TW202248420A - 高效經修飾之酸性α-葡萄糖苷酶及其製造與使用方法 - Google Patents

高效經修飾之酸性α-葡萄糖苷酶及其製造與使用方法 Download PDF

Info

Publication number
TW202248420A
TW202248420A TW111130023A TW111130023A TW202248420A TW 202248420 A TW202248420 A TW 202248420A TW 111130023 A TW111130023 A TW 111130023A TW 111130023 A TW111130023 A TW 111130023A TW 202248420 A TW202248420 A TW 202248420A
Authority
TW
Taiwan
Prior art keywords
rhgaa
atb
glycogen
gaa
lumizyme
Prior art date
Application number
TW111130023A
Other languages
English (en)
Other versions
TWI843172B (zh
Inventor
羅索 葛薛爾
虹 都
Original Assignee
美商阿米庫斯醫療股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商阿米庫斯醫療股份有限公司 filed Critical 美商阿米庫斯醫療股份有限公司
Publication of TW202248420A publication Critical patent/TW202248420A/zh
Application granted granted Critical
Publication of TWI843172B publication Critical patent/TWI843172B/zh

Links

Images

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本發明描述來源於CHO細胞之重組人類α葡萄糖苷酶(rhGAA)組合物,其含有比習知rhGAA更高量之含有帶有甘露糖-6-磷酸(M6P)或雙-M6P的N-聚醣之rhGAA;含有該rhGAA之組合物;及使用方法。

