TW202239374A - Assessment method and detection device for blood sugar concentration including an expiratory capture measurement step and a blood sugar assessment step - Google Patents

Assessment method and detection device for blood sugar concentration including an expiratory capture measurement step and a blood sugar assessment step Download PDF

Info

Publication number
TW202239374A
TW202239374A TW110112767A TW110112767A TW202239374A TW 202239374 A TW202239374 A TW 202239374A TW 110112767 A TW110112767 A TW 110112767A TW 110112767 A TW110112767 A TW 110112767A TW 202239374 A TW202239374 A TW 202239374A
Authority
TW
Taiwan
Prior art keywords
time
gas
expiratory
user
concentration
Prior art date
Application number
TW110112767A
Other languages
Chinese (zh)
Other versions
TWI766640B (en
Inventor
林震煌
呂家榮
笠井俊夫
Original Assignee
國立臺灣師範大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立臺灣師範大學 filed Critical 國立臺灣師範大學
Priority to TW110112767A priority Critical patent/TWI766640B/en
Application granted granted Critical
Publication of TWI766640B publication Critical patent/TWI766640B/en
Publication of TW202239374A publication Critical patent/TW202239374A/en

Links

Images

Abstract

A blood sugar concentration assessment method allows a user to perform measurement in a non-invasive manner and includes an expiration capture measurement step and a blood sugar assessment step. The expiration capture measurement step is to capture an end-expiratory volume of an expiratory gas exhaled by the user within a continuous time interval, and to measure a carbon dioxide concentration of the end-expiratory flow, so as to estimate the blood sugar concentration of the user, wherein the end-expiratory volume is not more than 10% of a total expiratory volume of the expiratory gas. Next, in the blood sugar assessment step, the blood sugar assessment is carried out based on the carbon dioxide concentration in the end-expiratory captured from the expiratory gas, which can eliminate the interference of a dead space gas in the expiratory gas and improve the accuracy of the assessment. In addition, the present invention further provides a detection device for performing the aforementioned assessment method.

Description

血糖濃度的評估方法及檢測裝置Evaluation method and detection device for blood glucose concentration

本發明是有關於一種血糖濃度的評估方法及檢測裝置,特別是指一種非侵入性之血糖濃度的評估方法及檢測裝置。The present invention relates to an evaluation method and detection device for blood sugar concentration, in particular to a non-invasive blood sugar concentration evaluation method and detection device.

呼吸時,呼吸的氣體會在肺泡中與血液進行呼吸交換,因此人所呼出的氣體會與自身血液中的成分具有一定程度的相關性。目前而言,在檢驗醫學上經常透過對受試者的呼氣氣體進行特定氣體分析,用以檢驗該受試者是否患有例如肺病、氣喘或肝臟問題等相關疾病,並以此評估該受試者的健康狀況,以利後續進行疾病治療與管理。其中,由於呼氣氣體中的二氧化碳(CO 2)濃度與血糖濃度成正相關,因此,通過測量該受試者呼出氣體中的二氧化碳濃度,可進一步推知該受試者的血糖濃度情況,並可以此判斷該受試者是否有血糖代謝、糖尿病等相關疾病。日本發明專利第JP6352188B2核准公告號即揭示了一種測定糖代謝能力的方法,經由讓測試者服用標記有同位素C的葡萄糖後,在不同的時間點分次測量該測試者呼出氣體中的二氧化碳濃度,並觀察其中標記有同位素C的二氧化碳佔整體二氧化碳氣體的含量,以此評估該測試者糖代謝的能力。 When breathing, the breathed gas will be exchanged with the blood in the alveoli, so the gas exhaled by a person will have a certain degree of correlation with the components in his own blood. At present, in laboratory medicine, specific gas analysis is often performed on the exhaled gas of the subject to test whether the subject suffers from related diseases such as lung disease, asthma or liver problems, and to evaluate the subject. The health status of the test subjects will facilitate follow-up disease treatment and management. Wherein, since the carbon dioxide (CO 2 ) concentration in the expiratory gas is positively correlated with the blood sugar concentration, by measuring the carbon dioxide concentration in the exhaled gas of the subject, the blood sugar concentration of the subject can be further inferred, and thus Determine whether the subject has blood sugar metabolism, diabetes and other related diseases. Japanese Invention Patent No. JP6352188B2 Approval Announcement No. discloses a method for measuring glucose metabolism ability, by letting the tester take glucose labeled with isotope C, and measuring the carbon dioxide concentration in the tester's exhaled breath at different time points, And observe the content of carbon dioxide labeled with isotope C in the overall carbon dioxide gas, so as to evaluate the tester's ability to metabolize sugar.

基於非侵入性的檢測方法及檢測流程的便利性,前述利用量測呼氣氣體的方式來評估血糖已被相關領域廣為研究,然而,因為呼吸過程呼出的氣體中除了在肺泡進行呼吸交換的氣體外,還包含了來自口腔、呼吸道及支氣管的氣體,此類的氣體在醫學上被稱為無效腔(dead space)氣體,並不參與在肺泡中呼吸氣體與血液間的交換,因此該無效腔氣體的存在會令通過二氧化碳濃度來判斷血糖濃度的檢測方式產生誤差,並造成評估患者之血糖濃度或糖尿病等疾病的精確度不足。Based on the convenience of the non-invasive detection method and detection process, the method of measuring the breath gas to evaluate the blood sugar has been widely studied in related fields. In addition to gas, it also includes gas from the mouth, respiratory tract and bronchi. This type of gas is called dead space gas in medicine, and does not participate in the exchange between breathing gas and blood in the alveoli, so this is invalid The presence of gas in the cavity will cause errors in the detection method of judging the blood sugar concentration through the carbon dioxide concentration, and cause insufficient accuracy in evaluating the blood sugar concentration of the patient or diseases such as diabetes.

因此,本發明的目的,即在提供一種血糖濃度的評估方法,以提高血糖濃度評估的精準度。Therefore, the purpose of the present invention is to provide a blood sugar concentration assessment method to improve the accuracy of blood glucose concentration assessment.

於是,本發明血糖濃度的評估方法,供一使用者以非侵入性方式評估血糖狀況,包含一呼氣擷取量測步驟,及一血糖評估步驟。Therefore, the method for assessing blood sugar concentration of the present invention is for a user to assess blood sugar status in a non-invasive manner, which includes a breath capture measurement step and a blood sugar assessment step.

