TW202246481A - 生物力學測試系統及其反應器模組 - Google Patents

生物力學測試系統及其反應器模組 Download PDF

Info

Publication number
TW202246481A
TW202246481A TW110117712A TW110117712A TW202246481A TW 202246481 A TW202246481 A TW 202246481A TW 110117712 A TW110117712 A TW 110117712A TW 110117712 A TW110117712 A TW 110117712A TW 202246481 A TW202246481 A TW 202246481A
Authority
TW
Taiwan
Prior art keywords
reactor module
testing system
biomechanical testing
flow channel
pipeline
Prior art date
Application number
TW110117712A
Other languages
English (en)
Other versions
TWI788850B (zh
Inventor
張勝致
Original Assignee
張勝致
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 張勝致 filed Critical 張勝致
Priority to TW110117712A priority Critical patent/TWI788850B/zh
Publication of TW202246481A publication Critical patent/TW202246481A/zh
Application granted granted Critical
Publication of TWI788850B publication Critical patent/TWI788850B/zh

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一種生物力學測試系統及其反應器模組,該生物力學測試系統包含一反應器模組、一盛裝液體且連接該反應器模組的儲存桶,及一連接該儲存桶的氣壓源。該反應器模組包括一上模板、一下模板、一設置於該上模板及該下模板之間的定位板、一限位件,及至少一生物培養材料。該上模板、該下模板,及該定位板相配合界定出一用於容置該限位件及該至少一生物培養材料的密閉空間。該氣壓源可受控制而對該儲存桶提供氣體,從而透過氣壓使該儲存桶中的液體進入該密閉空間中,並流過該至少一生物培養材料,以模擬生物體中流體壓力、流體流動及脈衝之情形。

