TW202240126A - Enhanced hybrid systems and methods for characterizing stress in chemically strengthened transparent substrates - Google Patents

Enhanced hybrid systems and methods for characterizing stress in chemically strengthened transparent substrates Download PDF

Info

Publication number
TW202240126A
TW202240126A TW111106369A TW111106369A TW202240126A TW 202240126 A TW202240126 A TW 202240126A TW 111106369 A TW111106369 A TW 111106369A TW 111106369 A TW111106369 A TW 111106369A TW 202240126 A TW202240126 A TW 202240126A
Authority
TW
Taiwan
Prior art keywords
epcs
lsp
coupling
substrate
filtered
Prior art date
Application number
TW111106369A
Other languages
Chinese (zh)
Inventor
萊恩克萊德 安德魯
大衛馬修 柏格
皮爾米歇爾 波奇
威廉約翰 佛納斯
雅各 伊莫爾曼
耶利米羅伯 雅各森
凱薩琳安妮 林德貝格
葛倫亞伯拉 紐康莫
伊凡路易斯 歐爾森
維克多 斯蒂潘諾夫
納薩尼爾大衛 韋特摩爾
Original Assignee
美商康寧公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商康寧公司 filed Critical 美商康寧公司
Publication of TW202240126A publication Critical patent/TW202240126A/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/4133Refractometers, e.g. differential
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/43Refractivity; Phase-affecting properties, e.g. optical path length by measuring critical angle
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/4133Refractometers, e.g. differential
    • G01N2021/4153Measuring the deflection of light in refractometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N2021/4792Polarisation of scatter light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The hybrid measurement system [20] includes an evanescent prism coupling spectroscopy (EPCS) sub-system [100] and a light-scattering polarimetry (LSP) sub-system [200]. The EPCS sub-system includes an EPCS light source system [110] optically coupled to an EPCS detector system [140] through an EPCS coupling prism [42A]. The LSP sub-system includes an LSP light source [112] optically coupled to an optical compensator [230], which in turn is optically coupled to a LSP detector system [240] via a LSP coupling prism [42B]. A support structure [46] supports the EPCS and LSP coupling prisms to define a coupling prism assembly [40], which supports the two prisms at a measurement location [ML]. Stress measurements made using the EPCS and LSP sub-systems are combined to fully characterize the stress properties of a transparent chemically strengthened substrate [10]. Methods of processing the EPCS and LSP measurements and enhanced configurations of the EPCS and LSP sub-systems to improve measurement accuracy are also disclosed.

Description

用於表徵化學增強透明基板中的應力的強化混合系統及方法Intensive Hybrid System and Method for Characterizing Stress in Chemically Enhanced Transparent Substrates

本申請案主張2021年2月22日申請之美國臨時申請案第63/152,021號的優先權權益,該案之內容係本文之依據且以全文引用的方式併入本文中。This application claims the benefit of priority to U.S. Provisional Application No. 63/152,021, filed February 22, 2021, the contents of which are relied upon and incorporated herein by reference in its entirety.

本揭露係關於表徵透明化學增強基板中的應力,且特定而言,係關於用於表徵化學增強透明基板中的應力的強化混合系統及方法。The present disclosure relates to characterizing stress in transparent chemically amplified substrates, and in particular, to enhanced mixing systems and methods for characterizing stress in chemically amplified transparent substrates.

已經歷化學增強製程的透明基板表現出對刮傷及破裂的增加的抵抗能力。此類基板對多種顯示器應用極為有用,顯示器應用的範圍為電視螢幕至電腦螢幕至行動手持式裝置螢幕至手錶。示例性化學增強製程為離子交換(ion-exchange,IOX)製程,藉由IOX製程,用例如來自鹽浴的外來離子交換玻璃基基板的近表面區中的離子。Transparent substrates that have undergone a chemical strengthening process exhibit increased resistance to scratching and cracking. These substrates are extremely useful for a variety of display applications ranging from television screens to computer screens to mobile handheld device screens to wrist watches. An exemplary chemically enhanced process is an ion-exchange (IOX) process by which ions in the near-surface region of the glass-based substrate are exchanged with foreign ions, eg, from a salt bath.

製造透明化學增強(chemically strengthened,CS)基板需要表徵其應力特性以確保CS基板具有適合於給定應用的所需等級的化學增強。表徵通常需要量測CS基板從表面至中心的應力輪廓,以及相關應力參數,諸如表面壓縮應力、拐點應力、尖峰層深度、總層深度、壓縮深度及中心張力。其他應力相關參數包括雙折射率隨著進入CS基板的深度的變化。Fabrication of transparent chemically strengthened (CS) substrates requires characterization of their stress properties to ensure that CS substrates have the desired level of chemical strengthening for a given application. Characterization usually requires measuring the stress profile of the CS substrate from the surface to the center, and related stress parameters, such as surface compressive stress, inflection point stress, peak layer depth, total layer depth, compression depth, and center tension. Other stress-related parameters include changes in birefringence with depth into the CS substrate.

有兩種主要的方法用於表徵透明CS基板的應力。第一種利用漸逝稜鏡耦合光譜術(evanescent prism coupling spectroscopy,EPCS)。EPCS方法使用耦合稜鏡將光耦合至例如藉由IOX製程在基板中形成的近表面波導(near-surface waveguide,NSWG)所支援的導引模式中。耦合稜鏡亦用於將光耦合出NSWG以形成導引模式頻譜。導引模式頻譜包括:橫向電(transverse electric,TE)模式頻譜,其具有TE模式線;及橫向磁性(transverse magnetic,TM)頻譜,其具有TM模式線。分析TE模式線及TM模式線以提取包括應力輪廓的應力相關特性。EPCS方法對表徵CS基板的近表面區中的應力(例如,表面壓縮應力及尖峰層深度)特別有用,但是對表徵駐留在基板內更深處的中心張力CT及壓縮深度DOC沒有用。There are two main methods used to characterize the stress of transparent CS substrates. The first uses evanescent prism coupling spectroscopy (EPCS). The EPCS method uses coupling plates to couple light into guided modes supported by, for example, near-surface waveguides (NSWGs) formed in substrates by IOX processes. Coupling beams are also used to couple light out of the NSWG to form a guided mode spectrum. The guided mode spectrum includes: a transverse electric (TE) mode spectrum with TE mode lines; and a transverse magnetic (TM) spectrum with TM mode lines. The TE mode lines and TM mode lines are analyzed to extract stress-related properties including stress profiles. The EPCS method is particularly useful for characterizing stresses in the near-surface region of CS substrates (eg, surface compressive stress and peak layer depth), but not for characterizing central tension CT and depth of compression DOC residing deeper within the substrate.

第二種主要方法利用光散射偏光測定法(light-scattering polarimetry,LSP)。在LSP中,利用以相對小的角度穿過耦合稜鏡的輸入雷射光照射CS基板。使用光學補償器使雷射光偏光在不同的偏光狀態之間不斷變化。藉由影像感測器偵測散射光。CS基板中的應力造成沿著光路徑的光學延遲,而應力的量與光學延遲的導數成比例。光學延遲的量可根據偵測到的散射光強度分佈來判定,偵測到的散射光強度分佈由於針對偵測到的光的不同有效路徑長度的建設性及破壞性干涉而變化。LSP方法對量測諸如中心張力(central tension,CT)及壓縮深度(depth of compression,DOC)的某些應力相關性質有用,但是對量測近表面應力相關性質沒有用。The second major method utilizes light-scattering polarimetry (LSP). In LSP, the CS substrate is illuminated with input laser light passing through a coupled laser beam at a relatively small angle. Using an optical compensator to continuously change the polarization of the laser light between different polarization states. Scattered light is detected by an image sensor. The stress in the CS substrate causes an optical delay along the optical path, and the amount of stress is proportional to the derivative of the optical delay. The amount of optical retardation can be determined from the detected scattered light intensity distribution, which varies due to constructive and destructive interference for different effective path lengths of the detected light. The LSP method is useful for measuring certain stress-related properties such as central tension (CT) and depth of compression (DOC), but not useful for measuring near-surface stress-related properties.

目前,為了全面表徵CS基板從表面至中心的應力輪廓,首先使用EPCS量測系統量測CS基板,然後將其移動至LSP量測系統,且將兩個量測結果拼接在一起。此係耗時的且引入了破裂風險,因為當在兩個量測系統之間移動CS基板時不得不處理CS基板。At present, in order to fully characterize the stress profile of the CS substrate from the surface to the center, the CS substrate is first measured with the EPCS measurement system, then moved to the LSP measurement system, and the two measurement results are stitched together. This is time consuming and introduces a risk of breakage since the CS substrate has to be handled when it is moved between the two metrology systems.

因此,具有能夠執行強化EPCS及LSP量測的單個量測系統將更有利。Therefore, it would be advantageous to have a single measurement system capable of performing intensive EPCS and LSP measurements.

本文中揭示的混合量測系統及方法實現透明CS基板的全面應力表徵,其包括表面應力S(0)、包括拐點應力S k= S(x k)的近表面壓縮應力輪廓S(x)、層深度DOL、中心張力CT及壓縮深度DOC。全面應力表徵係藉由對使用EPCS及LSP量測兩者的應力計算進行組合來獲得。 The hybrid measurement system and method disclosed in this paper realize the comprehensive stress characterization of the transparent CS substrate, which includes the surface stress S(0), the near-surface compressive stress profile S(x) including the inflection point stress S k = S(x k ), Layer depth DOL, central tension CT and compression depth DOC. Global stress characterization is obtained by combining stress calculations using both EPCS and LSP measurements.

本揭露的一實施例係關於一種用於表徵一CS基板中的應力的系統,該CS基板具有一頂部表面及一近表面波導。該系統包含:一EPCS子系統,該EPCS子系統包含經由一具有一EPCS耦合表面的EPCS耦合稜鏡來光學連通的一EPCS光源系統及一EPCS偵測器系統;一LSP子系統,該LSP子系統包含一LSP光源系統、一光學補償器及一LSP偵測器系統,該LSP偵測器系統經由一具有一LSP耦合表面的LSP耦合稜鏡與該光學補償器光學連通;一耦合稜鏡總成,該耦合稜鏡總成包含一稜鏡支撐框,該稜鏡支撐框經組態以可操作地支撐該EPCS耦合稜鏡及該LSP耦合稜鏡以使得該EPCS耦合表面及該LSP耦合表面大體上駐留在一共同平面中;及一支撐充氣部,該支撐充氣部具有一表面及一量測孔,該支撐充氣部經組態以將該CS基板支撐在該量測孔處的一量測平面處,且將該耦合稜鏡總成可操作地支撐在該量測孔處以使得該EPCS耦合表面及該LSP耦合表面大體上駐留在該量測平面中。在實例中,EPC子系統及/或LSP子系統具有如下所述的強化組態。An embodiment of the present disclosure relates to a system for characterizing stress in a CS substrate having a top surface and a near-surface waveguide. The system comprises: an EPCS subsystem comprising an EPCS light source system and an EPCS detector system in optical communication via an EPCS coupling plate having an EPCS coupling surface; an LSP subsystem comprising The system comprises an LSP light source system, an optical compensator and an LSP detector system, the LSP detector system is in optical communication with the optical compensator via an LSP coupling plate having an LSP coupling surface; a coupling plate The coupling assembly includes a support frame configured to operably support the EPCS coupling surface and the LSP coupling surface such that the EPCS coupling surface and the LSP coupling surface residing substantially in a common plane; and a support plenum having a surface and a measurement hole, the support plenum configured to support the CS substrate at a measurement hole at the measurement hole and the coupling assembly is operably supported at the measurement hole such that the EPCS coupling surface and the LSP coupling surface substantially reside in the measurement plane. In an example, the EPC subsystem and/or the LSP subsystem have an enhanced configuration as described below.

本揭露的另一實施例係關於一種量測一CS基板的第一應力特性及第二應力特性的方法,該CS基板具有一表面及一近表面波導,該方法包含:將該CS基板的該表面相對於一耦合稜鏡總成可操作地安置在一量測位置,該耦合稜鏡總成包含一EPCS耦合稜鏡及一LSP耦合稜鏡以分別界定相鄰的EPCS耦合界面及LSP耦合界面;使用該EPCS耦合界面執行該CS基板的一EPCS量測以獲得該等第一應力特性且使用該LSP耦合界面執行該CS基板的一LSP量測以獲得該等第二應力特性,而不從該量測位置移除該耦合稜鏡總成或該CS基板;及組合該等第一應力特性及該等第二應力特性以建立該CS基板的一全面應力表徵。在實例中,具有如下所述的強化組態的EPC子系統及/或LSP子系統可用於執行量測第一應力特性及第二應力特性的強化方法。Another embodiment of the present disclosure relates to a method of measuring a first stress characteristic and a second stress characteristic of a CS substrate having a surface and a near-surface waveguide, the method comprising: the CS substrate of the The surface is operably positioned in a measurement position relative to a coupling interface assembly comprising an EPCS coupling interface and an LSP coupling interface defining adjacent EPCS coupling interfaces and LSP coupling interfaces, respectively. performing an EPCS measurement of the CS substrate using the EPCS coupling interface to obtain the first stress characteristics and performing an LSP measurement of the CS substrate using the LSP coupling interface to obtain the second stress characteristics without from The measurement location removes either the coupling assembly or the CS substrate; and combining the first stress characteristics and the second stress characteristics to create a global stress characterization of the CS substrate. In an example, an EPC subsystem and/or an LSP subsystem having an enhanced configuration as described below may be used to perform an enhanced method of measuring a first stress characteristic and a second stress characteristic.

本揭露的另一實施例係關於一種用於表徵一CS基板中的應力的EPCS系統,該CS基板具有一表面及一近表面波導,該EPCS系統包含: a) 一EPCS光源系統,該EPCS光源系統包含: i) 一EPCS光源,該EPCS光源發射一多波長EPCS光束; ii) 一光學濾波器總成,該光學濾波器總成經組態以對該多波長EPCS光束進行依序濾波以形成具有不同波長的一系列經濾波的EPCS光束; iii) 一光導總成,該光導總成將該系列經濾波的EPCS光束作為導引光傳送至一聚焦光學系統,該聚焦光學系統經配置以接收該等所傳送的經濾波的EPCS光束且由此形成一系列經濾波且經聚焦的EPCS光束; b) 一EPCS耦合稜鏡,該EPCS耦合稜鏡與該CS基板的該表面形成一EPCS耦合表面並且接收該系列經濾波且經聚焦的EPCS光束並在該EPCS耦合表面處將其耦合至該近表面波導中及耦合出該近表面波導以形成一系列經濾波且經反射的EPCS光束,該系列經濾波且經反射的EPCS光束分別包含該近表面波導針對對應的經濾波且經反射的EPCS光束的模式頻譜;及 c) 一EPCS偵測器系統,該EPCS偵測器系統包含: i) 一可切換偏光濾波器,該可切換偏光濾波器可操作地連接至一偏光控制器以依序執行該系列經濾波且經反射的EPCS光束的橫向磁性(transverse magnetic,TM)及橫向電(transverse electric,TE)偏光濾波以形成經TM及TE濾波的且經反射的EPCS光束,該等經TM及TE濾波的且經反射的EPCS光束分別包含該近表面波導的TM及TE模式頻譜;及 ii) 一EPCS數位偵測器,該EPCS數位偵測器經組態以依序偵測該系列經TM及TE濾波的且經反射的EPCS光束以依序捕獲該近表面波導在不同濾波器波長下的相應TM及TE模式頻譜的TM及TE影像。 Another embodiment of the present disclosure relates to an EPCS system for characterizing stress in a CS substrate having a surface and a near-surface waveguide, the EPCS system comprising: a) An EPCS light source system, the EPCS light source system includes: i) an EPCS light source emitting a multi-wavelength EPCS light beam; ii) an optical filter assembly configured to sequentially filter the multi-wavelength EPCS beam to form a series of filtered EPCS beams having different wavelengths; iii) a light guide assembly that transmits the series of filtered EPCS beams as guide light to a focusing optics configured to receive the transmitted filtered EPCS beams and is guided by This forms a series of filtered and focused EPCS beams; b) an EPCS coupling plate forming an EPCS coupling surface with the surface of the CS substrate and receiving the series of filtered and focused EPCS beams and coupling them to the near into and out of the surface waveguide to form a series of filtered and reflected EPCS beams, the series of filtered and reflected EPCS beams each comprising a pair of corresponding filtered and reflected EPCS beams of the near-surface waveguide The pattern spectrum of ; and c) An EPCS detector system comprising: i) a switchable polarization filter operatively connected to a polarization controller to sequentially perform the transverse magnetic (TM) and transverse electrical polarization of the series of filtered and reflected EPCS beams. (transverse electric, TE) polarization filtering to form TM and TE filtered and reflected EPCS beams, the TM and TE filtered and reflected EPCS beams comprising the TM and TE mode spectra of the near-surface waveguide, respectively; and ii) an EPCS digital detector configured to sequentially detect the series of TM and TE filtered and reflected EPCS beams to sequentially capture the near surface waveguide at different filter wavelengths TM and TE images of the corresponding TM and TE mode spectra below.

本揭露的另一實施例係關於在上文及本文中所描述的EPCS系統,其中該光學濾波器總成包含一光學濾波器輪。Another embodiment of the present disclosure relates to the EPCS system described above and herein, wherein the optical filter assembly includes an optical filter wheel.

本揭露的另一實施例係關於如上文所描述及本文中所揭示的EPCS系統,其中該光學濾波器輪包含複數個光學濾波器總成,該等光學濾波器總成各自包含一光學濾波器及一校正構件,該校正構件經組態以提供給定濾波器波長下的聚焦校正。Another embodiment of the present disclosure relates to the EPCS system as described above and disclosed herein, wherein the optical filter wheel comprises a plurality of optical filter assemblies each comprising an optical filter and a correction member configured to provide focus correction at a given filter wavelength.

本揭露的另一實施例係關於如上文所描述及本文中所揭示的EPCS系統,其中該EPCS光源包含至少一個寬頻光源元件。Another embodiment of the present disclosure relates to the EPCS system as described above and disclosed herein, wherein the EPCS light source comprises at least one broadband light source element.

本揭露的另一實施例係關於如上文所描述及本文中所揭示的EPCS系統,其中該EPCS光源包含多個光源元件,該等光源元件分別同時或依序發射具有不同波長的不同EPCS光束。Another embodiment of the present disclosure relates to the EPCS system as described above and disclosed herein, wherein the EPCS light source comprises a plurality of light source elements, and the light source elements respectively emit different EPCS light beams with different wavelengths simultaneously or sequentially.

本揭露的另一實施例係關於如上文所描述及本文中所揭示的EPCS系統,其中具有不同波長的該等EPCS光束係使用一或多個光選擇性元件組合成沿著一共同軸線行進以形成多波長EPCS光束。Another embodiment of the present disclosure relates to an EPCS system as described above and disclosed herein, wherein the EPCS beams of different wavelengths are combined to travel along a common axis using one or more photoselective elements to Form multi-wavelength EPCS beams.

本揭露的另一實施例係關於如上文所描述及本文中所揭示的EPCS系統,其中該一或多個光選擇性元件包含一或多個雙色鏡。Another embodiment of the present disclosure relates to an EPCS system as described above and disclosed herein, wherein the one or more photoselective elements comprise one or more dichroic mirrors.

本揭露的另一實施例係關於如上文所描述及本文中所揭示的EPCS系統,其進一步包含多個校正透鏡,該等校正透鏡分別相對於多個光源元件可操作地安置以促進將光束光學耦合至光導的輸入端中。Another embodiment of the present disclosure relates to the EPCS system as described above and disclosed herein, further comprising a plurality of corrective lenses operably positioned relative to a plurality of light source elements respectively to facilitate optical beam alignment coupled into the input end of the light guide.

本揭露的另一實施例係關於如上文所描述及本文中所揭示的EPCS系統,其進一步包含一光漫射體,該光漫射體配置成鄰近光導的輸入端。Another embodiment of the present disclosure relates to the EPCS system as described above and disclosed herein, further comprising a light diffuser disposed adjacent to the input end of the light guide.

本揭露的另一實施例係關於如上文所描述及本文中所揭示的EPCS系統,其中該光導為充液式的。Another embodiment of the present disclosure relates to the EPCS system as described above and disclosed herein, wherein the light guide is liquid filled.

本揭露的另一實施例係關於如上文所描述及本文中所揭示的EPCS系統,其中該CS基板包含玻璃材料、玻璃陶瓷材料或結晶材料,且其中該CS基板的近表面波導由一近表面尖峰區及一深部區界定。Another embodiment of the present disclosure relates to an EPCS system as described above and disclosed herein, wherein the CS substrate comprises glass material, glass-ceramic material, or crystalline material, and wherein the near-surface waveguide of the CS substrate is formed by a near-surface A peak area and a deep area are defined.

本揭露的另一實施例係關於如上文所描述及本文中所揭示的EPCS系統,其中該光導總成包含一具有一輸出端的光導,該EPCS偵測器系統包含一入射光瞳,且其中該光導的輸出端由聚焦光學系統成像至該入射光瞳上。Another embodiment of the present disclosure relates to the EPCS system as described above and disclosed herein, wherein the light guide assembly comprises a light guide having an output end, the EPCS detector system comprises an entrance pupil, and wherein the The output end of the light guide is imaged onto this entrance pupil by focusing optics.

本揭露的另一實施例係關於一種用於表徵一CS基板中的應力的混合系統,該CS基板具有一頂部表面及一近表面波導,該混合系統包含如上文所描述及本文中所揭示的EPCS系統:一散射光偏光測定法(scattered light polarimetry,LSP)子系統,該LSP子系統包含一LSP光源系統、一光學補償器及一LSP偵測器系統,該LSP偵測器系統經由一具有一LSP耦合表面的LSP耦合稜鏡與該光學補償器光學連通;一耦合稜鏡總成,該耦合稜鏡總成包含一稜鏡支撐框,該稜鏡支撐框經組態以可操作地支撐該EPCS耦合稜鏡及該LSP耦合稜鏡以使得該EPCS耦合表面及該LSP耦合表面大體上駐留在一共同平面中;及一支撐充氣部,該支撐充氣部具有一表面及一量測孔,該支撐充氣部經組態以將該CS基板支撐在該量測孔處的一量測平面處,且將該耦合稜鏡總成可操作地支撐在該量測孔處以使得該EPCS耦合表面及該LSP耦合表面大體上駐留在該量測平面中。Another embodiment of the present disclosure relates to a hybrid system for characterizing stress in a CS substrate having a top surface and a near-surface waveguide, the hybrid system comprising as described above and disclosed herein EPCS system: a scattered light polarimetry (scattered light polarimetry, LSP) subsystem, the LSP subsystem includes an LSP light source system, an optical compensator and an LSP detector system, the LSP detector system passes through a an LSP coupling plate of an LSP coupling surface in optical communication with the optical compensator; a coupling plate assembly comprising a plate support frame configured to operably support the EPCS coupling surface and the LSP coupling surface such that the EPCS coupling surface and the LSP coupling surface reside substantially in a common plane; and a support plenum having a surface and a measurement hole, The support plenum is configured to support the CS substrate at a measurement plane at the measurement hole, and to operably support the coupling plate assembly at the measurement hole such that the EPCS coupling surface and The LSP coupling surface resides substantially in the measurement plane.

本揭露的另一實施例係關於用於表徵一CS基板中的應力的如上文所描述及本文中所揭示的EPCS系統,該CS基板具有一表面及一近表面波導,該EPCS系統包含: a) 一EPCS光源系統,該EPCS光源系統包含: i) 一EPCS光源,該EPCS光源發射一多波長EPCS光束; ii) 一光學濾波器總成,該光學濾波器總成經組態以對該多波長EPCS光束進行依序濾波以形成具有不同濾波器波長的一系列經濾波的EPCS光束; iii) 一光導總成,該光導總成經組態以將該系列經濾波的EPCS光束作為導引光傳送至一聚焦光學系統,該聚焦光學系統經配置以接收該等所傳送的經濾波的EPCS光束且由此形成一系列經濾波且經聚焦的EPCS光束; b) 一EPCS耦合稜鏡,該EPCS耦合稜鏡與該CS基板的該表面形成一EPCS耦合表面並且接收該經聚焦的經依序濾波的EPCS光束並在該EPCS耦合表面處將其耦合出該近表面波導以形成經反射且經依序濾波的EPCS光束,該經反射且經依序濾波的EPCS光束包含該近表面波導針對至少第一及第二濾波器波長的至少第一及第二模式頻譜;及 c) 一EPCS偵測器系統,該EPCS偵測器系統包含: i) 至少一個可切換偏光濾波器,該至少一個可切換偏光濾波器經組態以依序執行該經反射且經依序濾波的EPCS光束的橫向磁性(transverse magnetic,TM)及橫向電(transverse electric,TE)偏光濾波以形成至少第一及第二經TM及TE反射且經依序濾波的EPCS光束,該等至少第一及第二經TM及TE反射且經依序濾波的EPCS光束分別包含該近表面波導在該等至少第一及第二波長下的第一及第二TM及TE模式頻譜;及 ii) 至少第一及第二EPCS數位偵測器,該等至少第一及第二EPCS數位偵測器經組態以分別偵測該等至少第一及第二經TM及TE反射且經依序濾波的EPCS光束以捕獲該近表面波導的該等第一及TM及TE模式頻譜的相應的至少第一及第二TM及TE影像。 Another embodiment of the present disclosure relates to an EPCS system as described above and disclosed herein for characterizing stress in a CS substrate having a surface and a near-surface waveguide, the EPCS system comprising: a) An EPCS light source system, the EPCS light source system includes: i) an EPCS light source emitting a multi-wavelength EPCS light beam; ii) an optical filter assembly configured to sequentially filter the multi-wavelength EPCS beam to form a series of filtered EPCS beams having different filter wavelengths; iii) a light guide assembly configured to deliver the series of filtered EPCS beams as guide light to a focusing optics configured to receive the transmitted filtered EPCS beams EPCS beams and thereby form a series of filtered and focused EPCS beams; b) an EPCS coupling plate forming an EPCS coupling surface with the surface of the CS substrate and receiving the focused sequentially filtered EPCS beam and coupling it out of the EPCS coupling surface at the EPCS coupling surface a near-surface waveguide to form a reflected and sequentially filtered EPCS beam comprising at least first and second modes of the near-surface waveguide for at least first and second filter wavelengths spectrum; and c) An EPCS detector system comprising: i) at least one switchable polarizing filter configured to sequentially perform transverse magnetic (TM) and transverse electrical (TM) of the reflected and sequentially filtered EPCS beam. electric, TE) polarization filtering to form at least first and second TM- and TE-reflected and sequentially-filtered EPCS beams, the at least first and second TM- and TE-reflected and sequentially-filtered EPCS beams, respectively comprising first and second TM and TE mode spectra of the near-surface waveguide at the at least first and second wavelengths; and ii) at least first and second EPCS digital detectors configured to detect the at least first and second TM and TE reflected, respectively, and in accordance with sequentially filtered EPCS beam to capture respective at least first and second TM and TE images of the first and TM and TE mode spectra of the near-surface waveguide.

本揭露的另一實施例係關於如上文所描述及本文中所揭示的EPCS系統,其中該等至少第一及第二EPCS數位偵測器沿著相應的至少第一及第二偵測器軸線駐留,且其中該至少一個可切換偏光濾波器包括分別沿著該等至少第一及第二偵測器軸線配置且在該等第一及第二EPCS數位偵測器中之對應一者上游的至少第一及第二可切換偏光濾波器。Another embodiment of the present disclosure relates to an EPCS system as described above and disclosed herein, wherein the at least first and second EPCS digital detectors are along respective at least first and second detector axes resident, and wherein the at least one switchable polarizing filter comprises a sensor respectively disposed along the at least first and second detector axes and upstream of a corresponding one of the first and second EPCS digital detectors At least first and second switchable polarizing filters.

本揭露的另一實施例係關於如上文所描述及本文中所揭示的EPCS系統,其中該CS基板包含玻璃材料、玻璃陶瓷材料或結晶材料,且其中該CS基板的近表面波導由一近表面尖峰區及一深部區界定。Another embodiment of the present disclosure relates to an EPCS system as described above and disclosed herein, wherein the CS substrate comprises glass material, glass-ceramic material, or crystalline material, and wherein the near-surface waveguide of the CS substrate is formed by a near-surface A peak area and a deep area are defined.

本揭露的另一實施例係關於如上文所描述及本文中所揭示的EPCS系統,其中該光導總成包含一具有一輸出端的光導,該EPCS偵測器系統包含一入射光瞳,且其中該光導的輸出端被成像至該入射光瞳上。Another embodiment of the present disclosure relates to the EPCS system as described above and disclosed herein, wherein the light guide assembly comprises a light guide having an output end, the EPCS detector system comprises an entrance pupil, and wherein the The output end of the light guide is imaged onto this entrance pupil.

本揭露的一實施例係關於一種用於表徵一CS基板中的應力的系統,該CS基板具有一頂部表面及一近表面波導,該系統包含:在上文所描述及本文中所揭示的EPCS系統;一散射光偏光測定法(scattered light polarimetry,LSP)子系統,該LSP子系統包含一LSP光源系統、一光學補償器及一LSP偵測器系統,該LSP偵測器系統經由一具有一LSP耦合表面的LSP耦合稜鏡與該光學補償器光學連通;一耦合稜鏡總成,該耦合稜鏡總成包含一稜鏡支撐框,該稜鏡支撐框經組態以可操作地支撐該EPCS耦合稜鏡及該LSP耦合稜鏡以使得該EPCS耦合表面及該LSP耦合表面大體上駐留在一共同平面中;及一支撐充氣部,該支撐充氣部具有一表面及一量測孔,該支撐充氣部經組態以將該CS基板支撐在該量測孔處的一量測平面處,且將該耦合稜鏡總成可操作地支撐在該量測孔處以使得該EPCS耦合表面及該LSP耦合表面大體上駐留在該量測平面中。An embodiment of the present disclosure relates to a system for characterizing stress in a CS substrate having a top surface and a near-surface waveguide, the system comprising: the EPCS described above and disclosed herein System; a scattered light polarimetry (scattered light polarimetry, LSP) subsystem, the LSP subsystem includes an LSP light source system, an optical compensator and an LSP detector system, the LSP detector system passes through a The LSP coupling plate of the LSP coupling surface is in optical communication with the optical compensator; a coupling plate assembly including a plate support frame configured to operatively support the optical compensator the EPCS coupling surface and the LSP coupling surface such that the EPCS coupling surface and the LSP coupling surface reside substantially in a common plane; and a support plenum having a surface and a measurement hole, the The support plenum is configured to support the CS substrate at a measurement plane at the measurement hole, and to operably support the coupling plate assembly at the measurement hole such that the EPCS coupling surface and the The LSP coupling surface substantially resides in this measurement plane.

本揭露的另一實施例係關於用於表徵一CS基板中的應力的如上文所描述及本文中所揭示的EPCS系統,該CS基板具有一表面及一近表面波導,該EPCS系統包含: a) 一EPCS光源系統,該EPCS光源系統包含: i) 一EPCS光源,該EPCS光源發射一包含多個波長的多波長EPCS光束; ii) 一光導總成,該光導總成將來自該EPCS光源的該多波長EPCS光束傳送至一聚焦光學系統,該聚焦光學系統經配置以接收該多波長EPCS光束且形成一經聚焦的多波長EPCS光束; b) 一EPCS耦合稜鏡,該EPCS耦合稜鏡與該CS基板的該表面形成一EPCS耦合表面並且接收該多波長EPCS光束並在該EPCS耦合表面處將其耦合至該近表面波導中及耦合出該近表面波導以形成一經反射的多波長EPCS光束,該經反射的多波長EPCS光束包含該近表面波導針對該多波長EPCS光束的對應多個波長的模式頻譜;及 c) 一EPCS偵測器系統,該EPCS偵測器系統包含: i) 一可切換偏光濾波器,該可切換偏光濾波器經可操作地安置以接收該經反射的多波長EPCS光束且依序形成一經橫向磁性偏光的(transverse magnetic polarized,TM)多波長EPCS光束及一經橫向電偏光的(transverse electric polarized,TE)多波長EPCS光束。 ii) 一光學濾波器總成,該光學濾波器總成經可操作地安置以在兩個或兩個以上濾波器波長下對該TM及該TE多波長EPCS光束進行依序濾波以形成兩個或兩個以上經依序濾波的TM及TE EPCS光束,該等兩個或兩個以上經依序濾波的TM及TE EPCS光束分別包含該等兩個或兩個以上濾波器波長的TM及TE模式頻譜; iii) 一EPCS數位偵測器,該EPCS數位偵測器經組態以依序偵測該等經依序濾波的TM及TE EPCS光束以依序捕獲該近表面波導在該等兩個或兩個以上濾波器波長下的相應TM及TE模式頻譜的TM及TE影像。 Another embodiment of the present disclosure relates to an EPCS system as described above and disclosed herein for characterizing stress in a CS substrate having a surface and a near-surface waveguide, the EPCS system comprising: a) An EPCS light source system, the EPCS light source system includes: i) an EPCS light source emitting a multi-wavelength EPCS light beam comprising a plurality of wavelengths; ii) a light guide assembly that transmits the multi-wavelength EPCS beam from the EPCS light source to a focusing optics configured to receive the multi-wavelength EPCS beam and form a focused multi-wavelength EPCS beam; b) an EPCS coupling plate that forms an EPCS coupling surface with the surface of the CS substrate and receives the multi-wavelength EPCS beam and couples it into the near-surface waveguide and couples it at the EPCS coupling surface exiting the near-surface waveguide to form a reflected multi-wavelength EPCS beam comprising a mode spectrum corresponding to a plurality of wavelengths of the near-surface waveguide for the multi-wavelength EPCS beam; and c) An EPCS detector system comprising: i) a switchable polarization filter operably positioned to receive the reflected multi-wavelength EPCS beam and in turn form a transverse magnetic polarized (TM) multi-wavelength EPCS beam and a transverse electric polarized (TE) multi-wavelength EPCS light beam. ii) an optical filter assembly operatively positioned to sequentially filter the TM and the TE multi-wavelength EPCS beams at two or more filter wavelengths to form two or two or more sequentially filtered TM and TE EPCS beams comprising, respectively, TM and TE at the two or more filter wavelengths mode spectrum; iii) an EPCS digital detector configured to sequentially detect the sequentially filtered TM and TE EPCS beams to sequentially capture the near surface waveguide at the two or both TM and TE images of the corresponding TM and TE mode spectra at more than one filter wavelength.

本揭露的另一實施例係關於如上文所描述及本文中所揭示的EPCS系統,其中該CS基板包含玻璃材料、玻璃陶瓷材料或結晶材料,且其中該CS基板的近表面波導由一近表面尖峰區及一深部區界定。Another embodiment of the present disclosure relates to an EPCS system as described above and disclosed herein, wherein the CS substrate comprises glass material, glass-ceramic material, or crystalline material, and wherein the near-surface waveguide of the CS substrate is formed by a near-surface A peak area and a deep area are defined.

本揭露的另一實施例係關於如上文所描述及本文中所揭示的EPCS系統,其中該光導總成包含一具有一輸出端的光導,該EPCS偵測器系統包含一入射光瞳,且其中該光導的輸出端由聚焦光學系統成像至該入射光瞳上。Another embodiment of the present disclosure relates to the EPCS system as described above and disclosed herein, wherein the light guide assembly comprises a light guide having an output end, the EPCS detector system comprises an entrance pupil, and wherein the The output end of the light guide is imaged onto this entrance pupil by focusing optics.

本揭露的一實施例係關於一種用於表徵一CS基板中的應力的系統,該CS基板具有一頂部表面及一近表面波導,該系統包含:如上文所描述及本文中所揭示的EPCS系統;一散射光偏光測定法(scattered light polarimetry,LSP)子系統,該LSP子系統包含一LSP光源系統、一光學補償器及一LSP偵測器系統,該LSP偵測器系統經由一具有一LSP耦合表面的LSP耦合稜鏡與該光學補償器光學連通;一耦合稜鏡總成,該耦合稜鏡總成包含一稜鏡支撐框,該稜鏡支撐框經組態以可操作地支撐該EPCS耦合稜鏡及該LSP耦合稜鏡以使得該EPCS耦合表面及該LSP耦合表面大體上駐留在一共同平面中;及一支撐充氣部,該支撐充氣部具有一表面及一量測孔,該支撐充氣部經組態以將該CS基板支撐在該量測孔處的一量測平面處,且將該耦合稜鏡總成可操作地支撐在該量測孔處以使得該EPCS耦合表面及該LSP耦合表面大體上駐留在該量測平面中。An embodiment of the present disclosure relates to a system for characterizing stress in a CS substrate having a top surface and a near-surface waveguide, the system comprising: an EPCS system as described above and disclosed herein ; a scattered light polarimetry (scattered light polarimetry, LSP) subsystem, the LSP subsystem includes a LSP light source system, an optical compensator and a LSP detector system, the LSP detector system through a LSP with a an LSP coupling plate of a coupling surface in optical communication with the optical compensator; a coupling plate assembly including a plate support frame configured to operably support the EPCS coupling the inflatable and the LSP coupling in such that the EPCS coupling surface and the LSP coupling surface generally reside in a common plane; and a support inflatable having a surface and a measurement hole, the support The plenum is configured to support the CS substrate at a measurement plane at the measurement hole, and to operably support the coupling plate assembly at the measurement hole such that the EPCS coupling surface and the LSP The coupling surface substantially resides in this measurement plane.

本揭露的另一實施例係關於一種執行漸逝稜鏡耦合光譜術以表徵一CS基板中的應力的方法,該CS基板具有一表面及一近表面波導,該方法包含: a) 形成一具有多個波長的多波長EPCS光束; b) 對該EPCS多波長光束進行依序濾波以形成一系列經濾波的EPCS光束,該系列經濾波的EPCS光束各自具有多個波長中之一不同波長; c) 將該系列EPCS經濾波的光束穿過一光導傳送至一聚焦光學系統以形成一系列經聚焦的EPCS經濾波的光束; d) 將該系列經聚焦的經濾波的EPCS光束引導至一EPCS耦合稜鏡,該EPCS耦合稜鏡與該CS基板的該表面形成一EPCS耦合表面並且接收該系列經濾波的EPCS光束並在該EPCS耦合表面處將其耦合至該近表面波導中及耦合出該近表面波導以形成一系列經反射且經濾波的EPCS光束,該系列經反射且經濾波的EPCS光束分別包含該近表面波導在多個波長中之一者下的模式頻譜; e) 對該等經反射且經濾波的EPCS光束中之每一者進行依序偏光以針對每一經反射且經濾波的EPCS光束形成一經橫向磁性(transverse magnetic,TM)濾波且經反射的EPCS光束及一經橫向電(transverse electric,TE)濾波且經反射的EPCS光束;及 f) 依序數位偵測該經TM濾波且經反射的EPCS光束及該經TE濾波且經反射的EPCS光束以依序捕獲該近表面波導針對不同的多個波長的相應TM及TE模式頻譜的TM及TE影像。 Another embodiment of the present disclosure relates to a method of performing evanescent coupling spectroscopy to characterize stress in a CS substrate having a surface and a near-surface waveguide, the method comprising: a) forming a multi-wavelength EPCS beam having multiple wavelengths; b) sequentially filtering the EPCS multi-wavelength beam to form a series of filtered EPCS beams, the series of filtered EPCS beams each having a different wavelength of one of the plurality of wavelengths; c) transmitting the series of EPCS filtered beams through a light guide to a focusing optics to form a series of focused EPCS filtered beams; d) directing the series of focused filtered EPCS beams to an EPCS coupling plate which forms an EPCS coupling surface with the surface of the CS substrate and which receives the series of filtered EPCS beams and at the coupling it into and out of the near-surface waveguide at the EPCS coupling surface to form a series of reflected and filtered EPCS beams comprising the near-surface waveguide respectively at a mode spectrum at one of the plurality of wavelengths; e) sequentially polarizing each of the reflected and filtered EPCS beams to form a transverse magnetic (TM) filtered and reflected EPCS beam for each reflected and filtered EPCS beam and a transverse electric (TE) filtered and reflected EPCS beam; and f) sequentially digitally detecting the TM-filtered and reflected EPCS beam and the TE-filtered and reflected EPCS beam to sequentially capture the corresponding TM and TE mode spectra of the near-surface waveguide for different multiple wavelengths TM and TE images.

本揭露的另一實施例係關於如上文所描述及本文中所揭示的方法,且進一步包含:處理相應TM及TE模式頻譜的依序捕獲的TM及TE影像以表徵該CS基板的至少一個應力相關性質。Another embodiment of the present disclosure relates to the method as described above and disclosed herein, and further comprising: processing sequentially captured TM and TE images of corresponding TM and TE mode spectra to characterize at least one stress of the CS substrate relevant nature.

本揭露的另一實施例係關於如上文所描述及本文中所揭示的方法,其中該依序濾波包含:使該多波長光束穿過由一過濾器輪支撐的光學濾波器總成。Another embodiment of the present disclosure relates to the method as described above and disclosed herein, wherein the sequential filtering includes passing the multi-wavelength light beam through an optical filter assembly supported by a filter wheel.

本揭露的另一實施例係關於如上文所描述及本文中所揭示的方法,其中每一光學濾波器總成包含一光學濾波器及一校正構件,該校正構件經組態以校正波長相依性聚焦誤差。Another embodiment of the present disclosure relates to the method as described above and disclosed herein, wherein each optical filter assembly includes an optical filter and a correction member configured to correct for wavelength dependence focus error.

本揭露的另一實施例係關於如上文所描述及本文中所揭示的方法,其中該依序偏光包含:使該等經反射且經濾波的EPCS光束穿過一帶磁性的偏光晶體,該偏光晶體可操作地連接至一偏光控制器。Another embodiment of the present disclosure relates to the method as described above and disclosed herein, wherein the sequentially polarizing comprises: passing the reflected and filtered EPCS beams through a magnetic polarizing crystal, the polarizing crystal Operably connected to a polarization controller.

本揭露的另一實施例係關於如上文所描述及本文中所揭示的方法,其中該CS基板包含玻璃材料、玻璃陶瓷材料或結晶材料,且其中該CS基板的近表面波導由一近表面尖峰區及一深部區界定。Another embodiment of the present disclosure relates to the method as described above and disclosed herein, wherein the CS substrate comprises glass material, glass-ceramic material, or crystalline material, and wherein the near-surface waveguide of the CS substrate is formed by a near-surface spike zone and a deep zone are defined.

本揭露的另一實施例係關於如上文所描述及本文中所揭示的方法,其中依序數位偵測該等經TM及TE濾波的且經反射的EPCS光束係使用一單個EPCS數位偵測器來執行。Another embodiment of the present disclosure relates to the method as described above and disclosed herein, wherein the sequential digital detection of the TM and TE filtered and reflected EPCS beams uses a single EPCS digital detector to execute.

