TW202245391A - Dc-dc power conversion system and power conversion method thereof - Google Patents

Dc-dc power conversion system and power conversion method thereof Download PDF

Info

Publication number
TW202245391A
TW202245391A TW110133382A TW110133382A TW202245391A TW 202245391 A TW202245391 A TW 202245391A TW 110133382 A TW110133382 A TW 110133382A TW 110133382 A TW110133382 A TW 110133382A TW 202245391 A TW202245391 A TW 202245391A
Authority
TW
Taiwan
Prior art keywords
terminal
coupled
resonant
capacitor
control signal
Prior art date
Application number
TW110133382A
Other languages
Chinese (zh)
Other versions
TWI787994B (en
Inventor
劉國基
楊大勇
白忠龍
Original Assignee
立錡科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 立錡科技股份有限公司 filed Critical 立錡科技股份有限公司
Priority to CN202111149987.XA priority Critical patent/CN115296529A/en
Priority to US17/511,607 priority patent/US11716020B2/en
Publication of TW202245391A publication Critical patent/TW202245391A/en
Application granted granted Critical
Publication of TWI787994B publication Critical patent/TWI787994B/en

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)
  • Liquid Crystal (AREA)

Abstract

A DC-DC power conversion system includes a resonant switched-capacitor converter and a controller. The resonant switched-capacitor converter is used to receive an input voltage and is switched between a first state and a second state to generate an output voltage. The resonant switched-capacitor converter includes an input node, a resonant tank, an output capacitor, a first set of switches and a second set of switches. The input node is used to receive the input voltage. The output capacitor is used to generate the output voltage. The first set of switches is coupled to the resonant tank and the output capacitor, and is used to receive a first control signal to be turned on in the first state, and to be turned off in the second state. The second set of switches is coupled to the resonant tank and the output capacitor, and is used to receive a second control signal to be turned on in the second state, and to be turned off in the first state. The controller adjusts the first control signal and the second control signal according to the output voltage.

Description

直流-直流功率轉換系統及其功率轉換方法DC-DC power conversion system and power conversion method thereof

本發明關於電子電路,特別是一種直流-直流功率轉換系統及其功率轉換方法。The invention relates to electronic circuits, in particular to a DC-DC power conversion system and a power conversion method thereof.

直流-直流轉換器係為一種將直流電壓轉換為不同直流電壓的裝置,常用在行動電話及筆記型電腦等行動電子裝置用來提供電源。諧振切換式電容轉換器(resonant switched-capacitor converter,RSCC)係為一種直流-直流轉換器,當傳送功率時不會產生功率消耗或僅產生少量功率消耗。A DC-DC converter is a device that converts a DC voltage into a different DC voltage. It is commonly used in mobile electronic devices such as mobile phones and notebook computers to provide power. A resonant switched-capacitor converter (RSCC) is a DC-DC converter that generates no power consumption or only a small amount of power consumption when transmitting power.

諧振切換式電容轉換器會以固定轉換比將輸入電壓轉換為輸出電壓。當輸入電壓過大時,諧振切換式電容轉換器依然以固定轉換比產生過大的輸出電壓,造成電子裝置的損壞。A resonant switched capacitor converter converts an input voltage to an output voltage with a fixed conversion ratio. When the input voltage is too large, the resonant switched capacitor converter still generates an excessively large output voltage with a fixed conversion ratio, causing damage to the electronic device.

相關技術利用額外的降壓轉換器(bulk converter)來控制諧振切換式電容轉換器的輸入電壓,藉以控制諧振切換式電容轉換器的輸出電壓。然而,降壓轉換器會佔據大量電路面積,造成製造成本增加。The related art utilizes an additional buck converter (bulk converter) to control the input voltage of the resonant switched capacitor converter, so as to control the output voltage of the resonant switched capacitor converter. However, the buck converter occupies a large amount of circuit area, resulting in increased manufacturing costs.

本發明實施例提供一種直流-直流功率轉換系統,包含諧振切換式電容轉換器及控制器。諧振切換式電容轉換器用以接收輸入電壓,及於第一狀態及第二狀態之間切換以產生輸出電壓。諧振切換式電容轉換器包含輸入端、共振槽、輸出電容、第一組開關、及第二組開關。輸入端用以接收輸入電壓。輸出電容具有第一端,用以產生輸出電壓;及第二端,耦接於接地端。第一組開關耦接於共振槽及輸出電容,用以接收第一控制訊號以於第一狀態時導通,及於第二狀態時截止。第二組開關耦接於共振槽及輸出電容,用以接收第二控制訊號以於第二狀態時導通,及於第一狀態時截止。輸出端耦接於輸出電容,用以輸出輸出電壓。控制器耦接於第一組開關及第二組開關,用以依據輸出電壓調整第一控制訊號以控制第一組開關之第一導通時間,及依據輸出電壓調整第二控制訊號以控制第二組開關之第二導通時間。An embodiment of the present invention provides a DC-DC power conversion system, including a resonant switched capacitor converter and a controller. The resonant switched capacitor converter is used for receiving an input voltage, and switching between a first state and a second state to generate an output voltage. The resonant switched capacitor converter includes an input terminal, a resonant tank, an output capacitor, a first set of switches, and a second set of switches. The input end is used for receiving the input voltage. The output capacitor has a first terminal for generating an output voltage; and a second terminal coupled to the ground terminal. The first group of switches is coupled to the resonance tank and the output capacitor, and is used for receiving the first control signal to be turned on in the first state and turned off in the second state. The second group of switches is coupled to the resonant tank and the output capacitor, and is used for receiving the second control signal to be turned on in the second state and turned off in the first state. The output terminal is coupled to the output capacitor for outputting the output voltage. The controller is coupled to the first set of switches and the second set of switches, and is used to adjust the first control signal according to the output voltage to control the first conduction time of the first set of switches, and adjust the second control signal according to the output voltage to control the second set of switches. The second conduction time of the group switch.

本發明實施例提供另一種功率轉換方法,適用於直流-直流功率轉換系統。直流-直流功率轉換系統包含諧振切換式電容轉換器及控制器,諧振切換式電容轉換器包含共振槽、輸出電容、第一組開關,耦接於共振槽及輸出電容、及第二組開關,耦接於共振槽及輸出電容。功率轉換方法包含諧振切換式電容轉換器於第一狀態及第二狀態之間切換以產生輸出電壓,控制器依據輸出電壓調整第一控制訊號及第二控制訊號,第一組開關接收第一控制訊號以於第一狀態時導通第一導通時間,及第二組開關接收第二控制訊號於第二狀態時導通第二導通時間。An embodiment of the present invention provides another power conversion method, which is suitable for a DC-DC power conversion system. The DC-DC power conversion system includes a resonant switched capacitor converter and a controller. The resonant switched capacitor converter includes a resonant tank, an output capacitor, a first set of switches coupled to the resonant tank and the output capacitor, and a second set of switches. Coupled to the resonant tank and output capacitor. The power conversion method includes switching a resonant switched capacitor converter between a first state and a second state to generate an output voltage, a controller adjusts a first control signal and a second control signal according to the output voltage, and a first set of switches receives the first control signal The signal is turned on for a first conduction time in the first state, and the second group of switches is turned on for a second conduction time in the second state when receiving the second control signal.

第1圖係為本發明實施例中之一種直流-直流功率轉換系統1的區塊圖。直流-直流功率轉換系統1使用諧振切換式電容轉換器(resonant switched-capacitor converter,RSCC)將輸入電壓Vin轉換為輸出電壓Vout,且無須降壓轉換器(bulk converter)即可調節輸出電壓Vout而使輸出電壓Vout維持於固定值,藉以在不大幅增加電路面積的情況下提供過電壓保護。輸入電壓Vin及輸出電壓Vout為直流電壓,且輸出電壓Vout可大於或小於輸入電壓Vin。在一些實施例中,直流-直流功率轉換系統1可對輸入電壓Vin進行下轉換以產生輸出電壓Vout,且輸入電壓Vin對輸出電壓Vout之比率可大於2比1。例如,輸入電壓Vin對輸出電壓Vout之比率可為4比1,當輸入電壓Vin超出60V時,輸出電壓Vout仍可維持於13V以下。FIG. 1 is a block diagram of a DC-DC power conversion system 1 in an embodiment of the present invention. The DC-DC power conversion system 1 uses a resonant switched-capacitor converter (RSCC) to convert the input voltage Vin to the output voltage Vout, and the output voltage Vout can be adjusted without a step-down converter (bulk converter). The output voltage Vout is maintained at a fixed value, so as to provide over-voltage protection without greatly increasing the circuit area. The input voltage Vin and the output voltage Vout are DC voltages, and the output voltage Vout can be greater than or less than the input voltage Vin. In some embodiments, the DC-DC power conversion system 1 can down-convert the input voltage Vin to generate the output voltage Vout, and the ratio of the input voltage Vin to the output voltage Vout can be greater than 2:1. For example, the ratio of the input voltage Vin to the output voltage Vout can be 4 to 1, and when the input voltage Vin exceeds 60V, the output voltage Vout can still be maintained below 13V.

直流-直流功率轉換系統1包含諧振切換式電容轉換器(RSCC) 10、控制器12、輸入端14及輸出端16。控制器12可將RSCC 10重複交替切換於第一狀態及第二狀態之間。RSCC 10可接收輸入電壓Vin,及於第一狀態及第二狀態之間切換以產生輸出電壓Vout。The DC-DC power conversion system 1 includes a resonant switched capacitor converter (RSCC) 10 , a controller 12 , an input 14 and an output 16 . The controller 12 can repeatedly and alternately switch the RSCC 10 between the first state and the second state. The RSCC 10 can receive an input voltage Vin, and switch between a first state and a second state to generate an output voltage Vout.

RSCC 10可包含第一共振槽103、輸出電容Co、第一組開關101及第二組開關102。輸入端14可從前端電容或前端電路接收輸入電壓Vin。第一共振槽103可由輸入端14接收輸入電壓Vin,及產生弦波電壓及弦波電流,可達成RSCC 10的零電流切換(zero current switching),及降低RSCC 10的功率損失。第一組開關101可耦接於第一共振槽103及輸出電容Co,及可接收第一控制訊號Sc1以於第一狀態時導通,及於第二狀態時截止。第二組開關102可耦接於第一共振槽103及輸出電容Co,及可接收第二控制訊號Sc2以於第二狀態時導通,及於第一狀態時截止。第一組開關101及第二組開關102可分別依據第一控制訊號Sc1及第二控制訊號Sc2控制第一狀態及第二狀態時第一共振槽103及輸出電容Co之間的耦接關係,以於輸出電容Co產生輸出電壓Vout。在一些實施例中,在第一狀態時,第一組開關101可將第一共振槽103串聯於輸入端14及輸出電容Co之間;在第二狀態時,第二組開關102可並聯第一共振槽103及輸出電容Co。輸出端16可耦接於輸出電容Co,及可將輸出電壓Vout輸出至後續電路,如中央處理器。The RSCC 10 may include a first resonant tank 103 , an output capacitor Co, a first set of switches 101 and a second set of switches 102 . The input terminal 14 can receive an input voltage Vin from a front-end capacitor or a front-end circuit. The first resonant tank 103 can receive the input voltage Vin from the input terminal 14 and generate a sinusoidal voltage and a sinusoidal current, which can achieve zero current switching of the RSCC 10 and reduce power loss of the RSCC 10 . The first set of switches 101 can be coupled to the first resonant tank 103 and the output capacitor Co, and can receive a first control signal Sc1 to be turned on in a first state and turned off in a second state. The second set of switches 102 can be coupled to the first resonant tank 103 and the output capacitor Co, and can receive the second control signal Sc2 to be turned on in the second state and turned off in the first state. The first group of switches 101 and the second group of switches 102 can respectively control the coupling relationship between the first resonant tank 103 and the output capacitor Co in the first state and the second state according to the first control signal Sc1 and the second control signal Sc2, The output voltage Vout is generated by the output capacitor Co. In some embodiments, in the first state, the first group of switches 101 can connect the first resonant tank 103 in series between the input terminal 14 and the output capacitor Co; in the second state, the second group of switches 102 can connect the first resonance tank 103 in parallel. A resonant tank 103 and an output capacitor Co. The output terminal 16 can be coupled to the output capacitor Co, and can output the output voltage Vout to subsequent circuits, such as a central processing unit.

控制器12耦接於第一組開關101及第二組開關102,及可於穩態時,依據輸出電壓Vout調整第一控制訊號Sc1以控制第一組開關101之第一導通時間,及依據輸出電壓Vout調整第二控制訊號Sc2以控制第二組開關102之第二導通時間,藉以產生輸出電壓Vout。The controller 12 is coupled to the first set of switches 101 and the second set of switches 102, and can adjust the first control signal Sc1 according to the output voltage Vout to control the first conduction time of the first set of switches 101 in a steady state, and according to The output voltage Vout adjusts the second control signal Sc2 to control the second conduction time of the second set of switches 102 to generate the output voltage Vout.

雖然第1圖顯示RSCC 10的一種特定連接方式,在一些實施例中,RSCC 10的內部電路亦可以其他方式連接。例如,第一共振槽103可另耦接於輸出電容Co,且第一組開關101及第二組開關102可不直接與輸出電容Co耦接,其他電路的耦接方式與第1圖相同。Although FIG. 1 shows one particular connection of RSCC 10, in some embodiments, the internal circuitry of RSCC 10 may be connected in other ways. For example, the first resonant tank 103 may be coupled to the output capacitor Co, and the first group of switches 101 and the second group of switches 102 may not be directly coupled to the output capacitor Co, and the coupling methods of other circuits are the same as those in FIG. 1 .

