TW202244202A - Dispersions for additive manufacturing comprising discrete carbon nanotubes - Google Patents

Dispersions for additive manufacturing comprising discrete carbon nanotubes Download PDF

Info

Publication number
TW202244202A
TW202244202A TW111111127A TW111111127A TW202244202A TW 202244202 A TW202244202 A TW 202244202A TW 111111127 A TW111111127 A TW 111111127A TW 111111127 A TW111111127 A TW 111111127A TW 202244202 A TW202244202 A TW 202244202A
Authority
TW
Taiwan
Prior art keywords
carbon nanotubes
dispersion
oxidized
discrete carbon
dispersant
Prior art date
Application number
TW111111127A
Other languages
Chinese (zh)
Inventor
克萊夫 P 波斯尼亞克
庫爾特 W 斯沃格爾
史蒂文 勞德
奧爾加 伊萬諾娃
Original Assignee
美商鋼筋分子設計有限責任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/212,612 external-priority patent/US20210237509A1/en
Application filed by 美商鋼筋分子設計有限責任公司 filed Critical 美商鋼筋分子設計有限責任公司
Publication of TW202244202A publication Critical patent/TW202244202A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/101Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/106Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C09D11/107Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from unsaturated acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/324Inkjet printing inks characterised by colouring agents containing carbon black
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Colloid Chemistry (AREA)

Abstract

The present invention is directed to additive manufacturing compositions and methods for producing additive manufacturing composite blends with oxidized discrete carbon nanotubes with dispersion agents bonded to at least one sidewall of the oxidized discrete carbon nanotubes. Such compositions are especially useful when radiation cured, sintered or melt fused.

Description

包括離散碳奈米管的用於增材製造的分散體Dispersions for additive manufacturing comprising discrete carbon nanotubes

本發明涉及增材製造組成物和生產增材製造複合材料共混物的方法,該增材製造複合材料共混物具有氧化的離散碳奈米管,該氧化的離散碳奈米管具有結合到氧化的離散碳奈米管的至少一個側壁上的分散劑。當輻射固化、燒結或熔融時,這樣的組成物尤其有用。The present invention relates to additively manufactured compositions and methods of producing additively manufactured composite material blends having oxidized discrete carbon nanotubes having bonded to A dispersant on at least one sidewall of the oxidized discrete carbon nanotubes. Such compositions are especially useful when radiation cured, sintered or melted.

增材製造(AM)是一個合適的名稱,來描述通過添加一層接一層的材料來構建3D實體的技術,該材料通常是可交聯的單體或低聚物、聚合物、金屬、陶瓷和生物相容性材料。AM技術通常使用電腦、3D建模軟體(電腦輔助設計或CAD)、機器設備和成層材料。一旦生成CAD草圖,AM設備從CAD檔中讀取資料,並以一層接一層的方式放置或添加連續的液體層、粉末層、片狀材料層或其他(例如膠帶)層,以製造3D實體。術語AM包括許多技術,包括例如3D列印、快速原型製造(RP)、直接數位化製造(DDM)、分層製造和增材製造的子集。Additive manufacturing (AM) is an appropriate name to describe the technique of building 3D solids by adding layer after layer of material, usually cross-linkable monomers or oligomers, polymers, metals, ceramics and biocompatible material. AM techniques typically use computers, 3D modeling software (computer-aided design, or CAD), machines, and layered materials. Once the CAD sketch is generated, the AM device reads the data from the CAD file and places or adds successive layers of liquid, powder, sheet material or other (e.g. tape) layers in a layer-by-layer manner to create a 3D solid. The term AM encompasses a number of technologies, including subsets such as 3D printing, rapid prototyping (RP), direct digital manufacturing (DDM), layered manufacturing, and additive manufacturing.

液體輻射固化樹脂通過能量源(例如鐳射)選擇性交聯(或固化)。光固化樹脂製劑的努力集中於機械性能的增強,以類比商品塑膠和工程聚合物的特性。改善光固化樹脂的機械性能可以通過開發特殊的單體和固化劑、改變鏈增長機制、利用混合聚合方式以及加入添加劑和填料來實現。然而,由於它們的特性(例如抗熱變形性、剛性和衝擊強度)平衡,仍有許多限制。Liquid radiation-curable resins are selectively crosslinked (or cured) by an energy source, such as a laser. Efforts in photocurable resin formulations have focused on enhancements in mechanical properties that mimic those of commodity plastics and engineering polymers. Improving the mechanical properties of photocurable resins can be achieved by developing special monomers and curing agents, changing the chain growth mechanism, using hybrid polymerization methods, and adding additives and fillers. However, there are still many limitations due to the balance of their properties such as heat deformation resistance, rigidity, and impact strength.

添加填料已被用於滿足選定的AM應用的特定性能要求,例如剛度。無機填料(例如SiO2和Al2O3)已經顯示出改善了通過槽式光聚合製造的元件的強度和剛度,但是通常具有長得多的不期望的固化時間。此外,這些填料通常導致高的初始樹脂黏度、差的黏度穩定性,並且表現出填料與基礎樹脂分離的趨勢。仍然需要不對基礎可交聯樹脂製劑造成不期望的額外固化時間的填料。Addition of fillers has been used to meet specific performance requirements, such as stiffness, for selected AM applications. Inorganic fillers such as SiO2 and Al2O3 have been shown to improve the strength and stiffness of components fabricated by channel photopolymerization, but generally have much longer undesired cure times. Additionally, these fillers often result in high initial resin viscosity, poor viscosity stability, and exhibit a tendency for the filler to separate from the base resin. There remains a need for fillers that do not introduce undesired additional cure time to the base crosslinkable resin formulation.

因此,需要輻射固化樹脂,其生產具有增強的機械特性、熱特性、電特性、磁特性和化學特性的部件,並滿足嚴格的聚合樹脂要求,例如高固化速率、低黏度、優異的穩定性和高生坯強度。特別地,由於上述固化速率的要求,用導電炭黑達到至少100億歐姆每平方的電阻是一個挑戰。Therefore, there is a need for radiation curable resins that produce parts with enhanced mechanical, thermal, electrical, magnetic and chemical properties and meet stringent polymeric resin requirements such as high cure rate, low viscosity, excellent stability and High green strength. In particular, achieving a resistance of at least 10 billion ohms per square with conductive carbon blacks is a challenge due to the aforementioned cure rate requirements.

對於利用粉末狀的材料(金屬、陶瓷或聚合物)的AM方法,需要在二次處理之前改善它們的燒結能力以及它們的生坯強度。黏合劑選擇被認為是成功部件製造的關鍵。首先,黏合劑必須是可噴射的。理想的黏合劑具有低黏度,在剪切應力下穩定,與粉末狀原料具有良好的相互作用,具有乾淨的燒盡,具有長的保質期。常見的液體黏合劑是縮丁醛樹脂、聚乙烯化合物、聚矽氧烷、聚丙烯酸和聚醚聚胺酯。在某些情況下,需要較高強度的聚合物黏合劑,特別在較高溫度下進行燒結的情況下。For AM methods using materials in powder form (metals, ceramics or polymers) there is a need to improve their sinterability as well as their green strength before secondary processing. Adhesive selection is considered critical to successful part fabrication. First, the adhesive must be sprayable. The ideal binder has low viscosity, is stable under shear stress, has good interaction with powdered raw materials, has clean burnout, and has a long shelf life. Common liquid adhesives are butyral resins, polyvinyl compounds, polysiloxanes, polyacrylic acids, and polyether polyurethanes. In some cases, higher strength polymeric binders are required, especially if sintering is performed at higher temperatures.

用於金屬粉末和陶瓷粉末的黏合劑通常是無機顆粒的水分散體或非水分散體,例如二氧化矽分散體、硝酸鋁分散體或成膜聚合物分散體。將奈米顆粒加入到黏合劑體系中,填充了填充粉末床中的空隙,因此改善了燒結性,增加了部件密度,並降低了收縮率。隨著奈米顆粒尺寸的減小,奈米顆粒的熔點呈指數下降。因此,黏合劑中的奈米顆粒將在比原料粉末更低且可以熔合大顆粒的溫度下燒結,從而改善元件的生坯強度。需要具有在金屬、金屬陶瓷(cermats)或陶瓷(ceramics)的燒結或固化溫度下具有低灰分殘留物含量的黏合劑。Binders for metal and ceramic powders are usually aqueous or non-aqueous dispersions of inorganic particles such as silica dispersions, aluminum nitrate dispersions or film-forming polymer dispersions. Adding nanoparticles to the binder system fills the voids in the packed powder bed, thus improving sinterability, increasing part density, and reducing shrinkage. As the nanoparticle size decreases, the melting point of the nanoparticles decreases exponentially. As a result, the nanoparticles in the binder will sinter at a lower temperature than the raw powder and can fuse the larger particles, improving the green strength of the component. There is a need for binders with low ash residue content at the sintering or curing temperatures of metals, cermats or ceramics.

用於聚合物粉末的黏合劑通常由溶劑或溶劑混合物組成,該溶劑或溶劑混合物促進聚合物原料的溶脹,通過相互擴散和纏結導致顆粒聚結。成膜聚合物分散體的溶液也可以用作黏合劑。處理親水性粉末(例如澱粉、石膏和水泥)需要水性黏合劑。疏水性聚合物粉末(例如聚乳酸或PLA)可以使用有機溶劑進行處理。這些類型的用於聚合物粉末的黏合劑也可用於塗覆用於熔合成部件的熱塑性長絲。Binders for polymer powders usually consist of solvents or solvent mixtures that promote swelling of the polymer feedstock, leading to particle agglomeration through interdiffusion and entanglement. Solutions of film-forming polymer dispersions can also be used as binders. Handling of hydrophilic powders such as starch, gypsum and cement requires water-based binders. Hydrophobic polymer powders such as polylactic acid or PLA can be treated with organic solvents. These types of binders for polymer powders can also be used to coat thermoplastic filaments for fusion into parts.

碳奈米管可以根據管中壁的數量分為單壁、雙壁和多壁。碳奈米管的每個壁可以進一步分為手性形式或非手性形式。碳奈米管的一些碳原子可以被氮原子取代。碳奈米管目前被製造成團聚的碳奈米管球或碳奈米管束,其商業用途非常有限。使用碳奈米管作為聚合物複合材料中的增強劑是其中碳奈米管被預測具有顯著效用的領域。然而,由於通常不能可靠地生產個體化的碳奈米管,碳奈米管在這些應用中的使用受到了阻礙。為了實現碳奈米管作為聚合物中的複合材料的性能增強的全部潛力,長徑比(即長度與直徑的比率)應該大於10。對於給定的管長度,當每個管與另一個管完全分離時,達到最大長徑比。例如,碳奈米管束在複合材料中的有效長徑比是該束的平均長度除以該束的直徑。Carbon nanotubes can be classified into single-wall, double-wall and multi-wall according to the number of walls in the tube. Each wall of carbon nanotubes can be further classified as chiral or achiral. Some carbon atoms of carbon nanotubes may be replaced by nitrogen atoms. Carbon nanotubes are currently fabricated as agglomerated carbon nanotube spheres or carbon nanotube bundles, which have very limited commercial use. The use of carbon nanotubes as reinforcing agents in polymer composites is an area where carbon nanotubes are predicted to have significant utility. However, the use of carbon nanotubes in these applications has been hampered by the general inability to reliably produce individualized carbon nanotubes. To realize the full performance-enhancing potential of carbon nanotubes as composites in polymers, the aspect ratio (ie, the ratio of length to diameter) should be greater than 10. For a given tube length, the maximum aspect ratio is reached when each tube is completely separated from the other. For example, the effective aspect ratio of a bundle of carbon nanotubes in a composite is the average length of the bundle divided by the diameter of the bundle.

已經開發了各種方法來解開或解纏結溶液中的碳奈米管。例如,碳奈米管可以通過侵蝕性氧化方法被大大地縮短,然後作為單個奈米管分散在稀溶液中。這些管具有不適於高強度複合材料的低的長徑比。碳奈米管也可以在表面活性劑存在下通過超聲處理作為個體分散在非常稀的溶液中。用於在水溶液中分散碳奈米管的示例性表面活性劑包括例如十二烷基硫酸鈉或十六烷基三甲基溴化銨。在一些情況下,個體化碳奈米管的溶液可以由聚合物包裹的碳奈米管製備。也已經使用了多糖、多肽、水溶性聚合物、核酸、DNA、多核苷酸、聚醯亞胺和聚乙烯吡咯烷酮在非常稀的溶液中製備了個體化的單壁碳奈米管溶液,但是這些稀溶液不適用於增材製造。Various methods have been developed to unravel or disentangle carbon nanotubes in solution. For example, carbon nanotubes can be greatly shortened by aggressive oxidation methods and then dispersed as individual nanotubes in dilute solutions. These tubes have a low aspect ratio unsuitable for high strength composites. Carbon nanotubes can also be dispersed as individuals in very dilute solutions by sonication in the presence of surfactants. Exemplary surfactants for dispersing carbon nanotubes in an aqueous solution include, for example, sodium lauryl sulfate or cetyltrimethylammonium bromide. In some cases, solutions of individualized carbon nanotubes can be prepared from polymer-wrapped carbon nanotubes. Individualized SWNT solutions have also been prepared in very dilute solutions using polysaccharides, polypeptides, water-soluble polymers, nucleic acids, DNA, polynucleotides, polyimides, and polyvinylpyrrolidone, but these Dilute solutions are not suitable for additive manufacturing.

本發明涉及用於生產增材製造分散體及其部件的新型組成物和方法。The present invention relates to novel compositions and methods for producing additively manufactured dispersions and parts thereof.

在一個實施方案中,本發明的組成物包括增材製造分散體,其中所述分散體包括至少一部分可交聯部分氧化的離散碳奈米管,所述氧化的離散碳奈米管在所述氧化的離散碳奈米管的至少一個側壁上具有結合的分散劑,其中所述氧化的離散碳奈米管基於分散體的總重量以大於0至至多約30重量%的範圍存在,並且所述分散體中存在的多數碳奈米管是離散的。In one embodiment, the composition of the present invention comprises an additively manufactured dispersion, wherein said dispersion comprises at least a portion of crosslinkable partially oxidized discrete carbon nanotubes, said oxidized discrete carbon nanotubes in said The oxidized discrete carbon nanotubes have a dispersant bound on at least one sidewall thereof, wherein the oxidized discrete carbon nanotubes are present in a range of greater than 0 up to about 30 weight percent based on the total weight of the dispersion, and the Most of the carbon nanotubes present in the dispersion are discrete.

理想地,氧化的離散碳奈米管包括內表面和外表面,每個表面包括內表面氧化的物質含量和外表面氧化的物質含量,其中所述內表面氧化的物質含量與外表面氧化的物質含量相差至少約20%,並且至高100%。Ideally, the oxidized discrete carbon nanotubes comprise an inner surface and an outer surface, each surface comprising an oxidized species content of the inner surface and an oxidized species content of the outer surface, wherein the inner surface oxidized species content is the same as the outer surface oxidized species content The contents vary by at least about 20%, and up to 100%.

氧化的離散碳奈米管可以包括氧化的離散碳奈米管的混合物,該混合物具有由氧化的離散單壁碳奈米管、氧化的離散雙壁碳奈米管和氧化的離散多壁碳奈米管的組合形成,具有雙峰或三峰分佈的氧化的離散碳奈米管的直徑。The oxidized discrete carbon nanotubes may include a mixture of oxidized discrete carbon nanotubes having a composition consisting of oxidized discrete single-walled carbon nanotubes, oxidized discrete double-walled carbon nanotubes, and oxidized discrete multi-walled carbon nanotubes. Combinations of nanotubes are formed, with a bimodal or trimodal distribution of oxidized discrete carbon nanotube diameters.

氧化的離散碳奈米管側壁上的結合的分散劑理想是共價結合的。The bound dispersant on the sidewalls of the oxidized discrete carbon nanotubes is ideally covalently bound.

氧化的離散碳奈米管側壁上的結合的分散劑理想包括約50至約20,000道爾頓範圍內的平均分子量,並且離散碳奈米管側壁上的結合的分散劑相對於氧化的離散碳奈米管的重量分數大於約0.02且小於約0.8。The bound dispersant on the sidewalls of the oxidized discrete carbon nanotubes desirably comprises an average molecular weight in the range of about 50 to about 20,000 Daltons, and the bound dispersant on the sidewalls of the discrete carbon nanotubes is relative to the oxidized discrete carbon nanotubes The weight fraction of rice tubes is greater than about 0.02 and less than about 0.8.

氧化的離散碳奈米管側壁上的結合的分散劑理想與接觸結合的分散劑的材料是可混溶的。The bound dispersant on the sidewalls of the oxidized discrete carbon nanotubes is ideally miscible with the material of the contact bound dispersant.

本發明的第二實施方案是增材製造分散體,其中所述分散體包括至少一部分可交聯的丙烯酸酯部分和氧化的離散碳奈米管,在氧化的離散碳奈米管的至少一個側壁上具有結合的分散劑,其中在離散碳奈米管側壁上的結合的分散劑包括選自醚的組的分子單元。A second embodiment of the present invention is an additively manufactured dispersion, wherein the dispersion comprises at least a portion of a crosslinkable acrylate moiety and oxidized discrete carbon nanotubes on at least one sidewall of the oxidized discrete carbon nanotubes has a bound dispersant on the sidewalls of the discrete carbon nanotubes, wherein the bound dispersant on the sidewalls of the discrete carbon nanotubes comprises molecular units selected from the group of ethers.

第二實施方案的分子單元理想包括環氧乙烷。The molecular units of the second embodiment desirably comprise ethylene oxide.

第一或第二實施方案可進一步包括分散體的(以重量%計)約0.1重量%至約30重量%的填料,理想其中所述填料選自由炭黑、石墨烯、氧化石墨烯、還原石墨烯、碳纖維、二氧化矽、矽酸鹽、埃洛石、黏土、碳酸鈣、矽灰石、玻璃、阻燃劑和滑石組成的組。The first or second embodiment may further comprise from about 0.1% to about 30% by weight of the dispersion (in % by weight) of a filler, ideally wherein the filler is selected from the group consisting of carbon black, graphene, graphene oxide, reduced graphite group consisting of alkenes, carbon fibers, silica, silicates, halloysite, clay, calcium carbonate, wollastonite, glass, flame retardants, and talc.

第一或第二實施方案可以進一步包括由熱塑性塑膠、熱固性塑膠和彈性體組成的組中的成員。The first or second embodiment may further comprise members of the group consisting of thermoplastics, thermosets and elastomers.

第一或第二實施方案可進一步包括核殼彈性體,其中所述彈性體理想包括直徑為約0.01至約1微米的顆粒。The first or second embodiment may further comprise a core-shell elastomer, wherein the elastomer desirably comprises particles having a diameter of about 0.01 to about 1 micron.

第一或第二實施方案可進一步包括半導體粉末、金屬粉末或陶瓷粉末,其中所述粉末包括約1nm至約20微米的顆粒直徑。The first or second embodiment may further comprise a semiconductor powder, a metal powder or a ceramic powder, wherein the powder comprises a particle diameter of about 1 nm to about 20 microns.