本揭露的另一實施例係關於如上文所描述及本文中所揭示的方法,其中依序數位偵測該等經TM及TE濾波的且經反射的EPCS光束係使用多個EPCS數位偵測器來執行,該等EPCS數位偵測器使用雙色鏡在空間上分離。Another embodiment of the present disclosure relates to the method as described above and disclosed herein, wherein the sequential digital detection of the TM and TE filtered and reflected EPCS beams uses a plurality of EPCS digital detectors To perform, the EPCS digital detectors are spatially separated using dichroic mirrors.

本揭露的另一實施例係關於如上文所描述及本文中所揭示的方法,其中該光導具有一輸出端,該系列經反射的經濾波的EPCS光束係由一EPCS偵測器系統接收並處理,該EPCS偵測器系統具有一入射光瞳,且其中該光導的輸出端由聚焦光學系統成像至該入射光瞳上。Another embodiment of the present disclosure relates to the method as described above and disclosed herein, wherein the light guide has an output, the series of reflected filtered EPCS light beams are received and processed by an EPCS detector system , the EPCS detector system has an entrance pupil, and wherein the output end of the light guide is imaged onto the entrance pupil by a focusing optical system.

本揭露的另一實施例係關於一種用於表徵一CS基板中的應力的光散射偏光測定法(light-scattering polarimetry,LSP)系統,該CS基板具有一主體、一表面及一形成於該主體內的近表面波導,該LSP系統包含: a) 一LSP光源系統,該LSP光源系統沿著一第一系統軸線按次序包含: i) 一雷射二極體,該雷射二極體發射一LSP光束,該LSP光束具有至少1微瓦的功率且以405奈米的一波長為中心; ii) 一光閘系統,該光閘系統經配置以週期性地阻擋該LSP光束; iii) 一可旋轉半波片; iv) 一第一固定偏光器; v) 一第一聚焦透鏡; vi) 一光漫射體; vii) 一第二聚焦透鏡 b) 一光學補償器,該光學補償器配置在該LPS光源下游且經組態以對該LSP光束給予一時變偏光,該光學補償器沿著該系統軸線按次序包含: i) 一偏光分束器,該偏光分束器經配置以接收來自該LSP光源的該LSP光束且沿著該第一系統軸線傳輸該LSP光束的一第一部分且沿著一光譜儀軸線引導該LSP光束的一第二部分; ii) 一光譜儀,該光譜儀沿著該光譜儀軸線配置且經配置以接收該LSP光束的該第二部分並對其進行光譜處理; iii) 一第二固定偏光器; iv) 一可變偏光器,該可變偏光器對該LSP光束給予該時變偏光以形成一經時變偏光的LSP光束; c) 一軸向可移動聚焦透鏡,該軸向可移動聚焦透鏡配置在該光學補償器下游且經組態以接收並聚焦該經時變偏光的LSP光束形成一經聚焦的經時變偏光的LSP光束; d) 一LSP耦合稜鏡,該LSP耦合稜鏡與該CS基板的表面交界以形成一LSP耦合界面,其中該經聚焦的經時變偏光的LSP光束聚焦於該LSP耦合界面處以從該CS基板的該主體內的應力誘發特徵產生散射光; e) 一LSP偵測器系統,該LSP偵測器系統配置在該LSP耦合稜鏡下游且經配置以接收該散射光,該LSP偵測器系統包含: i) 一LSP數位偵測器;及 ii) 一收集光學系統,該收集光學系統收集該散射光並將其引導至該LSP數位偵測器以在該數位偵測器處形成一LSP影像。 Another embodiment of the present disclosure relates to a light-scattering polarimetry (LSP) system for characterizing stress in a CS substrate having a body, a surface, and a surface formed on the body. In vivo near-surface waveguide, the LSP system consists of: a) an LSP light source system comprising in sequence along a first system axis: i) a laser diode emitting an LSP beam having a power of at least 1 microwatt and centered on a wavelength of 405 nm; ii) a shutter system configured to periodically block the LSP beam; iii) a rotatable half-wave plate; iv) a first fixed polarizer; v) a first focusing lens; vi) a light diffuser; vii) a second focusing lens b) an optical compensator disposed downstream of the LPS light source and configured to impart a time-varying polarization to the LSP beam, the optical compensator comprising in sequence along the system axis: i) a polarizing beam splitter configured to receive the LSP beam from the LSP light source and transmit a first portion of the LSP beam along the first system axis and direct the LSP along a spectrometer axis a second part of the light beam; ii) a spectrometer arranged along the spectrometer axis and configured to receive and spectroscopically process the second portion of the LSP light beam; iii) a second fixed polarizer; iv) a variable polarizer that imparts the time-varying polarization to the LSP beam to form a time-varyingly polarized LSP beam; c) an axially movable focusing lens disposed downstream of the optical compensator and configured to receive and focus the time-varyingly polarized LSP beam to form a focused time-varyingly polarized LSP beam; d) an LSP coupling interface that interfaces with the surface of the CS substrate to form an LSP coupling interface, wherein the focused time-varyingly polarized LSP beam is focused at the LSP coupling interface to extract from the CS substrate Stress-inducing features within the body generate scattered light; e) an LSP detector system disposed downstream of the LSP coupling plate and configured to receive the scattered light, the LSP detector system comprising: i) an LSP digital detector; and ii) a collection optics system that collects the scattered light and directs it to the LSP digital detector to form an LSP image at the digital detector.

本揭露的另一實施例係關於如上文所描述及如本文中所揭示的LSP系統,其中該可變偏光器包含一液晶可變延遲片(liquid crystal variable retarder,LCVR),該LCVR可操作地連接至一偏光控制器。Another embodiment of the present disclosure relates to the LSP system as described above and disclosed herein, wherein the variable polarizer comprises a liquid crystal variable retarder (LCVR), the LCVR operable to Connect to a polarizer controller.

本揭露的另一實施例係關於如上文所描述及如本文中所揭示的LSP系統,其中該LCVR與一溫度控制器可操作地連通,該溫度控制器將該LCVR維持在一所選溫度範圍內。Another embodiment of the present disclosure relates to the LSP system as described above and disclosed herein, wherein the LCVR is in operative communication with a temperature controller that maintains the LCVR in a selected temperature range Inside.

本揭露的另一實施例係關於如上文所描述及如本文中所揭示的LSP系統,其中該所選溫度範圍為35℃與40℃之間。Another embodiment of the present disclosure relates to the LSP system as described above and disclosed herein, wherein the selected temperature range is between 35°C and 40°C.

本揭露的另一實施例係關於如上文所描述及如本文中所揭示的LSP系統,其中該軸向可移動聚焦透鏡包含一由一透鏡支撐件支撐的透鏡元件且其中該透鏡支撐件機械附接至一線性馬達。Another embodiment of the present disclosure relates to the LSP system as described above and disclosed herein, wherein the axially movable focusing lens comprises a lens element supported by a lens support and wherein the lens support is mechanically attached connected to a linear motor.

本揭露的另一實施例係關於如上文所描述及如本文中所揭示的LSP系統,其中該LSP光束具有至少10微瓦的功率。Another embodiment of the present disclosure relates to the LSP system as described above and disclosed herein, wherein the LSP beam has a power of at least 10 microwatts.

本揭露的另一實施例係關於如上文所描述及如本文中所揭示的LSP系統,其中該LSP光束具有至少50微瓦的功率。Another embodiment of the present disclosure relates to the LSP system as described above and disclosed herein, wherein the LSP beam has a power of at least 50 microwatts.

本揭露的一實施例係關於一種用於表徵一CS基板中的應力的系統,該CS基板具有一頂部表面及一近表面波導,該系統包含:如上文所描述及如本文中所揭示的LSP;一漸逝稜鏡耦合光譜術(evanescent prism coupling spectroscopy,EPCS)子系統,該EPCS子系統包含經由一具有一EPCS耦合表面的EPCS耦合稜鏡來光學連通的一EPCS光源系統及一EPCS偵測器系統;一耦合稜鏡總成,該耦合稜鏡總成包含一稜鏡支撐框,該稜鏡支撐框經組態以可操作地支撐該EPCS耦合稜鏡及該LSP耦合稜鏡以使得該EPCS耦合表面及該LSP耦合表面大體上駐留在一共同平面中;及一支撐充氣部,該支撐充氣部具有一表面及一量測孔,該支撐充氣部經組態以將該CS基板支撐在該量測孔處的一量測平面處,且將該耦合稜鏡總成可操作地支撐在該量測孔處以使得該EPCS耦合表面及該LSP耦合表面大體上駐留在該量測平面中。An embodiment of the present disclosure relates to a system for characterizing stress in a CS substrate having a top surface and a near-surface waveguide, the system comprising: LSP as described above and disclosed herein an evanescent prism coupling spectroscopy (EPCS) subsystem comprising an EPCS light source system and an EPCS detector in optical communication via an EPCS coupling prism having an EPCS coupling surface a coupling system; a coupling system assembly comprising a system support frame configured to operably support the EPCS coupling system and the LSP coupling system such that the the EPCS coupling surface and the LSP coupling surface reside substantially in a common plane; and a support plenum having a surface and a measurement hole configured to support the CS substrate on A measurement plane at the measurement hole, and the coupling assembly is operably supported at the measurement hole such that the EPCS coupling surface and the LSP coupling surface reside substantially in the measurement plane.

本揭露的另一實施例係一種執行光散射偏光測定法(light scattering polarimetry,LSP)以表徵一CS基板中的應力的方法,該CS基板具有一主體、一表面及一近表面波導,該近表面波導在該主體內形成應力相關特徵,該方法包含:從一雷射二極體產生一光束,該雷射二極體具有至少1微瓦的輸出功率及405 nm的中心波長;將該光束的一第一部分引導至一光譜儀以量測該光束的波長及該光束中的功率量;使用一溫控式液晶可變延遲片(liquid crystal variable retarder,LCVR)對該光束的一第二部分給予一時變偏光以形成一經時變偏光的光束;將該經時變偏光的光束聚焦至由一與該CS基板的該表面交界的耦合稜鏡形成的一耦合表面上以從該CS基板的該主體內的該等應力相關特徵形成散射光;及將該散射光引導至一數位偵測器以在該數位偵測器處捕獲一LSP影像。Another embodiment of the present disclosure is a method of performing light scattering polarimetry (LSP) to characterize stress in a CS substrate having a body, a surface, and a near-surface waveguide, the near-surface waveguide A surface waveguide forming a stress-dependent feature in the body, the method comprising: generating a light beam from a laser diode having an output power of at least 1 microwatt and a central wavelength of 405 nm; the light beam A first portion of the beam is directed to a spectrometer to measure the wavelength of the beam and the amount of power in the beam; a second portion of the beam is imparted using a temperature-controlled liquid crystal variable retarder (LCVR) a time-varying polarization to form a time-varyingly polarized light beam; focusing the time-varyingly polarized light beam onto a coupling surface formed by a coupling plate interfacing with the surface of the CS substrate for receiving from the main The stress-related features in the body create scattered light; and directing the scattered light to a digital detector to capture an LSP image at the digital detector.

本揭露的另一實施例係關於如上文所描述及如本文中所揭示的方法,其中該CS基板的該主體由玻璃材料製成。Another embodiment of the present disclosure relates to the method as described above and as disclosed herein, wherein the body of the CS substrate is made of glass material.

本揭露的另一實施例係關於如上文所描述及如本文中所揭示的方法,其進一步包含:將該LCVR維持在處於35℃至40℃範圍內的溫度。Another embodiment of the present disclosure relates to the method as described above and disclosed herein, further comprising: maintaining the LCVR at a temperature in the range of 35°C to 40°C.

本揭露的另一實施例係關於如上文所描述及如本文中所揭示的方法,其中該經時變偏光的光束沿循穿過該CS基板的該主體的一光束路徑,且進一步包含藉由以下步驟估計該光束的一光束中心:針對沿著該光束路徑進入該CS基板的該主體中的所選深度對該散射光執行一傾斜高斯擬合以界定第一組光束中心;及穿過該第一組光束中心擬合一第一線以界定一第一擬合線。Another embodiment of the present disclosure relates to the method as described above and as disclosed herein, wherein the time-varyingly polarized beam follows a beam path through the body of the CS substrate, and further comprises by A beam center of the beam is estimated by performing a sloped Gaussian fit to the scattered light for a selected depth along the beam path into the body of the CS substrate to define a first set of beam centers; and passing through the The first set of beam centers are fitted to a first line to define a first fitted line.

本揭露的另一實施例係關於如上文所描述及如本文中所揭示的方法,其進一步包含藉由以下步驟估計該經時變偏光的光束的一中心點:穿過第二組光束中心擬合一第二線以界定一第二擬合線;及識別該中心點,該第一擬合線及該第二擬合線在該中心點處交叉。Another embodiment of the present disclosure relates to the method as described above and disclosed herein, further comprising estimating a center point of the time-varyingly polarized light beam by combining a second line to define a second fitted line; and identifying the center point at which the first fitted line and the second fitted line intersect.

本揭露的另一實施例係關於如上文所描述及如本文中所揭示的方法,其中該經時變偏光的光束沿循穿過該CS基板的該主體的一光束路徑,且進一步包含藉由以下步驟判定該經時變偏光的光束進入該CS基板的一入口點:沿著該第一擬合線及該第二擬合線中之一者識別該LSP影像的一邊緣強度輪廓,其中邊緣強度從一最大值I MAX轉變成表示一背景強度值的一最小值I MIN;及判定介於該最大強度值I MAX與該最小強度值I MIN中間的一半最大強度值I 1/2及界定該入口點處於該半最大強度值I 1/2Another embodiment of the present disclosure relates to the method as described above and as disclosed herein, wherein the time-varyingly polarized beam follows a beam path through the body of the CS substrate, and further comprises by Determine an entry point of the time-varyingly polarized light beam into the CS substrate by identifying an edge intensity profile of the LSP image along one of the first fitted line and the second fitted line, wherein the edge Intensity transitions from a maximum value I MAX to a minimum value I MIN representing a background intensity value; and determining a half maximum intensity value I 1/2 intermediate between the maximum intensity value I MAX and the minimum intensity value I MIN and defining The entry point is at the half maximum intensity value I 1/2 .

本揭露的另一實施例係關於如上文所描述及如本文中所揭示的方法,其中該LSP光束具有至少10微瓦的功率。Another embodiment of the present disclosure relates to the method as described above and disclosed herein, wherein the LSP beam has a power of at least 10 microwatts.

本揭露的另一實施例係關於如上文所描述及如本文中所揭示的方法,其中該LSP光束具有至少50微瓦的功率。Another embodiment of the present disclosure relates to the method as described above and disclosed herein, wherein the LSP light beam has a power of at least 50 microwatts.

額外的特徵及優點將在以下詳細描述中闡述,且將根據該描述部分地對熟習此項技術者顯而易見或藉由實踐如所撰寫的描述及其申請專利範圍以及隨附圖式中所描述之實施例得到認可。應理解,前述大體描述及以下詳細描述兩者僅為例示性的,且意欲提供綜述或框架以便理解申請專利範圍的本質及特性。Additional features and advantages will be set forth in the following detailed description, and in part will be apparent to those skilled in the art from this description or by practice as illustrated in the written description and claims thereof and the accompanying drawings Examples are recognized. It is to be understood that both the foregoing general description and the following detailed description are exemplary only, and are intended to provide an overview or framework for understanding the nature and character of what is claimed.

現在將詳細參考本揭露的各種實施例,其實例在隨附圖式中示出。只要可能,相同或相似的參考數字及符號將貫穿圖式用於指代相同或相似的零件。圖式未必是按比例繪製的,且熟習此項技術者將認識到圖式在何處已被簡化來示出本揭露的關鍵態樣。Reference will now be made in detail to various embodiments of the present disclosure, examples of which are illustrated in the accompanying drawings. Wherever possible, the same or similar reference numbers and symbols will be used throughout the drawings to refer to the same or like parts. The drawings are not necessarily drawn to scale, and those skilled in the art will recognize where the drawings have been simplified to show key aspects of the disclosure.

如下文所闡述的申請專利範圍併入此詳細描述中且構成其部分。The claims as set forth below are incorporated into and constitute a part of this detailed description.

為了進行參考,在諸圖中之一些中展示笛卡兒坐標,且笛卡兒坐標不意欲對方向或定向有限制。For reference, Cartesian coordinates are shown in some of the Figures, and Cartesian coordinates are not intended to limit direction or orientation.

在論述的一些部分中,z坐標用於進入基板的深度方向,而在論述的其他部分中,使用不同的坐標。In some parts of the discussion the z-coordinate is used for the depth direction into the substrate, while in other parts of the discussion different coordinates are used.

根據論述的上下文,縮寫「IOX」代表「離子交換」或「經離子交換的」。The abbreviation "IOX" stands for "ion exchanged" or "ion exchanged", depending on the context of the discussion.

縮寫「CS」在用於描述基板類型(如在「CS基板」中)時意謂「化學增強的」。縮寫CS亦可意謂「壓縮應力」,且哪種含義用於此縮寫將根據論述的上下文顯而易見。The abbreviation "CS" means "chemically amplified" when used to describe the type of substrate (as in "CS substrate"). The abbreviation CS can also mean "compressive stress" and which meaning is used for this abbreviation will be apparent from the context of the discussion.

用於本文中所考慮的CS基板的術語「增強的」意謂初始CS基板已經歷某種製程以產生可能具有多種形狀的一些應力輪廓,通常意欲使CS基板更強且因此更難破裂。示例性增強製程包括離子交換、回火、退火及類似的熱製程。The term "reinforced" for CS substrates considered herein means that the original CS substrate has undergone certain processes to create some stress profile that may have various shapes, generally intended to make the CS substrate stronger and thus more difficult to crack. Exemplary enhancement processes include ion exchange, tempering, annealing, and similar thermal processes.

關於CS基板所使用的術語「透明的」意謂在給定量測波長(即,EPCS波長λ A或LSP波長λ B)下具有足夠的光學透射的CS基板,以對CS基板進行令人滿意的量測(即,EPCS量測或LSP量測),該量測得出與給定量測相關聯的應力特性的足夠準確的量測結果。 The term "transparent" as used in relation to a CS substrate means a CS substrate having sufficient optical transmission at a given measurement wavelength (i.e., EPCS wavelength λ A or LSP wavelength λ B ) to perform satisfactorily on the CS substrate. measurements (ie, EPCS measurements or LSP measurements) that yield sufficiently accurate measurements of the stress characteristics associated with a given measurement.

縮寫「ms」代表「毫秒」。The abbreviation "ms" stands for "milliseconds".

縮寫「nm」代表「奈米」。The abbreviation "nm" stands for "nanometer".

術語「近表面」,諸如當指代CS基板的近表面波導或近表面尖峰區時,指代基板主體的駐留在緊鄰CS基板的給定表面(例如,頂部或量測表面)處的部分。The term "near-surface", such as when referring to a near-surface waveguide or a near-surface spike region of a CS substrate, refers to the portion of the substrate body that resides in close proximity to a given surface (eg, top or measurement surface) of the CS substrate.

在實例中,玻璃基基板用於形成CS基板。如本文所使用的術語「玻璃基基板」包括整體或部分由玻璃(諸如玻璃及非玻璃材料的積層、玻璃及結晶材料的積層以及玻璃陶瓷(包括非晶相及晶相))製成的任何物件。因此,在實例中,玻璃基CS基板可完全由玻璃材料組成,而在另一實例中可完全由玻璃陶瓷材料組成。In an example, a glass-based substrate is used to form the CS substrate. As used herein, the term "glass-based substrate" includes any substrate made in whole or in part of glass, such as laminates of glass and non-glass materials, laminates of glass and crystalline materials, and glass ceramics (including amorphous and crystalline phases). object. Thus, in an example, a glass-based CS substrate may consist entirely of a glass material, while in another example may consist entirely of a glass-ceramic material.

術語「影像」及「線影像」在本文中用於描述由LSP子系統在數位偵測器(CCD相機或CMOS感測器等)處由散射光形成的X形LSP影像的一部分的光分佈(即,強度分佈),且成像系統並非形成如本文中所考慮的LSP影像所必需的。The terms "image" and "line image" are used herein to describe the light distribution ( That is, the intensity distribution), and an imaging system is not necessary to form an LSP image as contemplated herein.

在下文的論述中,LSP子系統經組態以在兩個或兩個以上偏光狀態(或僅簡稱為「偏光」)之間循環。在實例中,每個循環可存在最多八個不同的偏光狀態,該等偏光狀態組合了線性偏光、橢圓偏光及圓偏光,如此項技術中已知的。In the discussion below, the LSP subsystem is configured to cycle between two or more states of polarization (or just simply "polarization"). In an example, there may be up to eight different polarization states per cycle, combining linear, elliptical, and circular polarizations, as known in the art.

如本文所使用的術語「應力」通常可意謂壓縮應力或拉伸應力。在第15B圖、第16B圖、第19B圖及第19D圖的曲線圖中,壓縮應力為負的而拉伸應力為正的。應力為壓縮應力還是拉伸應力取決於所考慮的CS基板的位置或深度區。壓縮應力的正值被理解為意謂壓縮應力的量值。應力由S或由σ表示,且除非另外指出或根據論述的上下文另外理解,否則被視為指代壓縮應力。在一些情況下,壓縮應力被表示為CS,諸如針對拐點應力CS k。應力輪廓係隨進入CS基板的深度而變的應力S,且深度坐標可為任何局部坐標,且在下文的論述中z及x兩者均用作局部坐標。 The term "stress" as used herein may generally mean compressive stress or tensile stress. In the graphs of Figures 15B, 16B, 19B, and 19D, compressive stress is negative and tensile stress is positive. Whether the stress is compressive or tensile depends on the location or depth region of the CS substrate considered. Positive values of compressive stress are understood to mean the magnitude of the compressive stress. Stress is denoted by S or by σ, and is taken to refer to compressive stress unless otherwise indicated or understood from the context of the discussion. In some cases, compressive stress is denoted as CS, such as for the inflection point stress CS k . The stress profile is the stress S as a function of depth into the CS substrate, and the depth coordinates can be any local coordinates, and both z and x are used as local coordinates in the discussion below.

在實例中,CS基板的「表徵」包括判定CS基板的一或多個基於應力的性質,諸如應力輪廓S(z)、層深度DOL、表面應力S(0)、壓縮深度DOC、中心張力CT及雙折射率輪廓B(z)。在實例中,表徵利用EPCS及LSP量測兩者,EPCS及LSP量測分別提供第一及第二應力特性,第一及第二應力特性在組合起來時提供CS基板的應力特性的「全面表徵」,其中術語「全面表徵」意謂應力及應力相關性質的表徵比在僅有EPCS量測的第一應力特性或僅有LSP量測的第二應力特性的情況下所可能的表徵更完整。In an example, "characterization" of a CS substrate includes determining one or more stress-based properties of the CS substrate, such as stress profile S(z), depth of layer DOL, surface stress S(0), depth of compression DOC, central tension CT and the birefringence profile B(z). In the example, the characterization utilizes both EPCS and LSP measurements, which provide first and second stress characteristics, respectively, which when combined provide a "comprehensive characterization of the stress characteristics of the CS substrate". ”, wherein the term “full characterization” means that the characterization of stress and stress-related properties is more complete than would be possible with only the first stress characteristic measured by EPCS or only the second stress characteristic measured by LSP.

縮寫「OR」代表「光學延遲」,且除非另有說明,否則係以弧度(「雷得」)為單位量測的。光學延遲與進入CS基板的深度的曲線圖在下文被稱為「OR與D」曲線或曲線圖,其中D被理解為從頂部(量測)表面進入CS基板主體的深度。The abbreviation "OR" stands for "optical retardation" and is measured in units of radians ("Radians") unless otherwise noted. The graph of optical retardation versus depth into the CS substrate is hereinafter referred to as an "OR versus D" graph or graph, where D is understood as the depth into the body of the CS substrate from the top (measuring) surface.

術語「折射率匹配流體」意謂具有與另一種材料大體上相同的折射率以促進光學耦合的流體。在實例中,折射率匹配流體包含油或油的混合物。折射率匹配流體的折射率由 n f n oil 表示,即,此等兩種表達在下文中可互換地使用。 The term "index matching fluid" means a fluid that has substantially the same refractive index as another material to facilitate optical coupling. In an example, the index matching fluid comprises an oil or a mixture of oils. The refractive index of the index matching fluid is denoted by n f or n oil , ie these two expressions are used interchangeably hereinafter.

術語「片」及「波片」在指代波片類型時可互換地使用(例如,半波片與半波波片相同,等等)。為避免混淆,當進行中的術語包括單詞「波」時,術語「波片」在下文中被稱為「片」。The terms "plate" and "wave plate" are used interchangeably when referring to a type of wave plate (eg, a half-wave plate is the same as a half-wave plate, etc.). To avoid confusion, the term "wave plate" is hereinafter referred to as "plate" when the term in progress includes the word "wave".

術語「子系統」在方便的地方使用,以與較大系統區分開,較小系統駐留在較大系統中。因此,為便於論述,可互換地使用術語「系統」及「子系統」。The term "subsystem" is used where convenient to distinguish it from larger systems in which smaller systems reside. Accordingly, for ease of discussion, the terms "system" and "subsystem" are used interchangeably.

CSCS 基板Substrate

第1A圖係呈平面薄板形式的示例性類型的CS基板10的俯視圖。CS基板10具有主體11、頂部表面12、底部表面14及側面16。CS基板10具有厚度TH及介於頂部表面12與底部表面14中間且與其平行的中平面MP。FIG. 1A is a top view of an exemplary type of CS substrate 10 in the form of a planar sheet. The CS substrate 10 has a main body 11 , a top surface 12 , a bottom surface 14 and side surfaces 16 . The CS substrate 10 has a thickness TH and a mid-plane MP intermediate and parallel to the top surface 12 and the bottom surface 14 .

在一些情況下,厚度TH可在0.050 mm ≤TH ≤ 2 mm的範圍內,諸如0.20 mm ≤ TH ≤ 2 mm、0.25 mm ≤ TH ≤ 2 mm、0.3 mm ≤ TH ≤ 2 mm或0.3 mm ≤ TH ≤ 1 mm及在此等端點之間形成的任何及所有子範圍。In some cases, the thickness TH may be in the range of 0.050 mm ≤ TH ≤ 2 mm, such as 0.20 mm ≤ TH ≤ 2 mm, 0.25 mm ≤ TH ≤ 2 mm, 0.3 mm ≤ TH ≤ 2 mm, or 0.3 mm ≤ TH ≤ 1 mm and any and all subranges formed between such endpoints.

CS基板10的示例性類型為玻璃基的,且用作用於諸如智慧型電話、平板電腦、膝上型電腦、GPS裝置等行動裝置的顯示器及/或外殼的保護蓋。此類CS基板10往往為薄的且平面的,諸如,如第1A圖所示。An exemplary type of CS substrate 10 is glass-based and is used as a protective cover for displays and/or housings of mobile devices such as smartphones, tablets, laptops, GPS devices, and the like. Such CS substrates 10 tend to be thin and planar, such as shown in Figure 1A.

CS基板10包括近表面波導(near-surface waveguide,NSWG) 18,NSWG 18駐留在主體11中,靠近頂部表面12。在實例中,NSWG 18係使用IOX製程形成且由具有變化的折射率的至少一個IOX區界定。The CS substrate 10 includes a near-surface waveguide (NSWG) 18 residing in the body 11 near the top surface 12 . In an example, NSWG 18 is formed using a 10X process and is bounded by at least one 10X region with a varying refractive index.

第1B圖係示例性NSWG 18的折射率 n與進入CS基板的深度z的曲線圖。表面折射率表示為 n s ,而整體折射率(即,尚未被化學增強製程影響的基板材料的折射率)表示為 n B FIG. 1B is a graph of refractive index n versus depth z into a CS substrate for an exemplary NSWG 18 . The surface refractive index is denoted n s , while the bulk refractive index (ie, the refractive index of the substrate material that has not been affected by the chemical enhancement process) is denoted n B .

第1B圖的曲線圖展示示例性折射率輪廓n(z),其界定兩個(IOX)區,即,第一近表面尖峰區R1及第二深部區R2。亦存在比第二深部區深且在本文中被稱為「整體」區的第三區R3,其具有折射率 n B 。近表面尖峰區R1具有表面處的最大折射率 n s 及折射率在相對小的深度z = D1上隨著深度(z)的快速減小,直至值 n k ,深度z = D1界定第一「尖峰」層深度DOL sp。深部區R2具有折射率從 n k 的較慢減小,直至深度D2,深度D2界定總層深度DOL T,第三整體區R3在此處開始。第一區R1及第二區R2在位於z = z k處的拐點KN處相交(且因此界定拐點KN),在z = z k處,如上所述,折射率 n = n k ,且z = z k與拐點(壓縮)應力CS k相關聯。 The graph of FIG. 1B shows an exemplary refractive index profile n(z) that defines two (10×) regions, namely, a first near-surface peak region R1 and a second deep region R2. There is also a third region R3 deeper than the second deep region and referred to herein as the "bulk" region, which has a refractive index nB . The near-surface peak region R1 has a maximum refractive index n s at the surface and the refractive index decreases rapidly with depth (z) over a relatively small depth z = D1 up to a value n k , where the depth z = D1 defines the first "Spike" layer depth DOL sp . The deep region R2 has a slower decrease in refractive index from nk up to a depth D2 which defines the total layer depth DOL T , where the third integral region R3 begins. The first region R1 and the second region R2 intersect (and thus define) an inflection point KN located at z = z k where , as described above, the refractive index n = nk and z = z k is associated with the inflection point (compressive) stress CS k .

由於NSWG 18中的兩個相異折射率區R1及R2,某些導引模式僅在最上部尖峰區R1中傳播,而其他導引模式在區R1及R2兩者中行進,而再其他的導引模式僅在深部區R2中行進。其他折射率輪廓 n(z)包括折射率的更均勻變化。深導引模式中之一些可延伸至整體區R3中。 Due to the two distinct refractive index regions R1 and R2 in NSWG 18, some guided modes propagate only in the uppermost spike region R1, while other guided modes travel in both regions R1 and R2, while others The guided mode only travels in the deep region R2. Other refractive index profiles n(z) include a more uniform variation of the refractive index. Some of the deep guided modes may extend into the overall region R3.

第1B圖的折射率輪廓 n(z)可由雙IOX (DIOX)製程形成,其中一個IOX製程形成深部區R2且不同於第一IOX製程的另一IOX製程形成尖峰區R1。第1B圖的曲線圖表示在含Li玻璃CS基板10中執行的DIOX製程,其中在兩個相異IOX製程中用鉀及鈉離子交換Li離子,其中鉀IOX製程產生尖峰區R1。 The refractive index profile n(z) of FIG. 1B can be formed by a dual IOX (DIOX) process, where one IOX process forms the deep region R2 and another IOX process different from the first IOX process forms the peak region R1. The graph of FIG. 1B represents a DIOX process performed in a Li-containing glass CS substrate 10 in which Li ions are exchanged with potassium and sodium ions in two distinct 10X processes, wherein the potassium 10X process produces a peak region R1.

混合mix EPCS-LSPEPCS-LSP 系統system

第2A圖係與示例性CS基板10一起展示的如本文中所揭示的混合EPCS-LSP量測系統(「混合系統」) 20的示意圖。混合系統20包括耦合稜鏡總成40、EPCS量測子系統(「EPCS子系統」) 100、LSP量測子系統(「LSP子系統」) 200及系統控制器400。耦合稜鏡總成40界定CS基板10上的量測位置ML。FIG. 2A is a schematic diagram of a hybrid EPCS-LSP metrology system (“hybrid system”) 20 as disclosed herein, shown with an exemplary CS substrate 10 . The hybrid system 20 includes a coupling assembly 40 , an EPCS measurement subsystem (“EPCS subsystem”) 100 , an LSP measurement subsystem (“LSP subsystem”) 200 and a system controller 400 . The coupling assembly 40 defines the measurement location ML on the CS substrate 10 .

EPCS子系統100產生EPCS量測信號SA,其表示CS基板在量測位置ML處的第一應力特性,如在NSWG 18的導引模式的模式頻譜中所體現的。第一應力特性可包括以下中之一或多者:表面壓縮應力S(0)、總層深度DOL T、尖峰層深度DOL sp、拐點應力CS k及雙折射率B。 The EPCS subsystem 100 generates an EPCS measurement signal SA representing a first stress characteristic of the CS substrate at the measurement location ML, as embodied in the mode spectrum of the guided mode of the NSWG 18 . The first stress characteristic may include one or more of the following: surface compressive stress S(0), total layer depth DOL T , peak layer depth DOL sp , inflection point stress CS k and birefringence B.

LSP子系統200產生LSP量測信號SB,其表示CS基板在量測位置ML處的第二應力特性,如在光學延遲(optical retardation,OR)資訊中所體現的,OR資訊依進入CS基板(包括深部區R2)的深度而變。第二應力特性可包括以下中之一或多者:應力輪廓、壓縮深度DOC及中心張力CT。The LSP subsystem 200 generates the LSP measurement signal SB, which represents the second stress characteristic of the CS substrate at the measurement location ML, as embodied in the optical retardation (OR) information, which enters the CS substrate according to ( The depth including the deep region R2) varies. The second stress characteristic may include one or more of: stress profile, depth of compression DOC, and central tension CT.

在實例中,第一及第二應力特性的EPCS及LSP量測係在不移動量測位置ML的情況下進行。在另一實例中,第一及第二應力特性的EPCS及LSP量測係藉由以下步驟進行:平移耦合稜鏡總成40,使得EPCS及LSP量測係在基板上的同一位置處進行,而不是在如耦合稜鏡總成的組態所界定之量測位置處在略微隔開的位置處進行。In an example, the EPCS and LSP measurements of the first and second stress characteristics are performed without moving the measurement location ML. In another example, the EPCS and LSP measurements of the first and second stress characteristics are performed by: translating the coupled slab assembly 40 such that the EPCS and LSP measurements are performed at the same location on the substrate, Rather than at slightly spaced locations at the measurement locations as defined by the configuration of the coupling assembly.

在實例中,第一及第二應力特性的EPCS及LSP量測係在不從量測位置ML移除耦合稜鏡總成40或CS基板10的情況下進行。這表示優於先前技術的優點在於,EPCS及LSP量測兩者可在單個系統中進行而不必移除或以其他方式處理CS基板以將其帶至不同的量測系統。In an example, the EPCS and LSP measurements of the first and second stress characteristics are performed without removing the coupling pad assembly 40 or the CS substrate 10 from the measurement location ML. This represents an advantage over prior art in that both EPCS and LSP measurements can be made in a single system without having to remove or otherwise process the CS substrate to bring it to a different measurement system.

EPCS量測信號SA及LSP量測信號SB被發送至系統控制器400以便處理。系統控制器400可包含例如微控制器、電腦、可程式邏輯控制器(programmable logic controller,PLC)等。在實例中,系統控制器400組態有體現在非暫時性電腦可讀媒體中的指令(例如,軟體)以控制混合系統20的操作且執行用於基於EPCS量測信號SA及LSP量測信號SB來判定CS基板10的第一及第二應力特性的計算。The EPCS measurement signal SA and the LSP measurement signal SB are sent to the system controller 400 for processing. The system controller 400 may include, for example, a microcontroller, a computer, a programmable logic controller (programmable logic controller, PLC) and the like. In an example, the system controller 400 is configured with instructions (e.g., software) embodied in a non-transitory computer-readable medium to control the operation of the hybrid system 20 and execute the SB to determine the calculation of the first and second stress characteristics of the CS substrate 10 .

在實例中,系統控制器400處理EPCS量測信號SA及LSP量測信號SB以界定從CS基板10的頂部表面12至少直至深部區R2的底部的應力輪廓及相關應力特性。換言之,系統控制器組合從EPCS子系統100及LSP子系統200獲得的第一及第二應力特性以產生比在僅有該等量測子系統中之一者的情況下所可能的CS基板的更完整或「全面」的應力輪廓。In an example, the system controller 400 processes the EPCS measurement signal SA and the LSP measurement signal SB to define the stress profile and related stress characteristics from the top surface 12 of the CS substrate 10 at least up to the bottom of the deep region R2. In other words, the system controller combines the first and second stress characteristics obtained from the EPCS subsystem 100 and the LSP subsystem 200 to produce a larger CS substrate than would be possible with only one of the metrology subsystems. A more complete or "comprehensive" stress profile.

耦合稜鏡總成40包括由稜鏡支撐結構46可操作地支撐的EPCS耦合稜鏡42A及LSP耦合稜鏡42B。耦合稜鏡總成40可操作地安置於CS基板10的頂部表面12上或靠近該頂部表面12。在下文所論述的實例中,EPCS耦合稜鏡42A及LSP耦合稜鏡42B可為單獨的耦合稜鏡或單個(共同)耦合稜鏡的不同區段。Coupler assembly 40 includes an EPCS coupler 42A and an LSP coupler 42B operably supported by a coupler support structure 46 . The coupling assembly 40 is operatively disposed on or near the top surface 12 of the CS substrate 10 . In the examples discussed below, the EPCS coupling panel 42A and the LSP coupling panel 42B may be separate coupling panels or different sections of a single (common) coupling panel.

繼續參考第2A圖,混合系統20包括具有尺寸L1及L2的示例性外殼21。針對混合系統20的相對緊湊的實施例,L1及L2的示例性尺寸在8吋至12吋的範圍內。With continued reference to FIG. 2A , hybrid system 20 includes an exemplary housing 21 having dimensions L1 and L2. For a relatively compact embodiment of the hybrid system 20, exemplary dimensions of L1 and L2 are in the range of 8 inches to 12 inches.

EPCS子系統100包括經由EPCS耦合稜鏡42A光學耦合的EPCS光源系統110及EPCS偵測器系統140。LSP子系統200包括LSP光源系統210、光學補償器230及經由LSP耦合稜鏡42B光學耦合至該光學補償器的LSP偵測器系統240。EPCS偵測器系統140及LSP偵測器系統240可操作地連接至系統控制器400。EPCS子系統100的實例描述於美國專利第9,534,981號中及美國專利第9,696,207中,該等專利以引用的方式併入本文中。LSP子系統200的實例描述於美國專利第4,655,589號中及美國臨時專利申請案第62/753,388中,該專利及該申請案以引用的方式併入本文中。The EPCS subsystem 100 includes an EPCS light source system 110 and an EPCS detector system 140 optically coupled via an EPCS coupling port 42A. The LSP subsystem 200 includes an LSP light source system 210, an optical compensator 230, and an LSP detector system 240 optically coupled to the optical compensator via an LSP coupling port 42B. EPCS detector system 140 and LSP detector system 240 are operatively connected to system controller 400 . Examples of EPCS subsystem 100 are described in US Patent No. 9,534,981 and US Patent No. 9,696,207, which are incorporated herein by reference. Examples of LSP subsystem 200 are described in US Patent No. 4,655,589 and US Provisional Patent Application Serial No. 62/753,388, which patent and application are incorporated herein by reference.

第2B圖係第2A圖的混合EPCS-LSP系統的更詳細示意圖,其展示EPCS子系統100及LSP子系統200的示例性組態。第3A圖係示例性EPCS子系統100的示意圖。第4A圖至第4C圖係示例性LSP子系統200的示意圖。FIG. 2B is a more detailed schematic diagram of the hybrid EPCS-LSP system of FIG. 2A showing an exemplary configuration of the EPCS subsystem 100 and the LSP subsystem 200 . FIG. 3A is a schematic diagram of an exemplary EPCS subsystem 100 . 4A-4C are schematic diagrams of an exemplary LSP subsystem 200 .

EPCSEPCS 子系統subsystem

參考第2B圖及第3A圖,EPCS子系統100的EPCS光源系統110包括EPCS光源112,其產生沿著第一軸線A1的處於第一波長λ A的EPCS光束116。第一波長λ A亦可被稱為EPCS波長。 Referring to FIGS. 2B and 3A , the EPCS light source system 110 of the EPCS subsystem 100 includes an EPCS light source 112 that generates an EPCS light beam 116 at a first wavelength λ A along a first axis A1 . The first wavelength λ A may also be referred to as an EPCS wavelength.

EPCS光源系統110沿著第一軸線A1亦包括:光學偏光器118、駐留在EPCS光源112下游的光漫射體122,及駐留在光漫射體下游的聚焦透鏡120。在實例中,光源包含發光二極體(light-emitting diode,LED),且進一步在實例中,LED在365 nm的EPCS量測波長λ A下操作。EPCS偵測器系統140沿著第二軸線A2駐留且沿著第二軸線按次序包括:聚焦透鏡142、以波長λ A為中心的帶通濾波器144、衰減器146、TM-TE偏光器148 (其具有TM及TE區段(未圖示))及數位偵測器(例如,數位相機、影像感測器、CCD陣列等) 150,數位偵測器150具有如TM-TE偏光器148所界定的TM及TE區段(未圖示)。 The EPCS light source system 110 also includes, along the first axis A1 , an optical polarizer 118 , a light diffuser 122 residing downstream of the EPCS light source 112 , and a focusing lens 120 residing downstream of the light diffuser. In an example, the light source comprises a light-emitting diode (LED), and further in an example, the LED operates at an EPCS measurement wavelength λ A of 365 nm. The EPCS detector system 140 resides along the second axis A2 and includes, in order along the second axis: focusing lens 142, bandpass filter 144 centered at wavelength λ A , attenuator 146, TM-TE polarizer 148 (which has TM and TE segments (not shown)) and a digital detector (e.g., digital camera, image sensor, CCD array, etc.) Defined TM and TE segments (not shown).

來自EPCS光源112的EPCS光束116由光漫射體122漫射且由聚焦透鏡120聚焦以形成經聚焦的EPCS光束116F。經聚焦的EPCS光束116F在輸入表面43A處入射於EPCS耦合稜鏡42A上。這將經聚焦的EPCS光束在第一(EPCS)耦合界面INT1處耦合至NSWG 18中,第一(EPCS)耦合界面INT1由CS基板的頂部表面12及EPCS耦合稜鏡42A的底部或「耦合」表面45A界定。第一耦合界面INT1可包括折射率匹配流體5A,如下文更詳細地論述。EPCS beam 116 from EPCS light source 112 is diffused by light diffuser 122 and focused by focusing lens 120 to form focused EPCS beam 116F. Focused EPCS beam 116F is incident on EPCS coupling beam 42A at input surface 43A. This couples the focused EPCS beam into the NSWG 18 at the first (EPCS) coupling interface INT1, which is formed by the top surface 12 of the CS substrate and the bottom or "coupling" of the EPCS coupling interface 42A. Surface 45A defines. The first coupling interface INT1 may include an index matching fluid 5A, as discussed in more detail below.