Description

高效經修飾之酸性α-葡萄糖苷酶及其製造與使用方法
本申請案主張2015年7月2日申請的國際申請案第PCT/US/2015/039098號、2014年9月30日申請的美國臨時案62/057,842、2014年9月30日申請的美國臨時案62/057,847、2015年2月5日申請的美國臨時案62/112,463及2015年3月19日申請的美國臨時案62/135,345之優先權,其中每一者皆以全文引用的方式併入本文中。本申請案與2014年7月3日申請的美國臨時申請案第62/020,653號相關,該案以全文引用的方式併入本文中。
本發明涉及醫學、遺傳學及重組醣蛋白生物化學之領域,且特定言之係關於重組人類α葡萄糖苷酶(rhGAA)組合物,其具有較高總含量之使rhGAA有效靶向標靶組織,諸如患有龐培氏病(Pompe Disease)之個體的肌細胞之具有甘露糖-6-磷酸的聚醣,在肌細胞處rhGAA可易位至細胞溶酶體且分解異常高含量之累積肝醣。本發明之rhGAA與習知rhGAA產品相比展現優異靶向肌細胞中之溶酶體,且展現使其尤其有效用於酶替代治療患有龐培氏病的個體之其他藥物動力學特性。
現有的用於龐培氏病之酶替代療法使用具有低總含量之具有M6P及雙-M6P的聚醣之習知rhGAA產品。習知產品以名稱Lumizyme®、Myozyme®及阿葡糖苷酶(Alglucosidase)α所已知。「Lumizyme」及「Myozyme」為Genzyme以生物製劑形式生產或市售且經美國食品藥物管理局(U. S. Food and Drug Administration)批准之rhGAA之習知形式,且參考 醫師案頭參考( Physician's Desk Reference)(2014)(其以引用的方式併入本文中)或經FDA批准截至2014年10月1日在美國使用的命名為「Lumizyme®」或「Myozyme®」之產品來描述。 阿葡糖苷酶α被鑑別為化學名稱[199-精胺酸,223-組胺酸]前原-α-葡萄糖苷酶(人類);分子式C 4758H 7262N 1274O 1369S 35;CAS號420794-05-0。向患有龐培氏病之個體投與此等產品,該病亦稱為II型肝醣貯積病(GSD-II)或酸性麥芽糖酶缺乏症。酶替代療法試圖藉由以投與rhGAA替代缺失GAA,因此恢復細胞分解肝醣之能力來治療龐培氏病。
龐培氏病為由酸性α-葡萄糖苷酶(GAA)活性缺乏而引起的遺傳性溶酶體貯積病。患有龐培氏病之個人缺乏分解肝醣之酶酸性α-葡萄糖苷酶(GAA),肝醣為身體用作能源之物質。此酶缺乏造成過量肝醣累積於溶酶體中,溶酶體為在含有通常分解肝醣之酶的細胞及其他細胞碎片或廢棄物內發現的細胞器。肝醣在患有龐培氏病之個體之某些組織(尤其肌肉)中累積削弱組織正常運行之能力。在龐培氏病下,肝醣並未適當代謝且逐漸累積於溶酶體中,尤其累積於骨骼肌細胞,且在該疾病之嬰兒發病形式下,心肌細胞之溶酶體中。肝醣累積損害肌肉及神經細胞以及其他受影響組織中之肌肉及神經細胞。
龐培氏病視發病年齡而定在傳統上臨床識別為早期嬰兒形式或晚期發病形式。然而,龐培跨越疾病譜,其中最嚴重基因突變導致GAA活性完全損失,且在嬰兒期期間呈現,而其他基因突變(諸如拼接缺陷及錯義突變)導致一些殘餘GAA活性,減緩疾病之發病及進展。嬰兒發病型龐培氏病在出生後不久顯示,且其特徵為肌肉無力、呼吸功能不全及心臟衰竭。未經治療,其通常在兩年內致命。青少年及成人發病型龐培氏病在生命後期顯示,且通常比嬰兒發病型疾病進展更緩慢。雖然此形式之疾病一般不影響心臟,但其亦可導致死亡,因為骨胳肌及參與呼吸之骨胳肌弱化。
龐培氏病之當前非緩解性治療包括使用重組人類GAA (rhGAA)(諸如Lumizyme®或Myozyme®)之酶替代療法(ERT)。rhGAA替代或補充患有龐培氏病之個體中缺乏或缺失的GAA。然而,習知rhGAA產品中之大多數rhGAA不靶向溶酶體且在投與後無法有效消除。
此係因為習知rhGAA缺乏高總含量之使rhGAA分子靶向細胞及隨後細胞之溶酶體之具有M6P及雙-M6P的聚醣而發生。酶替代療法之rhGAA細胞吸收需要專門的碳水化合物甘露糖-6-磷酸(M6P),其與細胞表面上存在之非陽離子依賴性甘露糖-6-磷酸受體(CIMPR)結合用於隨後遞送外源酶至溶酶體。
rhGAA通常含有不同類型之 N-連接寡醣(N-聚醣),其對於M6P受體及其他碳水化合物受體具有不同結合親和力。含有具有一個M6P基團(單M6P)的 N-聚醣之rhGAA與CIMPR以中等親和力結合,而含有在相同N-聚醣上具有兩個M6P基團(雙-M6P)的聚醣之rhGAA以高親和力結合。當在溶酶體內時,GAA可以酶促方式降解累積肝醣,緩解疾病。然而,習知rhGAA具有低總含量之具有M6P及雙-M6P的聚醣,且因此不佳地靶向溶酶體。此等習知產品中之大多數rhGAA分子含有N-聚醣,其為非磷酸化高甘露糖N-聚醣,對於CIMPR無親和力,但其對於肝、脾及其他非標靶組織中巨噬細胞上之甘露糖受體具有相對較高親和力,導致快速非成效性清除rhGAA。圖1A展示非磷酸化單M6P及雙-M6P聚醣之代表性結構。圖1B展示甘露糖-6-P基團。
其他類型之含有複合碳水化合物(諸如N-乙醯葡萄糖胺、半乳糖及唾液酸)之稱為複合型N-聚醣之N-聚醣亦存在於rhGAA上。複合N-聚醣對於CIMPR無親和力。然而,不完全處理之具有暴露半乳糖殘基之複合型N-聚醣對於肝細胞上之脫唾液酸醣蛋白受體具有中等至高的親和力,導致快速非成效性清除rhGAA。
GAA或rhGAA之糖基化可經酶,諸如Canfield等人之美國專利第6,534,30號所描述之磷酸轉移酶/發現酶活體外修飾,以引入M6P基團。酶糖基化不能充分受控制,且產生具有非所要免疫學及藥理學特性之rhGAA。以酶促方式修飾之rhGAA可僅含有高甘露糖N-聚醣,皆有可能在活體外經磷酸轉移酶/發現酶潛在地以酶促方式磷酸化,且每個GAA可能含有平均5-6個M6P基團。由活體外酶處理GAA產生之糖基化模式存在問題,因為額外甘露糖殘基,尤其非磷酸化末端甘露糖殘基負面影響經修飾之rhGAA的藥物動力學。當活體內投與此類以酶促方式修飾之產品時,此等甘露糖基團增加GAA之非成效性清除,增加免疫細胞對以酶促方式修飾之GAA的吸收及由於較少GAA到達所靶向組織(諸如心臟或骨骼肌肌細胞)而減少rhGAA治療功效。舉例而言,末端非磷酸化甘露糖殘基為肝及脾中甘露糖受體之已知配位體,其導致快速清除以酶促方式修飾之rhGAA且減少rhGAA靶向標靶組織。此外,具有含末端非磷酸化甘露糖殘基的高甘露糖N-聚醣之以酶促方式修飾之GAA之糖基化模式在以酵母、黴菌生成之醣蛋白及增加觸發免疫或過敏反應(諸如危及生命之嚴重過敏(allergic/anaphylactic)或超敏反應)的風險之功能方面類似於以酶促方式修飾之rhGAA。
如上所述,習知rhGAA產品(如Lumizyme®)在其聚醣上具有低量單M6P及甚至更低量之雙-M6P。此為問題,因為龐培氏病之治療功效視rhGAA靶向溶酶體而定。習知rhGAA上之低總量之M6P及雙-M6P標靶基團限制其細胞吸收及遞送至溶酶體,因此使習知酶替代療法低效。舉例而言,雖然習知rhGAA產品在20 mg/kg或較高劑量時確實改善龐培氏病,但其不能充分減少許多標靶組織(尤其骨胳肌)中之累積肝醣。
此外,習知酶替代療法與多個問題相關。此等問題包括必須投與大劑量rhGAA組合物以獲得rhGAA在標靶組織中之充分細胞吸收。然而,大劑量rhGAA,尤其大量非磷酸化rhGAA增加個體對rhGAA產生免疫反應之風險。對rhGAA產生免疫為非所要的,因為此增加治療失敗風險以及誘導有害自體免疫或過敏現象。邏輯上,大劑量對個體以及治療個體之醫療專業人員施加額外負擔,諸如延長靜脈內投與rhGAA所需之輸液時間。
rhGAA之習知形式,諸如Myozyme®、Lumizyme®或AL葡萄糖苷酶α之M6P含量不能顯著增加,因為碳水化合物處理為複雜的且難以藉由當前製造方法在細胞中調節。
鑒於習知rhGAA產品之此等缺陷,需要研發一種rhGAA,其有效及有成效性地針對肌肉組織之溶酶體且其中非標靶組織之非成效性清除減至最小。
回應於與靶向及投與習知形式之rhGAA相關之問題及與生產此類較佳靶向形式之rhGAA相關之困難,本發明人已研究及研發出製造更有效靶向肌肉組織中之溶酶體的rhGAA之程序,因為該rhGAA比習知rhGAA組合物具有更高含量之M6P及雙-M6P聚醣。此外,本發明之rhGAA具有較佳處理之複合型N-聚醣,其使非標靶組織對rhGAA之非成效性清除減至最小。
考慮與使用習知rhGAA產品(諸如Lumizyme®)之當前酶替代治療相關之問題,本發明人已經由努力研究及調查研發出一種在CHO細胞中產生具有顯著更高總含量之使rhGAA靶向標靶組織(諸如肌肉)中之溶酶體的M6P及雙-M6P聚醣之rhGAA的方法。藉由此方法產生之rhGAA亦藉助於其總體糖基化模式具有有利藥物動力學特性,在向患有龐培氏病之個體投與後增加其被標靶組織吸收及減少其非成效性清除。本發明人展示本發明之rhGAA如由指定為ATB-200之rhGAA例示,在靶向心臟及骨骼肌組織時比習知rhGAA (諸如Lumizyme®)更有效且更高效。如圖1C所描述,根據本發明之rhGAA如圖1D所說明具有有成效性靶向患有龐培氏病之患者中肌肉組織的優異能力且減少rhGAA之非成效性清除。
根據本發明之優異rhGAA可進一步具有伴隨蛋白或與伴隨蛋白組合,或與靶向肌肉組織中CIMPR之其他基團(諸如與此受體結合之IGF2部分)結合。以下實例展示本發明之rhGAA (由ATB-200 rhGAA例示)藉由提供與使用習知rhGAA產品Lumizyme®之現有療法相比顯著更佳之肝醣清除而超出酶替代療法之現有護理標準。
定義:本說明書中所用的術語在本發明之上下文內及在使用每一術語的特定情形中一般具有其在此項技術中之一般含義。下文或在本說明書中其他處論述某些術語,以在描述本發明之組合物及方法及如何製造及使用其方面為實踐者提供額外指導。
術語「GAA」係指人類酸性α-葡萄糖苷酶(GAA),其為催化溶酶體肝醣之α-1,4-醣苷鍵及α-1,6-醣苷鍵之水解的酶;以及GAA胺基酸序列之插入、相關或取代型變體及發揮酶活性之較長GAA序列的片段。術語「rhGAA」用於區分內源性GAA與合成或重組產生之GAA,諸如藉由以編碼GAA之DNA轉化CHO細胞產生之GAA。GAA及rhGAA可以組合物形式存在,其含有具有不同糖基化模式之GAA分子的混合物,諸如其聚醣上帶有M6P或雙-M6P基團之rhGAA分子與不帶有M6P或雙-M6P之GAA分子的混合物。GAA及rhGAA亦可具有其他化合物,諸如伴隨蛋白,或可與GAA或rhGAA結合物中之其他部分結合,諸如與使結合物靶向CIMPR及隨後溶酶體之IGF2部分結合。
「個體」或「患者」較佳為人類,而患有涉及肝醣累積之病症的其他哺乳動物及非人類動物亦可經治療。個體可為患有龐培氏病或其他肝醣貯積或累積病症之胎兒、新生兒、兒童、青少年或成人。經治療個體之一個實例為患有GSD-II (例如,嬰兒GSD-II、青少年GSD-II或成人發病型GSD-II)之個體(胎兒、新生兒、兒童、青少年、青年或成人)。個體可具有殘餘GAA活性,或無可量測活性。舉例而言,患有GSD-II之個體可具有小於正常GAA活性之約1%的GAA活性(嬰兒GSD-II)、為正常GAA活性之約1-10%的GAA活性(青少年GSD-II)或為正常GAA活性之約10-40%的GAA活性(成人GSD-II)。
如本文所用之術語「治療(treat/treatment)」係指改善與疾病相關之一或多種症狀、預防或延遲疾病之一或多種症狀的發病及/或降低疾病之一或多種症狀的嚴重程度或頻率。舉例而言,治療可指改善心臟狀態(例如,增加末端舒張及/或末端收縮體積,或減少、改善或預防通常見於GSD-II中之進行性心肌病)或肺功能(例如,哭肺活量增加超過基線能力及/或氧氣不飽和在哭泣期間標準化);改善神經發育及/或運動技能(例如,提高AIMS評分);感染疾病之個體之組織中之肝醣含量減少;或此等效果之任何組合。在一個較佳實施例中,治療包括改善心臟狀態,尤其減少或預防GSD-II相關心肌病。
如本文所用之術語「提高」、「增加」或「減少」指示相對於基線量測值之值,諸如在開始本文所描述之治療之前相同個體之量測值,或在本文所描述之治療不存在下對照個體(或多個對照個體)之量測值。對照個體為罹患與經治療個體相同形式之GSD-II之個體(嬰兒、青少年抑或成人發病型),其與經治療個體之年齡約相同(以確保經治療個體與對照個體之疾病階段相當)。
如本文所用之術語「純化」係指已在減少或消除不相關物質(亦即,污染物)存在之條件下分離之物質,包括自其獲得物質之天然物質。舉例而言,純化蛋白質較佳實質上不含與其在細胞中締合之其他蛋白質或核酸;純化核酸分子較佳實質上不含可藉由其在細胞內被發現之蛋白質或其他不相關核酸分子。如本文所用,術語「實質上不含」可操作用於物質之分析測試的情形下。較佳地,實質上不含污染物之純化物質為至少95%純;更佳至少97%純且更佳又至少99%純。純度可藉由層析、凝膠電泳、免疫分析、組成分析、生物分析及此項技術中已知之其他方法評估。在一特定實施例中,純化意謂污染物含量低於監管當局可接受用來向人類或非人類動物安全投與之含量。可使用此項技術中已知之方法,包括藉由層析尺寸分離、親和層析或陰離子交換層析自CHO細胞分離或純化重組蛋白質。
術語「遺傳修飾」或「重組」係指在引入包含編碼基因產品之編碼序列的核酸以及控制編碼序列表現之調節要素之後表現特定基因產品(諸如rhGAA或ATB-200 rhGAA)之細胞,諸如CHO細胞。核酸之引入可藉由此項技術中已知之任何方法實現,包括基因靶向及同源重組。如本文所用,該術語亦包括已例如藉由基因活化技術經工程改造以表現或過度表現不由該細胞正常表現之內源性基因或基因產品的細胞。
「龐培氏病」係指常染色體隱性LSD,其特徵為缺乏酸性α葡萄糖苷酶(GAA)活性,削弱溶酶體肝醣代謝。酶缺乏導致溶酶體肝醣累積且導致在疾病晚期進行性骨骼肌無力、心臟功能降低、呼吸功能不全及/或CNS損傷。GAA基因中之基因突變導致較低表現或產生具有改變之穩定性及/或生物活性的酶突變形式,最終導致疾病。(一般參見Hirschhorn R, 1995, Glycogen Storage Disease Type II: Acid α-Glucosidase (Acid Maltase) Deficiency, The Metabolic and Molecular Bases of Inherited Disease, Scriver等人編, McGraw-Hill, New York, 第7版, 第2443-2464頁)。龐培氏病之三種經識別之臨床形式(嬰兒、青少年及成人)與殘餘α-葡萄糖苷酶活性之水準相關(Refuser A J等人, 1995, Glycogenosis Type II (Acid Maltase Deficiency), Muscle & Nerve 增刊3, S61-S69)。嬰兒龐培氏病(I或A型)為最常見且最嚴重的,其特徵為在壽命第二年內不能茁壯成長、廣義低滲、心臟肥大及心肺衰竭。青少年龐培氏病(II或B型)之嚴重程度為中等的,且其特徵為肌肉症狀突出而無心肥大。青少年龐培氏個體通常由於呼吸衰竭而在達到20歲年齡之前死亡。成人龐培氏病(III或C型)通常在青少年時期或遲至第六個十年呈現為緩慢進行性肌病(Felicia K J等人, 1995, Clinical Variability in Adult-Onset Acid Maltase Deficiency: Report of Affected Sibs and Review of the Literature, Medicine 74, 131-135)。在龐培氏方面,已展示α-葡萄糖苷酶藉由糖基化、磷酸化及蛋白水解處理轉譯後經廣泛修飾。需要在溶酶體中藉由蛋白分解將110千道爾頓(kids)前驅體轉化為76及70 kids成熟形式以用於最佳肝醣催化。如本文所用,術語「龐培氏病」係指所有類型之龐培氏病。本申請案中所揭示之調配物及給藥方案可用於治療例如I型、II型或III型龐培氏病。 本發明之非限制性實施例
一種來源於CHO細胞之rhGAA組合物,其含有比如由Lumizyme®例示之習知rhGAA (阿葡糖苷酶α;CAS 420794-05-0)更高量之含有帶有甘露糖-6-磷酸(M6P)或雙-M6P的N-聚醣之rhGAA。根據本發明之一例示性rhGAA組合物為ATB-200 (有時指定為ATB-200或CBP-rhGAA),其描述於實例中。已展示本發明之rhGAA (ATB-200)以高親和力( K D 約2-4 nM)結合CIMPR,且由龐培氏纖維母細胞及骨骼肌成肌細胞有效內化( K 吸收 約7-14 nM)。ATB-200在活體內表徵且展示具有比當前rhGAA ERT (t 1/2約75 min)更短之表觀血漿半衰期(t 1/2約45 min)。
rhGAA之胺基酸序列相對於由SEQ ID NO: 1或3所描述之胺基酸序列可為至少70%、75%、80%、85%、95%或99%相同,或含有1、2、3、4、5、6、7、8、9、10個或10個以上缺失、取代或添加。在本發明之GAA或rhGAA之一些實施例中,諸如在ATB-200 rhGAA中,GAA或rhGAA將包含野生型GAA胺基酸序列,諸如SEQ ID NO: 1或3之胺基酸序列。在其他非限制性實施例中,rhGAA包含存在於野生型GAA中之胺基酸殘基之一子集,其中該子集包括野生型GAA之形成供基質結合及/或基質還原用之活性位點之胺基酸殘基。因此,本發明涵蓋一種rhGAA,其為包含供基質結合及/或基質還原用之野生型GAA活性位點以及可能或可能不存在於野生型GAA中之其他胺基酸殘基的融合蛋白。在一個實施例中,rhGAA為葡萄糖苷酶α,其為人類酶酸性α-葡萄糖苷酶(GAA),其由此基因之九個觀測到的單倍型之最主要者編碼。包括ATB-200 rhGAA之本發明rhGAA可包含與人類α葡萄糖苷酶之胺基酸序列90%、95%、96%、97%、98%或99%一致之胺基酸序列,諸如由寄存編號AHE24104.1 (GI:568760974)給出且參考美國專利第8,592,362號併入之胺基酸序列(SEQ ID NO: 1)。GAA之核苷酸及胺基酸序列亦分別由SEQ ID NO: 2及3給出。此胺基酸序列之變體亦包括相對於以下GAA胺基酸序列具有1、2、3、4、5、6、7、8、9、10、11、12個或12個以上之胺基酸缺失、插入或取代的胺基酸序列。亦涵蓋編碼GAA及此類變體人類GAA之聚核苷酸序列且可用於重組表現根據本發明之rhGAA。
可使用各種比對演算法及/或程式來計算兩個序列之間的一致性,包括FASTA或BLAST,可獲得其作為GCG序列分析包(University of Wisconsin, Madison, Wis.)之一部分,且可以例如預設設置使用。舉例而言,涵蓋與本文所描述之特定多肽具有至少70%、85%、90%、95%、98%或99%一致性且較佳展現實質上相同功能之多肽以及編碼此類多肽之聚核苷酸。除非另外指示,否則相似性得分將基於BLOSUM62之使用。當使用BLASTP時,相似性%係基於BLASTP正數得分且序列一致性%係基於BLASTP一致性得分。BLASTP「一致性」展示相同高得分序列中之總殘基之數目及部分;且BLASTP「正數」展示比對得分具有正值且彼此相似之殘基之數目及部分。與本文所揭示之胺基酸序列具有此等程度之一致性或相似性或任何中等程度之或相似性之一致性的胺基酸序列涵蓋在內且由本發明包涵。使用基因密碼推論出相似多肽之聚核苷酸序列,且可藉由習知手段,特定言之藉由使用基因密碼反向轉譯其胺基酸序列來獲得。較佳地,根據本發明之組合物中不超過70、65、60、55、45、40、35、30、25、20、15、10或5%之總rhGAA缺乏帶有M6P或雙-M6P之N-聚醣或缺乏與非陽離子依賴性甘露糖-6-磷酸受體(CIMPR)結合之能力。或者,組合物中30、35、40、45、50、55、60、65、70、75、80、85、90、95、99%、<100%或100%以上之rhGAA包含至少一個帶有M6P及/或雙-M6P之N-聚醣或具有與CIMPR結合之能力。
本發明之rhGAA組合物中之rhGAA分子在其聚醣上可具有1、2、3或4個M6P基團。舉例而言,rhGAA分子上之僅一個N-聚醣可具有M6P,單個N-聚醣可具有兩個M6P基團,或相同rhGAA分子上之兩個不同N-聚醣可具有單個M6P基團。rhGAA組合物中之rhGAA分子亦可具有不帶有M6P基團之N-聚醣。然而,rhGAA上之平均至少約3、4、5、6、7、8、9或10%之總聚醣呈單M6P聚醣形式,例如約6.25%總聚醣可帶有單個M6P基團,且rhGAA上之平均至少約0.5、1、1.5、2.0、2.5、3.0之總聚醣呈雙-M6P聚醣形式,且平均小於25%之本發明之總rhGAA不含與CIMPR結合之磷酸化聚醣。
根據本發明之rhGAA組合物之帶有M6P的N-聚醣之平均含量可在0.5至2.0 mol/mol rhGAA或1.0至2.0 mol/mol rhGAA範圍或其子範圍內。如實例中所示,本發明之rhGAA可部分分離以提供rhGAA上具有不同平均數目之帶有M6P或帶有雙-M6P的聚醣之rhGAA組合物,因此准許藉由選擇特定部分或藉由選擇性組合不同部分使rhGAA進一步定製靶向標靶組織中之溶酶體。
在一些實施例中,rhGAA組合物中之4至16%之總N-聚醣完全唾液酸化。在其他實施例中,組合物中rhGAA上之15至30%之總N-聚醣帶有唾液酸及末端Gal。在又其他實施例中,組合物中rhGAA上之8至19%之總N-聚醣僅具有末端Gal且不含唾液酸。
在本發明之其他實施例中,組合物中rhGAA上之40、45、50、55至60%之總N-聚醣為複合型N-聚醣;或組合物中rhGAA上之不超過6.5%總N-聚醣為混合型N-聚醣;組合物中rhGAA上之不超過15%高甘露糖型N-聚醣為非磷酸化;組合物中rhGAA上之至少10%高甘露糖型N-聚醣為單M6P磷酸化;及/或組合物中rhGAA上之至少2%高甘露糖型N-聚醣為雙-M6P磷酸化。此等值包括所有中間值及子範圍。根據本發明之rhGAA組合物可符合上文所描述之含量範圍中之一或多者。
在一些實施例中,本發明之rhGAA組合物將帶有每莫耳rhGAA平均2.0至6.0莫耳唾液酸殘基。此範圍包括所有中間值及子範圍,包括2.0、2.5、3.0、3.5、4.0、4.5、5.0、5.5及6.0莫耳殘基/莫耳rhGAA。唾液酸殘基可藉由脫唾液酸蛋白受體防止非成效性清除。
本發明之rhGAA組合物較佳藉由CHO細胞(諸如CHO細胞株GA-ATB-200)或此類CHO細胞培養物之繼代培養物或衍生物產生。本發明人已發現可使用中國倉鼠卵巢(CHO)細胞產生具有靶向CIMPR及細胞溶酶體之優異能力以及減少其活體內非成效性清除之糖基化模式的rhGAA。此等細胞可經誘導來表現總M6P及雙-M6P之含量比習知rhGAA產品顯著更高之rhGAA。由此等細胞產生之重組人類GAA,如由實例中所描述之rhGAA ATB-200例示,其靶向溶酶體之M6P及雙-M6P基團比習知GAA (諸如Lumizyme®)顯著更多,且已展示與CIMPR有效結合且被骨骼肌及心肌有效吸收。亦展示具有提供有利藥物動力學型態且減少活體內非成效性清除之糖基化模式。
根據本發明之rhGAA可調配為醫藥組合物或用於製造用以治療龐培氏病或與GAA缺乏相關之其他病狀的藥物。該等組合物可與生理學上可接受之載劑或賦形劑一起調配。載劑及組合物可為無菌的且另外適合投與模式。
適合之醫藥學上可接受之載劑包括(但不限於)水、鹽溶液(例如,NaCl)、鹽水、緩衝鹽水、醇、甘油、乙醇、阿拉伯膠(gum arabic)、植物油、苄基醇、聚乙二醇、明膠、碳水化合物(諸如乳糖、直鏈澱粉或澱粉)、糖(諸如甘露糖醇、蔗糖或其他)、右旋糖、硬脂酸鎂、滑石、矽酸、脂肪酸酯、羥甲基纖維素、聚乙烯吡咯啶酮等以及其組合。若需要,藥物製劑可與助劑混合,助劑為例如潤滑劑、防腐劑、穩定劑、濕潤劑、乳化劑、影響滲透壓之鹽、緩衝劑、著色劑、調味劑及/或不與活性化合物有害反應之芳族物質及其類似物。在一較佳實施例中,使用適合於靜脈內投與之水溶性載劑。
若需要,組合物或藥物亦可含有少量濕潤劑或乳化劑或pH緩衝劑。組合物可為液體溶液、懸浮液、乳液、錠劑、丸劑、膠囊、持續釋放調配物或粉末。組合物亦可用傳統黏合劑及載劑(諸如三酸甘油酯)調配為栓劑。口服調配物可包括標準載劑,諸如醫藥級甘露糖醇、乳糖、澱粉、硬脂酸鎂、聚乙烯吡咯啶酮、糖精鈉、纖維素、碳酸鎂等。在一較佳實施例中,rhGAA藉由靜脈內輸液投與。
組合物或藥物可根據常規程序調配為適合於向人類投與之醫藥組合物。舉例而言,在一較佳實施例中,用於靜脈內投與之組合物為無菌等張緩衝劑水溶液。必要時,組合物亦可包括助溶劑及局部麻醉劑用於減輕注射位點的疼痛。一般而言,該等成分係單獨或以單位劑型混合在一起提供,例如呈於指示活性劑數量之氣密密封容器(諸如安瓿或藥囊)中之乾燥凍乾粉末或無水濃縮物形式。當藉由輸液投與組合物時,可用含有無菌醫藥級水、鹽水或右旋糖/水之輸液瓶分配組合物。當藉由注射投與組合物時,可提供注射用無菌水或鹽水之安瓿,使得該等成分可在投與前混合。
rhGAA可調配為中性或鹽形式。醫藥學上可接受之鹽包括與自由胺基形成之鹽,諸如衍生自鹽酸、磷酸、乙酸、草酸、酒石酸等之鹽;及與自由羧基形成之鹽,諸如衍生自氫氧化鈉、氫氧化鉀、氫氧化銨、氫氧化鈣、氫氧化鐵、異丙胺、三乙胺、2-乙胺基乙醇、組胺酸、普魯卡因(procaine)等之鹽。
rhGAA (或含有GAA之組合物或藥物)係藉由適當途徑投與。在一個實施例中,GAA係靜脈內投與。在其他實施例中,GAA藉由直接投與至標靶組織,諸如心臟或骨骼肌(例如,肌肉內)或神經系統(例如,直接注射至大腦中;腦室內;鞘內)來投與。若需要,可並行使用一種以上途徑。
rhGAA (或含有GAA之組合物或藥物)係以治療有效量(例如,在以規則時間間隔投與時足以(諸如)藉由如上文所描述改善與疾病相關之症狀、預防或延遲疾病發病及/或亦降低疾病症狀之嚴重程度或頻率來治療疾病之劑量)投與。將在治療疾病方面為治療有效之量將視疾病性質及影響程度而定,且可藉由標準臨床技術確定。另外,可視情況採用活體外或活體內分析來幫助鑑別最佳劑量範圍。所採用之精確劑量亦將視投與途徑及疾病嚴重性而定,且應根據醫師判斷及各患者之情況決定。可自來源於活體外或動物模型測試系統之劑量反應曲線外推出有效劑量。在一較佳實施例中,治療有效量為小於約15毫克酶/個體之公斤體重,較佳在約1至10毫克酶/公斤體重範圍內,且甚至更佳約10毫克酶/公斤體重或約5毫克酶/公斤體重。用於特定個體之有效劑量可視個體需求而定隨時間推移而變化(例如,增加或減少)。舉例而言,在身體疾病或壓力之時,或在抗GAA抗體變得存在或增加時,或在疾病症狀惡化時,量可增加。
治療有效量之GAA (或含有GAA之組合物或藥物)視疾病性質及影響程度及進行中的基礎而定以規則時間間隔投與。如本文所用之以「規則時間間隔」投與指示週期性投與治療有效量(區別於一次劑量)。時間間隔可藉由標準臨床技術確定。在較佳實施例中,每月一次、兩月一次、每週、每週兩次或每日投與GAA。單個個體之投與時間間隔不必為固定時間間隔,但可視個體需求而定隨時間推移而變化。舉例而言,在身體疾病或壓力之時,或在抗GAA抗體變得存在或增加時,或在疾病症狀惡化時,劑量之間的時間間隔可減小。在一些實施例中,在具有或不具有伴隨蛋白之情況下,治療有效量之5、10、15或20毫克酶/公斤體重以一週兩次、每週或每隔一週投與。