Description

生物力學測試系統及其反應器模組
本發明是有關於一種生物力學測試系統,特別是指一種模擬生理中流體相關的環境以進行生物力學測試(如血液循環系統、腎臟排泄系統)的生物力學測試系統。
人體或動物體中的血管錯綜複雜,其依所處部位及連接情形而有不同管徑及不同角度的分岔,在2018年8月的「Neurosurgery」期刊中,學者Tetsuo Sasaki透過計算流體動力學(Computational Fluid Dynamics,簡稱CFD)來模擬血管分叉模型,並闡明了分叉部位的幾何形態如何影響動脈瘤的生成。然而,純理論的計算方式在精確性上仍有所不足,且難以快速模擬不同的生體環境,除了血管外,其他類型的生物力學檢測也有此一問題,因此仍有改善之空間。
因此,本發明之目的,即在提供一種可實際模擬生理中流體相關的環境的生物力學測試系統。
於是,本發明生物力學測試系統,包含一反應器模組、一盛裝液體且連接該反應器模組的儲存桶,及一連接該儲存桶的氣壓源。該反應器模組包括一上模板、一設置於該上模板下方的下模板、一設置於該上模板及該下模板之間的定位板、一被該定位板環繞並位於該上模板及該下模板之間的限位件,及至少一對應該限位件設置的生物培養材料。該上模板、該下模板,及該定位板相配合界定出一用於容置該限位件及該至少一生物培養材料的密閉空間。該儲存桶可受控制而對該密閉空間供給液體。該氣壓源可受控制而對該儲存桶提供氣體,從而透過氣壓使該儲存桶中的液體進入該密閉空間中,並流過該至少一生物培養材料。
本發明的另一個目的,在於提供該生物力學測試系統中的反應器模組。
於是,本發明反應器模組,包含一上模板、一設置於該上模板下方的下模板、一設置於該上模板及該下模板之間的定位板、一限位件,及至少一對應該限位件設置的生物培養材料。該定位板、該上模板,及該下模板相配合界定出一密閉空間。該限位件及該至少一生物培養材料設置於該密閉空間內,並被該定位板環繞且位於該上模板及該下模板之間。
本發明之功效在於:該儲存桶內盛裝的液體通常為培養液,其被該氣壓源加壓後會進入該密閉空間中,並流經該至少一生物培養材料,如此便可模擬流體在生物體內流動的情形,此外,該限位件可替換為不同態樣,從而模擬不同的生物體環境,並檢測流體壓力、流體剪力或流體脈衝對該至少一生物培養材料上之細胞的影響,泛用性高,該反應器模組內所形成的密閉空間可避免外在的干擾,且進一步提高模擬準確性。
在本發明被詳細描述之前,應當注意在以下的說明內容中,類似的元件是以相同的編號來表示。
參閱圖1,為本發明生物力學測試系統之一第一實施例,包含一反應器模組1、一盛裝液體且連接該反應器模組1的儲存桶2、一連接該儲存桶2的氣壓源3、一連接該反應器模組1的供氣源4、一連接該反應器模組1的緩衝槽5,及一連接該反應器模組1的排液管路6。
參閱圖2至圖5,定義彼此相互垂直的一第一水平方向A、一第二水平方向B,及一垂直方向C,該反應器模組1包括一連接該緩衝槽5(見圖1)的上模板11、一沿該垂直方向C設置於該上模板11下方且連接該排液管路6(見圖1)的下模板12、一沿該垂直方向C設置於該上模板11及該下模板12之間的定位板13、二沿該垂直方向C分別位於該上、下模板12與該定位板13之間的密封墊片14、一被該定位板13環繞且沿該垂直方向C位於該上、下模板12之間的限位件15,及一靠抵該限位件15的生物培養材料16。該上模板11、該下模板12,及該定位板13相配合界定出一容置該限位件15及該生物培養材料16的密閉空間17。該等密封墊片14呈環片狀而環繞該密閉空間17。