該呼氣擷取量測步驟是擷取該使用者於一連續時間區間T 0~T n呼出的一呼氣氣體的末段呼氣量,並量測該末段呼氣量的二氧化碳濃度,其中,T 0為一呼氣起始時間,T n為一呼氣結束時間,該末段呼氣量擷取自介於一起始擷取時間T X1及一結束擷取時間T X2間的時間區間,且T 0< T X1,T X1<T X2≦T n,X1、X2、n為自然數,且該末段呼氣量不大於該連續時間區間T 0~T n的總呼氣量的10%。 The exhalation capture measurement step is to capture the terminal expiratory volume of an expiratory gas exhaled by the user in a continuous time interval T 0 ~T n , and measure the carbon dioxide concentration of the terminal expiratory volume, Wherein, T 0 is an exhalation start time, T n is an exhalation end time, and the final expiratory volume is extracted from the time between an initial acquisition time T X1 and an end acquisition time T X2 interval, and T 0 < T X1 , T X1 < T X2 ≦ T n , X1, X2, n are natural numbers, and the expiratory volume at the end is not greater than the total expiratory volume of the continuous time interval T 0 ~ T n 10% of.

該血糖評估步驟是利用該末段呼氣量的二氧化碳濃度計算推估該使用者的血糖濃度,以得到血糖評估結果。The blood glucose assessment step is to calculate and estimate the user's blood glucose concentration by using the carbon dioxide concentration of the end expiratory volume, so as to obtain a blood glucose assessment result.

本發明的另一目的,即在提供一種檢測裝置,適用於以非侵入性的方式進行二氧化碳濃度量測,以得到血糖評估結果。Another object of the present invention is to provide a detection device suitable for measuring carbon dioxide concentration in a non-invasive manner to obtain blood glucose assessment results.

於是,本發明檢測裝置,供一使用者以非侵入性方式檢測血糖濃度,包含一氣體截留單元、一轉換單元、一感測單元,及一分析單元。Therefore, the detection device of the present invention is used for a user to detect blood glucose concentration in a non-invasive manner, and includes a gas interception unit, a conversion unit, a sensing unit, and an analysis unit.

該氣體截留單元包括一中空管體,該中空管體具有一供接收該使用者呼出的呼氣氣體的進氣口,及一遠離該進氣口並用於將該呼氣氣體排出的排氣口。The gas entrapment unit includes a hollow tube body having an inlet for receiving exhalation gas exhaled by the user, and an exhaust port for discharging the exhalation gas away from the inlet. breath.

該轉換單元包括一聲頻轉換器,該聲頻轉換器設置於該中空管體內並與該進氣口連通,自該進氣口導入的呼氣氣體可同時進入該聲頻轉換器,該聲頻轉換器可將不同時間進入的該呼氣氣體依據氣體量轉換成不同的聲波訊號。The conversion unit includes an audio frequency converter, which is arranged in the hollow tube and communicated with the air inlet, and the expiratory gas introduced from the air inlet can enter the audio frequency converter at the same time, and the audio frequency converter The expiratory gas entering at different times can be converted into different sound wave signals according to the gas volume.

該感測單元設置於該中空管體內,並包括至少一供感測該呼氣氣體中的二氧化碳濃度的氣體感測器。The sensing unit is disposed in the hollow tube and includes at least one gas sensor for sensing the carbon dioxide concentration in the exhalation gas.

該分析單元分別與該感測單元及該轉換單元訊號連接,利用不同時間取得的該聲波訊號計算得到該呼氣氣體的一依時氣體量訊號,並可利用該依時氣體量訊號的結果取得該感測單元於一特定時間區段量測而得的二氧化碳濃度。The analysis unit is respectively connected to the sensing unit and the conversion unit for signals, and a time-dependent gas volume signal of the expiratory gas is calculated by using the acoustic wave signals obtained at different times, and can be obtained by using the time-dependent gas volume signal results The sensing unit measures the carbon dioxide concentration obtained in a specific time period.

本發明的功效在於:通過該呼氣擷取步驟自該呼氣氣體中擷取出該末段呼氣量,以排除來自口腔、呼吸道或支氣管等之無效腔氣體的干擾,而可僅依據所測得的該末段呼氣的二氧化碳濃度來進行血糖評估,進而提升評估的準確性。The effect of the present invention lies in that: the terminal expiratory volume is extracted from the expiratory gas through the exhalation extraction step, so as to eliminate the interference from the no-space gas in the oral cavity, respiratory tract or bronchi, etc., and can only be based on the measured The carbon dioxide concentration obtained at the end of the exhalation is used to evaluate the blood sugar, thereby improving the accuracy of the evaluation.

在本發明被詳細描述前,應當注意在以下的說明內容中,類似的元件是以相同的編號來表示。Before the present invention is described in detail, it should be noted that in the following description, similar elements are denoted by the same numerals.

參閱圖1,本發明血糖濃度的評估方法是可透過一非侵入性的檢測裝置200以供使用者以非侵入性方式評估血糖濃度。Referring to FIG. 1 , the method for assessing blood sugar concentration of the present invention can use a non-invasive detection device 200 for users to non-invasively assess blood sugar concentration.

該檢測裝置200包含一氣體截留單元2、一轉換單元3、一感測單元4,及一分析單元5。The detection device 200 includes a gas interception unit 2 , a conversion unit 3 , a sensing unit 4 , and an analysis unit 5 .

該氣體截留單元2包括一中空管體21,及一排氣件22,該中空管體21具有一供接收該使用者呼出的呼氣氣體的進氣口211,及一遠離該進氣口211用於將該呼氣氣體排出的排氣口212。該排氣件22與該排氣口212連通,用於將進入該中空管體21的呼氣氣體強制向外排出。通過該排氣件22控制排出氣體的流速,令該中空管體21中在檢測的過程中維持氣體流通的狀態,使該呼氣氣體在呼氣過程中依時間自該排氣口212排出以避免氣體累積,而可用於控制僅保留特定時間區間的呼氣氣體於該中空管體21中。在本實施例中,該排氣件22是以一設置於該排氣口212處的風扇為例,但並不以此為限。The gas trapping unit 2 includes a hollow tube body 21 and an exhaust member 22. The hollow tube body 21 has an air inlet 211 for receiving the exhalation gas exhaled by the user, and an air inlet 211 away from the air inlet. Port 211 is an exhaust port 212 for exhaling the exhalation gas. The exhaust member 22 communicates with the exhaust port 212 and is used for forcing the expiratory gas entering the hollow tube body 21 to the outside. The flow rate of the exhaust gas is controlled by the exhaust member 22, so that the hollow tube body 21 maintains a state of gas circulation during the detection process, so that the exhalation gas is discharged from the exhaust port 212 according to time during the exhalation process. To avoid gas accumulation, it can be used to control only the expiratory gas for a specific time interval to be kept in the hollow tube 21 . In this embodiment, the exhaust element 22 is an example of a fan disposed at the exhaust port 212 , but it is not limited thereto.