第一或第二實施方案可進一步包括連接於氧化的離散碳奈米管側壁的至少一種另外的分散劑,所述另外的分散劑選自由陰離子表面活性劑、陽離子表面活性劑、非離子表面活性劑和兩性離子表面活性劑、聚乙烯醇、聚乙烯醇和聚乙酸乙烯酯的共聚物、聚乙烯吡咯烷酮及其共聚物、羧甲基纖維素、羧丙基纖維素、羧甲基丙基纖維素、羥乙基纖維素、聚醚亞胺、聚醚、澱粉及其混合物組成的組。The first or second embodiment may further comprise at least one additional dispersant attached to the sidewalls of the oxidized discrete carbon nanotubes, said additional dispersant selected from the group consisting of anionic surfactants, cationic surfactants, nonionic surfactants Agents and zwitterionic surfactants, polyvinyl alcohol, copolymers of polyvinyl alcohol and polyvinyl acetate, polyvinylpyrrolidone and its copolymers, carboxymethylcellulose, carboxypropylcellulose, carboxymethylpropylcellulose , hydroxyethylcellulose, polyetherimide, polyether, starch and mixtures thereof.

在第一或第二實施方案中,所述氧化的離散碳奈米管包括約0.1重量%至約20重量%的氮原子。In the first or second embodiment, the oxidized discrete carbon nanotubes comprise from about 0.1% to about 20% by weight nitrogen atoms.

在本發明的第三實施方案是一種增材製造分散體,其中所述分散體包括至少一部分熱塑性部分和離散碳奈米管,在離散碳奈米管的至少一個側壁上具有結合分散劑,其中所述離散碳奈米管基於分散體的總重量以大於0至至多約30重量%的量存在。In a third embodiment of the present invention is an additively manufactured dispersion, wherein the dispersion comprises at least a portion of a thermoplastic portion and discrete carbon nanotubes having a dispersant bound on at least one sidewall of the discrete carbon nanotubes, wherein The discrete carbon nanotubes are present in an amount greater than 0 up to about 30 weight percent based on the total weight of the dispersion.

第三實施方案可以包括氧化的離散碳奈米管側壁上的結合的分散劑,所述分散劑在低於約500℃的氮氣中以小於約5重量%的灰分含量至少部分熱分解。A third embodiment may include an bound dispersant on the sidewalls of oxidized discrete carbon nanotubes that at least partially thermally decomposes at an ash content of less than about 5% by weight in nitrogen at less than about 500°C.

第三實施方案可以包括多數離散碳奈米管。A third embodiment may include a plurality of discrete carbon nanotubes.

三個實施方案中的任一個都可以包括由增材製造製成的部件,該部件具有小於約100億歐姆每平方的電阻。Any of the three embodiments may include a component made by additive manufacturing having a resistance of less than about 10 billion ohms per square.

三個實施方案中的任何一個都可以包括分散體,對於該分散體中氧化的離散碳奈米管的濃度為2.5×10-5g/ml,該分散體在500 nm處的UV-可見吸收大於約0.5吸光度單位。Any of the three embodiments may include a dispersion having a UV-visible absorbance at 500 nm greater than About 0.5 absorbance units.

三個實施方案中的任何一個都可以進一步包括選自導熱材料(例如但不限於金屬和金屬合金、氮化硼、氧化鋁、氮化矽、氮化鋁、金剛石、石墨和石墨烯)的組的填料。Any of the three embodiments may further comprise a group of thermally conductive materials such as, but not limited to, metals and metal alloys, boron nitride, aluminum oxide, silicon nitride, aluminum nitride, diamond, graphite, and graphene. filler.

三個實施方案中的任何一個都可以進一步包括選自由可以與細菌、病毒、真菌和生物因子相互作用的物質組成的組的生物活性物質。Any of the three embodiments may further comprise a biologically active substance selected from the group consisting of substances that can interact with bacteria, viruses, fungi and biological agents.

氧化的碳奈米管是已經經受氧化介質的那些碳奈米管,所述氧化介質(例如但不限於濃硝酸、過氧化物和過硫酸鹽)引入了化學單元,例如羧酸、羥基、酮和內酯。氧化的離散碳奈米管選自由氧化的離散單壁碳奈米管、氧化的離散雙壁碳奈米管或氧化的離散多壁碳奈米管組成的組。Oxidized carbon nanotubes are those that have been subjected to oxidizing media such as but not limited to concentrated nitric acid, peroxides, and persulfates that introduce chemical units such as carboxylic acids, hydroxyl groups, ketones and lactones. The oxidized discrete carbon nanotubes are selected from the group consisting of oxidized discrete single-walled carbon nanotubes, oxidized discrete double-walled carbon nanotubes, or oxidized discrete multi-walled carbon nanotubes.

氧化的離散碳奈米管還可以包括內表面和外表面,每個表面包括內表面氧化的物質含量(也稱為內部含氧物質含量,因為內部氧物質可能不同於外部氧物質)和外表面氧化的物質含量(也稱為外部含氧物質含量,因為內部氧物質可能不同於外部氧物質),其中所述內表面氧化的物質含量與外表面氧化的物質含量相差至少20%,並且至高100%,理想地,其中所述內表面氧化的物質含量小於外表面氧化的物質含量。所述內表面氧化的物質含量相對於碳奈米管重量可以為至高3重量%,理想相對於碳奈米管重量為約0.01至約3重量%,更理想為約0.01至約2,最理想為約0.01至約1。特別理想的內表面氧化的物質含量相對於碳奈米管重量為0至約0.01重量%。所述外表面氧化的物質含量相對於碳奈米管重量可以為約0.1至約65重量%,理想為約1至約40,更理想為約1至約20重量%。這通過比較給定多數奈米管的外部氧化的物質含量與該多數奈米管的總重量來確定。Oxidized discrete carbon nanotubes can also include inner and outer surfaces, each surface including the oxidized species content of the inner surface (also referred to as the inner oxygen species content, since the inner oxygen species may be different from the outer oxygen species) and the outer surface Oxygenated species content (also called outer oxygenated species content, since inner oxygen species may be different from outer oxygen species), wherein the inner surface oxidized species content differs from the outer surface oxidized species content by at least 20%, and up to 100% %, ideally, wherein the inner surface oxidized material content is less than the outer surface oxidized material content. The content of the inner surface oxidized substance can be up to 3% by weight relative to the weight of the carbon nanotubes, ideally about 0.01 to about 3% by weight relative to the weight of the carbon nanotubes, more preferably about 0.01 to about 2%, and most ideally from about 0.01 to about 1. A particularly desirable content of oxidized substances on the inner surface is 0 to about 0.01% by weight relative to the weight of the carbon nanotubes. The content of the substance oxidized on the outer surface may be about 0.1 to about 65% by weight relative to the weight of the carbon nanotubes, ideally about 1 to about 40% by weight, and more ideally about 1 to about 20% by weight. This is determined by comparing the externally oxidized species content of a given majority of nanotubes to the total weight of that majority of nanotubes.

氧化的離散碳奈米管可以進一步包括氧化的離散碳奈米管的混合物,該混合物由氧化的離散單壁碳奈米管、氧化的離散雙壁碳奈米管和氧化的離散多壁碳奈米管的組合形成,具有雙峰或三峰分佈的氧化的離散碳奈米管的直徑。理想地,氧化的離散碳奈米管的分散體包括大多數氧化的離散多壁碳奈米管,更理想大多數氧化的離散雙壁碳奈米管,甚至更理想大多數氧化的離散單壁碳奈米管。大多數的含義是多於分散體中存在的所有碳奈米管的50重量%。The oxidized discrete carbon nanotubes may further comprise a mixture of oxidized discrete carbon nanotubes consisting of oxidized discrete single-walled carbon nanotubes, oxidized discrete double-walled carbon nanotubes, and oxidized discrete multi-walled carbon nanotubes Combinations of nanotubes are formed, with a bimodal or trimodal distribution of oxidized discrete carbon nanotube diameters. Ideally, the dispersion of oxidized discrete carbon nanotubes includes a majority of oxidized discrete multi-walled carbon nanotubes, more desirably a majority of oxidized discrete double-walled carbon nanotubes, and even more desirably a majority of oxidized discrete single-walled carbon nanotubes carbon nanotubes. By majority is meant more than 50% by weight of all carbon nanotubes present in the dispersion.

在本發明的另一個實施方案中,增材製造分散體-氧化的離散碳奈米管側壁上的結合的分散劑是氫鍵結合的,理想離子結合的,且更理想共價結合的。In another embodiment of the present invention, the additively manufactured dispersion-bound dispersant on the sidewalls of the oxidized discrete carbon nanotubes is hydrogen bonded, ideally ionically bound, and more desirably covalently bound.

在另一個實施方案中,氧化的離散碳奈米管進一步具有氧化的離散碳奈米管的側壁上的結合的分散劑,該結合的分散劑由約50至約20,000道爾頓的範圍內的分子量組成。理想地,該結合的分散劑的分子量範圍為約60至約5000道爾頓,且更理想約70至約1000道爾頓。氧化的離散碳奈米管側壁上的結合的分散劑由選自碳-碳鍵、碳-氮鍵、碳-氧鍵、碳-硫鍵和矽-氧鍵的組的化學單元組成。在可交聯基質的存在下,結合的分散劑的化學單元理想能夠交聯到基質中。In another embodiment, the oxidized discrete carbon nanotubes further have a bound dispersant on the sidewalls of the oxidized discrete carbon nanotubes, the bound dispersant ranging from about 50 to about 20,000 Daltons molecular weight composition. Desirably, the combined dispersant has a molecular weight ranging from about 60 to about 5000 Daltons, and more desirably from about 70 to about 1000 Daltons. The bound dispersants on the sidewalls of the oxidized discrete carbon nanotubes consist of chemical units selected from the group of carbon-carbon bonds, carbon-nitrogen bonds, carbon-oxygen bonds, carbon-sulfur bonds, and silicon-oxygen bonds. In the presence of a crosslinkable matrix, the chemical units of the incorporated dispersant desirably are capable of being crosslinked into the matrix.

離散碳奈米管側壁上的結合的分散劑相對於氧化的離散碳奈米管的重量分數大於約0.02且小於約0.8。理想地結合的分散劑的重量分數為約0.03至約0.6,更理想約0.05至約0.5,最理想約0.06至約0.4。The weight fraction of bound dispersant on the sidewalls of the discrete carbon nanotubes relative to oxidized discrete carbon nanotubes is greater than about 0.02 and less than about 0.8. The weight fraction of dispersant combined is desirably from about 0.03 to about 0.6, more desirably from about 0.05 to about 0.5, most desirably from about 0.06 to about 0.4.

選擇氧化的離散碳奈米管側壁上的結合的分散劑以使得它與接觸分散劑的材料具有良好的相容性。本說明書中良好的相容性是指足夠量的電子、凡得瓦力(van der Waals force)、離子或偶極相互作用,以使得氧化的碳奈米管可以分散為單個或離散的碳奈米管。理想選擇氧化的離散碳奈米管側壁上的結合的分散劑以使得它是熱力學可混溶的,即與接觸分散劑的材料形成均勻混合物。The bound dispersant on the sidewalls of the oxidized discrete carbon nanotubes is selected such that it has good compatibility with the materials contacting the dispersant. Good compatibility in this specification refers to a sufficient amount of electrons, van der Waals force, ionic or dipole interactions, so that the oxidized carbon nanotubes can be dispersed into single or discrete carbon nanotubes rice tube. The bound dispersant on the sidewalls of the oxidized discrete carbon nanotubes is ideally selected such that it is thermodynamically miscible, ie, forms a homogeneous mixture with the material contacting the dispersant.

離散碳奈米管側壁上的結合的分散劑可以進一步包括環氧乙烷分子單元。更理想的是,結合的分散劑包括環氧丙烷和環氧乙烷分子單元的混合物。可以有在離散碳奈米管的側壁上結合的分散劑的混合物或具有不同類型的結合到分散劑的氧化的離散碳奈米管的混合物。The bound dispersant on the sidewalls of the discrete carbon nanotubes may further include ethylene oxide molecular units. More desirably, the combined dispersant comprises a mixture of propylene oxide and ethylene oxide molecular units. There may be a mixture of dispersants bound to the sidewalls of the discrete carbon nanotubes or a mixture of oxidized discrete carbon nanotubes with different types bound to the dispersant.

在本發明的另一個實施方案中,氧化的離散碳奈米管側壁上的結合的分散劑可以被進一步選擇發生熱分解,以使得在低於500℃下在氮氣中,分散劑的灰分含量低於約5重量%。理想地,氧化的離散碳奈米管側壁上的結合的分散劑發生熱分解,以使得在低於約500℃下在氮氣中,分散劑的灰分含量低於約1重量%,且更理想地,氧化的離散碳奈米管側壁上的結合的分散劑發生熱分解,以使得在低於約400℃下在氮氣中,分散劑的灰分含量低於約1重量%。In another embodiment of the invention, the bound dispersant on the sidewalls of the oxidized discrete carbon nanotubes can be further selected to thermally decompose such that the ash content of the dispersant is low in nitrogen at temperatures below 500°C At about 5% by weight. Desirably, the bound dispersant on the sidewalls of the oxidized discrete carbon nanotubes thermally decomposes such that the ash content of the dispersant is less than about 1% by weight in nitrogen at less than about 500°C, and more desirably The bound dispersant on the sidewalls of the oxidized discrete carbon nanotubes thermally decomposes such that the dispersant has an ash content of less than about 1% by weight in nitrogen at less than about 400°C.

在氧化的離散碳奈米管的側壁上具有結合的分散劑的氧化的離散碳奈米管由約10至約10000的長徑比(被稱為氧化的離散碳奈米管的長度與直徑的比率)組成。對於氧化的離散單壁碳奈米管,長徑比理想為約300至約10000,對於氧化的離散雙壁碳奈米管,長徑比理想為約150至約5000,對於氧化的離散多壁碳奈米管,長徑比理想為約40至約500。The oxidized discrete carbon nanotubes having an incorporated dispersant on the sidewalls of the oxidized discrete carbon nanotubes have an aspect ratio of from about 10 to about 10,000 (referred to as the length-to-diameter ratio of the oxidized discrete carbon nanotubes) ratio) composition. The aspect ratio desirably ranges from about 300 to about 10,000 for oxidized discrete single-walled carbon nanotubes, from about 150 to about 5,000 for oxidized discrete double-walled carbon nanotubes, and for oxidized discrete multi-walled carbon nanotubes. For carbon nanotubes, the aspect ratio is desirably from about 40 to about 500.

氧化的離散碳奈米管的長徑比可以是單峰分佈,或多峰分佈(例如雙峰或三峰分佈)。多峰分佈可以具有均勻分佈的長徑比範圍(例如50%的一個L/D範圍和約50%的另一個L/D範圍)。分佈也可以是不對稱的——這意味著相對小百分比的離散奈米管可以具有一種特定的L/D,而更大數量的離散奈米管可以包括另一種長徑比分佈。The aspect ratio of the oxidized discrete carbon nanotubes may be unimodal, or multimodal (eg, bimodal or trimodal). A multimodal distribution may have a uniform distribution of aspect ratio ranges (eg, 50% of one L/D range and about 50% of another L/D range). The distribution can also be asymmetric—meaning that a relatively small percentage of discrete nanotubes can have one particular L/D, while a larger number of discrete nanotubes can include another distribution of aspect ratios.

本發明的一個實施方案是,氧化的離散碳奈米管的側壁上具有結合的分散劑的氧化的離散碳奈米管基於分散體的總重量以大於零且至多約30重量%的重量範圍存在。理想地,分散體中存在的在氧化的離散碳奈米管側壁上具有結合的分散劑的氧化的離散碳奈米管的重量範圍基於分散體的總重量為約0.01至約10重量%,更理想約0.01至約5重量%。It is an embodiment of the invention that the oxidized discrete carbon nanotubes having dispersants bound to their sidewalls are present in a weight range of greater than zero and up to about 30 weight percent, based on the total weight of the dispersion . Desirably, the weight of the oxidized discrete carbon nanotubes with the dispersant bound on the sidewalls of the oxidized discrete carbon nanotubes present in the dispersion ranges from about 0.01 to about 10 weight percent, more preferably based on the total weight of the dispersion. Ideally from about 0.01 to about 5% by weight.

在本發明的另一個實施方案中,分散體中存在的多數碳奈米管是離散的。理想分散體中存在的至少約51重量%的氧化的碳奈米管側壁上具有結合的分散劑的氧化的碳奈米管是離散的,理想分散體中存在的至少約65重量%的氧化的碳奈米管側壁上具有結合的分散劑的氧化的碳奈米管是離散的,更理想分散體中存在的至少約75重量%的氧化的碳奈米管側壁上具有結合的分散劑的氧化的碳奈米管是離散的,且最理想分散體中存在的至少約85重量%的碳奈米管是離散的。In another embodiment of the invention, the majority of carbon nanotubes present in the dispersion are discrete. At least about 51% by weight of the oxidized carbon nanotubes present on the sidewalls of the ideal dispersion are discrete, and at least about 65% by weight of the oxidized carbon nanotubes present in the ideal dispersion are discrete. The oxidized carbon nanotubes with bound dispersant on the sidewalls of the carbon nanotubes are discrete, and more desirably at least about 75% by weight of the oxidized carbon nanotubes with bound dispersant on the sidewalls of the dispersion are present in the dispersion. The carbon nanotubes are discrete, and most ideally at least about 85% by weight of the carbon nanotubes present in the dispersion are discrete.

在本發明的另一個實施方案中,在氧化的離散碳奈米管的側壁上具有結合的分散劑的氧化的離散碳奈米管的分散體包括相對於分散體總重量的(以重量%計)約0.05%至約80%的填料。理想地,填料的重量%相對於分散體的總重量為約0.05%至約30%,最理想約0.1%至約10%。In another embodiment of the present invention, the dispersion of oxidized discrete carbon nanotubes having a dispersant bound on the sidewalls of the oxidized discrete carbon nanotubes comprises (in % by weight) relative to the total weight of the dispersion ) from about 0.05% to about 80% filler. Desirably, the weight percent of filler is from about 0.05% to about 30%, most desirably from about 0.1% to about 10%, relative to the total weight of the dispersion.

填料選自由炭黑、石墨烯、氧化石墨烯、還原石墨烯、碳纖維、二氧化矽、矽酸鹽、埃洛石、黏土、碳酸鈣、矽灰石、玻璃、阻燃劑和滑石組成的組。填料可以是大致球形的顆粒、棒、纖維或板的形狀。理想地,填料具有至少一個大於約1nm且小於約10微米的尺寸範圍,更理想具有至少一個大於約5nm且小於約2微米的尺寸範圍,最理想具有至少一個大於約10nm且小於約1微米的尺寸範圍。The filler is selected from the group consisting of carbon black, graphene, graphene oxide, reduced graphene, carbon fiber, silica, silicate, halloysite, clay, calcium carbonate, wollastonite, glass, flame retardant and talc . The filler can be in the shape of roughly spherical particles, rods, fibers or plates. Desirably, the filler has at least one size range greater than about 1 nm and less than about 10 microns, more desirably has at least one size range greater than about 5 nm and less than about 2 microns, and most desirably has at least one size range greater than about 10 nm and less than about 1 micron Size range.

