾病)。
此外,作業表現包括絕對和相對作業表現的分佈,以及個體在多項認知評估中相對作業表現的趨勢和模式,並且可以基於認知評估的相對作業表現,為至少一組資料(即,使用者、健康群體及/或病患群體的資料)產生歷史表現模型。在其他實施例中,作業表現還包括在多個認知評估中的絕對作業表現,並且可以基於絕對作業表現資料來產生歷史作業表現。第二比對結果可以包括使用者在特定群體中的排名,以及使用者被歸類為特定群體的概率。使用者被歸類為特定群體的概率可以基於使用者在多個認知評估中的相對作業表現與健康群體及/或病患群體的歷史表現模型之間的適配度來計算,適配度可以可能性、均方根誤差或任何其他可以描述作業資料與歷史表現模型之間差異的統計方法實現。
為了計算第二風險指標,伺服器130可以進一步根據步驟S112中描述的方法為每個作業計算本地風險指標(local risk value),然後根據所有本地風險指標計算第二風險指標。第二風險指標可以是每個由特定常數加權的所有局部風險指標的平均值。常數可以由靈敏度、特異性、接受者操作特徵曲線下面積及/或每項作業的準確性來定義。這些常數用於區分病患群體和健康群體。在其他實施例中,伺服器130還可以將第一比對結果納入本地風險指標和第二風險指標的計算中。在其他實施例中,為了計算第二風險指標,伺服器130可以形成由基礎作業表現資料和進階作業表現資料兩者構建的區分模型以區分病患群體和健康群體。上述作業表現資料包括單次測試的作業表現資料和接續數次測試的作業表現資料。在這種情況下,第二個風險指標可以是使用者的整體作業表現與在歐幾里得空間中定義區辨模型的閾值之間的歐幾里得距離(Euclidean distance)。
更具體地,區辨模型可以將使用者的表現估計為幾何空間中的位置。每個作業表現資料可以構建一個維度的空間。在某些情況下,可以使用統計方法(即因子分析和主成分分析)來提取影響作業表現資料的主要因素。空間的維度可以進一步減少到主要因素的數量。根據空間的維度數,閾值可以是空間中的點、線或平面。使用者的作業表現資料與閾值之間的數值距離可以定義為歐幾里得距離。累積分佈函數可用於估計風險指標。在此函數中,x軸是歐幾里得距離,y軸是將使用者分類為特定群體的概率。估計的風險指標對應於特定數值距離處的概率。
在步驟S124取得第二風險指標後,伺服器130在步驟S126判斷第二風險指標是否大於第二閾值。若第二風險指標大於第二閾值,則在步驟S128,伺服器130可產生第二異常指標。
在步驟S130中,伺服器130可產生認知評估報告給使用者。認知評估報告可以包括:(1)分數、圖表及/或符號,指示使用者相對於與其背景資料相符的健康群體的作業表現;(2)風險指標,表示使用者會發展成某種認知障礙的概率;(3)給予使用者的日常活動建議,以降低罹患認知疾病的風險。
伺服器130還可以根據使用者的作業表現資料以及第一異常指標和第二異常指標的分佈情況,確認使用者何時應該再次參與認知評估作業。如果認知評估系統100產生第一異常指標及/或第二異常指標,使用者應在短時間(例如一周)內再次參與認知評估作業。否則,使用者可以在更長的時間(例如,六個月)內再次參加參與認知評估作業。伺服器130可以進一步與使用者的個人日曆(例如,谷歌日曆)連接並安排認知評估。
在另一實施例中,運算裝置110可根據第一異常指標及/或第二異常指標提醒使用者。如果第一異常指標及/或第二異常指標在幾次連續的評估中頻繁出現,則運算裝置110可以確定使用者的認知功能正在下降並且會提醒使用者取得就醫資訊。
在另一個實施例中,認知評估系統100的伺服器130可以與醫療平台及/或醫療機構連接。認知評估報告和警報可以被發送到醫療平台及/或醫療機構以供醫療專業人員評估。
基礎作業和進階作業也可以根據應用進行修改。例如,如果記憶功能的損傷對於特定應用至關重要,則基礎作業可以包括評估記憶功能的作業。在其他情況下,如果應用程式的關鍵因素是確定使用者是否患有多面向的認知障礙,則基礎作業可以包括評估記憶功能的子作業和評估執行功能的其他子作業。此外,如果從基礎作業中發現特定認知功能損害,例如執行功能,認知評估系統100可以根據這一點選擇評估執行功能的進階作業。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。
100:認知評估系統 110:運算裝置 120:眼動追蹤裝置 130:伺服器 112, 132:處理器 114, 134:記憶體裝置 116:輸入/輸出裝置 118:顯示器 122:圖像感測器 200:方法 S102~S130:步驟
圖1是實施例中認知評估系統的示意圖。 圖2A和圖2B是實施例中認知評估程式的方法的流程圖。 圖3A和圖3B是實施例中簡單圖像記憶作業的過程和簡單記憶作業的對應示意圖。 圖4A和圖4B是實施例中重複視覺搜尋作業的過程和對應示例的示意圖。 圖5是實施例中反掃視作業的示意圖。 圖6和圖7是實施例中空間預測作業和目標的移動路線的示意圖。 圖8A和圖8B是實施例中關係記憶作業的示意圖。 圖9是另一實施例中視覺搜尋作業的示意圖。
100:認知評估系統
110:運算裝置
120:眼動追蹤裝置
130:伺服器
112,132:處理器
114,134:記憶體裝置
116:輸入/輸出裝置
118:顯示器
122:圖像感測器