本發明之GAA或rhGAA可經製備供稍後使用,諸如用於單位劑量小瓶或注射器或供靜脈內投與用之瓶或袋中。含有GAA或rhGAA以及視情況選用之賦形劑或其他活性成分(諸如伴隨蛋白或其他藥物)之套組可用包裝材料封閉且隨附有關於復原、稀釋或給藥之說明書以便治療需要治療之個體(諸如患有龐培氏病之患者)。
GAA (或含有GAA之組合物或藥物)可單獨或與其他藥劑(諸如伴隨蛋白)結合投與。可投與具有不同糖基化程度之M6P或雙-M6P的rhGAA,或投與rhGAA與不同糖基化程度之M6P或雙-M6P的組合。
在一些實施例中,本發明之rhGAA組合物將與伴隨蛋白(諸如AT-2220或AT-2221)複合或摻合。伴隨蛋白有時稱為「藥理學伴隨蛋白」,其為在與rhGAA複合或共同投與時其藥物動力學及其他藥理學特性改變之化合物。本文中例示之代表性伴隨蛋白包括AT2221 (美格魯特,N-丁基-脫氧野尻黴素)及AT2220 (鹽酸杜格魯特,1-脫氧野尻黴素)。此類錯合或摻合可在體外或體內進行,例如在其中投與單獨劑量之rhGAA及伴隨蛋白。舉例而言,本發明之rhGAA、其部分或衍生物靶向CIMPR及隨後細胞溶酶體可藉由其與鹽酸杜格魯特(AT2220,脫氧野尻黴素,AT2220)或美格魯特(AT2221,N-丁基-脫氧野尻黴素)組合來定製。以下實例展示接受本發明之較佳靶向rhGAA與伴隨蛋白之組合的GAA基因剔除小鼠之關鍵骨胳肌中之肝醣基質顯著減少。
在其他實施例中,組合物中之rhGAA將經修飾以含有額外靶向配位體,諸如與CIMPR結合之配位體,諸如結合CIMPR之IGF2部分。可藉由將編碼結合物之嵌合DNA引入CHO細胞且回收嵌合rhGAA,或藉由化學修飾根據本發明之rhGAA組合物中所含有之rhGAA來產生此類結合物。代表性結合物為與結合於CIMPR之IGF2部分結合之rhGAA。此類結合物可含有胺基酸序列SEQ ID NO: 4中所示之胺基酸序列修飾中之一或多者,該胺基酸序列描述[(del 1-4)-Arg6-Leu27-Arg65],其為具有N端延伸連接區及TEV蛋白酶識別位點之IGF-2肽。
本發明之另一態樣係關於CHO細胞或其衍生物或產生根據本發明之rhGAA之其他等效物。此類CHO細胞株之一個實例為GA-ATB-200或其產生如本文所描述之rhGAA組合物的繼代培養物。其他例示性CHO細胞株為以下實例中所描述之純系110-001-X5-2及110-001-X5-14。此類CHO細胞株可含有多個基因複本,諸如5、10、15或20個或20個以上之編碼GAA的聚核苷酸之複本。
本發明與表現本發明rhGAA組合物之CHO細胞相關的態樣為一種製造此等CHO細胞株之方法。此類方法包括CHO細胞經編碼GAA或GAA變體之DNA轉化,選擇將編碼GAA之DNA穩定整合至其染色體中及穩定表現GAA之CHO細胞,及選擇表現具有高含量之帶有M6P或雙-M6P的聚醣之GAA的CHO細胞,及視情況選擇具有含高唾液酸含量的N-聚醣及及/或具有含低非磷酸化高甘露糖含量的N-聚醣之CHO細胞。代表性重組DNA及篩選程序描述於實例中。此等CHO細胞株可用於藉由培養CHO細胞株及自CHO細胞培養物回收根據本發明之rhGAA組合物來產生rhGAA及該組合物。回收之rhGAA組合物可例如藉由層析或實例中所描述之部分分離程序進一步純化或部分分離。本發明之rhGAA組合物或其部分或衍生物宜用於藉由投與rhGAA組合物治療患有與溶酶體GAA不足相關之病狀、病症或疾病的個體。需要治療之個體包括患有II型肝醣貯積病(龐培氏病)以及將因投與rhGAA而受益之其他病狀、病症或疾病的個體。
以下實例展示本發明之rhGAA (ATB-200)在以比習知rhGAA產品顯著更低的劑量投與時被心臟及骨骼肌細胞吸收,與CIMPR結合且自骨胳肌及心肌細胞有效移除肝醣。使用靜脈內投與ATB-200之兩週一次療法在GAA基因剔除小鼠中骨骼肌成肌細胞中達到減少高達75%之肝醣。此等減少量超出由相同量之Lumizyme®提供之減少量,顯示本發明之具有提高含量之帶有M6P及雙-M6P的N-聚醣之rhGAA優異地減少肝醣基質。由於改進之靶向、藥效學及藥物動力學,本發明之rhGAA組合物可採用比習知rhGAA產品(諸如Lumizyme®或Myozyme®)更低的劑量投與。
其可用於自心肌、平滑肌或橫紋肌降解、減少或移除肝醣。經受治療之骨胳肌或橫紋肌之實例包括選自由以下組成之群的至少一種肌肉:小指展肌(腳)、小指展肌(手)、外展拇趾、拇短展肌、拇長展肌、短收肌、內收肌拇趾、長收肌、大收肌、拇收肌、肘肌、肘關節肌、膝關節肌、杓會厭肌、髂腰肌(aryjordanicus)、耳肌、肱二頭肌、股二頭肌、肱肌、肱橈肌、頰肌、球海綿體肌,咽下縮肌、咽中縮肌、咽上縮肌、喙肱肌、皺眉肌、提睾肌、環甲肌、肉膜、深橫向會陰肌、三角肌、降口角肌、降下唇肌、隔膜、二腹肌、二腹肌(前位象)、豎脊肌-棘肌、豎脊肌-髂肋肌、豎脊肌-最長肌、橈側腕短伸肌、橈側腕長伸肌、尺側腕伸肌、小指伸肌(手)、指伸肌(手)、趾短伸肌(腳)、趾長伸肌(腳)、長伸肌、示指伸肌、拇短伸肌、拇長伸肌、腹外斜肌、橈側腕屈肌、尺側腕屈肌、小指短屈肌(腳)、小指短屈肌(手)、趾短屈肌、趾長屈肌(腳)、指深屈肌、指淺屈肌、短屈肌、長屈肌、拇短屈肌、拇長屈肌、額肌、腓腸肌、下孖肌、上孖肌、頦舌肌、頦舌骨肌、臀大肌、臀中肌、臀小肌、股薄肌、骨舌肌、髂肌、下斜肌、下直肌、棘下肌、肋間外肌、肋間最內肌、肋間內肌、腹內斜肌、手背側骨間肌、腳背側骨間肌、手掌側骨間肌、足底骨間肌、棘間肌、橫突間肌、舌內肌、坐骨海綿體肌、環杓側肌、翼外肌、外直肌、背闊肌、提口角肌、肛提肌-尾骨肌、肛提肌-髂尾肌、肛提肌-恥尾肌、肛提肌-恥骨直腸肌、肛提肌-恥骨陰道肌、提上唇肌、提上唇肌、鼻翼肌、提上瞼肌、提肩胛肌、提齶帆肌、肋提肌、頭長肌、頸長肌、腳蚓狀肌(4)、手蚓狀肌、咬肌、翼內肌、內直肌、頦肌、懸雍垂肌、下頜舌骨肌、鼻肌、杓斜肌、頭下斜肌、頭上斜肌、閉孔外肌、閉孔內肌(A)、閉孔內肌(B)、肩胛舌骨肌、小指對掌肌(手)、拇對掌肌、眼輪匝肌、口輪匝肌、舌齶肌、齶咽肌、掌短肌、掌長肌、恥骨肌、胸大肌、胸小肌、腓骨短肌、腓骨長肌、第三腓骨肌、梨狀肌(A)、梨狀肌(B)、蹠肌、頸闊肌、膕肌、環杓後肌、降眉間肌、旋前方肌、旋前圓肌、腰大肌、腰小肌、錐狀肌、股方肌、腰方肌、足底方肌、腹直肌、頭前直肌、頭側直肌、頭後大直肌、頭後小直肌、股直肌、大菱形肌、小菱形肌、笑肌、鼓管咽肌、縫匠肌、前斜角肌、中斜角肌、小斜角肌、後斜角肌、半膜肌、半腱肌、前鋸肌、下後鋸肌、上後鋸肌、比目魚肌、肛門括約肌、尿道括約肌、頭夾肌、頸夾肌、鐙骨肌、胸鎖乳突肌、胸骨舌骨肌、胸骨甲狀肌、莖突舌肌、莖突舌骨肌、莖突舌骨肌(前位象)、莖突咽肌、鎖骨下肌、肋下肌、肩胛下肌、淺橫肌、會陰肌、上斜肌、上直肌、旋後肌、棘上肌、顳肌、顳頂肌、闊筋膜張肌、鼓膜張肌、齶帆張肌、大圓肌、小圓肌、甲杓狀軟骨及聲帶肌、甲狀會厭肌、甲狀舌骨肌、脛骨前肌、脛骨後肌、杓橫肌、橫突棘肌-多裂肌、橫突棘肌-迴旋肌、橫突棘肌-半棘肌、腹橫肌、胸橫肌、斜方肌、三頭肌、股中間肌、股外側肌、股內側肌、顴大肌及顴小肌。
本發明之GAA組合物亦可被投與或用於治療1型(慢縮)肌纖維或2型(快縮)肌纖維或此類肌纖維中累積肝醣之個體。I型慢縮或「紅」肌之毛細管密集且富含粒線體及肌血球素,給予肌肉組織其特徵紅色。其可帶有更多氧氣且使用脂肪或碳水化合物作為燃料來維持有氧運動。慢縮纖維收縮持續長時間段但有極小力。 II型快縮肌具有三種主要亞型(IIa、IIx及IIb),其在收縮速度及所產生之力方面不同。快縮纖維快速而有力收縮,但極快速疲乏、僅短暫持續、在肌肉收縮變得疼痛之前爆發厭氧運動。其最有助於肌肉強度且具有更大潛力增加質量。IIb型厭氧糖分解「白」肌之粒線體及肌血球素最不密集。在小動物(例如,嚙齒動物)中,此為主要快肌型,解釋其肉之蒼白色。
本發明之rhGAA組合物、其部分或衍生物可例如藉由靜脈內(IV)輸液全身性投與,或直接投與至所需位點,諸如心臟或骨骼肌,諸如四頭肌、三頭肌或隔膜。其可投與至肌細胞、特定肌肉組織、肌肉或肌肉群。舉例而言,此類治療可將rhGAA組合物直接肌肉內投與至個體之四頭肌或三頭肌或隔膜中。
如上文所提及,本發明之rhGAA組合物、其部分或衍生物可與伴隨蛋白,諸如AT-2220 (鹽酸杜格魯特,1-脫氧野尻黴素)或AT-2221 (美格魯特,N-丁基-脫氧野尻黴素)或其鹽複合或摻合以改進rhGAA投與之藥物動力學。rhGAA與伴隨蛋白可一起或分別投與。在同時投與時,組合物中之GAA可預負載有伴隨蛋白。或者,GAA與伴隨蛋白可同時或在不同時間分別投與......。
AT2221之代表性劑量在0.25至400 mg/kg、較佳0.5至200 mg/kg且最佳2至50 mg/kg之範圍內。AT2221之特定劑量包括1、2、3、4、5、10、15、20、25、30、35、40、45及50 mg/kg。此等劑量可以範圍為15:1至150:1之AT2221與rhGAA之莫耳比與rhGAA (諸如ATB-200 rhGAA)組合。特定比率包括15:1、20:1、25:1、50:1、60:1、65:1、70:1、75:1、80:1、85:1、90:1、100:1、125:1及150:1。rhGAA與AT2221可以此等量或莫耳比並行、依序或分別地共同投與。以上範圍包括所有中間子範圍及值,諸如範圍端點之間的所有整數值。
AT2220之代表性劑量在0.1至120 mg/kg、較佳0.25至60且最佳0.6至15 mg/kg之範圍內。AT2220之特定劑量包括1、2、3、4、5、6、7、8、9、10、15、20、25及30 mg/kg。此等劑量可以範圍為15:1至150:1之AT2220與rhGAA之莫耳比與rhGAA (諸如ATB-200 rhGAA)組合。特定比率包括15:1、20:1、25:1、50:1、60:1、65:1、70:1、75:1、80:1、85:1、90:1、100:1、125:1及150:1。rhGAA與AT2220可以此等量或莫耳比並行、依序或分別地共同投與。以上範圍包括所有中間子範圍及值,諸如範圍端點之間的所有整數值。
本發明之rhGAA組合物、其部分或衍生物亦可用於代謝、降解、移除或另外減少組織、肌肉、肌纖維、肌細胞、溶酶體、細胞器、細胞區室或細胞質中之肝醣。向個體投與rhGAA組合物,視情況連同投與可減少對rhGAA的免疫反應之伴隨蛋白或藥物。
在其使用方法之另一實施例中,本發明之rhGAA可用於藉由投與其、其部分或衍生物至細胞、組織或需要此類調節之個體來調節細胞中之溶酶體增殖、自體吞噬或胞吐作用,其視情況與伴隨蛋白組合或視情況呈與另一靶向部分之結合物形式。自體吞噬為允許細胞經由其溶酶體作用來降解肝醣或其他不必要或不正常細胞組分之分解機制。此方法亦可包括向需要治療之個體全身或局部投與GAA組合物。
與Lumizyme®及Myozyme相比富含M6P及雙-M6P且具有由其糖基化模式所賦予的有利藥物動力學特性之根據本發明之rhGAA亦可用於治療需要分解複合碳水化合物之其他病狀,諸如溶酶體或細胞其他部分(諸如rhGAA可到達的細胞質)中之rhGAA累積導致肝醣或其他碳水化合物降解之其他病症,諸如肝醣貯積病III。其亦可以非治療目的用於諸如生產食品、飲料、化學品及醫藥產品,需要將複合碳水化合物(諸如澱粉及肝醣)分解成其單體。 實例
以下非限制性實例例示本發明之態樣。 第I部分:ATB-200 rhGAA及其特性
現有Myozyme®及Lumizyme® rhGAA產品之侷限性
當前唯一批准用於龐培氏病之療法使用現有rhGAA酶替代療法產品Lumizyme®及Myozyme。此等產品使rhGAA不佳靶向及遞送至含有與M6P結合之CIMPR受體的組織。
為評估Myozyme®及Lumizyme®中之rhGAA的能力,將此等rhGAA製劑注射至CIMPR管柱(其結合具有M6P基團之rhGAA)上且隨後用自由M6梯度溶離。將溶離份收集於96孔盤中,且藉由4MU-α-葡萄糖基質分析GAA活性。結合與未結合rhGAA之相對量係基於GAA活性確定且報導為總酶之分數。Myozyme®及Lumizyme®之溶離曲線展示於圖3A及3B中。圖3C展示根據本發明之高M6P rhGAA (ATB-200)之溶離曲線。
使用來自甜馬鈴薯之純化紫色酸性磷酸酶將本發明之rhGAA脫磷酸可完全防止GAA與CIMPR結合,溶酶體上之受體吸收rhGAA,參見圖3D。
圖3A及圖3B說明與習知Myozyme®及Lumizyme® ERT相關之問題:Myozyme®中之73% rhGAA及Lumizyme®中之79% rhGAA不與CIMPR結合,參見各圖中之最左側峰。僅分別27%或22%之Myozyme®及Lumizyme® rhGAA含有M6P。如圖3D中所示,需要M6P用於rhGAA靶向溶酶體中之CIMPR。Myozyme®及Lumizyme®之有效劑量對應於靶向溶酶體之含有M6P的rhGAA之量。然而,此兩個習知產品中之大部分rhGAA不靶向溶酶體上之CIMPR受體。此需要投與大劑量之大部分不靶向溶酶體之rhGAA。此增加對rhGAA之過敏反應或誘導對rhGAA之免疫的風險。
ATB-200 rhGAA對於CIMPR之親和力高於Lumizyme
藉由受體盤結合分析比較Lumizyme®及ATB-200 rhGAA受體結合。使用經CIMPR塗佈之盤來捕捉具有M6P之GAA。塗覆不同濃度之rhGAA且洗掉未結合rhGAA。如圖4所示,ATB-200 rhGAA與CIMPR之結合顯著優於Lumizyme。
ATB-200 rhGAA 相比於Lumizyme 肌細胞更有效內化。藉由使用L6成肌細胞比較ATB-200與Lumizyme® rhGAA之相對細胞吸收。比較涉及5-100 nM根據本發明之ATB-200 rh-GAA與10-500 nM習知rh-GAA (Lumizyme®)。培育16 hr後,用TRIS鹼使外部rhGAA不活化,且細胞在收集前用PBS洗滌3次。藉由4-MUG量測之內化GAA相對於總細胞蛋白質圖示,且結果呈現於圖5中。
圖5展示需要實質上較低濃度之ATB-200 rhGAA來獲得與Lumizyme® rhGAA相同的細胞吸收。此等結果亦展示具有更大濃度之M6P聚醣的ATB-200 rhGAA被成肌細胞內化相比於Lumizyme約10倍更有效。
如下文(在亦描述ATB-200結合物之部分中)進一步所示,在投與至肌細胞時ATB-200與Lumizyme相比顯著減少肝醣含量。
製備產生ATB-200 rhGAA及高M6P rhGAA之CHO細胞
使用CHO細胞(中國倉鼠卵巢細胞)藉由該等細胞經編碼GAA之DNA構築體轉化來產生本發明之高M6P及雙-M6P rhGAA,諸如ATB-200 rhGAA。CHO細胞先前已用於製造rhGAA,然而,尚未瞭解的為,可以將產生具有高含量之靶向溶酶體中之CIMPR的M6P及雙-M6P聚醣之rhGAA的方式培養及選擇CHO細胞。
出人意料地,本發明人發現有可能轉化CHO細胞株,選擇產生具有高M6P含量的rhGAA之轉化體及穩定表現高甘露糖rhGAA。
CHO細胞經表現rh-GAA之DNA轉染,隨後選擇產生rhGAA之轉化體。圖6展示一個此類方法方案。圖6概述一種生產表現高量M6P及雙-M6P聚醣的CHO細胞之方法。
圖7展示用於CHO細胞經編碼rh-GAA之DNA轉化之代表性DNA構築體。表現GAA或其他變體GAA胺基酸序列(諸如與SEQ ID NO: 1至少90%、95%或99%一致的胺基酸序列)之對偶基因變異體之其他DNA構築體亦可構築及表現於CHO細胞中。熟習此項技術者亦可選擇適合於轉化CHO細胞用以生產此類DNA構築體之替代載體。圖7描繪用於以編碼rhGAA之DNA轉化CHO細胞之DNA構築體。
轉染後,藉由缺乏次黃嘌呤/胸苷(-HT)之培養基選擇含有穩定整合GAA基因之DG44 CHO (DHFR-)細胞。此等細胞中之GAA表現擴增係藉由甲胺喋呤治療(MTX,500 nM)誘導。表現高量GAA之細胞池係藉由GAA酶活性分析鑑別且用於建立產生rhGAA之個體純系。圖8A及圖8B描繪隨時間推移經GAA轉化之CHO細胞之存活率及活細胞密度。
在半固體培養基盤上利用兩個高表現細胞池來產生個體純系。將藉由ClonePix系統挑選之926個個體純系轉移至24個深孔盤。分析此等個體純系之GAA酶活性以鑑別表現高含量GAA之純系。用於測定GAA活性之改良性培養基使用4-MU-α-葡萄糖基質。
圖9A及9B描述表現高GAA活性(>105螢光單位)之42個不同純系。此最佳42個純系在震盪燒瓶培養物中擴增以評估個體純系之rhGAA表現的穩定性。使用GAA酶活性分析鑑別出42個純系中之6個純系,參見表1。
表1:rhGAA力價 力價:                                     單位:mg/L
樣品 D6 D7 D8 D9 D10 D 11 D12 D13 D14
110-001-X5-2-1 111.0 194.9 326.0 333.7 308.6 415.1 479.0 448.6 477.1
110-001-X5-2-2 111.3 185.1 321.5 327.3 305.3 401.7 562.8 479.7 526.0
110-001-X5-1 87.5 155.5 279.7 339.5 236.8 393.1 544.6 562.2 528.7
110-001-X5-4 85.6 141.5 241.1 330.1 211.3 311.6 370.8 368.0 375.6
110-001-X5-5 87.8 135.0 224.0 292.2 195.8 272.1 331.8 369.5 356.4
110-001-X5-14 87.7 166.9 265.3 314.1 270.0 584.1 620.3 609.5 488.8
110-001-X5-2 77.8 133.6 244.8 352.7 268.2 361.9 443.6 439.2 396.8
使用其他預定標準,包括細胞生長及存活率、N-聚醣結構(例如,高唾液酸含量及低非磷酸化高甘露糖型N-聚醣),使用分批補料及灌注生物反應器系統進一步評估藉由GAA酶活性分析鑑別之最佳6個表現rhGAA之純系。樣品110-001-X5-14對應於產生ATB-200之細胞。自個體純系純化之rhGAA係藉由酶活性、等電聚焦、N-聚醣分析及唾液酸含量表徵。
如圖10A及10B中所示,藉由預定標準(例如,生產力、酶品質、細胞活力、N-聚醣結構、生物反應器中之穩定蛋白質表現等)鑑別出此六個中之最佳3個純系,參見圖10A及10B。
選擇兩個純系:110-001-X5-2及110-001-X5-14,且如圖11A、11B及11C中所示,此兩個選殖細胞株中之GAA基因之整合複本數係藉由定量PCR (qPCR)測定。如圖11A、11B及11C所示,純系110-001-X5-2經測定帶有34個整合GAA基因複本,而純系110-001-X5-14含有22個複本。
如圖12A、12B及12C所示,展示此兩個純系在九週時段內穩定表現GAA持續超過60繼代。
此等結果展示根據本發明之選擇方法產生的純系如在9週時段內測試之基因穩定性且>60繼代,且適用於較大規模生產rhGAA。
在t = 0時及在6及9週後在震盪燒瓶培養物中測試GAA表現。此等資料展示最佳純系在整個研究中維持極相似GAA蛋白質表現,且展示此最佳兩個純系歷經>60繼代為基因穩定的且適於用作生產細胞株。比較臨限值分析進一步展示此兩個純系之基因穩定性。
利用定量PCR (qPCR)來量測最佳純系在t = 0時及9週細胞培養後之整合GAA基因的複本數。此等資料指示最佳兩個純系在整個9週研究中維持整合GAA基因之複本數,參見圖13A及13B之比較臨限值分析。
ATB-200 rhGAA係藉由獲自110-001-X5-14之細胞產生。然而,以上純系中之兩者產生相對於習知rhGAA具有高M6P含量之rhGAA。
與上文所描述之CHO株穩定性一致,本發明人發現不同批次之ATB-200 rhGAA具有相似蛋白質及碳水化合物特性。多批根據本發明之rhGAA係在震盪燒瓶及灌注生物反應器中生產。觀測到不同生產批次之純化ATB-200 (CBP rhGAA)之相似CIMPR受體結合(約70%)。此等資料指示CBP rhGAA可一致地生產,且展示由根據本發明之CHO細胞株製造之rhGAA含有比Lumizyme® rhGAA多得多的M6P。
純化高甘露糖rhGAA ATB-200 (CBP-rhGAA)
ATB-200 rhGAA經層析純化獲得含有70%至96%之可使其靶向溶酶體上的CIMPR之具有M6P聚醣的rhGAA之組合物。如圖14所示,使用兩種不同純化方案。
在原始純化方案中,使用固定金屬離子親和層析(immobilized metal ion affinity chromatograph;IMAC)來移除原始rhGAA (CBP-rhGAA)中由CHO細胞產生之雜質。隨後,經由苯基-瓊脂糖管柱運行經IMAC純化之rhGAA。70% rhGAA經測定含有M6P聚醣。參見圖15A。
為使寡醣脫磷酸減至最少,研發出一種額外純化方案,其使用AEX直接產品捕捉,伴隨如ATB-200-1及ATB-200-2所示之IMAC移除雜質及尺寸排阻層析,參見圖14。獲得含有92%之含有M6P聚醣的rhGAA之rhGAA組合物。此純化方案藉由移除污染磷酸酶保留具有高M6P含量之rhGAA。參見圖15B。
圖16A及16B亦展示基於AEX之純化方案對於rhGAA之優點。ATB-200-1用少於ATB-200-1之自由M6P溶離。ATB-200-2中之GAA活性向左移指示雙-M6P含量比ATB-200-1高。
雖然AT B200-2之改進方法與非改進方法AT B200-1相比需要更多M6P來溶離rhGAA,但導致結合CIMPR之rhGAA的百分比更高。圖9中之覆疊中的向左移指示優化新方法產生具有更高雙-M6P含量之ATB-200 rhGAA。與含有單個M6P殘基之rhGAA (單M6P rhGAA)相比,雙-M6P rhGAA對於溶菌酶上之CIMPR具有顯著更高結合親和力。
圖17展示CBP-rhGAA、ATB-200-1及ATB-200-2之不同聚醣含量,且展示此等rhGAA中之每一者具有比Lumizyme更高的M6P及雙-M6P含量。
除藉由M6P改進聚醣磷酸化之外,改進之基於AEX的方法減少非磷酸化rhGAA的量,提高唾液酸含量,且提供具有靶向溶酶體上之IGF2/CIMP受體的更佳能力之產品。下表2中比較藉由舊方法(AT B200 ATF2;CBP rhGAA)及使用直接捕捉之新方法(AT B200-1、AT B200-2)生產之ATB-200組合物之唾液酸及M6P含量(莫耳/莫耳)。此表展示根據本發明之rhGAA之唾液含量在2.6至5.4 mol/mol蛋白質範圍內且M6P含量為2.0至3.1 mol/莫耳蛋白質,且此等樣品中之70%至86%至96%之rhGAA與CIMPR結合。
表2
樣品 唾液酸 (mol/mol蛋白質) M6P (mol/mol蛋白質) M6P結合
ATB-200 ATF2 2.6 2.0 70%
ATB-200-1 4.8 2.3 86%
ATB-200-2 5.4 3.1 96%
ATB-200 (CBP-rhGAA)之等電點。
Lumizyme®與ATB-200 rhGAA之等電點不同。雖然兩個rhGAA均在CHO細胞中產生,ATB-200如上文所描述展現最可能反映在其不同等電點上之糖基化差異。本發明人應用毛細管等電聚焦來確定不同ATB-200 rhGAA (CBP-rhGAA)樣品之與Lumizyme®稍微不同的等電點。如圖18所示,Lumizyme® (樣品WBP110-STD)之等電點範圍比ATB-200樣品稍微更低。
ATB-200 rhGAA 比Lumizyme® 含有更低量之非磷酸化聚醣。分析且比較ATB-200樣品及Lumizyme®中之非磷酸化聚醣的量。發現ATB-200樣品含有比Lumizyme® (WBP110-STD)更低量之非磷酸化高甘露糖型N-聚醣,但含有相似量之非磷酸化高甘露糖型N-聚醣。較低量之非磷酸化聚醣抑制自活體內循環清除rhGAA。ATB-200中之M6P聚醣含量較高於Lumizyme中,使得ATB-200更有效靶向溶酶體。圖19A及19B展示結果。
ATB-200 rhGAA投與至肌肉
如自圖1C顯而易見,藥物動力學資料不能充分區分有成效性與非成效性之藥物清除,因為rhGAA可自循環有成效性地移除而進入標靶組織(諸如肌細胞之溶酶體),或藉由非標靶組織(如肝或脾)或不置於標靶組織中之其他類型之非成效性結合而非成效性地移除。雖然ATB-200 rhGAA之生物半衰期比Lumizyme®短,結果展示ATB-200 rhGAA與Lumizyme®相比在此動物模型中產生顯著肝醣減少—比較ATB-200與Lumizyme®之肝醣清除。
部分分離ATB-200 rhGAA
使用弱陰離子交換(「WAX」)液相層析來部分分離ATB-200 rhGAA。使用UV偵測ATB-200部分,且測定M6P及其他碳水化合物之含量。自CHO細胞獲得ATB-200且純化。自商業來源獲得Lumizyme®。
在部分分離及分析之前,藉由在4℃下緩衝交換,使用MWCO過濾器(30KD)製備ATB-200樣品,其為含有如下兩者之梯度起始移動組合物:95%移動相A:20 mM HEPES,pH 6;及5%移動相B:20 mM HEPES (pH 6.5) + 1.5 M氯化鈉。
ATB-200部分係藉由WAX層析使用PolyWax LP分析管柱(保護管柱:PolyWAX LP Javelin 10×2.1 mm項目#J22GCWX0503;分析管柱100×2.1 mm; 5 um 1000A項目#102WX0510;PolyWAX LP PolyLC Inc., Columbia, MD)及Alliance Waters 2695分離模組(Empower Pro software)分離。管柱流動速率為0.400 mL/min且總運行時間為75 min。此方法基於磷酸化程度分離ATB-200蛋白質種類。
藉由在280 nM下之UV吸收量測各部分之蛋白質含量,且使用高效陰離子交換層析-脈衝安培偵測(HPAEC-PAD)測定甘露糖-6磷酸鹽(M6P)含量。
分析及收集後,在4℃下使用MWCO過濾器(30KD)在50 mM磷酸鈉(pH 6.2)、50 mM氯化鈉中進行所收集之ATB-200部分之緩衝交換及濃縮。
以下圖20A及20B描述梯度曲線:圖21比較Lumizyme®與ATB-200之PolyWax溶離曲線。Lumizyme®在其溶離曲線左側展現高峰。展示ATB-200 rhGAA曲線之四個主峰。
基於ATB-200之溶離曲線,如圖22中所示,獲得四個不同部分且分析。
將四個部分中之每一者收集且脫鹽,隨後乾燥且在去離子水中復原。各部分之一部分用4N TFA水解以藉由HPAEC-PAD測定M6P含量。結果展示於下表3中。
表3
ATB-200- P039 峰面積(%) 濃度(µg) 濃度(µM) M6P (µM) M6P/GAA (Mol)
部分1 5.60 29.6 2.7 ND -
部分2 11.8 62.3 5.7 0.385 0.0680
部分3 32.4 171 15.5 15.0 0.965
部分4 49.8 263 23.9 47.3 1.98