經反射的EPCS光束116R在第一EPCS耦合界面INT1處由經聚焦的EPCS光束116F形成且離開EPCS耦合稜鏡42A的輸出表面44A以沿著第二軸線A2行進。第一軸線A1及第二軸線A2駐留在共同平面(例如,第3A圖的x-z平面)中。經反射的EPCS光束116R包括關於NSWG 18的導引模式的模式頻譜的資訊。經反射的EPCS光束116R由EPCS偵測器系統140中的聚焦透鏡142聚焦以在EPCS數位偵測器150處形成導引光的模式頻譜的影像。Reflected EPCS beam 116R is formed by focused EPCS beam 116F at first EPCS coupling interface INT1 and exits output surface 44A of EPCS coupling interface 42A to travel along second axis A2. The first axis A1 and the second axis A2 reside in a common plane (eg, the x-z plane of FIG. 3A ). The reflected EPCS beam 116R includes information about the mode spectrum of the NSWG 18 guided mode. Reflected EPCS beam 116R is focused by focusing lens 142 in EPCS detector system 140 to form an image of the mode spectrum of the guided light at EPCS digital detector 150 .

帶通濾波器144確保僅經反射的EPCS光束116R能夠到達EPCS數位偵測器150。衰減器146確保經反射的EPCS光束116R具有適當的強度分佈以便於高效數位偵測。TM-TE偏光器148界定數位偵測器的TM及TE區段以便EPCS數位偵測器150可捕獲TM及TE模式頻譜。TM及TE模式頻譜體現在第一偵測器信號SA中,第一偵測器信號SA被發送至系統控制器400以便處理。應注意,帶通濾波器144、衰減器146及聚焦透鏡142的次序不是關鍵的且有意將其展示為在第2B圖與第3A圖之間不同以說明這一點。Bandpass filter 144 ensures that only reflected EPCS beam 116R reaches EPCS digit detector 150 . The attenuator 146 ensures that the reflected EPCS beam 116R has a proper intensity distribution for efficient digit detection. The TM-TE polarizer 148 defines the TM and TE sections of the digital detector so that the EPCS digital detector 150 can capture the TM and TE mode spectrum. The TM and TE mode spectra are embodied in the first detector signal SA, which is sent to the system controller 400 for processing. It should be noted that the order of bandpass filter 144, attenuator 146, and focusing lens 142 is not critical and is intentionally shown to be different between Figures 2B and 3A to illustrate this.

第3B圖係如EPCS數位偵測器150所捕獲的理想化模式頻譜160的示意性表示。展示局部 (x,y)笛卡兒坐標以便參考。模式頻譜160具有分別與TM及TE導引模式相關聯的TM全內反射(total-internal-reflection,TIR)區段161TM及TE TIR區段161TE,以及分別與TM及TE輻射模式及漏失模式相關聯的非TIR區段162TM及非TIR區段162TE。TIR區段161TM包括一或多個TM「條紋」或TM模式線163TM,而TIR區段161TE包括一或多個TE「條紋」或TE模式線163TE。TM模式線163TM及TE模式線163TE在x方向上大體對準且在y方向上隔開。 FIG. 3B is a schematic representation of the idealized pattern spectrum 160 as captured by the EPCS digital detector 150 . Show local (x,y) Cartesian coordinates for easy reference. The mode spectrum 160 has a TM total-internal-reflection (TIR) section 161TM and a TE TIR section 161TE associated with the TM and TE guided modes, respectively, and a TM and TE radiation mode and a leakage mode, respectively. Linked non-TIR segment 162TM and non-TIR segment 162TE. TIR segment 161TM includes one or more TM "stripes" or TM mode lines 163TM, and TIR segment 161 TE includes one or more TE "stripes" or TE mode lines 163TE. The TM mode lines 163TM and TE mode lines 163TE are generally aligned in the x-direction and spaced apart in the y-direction.

TIR區段161TM、161TE與非TIR區段162TM、162TE之間的轉變區(「轉變」) 166TM及166TE界定TM及TE偏光的進入及離開CS基板10的NSWG 18的光學耦合的臨界角,且被稱為臨界角轉變。臨界角轉變166TM及166TE的開始處的位置差異與拐點應力CS k成比例,且此比例在第3B圖中由「 ~CS k」指示。 The transition regions ("transitions") 166TM and 166TE between the TIR segments 161TM, 161TE and the non-TIR segments 162TM, 162TE define the critical angles for optical coupling of TM and TE polarized light into and out of the NSWG 18 of the CS substrate 10, and is called the critical angle transition. The difference in location of the onset of critical angle transitions 166TM and 166TE is proportional to the inflection point stress CSk, and this ratio is indicated by " ~ CSk " in Figure 3B.

根據EPCS子系統100的組態,TM模式線163TM及TE模式線163TE可為明線或暗線。在第3B圖中,為便於說明,將TM模式線163TM及TE模式線163TE展示為暗線。According to the configuration of the EPCS subsystem 100 , the TM mode line 163TM and the TE mode line 163TE can be open lines or dark lines. In FIG. 3B , for convenience of illustration, the TM mode line 163TM and the TE mode line 163TE are shown as dark lines.

用於EPCS量測的應力特性係基於模式頻譜160中的TM模式線163TM及TE模式線163TE的y位置的差異來計算。雙折射率B係TM偏光及TE偏光的有效折射率之間的差異,其中有效折射率由模式線的y位置表示。表面壓縮應力S(0)= CS係由模式線(有效折射率)之間的y距離及比率B/SOC來計算,其中SOC係應力光學係數。需要至少兩個TM模式線163TM及TE模式線163TE來計算表面應力S(0)。需要額外的模式線來計算壓縮應力輪廓S(z)。層深度DOL T係進入CS基板10的主體11的應力穿透或離子穿透長度的量測,且在IOX製程的情況下,亦可由模式線163TM及163TE的y位置及數目來計算。沿著y軸的TM及TE模式線因此係用於推斷CS基板10的應力相關特性的最基本量測。用於基於使用EPCS子系統100進行的EPCS量測來判定CS基板10的應力特性的計算係在系統控制器400中執行。 The stress characteristics for EPCS measurements are calculated based on the difference in y-positions of the TM mode line 163TM and the TE mode line 163TE in the mode spectrum 160 . Birefringence B is the difference between the effective refractive index of TM polarized light and TE polarized light, where the effective refractive index is represented by the y position of the mode line. The surface compressive stress S(0) = CS is calculated from the y distance between the model lines (effective refractive index) and the ratio B/SOC, where SOC is the stress optics coefficient. At least two TM mode lines 163TM and TE mode lines 163TE are needed to calculate the surface stress S(0). Additional model lines are required to calculate the compressive stress profile S(z). Layer depth DOL T is a measure of the stress penetration or ion penetration length into the body 11 of the CS substrate 10, and in the case of 1OX process, can also be calculated from the y-position and number of the mode lines 163TM and 163TE. The TM and TE mode lines along the y-axis are thus the most fundamental measurements for inferring the stress-dependent properties of the CS substrate 10 . Calculations for determining the stress characteristics of the CS substrate 10 based on EPCS measurements made using the EPCS subsystem 100 are performed in the system controller 400 .

LSPLSP 子系統subsystem

現在參考第2B圖及第4A圖至第4C圖,LSP子系統200的LSP光源系統210包括LSP光源212,其產生沿著第三軸線A3的具有波長λ B的LSP光束216。在實例中,LSP光源212被組態為在第二波長λ B= 415 nm下操作的雷射二極體。第二波長λ B亦可被稱為LSP波長。 Referring now to FIGS. 2B and 4A-4C, the LSP light source system 210 of the LSP subsystem 200 includes an LSP light source 212 that generates an LSP light beam 216 having a wavelength λB along a third axis A3. In an example, LSP light source 212 is configured as a laser diode operating at a second wavelength λ B = 415 nm. The second wavelength λ B may also be referred to as an LSP wavelength.

LSP光源系統210沿著第三軸線A3按次序包括:可選的中性密度濾波器218 (在第2B圖及第4A圖中展示)、第一聚焦透鏡220、可移動光漫射體222,及第二聚焦透鏡224。可移動光漫射體222可包含經組態以在波長λ B下執行光漫射的全像元件。在實例中,可移動光漫射體可包含旋轉光漫射體或振盪光漫射體。一或多個折疊鏡FM可用於折疊LSP子系統200以使其更緊湊。 The LSP light source system 210 includes, in order along the third axis A3: an optional neutral density filter 218 (shown in FIGS. 2B and 4A ), a first focusing lens 220, a movable light diffuser 222, and the second focusing lens 224 . The movable light diffuser 222 may comprise a holographic element configured to perform light diffusion at wavelength λΒ . In examples, the movable light diffuser may comprise a rotating light diffuser or an oscillating light diffuser. One or more folding mirrors FM can be used to fold the LSP subsystem 200 to make it more compact.

光學補償器230沿著(折疊的)第三軸線A3駐留且包含可呈偏光分束器PBS 232形式的偏光器。光學補償器230亦包括半波片234H及三分之一波片234Q,其中該等波片中之一者可相對於另一者旋轉以改變LSP光束216的偏光狀態。在實例中,光學補償器230可包含電子控制式偏光調變器,諸如基於液晶的調變器或基於鐵電液晶的調變器或類似的調變器。The optical compensator 230 resides along the third (folded) axis A3 and comprises a polarizer which may be in the form of a polarizing beam splitter PBS 232 . The optical compensator 230 also includes a half-wave plate 234H and a third-wave plate 234Q, wherein one of the wave plates can be rotated relative to the other to change the polarization state of the LSP beam 216 . In an example, the optical compensator 230 may comprise an electronically controlled polarizing modulator, such as a liquid crystal based modulator or a ferroelectric liquid crystal based modulator or similar modulator.

在實例中,光學補償器230可操作地連接至或以其他方式包括控制器(未圖示),該控制器控制由光學補償器執行的偏光切換操作。在實例中,光學補償器230可包含單個液晶裝置。在另一實例中,光學補償器230可包含多個元件,諸如偏光器、波片、濾波器、稜鏡(例如,楔形稜鏡)等。在實例中,光學補償器230致使LSP光束216在小於1秒至10秒的任何地方通過全偏光循環(即,在兩個或兩個以上所選偏光之間變化)。在實例中,光學補償器230可被可操作地連接至系統控制器400且由系統控制器400控制。In an example, optical compensator 230 is operably connected to or otherwise includes a controller (not shown) that controls the polarization switching operations performed by the optical compensator. In an example, optical compensator 230 may include a single liquid crystal device. In another example, the optical compensator 230 may include multiple elements, such as polarizers, wave plates, filters, filters (eg, wedge-shaped filters), and the like. In an example, optical compensator 230 causes LSP beam 216 to cycle through the full polarization (ie, change between two or more selected polarizations) anywhere from less than 1 second to 10 seconds. In an example, optical compensator 230 may be operably connected to and controlled by system controller 400 .

第三聚焦透鏡236駐留在光學補償器230下游且用於形成被引導至LSP耦合稜鏡42B的經聚焦的LSP光束216F。LSP耦合稜鏡具有相應的輸入表面43B及輸出表面44B以及底部或「耦合」表面45B。CS基板10的耦合表面45B及頂部表面12界定第二(LSP)耦合界面IF2。在實例中第二耦合界面INT2包括折射率匹配流體5B,如下文所論述。A third focusing lens 236 resides downstream of the optical compensator 230 and is used to form the focused LSP beam 216F that is directed to the LSP coupling lens 42B. The LSP coupling pad has respective input and output surfaces 43B, 44B and a bottom or "coupling" surface 45B. Coupling surface 45B and top surface 12 of CS substrate 10 define a second (LSP) coupling interface IF2. In the example the second coupling interface INT2 comprises a refractive index matching fluid 5B, as discussed below.

LSP偵測器系統240沿著第四軸線A4駐留,第四軸線A4與第三軸線A3正交,即,第四軸線A4駐留在Y-Z平面中。The LSP detector system 240 resides along a fourth axis A4, which is orthogonal to the third axis A3, ie, the fourth axis A4 resides in the Y-Z plane.

在實例中,LSP偵測器系統240包括收集光學系統243及數位偵測器(例如,CCD相機) 246。在實例中,收集光學系統243係遠心的且放大倍數為一。LSP偵測器系統240亦可包括以第二波長λ B為中心的帶通濾波器244。在第4C圖所示的實例中,數位偵測器246包含成像像素247的陣列,成像像素247在實例中可具有在1.8微米與10微米之間的尺寸。 In an example, LSP detector system 240 includes collection optics 243 and digital detector (eg, CCD camera) 246 . In an example, collection optics 243 are telecentric and have a magnification of one. The LSP detector system 240 may also include a bandpass filter 244 centered at the second wavelength [lambda] B . In the example shown in FIG. 4C, digital detector 246 includes an array of imaging pixels 247, which in an example may have dimensions between 1.8 microns and 10 microns.

在LSP子系統200的操作中,經聚焦的LSP光束216F入射於LSP耦合稜鏡42B的輸入表面43B上,且行進至耦合表面45B,然後穿過折射率匹配流體5B且到達CS基板10的頂部表面12以進入CS基板的主體11。經聚焦的LSP光束216F在任何給定時間具有如光學補償器230所界定的所選偏光。(偏光的)所輸入經聚焦的LSP光束216F由CS基板10的主體11中的應力誘發特徵散射以形成散射的LSP光束216S。散射的LSP光束216S在頂部表面12處離開CS基板10,返回穿過第二耦合界面INT2,然後在輸出表面44B處離開LSP耦合稜鏡42B。散射的LSP光束216S行進至LSP偵測器系統240且由收集光學系統243引導至數位偵測器246。散射的LSP光束216S在數位偵測器246上形成LSP影像248,如第4D圖中的特寫視圖所示。這界定數位LSP影像。除非另外指出,否則如下文所論述的LSP影像248被視為數位LSP影像。LSP影像248的特性「X」形狀係LSP技術中已知的且係由於散射的LSP光束216S從與LSP界面INT2相關聯的不同界面的反射,如CS基板10、LSP耦合稜鏡42B及折射率匹配流體5B所界定。In operation of the LSP subsystem 200, the focused LSP beam 216F is incident on the input surface 43B of the LSP coupling plate 42B and travels to the coupling surface 45B, then passes through the index matching fluid 5B and reaches the top of the CS substrate 10 surface 12 to enter the main body 11 of the CS substrate. Focused LSP beam 216F has the selected polarization as defined by optical compensator 230 at any given time. The input focused LSP beam 216F (polarized) is scattered by the stress-inducing features in the body 11 of the CS substrate 10 to form a scattered LSP beam 216S. Scattered LSP beam 216S exits CS substrate 10 at top surface 12, returns through second coupling interface INT2, and exits LSP coupling interface 42B at output surface 44B. Scattered LSP beam 216S travels to LSP detector system 240 and is directed by collection optics 243 to digital detector 246 . Scattered LSP beam 216S forms LSP image 248 on digital detector 246, as shown in the close-up view in FIG. 4D. This defines the digital LSP image. LSP image 248, as discussed below, is considered a digital LSP image unless otherwise indicated. The characteristic "X" shape of the LSP image 248 is known in the LSP art and is due to the reflection of the scattered LSP beam 216S from various interfaces associated with the LSP interface INT2, such as the CS substrate 10, the LSP coupling interface 42B, and the refractive index Match Fluid 5B as defined.

如第4D圖所示,LSP影像248的X形狀由兩個交叉的線影像LI界定,該等線影像LI各自具有沿著其長度的局部長度坐標X L。每一線影像LI具有強度分佈I(X L),強度分佈I(X L)係由與線影像重合的像素247量測的。數位偵測器將強度分佈I(X L)轉換成被發送至系統控制器400的第二偵測器信號SB。僅需要線影像LI中之一者來執行量測。在實例中,使用影像處理來識別LSP影像248的一部分以用於後續處理以提取光學延遲資訊,如下文所解釋。 As shown in FIG. 4D, the X shape of LSP image 248 is defined by two intersecting line images LI each having a local length coordinate XL along its length. Each line image LI has an intensity distribution I(X L ) , which is measured by the pixels 247 coincident with the line image. The digital detector converts the intensity distribution I(X L ) into a second detector signal SB which is sent to the system controller 400 . Only one of the line images LI is needed to perform the measurement. In an example, image processing is used to identify a portion of LSP image 248 for subsequent processing to extract optical delay information, as explained below.

在實施例中,使用LSP子系統200對CS基板10進行的給定量測包括:在介於1秒與10秒之間的量測時間t M內進行量測。在量測時間t M期間,LSP光束216的偏光狀態在不同的偏光狀態之間變化,較佳地進行穿過偏光狀態的一或多個循環。同時,針對每一偏光狀態,數位偵測器246在曝光時間t E期間捕獲LSP影像248。在實例中,曝光時間t E與數位偵測器246的圖框率FR大約相同。示例性曝光時間t E= 50 ms,其對應於圖框率FR = 20個圖框/秒。曝光時間t E亦可小於圖框率。 In an embodiment, a given measurement of the CS substrate 10 using the LSP subsystem 200 includes taking the measurement within a measurement time t M of between 1 second and 10 seconds. During measurement time tM , the polarization state of LSP beam 216 changes between different polarization states, preferably performing one or more cycles through the polarization states. Simultaneously, for each polarization state, digital detector 246 captures LSP image 248 during exposure time tE . In an example, the exposure time t E is about the same as the frame rate FR of the digital detector 246 . An exemplary exposure time tE = 50 ms, which corresponds to a frame rate FR = 20 frames/second. The exposure time t E can also be shorter than the frame rate.

根據所輸入經聚焦的LSP光束216F的偏光狀態及沿著光束路徑引起的光學延遲,電子捕獲的LSP影像248在其強度分佈I(X L)上有所不同。差異係由於在不同偏光狀態之間沿著散射的LSP光束216S的長度的破壞性及建設性干涉的差異,其依進入CS基板10的深度D而變。針對不同偏光狀態的多個強度分佈I(X L)之間的差異由系統控制器400用於使用此項技術中熟知的關係來計算光學延遲OR,光學延遲OR依進入CS基板10的主體11的深度D而變。同樣地,多個光學延遲曲線OR與D (「OR與D曲線圖)係使用強度分佈I(X L)的差異來計算。例如,對於3秒的量測時間t M與20個圖框/秒的影像感測器圖框率FR,可產生總計60個I(X L)與D曲線圖來計算OR與D且將其用於計算CS基板10的一或多個應力相關特性。 The electronically captured LSP image 248 differs in its intensity distribution I(X L ) depending on the polarization state of the input focused LSP beam 216F and the optical delay induced along the beam path. The difference is due to the difference in destructive and constructive interference between different polarization states along the length of the scattered LSP beam 216S, which is a function of the depth D into the CS substrate 10 . The difference between the multiple intensity distributions I(X L ) for different polarization states is used by the system controller 400 to calculate the optical retardation OR, which depends on entering the body 11 of the CS substrate 10 , using relationships well known in the art. The depth D varies. Likewise, multiple optical retardation curves OR and D ("OR and D curves") are calculated using the difference in intensity distribution I(X L ). For example, for a measurement time t M of 3 seconds and 20 frames/ With an image sensor frame rate FR of 2 seconds, a total of 60 I(X L ) vs. D graphs can be generated to calculate OR and D and use them to calculate one or more stress-related properties of the CS substrate 10 .

雖然LSP影像248的強度分佈I(X L)在輸入光束112的偏光狀態之間必然不同,但是當有應力存在於CS基板10中時,根據所量測強度分佈計算出的不同OR與D曲線(曲線圖)針對給定CS基板在CS基板的給定量測位置處理想地應當相同,其中應力輪廓(理想地)係恆定的。 Although the intensity distribution I(X L ) of the LSP image 248 necessarily differs between the polarization states of the input beam 112, when stress exists in the CS substrate 10, different OR and D curves calculated from the measured intensity distribution (graph) The process should ideally be the same for a given CS substrate at a given measurement position of the CS substrate, where the stress profile is (ideally) constant.

雖然LSP量測技術可產生應力輪廓S(z),但是它通常不產生在CS基板10的近表面區中的應力輪廓的準確表示。有至少兩個問題效應對使用來自LSP子系統200的LSP量測結果提取CS基板10的近表面應力輪廓的準確表徵提出挑戰。一個問題效應被稱為「火球」效應,其係由LSP界面INT2處的過量光散射造成。過量光散射產生雜訊,雜訊會破壞近表面區的LSP量測資料,近表面區在實例中為在CS基板10的頂部表面12下方的前60微米至100微米。Although the LSP metrology technique can produce the stress profile S(z), it generally does not produce an accurate representation of the stress profile in the near-surface region of the CS substrate 10 . There are at least two problematic effects that challenge the use of LSP measurements from LSP subsystem 200 to extract an accurate characterization of the near-surface stress profile of CS substrate 10 . One problematic effect is known as the "fireball" effect, which is caused by excessive light scattering at the LSP interface INT2. Excess light scattering creates noise that corrupts the LSP measurement data in the near surface region, which in the example is the first 60 microns to 100 microns below the top surface 12 of the CS substrate 10 .

另一問題效應由從不同深度散射的光子向對應於特定深度的信號中的卷積造成。此卷積在應力快速改變的區中顯著改變信號,該區經常在近表面壓縮區中,最經常在前80微米、100微米或150微米中,但有時高達200微米。快速改變區針對更大厚度的Li基玻璃更厚)Another problematic effect is caused by the convolution of photons scattered from different depths into the signal corresponding to a particular depth. This convolution alters the signal significantly in regions of rapidly changing stress, often in the near-surface compression region, most often in the first 80, 100 or 150 microns, but sometimes as high as 200 microns. The rapid change zone is thicker for Li-based glass of greater thickness)

一些先前技術的LSP系統嘗試藉由在靠近CS基板表面處使用極為聚焦的光束來減小此等卷積效應,其中光束直徑小至10微米。不幸的是,這引起其他問題,諸如相同深度的感興趣區中的增加的雷射雜訊(例如,斑點),從而使近表面區中的所提取應力輪廓甚至更不可靠。Some prior art LSP systems attempt to reduce these convolution effects by using a very focused beam close to the CS substrate surface, where the beam diameter is as small as 10 microns. Unfortunately, this causes other problems, such as increased laser noise (eg, speckle) in the region of interest at the same depth, making the extracted stress profile in the near-surface region even less reliable.

耦合稜鏡總成Coupling assembly

混合系統20利用前述的耦合稜鏡總成40,其可操作地支撐EPCS耦合稜鏡42A及LSP耦合稜鏡42B以在進行CS基板10的EPCS量測及LSP量測時為EPCS子系統100及LSP子系統200提供稜鏡耦合。The hybrid system 20 utilizes the aforesaid coupler assembly 40, which operably supports the EPCS coupler 42A and the LSP coupler 42B for the EPCS subsystem 100 and The LSP sub-system 200 provides the coupling.

第5A圖係示例性耦合稜鏡總成40的頂部部分的俯視圖,其展示示例性支撐框48。第5B圖係類似於第5A圖且另外包括蓋板60的俯視圖。示例性支撐框48包括支撐EPCS耦合稜鏡42A的EPCS框區段48A及支撐LSP耦合稜鏡42B的LSP框區段48B。支撐框48亦包括安置於EPCS框區段48A與LSP框區段48B之間的隔離構件50,其經組態以光學隔離EPCS耦合稜鏡42A及LSP耦合稜鏡42B。在實例中,隔離構件50亦防止分別與EPCS耦合稜鏡42A及LSP耦合稜鏡42B一起使用的折射率匹配流體5A及5B的混合。在另一實例中,隔離構件50允許單種折射率匹配流體與EPCS耦合稜鏡42A及LSP耦合稜鏡42B兩者一起使用,即,單種折射率匹配流體可在兩個不同稜鏡所界定的第一界面INT1及第二界面INT2之間流動。在一個實例中,隔離構件50與支撐框48分開且附接至支撐框48。在另一實例中,隔離構件50係支撐框48的一部分,即,在支撐框的形成期間與支撐框形成為一體。FIG. 5A is a top view of a top portion of an example coupling assembly 40 showing an example support frame 48 . FIG. 5B is similar to FIG. 5A and additionally includes a top view of cover plate 60 . Exemplary support frame 48 includes EPCS frame section 48A supporting EPCS coupling frame 42A and LSP frame section 48B supporting LSP coupling frame 42B. Support frame 48 also includes isolation member 50 disposed between EPCS frame section 48A and LSP frame section 48B, configured to optically isolate EPCS coupling frame 42A and LSP coupling frame 42B. In an example, isolation member 50 also prevents mixing of index matching fluids 5A and 5B used with EPCS-coupling 42A and LSP-coupling 42B, respectively. In another example, isolation member 50 allows a single index matching fluid to be used with both the EPCS coupling 42A and the LSP coupling 42B, i.e., a single index matching fluid can be defined between two different Flow between the first interface INT1 and the second interface INT2. In one example, the isolation member 50 is separate from and attached to the support frame 48 . In another example, the spacer member 50 is part of the support frame 48, ie, is integrally formed with the support frame during its formation.

在實例中,EPCS及LSP框區段48B及隔離構件50包括緊固凸片52,緊固凸片52包括安裝孔53,安裝孔53允許使用緊固構件(未圖示)將蓋板60緊固至框區段。蓋板60包括經設定大小以容納EPCS耦合稜鏡42A的耦合表面45A的第一孔62A,及經設定大小以容納LSP耦合稜鏡42B的耦合表面45B的第二孔62B。In an example, the EPCS and LSP frame sections 48B and spacer members 50 include fastening tabs 52 that include mounting holes 53 that allow the cover plate 60 to be fastened using fastening members (not shown). Fastened to frame section. Cover plate 60 includes a first aperture 62A sized to accommodate coupling surface 45A of EPCS coupling interface 42A, and a second aperture 62B sized to accommodate coupling surface 45B of LSP coupling interface 42B.

第6A圖及第6B圖示出示例性方法,其中使用樹脂模製製程形成EPCS框區段48A及LSP框區段48B。該製程提供EPCS耦合稜鏡42A及LSP耦合稜鏡42B的精密對準。在實例中,模製製程係在示例性EPCS耦合稜鏡42A及LSP耦合稜鏡42B在穩定平台75上位於適當位置的情況下執行。下文更詳細地論述此製程。Figures 6A and 6B illustrate an exemplary method in which the EPCS frame section 48A and the LSP frame section 48B are formed using a resin molding process. This process provides precise alignment of EPCS coupled 42A and LSP coupled 42B. In an example, the molding process is performed with the exemplary EPCS coupling plate 42A and LSP coupling plate 42B in place on the stable platform 75 . This process is discussed in more detail below.

第7圖係示例性稜鏡支撐結構46的x-z橫截面視圖,示例性稜鏡支撐結構46係使用緊固凸片52及穿過安裝孔53的緊固構件54 (諸如螺釘)附接至混合系統20的示例性支撐充氣部70。支撐充氣部70具有頂部表面71及量測孔72。頂部表面71界定量測孔72處的示例性量測平面MP。稜鏡支撐結構46由支撐充氣部70支撐以使得EPCS耦合稜鏡42A及LSP耦合稜鏡42B駐留在量測孔72處。在實例中,EPCS耦合稜鏡42A的EPCS耦合表面45A及LSP耦合稜鏡42B的LSP耦合表面45B駐留在或大體上駐留在量測平面MP處。FIG. 7 is an x-z cross-sectional view of an exemplary bracing support structure 46 attached to a hybrid using fastening tabs 52 and fastening members 54 (such as screws) passing through mounting holes 53. Exemplary support plenum 70 of system 20 . The support plenum 70 has a top surface 71 and a measurement hole 72 . Top surface 71 defines an exemplary measurement plane MP at measurement aperture 72 . The support structure 46 is supported by the support plenum 70 such that the EPCS coupled plenum 42A and the LSP coupled plenum 42B reside at the measurement hole 72 . In an example, EPCS coupling surface 45A of EPCS coupling surface 42A and LSP coupling surface 45B of LSP coupling surface 42B reside or substantially reside at measurement plane MP.

在實例中,CS基板10由可移動基板固持器80可操作地支撐,可移動基板固持器80將CS基板固持在量測孔72之上,以使得EPCS耦合稜鏡42A及LSP耦合稜鏡42B可與CS基板10的頂部表面12交界以建立位於或大體上位於量測平面MP處的第一耦合界面INT1及第二耦合界面INT2。在實例中,使用諸如滾輪、輪、滑件、軸承等輸送元件73在支撐充氣部70的頂部表面71之上輸送可移動基板固持器80。在實例中,CS基板10由可移動基板固持器80支撐在內部唇82處,內部唇82支撐CS基板的頂部表面12的外(周邊)部分。在實例中,內部唇82的平面界定示例性量測平面MP。因此,第7圖展示量測平面MP的兩個不同的示例性位置。In an example, the CS substrate 10 is operably supported by a movable substrate holder 80 that holds the CS substrate over the metrology aperture 72 such that the EPCS coupling 42A and the LSP coupling 42B The top surface 12 of the CS substrate 10 may be interfaced to establish a first coupling interface INT1 and a second coupling interface INT2 located or substantially located at the measurement plane MP. In an example, the movable substrate holder 80 is transported over the top surface 71 of the support plenum 70 using transport elements 73 such as rollers, wheels, slides, bearings, and the like. In an example, the CS substrate 10 is supported by the movable substrate holder 80 at an inner lip 82 that supports an outer (peripheral) portion of the top surface 12 of the CS substrate. In an example, the plane of the inner lip 82 defines an exemplary measurement plane MP. Fig. 7 therefore shows two different exemplary positions of the measurement plane MP.

第8A圖係示出實例的俯視圖,其中支撐充氣部70呈包括壓力真空(pressure-vacuum,PV)元件或PV管道90 (例如,PV棒)的板的形式,PV元件或PV管道90用於氣動地嚙合CS基板10以經由真空(負壓力)將CS基板牽拉至EPCS耦合稜鏡42A的耦合表面45A及LSP耦合稜鏡42B的耦合表面45B上且然後經由壓力(正壓力)從稜鏡釋放CS基板。第8B圖係第8A圖的支持充氣部及量測孔的橫截面視圖,其展示包括PV元件(PV棒) 90及真空源92的示例性真空系統91。FIG. 8A shows a top view of an example in which a support plenum 70 is in the form of a plate comprising pressure-vacuum (PV) elements or PV pipes 90 (e.g., PV rods) for Pneumatically engage the CS substrate 10 to pull the CS substrate via vacuum (negative pressure) onto the coupling surface 45A of the EPCS coupling surface 42A and onto the coupling surface 45B of the LSP coupling surface 42B and then from the surface via pressure (positive pressure). Release the CS substrate. FIG. 8B is a cross-sectional view of the support plenum and measurement hole of FIG. 8A showing an exemplary vacuum system 91 including a PV element (PV rod) 90 and a vacuum source 92 .

請注意,可移動基板固持器80的內部唇82界定止動構件以用於在經由真空系統91向CS基板應用真空時限制CS基板10的垂直移動。Note that the inner lip 82 of the movable substrate holder 80 defines a stop member for limiting the vertical movement of the CS substrate 10 when vacuum is applied to the CS substrate via the vacuum system 91 .

採用單種折射率匹配流體的混合系統Hybrid system using a single index-matching fluid

諸如第6D圖所示的混合系統20的示例性實施例針對EPCS子系統100及LSP子系統200兩者採用具有折射率 n f 的單種折射率匹配流體5。此係一種反直覺的方法,因為單種折射率匹配流體5通常將被視為至少由於以下原因而不能夠同時針對兩個子系統產生良好的量測結果。 An exemplary embodiment of a hybrid system 20 such as that shown in FIG. 6D employs a single index matching fluid 5 having a refractive index n f for both the EPCS subsystem 100 and the LSP subsystem 200 . This is a counter-intuitive approach, since a single index matching fluid 5 would generally be considered incapable of producing good metrology results for both subsystems simultaneously for at least the following reasons.

若基於EPCS量測考量來選擇折射率匹配流體,則折射率匹配流體具有大體上高於CS基板的表面折射率 n S (例如,高出0.1或更多)的折射率 n f 以促進光耦合至導引模式中且獲得所捕獲TM及TE模式頻譜中的良好的條紋對比度。 If the index matching fluid is selected based on EPCS metrology considerations, the index matching fluid has a refractive index nf that is substantially higher (eg, 0.1 or more higher) than the surface refractive index ns of the CS substrate to facilitate optical coupling into guided mode and obtained good fringe contrast in the captured TM and TE mode spectra.

另一方面,折射率匹配流體5及CS基板10的頂部表面12的折射率之間的這種等級的折射率對比度(差異) Δn在耦合界面INT2處造成顯著的表面散射,此係由於在於表面的微粗糙度相關聯的折射率失配下的光束偏轉。這對於基於接收並處理來自CS基板的散射光來準確提取在中等深度處的延遲及應力量測結果係有問題的。高度表面散射會在散射光束的影像上產生「火球」,例如,大亮點,其中數位偵測器(CCD相機) 246的像素247充滿光子。這導致損失大量應力相關資訊。經良好拋光的表面或初始表面(諸如由熔融拉製形成)往往具有更少的散射。On the other hand, this level of refractive index contrast (difference) Δn between the refractive index matching fluid 5 and the refractive index of the top surface 12 of the CS substrate 10 causes significant surface scattering at the coupling interface INT2 due to the surface Beam deflection under refractive index mismatch associated with microroughness. This is problematic for accurate extraction of retardation and stress measurements at intermediate depths based on receiving and processing scattered light from the CS substrate. High surface scattering produces a "fireball" on the image of the scattered beam, eg, a large spot where the pixels 247 of the digital detector (CCD camera) 246 are filled with photons. This results in the loss of a large amount of stress-related information. A well-polished or pristine surface, such as formed by fusion drawing, tends to have less scattering.

若折射率匹配流體 n f 近似匹配於(例如,類似於,略高於,或略低於) CS基板10的表面折射率 n S 以確保低的表面散射,則當靠近表面處(例如,諸如尖峰區R1 (參見第1B圖))存在折射率的急劇變化(由如IOX製程所產生的K 2O濃度的淺的集中式尖峰造成)時,模式頻譜160中的條紋對比度經常為不良的。此外,TM條紋163TM及TE條紋163TE的位置及對比度變得取決於折射率匹配流體的厚度。此等兩種效應使得很難使用EPCS子系統100準確地量測表面CS及尖峰DOL。 If the refractive index matching fluid nf is approximately matched (e.g., similar to, slightly higher than, or slightly lower than) the surface refractive index nS of the CS substrate 10 to ensure low surface scattering, then when near the surface (e.g., such as The fringe contrast in the mode spectrum 160 is often poor in the presence of sharp changes in the refractive index in the peak region R1 (see FIG. 1B ) (caused by shallow concentrated spikes in the K2O concentration as produced by the 10X process ) . Furthermore, the position and contrast of TM stripes 163TM and TE stripes 163TE become dependent on the thickness of the index matching fluid. These two effects make it difficult to accurately measure surface CS and peak DOL using the EPCS subsystem 100 .

若折射率匹配流體5被選擇為具有低於CS基板10的基板(整體)折射率 n B (其亦經常意謂低於表面折射率)的折射率 n f ,則折射率匹配流體的厚度必須很小(例如,小於0.4微米)以實現至NSWG 18的近表面部分(尖峰區R1)的波導模式中的光耦合以用於表面CS量測。量測在介於表面尖峰區R1與整體區R3之間的深部區R2中行進的耦合光的臨界角亦需要小厚度。由於小顆粒污染的問題,這難以始終一致地在生產環境中達成。此等問題對準確地量測雙IOX含Li玻璃及玻璃陶瓷的表面(壓縮)應力S(0)及在表面折射率尖峰區R1的底部處的「拐點應力」S k造成問題。 If the index matching fluid 5 is chosen to have a refractive index nf lower than the substrate (bulk) refractive index nB of the CS substrate 10 (which is often also meant to be lower than the surface index), the thickness of the index matching fluid must Small (eg, less than 0.4 microns) to enable optical coupling into the waveguide mode of the near-surface portion of the NSWG 18 (peak region R1 ) for surface CS measurements. Measuring the critical angle of coupled light traveling in the deep region R2 between the surface peak region R1 and the bulk region R3 also requires a small thickness. This is difficult to achieve consistently in a production environment due to the problem of small particle contamination. These issues pose problems for accurately measuring the surface (compressive) stress S(0) and the "inflection point stress" Sk at the bottom of the surface index peak region R1 for double IOX Li-containing glasses and glass-ceramics.

結果是,用於EPCS及LSP量測兩者的單種折射率匹配流體5可在所選條件下使用,其中CS基板10的尖峰區R1具有正規化斜率S n= |(λ/n)dn(z)/dz| < 0.0005,或更佳地 S n < 0.0004,其中λ係量測波長且 n(z)係CS基板10在量測波長下的折射率。 As a result, a single index matching fluid 5 for both EPCS and LSP measurements can be used under selected conditions where the peak region R1 of the CS substrate 10 has a normalized slope S n = |(λ/n)dn (z)/dz| < 0.0005, or more preferably S n < 0.0004, where λ is the measurement wavelength and n(z) is the refractive index of the CS substrate 10 at the measurement wavelength.

在一個實施例中,折射率 n f 比CS基板10玻璃的表面折射率 n S 高(大)在0.02至0.06範圍內的量Δ n= n f - n s 的折射率匹配流體5被發現針對EPCS及LSP量測兩者產生足夠的量測結果。當S n< 0.0004時,較佳的是Δ n在上述範圍的高端中,例如,0.05至0.06。 In one embodiment, the refractive index nf is higher (larger) than the surface refractive index ns of the glass of the CS substrate 10 by an amount Δn = nf ns in the range of 0.02 to 0.06. Both EPCS and LSP measurements yield sufficient measurement results. When S n < 0.0004, it is preferred that Δ n is in the high end of the above range, for example, 0.05 to 0.06.

在本發明的一個態樣中,減小EPCS量測的量測波長λ A以減小正規化斜率S n以便更容易滿足上述條件。在一個實例中,EPCS量測的量測波長λ A比LSP量測的量測波長λ B短5%或更多以幫助達成更小的正規化斜率 S n。在實例中,一或多個光塊(未圖示)可選擇性地定位在EPCS子系統100的光束路徑上以優先阻擋以更大的入射角傳播的光線,更大的入射角對應於更高的有效折射率。這提高了NSWG 18的近表面尖峰區R1的導引模式的所捕獲TM及TE條紋的對比度。 In one aspect of the present invention, the measurement wavelength λ A of the EPCS measurement is reduced to reduce the normalization slope S n so as to more easily meet the above conditions. In one example, the measurement wavelength λ A of the EPCS measurement is 5% or more shorter than the measurement wavelength λ B of the LSP measurement to help achieve a smaller normalized slope S n . In an example, one or more light blocks (not shown) may be selectively positioned on the beam path of the EPCS subsystem 100 to preferentially block light rays propagating at greater angles of incidence, which correspond to greater angles of incidence. High effective refractive index. This improves the contrast of the captured TM and TE fringes of the guided mode of the near-surface spike region R1 of the NSWG 18 .

在另一實施例中,表面尖峰區R1可具有正規化斜率 S n 0.0005。在實例中,折射率匹配流體可被選成在EPCS量測波長λ B下具有折射率 n f ,折射率 n f 非常接近在拐點KN處的z位置處(即,在尖峰區R1的底部處)的有效折射率。在此情況下, n f n crit ,其中 n crit 為與尖峰區的臨界角(即,在該臨界角之下,光不會作為導波在尖峰區R1內行進)相關聯的折射率。 In another embodiment, the surface peak region R1 may have a normalized slope S n > 0.0005. In an example, the refractive index matching fluid can be selected to have a refractive index nf at the EPCS measurement wavelength λB that is very close to the z position at the inflection point KN (i.e., at the bottom of the peak region R1 ) effective refractive index. In this case, n f n crit , where n crit is the refractive index associated with the critical angle of the peak region (ie, below which light does not travel as a guided wave within the peak region R1 ).

在許多有實踐意義的情況下,在對應於表面尖峰區R1的底部的位置處在TM導波與TE導波之間的有效折射率差異相對小。例如,在大多數有實踐意義的情況下,該差異小於0.0006折射率單位(refractive-index unit,RIU),且最經常地介於0.00015 RIU與0.0005 RIU之間。在實例中,

Figure 02_image001
。 In many cases of practical interest, the effective refractive index difference between the TM guided wave and the TE guided wave at the position corresponding to the bottom of the surface peak region R1 is relatively small. For example, in most cases of practical interest the difference is less than 0.0006 refractive-index units (RIU), and most often between 0.00015 RIU and 0.0005 RIU. In the example,
Figure 02_image001
.

在一些實例中,規定 n f n crit 就夠了,這意謂 n oil

Figure 02_image003
及/或 n oil
Figure 02_image005
。更具體而言, n f 不會大體上小於TM及TE臨界折射率中之較小者,且亦將不顯著大於TM及TE臨界折射率中之最大者。因此,在實例中(且以數學方式表達上述情況):
Figure 02_image007
In some instances it is sufficient to state that n f n crit , which means that n oil
Figure 02_image003
and/or n oil
Figure 02_image005
. More specifically, nf will not be substantially less than the smaller of the TM and TE critical indices, and will also not be significantly greater than the largest of the TM and TE critical indices. So, in the instance (and expressing the above mathematically):
Figure 02_image007

緊接在上方的方程式中的上限經界定以減小遺漏與尖峰區R1相關聯的條紋的可能性,此係藉由使 n f 大於當折射率匹配流體不存在時該條紋的有效折射率。因此,為了實現對所有模式的正確考量以便準確地計算表面尖峰區R1 (其在實例中由鉀IOX製程界定)的深度,較佳的是, n f 不顯著大於TM及TE臨界折射率

Figure 02_image009
中之較大者,但是理想地亦不顯著大於兩個臨界折射率中之較小者。 The upper limit in the equation immediately above is defined to reduce the likelihood of missing the fringe associated with peak region R1 by making nf greater than the effective index of the fringe when no index matching fluid is present. Therefore, in order to achieve proper consideration of all modes in order to accurately calculate the depth of the surface peak region R1 (which in the example is defined by the potassium IOX process), it is preferred that nf is not significantly greater than the TM and TE critical indices
Figure 02_image009
The larger of the two critical indices of refraction is ideally not significantly greater than the smaller of the two critical indices of refraction.

在一個實施例中,當特定偏光狀態(TM或TE)中的最後一個條紋的有效折射率與對應的臨界折射率(

Figure 02_image011
Figure 02_image013
)之間存在顯著的有效折射率差異時,與尖峰區R1相關聯的TM及TE模式頻譜中的模式條紋在折射率空間中相隔較遠,例如,相隔超過0.0015 RIU,或較佳地相隔超過0.002 RIU,或甚至更佳地相隔超過0.0025 RIU。在此實施例中,折射率匹配流體的折射率可被選擇為更接近兩個臨界折射率中之較高者,且可能高於兩個臨界折射率中之較大者:
Figure 02_image015
Figure 02_image017
In one embodiment, when the effective refractive index of the last fringe in a particular polarization state (TM or TE) is different from the corresponding critical refractive index (
Figure 02_image011
or
Figure 02_image013
), the mode fringes in the TM and TE mode spectra associated with the peak region R1 are far apart in refractive index space, e.g., separated by more than 0.0015 RIU, or preferably separated by more than 0.002 RIU, or even better separated by more than 0.0025 RIU. In this embodiment, the refractive index of the index matching fluid may be selected to be closer to, and possibly higher than, the higher of the two critical indices of refraction:
Figure 02_image015
or
Figure 02_image017

有效折射率的此等差異容易使用EPCS子系統100藉由量測臨界角(其對應於感測器上從明亮的全內反射至黑暗的(部分反射)的強度轉變166TM及166TE)的位置及/或條紋位置的差異來建立,且考慮到儀器的校準(每RIU的角度,或每RIU的像素,或每RIU的感測器平面上的點間距)。These differences in effective refractive index are readily used with the EPCS subsystem 100 by measuring the location of the critical angles (which correspond to the intensity transitions 166TM and 166TE on the sensor from bright total internal reflection to dark (partial reflection)) and and/or the difference in fringe position is established and takes into account the calibration of the instrument (angle per RIU, or pixel per RIU, or point spacing on the sensor plane per RIU).