該轉換單元3包括一聲頻轉換器31,及一接收器32,該聲頻轉換器31設置於該中空管體21內並與該進氣口211連通,自該進氣口211導入的呼氣氣體可同時進入該聲頻轉換器31,該聲頻轉換器31可依據不同時間吹入的氣體量大小,而將該呼氣氣體轉換成不同的聲波訊號;該接收器32鄰近該聲頻轉換器31設置,用於接收該等聲波訊號,可用於接收並放大該等聲波訊號。該聲頻轉換器31可選自哨音發音器。在本實施例中,是以該聲頻轉換器31為一哨音發音器、該接收器32為一麥克風為例,但並不以此為限。The conversion unit 3 includes an audio frequency converter 31 and a receiver 32. The audio frequency converter 31 is arranged in the hollow tube body 21 and communicates with the air inlet 211. The exhaled air introduced from the air inlet 211 The gas can enter the audio frequency converter 31 at the same time, and the audio frequency converter 31 can convert the expiratory gas into different sound wave signals according to the volume of gas blown in at different times; the receiver 32 is arranged adjacent to the audio frequency converter 31 , for receiving the sound wave signals, and can be used for receiving and amplifying the sound wave signals. The audio converter 31 can be selected from a whistle sound generator. In this embodiment, it is taken that the audio converter 31 is a whistle generator and the receiver 32 is a microphone as an example, but it is not limited thereto.

該感測單元4設置於該中空管體21內,並包括至少一供感測該呼氣氣體中的二氧化碳濃度的氣體感測器41。在本實施例中,該感測單元4是以具有一個用來測量二氧化碳濃度的氣體感測器41,且該氣體感測器41設置於該中空管體內鄰近於該排氣口212的位置為例說明,然,實際實施時,該氣體感測器41的數量、設置位置並不以前述之實施態樣為限。The sensing unit 4 is disposed in the hollow tube 21 and includes at least one gas sensor 41 for sensing the concentration of carbon dioxide in the exhalation gas. In this embodiment, the sensing unit 4 has a gas sensor 41 for measuring the concentration of carbon dioxide, and the gas sensor 41 is disposed in the hollow tube adjacent to the exhaust port 212 As an example, however, in actual implementation, the number and installation positions of the gas sensors 41 are not limited to the above-mentioned implementation.

在一些實施例中,該感測單元4可具有兩個分別用以測量該呼氣氣體中的二氧化碳濃度及氧氣濃度的氣體感測器41,以同時量測取得該呼氣氣體的二氧化碳濃度,及氧氣濃度。In some embodiments, the sensing unit 4 may have two gas sensors 41 for measuring the carbon dioxide concentration and the oxygen concentration in the exhaled gas, respectively, so as to simultaneously measure the carbon dioxide concentration in the exhaled gas, and oxygen concentration.

該分析單元5分別與該感測單元4及該轉換單元3訊號連接,可接收該感測單元4於不同時間的二氧化碳濃度感測結果,而得到一依時濃度訊號;該分析單元5利用接收該轉換單元3自不同時間取得的該等聲波訊號計算得到該呼氣氣體的一依時氣體量訊號,並可利用該依時氣體量訊號計算求得該總呼氣量、末段呼氣量,及對應該末段呼氣量的末段呼氣時間區間,以進一步取得該感測單元4於對應該末段呼氣時間區間量測而得的二氧化碳濃度。詳細的說,該分析單元5是通過該依時氣體量訊號與時間的積分計算,取得該呼氣氣體的總呼氣量,再經由總呼氣量計算得到末段呼氣量,並對應取得該末段呼氣量的量測時間區間,之後,藉由比對該二氧化碳的該依時濃度訊號,即可得到該末段呼氣量的量測時間區間內之呼氣氣體的二氧化碳濃度。The analysis unit 5 is connected to the sensing unit 4 and the conversion unit 3 respectively, and can receive the carbon dioxide concentration sensing results of the sensing unit 4 at different times to obtain a time-dependent concentration signal; The conversion unit 3 calculates a time-dependent gas volume signal of the expiratory gas from the sound wave signals obtained at different times, and can use the time-dependent gas volume signal to calculate the total expiratory volume and the final expiratory volume , and a terminal expiratory time interval corresponding to the terminal expiratory volume, so as to further obtain the carbon dioxide concentration measured by the sensing unit 4 corresponding to the terminal expiratory time interval. In detail, the analysis unit 5 obtains the total expiratory volume of the expiratory gas through the integral calculation of the time-dependent gas volume signal and time, and then calculates the final expiratory volume through the total expiratory volume, and obtains correspondingly The measurement time interval of the terminal expiratory volume, and then by comparing the time-dependent concentration signal of the carbon dioxide, the carbon dioxide concentration of the exhaled gas within the measurement time interval of the terminal expiratory volume can be obtained.

參閱圖1與圖2,本發明血糖濃度的評估方法的一第一實施例,供該使用者利用前述的該檢測裝置200進行呼氣氣體的二氧化碳濃度檢測,並可以此對應評估自身的血糖濃度。該第一實施例包含一呼氣擷取量測步驟61,及一血糖評估步驟62。Referring to Fig. 1 and Fig. 2, a first embodiment of the method for assessing blood sugar concentration of the present invention is for the user to use the aforementioned detection device 200 to detect the carbon dioxide concentration of exhaled gas, and to evaluate his own blood sugar concentration correspondingly . The first embodiment includes a breath capture measurement step 61 and a blood glucose assessment step 62 .