在一些實施方案中,包括氧化的離散碳奈米管的分散體進一步包括至少兩種不同填料的混合物。在一些實施方案中,包括氧化的離散碳奈米管的分散體進一步包括不同種類的單一填料的混合物,該單一填料可以根據粒徑、熱導率、填充或分子量而變化。In some embodiments, the dispersion comprising oxidized discrete carbon nanotubes further comprises a mixture of at least two different fillers. In some embodiments, the dispersion comprising oxidized discrete carbon nanotubes further comprises a mixture of different kinds of single fillers which may vary in terms of particle size, thermal conductivity, packing or molecular weight.

在本發明的進一步實施方案中,分散體進一步包括可光交聯的單體、低聚物或聚合物。可交聯的單體、低聚物或聚合物含有選自碳-碳雙鍵、碳-碳三鍵、胺酯、丙烯酸酯、烷基丙烯酸酯、氰基腈、氰基丙烯酸酯、腈、環氧樹脂、醯胺、胺、醇、醚和酯的組的分子單元。In a further embodiment of the invention, the dispersion further comprises a photocrosslinkable monomer, oligomer or polymer. Crosslinkable monomers, oligomers or polymers containing carbon-carbon double bonds, carbon-carbon triple bonds, urethanes, acrylates, alkyl acrylates, cyanonitriles, cyanoacrylates, nitriles, Molecular unit of the group of epoxy resins, amides, amines, alcohols, ethers and esters.

在另一個實施方案中,在氧化的離散碳奈米管的側壁上具有結合的分散劑的氧化的離散碳奈米管的分散體進一步包括熱塑性塑膠。在氧化的離散碳奈米管的側壁上具有結合的分散劑的氧化的離散碳奈米管的分散體可以塗覆熱塑性塑膠,或者在氧化的離散碳奈米管的側壁上具有結合的分散劑的氧化的離散碳奈米管可以分散在熱塑性塑膠內。理想的熱塑性塑膠選自無定形和半結晶熱塑性塑膠,包括但不限於聚乳酸(PLA)、丙烯腈丁二烯苯乙烯(ABS)、聚碳酸酯(PC)、聚碳酸酯-丙烯腈丁二烯苯乙烯共混物(PC-ABS)、聚醚醯亞胺(PEI)、聚苯碸(PPSF)、聚對苯二甲酸乙二醇酯(PET)、聚對苯二甲酸乙二醇酯二醇(PETG)、聚醚醚酮(PEEK)、聚醯胺(例如但不限於尼龍12、尼龍11、尼龍6和尼龍6,6)、聚乙烯醇及其共聚物、聚乙烯基丁酸酯及其共聚物、聚乙烯吡咯烷酮及其共聚物、聚醚及其共聚物。熱塑性塑膠可以是線性聚合物、接枝聚合物、梳狀聚合物或嵌段聚合物。In another embodiment, the dispersion of oxidized discrete carbon nanotubes with a dispersant bound on the sidewalls of the oxidized discrete carbon nanotubes further comprises a thermoplastic. Dispersions of oxidized discrete carbon nanotubes with bound dispersant on the sidewalls of the oxidized discrete carbon nanotubes can be coated with thermoplastic or have bound dispersant on the sidewalls of the oxidized discrete carbon nanotubes Oxidized discrete carbon nanotubes can be dispersed within thermoplastics. Desirable thermoplastics are selected from amorphous and semi-crystalline thermoplastics, including but not limited to polylactic acid (PLA), acrylonitrile butadiene styrene (ABS), polycarbonate (PC), polycarbonate-acrylonitrile butadiene Polyethylene styrene blend (PC-ABS), polyetherimide (PEI), polyphenylene styrene (PPSF), polyethylene terephthalate (PET), polyethylene terephthalate Glycols (PETG), polyetheretherketone (PEEK), polyamides (such as but not limited to nylon 12, nylon 11, nylon 6, and nylon 6,6), polyvinyl alcohol and its copolymers, polyvinyl butyrate Esters and their copolymers, polyvinylpyrrolidone and its copolymers, polyethers and their copolymers. Thermoplastics can be linear polymers, graft polymers, comb polymers or block polymers.

在又一個實施方案中,在氧化的離散碳奈米管的側壁上具有結合的分散劑的氧化的離散碳奈米管的分散體進一步包括彈性體。彈性體可以選自但不限於由以下組成的組:天然橡膠、聚異丁烯、聚丁二烯、苯乙烯-丁二烯、氫化苯乙烯-丁二烯、丁基橡膠、聚異戊二烯、苯乙烯-異戊二烯橡膠、三元乙丙橡膠、矽樹脂、聚胺酯、聚酯、聚醚、聚丙烯酸酯、氫化和非氫化丁腈橡膠、鹵素改性彈性體、聚烯烴彈性體、含氟彈性體及其組合。彈性體可以是非交聯的或交聯的、接枝的或共聚物。In yet another embodiment, the dispersion of oxidized discrete carbon nanotubes with a dispersant bound on the sidewalls of the oxidized discrete carbon nanotubes further comprises an elastomer. The elastomer may be selected from, but not limited to, the group consisting of: natural rubber, polyisobutylene, polybutadiene, styrene-butadiene, hydrogenated styrene-butadiene, butyl rubber, polyisoprene, Styrene-isoprene rubber, EPDM rubber, silicone resin, polyurethane, polyester, polyether, polyacrylate, hydrogenated and non-hydrogenated nitrile rubber, halogen modified elastomer, polyolefin elastomer, containing Fluoroelastomers and combinations thereof. Elastomers can be non-crosslinked or crosslinked, grafted or copolymers.

在另一個實施方案中,在氧化的離散碳奈米管的側壁上具有結合的分散劑的氧化的離散碳奈米管的分散體進一步包括玻璃化轉變溫度低於約25℃的聚合物抗衝改性劑(impact modifiers)。抗衝改性劑選自聚醚、聚酯、乙烯基聚合物、聚乙烯共聚物、聚烯烴聚丙烯酸酯、聚胺酯、聚醯胺和聚矽氧烷、其共混物及其共聚物的組。它們可以進一步用反應性基團(例如但不限於環氧基、羥基、異氰酸酯基和羧基)官能化。In another embodiment, the dispersion of oxidized discrete carbon nanotubes having a dispersant bound on the sidewalls of the oxidized discrete carbon nanotubes further comprises a polymer impact resistant polymer having a glass transition temperature of less than about 25°C. Modifiers (impact modifiers). Impact modifier selected from the group of polyethers, polyesters, vinyl polymers, polyethylene copolymers, polyolefin polyacrylates, polyurethanes, polyamides and polysiloxanes, blends thereof and copolymers thereof . They can be further functionalized with reactive groups such as, but not limited to, epoxy, hydroxyl, isocyanate, and carboxyl groups.

抗衝改性劑理想與分散體的主要基質材料相分離,但仍具有良好的內聚力或熱力學相互作用。更理想的是,抗衝改性劑的組成是嵌段共聚物或核-殼聚合物。核殼聚合物的示例是基於丙烯酸酯或丁二烯的PARALOID™抗衝改性劑。更理想的是,抗衝改性劑的折射率值至少在基質折射率值的0.03個單位內,更理想在0.02個單位內,以便最小化UV-可見波長範圍內的輻射散射。Impact modifiers are ideally separated from the main matrix material of the dispersion, but still have good cohesive or thermodynamic interactions. More desirably, the composition of the impact modifier is a block copolymer or a core-shell polymer. Examples of core shell polymers are acrylate or butadiene based PARALOID™ impact modifiers. More desirably, the impact modifier has a refractive index value that is at least within 0.03 units, more desirably within 0.02 units, of the matrix refractive index value in order to minimize radiation scatter in the UV-visible wavelength range.

核-殼顆粒可以包括多於一個的核及/或多於一個的殼。此外,可以使用核-殼顆粒與彈性體顆粒的混合物。在一個實施方案中,以一定的比率使用兩種不同直徑的抗沖改性劑。使用兩種不同直徑的不同抗沖改性劑具有降低液體輻射固化樹脂的黏度的效果。在一個實施方案中,抗沖改性劑的組成為約7比1的直徑比(例如140 nm顆粒對20 nm顆粒)和約4比1的wt%比。在另一個實施方案中,抗沖改性劑的組成為約5比1的直徑比和約4比1的wt%比。在另一個實施方案中,抗沖改性劑的組成為約5比1的直徑比和約6比1的wt%比。Core-shell particles may comprise more than one core and/or more than one shell. Furthermore, mixtures of core-shell particles and elastomer particles may be used. In one embodiment, two impact modifiers of different diameters are used in a certain ratio. Using two different impact modifiers of different diameters has the effect of reducing the viscosity of the liquid radiation curable resin. In one embodiment, the composition of the impact modifier is about a 7 to 1 diameter ratio (eg, 140 nm particles to 20 nm particles) and a weight percent ratio of about 4 to 1. In another embodiment, the composition of the impact modifier is about a 5 to 1 diameter ratio and about a 4 to 1 weight percent ratio. In another embodiment, the composition of the impact modifier is about 5 to 1 diameter ratio and about 6 to 1 weight percent ratio.

在氧化的離散碳奈米管的側壁上具有結合的分散劑的氧化的離散碳奈米管的分散體中,抗衝改性劑的相分離的疇尺寸的直徑可以大於約0.005微米且小於約1微米,理想直徑大於0.01微米且小於約0.8微米,最理想直徑大於約0.05微米且小於約0.6微米。In a dispersion of oxidized discrete carbon nanotubes with a dispersant bound on the sidewalls of the oxidized discrete carbon nanotubes, the phase-separated domain size of the impact modifier can have a diameter greater than about 0.005 microns and less than about 1 micron, ideally greater than about 0.01 micron and less than about 0.8 micron in diameter, most desirably greater than about 0.05 micron and less than about 0.6 micron in diameter.

抗衝改性劑可以以分散體的至少約0.1重量%至小於約30重量%,理想至少大於約0.5%至小於約15%,且最理想至少約2%至小於約10%存在於在氧化的離散碳奈米管的側壁上具有結合的分散劑的氧化的離散碳奈米管的分散體中。The impact modifier may be present at least about 0.1% to less than about 30% by weight of the dispersion, desirably at least greater than about 0.5% to less than about 15%, and most desirably at least about 2% to less than about A dispersion of oxidized discrete carbon nanotubes with a dispersant bound on the sidewalls of the discrete carbon nanotubes.

在另一個實施方案中,在氧化的離散碳奈米管的側壁上具有結合的分散劑的氧化的離散碳奈米管的分散體進一步包括金屬粉末。金屬粉末可以含有元素週期表中列出的金屬元素中的任一種。金屬也可以是金屬氧化物、金屬碳化物、金屬矽化物或金屬氮化物,或者與其他元素的合金的形式。理想的金屬粉末可以選擇,但不限於不銹鋼、Inconel、青銅、銅、銀、鉑、鎢、鋁、鈷、鉑和碳化鎢的類別。更理想的是,金屬粉末的顆粒直徑大於約1nm且小於約20微米。為了更有效地燒結,可以進一步理想具有雙峰金屬粉末顆粒直徑分佈。進一步理想的是,在金屬粉末顆粒分佈中,較大粒徑的數量占大多數。In another embodiment, the dispersion of oxidized discrete carbon nanotubes with a dispersant bound on the sidewalls of the oxidized discrete carbon nanotubes further comprises a metal powder. The metal powder may contain any of the metal elements listed in the periodic table. Metals may also be in the form of metal oxides, metal carbides, metal silicides or metal nitrides, or alloys with other elements. Ideal metal powders can be selected from, but not limited to the categories of Stainless Steel, Inconel, Bronze, Copper, Silver, Platinum, Tungsten, Aluminum, Cobalt, Platinum and Tungsten Carbide. More desirably, the metal powder has a particle diameter greater than about 1 nm and less than about 20 microns. For more efficient sintering, it may further be desirable to have a bimodal metal powder particle diameter distribution. It is further desirable that in the particle distribution of the metal powder, the number of larger particle sizes predominates.

在另一個實施方案中,在氧化的離散碳奈米管的側壁上具有結合的分散劑的氧化的離散碳奈米管的分散體進一步包括陶瓷粉末。陶瓷粉末可以選自但不限於氧化鋁、氧化鋯、二氧化矽、氮化硼和碳化矽及其混合物的類別。理想的是,陶瓷粉末的顆粒直徑大於約1nm且小於約20微米。為了更有效地燒結陶瓷,它可以進一步理想具有雙峰陶瓷粉末顆粒直徑分佈。進一步理想的,在陶瓷粉末顆粒分佈中,較大粒徑的數量占大多數。In another embodiment, the dispersion of oxidized discrete carbon nanotubes having a dispersant bound on the sidewalls of the oxidized discrete carbon nanotubes further comprises a ceramic powder. Ceramic powders may be selected from, but are not limited to, the classes of alumina, zirconia, silica, boron nitride, and silicon carbide, and mixtures thereof. Desirably, the particle diameter of the ceramic powder is greater than about 1 nm and less than about 20 microns. For more efficient sintering of ceramics, it may further be desirable to have a bimodal ceramic powder particle diameter distribution. It is further desirable that in the particle distribution of the ceramic powder, the number of larger particle sizes accounts for the majority.

在另一個實施方案中,在氧化的離散碳奈米管的側壁上具有結合的分散劑的氧化的離散碳奈米管的分散體進一步包括陶瓷粉末和金屬粉末的混合物,該混合物當燒結時形成金屬陶瓷。理想的金屬陶瓷基於元素週期表第四至第六元素族的碳化物、氮化物、硼化物和矽化物。In another embodiment, the dispersion of oxidized discrete carbon nanotubes having a dispersant bound on the sidewalls of the oxidized discrete carbon nanotubes further comprises a mixture of ceramic powder and metal powder which upon sintering forms Cermet. Ideal cermets are based on carbides, nitrides, borides and silicides of elements from groups 4 to 6 of the periodic table.

在本發明的另一個實施方案中,在氧化的離散碳奈米管的側壁上具有結合的分散劑的氧化的離散碳奈米管的分散體進一步包括連接於氧化的離散碳奈米管側壁的至少一種另外的分散劑,所述另外的分散劑選自由以下組成的組:陰離子表面活性劑、陽離子表面活性劑、非離子表面活性劑和兩性離子表面活性劑、聚乙烯醇、聚乙烯醇和聚乙酸乙烯酯的共聚物、聚乙烯吡咯烷酮及其共聚物、羧甲基纖維素、羧丙基纖維素、羧甲基丙基纖維素、羥乙基纖維素、聚醚亞胺、聚醚、澱粉及其混合物。理想的非共價連接的聚合物分散劑選自兩親性聚合物的組。In another embodiment of the present invention, the dispersion of oxidized discrete carbon nanotubes having a dispersant bound on the sidewalls of the oxidized discrete carbon nanotubes further comprises At least one additional dispersant selected from the group consisting of anionic, cationic, nonionic and zwitterionic surfactants, polyvinyl alcohol, polyvinyl alcohol and polyvinyl alcohol Copolymers of vinyl acetate, polyvinylpyrrolidone and its copolymers, carboxymethylcellulose, carboxypropylcellulose, carboxymethylpropylcellulose, hydroxyethylcellulose, polyetherimide, polyether, starch and mixtures thereof. Desirable non-covalently linked polymeric dispersants are selected from the group of amphiphilic polymers.

連接於氧化的離散碳奈米管側壁的另外的分散劑的分子量理想在約100至約400,000道爾頓範圍內,更理想在約1000至約200,000道爾頓範圍內,最理想在約10,000至約100,000道爾頓範圍內。The additional dispersant attached to the sidewalls of the oxidized discrete carbon nanotubes desirably has a molecular weight in the range of about 100 to about 400,000 Daltons, more desirably in the range of about 1000 to about 200,000 Daltons, most desirably in the range of about 10,000 to about 200,000 Daltons In the range of about 100,000 Daltons.

連接於氧化的離散碳奈米管側壁的另外的分散劑和氧化的離散碳奈米管側壁上的結合的分散劑可以以約0.01至約2的連接於氧化的離散碳奈米管的另外的分散劑與氧化的離散碳奈米管側壁上的結合的分散劑的重量比存在於分散體中。理想地,重量比為約0.1至約1,且更理想約0.2至約0.75。The additional dispersant attached to the sidewalls of the oxidized discrete carbon nanotubes and the combined dispersant on the sidewalls of the oxidized discrete carbon nanotubes can be attached to the additional dispersants of the oxidized discrete carbon nanotubes at about 0.01 to about 2 The weight ratio of dispersant to bound dispersant on the sidewalls of the oxidized discrete carbon nanotubes is present in the dispersion. Desirably, the weight ratio is from about 0.1 to about 1, and more desirably from about 0.2 to about 0.75.

本發明的另一個實施方案是在氧化的離散碳奈米管的側壁上具有結合的分散劑的氧化的離散碳奈米管的分散體進一步包括有機溶劑。理想的有機溶劑選自醇、醚、酮、二氧戊環、乙酸酯、二醇及其混合物的組。Another embodiment of the present invention is the dispersion of oxidized discrete carbon nanotubes having a dispersant bound on the sidewalls of the oxidized discrete carbon nanotubes further comprising an organic solvent. Desirable organic solvents are selected from the group of alcohols, ethers, ketones, dioxolanes, acetates, diols and mixtures thereof.

本發明的又一個實施方案是在氧化的離散碳奈米管的側壁上具有結合的分散劑的氧化的離散碳奈米管的分散體進一步包括水。Yet another embodiment of the present invention is the dispersion of oxidized discrete carbon nanotubes having a dispersant bound on the sidewalls of the oxidized discrete carbon nanotubes further comprising water.

在本發明的一個實施方案中,在氧化的離散碳奈米管的側壁上具有結合的分散劑的氧化的離散碳奈米管的分散體是靜電耗散的。理想地,該分散體的表面電阻率小於100億歐姆每平方,更理想小於1000萬歐姆每平方。In one embodiment of the invention, the dispersion of oxidized discrete carbon nanotubes with a dispersant bound on the sidewalls of the oxidized discrete carbon nanotubes is electrostatically dissipative. Ideally, the dispersion has a surface resistivity of less than 10 billion ohms per square, more desirably less than 10 million ohms per square.

在本發明的又一個實施方案中,在氧化的離散碳奈米管的側壁上具有結合的分散劑的氧化的離散碳奈米管的分散體進一步包括約0.1重量%至約20重量%的氮原子。In yet another embodiment of the present invention, the dispersion of oxidized discrete carbon nanotubes having a dispersant bound on the sidewalls of the oxidized discrete carbon nanotubes further comprises from about 0.1% to about 20% by weight nitrogen atom.

在本發明的一個實施方案中,對於分散體中具有結合的分散劑的氧化的離散碳奈米管的濃度為2.5×10 -5g/ml,在氧化的離散碳奈米管的側壁上具有結合的分散劑的氧化的離散碳奈米管的分散體在500 nm處的UV-可見吸收大於0.5吸光度單位。理想地,在相同的氧化的碳奈米管濃度和測量波長下,大於0.75吸光度單位,最理想地,在相同的氧化的碳奈米管濃度和測量波長下,大於1吸光度單位。 In one embodiment of the invention, for a concentration of 2.5 x 10 -5 g/ml of oxidized discrete carbon nanotubes with bound dispersant in the dispersion, there is The dispersion of oxidized discrete carbon nanotubes with the combined dispersant has a UV-visible absorption at 500 nm of greater than 0.5 absorbance units. Ideally, greater than 0.75 absorbance units at the same concentration of oxidized carbon nanotubes and measurement wavelength, and most ideally, greater than 1 absorbance unit at the same concentration of oxidized carbon nanotubes and measurement wavelength.