每莫耳rhGAA之平均M6P含量在0.0680至1.98範圍內。可藉由選擇特定部分或不同ATB-200部分之混合物來調整含M6P之rhGAA的平均濃度,例如ATB-200 rhGAA之平均M6P含量可調整為0.5、0.75、1.0、1.25、1.5、1.75至2.0或此範圍之任何子範圍或中間值。如表4中所示分析ATB-200 rhGAA之各部分中的聚醣。
表4
N- 聚醣型 ATB-200 部分1 部分2 部分3 部分4
複合物 40% 58% 47% 37% 40%
  完全唾液酸化 5% 16% 10% 5% 4%
  SA及末端Gal 16% 30% 25% 15% 15%
  僅末端Gal 17% 8% 10% 14% 19%
高甘露糖 56% 40% 48% 58% 57%
  雙-M6P 17% 1% 8% 14% 24%
  單M6P 15% 14% 20% 21% 10%
  非磷酸化 28% 27% 26% 28% 26%
混合型 4% 2% 5% 5% 3%
此等四個部分中之每一者(部分1-部分4)隨後經由PolyWax管柱運行且測試子部分之GAA活性。各部分之GAA活性展示於圖23中。特定N-聚醣之平均濃度可藉由選擇特定部分或組合及摻合不同部分而調整至表4所描述之範圍內。舉例而言,雙-M6P聚醣含量可選擇或調整至1%至24%範圍內,單M6P含量可選擇或調整至10%至20%內,完全唾液酸化聚醣含量可選擇或調整至4%至16%範圍,SA及末端Gal含量可選擇或調整至15%至25%範圍內,且僅具有末端Gal之N-聚醣的含量可選擇或調整至8%至19%範圍內。此等範圍包括任何子範圍或中間值,例如各範圍內之所有整數值。 第II部分:ATB-200 rhGAA及結合於IGF2靶向部分之ATB-200 rhGAA之活體內功效。
ATB-200 rhGAA可藉由與IGF2肽結合而經修飾以進一步增強結合物靶向溶酶體上之IGF2/CI-MP受體的能力。生產此類結合物之方法及靶向部分為已知的且亦由以引用的方式併入之WO 2012/166653所揭示。本發明之rhGAA (諸如ATB-200 rhGAA)可與結合於IGF2受體/CIMPR (諸如IGF2胺基酸序列之片段或經修飾之片段)之部分結合。此部分可含有胺基酸序列SEQ ID NO: 4中所示之胺基酸序列修飾中之一或多者,該胺基酸序列描述[(del 1-4)-Arg6-Leu27-Arg65],其為具有N端延伸連接區及TEV蛋白酶識別位點之IGF-2肽。
Figure 02_image001
此IGF2肽缺乏殘基1-4,使得N端絲胺酸殘基對應於野生型IGF2之殘基5。已知在位置6處精胺酸經麩胺酸取代實質上降低IGF2肽對於血清IGF結合蛋白(IGFBP)之結合親和力。已知在位置27處白胺酸經酪胺酸取代實質上降低IGF2肽對於胰島素及IGFl受體之結合親和力。在位置65處精胺酸經離胺酸保守取代用以實現僅N端延伸連接區之化學修飾以便與溶酶體酶結合。 N端延伸區由GGGGSGGG (SEQ ID NO: 5)表示,其可用於化學修飾以便與溶酶體酶(諸如rhGAA)偶合。圖2展示IGF2及雙-M6P對於IGF2/CI-MP受體之相對親和力。
為進一步增強rhGAA吸收,本發明人研發出一種將變體IGF2 (vIGF2)肽連接至ATB-200 rhGAA以進一步增強與IGF2/CI-MPR受體結合之方法。如WO 2012/166653所描述,靶向vIGF2之肽部分含有幾個胺基酸取代以提供顯著改進之選擇性概況。根據本發明之vIGF2肽可含有此等取代之不同組合,且在殘基65處含有取代(Lys取代Arg)以消除化學反應性基團來實現僅N端處之化學交聯劑連接。准許產生單個經化學修飾之IGF2肽種類用於隨後與ERT偶合。在無此取代之情況下,由反應產生難以分離之多個(3-4)種類之IGF2肽,導致所要種類之產量低且大大降低方法之總體效率。
投與ATB-200 或ATB-200 IGF2 結合物之GAA 基因剔除小鼠(GAA KO 小鼠) 中之肝醣清除。ATB-200 rhGAA結合於vIGF2肽靶向部分,且比較IGF2-ATB-200結合物之結合親和力與非結合ATB-200 rhGAA及Lumizyme®之結合親和力。
在4週靜脈內快速投與至KO小鼠之後進一步評估肝醣清除。在最後一劑之後1週收集小鼠組織,且分析GAA活性及肝醣含量ATB-200。圖24展示各樣品測試之四頭肌中之肝醣含量。如自此等結果顯而易見,ATB-200及其與vIGF2之結合物相比於Lumizyme®或陰性對照(單獨媒劑)產生顯著減少之肝醣。
ATB-200 IGF2結合物之CIMPR結合及成肌細胞之結合物吸收
CIMPR結合分析。進行ATB-200及ATB-200 vIGF 2個結合物之結合分析來判定IGF2部分之結合是否提高rhGAA與參與溶酶體吸收rhGAA之受體的結合。將盤用CIMPR (非陽離子依賴性M6P受體,IGF2受體)塗佈以捕捉rhGAA。vIGF2肽與Lumizyme® rhGAA及ATB-200 rhGAA化學偶合。 vIGF2之化學偶合不損害rhGAA酶活性。圖25中所描述之樣品之結合展示於彼圖中。
發現vIGF2肽之結合進一步增強rhGAA與IGF2/CI-MPR結合,與結合vIGF2增強GAA對於IGF2/CI-MP受體之親合力一致。vIGF2之化學偶合不損害GAA酶活性。如圖25中所示,ATB-200-vIGF2對於CIMPR具有最高親和力,其次為Lumizyme-vIGF2、非結合ATB-200及最後非結合Lumizyme,參見圖25。
肌細胞吸收分析。如上文所描述直接比較肌細胞(骨骼肌模型)吸收之Lumizyme® rhGAA、ATB-200 rhGAA及結合vIGF2之ATB-200。結果展示在相同條件下,ATB-200經L6肌細胞之內化比Lumizyme® >10倍更佳,而vIGF2-CBP GAA之內化超過Lumizyme®約50倍。資料展示ATB-200及與vIGF2結合之ATB-200之增加的受體親和力直接轉化為標靶骨骼肌細胞中之細胞吸收改善,參見圖26。亦展示在L6成肌細胞中(16小時後)將內化vIGF2-ATB-200適當處理為中等及成熟GAA形式。已知IGF2肽在溶酶體中自然降解,且結果展示結合之vIGF2肽自溶酶體中之GAA移除以實現適當GAA處理。 第III部分:共同投與ATB-200 rhGAA與伴隨蛋白
唯一批准用於龐培氏病之治療為用Lumizyme® rhGAA經由靜脈內(IV)輸液之酶替代療法。本發明人研究使用小分子AT2220 (脫氧野尻黴素;鹽酸杜格魯特)以例如藉由使rhGAA物理穩定來改進rhGAA治療之藥物動力學。
AT2220為可逆地結合及穩定內源性及外源性GAA形式之可口服的藥理學伴隨蛋白。在與rhGAA ERT共同投與時,AT2220意欲與輸注之酶結合且使其穩定為其適當摺疊活性形式,導致疾病相關組織中之更大GAA吸收及肝醣減少。本發明人研究投與AT2220與習知rhGAA (Lumizyme)及高M6P rhGAA (ATB-200)之組合的效果。
在人類血液中AT2220使rhGAA穩定。
在人類血液(pH 7.4)中在37℃下培育期間監測rhGAA (0.5 μM) ± 50 μM AT2220之活性。如圖27所示,AT2220減少rhGAA活性損失。在AT2220不存在下至少90% rhGAA活性損失超過24小時,參見圖27。
如圖28所示,未摺疊rhGAA損失活性,而摺疊rhGAA保留其大部分活性。在37℃下藉由在中性(pH 7.4-血漿環境)或酸性(pH 5.2-溶酶體環境)緩衝劑中熱變性來監測rhGAA蛋白質之摺疊。在中性pH緩衝劑中AT2220使rhGAA蛋白質穩定超過24小時。
在單次靜脈內快速投與rhGAA之後活體內rhGAA活性。
八週齡雄性史-道二氏大鼠(Sprague-Dawley rat)經由快速尾靜脈注射接受單次靜脈內(IV)投與rhGAA (10 mg/kg),在靜脈內注射之前30分鐘,有或沒有經口共同投與AT2220 (3或30 mg/kg,游離鹼等效物)。分別使用4-MUG活性分析及西方墨點法在所選時間點分析血漿中之GAA酶活性及蛋白質含量。共同投與AT2220可以顯著且以劑量依賴性方式增加循環半衰期及rhGAA曝光。圖29A展示兩個AT2220劑量增加rhGAA半衰期。圖29B描繪藉由西方墨點法在所選時間點偵測到的rhGAA之量。此等結果展示AT2220增加rhGAA在活體內之生物半衰期。
在GAA KO小鼠組織中AT2220之共同投與增加rhGAA吸收且改進rhGAA介導之肝醣減少
十二週齡雄性GAA基因剔除(KO)小鼠經由快速尾靜脈注射靜脈內投與rhGAA (20 mg/kg)每隔一週一次持續8週,在每次靜脈內注射之前30分鐘,有或沒有經口共同投與AT2220。
圖30A. 在最後一次靜脈內注射之後7天評估疾病相關組織(n=5)中之GAA活性。經口共同投與30 mg/kg AT2220相比於單獨rhGAA顯著增加疾病相關組織中之rhGAA吸收。圖30B及圖30C. 在最後一次靜脈內注射之後21天使用澱粉葡萄糖苷酶消化(圖30B)及組織學(圖30C)評估組織肝醣含量(n=7)。AT2220之共同投與相比於單獨rhGAA導致關鍵疾病相關組織中之顯著更大肝醣減少。組織學資料亦藉由在心臟及四頭肌之肌纖維中共同投與AT2220來支持更大肝醣減少。
AT2220之共同投與對Lumizyme® rhGAA在龐培氏患者之血漿及肌肉中的活性之影響
研究設計:AT2220-010為2個時段、開放標記、非隨機、階段2a之藥物間相互作用研究。在第1時段期間,患者按照其標準護理接受單獨Lumizyme® rhGAA ERT。在第2時段期間,投與單次遞增口服劑量之AT2220,1小時後以與第1時段中相同的劑量及方案給與下一個靜脈內ERT輸液。評估第2時段相對於第1時段之血漿及肌肉總GAA活性。AT2220群組:50 mg (N=6)、100 mg (N=6)、250 mg (N=6)及600 mg (N=7)。患者人口統計資料:十三個個體為雄性且12個為雌性,年齡為32-65歲。重量在55.8至147 kg範圍內。圖31A、31B、31C及31D比較在具有或不具有伴隨蛋白AT-2220之情況下投與rhGAA時血漿中之rhGAA活性。
圖31A、31B、31C及31D中之四個圖展示在用單獨ERT治療期間(藍色正方形,第1時段)及在稍後兩週共同投與ERT與AT2220時(在圖中稱為ERT + AT2220;紅色圓圈,第2時段)之活性血漿rhGAA含量(在圖中呈現為平均[SD],藉由4-MUG GAA活性分析測定)。此等資料展現在與AT2220共同投與時血漿中之活性rhGAA增加。圖32展示GAA活性之絕對差異。
圖32展示在第3天肌肉中之總GAA活性之絕對差異,且其由在單獨ERT (第1時段)及共同投與AT2220 (第2時段)之後具有匹配活檢體之個體計算。各個體由獨特符號表示。藉由黑色水平條指示各治療組之平均GAA肌肉活性。此等資料表明在AT2220與ERT共同投與時肌肉GAA活性有劑量相關增加。在600 mg治療組中觀測到肌肉GAA活性之最大增加。 第IV部分:臨床前研究(POC1,研究294A及294B)
臨床前研究POC 294A及294B. 靜脈內投與Lumizyme、ATB-200、ATB-200 vIGF2,具有或不具有伴隨蛋白AT2221及AT2220之共同投與。
使用GAA KO小鼠模型研究不同rhGAA治療方案之效果。在不具有或具有伴隨蛋白AT2221 (美格魯特,N-丁基-脫氧野尻黴素)或AT2220 (鹽酸杜格魯特,1-脫氧野尻黴素)之情況下投與ATB-200 rhGAA或ATB-200 rhGAA vIGF結合物。
研究294a (POC 1a)涉及兩週一次靜脈內快速投與ATB-200投與六次歷經3個月。研究294b涉及兩週一次靜脈內快速投與ATB-200四次歷經2個月。將GAA KO小鼠分成治療組:10及20 mg/kg未標記ATB-200;5、10及20 mg/kg之經vIGF2標記之ATB-200;經口共同投與AT2221 10及30 mg/kg,測試各ATB-200酶;30 mg/kg AT2220與20 mg/kg未標記及標記ATB-200之共調配物;20 mg/kg Lumizyme®組及媒劑(陰性對照)組。
在治療終點,使用基於生物化學或HPLC之方法測定原發性疾病相關組織(例如,心臟、四頭肌、三頭肌)中之肝醣含量。亦在相關次級組織(腓腸肌、舌、比目魚肌、二頭肌及肝)中測試肝醣含量。將心臟、四頭肌、三頭肌及隔膜之組織樣品之藉由4-MUC分析量測的肝醣及組織酶吸收進行PAS染色。量測血漿抗GAA IgG水準。下表6及7描述各研究之治療組。
表6. 治療組研究294a (POC1a)。
複合治療 ERT 劑量 (mg/kg) AT2221 劑量 (mg/kg) 死亡數 ( 總計 = 11)
1 媒劑 媒劑 -- 1 (與給藥不直接相關)
2 單獨Lumizyme® 20 -- 2
3 ATB-200 10 -- 0
4 口服AT2221;隨後ATB-200 10 10 2
5 口服AT2221;隨後ATB-200 10 30 1
6 ATB-200 20   0
7 口服AT2221;隨後ATB-200 20 10 1
8 口服AT2221;隨後ATB-200 20 30 0
9 COF AT2220 + ATB-200 20 AT2220 = 30 0
10 標記ATB-200 5 -- 2
11 口服AT2221,隨後經vIGF2標記之ATB-200 5 10 0
12 口服AT2221,隨後經vIGF2標記之ATB-200 5 30 2
13 標記ATB-200 10 -- 0
14 口服AT2221,隨後經vIGF2標記之ATB-200 10 10 0
15 口服AT2221,隨後經vIGF2標記之ATB-200 10 30 0
16 標記ATB-200 20   0
17 口服AT2221,隨後經vIGF2標記之ATB-200 20 10 0
18 口服AT2221,隨後經vIGF2標記之ATB-200 20 30 0
19 COF AT2220 + 經vIGF2標記之ATB-200 20 AT2220 = 30 0
動物數量 最後給藥日期   註釋
2 2 2/26/2014   在3/1/14發現死亡,與藥物無關
4 5 3/12/2014   第3劑之後1小時安樂死
7 4 3/12/2014   第3劑之後45分鐘發現死亡
12 2 3/12/2014   第3劑之後30分鐘發現死亡
12 1 3/26/2014   第4劑之後50分鐘發現死亡
5 4 3/12/2014   在3/26/14在給藥前安樂死,與藥物無關
4 6 3/26/2014   在4/1/2014發現死亡
10 2 3/26/2014   在4/8/2014發現死亡
1 4 4/9/2014   在4/17/2014發現死亡
10 1 4/23/2014   在5/1/2014發現死亡
2 1 4/23/2014   在5/7/2014發現死亡
表7:治療組研究294b (POC1b)。
複合治療 ERT 劑量 (mg/kg) AT2221 劑量 (mg/kg) 死亡數 ( 總計 = 6)  
1 媒劑 媒劑 --    
2 單獨Lumizyme® 20 -- 0  
3 ATB-200 10 -- 1  
4 口服AT2221;隨後ATB-200 10 10 1  
5 口服AT2221;隨後ATB-200 10 30 0  
6 ATB-200 20   0  
7 口服AT2221;隨後ATB-200 20 10 0  
8 口服AT2221;隨後ATB-200 20 30 0  
9 COF AT2220 + ATB-200 20 AT2220 = 30 0  
10 標記ATB-200 5 -- 1  
11 口服AT2221,隨後經vIGF2標記之ATB-200 5 10 0  
12 口服AT2221,隨後經vIGF2標記之ATB-200 5 30 0  
13 標記ATB-200 10 -- 0  
14 口服AT2221,隨後經vIGF2標記之ATB-200 10 10 1  
15 口服AT2221,隨後經vIGF2標記之ATB-200 10 30 2  
16 標記ATB-200 20   0  
17 口服AT2221,隨後經vIGF2標記之ATB-200 20 10 0  
18 口服AT2221,隨後經vIGF2標記之ATB-200 20 30 0  
19 COF AT2220 + 經vIGF2標記之ATB-200 20 AT2220 = 30 0  
動物數量 最後給藥日期   註釋  
15 2 3/19/2014   在3/27/2014由飼養室工作人員發現死亡  
14 5 3/19/2014   上4/2/2014在投藥之前發現死亡  
4 2 4/2/2014   在4/5/2014由飼養室工作人員發現死亡  
3 6 4/16/2014   在4/16/2014在腹膜內投藥之後發現死亡  
15 5 4/16/2014   在4/25/2014由飼養室工作人員發現死亡  
10 4 4/16/2014   在4/24/2014由飼養室工作人員發現死亡  
圖33描述如何分析小鼠肌肉組織之肝醣、GAA及蛋白質。圖34描述來自接受僅rhGAA或rhGAA-IGF2結合物而非伴隨蛋白之小鼠的肌肉組織之分析。在用ATB-200治療(尤其具有4次投藥)之小鼠的組織中可見劑量依賴性肝醣減少。未標記ATB-200 rhGAA及IGF2標記之ATB-200 rhGAA均在GAA KO小鼠肌肉組織中提供肝醣減少,且一般比相同劑量Lumizyme®所提供之肝醣減少更佳。觀測到接受六次而非四次靜脈內快速投藥之組之有限改進。
圖35描述來自接受未標記ATB-200 rhGAA及伴隨蛋白之小鼠的肌肉組織之分析。(4次靜脈內快速投藥)。在所測試劑量(10及30 mg/kg)下,經口共同投與AT2221與10 mg/kg未標記ATB-200幾乎不展示優於單獨酶之額外益處。經口共同投與10 mg/kg AT2221與20 mg/kg未標記ATB-200展示進一步肝醣減少之適度趨勢;30 mg/kg AT2221並不如此好。30 mg/kg AT2220與20 mg/kg未標記ATB-200之共調配物不展示優於單獨酶之顯而易見的益處抑或害處。
圖36描述對於接受六次靜脈內快速投藥之組,分析來自接受未標記ATB-200 rhGAA及伴隨蛋白之小鼠的肌肉組織。在6次投藥下,10 mg/kg AT2221在與20 mg/kg未標記ATB-200經口共同投與時之益處相比於4次投藥所見似乎不太明顯。在6次投藥下,30 mg/kg AT2220與20 mg/kg未標記ATB-200之共調配物展示比單獨酶顯著更糟的肝醣減少;此可能指示酶受PC抑制。圖37描述對於接受四次靜脈內快速投藥之組,分析來自接受IGF2標記之ATB-200 rhGAA及伴隨蛋白之小鼠的肌肉組織。
一般而言,在所測試劑量(10及30 mg/kg)下,AT2221與5、10或20 mg/kg 經vIGF2標記之ATB-200經口共同投與幾乎不展示優於單獨酶之額外益處。30 mg/kg AT2220與20 mg/kg 經vIGF2標記之ATB-200之共調配物不展示優於單獨酶之顯而易見的效果。圖38描述對於接受六次靜脈內快速投藥之組,分析來自接受IGF2標記之ATB-200 rhGAA及伴隨蛋白之小鼠的肌肉組織。
一般而言,在所測試劑量(10及30 mg/kg)下,AT2221與5、10 mg/kg 經vIGF2標記之ATB-200經口共同投與幾乎不展示優於單獨酶之額外益處。10 mg/kg AT2221與20 mg/kg經vIGF2標記之ATB-200經口共同投與展示進一步肝醣減少之適度趨勢,30 mg/kg AT2220與20 mg/kg經vIGF2標記之ATB-200之共調配物不展示優於單獨酶之顯而易見的效果。圖39描述對於接受六次靜脈內快速投藥歷經三個月之組,來自接受未標記及經IGF2標記之ATB-200 rhGAA (具有或不具有伴隨蛋白)之小鼠的肌肉組織中之GAA活性。在最後一次靜脈內投藥之後14天量測組織中之活性。在此類較晚時間點,活性似乎已趨向返回基線。對於可靠吸收而言並非最佳,圖43比較用於測定肝醣含量之基於HPLC及生物化學之方法。
圖44描述如使用兩種不同分析量測,藉由六次IC快速注射治療之GAA KO小鼠組在用標記(T)或未標記(U)之ATB-200 rhGAA治療後各種肌肉組織之肝醣含量。圖45描述在藉由六次靜脈內快速投與未標記(ATB-200)或經IGF2標記之ATB-200 (vIGF2-ATB-200)治療後四頭肌組織之肝醣含量。
以上資料展示藉由使用單獨ATB-200 rhGAA作為與CIMPR之IGF2靶向部分的結合物或與伴隨蛋白組合所提供之顯著改進。 第V部分. 臨床前研究296 (POC 2)
在GAA KO小鼠中不同劑量之AT2221 (美格魯特)及AT2220 (杜格魯特)對ATB-200 rhGAA吸收及肝醣減少之影響。
上文所描述之兩個POC1研究294A及294B評估兩週一次投與rh-GAA 6或4次之效果。POC2研究296 (兩週一次注射2次)之目標為在GAA KO小鼠之疾病相關組織中測試在2次重複兩週一次靜脈內快速投藥方案下不同劑量之AT2221-HCl(1、3及10 mg/kg游離鹼等效物)在與未標記ATB-200 (5、10及20 mg/kg)經口共同投與時對rhGAA吸收及rhGAA介導之肝醣減少的影響。
表8. 比較POC1與POC2之研究設計
研究 POC 1 (294A 294B) POC 2 (296)
投藥 兩週一次靜脈內快速注射4或6次 兩週一次靜脈內快速注射2次
Lumizyme® 20 mg/kg 20 mg/kg
ATB-200* 10及20 mg/kg 5、10及20 mg/kg
AT2221共同投與 (在靜脈內之前30分鐘口服ATB-200) 10及30 mg/kg (與10及20 mg/kg ATB-200) 1、3及10 mg/kg (與5、10及20 mg/kg ATB-200;30 mg/kg亦用20 mg/kg ATB-200測試)
AT2220共調配物 (ATB-200 + AT2220 靜脈內) 30 mg/kg 3及10 mg/kg
vIGF2-ATB-200 5、10及20 mg/kg 20 mg/kg
終點 肝醣量測,在最後一次(第4次或第6次注射)之後14天 肝醣量測,在最後一次(第2次注射)之後14天
*用於POC 2之批料不同於POC 1
另外,藉由POC2評估AT2220-HCl(3及10 mg/kg)在與未標記ATB-200 (20 mg/kg)共調配時之效果。亦將測試包括30 mg/kg AT2221-HCl與20 mg/kg未標記ATB-200及單獨20 mg/kg經vIGF2標記之ATB-200共同投與之研究294 (POC 1)之橋聯基團。亦包括20 mg/kg單獨Lumizyme®作為參考。出於此等目的,Lumizyme® (20 mg/kg)、未標記ATB-200 (5、10及20 mg/kg)及標記ATB-200 (20 mg/kg)經由快速尾靜脈靜脈內(IV)注射(總計6次注射)每隔一週投與至 GAA KO小鼠。此外,在各劑量之未標記A TB200的情況下,在每次靜脈內投與酶之前30分鐘經由口服管飼(經口)投與1.17、3.5或11.7 mg/kg AT2221-HCl(分別為1、3或10 mg/kg游離鹼等效物);且在每次靜脈內注射20 mg/kg未標記ATB-200之前30分鐘經口投與35 mg/kg AT2221-HCl(30 mg/kg游離鹼等效物)。3.66或12.2 mg/kg AT2220-HCl(分別為1、3或10 mg/kg游離鹼等效物)與20 mg/kg未標記ATB-200共調配且經由靜脈內快速注射投與。
296研究包括僅2次(兩週一次)靜脈內投藥。不投與DPH。然而,在每次投藥之後密切觀測動物。在296研究中,在第二次投藥之後14天收集血漿及組織—心臟、隔膜、舌、肝、腎、後肢及前肢。測定相對於Lumizyme及未標記與標記之ATB-200之抗體力價/IgG水準。
研究設計: 動物:總計124個平均年齡為16週齡之雄性GAA KO小鼠(約30 g)用於此研究。六隻年齡匹配之C57BLl6雄性小鼠用作對照。治療方案描述於下表5中。
表5.  藥物治療:
小鼠數量 ERT/ 媒劑 靜脈內 (mg/kg) AT2221 經口 (mg/kg) AT2220 + ERT 靜脈內 (mg/kg) ERT 濃度 (mg/mL) 每週所需之 ERT/ 媒劑體積 (mL) AT2221-HCl 濃度 (mg/mL) 給藥次數 ( 每隔一週 )
1 5 媒劑 - -   1.9 - 2
2 7 Lumizyme (20) - - 2 2.1 - 2
3 7 未標記ATB-200 (5) - - 0.5 2.1 - 2
4 7 未標記ATB-200 (5) AT2221 (1) - 0.5 2.1 0.12 2
5 7 未標記ATB-200 (5) AT2221 (3) - 0.5 2.1 0.35 2
6 7 未標記ATB-200 (5) AT2221 (10) - 0.5 2.1 1.17 2
7 7 未標記ATB-200 (10) - - 1 2.1 - 2
8 7 未標記ATB-200 (10) AT2221 (1) - 1 2.1 0.12 2
9 7 未標記ATB-200 (10) AT2221 (3) - 1 2.1 0.35 2
10 7 未標記ATB-200 (10) AT2221 (10) - 1 2.1 1.17 2
11 7 未標記ATB-200 (20) - - 2 2.1 - 2
12 7 未標記ATB-200 (20) AT2221 (1) - 2 2.1 0.12 2
13 7 未標記ATB-200 (20) AT2221 (3) - 2 2.1 0.35 2
14 7 未標記ATB-200 (20) AT2221 (10) - 2 2.1 1.17 2
15 7 未標記ATB-200 (20) AT2221 (30) - 2 2.1 3.5 2
16 7   - 未標記ATB-200 + AT2220 (20 + 3) 2 + 0.3 1.89 (在給藥當天向酶中添加AT2220鹽酸(36.6 mg/mL)之10倍儲備液) - 2
17 7   - 未標記ATB-200 + AT2220 (20 + 10) 2 + 1 1.89 (在給藥當天向酶中添加AT2220鹽酸(12.2 mg/mL)之10倍儲備液) - 2
18 7 標記ATB-200 (20) -   2 2.1 - 2
19 6 WT -   - - - -
給藥溶液。
調配物緩衝劑。調配物緩衝劑由50 mM磷酸鈉(pH 6.0)/100 mM NaC1/2% (wt/v)甘露糖醇0.02% (v/v)聚山梨醇酯-80組成。此緩衝劑為無菌、無內毒素的且適於在動物中投與測試樣品。調配物緩衝劑將用於稀釋rhGAA酶製劑,且亦用作無ERT陰性對照小鼠之「媒劑」樣品。
單獨Lumizyme®靜脈內投藥。Lumizyme®用調配物緩衝劑稀釋至2 mg/ml,且等分至無菌無熱原質小瓶中,每個小瓶2.1 mL等分試樣即用於10 mL/kg (基於小鼠重量)靜脈內注射。經調配測試物品之小瓶儲存在4℃下直至使用。各小瓶含有足夠測試物品以每週給藥7隻小鼠。