該呼氣擷取量測步驟61是擷取該使用者於一連續時間區間T 0~T n呼出的該呼氣氣體的末段呼氣量,並量測取得該末段呼氣量的二氧化碳濃度。其中,T 0為一呼氣起始時間,T n為一呼氣結束時間,n為自然數,該末段呼氣量擷取自一末段呼氣時間區間,該末段呼氣時間區間是介於一起始擷取時間T X1及一結束擷取時間T X2,T 0< T X1,T X1<T X2≦T n,X1、X2、n為自然數,且該末段呼氣量不大於該連續時間區間T 0~T n的總呼氣量的10%。也就是說,該末段呼氣量是擷取自呼氣結束時間前的一時間區間(即該末段呼氣時間區間)的呼氣量。 The exhalation capture measurement step 61 is to capture the terminal expiratory volume of the expiratory gas exhaled by the user in a continuous time interval T 0 ~T n , and measure the carbon dioxide to obtain the terminal expiratory volume concentration. Among them, T 0 is an exhalation start time, T n is an exhalation end time, n is a natural number, and the final expiratory volume is extracted from a final exhalation time interval, and the final exhalation time interval It is between a start capture time T X1 and an end capture time T X2 , T 0 < T X1 , T X1 < T X2 ≦ T n , X1, X2, and n are natural numbers, and the final expiratory volume Not greater than 10% of the total expiratory volume in the continuous time interval T 0 ~T n . That is to say, the terminal expiratory volume is the expiratory volume obtained from a time interval before the expiration end time (ie, the terminal expiratory time interval).

該血糖評估步驟62是利用該末段呼氣量的二氧化碳濃度計算推估該使用者的血糖濃度。The blood glucose assessment step 62 is to calculate and estimate the blood glucose concentration of the user by using the carbon dioxide concentration of the end expiratory volume.

更詳細的說,該呼氣擷取量測步驟61是令該使用者自該中空管體21的進氣口211進行呼氣,讓該呼氣氣體經由該進氣口211、該聲頻轉換器31導入該中空管體21中。該感測單元5可持續地感測進入該中空管體21的呼氣氣體中的二氧化碳濃度而得到對應該連續時間區間T 0~T n的二氧化碳依時濃度變化結果。同時,進入該中空管體21的呼氣氣體可藉由該聲頻轉換器31產生具有不同強度、頻率的聲波訊號,而因為不同頻率、強度的聲波訊號會對應不同的氣體量,因此,可通過該分析單元5將該等聲波訊號轉換成該依時氣體量訊號,並利用該依時氣體量訊號與時間的積分計算,即可取得對應該連續時間區間T 0~T n的呼氣氣體的總呼氣量及/或特定時間區段內的氣體量(相當於該呼氣氣體的依時氣體量),接著,即可利用該總呼氣量計算得到該末段呼氣量,並據以定義出該末段呼氣時間區間的起始擷取時間T X1與該結束擷取時間T X2。之後,即可利用該二氧化碳依時濃度變化結果,取得該使用者於該末段呼氣時間區間之呼出氣體的二氧化碳濃度。 In more detail, the exhalation capture measurement step 61 is to make the user exhale from the air inlet 211 of the hollow tube body 21, let the exhaled gas pass through the air inlet 211, the audio frequency converter The device 31 is introduced into the hollow body 21. The sensing unit 5 continuously senses the concentration of carbon dioxide in the exhalation gas entering the hollow tube 21 to obtain the time-dependent concentration change result of carbon dioxide corresponding to the continuous time interval T 0 ~T n . At the same time, the expiratory gas entering the hollow tube body 21 can generate sound wave signals with different intensities and frequencies through the audio frequency converter 31, and because the sound wave signals of different frequencies and intensities will correspond to different gas volumes, it can By converting the acoustic wave signals into the time-dependent gas volume signal through the analysis unit 5, and using the time-dependent gas volume signal and time integral calculation, the expiratory gas corresponding to the continuous time interval T 0 ~ T n can be obtained The total expiratory volume and/or the gas volume in a specific time period (equivalent to the time-dependent gas volume of the expiratory gas), then, the final expiratory volume can be calculated by using the total expiratory volume, and Based on this, the start capture time T X1 and the end capture time T X2 of the last exhalation time interval are defined. Afterwards, the carbon dioxide concentration of the user's exhaled gas in the last exhalation time interval can be obtained by using the result of the time-dependent concentration change of carbon dioxide.

最後,即可利用該末段呼氣時間區間的二氧化碳濃度(平均值)與一血糖值標準值進行比對,而得到血糖評估結果。例如,以該使用者呼氣後計算得到的總呼氣量為2L,則該使用者的末段呼氣量為不大於200ml(不大於總呼氣量的10%),因此,透過該依時氣體量訊號可得到該末段呼氣量對應的起始擷取時間T X1與該結束擷取時間T X2。再利用該起始擷取時間T X1與該結束擷取時間T X2與二氧化碳的依時濃度變化結果比對,即可得到該使用者的該末段呼氣時間區間的二氧化碳濃度,最後,即可透過二氧化碳濃度結果與相應的標準血糖濃度值進行比對,而得到血糖評估結果。 Finally, the carbon dioxide concentration (average value) in the end-expiratory time interval can be compared with a standard blood sugar level to obtain a blood sugar assessment result. For example, if the total expiratory volume calculated after the user exhales is 2L, then the user's final expiratory volume is not greater than 200ml (not greater than 10% of the total expiratory volume), therefore, through this basis The hourly gas volume signal can obtain the start capture time T X1 and the end capture time T X2 corresponding to the final expiratory volume. Then, by comparing the initial capture time T X1 and the end capture time T X2 with the time-dependent concentration change results of carbon dioxide, the carbon dioxide concentration of the user’s last exhalation time interval can be obtained, and finally, The blood sugar assessment result can be obtained by comparing the carbon dioxide concentration result with the corresponding standard blood sugar concentration value.

由於利用量測該使用者呼出氣體整體的二氧化碳濃度作為血糖濃度評估的依據時,該使用者最先呼出的氣體中還包含有來自口腔、呼吸道及支氣管等無效腔氣體,且該等無效腔氣體因未在肺部與血液進行呼吸交換,因此會影響到二氧化碳濃度量測的準確度,故本發明透過僅量測使用者於呼氣過程的末段呼氣量的二氧化碳濃度,由於該末段呼氣量為該使用者在整個呼氣過程的最後呼出的氣體,因此可避免因為該等無效腔氣體對二氧化碳濃度量測的干擾,而可提升二氧化碳濃度量測的準確性,以增進血糖評估的準確性。要說明的是,該總呼氣量(相當於肺活量)依據不同的年齡、生理狀況等都會有所不同,該末段呼氣量均是以實質不大於總呼氣量的10%為基礎。When measuring the overall carbon dioxide concentration of the user's exhaled breath as the basis for evaluating the blood sugar concentration, the user's first exhaled gas also includes dead space gases from the oral cavity, respiratory tract, and bronchi, and these dead space gases Because there is no respiratory exchange between the lungs and the blood, it will affect the accuracy of the measurement of the carbon dioxide concentration. Therefore, the present invention only measures the carbon dioxide concentration of the user's exhalation at the end of the exhalation process. The expiratory volume is the last gas exhaled by the user during the entire exhalation process, so it can avoid the interference of the dead space gas on the measurement of the carbon dioxide concentration, and improve the accuracy of the measurement of the carbon dioxide concentration, so as to enhance the blood sugar assessment accuracy. It should be noted that the total expiratory volume (equivalent to vital capacity) will vary according to different ages and physiological conditions, and the terminal expiratory volume is based on the fact that it is not greater than 10% of the total expiratory volume.