在本發明的又一個實施方案中,填料可以選自由成碳劑、膨脹劑組成,並在氣相中反應的阻燃劑(例如但不限於有機鹵化物(鹵代烷烴))的組。In yet another embodiment of the present invention, the filler may be selected from the group consisting of carbon formers, expansion agents, and flame retardants that react in the gas phase (such as but not limited to organic halides (halogenated alkanes)).

在一個實施方案中,在氧化的離散碳奈米管的側壁上具有結合的分散劑的氧化的離散碳奈米管的分散體包括選自導熱材料(例如但不限於金屬和金屬合金、氮化硼、氧化鋁、氮化矽、氮化鋁、金剛石、石墨)的組的填料。In one embodiment, the dispersion of oxidized discrete carbon nanotubes having a dispersant bound on the sidewalls of the oxidized discrete carbon nanotubes comprises a material selected from the group consisting of thermally conductive materials such as, but not limited to, metals and metal alloys, nitrided carbon nanotubes, Fillers of the group of boron, alumina, silicon nitride, aluminum nitride, diamond, graphite).

在另一個實施方案中,在氧化的離散碳奈米管的側壁上具有結合的分散劑的氧化的離散碳奈米管的分散體包括選自磁性和鐵磁性材料(例如但不限於含有鎳原子、鐵原子、鈷原子及其合金和氧化物的那些材料)的組的填料。In another embodiment, the dispersion of oxidized discrete carbon nanotubes having a dispersant bound on the sidewalls of the oxidized discrete carbon nanotubes comprises a material selected from magnetic and ferromagnetic materials such as, but not limited to, containing nickel atoms. , iron atoms, cobalt atoms and those materials of their alloys and oxides).

本發明的一個實施方案是具有結合的分散劑的氧化的離散碳奈米管的分散體,該分散體進一步包括在大於約1 MHz的頻率下,理想在大於約1GHz的頻率下提供電磁吸收或遮罩的磁性或鐵磁性顆粒。進一步包括電子傳導填料顆粒的具有結合的分散劑的氧化的離散碳奈米管的分散體對於遮罩射頻也是理想的。One embodiment of the present invention is a dispersion of oxidized discrete carbon nanotubes having an incorporated dispersant, the dispersion further comprising providing electromagnetic absorption or Masked magnetic or ferromagnetic particles. Dispersions of oxidized discrete carbon nanotubes with incorporated dispersants further comprising electron conductive filler particles are also ideal for radio frequency masking.

在又一個實施方案中,包括至少一部分可交聯部分以及在氧化的離散碳奈米管的至少一個側壁上具有結合的分散劑的氧化的離散碳奈米管的分散體通過輻射至少部分交聯,隨後通過熱或照射方法後固化包括至少一部分可交聯部分和在氧化的離散碳奈米管的至少一個側壁上具有結合的分散劑的氧化的離散碳奈米管,以獲得最終期望的部件性能,其中後固化以獲得最終期望的部件性能的時間比沒有氧化的離散碳奈米管的分散體少10%,理想少25%的時間,且更理想少50%的時間。In yet another embodiment, a dispersion of oxidized discrete carbon nanotubes comprising at least a portion of the crosslinkable moiety and having a dispersant bound on at least one sidewall of the oxidized discrete carbon nanotubes is at least partially crosslinked by radiation , followed by post-curing by thermal or irradiation methods the oxidized discrete carbon nanotubes comprising at least a portion of the crosslinkable moiety and having a dispersant bound on at least one sidewall of the oxidized discrete carbon nanotubes to obtain the final desired part properties, where the time to post cure to achieve the final desired part properties is 10% less, ideally 25% less time, and more desirably 50% less time than a dispersion of discrete carbon nanotubes without oxidation.

在另一個實施方案中,包括至少一部分可交聯部分和在氧化的離散碳奈米管的至少一個側壁上具有結合的分散劑的氧化的離散碳奈米管的分散體是可噴射的。In another embodiment, the dispersion of oxidized discrete carbon nanotubes comprising at least a portion of the crosslinkable portion and having a dispersant bound to at least one sidewall of the oxidized discrete carbon nanotubes is sprayable.

在另一個實施方案中,包括至少一部分可交聯部分和在氧化的離散碳奈米管的至少一個側壁上具有結合的分散劑的氧化的離散碳奈米管的分散體進一步包括可使用比不含有氧化的離散碳奈米管的類似分散體低約10%的輻射功率,理想使用低約25%的輻射功率,更理想使用比不含有氧化的離散碳奈米管的類似分散體低約50%的輻射功率燒結的材料。In another embodiment, the dispersion of oxidized discrete carbon nanotubes comprising at least a portion of the crosslinkable moiety and having a dispersant bound on at least one sidewall of the oxidized discrete carbon nanotubes further comprises Similar dispersions containing oxidized discrete carbon nanotubes have about 10% lower radiant power, ideally use about 25% lower radiant power, and more ideally use about 50% lower radiant power than similar dispersions without oxidized discrete carbon nanotubes % of the radiant power to sinter the material.

在一個實施方案中,具有結合的分散劑的氧化的離散碳奈米管的分散體進一步包括彈性體,其中最終部件在迴圈疲勞下顯示出比沒有具有結合的分散劑的氧化的離散碳奈米管的類似分散體高至少約20%的抗斷裂性,理想高至少約50%,最理想高至少約100%的抗斷裂性。In one embodiment, the dispersion of oxidized discrete carbon nanotubes with bound dispersant further comprises an elastomer, wherein the final part exhibits a better performance under cycle fatigue than oxidized discrete carbon nanotubes without bound dispersant Similar dispersions of rice tubes have at least about 20% higher fracture resistance, desirably at least about 50% higher fracture resistance, and most desirably at least about 100% higher fracture resistance.

其他實施方案Other implementations

實施方案1. 一種增材製造分散體,其中所述分散體包括至少一部分可交聯部分和氧化的離散碳奈米管,所述氧化的離散碳奈米管在所述氧化的離散碳奈米管的至少一個側壁上具有結合分散劑,其中所述氧化的離散碳奈米管基於分散體的總重量以大於0至至多約30重量%的範圍存在,並且所述分散體中存在的多數碳奈米管是離散的。Embodiment 1. An additively manufactured dispersion, wherein the dispersion comprises at least a portion of a crosslinkable portion and oxidized discrete carbon nanotubes within the oxidized discrete carbon nanotubes At least one sidewall of the tube has a bound dispersant, wherein the oxidized discrete carbon nanotubes are present in a range of greater than 0 up to about 30 wt. % based on the total weight of the dispersion, and the majority of carbon present in the dispersion Nanotubes are discrete.

實施方案2. 根據實施方案1所述的分散體,其中所述氧化的離散碳奈米管包括內表面和外表面,每個表面包括內表面氧化的物質含量和外表面氧化的物質含量,其中所述內表面氧化的物質含量與外表面氧化的物質含量相差至少約20%,並且至高100%。Embodiment 2. The dispersion of embodiment 1, wherein the oxidized discrete carbon nanotubes comprise an inner surface and an outer surface, each surface comprising an inner surface oxidized species content and an outer surface oxidized species content, wherein The inner surface oxidized matter content differs from the outer surface oxidized matter content by at least about 20%, and up to 100%.

實施方案3. 根據實施方案1所述的分散體,其中所述氧化的離散碳奈米管包括由氧化的離散單壁碳奈米管、氧化的離散雙壁碳奈米管和氧化的離散多壁碳奈米管的組合形成的具有雙峰或三峰分佈的氧化的離散碳奈米管直徑的氧化的離散碳奈米管的混合物。Embodiment 3. The dispersion according to embodiment 1, wherein the oxidized discrete carbon nanotubes comprise oxidized discrete single-walled carbon nanotubes, oxidized discrete double-walled carbon nanotubes, and oxidized discrete multi-walled carbon nanotubes. The combination of walled carbon nanotubes forms a mixture of oxidized discrete carbon nanotubes having a bimodal or trimodal distribution of oxidized discrete carbon nanotube diameters.

實施方案4. 根據實施方案1所述的分散體,其中所述在氧化的離散碳奈米管側壁上的結合的分散劑是共價結合的。Embodiment 4. The dispersion of embodiment 1, wherein the bound dispersant on the sidewalls of the oxidized discrete carbon nanotubes is covalently bound.

實施方案5. 根據實施方案1所述的分散體,其中所述氧化的離散碳奈米管側壁上的結合的分散劑包括約50至約20,000道爾頓範圍內的平均分子量,並且在離散碳奈米管側壁上的結合的分散劑相對於氧化的離散碳奈米管的重量分數大於約0.02且小於約0.8。Embodiment 5. The dispersion of embodiment 1, wherein the bound dispersant on the sidewalls of the oxidized discrete carbon nanotubes comprises an average molecular weight in the range of about 50 to about 20,000 Daltons, and the discrete carbon nanotubes The weight fraction of bound dispersant on the nanotube sidewalls relative to oxidized discrete carbon nanotubes is greater than about 0.02 and less than about 0.8.

實施方案6. 根據實施方案1所述的分散體,其中所述氧化的離散碳奈米管側壁上的結合的分散劑與接觸所述結合的分散劑的材料是可混溶的。Embodiment 6. The dispersion of embodiment 1, wherein the bound dispersant on the sidewalls of the oxidized discrete carbon nanotubes is miscible with a material contacting the bound dispersant.

實施方案7. 一種增材製造分散體,其中所述分散體包括至少一部分可交聯的丙烯酸酯部分和氧化的離散碳奈米管,所述氧化的離散碳奈米管在所述氧化的離散碳奈米管的至少一個側壁上具有結合的分散劑,其中所述離散碳奈米管側壁上的結合的分散劑包括選自醚的組的分子單元。Embodiment 7. An additive manufacturing dispersion, wherein said dispersion comprises at least a portion of crosslinkable acrylate moieties and oxidized discrete carbon nanotubes, said oxidized discrete carbon nanotubes in said oxidized discrete At least one sidewall of the carbon nanotubes has a bound dispersant, wherein the bound dispersant on the sidewalls of the discrete carbon nanotubes comprises molecular units selected from the group of ethers.

實施方案8. 根據實施方案7所述的分散體,其中所述分子單元包括環氧乙烷。Embodiment 8. The dispersion of embodiment 7, wherein the molecular units comprise ethylene oxide.

實施方案9. 根據實施方案1所述的分散體,進一步包括以重量%計的分散體的約0.1重量%至約30重量%的填料,所述填料選自由炭黑、石墨烯、氧化石墨烯、還原石墨烯、碳纖維、二氧化矽、矽酸鹽、埃洛石、黏土、碳酸鈣、矽灰石、玻璃、阻燃劑和滑石組成的組。Embodiment 9. The dispersion of embodiment 1, further comprising from about 0.1% to about 30% by weight of the dispersion in % by weight of a filler selected from the group consisting of carbon black, graphene, graphene oxide , reduced graphene, carbon fiber, silica, silicate, halloysite, clay, calcium carbonate, wollastonite, glass, flame retardant, and talc.

實施方案10. 根據實施方案1所述的分散體,進一步包括由熱塑性塑膠、熱固性塑膠和彈性體組成的組中的成員。Embodiment 10. The dispersion of embodiment 1, further comprising a member of the group consisting of thermoplastics, thermosets, and elastomers.

實施方案11. 根據實施方案1所述的分散體,進一步包括核殼彈性體,所述核殼彈性體進一步包括約0.01至約1微米的顆粒直徑。Embodiment 11. The dispersion of embodiment 1, further comprising a core-shell elastomer further comprising a particle diameter of about 0.01 to about 1 micron.

實施方案12. 根據實施方案1所述的分散體,進一步包括具有約1nm至約20微米的顆粒直徑的半導體粉末、金屬粉末和或陶瓷粉末。Embodiment 12. The dispersion of embodiment 1, further comprising semiconductor powder, metal powder, and or ceramic powder having a particle diameter of from about 1 nm to about 20 microns.

實施方案13. 根據實施方案1所述的分散體,進一步包括連接於氧化的離散碳奈米管側壁的至少一種另外的分散劑,所述另外的分散劑選自由陰離子表面活性劑、陽離子表面活性劑、非離子表面活性劑和兩性離子表面活性劑、聚乙烯醇、聚乙烯醇和聚乙酸乙烯酯的共聚物、聚乙烯吡咯烷酮及其共聚物、羧甲基纖維素、羧丙基纖維素、羧甲基丙基纖維素、羥乙基纖維素、聚醚亞胺、聚醚、澱粉及其混合物組成的組。Embodiment 13. The dispersion according to embodiment 1, further comprising at least one additional dispersant attached to the sidewalls of the oxidized discrete carbon nanotubes, said additional dispersant selected from the group consisting of anionic surfactants, cationic surfactants Agents, nonionic surfactants and zwitterionic surfactants, polyvinyl alcohol, copolymers of polyvinyl alcohol and polyvinyl acetate, polyvinylpyrrolidone and its copolymers, carboxymethyl cellulose, carboxypropyl cellulose, carboxy Group consisting of methylpropylcellulose, hydroxyethylcellulose, polyetherimines, polyethers, starches and mixtures thereof.

實施方案14. 根據實施方案1所述的組成物,其中所述氧化的離散碳奈米管包括約0.1重量%至約20重量%的氮原子。Embodiment 14. The composition of Embodiment 1, wherein the oxidized discrete carbon nanotubes comprise from about 0.1% to about 20% by weight nitrogen atoms.

實施方案15. 一種增材製造分散體,其中所述分散體包括至少一部分熱塑性部分和離散碳奈米管,所述離散碳奈米管在所述離散碳奈米管的至少一個側壁上具有結合的分散劑的其中所述離散碳奈米管基於分散體的總重量以大於0至至多約30重量%的量存在。Embodiment 15. An additive manufacturing dispersion, wherein the dispersion comprises at least a portion of a thermoplastic portion and discrete carbon nanotubes having bonded on at least one sidewall of the discrete carbon nanotubes The dispersant of wherein the discrete carbon nanotubes are present in an amount greater than 0 up to about 30% by weight based on the total weight of the dispersion.

實施方案16. 根據實施方案15所述的分散體,其中所述氧化的離散碳奈米管側壁上的結合的分散劑在低於約500℃下在氮氣中以小於約5重量%的灰分含量至少部分熱分解。Embodiment 16. The dispersion of embodiment 15, wherein the bound dispersant on the sidewalls of the oxidized discrete carbon nanotubes is at an ash content of less than about 5% by weight in nitrogen at less than about 500°C Thermally decomposes at least partially.

實施方案17. 根據實施方案15所述的增材製造分散體,其中多數碳奈米管是離散的。Embodiment 17. The additively manufactured dispersion of embodiment 15, wherein the majority of the carbon nanotubes are discrete.

實施方案18. 根據實施方案1所述的分散體,其中由增材製造製備的部件具有小於約100億歐姆每平方的電阻。Embodiment 18. The dispersion according to embodiment 1, wherein the part produced by additive manufacturing has a resistance of less than about 10 billion ohms per square.

實施方案19. 根據實施方案1所述的分散體,其中對於分散體中氧化的離散碳奈米管的濃度為2.5×10 -5g/ml,所述分散體在500 nm處的UV-可見吸收大於約0.5吸光度單位。 Embodiment 19. The dispersion according to embodiment 1, wherein the dispersion has a UV-visible Absorption is greater than about 0.5 absorbance units.

實施方案20. 根據實施方案1所述的分散體,進一步包括選自導熱材料的組的填料,所述導熱材料例如但不限於金屬和金屬合金、氮化硼、氧化鋁、氮化矽、氮化鋁、金剛石、石墨和石墨烯。Embodiment 20. The dispersion according to embodiment 1, further comprising a filler selected from the group of thermally conductive materials such as, but not limited to, metals and metal alloys, boron nitride, aluminum oxide, silicon nitride, nitrogen aluminum oxide, diamond, graphite and graphene.

實施方案21.    一種用於至少部分地封裝電子元件的增材製造分散體,其中所述分散體包括: 至少一部分的可交聯部分;和 氧化的離散碳奈米管; 其中氧化的離散碳奈米管包括結合在氧化的離散碳奈米管側壁上的分散劑;且 其中氧化的離散碳奈米管基於分散體的總重量以大於零且至多約30重量%的範圍存在;且 其中分散體中存在的多數碳奈米管是離散的。 Embodiment 21. An additively manufactured dispersion for at least partially encapsulating an electronic component, wherein the dispersion comprises: at least a portion of the crosslinkable moiety; and Oxidized discrete carbon nanotubes; wherein the oxidized discrete carbon nanotubes include a dispersant bound to the sidewalls of the oxidized discrete carbon nanotubes; and wherein the oxidized discrete carbon nanotubes are present in a range greater than zero and up to about 30% by weight based on the total weight of the dispersion; and Most of the carbon nanotubes present in the dispersion are discrete.

在以下的描述中,闡述了某些細節(例如具體的數量、尺寸等),以便提供對本說明書公開的本實施方案的全面理解。然而,對於所屬技術領域中具有通常知識者來說,顯然可以在沒有這樣的具體細節的情況下實施本發明。在許多情況下,已經省略了相關的細節(這樣的考慮等),因為這樣的細節對於獲得對本發明的完整理解不是必需的,並且在相關領域中具有通常知識者的技能範圍內。In the following description, certain details are set forth (eg, specific quantities, dimensions, etc.) in order to provide a comprehensive understanding of the embodiments disclosed in this specification. It will be apparent, however, to one skilled in the art that the present invention may be practiced without such specific details. In many instances, pertinent details (such considerations, etc.) have been omitted since such details are not necessary to gain a complete understanding of the invention and are within the skill of one having ordinary knowledge in the relevant fields.

雖然本說明書使用的大多數術語對於所屬技術領域中具有通常知識者來說是可識別的,但是應該理解,當沒有明確定義時,術語應該被解釋為採用所屬技術領域中具有通常知識者目前接受的含義。在術語的解釋會使其無意義或基本上無意義的情況下,則該定義應取自2009年第3版韋氏詞典。除非在本說明書中特別說明,或者為了保持有效性而必須併入,否則定義及/或解釋不應從其他相關或不相關的專利申請、專利或出版物併入。Although most of the terms used in this specification are recognizable to those of ordinary skill in the art, it should be understood that when not explicitly defined, the terms should be interpreted as currently accepted by those of ordinary skill in the art. meaning. Where the interpretation of a term would render it meaningless or essentially meaningless, then the definition should be taken from Webster's Dictionary, 3rd Edition, 2009. Definitions and/or interpretations should not be incorporated from other related or unrelated patent applications, patents or publications unless specifically stated in this specification, or where incorporation is necessary to maintain validity.

在各實施方案中,公開了一種分散體,所述分散體包括在氧化的離散碳奈米管的至少一個側壁上具有結合的分散劑的氧化的離散碳奈米管,其中所述氧化的離散碳奈米管基於分散體的總重量以大於0至至多約30重量%的量存在,並且所述分散體中存在的多數碳奈米管是離散的。In various embodiments, a dispersion is disclosed comprising oxidized discrete carbon nanotubes having a dispersant bound on at least one sidewall of the oxidized discrete carbon nanotubes, wherein the oxidized discrete carbon nanotubes The carbon nanotubes are present in an amount greater than 0 up to about 30 weight percent based on the total weight of the dispersion, and the majority of the carbon nanotubes present in the dispersion are discrete.