Claims (19)

  1. 一種認知評估系統,包含: 一運算裝置,包含一認知評估程式,用以執行至少一認知評估作業,該至少一認知評估作業用以評估一使用者的一認知功能; 一伺服器,耦接至該運算裝置,包含一資料庫,儲存有該使用者的一歷史表現資料、該使用者的一歷史表現模型、一健康群體的作業表現資料及一病患群體的作業表現資料;及 一眼動追蹤裝置,耦接於該運算裝置,用以擷取該使用者的一眼動訊息; 其中: 該使用者由該運算裝置執行的該認知評估程式進行該至少一認知評估作業; 該運算裝置根據該至少一認知評估作業產生該使用者的一作業表現資料; 該伺服器從該運算裝置接收使用者的該作業表現資料; 該伺服器將該使用者的該作業表現資料和該使用者的該歷史表現資料與該健康群體的作業表現資料和該病患群體的作業表現資料進行比對,以產生一比對結果; 該伺服器根據該比對結果產生一風險指標,並根據該風險指標和比對結果產生一認知功能評估報告;及 該使用者的該作業表現資料包含一眼動訊息。
  2. 如請求項1所述的認知評估系統,其中該至少一個認知評估作業包含一基礎作業及一進階作業。
  3. 如請求項2所述的認知評估系統,其中該基礎作業用以評估複數個認知功能。
  4. 如請求項2所述的認知評估系統,其中該進階作業包含複數個評估特定認知功能的作業,該運算裝置依據該基礎作業的評估結果,選擇執行該複數個評估特定認知功能的作業中至少一評估特定認知功能的作業。
  5. 如請求項1所述的認知評估系統,其中該歷史表現模型係根據該使用者的該歷史表現資料所產生。
  6. 如請求項5所述的認知評估系統,其中該資料庫另包含該病患群體的一歷史表現模型及該健康群體的一歷史表現模型。
  7. 如請求項6所述的認知評估系統,其中: 該比對結果包括該使用者的作業表現排名;及 該使用者被分類到該資料庫的哪個群體的概率; 其中: 該使用者被分類到該資料庫的哪個群體的概率是根據該使用者的歷史表現資料與該資料庫中每一群體的歷史表現模型的適配性(goodness-of-fit)所決定。
  8. 如請求項7所述的認知評估系統,其中該伺服器另包含一區辨模型,用以根據該比對結果區分該病患群體與該健康群體。
  9. 如請求項8所述的認知評估系統,其中該風險指標係該區辨模型的一閾值與該使用者的該作業表現資料的一數值距離。
  10. 如請求項9所述的認知評估系統,其中該病患群體是一群有認知障礙的個體。
  11. 如請求項1所述的認知評估系統,其中該認知功能評估報告包含: 分數、圖表及/或符號,指示使用者相對於與其背景資料相符的健康群體的作業表現; 風險指標,表示使用者會發展成某種認知障礙的概率;及 給予使用者的日常活動建議,以降低罹患認知疾病的風險。
  12. 如請求項11所述的認知評估系統,其中若該使用者的該風險指標大於一閾值,該伺服器產生一異常標記。
  13. 如請求項12所述的認知評估系統,其中該伺服器根據該異常標記協助該使用者安排下一次認知評估的時間。
  14. 如請求項12所述的認知評估系統,其中若該異常標記的出現頻率大於一閾值,該伺服器發出根據該異常標記發出一警告訊息,以警告該使用者認知功能衰退的情形。
  15. 如請求項14所述的認知評估系統,其中若該伺服器判斷該使用者有認知衰退時,該認知功能評估報告包含相關的就醫資訊。
  16. 如請求項15所述的認知評估系統,其中該伺服器係一雲端伺服器。
  17. 如請求項16所述的認知評估系統,其中該伺服器與一醫療平台或一醫療機構進行連線。
  18. 如請求項17所述的認知評估系統,其中該伺服器傳送該認知功能評估報告及/或該警告訊息給連線的該醫療平台或該醫療機構。
  19. 如請求項1所述的認知評估系統,其中該眼動訊息包含注視位置、瞳孔大小及眨眼訊息。
TW111121599A 2021-06-11 2022-06-10 認知評估系統 TWI813329B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163209406P 2021-06-11 2021-06-11
US63/209,406 2021-06-11