第2圖係為第1圖之一種直流-直流功率轉換系統1的電路示意圖。第2圖的RSCC 10可提供4比1的電壓轉換比,其額定輸入電壓範圍可介於48V至60V之間,輸出電壓Vout可維持於13V以下。RSCC 10包含儲存電容C3、第一共振槽103、第二共振槽104、輸出電容Co、及電晶體Q1至Q10。電晶體Q1至Q10可為N型金屬氧化物半導體場效電晶體(metal-oxide semiconductor field-effect transistor,MOSFET),但不限於此。FIG. 2 is a schematic circuit diagram of a DC-DC power conversion system 1 in FIG. 1 . The RSCC 10 in FIG. 2 can provide a voltage conversion ratio of 4:1, its rated input voltage range can be between 48V and 60V, and the output voltage Vout can be maintained below 13V. The RSCC 10 includes a storage capacitor C3, a first resonant tank 103, a second resonant tank 104, an output capacitor Co, and transistors Q1 to Q10. The transistors Q1 to Q10 may be N-type metal-oxide semiconductor field-effect transistors (MOSFETs), but are not limited thereto.

第一共振槽103包含第一共振電容C1及第一共振電感L1。第一共振電容C1具有第一端及第二端。第一共振電感L1具有第一端;及第二端,耦接於輸出電容Co之第一端。第二共振槽104包含第二共振電容C2及第二共振電感L2。第二共振電容C2具有第一端及第二端。第二共振電感L2具有第一端;及第二端,耦接於輸出電容Co之第一端。輸出電容Co具有第一端,可產生輸出電壓Vout;及第二端,耦接於接地端。接地端可提供接地電壓Vss,例如0V。The first resonance tank 103 includes a first resonance capacitor C1 and a first resonance inductor L1. The first resonant capacitor C1 has a first terminal and a second terminal. The first resonant inductor L1 has a first end; and a second end coupled to the first end of the output capacitor Co. The second resonance tank 104 includes a second resonance capacitor C2 and a second resonance inductor L2. The second resonance capacitor C2 has a first terminal and a second terminal. The second resonant inductor L2 has a first end; and a second end coupled to the first end of the output capacitor Co. The output capacitor Co has a first terminal capable of generating the output voltage Vout; and a second terminal coupled to the ground terminal. The ground terminal can provide a ground voltage Vss, such as 0V.

電晶體Q1至Q3、Q7及Q8可形成第一組開關101。電晶體Q1具有第一端,耦接於輸入端14;第二端;及控制端,用以接收第一控制訊號Sc1。電晶體Q2具有第一端;第二端,耦接於第一共振電容C1之第一端;及控制端,用以接收第一控制訊號Sc1。電晶體Q3具有第一端,耦接於第一共振電容C1之第二端;第二端,耦接於第一共振電感L1之第一端;及控制端,用以接收第一控制訊號Sc1。電晶體Q7具有第一端,耦接於第二共振電感L2之第一端;第二端,耦接於第二共振電容C2之第一端;及控制端,用以接收第一控制訊號Sc1。電晶體Q8具有第一端,耦接於第二共振電容C2之第二端;第二端,耦接於接地端;及控制端,用以接收第一控制訊號Sc1。Transistors Q1 to Q3 , Q7 and Q8 can form a first set of switches 101 . The transistor Q1 has a first end coupled to the input end 14 ; a second end; and a control end for receiving the first control signal Sc1 . The transistor Q2 has a first terminal; a second terminal coupled to the first terminal of the first resonant capacitor C1; and a control terminal for receiving the first control signal Sc1. The transistor Q3 has a first end coupled to the second end of the first resonant capacitor C1; a second end coupled to the first end of the first resonant inductor L1; and a control end for receiving the first control signal Sc1 . The transistor Q7 has a first end coupled to the first end of the second resonant inductor L2; a second end coupled to the first end of the second resonant capacitor C2; and a control end for receiving the first control signal Sc1 . The transistor Q8 has a first terminal coupled to the second terminal of the second resonant capacitor C2; a second terminal coupled to the ground terminal; and a control terminal for receiving the first control signal Sc1.

電晶體Q4至Q6、Q9及Q10可形成及第二組開關102。電晶體Q4具有第一端,耦接於第二共振電容C2之第一端;第二端,耦接於儲存電容C3之第一端;及控制端,用以接收第二控制訊號Sc2。電晶體Q5具有第一端,耦接於儲存電容C3之第二端;第二端,耦接於接地端;及控制端,用以接收第二控制訊號Sc2。電晶體Q6具有第一端,耦接於第二共振電容C2之第二端;第二端,耦接於第二共振電感L2之第一端;及控制端,用以接收第二控制訊號Sc2。電晶體Q9具有第一端,耦接於第一共振電感L1之第一端;第二端,耦接於第一共振電容C1之第一端;及控制端,用以接收第二控制訊號Sc2。電晶體Q10具有第一端,耦接於第一共振電容C1之第二端;第二端,耦接於接地端;及控制端,用以接收第二控制訊號Sc2。Transistors Q4 to Q6 , Q9 and Q10 may form a second set of switches 102 . The transistor Q4 has a first terminal coupled to the first terminal of the second resonance capacitor C2; a second terminal coupled to the first terminal of the storage capacitor C3; and a control terminal for receiving the second control signal Sc2. The transistor Q5 has a first terminal coupled to the second terminal of the storage capacitor C3; a second terminal coupled to the ground terminal; and a control terminal for receiving the second control signal Sc2. The transistor Q6 has a first end coupled to the second end of the second resonant capacitor C2; a second end coupled to the first end of the second resonant inductor L2; and a control end for receiving the second control signal Sc2 . The transistor Q9 has a first end coupled to the first end of the first resonant inductor L1; a second end coupled to the first end of the first resonant capacitor C1; and a control end for receiving the second control signal Sc2 . The transistor Q10 has a first terminal coupled to the second terminal of the first resonant capacitor C1; a second terminal coupled to the ground terminal; and a control terminal for receiving the second control signal Sc2.

在運作時,第一共振槽103及第二共振槽104分別提供2比1的電壓轉換比,輸入電壓Vin可為4倍的輸出電壓Vout,儲存電容C2的跨壓可為2倍的輸出電壓Vout,且第一共振電容C1、第二共振電容C2、及輸出電容Co的跨壓可分別為1倍的輸出電壓Vout,使RSCC 10提供4比1的電壓轉換比。During operation, the first resonant tank 103 and the second resonant tank 104 respectively provide a voltage conversion ratio of 2:1, the input voltage Vin can be 4 times the output voltage Vout, and the voltage across the storage capacitor C2 can be 2 times the output voltage Vout, and the cross-voltages of the first resonant capacitor C1, the second resonant capacitor C2, and the output capacitor Co can respectively be 1 times the output voltage Vout, so that the RSCC 10 can provide a voltage conversion ratio of 4:1.

在第一狀態時,第一組開關101及第二組開關102可設置為使儲存電容C3之第一端耦接於輸入端14,第一共振電容C1之第一端耦接於儲存電容C3之第二端,第一共振電容C1之第二端耦接於第二共振電容C2之第一端及輸出電容Co之第一端,第二共振電容C2之第二端及輸出電容Co之第二端耦接於接地端,第一共振電容C1可對輸出電容Co進行充電,且第二共振電容C2可對輸出電容Co進行放電。In the first state, the first group of switches 101 and the second group of switches 102 can be configured such that the first terminal of the storage capacitor C3 is coupled to the input terminal 14, and the first terminal of the first resonant capacitor C1 is coupled to the storage capacitor C3 The second end of the first resonant capacitor C1 is coupled to the first end of the second resonant capacitor C2 and the first end of the output capacitor Co, the second end of the second resonant capacitor C2 and the first end of the output capacitor Co The two terminals are coupled to the ground terminal, the first resonant capacitor C1 can charge the output capacitor Co, and the second resonant capacitor C2 can discharge the output capacitor Co.

在第二狀態時,第一組開關101及第二組開關102可設置為使輸出電容Co之第一端耦接於第一共振電容C1之第一端及第二共振電容C2之第二端,儲存電容C3之第一端耦接於第二共振電容C2之第一端,儲存電容C3之第二端耦接於接地端。第一共振電容C1可對輸出電容Co進行放電,且第二共振電容C2可對輸出電容Co進行充電。In the second state, the first set of switches 101 and the second set of switches 102 can be configured such that the first end of the output capacitor Co is coupled to the first end of the first resonant capacitor C1 and the second end of the second resonant capacitor C2 , the first terminal of the storage capacitor C3 is coupled to the first terminal of the second resonant capacitor C2, and the second terminal of the storage capacitor C3 is coupled to the ground terminal. The first resonance capacitor C1 can discharge the output capacitor Co, and the second resonance capacitor C2 can charge the output capacitor Co.

RSCC 10可於第一狀態及第二狀態之間交替切換以對RSCC 10內所有電容持續進行充放電來維持電荷平衡,同時將功率從輸入端14傳送至輸出端16以產生輸出電壓Vout。為了達成RSCC 10內所有電容的電荷平衡,控制器12可將第一控制訊號Sc1及第二控制訊號Sc2調整為具有相等之工作週期,以使第一共振槽103及第二共振槽104分別產生相位相反且平均大小相同的弦波電流Io1及電流Io2,且電流Io1及電流Io2在第一狀態及第二狀態時皆為RSCC 10的輸出電流Io的一半(Io/2)。The RSCC 10 can alternately switch between the first state and the second state to continuously charge and discharge all capacitors in the RSCC 10 to maintain charge balance, and at the same time transmit power from the input terminal 14 to the output terminal 16 to generate the output voltage Vout. In order to achieve the charge balance of all capacitors in the RSCC 10, the controller 12 can adjust the first control signal Sc1 and the second control signal Sc2 to have equal duty cycles, so that the first resonant tank 103 and the second resonant tank 104 respectively generate The sinusoidal current Io1 and current Io2 with opposite phases and the same average magnitude, and both the current Io1 and the current Io2 are half (Io/2) of the output current Io of the RSCC 10 in the first state and the second state.

控制器12可依據輸出電壓Vout調整第一控制訊號Sc1以控制第一組開關101之第一導通時間及第一截止時間,及依據輸出電壓Vout調整第二控制訊號Sc2以控制第二組開關102之第二導通時間及第二截止時間。例如,當輸出電壓Vout小於輸出電壓上限(如13V)時,控制器12可藉由將第一控制訊號Sc1調整為接近50%工作週期,而使第一組開關101之第一導通時間實質上等於第一組開關101之第一截止時間,及將第二控制訊號Sc2調整為接近50%工作週期,而使第二組開關102之第二導通時間實質上等於第二組開關102之第二截止時間,進而產生1/4輸入電壓Vin作為輸出電壓Vout。當輸出電壓Vout超出輸出電壓上限時,控制器12可藉由將第一控制訊號Sc1調整為小於50%工作週期而使第一組開關101之第一導通時間小於第一組開關101之第一截止時間,及將第二控制訊號Sc2調整為小於50%工作週期而控制第二組開關102之第二導通時間小於第二組開關102之第二截止時間,進而將輸出電壓Vout調節於輸出電壓上限之內以提供過電壓保護。當輸出電壓Vout遠超過13V時,控制器12可將第一控制訊號Sc1及第二控制訊號Sc2調整至接近0%工作週期以關閉RSCC 10並提供過電壓保護。第一導通時間及第二導通時間不重複(non-overlapping),且第一導通時間之長度可等於第二導通時間之長度,第一截止時間之長度可等於第二截止時間之長度。The controller 12 can adjust the first control signal Sc1 according to the output voltage Vout to control the first turn-on time and the first turn-off time of the first set of switches 101, and adjust the second control signal Sc2 according to the output voltage Vout to control the second set of switches 102. The second on-time and the second off-time. For example, when the output voltage Vout is lower than the upper limit of the output voltage (such as 13V), the controller 12 can adjust the first control signal Sc1 to be close to 50% of the duty cycle, so that the first conduction time of the first group of switches 101 is substantially It is equal to the first cut-off time of the first set of switches 101, and the second control signal Sc2 is adjusted to be close to 50% duty cycle, so that the second turn-on time of the second set of switches 102 is substantially equal to the second turn-on time of the second set of switches 102. cut-off time, and then generate 1/4 of the input voltage Vin as the output voltage Vout. When the output voltage Vout exceeds the upper limit of the output voltage, the controller 12 can make the first conduction time of the first group of switches 101 shorter than the first period of the first group of switches 101 by adjusting the first control signal Sc1 to be less than 50% of the duty cycle. Cut-off time, and adjust the second control signal Sc2 to be less than 50% of the duty cycle and control the second on-time of the second group of switches 102 to be less than the second off-time of the second group of switches 102, thereby adjusting the output voltage Vout at the output voltage within the upper limit to provide overvoltage protection. When the output voltage Vout is much higher than 13V, the controller 12 can adjust the first control signal Sc1 and the second control signal Sc2 to close to 0% duty cycle to turn off the RSCC 10 and provide overvoltage protection. The first on-time and the second on-time are non-overlapping, and the length of the first on-time can be equal to the length of the second on-time, and the length of the first off-time can be equal to the length of the second off-time.