在具有更一般的應用的另一實施例中,折射率匹配流體的折射率 n oil 被選擇為更接近TM及TE有效折射率中之較低者。這使得能夠捕獲有效折射率可能接近臨界折射率的TM及TE條紋,但是可能需要EPCS耦合稜鏡42A的耦合表面45A與CS基板10的頂部表面12之間的相對緊密的接近度(例如,幾個波長)。 In another embodiment with more general application, the index n oil of the index matching fluid is selected to be closer to the lower of the TM and TE effective indices. This enables capture of TM and TE fringes whose effective refractive index may be close to the critical index, but may require a relatively close proximity (e.g., several wavelength).

更具體而言,在此實施例中較佳的是

Figure 02_image019
Figure 02_image021
。 More specifically, it is preferred in this embodiment to
Figure 02_image019
or
Figure 02_image021
.

此外,為了減小臨界角轉變的形狀的顯著變化,可能較佳的是Furthermore, to reduce significant changes in the shape of the critical angle transition, it may be preferable to

Figure 02_image023
或甚至
Figure 02_image025
Figure 02_image023
or even
Figure 02_image025

在一些有實踐意義的情況下,具有最低有效折射率的導引模式具有其很接近臨界折射率(在約0.0002 RIU內)的有效折射率。在此情況下,可能理想的是亦對將根據上述情況受到限制的折射率匹配流體的折射率強加更嚴格的要求:

Figure 02_image027
In some cases of practical interest, the guided mode with the lowest effective index has its effective index very close to the critical index (within about 0.0002 RIU). In this case it may be desirable to also impose stricter requirements on the refractive index of the index matching fluid which would be limited according to the above:
Figure 02_image027

n oil 小於兩個臨界折射率中之至少一者的情況下,獲得高對比度轉變以用於正確量測臨界折射率 n crit 可能需要EPCS耦合稜鏡42A的耦合表面45A與CS基板10的頂部表面12之間的前述緊密的接近度(例如,幾個波長)。在實例中,此緊密的接近度係藉由使用真空系統來實現,真空系統經由氣動地連接至真空源92的PV管道90朝向稜鏡吸引試樣。 In cases where n oil is less than at least one of the two critical indices of refraction, obtaining a high-contrast transition for correct measurement of the critical index of refraction n crit may require EPCS coupling of coupling surface 45A of plate 42A to the top of CS substrate 10 The aforementioned close proximity (eg, a few wavelengths) between surfaces 12 . In an example, this close proximity is achieved by use of a vacuum system that draws the sample toward the pan through PV tubing 90 that is pneumatically connected to a vacuum source 92 .

在另一實施例中,當折射率匹配流體的折射率 n oil 並非顯著不同於用於計算表面壓縮應力CS的導引光學模式的有效折射率時,對表面壓縮應力S(0)= CS的計算中的系統誤差進行校正。特定而言,在以下情況下較佳可利用此種校正:

Figure 02_image029
In another example, when the refractive index n oil of the index matching fluid is not significantly different from the effective refractive index of the guided optical mode used to calculate the surface compressive stress CS, for the surface compressive stress S(0) = CS Systematic errors in calculations are corrected. In particular, it is best to take advantage of this correction when:
Figure 02_image029

在一個示例性實施例中,校正係藉由校準系統誤差來規定,例如,藉由對使用較佳的發明性兩用折射率匹配流體所量測的表面壓縮應力CS與藉由使用更習知的折射率匹配流體所量測的CS進行比較,更習知的折射率匹配流體具有相對大的折射率 n oil ,諸如用於量測具有在1.45至1.55範圍內的整體折射率 n B 的CS基板10的在λ A= 590 nm下具有 n oil= 1.72的油。 In an exemplary embodiment, the correction is specified by calibrating systematic errors, for example, by comparing the surface compressive stress CS measured using the preferred inventive dual-purpose index-matching fluid with that by using the more known Compared with the CS measured by the index matching fluid of the more known index matching fluid having a relatively large refractive index n oil , such as the CS used to measure the bulk refractive index n B in the range of 1.45 to 1.55 The oil of substrate 10 has n oil = 1.72 at λ A = 590 nm.

在相關實施例中,亦可針對TM條紋163TM及TE條紋163TE的寬度校準系統誤差,因為該寬度可與折射率匹配流體相關聯,且同時與表面壓縮應力CS的量測中的系統誤差的量相關聯。應注意,系統誤差亦將取決於CS基板10的表面尖峰區R1的折射率輪廓的折射率斜率 S n 。這意謂系統誤差可針對具有落在相對窄範圍內的表面折射率 S n 的特定類型的CS基板來界定。此種窄範圍通常係針對採用已使用IOX製程來增強的Li基玻璃的CS基板。 In a related embodiment, the systematic error can also be calibrated for the width of the TM stripe 163TM and the TE stripe 163TE, as this width can be correlated with the index matching fluid and simultaneously with the amount of systematic error in the measurement of the surface compressive stress CS Associated. It should be noted that the systematic error will also depend on the refractive index slope S n of the refractive index profile of the surface peak region R1 of the CS substrate 10 . This means that systematic errors can be defined for a particular type of CS substrate with a surface index of refraction S n falling within a relatively narrow range. Such a narrow range is typically for CS substrates employing Li-based glass that has been reinforced using a 10X process.

採用兩種不同折射率匹配流體的混合系統Hybrid system using two different index matching fluids

混合系統20的示例性實施例分別針對EPCS子系統100及LSP子系統200採用兩種不同的折射率匹配流體5 (表示為5A及5B),其中兩種不同的折射率匹配流體5A及5B具有相應的折射率 n fA n fB (或者 n oil-A n oil-B )。 An exemplary embodiment of the hybrid system 20 employs two different index matching fluids 5 (denoted 5A and 5B) for the EPCS subsystem 100 and the LSP subsystem 200, respectively, wherein the two different index matching fluids 5A and 5B have The corresponding refractive indices n fA and n fB (or n oil-A and n oil-B ).

採用兩種不同的折射率匹配流體5A及5B需要保持兩種折射率匹配流體為分離的,以使得它們不會彼此混合。在上文結合第5A圖及第5B圖所論述的一個實例中,稜鏡支撐結構46包括安置於EPCS耦合稜鏡42A與LSP耦合稜鏡42B之間的隔離構件50以保持兩種折射率匹配流體5A及5B為分離的,即,彼此流體隔離。Using two different index matching fluids 5A and 5B requires keeping the two index matching fluids separate so that they do not mix with each other. In one example discussed above in connection with FIGS. 5A and 5B , the EPCS support structure 46 includes a spacer member 50 positioned between the EPCS coupling 42A and the LSP coupling 42B to maintain the two indices of refraction matching. Fluids 5A and 5B are separate, ie fluidly isolated from each other.

在另一實施例中,將加壓氣體(例如,空氣)引入至EPCS耦合稜鏡42A與LSP耦合稜鏡42B之間的小間隙中以界定「空氣幕」30 (參見第2B圖),「空氣幕」30確保在CS基板10在混合系統20中被量測時,折射率匹配流體5A及5B不會彼此相互作用。此分離於是將使得相應的折射率匹配流體5A及5B能夠同時自動滴落至其相應的EPCS耦合稜鏡42A及LSP耦合稜鏡42B上,從而允許同時量測。在實例中,空氣幕30可使用真空系統91 (參見第8B圖)來形成。In another embodiment, a pressurized gas (e.g., air) is introduced into the small gap between the EPCS coupling panel 42A and the LSP coupling panel 42B to define an "air curtain" 30 (see FIG. 2B ), " Air curtain 30 ensures that index matching fluids 5A and 5B do not interact with each other while CS substrate 10 is being measured in mixing system 20. This separation would then enable simultaneous automatic dripping of respective index matching fluids 5A and 5B onto their respective EPCS-coupled 42A and LSP-coupled 42B, allowing simultaneous measurements. In an example, air curtain 30 may be formed using vacuum system 91 (see FIG. 8B ).

串擾有所減少的混合系統Hybrid systems with reduced crosstalk

考慮到EPCS耦合稜鏡42A及LSP耦合稜鏡42B的接近度,可能發生EPCS子系統100與LSP子系統200之間的串擾。此種串擾可減小每一子系統的應力量測結果的準確度。下文所描述的用於減少(包括消除)串擾的各種實施例可單獨地或組合地使用。Given the proximity of the EPCS coupling 42A and the LSP coupling 42B, crosstalk between the EPCS subsystem 100 and the LSP subsystem 200 may occur. Such crosstalk can reduce the accuracy of stress measurements for each subsystem. The various embodiments described below for reducing (including eliminating) crosstalk may be used alone or in combination.

在一個實例中,用於EPCS子系統100的EPCS偵測器系統140包括以EPCS量測波長λ A為中心的前述帶通濾波器144。同時,用於LSP子系統200的LSP偵測器系統240包括以LSP量測波長λ B為中心的前述帶通濾波器244。在實例中,帶通濾波器144及244的相應頻寬足夠窄以大體上濾去其他子系統量測波長。因為可使帶通濾波器很窄(例如,幾奈米),所以量測波長的僅僅小差異(例如,10 nm)就將足以使用帶通濾波器來減少或消除串擾。在實例中,給定的帶通濾波器可插入於對應的耦合稜鏡與偵測器系統之間的任何地方。 In one example, the EPCS detector system 140 for the EPCS subsystem 100 includes the aforementioned bandpass filter 144 centered on the EPCS measurement wavelength λΑ . Meanwhile, the LSP detector system 240 for the LSP subsystem 200 includes the aforementioned bandpass filter 244 centered on the LSP measurement wavelength λ B. In an example, the respective bandwidths of bandpass filters 144 and 244 are narrow enough to substantially filter out other subsystem measurement wavelengths. Because the bandpass filter can be made very narrow (eg, a few nanometers), only a small difference in measurement wavelength (eg, 10 nm) will be sufficient to use the bandpass filter to reduce or eliminate crosstalk. In an example, a given bandpass filter can be inserted anywhere between the corresponding coupling filter and detector system.

在另一實施例中,對EPCS量測波長λ A及LSP量測波長λ B光學不透明的障壁安置於EPCS耦合稜鏡42A與LSP耦合稜鏡42B之間。在實例中,障壁呈隔離構件50的形式,如上文結合第5A圖所論述的。隔離構件50可由諸如鋁的剛性材料或諸如橡膠的非剛性材料形成,只要其能夠阻止EPCS及LSP量測光在EPCS耦合稜鏡與LSP耦合稜鏡之間連通即可。如上所述,隔離構件50亦可經組態以服務於光學隔離及流體隔離的雙重目的。 In another embodiment, an optically opaque barrier to the EPCS measurement wavelength λ A and the LSP measurement wavelength λ B is disposed between the EPCS coupling panel 42A and the LSP coupling panel 42B. In an example, the barriers are in the form of isolation members 50, as discussed above in connection with FIG. 5A. The isolation member 50 may be formed of a rigid material such as aluminum or a non-rigid material such as rubber as long as it can prevent the EPCS and LSP measurement light from communicating between the EPCS coupling plate and the LSP coupling plate. As noted above, isolation member 50 may also be configured to serve the dual purpose of optical isolation and fluid isolation.

耦合稜鏡對準Coupling

當EPCS耦合稜鏡42A及LSP耦合稜鏡42B相對於彼此對準且其耦合表面45A及45B駐留在共同平面中時,混合系統20提供最準確的量測。The hybrid system 20 provides the most accurate measurements when the EPCS coupling 42A and LSP coupling 42B are aligned relative to each other and their coupling surfaces 45A and 45B reside in a common plane.

為了達成此種對準,耦合稜鏡總成40採用所使用的前述稜鏡支撐結構46。在形成稜鏡支撐結構46的實例中,首先將EPCS耦合稜鏡42A的耦合表面45A及LSP耦合稜鏡42B的耦合表面45B研磨及拋光成高平坦度及垂直度。再次參考第6A圖,然後將EPCS耦合表面45A及LSP耦合表面45B置放於穩定平台75 (諸如精密平坦的花崗岩條)上,其中耦合表面45A及45B駐留在穩定平台的表面76上。In order to achieve this alignment, the coupling fender assembly 40 employs the aforementioned fringe support structure 46 used. In an example of forming the support structure 46, the coupling surface 45A of the EPCS coupling surface 42A and the coupling surface 45B of the LSP coupling surface 42B are first ground and polished to high flatness and perpendicularity. Referring again to FIG. 6A, the EPCS coupling surface 45A and the LSP coupling surface 45B are then placed on a stable platform 75, such as a precisely flat bar of granite, with the coupling surfaces 45A and 45B residing on the surface 76 of the stable platform.

參考第6B圖,將模具49安裝在穩定平台75上的表面76處,且然後將樹脂49R澆注至模具中。在樹脂硬化後,移除模具49的壁以界定耦合稜鏡總成40的稜鏡支撐結構46,諸如第5B圖所示。在實例中,模製的稜鏡支撐結構46包括在EPCS耦合稜鏡42A與LSP耦合稜鏡42B之間的呈薄壁47形式的隔離構件50,如第6C圖所示。在實例中,模製的稜鏡支撐結構46形成為使得稜鏡中之至少一者經部分地包覆以避免串擾。在實例中,模製的稜鏡支撐結構46包含單一模製結構或由單一模製結構組成,即,係由單種材料形成的單件(即,件單體),且因此並非藉由接合兩個或兩個以上組件形成的。Referring to Figure 6B, mold 49 is mounted at surface 76 on stable platform 75, and resin 49R is then poured into the mold. After the resin has hardened, the walls of the mold 49 are removed to define the bracing support structure 46 that couples the brazing assembly 40, such as shown in FIG. 5B. In an example, the molded wall support structure 46 includes a spacer member 50 in the form of a thin wall 47 between the EPCS coupling wall 42A and the LSP coupling wall 42B, as shown in FIG. 6C. In an example, the molded pleated support structure 46 is formed such that at least one of the pleated shells is partially clad to avoid crosstalk. In an example, the molded plaster support structure 46 comprises or consists of a single molded structure, ie, is a single piece (ie, a single piece) formed from a single material, and thus is not formed by bonding Formed from two or more components.

在實例中,模製的稜鏡支撐結構46包括緊固凸片52,緊固凸片52包括安裝孔53以用於將稜鏡支撐結構46緊固至充氣部(亦參見第5A圖)。如第7圖所示且如上文所描述的可移動基板監測器80的使用使得能夠在CS基板10上的同一位置處進行EPCS及LSP量測。可在系統控制器400的操作下藉由使用精密線性馬達(例如,壓電致動器)來移動可移動基板監測器80以設定EPCS子系統100及LSP子系統200的量測位置。In an example, the molded pan support structure 46 includes fastening tabs 52 that include mounting holes 53 for securing the pan support structure 46 to the inflatable portion (see also FIG. 5A ). The use of a movable substrate monitor 80 as shown in FIG. 7 and described above enables EPCS and LSP measurements to be taken at the same location on the CS substrate 10 . The measurement positions of the EPCS subsystem 100 and the LSP subsystem 200 can be set by moving the movable substrate monitor 80 under the operation of the system controller 400 using precision linear motors (eg, piezoelectric actuators).

在實例中,稜鏡支撐結構46包括可相對於彼此移動的區段,以使得EPCS耦合稜鏡42A及LSP耦合稜鏡42B可相對於彼此移動(例如,軸向或z方向,如第6C圖所示)。在實例中,稜鏡支撐結構的支撐框48包括相鄰的壁,該等壁經組態以使得一個壁可相對於另一個以受到控制的方式滑動。在第6C圖的實例中,EPCS耦合稜鏡42A被展示為已相對於LSP耦合稜鏡42B在z方向上移動。In an example, the coupling support structure 46 includes sections that are movable relative to each other such that the EPCS coupling coupling 42A and the LSP coupling coupling 42B are movable relative to each other (e.g., axial or z-direction, as shown in FIG. 6C ). shown). In an example, the support frame 48 of the support structure includes adjacent walls configured such that one wall can slide relative to the other in a controlled manner. In the example of FIG. 6C, the EPCS coupling plate 42A is shown as having moved in the z-direction relative to the LSP coupling plate 42B.

第6D圖類似於第4C圖,且示出混合系統20的實施例,其中EPCS子系統100及LSP子系統200共用共同耦合稜鏡42,即,共同耦合稜鏡42充當EPCS耦合稜鏡42A及LSP耦合稜鏡42B兩者。亦使用單種折射率匹配流體5。共同耦合稜鏡42的各個表面具有雙重目的,例如,耦合表面被表示為45A及45B,因為其服務於執行EPCS耦合及LSP耦合的雙重目的。在實例中,EPCS子系統100及LSP子系統200的帶通濾波器144及244與不同波長λ A及λ B(例如,在波長上至少相隔帶通濾波器144及244中之一者的頻寬)一起使用以大體上減少或消除子系統之間的串擾。在共同耦合稜鏡42的實例中,耦合稜鏡具有ECSP區段PS1及LSP區段PS2,且進一步在此實例中,該等區段可為單獨的,即,EPCS光束116及LSP光束216通常停留在其相應的區段中,少量散射光除外。 FIG. 6D is similar to FIG. 4C and shows an embodiment of hybrid system 20 in which EPCS subsystem 100 and LSP subsystem 200 share common coupling interface 42, i.e., common coupling interface 42 serves as EPCS coupling interface 42A and The LSP couples both of 騜鏡42B. A single index matching fluid 5 is also used. The various surfaces of the common coupling surface 42 serve a dual purpose, for example, the coupling surfaces are denoted 45A and 45B because they serve the dual purpose of performing EPCS coupling as well as LSP coupling. In an example, the bandpass filters 144 and 244 of the EPCS subsystem 100 and the LSP subsystem 200 are separated from the bandpass filters 144 and 244 of different wavelengths λ A and λ B (e.g., separated by at least the frequency of one of the bandpass filters 144 and 244 in wavelength). wide) to substantially reduce or eliminate crosstalk between subsystems. In the example of the common coupled beam 42, the coupled beam has ECSP segment PS1 and LSP segment PS2, and further in this example, these segments may be separate, i.e., EPCS beam 116 and LSP beam 216 generally Stay in their corresponding segment, except for a small amount of scattered light.

減少基板翹曲Reduce substrate warpage

CS基板10可足夠大以致於它可能翹曲達到進行準確的EPCS及LSP應力量測變得有問題的程度。特定而言,翹曲的CS基板10可使得難以建立進行EPCS及LSP應力量測所需要的EPCS耦合界面INT1及LSP耦合界面INT2。The CS substrate 10 may be large enough that it may warp to the extent that making accurate EPCS and LSP stress measurements becomes problematic. In particular, a warped CS substrate 10 can make it difficult to establish the EPCS coupling interface INT1 and the LSP coupling interface INT2 required for EPCS and LSP stress measurements.

再次參考第8A圖及第8B圖,真空系統91用於減少或消除基板翹曲。PV管道(PV棒) 90穿過支撐充氣部70中的量測孔72與CS基板10的頂部表面12氣動連通,支撐充氣部70支撐CS基板以使得頂部表面12大體上駐留在量測平面MP處。真空源92的啟動經由PV管道90在耦合稜鏡總成40附近產生減小的壓力,從而由周圍高壓力在CS基板上產生向下的力FD,如兩個大箭頭所示。PV管道90使得相對於支撐充氣部70的頂部表面71 (且因此,相對於量測平面MP)對CS基板的高度控制在±5微米的準確度內。真空系統91的使用亦減少振動且實現對CS基板的非接觸式控制以用於動態處理及檢驗而不需要使CS基板在真空吸盤上穩定。Referring again to Figures 8A and 8B, a vacuum system 91 is used to reduce or eliminate substrate warpage. PV pipes (PV rods) 90 are in pneumatic communication with the top surface 12 of the CS substrate 10 through the measurement holes 72 in the support plenum 70, which supports the CS substrate such that the top surface 12 generally resides in the measurement plane MP place. Activation of the vacuum source 92 generates a reduced pressure near the coupling assembly 40 via the PV conduit 90, thereby generating a downward force FD on the CS substrate from the high ambient pressure, as indicated by the two large arrows. The PV conduit 90 enables control of the height of the CS substrate relative to the top surface 71 of the support plenum 70 (and thus relative to the measurement plane MP) to within an accuracy of ±5 microns. The use of the vacuum system 91 also reduces vibration and enables non-contact control of the CS substrate for dynamic handling and inspection without the need to stabilize the CS substrate on the vacuum chuck.

PV管道90係可商購的且可經組態以用於減少翹曲,如第8A圖及第8B圖所示。可能需要省略靠近耦合稜鏡總成40的一些PV管道90以避免干擾EPCS光束116及LSP光束216以及EPCS子系統100及LSP子系統200的緊接在支撐充氣部70下方的各種組件。在實例中,一或多個止動構件94可用於將CS基板10在支撐充氣部70上固持在適當位置。PV pipe 90 is commercially available and can be configured for warping reduction, as shown in Figures 8A and 8B. It may be desirable to omit some of the PV piping 90 proximate to the coupling assembly 40 to avoid interference with the EPCS beam 116 and the LSP beam 216 and the various components of the EPCS subsystem 100 and the LSP subsystem 200 immediately below the support plenum 70 . In an example, one or more stop members 94 may be used to hold the CS substrate 10 in place on the support plenum 70 .

在一些情況下,可能希望EPCS耦合稜鏡42A及LSP耦合稜鏡42B中之至少一者能夠根據另一者來調整。在此情況下,耦合稜鏡總成40可包含兩個單獨的稜鏡支撐結構46,其中一者或兩者係可調整的。在一個實例中,EPCS耦合稜鏡42A可在z方向上調整以最佳化模式頻譜中的TM及TE模式條紋的對比度。這可藉由使用附接至稜鏡支撐結構46的單軸線微定位器來實現,單軸線微定位器將EPCS耦合稜鏡固持在可移動組態中。In some cases, it may be desirable for at least one of the EPCS coupling interface 42A and the LSP coupling interface 42B to be adjustable from the other. In such a case, the coupling fender assembly 40 may comprise two separate fringe support structures 46, one or both of which are adjustable. In one example, the EPCS coupling plate 42A can be adjusted in the z-direction to optimize the contrast of the TM and TE mode fringes in the mode spectrum. This can be accomplished by using a single-axis micropositioner attached to the cannon support structure 46, which holds the EPCS-coupled cannon in a movable configuration.

處理deal with EPCSEPCS and LSPLSP 量測結果Measurement result

第9圖係混合系統20的系統控制器400所顯示的示例性使用者介面410的示意圖。使用者介面410包括展示由EPCS子系統100產生的模式頻譜160的EPCS區段412A及展示由LSP子系統200產生的數位LSP影像248D的LSP區段412B。系統控制器400中的軟體經組態以:使用來自EPCS子系統100的EPCS量測結果(即,模式頻譜160)計算CS基板的第一應力特性,且使用來自LSP子系統200的LSP量測結果(即,數位LSP影像248D)計算CS基板的第二應力特性,然後組合該等量測結果以產生CS基板的完整或全面應力表徵。FIG. 9 is a schematic diagram of an exemplary user interface 410 displayed by the system controller 400 of the hybrid system 20 . User interface 410 includes EPCS section 412A showing mode spectrum 160 produced by EPCS subsystem 100 and LSP section 412B showing digital LSP image 248D produced by LSP subsystem 200 . The software in the system controller 400 is configured to: use the EPCS measurements from the EPCS subsystem 100 (i.e., the mode spectrum 160 ) to calculate the first stress characteristic of the CS substrate, and use the LSP measurements from the LSP subsystem 200 The result (ie, digital LSP image 248D) calculates a second stress characteristic of the CS substrate, and then combines the measurements to produce a complete or global stress characterization of the CS substrate.

處理deal with LSPLSP 量測結果Measurement result

在實例中,系統控制器400經組態(例如,組態有軟體)以處理LSP影像248以提取從LSP子系統200獲得的「第二」或LSP應力特性。這包括使用作為輪廓偵測方法的一部分執行的高斯模糊Otsu定限來數位表徵LSP影像248的輪廓,以促進光學延遲與深度(OR與D)的計算。In an example, system controller 400 is configured (eg, configured with software) to process LSP image 248 to extract a “second” or LSP stress characteristic obtained from LSP subsystem 200 . This includes digitally characterizing the contours of the LSP image 248 using Gaussian blur Otsu delimitation performed as part of the contour detection method to facilitate calculation of optical retardation and depth (OR and D).

第10A圖係如使用者介面410的LSP區段412B所示的LSP影像248的示例性表示。藉由數位偵測器246對LSP影像248的偵測形成了數位LSP影像248D,數位LSP影像248D可被稱為原始LSP影像或原始數位LSP影像。使用者介面的LSP區段412B亦展示構成數位LSP影像248D的散射光強度的直方圖以及一些相關的統計量測結果。在此示例性視圖中,進入CS基板的主要光束入射係從十字形的右下角至中心。從十字形的中心至右上角,數位相機觀察到從光束的側面的CS基板的空氣表面的反射(參見以下的第11C圖),該反射係由於全內反射。從十字形的中心至左下角,直接光束已從CS基板空氣表面被反射且向後穿過CS基板的厚度朝向LSP耦合稜鏡行進。從中心至左上角,數位相機觀察到反射光束的反射。FIG. 10A is an exemplary representation of LSP image 248 as shown in LSP section 412B of user interface 410 . The detection of the LSP image 248 by the digital detector 246 forms a digital LSP image 248D. The digital LSP image 248D may be referred to as an original LSP image or an original digital LSP image. The LSP section 412B of the user interface also displays a histogram of the scattered light intensity constituting the digital LSP image 248D and some related statistical measurements. In this exemplary view, the primary beam incidence into the CS substrate is from the lower right corner of the cross to the center. From the center of the cross to the upper right corner, the digital camera observes the reflection from the air surface of the CS substrate on the side of the beam (see Figure 11C below), which is due to total internal reflection. From the center of the cross to the lower left corner, the direct beam has been reflected from the CS substrate air surface and travels back through the thickness of the CS substrate towards the LSP coupling plate. From center to upper left, a digital camera observes reflections of reflected beams.

數位LSP影像248D主要包含很亮的像素及幾乎沒有或沒有曝光的像素。參考第10B圖,作為輪廓偵測方法的一部分,對初始(原始)數位LSP影像248D (左側影像)應用高斯模糊以減少任何殘餘雜訊。結果為模糊的LSP影像248B (右側影像)。高斯模糊係以不會使光學延遲資訊模糊的方式應用,光學延遲資訊編碼於數位LSP影像248D的強度變化中。The digital LSP image 248D mainly contains very bright pixels and pixels with little or no exposure. Referring to Figure 10B, as part of the contour detection method, a Gaussian blur is applied to the initial (raw) digital LSP image 248D (left image) to reduce any residual noise. The result is blurred LSP image 248B (right image). Gaussian blur is applied in a manner that does not obscure the optical delay information encoded in the intensity variations of the digital LSP image 248D.

現在參考第10C圖,對第10B圖的(高斯)模糊的LSP影像248B應用Otsu定限以獲得臨限LSP影像248T。Otsu定限機制使用影像直方圖(參見第10A圖)來選擇強度值,在該強度值之下,將所有像素設定為零。第10C圖中的明亮區段表示強度高於該臨限值的所有像素。Referring now to FIG. 10C, the Otsu limit is applied to the (Gaussian) blurred LSP image 248B of FIG. 10B to obtain a threshold LSP image 248T. The Otsu bounding mechanism uses the image histogram (see Figure 10A) to select an intensity value below which all pixels are set to zero. The bright regions in Figure 10C represent all pixels with intensities above this threshold.

第10D圖展示下一個處理步驟,其涉及使用臨限LSP影像248T來使用二元化方法界定LSP影像輪廓248C,諸如藉由應用已知的開放原始碼二元化演算法,諸如可從開放原始碼影像處理演算法獲得的(例如,經由OpenCV)。實例使用在左上角具有0.0且在向右的(x)方向及向下的(y)方向上具有增大的值的影像坐標系統。LSP影像輪廓248C包含點的陣列,其可分成象限以找到十字形影像的以下五個臨界點:左上角、右上角、左下角、右下角及中心。第10D圖的特寫圖展示找到該區域中的最低X值及最高Y值獲得的左下角點偵測的實例。針對所有四個角重複相同的過程,且藉由對角X及Y值求平均來判定中心。FIG. 10D shows the next processing step which involves using the threshold LSP image 248T to define the LSP image contour 248C using a binarization method, such as by applying a known open source binarization algorithm, such as available from Open Source code image processing algorithm (eg, via OpenCV). The example uses an image coordinate system with 0.0 in the upper left corner and increasing values in the right (x) and downward (y) directions. The LSP image profile 248C contains an array of points that can be divided into quadrants to find the following five critical points of the cross-shaped image: upper left corner, upper right corner, lower left corner, lower right corner, and center. The close-up of Figure 10D shows an example of the bottom left corner point detection obtained by finding the lowest X value and highest Y value in the area. The same process is repeated for all four corners, and the center is determined by averaging the corner X and Y values.

第10E圖展示具有全面界定的輪廓及已處理區域的最終LSP影像輪廓248C。在實例中,已處理的「X」LSP影像輪廓248C的右下段(參見梯形區域)然後用於計算LSP應力特性。第10E圖中的LSP影像輪廓248C中的水平線處於恆定的深度。跨來自在對光源的偏光進行調變時獲取的影像中之每一者的水平線的強度(例如,總和、峰值或平均值)高斯模糊用作後續分析的輸入以獲得OR與D資料。FIG. 10E shows the final LSP image contour 248C with fully defined contours and processed regions. In the example, the lower right segment of the processed "X" LSP image profile 248C (see trapezoidal area) is then used to calculate LSP stress properties. The horizontal lines in LSP image outline 248C in Figure 10E are at constant depth. The intensity (eg, sum, peak, or average) Gaussian blur across the horizon from each of the images acquired while modulating the polarization of the light source was used as input for subsequent analysis to obtain OR and D data.

因此,臨限LSP影像248T及LSP影像輪廓248C用於界定「遮罩」,該「遮罩」識別所捕獲或高斯模糊的LSP影像248B的將要用於計算光學延遲OR的一部分或多個部分,光學延遲OR依進入CS基板10的深度(D)而變,如上文所解釋。Thus, the threshold LSP image 248T and the LSP image profile 248C are used to define a "mask" that identifies a portion or portions of the captured or Gaussian blurred LSP image 248B that will be used to calculate the optical delay OR, The optical retardation OR is a function of the depth (D) into the CS substrate 10, as explained above.

CSCS 基板厚度提取及光束角計算Substrate thickness extraction and beam angle calculation

第11A圖係CS基板10的視圖。第11A圖亦展示在穿過LSP耦合稜鏡42B (未圖示)之後的經聚焦的LSP光束216F的在CS基板10的主體11內部的一部分的光束路徑。第11B圖係展示CS基板10的邊緣部分(作為用於計算CS基板厚度TH的感興趣區域)的特寫視圖。第11C圖至第11E圖係經聚焦的LSP光束216F在CS基板內的路徑的額外視圖。為便於說明,未展示LSP耦合稜鏡42B。FIG. 11A is a view of the CS substrate 10 . FIG. 11A also shows the beam path of a portion of the focused LSP beam 216F inside the body 11 of the CS substrate 10 after passing through the LSP coupling beam 42B (not shown). FIG. 11B shows a close-up view of the edge portion of the CS substrate 10 as a region of interest for calculating the CS substrate thickness TH. 11C-11E are additional views of the path of the focused LSP beam 216F within the CS substrate. For ease of illustration, LSP-coupled 騜鏡42B is not shown.

藉由沿著經聚焦的LSP光束216F的傳播方向觀察CS基板10的邊緣,可突顯LSP偵測器系統240的數位偵測器246所看到的CS基板10的厚度,如第11B圖所示。因為數位偵測器246正在觀察穿過成角度的LSP耦合稜鏡42B (例如,成45°角)的經聚焦的LSP光束216F,所以可將CS基板10的厚度TH計算為 TH = x/{Cos (45°) 其中 x表示在數位偵測器246的平面中的路徑長度。 By observing the edge of the CS substrate 10 along the propagation direction of the focused LSP beam 216F, the thickness of the CS substrate 10 as seen by the digital detector 246 of the LSP detector system 240 can be highlighted, as shown in FIG. 11B . Since the digital detector 246 is observing the focused LSP beam 216F passing through the angled LSP coupling beam 42B (e.g., at a 45° angle), the thickness TH of the CS substrate 10 can be calculated as TH = x /{ Cos (45°) where x represents the path length in the plane of the digital detector 246 .

一旦計算出厚度TH,就可藉由以下步驟判定經聚焦的LSP光束216F在CS基板內的傳播角 A(參見第11E圖):沿著數位偵測器246的方向觀察CS基板10的邊緣,及使用第11E圖的示意圖來使用下式判定傳播角 AA = ArcTan(W/TH)其中 W係從上述輪廓偵測方法獲得的LSP影像輪廓248C的中心交叉點C與影像輪廓的右下角(lower right,LR)臨界點之間的水平距離。一旦選擇了已處理區域,數位偵測器246就記錄依輸入偏光而變的若干LSP影像248。然後使用此項技術中已知的技術來提取依進入CS基板的深度而變的光學延遲資訊。 Once the thickness TH is calculated, the propagation angle A of the focused LSP beam 216F within the CS substrate (see FIG. 11E ) can be determined by observing the edge of the CS substrate 10 in the direction of the digital detector 246, And use the schematic diagram of Fig. 11E to use the following formula to determine the propagation angle A : A=ArcTan(W/TH) wherein W is the center intersection C of the LSP image contour 248C obtained from the above contour detection method and the lower right corner of the image contour (lower right, LR) the horizontal distance between critical points. Once the processed area is selected, the digital detector 246 records a number of LSP images 248 as a function of the input polarization. The optical delay information as a function of depth into the CS substrate is then extracted using techniques known in the art.

鎖定偵測方法lock detection method

鎖定偵測方法係一種已經證實很擅長於快速擷取由雜訊模糊的信號的信號分析技術。為了使此方法起作用,必須已知信號的週期。The lock-in detection method is a signal analysis technique that has proven to be very good at quickly extracting signals obscured by noise. For this method to work, the period of the signal must be known.

來自LSP子系統200的量測(偵測器)信號SB具有取決於光學補償器230的偏光旋轉速率的週期。當光學補償器230中使用旋轉半波片234RH時,一次全旋轉對應於散射的LSP光束216S的偏光狀態的四次振盪。The measurement (detector) signal SB from the LSP subsystem 200 has a period that depends on the polarization rotation rate of the optical compensator 230 . When rotating half-wave plate 234RH is used in optical compensator 230, one full rotation corresponds to four oscillations of the polarization state of scattered LSP beam 216S.

應用於LSP量測信號SB = s(t)的鎖定法的推導如下,其中 t為時間。認為LSP量測信號 s(t)以零為中心且具有雜訊量(「雜訊因數」) N。系統控制器400接收到的量測資料 D(t)可表示為: D(t)= s(t)+ N量測信號s(t)可一般化為以下形式 s(t)= A cos(ft+ φ) 其中φ為要提取的相位值且 f為信號的已知頻率。可藉由將此信號乘以具有相等且負的週期(及任意相位) W(t) = cos (-f- θ)的通用測試波來將其「鎖定」以得出以下方程式:

Figure 02_image031
。 The lock-in method applied to the LSP measurement signal SB = s(t) is derived as follows, where t is time. The LSP measurement signal s(t) is considered to be centered around zero and have a noise amount ("noise factor") N . The measurement data D(t) received by the system controller 400 can be expressed as: D(t) = s(t) + N The measurement signal s(t) can be generalized into the following form s(t) = A cos( ft + φ) where φ is the phase value to be extracted and f is the known frequency of the signal. This signal can be "locked" by multiplying it by a common test wave of equal and negative period (and arbitrary phase) W(t) = cos (-f - θ) to yield the following equation:
Figure 02_image031
.

緊接在上方的用於 D(t)*W(t)的方程式的前兩項根據時間變數 t振盪。然而,最後一項係可經由乘積波的強低通濾波來提取的常數。因為波的平均值在多次振盪內接近該波的偏移值,所以此係藉由對乘積波求平均來達成。 The first two terms of the immediately above equation for D(t)*W(t) oscillate according to the time variable t . However, the last term is a constant that can be extracted via strong low-pass filtering of the product wave. This is achieved by averaging the product wave, since the average of the wave approximates the wave's offset value over many oscillations.

若量測信號 s(t)沒有許多振盪(例如,少於一個全振盪)或者若信號具有非整數個半週期,則此近似引起微量誤差。可藉由僅採取在信號的最大量的半週期內的信號平均值來減小此誤差。例如,若信號具有約3.7次振盪,則採取最多3.5個週期的信號平均值。 This approximation causes a slight error if the measured signal s(t) does not have many oscillations (eg, less than one full oscillation) or if the signal has a non-integer number of half periods. This error can be reduced by only taking the signal average over the largest half-cycle of the signal. For example, if the signal has about 3.7 oscillations, take a signal average of at most 3.5 periods.

一旦使用已知的手段執行低通濾波,就將乘積 D(t)*W(t)簡化成常數項 [A/2] cos(- θ + φ) 回想起φ為所需的相位值,且 θ為測試波的任意相位。因此,若 θ遞增通過一系列數字,則針對每次遞增由乘積波的低通濾波產生的常數將根據非時變餘弦函數[ A/2] cos(- θ+ φ)振盪。此餘弦波具有波數 -1、振幅

Figure 02_image033
及相位φ。已知此情況,可將餘弦擬合於此等常數(例如,使用最小平方擬合),且可提取相位φ。亦可提取信號的振幅 A。 Once low-pass filtering is performed using known means, the product D(t)*W(t) is reduced to a constant term [A/2] cos(- θ + φ) . Recall that φ is the desired phase value and θ is the arbitrary phase of the test wave. Thus, if θ is incremented through a series of numbers, the constant resulting from low-pass filtering of the product wave for each increment will oscillate according to the time-invariant cosine function [ A /2] cos(- θ + φ). This cosine wave has wavenumber -1 , amplitude
Figure 02_image033
and phase φ. Knowing this, cosines can be fitted to these constants (eg, using a least squares fit), and the phase φ can be extracted. The amplitude A of the signal can also be extracted.

用於信號提取的鎖定法已經證實比常規正弦擬合快得多。第12A圖係針對鎖定法(L或黑色曲線)及正弦法(S或灰色曲線)兩者的提取有雜訊的信號的相位φ所需要的以毫秒(millisecond,ms)為單位的平均計算時間T與雜訊因數N。第12A圖的資料係在一系列測試內收集的。在此等測試中,將隨機雜訊添加至設定信號,在該設定信號上使用正弦擬合及鎖定偵測方法兩者以提取相位。在每一雜訊級處,用隨機化雜訊執行100次測試。鎖定法執行計算的時間為正弦擬合法所需時間的近似一半。The lock-in method for signal extraction has proven to be much faster than conventional sinusoidal fitting. Figure 12A is the average calculation time in milliseconds (ms) required to extract the phase φ of the noisy signal for both the lock-in method (L or black curve) and the sine method (S or gray curve) T and noise factor N. The information in Figure 12A was collected during a series of tests. In these tests, random noise is added to a set signal on which both sinusoidal fitting and lock detection methods are used to extract the phase. At each noise level, 100 tests were performed with randomized noise. The lock-in method performs calculations in approximately half the time of the sine fit method.

第12B圖係針對鎖定法(L或黑色曲線)及正弦法(S或灰色曲線)的絕對相位差|Δφ|與雜訊因數N的曲線圖。第12B圖展示兩種方法在所有測試內均保持在近似相同等級的準確度及精度。FIG. 12B is a graph of absolute phase difference |Δφ| versus noise factor N for the lock-in method (L or black curve) and the sine method (S or gray curve). Figure 12B shows that both methods maintain approximately the same level of accuracy and precision across all tests.

鎖定法去除了預測用於擬合的正弦參數的必要。唯一執行的擬合為餘弦波至低通濾波常數的擬合,該擬合受約束的程度如此高以致於它幾乎從不產生不良的擬合。然而,若使用正弦擬合,則已發現它在擬合於資料的正弦波具有恆定週期時執行準確度高得多。若週期可與其他參數一起被擬合,則處理時間更長且結果經常沒那麼準確。The locking method removes the need to predict the sinusoidal parameters used for the fit. The only fit performed is that of the cosine wave to the low-pass filter constant, which is so constrained that it almost never produces a bad fit. However, if a sine fit is used, it has been found to perform much more accurately when the sine wave fitted to the data has a constant period. If the period can be fitted with other parameters, the processing time is longer and the results are often less accurate.

LSPLSP 量測結果中的雜訊減少Noise reduction in measurement results

使用來自LSP子系統200的LSP量測結果提取第二應力特性由兩個主要部分組成:資料獲取部分及資料分析部分。在量測結果的資料獲取部分中,根據來自LSP光源212的初始LSP光束216的輸入偏光狀態對散射的LSP光束216S成像。成像係藉由在數位偵測器246處記錄來自CS基板10的主體內由一或多個IOX製程引起的應力誘發特徵(例如,折射率變化)的散射光的強度來達成。Extracting the second stress characteristic using LSP measurements from the LSP subsystem 200 consists of two main parts: a data acquisition part and a data analysis part. In the data acquisition portion of the measurement results, the scattered LSP beam 216S is imaged according to the input polarization state of the initial LSP beam 216 from the LSP light source 212 . Imaging is achieved by recording at digital detector 246 the intensity of scattered light from stress-induced features (eg, refractive index changes) within the bulk of CS substrate 10 caused by one or more 10X processes.

由系統控制器400處理所記錄的LSP影像248以提取沿著雷射光束的強度,針對輸入偏光對該強度進行分析以提取光束的兩個正交的狀態之間的光學延遲量。藉由對觀察到的延遲建模來重建應力輪廓。因此,LSP量測應力輪廓的品質從根本上受到成像過程中的雜訊限制,該雜訊通常以基於雷射的雜訊為主。此種基於雷射的雜訊的一個實例為斑點,斑點源自於LSP光源212的高度相干性,以及光學表面中的缺陷(粗糙度、平坦度等)及光學元件的體積性質(雜質、密度均勻性及不均勻性等)。The recorded LSP image 248 is processed by the system controller 400 to extract the intensity along the laser beam, which is analyzed for the input polarization to extract the amount of optical delay between two orthogonal states of the beam. Stress profiles are reconstructed by modeling the observed delays. Therefore, the quality of LSP measured stress profiles is fundamentally limited by the noise in the imaging process, which is usually dominated by laser-based noise. An example of such laser-based noise is speckle, which arises from the high coherence of the LSP light source 212, as well as from imperfections in the optical surfaces (roughness, flatness, etc.) Uniformity and inhomogeneity, etc.).