該上模板11具有二沿該第二水平方向B彼此相間隔,且各自沿該垂直方向C向下伸置於該密閉空間17中的電極組111。每一電極組111如圖3所示地概呈齒梳狀,亦即每一電極組111有多個電極沿該第一水平方向A間隔排列,該限位件15的兩側設有複數供該等電極組111穿過的開槽(見圖2),使其能穿過該限位件15而接觸該生物培養材料16,從而如圖5所示地壓制、插入或穿過該生物培養材料16,並透過外部供電對該生物培養材料16上的細胞進行電刺激模擬(例如用於肌肉細胞、心臟細胞或神經細胞),齒梳狀的外型加上插入該生物培養材料16的配置方式,可以使電刺激更加均勻及快速,需要特別說明的是,該等電極組111為選擇性安裝之元件,本第一實施例也可以安裝其他態樣的電極,或是不安裝電極,故不應以此為限。
該下模板12沿該垂直方向C凹陷形成一連通該密閉空間17的承接槽121,該承接槽121用於與該排液管路6連接。此外,該下模板12也可具有加熱功能,從而可將該密閉空間17加熱至設定溫度,以模擬人體內部的溫度。該等密封墊片14是以矽膠製成,並用於確保該密閉空間17的密封性。該上模板11、該定位板13、該下模板12,及該等密封墊片14是透過螺絲穿設而上下交疊地固定在一起。
參閱圖2、圖5,及圖6,該限位件15具有一沿該第一水平方向A延伸的板體部151、二沿該垂直方向C凸設於該板體部151上的側緣部152,及二由該等側緣部152沿該第二水平方向B相向凸伸的凸壁部153。該等側緣部152沿該第二水平方向B彼此相間隔且各自沿該第一水平方向A延伸。該板體部151、該等側緣部152及該等凸壁部153相配合界定出一沿該第一水平方向A延伸的流道154,該流道154的前後兩端與該密閉空間17相連通,且該生物培養材料16用於培養細胞的一面朝向該流道154。需要特別說明的是,該限位件15在置於該密閉空間17中時,是以該等側緣部152朝向下方的方式設置,但為了便於說明該限位件15的結構,圖6是以上下顛倒的方式呈現。該生物培養材料16緊靠該等側緣部152而位於該限位件15的下方。在本第一實施例中,該生物培養材料16可以是以貼附方式培養細胞的矽膠薄膜、可培養細胞及外基質的玻片,或是適合細胞及軟材料的生醫材料,且不以此為限。
參閱圖6、圖7,及圖8,在本第一實施例中,每一凸壁部153呈半圓形且兩兩相對,使該流道154呈現狹口狀,以模擬血管堵塞或其他生物體內之狹道環境,為了能模擬不同程度的堵塞情況,該等凸壁部153可視需求而如圖6至圖8所示地採不同大小之設計。參閱圖9、圖10,及圖11,該限位件15也可以不設有該等凸壁部153,而是具有一沿該垂直方向C凸設於該板體部151上且位於該流道154中的模塊部155。該模塊部155可在該流道154上形成分岔處,從而模擬血管分岔處或其他生物體環境,該模塊部155可以採三角柱、方柱或其他多邊形柱之外型,其用於產生分岔的突角也可以如圖9至圖11所示地為不同角度,以模擬不同種類的血管分岔處,因此,操作人員可依所欲模擬的生物體環境拆換適合的限位件15,以視需求建立不同邊界條件的流道154,泛用性高且利於模組化,在本第一實施例中,該模塊部155之材料可為壓克力塊。
參閱圖12及圖13,該限位板15也可以反向設置(如此一來該等電極組111可不需穿過該限位板15),若該生物培養材料16是採圖2中的平面結構設計時,該生物培養材料16便是上下相反地反向置放。當前述的生物培養材料16如圖12所示地為多個塊狀生醫材料時,該限位板15可沿該第一水平方向A設有複數模塊部155,且每一模塊部155是呈柱狀,如此可如圖12所示地將該等生物培養材料16沿該第一水平方向A相間隔固定於該限位板15上,擴展該等生物培養材料16的適用範圍,並增加模擬檢測的多樣化。