在一些實施例中,於開機時,第一導通時間及第二導通時間可等於預設導通時間,並由預設導通時間逐漸增加至穩態時的導通時間。預設導通時間可遠小於第一控制訊號Sc1及第二控制訊號Sc2的50%工作週期。例如,預設導通時間可等於第一控制訊號Sc1及第二控制訊號Sc2的0%工作週期。於開機時,輸入電壓Vin可因為電力開關切換的影響而產生突波,控制器12可將第一控制訊號Sc1及第二控制訊號Sc2從0%工作週期(預設導通時間)逐漸調整至48%工作週期(穩態時的導通時間),藉以穩定直流-直流功率轉換系統1而不受開機時輸入電壓Vin的影響。In some embodiments, when starting up, the first on-time and the second on-time may be equal to the preset on-time, and gradually increase from the preset on-time to the on-time in a steady state. The preset on-time can be much shorter than 50% duty cycle of the first control signal Sc1 and the second control signal Sc2. For example, the preset on-time may be equal to the 0% duty cycle of the first control signal Sc1 and the second control signal Sc2. When starting up, the input voltage Vin may have a surge due to the influence of the switching of the power switch, the controller 12 can gradually adjust the first control signal Sc1 and the second control signal Sc2 from 0% duty cycle (preset conduction time) to 48 % duty cycle (on-time in steady state), so as to stabilize the DC-DC power conversion system 1 without being affected by the input voltage Vin during startup.

直流-直流功率轉換系統1依據輸出電壓Vout調整第一控制訊號Sc1及第二控制訊號Sc2以調節輸出電壓Vout,在不大幅增加電路面積的情況下提供過電壓保護。The DC-DC power conversion system 1 adjusts the first control signal Sc1 and the second control signal Sc2 according to the output voltage Vout to adjust the output voltage Vout, and provides overvoltage protection without greatly increasing the circuit area.

第3圖係為直流-直流功率轉換系統1的功率轉換方法300之流程圖。功率轉換方法300包含步驟S302至S308,用以調節輸出電壓Vout。任何合理的技術變更或是步驟調整都屬於本發明所揭露的範疇。以下說明步驟S302至S308:FIG. 3 is a flowchart of the power conversion method 300 of the DC-DC power conversion system 1 . The power conversion method 300 includes steps S302 to S308 for adjusting the output voltage Vout. Any reasonable technical changes or step adjustments fall within the scope of the disclosure of the present invention. Steps S302 to S308 are described below:

步驟S302:  RSCC 10於第一狀態及第二狀態之間切換以產生輸出電壓Vout;Step S302: RSCC 10 is switched between the first state and the second state to generate the output voltage Vout;

步驟S304:  控制器12依據輸出電壓Vout調整第一控制訊號Sc1及第二控制訊號Sc2;Step S304: the controller 12 adjusts the first control signal Sc1 and the second control signal Sc2 according to the output voltage Vout;

步驟S306:  第一組開關101接收第一控制訊號Sc1以於第一狀態時導通第一導通時間;Step S306: the first group of switches 101 receives the first control signal Sc1 to conduct the first conduction time in the first state;

步驟S308:  第二組開關102接收第二控制訊號Sc2於第二狀態時導通第二導通時間。Step S308: The second switch 102 is turned on for a second conduction time when it receives the second control signal Sc2 and is in the second state.

功率轉換方法300的詳細說明可於前面段落找到,在此不再贅述。The detailed description of the power conversion method 300 can be found in the preceding paragraphs, and will not be repeated here.

第4圖係為一種控制器12的電路示意圖。控制器12包含分壓器120、第一比較電路121、第二比較電路122、第一及閘123、正反器124、第二及閘125及第三及閘126。分壓器120耦接於輸出電容Co之第一端,第一比較電路121耦接於分壓器120,第二比較電路122耦接於第一比較電路121,第一及閘123耦接於第二比較電路122,正反器124耦接於第一及閘123,第二及閘125及第三及閘126耦接於正反器124。FIG. 4 is a schematic circuit diagram of a controller 12 . The controller 12 includes a voltage divider 120 , a first comparison circuit 121 , a second comparison circuit 122 , a first sum gate 123 , a flip-flop 124 , a second sum gate 125 and a third sum gate 126 . The voltage divider 120 is coupled to the first end of the output capacitor Co, the first comparison circuit 121 is coupled to the voltage divider 120, the second comparison circuit 122 is coupled to the first comparison circuit 121, and the first AND gate 123 is coupled to In the second comparison circuit 122 , the flip-flop 124 is coupled to the first AND gate 123 , and the second AND gate 125 and the third AND gate 126 are coupled to the flip-flop 124 .

分壓器120可從輸出電容Co之第一端接收輸出電壓Vout以產生輸出電壓Vout之分壓Vd。分壓器120可包含電阻Rd1及Rd2。電阻Rd1包含第一端,耦接於輸出電容Co之第一端;及第二端。電阻Rd2包含第一端,耦接於電阻Rd1之第二端,用以提供分壓Vd;及第二端,耦接於接地端。The voltage divider 120 can receive the output voltage Vout from the first terminal of the output capacitor Co to generate a divided voltage Vd of the output voltage Vout. The voltage divider 120 may include resistors Rd1 and Rd2. The resistor Rd1 includes a first terminal coupled to the first terminal of the output capacitor Co; and a second terminal. The resistor Rd2 includes a first terminal coupled to the second terminal of the resistor Rd1 for providing a divided voltage Vd; and a second terminal coupled to the ground terminal.

第一比較電路121可比較分壓Vd及參考電壓Vref以產生第一比較電壓Va。參考電壓Vref可對應於輸出電壓Vout的輸出電壓上限。參考電壓Vref可為固定電壓準位。提高參考電壓Vref可提高輸出電壓上限。第一比較電路121可包含比較器1210及電容Cc。比較器1210包含正向輸入端,用以接收參考電壓Vref;反向輸入端,耦接於電阻Rd1之第二端,用以接收分壓Vd;及輸出端,用以依據參考電壓Vref及分壓Vd之間的差值輸出比較電流。比較器1210可具有增益gm。比較電流可與參考電壓Vref及分壓Vd之間的差值成正相關。電容Cc包含第一端,耦接於比較器1210之輸出端;及第二端,耦接於接地端。比較電流可對電容Cc充電以產生第一比較電壓Va。當分壓Vd小於參考電壓Vref時,參考電壓Vref及分壓Vd之間的差值為正值,則第一比較電壓Va較大;當分壓Vd超出參考電壓Vref時,參考電壓Vref及分壓Vd之間的差值為負值,則第一比較電壓Va較小。The first comparison circuit 121 can compare the divided voltage Vd and the reference voltage Vref to generate a first comparison voltage Va. The reference voltage Vref may correspond to an output voltage upper limit of the output voltage Vout. The reference voltage Vref can be a fixed voltage level. Increasing the reference voltage Vref can increase the upper limit of the output voltage. The first comparison circuit 121 may include a comparator 1210 and a capacitor Cc. The comparator 1210 includes a positive input terminal for receiving the reference voltage Vref; an inverting input terminal coupled to the second terminal of the resistor Rd1 for receiving the divided voltage Vd; and an output terminal for receiving the divided voltage Vd according to the reference voltage Vref and the divided voltage. The difference between the voltage Vd outputs a comparison current. Comparator 1210 may have a gain gm. The comparison current may be positively correlated with the difference between the reference voltage Vref and the divided voltage Vd. The capacitor Cc includes a first terminal coupled to the output terminal of the comparator 1210 ; and a second terminal coupled to the ground terminal. The comparison current can charge the capacitor Cc to generate the first comparison voltage Va. When the divided voltage Vd is less than the reference voltage Vref, the difference between the reference voltage Vref and the divided voltage Vd is positive, and the first comparison voltage Va is larger; when the divided voltage Vd exceeds the reference voltage Vref, the reference voltage Vref and the divided voltage If the difference between the voltages Vd is negative, the first comparison voltage Va is smaller.

第二比較電路122可比較第一比較電壓Va及斜坡電壓Vramp以產生第二比較電壓Vc。斜坡電壓Vramp可為鋸齒波(sawtooth wave),可由外部訊號產生器依據時脈訊號CLK產生。鋸齒波的周期和時脈訊號CLK的周期可相同。第二比較電路122包含正向輸入端,耦接於電容Cc之第一端,用以接收第一比較電壓Va;反向輸入端,用以接收斜坡電壓Vramp;及輸出端,用以依據第一比較電壓Va及斜坡電壓Vramp之間的差值輸出第二比較電壓Vc。當斜坡電壓Vramp小於第一比較電壓Va時,第二比較電壓Vc可為邏輯高準位;當斜坡電壓Vramp超出第一比較電壓Va時,第二比較電壓Vc可為邏輯低準位。The second comparison circuit 122 can compare the first comparison voltage Va and the ramp voltage Vramp to generate a second comparison voltage Vc. The ramp voltage Vramp can be a sawtooth wave, which can be generated by an external signal generator according to the clock signal CLK. The period of the sawtooth wave and the period of the clock signal CLK can be the same. The second comparison circuit 122 includes a positive input end coupled to the first end of the capacitor Cc for receiving the first comparison voltage Va; an inverting input end for receiving the ramp voltage Vramp; and an output end for receiving the first comparison voltage Va; A difference between the comparison voltage Va and the ramp voltage Vramp outputs a second comparison voltage Vc. When the ramp voltage Vramp is smaller than the first comparison voltage Va, the second comparison voltage Vc can be at a logic high level; when the ramp voltage Vramp exceeds the first comparison voltage Va, the second comparison voltage Vc can be at a logic low level.

第一及閘123可對第二比較電壓Vc及時脈訊號CLK進行及運算(AND operation)以產生控制訊號Vb。第一及閘123可包含第一輸入端,耦接於第二比較電路122之輸出端,用以接收第二比較電壓Vc;第二輸入端,用以接收時脈訊號CLK;及輸出端,用以輸出控制訊號Vb。時脈訊號CLK的頻率可與第一組開關101及第二組開關102的切換頻率成正相關。例如,時脈訊號CLK的1/2頻率可為第一組開關101及第二組開關102的切換頻率。若輸出電壓Vout超出輸出電壓上限,則控制訊號Vb及第二比較電壓Vc的波形可相同。若輸出電壓Vout小於輸出電壓上限,則控制訊號Vb及時脈訊號CLK的波形可相同。The first AND gate 123 can perform an AND operation on the second comparison voltage Vc and the clock signal CLK to generate the control signal Vb. The first AND gate 123 may include a first input end coupled to the output end of the second comparison circuit 122 for receiving the second comparison voltage Vc; a second input end for receiving the clock signal CLK; and an output end, Used to output the control signal Vb. The frequency of the clock signal CLK may be positively correlated with the switching frequencies of the first set of switches 101 and the second set of switches 102 . For example, the 1/2 frequency of the clock signal CLK can be the switching frequency of the first set of switches 101 and the second set of switches 102 . If the output voltage Vout exceeds the upper limit of the output voltage, the waveforms of the control signal Vb and the second comparison voltage Vc may be the same. If the output voltage Vout is lower than the upper limit of the output voltage, the waveforms of the control signal Vb and the clock signal CLK can be the same.

正反器124可依據控制訊號Vb產生輸出訊號Sq及反向輸出訊號Sqb。輸出訊號Sq及反向輸出訊號Sqb可互為反向訊號。正反器124可為JK正反器,包含J輸入端,用以接收邏輯高準位SH;K輸入端,用以接收邏輯高準位SH;時脈輸入端ck,耦接於第一及閘123之輸出端,用以接收控制訊號Vb;輸出端Q,用以將輸出訊號Sq輸出;及反向輸出端

Figure 02_image001
,用以將反向輸出訊號Sqb。正反器124可在每次控制訊號Vb的上升緣對輸出訊號Sq及反向輸出訊號Sqb進行反向切換(toggle)。 The flip-flop 124 can generate an output signal Sq and an inverted output signal Sqb according to the control signal Vb. The output signal Sq and the inverted output signal Sqb can be mutually inverted signals. The flip-flop 124 can be a JK flip-flop, including a J input terminal for receiving a logic high level SH; a K input terminal for receiving a logic high level SH; a clock input terminal ck coupled to the first and The output terminal of the gate 123 is used to receive the control signal Vb; the output terminal Q is used to output the output signal Sq; and the reverse output terminal
Figure 02_image001
, used to reverse the output signal Sqb. The flip-flop 124 can reversely switch the output signal Sq and the reverse output signal Sqb every time the control signal Vb rises.

第二及閘125可對控制訊號Vb及輸出訊號Sq進行及運算以產生第一控制訊號Sc1。第三及閘126可對控制訊號Vb及反向輸出訊號Sqb進行及運算以產生第二控制訊號Sc2。The second AND gate 125 can perform an AND operation on the control signal Vb and the output signal Sq to generate the first control signal Sc1. The third AND gate 126 can perform an AND operation on the control signal Vb and the inverted output signal Sqb to generate the second control signal Sc2.

以下搭配第5圖來解釋第4圖之控制器12的運作。第5圖係為第4圖之在分壓Vd超出參考電壓Vref時控制器12的波形圖,其中橫軸表示時間,縱軸表示訊號大小。The operation of the controller 12 in FIG. 4 will be explained below with FIG. 5 . FIG. 5 is a waveform diagram of the controller 12 when the divided voltage Vd exceeds the reference voltage Vref in FIG. 4, wherein the horizontal axis represents time, and the vertical axis represents signal magnitude.

在時間t1及t2之間,斜坡電壓Vramp小於第一比較電壓Va,控制訊號Vb為邏輯高準位。正反器124可輸出邏輯高準位作為控制訊號Vb,及可輸出邏輯低準位作為反向輸出訊號Sqb,因此第二及閘125對控制訊號Vb及輸出訊號Sq進行及運算以產生邏輯高準位作為第一控制訊號Sc1,且第三及閘126對控制訊號Vb及反向輸出訊號Sqb進行及運算以產生邏輯低準位作為第二控制訊號Sc2。時間t1至t2可為第一組開關101之第一導通時間,以時段Td1表示。當輸出電壓Vout超出輸出電壓上限,時段Td1的長度可隨輸出電壓Vout超出輸出電壓上限的電壓而隨之縮短。Between time t1 and t2, the ramp voltage Vramp is smaller than the first comparison voltage Va, and the control signal Vb is at a logic high level. The flip-flop 124 can output a logic high level as the control signal Vb, and can output a logic low level as the inverted output signal Sqb, so the second AND gate 125 performs an AND operation on the control signal Vb and the output signal Sq to generate a logic high The level is used as the first control signal Sc1, and the third AND gate 126 performs an AND operation on the control signal Vb and the inverted output signal Sqb to generate a logic low level as the second control signal Sc2. The time t1 to t2 may be the first conduction time of the first set of switches 101 , represented by a time period Td1 . When the output voltage Vout exceeds the upper limit of the output voltage, the length of the period Td1 can be shortened as the output voltage Vout exceeds the upper limit of the output voltage.