前述該第一實施例是利用於呼氣過程中持續量測使用者呼出氣體之二氧化碳的依時濃度結果,再利用擷取該末段呼氣時間區間的二氧化碳濃度進行血糖值的評估。然,實際實施時,也可以無須持續量測呼出氣體之二氧化碳的濃度,而是可依據量測前的數據評估結果,而僅量測使用者於該末段呼氣時間區間的二氧化碳的濃度,同樣可達成本發明之目的。茲將該方法以下述第二實施例說明。The aforementioned first embodiment utilizes the result of continuous measurement of the time-dependent concentration of carbon dioxide in the exhaled breath of the user during the exhalation process, and then utilizes the carbon dioxide concentration in the final expiratory time interval to evaluate the blood sugar level. However, in actual implementation, it is not necessary to continuously measure the concentration of carbon dioxide in the exhaled gas, but to evaluate the results based on the data before the measurement, and only measure the concentration of carbon dioxide in the end-expiration time interval of the user. The purpose of the present invention can be reached equally. This method will be described in the following second embodiment.

參閱圖1、圖4,本發明血糖濃度評估方法的該第二實施例包含一預評估步驟60、該呼氣擷取量測步驟61,及該血糖評估步驟62。Referring to FIG. 1 and FIG. 4 , the second embodiment of the blood glucose concentration assessment method of the present invention includes a pre-assessment step 60 , the breath capture measurement step 61 , and the blood glucose assessment step 62 .

該預評估步驟60是利用該檢測裝置200擷取該使用者於前次的一連續時間區間T 0~T n呼出的呼氣氣體,並經由該分析單元5進行時間積分計算,以得到該使用者在該連續時間區間T 0~T n的總呼氣量及/或依時氣體流量,透過該總呼氣量計算得到末段呼氣量,並利用該末段呼氣量得到相應的一末段呼氣時間區間,而取得該末段呼氣時間區間的一預設起始擷取時間,及一預設結束擷取時間。 The pre-evaluation step 60 is to use the detection device 200 to capture the exhaled gas exhaled by the user in the previous continuous time interval T 0 ~T n , and perform time integral calculation through the analysis unit 5 to obtain the used or the total expiratory volume and/or time-dependent gas flow in the continuous time interval T 0 ~T n , calculate the final expiratory volume through the total expiratory volume, and use the terminal expiratory volume to obtain a corresponding The last expiratory time interval, and obtain a preset start capture time and a preset end capture time of the last expiratory time interval.

接著,執行該呼氣擷取量測步驟61,與該第一實施例不同的是,由於該預評估步驟60已預估該使用者之末段呼氣時間區間的該預設起始擷取時間及該預設結束擷取時間,因此,該第二實施例的氣體擷取量測步驟61是將自該預評估步驟60所定義出的該預設起始擷取時間及該預設結束擷取時間作為當次量測之該末段呼氣量的該起始擷取時間T X1,及該結束擷取時間T X2,而僅須測量該使用者在當次的整個呼氣過程中,T X1~T X2的時間區間內的二氧化碳濃度即可,而無須持續量測該使用者於整個呼氣過程中呼出氣體之二氧化碳濃度。最後,即可透過該血糖評估步驟62利用量測得到的該末段呼氣時間區間的二氧化碳濃度與相應的標準血糖值進行比對,得到血糖評估結果。 Next, execute the exhalation capture measurement step 61, different from the first embodiment, since the pre-assessment step 60 has estimated the default initial capture of the user's final exhalation time interval time and the default end capture time, therefore, the gas capture measurement step 61 of the second embodiment is to combine the default start capture time and the default end capture time defined from the pre-assessment step 60 The capture time is used as the start capture time T X1 and the end capture time T X2 of the final expiratory volume of the current measurement, and it is only necessary to measure the user during the current exhalation process , the carbon dioxide concentration within the time interval of T X1 ~ T X2 is sufficient, and it is not necessary to continuously measure the carbon dioxide concentration of the gas exhaled by the user during the entire exhalation process. Finally, through the blood glucose assessment step 62 , the measured carbon dioxide concentration in the end-expiratory time interval can be compared with the corresponding standard blood glucose level to obtain a blood glucose assessment result.

在一些實施例中,該預評估步驟60,也可以無須實際進行量測,而是透過一總呼氣量預設值及一呼氣時間預定值計算而得到該預設起始擷取時間與該預設結束擷取時間,其中,該總呼氣量預設值與該呼氣時間預定值是依據該使用者的年齡、性別或其他生理特徵的其中一種,或是現有的資料庫而設定。In some embodiments, the pre-assessment step 60 may not need to actually measure, but calculate the preset initial acquisition time and The preset end capture time, wherein the preset value of the total expiratory volume and the preset value of the exhalation time are set according to one of the user's age, gender or other physiological characteristics, or an existing database .

本案之檢測方法可通過觀察該使用者分別在不同時間點所測得該末段呼氣的二氧化碳濃度的整體變化趨勢,來評估該使用者的血糖狀況,例如:當該使用者在進食後,其末段呼氣的二氧化碳濃度隨著時間持續增加,且過了約2小時後尚無減低的跡象,表示該使用者的血糖濃度很高,可能有糖代謝能力不足的問題。The detection method in this case can evaluate the blood sugar status of the user by observing the overall change trend of the carbon dioxide concentration of the end-expiration measured by the user at different time points, for example: when the user eats, The carbon dioxide concentration in the final exhalation continued to increase over time, and there was no sign of decrease after about 2 hours, indicating that the user's blood sugar concentration was high, and the user may have insufficient glucose metabolism.