復參閱圖1、圖2,及圖4,該儲存桶2盛裝培養液等液體,且可被該氣壓源3所輸入的氣體所迫,使液體經由受控制而開啟的矽膠管路,通過該定位板13送入該密閉空間17中,並進入該流道154內。該供氣源4透過矽膠管路與該儲存桶2的矽膠管路連接,從而連通該密閉空間17。該緩衝槽5透過矽膠管路連接該上模板11,當該密閉空間17中的液體過多時,多餘的液體會直接溢流至該緩衝槽5內。該排液管路6連接該下模板12並連通該承接槽121,同時也連接該緩衝槽5的管路而與該上模板11連通,此二處皆可透過控制開啟,以將液體排出至外部回收(此部分的詳細步驟容後敘述)。需要特別說明的是,雖然該儲存桶2、該供氣源4、該緩衝槽5,及該排液管路6皆連通該密閉空間17,但該儲存桶2、該供氣源4,及該排液管路6的管路上皆設有電磁閥,該緩衝槽5為封閉環境,因此可維持該密閉空間17的封閉性。
參閱圖1、圖2,及圖6,本第一實施例有多種使用方式:當要對該流道154充入培養液或更換培養液以進行模擬時,是由主控制器D透過類比訊號控制可程式氣壓控制器,開啟電磁閥並驅使該氣壓源3將氣體送入該儲存桶2中,透過氣壓可將該儲存桶2中的培養液送入該密閉空間17中(該儲存桶2的管路上之電磁閥E會開啟),且注入該流道154內直至充滿,配合該等凸壁部153或該模塊部155(見圖8)的設置便可創造不同的流道154環境(如血管堵塞或血管分岔處),並在這些不同的生物體結構下,進行循環的流體剪力模擬、穩定的流體壓力模擬、均勻且快速的電刺激模擬等。在前述充液或換液過程中,可開啟該排液管路6連接該緩衝槽5的電磁閥F,使培養液可透過該排液管路6向外排出。參閱圖1、圖5,及圖14,該氣壓源3也可透過脈衝方式將該儲存桶2中的培養液輸入該流道154,以達到流體脈衝輸入的效果,並可透過壓力計G等儀器檢視脈衝的情況,如此可進行流體脈衝式刺激模擬,在脈衝輸入的過程中,因脈衝而暫時溢出的培養液會先流入該緩衝槽5中,以暫作緩衝,但也可以不設置該緩衝槽5,而是讓壓力留在該限位件15中擠壓。
參閱圖1、圖5,及圖15,當要排空該密閉空間17及該流道154內的液體時,可關閉該氣壓源3並開啟該供氣源4,使氣體直接進入該密閉空間17中,並透過氣壓將培養液由該排液管路6排出(此時需開啟該排液管路6的電磁閥H),如此便可達到排空液體之效果。參閱圖1、圖5,及圖16,該生物力學測試系統還可包含一連接該儲存桶2及該反應器模組1且設有電磁閥I的循環管路71,及一設置於該循環管路71上的幫浦72。此一配置方式能在培養液充滿該流道154後,透過該幫浦72將培養液由該循環管路71抽出(該循環管路71之電磁閥I開啟),使培養液回流至該儲存桶2中而製造流體剪力循環,達到多樣化的狀況及環境模擬。
參閱圖17、圖18,及圖19,為本發明生物力學測試系統之一第二實施例,該第二實施例大致上是與該第一實施例相同,不同的地方在於:該反應器模組1之限位件15具有二插置於該定位板13上的承接部156。該生物培養材料16呈管狀而將該密閉空間17區分為內側的流道154,及環繞該流道154的外環槽157。該生物培養材料16兩端分別設置於該等承接部156上。該儲存桶2包括一盛裝液體且連接該氣壓源3的桶體21、一連接該桶體21並通過該定位板13連接該流道154的第一管路22,及一連接該桶體21並連通該外環槽157的第二管路23。該第一管路22通過該定位板13連接其中一個承接部156,該排液管路6則通過該定位板13連接另一個承接部156,同時也與該外環槽157相連接。本第二實施例未設有該緩衝槽5。
該第二實施例的運作方式如下:該氣壓源3對該桶體21提供氣體,以透過氣壓將該桶體21中的培養液由該第一管路22(該第二管路23的電磁閥J關閉)送出,進而使培養液進入該流道154中,此外也能透過開啟該排液管路6的電磁閥K使培養液排出,當欲進行脈衝反應時,可僅開啟該第一管路22之電磁閥L,並以主控制器D經由類比訊號控制可程式氣壓控制器,使該氣壓源3間歇式地輸入氣體,以在該流道154中產生脈衝反應。參閱圖18及圖20,使用者也可關閉該第一管路22而開啟該第二管路23,如此便能使培養液由該第二管路23進入該外環槽157中,並透過開啟該排液管路6的另一個電磁閥M使培養液排出,達到另一種環境模擬之作用。