在時間t2及t4之間,斜坡電壓Vramp超出第一比較電壓Va,控制訊號Vb為邏輯低準位。正反器124將控制訊號Vb維持於邏輯高準位,及將反向輸出訊號Sqb維持於邏輯低準位,因此第二及閘125對控制訊號Vb及輸出訊號Sq進行及運算以產生邏輯低準位作為第一控制訊號Sc1,且第三及閘126對控制訊號Vb及反向輸出訊號Sqb進行及運算以產生邏輯低準位作為第二控制訊號Sc2。Between time t2 and t4, the ramp voltage Vramp exceeds the first comparison voltage Va, and the control signal Vb is at a logic low level. The flip-flop 124 maintains the control signal Vb at a logic high level, and maintains the inverted output signal Sqb at a logic low level, so the second AND gate 125 performs an AND operation on the control signal Vb and the output signal Sq to generate a logic low The level is used as the first control signal Sc1, and the third AND gate 126 performs an AND operation on the control signal Vb and the inverted output signal Sqb to generate a logic low level as the second control signal Sc2.

在時間t4及t5之間,斜坡電壓Vramp小於第一比較電壓Va,控制訊號Vb為邏輯高準位。正反器124在控制訊號Vb的上升緣將控制訊號Vb切換邏輯低準位,及將反向輸出訊號Sqb切換邏輯高準位,因此第二及閘125對控制訊號Vb及輸出訊號Sq進行及運算以產生邏輯低準位作為第一控制訊號Sc1,且第三及閘126對控制訊號Vb及反向輸出訊號Sqb進行及運算以產生邏輯高準位作為第二控制訊號Sc2。時間t4至t5可為第二組開關102之第二導通時間,以時段Td3表示。當輸出電壓Vout超出輸出電壓上限,時段Td3的長度可隨輸出電壓Vout超出輸出電壓上限的電壓而隨之縮短。時段Td3及時段Td1的長度可相等。Between time t4 and t5, the ramp voltage Vramp is smaller than the first comparison voltage Va, and the control signal Vb is at a logic high level. The flip-flop 124 switches the control signal Vb to a logic low level at the rising edge of the control signal Vb, and switches the inverted output signal Sqb to a logic high level, so the second AND gate 125 performs AND on the control signal Vb and the output signal Sq The operation is performed to generate a logic low level as the first control signal Sc1, and the third AND gate 126 performs an AND operation on the control signal Vb and the inverted output signal Sqb to generate a logic high level as the second control signal Sc2. The time t4 to t5 may be the second conduction time of the second set of switches 102 , represented by a time period Td3 . When the output voltage Vout exceeds the upper limit of the output voltage, the length of the period Td3 can be shortened as the output voltage Vout exceeds the upper limit of the output voltage. The duration Td3 and the duration Td1 may be equal in length.

在時間t5及t7之間,斜坡電壓Vramp超出第一比較電壓Va,控制訊號Vb為邏輯低準位。正反器124將控制訊號Vb維持於邏輯低準位,及將反向輸出訊號Sqb維持於邏輯高準位,因此第二及閘125對控制訊號Vb及輸出訊號Sq進行及運算以產生邏輯低準位作為第一控制訊號Sc1,且第三及閘126對控制訊號Vb及反向輸出訊號Sqb進行及運算以產生邏輯低準位作為第二控制訊號Sc2。時間t2至t7可為第一組開關101之第一截止時間。Between time t5 and t7, the ramp voltage Vramp exceeds the first comparison voltage Va, and the control signal Vb is at a logic low level. The flip-flop 124 maintains the control signal Vb at a logic low level, and maintains the inverted output signal Sqb at a logic high level, so the second AND gate 125 performs an AND operation on the control signal Vb and the output signal Sq to generate a logic low The level is used as the first control signal Sc1, and the third AND gate 126 performs an AND operation on the control signal Vb and the inverted output signal Sqb to generate a logic low level as the second control signal Sc2. The time t2 to t7 may be the first turn-off time of the first set of switches 101 .

控制器12可以相同方式於時間t8再次將第二控制訊號Sc2切換為邏輯高準位。時間t5至t8可為第二組開關102之第二截止時間。The controller 12 can switch the second control signal Sc2 to a logic high level again at time t8 in the same manner. The time t5 to t8 may be the second turn-off time of the second set of switches 102 .

若輸出電壓Vout小於輸出電壓上限,分壓Vd會小於參考電壓Vref,第一比較電壓Va會大於斜坡電壓Vramp的最大值,控制訊號Vc會維持在邏輯高準位,第二比較電壓Vc會維持在邏輯高準位,控制訊號Vb的波形和時脈訊號CLK的波形會相同。第一控制訊號Sc1在時間t1及t3之間為邏輯高準位,在時間t3及t4之間為邏輯低準位。第二控制訊號Sc2在時間t4及t6之間為邏輯高準位,在時間t6及t7之間為邏輯低準位。在時間t3及t4之間及時間t6及t7之間,第一控制訊號Sc1及第二控制訊號Sc2被強制設置為邏輯低準位,以確保第一組開關101及第二組開關102不會同時導通。時間t3至t4以時段Td2表示。If the output voltage Vout is lower than the upper limit of the output voltage, the divided voltage Vd will be lower than the reference voltage Vref, the first comparison voltage Va will be greater than the maximum value of the ramp voltage Vramp, the control signal Vc will maintain a logic high level, and the second comparison voltage Vc will maintain At the logic high level, the waveform of the control signal Vb is the same as that of the clock signal CLK. The first control signal Sc1 is at a logic high level between time t1 and t3, and is at a logic low level between time t3 and t4. The second control signal Sc2 is at a logic high level between time t4 and t6, and is at a logic low level between time t6 and t7. Between time t3 and t4 and between time t6 and t7, the first control signal Sc1 and the second control signal Sc2 are forced to be set to a logic low level to ensure that the first set of switches 101 and the second set of switches 102 will not turn on at the same time. Time t3 to t4 is represented by a period Td2.

第6圖係為第1圖之直流-直流功率轉換系統的第一控制訊號Sc1及第二控制訊號Sc2皆實質上為50%工作週期時之模擬波形圖。第7圖係為第1圖之直流-直流功率轉換系統的第一控制訊號Sc1及第二控制訊號Sc2皆實質上為25%工作週期時之模擬波形圖。第6及7圖的模擬環境為第2圖的直流-直流功率轉換系統1,輸入電壓Vin為48V,第一共振電容C1的電容值及第二共振電容C2的電容值為4uF,儲存電容C3的電容值為100uF,第一共振電感L1及第二共振電感L2的電感值為25nH,第一組開關101及第二組開關102的切換頻率為500kHz。FIG. 6 is a simulated waveform diagram when both the first control signal Sc1 and the second control signal Sc2 of the DC-DC power conversion system in FIG. 1 are substantially at 50% duty cycle. FIG. 7 is a simulated waveform diagram when both the first control signal Sc1 and the second control signal Sc2 of the DC-DC power conversion system in FIG. 1 are substantially 25% duty cycle. The simulation environment in Figures 6 and 7 is the DC-DC power conversion system 1 in Figure 2, the input voltage Vin is 48V, the capacitance value of the first resonance capacitor C1 and the capacitance value of the second resonance capacitor C2 are 4uF, and the storage capacitor C3 The capacitance of the capacitor is 100uF, the inductance of the first resonant inductor L1 and the second resonant inductor L2 is 25nH, and the switching frequency of the first set of switches 101 and the second set of switches 102 is 500kHz.

當第一控制訊號Sc1及第二控制訊號Sc2皆實質上為50%工作週期時,第6圖的波形圖顯示輸出電壓Vout以12V為中心上下震盪,輸出電壓Vout約等於輸入電壓Vin的1/4,漣波(ripple)大小約為0.02V(峰到峰)。輸出電流Io為弦波電流,第一共振電容C1的跨壓VC1及第二共振電容C2的跨壓VC2為完整弦波電壓且互為反向,電流Io1及電流Io2為完整弦波電流且互為反向。在時間t1及t2之間,電流Io1對輸出電容Co充電且電流Io2對輸出電容Co放電以產生輸出電壓Vout。在時間t2及t3之間,電流Io1對輸出電容Co放電且電流Io2對輸出電容Co充電以產生輸出電壓Vout。When both the first control signal Sc1 and the second control signal Sc2 are substantially at 50% duty cycle, the waveform diagram in Figure 6 shows that the output voltage Vout oscillates around 12V, and the output voltage Vout is approximately equal to 1/ of the input voltage Vin 4. The ripple (ripple) is about 0.02V (peak to peak). The output current Io is a sinusoidal current, the cross-voltage VC1 of the first resonant capacitor C1 and the cross-voltage VC2 of the second resonant capacitor C2 are complete sinusoidal voltages and are opposite to each other, and the current Io1 and current Io2 are complete sinusoidal currents and mutually for reverse. Between time t1 and t2, the current Io1 charges the output capacitor Co and the current Io2 discharges the output capacitor Co to generate the output voltage Vout. Between time t2 and t3, the current Io1 discharges the output capacitor Co and the current Io2 charges the output capacitor Co to generate the output voltage Vout.

當第一控制訊號Sc1及第二控制訊號Sc2皆實質上為25%工作週期時,第7圖的波形圖顯示輸出電壓Vout以11.7V為中心上下震盪,輸出電壓Vout小於輸入電壓Vin的1/4。第一共振電容C1的跨壓VC1及第二共振電容C2的跨壓VC2皆為部分弦波電壓及部分方波電壓,且跨壓VC1及跨壓VC2互為反向,電流Io1及電流Io2為部分弦波電流且互為反向。在時間t1及t2之間,電流Io1對輸出電容Co充電且電流Io2對輸出電容Co放電以產生輸出電壓Vout。在時間t2及t3之間,電流Io1及電流Io2為0A。在時間t3及t4之間,電流Io1對輸出電容Co放電且電流Io2對輸出電容Co充電以產生輸出電壓Vout。在時間t4及t5之間,電流Io1及電流Io2為0A。由於電流Io1及電流Io2為部分弦波電流,只對輸出電容Co進行部分充放電,因此產生小於輸入電壓Vin的1/4的輸出電壓Vout。When both the first control signal Sc1 and the second control signal Sc2 are substantially at 25% duty cycle, the waveform diagram in Figure 7 shows that the output voltage Vout oscillates around 11.7V, and the output voltage Vout is less than 1/ of the input voltage Vin 4. The cross-voltage VC1 of the first resonant capacitor C1 and the cross-voltage VC2 of the second resonant capacitor C2 are part of the sine wave voltage and part of the square wave voltage, and the cross-voltage VC1 and the cross-voltage VC2 are opposite to each other, and the current Io1 and the current Io2 are Some sine wave currents are opposite to each other. Between time t1 and t2, the current Io1 charges the output capacitor Co and the current Io2 discharges the output capacitor Co to generate the output voltage Vout. Between time t2 and t3, the current Io1 and the current Io2 are 0A. Between time t3 and t4, the current Io1 discharges the output capacitor Co and the current Io2 charges the output capacitor Co to generate the output voltage Vout. Between time t4 and t5, the current Io1 and the current Io2 are 0A. Since the current Io1 and the current Io2 are partial sine wave currents, only part of the output capacitor Co is charged and discharged, so an output voltage Vout less than 1/4 of the input voltage Vin is generated.

第8圖係為另一種諧振切換式電容轉換器10的電路示意圖。第8圖和第2圖之諧振切換式電容轉換器10的差異在於第8圖之第一共振電容C1及第一共振電感L1互相直接耦接,第二共振電容C2及第二共振電感L2互相直接耦接,第一共振電感L1及第二共振電感L2並未直接耦接於輸出電容Co。第8圖之諧振切換式電容轉換器10可替換第2圖之諧振切換式電容轉換器10。FIG. 8 is a schematic circuit diagram of another resonant switched capacitive converter 10 . The difference between the resonant switched capacitor converter 10 in FIG. 8 and FIG. 2 is that the first resonant capacitor C1 and the first resonant inductance L1 in FIG. 8 are directly coupled to each other, and the second resonant capacitor C2 and the second resonant inductance L2 are mutually connected. Directly coupled, the first resonant inductor L1 and the second resonant inductor L2 are not directly coupled to the output capacitor Co. The resonant switched capacitive converter 10 in FIG. 8 can replace the resonant switched capacitive converter 10 in FIG. 2 .

第一共振槽103包含第一共振電容C1及第一共振電感L1。第一共振電容C1具有第一端及第二端。第一共振電感L1耦接於第一共振電容C1之第二端;及第二端。第二共振槽104包含第二共振電容C2及第二共振電感L2。第二共振電容C2具有第一端及第二端。第二共振電感L2具有第一端,耦接於第二共振電容C2之第二端;及第二端。輸出電容Co具有第一端,可產生輸出電壓Vout;及第二端,耦接於接地端。The first resonance tank 103 includes a first resonance capacitor C1 and a first resonance inductor L1. The first resonant capacitor C1 has a first terminal and a second terminal. The first resonant inductor L1 is coupled to the second end of the first resonant capacitor C1; and the second end. The second resonance tank 104 includes a second resonance capacitor C2 and a second resonance inductor L2. The second resonance capacitor C2 has a first terminal and a second terminal. The second resonant inductor L2 has a first end coupled to the second end of the second resonant capacitor C2; and a second end. The output capacitor Co has a first terminal capable of generating the output voltage Vout; and a second terminal coupled to the ground terminal.