未標記ATB-200靜脈內投藥。未標記ATB-200用調配物緩衝劑稀釋以達成如上表5中所列之適當濃度。未標記ATB-200稀釋至0.5 mg/ml (對於5 mg rhGAA/kg群組)、1 mg/mL (對於10 mg rhGAA/kg群組)或2 mg/ml (對於20 mg rhGAA/kg群組),且等分至無菌無熱原質小瓶中,每個小瓶2.1 mL即用於10 ml/kg (基於小鼠重量)靜脈內注射。經調配測試物品之小瓶儲存在4℃下直至使用。各小瓶含有足夠測試物品以每週給藥7隻小鼠。
經vIGF2標記之ATB-200靜脈內投藥。經vIGF2標記之ATB-200用調配物緩衝劑稀釋以達成如上表5中所列之適當濃度。vIGF2-ATB-200經稀釋至0.5 mg/ml (針對5 mg rhGAA/kg群組)、1 mg/mL (針對10 mg rhGAA/kg群組)或2 mg/ml (針對20 mg rhGAA/kg群組),且等分至無菌無熱原質小瓶中,每個小瓶2.1 mL,用於靜脈內注射10 mL/kg (基於小鼠體重計)。經調配測試物品之小瓶儲存在4℃下直至使用。各小瓶含有足夠測試物品供每週對7隻小鼠給藥。請注意:第1組(未經治療小鼠)每隔一週給與單獨媒劑之靜脈內快速注射(10 mL/kg),總計注射2次。
所有動物經由側向尾靜脈接受兩次10 mL/kg靜脈內投藥。應注意比通常瞬時5 mL/kg靜脈內快速注射稍微更慢,以避免任何尾靜脈破裂/爆裂。各個動物之給藥體積連同生活觀測中之任何其他結果記錄於給藥及樣本收集表上。
AT2221-HCl口服藥物投藥:在去離子水中製備儲備液濃度為11.7 mg/ml之AT2221-HCl。儲備液隨後用去離子水稀釋以分別達成0.12、0.35、1.17及3.5 mg/mL之最終濃度,PO劑量為1、3、10及30 mg/kg。所有溶液皆渦旋幾秒以確保所有粉末溶解。各溶液採集大約100 µl等分試樣用於分析。在靜脈內注射未標記ATB-200之前30分鐘,先藉由口服管飼投與10 ml/kg AT2221-HCl。
共調配物靜脈內藥物製備:共調配物組之未標記ATB-200及經vIGF2標記之ATB-200係使用調配物緩衝劑稀釋至2.2 mg/ml,且以每個小瓶1.89 mL分裝至無菌無熱原質小瓶中。經調配測試物品之小瓶儲存在4℃下直至使用時為止。各小瓶含有足夠測試物品,供每週對7隻小鼠給藥。在調配物緩衝劑中分別製得AT2220-HCl之36.6 mg/mL及12.2 mg/mL儲備溶液。在投藥當天,將0.21 mL之36.6 mg/mL及12.2 mg/mL AT2220-HCl儲備液分別添加至各1.89 mL酶小瓶中,以製得最終共調配物溶液(總體積為2.1 mL),即用於依據小鼠體重量經靜脈內注射,分別含有0.366 mg/mL AT2220-HCl(等效於0.3 mg/mL游離鹼,及3 mg/kg劑量)或1.22 mg/mL AT2220-HCl(等效於1 mg/mL游離鹼,及10 mg/kg劑量)及2 mg/mL酶。溶液將輕輕混合以避免發泡且應呈現為澄清無色溶液。
實驗:在屍體剖檢時,亦即在最後一次靜脈內給藥之後14天,經由心臟穿刺收集全血。所收集之血液將置於鋰肝素小瓶中且在攝氏4度下,於2700×g下離心10 min。收集到約200 µl血漿且立即在乾冰上快速冷凍。在殺死動物之後收集以下組織:心臟、隔膜、舌、肝、腎、後肢及前肢。
來自POC2研究之結果展示兩次(兩週一次)靜脈內快速投與ATB-200比Lumizyme®更有效,ATB-200相比於Lumizyme觀測到明顯劑量依賴性且顯著更大之肝醣減少。觀測到以下比較肝醣減少程度:20 mg/kg ATB-200 > 10 mg/kg ATB-200 > 5 mg/kg ATB-200 ≈ 20 mg/kg Lumizyme。vIGF2-ATB-200之肝醣減少與由ATB-200 rhGAA產生之肝醣減少相當:20 mg/kg ATB-200 ≈ 20 mg/kg vIGF2-ATB-200。10 mg/kg AT2221共同投藥及3 mg/kg AT2220共調配物展示相比於單獨ATB-200 rhGAA適當改進之肝醣減少。儘管難以比較兩種不同途徑,AT2220共調配物比AT2221共同投藥更佳。具有展示改進之「最佳」劑量的任一伴隨蛋白(迄今為止所測試之1、3、10及30 mg/kg AT2221及3及10 mg/kg AT2220)可見劑量依賴性效應。在較高劑量下存在抑制,且在較低劑量下不存在效應。代表性資料展示於圖46及以下各圖中。
在20 mg/kg ATB-200之情況下,AT2221及AT2220均展示改進之肝醣減少的趨勢,參見圖46。10 mg/kg AT2221共同投藥展示有益作用趨勢;1、3或30 mg/kg並不有效。3及10 mg/kg AT2220共調配物在四頭肌及三頭肌中展示改進之肝醣減少的趨勢;尤其3 mg/kg AT2220共調配物導致肝醣減少比單獨酶顯著更大。無論AT2221或AT2220,與ATB-200組合比相同劑量之Lumizyme顯著更佳。如圖47中所示,儘管由改進之基質減少顯而易見,ATB-200之較高M6P含量允許更佳溶酶體靶向,但其半衰期比Lumizyme®短。表6描述ATB-200 rhGAA之藥物動力學參數。
表6:ATB-200藥物動力學
Cmax (nmol/mL/hr) 21316 45547 88799 104702
AUC (nmol/mL) 58350 101290 247068 514743
半衰期(hr) 0.62 0.61 0.79 1.32
ATB-200 rhGAA之PK基於Cmax及AUC為劑量依賴性及線性的。5、10及20 mg/kg ATB-200 rhGAA之半衰期相似。在20 mg/kg時,ATB-200之半衰期為約47 min且Lumizyme®為約1.3 hr;伴隨蛋白對ATB-200 PK影響之研究正在進行中。總體而言,此等小鼠輸液PK資料相似於靜脈內快速注射小鼠PK(資料未展示),指示儘管ATB-200 (相比於Lumizyme)之半衰期較短,其由於高M6P含量而很好靶向,且導致骨胳肌中之改進的肝醣減少。
如圖48所示,在ATB-200 rhGAA之情況下觀測到劑量依賴性肝醣減少。5 mg/kg ATB-200 rhGAA ≈ 20 mg/kg Lumizyme®。10及20 mg/kg ATB-200 rhGAA展示肝醣減少比20 mg/kg Lumizyme顯著更大。vIGF2-ATB-200 rhGAA結合物相比於相同劑量之ATB-200展示更大肝醣減少之微小趨勢,但一般而言兩種形式之ATB-200為相當的。
在20 mg/kg ATB-200 rhGAA之情況下,AT2221及AT2220均展示改進之肝醣減少的趨勢,參見圖49。10 mg/kg AT2221共同投藥在四頭肌而非三頭肌中展示有益作用趨勢;1、3或30 mg/kg AT2221並不有效。3及10 mg/kg AT2220共調配物在四頭肌及三頭肌中展示改進之肝醣減少的趨勢;尤其3 mg/kg AT2220共調配物導致肝醣減少比單獨酶顯著更大。無論AT2221或AT2220,與ATB-200組合比相同劑量之Lumizyme顯著更佳。
POC1 (兩週一次投與4及6次)及POC2 (兩週一次投與2次)研究結果展示在ATB-200情況下之肝醣減少比使用Lumizyme之肝醣減少顯著更佳。ATB-200 10 mg/kg > 20 mg/kg Lumizyme;ATB-200 20 mg/kg > 20 mg/kg Lumizyme;單獨ATB-200展示明顯劑量依賴性肝醣減少;20 mg/kg vIGF2-ATB-200與ATB-200相當;等效劑量之20 mg/kg ATB-200 ≈ vIGF2-ATB-200 > Lumizyme;及AT2221 (10 mg/kg)與20 mg/kg ATB-200共同投與相比於單獨20 mg/kg ATB-200展示改進之肝醣減少的趨勢。
POC2研究亦展示兩種酶投與足以用於GAA KO小鼠中之肝醣減少。雖然20 mg/kg Lumizyme®展示僅細微(若存在)肝醣減少,10及20 mg/kg ATB-200實質上減少肝醣(四頭肌及三頭肌中分別約60%及約40%)。ATB-200 rhGAA 5 mg/kg ≈ 20 mg/kg Lumizyme在20 mg/kg ATB-200之情況下,AT2221及AT2220均展示改進之肝醣減少的趨勢(相比於單獨20 mg/kg ATB-200):為減少肝醣,AT2221 10 mg/kg及AT2220 3 mg/kg為有效的。AT2221之有益作用在四頭肌及腓腸肌中顯而易見但在三頭肌中並非如此大。1及3 mg/kg AT2221與5、10或20 mg/kg ATB-200並不有效減少肝醣。AT2220之有益作用在四頭肌、腓腸肌及三頭肌中皆極為顯而易見(在POC1研究中僅測試30 mg/kg高劑量之AT2220,且展示抑制作用)。無論AT2221或AT2220,與ATB-200組合比相同劑量之Lumizyme顯著更佳。參見圖50A、50B及50C,其展示在治療後所選肌肉中之肝醣含量。
表7.  研究96 (POC ):肌肉中之肝醣。生活中之觀測結果
複合治療 死亡數 ( 總計 = 7)
1 媒劑 1
2 Lumizyme® 20 mg/kg 0
3 ATB-200 5 mg/kg 0
4 1 mg/kg口服AT2221;隨後ATB-200 5 mg/kg 1
5 3 mg/kg口服AT2221;隨後ATB-200 5 mg/kg 0
6 10 mg/kg口服AT2221;隨後ATB-200 5 mg/kg 0
7 ATB-200 10 mg/kg 0
8 1 mg/kg口服AT2221;隨後ATB-200 10 mg/kg 0
9 3 mg/kg口服AT2221;隨後ATB-200 10 mg/kg 0
10 10 mg/kg口服AT2221;隨後ATB-200 10 mg/kg 0
11 ATB-200 20 mg/kg 1
12 1 mg/kg口服AT2221;隨後ATB-200 20 mg/kg 0
13 3 mg/kg口服AT2221;隨後ATB-200 20 mg/kg 0
14 10 mg/kg口服AT2221;隨後ATB-200 20 mg/kg 1
15 30 mg/kg口服AT2221;隨後ATB-200 20 mg/kg 1
16 共調配物:3 mg/kg ATB220 + ATB-200 20 mg/kg 1
17 共調配物:10 mg/kg ATB220 + ATB-200 20 mg/kg 0
18 經vIGF2標記之ATB-200 20 mg/kg 1
19 WT 0
動物數量 最後給藥時 DOD 註釋
15 7 7/10/2014 7/16/2014 在7/16/14發現死亡;藥物不相關
5 1 7/24/2014 7/24/2014 在第二次靜脈內給藥之後30 min死亡
14 6 7/24/2014 7/24/2014 在第二次靜脈內給藥之後20 min安樂死
16 4 7/24/2014 7/24/2014 在第二次靜脈內給藥之後35 min死亡
18 6 7/24/2014 7/30/2014 在7/30/14發現死亡;可不為藥物相關
1 1 7/24/2014 8/7/2014 在屍體剖檢之前即刻發現死亡
11 6 7/24/2014 ?? 自籠子丟失,可能已在屍體剖檢之前發現死亡
總體而言,發生7個死亡數(在124隻 GAA KO小鼠當中)
動物接受2次(兩週一次)靜脈內快速注射。在此研究期間未給與DPH。在第二次投藥之後,觀測到具有伴隨蛋白投藥(AT2221共同投藥或AT2220共調配物)之所有組皆顯示急性免疫反應症狀;3個不同組中之3個動物在投藥後不久死亡。單獨酶組似乎在每次注射之後立即顯得正常而健康。量測經治療動物中之抗體力價以闡明此等觀測結果。圖51展示ATB-200、vIGF2-ATB-200及Lumizyme® (個體小鼠)之藥物動力學。圖52展示標準化藥物動力學資料。
表8:  rhGAA半衰期
半衰期 (hr) 動物 1 動物 2 動物 3 動物 4 動物 5 平均值
Lumizyme® 1.3 1.6 1.2 1.4 1.1 1.32
ATB-200 5 mg/kg 0.53 0.60 0.64 0.73 0.59 0.62
ATB-200 10 mg/kg 0.69 0.55 0.60 0.67 0.55 0.61
ATB-200 20 mg/kg 0.81 0.83 0.83 0.78 0.70 0.79
ATB-200 20 mg/kg + AT2221 10 mg/kg (PO) 1.04 0.69 0.72 1.18 0.70 0.87
ATB-200 20 mg/kg + AT2220 10 mg/kg (COF) 0.96 0.75 0.94 0.82 0.82 0.86
vIGF2-ATB-200 0.46 0.44 0.48 0.53 1.47 0.68 (0.48)*
* vIGF2-ATB-200組中之動物5與該組中之其他動物相比展示非常長的酶半衰期,且實質上影響該組之平均半衰期。若不包括此動物,則平均半衰期為0.48 hr。
POC2研究(研究296). 在有及沒有伴隨蛋白之情況下投與ATB-200對肝醣減少之影響。
表9. 一些POC1及POC2研究結果之概述:
治療                                劑量 (mg/kg) POC1 (4 6 次注射 )
ATB-200 (單獨) 10, 20
        + AT2221 (共同投藥)         + 10. + 30
        + AT2220 (共調配物)         + 30
vIGF2-ATB-200 (單獨) 5, 10, 20
        + AT2221 (共同投藥)         + 10. + 30
        + AT2220 (共調配物)         + 30
終點:在最後一次注射之後14天之肝醣 澱粉葡萄糖苷酶消化;酸性水解;PAS染色
如圖53所示,在四頭肌組織中ATB-200及vIGF2-ATB-200相比於Lumizyme®治療產生顯著肝醣減少。在ATB-200及vIGF-2-ATB-200之情況下觀測到劑量依賴性肝醣減少。20 mg/kg (vIGF2-) ATB-200 > 10 mg/kg (vIGF2-) ATB-200 > 5 mg/kg vIFG2-ATB-200 = 20 mg/kg Lumizyme在20 mg/kg (vIGF2-)ATB-200與10 mg/kg AT2221共同投與時肝醣減少得到改進。在較高AT2221劑量(30 mg/kg)下觀測到潛在抑制。
研究296 (POC 2,2次注射):單獨ERT:ATB-200及vIGF2-ATB-200比Lumizyme更有效。
圖54展示經rhGAA治療之心臟、隔膜、三頭肌及四頭肌組織之組織學。分析來自各個動物之一個切片。各影像(20×)表示每個組n=6-7。WT組織之影像展示於插圖中。
研究 296 (POC2-2 次注射 ) 澱粉葡萄糖苷酶消化
如圖55所示,在ATB-200 rhGAA之情況下觀測到劑量依賴性肝醣減少。5 mg/kg ATB-200 ≈ 20 mg/kg Lumziyme。10及20 mg/kg ATB-200展示肝醣減少比20 mg/kg Lumizyme顯著更大。一般而言,vlFG2-ATB-200與ATB-200相當。此與藉由PAS之組織學評估一致。
研究296. 四頭肌:ATB-200 rhGAA 與藥理學伴隨蛋白(PC) 組合導致肝醣減少比單獨ATB-200 rhGAA 更大
如圖56、57及58所示,ATB-200 rhGAA與PC AT2221或AT2220之組合比單獨ATB-200 rhGAA提供四頭肌中更大肝醣減少。PC AT2221共同投與在10 mg/kg時最有效,且在30 mg/kg時觀測到可能抑制。共調配物:AT2220在3 mg/kg時相比於更高劑量10 mg/kg更有效。
研究296. ATB-200 rhGAA 與伴隨蛋白AT2221 ( 美格魯特) 之組合相比於單獨ATB-200 rhGAA 提供三頭肌肝醣減少
如對於研究296所描述,GAA KO小鼠被給與兩次靜脈內投與ATB-200 rhGAA。圖59展示在用Lumizyme® rhGAA、單獨ATB-200 rhGAA或ATB-200 rhGAA與1、3、10或30 mg/kg AT-2221之組合治療後對肌肉(三頭肌)肝醣含量之影響。圖60展示在用ATB-200 rhGAA及1、3、10或30 mg/kg AT-2221治療後三頭肌中之肝醣減少。共同投藥:藉由酶促分析未觀測到與AT2221之組合之顯著額外益處。藉由PAS觀測到在3及10 mg/kg AT2221之情況下的細微進一步減少。共調配物:AT2220在3 mg/kg劑量時比10 mg/kg更有效。
研究296. ATB-200 rhGAA 與伴隨蛋白AT2221 ( 美格魯特) 之組合相比於單獨ATB-200 rhGAA 提供心肌肝醣減少
圖62展示在用ATB-200 rhGAA治療或用ATB-200 rhGAA與1、3、10或30 mg.kg AT-2221組合治療後心臟組織之肝醣染色。圖63為展示心臟組織中之肝醣相對減少之條形圖。圖64展示用單獨ATB-200 rhGAA或ATB-200 rhGAA與3或10 mg/kg伴隨蛋白AT-2200 (杜格魯特)之組合治療之心臟組織之肝醣染色。共同投藥:用AT-2221 (30 mg/kg)治療之組觀測到顯著進一步肝醣減少。該效果藉由PAS染色更顯而易見。共調配物:AT2220在3 mg/kg時比10 mg/kg更有效。
研究296. ATB-200 rhGAA 與伴隨蛋白AT2221 ( 美格魯特) 之組合相比於單獨ATB-200 rhGAA 提供隔膜肝醣減少
圖65展示用ATB-200 rhGAA及1、3、10或30 mg/kg伴隨蛋白AT2221 (美格魯特)治療之隔膜組織之肝醣染色。圖66展示用ATB-200 rhGAA及3或10 mg/kg伴隨蛋白AT2220 (杜格魯特)治療之隔膜組織之肝醣染色。共同投藥:在AT2221 (30 mg/kg)與20 mg/kg ATB-200共同投與時觀測到肝醣含量一致進一步減少。共調配物:ATB-200 (20 mg/kg)在共調配物情況下相比於單獨ERT之肝醣減少得到進一步改進。ATB-200 rhGAA與3及10 mg/kg AT2220之共調配物的效果與共同投藥(30 mg/kg AT2221)之效果相當。
研究296. 與PC 組合相比於單獨ATB-200 rhGAA 導致進一步肝醣減少。與POC1一致,在20 mg/kg ATB-200之情況下可見PC之效果。PC在與較低劑量之ATB-200 (5及10 mg/kg,參見附錄)組合時不提供額外益處。共同投藥:在大部分組織中10 mg/kg適合劑量之AT2221。此展示與單獨Lumizyme® rhGAA相比,四頭肌及腓腸肌中之肝醣減少最多且三頭肌、心臟及隔膜中之肝醣減少得到改進而無抑制跡象。共調配物:3 mg/kg AT2220在大部分組織中為適合劑量,且與單獨ATB-200相比在所有分析組織中導致更大肝醣減少。該效果相似於或優於在大部分分析組織中與10 mg/kg AT2221共同投與。在僅2次注射(POC 2)之情況下,效果大於4或6次注射與ATB-200 (POC1)共調配之30 mg/kg AT2220。圖67為概述在用ATB-200 rhGAA及ATB-200 rhGAA與伴隨蛋白之組合治療後心臟及不同骨骼肌組織中之相對肝醣減少的條形圖。
研究296. 用ATB-200 rhGAA 或ATB-200 rhGAA 與AT2221 伴隨蛋白之組合治療之心臟及骨骼肌組織之肝醣染色
如上文關於研究296所描述,動物經Lumizyme® rhGAA、單獨ATB-200 rhGAA或ATB-220與1、3或10 mg/kg AT2221 (美格魯特)伴隨蛋白之組合治療。圖68展示代表性組織切片之肝醣染色。圖69為展示組織肝醣之相對含量之條形圖。ATB-200 (10 mg/kg)在共同投藥之情況下:與單獨rhGAA ERT相比未觀測到額外益處。ATB-200 (5及10 mg/kg)在共同投藥之情況下與單獨rhGAA ERT相比不提供額外益處。
研究296. 治療對四頭肌組織之影響
單獨四頭肌ERT:在ATB-200 rhGAA之情況下可見劑量反應。5 mg/kg ATB-200之功效與Lumizyme® (20 mg/kg)相當。20 mg/kg ATB-200比Lumizyme® (20 mg/kg)顯著更有效。vIGF2-ATB-200 (20 mg/kg)之功效與ATB-200 (20 mg/kg)相當。vIGF2-ATB-200 rhGAA比Lumizyme rhGAA更有效。共同投藥:在AT2221與較低劑量之ATB-200 (5或10 mg/kg)共同投與時肝醣減少無顯著改進。在AT2221 (10 mg/kg)與20 mg/kg ATB-200共同投與時肝醣減少少量增加。在ATB-200 (20 mg/kg)與AT2221 (30 mg/kg)之共同投藥的情況下觀測到較小抑制。共調配物:與單獨ATB-200 rhGAA (20 mg/kg)相比在與AT2220之共調配物之情況下發現更大肝醣減少。AT2220在3 mg/kg時比10 mg/kg更有效,參見圖70及71。
研究296. 治療對三頭肌組織之影響
如圖72所示,ATB-200及vIGF2-ATB-200相比於Lumizyme®在肝醣減少方面更有效。圖73展示用與伴隨蛋白AT2221共同投與及與伴隨蛋白AT2220共調配之ATB-200 rhGAA治療三頭肌組織之效果。單獨三頭肌ERT:在ATB-200之情況下可見劑量反應;5 mg/kg ATB-200之功效與Lumizyme® (20 mg/kg)相當;20 mg/kg ATB-200比Lumizyme® (20 mg/kg)顯著更有效;vIGF2-ATB-200 (20 mg/kg)比Lumizyme® (20 mg/kg)更有效;vIGF2-ATB-200相比於ATB-200稍微不太有效(兩者均在20 mg/kg時)。三頭肌之共同投藥治療:在AT2221與較低劑量之ATB-200 (5或10 mg/kg)共同投與時可見肝醣減少少量增加。在AT2221 (3及10 mg/kg)與20 mg/kg ATB-200共同投與時可見肝醣減少適度改進。三頭肌之共調配物治療:ATB-200功效在共調配物之情況下相比於共同投藥顯著改進。AT2220在3 mg/kg劑量時比在10 mg/kg劑量時更有效。
研究296. 治療對隔膜組織之影響
如圖74所示,對於隔膜組織中之肝醣減少,ATB-200及vIGF2-ATB-200相比於Lumizyme®更有效。圖75展示用與伴隨蛋白AT2221共同投與及與伴隨蛋白AT2220共調配之ATB-200 rhGAA治療隔膜組織之效果。單獨隔膜ERT:在ATB-200 rhGAA之情況下可見劑量反應。5 mg/kg ATB-200之功效與Lumizyme® (20 mg/kg)相當。20 mg/kg ATB-200 rhGAA比Lumizyme® (20 mg/kg)顯著更有效。在相同劑量時,vIGF2-ATB-200 (20 mg/kg)與ATB-200相當且比Lumizyme®更有效。隔膜之共同投藥治療:在AT2221與較低劑量之ATB-200 (5或10 mg/kg)共同投與時肝醣減少無顯著改進。在AT2221 (30 mg/kg)與20 mg/kg ATB-200共同投與時肝醣含量一致且適度進一步減少。AT2221劑量反應為細微的。隔膜之共調配物治療展示ATB-200 (20 mg/kg)之功效在共調配物之情況下相比於單獨rhGAA ERT較少改進。共調配物(3及10 mg/kg AT2220)之效果與ATB-200 (20 mg/kg)共同投藥(30 mg/kg AT2221)之效果相當。
研究296 :治療對心臟組織之影響
如圖76所示,對於心臟組織中之肝醣減少,ATB-200及vIGF2-ATB-200相比於Lumizyme®更有效。圖77展示用與伴隨蛋白AT2221共同投與及與伴隨蛋白AT2220共調配之ATB-200 rhGAA治療心臟組織之效果。單獨心臟組織ERT:在ATB-200 rhGAA之情況下可見劑量反應。5 mg/kg ATB-200之功效與Lumizyme® (20 mg/kg)相當。20 mg/kg ATB-200 rhGAA比Lumizyme® (20 mg/kg)顯著更有效。vIGF2-ATB-200比Lumizyme®稍微更有效。vIGF2-ATB-200 (20 mg/kg)與中等劑量(10 mg/kg)之ATB-200 rhGAA相當。心臟組織之共同投藥治療展示在AT2221與較低劑量之ATB-200 (5或10 mg/kg)共同投與時肝醣減少無顯著改進。在AT2221 (30 mg/kg)與20 mg/kg ATB-200共同投與時觀測到肝醣含量之實質性進一步減少。觀測到AT2221劑量反應。心臟組織之共調配物治療:ATB-200 (20 mg/kg)之功效在共調配物之情況下相比於單獨ERT適度改進。共調配物(3及10 mg/kg AT2220)之效果相似於共同投藥(3及10 mg AT2221)之效果。
研究 296. ATB-200 rhGAA 給藥效果。
在研究296 (POC2)中,基因剔除小鼠被投與ATB-200 rhGAA兩次。在先前研究POC1a及POC1b中,動物被投與ATB-200 rhGAA六次或四次。圖78中比較此等不同給藥方案對四頭肌中之肝醣含量的影響。對於單獨Lumizyme® rhGAA及ATB-200 rhGAA,較低肝醣含量與投與次數相關。 第VI 部分. ATB-200 之藥理學概況
研究302 :ATB-200 rhGAA 、vIGF2-ATB-200 rhGAA 及Lumizyme® rhGAA 在GAA 基因剔除小鼠中之藥物動力學( 靜脈內輸液)
本發明人試圖評估ATB-200 rhGAA及經vIGF2標記之ATB-200 rhGAA在經由靜脈內輸液投與至GAA KO小鼠時之藥物動力學(PK)概況,且將其與Lumizyme之PK進行比較。研究設計:40隻約14-16週齡GAA KO小鼠(n=5隻小鼠/組)。以單次靜脈內輸液30分鐘之形式向動物投與測試組合物劑量。使用以下劑量:Lumizyme;20 mg/kg;ATB-200 rhGAA:5、10及20 mg/kg;經vIGF2標記之ATB-200 rhGAA:20 mg/kg。伴隨蛋白AT2221-HCl:經口共同投與10 mg/kg 30分鐘,隨後靜脈內輸液ATB-200 rhGAA。伴隨蛋白AT2220-HCl以與ATB-200 rhGAA共調配之10 mg/kg劑量投與且經由靜脈內輸液投與。在研究之終點,在輸液前及自輸液開始30 min及1、1.5、2、3及24 hr (最終出血)時收集血漿;在24 hr收集組織。Lumizyme® rhGAA、ATB-200 rhGAA及經vIGF2標記之ATB-200 rhGAA之血漿PK經分析為GAA活性之量測。測定在24 hr時間點之作為心臟、四頭肌及三頭肌中之GAA活性的量測之組織吸收。