參閱圖3,該末段呼氣的二氧化碳濃度與血糖濃度值的關係曲線,可藉由令使用者進行糖耐受性測試(Oral glucose tolerance test, OGTT)而得。首先,令該使用者於空腹的情況下服用75克的葡萄糖(glucose);接著,在120分鐘內讓該使用者每間隔30分鐘利用該檢測裝置200來測量該末段呼氣的二氧化碳濃度,並同時量測該使用者的血糖濃度值(見表1)。圖3為該使用者進行糖耐受性測試,於進食葡萄糖前、後不同時間點所測得的該末段呼氣時間區間的二氧化碳濃度(實線),及自身的血糖濃度值(虛線)。自圖3中可以發現,該末段呼氣時間區間的二氧化碳濃度與血糖濃度值二者成正向相關。因此,透過該末段呼氣的二氧化碳濃度與該使用者的血糖濃度值的量測結果,即可建立該末段呼氣的二氧化碳濃度與血糖濃度值的關係曲線。後續以本發明之檢測方法量得的二氧化碳濃度即可透過內插法取得對應的血糖濃度值,最後,再將該血糖濃度值與一標準血糖濃度值進行比對,即可得到血糖評估結果,例如,一般使用者進食約120分鐘後,標準血糖濃度值應不大於200 mg/dL。若該使用者進食約120分鐘後,由本發明測得之該末段呼氣的二氧化碳濃度推算出的血糖濃度值為210mg/dL,與該標準血糖濃度值比對後為超出,則顯示該使用者可能有糖代謝能力不足的問題,應盡速至醫療院所就醫診察。此外,要說明的是,該二氧化碳濃度與血糖濃度值之間的對應關係也可以是取自現有的資料庫。Referring to FIG. 3 , the relationship curve between the carbon dioxide concentration at the end of exhalation and the blood glucose concentration can be obtained by asking the user to perform an Oral glucose tolerance test (OGTT). First, let the user take 75 grams of glucose (glucose) on an empty stomach; then, within 120 minutes, let the user use the detection device 200 to measure the carbon dioxide concentration of the end-breath every 30 minutes, And at the same time measure the user's blood glucose concentration (see Table 1). Figure 3 shows the carbon dioxide concentration (solid line) and the blood glucose concentration (dotted line) of the user in the end-expiratory time interval measured at different time points before and after eating glucose during the glucose tolerance test. . It can be found from FIG. 3 that the carbon dioxide concentration in the last expiratory time interval is positively correlated with the blood glucose concentration. Therefore, through the measurement results of the carbon dioxide concentration in the end exhalation and the blood glucose concentration of the user, a relationship curve between the carbon dioxide concentration in the end exhalation and the blood glucose concentration can be established. Subsequently, the carbon dioxide concentration measured by the detection method of the present invention can be used to obtain the corresponding blood sugar concentration value through the interpolation method. Finally, the blood sugar concentration value is compared with a standard blood sugar concentration value to obtain the blood sugar evaluation result. For example, about 120 minutes after a general user eats, the standard blood sugar concentration value should not exceed 200 mg/dL. If the user eats for about 120 minutes, the blood sugar concentration value calculated from the carbon dioxide concentration in the end breath measured by the present invention is 210 mg/dL, which is exceeded after comparing with the standard blood sugar concentration value, then the use Patients may have insufficient glucose metabolism and should go to a medical institution for consultation as soon as possible. In addition, it should be noted that the corresponding relationship between the carbon dioxide concentration and the blood glucose concentration may also be obtained from an existing database.

表1 末段呼氣之CO2濃度(%) 血糖濃度值(mg/dl) 4.0~4.5 70~85 4.5~5.0 85~100 5.0~5.5 100~115 5.5~6.0 115~130 Table 1 Concentration of CO2 in final exhalation (%) Blood glucose concentration value (mg/dl) 4.0~4.5 70~85 4.5~5.0 85~100 5.0~5.5 100~115 5.5~6.0 115~130

綜上所述,本發明血糖濃度的評估方法通過該呼氣擷取步驟61將自該呼氣氣體中擷取出該末段呼氣以進行二氧化碳濃度的量測來進行血糖評估,排除來自口腔、呼吸道或支氣管等無效腔氣體的干擾,進而提升血糖濃度之評估的準確性,此外,該檢測裝置200可供該使用者以非侵入性的方式進行血糖評估且檢測流程簡單,更有利於血糖評估的進行,故確實能達成本發明的目的。To sum up, the method for evaluating blood sugar concentration of the present invention extracts the last exhaled breath from the exhaled gas through the exhalation extraction step 61 to measure the concentration of carbon dioxide to perform blood sugar assessment, excluding those from the oral cavity, The interference of dead space gases such as the respiratory tract or bronchi improves the accuracy of blood sugar concentration assessment. In addition, the detection device 200 allows the user to perform blood sugar assessment in a non-invasive manner, and the detection process is simple, which is more conducive to blood sugar assessment. Carrying out, so can really reach the purpose of the present invention.

惟以上所述者,僅為本發明的實施例而已,當不能以此限定本發明實施的範圍,凡是依本發明申請專利範圍及專利說明書內容所作的簡單的等效變化與修飾,皆仍屬本發明專利涵蓋的範圍內。But the above-mentioned ones are only embodiments of the present invention, and should not limit the scope of the present invention. All simple equivalent changes and modifications made according to the patent scope of the present invention and the content of the patent specification are still within the scope of the present invention. Within the scope covered by the patent of the present invention.

200:檢測裝置 2:氣體截留單元 21:中空管體 211:進氣口 212:排氣口 22:排氣件 3:轉換單元 31:聲頻轉換器 32:接收器 4:感測單元 41:氣體感測器 5:分析單元 60:預評估步驟 61:呼氣擷取量測步驟 62:血糖評估步驟 200: detection device 2: Gas retention unit 21: Hollow tube body 211: air inlet 212: Exhaust port 22: Exhaust parts 3: Conversion unit 31:Audio frequency converter 32: Receiver 4: Sensing unit 41: Gas sensor 5: Analysis unit 60: Pre-assessment steps 61: Exhalation capture measurement steps 62: Blood sugar assessment steps

本發明的其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1是一示意圖,說明本發明檢測裝置的一實施例; 圖2是一流程圖,說明本發明血糖濃度的評估方法的一第一實施例; 圖3是一呼氣之二氧化碳濃度與血糖濃度值的關係圖,說明該第一實施例測得之該使用者呼氣氣體中二氧化碳濃度與自身的血糖濃度的關係;及 圖4是一流程圖,說明本發明血糖濃度的評估方法的一第二實施例。 Other features and effects of the present invention will be clearly presented in the implementation manner with reference to the drawings, wherein: Fig. 1 is a schematic diagram illustrating an embodiment of the detection device of the present invention; Fig. 2 is a flowchart illustrating a first embodiment of the method for assessing blood sugar concentration of the present invention; Fig. 3 is a graph showing the relationship between the concentration of carbon dioxide in exhaled breath and the concentration of blood glucose, illustrating the relationship between the concentration of carbon dioxide in the user's exhaled gas and the concentration of blood glucose measured in the first embodiment; and FIG. 4 is a flowchart illustrating a second embodiment of the method for assessing blood glucose concentration of the present invention.