電晶體Q1至Q3、Q7及Q8可形成第一組開關101。電晶體Q1具有第一端,耦接於輸入端14;第二端,耦接於儲存電容C3之第一端;及控制端,用以接收第一控制訊號Sc1。電晶體Q2具有第一端,耦接於儲存電容C3之第二端;第二端,耦接於第一共振電容C1之第一端;及控制端,用以接收第一控制訊號Sc1。電晶體Q3具有第一端,耦接於第一共振電感L1之第二端;第二端,耦接於輸出電容Co之第一端;及控制端,用以接收第一控制訊號Sc1。電晶體Q7具有第一端,耦接於輸出電容Co之第一端;第二端,耦接於第二共振電容C2之第一端;及控制端,用以接收第一控制訊號Sc1。電晶體Q8具有第一端,耦接於第二共振電感L2之第二端;第二端,耦接於接地端;及控制端,用以接收第一控制訊號Sc1。Transistors Q1 to Q3 , Q7 and Q8 can form a first set of switches 101 . The transistor Q1 has a first terminal coupled to the input terminal 14 ; a second terminal coupled to the first terminal of the storage capacitor C3 ; and a control terminal for receiving the first control signal Sc1 . The transistor Q2 has a first terminal coupled to the second terminal of the storage capacitor C3; a second terminal coupled to the first terminal of the first resonant capacitor C1; and a control terminal for receiving the first control signal Sc1. The transistor Q3 has a first terminal coupled to the second terminal of the first resonant inductor L1; a second terminal coupled to the first terminal of the output capacitor Co; and a control terminal for receiving the first control signal Sc1. The transistor Q7 has a first terminal coupled to the first terminal of the output capacitor Co; a second terminal coupled to the first terminal of the second resonant capacitor C2; and a control terminal for receiving the first control signal Sc1. The transistor Q8 has a first terminal coupled to the second terminal of the second resonant inductor L2; a second terminal coupled to the ground terminal; and a control terminal for receiving the first control signal Sc1.

電晶體Q4至Q6、Q9及Q10可形成及第二組開關102。電晶體Q4具有第一端,耦接於第二共振電容C2之第一端;第二端,耦接於儲存電容C3之第一端;及控制端,用以接收第二控制訊號Sc2。電晶體Q5具有第一端,耦接於儲存電容C3之第二端;第二端,耦接於接地端;及控制端,用以接收第二控制訊號Sc2。電晶體Q6具有第一端,耦接於第二共振電感L2之第二端;第二端,耦接於輸出電容Co之第一端;及控制端,用以接收第二控制訊號Sc2。電晶體Q9具有第一端,耦接於輸出電容Co之第一端;第二端,耦接於第一共振電容C1之第一端;及控制端,用以接收第二控制訊號Sc2。電晶體Q10具有第一端,耦接於第一共振電感L1之第二端;第二端,耦接於接地端;及控制端,用以接收第二控制訊號Sc2。Transistors Q4 to Q6 , Q9 and Q10 may form a second set of switches 102 . The transistor Q4 has a first terminal coupled to the first terminal of the second resonance capacitor C2; a second terminal coupled to the first terminal of the storage capacitor C3; and a control terminal for receiving the second control signal Sc2. The transistor Q5 has a first terminal coupled to the second terminal of the storage capacitor C3; a second terminal coupled to the ground terminal; and a control terminal for receiving the second control signal Sc2. The transistor Q6 has a first terminal coupled to the second terminal of the second resonant inductor L2; a second terminal coupled to the first terminal of the output capacitor Co; and a control terminal for receiving the second control signal Sc2. The transistor Q9 has a first terminal coupled to the first terminal of the output capacitor Co; a second terminal coupled to the first terminal of the first resonant capacitor C1; and a control terminal for receiving the second control signal Sc2. The transistor Q10 has a first terminal coupled to the second terminal of the first resonant inductor L1; a second terminal coupled to the ground terminal; and a control terminal for receiving the second control signal Sc2.

第8圖和第2圖之諧振切換式電容轉換器10的運作方式相似,其說明可於前面段落找到,在此不再贅述。The operation of the resonant switched capacitor converter 10 in FIG. 8 is similar to that in FIG. 2 , and its description can be found in the previous paragraphs, and will not be repeated here.

第9圖係為另一種諧振切換式電容轉換器10的電路示意圖,可替換第2圖之諧振切換式電容轉換器10。第9圖的RSCC 10可包含第一共振槽103、第二共振槽104、儲存電容C92、輸出電容Co、及電晶體Q91至Q910。電晶體Q91至Q910可為N型MOSFET,但不限於此。FIG. 9 is a schematic circuit diagram of another resonant switched capacitive converter 10 , which can replace the resonant switched capacitive converter 10 in FIG. 2 . The RSCC 10 of FIG. 9 may include a first resonant tank 103, a second resonant tank 104, a storage capacitor C92, an output capacitor Co, and transistors Q91 to Q910. The transistors Q91 to Q910 can be N-type MOSFETs, but are not limited thereto.

第一共振槽103包含第一共振電容C91及第一共振電感L91。第一共振電容C91具有第一端及第二端。第一共振電感L91具有第一端,耦接於第一共振電容C91之第二端;及第二端。耦接於接地端。儲存電容C92具有第一端及第二端。第二共振槽104包含第二共振電容C93及第二共振電感L92。第二共振電容C92具有第一端及第二端。第二共振電感L92具有第一端,耦接於第二共振電容C92之第二端;及第二端。輸出電容Co具有第一端,可產生輸出電壓Vout;及第二端。The first resonance tank 103 includes a first resonance capacitor C91 and a first resonance inductor L91. The first resonant capacitor C91 has a first terminal and a second terminal. The first resonant inductor L91 has a first end coupled to the second end of the first resonant capacitor C91; and a second end. Coupled to ground. The storage capacitor C92 has a first terminal and a second terminal. The second resonance tank 104 includes a second resonance capacitor C93 and a second resonance inductor L92. The second resonant capacitor C92 has a first terminal and a second terminal. The second resonant inductor L92 has a first end coupled to the second end of the second resonant capacitor C92; and a second end. The output capacitor Co has a first terminal capable of generating an output voltage Vout; and a second terminal.

電晶體Q91、Q93、Q95、Q98及Q99可形成第一組開關101。電晶體Q91具有第一端,耦接於輸入端14;第二端,耦接於第二共振電容C93之第一端;及控制端,用以接收第一控制訊號Sc1。電晶體Q93具有第一端,耦接於儲存電容C92之第一端;第二端,耦接於第一共振電容C91之第一端;及控制端,用以接收第一控制訊號Sc1。電晶體Q95具有第一端,耦接於第二共振電感L92之第二端;第二端,耦接於輸出電容Co之第一端;及控制端,用以接收第一控制訊號Sc1。電晶體Q98具有第一端,耦接於儲存電容C92之第二端;第二端,耦接於接地端;及控制端,用以接收第一控制訊號Sc1。電晶體Q99具有第一端,耦接於第一共振電感L91之第二端;第二端,耦接於輸出電容Co之第一端;及控制端,用以接收第一控制訊號Sc1。Transistors Q91 , Q93 , Q95 , Q98 and Q99 form a first set of switches 101 . The transistor Q91 has a first terminal coupled to the input terminal 14 ; a second terminal coupled to the first terminal of the second resonant capacitor C93 ; and a control terminal for receiving the first control signal Sc1. The transistor Q93 has a first terminal coupled to the first terminal of the storage capacitor C92; a second terminal coupled to the first terminal of the first resonant capacitor C91; and a control terminal for receiving the first control signal Sc1. The transistor Q95 has a first terminal coupled to the second terminal of the second resonant inductor L92; a second terminal coupled to the first terminal of the output capacitor Co; and a control terminal for receiving the first control signal Sc1. The transistor Q98 has a first terminal coupled to the second terminal of the storage capacitor C92; a second terminal coupled to the ground terminal; and a control terminal for receiving the first control signal Sc1. The transistor Q99 has a first terminal coupled to the second terminal of the first resonant inductor L91; a second terminal coupled to the first terminal of the output capacitor Co; and a control terminal for receiving the first control signal Sc1.

電晶體Q92、Q94、Q96、Q97及Q910可形成及第二組開關102。電晶體Q92具有第一端,耦接於第二共振電容C93之第一端;第二端,耦接於儲存電容C92之第一端;及控制端,用以接收第二控制訊號Sc2。電晶體Q94具有第一端,耦接於第一共振電容C91之第一端;第二端,耦接於輸出電容Co之第一端;及控制端,用以接收第二控制訊號Sc2。電晶體Q96具有第一端,耦接於第二共振電感L92之第二端;第二端,耦接於接地端;及控制端,用以接收第二控制訊號Sc2。電晶體Q97具有第一端,耦接於儲存電容C92之第二端;第二端,耦接於輸出電容Co之第一端;及控制端,用以接收第二控制訊號Sc2。電晶體Q910具有第一端,耦接於第一共振電感L91之第二端;第二端,耦接於接地端;及控制端,用以接收第二控制訊號Sc2。Transistors Q92 , Q94 , Q96 , Q97 and Q910 may form the second set of switches 102 . The transistor Q92 has a first terminal coupled to the first terminal of the second resonant capacitor C93; a second terminal coupled to the first terminal of the storage capacitor C92; and a control terminal for receiving the second control signal Sc2. The transistor Q94 has a first end coupled to the first end of the first resonant capacitor C91; a second end coupled to the first end of the output capacitor Co; and a control end for receiving the second control signal Sc2. The transistor Q96 has a first terminal coupled to the second terminal of the second resonant inductor L92; a second terminal coupled to the ground terminal; and a control terminal for receiving the second control signal Sc2. The transistor Q97 has a first end coupled to the second end of the storage capacitor C92; a second end coupled to the first end of the output capacitor Co; and a control end for receiving the second control signal Sc2. The transistor Q910 has a first terminal coupled to the second terminal of the first resonant inductor L91; a second terminal coupled to the ground terminal; and a control terminal for receiving the second control signal Sc2.

在運作時,第一共振槽103及第二共振槽104分別提供2比1的電壓轉換比,儲存電容C92提供1比1的電壓轉換比,使RSCC 10提供4比1的電壓轉換比。第二共振電容C93的跨壓可為3倍的輸出電壓Vout,儲存電容C的跨壓可為2倍的輸出電壓Vout,且第一共振電容C91及輸出電容Co的跨壓可分別為1倍的輸出電壓Vout。在一些實施例中,儲存電容C92亦可與電感串聯以形成另一共振槽。During operation, the first resonant tank 103 and the second resonant tank 104 respectively provide a voltage conversion ratio of 2:1, and the storage capacitor C92 provides a voltage conversion ratio of 1:1, so that the RSCC 10 provides a voltage conversion ratio of 4:1. The voltage across the second resonant capacitor C93 can be 3 times the output voltage Vout, the voltage across the storage capacitor C can be 2 times the output voltage Vout, and the voltage across the first resonant capacitor C91 and the output capacitor Co can be 1 times respectively The output voltage Vout. In some embodiments, the storage capacitor C92 can also be connected in series with the inductor to form another resonant tank.

在第一狀態時,第一組開關101及第二組開關102可設置以使第二共振電容C93之第一端耦接於輸入端14,第二共振電感L92之第一端耦接於第二共振電容C93之第二端,第一共振電感L91之第二端耦接於第二共振電感L92之第二端,第一共振電容C91之第二端耦接於第一共振電感L91之第一端,儲存電容C92之第一端耦接於第一共振電容C91之第一端,儲存電容C92之第二端耦接於接地端,輸出電容Co之第一端耦接於第一共振電感L91之第二端及第二共振電感L92之第二端,及輸出電容Co之第二端耦接於接地端。第二共振電容C93及輸出電容Co可被充電,儲存電容C92可對第一共振電容C91及輸出電容Co進行放電。In the first state, the first set of switches 101 and the second set of switches 102 can be set so that the first end of the second resonant capacitor C93 is coupled to the input end 14, and the first end of the second resonant inductance L92 is coupled to the first end. The second end of the two resonant capacitors C93, the second end of the first resonant inductance L91 is coupled to the second end of the second resonant inductance L92, the second end of the first resonant capacitor C91 is coupled to the second end of the first resonant inductance L91 One end, the first end of the storage capacitor C92 is coupled to the first end of the first resonant capacitor C91, the second end of the storage capacitor C92 is coupled to the ground end, and the first end of the output capacitor Co is coupled to the first resonant inductor The second terminal of L91, the second terminal of the second resonant inductor L92, and the second terminal of the output capacitor Co are coupled to the ground terminal. The second resonant capacitor C93 and the output capacitor Co can be charged, and the storage capacitor C92 can discharge the first resonant capacitor C91 and the output capacitor Co.