參閱圖18及圖21,本第二實施例還包含二連接該儲存桶2及該排液管路6且可受控制而開啟的循環管路71,其中一循環管路71連通該流道154,另一循環管路71連通該外環槽157及該第二管路23,且該等循環管路71上各自設有一幫浦72。當開啟連通該流道154的循環管路71時,培養液便可在進入該流道154後,被該循環管路71的幫浦72抽引(相對應電磁閥N開啟),以循該循環管路71回到該桶體21中,達到管內循環之模擬效果。參閱圖18及圖22,當該外環槽157充滿培養液後,可將大部分的電磁閥關閉,僅留該第二管路23的電磁閥J,及連通該外環槽157的循環管路71之電磁閥O,透過該幫浦72使培養液在該第二管路23、該外環槽157、該排液管路6(因電磁閥M關閉故不會排出),及該循環管路71間循環,達到管外循環之模擬效果。
參閱參閱圖18及圖23,當要排空該流道154中的培養液時,可關閉該氣壓源3,並開啟該供氣源4,如此可使該供氣源4的氣體直接由該第一管路22送入該流道154中,以將培養液由該排液管路6排出,達到管內液體排空之作用,若要排空該外環槽157之培養液,可另外設置一連接該第二管路23的氣體供應源(圖未示)。本第二實施例可應用管狀生醫材料作為該生物培養材料16,提高模擬環境的多樣性。
綜上所述,本發明可依需求更換不同態樣的生物培養材料16,且僅需更換該限位板15便可創造出具狹窄、分支等不同結構特徵的流道154,加上可創造循環的流體剪力模擬、穩定流體壓力模擬、流體脈衝式刺激模擬,及電刺激模擬等多種不同的生體環境模擬,從而達到高泛用性的檢測效果,故確實能達成本發明之目的。
惟以上所述者,僅為本發明之實施例而已,當不能以此限定本發明實施之範圍,凡是依本發明申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。
1:反應器模組 11:上模板 111:電極組 12:下模板 121:承接槽 13:定位板 14:密封墊片 15:限位件 151:板體部 152:側緣部 153:凸壁部 154:流道 155:模塊部 156:承接部 157:外環槽 16:生物培養材料 17:密閉空間 2:儲存桶 21:桶體 22:第一管路 23:第二管路 3:氣壓源 4:供氣源 5:緩衝槽 6:排液管路 71:循環管路 72:幫浦 A:第一水平方向 B:第二水平方向 C:垂直方向 D:主控制器 E:電磁閥 F:電磁閥 G:壓力計 H~O:電磁閥
本發明之其它的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1是一示意圖,說明本發明生物力學測試系統之一第一實施例; 圖2是一立體分解圖,說明該第一實施例之一反應器模組; 圖3是一立體圖,說明該第一實施例之二電極組; 圖4是一側視剖面圖,說明圖2組立後的側視剖面態樣; 圖5是一正視剖面圖,說明圖4的正視剖面態樣; 圖6至圖11皆是立體圖,說明該反應器模組之一限位件的不同態樣; 圖12是一側視剖面圖,說明該限位件的另一種態樣及設置方式; 圖13是一立體圖,輔助說明圖12的立體態樣; 圖14及圖15皆為示意圖,說明該第一實施例的不同模擬動作; 圖16是一示意圖,說明該第一實施例的另一種態樣及其模擬動作; 圖17是一正面剖視圖,說明本發明生物力學測試系統之一第二實施例; 圖18是一側視剖面圖,說明圖17的側視剖面態樣; 圖19是一示意圖,說明該第二實施例的配置方式;及 圖20至圖23皆為示意圖,說明該第二實施例的不同模擬動作。
1:反應器模組
11:上模板
12:下模板
121:承接槽
13:定位板
14:密封墊片
15:限位件
151:板體部
152:側緣部
154:流道
16:生物培養材料
17:密閉空間
A:第一水平方向
B:第二水平方向
C:垂直方向