61:呼氣擷取量測步驟 61: Exhalation capture measurement steps

62:血糖評估步驟 62: Blood sugar assessment steps

Claims (10)

一種血糖濃度的評估方法,供一使用者以非侵入性方式檢測血糖濃度,包含: 一呼氣擷取量測步驟,擷取該使用者於一連續時間區間T 0~T n呼出的一呼氣氣體的末段呼氣量,並量測該末段呼氣量的二氧化碳濃度,其中,T 0為一呼氣起始時間,T n為一呼氣結束時間,該末段呼氣量擷取自介於一起始擷取時間T X1及一結束擷取時間T X2間的時間區間,且T 0< T X1,T X1<T X2≦T n,X1、X2、n為自然數,且該末段呼氣量不大於該連續時間區間T 0~T n的總呼氣量的10%;及 一血糖評估步驟,利用該末段呼氣量的二氧化碳濃度計算推估該使用者的血糖濃度,以得到血糖評估結果。 A method for assessing blood glucose concentration for a user to detect blood glucose concentration in a non-invasive manner, comprising: a breath capture measurement step, capturing a breath exhaled by the user in a continuous time interval T 0 ~T n The final expiratory volume of the breath gas, and measure the carbon dioxide concentration of the final expiratory volume, wherein, T 0 is an exhalation start time, T n is an exhalation end time, and the final expiratory volume is captured taken from a time interval between a start capture time T X1 and an end capture time T X2 , and T 0 < T X1 , T X1 < T X2 ≦ T n , X1, X2, and n are natural numbers, and The terminal expiratory volume is not greater than 10% of the total expiratory volume in the continuous time interval T 0 ~T n ; and a blood sugar assessment step, using the carbon dioxide concentration of the terminal expiratory volume to calculate and estimate the user's blood sugar Concentration to obtain blood sugar assessment results. 如請求項1所述的血糖濃度的評估方法,其中,該血糖評估步驟是將自該末段呼氣量的二氧化碳濃度推估而得的血糖濃度與一標準血糖濃度值進行比對,以得到該血糖評估結果。The method for assessing blood glucose concentration according to claim 1, wherein the blood glucose assessment step is to compare the blood glucose concentration estimated from the carbon dioxide concentration of the end expiratory volume with a standard blood glucose concentration value to obtain The blood sugar assessment result. 如請求項1所述的血糖濃度的評估方法,其中,該呼氣擷取量測步驟是取得該使用者在該連續時間區間的該呼氣氣體的依時氣體流量結果、總呼氣量,及該連續時間區間的該呼氣氣體之二氧化碳的依時濃度變化結果,並依據該總呼氣量決定該末段呼氣量的該起始擷取時間T X1及該結束擷取時間T X2The blood glucose concentration assessment method as described in Claim 1, wherein the breath capture measurement step is to obtain the time-dependent gas flow rate and total expiratory volume of the user’s expiratory gas in the continuous time interval, and the time-dependent concentration change result of the exhaled gas carbon dioxide in the continuous time interval, and determine the initial capture time T X1 and the end capture time T X2 of the final expiratory volume based on the total expiratory volume . 如請求項1所述的血糖濃度的評估方法,還包含一預評估步驟,該預評估步驟是取得供該使用者使用的一預設起始擷取時間,及一預設結束擷取時間,該呼氣擷取量測步驟是以該預設起始擷取時間及該預設結束擷取時間作為該末段呼氣量的該起始擷取時間T X1,及該結束擷取時間T X2,並只擷取、量測該使用者於該末段呼氣量的二氧化碳濃度。 The method for evaluating blood glucose concentration as described in Claim 1 further includes a pre-evaluation step, the pre-evaluation step is to obtain a preset start capture time and a preset end capture time for the user, The breath capture measurement step uses the preset start capture time and the preset end capture time as the start capture time T X1 of the final expiratory volume, and the end capture time T X2 , and only capture and measure the carbon dioxide concentration of the user at the end of the expiratory volume. 如請求項4所述的血糖濃度的評估方法,其中,該預評估步驟是量測該使用者於前次的一連續時間區間呼出的呼氣氣體,得到該使用者在該連續時間區間的總呼氣量,並利用該總呼氣量取得該末段呼氣量的該預設起始擷取時間及該預設結束擷取時間,該呼氣擷取量測步驟是以該預設起始擷取時間及該預設結束擷取時間作為該使用者於當次呼出的該呼氣氣體的該末段呼氣量的該起始擷取時間T X1,及該結束擷取時間T X2The method for assessing blood glucose concentration as described in Claim 4, wherein the pre-assessment step is to measure the expiratory gas exhaled by the user in the previous continuous time interval, and obtain the total expiratory volume, and use the total expiratory volume to obtain the preset start capture time and the preset end capture time of the final expiratory volume, the breath capture measurement step starts from the preset The start capture time and the preset end capture time are used as the start capture time T X1 and the end capture time T X2 of the final expiratory volume of the expiratory gas exhaled by the user at the current time . 如請求項4所述的血糖濃度的評估方法,其中,該預評估步驟是透過一總呼氣量預設值及一與該總呼氣量預設值相關的呼氣時間預定值計算而得到該預設起始擷取時間及該預設結束擷取時間,該呼氣擷取量測步驟是以該預設起始擷取時間及該預設結束擷取時間作為該使用者於當次呼出的該呼氣氣體的該末段呼氣量的該起始擷取時間T X1,及該結束擷取時間T X2The method for assessing blood glucose concentration as described in Claim 4, wherein the pre-assessment step is obtained by calculating a preset value of total expiratory volume and a preset value of exhalation time related to the preset value of total expiratory volume The default start capture time and the preset end capture time, the breath capture measurement step is to use the default start capture time and the default end capture time as the user at the time The start capture time T X1 and the end capture time T X2 of the terminal expiratory volume of the exhaled expiratory gas. 如請求項6所述的血糖濃度的評估方法,其中,該總呼氣量預設值與該呼氣時間預定值是依據該使用者的年齡、性別或其他生理特徵的其中一種而設定。The method for evaluating blood glucose concentration according to claim 6, wherein the preset value of the total expiratory volume and the preset value of the exhalation time are set according to one of the user's age, gender or other physiological characteristics. 一種檢測裝置,供一使用者以非侵入性方式檢測血糖濃度,包含: 一氣體截留單元,包括一中空管體,該中空管體具有一供接收該使用者呼出的呼氣氣體的進氣口,及一遠離該進氣口並用於將該呼氣氣體排出的排氣口; 一轉換單元,包括一聲頻轉換器,該聲頻轉換器設置於該中空管體內並與該進氣口連通,自該進氣口導入的呼氣氣體可同時進入該聲頻轉換器,該聲頻轉換器可將不同時間進入的該呼氣氣體依據氣體量轉換成不同的聲波訊號; 一感測單元,設置於該中空管體內,並包括至少一供感測該呼氣氣體中的二氧化碳濃度的氣體感測器;及 一分析單元,分別與該感測單元及該轉換單元訊號連接,利用不同時間取得的該聲波訊號計算得到該呼氣氣體的一依時氣體量訊號,並可利用該依時氣體量訊號的結果取得該感測單元於一特定時間區段量測而得的二氧化碳濃度。 A detection device for a user to detect blood glucose concentration in a non-invasive manner, comprising: A gas entrapment unit comprising a hollow tubular body having an inlet for receiving exhalation gas exhaled by the user, and an air inlet remote from the inlet for expelling the exhalation gas exhaust vent; A conversion unit, including an audio frequency converter, the audio frequency converter is arranged in the hollow tube and communicated with the air inlet, the expiratory gas introduced from the air inlet can enter the audio frequency converter at the same time, the audio frequency conversion The device can convert the expiratory gas entering at different times into different sound wave signals according to the gas volume; A sensing unit is arranged in the hollow tube and includes at least one gas sensor for sensing the carbon dioxide concentration in the exhalation gas; and An analysis unit, which is respectively connected to the sensing unit and the conversion unit, uses the acoustic wave signals obtained at different times to calculate a time-dependent gas volume signal of the expiratory gas, and can use the result of the time-dependent gas volume signal The carbon dioxide concentration measured by the sensing unit in a specific time period is obtained. 如請求項8所述的檢測裝置,其中,該聲頻轉換器為一哨音發音器,該轉換單元還包括一接收器,該接收器鄰近該聲頻轉換器設置且用於接收該聲波訊號。The detecting device according to claim 8, wherein the audio frequency converter is a whistle generator, and the conversion unit further includes a receiver, which is arranged adjacent to the audio frequency converter and used for receiving the sound wave signal. 如請求項8所述的檢測裝置,還包含一排氣件,該排氣件與該中空管體的該排氣口連通並用於將進入該中空管體的呼氣氣體強制向外排出。The detection device according to claim 8, further comprising an exhaust member, which communicates with the exhaust port of the hollow tube body and is used to force the expiratory gas entering the hollow tube body to be discharged outward .
TW110112767A 2021-04-08 2021-04-08 Evaluation method and detection device for blood glucose concentration TWI766640B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110112767A TWI766640B (en) 2021-04-08 2021-04-08 Evaluation method and detection device for blood glucose concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110112767A TWI766640B (en) 2021-04-08 2021-04-08 Evaluation method and detection device for blood glucose concentration