在第二狀態時,第一組開關101及第二組開關102可設置以使輸出電容Co之第一端耦接於第一共振電容C91之第一端及儲存電容C92之第二端,輸出電容Co之第二端耦接於接地端,第一共振電感L91之第一端耦接於第一共振電容C91之第二端,第一共振電感L91之第二端耦接於接地端,第二共振電容C93之第一端耦接於儲存電容C92之第一端,第二共振電感L92之第一端耦接於第二共振電容C93之第二端,第一共振電感L91之第二端耦接於接地端。第一共振電容C91可對輸出電容Co進行放電,第二共振電容C93可對儲存電容C92及輸出電容Co進行放電。In the second state, the first group of switches 101 and the second group of switches 102 can be set so that the first end of the output capacitor Co is coupled to the first end of the first resonant capacitor C91 and the second end of the storage capacitor C92, and the output The second terminal of the capacitor Co is coupled to the ground terminal, the first terminal of the first resonance inductor L91 is coupled to the second terminal of the first resonance capacitor C91, the second terminal of the first resonance inductor L91 is coupled to the ground terminal, and the second terminal of the first resonance inductor L91 is coupled to the ground terminal. The first end of the two resonant capacitors C93 is coupled to the first end of the storage capacitor C92, the first end of the second resonant inductance L92 is coupled to the second end of the second resonant capacitor C93, and the second end of the first resonant inductance L91 Coupled to ground. The first resonant capacitor C91 can discharge the output capacitor Co, and the second resonant capacitor C93 can discharge the storage capacitor C92 and the output capacitor Co.

RSCC 10可於第一狀態及第二狀態之間交替切換以對RSCC 10內所有電容持續進行充放電來維持電荷平衡,同時將功率從輸入端14傳送至輸出端16以產生輸出電壓Vout。The RSCC 10 can alternately switch between the first state and the second state to continuously charge and discharge all capacitors in the RSCC 10 to maintain charge balance, and at the same time transmit power from the input terminal 14 to the output terminal 16 to generate the output voltage Vout.

第10圖係為第1圖之另一種諧振切換式電容轉換器的電路示意圖。第10圖之諧振切換式電容轉換器10可替換第2圖之諧振切換式電容轉換器10。第10圖的RSCC 10可包含第一共振槽103、第二共振電容C102、第三共振電容C103、輸出電容Co、及電晶體Q101至Q1010。電晶體Q101至Q1010可為N型MOSFET,但不限於此。FIG. 10 is a schematic circuit diagram of another resonant switched capacitor converter in FIG. 1 . The resonant switched capacitive converter 10 in FIG. 10 can replace the resonant switched capacitive converter 10 in FIG. 2 . The RSCC 10 in FIG. 10 may include a first resonant tank 103, a second resonant capacitor C102, a third resonant capacitor C103, an output capacitor Co, and transistors Q101 to Q1010. The transistors Q101 to Q1010 can be N-type MOSFETs, but are not limited thereto.

第二共振電容C102具有第一端及第二端。第三共振電容C103具有第一端及第二端。第一共振槽103包含第一共振電容C101及第一共振電感L101。第一共振電容C101具有第一端及第二端。第一共振電感L101具有第一端;及第二端,耦接於輸出電容Co之第一端。輸出電容Co具有第一端,可產生輸出電壓Vout;及第二端,耦接於接地端。第三共振電容C103具有第一端及第二端。第二共振電容C102具有第一端及第二端。The second resonant capacitor C102 has a first terminal and a second terminal. The third resonance capacitor C103 has a first terminal and a second terminal. The first resonance tank 103 includes a first resonance capacitor C101 and a first resonance inductor L101. The first resonant capacitor C101 has a first terminal and a second terminal. The first resonant inductor L101 has a first end; and a second end coupled to the first end of the output capacitor Co. The output capacitor Co has a first terminal capable of generating the output voltage Vout; and a second terminal coupled to the ground terminal. The third resonance capacitor C103 has a first terminal and a second terminal. The second resonant capacitor C102 has a first terminal and a second terminal.

電晶體Q101至Q104可形成第一組開關101。電晶體Q101具有第一端,耦接於輸入端14;第二端,耦接於第三共振電容C103之第一端;及控制端,用以接收第一控制訊號Sc1。電晶體Q102具有第一端,耦接於第三共振電容C103之第二端;第二端,耦接於第二共振電容C102之第一端;及控制端,用以接收第一控制訊號Sc1。電晶體Q103具有第一端,耦接於第二共振電容C102之第二端;第二端,耦接於第一共振電容C101之第一端;及控制端,用以接收第一控制訊號Sc1。電晶體Q104具有第一端,耦接於第一共振電容C101之第二端;第二端,耦接於第一共振電感L101之第一端;及控制端,用以接收第一控制訊號Sc1。Transistors Q101 to Q104 can form the first set of switches 101 . The transistor Q101 has a first terminal coupled to the input terminal 14 ; a second terminal coupled to the first terminal of the third resonant capacitor C103 ; and a control terminal for receiving the first control signal Sc1. The transistor Q102 has a first end coupled to the second end of the third resonant capacitor C103; a second end coupled to the first end of the second resonant capacitor C102; and a control end for receiving the first control signal Sc1 . The transistor Q103 has a first end coupled to the second end of the second resonant capacitor C102; a second end coupled to the first end of the first resonant capacitor C101; and a control end for receiving the first control signal Sc1 . The transistor Q104 has a first end coupled to the second end of the first resonant capacitor C101; a second end coupled to the first end of the first resonant inductor L101; and a control end for receiving the first control signal Sc1 .

電晶體Q105至Q1010可形成及第二組開關102。電晶體Q105具有第一端,耦接於第二共振電感L102之第一端;第二端,耦接於第三共振電容C103之第一端;及控制端,用以接收第二控制訊號Sc2。電晶體Q106具有第一端,耦接於第二共振電感L102之第一端;第二端,耦接於第二共振電容C102之第一端;及控制端,用以接收第二控制訊號Sc2。電晶體Q107具有第一端,耦接於第二共振電感L102之第一端;第二端,耦接於第一共振電容C101之第一端;及控制端,用以接收第二控制訊號Sc2。電晶體Q108具有第一端,耦接於第三共振電容C103之第二端;第二端,耦接於接地端;及控制端,用以接收第二控制訊號Sc2。電晶體Q109具有第一端,耦接於第二共振電容C102之第二端;第二端,耦接於接地端;及控制端,用以接收第二控制訊號Sc2。電晶體Q1010具有第一端,耦接於第一共振電容C101之第二端;第二端,耦接於接地端;及控制端,用以接收第二控制訊號Sc2。Transistors Q105 to Q1010 may form the second set of switches 102 . The transistor Q105 has a first end coupled to the first end of the second resonant inductor L102; a second end coupled to the first end of the third resonant capacitor C103; and a control end for receiving the second control signal Sc2 . The transistor Q106 has a first end coupled to the first end of the second resonant inductor L102; a second end coupled to the first end of the second resonant capacitor C102; and a control end for receiving the second control signal Sc2 . The transistor Q107 has a first end coupled to the first end of the second resonant inductor L102; a second end coupled to the first end of the first resonant capacitor C101; and a control end for receiving the second control signal Sc2 . The transistor Q108 has a first terminal coupled to the second terminal of the third resonant capacitor C103; a second terminal coupled to the ground terminal; and a control terminal for receiving the second control signal Sc2. The transistor Q109 has a first terminal coupled to the second terminal of the second resonant capacitor C102; a second terminal coupled to the ground terminal; and a control terminal for receiving the second control signal Sc2. The transistor Q1010 has a first terminal coupled to the second terminal of the first resonant capacitor C101; a second terminal coupled to the ground terminal; and a control terminal for receiving the second control signal Sc2.

在運作時,輸入電壓Vin可為4倍的輸出電壓Vout,第三共振電容C103、第二共振電容C102、第一共振電容C101及輸出電容Co的跨壓可分別為1倍的輸出電壓Vout,使RSCC 10提供4比1的電壓轉換比。During operation, the input voltage Vin can be 4 times the output voltage Vout, and the voltage across the third resonant capacitor C103, the second resonant capacitor C102, the first resonant capacitor C101 and the output capacitor Co can be 1 times the output voltage Vout respectively, The RSCC 10 is made to provide a 4 to 1 voltage conversion ratio.

在第一狀態時,第一組開關101及第二組開關102可依序串聯第三共振電容C103、第二共振電容C102、第一共振電容C101、第一共振電感L101及輸出電容Co於輸入端14及接地端之間。第一共振電容C101可對輸出電容Co進行充電。In the first state, the first group of switches 101 and the second group of switches 102 can sequentially connect the third resonant capacitor C103, the second resonant capacitor C102, the first resonant capacitor C101, the first resonant inductor L101 and the output capacitor Co to the input Between terminal 14 and ground terminal. The first resonant capacitor C101 can charge the output capacitor Co.

在第二狀態時,第一組開關101及第二組開關102可並聯輸出電容Co、及串聯之第一共振電感L101與並聯之第一共振電容C101、第二共振電容C102與第三共振電容C103於輸出端16及接地端之間。第一共振電容C101、第二共振電容C102與第三共振電容C103可對輸出電容Co進行放電。RSCC 10可於第一狀態及第二狀態之間交替切換以對RSCC 10內所有電容持續進行充放電來維持電荷平衡,同時將功率從輸入端14傳送至輸出端16以產生輸出電壓Vout。In the second state, the first set of switches 101 and the second set of switches 102 can be connected in parallel with the output capacitor Co, and the first resonant inductor L101 in series and the first resonant capacitor C101, the second resonant capacitor C102, and the third resonant capacitor in parallel C103 is between the output terminal 16 and the ground terminal. The first resonant capacitor C101 , the second resonant capacitor C102 and the third resonant capacitor C103 can discharge the output capacitor Co. The RSCC 10 can alternately switch between the first state and the second state to continuously charge and discharge all capacitors in the RSCC 10 to maintain charge balance, and at the same time transmit power from the input terminal 14 to the output terminal 16 to generate the output voltage Vout.

本發明不限於應用在4:1轉換電壓比的RSCC,熟習此技藝者亦可依據本發明精神將本發明實施例中的RSCC以其他轉換電壓比的RSCC或其他形式的切換式電容轉換器(switched-capacitor converter,SCC)替代。The present invention is not limited to the RSCC applied to the conversion voltage ratio of 4:1, and those skilled in the art can also use the RSCC in the embodiment of the present invention as an RSCC with other conversion voltage ratios or other forms of switched capacitor converters ( switched-capacitor converter, SCC) instead.

第1、2、4、8-10圖的實施例依據輸出電壓Vout調整第一控制訊號Sc1及第二控制訊號Sc2以調節輸出電壓Vout,在不大幅增加電路面積的情況下提供過電壓保護。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The embodiments in Figures 1, 2, 4, 8-10 adjust the first control signal Sc1 and the second control signal Sc2 according to the output voltage Vout to adjust the output voltage Vout, and provide overvoltage protection without greatly increasing the circuit area. The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the scope of the patent application of the present invention shall fall within the scope of the present invention.

1:直流-直流功率轉換系統 10, RSCC:諧振切換式電容轉換器 101:第一組開關 102:第二組開關 103:第一共振槽 104:第二共振槽 12:控制器 120:分壓器 121:第一比較電路 1210:比較器 122:第二比較電路 123:第一及閘 124:正反器 125:第二及閘 126:第三及閘 14:輸入端 16:輸出端 300:功率轉換方法 S302至S308:步驟 A:安培 Cc:電容 CLK:時脈訊號 ck:時脈輸入端 Co:輸出電容 C1至C3, C91至C93, C101至C103:電容 gm:增益 Io:輸出電流 Io1, Io2:電流 J, K:輸入端 L1, L2, L91, L92, L101, L102:電感 Q,

Figure 02_image001
:輸出端 Q1至Q10, Q91至Q910, Q101至Q1010:電晶體 Rd1, Rd2:電阻 Sc1:第一控制訊號 Sc2:第二控制訊號 SH:邏輯高準位 Sq:輸出訊號 Sqb:反向輸出訊號 t1至t8:時間 Td1至Td3:時段 V:伏特 Va:第一比較電壓 Vb:控制訊號 Vc第二比較電壓 VC1, VC2:跨壓 Vd:分壓 Vin:輸入電壓 Vramp:斜坡電壓 Vref:參考電壓 Vss:接地電壓 Vout:輸出電壓 1: DC-DC power conversion system 10, RSCC: resonant switched capacitor converter 101: first set of switches 102: second set of switches 103: first resonance tank 104: second resonance tank 12: controller 120: voltage divider Device 121: first comparison circuit 1210: comparator 122: second comparison circuit 123: first sum gate 124: flip-flop 125: second sum gate 126: third sum gate 14: input terminal 16: output terminal 300: Power conversion method S302 to S308: step A: ampere Cc: capacitor CLK: clock signal ck: clock input terminal Co: output capacitors C1 to C3, C91 to C93, C101 to C103: capacitor gm: gain Io: output current Io1 , Io2: current J, K: input terminals L1, L2, L91, L92, L101, L102: inductance Q,
Figure 02_image001
: Output terminals Q1 to Q10, Q91 to Q910, Q101 to Q1010: transistors Rd1, Rd2: resistors Sc1: first control signal Sc2: second control signal SH: logic high level Sq: output signal Sqb: reverse output signal t1 to t8: Time Td1 to Td3: Period V: Volt Va: First comparison voltage Vb: Control signal Vc Second comparison voltage VC1, VC2: Cross voltage Vd: Divided voltage Vin: Input voltage Vramp: Ramp voltage Vref: Reference voltage Vss: ground voltage Vout: output voltage

第1圖係為本發明實施例中之一種直流-直流功率轉換系統的區塊圖。 第2圖係為第1圖之一種直流-直流功率轉換系統的電路示意圖。 第3圖係為第1圖之直流-直流功率轉換系統的功率轉換方法之流程圖。 第4圖係為第1圖之控制器的電路示意圖。 第5圖係為第4圖之控制器的波形圖。 第6圖係為第1圖之直流-直流功率轉換系統的第一控制訊號Sc1及第二控制訊號Sc2皆實質上為50%工作週期時之模擬波形圖。 第7圖係為第1圖之直流-直流功率轉換系統的第一控制訊號Sc1及第二控制訊號Sc2皆實質上為25%工作週期時之模擬波形圖。 第8圖係為第1圖之另一種諧振切換式電容轉換器的電路示意圖。 第9圖係為第1圖之另一種諧振切換式電容轉換器的電路示意圖。 第10圖係為第1圖之另一種諧振切換式電容轉換器的電路示意圖。 FIG. 1 is a block diagram of a DC-DC power conversion system in an embodiment of the present invention. FIG. 2 is a schematic circuit diagram of a DC-DC power conversion system in FIG. 1 . FIG. 3 is a flow chart of the power conversion method of the DC-DC power conversion system in FIG. 1 . Figure 4 is a schematic circuit diagram of the controller in Figure 1. Figure 5 is the waveform diagram of the controller in Figure 4. FIG. 6 is a simulated waveform diagram when both the first control signal Sc1 and the second control signal Sc2 of the DC-DC power conversion system in FIG. 1 are substantially at 50% duty cycle. FIG. 7 is a simulated waveform diagram when both the first control signal Sc1 and the second control signal Sc2 of the DC-DC power conversion system in FIG. 1 are substantially 25% duty cycle. FIG. 8 is a schematic circuit diagram of another resonant switched capacitor converter in FIG. 1 . FIG. 9 is a schematic circuit diagram of another resonant switched capacitor converter in FIG. 1 . FIG. 10 is a schematic circuit diagram of another resonant switched capacitor converter in FIG. 1 .