使用金屬催化劑(例如鐵、鋁或鈷)製成的碳奈米管可以保留大量結合的或截留在碳奈米管內的催化劑,多達5重量%或更多。這些殘餘金屬由於增強的腐蝕在這樣的應用(例如電子設備)中可能是有害的,或者可以干擾在固化彈性體複合材料中的硫化過程。此外,這些二價或多價金屬離子可與碳奈米管上的羧酸基團結合,並干擾碳奈米管在後續分散過程中的分散。在一個實施方案中,公開了一種分散體,所述分散體包括在氧化的離散碳奈米管的側壁上具有結合的分散劑的氧化的離散碳奈米管,所述分散體包括小於約百萬分之50,000(50,000ppm),且理想小於約百萬分之10,000的殘餘金屬濃度。殘餘催化劑濃度可通過使用熱重分析法方便地測定,該熱重分析法通過在氮氣中以5℃/分鐘從25℃加熱至800℃,然後將氣體切換至空氣並在800℃下保持30分鐘。殘餘灰分%由剩餘材料的重量與起始材料的重量相比來測定。然後可以使用能量色散X射線和掃描電子顯微鏡分析灰分的金屬類型。或者,可以從分散介質中分離氧化的離散碳奈米管,並使用原子吸收技術進行分析。Carbon nanotubes made using metal catalysts such as iron, aluminum, or cobalt can retain a significant amount of catalyst bound or trapped within the carbon nanotubes, as much as 5% by weight or more. These residual metals may be detrimental in such applications (eg electronics) due to enhanced corrosion, or may interfere with the vulcanization process in cured elastomeric composites. In addition, these divalent or polyvalent metal ions can combine with the carboxylic acid groups on the carbon nanotubes and interfere with the dispersion of the carbon nanotubes in the subsequent dispersion process. In one embodiment, a dispersion is disclosed comprising oxidized discrete carbon nanotubes having a dispersant bound on the sidewalls of the oxidized discrete carbon nanotubes, the dispersion comprising less than about a hundred A residual metal concentration of 50,000 parts per million (50,000 ppm), and ideally less than about 10,000 parts per million. Residual catalyst concentration can be conveniently determined by using thermogravimetric analysis by heating from 25°C to 800°C at 5°C/min in nitrogen, then switching the gas to air and holding at 800°C for 30 minutes . The residual ash % is determined by the weight of the remaining material compared to the weight of the starting material. The ash can then be analyzed for metal types using energy dispersive X-ray and scanning electron microscopy. Alternatively, oxidized discrete carbon nanotubes can be isolated from the dispersion medium and analyzed using atomic absorption techniques.

氧化的離散碳奈米管的氧化水準被定義為共價結合到碳奈米管上的氧化物質的量(按重量計)。用於測定碳奈米管上氧化物質的重量百分比的熱重分析法包括取約5 mg的乾燥的氧化的碳奈米管,並在乾燥氮氣氣氛中以5℃/分鐘從室溫加熱至800攝氏度。將從200至600攝氏度的重量損失百分比作為氧化物質的重量損失百分比。還可以使用傅立葉轉換紅外光譜(FTIR),特別地在1680至1730cm -1的波長範圍內,對氧化物質進行量化。 The oxidation level of oxidized discrete carbon nanotubes is defined as the amount (by weight) of oxidized species covalently bound to the carbon nanotubes. The thermogravimetric method used to determine the weight percent of oxidized species on CNTs involved taking approximately 5 mg of dry oxidized CNTs and heating them at 5 °C/min from room temperature to 800 °C in a dry nitrogen atmosphere. Celsius. The percent weight loss from 200 to 600 degrees Celsius was taken as the percent weight loss of the oxidized species. Oxidized species can also be quantified using Fourier Transform Infrared Spectroscopy (FTIR), particularly in the wavelength range from 1680 to 1730 cm −1 .

氧化的碳奈米管可以具有包括羧酸或含羰基衍生物的氧化物質。羰基衍生物可以包括酮、季胺、醯胺、酯、醯基鹵素、單價金屬鹽等。或者,或此外,碳奈米管可包含選自羥基或衍生自含羥基物質、酮和內酯的氧化物質。Oxidized carbon nanotubes may have oxidized species including carboxylic acids or carbonyl-containing derivatives. Carbonyl derivatives may include ketones, quaternary amines, amides, esters, acyl halides, monovalent metal salts, and the like. Alternatively, or in addition, the carbon nanotubes may comprise oxidized species selected from hydroxyl groups or derived from hydroxyl-containing species, ketones, and lactones.

術語「離散的」,或者稱為術語「剝離的」,在本說明書是指基本上沿其長度分離的單個碳奈米管,即沒有成束。長徑比被定義為碳奈米管的長度與直徑的比率。如果存在一束碳奈米管,長徑比被認為是該束的長度與直徑的比率。對於纏繞碳奈米管的球形球,長徑比被認為是1。The term "discrete", alternatively referred to as the term "exfoliated", refers in this specification to individual carbon nanotubes substantially separated along their length, ie not bundled. The aspect ratio is defined as the ratio of the length to the diameter of a carbon nanotube. If there is a bundle of carbon nanotubes, the aspect ratio is considered to be the ratio of the length to the diameter of the bundle. For spherical spheres with wound carbon nanotubes, the aspect ratio is considered to be 1.

基於期望的應用,氧化的離散碳奈米管的長徑比可以是單峰分佈,或多峰分佈(例如雙峰或三峰分佈)。多峰分佈可以具有均勻分佈的長徑比範圍(例如50%的一個L/D範圍和約50%的另一個L/D範圍)。分佈也可以是不對稱的——這意味著相對小百分比的離散奈米管可以具有一種特定的L/D,而更大數量的離散奈米管可以包括另一種長徑比分佈。氧化的離散碳奈米管的長徑比可以例如使用分散體在有機溶劑中的稀釋液和掃描電子顯微鏡來測定。Depending on the desired application, the aspect ratio of the oxidized discrete carbon nanotubes can be a unimodal distribution, or a multimodal distribution (eg, a bimodal or trimodal distribution). A multimodal distribution may have a uniform distribution of aspect ratio ranges (eg, 50% of one L/D range and about 50% of another L/D range). The distribution can also be asymmetric—meaning that a relatively small percentage of discrete nanotubes can have one particular L/D, while a larger number of discrete nanotubes can include another distribution of aspect ratios. The aspect ratio of oxidized discrete carbon nanotubes can be determined, for example, using a dilution of the dispersion in an organic solvent and scanning electron microscopy.

可以適用於用於本說明書所述應用的碳奈米管製造商包括,例如,Southwest Nanotechnologies、Zeonano或Zeon、CNano Technology、Nanocyl、ACS Materials、American Elements、 Chasm Technologies、Haoxin Technology、Hanwha Nanotech Group、Hyperion Catalysis、KH Chemical、Klean Commodities、LG Chem、Nano-C、NTP Shenzhen Nanotech Port、Nikkiso、Raymor、Saratoga Energy、SK Global、Solid Carbon Products、Sigma Aldrich、Sun Nanotech、Thomas Swan、TimesNano、Tokyo Chemical Industry、XF Nano和OCSiAl。Manufacturers of carbon nanotubes that may be suitable for use in applications described herein include, for example, Southwest Nanotechnologies, Zeonano or Zeon, CNano Technology, Nanocyl, ACS Materials, American Elements, Chasm Technologies, Haoxin Technology, Hanwha Nanotech Group, Hyperion Catalysis, KH Chemical, Klean Commodities, LG Chem, Nano-C, NTP Shenzhen Nanotech Port, Nikkiso, Raymor, Saratoga Energy, SK Global, Solid Carbon Products, Sigma Aldrich, Sun Nanotech, Thomas Swan, TimesNano, Tokyo Chemical Industry, XF Nano and OCSiAl.

一種獲得離散碳奈米管的方法是使碳奈米管經受高機械力。在剪切過程中,樣品可能會受到由剪切(湍流)及/或空化產生的強烈破壞力,其中加工設備能夠產生至高10 6至10 8焦耳/m 3的能量密度。符合此規格的設備包括但不限於超聲波儀、空化器、機械均質器、壓力均質器和微流化器。美國專利756,953中示出了一種這樣的均質器,其公開內容通過引用併入本說明書。另外的剪切設備包括但不限於HAAKE™混合器、Brabender混合器、Omni混合器、Silverson混合器、膠體磨、Gaullin均質器及/或雙螺杆擠出機。在剪切處理後,碳奈米管束已經鬆動,從而將更多數量的奈米管的表面及/或奈米管表面的更大部分暴露於周圍環境。通常地,基於給定起始量的纏結的原樣和製成的碳奈米管,多數的,理想至少約60%,更理想至少約75%,最理想至少約95%和至高100%的高表面積的氧化的碳奈米管由該過程產生,少數管,通常極少數管保持緊密捆綁,並且這樣的緊密捆綁的奈米管的表面基本上不可接近。 One way to obtain discrete carbon nanotubes is to subject the carbon nanotubes to high mechanical forces. During shearing, samples may be subjected to strong destructive forces resulting from shearing (turbulence) and/or cavitation, where processing equipment can generate energy densities as high as 10 6 to 10 8 Joules/m 3 . Equipment meeting this specification includes, but is not limited to, sonicators, cavitators, mechanical homogenizers, pressure homogenizers, and microfluidizers. One such homogenizer is shown in US Patent 756,953, the disclosure of which is incorporated herein by reference. Additional shearing devices include, but are not limited to, HAAKE™ mixers, Brabender mixers, Omni mixers, Silverson mixers, colloid mills, Gaullin homogenizers, and/or twin-screw extruders. After the shearing process, the carbon nanotube bundles have loosened, exposing a greater number of nanotube surfaces and/or a greater portion of the nanotube surfaces to the surrounding environment. Typically, a majority, desirably at least about 60%, more desirably at least about 75%, most desirably at least about 95% and up to 100% based on a given starting amount of entangled as-made and fabricated carbon nanotubes High surface area oxidized carbon nanotubes are produced by this process, a small number of tubes, usually very few tubes, remain tightly packed, and the surfaces of such tightly packed nanotubes are substantially inaccessible.

Bosnyak等人在各種專利申請(例如,US2012-0183770A1和US2011-0294013 A1)中,通過明智且基本上同時地使用氧化和剪切力來製備離散的碳奈米管,從而氧化奈米管的內表面和外表面,通常在內表面和外表面上達到大致相同的氧化水準,產生單個的或離散的管。In various patent applications (e.g., US2012-0183770A1 and US2011-0294013 A1), Bosnyak et al. prepared discrete carbon nanotubes by judiciously and substantially simultaneously using oxidation and shear forces to oxidize the interior of the nanotubes. The surface and outer surfaces, usually to approximately the same level of oxidation, produce individual or discrete tubes.

在許多實施方案中,本發明不同於那些早期的Bosnyak等人的申請和公開。在氧化碳奈米管並將分散劑結合在氧化的離散碳奈米管的側壁上的過程中,碳奈米管的原纖化程度(其因含氧物質的含量或種類不同而不同)可以影響碳奈米管的數量且還影響氧化的碳奈米管側壁上結合的分散劑。例如,如果許多管排列成主幹,那麼主幹核心內的管與主幹最外面部分的管相比,不太可能含有與硝酸反應的氧化物質。對於更均勻的改性碳奈米管群,期望在改性碳奈米管的反應過程中具有離散的或開放的碳奈米管結構。對於一些應用(例如但不限於雙相材料中的導電性),可能期望控制碳奈米管束的原纖化程度,以獲得在氧化的離散碳奈米管的側壁上結合的分散劑的分佈。In many embodiments, the present invention differs from those earlier applications and publications of Bosnyak et al. During the process of oxidizing the carbon nanotubes and incorporating the dispersant on the sidewalls of the oxidized discrete carbon nanotubes, the degree of fibrillation of the carbon nanotubes (which varies with the content or type of oxygen-containing species) can be Affects the number of carbon nanotubes and also affects the bound dispersant on the oxidized carbon nanotube sidewalls. For example, if many tubes are arranged in a trunk, the tubes within the core of the trunk are less likely to contain oxidizing species that react with nitric acid than the tubes in the outermost portion of the trunk. For a more uniform population of modified carbon nanotubes, it is desirable to have discrete or open carbon nanotube structures during the reaction of the modified carbon nanotubes. For some applications, such as, but not limited to, electrical conductivity in dual-phase materials, it may be desirable to control the degree of fibrillation of the carbon nanotube bundles to obtain a distribution of the bound dispersant on the sidewalls of the oxidized discrete carbon nanotubes.

包括在氧化的離散碳奈米管的側壁上具有結合的分散劑的氧化的離散碳奈米管的分散體可以通過以下製備:首先製備氧化的離散碳奈米管,然後將分散劑結合在氧化的離散碳奈米管的側壁或末端上,或者可選地製備氧化的碳奈米管,然後將分散劑結合在氧化的碳奈米管的側壁或末端上,然後使具有結合的分散劑的碳奈米管離散。A dispersion comprising oxidized discrete carbon nanotubes with a dispersant bound on the sidewalls of the oxidized discrete carbon nanotubes can be prepared by first preparing the oxidized discrete carbon nanotubes and then incorporating the dispersant in the oxidized carbon nanotubes. On the sidewalls or ends of the discrete carbon nanotubes, or alternatively prepare oxidized carbon nanotubes, then combine the dispersant on the sidewalls or ends of the oxidized carbon nanotubes, and then make the Discrete carbon nanotubes.

儘管不受將分散劑共價結合到碳奈米管上的化學的限制,但通常使用碳奈米管上的羧酸基團與所選分散劑的胺官能團反應。合適的分散劑的示例(但不限於)是來自Huntsman Corporation的商業產品,該商業產品為胺封端的聚醚,Jeffamine。Jeffamine系列的環氧丙烷與環氧乙烷的比率以及胺化程度可以不同。或者,碳奈米管上存在的羥基可以與所選分散劑的羧基、異氰酸酯基或縮水甘油基反應。用於將分子共價結合到碳奈米管側壁的其他有用的化學部分包括但不限於疊氮化物、醯鹵和矽烷部分。Although not limited by the chemistry of covalently bonding the dispersant to the carbon nanotubes, the carboxylic acid groups on the carbon nanotubes are typically used to react with the amine functional groups of the dispersant of choice. An example of, but not limited to, a suitable dispersant is a commercial product from Huntsman Corporation, which is an amine terminated polyether, Jeffamine. The ratio of propylene oxide to ethylene oxide and the degree of amination can vary in the Jeffamine series. Alternatively, the hydroxyl groups present on the carbon nanotubes can react with the carboxyl, isocyanate or glycidyl groups of the selected dispersant. Other useful chemical moieties for covalently bonding molecules to the sidewalls of carbon nanotubes include, but are not limited to, azide, acyl halide, and silane moieties.

具有結合的分散劑的氧化的離散碳奈米管的分散體可以有利地用於增材製造中,以通過採用被碳奈米管快速吸收以產生熱量的近紅外至至高1太赫茲的射頻輻射來改善加工性能和部件性能。這種效應可用於改善完全固化可交聯分子所需的時間,改善材料的燒結並減少部件翹曲。Dispersions of oxidized discrete carbon nanotubes with incorporated dispersants can be advantageously used in additive manufacturing to generate heat by employing near-infrared to up to 1 terahertz radio frequency radiation that is rapidly absorbed by the carbon nanotubes to generate heat To improve processability and component performance. This effect can be used to improve the time required to fully cure the crosslinkable molecule, improve sintering of the material and reduce part warpage.

合適的抗衝改性劑的示例是彈性體,更理想預製的彈性體顆粒。這些彈性體的玻璃化轉變溫度(Tg)低於0℃,理想低於-20℃。An example of a suitable impact modifier is an elastomer, more desirably preformed elastomer particles. These elastomers have a glass transition temperature (Tg) below 0°C, ideally below -20°C.

衝擊改性組分的粒徑可以通過使用例如動態光散射奈米顆粒尺寸分析系統來獲得。這樣的系統的一個示例是可從Horiba Instruments公司獲得的LB-550機器。測量粒徑的理想方法是根據ISO13320:2009的鐳射衍射粒徑分析。關於這樣的分析的資訊可以在Setting New Standards for Laser Diffraction Particle Size Analysis.Alan Rawle and Paul Kippax, Laboratory Instrumentation News, 2010年1月21日中找到。The particle size of the impact modifying component can be obtained by using, for example, a dynamic light scattering nanoparticle size analysis system. An example of such a system is the LB-550 machine available from Horiba Instruments Corporation. The ideal method for measuring particle size is laser diffraction particle size analysis according to ISO13320:2009. Information on such an analysis can be found in Setting New Standards for Laser Diffraction Particle Size Analysis. Alan Rawle and Paul Kippax, Laboratory Instrumentation News, 21 January 2010.

用於分析的液體輻射固化樹脂的單體或溶劑可以影響測量的平均粒徑。此外,鐳射衍射分析可能需要使用溶劑或其他低黏度分散劑。這些溶劑可以影響測量的平均粒徑。出於本研究的目的,分散的平均粒徑是指已經暴露於給定製劑的所列單體中、被分散、然後使用碳酸丙烯酯作為鐳射衍射粒徑分析的溶劑進行分析的那些顆粒。對抗衝改性劑顆粒的分散體進行粒徑分析,而在稀的碳酸丙烯酯溶液中,通常使用的濃度為在10g碳酸丙烯酯中0.1-0.4g的分散體。The monomer or solvent of the liquid radiation-curable resin used for analysis can affect the measured average particle size. In addition, laser diffraction analysis may require the use of solvents or other low-viscosity dispersants. These solvents can affect the measured average particle size. For the purposes of this study, dispersed average particle sizes refer to those particles that have been exposed to the listed monomers for a given formulation, dispersed, and then analyzed using propylene carbonate as the solvent for laser diffraction particle size analysis. Particle size analysis is performed on dispersions of impact modifier particles, and in dilute propylene carbonate solutions, concentrations of 0.1-0.4 g dispersion in 10 g propylene carbonate are typically used.

合適的抗衝改性組分是基於乙烯或丙烯與一種或多種C 2至C 12烯烴單體的共聚物的彈性體,該抗衝改性組分可以混合到具有結合的分散劑的氧化的離散碳奈米管的分散體中。 Suitable impact-modifying components are elastomers based on copolymers of ethylene or propylene with one or more C2 to C12 olefinic monomers, which can be blended into an oxidized Dispersions of Discrete Carbon Nanotubes.

這樣的示例是乙烯/丙烯共聚物或任選地含有第三種可共聚的二烯單體(EPDM)(例如1,4-己二烯、二聚環戊二烯、雙環辛二烯、亞甲基降冰片烯、亞乙基降冰片烯和四氫茚)的乙烯/丙烯共聚物;乙烯/α-烯烴共聚物,例如乙烯-辛烯共聚物和乙烯/α-烯烴/多烯共聚物。Examples of this are ethylene/propylene copolymers or optionally containing a third copolymerizable diene monomer (EPDM) (e.g. 1,4-hexadiene, dicyclopentadiene, bicyclooctadiene, Ethylene/propylene copolymers of methylnorbornene, ethylidene norbornene and tetrahydroindene); ethylene/α-olefin copolymers such as ethylene-octene copolymers and ethylene/α-olefin/polyene copolymers .