Claims (23)

  1. 一種生物力學測試系統,包含: 一反應器模組,包括一上模板、一設置於該上模板下方的下模板、一設置於該上模板及該下模板之間的定位板、一被該定位板環繞並位於該上模板及該下模板之間的限位件,及至少一對應該限位件設置的生物培養材料,該上模板、該下模板,及該定位板相配合界定出一用於容置該限位件及該至少一生物培養材料的密閉空間; 一儲存桶,盛裝液體且連接該反應器模組,該儲存桶可受控制而對該密閉空間供給液體;及 一氣壓源,連接該儲存桶,該氣壓源可受控制而對該儲存桶提供氣體,從而透過氣壓使該儲存桶中的液體進入該密閉空間中,並流過該至少一生物培養材料。
  2. 如請求項1所述的生物力學測試系統,其中,該限位件界定出一對應該至少一生物培養材料且連通該密閉空間的流道,該流道可供該儲存桶中的液體流過。
  3. 如請求項2所述的生物力學測試系統,還包含一連接該反應器模組的緩衝槽,該緩衝槽承接由該流道溢出的多餘液體。
  4. 如請求項3所述的生物力學測試系統,定義彼此相互垂直的一第一水平方向、一第二水平方向,及一垂直方向,其中,該限位件具有一沿該第一水平方向延伸的板體部,及二沿該垂直方向凸設於該板體部上的側緣部,該等側緣部沿該第二水平方向彼此相間隔且各自沿該第一水平方向延伸。
  5. 如請求項4所述的生物力學測試系統,其中,該限位件還具有複數由該等側緣部沿該第二水平方向相向凸伸的凸壁部。
  6. 如請求項4所述的生物力學測試系統,其中,該限位件還具有至少一設置於該板體部上且位於該流道中的模塊部,該模塊部為多邊形柱。
  7. 如請求項5或6所述的生物力學測試系統,其中,該儲存桶的液體通過該定位板進入該密閉空間,且該流道連通該密閉空間,該流道溢出的多餘液體經該上模板排出至該緩衝槽。
  8. 如請求項7所述的生物力學測試系統,還包含一連接該反應器模組,且開啟後可供該流道的液體排出的排液管路。
  9. 如請求項8所述的生物力學測試系統,還包含一連接該儲存桶及該反應器模組的循環管路,及至少一設置於該循環管路上的幫浦。
  10. 如請求項1所述的生物力學測試系統,其中,該反應器模組包括一呈管狀且被該限位件定位的生物培養材料,該生物培養材料將該密閉空間區分為一流道及一環繞該流道的外環槽,該儲存桶包括一盛裝液體且連接該氣壓源的桶體、一連接該桶體並連通該流道的第一管路,及一連接該桶體並連通該外環槽的第二管路。
  11. 如請求項10所述的生物力學測試系統,還包含一連接該反應器模組,且開啟後可供該流道的液體排出的排液管路,該限位件具有二插置於該定位板上且定位該生物培養材料的承接部,該第一管路通過該定位板連接其中一承接部,該排液管路通過該定位板連接該另一個承接部,該外環槽也與該排液管路連接。
  12. 如請求項11所述的生物力學測試系統,還包含二連接該儲存桶及該排液管路且可受控制而開啟的循環管路,其中一循環管路連通該流道,另一循環管路連通該外環槽及該第二管路,該等循環管路上各自設有一幫浦。
  13. 如請求項1所述的生物力學測試系統,還包含一可受控制地對該反應器模組提供氣體的供氣源。
  14. 如請求項1所述的生物力學測試系統,其中,該上模板具有二向下伸置於該密閉空間中且各自呈齒梳狀的電極組,該等電極組壓制、插入或穿過該至少一生物培養材料。
  15. 如請求項1所述的生物力學測試系統,其中,該下模板可對該密閉空間進行加熱。
  16. 如請求項1所述的生物力學測試系統,還包含二呈環片狀且夾設於該上模板、該定位板,及該下模板之間的密封墊片。
  17. 一種反應器模組,包含: 一上模板; 一下模板,設置於該上模板的下方; 一定位板,設置於該上模板及該下模板之間,該定位板、該上模板,及該下模板相配合界定出一密閉空間; 一限位件,設置於該密閉空間內,該限位件被該定位板環繞且位於該上模板及該下模板之間;及 至少一生物培養材料,位於該密閉空間內並對應該限位件設置。
  18. 如請求項17所述的反應器模組,定義彼此相互垂直的一第一水平方向、一第二水平方向,及一垂直方向,其中,該限位件界定出一連通該密閉空間的流道,並包括一沿該第一水平方向延伸的板體部,及二沿該垂直方向凸設於該板體部上的側緣部,該等側緣部沿該第二水平方向彼此相間隔且各自沿該第一水平方向延伸。
  19. 如請求項18所述的反應器模組,其中,該限位件還包括複數由該等側緣部沿該第二水平方向相向凸伸的凸壁部。
  20. 如請求項18所述的反應器模組,其中,該限位件還包括至少一設置於該板體部上且位於該流道中的模塊部,該模塊部為多邊形柱。
  21. 如請求項17所述的反應器模組,包含一呈管狀且被該限位件定位的生物培養材料,該生物培養材料將該密閉空間區分為一流道及一環繞該流道的外環槽。
  22. 如請求項17所述的反應器模組,其中,該上模板具有二向下伸置於該密閉空間中且各自呈齒梳狀的電極組,該等電極組壓制、插入或穿過該至少一生物培養材料。
  23. 如請求項17所述的反應器模組,其中,該下模板可對該密閉空間進行加熱。
TW110117712A 2021-05-17 2021-05-17 生物力學測試系統及其反應器模組 TWI788850B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110117712A TWI788850B (zh) 2021-05-17 2021-05-17 生物力學測試系統及其反應器模組