在LSP光束216傳播穿過LSP子系統200期間,LSP光(雷射)束216與系統缺陷的相互作用導致光束波前內的隨機振幅及相位變化。當藉由瑞立散射對LSP光束216進行同調成像時,波前失真引起影像平面中的靜態干涉圖案(稱為斑點圖案),其藉由重疊在所需信號上的具有高空間頻率的大的強度變化來表徵。從所需信號的強度偏差被視為LSP量測結果中的雜訊。為了減小雷射斑點的影響,可藉由光束波前中的偏光、振幅或相位的調變在獨立的斑點圖案內對成像求平均。During the propagation of the LSP beam 216 through the LSP subsystem 200, the interaction of the LSP optical (laser) beam 216 with defects in the system results in random amplitude and phase variations within the beam wavefront. When the LSP beam 216 is coherently imaged by Rayleigh scattering, the wavefront distortion causes a static interference pattern (called a speckle pattern) in the image plane by large Characterized by changes in intensity. Strength deviations from the desired signal are seen as noise in the LSP measurement results. To reduce the effect of laser speckle, imaging can be averaged within individual speckle patterns by modulation of polarization, amplitude or phase in the beam wavefront.

在一個實施例中,藉由使初始LSP光(雷射)束216穿過可移動光漫射體222,在LSP子系統200中減少基於雷射的雜訊,可移動光漫射體222在實例中可包含全像漫射體。這根據漫射體的局部結構「攪動」漫射角內的光束射線。為了使此「射線攪動」造成的光束發散最小化,將可移動光漫射體222置放於克蔔勒式望遠鏡組態的影像平面中,如第4A圖的示例性組態所示。LSP光束216首先由第一聚焦透鏡220聚焦至可移動光漫射體222上,且透射光束由第二聚焦透鏡224重新準直。In one embodiment, laser-based noise is reduced in the LSP subsystem 200 by passing the initial LSP light (laser) beam 216 through the movable light diffuser 222, which is Examples may include holographic diffusers. This "stirs" the beam rays within the diffuse angle according to the local structure of the diffuser. To minimize beam divergence due to this "ray churn", a movable optical diffuser 222 is placed in the image plane of the Kepler telescope configuration, as shown in the exemplary configuration of FIG. 4A. The LSP beam 216 is first focused onto a movable light diffuser 222 by a first focusing lens 220 , and the transmitted beam is recollimated by a second focusing lens 224 .

減輕LSP光束216在經歷光漫射之後的發散會在CS基板處提供更高效的(即,像差更小的)經聚焦的LSP光束216F。使用可移動光漫射體222,在自旋漫射體的旋轉速度

Figure 02_image035
下產生數位偵測器246處的基於雷射的雜訊(例如,斑點圖案)的變化。雜訊平均的最大效果在
Figure 02_image037
> 1的條件下達成,其中t C係數位偵測器246的曝光時間。此條件亦消除成像中的潛在消隱,該潛在消隱係由跨可移動光漫射體222的光學透射變化造成。實施基於漫射體的雜訊減少改良了光學延遲的量測。這在第13A圖及第13B圖中示出,第13A圖及第13B圖係光學延遲OR(弧度)與進入CS基板的深度D (mm)的曲線圖。第13A圖的曲線圖係在不使用上述雜訊減少設備及方法的情況下獲得。第13B圖的曲線圖係藉由使用上述雜訊減少設備及方法獲得。第13B圖的曲線圖的平滑度係應用本文所揭示的雜訊減少設備及方法的直接結果。 Alleviating the divergence of the LSP beam 216 after undergoing light diffusion provides a more efficient (ie, less aberrated) focused LSP beam 216F at the CS substrate. Using the movable light diffuser 222, at the rotational speed of the spinning diffuser
Figure 02_image035
A change in the laser-based noise (eg, speckle pattern) at the digital detector 246 is generated below. The maximum effect of noise averaging is at
Figure 02_image037
> 1, where t C is the exposure time of the detector 246. This condition also eliminates potential blanking in imaging caused by changes in optical transmission across the movable light diffuser 222 . Implementing diffuser-based noise reduction improves optical delay measurements. This is shown in Figures 13A and 13B, which are graphs of optical retardation OR (radians) versus depth D (mm) into the CS substrate. The graph of FIG. 13A was obtained without the use of the noise reduction apparatus and method described above. The graph of Figure 13B was obtained using the noise reduction apparatus and method described above. The smoothness of the graph of FIG. 13B is a direct result of applying the noise reduction apparatus and methods disclosed herein.

使用彎曲點及Use bend points and CSCS 基板中平面使base plate mid-plane OROR 曲線圖偏移graph offset

因為CS基板10的頂部表面12的位置可能難以根據LSP影像248來判定,所以可基於延遲曲線(OR與D)的大致形狀使應力輪廓偏移至適當位置。OR延遲曲線具有兩個彎曲點,在彎曲點處,導數為零。第14A圖中展示示例性實際OR與D曲線以及兩個彎曲點BP1及BP2。資料點被展示為開口圓圈。兩個彎曲點對應於應力輪廓從壓縮變為拉伸之處,或反之亦然。Since the location of the top surface 12 of the CS substrate 10 may be difficult to determine from the LSP image 248, the stress profile may be shifted to the appropriate location based on the general shape of the retardation curve (OR and D). The OR delay curve has two bending points where the derivative is zero. Exemplary actual OR and D curves and two bending points BP1 and BP2 are shown in Fig. 14A. Data points are shown as open circles. The two bending points correspond to where the stress profile changes from compression to tension, or vice versa.

若應力輪廓為對稱的,則兩個彎曲點BP1及BP2應當亦關於CS基板的中平面MP (參見第1A圖)為對稱的。因此,若已知CS基板10的厚度TH且可找到光學延遲OR曲線的兩個彎曲點BP1及BP2,則可使OR輪廓水平偏移至正確位置。這允許更準確地判定壓縮深度DOC,因為CS基板10的頂部表面12的位置係基於CS基板的已知對稱性及厚度來選擇的。第14B圖類似於第14A圖,但是展示了與第14A圖相比使用上述曲線圖偏移(資料偏移)技術向左偏移的OR曲線。If the stress profile is symmetric, the two bending points BP1 and BP2 should also be symmetric about the mid-plane MP (see FIG. 1A ) of the CS substrate. Therefore, if the thickness TH of the CS substrate 10 is known and the two bending points BP1 and BP2 of the optical retardation OR curve can be found, the OR profile can be horizontally shifted to the correct position. This allows for a more accurate determination of the depth of compression, DOC, since the location of the top surface 12 of the CS substrate 10 is chosen based on the known symmetry and thickness of the CS substrate. Figure 14B is similar to Figure 14A, but shows an OR curve shifted to the left compared to Figure 14A using the graph shift (data shift) technique described above.

使用曲線擬合使Use curve fitting to make OROR 曲線圖偏移graph offset

針對對稱的應力輪廓提取DOC的替代方法涉及分析延遲輪廓(即,OR與D曲線)的形狀。若已知CS基板的厚度TH且可經由多項式擬合來判定彎曲點BP1及BP2的相對位置,則可藉由以下表達式判定CS基板的壓縮深度DOC: DOC =[TH - (BP2 - BP1)]/2 其中BP1及BP2為彎曲點的相對深度位置。 An alternative method of extracting DOC for a symmetric stress profile involves analyzing the shape of the retardation profile (ie, the OR vs. D curve). If the thickness TH of the CS substrate is known and the relative positions of the bending points BP1 and BP2 can be determined by polynomial fitting, the compression depth DOC of the CS substrate can be determined by the following expression: DOC =[TH - (BP2 - BP1)]/2 Where BP1 and BP2 are the relative depth positions of the bending points.

用於for OROR and DD. 曲線的曲線擬合Curve Fitting of Curves

本揭露的實施例係關於獲得對OR與D曲線的資料的極佳擬合的方法。方法包括採用線性函數與二次函數的組合來獲得曲線擬合。此方法在下文被稱為LinQuad法。Embodiments of the present disclosure relate to a method of obtaining a good fit to OR and D curve data. The method includes employing a combination of linear and quadratic functions to obtain a curve fit. This method is hereinafter referred to as the LinQuad method.

第15A圖係OR與D資料(圓圈)的曲線圖且展示使用LinQuad法對OR資料的示例性擬合曲線FC (實線)。LinQuad法假設以下模型應力函數,其中σ為應力, x為進入CS基板10的深度坐標且 R如下文所界定:

Figure 02_image039
Figure 15A is a graph of OR versus D data (circles) and shows an exemplary fitted curve FC (solid line) to OR data using the LinQuad method. The LinQuad method assumes the following model stress function, where σ is the stress, x is the depth coordinate into the CS substrate 10 and R is defined below:
Figure 02_image039

可提取對應的延遲且將其擬合於原始感興趣資料以重新產生應力輪廓。此處,C表示CS基板中的正規化建模離子濃度。其表達式如下。

Figure 02_image041
其中 d l 為線性區的深度, d c 為彎曲區的深度, C 0 為恆定乘數且 t為CS基板厚度。 The corresponding delays can be extracted and fitted to the original data of interest to regenerate the stress profile. Here, C denotes the normalized modeled ion concentration in the CS substrate. Its expression is as follows.
Figure 02_image041
where dl is the depth of the linear region, dc is the depth of the curved region, C0 is a constant multiplier and t is the CS substrate thickness.

替代表達式由下式給出:

Figure 02_image043
此處, CT為應力輪廓的中心張力,且
Figure 02_image045
為約60
Figure 02_image047
的(部分任意的)常數。真LinQuad函數在上文界定,其中僅擬合了 d c d l C 0 。然而, σ( x)的此最後表達式允許第四個參數(即,中心張力 CT)變化,這可幫助函數更緊密地擬合資料。 The substitution expression is given by:
Figure 02_image043
Here, CT is the central tension of the stress profile, and
Figure 02_image045
is about 60
Figure 02_image047
A (partially arbitrary) constant for . The true LinQuad function is defined above, where only d c , d l , C 0 are fitted. However, this last expression for σ ( x ) allows the fourth parameter (ie, central tension CT ) to vary, which can help the function fit the data more closely.

第15B圖係基於第14A圖的對OR與D曲線的LinQuad擬合之應力S(x) = σ( x)與深度D (mm)的曲線圖。 Figure 15B is a plot of stress S(x) = σ ( x ) versus depth D (mm) based on the LinQuad fit of the OR and D curves of Figure 14A.

功率尖峰函數power spike function

功率尖峰函數被界定為:

Figure 02_image049
其中 CT sp 為尖峰區R1中的尖峰的中心張力, mid為厚度 TH的一半, CS sp 為尖峰的壓縮應力,且 DOL sp 為尖峰的層深度。參數 L eff 為尖峰區R1的有效長度(深度)。此函數為在末端處具有兩個誤差函數尖峰的功率輪廓的拼接。 Cs sp DOL sp 值特定於每一玻璃類型且作為常數被輸入。僅有的需要擬合的參數為函數的功率 p及峰值中心張力 CT P 。 The power spike function is defined as:
Figure 02_image049
where CT sp is the central tension of the spike in spike region R1, mid is half the thickness TH , CS sp is the compressive stress of the spike, and DOL sp is the layer depth of the spike. The parameter L eff is the effective length (depth) of the peak region R1. This function is a concatenation of power contours with two error function spikes at the ends. Cs sp and DOL sp values are specific to each glass type and are entered as constants. The only parameters that need to be fitted are the power p of the function and the peak central tension CT P .

第16A圖係示出使用功率尖峰函數的示例性擬合曲線FC的OR與D曲線圖。第16B圖係基於第16A圖的對OR與D曲線的功率尖峰擬合之應力輪廓S(x) (MPa)與進入CS基板10的深度D的曲線圖。FIG. 16A shows an OR vs. D plot of an exemplary fitted curve FC using a power spike function. FIG. 16B is a graph of the stress profile S(x) (MPa) versus the depth D into the CS substrate 10 based on the power spike fitting of the OR and D curves in FIG. 16A .

去除系統誤差以符合對稱的應力輪廓Remove systematic errors to conform to symmetrical stress profiles

使用LSP量測資料的CS基板的應力輪廓係藉由對OR與D曲線求微分獲得的。因而,對稱的應力輪廓將總是對應於不對稱的OR與D曲線。然而,來自LSP子系統200中的各種組件的系統誤差可將對稱分量引入至OR與D延遲資料中,從而妨礙應力輪廓的準確提取。可藉由以下步驟減輕此效應:將延遲資料分解成對稱分量及反對稱分量,且僅擬合反對稱部分(即,不對稱資料點)。The stress profile of the CS substrate using LSP measurement data was obtained by differentiating the OR and D curves. Thus, a symmetric stress profile will always correspond to an asymmetric OR vs. D curve. However, systematic errors from various components in the LSP subsystem 200 can introduce symmetric components into the OR and D delay data, preventing accurate extraction of stress profiles. This effect can be mitigated by decomposing the delay data into symmetric and antisymmetric components, and fitting only the antisymmetric part (ie, the asymmetric data points).

考慮到呈函數 f(x)形式的光學延遲OR,可如下達成分解。

Figure 02_image051
其中 f s f a 為延遲 f的對稱分量及反對稱分量,且由以下方程式表達:
Figure 02_image053
Considering the optical retardation OR in the form of a function f(x) , the decomposition can be achieved as follows.
Figure 02_image051
where f s and f a are the symmetric and antisymmetric components of the delay f and are expressed by the following equation:
Figure 02_image053

第17A圖係基於初始OR資料對OR與D曲線圖的擬合,而第17B圖係在使用上述方法移除了資料的對稱分量的情況下對OR與D曲線圖的擬合。第17B圖中對量測資料的擬合曲線FC的擬合誤差為0.006,而第17A圖的擬合誤差為約0.46。Figure 17A is a fit to an OR vs. D plot based on initial OR data, while Figure 17B is a fit to an OR vs. D plot with the symmetric component of the data removed using the method described above. The fitting error of the fitting curve FC to the measurement data in Fig. 17B is 0.006, while the fitting error in Fig. 17A is about 0.46.

針對準確的for accurate CTCT and DOCDOC 的可調整擬合區The adjustable fitting area of

對OR與D曲線的單個擬合可能不總是足以準確地判定中心張力CT及壓縮深度DOC。此係因為從LSP耦合稜鏡42B或耦合界面INT2的散射可妨礙接近CS基板10的頂部表面12處的資料收集。A single fit to the OR and D curves may not always be sufficient to accurately determine central tension CT and depth of compression DOC. This is because scattering from the LSP coupling interface 42B or the coupling interface INT2 can hinder data collection close to the top surface 12 of the CS substrate 10 .

在實例中,對OR與D曲線的擬合係使用對曲線的與中心張力CT及壓縮深度DOC相關聯的單獨區的多個擬合來執行且調整OR資料的擬合範圍以用於準確的CT及DOC提取。In the example, the fitting to the OR and D curves was performed using multiple fits to separate regions of the curve associated with central tension CT and depth of compression DOC and the range of fits for the OR data was adjusted for accurate CT and DOC extraction.

第18A圖及第18B圖展示示例性OR與D曲線,其中由資料(圓圈)界定的彎曲點BP1及BP2附近的區被擬合以提取壓縮深度DOC。第18B圖展示彎曲點BP1及BP2之間的中心線性區,該中心線性區被擬合以提取中心張力CT。在兩種情況下,OR與D資料的範圍大體上減小為OR與D曲線的與給定應力參數相關的那一部分。Figures 18A and 18B show exemplary OR and D curves where the region around the bending points BP1 and BP2 defined by the data (circles) was fitted to extract the depth of compression DOC. Fig. 18B shows the central linear region between bending points BP1 and BP2, which is fitted to extract the central tension CT. In both cases, the range of OR vs. D data is substantially reduced to that portion of the OR vs. D curve associated with a given stress parameter.

第19A圖至第19D圖進一步示出資料範圍選擇(由垂直的虛線展示)對擬合品質的影響。第19A圖係OR與D曲線圖,其中考慮完整的資料範圍且其中擬合曲線未很緊密地擬合彎曲點BP1及BP2。第19B圖係應力S(x)與D (深度)的針對第19A圖的對應曲線圖,其展示壓縮應力CT及壓縮深度DOC。Figures 19A-19D further illustrate the effect of data range selection (shown by the vertical dashed lines) on the quality of the fit. Figure 19A is a graph of OR vs. D where the complete data range is considered and where the fitted curve does not fit the bend points BP1 and BP2 very closely. Fig. 19B is a corresponding graph of stress S(x) versus D (depth) for Fig. 19A showing compressive stress CT and depth of compression DOC.

第19C圖係類似於第19A圖的OR與D曲線圖,只不過資料範圍被減小為垂直的虛線之間的區,且因此省略了量測資料的第一「末端」區ER1及第二「末端」區ER2。第19C圖的擬合曲線FC緊密沿循彎曲點BP1及BP2。對應的S(x)與D曲線圖展示於第19C圖中,且壓縮應力CT及壓縮深度DOC的值大體上不同於第19B圖的壓縮應力CT及壓縮深度DOC,第19B圖中使用完整的資料範圍。 同時的EPCS及LSP量測考量 Figure 19C is a graph similar to the OR vs. D curve of Figure 19A, except that the data range is reduced to the area between the vertical dotted lines, and thus the first "end" area ER1 and the second "end" of the measured data are omitted. "End" region ER2. The fitting curve FC of FIG. 19C closely follows the bending points BP1 and BP2. The corresponding S(x) and D curves are shown in Figure 19C, and the values of compressive stress CT and compression depth DOC are substantially different from those of Figure 19B, which use the complete Data range. Simultaneous EPCS and LSP measurement considerations

一種使用LSP子系統200達成壓縮深度(depth of compression,DOC)量測的良好精度的方法係將CS基板10按壓在止動表面(例如,支撐充氣部70)上以確保CS基板10的頂部表面12與預定義表面共平面,該預定義表面可指派有深度z = 0。此按壓可藉由以下來達成:將CS基板10推抵在止動件上,或者應用真空以使得環境大氣壓提供力來將CS基板10的頂部表面12推入位於z = 0的適當位置(參見例如第8A圖、第8B圖)。One way to achieve good accuracy in depth of compression (DOC) measurements using the LSP subsystem 200 is to press the CS substrate 10 against a stop surface (e.g., support plenum 70 ) to secure the top surface of the CS substrate 10 12 is coplanar with a predefined surface, which can be assigned a depth z=0. This pressing can be achieved by pushing the CS substrate 10 against a stop, or by applying a vacuum such that ambient atmospheric pressure provides the force to push the top surface 12 of the CS substrate 10 into place at z=0 (see eg Figure 8A, Figure 8B).

另一方面,使用EPCS子系統100達成清晰的(即,高對比度)模式頻譜160以獲得NSWG 18的近表面區R1的準確應力量測結果亦經常需要EPCS量測區域中的良好的CS基板平坦度,這亦可使用真空系統91來達成。On the other hand, achieving a sharp (i.e., high-contrast) mode spectrum 160 using the EPCS subsystem 100 for accurate stress measurements in the near-surface region R1 of the NSWG 18 also often requires good CS substrate flatness in the EPCS measurement region. This can also be achieved using a vacuum system 91.

由於EPCS及LSP量測區域位於CS基板的不同位置,在LSP量測區域處應用真空在一些情況下可使CS基板在EPCS量測區域處變形,且在EPCS量測區域中導致次最佳的或甚至很差的平坦度或顯著變形的表面。這導致EPCS模式頻譜160具有不良的對比度且係「離焦的」。此等條件可引起減小的準確度及減小的精度,以及量測失敗,因為不良的對比度可致使系統控制器未能識別用於執行應力計算的模式頻譜160的一些目標特徵。Since the EPCS and LSP measurement regions are located at different locations on the CS substrate, applying vacuum at the LSP measurement region can in some cases deform the CS substrate at the EPCS measurement region and result in suboptimal Or even poorly flat or significantly deformed surfaces. This results in the EPCS mode spectrum 160 having poor contrast and being "out of focus". These conditions can lead to reduced accuracy and reduced precision, as well as measurement failures, since poor contrast can cause the system controller to fail to identify some target features of the mode spectrum 160 used to perform stress calculations.

在示例性實施例中,EPCS子系統100的EPCS偵測器系統140利用適應性聚焦來實現支撐充氣部70上的CS基板10的正確對準,以在CS基板被對準以獲得LSP子系統200的最佳LSP量測結果時使用EPCS子系統獲得最佳(最精確)的DOC量測結果及近表面應力量測結果。In an exemplary embodiment, the EPCS detector system 140 of the EPCS subsystem 100 utilizes adaptive focusing to achieve proper alignment of the CS substrate 10 on the support plenum 70 to be aligned at the CS substrate to obtain the LSP subsystem The best (most accurate) DOC measurement results and near-surface stress measurement results are obtained when the EPCS subsystem is used for the best LSP measurement results of 200.

在第20圖所示出的一個實施例中,此係藉由使EPCS偵測器系統140的聚焦透鏡142可調整(例如,藉由將聚焦透鏡安裝在平移台143上來使其軸向可移動)來實現,平移台143在實例中可操作地連接至系統控制器400且由系統控制器400控制。在實例中,平移台143包含精密線性致動器,諸如壓電致動器。在另一實例中,平移台143包含滾珠螺桿致動器。這允許聚焦透鏡142沿著第二光學軸線A2平移以改良或最大化EPCS數位偵測器150所捕獲的模式頻譜160的對比度。在實例中,模式頻譜160的對比度經改良以強化目標頻譜特徵,諸如TM條紋163TM及TE條紋163TE以及臨界角轉變166TM及166TE。In one embodiment shown in FIG. 20, this is achieved by making the focusing lens 142 of the EPCS detector system 140 adjustable (e.g., by mounting the focusing lens on a translation stage 143 to make it axially movable. ), the translation stage 143 is operatively connected to and controlled by the system controller 400 in an example. In an example, translation stage 143 includes precision linear actuators, such as piezoelectric actuators. In another example, translation stage 143 includes a ball screw actuator. This allows the focusing lens 142 to translate along the second optical axis A2 to improve or maximize the contrast of the mode spectrum 160 captured by the EPCS digital detector 150 . In an example, the contrast of the mode spectrum 160 is improved to enhance target spectral features, such as TM stripes 163TM and TE stripes 163TE and critical angle transitions 166TM and 166TE.

軸向可移動聚焦透鏡142的位置可由系統控制器400電子監測,以藉由考量「光學路徑長度」或OPL (例如,從聚焦透鏡142至EPCS數位偵測器150的距離)來校正EPCS子系統校準。在一個實施例中,可簡化考量,只要OPL不在預定義的可接受範圍外以使得初始校準仍然準確即可。在另一實施例中,基於OPL來校正該校準,且基於經校正的校準來計算表面應力S(0)= CS及/或層深度DOL。The position of the axially movable focusing lens 142 may be electronically monitored by the system controller 400 to calibrate the EPCS subsystem by taking into account the "optical path length" or OPL (e.g., the distance from the focusing lens 142 to the EPCS digital detector 150) calibration. In one embodiment, considerations can be simplified as long as the OPL is not outside a predefined acceptable range such that the initial calibration is still accurate. In another embodiment, the calibration is corrected based on the OPL, and the surface stress S(0)=CS and/or depth of layer DOL are calculated based on the corrected calibration.

在另一實施例中,聚焦透鏡f1具有可變的有效焦距,該有效焦距由系統控制器400主動控制以在試樣經對準時獲得高對比度模式頻譜160以確保LSP子系統200的壓縮深度DOC的最精確或準確的量測結果。可變焦距聚焦透鏡142可包含複合透鏡(類似於具有一個以上光學元件的照相多組件透鏡),或者可另外包含適應性透鏡,諸如流體填充式透鏡,其中改變流體的壓力會改變透鏡的形狀且因此改變焦距。當使用可變焦距聚焦透鏡142時,使聚焦透鏡142的位置偏移可能並非必要,因為改變焦距在許多情況下可能足以補償EPCS量測區域中的試樣形狀的變形,此變形係由於對準試樣以獲得LSP量測區域中的最佳量測結果。In another embodiment, the focusing lens f1 has a variable effective focal length that is actively controlled by the system controller 400 to obtain the high contrast mode spectrum 160 when the specimen is aligned to ensure the depth of compression DOC of the LSP subsystem 200 The most precise or accurate measurement results. The variable focal length focusing lens 142 may comprise a compound lens (similar to a photographic multi-component lens having more than one optical element), or may additionally comprise an adaptive lens, such as a fluid-filled lens, where changing the pressure of the fluid changes the shape of the lens and So change the focal length. When using a variable focal length focusing lens 142, it may not be necessary to shift the position of the focusing lens 142, since varying the focal length may in many cases be sufficient to compensate for deformations in the specimen shape in the EPCS measurement region due to alignment sample to obtain the best measurement results in the LSP measurement area.

在另一實施例中,聚焦透鏡142的有效焦距的變化可由呈鏡面形式的適應性透鏡表面實現,該鏡面可與固定的單透鏡組合以產生可在一定範圍內改變的淨有效焦距,即使當CS基板對準針對LSP子系統200經最佳化時,該範圍足以產生高對比度模式頻譜160。In another embodiment, the variation of the effective focal length of the focusing lens 142 can be accomplished by an adaptive lens surface in the form of a mirror that can be combined with a fixed singlet to produce a net effective focal length that can be varied over a range, even when When the CS substrate alignment is optimized for the LSP subsystem 200 , this range is sufficient to produce the high contrast mode spectrum 160 .

因為CS基板10中的變形往往不太大,所以可變焦距聚焦透鏡142的折射能力的變化不需要特別大來補償。在實例中,可將聚焦透鏡142的焦距改變最多15%,或者在另一實例中最多10%。Because deformations in the CS substrate 10 tend not to be large, changes in the refractive power of the variable focus focusing lens 142 do not need to be particularly large to compensate. In an example, the focal length of focusing lens 142 may be changed by up to 15%, or in another example by up to 10%.

另一方面,當CS基板10具有小於0.6 mm的厚度時,可能有必要將折射能力改變超過15%,且多達20%或甚至25%。因此,在實例中,用於改變聚焦透鏡142的焦距的適應性系統經組態以在焦距範圍內改變焦距,該焦距範圍表示平均焦距的25%,儘管在許多情況下,平均焦距的20%、15%或甚至10%可能就夠了。On the other hand, when the CS substrate 10 has a thickness of less than 0.6 mm, it may be necessary to change the refractive power by more than 15%, and as much as 20% or even 25%. Thus, in an example, the adaptive system for changing the focal length of focusing lens 142 is configured to change the focal length over a range of focal lengths representing 25% of the average focal length, although in many cases 20% of the average focal length , 15%, or even 10% might suffice.

類似地,因為針對平坦CS基板的量測,聚焦透鏡142系統聚焦於無窮遠處,所以當聚焦透鏡142具有固定的焦距且聚焦透鏡的位置經軸向調整以產生高對比度模式頻譜160時,聚焦透鏡可達的軸向位置的範圍將理想地表示透鏡的焦距的約25%,儘管在一些情況下,焦距的20%、15%或甚至10%可表示足夠的位置範圍。Similarly, because the focusing lens 142 system is focused at infinity for measurements on flat CS substrates, the focusing The range of axial positions accessible to the lens will ideally represent about 25% of the focal length of the lens, although in some cases 20%, 15%, or even 10% of the focal length may represent a sufficient range of positions.

第21A圖及第21B圖係示例性實施例的示意圖,其中焦距略有不同的兩個或兩個以上聚焦透鏡142安裝在支撐構件152上以界定聚焦透鏡總成153。支撐構件152可移動以將聚焦透鏡142中之所選一者置放於經反射的EPCS光束116R的光學路徑中(即,沿著第二軸線A2)。這允許使用者從一組離散的焦距中選擇聚焦透鏡142的焦距。第21A圖展示其中支撐構件152呈可旋轉輪形式的實例,該可旋轉輪可關於旋轉軸線AW旋轉。第21B圖展示其中支撐構件152呈線性可平移支撐框形式的實例。例如,展示聚焦透鏡142。一般而言,聚焦透鏡總成153可支撐兩個或兩個以上聚焦透鏡142。21A and 21B are schematic diagrams of an exemplary embodiment in which two or more focusing lenses 142 with slightly different focal lengths are mounted on a support member 152 to define a focusing lens assembly 153 . The support member 152 is movable to place a selected one of the focusing lenses 142 in the optical path of the reflected EPCS beam 116R (ie, along the second axis A2). This allows the user to select the focal length of the focus lens 142 from a set of discrete focal lengths. Figure 21A shows an example where the support member 152 is in the form of a rotatable wheel that is rotatable about the axis of rotation AW. Figure 21B shows an example where the support member 152 is in the form of a linearly translatable support frame. For example, focusing lens 142 is shown. In general, the focusing lens assembly 153 can support two or more focusing lenses 142 .

若認為模式頻譜160中的感興趣特徵(例如,TM模式線163TM及TE模式線163TE以及TM臨界角轉變166TM及TE臨界角轉變166TE等)的對比度足夠,則量測照常進行。若認為感興趣特徵的對比度不夠,則將具有不同焦距的聚焦透鏡142移動至經反射的EPCS光束116R的光學路徑中且由EPCS數位偵測器150捕獲新的模式頻譜160且分析對比度。此過程重複,直至獲得具有足夠對比度的模式頻譜160為止。If the contrast of the features of interest in the mode spectrum 160 (eg, TM mode line 163TM and TE mode line 163TE and TM critical angle transition 166TM and TE critical angle transition 166TE, etc.) is deemed sufficient, then the measurement proceeds as usual. If the contrast of the feature of interest is deemed insufficient, focusing lens 142 with a different focal length is moved into the optical path of reflected EPCS beam 116R and a new mode spectrum 160 is captured by EPCS digital detector 150 and analyzed for contrast. This process is repeated until a mode spectrum 160 with sufficient contrast is obtained.

在實例中,聚焦透鏡142的焦距的差異可由總的所需焦距涵蓋範圍及支撐構件上的透鏡的總數來設定。在一個示例中,有六個聚焦透鏡由支撐構件支撐,而聚焦透鏡涵蓋的範圍為整組聚焦透鏡的平均焦距的20%與30%之間,且焦距的間距為平均焦距的3%與7%之間。In an example, the difference in focal length of focusing lenses 142 may be set by the total desired focal length coverage and the total number of lenses on the support member. In one example, six focusing lenses are supported by the support member, and the focusing lenses cover a range between 20% and 30% of the average focal length of the entire set of focusing lenses, and the focal lengths are spaced between 3% and 7% of the average focal length %between.

在另一實例中,焦距間隔不均勻,以使得每一對相鄰焦距的間距近似為相鄰焦距的平均值的固定百分比,其中該百分比為2%與20%之間,且更佳地為3%與10%之間。In another example, the focal lengths are not uniformly spaced such that the spacing of each pair of adjacent focal lengths is approximately a fixed percentage of the average of the adjacent focal lengths, where the percentage is between 2% and 20%, and more preferably Between 3% and 10%.

在另一相關實施例中,聚焦透鏡142中之一些或全部包含菲涅耳透鏡。在另一實施例中,聚焦透鏡142不需要具有不同的焦距,而是可以某種方式定位在可移動支撐構件上以使得當所選聚焦透鏡置放於光學路徑中時,該聚焦透鏡離EPCS數位偵測器150的距離不同於其他聚焦透鏡的情況。在此實施例中,獲得針對感興趣特徵具有足夠對比度的頻譜未必是藉由具有一組完整的離散密集間隔的定製選擇焦距來保證,而是藉由離數位偵測器的一組距離及/或可用焦距來保證。這可藉由利用標準的成品聚焦透鏡且定位每一聚焦透鏡以針對CS基板10的特定翹曲/曲率範圍產生清晰影像來降低EPCS子系統100的成本。In another related embodiment, some or all of focusing lenses 142 comprise Fresnel lenses. In another embodiment, the focusing lenses 142 need not have different focal lengths, but may be positioned on the movable support member in such a way that when the selected focusing lens is placed in the optical path, the focusing lens is at a distance from the EPCS. The distance of the digital detector 150 is different from other focusing lenses. In this embodiment, obtaining a spectrum with sufficient contrast for the features of interest is not necessarily guaranteed by a custom selected focal length with a complete set of discrete dense intervals, but rather by a set of distances from the digital detector and /or can be guaranteed by focal length. This can reduce the cost of the EPCS subsystem 100 by utilizing standard off-the-shelf focusing lenses and positioning each focusing lens to produce a sharp image for the specific warp/curvature range of the CS substrate 10 .

在實例中,系統控制器400可經組態以基於所捕獲模式頻譜160的感興趣特徵的對比度的量測來選擇聚焦透鏡142中之一者。In an example, the system controller 400 may be configured to select one of the focusing lenses 142 based on a measure of the contrast of the feature of interest of the captured pattern spectrum 160 .

在另一實施例中,可藉由使用所有所捕獲模式頻譜當中具有最佳對比度的兩個或三個較佳模式頻譜160來進行量測,然後可將較佳結果計算為兩個或三個較佳模式頻譜的平均值。在實例中,可將較佳結果計算為兩個或三個較佳模式頻譜的加權平均值。在相關示例中,每一較佳頻譜的權重可與較佳模式頻譜的感興趣特徵的對比度成比例。In another embodiment, measurements can be made by using the two or three better mode spectra 160 with the best contrast among all captured mode spectra, and then the better result can be calculated as the two or three Average of the spectrum of the preferred mode. In an example, the preferred result can be calculated as a weighted average of the two or three preferred mode spectra. In a related example, the weight of each preferred spectrum may be proportional to the contrast of the feature of interest of the preferred mode spectrum.

使用獨立的應力量測結果來進行應力量測結果校準Stress measurement calibration using independent stress measurements

EPCS子系統100可能很擅長於獲得使用Li玻璃由IOX製程(例如,其中K離子在近表面區中取代來自玻璃的Li及/或Na離子)形成的CS基板的高對比度模式頻譜160。這繼而藉由基於TM臨界角轉變166TM及TE臨界角轉變166TE (參見第3B圖)的相對位置量測雙折射率來允許拐點應力CS k的很好的量測結果。 The EPCS subsystem 100 may be very good at obtaining high-contrast mode spectra 160 of CS substrates formed using Li glass by a 10X process (e.g., where K ions replace Li and/or Na ions from the glass in the near-surface region). This in turn allows good measurements of the inflection point stress CS k by measuring the birefringence based on the relative positions of the TM critical angle transition 166TM and the TE critical angle transition 166TE (see FIG. 3B ).

另一方面,拐點應力CS k的EPCS量測結果經常具有比表面應力S(0)的量測結果低的相對精度。特定而言,拐點應力CS k的量測結果的標準偏差經常為其平均值的幾個%,而表面應力S(0)的標準偏差經常為其平均值的大約1%至2%。另外,簡單地作為偵測到的臨界角的雙折射率B與應力光學係數(stress-optic coefficient,SOC)的比率獲得的拐點應力CS k的值與從應力輪廓的建設性RNF量測獲得的拐點應力CS k的值略有不同。 On the other hand, EPCS measurements of inflection point stress CS k often have lower relative precision than measurements of surface stress S(0). In particular, measurements of inflection point stress CSk often have a standard deviation of a few percent of their mean value, while surface stress S(0) often has a standard deviation of about 1% to 2% of their mean value. In addition, the value of the inflection point stress CS k obtained simply as the ratio of the detected birefringence B of the critical angle to the stress-optic coefficient (SOC) is comparable to that obtained from constructive RNF measurements of the stress profile The value of the inflection point stress CS k is slightly different.

當認為拐點應力CS k的EPCS量測結果不如它可能或應當的那麼準確時,這可能係由於臨界角的雙折射率的量測結果中的系統誤差。此系統誤差可由TM模式線163TM及TE模式線163TE太靠近TM臨界角轉變166TM及TE臨界角轉變166TE造成,且進一步由TM及TE折射率輪廓的特定形狀造成。 When the EPCS measurement of the inflection point stress CSk is considered less accurate than it could or should be, this may be due to systematic errors in the measurement of the birefringence at the critical angle. This systematic error can be caused by the TM mode line 163TM and the TE mode line 163TE being too close to the TM critical angle transition 166TM and the TE critical angle transition 166TE, and further caused by the specific shape of the TM and TE refractive index profiles.

當進行品質控制量測時,藉由用對應的獨立的參考應力量測結果校準拐點應力CS k的基於EPCS的量測結果來減輕此類系統誤差,該參考應力量測結果可為從使用相同製程形成的一組CS基板中或從該相同製程期間的相同批次中選擇的CS基板上的破壞性量測結果。在實例中,此係藉由基於獨立的量測結果經由以下關係應用校準乘數K cal來實現: CS k(EPCS, calibrated) = K cal• CS k(independent)。 在實例中,校準乘數K cal可經由以下方程式用作由EPCS子系統100計算出的應力輪廓的一般校準因數: S(EPCS, calibrated)= Kcal•S(original) 其中S(orig)為初始量測的(未校準的)應力輪廓S(z)。 When making quality control measurements, such systematic errors are mitigated by calibrating the EPCS-based measurement of the inflection point stress CSk with a corresponding independent reference stress measurement that can be derived from the same Destructive measurements on a set of CS substrates formed by a process or selected from the same batch during that same process. In an example, this is achieved by applying a calibration multiplier K cal based on independent measurements via the following relationship: CS k (EPCS, calibrated) = K cal • CS k (independent). In an example, the calibration multiplier Kcal can be used as a general calibration factor for the stress profile calculated by the EPCS subsystem 100 via the following equation: S( EPCS , calibrated)=Kcal S(original) where S(orig) is the original Measured (uncalibrated) stress profile S(z).

張力帶應力輪廓提取Extraction of tension band stress profile

用於形成CS基板10的IOX製程形成界定NSWG 18的壓縮帶。此壓縮帶延伸至基板中且達到零值,這界定了壓縮深度DOC。超過DOC,壓縮帶結束且張力帶開始。The 10X process used to form the CS substrate 10 forms a compressed band that bounds the NSWG 18. This band of compression extends into the substrate and reaches a zero value, which defines the depth of compression DOC. Beyond the DOC, the compression band ends and the tension band begins.

若可準確地提取張力帶中的應力輪廓,且它可用作強有力的工具來幫助提取壓縮帶中的應力輪廓的大體上準確的表示。這可藉由利用整個CS基板10或一半CS基板(即,所謂的「半力平衡」)中的應力的力平衡來進行。If the stress profile in tension bands can be accurately extracted, and it can be used as a powerful tool to help extract a substantially accurate representation of the stress profile in compression bands. This can be done by force balancing utilizing the stresses in the entire CS substrate 10 or in half of the CS substrate (ie a so called "half force balancing").

在一個實施例中,除了張力帶中的應力輪廓的面積(由從一個壓縮深度至相反側的壓縮深度的拉伸應力的深度積分表示)之外,亦從基於LSP的量測結果獲得在可靠斜率提取深度處的應力輪廓的斜率的可靠值。In one embodiment, in addition to the area of the stress profile in the tension band (represented by the depth integral of the tensile stress from one depth of compression to the depth of compression on the opposite side), also obtained from LSP-based measurements in reliable Slope extracts reliable values for the slope of the stress profile at depth.

在實例中,可靠斜率提取深度可為壓縮深度DOC。在壓縮應力區中,表面壓縮應力由EPCS方法判定。在一些情況下,當沒有足夠的導引模式用於可靠的IWKB提取時,亦使用先前技術(諸如IWKB、或線性輪廓、erfc形輪廓、或指數輪廓、或LinQuad輪廓近似)從EPCS方法提取壓縮應力輪廓的一部分。基於EPCS的方法隨後提供目標連接點,其位於具有表面應力值S(0)的表面處,或位於更深的連接點(例如,拐點深度z k;參見第1B圖)處,直至此連接點,可從EPCS量測結果提供應力輪廓S(z)的表面部分。在後一種情況下,由於EPCS量測結果的限制,可能未以高準確度規定拐點應力CS kIn an example, the depth of reliable slope extraction may be the depth of compression DOC. In the compressive stress region, the surface compressive stress is determined by the EPCS method. In some cases, compression is also extracted from EPCS methods using prior techniques such as IWKB, or linear profiles, erfc-shaped profiles, or exponential profiles, or LinQuad profile approximations, when there are not enough guided patterns for reliable IWKB extraction. part of the stress profile. The EPCS-based method then provides a target attachment point, either at the surface with a surface stress value S(0), or at a deeper attachment point (e.g., inflection point depth z k ; see Fig. 1B ), up to this attachment point, The surface portion of the stress profile S(z) can be provided from EPCS measurements. In the latter case, the inflection point stress CS k may not be specified with high accuracy due to limitations of EPCS measurements.

但是,拐點應力CS k的此值可提供足夠的開始點以便於藉由迭代式改良來提取壓縮帶(例如,大體上為第1B圖中的帶R1及R2)中的應力輪廓。在第一次迭代中,可使用二階多項式用可靠地提取的應力斜率來連接具有表面應力值S(0)的近表面連接點與深部連接點(例如,拐點應力CS k或壓縮深度DOC)。這判定了壓縮帶中的應力輪廓的第一近似,其具有直至第一連接點(例如,在拐點深度 z k處)從EPCS獲得的第一部分及在兩個連接點之間經由多項式內插獲得的第二部分,其中在第二連接點處,不僅匹配表面應力S(0),而且匹配應力輪廓斜率。 However, this value of inflection point stress CSk may provide a sufficient starting point for iterative refinement to extract the stress profile in a compressive zone (eg, substantially zones R1 and R2 in FIG. 1B ). In the first iteration, a second-order polynomial can be used to connect near-surface junctions with surface stress values S(0) to deep junctions (eg, inflection point stress CSk or depth of compression DOC) with reliably extracted stress slopes. This determines a first approximation of the stress profile in the compressive zone with the first part obtained from the EPCS up to the first junction point (e.g. at inflection depth z k ) and obtained via polynomial interpolation between the two junction points The second part of , where at the second connection point, not only the surface stress S(0), but also the stress profile slope is matched.

在特定實例中,第二連接點可為壓縮深度DOC,但不必如此。對應力輪廓S(z)的第一近似求積分。若應力輪廓不對稱,則可在試樣的兩側上執行EPCS量測,且針對每一側如上獲得應力輪廓的第一近似。若應力輪廓S(z)由於設計及實施係對稱的,則可假設試樣的後側具有後側壓縮區中的與前側壓縮區相同的應力輪廓。In a particular example, the second connection point may be a compressed depth DOC, but need not be. A first approximation of the stress profile S(z) is integrated. If the stress profile is not symmetrical, EPCS measurements can be performed on both sides of the specimen and a first approximation of the stress profile is obtained as above for each side. If the stress profile S(z) is symmetrical by design and implementation, it can be assumed that the rear side of the specimen has the same stress profile in the rear compression zone as in the front compression zone.