Publications (2)

Publication Number Publication Date
TW202249026A true TW202249026A (zh) 2022-12-16
TWI813329B TWI813329B (zh) 2023-08-21

Family

ID=84364989

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111121599A TWI813329B (zh) 2021-06-11 2022-06-10 認知評估系統

Country Status (3)

Country Link
US (1) US20220395206A1 (zh)
CN (1) CN115471903A (zh)
TW (1) TWI813329B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024197695A1 (zh) * 2023-03-30 2024-10-03 中国科学院深圳先进技术研究院 基于脑机接口的意图预测方法、装置、设备及存储介质
CN117257304B (zh) * 2023-11-22 2024-03-01 暗物智能科技(广州)有限公司 一种认知能力测评方法、装置、电子设备及存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201516892A (zh) * 2013-10-16 2015-05-01 Utechzone Co Ltd 監控方法、裝置及系統
CA3074608A1 (en) * 2017-09-27 2019-04-04 Apexk Inc. Apparatus and method for evaluating cognitive function
WO2019098173A1 (ja) * 2017-11-14 2019-05-23 国立大学法人大阪大学 認知機能障害診断装置および認知機能障害診断プログラム
CN109044378A (zh) * 2018-09-20 2018-12-21 复理智能科技(上海)有限公司 一种多动症评估和诊断系统
CN110801237B (zh) * 2019-11-10 2022-11-11 中科搏锐(北京)科技有限公司 一种基于眼动和脑电特征的认知能力评估系统

Also Published As

Publication number Publication date
TWI813329B (zh) 2023-08-21
CN115471903A (zh) 2022-12-13
US20220395206A1 (en) 2022-12-15

Similar Documents

Publication Publication Date Title
JP7083809B2 (ja) プライバシーの保護を伴う人物の識別しおよび/または痛み、疲労、気分、および意図の識別および定量化のためのシステムおよび方法
US11998336B2 (en) Systems and methods for assessing user physiology based on eye tracking data
TWI813329B (zh) 認知評估系統
KR101785255B1 (ko) 형상 구별 시력 평가 및 추적 시스템
US10085688B2 (en) Method of identifying an individual with a disorder or efficacy of a treatment of a disorder
US10874343B2 (en) Methods and systems for rapid screening of mild traumatic brain injury
US20140364761A1 (en) An apparatus and method for psychiatric evaluation
JP2007006427A (ja) 映像監視装置
CN112535479B (zh) 一种情绪加工倾向的确定方法及相关产品
US8078253B2 (en) Computerized methods for evaluating response latency and accuracy in the diagnosis of attention deficit hyperactivity disorder
KR20190041081A (ko) 인지장애 진단을 위한 vr기반 인지능력 평가시스템
AU2016410178A1 (en) Method and system for quantitative assessment of visual motor response
KR20140041382A (ko) 생물체의 정신생리학적 상태에 관한 정보 획득방법
Yamada et al. Fatigue detection model for older adults using eye-tracking data gathered while watching video: Evaluation against diverse fatiguing tasks
US6994670B2 (en) Methods for diagnosing akathisia
KR101984993B1 (ko) 사용자 맞춤형 시표 제어가 가능한 시야검사기
CN111738234B (zh) 基于个体眼动特征的自动化共情能力识别方法
US20220392624A1 (en) Apparatus and method for providing artificial intelligence based virtual reality psychological test service
US20210074389A1 (en) System and method for collecting, analyzing, and utilizing cognitive, behavioral, neuropsychological, and biometric data from a user's interaction with a smart device with either physically invasive or physically non-invasive means
CN118315052B (zh) 一种基于多模态的智能交互ad筛查系统、装置
WO2019018577A1 (en) SYSTEMS AND METHODS FOR ANALYZING A BEHAVIOR OF A HUMAN SUBJECT
Białek et al. Selected problems of image data preprocessing used to perform examination in Parkinson’s disease
EP3164057B1 (en) System and method for the determination of parameters of eye fixation
CN117393104A (zh) 一种康复训练方案匹配的方法、装置、设备及介质
CN117522770A (zh) 基于图像的特征性眼睛移动的检测