表10.  比較rhGAA產品之藥物動力學
組 n = 5 Lumizyme (20 mg/kg) ATB-200 (20 mg/kg) vIGF2-ATB-200 (20 mg/kg)
C max(nmol/mL/hr) 104702 88799 77547
AUC (nmol/mL) 514743 247068 120945
半衰期(hr) 1.32 0.79 0.48* (0.68)
可見ATB-200 rhGAA (約47 min.)及vIGF2-ATB-200 rhGAA (約29 min.)相比於Lumizyme® (1.3 hr)之半衰期較短。總體而言,Lumizyme® PK > ATB-200 > vIGF2-ATB-200,參見圖79A及79B。ATB-200 rhGAA之PK為劑量依賴性的且低於Lumizyme®,如圖80A及80B所示。添加伴隨蛋白AT2220或AT2221並不顯著改進ATB-200 rhGAA之PK,如圖81A及81B所示。
表11. 單獨ATB-200 rhGAA及在與伴隨蛋白組合時之比較藥物動力學。
單獨ATB-200 (20 mg/kg) ATB-200 (20 mg/kg) + AT2221 (10 mg/kg) (PO) ATB-200 (20 mg/kg) + AT2220 (10 mg/kg) (共調配物)
C max(nmol/mL/hr) 88799 74987 96699
AUC (nmol/mL) 247068 239390 286042
半衰期(hr) 0.79 0.81 0.85
AT2220抑或AT2221在所測試劑量下不展示ATB-200 PK之任何顯著改進。研究302展示ATB-200 rhGAA及vIGF2 ATB-200 rhGAA在GAA KO小鼠中之PK比Lumizyme®低,但在組織肝醣減少方面比Lumizyme更有效。ATB-200之PK為劑量依賴性的(對於所測試劑量5、10及20 mg/kg)且與相似半衰期成線性。在等效劑量下,ATB-200 rhGAA之半衰期為約47 min,vIGF2-ATB-200 (約29 min.)及Lumizyme® (1.3 hr)。AT2220及AT2221伴隨蛋白在10 mg/kg劑量時均不展示ATB-200 PK之任何顯著改進(10 mg/kg AT2221 + 20 mg/kg ATB-200展示GAA KO小鼠中之肝醣減少得到改進)。 第VII 部分. 抗GAA 抗體力價
在研究294A (POC1a) 、294B (POC1b) 及29 (POC2) 中評估抗rhGAA IgG 力價。上文關於研究296所描述之方案除兩週一次給藥時程之外一般遵循關於研究294A及294B之方案。一般而言,所有接受rhGAA之動物產生針對rhGAA之IgG力價。 Lumizyme® rhGAA IgG力價一般高於ATB-200 rhGAA之相應力價;且針對經IGF2標記之ATB-200之IgG力價與未標記ATB-200 rhGAA之力價實質上相同。
研究294A。在此研究中,動物接受6次(兩週一次)注射。抗rhGAA IgG力價—僅酶組(測試1)。在用與動物接受治療用相同的相應rhGAA塗佈之Imulon 2HB盤中培育血漿樣品;測試1中僅包括接受單獨酶之組。所有接受rhGAA之動物產生抗rhGAA力價(20,000-160,000)。在未標記與標記之ATB-200之間未觀測到抗rhGAA力價之實質性差異。針對未標記及經IGF2標記之rhGAA的力價為相似的。在不同劑量之rhGAA之間未觀測到抗體力價之顯著差異,參見圖82。
抗rhGAA IgG 力價-僅酶組(測試1對比2)。在用與動物接受治療用相同的相應rhGAA塗佈之Immulon 2HB盤中培育血漿樣品;測試1中僅包括接受單獨酶之組,而測試2中包括所有接受未標記或標記之ATB-200的組,參見圖83。所有接受rhGAA之動物產生抗rhGAA力價。兩次獨立稀釋及量測產生極相當結果。在未標記與標記之ATB-200之間不可見抗rhGAA力價之實質性差異;針對標記ATB-200的力價似乎並不高於針對未標記ATB-200的力價。在不同劑量之酶之間未觀測到抗體力價之實質性差異。
抗rhGAA IgG 力價-在具有或不具有伴隨蛋白之情況下所有未標記及經IGF2標記之ATB-200組。在用與動物接受治療用相同的相應rhGAA塗佈之Immulon 2HB盤中培育血漿樣品;測試所有接受未標記或標記之ATB-200的組之抗rhGAA力價。圖84展示結果。所有接受ATB-200之動物產生抗rhGAA力價(12,500-400,000)。未標記與標記之ATB-200之間的抗rhGAA力價無實質性差異。在不同劑量之酶之間未觀測到抗體力價之顯著差異。一般而言,在AT2221共同投藥或AT2220共調配物之情況下未獲得抗體力價降低。
抗rhGAA IgG 力價-所有未標記及標記之ATB-200組。在用與動物接受治療用相同的相應rhGAA塗佈之Immulon 2HB盤中培育血漿樣品;測試所有接受未標記或標記之ATB-200的組之抗rhGAA力價。圖85中呈現結果。所有接受ATB-200 rhGAA之動物產生抗rhGAA力價(12500-400000)。在未標記與標記之ATB-200 rhGAA產品之間未發現抗rhGAA力價之實質性差異。在不同劑量之酶之間未發現抗體力價之顯著差異。一般而言,在AT2221共同投藥或AT2220共調配物之情況下未獲得抗體力價降低。
來自接受四次( 兩週一次) rhGAA 投與之研究294B (POC1b) 動物的抗體力價。圖86展示來自此組之抗體力價。
來自接受兩次( 兩週一次)rhGAA 產品投與之研究296 (POC2) 的抗體力價。圖87展示此組之抗體力價。藉由在用ATB-200 rhGAA塗佈之Immunlon 4HBX盤中培育抗體樣品來測定力價。ATB-200 rhGAA相比於Lumizyme®之較高效力准許投與較低劑量之ATB-200 rhGAA來獲得與較高劑量之Lumizyme相同或相似的肝醣減少。舉例而言,對於減少肝醣,兩週一次投與5 mg/kg ATB-200等效於20 mg/kg rhGAA Lumizyme®。如圖87所示,此等較低劑量比較高劑量之Lumizyme®誘導較少抗rhGAA IgG反應,比較例如第1行(Lumizyme,20 mg/kg)中之資料與第2行(未標記ATB-200,5 mg/kg)中之資料。未標記ATB-200亦展示在以增加量之AT2221投與時IgG力價逐漸降低,參見第3行、第4行及第5行。 第VIII 部分. 投與ATB-200 與伴隨蛋白AT-2221 之影響
在ATB-200 rhGAA 與藥理學伴隨蛋白AT2221 ( 美格魯特) 共同投與之情況下組織肝醣減少
十二週齡雄性GAA KO小鼠經由尾靜脈注射被投與總計2次(兩週一次)快速靜脈內(IV)注射20 mg/kg rhGAA或ATB-200(每組n=5)。另外,在每次靜脈內投與ATB-200之前30分鐘經口投與10 mg/kg AT2221 (此後稱為『共同投藥』或『ATB-200 + AT2221』)。包括注射媒劑(亦即,『未治療』)之GAA KO及年齡匹配之野生型(『WT』)小鼠之組作為基線/對照。在最後一次給藥後14天使動物安樂死,且收集四頭肌用於肝醣分析。
圖88A展示以未經治療小鼠之每一肌纖維中之大量密集洋紅色點狀(插圖)形式展現肝醣累積存在之四頭肌之石蠟切片的PAS染色。不同於展示有限效果之rhGAA護理標準,單獨ATB-200 rhGAA導致PAS信號顯著減少。此外,與AT2221共同投與導致基質實質性進一步減少,如由大部分肌纖維中之PAS信號清除(星號)所證明。
圖88B展示Epon嵌入式四頭肌切片之TEM檢查,該等切片顯示未經治療GAA KO小鼠中之大多數肝醣在溶酶體中貯積為膜結合電子緻密物(箭頭及插圖),其可能對應於點狀PAS信號(參見圖88A)。在接受共同投與ATB-200與AT2221之動物中,不僅含基質溶酶體之數目及尺寸減小,而且其餘溶酶體之電子密度亦減小。此外,溶酶體肝醣減少表明遞送ATB-200至溶酶體。
四頭肌中之肝醣含量亦使用澱粉葡萄糖苷酶消化測定。結果支持來自組織學檢查之結論:對於肝醣減少,ATB-200 rhGAA優於習知rhGAA,且其效果可藉由與AT2221共同投與來進一步改進。在腓腸肌及心臟中亦獲得相似結果。圖88C展示不同rhGAA治療組之四頭肌肝醣含量。
長期重複投與ATB-200 ± AT2221 導致GAA KO 小鼠之額外肌肉組織中之肝醣減少更大
在獨立及以類似方式設計之研究中,在較長時期內藉由4次(兩週一次)靜脈內快速注射檢查ATB-200 ± AT2221之效果。在用rhGAA治療後,在四頭肌(資料未展示)、三頭肌(星號標記具有顯著減少之PAS信號的肌纖維)及隔膜中可見肝醣含量適度總體減少。在用ATB-200治療動物時可見肝醣含量更顯著減少,且該效果在共同投與AT2221之情況下甚至更大。值得注意的為,隔膜,亦即rhGAA治療難治癒之組織更加回應於單獨ATB-200或與AT2221之共同投與。在心臟中,貯積於心肌細胞中之主要肝醣易於藉由重複投與rhGAA或ATB-200達到野生型(WT)動物中可見之水準來清除。然而,心臟平滑肌細胞中之基質似乎較佳藉由ATB-200清除,表明ATB-200相比於rhGAA之潛在更廣泛生物分佈(星號標記心臟血管之內腔),參見圖89,其展示用習知rhGAA、ATB-200 rhGAA及ATB-200 rhGAA與伴隨蛋白AT2221之組合治療之心臟及骨骼肌組織之肝醣染色。
GAA KO 小鼠之多個肌肉組織中AT2221 共同投與實質上改進ATB-200 介導之溶酶體增殖減少
亦藉由IHC分析來自以上研究(參見圖89)之樣品以檢查溶酶體標記物LAMP1。LAMP1上調指示溶酶體增殖,其為龐培氏病之標誌之一。
圖90A. 在四頭肌中,與年齡匹配之WT動物相比,未經治療GAA KO小鼠中之LAMP1陽性囊泡(亦即,溶酶體)之數目及尺寸大大增加。值得注意地,一般在投與ATB-200而非護理標準rhGAA後可見LAMP1 IHC信號顯著減少。與AT2221共同投與導致溶酶體增殖進一步顯著減少,其中大多數肌纖維中之LAMP1的水準及模式返回至WT動物中可見之水準及模式。可在心臟、隔膜及比目魚肌中推斷出相同結論(參見B圖)。一般而言,ATB-200 rhGAA ± AT2221對LAMP1之影響似乎密切模擬肝醣含量方面可見之積極影響(參見圖90)。
圖90B. 在比目魚肌中,在I型(慢縮)纖維之情況下相鄰切片之IHC-特異性抗體NOQ7.5.4D展示ATB-200相比於護理標準rhGAA導致更多實質性LAMP1減少(星號),其中減少導致WT動物中可見之水準。不同於效果主要受限於I型纖維之rhGAA,ATB-200亦導致一部分II型纖維(箭頭)中之LAMP1信號顯著減少。此外,在大多數II型纖維中共同投藥進一步提高ATB-200功效。因此,LAMP1信號水準似乎不存在顯著纖維型特異性差異。自四頭肌及隔膜得出相似結論(資料未展示)。
基於PAS染色之組織學資料展示在GAA KO小鼠之多個疾病相關肌肉組織(包括四頭肌、三頭肌、隔膜及心臟)中之肝醣減少中ATB-200 rhGAA比護理標準rhGAA更有效。PAS染色亦展示與AT2221共同投與進一步改進ATB-200介導之肝醣減少。EM檢查展現溶酶體中之基質減少,表明運輸ATB-200至標靶細胞器。一般而言,組織學資料與使用澱粉葡糖苷酶消化之肝醣減少的生物化學評估一致。LAMP1之IHC分析展示ATB-200 ± AT2221展現減少溶酶體增殖之有益效果與肝醣基質減少之效果相似。纖維型分析展示不同於rhGAA,ATB-200 ± AT2221不僅在I型纖維中且亦在II型纖維中為有效的。此由ATB-200 ± AT2221在四頭肌、三頭肌及隔膜中肝醣減少中之優越性支持,因為此等組織主要由II型纖維組成。
總體而言,此等資料表明ATB-200相比於護理標準rhGAA更易於由疾病相關肌肉組織吸收,因為其較高M6P含量導致溶酶體肝醣及增殖更大減少。與AT2221共同投與潛在地經由在血液中結合及穩定ATB-200、保持更可實現組織吸收及溶酶體遞送之適當摺疊、活性形式之酶導致ATB-200功效進一步提高。因此,ATB-200相比於護理標準rhGAA具有更廣泛生物分佈,且在不佳回應於護理標準rhGAA之疾病相關組織/細胞類型(諸如II型骨骼肌纖維及心臟血管平滑肌細胞)中達成更大肝醣減少。綜合而言,此等臨床前資料支持提高之ATB-200 rhGAA ± AT2221功效。
對於GAA KO 小鼠之骨胳肌中之肝醣清除,具有優異糖基化之ATB-200 rhGAA 比護理標準ERT 顯著更佳
如上所述,使用重組人類GAA (rhGAA)之酶替代療法(ERT)為可用於龐培氏病之唯一批准療法。此ERT需要專門碳水化合物甘露糖6-磷酸(M6P)用於細胞吸收且隨後經由細胞表面非陽離子依賴性M6P受體(CIMPR)遞送至溶酶體。然而,當前rhGAA ERT含有低M6P量,限制藥物在疾病相關組織中之靶向及功效。本發明人研發一種生產細胞株及製造方法,產生糖基化優於且M6P含量高於習知rhGAA之rhGAA(指定為ATB-200 rhGAA),尤其具有高親和力雙-M6P N-聚醣結構,以便改進藥物靶向。ATB-200 rhGAA以高親和力(KD約2-4 nM)結合CI-MPR,且由龐培氏纖維母細胞及骨骼肌成肌細胞有效內化(K吸收約7-14 nM)。活體內評估ATB-200,且展示其在GAA KO小鼠之骨胳肌中之累積肝醣清除方面比當前rhGAA ERT更加有效。結果指示對於減少肝醣,兩週一次投與5 mg/kg ATB-200等效於20 mg/kg rhGAA,而觀測到在關鍵骨胳肌中20 mg/kg ATB-200相比於20 mg/kg rhGAA之實質上更大肝醣清除。此等結果藉由組織學檢查證實。添加藥理學伴隨蛋白(PC)提高ATB-200之肝醣減少。在組合下,此等資料展現較高M6P含量之ATB-200 rhGAA導致較佳溶酶體靶向及基質減少,可藉由與PC組合來進一步改進,因此保證此龐培氏病之下一代療法之進一步研究。圖91A展示根據本發明之Lumizyme、習知rhGAA及ATB-200中之雙-M6P聚醣的相對含量。
圖91A展示Lumizyme®及ATB-200 rhGAA之雙-M6P聚醣含量,ATB-200 rhGAA比Lumizyme® rhGAA具有超過十倍多的雙-M6P聚醣。圖94B展示Lumizyme®及ATB-200 rhGAA對於CIMPR之相對結合親和力。圖91B展示ATB-200 rhGAA對於CIMPR之顯著優異結合親和力,CIMPR為在內化至溶酶體中之前與rhGAA結合之受體。
經由MALDI-TOF質譜分析之N-聚醣分析證實平均各個ATB-200分子含有天然雙-M6P N-聚醣結構。ATB-200 rhGAA之較高雙-M6P N-聚醣含量與M6P受體盤結合分析中結合於CIMPR之高親和力(KD約2-4 nM)直接相關。
亦展示ATB-200 rhGAA有效內化至細胞中。圖92A及92B分別展示ATB-200 rhGAA內化至正常及龐培氏纖維母細胞中,且其內化程度比習知Lumizyme® rhGAA更大。ATB-200 rhGAA在約20 nM時使細胞受體飽和,而需要約250 nM Lumizyme®。如圖92C所示,由此等結果外推出的吸收效率常數(K吸收)為ATB-200:2-3 nm及Lumizyme®:56 nM。rhGAA之細胞吸收視M6P而定且自由過量M6P阻斷rhGAA吸收。此等結果表明ATB-200 rhGAA為用於龐培氏病之很好靶向療法。
如圖93A及93B及93C所示,ATB-200 rhGAA具有有利藥物動力學概況。在藉由30 min輸液投與單次劑量或rhGAA至大鼠之後比較ATB200 rhGAA與Lumizyme® rhGAA之藥物動力學。藉由GAA酶活性測定血漿GAA含量。ATB200 rhGAA之清除比Lumizyme®快,其可歸因於其經由M6P路徑較快吸收。ATB-200在不同測試劑量下展現相似半衰期。Cmax及AUC為劑量比例。如自此等結果顯而易見,ATB200具有有利藥物動力學概況及曝光產生用於龐培氏病之有效ERT。
在骨骼肌中ATB-200 rhGAA比Lumizyme®顯著更佳清除肝醣。評估在GAA KO小鼠中投與Lumizyme®及ATB200 rhGAA對於肝醣清除之效果。動物被給與兩次靜脈內快速投藥(每隔一週);在最後一次給藥之後兩週收集組織,且分析GAA活性及肝醣含量。如圖94A及94B中所示,對於減少骨胳肌中之肝醣,5 mg/kg ATB200 rhGAA等效於20 mg/kg Lumizyme® rhGAA;對於清除骨胳肌中之肝醣,以10及20 mg/kg給與之ATB200比Lumizyme®顯著更佳;且ATB200 rhGAA與Lumizyme® rhGAA對於清除心臟中之肝醣同等有效。
CHART 技術大大提高rhGAA 穩定性。伴隨蛋白與rhGAA ERT結合且使其穩定,增加活性酶吸收至組織中,提高耐受性且潛在減輕免疫原性。如上文所示,ERT在不利條件下之蛋白質穩定性實質上使用CHART™提高。CHART:伴隨蛋白先進替代療法,參見以引用的方式併入之http://_www.amicusrx.com/chaperone.aspx (最近訪問於2015年6月21日)。如圖95A及95B所示,ATB-200穩定性由AT2221 (美格魯特,N-丁基-脫氧野尻黴素)顯著提高。
發現藥理學伴隨蛋白與ATB-200 rhGAA之組合增強活體內肝醣清除。GAA KO小鼠每隔一週被給與20 mg/kg rhGAA之兩次靜脈內快速投藥。在0、1、2及10 mg/kg之劑量的rhGAA之前30 min經口投與藥理學伴隨蛋白AT2221。在最後一次給藥ERT之後兩週收集組織,且分析GAA活性及肝醣含量。如圖96所示,接受rhGAA + 伴隨蛋白AT2221之動物展現自四頭肌之肝醣清除增強。ATB-200 rhGAA (20 mg/kg)減少之肝醣超過相同劑量之Lumizyme®,且在ATB-200 rhGAA與10 mg/kg AT2220組合時達到肌肉中之幾乎正常肝醣含量。
此等結果展示ATB-200 rhGAA在其N-聚醣上具有較高含量之M6P及雙-M6P,有效靶向骨骼肌中溶酶體上之CIMPR。ATB-200 rhGAA亦具有很好處理之複合型N-聚醣,其使活體內非成效性清除減至最少;具有有利於其活體內使用之藥物動力學特性,且展現對活體內關鍵肌肉組織之良好靶向。其亦展示對於減少肌肉組織中之肝醣,ATB-200 rhGAA比習知護理標準Lumizyme更佳,且ATB-200 rhGAA與伴隨蛋白AT2221之組合進一步改進自標靶組織移除肝醣。
ATB-200 rhGAA 在自骨胳肌及心肌移除肝醣時比Lumizyme® rhGAA ( 阿葡糖苷酶α) 顯著更佳
在GAA KO小鼠中評估ATB-200 rhGAA及Lumizyme® (alglucosidase α)清除心肌中之肝醣的能力。每隔一週進行兩次靜脈內快速投與rhGAA,且在最後一次給藥之後兩週收集組織,且分析GAA活性及肝醣含量。對於減少心肌中之肝醣,5 mg/kg ATB-200 rhGAA等效於20 mg/kg alglucosidase α。如圖97所示,對於減少心肌中之肝醣,5 mg/kg ATB200等效於10及20 mg/kg ATB200。
在GAA KO小鼠中評估ATB-200 rhGAA及Lumizyme® (alglucosidase α)清除骨骼肌(四頭肌及三頭肌)及心肌中之肝醣的能力。每隔一週進行兩次靜脈內快速投與rhGAA,且在最後一次給藥之後兩週收集組織,且分析GAA活性及肝醣含量。如圖98A及98B所示,ATB-200 rhGAA減少骨骼肌(四頭肌及三頭肌)中之肝醣顯著超過Lumizyme® (alglucosidase α)。對於減少骨胳肌中之肝醣,5 mg/kg ATB200等效於20 mg/kg alglucosidase α。
此等結果與本文所描述之ATB-200 rhGAA之特性一致。ATB-200 rhGAA含有很好處理之複合型N-聚醣以便使非成效性藥物清除最小化。在按比例擴大製造方法中維持此等優異碳水化合物結構,例如體積為250 L或250 L以上。rhGAA (ATB-200)具有有利PK及良好藥物靶向活體內關鍵肌肉組織。對於減少GAA KO小鼠之骨胳肌中之肝醣,rhGAA (ATB-200)比alglucosidase α顯著更佳。此外,在GAA KO小鼠中rhGAA (ATB-200)加藥理學伴隨蛋白AT2221進一步改進肝醣減少且減少骨骼肌病變。 rhGAA (ATB-200)減少I型及II型肌纖維中之肝醣且減少經治療細胞中之自噬囊泡。 第IX 部分. 在GAA KO 小鼠中靜脈內輸液ATB-200 之藥物動力學
在GAA 基因剔除小鼠中靜脈內輸液ATB-200 之藥物動力學
GAA KO小鼠輸注5、10或20 mg/kg ATB-200或20 mg/kg Lumizyme® (rhGAA)。如圖99A中所示,ATB-200 rhGAA自血清之清除比Lumizyme® rhGAA更快,表明其更快由組織吸收(頂部跡線 = Lumizyme;下部跡線 = ATB-200,濃度為5、10及20 mg/kg)。如圖99B及99C中所示,未觀測到所測試之不同劑量ATB-200 (5、10及20 mg/kg)之循環半衰期的實質性差異,且AUC (曲線下面積)為大致劑量比例。
在GAA KO 小鼠中重複快速靜脈內注射對肝醣含量之影響
在第0週、第2週、第4週及第6週(每隔一週)向十二至十四週齡GAA-KO小鼠(N = 5-6隻雄性GAA小鼠)投與10或20 mg/kg ATB-200或20 mg/kg Lumizyme® (rhGAA)之快速注射。在第二次投與ATB-200或Lumizyme®之後給與DPH (苯妥英),且在最終(第4次)注射之後14天量測四頭肌、三頭肌及心臟組織中之組織肝醣。如PAA圖100A、100B及100C所示,在GAA-KO小鼠中ATB-200 rhGAA相比於Lumizyme® (rhGAA)產生更大肝醣減少。在投與6次靜脈內快速注射ATB-200或Lumizyme之平行研究的情況下獲得相似結果。
研究294B :ATB-200 在有及沒有口服共同投與AT2221 ( 美格魯特) 之情況下對GAA KO 小鼠中之組織肝醣含量的影響
十二至十四週齡GAA KO小鼠兩週一次(每隔一週)投與4次靜脈內快速注射指示劑量之ATB-200 rhGAA與單獨10 mg/kg AT2221 (美格魯特)或20 mg/kg Lumizyme® (rhGAA)。在第二次投藥後給與DPH;N=5-6隻雄性GAA KO小鼠。在最終(第4次)注射之後14天量測組織肝醣。在GAA KO小鼠中美格魯特共同投藥(10 mg/kg)相比於單獨ATB-200 (20 mg/kg)或rhGAA (20 mg/kg)改進肝醣減少。圖101A、101B及101C為展示不同rhGAA產品在骨胳肌及心肌中之肝醣減少的條形圖。資料與六次注射研究(研究294A)相似;亦在此研究中測試30 mg/kg美格魯特,且相比於單獨ATB-200 rhGAA不展示任何肝醣清除改進。
關於Myozyme® 與美格魯特共同投藥相比於ATB-200 與美格魯特共同投藥之歷史資料
十二週齡GAA KO小鼠用20 mg/kg rhGAA (Myozyme)每隔一週靜脈內4次注射來治療;在Myozyme之前30 min經口共同投與10 mg/kg 美格魯特。在最後一次Myozyme®給藥之後14天收集組織用於肝醣量測。圖102A、102B及102C展示肌肉中之肝醣的相對減少。
ATB-200 在有及沒有口服共同投與美格魯特之情況下對GAA KO 小鼠中之細胞型特異性肝醣含量之影響
如圖103中所指示,GAA KO小鼠用習知rhGAA、ATB-200 rhGAA或ATB-200 rhGAA與美格魯特(AT-2221)之組合治療。如圖103所示,獲得組織且對於肝醣染色。
根據圖103中所示之研究(4次靜脈內快速EOW注射),處理組織以用於組織學PAS染色。肝醣以洋紅色斑點(未經治療切片中之箭頭)呈現。在GAA KO小鼠中美格魯特共同投藥(10 mg/kg)相比於單獨ATB-200 (20 mg/kg)或rhGAA (20 mg/kg)改進肝醣減少。資料展示來自每組5至6隻小鼠(每個動物1個切片)之代表性顯微照片。
產生美格魯特之劑量反應資料。在GAA KO小鼠中,經由尾靜脈每隔一週兩次靜脈內快速投與不同劑量之各rhGAA製劑。在最後一次(第二次)給藥之後14天收集組織,且分析組織GAA酶活性及殘餘肝醣。組織GAA活性及肌肉肝醣含量展示於圖104A及104B中。
給與20 mg/kg ATB-200相比於20 mg/kg rhGAA觀測到顯著較高組織GAA含量,其與較佳肝醣減少相關。共同投與10 mg/kg美格魯特與20 mg/kg ATB-200進一步改進酶吸收及肝醣清除。如圖104所示,在GAA KO小鼠中肝醣減少在共同投與20 mg/kg ATB-200與10 mg/kg美格魯特時最大(POC2,研究296)。
研究311 :在GAA KO 小鼠中使用PAS 及TEM 染色評估在ATB-200 +/- 美格魯特之情況下的肝醣減少
十二週齡GAA KO小鼠給與兩次EOW靜脈內快速注射rhGAA及ATB-200 +/- 10 mg/kg美格魯特。在最後一次(第二次給藥)之後14天收集組織,以便使用PAS及TEM (透射電子顯微術)進行細胞型特異性肝醣分析。結果呈現於圖105A及105B中。
如圖105A及105B所示,不同於展示有限肝醣減少(由大量點狀PAS信號指示)之習知rhGAA,單獨ATB-200 rhGAA展示PAS信號顯著減少。與10 mg/kg美格魯特共同投與導致基質實質性進一步減少。TEM顯示溶酶體中之大多數肝醣為膜結合電子緻密物,其對應於點狀PAS信號。共同投與ATB-200 rhGAA與美格魯特減小含基質溶酶體之數目、尺寸及密度,表明靶向遞送ATB-200 rhGAA至溶酶體。
研究311 :在GAA KO 小鼠中使用PAS 及TEM 染色評估在ATB-200 +/- 美格魯特之情況下的溶酶體增殖
根據上文所示之研究(2次靜脈內快速EOW注射),使用LAMP 1標記處理組織以用於溶酶體增殖,上調為龐培氏病之另一標誌。LAMP:溶酶體締合膜蛋白。圖106展示習知rhGAA、ATB-200 rhGAA及ATB-200 + 美格魯特(AT-2221)治療肌肉組織之效果。
LAMP1 IHC指示未經治療GAA KO小鼠中之廣泛信號,相比於rhGAA,其在ATB-200之情況下明顯減少。值得注意地,與美格魯特共同投與導致進一步顯著減少。一般而言,ATB-200 ± 美格魯特對LAMP1之影響密切模擬肝醣減少。
研究311 :在GAA KO 小鼠中使用纖維型特異性染色評估在ATB-200 rhGAA +/- 美格魯特之情況下的溶酶體增殖
根據上文所示之研究(2次靜脈內快速EOW注射),處理比目魚肌組織以用於I型纖維特異性抗體(NOQ7.5.4D)及相鄰切片中之LAMP 1染色,參見圖107。