在相應壓縮區上相對於深度對來自前側及後側壓縮區兩者的應力輪廓的第一近似求積分,且將其與張力區上的張力的深度積分相比較。若差異的絕對值大於預定義的可接受限值,則執行校正步驟以減小差異。在實例中,預定義的可接受限值為張力帶應力面積的5%,但是逐漸更好的可接受限值包括3%、2%、1%及0.5%。A first approximation of the stress profile from both the anterior and posterior compression zones was integrated with respect to depth over the respective compression zones and compared to the depth integral of the tension over the tension zone. If the absolute value of the difference is greater than a predefined acceptable limit, a correction step is performed to reduce the difference. In the example, the predefined acceptable limit is 5% of the stress area of the tension band, but progressively better acceptable limits include 3%, 2%, 1% and 0.5%.

可接受限值可基於張力帶應力輪廓的提取準確度的估計來判定。在一個實施例中,由不同方法獲得應力輪廓的若干第一近似,其全部匹配第一連接點處的拐點應力CS k,及第二連接點(例如,壓縮深度DOC)處的應力值及應力斜率。不同類型的第一近似可包括二階、三階及四階多項式、指數輪廓、erfc形輪廓、高斯輪廓及勞侖茲輪廓。然後,針對此等第一近似中之每一者,在第一近似壓縮帶中的應力面積與使用基於LSP的量測結果提取的張力帶中的應力面積之間找到差異。然後找到此等第一近似應力輪廓的線性組合,以使得線性組合應力輪廓的應力面積等於張力帶應力面積。 Acceptable limits may be determined based on an estimate of the accuracy of extraction of the tension band stress profile. In one embodiment, several first approximations of the stress profile are obtained by different methods, all matching the inflection point stress CS k at the first connection point, and the stress value and the stress at the second connection point (e.g., depth of compression DOC) slope. Different types of first approximations may include second-, third-, and fourth-order polynomials, exponential profiles, erfc-shaped profiles, Gaussian profiles, and Lorenz profiles. Then, for each of these first approximations, the difference is found between the stress area in the compression band of the first approximation and the stress area in the tension band extracted using the LSP-based measurements. A linear combination of these first approximate stress profiles is then found such that the stress area of the linear combined stress profile is equal to the tension band stress area.

在另一實施例中,藉由允許拐點應力CS k的範圍瞄準拐點應力CS k的初始基於EPCS的估計附近來考慮到拐點應力CS k的基於EPCS的量測結果的有限準確度。在應力輪廓的壓縮應力部分的第一近似中,使用壓縮帶的內插區的較佳目標形狀函數,與拐點應力CS k的基於EPCS的初始值進行連接。在實例中,較佳目標形狀為二階多項式。 In another embodiment, the limited accuracy of EPCS-based measurements of inflection point stress CSk is accounted for by allowing the range of inflection point stress CSk to be targeted around the initial EPCS-based estimate of inflection point stress CSk . In a first approximation of the compressive stress portion of the stress profile, a preferred target shape function for the interpolated region of the compressive band is used, concatenated with an EPCS-based initial value of the inflection point stress CSk . In an example, the preferred target shape is a second order polynomial.

在每次迭代之後,從張力帶的應力面積中減去來自兩個組合的壓縮帶(試樣的每一側上一個壓縮帶)的壓縮應力輪廓的應力面積。若差異的絕對值大於目標預定義的可接受限值,則拐點應力CS k的目標值可在拐點CS k的預定義的可接受範圍內改變,該可接受範圍係根據可從基於EPCS的方法獲得的拐點應力量測結果的估計精度判定的。 After each iteration, the stress area from the compressive stress profile of the two combined compression bands (one on each side of the specimen) was subtracted from the stress area of the tension band. If the absolute value of the difference is greater than the target predefined acceptable limit, the target value of the inflection point stress CS k can be changed within the predefined acceptable range of the inflection point CS k according to the available EPCS-based method The estimation accuracy of the obtained inflection point stress measurements was determined.

在實例中,估計的拐點應力精度為約10 MPa,但是在一些情況下更好地為7 MPa或5 MPa或3 MPa。當不存在表面尖峰且導引模式不可用時,則可使用相同的技術來連接至目標表面應力S(0),該目標表面應力S(0)被允許在由表面應力量測結果的精度判定的範圍內變化。In an example, the estimated inflection point stress accuracy is about 10 MPa, but in some cases better 7 MPa or 5 MPa or 3 MPa. When no surface spikes are present and guided mode is not available, then the same technique can be used to connect to the target surface stress S(0), which is allowed to be determined by the accuracy of the surface stress measurements changes within the range.

在實例中,目標表面應力S(0)或拐點應力CS k的可接受值的範圍可為最多6個標準偏差寬,例如,在表面應力或拐點應力的量測值的任一側上3個標準偏差。在一個實施例中,目標表面應力S(0)不需要迭代地變化,而是可由代數計算利用第一近似應力輪廓與張力帶應力輪廓之間的所量測面積差異及針對壓縮應力區的內插部分選擇的較佳函數形式來判定。 In an example, the range of acceptable values for the target surface stress S(0) or the inflection point stress CS k may be up to 6 standard deviations wide, for example, 3 on either side of the measured value of the surface stress or inflection point stress standard deviation. In one embodiment, the target surface stress S(0) does not need to be varied iteratively, but can be calculated algebraically using the measured area difference between the first approximate stress profile and the tension band stress profile and the interior for the compressive stress region The optimal function form selected by the interpolation part is determined.

強化strengthen EPCSEPCS 子系統subsystem

第22A圖類似於第3A圖且示出強化EPCS子系統100的實例。強化EPCS子系統100將EPCS光源112相對於EPCS耦合稜鏡42A置放於遠端位置。遠端EPCS光源112係多波長的且可包括分別發射不同波長λ a、λ b、λ c…的光的一或多個光源元件123 (例如,123a、123b、123c…)。多波長EPCS光源112亦可包括發射寬頻光的單個光源元件123,其中不同的波長在寬頻光譜內或在寬頻光譜內的不同位置處。 FIG. 22A is similar to FIG. 3A and shows an example of an enhanced EPCS subsystem 100 . The enhanced EPCS subsystem 100 places the EPCS light source 112 at a remote location relative to the EPCS coupling port 42A. Remote EPCS light source 112 is multi-wavelength and may include one or more light source elements 123 (eg, 123a, 123b, 123c...) that respectively emit light at different wavelengths λa , λb , λc .... The multi-wavelength EPCS light source 112 may also include a single light source element 123 that emits broadband light, where the different wavelengths are within the broadband spectrum or at different positions within the broadband spectrum.

EPCS光源112由光導130光學連接至聚焦光學系統121,光導130具有輸入端131、輸出端132及軸向長度AL (參見在圖底部處的伸展光導130的特寫插圖)。在實例中,聚焦光學系統121可包含一或多個透鏡元件。在實例中,聚焦光學系統121可經色彩校正,即,經設計以對多個波長成像而不會有實質的色差。這可使用針對所使用波長或波長範圍設計的消色差透鏡及光學塗層來實現。EPCS light source 112 is optically connected to focusing optics 121 by a light guide 130 having an input end 131, an output end 132, and an axial length AL (see close-up inset of extended light guide 130 at bottom of figure). In an example, focusing optics 121 may include one or more lens elements. In an example, focusing optics 121 may be color corrected, ie, designed to image multiple wavelengths without substantial chromatic aberration. This can be achieved using achromatic lenses and optical coatings designed for the wavelength or wavelength range used.

在實例中,光導130可包含液體填充式光導,諸如可從ThorLabs公司(Newton, New Jersey)以零件編號LLG5-4T獲得的。在另一實例中,光導130可包含光纖束或固體光管。示例性光導130具有至少幾吋且較佳為8’’或更長的軸向長度AL,其中精確的長度由遠端EPCS光源112的位置判定。In an example, light guide 130 may comprise a liquid-filled light guide, such as available from ThorLabs Corporation of Newton, New Jersey as part number LLG5-4T. In another example, the light guide 130 may comprise a fiber optic bundle or a solid light pipe. Exemplary light guide 130 has an axial length AL of at least several inches and preferably 8" or more, where the exact length is determined by the location of distal EPCS light source 112.

來自遠端EPCS光源112的EPCS光束(下文中為光或光束) 116被耦合至光導130的輸入端131中且作為導引光116G在其中行進。可藉由使用一或多個透鏡元件135 (參見第23圖)來促進光耦合。導引光116G行進至光導130的輸出端132且作為初始EPCS光束116被發射。從光導130的輸出端132發射的此初始EPCS光束116係發散的。此發散光由聚焦光學系統121接收,聚焦光學系統121形成三種形式的經聚焦的EPCS光束116F,經聚焦的EPCS光束116F被引導至EPCS耦合稜鏡42A。第22A圖的示例性EPCS子系統100的其餘部分如上文結合第3A圖所描述。光導130、透鏡元件135及在光源與光導130之間的其他可選的光學組件(例如,下文所介紹且論述的漫射體137)構成光導總成,光導總成將來自EPCS光源112的EPCS光束116 (經依序濾波的或多波長的)傳送至駐留在靠近EPCS耦合稜鏡42A處的聚焦光學系統121。An EPCS light beam (hereinafter light or light beam) 116 from the distal EPCS light source 112 is coupled into the input end 131 of the light guide 130 and travels therein as guided light 116G. Optical coupling can be facilitated by the use of one or more lens elements 135 (see FIG. 23). Guided light 116G travels to output end 132 of light guide 130 and is emitted as initial EPCS beam 116 . This initial EPCS beam 116 emitted from the output end 132 of the light guide 130 is divergent. This diverging light is received by focusing optics 121, which forms three forms of focused EPCS beam 116F, which is directed to EPCS coupling beam 42A. The remainder of the exemplary EPCS subsystem 100 of Figure 22A is as described above in connection with Figure 3A. The light guide 130, the lens element 135, and other optional optical components between the light source and the light guide 130 (such as the diffuser 137 introduced and discussed below) make up the light guide assembly that integrates the EPCS from the EPCS light source 112. Beam 116 (sequentially filtered or multi-wavelength) is delivered to focusing optics 121 residing near EPCS coupling beam 42A.

第22B圖類似於第22A圖且示出其中分離式TM-TE偏光器148由可切換TM-TE偏光器148S取代的實施例。可切換TM-TE偏光器148S由可操作地連接至系統控制器400的偏光器控制器149控制。在此組態中,EPCS數位偵測器150針對每一波長依序偵測TM模式頻譜161TM及然後TE模式頻譜161TE,而不是當使用第3A圖的分離式TM-TE偏光器148時針對每一波長偵測組合式TM-TE模式頻譜160 (參見第3B圖)。此方法增大可用於模式頻譜影像161TM及161TE的偵測器像素的數目且消除當使用分離式TM-TE偏光器148時在組合式TM-TE模式頻譜160之間的邊界處發生的一些解析率/對比度問題。示例性可切換TM-TE偏光器148S包含如偏光切換領域中已知的帶磁性的偏光晶體。依序捕獲的模式頻譜影像161TM及161TE的分析與使用固定的TM-TE偏光器148同時捕獲的模式頻譜影像的分析相同。Figure 22B is similar to Figure 22A and shows an embodiment in which the split TM-TE polarizer 148 is replaced by a switchable TM-TE polarizer 148S. The switchable TM-TE polarizer 148S is controlled by a polarizer controller 149 operatively connected to the system controller 400 . In this configuration, the EPCS digital detector 150 detects the TM mode spectrum 161TM and then the TE mode spectrum 161TE sequentially for each wavelength, rather than for each wavelength when using the split TM-TE polarizer 148 of FIG. A wavelength detection combined TM-TE mode spectrum 160 (see FIG. 3B). This approach increases the number of detector pixels available for the mode spectrum images 161TM and 161TE and eliminates some of the resolution that occurs at the boundary between the combined TM-TE mode spectrum 160 when using the split TM-TE polarizer 148 Ratio/contrast issues. The exemplary switchable TM-TE polarizer 148S comprises a magnetically charged polarizing crystal as is known in the art of polarization switching. The analysis of the mode spectrum images 161TM and 161TE captured sequentially is the same as the analysis of mode spectrum images captured simultaneously using the fixed TM-TE polarizer 148 .

第23圖係遠端EPCS光源112的示例性實施例的示意圖。示例性遠端EPCS光源112包含多個光源元件123,其中作為實例展示三個光源元件123a、123b及123c。示例性光源元件123a、123b及123c分別發射具有相應波長λ a、λ b及λ c的光束116a、116b及116c。使用波長選擇性元件125a及125b將光束116a、116b及116c引導成沿著共同光源軸線AS行進,波長選擇性元件125a及125b在實例中為經組態以透射一個波長帶的光而反射另一波長帶的光的雙色鏡。在實例中,光束116a、116b、116c組合以形成單個多波長EPCS光束116。 FIG. 23 is a schematic diagram of an exemplary embodiment of a remote EPCS light source 112 . The exemplary remote EPCS light source 112 includes a plurality of light source elements 123, with three light source elements 123a, 123b, and 123c shown as an example. Exemplary light source elements 123a, 123b, and 123c emit light beams 116a, 116b, and 116c having respective wavelengths λa , λb , and λc, respectively. Beams 116a, 116b, and 116c are directed to travel along a common source axis AS using wavelength selective elements 125a and 125b, which in the example are configured to transmit light of one wavelength band and reflect another. A dichroic mirror for light in a wavelength band. In an example, beams 116a, 116b, 116c combine to form a single multi-wavelength EPCS beam 116 .

在實例中,光源元件123可操作地連接至系統控制器400且由系統控制器400控制,或者由可操作地連接至系統控制器400的光源元件(light-source-element,LSE)控制器405控制。光源元件123可同時或依序啟動,如下文更詳細地論述。光源元件123不需要為窄頻的且在實例中可共同產生相對寬頻的光以提供相對寬的量測波長範圍,諸如在近UV至近IR的範圍內。In an example, the light source element 123 is operatively connected to and controlled by the system controller 400 , or is controlled by a light-source-element (LSE) controller 405 operatively connected to the system controller 400 control. The light source elements 123 may be activated simultaneously or sequentially, as discussed in more detail below. The light source elements 123 need not be narrowband and in examples may collectively generate relatively broadband light to provide a relatively wide range of measurement wavelengths, such as in the near UV to near IR range.

繼續參考第23圖,示例性光源系統進一步包括諸如2020年3月31日申請之美國臨時專利申請案第63/002468號中所揭示的光學濾波器設備500,且該案以全文引用的方式併入本文中。第24A圖係光學濾波器設備500的一部分(稱為濾波器輪530)的前視圖。濾波器輪530包含支撐構件510,支撐構件510可操作地支撐分別含有兩個或兩個以上光學濾波器總成600的兩個或兩個以上孔516,光學濾波器總成600針對整數 m個光學濾波器總成可表示為600a、600b…600m。不同的光學濾波器總成600a、600b、600c、600d…600m各自具有濾波器軸線AF,且經組態以在具有相應相對窄的頻寬δλ a、δλ b、δλ c、δλ d…δλ m (諸如,例如2 nm)的相應波長λ a、λ b、λ c、λ d.…λ m 處執行EPCS光束116的窄頻光學濾波。光學濾波器設備500因此經組態以使用光學濾波器600執行窄頻光學濾波,以使得包括給定波長的相對寬頻光(例如,大於3 nm或大於5 nm,或者大於10 nm或大於20 nm,等等,且包括頻寬為100 nm或好幾百nm的極寬頻光)可在該波長附近被窄頻濾波。在下文的論述中,已穿過光學濾波器總成中之一者的光被稱為經濾波的光。經濾波的光係窄頻的且具有由它所穿過的濾波器界定的中心波長。 With continued reference to FIG. 23, the exemplary light source system further includes an optical filter device 500 such as that disclosed in U.S. Provisional Patent Application No. 63/002468, filed March 31, 2020, which is incorporated by reference in its entirety. into this article. FIG. 24A is a front view of a portion of optical filter device 500 , referred to as filter wheel 530 . The filter wheel 530 includes a support member 510 operable to support two or more apertures 516 each containing two or more optical filter assemblies 600 for an integer number m The optical filter assembly can be denoted as 600a, 600b...600m. The different optical filter assemblies 600a, 600b, 600c, 600d ... 600m each have a filter axis AF and are configured to operate within a corresponding relatively narrow bandwidth δλ a , δλ b , δλ c , δλ d ... δλ m Narrowband optical filtering of the EPCS beam 116 is performed at respective wavelengths λ a , λ b , λ c , λ d . . . λ m of respective wavelengths (such as, for example, 2 nm). Optical filter device 500 is thus configured to perform narrowband optical filtering using optical filter 600 such that relatively broadband light of a given wavelength (e.g., greater than 3 nm or greater than 5 nm, or greater than 10 nm or greater than 20 nm) is included. , etc., and including extremely broadband light with bandwidths of 100 nm or hundreds of nm) can be narrowband filtered around this wavelength. In the discussion below, light that has passed through one of the optical filter assemblies is referred to as filtered light. Filtered light is narrowband and has a center wavelength defined by the filters it passes through.

第24A圖展示示例性濾波器輪530,其中支撐構件510支撐四個不同的光學濾波器總成600 (600a、600b、600c及600d),該等光學濾波器總成600具有相應的窄頻濾波器(中心)波長λ a、λ b、λ c及λ d。第24A圖的示例性支撐構件510具有帶有中心軸線AW的圓盤形主體、中心區段512及外部區段514,其中光學濾波器總成支撐在外部區段中,且在實例中均勻地分佈於外部區段上。支撐構件510亦具有外周邊523、前側522及後側(未圖示)。中心軸線AW穿過圓盤形主體的中心區段512,如所示。支撐構件510及光學濾波器設備500的組合構成濾波器輪530。 Figure 24A shows an exemplary filter wheel 530 in which the support member 510 supports four different optical filter assemblies 600 (600a, 600b, 600c, and 600d) with corresponding narrowband filtering The detector (center) wavelengths λ a , λ b , λ c and λ d . The exemplary support member 510 of FIG. 24A has a disc-shaped body with a central axis AW, a central section 512, and an outer section 514 in which the optical filter assembly is supported, and in the example uniformly Distributed on the outer segment. The support member 510 also has an outer perimeter 523 , a front side 522 and a rear side (not shown). The central axis AW passes through the central section 512 of the disc-shaped body, as shown. The combination of the support member 510 and the optical filter device 500 constitutes a filter wheel 530 .

再次參考第23圖,驅動系統540機械連接至支撐構件510且經組態以導致支撐構件移動。示例性驅動系統包含驅動軸544,其末端中之一者附接至支撐構件510的中心區段512而其另一末端附接至驅動馬達550。驅動軸544與支撐構件軸線AW同軸地安置。驅動馬達550電連接至系統控制器400,系統控制器400經組態(例如,使用控制軟體來組態)以例如使用馬達控制信號來控制驅動馬達550的操作,同時亦接收包括關於馬達操作的資訊(諸如濾波器輪530的旋轉速率、相對旋轉位置等)的資料信號。Referring again to FIG. 23, the drive system 540 is mechanically connected to the support member 510 and configured to cause the support member to move. An exemplary drive system includes a drive shaft 544 with one of its ends attached to the central section 512 of the support member 510 and the other end of which is attached to the drive motor 550 . The drive shaft 544 is disposed coaxially with the support member axis AW. The drive motor 550 is electrically connected to the system controller 400, which is configured (e.g., using control software) to control the operation of the drive motor 550, such as using motor control signals, while also receiving information including information about the operation of the motor. A data signal for information such as the rotation rate of the filter wheel 530, the relative rotational position, etc.

驅動系統540致使濾波器輪530繞旋轉軸線AR旋轉,旋轉軸線AR與支撐構件軸線AW同軸。濾波器輪530繼而安置成使得光學濾波器設備500依序與光源軸線AS相交以便EPCS光束116經依序濾波以形成經依序濾波的EPCS光束116 (即,包括一系列經濾波的光束116a、116b…116m的EPCS光束),如第23圖中在光學濾波器總成的下游及在第24B圖的示意圖中所示。第24B圖展示兩個示例性經依序濾波的EPCS光束116,其中頂部實例係使用四個濾波器波長(116a、116b、116c及116d)形成且底部實例係使用兩個濾波器波長(116a及116b)形成。經依序濾波的EPCS光束116然後進入光導130的輸入端131。如上所述,這可藉由使用一或多個透鏡元件135來促進,透鏡元件135可操作地沿著光源軸線AS安置於濾波器輪530與光導130的輸入端131之間。Drive system 540 causes filter wheel 530 to rotate about axis of rotation AR, which is coaxial with support member axis AW. The filter wheel 530 is then positioned such that the optical filter device 500 sequentially intersects the source axis AS so that the EPCS beam 116 is sequentially filtered to form a sequentially filtered EPCS beam 116 (i.e., comprising a series of filtered beams 116a, 116b...116m of the EPCS beam), as shown in Figure 23 downstream of the optical filter assembly and in the schematic diagram in Figure 24B. FIG. 24B shows two exemplary sequentially filtered EPCS beams 116, where the top example is formed using four filter wavelengths (116a, 116b, 116c, and 116d) and the bottom example is formed using two filter wavelengths (116a and 116d). 116b) Formation. The sequentially filtered EPCS beam 116 then enters the input end 131 of the light guide 130 . As mentioned above, this can be facilitated by using one or more lens elements 135 operatively disposed between the filter wheel 530 and the input end 131 of the light guide 130 along the source axis AS.

光源元件123的啟動的定時及光學濾波器總成600的位置由系統控制器400控制以使得經依序濾波的EPCS光束116的適當部分被濾波。或者,所有一或多個光源元件123可同時啟動以形成寬頻EPCS光束116,而光學濾波器設備500用於依序界定經濾波的光束116a、116b...116m,經濾波的光束116a、116b...116m進入光導130且最終作為經濾波且經聚焦的EPCS光束116F被引導至稜鏡總成40 (參見第22A圖)The timing of activation of the light source element 123 and the position of the optical filter assembly 600 are controlled by the system controller 400 so that appropriate portions of the sequentially filtered EPCS beam 116 are filtered. Alternatively, all one or more light source elements 123 can be activated simultaneously to form the broadband EPCS beam 116, with the optical filter arrangement 500 used to sequentially define the filtered beams 116a, 116b...116m, the filtered beams 116a, 116b ...116m enters the light guide 130 and is ultimately directed to the beam assembly 40 as a filtered and focused EPCS beam 116F (see Figure 22A)

在實例中,光學濾波器設備500經焦點校正以補償經依序濾波的EPCS光束116的不同波長部分的不同焦點,其中不同焦點係由於不同波長。焦點校正可藉由使用校正透鏡124a、124b、124c…來實現,校正透鏡124a、124b、124c…經組態(例如,經軸向定位、具有不同光功率等)以使得針對所使用的每一光波長將依序濾波的EPCS光束116a、116b...116m中之給定一者高效地耦合至光導130的輸入端131中。在另一實例中,焦點校正可由具有濾波器620及校正構件630的每一光學濾波器總成600採用,校正構件630經組態以用於給定濾波器波長下的焦點校正,如第23圖中的特寫插圖所示且如前述美國臨時專利申請案第63/002468號中詳細地描述。In an example, the optical filter apparatus 500 is focus corrected to compensate for different focuses of different wavelength portions of the sequentially filtered EPCS beam 116 , where the different focuses are due to different wavelengths. Focus correction can be achieved through the use of correcting lenses 124a, 124b, 124c... that are configured (e.g., axially positioned, have different optical powers, etc.) so that for each The optical wavelength efficiently couples a given one of the sequentially filtered EPCS beams 116 a , 116 b . . . 116 m into the input end 131 of the light guide 130 . In another example, focus correction may be employed by each optical filter assembly 600 having a filter 620 and a correction member 630 configured for focus correction at a given filter wavelength, as described in Section 23 The close-up insets in the figures are shown and described in detail in the aforementioned US Provisional Patent Application No. 63/002468.

應注意,光學濾波器設備500亦可部署於EPCS偵測器系統140內以實現以下相同目標:提供不同波長的窄頻量測光,以使得可在多個不同波長中之每一者處量測給定CS基板10的模式頻譜以便改良CS基板的應力相關特性的量測準確度。It should be noted that the optical filter device 500 can also be deployed within the EPCS detector system 140 to achieve the same goal of providing narrow-band measurement light at different wavelengths so that measurements can be made at each of a number of different wavelengths. The mode spectrum of a given CS substrate 10 is measured in order to improve the measurement accuracy of the stress-related properties of the CS substrate.

由EPCS光源系統110提供給EPCS耦合稜鏡42A的照明可由所採用的總體系統定時及感興趣波長判定。在一個實例中,EPCS光源112可包括單個寬頻光源元件123,諸如鹵素燈泡、白熾燈泡、氙氣燈泡或白光LED或雷射二極體,且依靠光學濾波器總成600來選擇波長及帶通。在另一實例中,發射不同波長的多個光源元件123可用於諸如以上述方式產生處於所選波長的光。在第23圖的利用三個光源元件123 (123a、123b、123c)及兩個波長選擇性元件125的所示出實施例中,光源元件中之兩者可分別發射相對窄頻帶內的短波長及長波長,而第三個光源元件具有處於中間波長的相對寬頻發射。例如,短波長可為365 nm,長波長可為780 nm,且更寬頻波長可為包含優勢藍色(450 nm) LED的人眼白光裝置,該LED包括450 nm、510 nm及640 nm的波長。此等三個光源元件123可利用簡單的連續電源供應組態來同時且持續地啟動,從而依靠光學濾波器設備500的帶通濾波器組態來僅以依序方式通過所需(窄頻)波長。添加光束強度的控制(例如,使用可變光學衰減器)允許最佳化所選波長下的LED輸出。這可對補償EPCS數位偵測器150的任何波長靈敏度有用。The illumination provided by the EPCS light source system 110 to the EPCS coupled light source 42A may be dictated by the overall system timing employed and the wavelength of interest. In one example, the EPCS light source 112 may include a single broadband light source element 123 such as a halogen bulb, incandescent bulb, xenon bulb, or white LED or laser diode, and rely on the optical filter assembly 600 for wavelength selection and bandpass. In another example, multiple light source elements 123 emitting at different wavelengths may be used to generate light at selected wavelengths, such as in the manner described above. In the illustrated embodiment of FIG. 23 utilizing three light source elements 123 (123a, 123b, 123c) and two wavelength selective elements 125, two of the light source elements can respectively emit short wavelengths in a relatively narrow frequency band and long wavelengths, while the third source element has a relatively broadband emission at intermediate wavelengths. For example, the short wavelength could be 365 nm, the long wavelength could be 780 nm, and the broader wavelength could be a white light device for the human eye comprising a dominant blue (450 nm) LED that includes wavelengths of 450 nm, 510 nm, and 640 nm . These three light source elements 123 can be activated simultaneously and continuously with a simple continuous power supply configuration, thereby relying on the bandpass filter configuration of the optical filter device 500 to pass only the desired (narrow-band) wavelength. Adding control of beam intensity (eg, using a variable optical attenuator) allows optimization of LED output at selected wavelengths. This can be useful to compensate for any wavelength sensitivity of the EPCS digital detector 150 .

在其中光源元件123中之一或多者包含LED的實例中,LSE控制器405或系統控制器400可經組態以提供脈衝式操作以延長LED壽命且減少對散熱的需要,從而消除對散熱片的需要且產生更緊湊的EPCS光源112。用於LED的脈衝控制系統可包括電流及/或持續時間控制以允許更好地匹配可用於帶通濾波器傳輸的光及給定波長處的偵測器靈敏度。例如,當「白色」LED用於提供若干不同的量測波長時,數位偵測器曝光時間可與由LED驅動器控制的可用光保持一致。在偵測器曝光時間期間對LED進行脈衝操作亦可允許LED的低佔空比過驅動以獲得更高強度。In instances where one or more of the light source elements 123 comprise LEDs, the LSE controller 405 or system controller 400 can be configured to provide pulsed operation to extend LED life and reduce the need for heat dissipation, thereby eliminating the need for heat dissipation chip needs and results in a more compact EPCS light source 112 . Pulse control systems for LEDs may include current and/or duration control to allow better matching of light available for bandpass filter transmission and detector sensitivity at a given wavelength. For example, when "white" LEDs are used to provide several different measurement wavelengths, the digital detector exposure time can be aligned with the available light controlled by the LED driver. Pulsed LEDs during the detector exposure time also allow low duty cycle overdrive of the LEDs for higher intensities.

EPCS子系統100的經聚焦組態(即,其中聚焦光學系統121形成經聚焦的EPCS光束116F)促進在CS基板10的EPCS量測期間的準確的光學對準而幾乎沒有光損耗。相對於第一耦合界面INT1 (參見第22B圖及第22C圖)的量測角的範圍與全內反射角相關。當CS基板10具有通常從頂部表面12向CS基板的主體11中減小的折射率梯度時,探測TM模式線(條紋) 163TM及TE模式線(條紋) 163TE (參見第3B圖)所需要的角的範圍增大但仍然在有限範圍內。藉由最佳化光源及偵測器視角(即,更具體而言,擴大在經濾波且經聚焦的EPCS光束116F中且因此在經濾波且經反射的EPCS光束116R中的夾角的範圍),增大光收集效率,從而針對所使用的不同波長產生模式頻譜160的更好影像。The focused configuration of EPCS subsystem 100 (ie, in which focusing optics 121 form focused EPCS beam 116F) facilitates accurate optical alignment during EPCS metrology of CS substrate 10 with little loss of light. The range of measurement angles relative to the first coupling interface INT1 (see FIGS. 22B and 22C ) is related to the total internal reflection angle. When the CS substrate 10 has a refractive index gradient that generally decreases from the top surface 12 into the bulk 11 of the CS substrate, what is needed to detect the TM mode lines (stripes) 163TM and TE mode lines (stripes) 163TE (see FIG. 3B ) The range of corners is increased but still within a limited range. By optimizing the source and detector viewing angles (i.e., more specifically, enlarging the range of angles in the filtered and focused EPCS beam 116F and thus in the filtered and reflected EPCS beam 116R), Light collection efficiency is increased, resulting in a better image of the mode spectrum 160 for the different wavelengths used.

第22C圖係在EPCS耦合稜鏡42A附近的EPCS子系統100的特寫簡化視圖,且EPCS光源系統110及EPCS偵測器系統140的對應部分示出示例性照明組態。特定而言,採用科勒組態,其中由聚焦光學系統121將光導130的輸出端132穿過EPCS耦合稜鏡42A成像至EPCS偵測器系統140的入射光瞳EP上。在實例中,入射光瞳EP駐留在EPCS偵測器系統140的聚焦透鏡142中,如所示。此組態確保從光導130的輸出端132發射的經依序濾波的EPCS光束116的全部輻射保留在EPCS偵測器系統140中。其亦確保穿過EPCS耦合稜鏡42A的所有角度的相等照明,這導致由EPCS數位偵測器150捕獲的TM模式線(條紋) 163TM及TE模式線(條紋) 163TE的強度大體上均勻。FIG. 22C is a close-up simplified view of EPCS subsystem 100 near EPCS coupling field 42A, with corresponding portions of EPCS light source system 110 and EPCS detector system 140 showing an exemplary lighting configuration. In particular, a Kohler configuration is employed in which the output end 132 of the light guide 130 is imaged by the focusing optics 121 through the EPCS coupling port 42A onto the entrance pupil EP of the EPCS detector system 140 . In an example, entrance pupil EP resides in focusing lens 142 of EPCS detector system 140, as shown. This configuration ensures that all radiation of the sequentially filtered EPCS beam 116 emitted from the output end 132 of the light guide 130 remains in the EPCS detector system 140 . It also ensures equal illumination across all angles of the EPCS coupling beam 42A, which results in substantially uniform intensities of the TM mode lines (stripes) 163TM and TE mode lines (stripes) 163TE captured by the EPCS digital detector 150.

替代組態使多個光源元件123 (諸如2d或3d叢集)的輸出聚焦在光導130的輸入端131處以促進將經依序濾波的EPCS光束116高效地耦合至光導中。在第23圖所示的實例中,可在光導130的輸入端131處或附近採用漫射體137 (諸如有限角漫射體)以改良進入光導的經依序濾波的EPCS光束116的光分佈且藉由消除雙色鏡的使用來簡化組合器。An alternative configuration focuses the output of multiple light source elements 123 (such as 2d or 3d clusters) at the input end 131 of the light guide 130 to facilitate efficient coupling of the sequentially filtered EPCS beam 116 into the light guide. In the example shown in FIG. 23, a diffuser 137, such as a finite angle diffuser, may be employed at or near the input end 131 of the light guide 130 to improve the light distribution of the sequentially filtered EPCS beam 116 entering the light guide. And the combiner is simplified by eliminating the use of dichroic mirrors.

使用強化EPCS子系統100的量測方法相對快速且係基於控制在光源元件123的啟動、光學濾波器設備500的濾波器輪530的旋轉(方位)位置及EPCS數位偵測器150的曝光時間(影像捕獲時間)之間的定時關係。在實驗中使用的強化EPCS子系統100的示例性組態中,使用具有8-32個分接頭的ThorLabs FW103H高電流BSC201控制器來控制電動濾波器輪530。這給光學濾波器設備500提供介於約55 毫秒(millisecond,ms)至 60 ms之間的(步進式)濾波器切換速度。在示例性實驗組態中,光學濾波器總成600具有尺寸最多為1"的直徑與6.35 mm厚度。此濾波器切換速度仍然比EPCS數位偵測器150的讀出時間慢,EPCS數位偵測器150在實例中每秒可讀取100個圖框,因此濾波器切換速度係示例性實驗組態的量測速度中的限制因素。The measurement method using the enhanced EPCS subsystem 100 is relatively fast and is based on controlling the activation of the light source element 123, the rotational (azimuth) position of the filter wheel 530 of the optical filter device 500 and the exposure time of the EPCS digital detector 150 ( Timing relationship between image capture time). In an exemplary configuration of the enhanced EPCS subsystem 100 used in the experiments, a ThorLabs FW103H high current BSC201 controller with 8-32 taps was used to control the motorized filter wheel 530 . This provides the optical filter device 500 with a (stepped) filter switching speed of between about 55 milliseconds (ms) to 60 ms. In an exemplary experimental configuration, the optical filter assembly 600 has dimensions up to 1" in diameter and 6.35 mm thick. This filter switching speed is still slower than the readout time of the EPCS digital detector 150, the EPCS digital detector The filter 150 can read 100 frames per second in an example, so the filter switching speed is the limiting factor in the measurement speed of the exemplary experimental configuration.

快速變化(步進)的濾波器輪組態的替代方案係持續地旋轉濾波器輪530。快速變化組態需要高電流驅動系統540來以足夠的精度開始並停止濾波器輪530。經組態以提供濾波器輪530的恆定旋轉的驅動系統540使用相對小的持續電流來保持濾波器輪自旋,而來自濾波器輪及光學濾波器總成600的質量的慣性保持運動足夠恆定,以使得簡單的編碼器或更簡單的參考折射率感測器可用於指示位置且甚至向EPCS數位偵測器150提供觸發。若光源元件123並非持續地開啟,則觸發可用於啟動來自光源元件123的照明。在一個實例中,曝光時間在大部分(且在另一實例中,最大量的)量測光穿過給定光學濾波器總成600時的持續時間內發生。在另一實例中,曝光時間僅在有光穿過給定光學濾波器總成600時或在有最小量的光(例如,超過最大量的10%)穿過給定光學濾波器總成600時發生。An alternative to a rapidly changing (stepped) filter wheel configuration is to rotate the filter wheel 530 continuously. Rapidly changing configurations require high current drive system 540 to start and stop filter wheel 530 with sufficient precision. The drive system 540 configured to provide constant rotation of the filter wheel 530 uses a relatively small continuous current to keep the filter wheel spinning, while the inertia from the mass of the filter wheel and optical filter assembly 600 keeps the motion sufficiently constant , so that a simple encoder or even simpler reference index sensor can be used to indicate position and even provide a trigger to the EPCS digital detector 150 . A trigger may be used to initiate illumination from the light source element 123 if the light source element 123 is not continuously on. In one example, the exposure time occurs during the duration that the majority (and in another example, the greatest amount) of measurement light passes through a given optical filter assembly 600 . In another example, the exposure time is only when light passes through a given optical filter assembly 600 or when a minimum amount of light (eg, more than 10% of a maximum amount) passes through a given optical filter assembly 600 happens when.

形成濾波器輪530的支撐構件510的設計可包括相鄰光學濾波器總成600之間的相對大的不透明區。這可允許不透明區像焦平面光閘一樣作用且跨給定模式頻譜影像使曝光持續時間最大化為給定光學濾波器總成600的全部尺寸。在光被不透明區阻擋時,即,在光學濾波器設備500到達光源軸線AS及光的光徑之前,曝光可開始。隨著光學濾波器總成600進入光源軸線AS並與其相交然後移開,曝光繼續。當光學濾波器總成完全離開光的光徑且下一個不透明區最終到達光源軸線時,曝光停止。The design of the support member 510 forming the filter wheel 530 may include relatively large opaque regions between adjacent optical filter assemblies 600 . This may allow the opaque region to act like a focal plane shutter and maximize exposure duration across a given mode spectral image for the full size of a given optical filter assembly 600 . Exposure may start when the light is blocked by the opaque region, ie before the optical filter device 500 reaches the light source axis AS and the optical path of the light. Exposure continues as optical filter assembly 600 enters, intersects, and then moves away from light source axis AS. Exposure stops when the optical filter assembly is completely out of the optical path of the light and the next opaque region finally reaches the axis of the light source.

第25A圖及第25B圖係示例性EPCS偵測器系統140的一部分的特寫視圖,其示出本文中揭示的強化EPCS子系統100的兩個示例性組態。EPCS偵測器系統140的實例採用多個EPCS數位偵測器150,其中三個示例性EPCS數位偵測器表示為150a、150b及150c,其各自可操作地連接至系統控制器400。三個示例性EPCS數位偵測器150a、150b及150c使用分束器180在空間上分離,分束器180在第25A圖的實例中可為習知的分束元件。在一個示例中,EPCS數位偵測器150a、150b及150c用於偵測相應的波長λ a、λ b及λ c。這可藉由將相應的窄頻光學濾波器144a、144b及144c置放於EPCS數位偵測器150a、150b及150c中之每一者前方來實現。此組態允許同時偵測模式頻譜影像且消除對光學濾波器設備500及其高速濾波器輪組態的需要,但是需要多個EPCS數位偵測器150及資料同步來處理同時的模式頻譜量測。EPCS數位偵測器150a、150b及150c沿著相應光學路徑的相對軸向位置可經設定以補償由所採用的不同光波長引起的任何聚焦差異。同樣地,可採用額外的聚焦透鏡142a、142b及142c以在相應的EPCS數位偵測器150a、150b及150c處獲得正確的聚焦。 25A and 25B are close-up views of a portion of an exemplary EPCS detector system 140 showing two exemplary configurations of the enhanced EPCS subsystem 100 disclosed herein. An example of the EPCS detector system 140 employs a plurality of EPCS digit detectors 150 , three exemplary EPCS digit detectors indicated at 150 a , 150 b , and 150 c , each of which is operatively connected to the system controller 400 . The three exemplary EPCS digit detectors 150a, 150b, and 150c are spatially separated using a beam splitter 180, which in the example of FIG. 25A may be a conventional beam splitting element. In one example, EPCS digital detectors 150a, 150b, and 150c are used to detect corresponding wavelengths λa , λb , and λc . This can be achieved by placing respective narrowband optical filters 144a, 144b and 144c in front of each of EPCS digital detectors 150a, 150b and 150c. This configuration allows simultaneous detection of mode spectrum images and eliminates the need for optical filter device 500 and its high speed filter wheel configuration, but requires multiple EPCS digital detectors 150 and data synchronization to process simultaneous mode spectrum measurements . The relative axial positions of EPCS digital detectors 150a, 150b, and 150c along the respective optical paths can be set to compensate for any focus differences caused by the different wavelengths of light employed. Likewise, additional focusing lenses 142a, 142b, and 142c may be employed to obtain correct focus at the corresponding EPCS digital detectors 150a, 150b, and 150c.

在第25B圖所示的組態中,分束器係波長選擇性元件125,諸如雙色鏡,以使得所選波長被引導至對應的EPCS數位偵測器。這消除對在EPCS數位偵測器150前方的個別窄頻光學濾波器的需要。In the configuration shown in Figure 25B, the beam splitter is a wavelength selective element 125, such as a dichroic mirror, so that selected wavelengths are directed to corresponding EPCS digital detectors. This eliminates the need for a separate narrowband optical filter in front of the EPCS digital detector 150 .

第25C圖類似於第25A圖,只不過每一單個光學濾波器由光學濾波器設備500取代,光學濾波器設備500包括配置在如上所述的濾波器輪530上的多個光學濾波器。Figure 25C is similar to Figure 25A except that each individual optical filter is replaced by an optical filter device 500 comprising a plurality of optical filters arranged on a filter wheel 530 as described above.

使用如第23圖所示的採用具有高速濾波器輪530的單個光學濾波器設備500的光源系統組態的成本可超過使用如第25A圖及第25B圖所示的多個EPCS數位偵測器150的成本,以使得在成本為因素的一些實施例中,多個EPCS數位偵測器的使用可為較佳的。多個EPCS數位偵測器150的使用具有以下優點:偵測器不需要針對總體系統速度在高圖框速率下操作,因為速度來自使用多個EPCS數位偵測器150同時獲取模式頻譜影像。在此情況下,曝光時間驅動獲取時間,其中曝光時間主要由光源元件123的強度驅動。相對高功率的光源元件123的使用可用於降低曝光時間。The cost of using a light source system configuration as shown in FIG. 23 using a single optical filter device 500 with a high-speed filter wheel 530 can exceed the cost of using multiple EPCS digital detectors as shown in FIGS. 25A and 25B 150 so that in some embodiments where cost is a factor, the use of multiple EPCS digit detectors may be preferable. The use of multiple EPCS digital detectors 150 has the advantage that the detectors do not need to operate at high frame rates for overall system speed, since the speed comes from using multiple EPCS digital detectors 150 to simultaneously acquire pattern spectrum images. In this case, the exposure time drives the acquisition time, wherein the exposure time is primarily driven by the intensity of the light source element 123 . The use of relatively high power light source elements 123 can be used to reduce exposure time.