1:直流-直流功率轉換系統 1: DC-DC power conversion system

10:諧振切換式電容轉換器 10: Resonant Switched Capacitor Converter

101:第一組開關 101: The first set of switches

102:第二組開關 102: The second set of switches

103:第一共振槽 103: The first resonance tank

12:控制器 12: Controller

14:輸入端 14: input terminal

16:輸出端 16: output terminal

Co:輸出電容 Co: output capacitance

Sc1:第一控制訊號 Sc1: the first control signal

Sc2:第二控制訊號 Sc2: Second control signal

Vin:輸入電壓 Vin: input voltage

Vout:輸出電壓 Vout: output voltage

Claims (20)

一種直流-直流功率轉換系統,包含: 一輸入端,用以接收該輸入電壓; 一諧振切換式電容轉換器(resonant switched-capacitor converter),用以接收一輸入電壓,及於一第一狀態及一第二狀態之間切換以產生一輸出電壓,該諧振切換式電容轉換器包含: 一第一共振槽; 一輸出電容,具有一第一端,用以產生該輸出電壓;及一第二端,耦接於一接地端; 一第一組開關,耦接於該第一共振槽及該輸出電容,用以接收一第一控制訊號以於該第一狀態時導通,及於該第二狀態時截止;及 一第二組開關,耦接於該第一共振槽及該輸出電容,用以接收一第二控制訊號以於該第二狀態時導通,及於該第一狀態時截止; 一輸出端,耦接於該輸出電容,用以輸出該輸出電壓;及 一控制器,耦接於該第一組開關及該第二組開關,用以依據該輸出電壓調整該第一控制訊號以控制該第一組開關之一第一導通時間,及依據該輸出電壓調整該第二控制訊號以控制該第二組開關之一第二導通時間。 A DC-DC power conversion system comprising: an input terminal for receiving the input voltage; A resonant switched-capacitor converter (resonant switched-capacitor converter), used to receive an input voltage, and switch between a first state and a second state to generate an output voltage, the resonant switched-capacitor converter includes : a first resonance tank; an output capacitor having a first end for generating the output voltage; and a second end coupled to a ground end; a first set of switches, coupled to the first resonant tank and the output capacitor, for receiving a first control signal to be turned on in the first state and turned off in the second state; and A second set of switches, coupled to the first resonant tank and the output capacitor, for receiving a second control signal to be turned on in the second state and turned off in the first state; an output terminal coupled to the output capacitor for outputting the output voltage; and A controller, coupled to the first group of switches and the second group of switches, used to adjust the first control signal according to the output voltage to control a first conduction time of the first group of switches, and according to the output voltage The second control signal is adjusted to control a second conduction time of the second set of switches. 如請求項1所述之直流-直流功率轉換系統,其中該控制器包含: 一分壓器,耦接於該輸出電容之該第一端,用以產生該輸出電壓之一分壓; 一第一比較電路,耦接於該分壓器,用以比較該分壓及一參考電壓以產生一第一比較電壓; 一第二比較電路,耦接於該第一比較電路,用以比較該第一比較電壓及一斜坡電壓以產生一第二比較電壓; 一第一及閘,耦接於該第二比較電路,用以對該第二比較電壓及一時脈訊號進行一及運算(AND operation)以產生一控制訊號; 一正反器,耦接於該第一及閘,用以依據該控制訊號產生一輸出訊號及一反向輸出訊號; 一第二及閘,耦接於該正反器,用以對該控制訊號及該輸出訊號進行一及運算以產生該第一控制訊號;及 一第三及閘,耦接於該正反器,用以對該控制訊號及該反向輸出訊號進行一及運算以產生該第二控制訊號。 The DC-DC power conversion system as described in Claim 1, wherein the controller includes: a voltage divider, coupled to the first end of the output capacitor, for generating a divided voltage of the output voltage; a first comparison circuit, coupled to the voltage divider, for comparing the divided voltage with a reference voltage to generate a first comparison voltage; a second comparison circuit, coupled to the first comparison circuit, for comparing the first comparison voltage and a ramp voltage to generate a second comparison voltage; a first AND gate, coupled to the second comparison circuit, for performing an AND operation (AND operation) on the second comparison voltage and a clock signal to generate a control signal; a flip-flop coupled to the first AND gate for generating an output signal and an inverted output signal according to the control signal; a second AND gate, coupled to the flip-flop, for performing an AND operation on the control signal and the output signal to generate the first control signal; and A third AND gate, coupled to the flip-flop, is used for performing an AND operation on the control signal and the inverted output signal to generate the second control signal. 如請求項1所述之直流-直流功率轉換系統,其中在該第一狀態時,該第一組開關用以將該第一共振槽串聯於該輸入端及該輸出電容之間。The DC-DC power conversion system as claimed in claim 1, wherein in the first state, the first group of switches is used to connect the first resonant tank in series between the input terminal and the output capacitor. 如請求項1所述之直流-直流功率轉換系統,其中在該第二狀態時,該第二組開關用以並聯該第一共振槽及該輸出電容。The DC-DC power conversion system as claimed in claim 1, wherein in the second state, the second set of switches are used to connect the first resonant tank and the output capacitor in parallel. 如請求項1所述之直流-直流功率轉換系統,其中該控制器用以將該諧振切換式電容轉換器交替切換於該第一狀態及該第二狀態之間。The DC-DC power conversion system as claimed in claim 1, wherein the controller is configured to alternately switch the resonant switched capacitor converter between the first state and the second state. 如請求項1所述之直流-直流功率轉換系統,其中該第一導通時間小於該第一組開關之一第一截止時間,及該第二導通時間小於該第二組開關之一第二截止時間。The DC-DC power conversion system as claimed in claim 1, wherein the first on-time is less than a first off-time of the first set of switches, and the second on-time is less than a second off-time of the second set of switches time. 如請求項1所述之直流-直流功率轉換系統,其中該第一導通時間之一長度等於該第二導通時間之一長度。The DC-DC power conversion system as claimed in claim 1, wherein a length of the first on-time is equal to a length of the second on-time. 如請求項1所述之直流-直流功率轉換系統,其中 該第一共振槽包含: 一第一共振電容,具有一第一端及一第二端;及 一第一共振電感,具有一第一端;及一第二端,耦接於該輸出電容之該第一端; 該諧振切換式電容轉換器另包含一第二共振槽,包含: 一第二共振電容,具有一第一端及一第二端;及 一第二共振電感,具有一第一端;及一第二端,耦接於該輸出電容之該第一端; 該第一組開關包含: 一第一電晶體,具有一第一端;一第二端,耦接於該第一共振電容之該第一端;及一控制端,用以接收該第一控制訊號; 一第二電晶體,具有一第一端,耦接於該第一共振電容之該第二端;一第二端,耦接於該第一共振電感之該第一端;及一控制端,用以接收該第一控制訊號; 一第三電晶體,具有一第一端,耦接於該第二共振電感之該第一端;一第二端,耦接於該第二共振電容之該第一端;及一控制端,用以接收該第一控制訊號;及 一第四電晶體,具有一第一端,耦接於該第二共振電容之該第二端;一第二端,耦接於該接地端;及一控制端,用以接收該第一控制訊號;及 該第二組開關包含: 一第五電晶體,具有一第一端,耦接於該第一共振電感之該第一端;一第二端,耦接於該第一共振電容之該第一端;及一控制端,用以接收該第二控制訊號; 一第六電晶體,具有一第一端,耦接於該第一共振電容之該第二端;一第二端,耦接於該接地端;及一控制端,用以接收該第二控制訊號; 一第七電晶體,具有一第一端,耦接於該第二共振電容之該第一端;一第二端;及一控制端,用以接收該第二控制訊號;及 一第八電晶體,具有一第一端,耦接於該第二共振電容之該第二端;一第二端,耦接於該第二共振電感之該第一端;及一控制端,用以接收該第二控制訊號。 The DC-DC power conversion system as described in Claim 1, wherein The first resonance tank contains: a first resonant capacitor having a first end and a second end; and a first resonant inductor having a first end; and a second end coupled to the first end of the output capacitor; The resonant switched capacitor converter further includes a second resonant tank, including: a second resonant capacitor having a first terminal and a second terminal; and a second resonant inductor having a first end; and a second end coupled to the first end of the output capacitor; This first set of switches contains: A first transistor having a first terminal; a second terminal coupled to the first terminal of the first resonant capacitor; and a control terminal for receiving the first control signal; A second transistor having a first end coupled to the second end of the first resonant capacitor; a second end coupled to the first end of the first resonant inductance; and a control end, for receiving the first control signal; A third transistor having a first end coupled to the first end of the second resonant inductor; a second end coupled to the first end of the second resonant capacitor; and a control end, for receiving the first control signal; and A fourth transistor has a first end coupled to the second end of the second resonant capacitor; a second end coupled to the ground end; and a control end for receiving the first control signal; and This second set of switches contains: A fifth transistor having a first end coupled to the first end of the first resonant inductor; a second end coupled to the first end of the first resonant capacitor; and a control end, for receiving the second control signal; A sixth transistor has a first terminal coupled to the second terminal of the first resonant capacitor; a second terminal coupled to the ground terminal; and a control terminal for receiving the second control terminal signal; A seventh transistor having a first end coupled to the first end of the second resonant capacitor; a second end; and a control end for receiving the second control signal; and An eighth transistor having a first end coupled to the second end of the second resonant capacitor; a second end coupled to the first end of the second resonant inductance; and a control end, used for receiving the second control signal. 如請求項1所述之直流-直流功率轉換系統,其中 該第一共振槽包含: 一第一共振電容,具有一第一端及一第二端;及 一第一共振電感,具有一第一端,耦接於該第一共振電容之該第二端;及一第二端; 該諧振切換式電容轉換器另包含一第二共振槽,包含: 一第二共振電容,具有一第一端及一第二端;及 一第二共振電感,具有一第一端,耦接於該第二共振電容之該第二端;及一第二端; 該第一組開關包含: 一第一電晶體,具有一第一端;一第二端,耦接於該第一共振電容之該第一端;及一控制端,用以接收該第一控制訊號; 一第二電晶體,具有一第一端,耦接於該第一共振電感之該第二端;一第二端,耦接於該輸出電容之該第一端;及一控制端,用以接收該第一控制訊號; 一第三電晶體,具有一第一端,耦接於該輸出電容之該第一端;一第二端,耦接於該第二共振電容之該第一端;及一控制端,用以接收該第一控制訊號;及 一第四電晶體,具有一第一端,耦接於該第二共振電感之該第二端;一第二端,耦接於該接地端;及一控制端,用以接收該第一控制訊號;及 該第二組開關包含: 一第五電晶體,具有一第一端,耦接於該輸出電容之該第一端;一第二端,耦接於該第一共振電容之該第一端;及一控制端,用以接收該第二控制訊號; 一第六電晶體,具有一第一端,耦接於該第一共振電感之該第二端;一第二端,耦接於該接地端;及一控制端,用以接收該第二控制訊號; 一第七電晶體,具有一第一端;耦接於該第二共振電容之該第一端;一第二端;及一控制端,用以接收該第二控制訊號;及 一第八電晶體,具有一第一端,耦接於該第二共振電感之該第二端;一第二端,耦接於該輸出電容之該第一端;及一控制端,用以接收該第二控制訊號。 The DC-DC power conversion system as described in Claim 1, wherein The first resonance tank contains: a first resonant capacitor having a first end and a second end; and a first resonant inductor having a first end coupled to the second end of the first resonant capacitor; and a second end; The resonant switched capacitor converter further includes a second resonant tank, including: a second resonant capacitor having a first terminal and a second terminal; and a second resonant inductor having a first end coupled to the second end of the second resonant capacitor; and a second end; This first set of switches contains: A first transistor having a first terminal; a second terminal coupled to the first terminal of the first resonant capacitor; and a control terminal for receiving the first control signal; A second transistor has a first terminal coupled to the second terminal of the first resonant inductor; a second terminal coupled to the first terminal of the output capacitor; and a control terminal for receiving the first control signal; A third transistor has a first terminal coupled to the first terminal of the output capacitor; a second terminal coupled to the first terminal of the second resonant capacitor; and a control terminal for receiving the first control signal; and A fourth transistor has a first end coupled to the second end of the second resonant inductor; a second end coupled to the ground end; and a control end for receiving the first control signal; and This second set of switches contains: A fifth transistor has a first terminal coupled to the first terminal of the output capacitor; a second terminal coupled to the first terminal of the first resonant capacitor; and a control terminal for receiving the second control signal; A sixth transistor has a first end coupled to the second end of the first resonant inductor; a second end coupled to the ground end; and a control end for receiving the second control signal; a seventh transistor having a first terminal; coupled to the first terminal of the second resonant capacitor; a second terminal; and a control terminal for receiving the second control signal; and An eighth transistor has a first terminal coupled to the second terminal of the second resonant inductor; a second terminal coupled to the first terminal of the output capacitor; and a control terminal for receiving the second control signal. 如請求項1所述之直流-直流功率轉換系統,其中 該第一共振槽包含: 一第一共振電容,具有一第一端及一第二端;及 一第一共振電感,具有一第一端,耦接於該第一共振電容之該第二端;及一第二端; 該諧振切換式電容轉換器另包含一儲存電容,具有一第一端及一第二端; 該第一組開關包含: 一第一電晶體,具有一第一端,耦接於該儲存電容之該第一端;一第二端,耦接於該第一共振電容之該第一端;及一控制端,用以接收該第一控制訊號; 一第二電晶體,具有一第一端,耦接於該第一共振電感之該第二端;一第二端,耦接於該輸出電容之該第一端;及一控制端,用以接收該第一控制訊號;及 一第三電晶體,具有一第一端,耦接於該儲存電容之該第二端;一第二端,耦接於該接地端;及一控制端,用以接收該第一控制訊號;及 該第二組開關包含: 一第五電晶體,具有一第一端,耦接於該第一共振電容之該第一端;一第二端,耦接於該輸出電容之該第一端;及一控制端,用以接收該第二控制訊號; 一第六電晶體,具有一第一端,耦接於該第一共振電感之該第二端;一第二端,耦接於該接地端;及一控制端,用以接收該第二控制訊號; 一第七電晶體,具有一第一端;一第二端,耦接於該儲存電容之該第一端;及一控制端,用以接收該第二控制訊號;及 一第八電晶體,具有一第一端,耦接於該儲存電容之該第二端;一第二端,耦接於該輸出電容之該第一端;及一控制端,用以接收該第二控制訊號。 The DC-DC power conversion system as described in Claim 1, wherein The first resonance tank contains: a first resonant capacitor having a first end and a second end; and a first resonant inductor having a first end coupled to the second end of the first resonant capacitor; and a second end; The resonant switched capacitor converter further includes a storage capacitor with a first end and a second end; This first set of switches contains: A first transistor has a first terminal coupled to the first terminal of the storage capacitor; a second terminal coupled to the first terminal of the first resonant capacitor; and a control terminal for receiving the first control signal; A second transistor has a first terminal coupled to the second terminal of the first resonant inductor; a second terminal coupled to the first terminal of the output capacitor; and a control terminal for receiving the first control signal; and A third transistor having a first terminal coupled to the second terminal of the storage capacitor; a second terminal coupled to the ground terminal; and a control terminal for receiving the first control signal; and This second set of switches contains: A fifth transistor has a first terminal coupled to the first terminal of the first resonant capacitor; a second terminal coupled to the first terminal of the output capacitor; and a control terminal for receiving the second control signal; A sixth transistor has a first end coupled to the second end of the first resonant inductor; a second end coupled to the ground end; and a control end for receiving the second control signal; a seventh transistor having a first terminal; a second terminal coupled to the first terminal of the storage capacitor; and a control terminal for receiving the second control signal; and An eighth transistor has a first terminal coupled to the second terminal of the storage capacitor; a second terminal coupled to the first terminal of the output capacitor; and a control terminal for receiving the Second control signal. 如請求項1所述之直流-直流功率轉換系統,其中 該第一共振槽包含: 一第一共振電容,具有一第一端及一第二端;及 一第一共振電感,具有一第一端;及一第二端,耦接於該輸出電容之該第一端; 該諧振切換式電容轉換器另包含: 一第二共振電容,具有一第一端及一第二端;及 一第二共振電感,具有一第一端;及一第二端,耦接於該輸出電容之該第一端; 該第一組開關包含: 一第二電晶體,具有一第一端,耦接於該第二共振電容之該第二端;一第二端,耦接於該第一共振電容之該第一端;及一控制端,用以接收該第一控制訊號; 一第三電晶體,具有一第一端,耦接於該第一共振電容之該第二端;一第二端,耦接於該第一共振電感之該第一端;及一控制端,用以接收該第一控制訊號;及 一第三電晶體,具有一第一端;一第二端,耦接於該第二共振電容之該第一端;及一控制端,用以接收該第一控制訊號;及 該第二組開關包含: 一第五電晶體,具有一第一端,耦接於該第二共振電感之該第一端;一第二端,耦接於該第一共振電容之該第一端;及一控制端,用以接收該第二控制訊號; 一第六電晶體,具有一第一端,耦接於該第一共振電容之該第二端;一第二端,耦接於該接地端;及一控制端,用以接收該第二控制訊號; 一第七電晶體,具有一第一端;耦接於該第二共振電感之該第一端;一第二端,耦接於該第二共振電容之該第一端;及一控制端,用以接收該第二控制訊號;及 一第八電晶體,具有一第一端,耦接於該第二共振電容之該第二端;一第二端,耦接於該接地端;及一控制端,用以接收該第二控制訊號。 The DC-DC power conversion system as described in Claim 1, wherein The first resonance tank contains: a first resonant capacitor having a first end and a second end; and a first resonant inductor having a first end; and a second end coupled to the first end of the output capacitor; The resonant switched capacitor converter also includes: a second resonant capacitor having a first terminal and a second terminal; and a second resonant inductor having a first end; and a second end coupled to the first end of the output capacitor; This first set of switches contains: A second transistor having a first end coupled to the second end of the second resonant capacitor; a second end coupled to the first end of the first resonant capacitor; and a control end, for receiving the first control signal; A third transistor having a first end coupled to the second end of the first resonant capacitor; a second end coupled to the first end of the first resonant inductance; and a control end, for receiving the first control signal; and a third transistor having a first terminal; a second terminal coupled to the first terminal of the second resonant capacitor; and a control terminal for receiving the first control signal; and This second set of switches contains: A fifth transistor having a first end coupled to the first end of the second resonant inductor; a second end coupled to the first end of the first resonant capacitor; and a control end, for receiving the second control signal; A sixth transistor has a first terminal coupled to the second terminal of the first resonant capacitor; a second terminal coupled to the ground terminal; and a control terminal for receiving the second control terminal signal; A seventh transistor having a first end; coupled to the first end of the second resonant inductor; a second end coupled to the first end of the second resonant capacitor; and a control end, for receiving the second control signal; and An eighth transistor has a first end coupled to the second end of the second resonant capacitor; a second end coupled to the ground end; and a control end for receiving the second control signal. 如請求項1所述之直流-直流功率轉換系統,其中該輸入電壓對該輸出電壓之一比率大於2比1。The DC-DC power conversion system as claimed in claim 1, wherein the ratio of the input voltage to the output voltage is greater than 2:1. 如請求項1所述之直流-直流功率轉換系統,其中於開機時,該第一導通時間及該第二導通時間等於遠小於50%工作週期之一預設導通時間。The DC-DC power conversion system as claimed in claim 1, wherein when starting up, the first on-time and the second on-time are equal to a preset on-time that is much less than 50% duty cycle. 一種功率轉換方法,適用於一直流-直流功率轉換系統,該直流-直流功率轉換系統包含一諧振切換式電容轉換器及一控制器,該諧振切換式電容轉換器包含一第一共振槽、一輸出電容、一第一組開關,耦接於該第一共振槽及該輸出電容、及一第二組開關,耦接於該第一共振槽及該輸出電容,該方法包含: 該諧振切換式電容轉換器於一第一狀態及一第二狀態之間切換以產生一輸出電壓; 該控制器依據該輸出電壓調整一第一控制訊號及一第二控制訊號; 該第一組開關接收該第一控制訊號以於該第一狀態時導通一第一導通時間;及 該第二組開關接收該第二控制訊號於該第二狀態時導通一第二導通時間。 A power conversion method, suitable for a DC-DC power conversion system, the DC-DC power conversion system includes a resonant switched capacitor converter and a controller, the resonant switched capacitor converter includes a first resonance tank, a An output capacitor, a first group of switches coupled to the first resonance tank and the output capacitor, and a second group of switches coupled to the first resonance tank and the output capacitor, the method comprising: The resonant switched capacitor converter switches between a first state and a second state to generate an output voltage; The controller adjusts a first control signal and a second control signal according to the output voltage; The first group of switches receives the first control signal to conduct a first conduction time in the first state; and The second group of switches is turned on for a second turn-on time when receiving the second control signal and in the second state. 如請求項14所述之方法,其中在該第一狀態時,該第一組開關將該第一共振槽串聯於該輸入端及該輸出電容之間。The method as claimed in claim 14, wherein in the first state, the first group of switches connects the first resonant tank in series between the input terminal and the output capacitor. 如請求項14所述之方法,其中在該第二狀態時,該第二組開關並聯該第一共振槽及該輸出電容。The method as claimed in claim 14, wherein in the second state, the second set of switches are connected in parallel with the first resonant tank and the output capacitor. 如請求項14所述之方法,其中該控制器將該諧振切換式電容轉換器交替切換於該第一狀態及該第二狀態之間。The method of claim 14, wherein the controller alternately switches the resonant switched capacitor converter between the first state and the second state. 如請求項14所述之方法,其中: 該第一組開關接收該第一控制訊號以截止一第一截止時間; 該第二組開關接收該第二控制訊號以截止一第二截止時間;及 該第一導通時間小於該第一截止時間,及該第二導通時間小於該第二截止時間。 The method as described in claim 14, wherein: The first set of switches receives the first control signal to cut off a first cut-off time; the second set of switches receives the second control signal to cut off a second cut-off time; and The first on-time is shorter than the first off-time, and the second on-time is shorter than the second off-time. 如請求項14所述之方法,其中該第一導通時間之一長度等於該第二導通時間之一長度。The method of claim 14, wherein a length of the first on-time is equal to a length of the second on-time. 如請求項14所述之方法,其中於開機時,該第一導通時間及該第二導通時間等於遠小於50%工作週期之一預設導通時間。The method as claimed in claim 14, wherein the first on-time and the second on-time are equal to a preset on-time that is much less than 50% duty cycle at power-on.
TW110133382A 2021-05-03 2021-09-08 Dc-dc power conversion system and power conversion method thereof TWI787994B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202111149987.XA CN115296529A (en) 2021-05-03 2021-09-29 DC-DC power conversion system and power conversion method thereof
US17/511,607 US11716020B2 (en) 2021-05-03 2021-10-27 SCC-based DC-DC power conversion system capable of receiving switching control adjustable by output voltage thereof, and power conversion method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163183066P 2021-05-03 2021-05-03
US63/183,066 2021-05-03