Publications (2)

Publication Number Publication Date
TWI766640B TWI766640B (en) 2022-06-01
TW202239374A true TW202239374A (en) 2022-10-16

Family

ID=83103642

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110112767A TWI766640B (en) 2021-04-08 2021-04-08 Evaluation method and detection device for blood glucose concentration

Country Status (1)

Country Link
TW (1) TWI766640B (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200814967A (en) * 2006-09-19 2008-04-01 Chien Hui Chuan Apparatus applied to detect the human breath gas
TWI510217B (en) * 2010-11-08 2015-12-01 Univ Nat Kaohsiung Applied Sci Non-invasive blood glucose value multi-measuring method and a device thereof
WO2016072513A1 (en) * 2014-11-07 2016-05-12 凸版印刷株式会社 Method and device for measuring blood glucose level

Also Published As

Publication number Publication date
TWI766640B (en) 2022-06-01

Similar Documents

Publication Publication Date Title
US20230320660A1 (en) Devices and methods for monitoring physiologic parameters
JP6787969B2 (en) Breathing choices for analysis
JP7291751B2 (en) System for determining physiological parameters
US7094206B2 (en) System for measuring respiratory function
US20020120207A1 (en) System for measuring respiratory function
US9532731B2 (en) Method and apparatus for measuring the concentration of a gas in exhaled air
RU2621393C2 (en) Automated spirogram analysis and interpretation
EP1632178A1 (en) Method for non-cooperative lung function diagnosis using ultrasound
EP2536333A1 (en) Nitric oxide measurement method and apparatus
US20230082966A1 (en) Devices and methods for predicting, identifying and/or managing pneumonia or other health status
WO2019152699A1 (en) Devices and methods for monitoring physiologic parameters
TWI766640B (en) Evaluation method and detection device for blood glucose concentration
Voter et al. Pulmonary function testing in childhood asthma
CN109316189B (en) Non-contact respiration dynamic detection method and device
Davis Pulmonary Function Tests in Infants and Preschool Children
Nindhia et al. Effect of High-Flow Nasal Cannula on Capnogram Waveform for Studying Non-Invasive Human Ventilation
Al-Huda tremoFlo N-100®: A device to measure lung function in infants
CN117770793A (en) Gas signal molecule expiration detection method, system and electronic equipment
Micski CO2 Flow Estimation using Sidestream Capnography and Patient Flow in Anaesthesia Delivery Systems
WO2023067609A1 (en) System and method for monitoring variations in respiratory biomarkers by analysing tidal breathing waveforms
Hull et al. Pulmonary function and exercise testing
CN117770792A (en) Method and system for measuring concentration of nitric oxide in non-respiratory tract
Sumer Pulmonary function tests in clinical practice: Importance, requirements and limitations