處理在不同波長下捕獲的模式頻譜160允許更準確地分析CS基板10的應力相關性質。在一些情況下,在一個波長下獲取的給定模式頻譜160的TM模式線163TM比TE模式線163TE清晰(即,對比度更高),且反之亦然。因此,在不同波長下捕獲的多個模式頻譜160的使用允許分析最好的(最高對比度)TM及TE模式線。高對比度模式頻譜160允許準確地判定TM模式線163TM及TE模式線163TE的位置。此外,可穿過量測波長範圍內的多個點對TM模式線163TM及TE模式線163TE的位置進行內插以更好地判定真實及虛擬模式線兩者的真實位置以擴展分析。Processing the mode spectrum 160 captured at different wavelengths allows for a more accurate analysis of the stress-related properties of the CS substrate 10 . In some cases, the TM mode lines 163TM of a given mode spectrum 160 acquired at one wavelength are clearer (ie, higher in contrast) than the TE mode lines 163TE, and vice versa. Thus, the use of multiple mode spectra 160 captured at different wavelengths allows analysis of the best (highest contrast) TM and TE mode lines. The high contrast mode spectrum 160 allows accurate determination of the positions of the TM mode line 163TM and the TE mode line 163TE. In addition, the positions of TM mode line 163TM and TE mode line 163TE can be interpolated across multiple points within the measurement wavelength range to better determine the true positions of both real and virtual mode lines for extended analysis.

在混合系統20的主外殼外部的遠端EPCS光源112的使用保留了混合系統內的空間,移除熱源且提供出入口以服務於光源的組件。The use of a remote EPCS light source 112 outside the main housing of the hybrid system 20 preserves space within the hybrid system, removes heat sources and provides access to components servicing the light source.

強化strengthen LSPLSP 子系統subsystem

第26圖類似於第4A圖且示出強化LSP子系統200的實例。強化LSP子系統200的LSP光源系統210現在包括可操作地沿著第三軸線A3按次序安置於LSP光源212與第一聚焦透鏡之間的以下組件:光閘系統280、旋轉半波片234RH及固定偏光器(具有固定的偏光方向) 234F。光閘系統280可包含例如由驅動馬達驅動的旋轉光閘。在實例中,LSP光源212包含相對高功率的雷射二極體213,其具有以所選波長(諸如405 nm)為中心的光輸出(LSP光束216)。在各種實例中,雷射二極體213具有至少1毫瓦(milliwatt,mW)或至少10 mW或至少20 mW或至少30 mW或至少40 mW或至少50 mW的輸出功率。FIG. 26 is similar to FIG. 4A and shows an example of an enhanced LSP subsystem 200 . The LSP light source system 210 of the enhanced LSP subsystem 200 now includes the following components operatively disposed in sequence along the third axis A3 between the LSP light source 212 and the first focusing lens: shutter system 280, rotating half-wave plate 234RH, and Fixed polarizer (with fixed polarization direction) 234F. Shutter system 280 may include, for example, a rotary shutter driven by a drive motor. In an example, LSP light source 212 includes a relatively high power laser diode 213 having an optical output (LSP beam 216) centered at a selected wavelength, such as 405 nm. In various examples, the laser diode 213 has an output power of at least 1 milliwatt (mW), or at least 10 mW, or at least 20 mW, or at least 30 mW, or at least 40 mW, or at least 50 mW.

光學補償器230現在包括可操作地沿著由偏光分束器(polarizing beam splitter,PBS) 232界定的光譜儀軸線AS安置的光譜儀260。光學補償器230亦包括沿著第三軸線A3配置且在PBS 232下游的固定半波片234H及可變偏光器234V。可變偏光器234V由偏光控制器237驅動。可移動聚焦透鏡236駐留在光學補償器230下游。在實例中,可移動聚焦透鏡236由線性馬達272移動且由透鏡座270機械附接至線性馬達272。在實例中,透鏡座270可包含在支撐管(未圖示)內軸向可移動(可滑動)的透鏡管。在實例中,線性馬達272包含經組態有提供精密線性移動的線性致動器。在實例中,可變賠不起234V包含液晶可變延遲片(liquid crystal variable retarder,LCVR)。在實例中,溫度控制器235與可變偏光器234V可操作地通信以提供溫度穩定化以避免偏光隨著溫度變化。The optical compensator 230 now includes a spectrometer 260 operatively positioned along a spectrometer axis AS defined by a polarizing beam splitter (PBS) 232 . The optical compensator 230 also includes a fixed half-wave plate 234H and a variable polarizer 234V arranged along the third axis A3 and downstream of the PBS 232 . The variable polarizer 234V is driven by a polarization controller 237 . A movable focusing lens 236 resides downstream of the optical compensator 230 . In an example, movable focus lens 236 is moved by linear motor 272 and is mechanically attached to linear motor 272 by lens mount 270 . In an example, lens mount 270 may comprise a lens tube axially movable (slidable) within a support tube (not shown). In an example, linear motor 272 comprises a linear actuator configured to provide precise linear movement. In an example, the variable voltage 234V includes a liquid crystal variable retarder (LCVR). In an example, temperature controller 235 is in operative communication with variable polarizer 234V to provide temperature stabilization against changes in polarization with temperature.

在LSP光源212中使用相對高功率的雷射二極體促進對由玻璃材料製成的CS基板10進行應力相關量測,玻璃材料具有非晶結構,非晶結構的散射能力不如玻璃陶瓷材料的晶體結構。PBS 232針對所選波長(例如,405 nm)下的效能經最佳化,從而最佳化朝向被測試CS基板10引導的光的量。半波片234H及PBS 232的組合允許CS基板10處的自動光強度控制,從而使得有可能在量測玻璃CS基板與量測玻璃陶瓷CS基板之間交替。The use of a relatively high power laser diode in the LSP light source 212 facilitates stress-related measurements on the CS substrate 10 made of a glass material that has an amorphous structure that does not scatter as well as a glass-ceramic material. Crystal structure. The PBS 232 is optimized for efficacy at a selected wavelength (eg, 405 nm) to optimize the amount of light directed toward the CS substrate 10 under test. The combination of half wave plate 234H and PBS 232 allows automatic light intensity control at CS substrate 10, making it possible to alternate between measuring glass CS substrates and measuring glass ceramic CS substrates.

光譜儀260經安置以接收LSP光束216的一部分且對LSP光束進行光譜處理。光譜儀260服務於兩個主要功能。第一功能係即時監測LSP光束216的波長,從而允許波長校準。第二功能係監測雷射二極體的輸出功率的變化。因此,術語「光譜處理」可包括執行前述第一及第二功能中之至少一者或兩者。Spectrometer 260 is positioned to receive a portion of LSP beam 216 and perform spectral processing on the LSP beam. Spectrometer 260 serves two main functions. The first function is to monitor the wavelength of the LSP beam 216 in real time, allowing wavelength calibration. The second function is to monitor the change of the output power of the laser diode. Accordingly, the term "spectral processing" may include performing at least one or both of the aforementioned first and second functions.

在實例中,溫度控制器235允許可變偏光器234V的LCVR在相對於諸如室溫的環境溫度略有升高的溫度(例如,約35℃與40℃之間)下操作,從而減少室溫波動對偏光的影響且改良量測穩定性及循環時間。在實例中,光譜儀260可為可商購的光譜儀或者可為由此項技術中已知的標準組件(諸如繞射光柵、一系列陷波濾波器等)製成的光譜儀。In an example, temperature controller 235 allows the LCVR of variable polarizer 234V to operate at a slightly elevated temperature (eg, between about 35°C and 40°C) relative to ambient temperature, such as room temperature, thereby reducing the temperature of the room temperature. Fluctuation affects the polarization and improves measurement stability and cycle time. In an example, spectrometer 260 may be a commercially available spectrometer or may be a spectrometer fabricated from standard components known in the art such as a diffraction grating, a series of notch filters, and the like.

具有約50 mW輸出功率的高功率雷射二極體213可高於針對某些類型的CS基板10獲得足夠的散射強度所需要的所需功率。然而,進入CS基板10的LSP光束216的確切量可利用旋轉半波片234RH結合PBS 232來精確控制。A high power laser diode 213 with an output power of about 50 mW may be higher than the required power required to obtain sufficient scattering intensity for certain types of CS substrates 10 . However, the exact amount of LSP beam 216 entering CS substrate 10 can be precisely controlled using rotating half-wave plate 234RH in combination with PBS 232 .

第27A圖係展示如何執行雷射二極體213的強度控制的實例的示意圖。來自雷射二極體213的線性偏光的LSP光束216穿過旋轉半波片234RH且入射於PBS 232上,PBS 232將LSP光束分成兩個光束,這兩個光束被引導至光偵測器PD1及PD2且由光偵測器PD1及PD2偵測,光偵測器PD1及PD2繼而可操作地連接至系統控制器400。應注意,在實踐中,可使用額外的分束器(未圖示)將LSP光束216的多個部分引導至併入強化LSP子系統200中的光偵測器PD1及PD2。例如,一個分束器可沿著軸線AS置放於光譜儀260上游,而另一分束器可剛好置放於PBS 232下游。FIG. 27A is a schematic diagram showing an example of how the intensity control of the laser diode 213 is performed. The linearly polarized LSP beam 216 from the laser diode 213 passes through the rotating half-wave plate 234RH and is incident on the PBS 232, which splits the LSP beam into two beams which are directed to the photodetector PD1 and PD2 and are detected by photodetectors PD1 and PD2 , which in turn are operatively connected to system controller 400 . It should be noted that, in practice, additional beam splitters (not shown) may be used to direct portions of LSP beam 216 to photodetectors PD1 and PD2 incorporated into enhanced LSP subsystem 200 . For example, one beam splitter may be placed upstream of spectrometer 260 along axis AS, while another beam splitter may be placed just downstream of PBS 232 .

第27B圖係針對LSP光束216的透射(T)部分及反射(R)部分的正規化光功率OP與旋轉半波片234RH的角θ ( ° )的曲線圖,LSP光束216針對使用雷射二極體213的示例性實驗組態係由PBS 232形成的。可看出,當旋轉半波片234RH旋轉時,光偵測器PD1及PD2處的量測功率改變。可預期T及R曲線圖的鏡像特徵,因為旋轉半波片在光進入PBS 232之前有效地旋轉光的偏光。垂直及水平偏光強度的量取決於來自雷射二極體的LSP高速216的偏光定向。Fig. 27B is a graph of the normalized optical power OP and the angle θ (°) of the rotating half-wave plate 234RH for the transmission (T) part and the reflection (R) part of the LSP beam 216. An exemplary experimental configuration of polar body 213 was formed from PBS 232 . It can be seen that when the rotating half-wave plate 234RH rotates, the measured power at the photodetectors PD1 and PD2 changes. The mirrored nature of the T and R plots is expected because rotating the half-wave plate effectively rotates the polarization of the light before it enters the PBS 232 . The amount of vertical and horizontal polarization intensity depends on the orientation of the polarization of the LSP 216 from the laser diode.

再次參考第26圖,可移動聚焦透鏡236提供穩定的解決方案來將LSP光束216聚焦至正在以微米解析度進行分析的CS基板10上。另外,電腦控制(經由系統控制器400)確保跨不同混合系統20的可重複性,因為可使聚焦透鏡236的位置相同。Referring again to FIG. 26, the movable focusing lens 236 provides a stable solution to focus the LSP beam 216 onto the CS substrate 10 being analyzed at micron resolution. In addition, computer control (via system controller 400 ) ensures repeatability across different mixing systems 20 because the position of focusing lens 236 can be made the same.

聚焦透鏡236的絕對位置可影響CS基板10的CT (中心張力)量測。第28圖係基於在示例性CS基板10上執行的量測的CT (MPa)與聚焦透鏡位置LP (mm) (相對於參考位置來量測)的曲線圖。量測結果展示所量測CT跨聚焦透鏡236的2 mm運動範圍的約5 MPa變化。聚焦透鏡236的正確置放確保準確且可重複的應力相關量測。The absolute position of the focusing lens 236 can affect the CT (central tension) measurement of the CS substrate 10 . FIG. 28 is a graph of CT (MPa) versus focus lens position LP (mm) (measured relative to a reference position) based on measurements performed on an exemplary CS substrate 10 . The measurement results show about 5 MPa variation of the measured CT across the 2 mm range of motion of the focusing lens 236 . Proper placement of the focusing lens 236 ensures accurate and repeatable stress-related measurements.

如上所述,示例性可變偏光器234V包含由偏光控制器237驅動的LCVR。在使用LSP子系統200的典型量測期間,藉由偏光控制器237所提供的一系列電壓激勵LCVR,電壓之間有約200毫秒的延遲。此時間延遲允許裝置響應時間及影像捕獲且考慮到大部分量測循環時間。儘管LCVR在室溫下良好地操作,但是其響應時間可隨著升高的溫度大體上改良(例如,最多3倍),從而藉由減小LCVR中的液晶材料的黏度來減少響應時間。在實例中,利用調幅(amplitude-modulated,AM) 信號激勵LCVR,且使用示波器判定LCVR的響應時間。LCVR穩定時間隨著溫度減少的趨勢支援量測循環時間減少的可行性。另外,如上所述,在相對於室溫(環境溫度)升高的溫度(例如,> 30℃)下操作可減小或消除溫度波動對偏光的影響,從而導致跨多個獨立LSP子系統200的更高的穩定性及可重複性。Exemplary variable polarizer 234V includes an LCVR driven by polarization controller 237, as described above. During a typical measurement using the LSP subsystem 200, the LCVR is excited by a series of voltages provided by the polarization controller 237 with about 200 milliseconds delay between the voltages. This time delay allows for device response time and image capture and accounts for most of the measurement cycle time. Although LCVRs operate well at room temperature, their response time can be substantially improved (eg, up to a factor of 3) with increasing temperature, thereby reducing response time by reducing the viscosity of the liquid crystal material in the LCVR. In an example, an LCVR is excited with an amplitude-modulated (AM) signal, and an oscilloscope is used to determine the response time of the LCVR. The decreasing trend of LCVR settling time with temperature supports the feasibility of measuring cycle time reduction. Additionally, as noted above, operating at elevated temperatures (e.g., >30°C) relative to room temperature (ambient temperature) reduces or eliminates the effect of temperature fluctuations on polarized light, resulting in multiple independent LSP subsystems 200 higher stability and repeatability.

對LSP子系統200的示例性強化包括校準過程,其包括相機角校準及相機傾斜補償。第29圖類似於第11B圖,但是相關參數有不同的標記。相機角表示為β且相對於水平軸線來量測,而 t r 為真實CS基板厚度(其可利用例如卡尺來量測),且 t i 為影像平面中(即,在數位偵測器246處)的感知CS基板厚度。相機觀察平面表示為CVP且觀察方向表示為 z(z軸)。相機角β經由關係Cosβ = t i / t r 與參數 t i t r 相關。 Exemplary enhancements to the LSP subsystem 200 include a calibration process including camera angle calibration and camera tilt compensation. Figure 29 is similar to Figure 11B, but relevant parameters are labeled differently. The camera angle is denoted as β and is measured relative to the horizontal axis, while tr is the real CS substrate thickness (which can be measured using, for example, calipers), and ti is in the image plane (i.e., at digital detector 246 ) of the perceived CS substrate thickness. The camera viewing plane is denoted CVP and the viewing direction is denoted z (z-axis). The camera angle β is related to the parameters t i and t r via the relation Cos β = t i / t r .

相機傾斜角θ量測繞z軸的相機旋轉量。相機傾斜角θ的偏差可改變計算影像平面厚度的方式。如第29圖所示,CS基板厚度 t r 的計算不再是入口點與出口點之間的垂直距離,而是需要使用三角學進行的更多計算以考慮到偏差角θ。 The camera tilt angle θ measures the amount of camera rotation around the z-axis. Deviations in the camera tilt angle θ can change the way the image plane thickness is calculated. As shown in Fig. 29, the calculation of the CS substrate thickness tr is no longer the vertical distance between the entry point and the exit point, but requires more calculations using trigonometry to take into account the deviation angle θ.

本揭露的一態樣包括用於由偵測到的散射的LSP光束216S形成的X形LSP影像248 (包括如上所述的已處理影像中之一者)的強化光束定中心方法,其涉及兩個主要步驟,即,改良的光束中心步驟及改良的中心點偵測步驟。(參見第10A圖)。An aspect of the present disclosure includes an enhanced beam centering method for an X-shaped LSP image 248 (including one of the processed images described above) formed from a detected scattered LSP beam 216S involving two two main steps, namely, the improved beam centering step and the improved center point detection step. (See Figure 10A).

1)1) 強化光束定中心方法Enhanced Beam Centering Method

改良的光束定中心方法包括兩個子步驟。第一子步驟藉由在基板的每一深度處使用模型強度輪廓( I M )對水平影像強度輪廓( I)建模來發現沿著光束路徑的光束中心,模型強度輪廓( I M )由下式給出

Figure 02_image055
, 其中第一項將光束強度輪廓建模為高斯函數,其中 a bc分別為高斯的峰值強度、中心及半徑,而最後兩項對背景強度輪廓(例如,環境光、相機暗計數、不均勻相機響應)建模,其中 df分別為背景強度的斜率及恆定等級。 p為影像中的水平像素的值。然後從 I M I的最佳擬合發現光束中心為高斯光束的中心。 The improved beam centering method consists of two sub-steps. The first substep finds the beam center along the beam path by modeling the horizontal image intensity profile ( I ) at each depth of the substrate using a model intensity profile ( IM ) given by given by
Figure 02_image055
, where the first term models the beam intensity profile as a gaussian function, where a , b , and c are the peak intensity, center, and radius of the gaussian, respectively, and the last two terms model the background intensity profile (eg, ambient light, camera dark count, non-uniform camera response), where d and f are the slope and constant level of the background intensity, respectively. p is the value of a horizontal pixel in the image. The center of the beam is then found to be the center of the Gaussian beam from the best fit of I M to I.

第30A圖係針對沿著光束路徑在x方向上進入CS基板10的所選深度的強度I(p)與像素數p(x)的曲線圖。擬合估計散射的LSP光束216S中之一者(即,X形LSP影像248中之一者;參見第4D圖或第30C圖,後者在下文介紹)的中心,如大黑點表示的CNTR所指示。一旦已收集在沿著光束路徑的每一深度處的一系列峰值中心,就在第二子步驟中穿過所有估計的峰值中心應用線擬合,如第30B圖的曲線圖所示,第30B圖依據沿著x及y方向定位的像素(分別表示為p(x)及p(y))來展示峰值中心擬合。將此方法的結果與實際光束影像進行比較且展示來對散射光束的中心進行定位的方法具有高準確度。FIG. 30A is a graph of intensity I(p) versus pixel number p(x) for selected depths along the beam path into CS substrate 10 in the x-direction. The fit estimates the center of one of the scattered LSP beams 216S (i.e., one of the X-shaped LSP images 248; see Figure 4D or Figure 30C, the latter described below), as indicated by the CNTR represented by the large black dot instruct. Once a series of peak centers at each depth along the beam path have been collected, a line fit is applied across all estimated peak centers in a second substep, as shown in the graph of Figure 30B, Figure 30B The plots show peak center fits in terms of pixels positioned along the x and y directions, denoted p(x) and p(y), respectively. The results of this method are compared with actual beam images and shown to locate the center of the scattered beam with high accuracy.

2)2) 強化中心點偵測Enhanced center point detection

強化中心點偵測方法利用上述高斯擬合方法來追蹤光束中心。第30C圖係類似於第10C圖的示意圖,其展示LSP影像248 (強度輪廓),而兩個重疊的擬合線FL1及FL2延伸穿過兩個線影像區段的中心,這兩個線影像區段表示為248-1及248-2。兩個擬合線FL1及FL2的交點表示LSP影像248的中心點。The enhanced center point detection method uses the Gaussian fitting method described above to track the center of the beam. Figure 30C is a schematic diagram similar to Figure 10C showing the LSP image 248 (intensity profile) with two overlapping fitted lines FL1 and FL2 extending through the center of the two line image segments, the two line images Sections are denoted 248-1 and 248-2. The intersection of the two fitting lines FL1 and FL2 represents the center point of the LSP image 248 .

3)3) 強化入口點方法Enhancing the entry point method

LSP影像248的感興趣參數被稱為入口點且在第30C圖中表示為ENP。判定入口點利用由上述高斯擬合方法建立的擬合中心線FL1及FL2,上述高斯擬合方法發現依光束強度而變的光束中心。然後將入口點ENP選擇為沿著LSP影像248的中心線擬合的邊緣強度輪廓上的半最大值。第30D圖係沿著擬合線FL2及在入口點EP附近(參見第30C圖)的LSP影像強度I(p)與像素位置p的曲線圖。第30D圖的曲線圖展示示例性邊緣強度輪廓且識別最大強度I MAX、表示背景或零強度值(例如,藉由使強度曲線偏移)的最小強度I MIN及半最大強度I 1/2,半最大強度I 1/2駐留在I MAX與I MIN中間且界定入口點ENP的位置(像素位置),該位置在示例性曲線圖中大約在像素32處。像素32可與CS基板10上的實體位置相關以獲得CS基板的坐標系統中的入口點ENP。 The parameter of interest of the LSP image 248 is called an entry point and is denoted ENP in Figure 30C. The entry point is determined using the fitted centerlines FL1 and FL2 established by the Gaussian fitting method described above which finds the center of the beam as a function of beam intensity. The entry point ENP is then chosen to be half maximum on the edge intensity profile fitted along the centerline of the LSP image 248 . Figure 30D is a graph of LSP image intensity I(p) versus pixel position p along the fitted line FL2 and near the entry point EP (see Figure 30C). The graph of FIG. 30D shows exemplary edge intensity profiles and identifies maximum intensity I MAX , minimum intensity I MIN representing background or zero intensity values (e.g., by shifting the intensity curve), and half-maximum intensity I 1/2 , Half maximum intensity I 1/2 resides midway between I MAX and I MIN and defines the location (pixel location) of entry point ENP, which is approximately at pixel 32 in the exemplary graph. Pixels 32 may be related to physical locations on CS substrate 10 to obtain entry points ENP in the coordinate system of the CS substrate.

對於熟習此項技術者來說顯而易見的是,在不脫離如所附申請專利範圍所界定之本揭露的精神及範疇的情況下,可對如本文所描述的本揭露的較佳實施例進行各種修改。因此,本揭露涵蓋修改及變化,只要它們在所附申請專利範圍及其均等物的範疇內即可。It will be apparent to those skilled in the art that various modifications may be made to the preferred embodiments of the disclosure as described herein without departing from the spirit and scope of the disclosure as defined by the appended claims. Revise. Accordingly, the present disclosure covers modifications and variations provided they come within the scope of the appended claims and their equivalents.

5,5A,5B:折射率匹配流體 10:CS基板 11:主體 12:頂部表面 14:底部表面 16:側面 18:NSWG 20:混合系統 21:外殼 30:空氣幕 40:耦合稜鏡總成 42:共同耦合稜鏡 42A:EPCS耦合稜鏡 42B:LSP耦合稜鏡 43A,43B:輸入表面 44A,44B:輸出表面 45A:EPCS耦合表面 45B:LSP耦合表面 46:稜鏡支撐結構 47:薄壁 48:支撐框 48A:EPCS框區段 48B:LSP框區段 49:模具 49R:樹脂 50:隔離構件 52:緊固凸片 53:安裝孔 54:緊固構件 60:蓋板 62A:第一孔 62B:第二孔 70:支撐充氣部 71:頂部表面 72:量測孔 73:輸送元件 75:穩定平台 76:表面 80:可移動基板固持器 82:內部唇 90:PV元件或PV管道(PV棒) 91:真空系統 92:真空源 94:止動構件 100:EPCS子系統 110:EPCS光源系統 112:EPCS光源 116:多波長EPCS光束 116a,116b,116c,116d…116m:經濾波的光束 116F:經濾波且經聚焦的EPCS光束 116G:導引光 116R:經濾波且經反射的EPCS光束 118:光學偏光器 120:聚焦透鏡 121:聚焦光學系統 122:光漫射體 123,123a,123b,123c:光源元件 124a,124b,124c:校正透鏡 125,125a,125b:波長選擇性元件 130:光導 131:輸入端 132:輸出端 135:透鏡元件 137:漫射體 140:光導總成 142,142a,142b,142c:聚焦透鏡 143:平移台 144:帶通濾波器 144a,144b,144c:窄頻光學濾波器 146:衰減器 148:TM-TE偏光器 148S:可切換TM-TE偏光器 149:偏光器控制器 150,150a,150b,150c:EPCS數位偵測器 152:支撐構件 153:聚焦透鏡總成 160:模式頻譜 161TM,161TE:TIR區段 162TM,162TE:非TIR區段 163TM:TM「條紋」或TM模式線 163TE:TE「條紋」或TE模式線 166TM:TM臨界角轉變 166TE:TE臨界角轉變 180:分束器 200:LSP子系統 210:LSP光源系統 212:LSP光源 213:雷射二極體 216:LSP光束 216F:經聚焦的LSP光束 216S:散射光/散射的LSP光束 218:中性密度濾波器 220:第一聚焦透鏡 222:光漫射體 224:第二聚焦透鏡 230:光學補償器 232:偏光分束器 234H:第一固定偏光器 234RH:可旋轉半波片 234Q:三分之一波片 234V:可變偏光器 235:溫度控制器 236:軸向可移動聚焦透鏡 237:偏光控制器 240:LSP偵測器系統 243:收集光學系統 244:帶通濾波器 246:數位偵測器 247:成像像素 248:LSP影像 248D:數位LSP影像 248C:LSP影像輪廓 248T:臨限LSP影像 260:光譜儀 270:透鏡座 272:線性馬達 280:光閘系統 400:系統控制器 405:LSE控制器 410:使用者介面 412A:EPCS區段 412B:LSP區段 500:光學濾波器總成 512:中心區段 510:支撐構件 514:外部區段 516:孔 522:前側 523:外周邊 530:濾波器輪 540:驅動系統 544:驅動軸 550:驅動馬達 600,600a,600b,600c,600d:光學濾波器總成 620:濾波器 630:校正構件 PD1,PD2:光偵測器 INT1:EPCS耦合界面 INT2:LSP耦合界面 5, 5A, 5B: Refractive Index Matching Fluids 10: CS substrate 11: Subject 12: Top surface 14: Bottom surface 16: side 18:NSWG 20: Hybrid system 21: Shell 30: Air Curtain 40: Coupling 騜鏡 assembly 42: Commonly coupled 稜鏡 42A: EPCS coupling 騜鏡 42B: LSP coupling 稜鏡 43A, 43B: input surface 44A, 44B: output surface 45A: EPCS Coupling Surface 45B: LSP Coupling Surface 46: 稜鏡Supporting structure 47: thin wall 48: Support frame 48A: EPCS frame section 48B: LSP frame section 49:Mold 49R: Resin 50: Isolation components 52: fastening tab 53: Mounting hole 54: fastening member 60: cover plate 62A: the first hole 62B: Second hole 70: support inflatable part 71: top surface 72: Measuring hole 73: Conveyor element 75: Stable platform 76: surface 80: Movable substrate holder 82: inner lip 90:PV elements or PV pipes (PV rods) 91: Vacuum system 92: Vacuum source 94: stop member 100:EPCS subsystem 110:EPCS light source system 112:EPCS light source 116:Multi-wavelength EPCS beam 116a, 116b, 116c, 116d...116m: filtered beam 116F: Filtered and focused EPCS beam 116G: Guide light 116R: Filtered and reflected EPCS beam 118:Optical polarizer 120: focus lens 121: Focusing optical system 122: light diffuser 123, 123a, 123b, 123c: light source components 124a, 124b, 124c: correction lens 125, 125a, 125b: wavelength selective components 130: light guide 131: input terminal 132: output terminal 135: Lens element 137: Diffuser 140: Light guide assembly 142, 142a, 142b, 142c: focusing lens 143: Translation platform 144: Bandpass filter 144a, 144b, 144c: narrowband optical filters 146: Attenuator 148: TM-TE polarizer 148S: Switchable TM-TE Polarizer 149: Polarizer controller 150, 150a, 150b, 150c: EPCS digital detector 152: Support member 153: Focusing lens assembly 160: Mode Spectrum 161TM, 161TE: TIR section 162TM, 162TE: non-TIR segment 163TM: TM "stripe" or TM pattern line 163TE: TE "stripe" or TE pattern wire 166TM:TM critical angle transition 166TE: TE critical angle transition 180: beam splitter 200: LSP subsystem 210: LSP light source system 212: LSP light source 213:Laser diode 216: LSP beam 216F: Focused LSP beam 216S: Scattered light/Scattered LSP beam 218: Neutral density filter 220: the first focusing lens 222: light diffuser 224: second focusing lens 230: Optical compensator 232: Polarizing beam splitter 234H: The first fixed polarizer 234RH: Rotatable half-wave plate 234Q: one-third wave plate 234V: variable polarizer 235: temperature controller 236: Axially movable focusing lens 237: Polarization controller 240: LSP detector system 243:Collection Optical System 244: Bandpass filter 246: Digital Detector 247: imaging pixels 248: LSP image 248D: Digital LSP image 248C: LSP image profile 248T: Threshold LSP image 260: spectrometer 270: lens holder 272:Linear motor 280: Shutter system 400: System Controller 405: LSE controller 410: user interface 412A: EPCS section 412B: LSP section 500: Optical filter assembly 512: Central section 510: support member 514: External section 516: hole 522: front side 523: Outer perimeter 530:Filter wheel 540: drive system 544: drive shaft 550: drive motor 600, 600a, 600b, 600c, 600d: optical filter assembly 620: filter 630: correction component PD1, PD2: Photodetectors INT1: EPCS coupling interface INT2: LSP coupling interface

包括隨附圖式以提供進一步理解,且隨附圖式併入本說明書中且構成本說明書之一部分。圖式示出一或多個實施例,且與詳細描述一起解釋各種實施例的原理及操作。因而,根據以下結合隨附圖式進行的詳細描述,本揭露將得到更全面地理解,在圖式中:The accompanying drawings are included to provide a further understanding, and are incorporated in and constitute a part of this specification. The drawings illustrate one or more embodiments, and together with the detailed description explain the principles and operation of the various embodiments. Accordingly, the present disclosure will be more fully understood from the following detailed description taken in conjunction with the accompanying drawings, in which:

第1A圖係呈平面薄板形式的示例性透明CS基板的俯視圖。FIG. 1A is a top view of an exemplary transparent CS substrate in the form of a planar sheet.

第1B圖係示例性透明CS基板的示例性折射率輪廓 n(z)與z,其展示近表面尖峰區(R1)、更深部區(R2)及整體區(R3),而拐點(KN)位於區R1與區R2之間的轉變處。 Figure 1B is an exemplary refractive index profile n(z) and z of an exemplary transparent CS substrate showing a near-surface peak region (R1), a deeper region (R2) and a bulk region (R3), while the inflection point (KN) Located at the transition between region R1 and region R2.

第2A圖係如本文中所揭示的用於全面表徵透明CS基板中的應力的混合EPCS-LSP量測系統的示意圖。FIG. 2A is a schematic diagram of a hybrid EPCS-LSP metrology system for comprehensive characterization of stress in transparent CS substrates as disclosed herein.

第2B圖係第2A圖的混合EPCS-LSP系統的更詳細示意圖,其展示EPCS量測子系統及LSP量測子系統的示例性組態。FIG. 2B is a more detailed schematic diagram of the hybrid EPCS-LSP system of FIG. 2A showing an exemplary configuration of the EPCS measurement subsystem and the LSP measurement subsystem.

第3A圖係第2A圖的混合EPCS-LSP系統的示例性EPCS子系統的示意圖。FIG. 3A is a schematic diagram of an exemplary EPCS subsystem of the hybrid EPCS-LSP system of FIG. 2A.

第3B圖係藉由EPCS子系統獲得的示例性EPCS模式頻譜的示意圖,其中EPCS模式頻譜包括具有TM模式線(條紋)的TM模式頻譜及具有TE模式線(條紋)的TE模式頻譜。3B is a schematic diagram of an exemplary EPCS mode spectrum obtained by an EPCS subsystem, wherein the EPCS mode spectrum includes a TM mode spectrum with TM mode lines (stripes) and a TE mode spectrum with TE mode lines (stripes).

第4A圖、第4B圖及第4C圖係第2A圖的混合EPCS-LSP系統的示例性LSP子系統的示意圖。4A, 4B and 4C are schematic diagrams of exemplary LSP subsystems of the hybrid EPCS-LSP system of FIG. 2A.

第4D圖係在LSP子系統的數位偵測器上形成的LSP影像的特寫視圖,其中LSP影像包括形成十字形或「X」圖案的兩個線影像,且其中LSP影像及數位偵測器形成數位LSP影像。Figure 4D is a close-up view of the LSP image formed on the digital detector of the LSP subsystem, wherein the LSP image includes two line images forming a cross or "X" pattern, and wherein the LSP image and the digital detector form Digital LSP image.

第5A圖係用於支撐EPCS及LSP耦合稜鏡的示例性稜鏡支撐結構的俯視圖。FIG. 5A is a top view of an exemplary canopy support structure for supporting EPCS and LSP coupled canopy.

第5B圖係安裝在第5A圖的稜鏡支撐結構上的蓋板的俯視圖。Fig. 5B is a top view of the cover plate installed on the supporting structure of Fig. 5A.

第6A圖及第6B圖係支撐在穩定平台上的EPCS及LSP耦合稜鏡的側視圖,且示出形成用於耦合稜鏡總成的單一模製稜鏡支撐結構的示例性方法。Figures 6A and 6B are side views of an EPCS and LSP coupled canal supported on a stable platform and illustrate an exemplary method of forming a single molded canal support structure for a coupled canal assembly.

第6C圖係示例性耦合稜鏡總成的側視圖,其中稜鏡支撐結構經組態成使得EPCS及LSP耦合稜鏡中之至少一者相對於另一者可在一個方向上移動(例如,如所示,z方向)。FIG. 6C is a side view of an exemplary coupled-pipe assembly in which the ply support structure is configured such that at least one of the EPCS and the LSP coupled ply is movable in one direction relative to the other (e.g., As shown, z-direction).

第6D圖係示例性混合EPCS-LSP量測系統的示意圖,其中將單個耦合稜鏡而不是兩個單獨的耦合稜鏡用於EPCS子系統及LSP子系統。FIG. 6D is a schematic diagram of an exemplary hybrid EPCS-LSP measurement system, in which a single coupled beam is used for the EPCS subsystem and the LSP subsystem instead of two separate coupled beams.

第7圖係附接至混合系統的示例性支撐充氣部的示例性稜鏡支撐結構的橫截面視圖,且展示用於調整CS基板上的量測位置的示例性可移動基板固持器。FIG. 7 is a cross-sectional view of an exemplary plenum support structure attached to an exemplary support plenum of a mixing system and shows an exemplary movable substrate holder for adjusting measurement positions on a CS substrate.

第8A圖係支撐充氣部的俯視圖,其展示量測孔及真空系統的壓力真空(pressure-vacuum,PV)棒,該等PV棒可操作地安置於該量測孔內以氣動地嚙合CS基板以便將CS基板牽拉至EPCS及LSP耦合稜鏡的耦合表面上。Figure 8A is a top view of the support plenum showing the gauge holes and pressure-vacuum (PV) rods of the vacuum system operably positioned within the gauge holes to pneumatically engage the CS substrate In order to pull the CS substrate onto the coupling surface of the EPCS and the LSP coupling surface.

第8B圖係支撐充氣部及量測孔的特寫橫截面視圖,其展示耦合稜鏡總成及真空系統的示例性組態。Fig. 8B is a close-up cross-sectional view of a support plenum and a measurement hole showing an exemplary configuration of a coupled plenum assembly and vacuum system.

第9圖係如系統控制器所呈現的示例性使用者介面的示意性表示,其中使用者介面包括展示EPCS模式頻譜的EPCS區段及展示數位LSP影像的LSP線影像的LSP區段。Fig. 9 is a schematic representation of an exemplary user interface as presented by a system controller, wherein the user interface includes an EPCS segment showing an EPCS mode spectrum and an LSP segment showing an LSP line image of a digital LSP image.

第10A圖係使用者介面的LSP區段的實例,其展示示例性數位LSP影像及數位LSP影像的強度直方圖。FIG. 10A is an example of an LSP section of a user interface showing an exemplary digital LSP image and an intensity histogram of the digital LSP image.

第10B圖展示示例性初始或原始數位LSP影像以及高斯模糊的(「模糊的」)LSP影像。Figure 10B shows exemplary initial or raw digital LSP images and Gaussian blurred ("blurred") LSP images.

第10C圖展示藉由將Ostu定限應用於第10B圖的高斯模糊的影像所獲得的示例性臨限影像。Figure 10C shows an exemplary threshold image obtained by applying Ostu's limit to the Gaussian blurred image of Figure 10B.

第10D圖及第10E圖展示在示例性高斯模糊的LSP影像上執行輪廓偵測的實例。Figures 10D and 10E show examples of contour detection performed on exemplary Gaussian blurred LSP images.

第11A圖係CS基板及經聚焦的LSP光束的方向的特寫視圖。Figure 11A is a close-up view of the CS substrate and the direction of the focused LSP beam.

第11B圖係CS基板的邊緣部分的特寫視圖,且展示LSP偵測器系統相對於經聚焦的LSP光束的視角。FIG. 11B is a close-up view of the edge portion of the CS substrate and shows the viewing angle of the LSP detector system relative to the focused LSP beam.

第11C圖類似於第11B圖,且展示到達LSP偵測器系統且形成線影像的散射光束。FIG. 11C is similar to FIG. 11B and shows the scattered light beam reaching the LSP detector system and forming a line image.

第11D圖展示LSP偵測器系統及CS基板與經聚焦的LSP光束的另一視圖。Figure 1 ID shows another view of the LSP detector system and CS substrate with the focused LSP beam.

第11E圖係展示用於判定CS基板厚度的尺寸及角度的示意圖。FIG. 11E is a schematic diagram showing dimensions and angles for determining the thickness of a CS substrate.

第12A圖係針對鎖定法(藍色)及正弦法(綠色)兩者的提取有雜訊的LSP信號的相位φ所需要的以毫秒(millisecond,ms)為單位的平均計算時間T與雜訊因數N。Figure 12A is the average calculation time T and noise in milliseconds (ms) required to extract the phase φ of the LSP signal with noise for both the lock-in method (blue) and the sine method (green) Factor N.

第12B圖係針對用於處理有雜訊的LSP信號的鎖定法(藍色)及正弦法(綠色)的絕對相位差|Δφ |與雜訊因數的曲線圖。FIG. 12B is a graph of the absolute phase difference |Δφ| versus noise factor for the lock-in method (blue) and the sinusoidal method (green) for processing a noisy LSP signal.

第13A圖及第13B圖係光學延遲OR (弧度)與進入CS基板的深度D (mm)的曲線圖(「OR與D曲線圖」),其中第13A圖展示由LSP子系統在不使用斑點減少的情況下收集的OR資料且第13圖展示由LSP子系統使用斑點減少收集的OR資料。Figures 13A and 13B are graphs of optical retardation OR (rad) versus depth D (mm) into the CS substrate (the "OR vs. D graph"), where Figure 13A shows the OR data collected with reduction and Figure 13 shows OR data collected by the LSP subsystem using speckle reduction.

第14A圖及第14B圖係OR與D曲線圖,其示出使OR資料偏移以使彎曲點BP1及BP2圍繞CS基板的中平面對稱的示例性方法。14A and 14B are OR and D graphs showing an exemplary method of offsetting the OR data so that bend points BP1 and BP2 are symmetrical about the mid-plane of the CS substrate.

第15A圖係示例性OR與D曲線圖,其包括離散資料點(圓圈)及對OR與D資料點的擬合線,其中擬合線係使用本文中揭示的「LinQuad」法形成。Figure 15A is an exemplary OR vs. D plot comprising discrete data points (circles) and fitted lines to the OR vs. D data points, wherein the fitted line was formed using the "LinQuad" method disclosed herein.

第15B圖係基於第15A圖的對OR與D資料點的LinQuad擬合之應力S (MPa)與深度D (mm)的曲線圖。Figure 15B is a plot of stress S (MPa) versus depth D (mm) based on the LinQuad fit of Figure 15A to the OR and D data points.

第16A圖係示例性OR與D曲線圖,其包括離散資料點(圓圈)及對OR與D資料點的擬合線,其中擬合線係使用本文中揭示的功率尖峰法形成。Figure 16A is an exemplary OR vs. D plot that includes discrete data points (circles) and fitted lines to the OR vs. D data points, where the fitted line was formed using the power spike method disclosed herein.

第16B圖係基於第16A圖的對OR與D資料點的功率尖峰擬合之應力S (MPa)與深度D (mm)的曲線圖(「S與D曲線圖」)。FIG. 16B is a plot of stress S (MPa) versus depth D (mm) based on the power spike fit of OR and D data points (“S vs. D Graph”) of FIG. 16A.

第17A圖及第17B圖係OR與D曲線圖,其展示初始(原始) OR與D資料點的LinQuad曲線擬合(第17A圖)及在對稱分量被移除的情況下對OR與D資料的LinQuad曲線擬合(第17B圖)。Figures 17A and 17B are plots of OR vs. D curves showing the LinQuad curve fit for the initial (raw) OR and D data points (Figure 17A) and the OR vs. D data with the symmetric components removed LinQuad curve fitting (Fig. 17B).

第18A圖及第18B圖係OR與D曲線圖,其示出在計算所選應力參數時使用縮小面積擬合區,其中第18A圖展示用於計算壓縮深度DOC的在彎曲點BP1及BP2處的縮小面積擬合區且第18B圖展示用於計算中心張力CT的在彎曲點BP1及BP2之間的縮小面積擬合區。Figures 18A and 18B are plots of OR and D showing the use of reduced area fitting regions in calculating selected stress parameters, where Figure 18A shows the curves used to calculate depth of compression DOC at bending points BP1 and BP2 and FIG. 18B shows the reduced area fitting region between bending points BP1 and BP2 for calculating the central tension CT.

第19A圖係OR與D曲線圖,且第19B圖係對應的S與D曲線圖,其中曲線擬合係針對OR資料的整個集合進行。Figure 19A is a plot of OR vs. D, and Figure 19B is a corresponding plot of S vs. D, where the curve fitting was performed on the entire set of OR data.

第19C圖係OR與D曲線圖,且第19D圖係對應的S與D曲線圖,其中曲線擬合係針對OR資料的縮減集合進行,該縮減集合不包括資料的靠近相反端點的部分。Figure 19C is a graph of OR vs. D, and Figure 19D is a corresponding plot of S vs. D, where the curve fitting was performed on a reduced set of OR data excluding portions of the data near opposite endpoints.

第20圖類似於第3A圖且示出EPCS子系統的實施例,其中偵測器系統包括可調整聚焦透鏡,其中可調整性包括軸向移動及改變焦距中之至少一者。Fig. 20 is similar to Fig. 3A and shows an embodiment of an EPCS subsystem in which the detector system includes an adjustable focusing lens, wherein the adjustability includes at least one of moving axially and changing focus.

第21A圖及第21B圖係示例性支撐構件的示意性說明,示例性支撐構件用於形成用於EPCS子系統的聚焦透鏡總成以提供用於調整所捕獲模式頻譜的對比度的器件。21A and 21B are schematic illustrations of exemplary support members for use in forming a focusing lens assembly for an EPCS subsystem to provide means for adjusting the contrast of the captured mode spectrum.