其他合適的彈性體是聚丁二烯、聚異戊二烯、苯乙烯/丁二烯無規共聚物、苯乙烯/異戊二烯無規共聚物、丙烯酸酯橡膠(例如,聚丙烯酸丁酯)、聚(碳酸六亞甲基酯)、乙烯/丙烯酸酯無規共聚物和丙烯酸嵌段共聚物、苯乙烯/丁二烯/(甲基)丙烯酸酯(SBM)嵌段共聚物、苯乙烯/丁二烯嵌段共聚物(苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)、苯乙烯-異戊二烯-苯乙烯嵌段共聚物(SIS)及其氫化形式、SEBS、 SEPS)和(SIS)以及離聚物。Other suitable elastomers are polybutadiene, polyisoprene, styrene/butadiene random copolymers, styrene/isoprene random copolymers, acrylate rubbers (e.g., polybutylacrylate ), poly(hexamethylene carbonate), ethylene/acrylate random and acrylic block copolymers, styrene/butadiene/(meth)acrylate (SBM) block copolymers, styrene / Butadiene block copolymers (styrene-butadiene-styrene block copolymer (SBS), styrene-isoprene-styrene block copolymer (SIS) and its hydrogenated forms, SEBS, SEPS) and (SIS) and ionomers.

合適的商業彈性體是由Shell生產的Kraton (SBS、SEBS、SIS、SEBS和SEPS)嵌段共聚物,由Arkema生產的Nanostrength 嵌段共聚物E20、E40 (SBM型)和M22(全丙烯酸),Lotryl乙基/丙烯酸酯無規共聚物(Arkema)和Surlyn離聚物(Dupont)。Suitable commercial elastomers are Kraton (SBS, SEBS, SIS, SEBS and SEPS) block copolymers produced by Shell, Nanostrength block copolymers E20, E40 (SBM type) and M22 (all acrylic) produced by Arkema, Lotryl ethyl/acrylate random copolymer (Arkema) and Surlyn ionomer (Dupont).

任選地,彈性體可以被改性以含有反應性基團,例如環氧基、三甲氧基酯基、羧基或乙醇基。這種改性可以例如通過反應性接枝或通過共聚引入。通過共聚引入改性的商業實例是由Arkema生產的Lotader無規乙烯/丙烯酸酯共聚物AX8840(甲基丙烯酸縮水甘油酯/GMA改性)、AX8900和AX8930 (GMA和馬來酸酐改性/MA)。Optionally, the elastomer can be modified to contain reactive groups such as epoxy, trimethoxyester, carboxyl or ethanol groups. This modification can be introduced, for example, by reactive grafting or by copolymerization. Commercial examples of modifications introduced by copolymerization are the Lotader random ethylene/acrylate copolymers AX8840 (glycidyl methacrylate/GMA modified), AX8900 and AX8930 (GMA and maleic anhydride modified/MA) produced by Arkema .

任選地,彈性體可以在混合到具有結合的分散劑的氧化的離散碳奈米管的分散體中之後交聯。交聯結構可以通過常規方法引入。作為用於這樣的材料的交聯劑的示例,可以給出過氧化物、硫、甲酚等,任選地與多官能單體(如二乙烯基苯、乙二醇二(甲基)丙烯酸酯、馬來酸二烯丙酯、三聚氰酸三烯丙酯、三烯丙基異氰脲酸酯、鄰苯二甲酸二烯丙酯、三羥甲基丙烷三丙烯酸酯、甲基丙烯酸烯丙酯等)組合。Optionally, the elastomer can be cross-linked after mixing into the dispersion of oxidized discrete carbon nanotubes with incorporated dispersant. A crosslinked structure can be introduced by a conventional method. As examples of crosslinking agents for such materials, peroxides, sulfur, cresol, etc., optionally with polyfunctional monomers such as divinylbenzene, ethylene glycol di(meth)acrylic acid ester, diallyl maleate, triallyl cyanurate, triallyl isocyanurate, diallyl phthalate, trimethylolpropane triacrylate, methacrylic acid allyl ester, etc.) combination.

在一個實施方案中,可以混合到具有結合的分散劑的氧化的離散碳奈米管的分散體中的抗衝改性劑是預製的彈性體顆粒。彈性體顆粒可以通過各種方法製備,該彈性體顆粒包括通過從乳液聚合製備的膠乳中分離,或在組成物的另一種組分中原位製備獲得的那些。In one embodiment, the impact modifier that can be mixed into the dispersion of oxidized discrete carbon nanotubes with incorporated dispersant is preformed elastomeric particles. Elastomeric particles can be prepared by various methods, including those obtained by isolation from a latex prepared by emulsion polymerization, or prepared in situ in another component of the composition.

這樣的預製的彈性體顆粒的合適的商業來源是可從不同生產商獲得的的具有不同平均粒徑的PB(聚丁二烯)膠乳或PBA(聚丙烯酸丁酯)膠乳,或通過乳化EPDM、SBS、SIS或任何其它橡膠獲得的膠乳。Suitable commercial sources of such prefabricated elastomeric particles are PB (polybutadiene) latex or PBA (polybutyl acrylate) latex with different average particle sizes available from various manufacturers, or by emulsifying EPDM, Latex obtained from SBS, SIS or any other rubber.

任選地,彈性體可以含有交聯結構。交聯結構可以通過常規方法引入。作為用於這樣的材料的交聯劑的示例,可以給出過氧化物、硫、甲酚等,任選地與多官能單體(如二乙烯基苯、乙二醇二(甲基)丙烯酸酯、馬來酸二烯丙酯、三聚氰酸三烯丙酯、三烯丙基異氰脲酸酯、鄰苯二甲酸二烯丙酯、三羥甲基丙烷三丙烯酸酯、甲基丙烯酸烯丙酯等)組合。Optionally, the elastomer may contain a cross-linked structure. A crosslinked structure can be introduced by a conventional method. As examples of crosslinking agents for such materials, peroxides, sulfur, cresol, etc., optionally with polyfunctional monomers such as divinylbenzene, ethylene glycol di(meth)acrylic acid ester, diallyl maleate, triallyl cyanurate, triallyl isocyanurate, diallyl phthalate, trimethylolpropane triacrylate, methacrylic acid allyl ester, etc.) combination.

任選地,殼可以存在於顆粒上,該殼可以例如通過接枝或在乳液聚合的第二階段過程中引入。這樣的顆粒的示例是含有橡膠核和玻璃殼的核-殼抗衝改性劑顆粒。核材料的示例是聚丁二烯、聚異戊二烯、丙烯酸橡膠(例如聚丁基丙烯酸酯橡膠)、苯乙烯/丁二烯無規共聚物、苯乙烯/異戊二烯無規共聚物或聚矽氧烷。殼材料或接枝共聚物的示例是乙烯基芳香族化合物(例如苯乙烯)和乙烯基氰化物(例如丙烯腈)或(甲基)丙烯酸酯(例如甲基丙烯酸甲酯)的(共)聚合物。Optionally, a shell may be present on the particles, which shell may be introduced, for example, by grafting or during the second stage of the emulsion polymerization. An example of such particles is a core-shell impact modifier particle comprising a rubber core and a glass shell. Examples of core materials are polybutadiene, polyisoprene, acrylic rubber (e.g. polybutyl acrylate rubber), styrene/butadiene random copolymer, styrene/isoprene random copolymer or polysiloxane. Examples of shell materials or graft copolymers are (co)polymerizations of vinyl aromatic compounds (e.g. styrene) and vinyl cyanides (e.g. acrylonitrile) or (meth)acrylates (e.g. methyl methacrylate) things.

任選地,可以通過共聚(例如與甲基丙烯酸縮水甘油酯的共聚),或者通過處理殼以形成反應性官能團,將反應性基團引入殼中。合適的反應性官能團包括但不限於環氧基、三甲氧基酯基、羥基、羧基、乙烯基醚基及/或丙烯酸酯基。Optionally, reactive groups can be introduced into the shell by copolymerization, eg with glycidyl methacrylate, or by treating the shell to form reactive functional groups. Suitable reactive functional groups include, but are not limited to, epoxy groups, trimethoxylate groups, hydroxyl groups, carboxyl groups, vinyl ether groups, and/or acrylate groups.

這些核-殼型彈性體顆粒的合適的市售產品是,例如但不限於,Resinous Bond RKB (由Resinous Chemical Industries有限公司製造的核-殼顆粒在環氧樹脂中的分散體)、Durastrength D400、Durastrength 400R(由Arkema Group製造)、Paraloid EXL-2300(非官能性殼)、Paraloid EXL-2314(環氧官能性殼)、Paraloid EXL-2600、Paraloid KM 334和Paraloid EXL 2300G。Paraloid核殼彈性體由陶氏化學公司製造,Genioperl P53、Genioperl P23、Genioperl P22由瓦克化學製造,Kane Ace MX 產品(由Kaneka製造)。Suitable commercially available products of these core-shell elastomer particles are, for example but not limited to, Resinous Bond RKB (a dispersion of core-shell particles in epoxy resin manufactured by Resinous Chemical Industries Ltd.), Durarstrength D400, Durarstrength 400R (manufactured by Arkema Group), Paraloid EXL-2300 (non-functional shell), Paraloid EXL-2314 (epoxy functional shell), Paraloid EXL-2600, Paraloid KM 334 and Paraloid EXL 2300G. Paraloid core-shell elastomers are manufactured by Dow Chemical Company, Genioperl P53, Genioperl P23, Genioperl P22 are manufactured by Wacker Chemie, Kane Ace MX products (manufactured by Kaneka).

這樣的彈性體顆粒的其它示例是交聯的聚有機矽氧烷橡膠,該交聯的聚有機矽氧烷橡膠可以包括二烷基矽氧烷重複單元,其中「烷基」是C 1至C 6烷基。這樣的顆粒可以通過Block的美國專利No.4,853,434(其通過引用整體併入本說明書)公開的方法製備。顆粒可以被改性以包括反應性基團,例如環氧乙烷、縮水甘油基、三甲氧基酯基、羥基、乙烯基酯基、乙烯基醚基或(甲基)丙烯酸酯基團或其組合,理想在顆粒的表面上。市售的聚有機矽氧烷彈性體顆粒的示例是Albidur。 Other examples of such elastomeric particles are crosslinked polyorganosiloxane rubbers, which may include dialkylsiloxane repeating units, where "alkyl" is C to C 6 alkyl. Such particles can be prepared by the methods disclosed in US Patent No. 4,853,434 to Block, which is hereby incorporated by reference in its entirety. The particles can be modified to include reactive groups such as oxirane, glycidyl, trimethoxyester, hydroxyl, vinylester, vinylether or (meth)acrylate groups or combination, ideally on the surface of the granules. An example of a commercially available polyorganosiloxane elastomer particle is Albidur.

EP 2240(A)、Albidur EP 2640、Albidur VE 3320、Albidur EP 5340、Albidur EP 5640和Albiflex 296(顆粒在環氧樹脂或乙烯基醚樹脂中的分散體,Hanse Chemie,德國)、Genioperl M41C(環氧樹脂中的分散體,瓦克化學)、Chemisnow MX系列和MP系列(Soken Chemical and Engineering公司)。可用於製造用於本發明的核-殼顆粒的其它材料可見於例如:Nakamura等人, J Appl. Polym. Sci.v 33 n 3 Feb.20,1987 第885-897頁,1987,其公開了具有聚(丙烯酸丁酯)核和聚(甲基丙烯酸甲酯)殼的核殼材料。殼經過處理,使其含有環氧基團;Saija,L.M.和Uminski,M.,Surface Coatings International B部分2002 85,No.B2,2002年6月,第149-53頁,其描述了具有由聚(甲基丙烯酸甲酯-丙烯酸丁酯共聚物)製備的核和殼的核-殼材料,並用MMA或AMPS處理以產生表面上具有羧酸基團的材料;Aerdts,A. M .等人,Polymer 1997 38,第16期,1997,第4247-52頁,描述了一種使用聚苯乙烯、聚(甲基丙烯酸甲酯)或聚丁二烯作為其核的材料。環氧化聚(甲基丙烯酸甲酯)用於殼。環氧化物位點是這種材料殼上的反應位點。在另一個實施方案中,甲基丙烯酸縮水甘油酯和甲基丙烯酸甲酯用作殼中的共聚單體。EP 2240 (A), Albidur EP 2640, Albidur VE 3320, Albidur EP 5340, Albidur EP 5640 and Albiflex 296 (dispersion of particles in epoxy resin or vinyl ether resin, Hanse Chemie, Germany), Genioperl M41C (cyclo Dispersions in epoxy resins, Wacker Chemicals), Chemisnow MX series and MP series (Soken Chemical and Engineering Company). Other materials that can be used to make core-shell particles for use in the present invention can be found, for example: Nakamura et al., J Appl. Polym. Sci. v 33 n 3 Feb. 20, 1987 pp. 885-897, 1987, which disclose Core-shell material with poly(butyl acrylate) core and poly(methyl methacrylate) shell. The shell is treated to contain epoxy groups; Saija, L.M. and Uminski, M., Surface Coatings International Part B 2002 85, No. B2, June 2002, pp. 149-53, which describe (Methyl methacrylate-butyl acrylate copolymer) prepared core and shell core-shell materials and treated with MMA or AMPS to produce materials with carboxylic acid groups on the surface; Aerdts, A.M. et al., Polymer 1997 38, No. 16, 1997, pp. 4247-52, describes a material using polystyrene, poly(methyl methacrylate) or polybutadiene as its core. Epoxidized poly(methyl methacrylate) was used for the shell. The epoxide sites are the reactive sites on the shell of this material. In another embodiment, glycidyl methacrylate and methyl methacrylate are used as comonomers in the shell.

核-殼顆粒可以包括多於一個的核及/或多於一個的殼。此外,可以使用核-殼顆粒與彈性體顆粒的混合物。可以以一定比率使用兩種不同直徑的抗衝改性劑,以降低包括可交聯單體或低聚物的分散體的黏度。例如,抗衝改性劑的組成為約7比1的直徑比(即140 nm直徑的顆粒對20nm直徑的顆粒)且約4比1的wt%比。Core-shell particles may comprise more than one core and/or more than one shell. Furthermore, mixtures of core-shell particles and elastomer particles may be used. Two impact modifiers of different diameters may be used in a ratio to reduce the viscosity of dispersions comprising crosslinkable monomers or oligomers. For example, the composition of the impact modifier is about a 7 to 1 diameter ratio (ie, 140 nm diameter particles to 20 nm diameter particles) and about a 4 to 1 wt% ratio.

選擇彈性體或抗衝改性劑的另一個期望特徵是選擇彈性體或抗衝改性劑的組成物,該組成物的折射率值至少在其所分散的材料的折射率值的0.03單位內,更理想在0.02單位內,以便最小化UV-可見波長範圍內的輻射散射。這樣的混合物的一個示例是Paraloid KM 334,折射率1.47,和Dymax BR-952-a二甲基丙烯酸脲烷酯,折射率1.48。Another desirable feature of selecting an elastomer or impact modifier is selecting an elastomer or impact modifier composition having a refractive index value that is at least within 0.03 units of the refractive index value of the material in which it is dispersed , more ideally within 0.02 units, in order to minimize radiation scattering in the UV-visible wavelength range. An example of such a mixture is Paraloid KM 334, with a refractive index of 1.47, and Dymax BR-952-a urethane dimethacrylate, with a refractive index of 1.48.

具有結合的分散劑的氧化的離散碳奈米管的分散體進一步包括分散體的(以重量%計)約0.1重量%至約30重量%的填料,所述填料選自由炭黑、石墨烯、氧化石墨烯、還原石墨烯、碳纖維、二氧化矽、矽酸鹽、埃洛石、黏土、碳酸鈣、矽灰石、玻璃、阻燃劑和滑石組成的組。也可以對填料進行表面改性,以改善它們在分散體中的結合和分佈。表面處理的一個示例是對二氧化矽顆粒使用矽烷偶聯劑。The dispersion of oxidized discrete carbon nanotubes with bound dispersant further comprises (in weight %) of the dispersion from about 0.1% to about 30% by weight of a filler selected from the group consisting of carbon black, graphene, Group consisting of graphene oxide, reduced graphene, carbon fibers, silica, silicates, halloysite, clay, calcium carbonate, wollastonite, glass, flame retardants, and talc. Fillers can also be surface modified to improve their incorporation and distribution in the dispersion. An example of surface treatment is the use of silane coupling agents on silica particles.

確定分散體熱導率的一般方法是對樣品施加已知的熱通量,一旦達到樣品的穩態溫度,就測量樣品厚度上的溫差。在假設一維熱流和各向同性介質之後,然後使用傅立葉定律計算測量的熱導率,A general method of determining the thermal conductivity of a dispersion is to apply a known heat flux to the sample and measure the temperature difference across the thickness of the sample once the steady state temperature of the sample has been reached. After assuming one-dimensional heat flow and an isotropic medium, the measured thermal conductivity is then calculated using Fourier's law,

實施例 1– 氧化 Tuball TM(OCSiAl) 在裝有攪拌器和冷凝器的1升玻璃反應器中,將500克67重量%的硝酸加熱至95℃。向酸中加入5克原樣的單壁碳奈米管(Tuball™)。原樣的蓬鬆的碳奈米管具有長度可以是幾毫米,直徑可以是一毫米的緊密捆綁的樹幹的形態。將酸和碳奈米管的混合物混合,同時將溶液保持在約95攝氏度下5小時。在反應期結束時,過濾氧化的單壁碳奈米管以除去酸,並用反滲透(RO)水洗滌至pH為3-4。所得CNT被氧化至約3.6%,並含有4.4%的金屬殘留物。 Example 1 - Oxidation of Tuball (OCSiAl) In a 1 liter glass reactor equipped with a stirrer and condenser, 500 grams of 67% by weight nitric acid were heated to 95°C. To the acid was added 5 grams of single-walled carbon nanotubes (Tuball™) as received. As-is, fluffy carbon nanotubes have the form of tightly packed tree trunks that can be several millimeters in length and one millimeter in diameter. The mixture of acid and carbon nanotubes was mixed while maintaining the solution at about 95 degrees Celsius for 5 hours. At the end of the reaction period, the oxidized SWNTs were filtered to remove acid and washed with reverse osmosis (RO) water to pH 3-4. The resulting CNTs were oxidized to about 3.6% and contained 4.4% metal residues.