Publications (2)

Publication Number Publication Date
TW202245391A true TW202245391A (en) 2022-11-16
TWI787994B TWI787994B (en) 2022-12-21

Family

ID=85793103

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110133382A TWI787994B (en) 2021-05-03 2021-09-08 Dc-dc power conversion system and power conversion method thereof

Country Status (1)

Country Link
TW (1) TWI787994B (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7026800B2 (en) * 2002-10-17 2006-04-11 Richtek Technology Corp. Feed-forward method for improving a transient response for a DC—DC power conversion and DC—DC voltage converter utilizing the same
CN201430532Y (en) * 2009-06-15 2010-03-24 浙江大学 Zero voltage switch flyback type DC-DC power supply conversion device
EP2293423B1 (en) * 2009-08-28 2012-10-10 Nxp B.V. Power supply and DC-DC conversion
JP5803101B2 (en) * 2010-12-27 2015-11-04 富士電機株式会社 DC-DC converter circuit and power converter using the same
CN108028600B (en) * 2015-07-08 2022-03-08 派更半导体公司 Switched capacitor power converter

Also Published As

Publication number Publication date
TWI787994B (en) 2022-12-21

Similar Documents

Publication Publication Date Title
WO2016045628A1 (en) Secondary control device and charing system having the same
US10277121B2 (en) Charge pump circuit and operating method thereof
US10284086B2 (en) Boost converter and the method thereof
US9467048B2 (en) Voltage generator
TWI689161B (en) Power converter
KR20140041108A (en) Power supply circuit and hysteresis buck converter
US10312813B2 (en) Multi-phase converter
US11063515B2 (en) Power converter
CN112104203B (en) Switch current-limiting circuit and power chip
CN115296529A (en) DC-DC power conversion system and power conversion method thereof
US20220255429A1 (en) Voltage converter
US20170324323A1 (en) Single inductor dual output voltage converter and the method thereof
WO2014062832A2 (en) Glitch suppression in dc-to-dc power conversion
US20070236972A1 (en) Semiconductor integrated circuit device, charge pump circuit, and electric appliance
CN114884317A (en) Switching converter, controller and control method thereof
CN110504826B (en) LED driving system, ripple removing circuit and method
JP3870916B2 (en) Sawtooth generator
US9071128B2 (en) DC-DC converter
TWI787994B (en) Dc-dc power conversion system and power conversion method thereof
CN105553256B (en) Charge pump circuit and display device
KR101456654B1 (en) A common-core power factor correction resonant converter
US10186968B2 (en) Direct current converter
CN113346771B (en) Boost converter
CN212649360U (en) Semiconductor drive circuit
US20240113619A1 (en) Voltage conversion circuit, voltage converter, and chip