第22A圖及第22B圖類似於第3A圖且示出採用光導總成的強化EPCS子系統的實例。Figures 22A and 22B are similar to Figure 3A and show an example of an enhanced EPCS subsystem employing a light guide assembly.

第22C圖係採用科勒照明的EPCS子系統相對於光導的輸出端及EPCS偵測器系統的入射光瞳的示例性組態的特寫示意圖。Figure 22C is a close-up schematic diagram of an exemplary configuration of an EPCS subsystem employing Kohler illumination with respect to the output end of the light guide and the entrance pupil of the EPCS detector system.

第23圖係EPCS子系統的遠端光源的示例性實施例的示意圖。FIG. 23 is a schematic diagram of an exemplary embodiment of a remote light source of an EPCS subsystem.

第24A圖係在第23圖的遠端光源系統的光學濾波器設備中採用的濾波器輪的前視圖。FIG. 24A is a front view of a filter wheel employed in the optical filter device of the remote light source system of FIG. 23. FIG.

第24B圖展示兩個示例性經依序濾波的EPCS光束,其中頂部實例係使用四個濾波器波長形成且底部實例係使用兩個濾波器波長形成,如使用第23圖的遠端光源所形成。Figure 24B shows two exemplary sequentially filtered EPCS beams, where the top example is formed using four filter wavelengths and the bottom example is formed using two filter wavelengths, as formed using the remote light source of Figure 23 .

第25A圖至第25C圖示出用於強化EPCS子系統的EPCS偵測器系統的示例性組態。Figures 25A-25C illustrate exemplary configurations of EPCS detector systems for augmenting EPCS subsystems.

第26圖類似於第4A圖且示出強化LSP子系統的實例。Figure 26 is similar to Figure 4A and shows an example of an enhanced LSP subsystem.

第27A圖係可在第26圖的強化LSP子系統中實施的示例性功率監測系統的示意圖。FIG. 27A is a schematic diagram of an exemplary power monitoring system that may be implemented in the enhanced LSP subsystem of FIG. 26 .

第27B圖係針對第27A圖的功率監測系統的光束的透射部分及反射部分的(正規化)光功率OP與偏光角(度)的曲線圖。Fig. 27B is a graph of (normalized) optical power OP versus polarization angle (degrees) for the transmitted and reflected portions of the beam of the power monitoring system of Fig. 27A.

第28圖係軸向可移動聚焦透鏡的中心張力CT (MPa)與透鏡位置LP (mm) (相對於參考位置)的曲線圖,其展示CT隨著透鏡位置的變化且因此示出對經聚焦的LSP光束提供正確聚焦的重要性。Figure 28 is a graph of central tension CT (MPa) versus lens position LP (mm) (relative to a reference position) for an axially movable focusing lens showing the variation of CT with lens position and thus showing the effect on focused The LSP beam provides the importance of proper focus.

第29圖類似於第11B圖且展示用於執行校準過程的LSP偵測器系統相對於CS基板的量測參數。Figure 29 is similar to Figure 1 IB and shows the measured parameters of the LSP detector system relative to the CS substrate used to perform the calibration process.

第30A圖係針對CS基板中的所選深度的強度I(p)與沿著LSP光束在x方向上的像素位置p(x)的曲線圖,且展示對所量測強度的傾斜高斯擬合的實例,該傾斜高斯擬合用於估計LSP光束的中心,如擬合曲線(實線)的峰值處的大黑點所指示。Figure 30A is a graph of intensity I(p) versus pixel position p(x) along the LSP beam in the x direction for selected depths in a CS substrate and shows a sloped Gaussian fit to the measured intensities For an example of , this sloped Gaussian fit was used to estimate the center of the LSP beam, as indicated by the large black dot at the peak of the fitted curve (solid line).

第30B圖係如與第30A圖相關聯的方法所判定的峰值中心的像素位置p(x)及p(y)。Figure 30B is the pixel location p(x) and p(y) of the peak center as determined by the method associated with Figure 30A.

第30C圖係類似於第10C圖的示意圖,其展示LSP影像(強度輪廓),而兩個重疊的擬合線(FL1及FL2)延伸穿過兩個線影像區段的中心,其中兩個擬合線的交點表示LSP影像的中心點。Figure 30C is a schematic diagram similar to Figure 10C showing the LSP image (intensity profile) with two overlapping fitted lines (FL1 and FL2) extending through the center of the two line image segments, two of which The intersection of the combined lines indicates the center point of the LSP image.

第30D圖係沿著擬合線FL2及在入口點EP附近的LSP影像強度I(p)與像素位置p的曲線圖,且示出具有最大強度I MAX、最小強度I MIN及半最大強度I 1/2的示例性邊緣強度輪廓,半最大強度I 1/2駐留在I MAX與I MIN中間且界定入口點ENP的位置(像素位置),該位置在示例性曲線圖中大約在像素32處。 Figure 30D is a graph of LSP image intensity I(p) versus pixel position p along fitted line FL2 and near entry point EP, and is shown with maximum intensity IMAX , minimum intensity IMIN, and half-maximum intensity I An exemplary edge intensity profile of 1/2 , the half-maximum intensity I 1/2 resides midway between I MAX and I MIN and defines the location (pixel location) of the entry point ENP, which is approximately at pixel 32 in the exemplary graph .

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic deposit information (please note in order of depositor, date, and number) none Overseas storage information (please note in order of storage country, institution, date, and number) none

10:CS基板 10: CS substrate

11:主體 11: Subject

12:頂部表面 12: Top surface

14:底部表面 14: Bottom surface

16:側面 16: side

18:NSWG 18:NSWG

Claims (11)

一種用於表徵一化學增強(CS)基板[10]中的應力的漸逝稜鏡耦合光譜術(EPCS)系統[100],該CS基板[10]具有一表面[12]及一近表面波導[18],該EPCS系統[100]包含: a) 一EPCS光源系統[110],該EPCS光源系統[110]包含: iv) 一EPCS光源[112],該EPCS光源[112]發射一多波長EPCS光束[116]; v) 一光學濾波器總成[500],該光學濾波器總成[500]經組態以對該多波長EPCS光束進行依序濾波以形成具有不同波長的一系列經濾波的EPCS光束; vi) 一光導總成[140],該光導總成[140]將該系列經濾波的EPCS光束作為導引光[116G]傳送至一聚焦光學系統[121],該聚焦光學系統[121]經配置以接收該等所傳送的經濾波的EPCS光束且由此形成一系列經濾波且經聚焦的EPCS光束[116F] b) 一EPCS耦合稜鏡[42A],該EPCS耦合稜鏡[42A]與該CS基板的該表面形成一EPCS耦合表面[45A]並且接收該系列經濾波且經聚焦的EPCS光束[116F]並在該EPCS耦合表面處將其耦合至該近表面波導中及耦合出該近表面波導以形成一系列經濾波且經反射的EPCS光束[116R],該系列經濾波且經反射的EPCS光束[116R]分別包含該近表面波導針對對應的經濾波且經反射的EPCS光束的模式頻譜[160];及 c) 一EPCS偵測器系統[140],該EPCS偵測器系統[140]包含: i) 一可切換偏光濾波器[148S],該可切換偏光濾波器[148S]可操作地連接至一偏光控制器[149]以依序執行該系列經濾波且經反射的EPCS光束的橫向磁性(TM)及橫向電(TE)偏光濾波以形成經TM及TE濾波的且經反射的EPCS光束[116R],該等經TM及TE濾波的且經反射的EPCS光束[116R]分別包含該近表面波導的TM模式頻譜[161TM]及TE模式頻譜[162TE];及 ii) 一EPCS數位偵測器[150],該EPCS數位偵測器[150]經組態以依序偵測該系列經TM及TE濾波的且經反射的EPCS光束[116R]以依序捕獲該近表面波導在不同濾波器波長下的相應TM及TE模式頻譜的TM及TE影像。 An Evanescent Coupling Spectroscopy (EPCS) system [100] for characterizing stress in a chemically enhanced (CS) substrate [10] having a surface [12] and a near-surface waveguide [18], the EPCS system [100] consists of: a) an EPCS light source system [110], the EPCS light source system [110] comprising: iv) an EPCS light source [112] emitting a multi-wavelength EPCS light beam [116]; v) an optical filter assembly [500] configured to sequentially filter the multi-wavelength EPCS beam to form a series of filtered EPCS beams having different wavelengths; vi) a light guide assembly [140] which transmits the series of filtered EPCS beams as guide light [116G] to a focusing optical system [121] which is passed through configured to receive the transmitted filtered EPCS beams and thereby form a series of filtered and focused EPCS beams [116F] b) an EPCS coupling beam [42A] forming an EPCS coupling surface [45A] with the surface of the CS substrate and receiving the series of filtered and focused EPCS beams [116F] and It is coupled into and out of the near-surface waveguide at the EPCS coupling surface to form a series of filtered and reflected EPCS beams [116R], the series of filtered and reflected EPCS beams [116R ] comprise the mode spectrum [160] of the near-surface waveguide for the corresponding filtered and reflected EPCS beam, respectively; and c) an EPCS detector system [140], the EPCS detector system [140] comprising: i) a switchable polarization filter [148S] operatively connected to a polarization controller [149] to sequentially perform transverse magnetic (TM) and Transverse Electric (TE) polarization filtering to form TM and TE filtered and reflected EPCS beams [116R] comprising the near TM mode spectra [161TM] and TE mode spectra [162TE] of surface waveguides; and ii) an EPCS digital detector [150] configured to sequentially detect the series of TM and TE filtered and reflected EPCS beams [116R] to sequentially capture TM and TE images of the corresponding TM and TE mode spectra of the near-surface waveguide at different filter wavelengths. 一種用於表徵一化學增強(CS)基板[10]中的應力的混合系統[20],該CS基板[10]具有一頂部表面[12]及一近表面波導[18],該混合系統[20]包含: 如請求項1所述之EPCS系統[100]; 一散射光偏光測定法(LSP)子系統[200],該LSP子系統[200]包含一LSP光源系統[210]、一光學補償器[230]及一LSP偵測器系統[240],該LSP偵測器系統[240]經由一具有一LSP耦合表面[45B]的LSP耦合稜鏡[42B]與該光學補償器光學連通; 一耦合稜鏡總成[40],該耦合稜鏡總成[40]包含一稜鏡支撐框[48],該稜鏡支撐框[48]經組態以可操作地支撐該EPCS耦合稜鏡[42A]及該LSP耦合稜鏡[42B]以使得該EPCS耦合表面[45A]及該LSP耦合表面[45B]大體上駐留在一共同平面中;及 一支撐充氣部[70],該支撐充氣部[70]具有一表面[71]及一量測孔[72],該支撐充氣部[70]經組態以將該CS基板支撐在該量測孔處的一量測平面[MP]處,且將該耦合稜鏡總成[40]可操作地支撐在該量測孔處以使得該EPCS耦合表面及該LSP耦合表面大體上駐留在該量測平面處。 A hybrid system [20] for characterizing stress in a chemically strengthened (CS) substrate [10] having a top surface [12] and a near-surface waveguide [18], the hybrid system [ 20] contains: The EPCS system [100] as described in Claim 1; A scattered light polarimetry (LSP) subsystem [200], the LSP subsystem [200] comprising an LSP light source system [210], an optical compensator [230] and an LSP detector system [240], the the LSP detector system [240] is in optical communication with the optical compensator via an LSP coupling plate [42B] having an LSP coupling surface [45B]; a coupling assembly [40], the coupling assembly [40] comprising a support frame [48] configured to operably support the EPCS coupling support frame [48] [42A] and the LSP coupling surface [42B] such that the EPCS coupling surface [45A] and the LSP coupling surface [45B] reside substantially in a common plane; and a support plenum [70] having a surface [71] and a measurement hole [72] configured to support the CS substrate on the measurement at a measurement plane [MP] at the hole, and the coupling assembly [40] is operably supported at the measurement hole such that the EPCS coupling surface and the LSP coupling surface substantially reside at the measurement plane. 一種用於表徵一化學增強(CS)基板[10]中的應力的漸逝稜鏡耦合光譜術(EPCS)系統[100],該CS基板[10]具有一表面[12]及一近表面波導[18],該EPCS系統[100]包含: a) 一EPCS光源系統[110],該EPCS光源系統[110]包含: iv) 一EPCS光源[112],該EPCS光源[112]發射一多波長EPCS光束[116]; v) 一光學濾波器總成[500],該光學濾波器總成[500]經組態以對該多波長EPCS光束進行依序濾波以形成具有不同濾波器波長的一系列經濾波的EPCS光束; vi) 一光導總成[140],該光導總成[140]經組態以將該系列經濾波的EPCS光束作為導引光[116G]傳送至一聚焦光學系統[121],該聚焦光學系統[121]經配置以接收該等所傳送的經濾波的EPCS光束且由此形成一系列經濾波且經聚焦的EPCS光束[116F]; b) 一EPCS耦合稜鏡[42A],該EPCS耦合稜鏡[42A]與該CS基板的該表面形成一EPCS耦合表面[45A]並且接收該經聚焦的經依序濾波的EPCS光束並在該EPCS耦合表面處將其耦合出該近表面波導以形成一經反射且經依序濾波的EPCS光束[116R],該經反射且經依序濾波的EPCS光束[116R]包含該近表面波導針對至少第一及第二濾波器波長的至少第一及第二模式頻譜[160];及 c) 一EPCS偵測器系統[140],該EPCS偵測器系統[140]包含: i) 至少一個可切換偏光濾波器[148S],該至少一個可切換偏光濾波器[148S]經組態以依序執行該經反射且經依序濾波的EPCS光束的橫向磁性(TM)及橫向電(TE)偏光濾波以形成至少第一及第二經TM及TE反射且經依序濾波的EPCS光束,該等至少第一及第二經TM及TE反射且經依序濾波的EPCS光束分別包含該近表面波導在該等至少第一及第二波長下的第一及第二TM模式頻譜[161TM]及TE模式頻譜[161TE];及 ii) 至少第一及第二EPCS數位偵測器[150],該等至少第一及第二EPCS數位偵測器[150]經組態以分別偵測該等至少第一及第二經TM及TE反射且經依序濾波的EPCS光束以捕獲該近表面波導的該等第一及TM及TE模式頻譜的相應的至少第一及第二TM及TE影像。 An Evanescent Coupling Spectroscopy (EPCS) system [100] for characterizing stress in a chemically enhanced (CS) substrate [10] having a surface [12] and a near-surface waveguide [18], the EPCS system [100] consists of: a) an EPCS light source system [110], the EPCS light source system [110] comprising: iv) an EPCS light source [112] emitting a multi-wavelength EPCS light beam [116]; v) an optical filter assembly [500] configured to sequentially filter the multi-wavelength EPCS beam to form a series of filtered EPCS beams having different filter wavelengths ; vi) a light guide assembly [140] configured to deliver the series of filtered EPCS light beams as guide light [116G] to a focusing optical system [121], the focusing optical system [121] configured to receive the transmitted filtered EPCS beams and thereby form a series of filtered and focused EPCS beams [116F]; b) an EPCS coupling interface [42A] which forms an EPCS coupling surface [45A] with the surface of the CS substrate and receives the focused sequentially filtered EPCS beam and transmits it at the coupled out of the near-surface waveguide at the EPCS coupling surface to form a reflected and sequentially filtered EPCS beam [116R] comprising the near-surface waveguide for at least the first at least first and second mode spectra [160] of the first and second filter wavelengths; and c) an EPCS detector system [140], the EPCS detector system [140] comprising: i) at least one switchable polarizing filter [148S] configured to sequentially perform Transverse Magnetic (TM) and Transverse Magnetic (TM) of the reflected and sequentially filtered EPCS beam electrical (TE) polarization filtering to form at least first and second TM- and TE-reflected and sequentially-filtered EPCS beams, the at least first and second TM- and TE-reflected and sequentially-filtered EPCS beams, respectively comprising first and second TM mode spectra [161TM] and TE mode spectra [161TE] of the near-surface waveguide at the at least first and second wavelengths; and ii) at least first and second EPCS digital detectors [150] configured to detect the at least first and second via TM respectively and TE reflected and sequentially filtered EPCS beams to capture respective at least first and second TM and TE images of the first and TM and TE mode spectra of the near-surface waveguide. 一種用於表徵一化學增強(CS)基板[10]中的應力的系統[20],該CS基板[10]具有一頂部表面[12]及一近表面波導[18],該系統[20]包含: 如請求項3所述之EPCS系統[100]; 一散射光偏光測定法(LSP)子系統[200],該LSP子系統[200]包含一LSP光源系統[210]、一光學補償器[230]及一LSP偵測器系統[240],該LSP偵測器系統[240]經由一具有一LSP耦合表面[45B]的LSP耦合稜鏡[42B]與該光學補償器光學連通; 一耦合稜鏡總成[40],該耦合稜鏡總成[40]包含一稜鏡支撐框[48],該稜鏡支撐框[48]經組態以可操作地支撐該EPCS耦合稜鏡及該LSP耦合稜鏡以使得該EPCS耦合表面及該LSP耦合表面大體上駐留在一共同平面中;及 一支撐充氣部[70],該支撐充氣部[70]具有一表面[71]及一量測孔[72],該支撐充氣部[70]經組態以將該CS基板支撐在該量測孔處的一量測平面[MP]處,且將該耦合稜鏡總成可操作地支撐在該量測孔處以使得該EPCS耦合表面及該LSP耦合表面大體上駐留在該量測平面處。 A system [20] for characterizing stress in a chemically strengthened (CS) substrate [10] having a top surface [12] and a near-surface waveguide [18], the system [20] Include: The EPCS system [100] as described in Claim 3; A scattered light polarimetry (LSP) subsystem [200], the LSP subsystem [200] comprising an LSP light source system [210], an optical compensator [230] and an LSP detector system [240], the the LSP detector system [240] is in optical communication with the optical compensator via an LSP coupling plate [42B] having an LSP coupling surface [45B]; a coupling assembly [40], the coupling assembly [40] comprising a support frame [48] configured to operably support the EPCS coupling support frame [48] and the LSP coupling surface such that the EPCS coupling surface and the LSP coupling surface substantially reside in a common plane; and a support plenum [70] having a surface [71] and a measurement hole [72] configured to support the CS substrate on the measurement a measurement plane [MP] at the aperture, and the coupling assembly is operably supported at the measurement aperture such that the EPCS coupling surface and the LSP coupling surface substantially reside at the measurement plane. 一種用於表徵一化學增強(CS)基板[10]中的應力的漸逝稜鏡耦合光譜術(EPCS)系統[100],該CS基板[10]具有一表面[12]及一近表面波導[18],該EPCS系統[100]包含: a) 一EPCS光源系統[110],該EPCS光源系統[110]包含: i) 一EPCS光源[112],該EPCS光源[112]發射一包含多個波長的多波長EPCS光束[116]; ii)一光導總成[140],該光導總成[140]經組態以將來自該EPCS光源的該多波長EPCS光束傳送至一聚焦光學系統[121],該聚焦光學系統[121]經配置以接收該多波長EPCS光束且形成一經聚焦的多波長EPCS光束[116F]; b) 一EPCS耦合稜鏡[42A],該EPCS耦合稜鏡[42A]與該CS基板的該表面形成一EPCS耦合表面[45A]並且接收該多波長EPCS光束並在該EPCS耦合表面處將其耦合至該近表面波導中及耦合出該近表面波導以形成一經反射的多波長EPCS光束[116R],該經反射的多波長EPCS光束[116R]包含該近表面波導針對該多波長EPCS光束的該等對應多個波長的模式頻譜[160];及 c) 一EPCS偵測器系統[140],該EPCS偵測器系統[140]包含: i) 一可切換偏光濾波器[148S],該可切換偏光濾波器[148S]經可操作地安置以接收該經反射的多波長EPCS光束且依序形成一經橫向磁性偏光的(TM)多波長EPCS光束及一經橫向電偏光的(TE)多波長EPCS光束; ii) 一光學濾波器總成[500],該光學濾波器總成[500]經可操作地安置以在兩個或兩個以上濾波器波長下對該TM及該TE多波長EPCS光束進行依序濾波以形成兩個或兩個以上經依序濾波的TM及TE EPCS光束,該等兩個或兩個以上經依序濾波的TM及TE EPCS光束分別包含該等兩個或兩個以上濾波器波長的TM及TE模式頻譜; iii) 一EPCS數位偵測器[150],該EPCS數位偵測器[150]經組態以依序偵測該等經依序濾波的TM及TE EPCS光束以依序捕獲該近表面波導在該等兩個或兩個以上濾波器波長下的相應TM及TE模式頻譜的TM及TE影像。 An Evanescent Coupling Spectroscopy (EPCS) system [100] for characterizing stress in a chemically enhanced (CS) substrate [10] having a surface [12] and a near-surface waveguide [18], the EPCS system [100] consists of: a) an EPCS light source system [110], the EPCS light source system [110] comprising: i) an EPCS light source [112] emitting a multi-wavelength EPCS light beam [116] comprising a plurality of wavelengths; ii) a light guide assembly [140] configured to deliver the multi-wavelength EPCS light beam from the EPCS light source to a focusing optics system [121] via configured to receive the multi-wavelength EPCS beam and form a focused multi-wavelength EPCS beam [116F]; b) an EPCS coupling beam [42A] that forms an EPCS coupling surface [45A] with the surface of the CS substrate and receives the multi-wavelength EPCS beam and couples it at the EPCS coupling surface coupling into and out of the near-surface waveguide to form a reflected multi-wavelength EPCS beam [116R] comprising the near-surface waveguide for the multi-wavelength EPCS beam the mode spectra[160] corresponding to multiple wavelengths; and c) an EPCS detector system [140], the EPCS detector system [140] comprising: i) a switchable polarization filter [148S] operatively positioned to receive the reflected multi-wavelength EPCS beam and in turn form a transverse magnetically polarized (TM) multi-wavelength EPCS beam and a transverse electric polarized (TE) multi-wavelength EPCS beam; ii) an optical filter assembly [500] operatively positioned to rely on the TM and the TE multi-wavelength EPCS beam at two or more filter wavelengths sequentially filtered to form two or more sequentially filtered TM and TE EPCS beams, the two or more sequentially filtered TM and TE EPCS beams respectively comprising the two or more filtered TM and TE mode spectrum of the wavelength of the device; iii) an EPCS digital detector [150] configured to sequentially detect the sequentially filtered TM and TE EPCS beams to sequentially capture the near surface waveguide at TM and TE images of the corresponding TM and TE mode spectra at the two or more filter wavelengths. 一種用於表徵一化學增強(CS)基板[10]中的應力的系統[20],該CS基板[10]具有一頂部表面[12]及一近表面波導[18],該系統[20]包含: 如請求項5所述之EPCS系統[100]; 一散射光偏光測定法(LSP)子系統[200],該LSP子系統[200]包含一LSP光源系統[210]、一光學補償器[230]及一LSP偵測器系統[240],該LSP偵測器系統[240]經由一具有一LSP耦合表面[45B]的LSP耦合稜鏡[42B]與該光學補償器光學連通;及 一耦合稜鏡總成[40],該耦合稜鏡總成[40]包含一稜鏡支撐框[48],該稜鏡支撐框[48]經組態以可操作地支撐該EPCS耦合稜鏡及該LSP耦合稜鏡以使得該EPCS耦合表面及該LSP耦合表面大體上駐留在一共同平面中;及 一支撐充氣部[70],該支撐充氣部[70]具有一表面[71]及一量測孔[72],該支撐充氣部[70]經組態以將該CS基板支撐在該量測孔處的一量測平面[MP]處,且將該耦合稜鏡總成可操作地支撐在該量測孔處以使得該EPCS耦合表面及該LSP耦合表面大體上駐留在該量測平面處。 A system [20] for characterizing stress in a chemically strengthened (CS) substrate [10] having a top surface [12] and a near-surface waveguide [18], the system [20] Include: The EPCS system [100] as described in Claim 5; A scattered light polarimetry (LSP) subsystem [200], the LSP subsystem [200] comprising an LSP light source system [210], an optical compensator [230] and an LSP detector system [240], the The LSP detector system [240] is in optical communication with the optical compensator via an LSP coupling plate [42B] having an LSP coupling surface [45B]; and a coupling assembly [40], the coupling assembly [40] comprising a support frame [48] configured to operably support the EPCS coupling support frame [48] and the LSP coupling surface such that the EPCS coupling surface and the LSP coupling surface substantially reside in a common plane; and a support plenum [70] having a surface [71] and a measurement hole [72] configured to support the CS substrate on the measurement a measurement plane [MP] at the aperture, and the coupling assembly is operably supported at the measurement aperture such that the EPCS coupling surface and the LSP coupling surface substantially reside at the measurement plane. 一種執行漸逝稜鏡耦合光譜術以表徵一化學增強(CS)基板[10]中的應力的方法,該CS基板[10]具有一表面[12]及一近表面波導[18],該方法包含: a) 形成一具有多個波長的多波長EPCS光束[116]; b) 對該EPCS多波長光束進行依序濾波以形成一系列經濾波的EPCS光束,該系列經濾波的EPCS光束各自具有該等多個波長中之一不同波長; c) 將該系列EPCS經濾波的光束穿過一光導[130]傳送至一聚焦光學系統[121]以形成一系列經聚焦的EPCS經濾波的光束[116F]; d) 將該系列經聚焦的經濾波的EPCS光束引導至一EPCS耦合稜鏡[42A],該EPCS耦合稜鏡[42A]與該CS基板的該表面形成一EPCS耦合表面[45A]並且接收該系列經濾波的EPCS光束並在該EPCS耦合表面處將其耦合至該近表面波導中及耦合出該近表面波導以形成一系列經反射且經濾波的EPCS光束[116R],該系列經反射且經濾波的EPCS光束[116R]分別包含該近表面波導在該等多個波長中之一者下的模式頻譜[160]; e) 對該等經反射且經濾波的EPCS光束中之每一者進行依序偏光以針對每一經反射且經濾波的EPCS光束形成一經橫向磁性(TM)濾波且經反射的EPCS光束及一經橫向電(TE)濾波且經反射的EPCS光束;及 f) 依序數位偵測該經TM濾波且經反射的EPCS光束及該經TE濾波且經反射的EPCS光束以依序捕獲該近表面波導針對該等不同的多個波長的相應TM及TE模式頻譜的TM及TE影像。 A method of performing evanescent C-coupled spectroscopy to characterize stress in a chemically amplified (CS) substrate [10] having a surface [12] and a near-surface waveguide [18], the method Include: a) forming a multi-wavelength EPCS beam with multiple wavelengths [116]; b) sequentially filtering the EPCS multi-wavelength beam to form a series of filtered EPCS beams, the series of filtered EPCS beams each having a different one of the plurality of wavelengths; c) passing the series of EPCS filtered beams through a light guide [130] to a focusing optics system [121] to form a series of focused EPCS filtered beams [116F]; d) directing the series of focused filtered EPCS beams to an EPCS coupling surface [42A] which forms an EPCS coupling surface [45A] with the surface of the CS substrate and receives the and coupling a series of filtered EPCS beams into and out of the near-surface waveguide at the EPCS coupling surface to form a series of reflected and filtered EPCS beams [116R], the series of reflected and The filtered EPCS beams [116R] each comprise a mode spectrum [160] of the near-surface waveguide at one of the plurality of wavelengths; e) sequentially polarizing each of the reflected and filtered EPCS beams to form a transverse magnetic (TM) filtered and reflected EPCS beam and a transverse magnetic (TM) filtered EPCS beam for each reflected and filtered EPCS beam Electrically (TE) filtered and reflected EPCS beams; and f) sequentially digitally detecting the TM-filtered and reflected EPCS beam and the TE-filtered and reflected EPCS beam to sequentially capture the corresponding TM and TE modes of the near-surface waveguide for the different multiple wavelengths Spectrum TM and TE images. 一種用於表徵一化學增強(CS)基板[10]中的應力的光散射偏光測定法系統[200],該CS基板[10]具有一主體[11]、一表面[12]及一形成於該主體內的近表面波導[18],該光散射偏光測定法系統[200]包含: a) 一LSP光源系統[210],該LSP光源系統[210]沿著一第一系統軸線(A3)按次序包含: i) 一雷射二極體[213],該雷射二極體[213]發射一LSP光束[216],該LSP光束[216]具有至少1微瓦的功率且以405奈米的一波長為中心; ii) 一光閘系統[280],該光閘系統[280]經配置以週期性地阻擋該LSP光束; iii) 一可旋轉半波片[234RH]; iv) 一第一固定偏光器[234H]; v) 一第一聚焦透鏡[220]; vi) 一光漫射體[222]; vii) 一第二聚焦透鏡[224]; b) 一光學補償器[230],該光學補償器[230]配置在該LPS光源下游且經組態以對該LSP光束給予一時變偏光,該光學補償器沿著該系統軸線按次序包含: i) 一偏光分束器[232],該偏光分束器[232]經配置以接收來自該LSP光源的該LSP光束且沿著該第一系統軸線傳輸該LSP光束的一第一部分且沿著一光譜儀軸線[AS]引導該LSP光束的一第二部分; ii) 一光譜儀[260],該光譜儀[260]沿著該光譜儀軸線配置且經配置以接收該LSP光束的該第二部分並對其進行光譜處理; iii) 一第二固定偏光器[234H]; iv) 一可變偏光器[234V],該可變偏光器[234V]對該LSP光束給予該時變偏光以形成一經時變偏光的LSP光束; c) 一軸向可移動聚焦透鏡[236],該軸向可移動聚焦透鏡[236]配置在該光學補償器下游且經組態以接收並聚焦該經時變偏光的LSP光束形成一經聚焦的經時變偏光的LSP光束; d) 一LSP耦合稜鏡[42B],該LSP耦合稜鏡[42B]與該CS基板的表面交界以形成一LSP耦合界面[INT2],其中該經聚焦的經時變偏光的LSP光束聚焦於該LSP耦合界面處以從該CS基板的該主體內的應力誘發特徵產生散射光[216S]; e) 一LSP偵測器系統[240],該LSP偵測器系統[240]配置在該LSP耦合稜鏡下游且經配置以接收該散射光,該LSP偵測器系統包含: i) 一LSP數位偵測器[246];及 ii) 一收集光學系統[243],該收集光學系統[243]收集該散射光並將其引導至該LSP數位偵測器以在該數位偵測器處形成一LSP影像[248]。 A light scattering polarimetry system [200] for characterizing stress in a chemically amplified (CS) substrate [10] having a body [11], a surface [12] and a formed on The near-surface waveguide [18] within the body, the light scattering polarimetry system [200] comprising: a) an LSP light source system [210], the LSP light source system [210] comprising in sequence along a first system axis (A3): i) a laser diode [213] emitting an LSP beam [216] having a power of at least 1 microwatt at a wavelength of 405 nm as a center; ii) an optical shutter system [280] configured to periodically block the LSP beam; iii) a rotatable half-wave plate [234RH]; iv) a first fixed polarizer [234H]; v) a first focusing lens [220]; vi) a light diffuser [222]; vii) a second focusing lens [224]; b) an optical compensator [230] disposed downstream of the LPS light source and configured to impart a time-varying polarization to the LSP beam, the optical compensator comprising in sequence along the system axis: i) a polarizing beam splitter [232] configured to receive the LSP beam from the LSP light source and transmit a first portion of the LSP beam along the first system axis and along a spectrometer axis [AS] directing a second portion of the LSP beam; ii) a spectrometer [260] arranged along the spectrometer axis and configured to receive and spectroscopically process the second portion of the LSP light beam; iii) a second fixed polarizer [234H]; iv) a variable polarizer [234V] imparting the time-varying polarization to the LSP beam to form a time-varyingly polarized LSP beam; c) an axially movable focusing lens [236] disposed downstream of the optical compensator and configured to receive and focus the time-varyingly polarized LSP beam to form a focused Time-varying polarization of LSP beams; d) an LSP coupling interface [42B] that interfaces with the surface of the CS substrate to form an LSP coupling interface [INT2], wherein the focused time-varyingly polarized LSP beam is focused on the LSP coupling interface to generate scattered light from stress-inducing features within the body of the CS substrate [216S]; e) an LSP detector system [240] disposed downstream of the LSP coupling channel and configured to receive the scattered light, the LSP detector system comprising: i) an LSP digit detector [246]; and ii) a collection optics system [243] that collects the scattered light and directs it to the LSP digital detector to form an LSP image [248] at the digital detector. 一種用於表徵一化學增強(CS)基板[10]中的應力的系統[20],該CS基板[10]具有一頂部表面[12]及一近表面波導[18],該系統[20]包含: 如請求項8所述之LSP系統[200]; 一漸逝稜鏡耦合光譜術(EPCS)子系統[100],該EPCS子系統[100]包含經由一具有一EPCS耦合表面[45A]的EPCS耦合稜鏡[42A]來光學連通的一EPCS光源系統[110]及一EPCS偵測器系統[140]; 一耦合稜鏡總成[40],該耦合稜鏡總成[40]包含一稜鏡支撐框[48],該稜鏡支撐框[48]經組態以可操作地支撐該EPCS耦合稜鏡及該LSP耦合稜鏡以使得該EPCS耦合表面及該LSP耦合表面大體上駐留在一共同平面中;及 一支撐充氣部[70],該支撐充氣部[70]具有一表面[71]及一量測孔[72],該支撐充氣部[70]經組態以將該CS基板支撐在該量測孔處的一量測平面處,且將該耦合稜鏡總成可操作地支撐在該量測孔處以使得該EPCS耦合表面及該LSP耦合表面大體上駐留在該量測平面處。 A system [20] for characterizing stress in a chemically strengthened (CS) substrate [10] having a top surface [12] and a near-surface waveguide [18], the system [20] Include: The LSP system [200] as described in claim 8; an evanescent EPCS coupled spectroscopy (EPCS) subsystem [100] comprising an EPCS light source in optical communication via an EPCS coupled EPCS [42A] having an EPCS coupling surface [45A] system [110] and an EPCS detector system [140]; a coupling assembly [40], the coupling assembly [40] comprising a support frame [48] configured to operably support the EPCS coupling support frame [48] and the LSP coupling surface such that the EPCS coupling surface and the LSP coupling surface substantially reside in a common plane; and a support plenum [70] having a surface [71] and a measurement hole [72] configured to support the CS substrate on the measurement at a measurement plane at the bore, and the coupling assembly is operably supported at the measurement bore such that the EPCS coupling surface and the LSP coupling surface substantially reside at the measurement plane. 一種執行光散射偏光測定法(LSP)以表徵一化學增強(CS)基板[10]中的應力的方法,該CS基板[10]具有一主體[11]、一表面[12]及一近表面波導[18],該近表面波導[18]在該主體內形成應力相關特徵,該方法包含以下步驟: 從一雷射二極體[213]產生一光束[216],該雷射二極體[213]具有至少1微瓦的一輸出功率及405 nm的一中心波長; 將該光束的一第一部分引導至一光譜儀[26]以量測該光束的一波長及該光束中的一功率量; 使用一溫控式液晶可變延遲片(LCVR) [234V]對該光束的一第二部分給予一時變偏光以形成一經時變偏光的光束; 將該經時變偏光的光束聚焦至由一與該CS基板的該表面交界的一耦合稜鏡[42B]形成的一耦合表面[45B]上以從該CS基板的該主體內的該等應力相關特徵形成散射光[116S];及 將該散射光引導至一數位偵測器[246]以在該數位偵測器處捕獲一LSP影像[248]。 A method of performing light scattering polarimetry (LSP) to characterize stress in a chemically amplified (CS) substrate [10] having a bulk [11], a surface [12] and a near surface waveguide [18], the near-surface waveguide [18] forming stress-dependent features within the body, the method comprising the steps of: generating a light beam [216] from a laser diode [213] having an output power of at least 1 microwatt and a central wavelength of 405 nm; directing a first portion of the beam to a spectrometer [26] to measure a wavelength of the beam and an amount of power in the beam; imparting a time-varying polarization to a second portion of the light beam using a temperature-controlled liquid crystal variable retarder (LCVR) [234V] to form a time-varyingly polarized light beam; focusing the time-varyingly polarized light beam onto a coupling surface [45B] formed by a coupling electrode [42B] interfacing with the surface of the CS substrate to remove the stresses within the body of the CS substrate Correlated features form scattered light [116S]; and The scattered light is directed to a digital detector [246] where an LSP image is captured [248]. 如請求項10所述之方法,其包含以下步驟中之至少一者: a) 其中該經時變偏光的光束沿循穿過該CS基板的該主體的一光束路徑,且藉由以下步驟估計該光束的一光束中心(CNTR):i)針對沿著該光束路徑進入該CS基板的該主體中的所選深度對該散射光執行一傾斜高斯擬合以界定第一組光束中心;及ii)穿過該第一組光束中心擬合一第一線以界定一第一擬合線; b) 估計該經時變偏光的光束的一中心點係藉由以下步驟來執行:穿過第二組光束中心擬合一第二線以界定一第二擬合線;及識別該中心點,該第一擬合線及該第二擬合線在該中心點處交叉;及 c) 沿著該第一擬合線及該第二擬合線中之一者識別該LSP影像的一邊緣強度輪廓,其中邊緣強度從一最大值I MAX轉變成表示一背景強度值的一最小值I MIN;及判定介於該最大強度值I MAX與該最小強度值I MIN中間的一半最大強度值I 1/2及界定該入口點處於該半最大強度值I 1/2The method of claim 10, comprising at least one of the following steps: a) wherein the time-varyingly polarized beam follows a beam path through the body of the CS substrate, and is estimated by A beam center (CNTR) of the beam: i) performing a tilted Gaussian fit to the scattered light for selected depths along the beam path into the body of the CS substrate to define a first set of beam centers; and ii ) fitting a first line through the centers of the first set of beams to define a first fitted line; b) estimating a center point of the time-varyingly polarized beams is performed by passing through the second fitting a second line to the center of the set of beams to define a second fitted line; and identifying the center point at which the first fitted line and the second fitted line intersect; and c) along the one of the first fitted line and the second fitted line identifies an edge intensity profile of the LSP image, wherein edge intensity transitions from a maximum value I MAX to a minimum value I MIN representing a background intensity value; and A half maximum intensity value I 1/2 between the maximum intensity value I MAX and the minimum intensity value I MIN is determined and the entry point is defined at the half maximum intensity value I 1/2 .
TW111106369A 2021-02-22 2022-02-22 Enhanced hybrid systems and methods for characterizing stress in chemically strengthened transparent substrates TW202240126A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163152021P 2021-02-22 2021-02-22
US63/152,021 2021-02-22

Publications (1)

Publication Number Publication Date
TW202240126A true TW202240126A (en) 2022-10-16

Family

ID=80682418

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111106369A TW202240126A (en) 2021-02-22 2022-02-22 Enhanced hybrid systems and methods for characterizing stress in chemically strengthened transparent substrates

Country Status (4)

Country Link
US (1) US11852549B2 (en)
CN (1) CN117120827A (en)
TW (1) TW202240126A (en)
WO (1) WO2022178341A1 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1175776B (en) 1984-02-13 1987-07-15 Siv Soc Italiana Vetro EQUIPMENT FOR AUTOMATIC MEASUREMENT OF VOLTAGES IN A TRANSPARENT BODY BY DIFFUSED LIGHT
JPH09243813A (en) * 1996-03-13 1997-09-19 Nec Corp Filter wheel provided with chromatic aberration compensating lens
JPH11281501A (en) 1998-03-30 1999-10-15 Orihara Seisakusho:Kk Apparatus for measuring surface stress
JP6603671B2 (en) 2014-04-23 2019-11-06 コーニング インコーポレイテッド Method for improving contrast in prism coupling measurement of stress
US9534981B2 (en) 2014-12-23 2017-01-03 Corning Incorporated Prism-coupling systems and methods for characterizing ion-exchanged waveguides with large depth-of-layer
JP6419595B2 (en) 2015-01-30 2018-11-07 有限会社折原製作所 Surface stress measurement method, surface stress measurement device
EA034651B1 (en) 2015-06-15 2020-03-03 Эгроувинг Лтд Multispectral imaging apparatus
CN205027468U (en) 2015-09-30 2016-02-10 苏州精创光学仪器有限公司 A lot of toughened glass surface stress appearance
WO2019054958A2 (en) 2017-09-13 2019-03-21 Eski Osman Mobile multispectral imaging system
US10732059B2 (en) * 2018-04-02 2020-08-04 Corning Incorporated Prism-coupling stress meter with wide metrology process window
WO2020198016A1 (en) * 2019-03-22 2020-10-01 Corning Incorporated Hybrid systems and methods for characterizing stress in chemically strengthened transparent substrates
CN114761789A (en) 2019-11-26 2022-07-15 康宁股份有限公司 Prism coupling system and method using different wavelengths

Also Published As

Publication number Publication date
US20220276106A1 (en) 2022-09-01
CN117120827A (en) 2023-11-24
US11852549B2 (en) 2023-12-26
WO2022178341A1 (en) 2022-08-25

Similar Documents

Publication Publication Date Title
US11105612B2 (en) Hybrid systems and methods for characterizing stress in chemically strengthened transparent substrates
TWI618923B (en) Systems and methods for measuring birefringence in glass and glass-ceramics
US6992779B2 (en) Interferometer apparatus for both low and high coherence measurement and method thereof
JP6751353B2 (en) Prism coupling system and method for characterizing high layer depth waveguides
US6937333B2 (en) Apparatus for measuring film thickness formed on object, apparatus and method of measuring spectral reflectance of object, and apparatus and method of inspecting foreign material on object
TWI567371B (en) Optical metrology tool equipped with modulated illumination sources
CN110646378B (en) Prism coupling system and method for characterizing curved parts
TWI699523B (en) Optical characteristic measurement apparatus and optical system
US8405836B2 (en) System and method for measuring an optical fiber
US9395173B2 (en) Multi-functioned optical measurement device and method for optically measuring a plurality of parameters
US7612873B2 (en) Surface form measuring apparatus and stress measuring apparatus and surface form measuring method and stress measuring method
CN113167720A (en) Characterization of optical retardation of glass-based samples using light scattering polarimetry
TW202240126A (en) Enhanced hybrid systems and methods for characterizing stress in chemically strengthened transparent substrates
KR101388424B1 (en) Apparatus for measuring a thickness using digital light processing and method using the same
CN110530821B (en) Measuring device and measuring method for refractive index of optical material
CA2944688C (en) Autofocus system
KR102257311B1 (en) Apparatus for aligning measuring head of spectroscope
JP4810693B2 (en) Lightwave interference measurement device
US20240175812A1 (en) Hybrid systems and methods for characterizing stress in chemically strengthened transparent substrates
JP5699221B2 (en) Interferometer with virtual reference plane
JP3916545B2 (en) Interferometer
US20230168186A1 (en) Enhanced evanescent prism coupling systems and methods for characterizing stress in chemically strengthened curved parts
JPH11287612A (en) Interferometer
WO2022266401A1 (en) Prism coupling systems and methods employing light-blocking members
CN117870559A (en) Method and device for measuring thickness and interval of optical element