ATB-200 rhGAA相比於習知rhGAA導致更多實質性LAMP1減少,其中減少導致WT動物中可見之水準。另外,不同於效果主要受限於I型纖維(慢縮,用星號標記)之rhGAA,ATB-200 rhGAA亦導致一部分II型(快縮)纖維(紅色箭頭)中之LAMP1信號顯著減少。重要的是,與美格魯特共同投與在大多數II型纖維中進一步改進ATB-200介導之LAMP1增殖減少。因此,LAMP1信號水準似乎不存在顯著纖維型特異性差異。自四頭肌及隔膜得出相似結論(資料未展示)。
研究317 及321 :在工程改造批次(EB) 之ATB-200 的情況下之臨床前動物研究
在GAA KO小鼠中藉由靜脈內輸液評估ATB-200 (EB)藥物動力學。藉由靜脈內輸液向GAA KO小鼠投與工程改造批次之ATB-200 rhGAA。如圖108A及108B所示,比較投與習知rhGAA (Lumizyme)之小鼠之血漿PK。十四週齡GAA KO小鼠單次靜脈內快速注射投與10 mg/kg EB1、EB2或Lumizyme。在給藥前、在靜脈內經由下頜下出血之後15 min、30 min、1 hr、2 hr、4 hr及24 hr自各小鼠收集血漿樣品。
ATB-200 EB之半衰期經測定比Lumizyme®短,其可歸因於ATB-200 rhGAA上存在更多M6P N-聚醣。在小鼠中10 mg/kg靜脈內投藥下,EB2 ATB-200相比於EB1 ATB-200 (根據研究307及321為約30 min)展示稍微更長半衰期(約36 min)。
研究327B. 評估GAA KO 小鼠中藉由重複靜脈內快速注射EB1 及EB2 ATB-200 之肝醣減少
兩個不同批次之ATB-200 rhGAA之功效為減少肌肉組織中之肝醣。總體而言,ATB-200 EB1不展示對肝醣減少之極清晰的劑量依賴性影響。EB1及EB2在20 mg/kg劑量下展示關鍵肌肉中之相似肝醣減少。 EB1及EB2 (20 mg/kg)展示比Lumizyme® (與POC批次相似)顯著更佳之肝醣減少,參見圖109。
研究#304 :如圖112 所示,ATB-200 rhGAA 之半衰期比Lumizyme® 短且藉由美格魯特適當改進
如圖110A及110B所示比較ATB-200 rhGAA與習知Lumizyme® rhGAA之半衰期。添加伴隨蛋白(AT2221共同投藥)適當增加循環半衰期,且ATB-200之AUC與所觀測到的Lumizyme之AUC相似。
ATB-200 rhGAA + 伴隨蛋白顯著改進肌肉形態
如上文所描述,GAA KO小鼠以兩次靜脈內快速EOW注射用Lumizyme® (20 mg/kg)、ATB-200 (20 mg/kg) +/- 美格魯特(10 mg/kg)治療。四頭肌樣品之塑膠切片用亞甲基藍染色且檢查HRLM。獲得:一個切片,各自來自WT及未經治療GAA KO組;兩個切片,各自來自Lumizyme、ATB-200及共同投藥組。圖111展示此等切片之肌肉形態。
觀測到來自共同投藥組之兩個樣品相比於未經治療GAA KO樣品之自噬面積(箭頭)顯著減少。所檢查之未經治療、Lumizyme®及ATB-200樣品中無顯著差異。來自所有動物之石蠟切片之H&E染色亦展示在ATB-200 rhGAA與伴隨蛋白之情況下的改進形態(亦即,更少液泡)。
美格魯特作為用於龐培氏病之藥理學伴隨蛋白具有較佳特徵。在八週齡野生型C57BL/B小鼠中評估藥理學伴隨蛋白AT2221 (美格魯特)及AT-2220在投與100 mg/kg PO劑量之後的藥物動力學。圖112A及112B展示結果。圖112C描述rhGAA抑制分析之結果。如自以上資料顯而易見,美格魯特自肌肉快速清除。在24小時,組織中美格魯特之濃度為約30 ng/gm組織,其對應於0.14 µM莫耳濃度(在pH 5.2下低於IC50 >10倍)。
圖113A及113B展示不同劑量之美格魯特在口服投與小鼠之後之藥物動力學。小鼠經口投與圖113A中所描述之劑量,且測定隨時間推移之血漿美格魯特含量。
臨床前資料指示共同投與10 mg/kg美格魯特增強20 mg/kg ATB-200 rhGAA清除小鼠中關鍵骨胳肌中之肝醣的有效性。在小鼠中經口給與10 mg/kg美格魯特導致血漿Cmax為約30 µM。在人類患者中可用300 mg劑量之美格魯特獲得類似血漿濃度。因此,在POC研究中美格魯特之劑量為300 mg,與20 mg/kg ATB 200 rhGAA共同投與。
AT2220 對Myozyme® 在GAA KO 小鼠中之免疫原性的影響( 研究49)
GAA KO小鼠(5-6隻/組)在飲用水中不存在或存在AT2220 (每天1、10或100 mg/kg)下每週一次靜脈內投與Myozyme®持續至多5週。圖115中展示此等投藥之效果。單獨Myozyme®在4-5次注射之後引起過敏反應(體現為死亡)。與AT2220共同投與適當延長存活率,但缺乏劑量依賴。由於在單獨Myozyme®組中無小鼠存活,在第5週終止研究。
GAA KO 小鼠中之Myozyme/AT2220 存活率研究:研究設計( 研究83)
本發明人研究AT2220對經Myozyme治療之GAA KO小鼠的存活率之影響。12週齡GAA KO小鼠(7隻小鼠/組)每週一次給與8週尾靜脈內注射:僅鹽水、僅Myozyme®;預混合Myozyme® + AT2220;AT2220,隨後預混合Myozyme® + AT2220;或AT2220,隨後Myozyme。每週一次給與3、10及30 mg/kg Myozyme®。向僅經3及10 mg/kg Myozyme®治療之組給與100 µM AT2220。緊隨Myozyme®注射觀測小鼠之不良反應/存活率。結果呈現於圖116、117及118中。
在投與鹽水之小鼠中在任何時間點未見死亡。在前兩次Myozyme®注射之情況下未見不良事件。在一些小鼠中在第3週Myozyme®注射之後可見超敏反應(體現為死亡)。與AT2220共給藥適當延長預投與AT2220隨後預混合Myozyme® + AT2220或單獨Myozyme®之彼等組中的存活率。預混合Myozyme® + AT2220展示不良事件之最高發生率,參見圖116。
在投與鹽水之小鼠中在任何時間點未見死亡。在前兩次Myozyme®注射之情況下未見不良事件。在一些小鼠中在第3週Myozyme®注射之後可見超敏反應(體現為死亡)。與AT2220共給藥適當延長預投與AT2220隨後預混合Myozyme® + AT2220或單獨Myozyme®之彼等組中的存活率。預混合Myozyme® + AT2220展示與僅Myozyme®組相似之不良事件發生率,參見圖117
在投與鹽水之小鼠中在任何時間點未見死亡。在前三次Myozyme®注射之情況下未見不良事件。在一些小鼠中在第4週Myozyme®注射之後可見超敏反應(體現為死亡)。在Myozyme®注射之後可見總體劑量依賴性超敏反應:在8週內3 mg/kg Myozyme®比10及30 mg/kg Myozyme® (截至第6週所有皆死亡)具有更少死亡,參見圖118。
圖1A、1B、1C及1D. 圖1A展示非磷酸化高甘露糖聚醣、單M6P聚醣及雙-M6P聚醣。rhGAA之一些結合物具有與CIMPR結合之IGF2片段。圖1B展示M6P基團之化學結構。圖1C描述經由具有M6P之聚醣而有成效性靶向rhGAA。圖1D描述非成效性藥物清除。
圖2A及2B. 圖2A描繪CIMPR受體(亦稱為IGF2受體)及此受體之域。圖2B為展示具有雙-M6P及單M6P之聚醣對於CIMPR之結合親和力(奈莫耳)、高甘露糖型聚醣對甘露糖受體之結合親和力及脫唾液酸化複合聚醣對於脫唾液酸醣蛋白受體之結合親和力的表。具有含M6P及雙-M6P的聚醣之RhGAA可與肌肉標靶細胞上之CIMPR有成效性地結合。具有高甘露糖聚醣及脫唾液酸化聚醣之RhGAA可與具有相應受體之非標靶細胞非成效性地結合。
圖3A、3B、3C及3D. 圖3A、3B及3C分別展示Myozyme®、Lumizyme®及ATB-200 rhGAA之CIMPR (「IGF2/CI-MPR」)親和層析之結果。虛線係指M6P溶離梯度。圖3D展示ATB-200 rhGAA (「CBP rhGAA」)之結合在脫磷酸之後消除。
圖4比較Lumizyme®及ATB-200 rhGAA與CIMPR (「IGF2/CI-MPR」)之結合。
圖5描繪ATB-200 rhGAA (「CBP rhGAA」)及Lumizyme® rhGAA在由L6成肌細胞吸收之後之內化。
圖6. 生產表現具有高M6P及雙-M6P聚醣含量的rhGAA之CHO細胞的方法之流程圖。
圖7. 用於以編碼rhGAA之DNA轉化CHO細胞之DNA構築體。
圖8A及8B描繪經GAA轉化之CHO細胞隨時間推移之存活率(圖8A)及活細胞密度(圖8B)。
圖9A及9B描述選擇產生大量rhGAA之純系。
圖10A及10B展示產生rhGAA之純系之存活率測試的結果。
圖11A、11B及11C描述所選純系110-011-X5-2及110-011-X5-14中之GAA基因複本數。圖11A (110-011-X5-2)、圖11B (110-011-X5-14)及圖11C (複本數之平均值及標準偏差)。
圖12A、12B及12C. 產生高甘露糖rhGAA之純系之穩定性。
圖13A及13B. GAA基因複本數之比較臨限值分析。圖13A (純系110-011-X5-2)及圖13B (純系110-011-X5-14)。
圖14. rhGAA之純化方案之流程圖。
圖15A及15B. 藉由原始及改進之純化方案獲得的rhGAA之相對純度。圖15A (初始純化方法)及15B (優化方法)。
圖16A、16B及16C. 圖16A及圖16B描述使用基於AEX之純化方案純化樣品ATB-200-1及ATB-200-2。圖16C展示覆疊視圖。
圖17扼要描述ATB-200 rhGAA之鑑別為CBP-rhGAA、ATB-200-1及ATB-200-2之三種不同製劑之N-聚醣含量。
圖18A及18B. 圖18A:ATB-200與Lumizyme®之間的等電點比較。圖18B為樣品之等電點範圍。
圖19A及19B. 分析ATB-200及Lumizyme®之聚醣。
圖20A及20B. ATB-200 rhGAA之部分分離之梯度曲線。圖20A (圖),圖20B (表)。
圖21比較Lumizyme®與ATB-200之Poleax溶離曲線。
圖22界定ATB-200 rhGAA之四個Poleax部分中之每一者的範圍。
圖23展示ATB-200 rhGAA之四個Poleax部分中之每一者的GAA活性。
圖24. GAA基因剔除(KO)小鼠在靜脈內快速投與ATB-200、ATB-200 IGF2結合物或Lumizyme之後四頭肌中肝醣減少。
圖25. Lumizyme®、ATB-200 rhGAA及vIGF2-ATB-200 rhGAA結合物之CIMPR受體結合。
圖26. Lumizyme®、ATB-200 rhGAA及rhGAA vIGF2結合物之L6成肌細胞吸收。
圖27. 展示與單獨rhGAA (下部跡線)相比AT2220使血液中rhGAA活性穩定(上部跡線)之圖。
圖28. 在血漿中所見之pH下未摺疊rhGAA。在pH 7.4下,rhGAA未摺疊歷經約20小時時段。
圖29A及29B. 圖29A展示在與伴隨蛋白AT2220共同投與時rhGAA之半衰期增加。圖29B描繪藉由西方墨點法在所選時間點偵測到的rhGAA之量。
圖30A、30B及30C. 圖30A展示在投與rhGAA (Lumizyme®)及rhGAA + AT2220 (杜格魯特(duvoglustat))之後心臟、四頭肌及三頭肌中之GAA活性。圖30B展示在投與rhGAA (Lumizyme®)及rhGAA + AT2220之後心臟、四頭肌及三頭肌中之肝醣含量。圖30C展示治療後心臟及四頭肌組織之肝醣含量。
圖31A、31B、31C及31D. 在有及沒有伴隨蛋白AT2220之情況下的Lumizyme® rhGAA血漿活性。圖31A、31B、31C及31D描述Lumizyme® rhGAA  + 50 mg、100 mg、250 mg及600 mg口服劑量之AT2220與單獨Lumizyme® rhGAA相比之效果。
圖32. 與單獨Lumizyme® rhGAA ERT之GAA活性絕對差異。
圖33:小鼠肌肉組織分析中之步驟之流程圖。
圖34. 分析rhGAA ERT肌肉組織以供研究用,其包括4或6次rhGAA投與。
圖35. 展示用未標記rhGAA及AT2221 (美格魯特(miglustat))伴隨蛋白治療之GAA KO小鼠之四頭肌、三頭肌及心臟組織中之肝醣減少的條形圖。V:媒劑,L:Lumizyme®,COF:與AT2220 (杜格魯特)之共調配物。
圖36. 用未標記rhGAA及伴隨蛋白治療之GAA KO小鼠中之肝醣減少。V:媒劑,L:Lumizyme®,COF:與AT2220 (杜格魯特)之共調配物。
圖37. 用IGF2標記之rhGAA及伴隨蛋白治療之GAA KO小鼠中之肝醣減少。V:媒劑,L:Lumizyme®,COF:與AT2220 (杜格魯特)之共調配物。
圖38. 用IGF2標記之rhGAA及伴隨蛋白治療之GAA KO小鼠中之肝醣減少。V:媒劑,L:Lumizyme®,COF:與AT2220 (杜格魯特)之共調配物。
圖39. 組織中之GAA活性—6次投藥。V:媒劑,L:Lumizyme®,COF:與AT2220 (杜格魯特)之共調配物。
圖40. 比較在藉由4或6次投與ATB-200 rhGAA或ATB-200與伴隨蛋白AT2221 (美格魯特)之組合來治療後三頭肌肝醣含量之條形圖。V:媒劑,L:Lumizyme®,COF:與AT2220 (杜格魯特)之共調配物;U:未標記ATB-200 rhGAA;T:經vIGF2標記之ATB-200 rhGAA。
圖41. 比較在藉由4或6次投與ATB-200 rhGAA或ATB-200與伴隨蛋白AT2221 (美格魯特)之組合來治療後三頭肌肝醣含量之條形圖。V:媒劑,L:Lumizyme®,COF:與AT2220 (杜格魯特)之共調配物;U:未標記ATB-200 rhGAA;T:經vIGF2標記之ATB-200 rhGAA。
圖42. 比較在藉由4或6次投與ATB-200 rhGAA或ATB-200 rhGAA與伴隨蛋白AT2221 (美格魯特)之組合來治療後心臟肝醣含量之條形圖。V:媒劑,L:Lumizyme®,COF:與AT2220 (杜格魯特)之共調配物;U:未標記ATB-200 rhGAA;T:經vIGF2標記之ATB-200 rhGAA。
圖43. 比較兩種肝醣量測方法(6次投藥,四頭肌)。V:媒劑,L:Lumizyme®,COF:與AT2220 (杜格魯特)之共調配物;U:未標記ATB-200 rhGAA;T:經vIGF2標記之ATB-200 rhGAA。
圖44. 比較兩種肝醣量測方法(6次投藥,四頭肌)。V:媒劑,L:Lumizyme®,COF:與AT2220 (杜格魯特)之共調配物;U:未標記ATB-200 rhGAA;T:經vIGF2標記之ATB-200 rhGAA。
圖45. 臨床前研究294A。
圖46. 展示來自藉由ATB-200 rhGAA或ATB-200 rhGAA與伴隨蛋白AT2221之組合之研究296 (POC2—兩週一次投與兩次)的骨骼肌中之肝醣減少的條形圖。
圖47. 來自GAA KO小鼠輸液PK研究之血漿PK。
圖48. 研究296 (POC2):展示在ATB-200 rhGAA或vIGF2-ATB-rhGAA治療後骨骼肌中之相對肝醣減少的條形圖。
圖49. 研究296 (POC2):展示在Lumizyme® rhGAA或vIGF2-ATB-rhGAA治療後骨骼肌中之相對肝醣減少的條形圖。
圖50A、50B及50C. 研究296 (POC2):展示在Lumizyme® rhGAA或vIGF2-ATB-rhGAA治療與AT2220或AT2221伴隨蛋白組合後骨骼肌中之相對肝醣減少的條形圖。圖50A (四頭肌)、圖50B (腓腸肌)及圖50C(三頭肌)。
圖51A及51B. ATB-200 rhGAA、vIGF2-ATB-200 rhGAA及Lumizyme® rhGAA (個別小鼠)與伴隨蛋白AT2220或AT2221之組合之PK。
圖52. ATB-200 rhGAA、vIGF2-ATB-200 rhGAA或與伴隨蛋白AT2220或AT2221組合治療之標準化資料。
圖53. 比較在ATB-200或vIGF2-ATB-200治療後四頭肌中之肝醣含量。
圖54. 在用ATB-200 rhGAA、vIGF2-ATB-200 rhGAA或Lumizyme® rhGAA治療後心臟及骨骼肌組織之肝醣染色。
圖55. 展示經ATB-200 rhGAA、vIGF2-ATB-200或Lumizyme®治療之肌肉組織中之肝醣含量的條形圖。
圖56. 經ATB-200 rhGAA治療之四頭肌組織在共同投與伴隨蛋白AT2221 (美格魯特)之情況下的肝醣染色。
圖57. 展示由伴隨蛋白與ATB-200 rhGAA之組合提供之四頭肌組織中之肝醣減少的條形圖。
圖58. 用ATB-200 rhGAA及伴隨蛋白AT2220 (杜格魯特)治療之四頭肌組織之肝醣染色。
圖59. 來自研究296之用ATB-200 rhGAA及1、3、10或30 mg/kg伴隨蛋白AT2221 (美格魯特)治療之三頭肌組織之肝醣染色。
圖60. 展示來自研究296之在用ATB-200 rhGAA及1、3、10或30 mg/kg AT-2221 (美格魯特)治療後三頭肌組織中之肝醣減少的條形圖。
圖61. 來自研究296之用ATB-200 rhGAA與3或10 mg/kg伴隨蛋白AT2220 (杜格魯特)之共調配物治療之三頭肌組織之肝醣染色。
圖62. 來自研究296之用ATB-200 rhGAA及AT2221伴隨蛋白治療之心臟組織之肝醣染色。
圖63. 來自研究296之藉由共同投與ATB-200 rhGAA與AT2221伴隨蛋白及與AT2220之共調配物,心臟組織中之相對肝醣減少。
圖64. 來自研究296之用ATB-200 rhGAA與AT2220伴隨蛋白之共調配物治療之心臟組織之肝醣染色。
圖65. 來自研究296之用ATB-200 rhGAA及AT2220伴隨蛋白治療之隔膜組織之肝醣染色。
圖66. 來自研究296之在用ATB-200與AT2220 (杜格魯特)伴隨蛋白之共調配物治療後隔膜組織之肝醣染色。
圖67. 展示來自研究296之在用rhGAA或rhGAA與伴隨蛋白之組合治療後四頭肌、腓腸肌、三頭肌及心臟中之肝醣減少的條形圖。
圖68. 來自研究296之經治療心臟及骨骼肌組織之肝醣染色。
圖69. 展示來自研究296之在治療後組織肝醣相對含量的條形圖。
圖70. 來自研究296之用ATB-200 rhGAA或vIGF2-ATB-200 rhGAA結合物治療之四頭肌組織之肝醣染色。
圖71. 來自研究296之在具有或不具有AT2221 (美格魯特)伴隨蛋白或ATB-200 rhGAA與AT2220 (杜格魯特)伴隨蛋白之共調配物之情況下四頭肌組織之肝醣染色。
圖72. 來自研究296之用ATB-200 rhGAA或vIGF2-ATB-200 rhGAA治療之三頭肌組織之肝醣染色。
圖73. 來自研究296之用ATB-200 rhGAA及伴隨蛋白AT2221或AT2220治療之三頭肌組織之肝醣染色。
圖74. 來自研究296之用ATB-200 rhGAA或vIGF2-ATB-200 rhGAA治療之隔膜組織之肝醣染色。
圖75. 來自研究296之用ATB-200 rhGAA及伴隨蛋白AT2221或AT2220治療之隔膜組織之肝醣染色。
圖76. 用ATB-200 rhGAA vIGF2-ATB-200 rhGAA治療之心臟組織之肝醣染色。
圖77. 來自研究296之用ATB-200 rhGAA及伴隨蛋白AT2221或AT2220治療之心臟組織之肝醣染色。
圖78. 如藉由研究296 (POC2)及研究POC1a與POC1b所確定,重複劑量之rhGAA對四頭肌中肝醣含量之影響。
圖79A及79B. 圖79A展示ATB-200 rhGAA、Lumizyme® rhGAA及vIGF2-ATB-200 rhGAA之藥物動力學,且圖79B:如由研究302所示此等產品之各別半衰期。
圖80A及80B. 研究302:如由研究302所示,ATB-200 rhGAA之PK為劑量依賴性的且低於Lumizyme®。圖80A (GAA活性),圖80B (半衰期)。
圖81A及81B. 研究302:如由研究302所示,伴隨蛋白AT2220及AT2221不顯著改進ATB-200 rhGAA之血漿PK。圖81A (GAA活性),圖801 (半衰期)。
圖82. 來自研究294A (兩週一次注射6次)之僅酶rhGAA或IGF2標記之rhGAA治療組之抗體力價。
圖83. 來自研究294A (兩週一次投與六次)之rhGAA及IGF23標記之rhGAA僅酶治療組之抗體力價。
圖84. 來自研究294A (兩週一次投與六次)之AT2220及AT2221伴隨蛋白對rhGAA抗體力價之影響。
圖85. 伴隨蛋白AT2220及AT2221對研究294A治療組(兩週一次投與六次)中之未標記及標記之rhGAA的抗體力價之影響。
圖86. 研究294B (POC1b)治療組(兩週一次投與四次)中rhGAA之抗體力價。
圖87. 研究296治療組(兩週一次投與兩次)中ATB-200 rhGAA之抗體力價。
圖88A、88B及88C. 習知rhGAA、ATB-200 rhGAA及ATB-200 rhGAA與伴隨蛋白AT2221之組合展示肝醣減少之肝醣含量、EM顯微圖及條形圖。
圖89. 用習知rhGAA、ATB-200 rhGAA及ATB-200 rhGAA與伴隨蛋白AT2221之組合治療之心臟及骨骼肌組織之肝醣染色。
圖90A及90B. 經ATB-200 rhGAA及ATB-200 rhGAA與伴隨蛋白AT2221之組合治療之組織之LAMP-1染色。
圖91A及91B. Lumizyme®及ATB-200 rhGAA之雙-M6P含量及CIMPR結合親和力。圖91A (雙-M6P分析),圖91B (CIMPR結合親和力)。
圖92A、92B及92C. ATB-200 rhGAA內化至正常及龐培氏纖維母細胞中。圖92A (正常纖維母細胞)、圖92B (龐培氏纖維母細胞)及圖92C (K吸收)
圖93A及93B. Lumizyme®與ATB-200 rhGAA之比較藥物動力學。圖93A (血漿PK),圖93B (PK概況)。
圖94A及94B. ATB-200 rhGAA及Lumizyme® rhGAA在四頭肌及三頭肌中之比較肝醣清除。圖94A (四頭肌)及圖94B (三頭肌)。
圖95A及95B. 在伴隨蛋白AT2221存在下溫度對ATB-200 rhGAA摺疊之影響。圖95A (未摺疊rhGAA%)及圖95B (表:溫度影響)。
圖96. ATB-200 rhGAA及AT-2221伴隨蛋白在四頭肌中之肝醣清除。
圖97. 比較Lumizyme®及ATB-200 rhGAA在心肌中之肝醣減少。
圖98A及98B. 比較Lumizyme®及ATB-200 rhGAA在骨骼肌中之肝醣減少,圖98A (四頭肌)及圖98B (三頭肌)。
圖99A、99B及99C. 圖99A:Lumizyme®及ATB-200 rhGAA血漿PK;圖99B:Lumizyme® (rhGAA)及ATB-200血漿半衰期回歸;圖99C:Lumizyme®及ATB-200 rhGAA PK資料。
圖100A、100B及100C. ATB-200與伴隨蛋白AT2220之組合在四頭肌(99A)、三頭肌(99B)及心肌(99C)中之肝醣減少。
圖101A、101B及101C. GAA KO小鼠之骨胳肌(101A、101B)及心肌(101C)中之肝醣減少。
圖102A、102B及102C. Myozyme® rhGAA與伴隨蛋白AT-2221之四頭肌及三頭肌肝醣相對減少。圖102(A)及102(B):圖,圖102C:表。
圖103. 在用ATB-200 rhGAA或ATB-200 rhGAA與AT2221 (美格魯特)治療後心臟、隔膜及四頭肌之肝醣染色。
圖104A及104B. 在用ATB-200 rhGAA或ATB-200 rhGAA與AT2221 (美格魯特)治療後四頭肌中之GAA活性及肝醣含量之條形圖。圖104A (GAA活性)及圖104B (肝醣)。
圖105A及105B. 用習知rhGAA或ATB-200 rhGAA及美格魯特(AT-2221)治療之GAA KO小鼠之肌肉組織之PAS肝醣染色(105A)及EM (105B)。圖105A (PAS肝醣染色)及圖105B (EM)。
圖106. 用ATB-200 rhGAA或ATB-200 rhGAA與美格魯特(AT2221)治療之GAA KO小鼠組織與未經治療組織或野生型組織相比之LAMP-1標記信號。
圖107. 藉由LAMP-1標記評估溶酶體增殖。
圖108A及108B. 比較不同批次ATB-200 rhGAA之藥物動力學。圖108A (研究317)及圖108B (研究321)。
圖109. 展示不同批次ATB-200 rhGAA在肌肉組織中之肝醣減少的條形圖。
圖110A及110B. ATB-200 rhGAA及Lumizyme® rhGAA與美格魯特(AT-2221)之組合之半衰期。圖110A (半衰期)及圖110B (PK概況)。
圖111. ATB-200 rhGAA及美格魯特(AT2221)治療後之肌肉形態。
圖112A、112B及112C. 伴隨蛋白AT2221及AT2220在野生型C57BL/6小鼠中之藥物動力學。圖112A (血漿含量)、圖112B (四頭肌含量)及圖94C (rhGAA抑制分析)。
圖113A及113B. 在小鼠中經口投與後之美格魯特(AT2221)藥物動力學。圖113A (美格魯特之血漿含量)及圖113B (PK概況)。
圖114. 高歇氏病及龐培氏病患者中之美格魯特(AT2221)藥物動力學。
圖115. 伴隨蛋白AT-2220對投與習知Myozyme® rhGAA之小鼠之存活率的影響。
圖116. 在投與3 mg/kg Myozyme®或Myozyme®與伴隨蛋白AT2220 (杜格魯特)之組合後的存活率。
圖117. 在投與10 mg/kg Myozyme®或Myozyme®與伴隨蛋白AT2220之組合後的存活率。
圖118. Myozyme®存活率劑量反應曲線。
國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無
Figure 12_A0101_SEQ_0001
Figure 12_A0101_SEQ_0002
Figure 12_A0101_SEQ_0003
Figure 12_A0101_SEQ_0004
Figure 12_A0101_SEQ_0005
Figure 12_A0101_SEQ_0006
Figure 12_A0101_SEQ_0007
Figure 12_A0101_SEQ_0008
Figure 12_A0101_SEQ_0009
Figure 12_A0101_SEQ_0010
Figure 12_A0101_SEQ_0011
Figure 12_A0101_SEQ_0012
Figure 12_A0101_SEQ_0013
Figure 12_A0101_SEQ_0014
Figure 12_A0101_SEQ_0015