實施例 2– 氧化多壁碳奈米管, CNano Flotube 9000將4升含有65%硝酸的濃硝酸加入裝有超聲波儀和攪拌器的10升溫控反應容器中。將40克非離散多壁碳奈米管(來自CNano 公司的 Flowtube 9000級)裝入反應容器中,同時攪拌酸性混合物,並使溫度保持在85℃。超聲波儀的功率設定在130-150瓦,且反應持續3小時。3小時後,將黏性溶液轉移到具有5微米過濾網的篩檢程序中,並通過使用100psi壓力的過濾除去大部分酸性混合物。用4升去離子水洗滌濾餅一次,隨後用4升pH大於9的氫氧化銨溶液洗滌一次,然後用4升去離子水再洗滌兩次。最終洗滌所得的pH為4.5。濾餅的小樣品在100℃下真空乾燥4小時,並如前所述進行熱重分析。纖維上氧化物質的量為2.4重量%,由掃描電子顯微鏡測定的平均長徑比為60。殘留催化劑含量測定為2,500ppm。 Example 2 - Oxidation of multi-walled carbon nanotubes, CNano Flotube 9000 4 liters of concentrated nitric acid containing 65% nitric acid were added to a 10 liter temperature-controlled reaction vessel equipped with a sonicator and stirrer. 40 grams of non-discrete multi-walled carbon nanotubes (Flowtube 9000 grade from CNano company) were charged into the reaction vessel while stirring the acidic mixture and maintaining the temperature at 85°C. The power of the sonicator was set at 130-150 watts, and the reaction was continued for 3 hours. After 3 hours, the viscous solution was transferred to a screening program with a 5 micron filter, and most of the acidic mixture was removed by filtration using 100 psi pressure. The filter cake was washed once with 4 liters of deionized water, then once with 4 liters of ammonium hydroxide solution having a pH greater than 9, and then twice more with 4 liters of deionized water. The resulting pH of the final wash was 4.5. A small sample of the filter cake was dried under vacuum at 100 °C for 4 h and subjected to thermogravimetric analysis as previously described. The amount of oxidized species on the fibers was 2.4% by weight, and the average aspect ratio as determined by scanning electron microscopy was 60. The residual catalyst content was determined to be 2,500 ppm.

實施例 3– 將分散劑共價連接到氧化的單壁碳奈米管上。 使用來自實施例1的具有水的固體含量為6.6重量%的濕餅形式的氧化單壁碳奈米管。將30.3克濕餅與30克異丙醇混合,然後在攪拌下加入溶解在350克異丙醇和622克水中的3克Jeffamine M2005單胺封端聚醚。繼續攪拌10分鐘。將漿料轉移到Waring攪拌器中,並高速混合10分鐘。 然後將漿料通過實驗室規模的均質器,保持溫度低於45℃,直到通過光學顯微鏡觀察不到尺寸>20微米的大結構。 然後使用Buchner篩檢程式和2號Whatman濾紙在13過濾所得混合物,並用100cm 335wt%的異丙醇水溶液洗滌4次。然後將洗滌過的濕濾餅首先在對流烘箱中在120℃下乾燥至95%固體,然後在真空烘箱中在150℃下乾燥1小時。這在表3中稱為SWNT MB。 在氮氣中以5℃/分鐘在200-600℃範圍內進行的TGA分析得到47%共價結合的聚醚。 Example 3 - Covalent attachment of dispersants to oxidized single-walled carbon nanotubes . The oxidized single-walled carbon nanotubes from Example 1 were used in the form of a wet cake with a water solids content of 6.6% by weight. 30.3 grams of the wet cake was mixed with 30 grams of isopropanol, then 3 grams of Jeffamine M2005 monoamine terminated polyether dissolved in 350 grams of isopropanol and 622 grams of water were added with stirring. Stirring was continued for 10 minutes. Transfer the slurry to a Waring mixer and mix on high speed for 10 minutes. The slurry was then passed through a laboratory scale homogenizer, maintaining the temperature below 45°C, until no large structures >20 microns in size were observed by optical microscopy. The resulting mixture was then filtered at 13 using a Buchner screening program and No. 2 Whatman filter paper, and washed 4 times with 100 cm3 of 35 wt% aqueous isopropanol. The washed wet cake was then dried first in a convection oven at 120°C to 95% solids and then in a vacuum oven at 150°C for 1 hour. This is referred to as SWNT MB in Table 3. TGA analysis in nitrogen at 5°C/min in the range 200-600°C yielded 47% covalently bound polyether.

實施例 4– 將分散劑共價連接到氧化的多壁碳奈米管上。 使用來自實施例2的具有水的固體含量為5重量%的濕餅形式的氧化的多壁碳奈米管。將40克濕餅與30克異丙醇混合,然後在攪拌下加入溶解在350克異丙醇和622克水中的2克Jeffamine M2005單胺封端聚醚。繼續攪拌10分鐘。將漿料轉移到Waring攪拌器中,並高速混合10分鐘。 然後將漿料通過實驗室規模的均質器,保持溫度低於45℃,直到通過光學顯微鏡觀察不到尺寸>20微米的大結構。 然後使用Buchner篩檢程式和2號Whatman濾紙在13過濾所得混合物,並用100cm 335wt%的異丙醇水溶液洗滌4次。然後將洗滌過的濕濾餅首先在對流烘箱中在120℃下乾燥至95%固體,然後在真空烘箱中在150℃下乾燥1小時。 在氮氣中以5℃/分鐘在200-600℃範圍內進行的TGA分析得到18%共價結合的聚醚。 Example 4 - Covalent attachment of dispersants to oxidized multi-walled carbon nanotubes . The oxidized multi-walled carbon nanotubes from Example 2 in the form of a wet cake with a water solids content of 5% by weight were used. 40 grams of the wet cake was mixed with 30 grams of isopropanol, then 2 grams of Jeffamine M2005 monoamine terminated polyether dissolved in 350 grams of isopropanol and 622 grams of water was added with stirring. Stirring was continued for 10 minutes. Transfer the slurry to a Waring mixer and mix on high speed for 10 minutes. The slurry was then passed through a laboratory scale homogenizer, maintaining the temperature below 45°C, until no large structures >20 microns in size were observed by optical microscopy. The resulting mixture was then filtered at 13 using a Buchner screening program and No. 2 Whatman filter paper, and washed 4 times with 100 cm3 of 35 wt% aqueous isopropanol. The washed wet cake was then dried first in a convection oven at 120°C to 95% solids and then in a vacuum oven at 150°C for 1 hour. TGA analysis in nitrogen at 5°C/min in the range 200-600°C yielded 18% covalently bound polyether.

實施例 5– 塗覆尼龍粉末將尼龍11研磨成直徑小於10微米的小粉末顆粒。通過在200g異丙醇水溶液(50/50)中加入1g實施例4的碳奈米管以及1g分子量約24,000道爾頓的聚乙烯吡咯烷酮(Sigma Aldrich)來製備分散體。將100g尼龍11粉末攪拌到改性碳奈米管分散體中,並攪拌1小時。然後在對流烘箱中在110℃下乾燥該材料。將乾燥的材料置於球磨機中1小時,得到具有乾燥分散體塗層的尼龍11的細分散體。 然後,該粉末可以用於SLS增材製造方法,以製造具有增強的導電性和小於100億歐姆每平方的電阻的堅固部件。具有共價連接的分散劑的氧化的離散碳奈米管的塗覆允許通過紅外或射頻輻射改善部件的燒結後退火。 Example 5 - Coating Nylon Powder Nylon 11 was ground into small powder particles less than 10 microns in diameter. The dispersion was prepared by adding 1 g of the carbon nanotubes of Example 4 and 1 g of polyvinylpyrrolidone (Sigma Aldrich) with a molecular weight of about 24,000 Daltons to 200 g of aqueous isopropanol (50/50). Stir 100 g of nylon 11 powder into the modified carbon nanotube dispersion and stir for 1 hour. The material was then dried in a convection oven at 110°C. The dried material was placed in a ball mill for 1 hour to obtain a fine dispersion of nylon 11 with a dry dispersion coating. This powder can then be used in the SLS additive manufacturing method to create robust parts with enhanced electrical conductivity and resistance of less than 10 billion ohms per square. Coating of oxidized discrete carbon nanotubes with covalently attached dispersants allows for improved post-sintering annealing of components by infrared or radio frequency radiation.

實施例 6– 塗覆陶瓷粉末使用直徑小於10微米的氧化鋁粉末顆粒。通過將1g實施例4的碳奈米管與1g分子量約24,000道爾頓的(Sigma Aldrich)一起加入到200g異丙醇中,並在Thinky混合器中以2000 rpm混合5分鐘來製備分散體。將分散體選擇性地噴射到氧化鋁粉末層上,並通過乾燥除去醇。 粉末被氧化的離散碳奈米管的乾燥分散體結合,然後可以被燒結以產生堅固的部件。具有共價連接的分散劑的氧化的離散碳奈米管的分散體顯著地改善了陶瓷部件的生坯強度,並且在燒結過程中除去了共價結合的分散劑。氧化的離散碳奈米管可用於通過電場/磁場、或紅外或射頻輻射來誘導加熱。 Example 6 - Coating Ceramic Powders Alumina powder particles with a diameter of less than 10 microns were used. A dispersion was prepared by adding 1 g of the carbon nanotubes of Example 4 to 200 g of isopropanol along with 1 g of CNTs with a molecular weight of approximately 24,000 Daltons (Sigma Aldrich) and mixing in a Thinky mixer at 2000 rpm for 5 minutes. The dispersion is selectively sprayed onto a bed of alumina powder and the alcohol is removed by drying. The powder is combined with a dry dispersion of oxidized discrete carbon nanotubes, which can then be sintered to produce strong parts. Dispersions of oxidized discrete carbon nanotubes with covalently attached dispersant significantly improved the green strength of ceramic parts, and the covalently attached dispersant was removed during sintering. Oxidized discrete carbon nanotubes can be used to induce heating by electric/magnetic fields, or infrared or radio frequency radiation.

實施例 7– 混合輻射固化樹脂通過稱量成分並裝入容器中來製備用於槽式光聚合的輻射固化組成物。在室溫或高溫(至高80℃)下機械攪拌混合物,直到獲得均勻的樹脂混合物。將製備的組成物在槽式光聚合設備中處理,並根據下述測試方法分析製造的樣品。 Example 7 - Mixing Radiation Curable Resin A radiation curable composition for tank photopolymerization was prepared by weighing the ingredients and filling into containers. The mixture is stirred mechanically at room temperature or elevated temperature (up to 80°C) until a homogeneous resin mixture is obtained. The prepared compositions were processed in a tank photopolymerization apparatus, and the manufactured samples were analyzed according to the test methods described below.

製造三維樣品 用槽式光聚合設備製備三維樣品的一般過程如下。將可輻射固化的樹脂倒入槽中。製造參數設定為標準黑樹脂和25μm層厚。在這種方式下,在製造部件之前,將樹脂加熱至31℃。根據樹脂的組成,採用足夠的鐳射通過次數來提供所需的聚合能量。將該材料暴露於405 nm範圍內發射的鐳射下。最初形成其中層沒有完全固化的「生坯部件」。欠固化允許後續連續層當進一步固化時通過黏合更好地黏附。將製造的「生胚部件」從機器上取下,用異丙醇洗滌,在空氣中乾燥,並在配備有405 nm多向LED燈的固化室中後固化。除非另有規定,否則所有樣品都在室溫下在固化室中後固化30分鐘。 Make 3D samples The general procedure for preparing three-dimensional samples with a trough photopolymerization device is as follows. The radiation curable resin is poured into the tank. Fabrication parameters were set to standard black resin and 25 μm layer thickness. In this way, the resin is heated to 31°C before the part is fabricated. Depending on the composition of the resin, sufficient laser passes are used to provide the required polymerization energy. The material is exposed to laser light emitting in the 405 nm range. Initially a "green part" is formed in which the layers are not fully cured. Undercuring allows subsequent successive layers to adhere better by bonding when cured further. The fabricated "green parts" were removed from the machine, washed with isopropanol, dried in air, and post-cured in a curing chamber equipped with 405 nm multidirectional LED lamps. All samples were post-cured in a curing chamber for 30 minutes at room temperature unless otherwise specified.

測試方法 製備樹脂以滿足期望的黏度和潤濕行為要求。黏度和潤濕行為直接影響重塗深度(輻射曝光前的層厚度),其進而影響z方向的構建解析度。使用HR20 Discovery混合流變儀(TA儀器)收集新製備樹脂的黏度數據。40mm 2.002°不銹鋼帕爾貼板用於流動掃描實驗。通過在室溫下掃描1.0e -3至8000 l/s的剪切速率來進行對數掃描。以6 1/s的剪切速率且溫度以2°C/分鐘的升溫速率從25°C升至80°C進行另外的流動溫度升溫測試。表1示出了三個實施例組成物在零剪切速率下的黏度。資料顯示,黏度隨著最終樹脂製劑中具有結合的分散劑的氧化的離散碳奈米管的含量增加而呈指數增加。表2示出了溫度升溫結果,並提供了25℃、50℃和80℃下的比較點。結果顯示,隨著溫度的升高,黏度在恒定剪切速率下呈指數下降。 Test Methods Resins are prepared to meet the desired viscosity and wetting behavior requirements. Viscosity and wetting behavior directly affect recoat depth (layer thickness before radiation exposure), which in turn affects build resolution in the z direction. Viscosity data for freshly prepared resins were collected using an HR20 Discovery Hybrid Rheometer (TA Instruments). A 40mm 2.002° stainless steel Peltier plate was used for flow scanning experiments. Logarithmic sweeps were performed by sweeping shear rates from 1.0e −3 to 8000 l/s at room temperature. Additional flow temperature ramp tests were performed at a shear rate of 6 1/s and the temperature was ramped from 25°C to 80°C at a ramp rate of 2°C/min. Table 1 shows the viscosity of the compositions of the three examples at zero shear rate. The data show that viscosity increases exponentially with increasing content of oxidized discrete carbon nanotubes with bound dispersant in the final resin formulation. Table 2 shows the temperature ramp results and provides comparison points at 25°C, 50°C and 80°C. The results show that the viscosity decreases exponentially at a constant shear rate with increasing temperature.

表1 實施例 25℃ 下的黏度 ,[cP] 7.1 2,093 7.2 14,084 對照1 2,284       表2 實施例 25℃ 下的黏度 ,[cP] 50℃ 下的黏度 ,[cP] 80℃ 下的黏度 ,[cP] 7.1 770 161 63 7.2 778 219 105 對照1 2073 267 50 表3列出了標記為實施例7.1、7.2和對照7.1的每種光固化組成物的組分。注意:TPO和OB的量不計入總組成百分比。 表3 組分 實施例 7.1 [ 重量 %] 實施例 7.2 [ 重量 %] 對照 1 [ 重量 %] BR-952 47.00 37.00 67.00 BR-371 7.00 7.00 7.00 HEMA 26.00 26.00 26.00 TPO 1.00 1.00 1.00 OB 0.00 0.00 0.06 SWCNT MB 20.00 30.00 0 拉伸資料通過測試使用槽式光聚合設備製造的拉伸IV型樣品(ASTM D638)來收集。所有樣品都是垂直製作的。拉伸強度、楊氏模量和斷裂伸長率測試在後固化24小時或更長時間後進行。根據通過引用除以下之外的整體併入本說明書的ASTM D638進行拉伸測試:沒有採取措施控制室溫和濕度,並且棒在2天內沒有被平衡。測試是在Instron測試機(型號5985)上進行的。報告的資料是三次測量的平均值。表3示出了實施例7.1和7.2與沒有將具有結合的分散劑的氧化的離散碳奈米管加入到組成物中的對照進行比較的極限拉伸強度、屈服強度和楊氏模量。這些實施例表明,與沒有氧化的離散碳奈米管的樹脂相比,添加具有結合的分散劑的氧化的離散碳奈米管增加了拉伸強度和屈服強度以及楊氏模量。 表4 實施例 拉伸強度, [MPa] 屈服強度, [MPa] 楊氏模量, [GPa] 7.1 69±0.1 53.0±1.5 2.9±0.05 7.2 67±0.4 48.6±0.6 2.8±0.04 對照1 63.7±1 34.7±0.8 2.1±0.03 用於測定Izod衝擊強度的固化樣品以除了以下之外其餘與拉伸棒相同的方式製備:樣品根據ASTM D-256A標準設計,並且尺寸為3.2mm×12.7mm×63.5 mm(厚度×寬度×長度)。使用來自Ray-Ran的電動切口切割機對樣品進行切口。使用配備有2.75 J擺錘的Ray-Ran通用擺錘衝擊系統測量Izod衝擊。報告的資料是三次測量的平均值。 表4示出了實施例7.1至7.4的衝擊強度。這些實施例表明,與沒有氧化的離散碳奈米管的樹脂相比,添加具有結合的分散劑的離散的氧化碳奈米管顯著提高了製造樣品的衝擊強度。 表5 實施例 平均衝擊, [J/m] % 增加 7.1 19.8 32 7.2 15.7 4 7.3 19.8 75 7.4 28.5 151 對照1 15.0 ** 對照2 11.3 ** 表6列出了標記為實施例7.3、7.4和對照2的每種光固化組成物的組分。 表6 組分 實施例 7.3 [ 重量 %] 實施例 7.4 [ 重量 %] 對照 2 [ 重量 %] Formlabs Clear 99.95 99.80 100.00 MWCNT 0.05 0.20 0.00 Table 1 Example Viscosity at 25°C , [cP] 7.1 2,093 7.2 14,084 Control 1 2,284 Table 2 Example Viscosity at 25°C , [cP] Viscosity at 50℃ ,[cP] Viscosity at 80℃ ,[cP] 7.1 770 161 63 7.2 778 219 105 Control 1 2073 267 50 Table 3 lists the components of each photocurable composition labeled Examples 7.1, 7.2 and Control 7.1. Note: The amount of TPO and OB is not included in the total composition percentage. table 3 components Example 7.1 : [ % by weight ] Example 7.2 : [ % by weight ] Control 1 [ wt %] BR-952 47.00 37.00 67.00 BR-371 7.00 7.00 7.00 HEMA 26.00 26.00 26.00 TPO 1.00 1.00 1.00 OB 0.00 0.00 0.06 SWCNT MB 20.00 30.00 0 Tensile data was collected by testing Tensile Type IV samples (ASTM D638) fabricated using a trough photopolymerization apparatus. All samples were fabricated vertically. Tensile strength, Young's modulus, and elongation at break tests were performed after post-curing for 24 hours or more. Tensile testing was performed in accordance with ASTM D638, which is incorporated by reference in its entirety except that: no measures were taken to control room temperature and humidity, and the rod was not equilibrated within 2 days. Testing was performed on an Instron testing machine (Model 5985). Data reported are the average of three measurements. Table 3 shows the ultimate tensile strength, yield strength, and Young's modulus for Examples 7.1 and 7.2 compared to a control that did not incorporate oxidized discrete carbon nanotubes with incorporated dispersant into the composition. These examples show that the addition of oxidized discrete carbon nanotubes with incorporated dispersant increases tensile and yield strength as well as Young's modulus compared to resins without oxidized discrete carbon nanotubes. Table 4 Example Tensile strength, [MPa] Yield strength, [MPa] Young's modulus, [GPa] 7.1 69±0.1 53.0±1.5 2.9±0.05 7.2 67±0.4 48.6±0.6 2.8±0.04 Control 1 63.7±1 34.7±0.8 2.1±0.03 Cured samples for determination of Izod impact strength were prepared in the same manner as tensile bars except that the samples were designed according to the ASTM D-256A standard and had dimensions of 3.2 mm x 12.7 mm x 63.5 mm (thickness x width x length ). Samples were notched using a motorized notch cutter from Ray-Ran. Izod impacts were measured using a Ray-Ran Universal Pendulum Impact System equipped with a 2.75 J pendulum. Data reported are the average of three measurements. Table 4 shows the impact strength of Examples 7.1 to 7.4. These examples demonstrate that the addition of discrete oxidized carbon nanotubes with incorporated dispersant significantly increases the impact strength of fabricated samples compared to resins without oxidized discrete carbon nanotubes. table 5 Example Average impact, [J/m] % increase 7.1 19.8 32 7.2 15.7 4 7.3 19.8 75 7.4 28.5 151 Control 1 15.0 ** Control 2 11.3 ** Table 6 lists the components of each photocurable composition labeled as Examples 7.3, 7.4 and Control 2. Table 6 components Example 7.3 , [ % by weight ] Example 7.4 , [ % by weight ] Control 2 , [ wt %] Formlabs Clear 99.95 99.80 100.00 MWCNT 0.05 0.20 0.00