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110117712A TWI788850B (zh) 2021-05-17 2021-05-17 生物力學測試系統及其反應器模組

Publications (2)

Publication Number Publication Date
TW202246481A true TW202246481A (zh) 2022-12-01
TWI788850B TWI788850B (zh) 2023-01-01

Family

ID=85793735

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110117712A TWI788850B (zh) 2021-05-17 2021-05-17 生物力學測試系統及其反應器模組

Country Status (1)

Country Link
TW (1) TWI788850B (zh)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020022261A1 (en) * 1995-06-29 2002-02-21 Anderson Rolfe C. Miniaturized genetic analysis systems and methods
US6642046B1 (en) * 1999-12-09 2003-11-04 Motorola, Inc. Method and apparatus for performing biological reactions on a substrate surface
SE0201738D0 (sv) * 2002-06-07 2002-06-07 Aamic Ab Micro-fluid structures
CN102317430A (zh) * 2007-06-22 2012-01-11 阿尔盖迪尼公司 生物反应器
CN203602628U (zh) * 2013-11-20 2014-05-21 徐宏光 轴向加载的生物反应器
JP2017535425A (ja) * 2014-11-07 2017-11-30 オキシ ソリューションズ アクティーゼルスカブ 気体を液体に溶解するための装置
EP3015542A1 (de) * 2015-05-07 2016-05-04 Bayer Technology Services GmbH Modulare anlage und verfahren zur kontinuierlichen, keimreduzierten produktion und/oder aufbereitung eines produktes
MX2021004099A (es) * 2018-10-10 2021-08-11 Stamm Vegh Corp Microbioreactor de flujo continuo.

Also Published As

Publication number Publication date
TWI788850B (zh) 2023-01-01

Similar Documents

Publication Publication Date Title
Toh et al. Engineering microfluidic concentration gradient generators for biological applications
US10018620B2 (en) Microfluidic tissue model
Young et al. Fundamentals of microfluidic cell culture in controlled microenvironments
US20210079330A1 (en) Dynamic multi organ plate
JP7171696B2 (ja) 相互接続されたウェルを有するマイクロプレートを備えた流体デバイス
US10106768B2 (en) Micro cell culturing device
US11809792B2 (en) Model for fluid and mass transport in a recirculating microfluidic system
TWI788850B (zh) 生物力學測試系統及其反應器模組
Li et al. Integrated brain on a chip and automated organ‐on‐chips systems
Kane et al. Passive controlled flow for Parkinson's disease neuronal cell culture in 3D microfluidic devices
CN203295501U (zh) 一种灌注式生物反应器实验装置
CN108467837A (zh) 一种可视多通道流体剪切力细胞培养装置及其方法
CN117327580A (zh) 用于生物医学研究的金属制器官芯片
CN103290145B (zh) 一种灌注式生物反应器实验方法及其使用装置
CN209226998U (zh) 一种可视多通道流体剪切力细胞培养装置
CN212077076U (zh) 一种微流控实验板
CN113528334A (zh) 一种微流控实验板及细胞培养方法
Abbatiello et al. Development of an In-House Customized Perfusion-Based Bioreactor for 3D Cell Culture
CN115560950A (zh) 生物力学测试系统及其反应器模块
KR102320730B1 (ko) 생체 모사 칩 장치
TWI788849B (zh) 反應器模組及具有該反應器模組的生物力學測試系統
US20230311117A1 (en) Biomechanical testing system and reactor module thereof
US20210008555A1 (en) Vascular development monitoring systems and uses thereof
EP4198119A1 (en) A microfluidic device for simulating organ functions
Busek et al. Microphysiological system for heart tissue-going from 2D to 3D culture: Technological challenges and tissue integration concepts