Claims (25)

  1. 一種包含由中國倉鼠卵巢(CHO)細胞產生的重組人類酸性α-葡萄糖苷酶(rhGAA)之組合物,其中該rhGAA上40%至60%的N-聚醣為複合型N-聚醣。
  2. 如請求項1所述之組合物,其中該rhGAA進一步包含每莫耳rhGAA計至少4莫耳的唾液酸。
  3. 如請求項1所述之組合物,其中該rhGAA進一步包含每莫耳rhGAA計2.0至6.0莫耳的唾液酸殘基。
  4. 如請求項1所述之組合物,其中該組合物進一步包含一藥理學伴隨蛋白。
  5. 如請求項1所述之組合物,其中該rhGAA上約45%至55%的N-聚醣為複合型N-聚醣。
  6. 如請求項1所述之組合物,其中該rhGAA上50%的N-聚醣為複合型N-聚醣
  7. 如請求項1所述之組合物,其中該rhGAA包含每莫耳rhGAA計平均4.5莫耳的唾液酸,以及平均至少一個帶有雙-M6P的N-聚醣。
  8. 如請求項7所述之組合物,其中該組合物進一步包含藥理學伴隨蛋白N-丁基-脫氧野尻黴素或其醫藥學上可接受之鹽。
  9. 一種如請求項1所述之組合物在製造一藥物之用途,該藥物用於治療有此需要之個體的龐培氏病(Pompe Disease)。
  10. 如請求項9所述之用途,其中該藥物是投與到個體的心肌。
  11. 如請求項9所述之用途,其中該藥物是投與到個體的四頭肌、三頭肌或其他骨骼肌。
  12. 如請求項9所述之用途,其中該藥物是投與到個體的隔膜。
  13. 如請求項9所述之用途,其中該藥物與藥理學伴隨蛋白組合,以及其中該藥物與該藥理學伴隨蛋白以單一藥學組合物投與或分開投與。
  14. 如請求項9所述之用途,其中該藥物與1-脫氧野尻黴素或其醫藥學上可接受之鹽組合,以及其中該藥物與該1-脫氧野尻黴素或其醫藥學上可接受之鹽以單一藥學組合物投與或分開投與。
  15. 如請求項9所述之用途,其中該藥物與N-丁基-脫氧野尻黴素或其醫藥學上可接受之鹽組合,以及其中該藥物與該N-丁基-脫氧野尻黴素或其醫藥學上可接受之鹽以單一藥學組合物投與或分開投與。
  16. 一種組合物在製造一藥物之用途,該藥物用於調節個體的細胞中之溶酶體增殖或自體吞噬,其中該組合物包含由中國倉鼠卵巢(CHO)細胞產生之重組人類酸性α-葡萄糖苷酶(rhGAA) ,其中該rhGAA上40%至60%的N-聚醣為複合型N-聚醣。
  17. 如請求項16所述之用途,其中該rhGAA上約45%至55%的N-聚醣為複合型N-聚醣。
  18. 如請求項16所述之用途,其中該rhGAA上50%的N-聚醣為複合型N-聚醣。
  19. 如請求項16所述之用途,其中該rhGAA包含平均至少一個帶有雙-M6P的N-聚醣。
  20. 如請求項16所述之用途,其中該rhGAA進一步包含每莫耳rhGAA計平均至少4.0莫耳的唾液酸。
  21. 如請求項16所述之用途,其中該藥物與藥理學伴隨蛋白組合,以及其中該藥物與該藥理學伴隨蛋白以單一藥學組合物投與或分開投與。
  22. 如請求項21所述之用途,其中該藥理學伴隨蛋白為N-丁基-脫氧野尻黴素或其醫藥學上可接受之鹽。
  23. 如請求項16所述之用途,其中該rhGAA結合於靶向部分。
  24. 如請求項16所述之用途,其中該藥物調節溶酶體增殖。
  25. 如請求項16所述之用途,其中該藥物調節自體吞噬。
TW111130023A 2014-09-30 2015-09-30 高效經修飾之酸性α-葡萄糖苷酶及其製造與使用方法 TWI843172B (zh)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US201462057842P 2014-09-30 2014-09-30
US201462057847P 2014-09-30 2014-09-30
US62/057,842 2014-09-30
US62/057,847 2014-09-30
US201562112463P 2015-02-05 2015-02-05
US62/112,463 2015-02-05
US201562135345P 2015-03-19 2015-03-19
US62/135,345 2015-03-19
US2015039098 2015-07-02
WOPCT/US2015/039098 2015-07-02

Publications (2)

Publication Number Publication Date
TW202248420A true TW202248420A (zh) 2022-12-16
TWI843172B TWI843172B (zh) 2024-05-21

Family

ID=

Also Published As

Publication number Publication date
TW201627499A (zh) 2016-08-01
TWI760296B (zh) 2022-04-11
TW202142688A (zh) 2021-11-16
TWI789758B (zh) 2023-01-11

Similar Documents

Publication Publication Date Title
US11591583B2 (en) Highly potent acid alpha-glucosidase with enhanced carbohydrates
US9713634B2 (en) Process for concentration of a polypeptide
JP2007523648A (ja) 高リン酸化リソソーム酵素製剤及びそれらの使用
KR20180128945A (ko) 고 m6p 재조합 단백질의 선택 방법
TWI789758B (zh) 高效經修飾之酸性α-葡萄糖苷酶及其製造與使用方法
US20140219988A1 (en) Rrecombinant human saposin b protein containing phosphorylated glucose ring and use thereof
NZ729507B2 (en) Highly potent acid alpha-glucosidase with enhanced carbohydrates