相關申請的交叉引用 本發明是2021年2月26日提交的美國序號17/187,658的部分繼續申請,該美國序號17/187,658本身是2018年6月19日提交的美國序號16/012,265(現為美國專利10,934,447)的部分繼續,該序號16/012,265是2016年10月7日提交的美國序號15/288,553(現為美國專利號9,636,649)的部分繼續,該美國序號15/288,553是2016年8月1日提交、2016年9月12日批准並作為美國專利號9,493,626發佈的美國序號15/225,215的部分繼續申請,該美國序號15/225,215是2016年5月27日提交並作為美國專利號9,422,413發佈的美國序號15/166,931的部分繼續申請,該美國序號15/166,931是2015年10月27日提交並作為美國專利號9,353,240發佈的美國序號14/924,246的繼續,該美國序號14/924,246是2013年6月11日提交並作為美國專利號9,212,273發佈的美國序號13/993,206的繼續,該美國序號13/993,206主張對2011年12月12日提交的PCT/EP2011/072427的優先權,該PCT/EP2011/072427主張對2010年12月14日提交的美國臨時申請61/423,033的權益。所有的前述的美國申請及/或授權專利都明確地通過引用併入本說明書。本發明還涉及美國序號62/319,599;14/585,730;14/628,248;和14/963,845。 Cross References to Related Applications This application is a continuation-in-part of U.S. Serial No. 17/187,658, filed February 26, 2021, which itself is a continuation of U.S. Serial No. 16/012,265 (now U.S. Patent 10,934,447), filed June 19, 2018. Continuation-in-Part, Serial No. 16/012,265 is a continuation-in-part of U.S. Serial No. 15/288,553 filed October 7, 2016 (now U.S. Patent No. 9,636,649) filed August 1, 2016, 2016 Approved September 12, 2016 and issued as a Continuation-in-Part of U.S. Serial No. 15/225,215, filed May 27, 2016, and issued as U.S. Patent No. 9,422,413 166,931, which is a continuation-in-part of U.S. Serial No. 15/166,931, which is a continuation of U.S. Serial No. 14/924,246, which was filed on October 27, 2015 and issued as U.S. Patent No. 9,353,240, which was filed on June 11, 2013 And as a continuation of U.S. Serial No. 13/993,206 issued as U.S. Patent No. 9,212,273, which claims priority to PCT/EP2011/072427 filed December 12, 2011, which asserts Benefit to U.S. Provisional Application 61/423,033, filed December 14, 2010. All of the aforementioned US applications and/or issued patents are expressly incorporated herein by reference. This invention is also related to US Ser. Nos. 62/319,599; 14/585,730; 14/628,248; and 14/963,845.

Claims (22)

一種增材製造分散體,其特徵係該分散體包括至少一部分的可交聯部分和氧化的離散碳奈米管,該氧化的離散碳奈米管在該氧化的離散碳奈米管的至少一個側壁上具有結合的分散劑,其中該氧化的離散碳奈米管基於分散體的總重量以大於0至至多約30重量%的範圍存在,並且該分散體中存在的多數碳奈米管是離散的。An additively manufactured dispersion characterized in that the dispersion includes at least a portion of a crosslinkable portion and oxidized discrete carbon nanotubes in at least one of the oxidized discrete carbon nanotubes having a bound dispersant on the sidewall, wherein the oxidized discrete carbon nanotubes are present in a range of greater than 0 up to about 30 wt. % based on the total weight of the dispersion, and the majority of the carbon nanotubes present in the dispersion are discrete of. 如請求項1所述之分散體,其中,該氧化的離散碳奈米管包括內表面和外表面,每個表面包括內表面氧化的物質含量和外表面氧化的物質含量,其中該內表面氧化的物質含量與外表面氧化的物質含量相差至少約20%,並且至高100%。The dispersion of claim 1, wherein the oxidized discrete carbon nanotubes comprise an inner surface and an outer surface, each surface comprising an inner surface oxidized species content and an outer surface oxidized species content, wherein the inner surface is oxidized The content of matter differs by at least about 20%, and up to 100%, from that of the outer surface oxidation. 如請求項1所述之分散體,其中,該氧化的離散碳奈米管包括由氧化的離散單壁碳奈米管、氧化的離散雙壁碳奈米管和氧化的離散多壁碳奈米管的組合形成的具有雙峰或三峰分佈的氧化的離散碳奈米管直徑的氧化的離散碳奈米管的混合物。The dispersion according to claim 1, wherein the oxidized discrete carbon nanotubes comprise oxidized discrete single-walled carbon nanotubes, oxidized discrete double-walled carbon nanotubes and oxidized discrete multi-walled carbon nanotubes The combination of tubes forms a mixture of oxidized discrete carbon nanotubes having a bimodal or trimodal distribution of oxidized discrete carbon nanotube diameters. 如請求項1所述之分散體,其中,該氧化的離散碳奈米管側壁上的結合的分散劑是共價結合的。The dispersion of claim 1, wherein the bound dispersant on the sidewalls of the oxidized discrete carbon nanotubes is covalently bound. 如請求項1所述之分散體,其中,該氧化的離散碳奈米管側壁上的結合的分散劑包括約50至約20,000道爾頓範圍內的平均分子量,並且該離散碳奈米管側壁上的結合的分散劑相對於氧化的離散碳奈米管的重量分數大於約0.02且小於約0.8。The dispersion of claim 1, wherein the bound dispersant on the sidewalls of the oxidized discrete carbon nanotubes comprises an average molecular weight in the range of about 50 to about 20,000 Daltons, and the sidewalls of the discrete carbon nanotubes The weight fraction of bound dispersant on the oxidized discrete carbon nanotubes is greater than about 0.02 and less than about 0.8. 如請求項1所述之分散體,其中,該氧化的離散碳奈米管側壁上的結合的分散劑與接觸該結合的分散劑的材料是可混溶的。The dispersion of claim 1, wherein the bound dispersant on the sidewalls of the oxidized discrete carbon nanotubes is miscible with a material contacting the bound dispersant. 一種增材製造分散體,其特徵係該分散體包括至少一部分可交聯的丙烯酸酯部分和氧化的離散碳奈米管,該氧化的離散碳奈米管在該氧化的離散碳奈米管的至少一個側壁上具有結合的分散劑,其中該離散碳奈米管側壁上的結合的分散劑包括選自醚的組的分子單元。An additive manufacturing dispersion characterized in that the dispersion comprises at least a portion of a crosslinkable acrylate moiety and oxidized discrete carbon nanotubes within the oxidized discrete carbon nanotubes At least one sidewall has a bound dispersant, wherein the bound dispersant on the sidewall of the discrete carbon nanotubes comprises molecular units selected from the group of ethers. 如請求項7所述之分散體,其中,該分子單元包括環氧乙烷。The dispersion according to claim 7, wherein the molecular unit comprises ethylene oxide. 如請求項1所述之分散體,其中,進一步包括以重量%計的分散體的約0.1重量%至約30重量%的填料,該填料選自由炭黑、石墨烯、氧化石墨烯、還原石墨烯、碳纖維、二氧化矽、矽酸鹽、埃洛石、黏土、碳酸鈣、矽灰石、玻璃、阻燃劑和滑石組成的組。The dispersion as claimed in claim 1, wherein, further comprising fillers of about 0.1% by weight to about 30% by weight of the dispersion in % by weight, the fillers are selected from carbon black, graphene, graphene oxide, reduced graphite group consisting of alkenes, carbon fibers, silica, silicates, halloysite, clay, calcium carbonate, wollastonite, glass, flame retardants, and talc. 如請求項1所述之分散體,其中,進一步包括由熱塑性塑膠、熱固性塑膠和彈性體組成的組中的成員。The dispersion according to claim 1, further comprising members of the group consisting of thermoplastics, thermosetting plastics and elastomers. 如請求項1所述之分散體,其中,進一步包括核殼彈性體,該核殼彈性體進一步包括約0.01至約1微米的顆粒直徑。The dispersion of claim 1, further comprising a core-shell elastomer, the core-shell elastomer further comprising a particle diameter of about 0.01 to about 1 micron. 如請求項1所述之分散體,其中,進一步包括具有約1nm至約20微米的顆粒直徑的半導體粉末、金屬粉末和或陶瓷粉末。The dispersion according to claim 1, further comprising semiconductor powder, metal powder and or ceramic powder having a particle diameter of about 1 nm to about 20 microns. 如請求項1所述之分散體,其中,進一步包括連接於該氧化的離散碳奈米管側壁的至少一種另外的分散劑,該另外的分散劑選自由陰離子表面活性劑、陽離子表面活性劑、非離子表面活性劑和兩性離子表面活性劑、聚乙烯醇、聚乙烯醇和聚乙酸乙烯酯的共聚物、聚乙烯吡咯烷酮及其共聚物、羧甲基纖維素、羧丙基纖維素、羧甲基丙基纖維素、羥乙基纖維素、聚醚亞胺、聚醚、澱粉及其混合物組成的組。The dispersion of claim 1, further comprising at least one additional dispersant attached to the sidewalls of the oxidized discrete carbon nanotubes, the additional dispersant being selected from anionic surfactants, cationic surfactants, Nonionic and zwitterionic surfactants, polyvinyl alcohol, copolymers of polyvinyl alcohol and polyvinyl acetate, polyvinylpyrrolidone and its copolymers, carboxymethyl cellulose, carboxypropyl cellulose, carboxymethyl Group consisting of propylcellulose, hydroxyethylcellulose, polyetherimides, polyethers, starches and mixtures thereof. 如請求項1所述之分散體,其中,該氧化的離散碳奈米管包括約0.1重量%至約20重量%的氮原子。The dispersion of claim 1, wherein the oxidized discrete carbon nanotubes comprise about 0.1% to about 20% by weight nitrogen atoms. 一種增材製造分散體,其特徵係該分散體包括至少一部分熱塑性部分和離散碳奈米管,該離散碳奈米管在該離散碳奈米管的至少一個側壁上具有結合的分散劑,其中該離散碳奈米管基於分散體的總重量以大於0至至多約30重量%的量存在。An additively manufactured dispersion characterized in that the dispersion includes at least a portion of a thermoplastic portion and discrete carbon nanotubes having a dispersant bound to at least one sidewall of the discrete carbon nanotubes, wherein The discrete carbon nanotubes are present in an amount greater than 0 up to about 30 weight percent based on the total weight of the dispersion. 如請求項15所述之分散體,其中,該氧化的離散碳奈米管側壁上的結合的分散劑在低於約500℃下在氮氣中以小於約5重量%的灰分含量至少部分熱分解量。The dispersion of claim 15, wherein the bound dispersant on the sidewalls of the oxidized discrete carbon nanotubes is at least partially thermally decomposed at less than about 500° C. in nitrogen with an ash content of less than about 5% by weight quantity. 如請求項15所述之分散體,其中,多數碳奈米管是離散的。The dispersion according to claim 15, wherein most of the carbon nanotubes are discrete. 如請求項1所述之分散體,其中,由增材製造製備的部件具有小於100億歐姆每平方的電阻。The dispersion of claim 1, wherein the additively manufactured part has a resistance of less than 10 billion ohms per square. 如請求項1所述之分散體,其中,對於分散體中氧化的離散碳奈米管的濃度為2.5×10-5g/ml,該分散體在500 nm處的UV-可見吸收大於約0.5吸光度單位。The dispersion of claim 1, wherein the dispersion has a UV-visible absorbance at 500 nm of greater than about 0.5 absorbance for a concentration of oxidized discrete carbon nanotubes in the dispersion of 2.5 x 10-5 g/ml unit. 如請求項1所述之分散體,其中,進一步包括選自導熱材料的組的填料,該導熱材料例如但不限於金屬和金屬合金、氮化硼、氧化鋁、氮化矽、氮化鋁、金剛石、石墨和石墨烯。The dispersion as claimed in claim 1, further comprising a filler selected from the group of thermally conductive materials such as but not limited to metals and metal alloys, boron nitride, aluminum oxide, silicon nitride, aluminum nitride, Diamond, graphite and graphene. 如請求項1所述之分散體,其中,進一步包括選自由可以與細菌、病毒、真菌和生物因子相互作用的物質組成的組的生物活性物質。The dispersion according to claim 1, further comprising a biologically active substance selected from the group consisting of substances capable of interacting with bacteria, viruses, fungi and biological agents. 一種用於至少部分地封裝電子元件的增材製造分散體,其特徵係該分散體包括: 至少一部分的可交聯部分;和 氧化的離散碳奈米管; 其中該氧化的離散碳奈米管包括結合在氧化的離散碳奈米管側壁上的分散劑;且 其中該氧化的離散碳奈米管基於分散體的總重量以大於零且至多約30重量%的範圍存在;且 其中該分散體中存在的多數碳奈米管是離散的。 An additive manufacturing dispersion for at least partially encapsulating electronic components, characterized in that the dispersion comprises: at least a portion of the crosslinkable moiety; and Oxidized discrete carbon nanotubes; wherein the oxidized discrete carbon nanotubes include a dispersant bound to the sidewalls of the oxidized discrete carbon nanotubes; and wherein the oxidized discrete carbon nanotubes are present in a range greater than zero and up to about 30% by weight based on the total weight of the dispersion; and Wherein the majority of carbon nanotubes present in the dispersion are discrete.
TW111111127A 2021-03-25 2022-03-24 Dispersions for additive manufacturing comprising discrete carbon nanotubes TW202244202A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/212,612 US20210237509A1 (en) 2010-12-14 2021-03-25 Dispersions for additive manufacturing comprising discrete carbon nanotubes
US17/212,612 2021-03-25

Publications (1)

Publication Number Publication Date
TW202244202A true TW202244202A (en) 2022-11-16

Family

ID=83397900

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111111127A TW202244202A (en) 2021-03-25 2022-03-24 Dispersions for additive manufacturing comprising discrete carbon nanotubes

Country Status (6)

Country Link
EP (1) EP4314173A1 (en)
JP (1) JP2024512047A (en)
KR (1) KR20230160855A (en)
CA (1) CA3213250A1 (en)
TW (1) TW202244202A (en)
WO (1) WO2022204398A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117383535A (en) * 2023-11-22 2024-01-12 广东惠云钛业股份有限公司 Preparation method of low-cost high-compaction lithium iron phosphate
CN117410493B (en) * 2023-12-12 2024-04-02 成都方大炭炭复合材料股份有限公司 Sodium vanadium phosphate positive electrode material based on carbon nanotube dispersion stabilization process and preparation method and application thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8652391B2 (en) * 2005-02-03 2014-02-18 Entegris, Inc. Method of forming substrate carriers and articles from compositions comprising carbon nanotubes
US20120035309A1 (en) * 2010-08-06 2012-02-09 Baker Hughes Incorporated Method to disperse nanoparticles into elastomer and articles produced therefrom
CN103313934A (en) * 2010-12-14 2013-09-18 思迪隆欧洲有限公司 Improved elastomer formulations
US10934447B2 (en) * 2010-12-14 2021-03-02 Molecular Rebar Design, Llc Epoxy resin dispersions comprising discrete carbon nanotubes
US20210237509A1 (en) * 2010-12-14 2021-08-05 Molecular Rebar Design, Llc Dispersions for additive manufacturing comprising discrete carbon nanotubes
EP4234023A3 (en) * 2016-04-07 2023-11-08 Molecular Rebar Design LLC Discrete carbon nanotubes with targeted oxidation levels and formulations thereof
US10589997B2 (en) * 2016-04-07 2020-03-17 Molecular Rebar Design, Llc Discrete carbon nanotubes with targeted oxidation levels and stable gel formulations thereof
WO2020018535A1 (en) * 2018-07-16 2020-01-23 Molecular Rebar Design, Llc Dose and time-dependent intracelluar penetration of surface-modified nanotubes for delivery of molecular materials into cells

Also Published As

Publication number Publication date
CA3213250A1 (en) 2022-09-29
EP4314173A1 (en) 2024-02-07
JP2024512047A (en) 2024-03-18
WO2022204398A1 (en) 2022-09-29
KR20230160855A (en) 2023-11-24

Similar Documents

Publication Publication Date Title
Chen et al. Construction of 3D boron nitride nanosheets/silver networks in epoxy-based composites with high thermal conductivity via in-situ sintering of silver nanoparticles
Marouf et al. Toughening of epoxy nanocomposites: nano and hybrid effects
Ganguli et al. Effect of loading and surface modification of MWCNTs on the fracture behavior of epoxy nanocomposites
TW202244202A (en) Dispersions for additive manufacturing comprising discrete carbon nanotubes
Zabihi et al. Fish DNA-modified clays: Towards highly flame retardant polymer nanocomposite with improved interfacial and mechanical performance
KR101655942B1 (en) Carbon nanotube dispersions
González-Domínguez et al. Solvent-free preparation of high-toughness epoxy− SWNT composite materials
Benega et al. Improvements in thermal and mechanical properties of composites based on epoxy-carbon nanomaterials-A brief landscape
Salvetat et al. Progress on mechanics of carbon nanotubes and derived materials
Vijayan et al. Liquid rubber and silicon carbide nanofiber modified epoxy nanocomposites: Volume shrinkage, cure kinetics and properties
Behera et al. A brief review on the mechanical properties of Carbon nanotube reinforced polymer composites
US20210237509A1 (en) Dispersions for additive manufacturing comprising discrete carbon nanotubes
Wladyka‐Przybylak et al. Functionalization effect on physico‐mechanical properties of multi‐walled carbon nanotubes/epoxy composites
Naeem et al. Epoxy/graphene nanocomposites prepared by in-situ microwaving
Qin et al. Incorporation of silicon dioxide nanoparticles at the carbon fiber‐epoxy matrix interphase and its effect on composite mechanical properties
US20230202108A1 (en) Dispersions and Manufacturing Technologies for Additive Manufacturing Comprising Discrete Carbon Nanotubes
Natarajan et al. Comparison of MA-g-PP effectiveness through mechanical performance of functionalised graphene reinforced polypropylene
Chung et al. Silane modification on mesoporous silica coated carbon nanotubes for improving compatibility and dispersity in epoxy matrices
Rajabi et al. Thermal stability and dynamic mechanical properties of nano and micron-TiO2 particles reinforced epoxy composites: effect of mixing method
Borah et al. Milled graphitic nanoparticle toughened epoxy composites via increased resistance to in-plane crack propagation
Jiang et al. In situ reinforced poly (ether ether ketone) nanocomposites by covalently modified multiwalled carbon nanotubes via surface‐grafting polymerization
Tiwari et al. Effect of the amine and carboxyl functionalised graphene on the thermomechanical and interfacial properties of the shape memory polymer nanocomposites
JP4953224B2 (en) Composite particle-containing slurry and method for producing composite particles
TW202306893A (en) Dispersions and manufacturing technologies for additive manufacturing comprising discrete carbon nanotubes
Park et al. Surface modification of carbon nanotubes for high-performance polymer composites