TW202239254A - Spatial inter-cell interference aware downlink coordination - Google Patents

Spatial inter-cell interference aware downlink coordination Download PDF

Info

Publication number
TW202239254A
TW202239254A TW111106187A TW111106187A TW202239254A TW 202239254 A TW202239254 A TW 202239254A TW 111106187 A TW111106187 A TW 111106187A TW 111106187 A TW111106187 A TW 111106187A TW 202239254 A TW202239254 A TW 202239254A
Authority
TW
Taiwan
Prior art keywords
network device
request message
interference
cell
location
Prior art date
Application number
TW111106187A
Other languages
Chinese (zh)
Inventor
葉立茲 托克茍茲
傑庫馬 桑達拉拉貞
克瑞許納奇藍 穆卡維利
權煥俊
納嘉 布桑
泰尚 柳
庭方 季
Original Assignee
美商高通公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/675,980 external-priority patent/US11968151B2/en
Application filed by 美商高通公司 filed Critical 美商高通公司
Publication of TW202239254A publication Critical patent/TW202239254A/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • H04J11/0056Inter-base station aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0062Avoidance of ingress interference, e.g. ham radio channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/044Recurrent networks, e.g. Hopfield networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A method of wireless communication by a first network device includes predicting spatial inter-cell downlink interference experienced by a UE. The method also includes communicating with a second network device to reduce the spatial inter-cell downlink interference in a direction of the UE by protecting resources across selected resource sets.

Description

空間細胞間干擾感知下行鏈路協調Interference-aware downlink coordination between spatial cells

本專利申請案主張享有於2022年2月18日提出申請的並且名稱為「SPATIAL INTER-CELL INTERFERENCE AWARE DOWNLINK COORDINATION」的美國專利申請案第17/675,980號的優先權,該申請案主張於2021年3月2日提出申請的並且名稱為「SPATIAL INTER-CELL INTERFERENCE AWARE DOWNLINK COORDINATION」的美國臨時專利申請案第63/155,635號的權益,上述申請案的揭示內容經由引用的方式明確地全部併入本文中。This patent application claims priority to U.S. Patent Application No. 17/675,980, filed February 18, 2022, and entitled "SPATIAL INTER-CELL INTERFERENCE AWARE DOWNLINK COORDINATION," which claims The benefit of U.S. Provisional Patent Application No. 63/155,635, filed March 2 and entitled "SPATIAL INTER-CELL INTERFERENCE AWARE DOWNLINK COORDINATION," the disclosure of which is expressly incorporated by reference in its entirety middle.

大體而言,本案內容的各態樣係關於無線通訊,以及更具體地,係關於用於對空間細胞間干擾感知下行鏈路協調的增強的技術和裝置。Aspects of the subject matter of this case relate generally to wireless communications and, more specifically, to enhanced techniques and devices for downlink coordination aware of spatial intercellular interference.

無線通訊系統被廣泛地部署以提供各種電訊服務,諸如電話、視訊、資料、訊息傳遞以及廣播。典型的無線通訊系統可以採用能夠經由共享可用的系統資源(例如,頻寬、發射功率等)來支援與多個使用者的通訊的多工存取技術。此類多工存取技術的實例包括分碼多工存取(CDMA)系統、分時多工存取(TDMA)系統、分頻多工存取(FDMA)系統、正交分頻多工存取(OFDMA)系統、單載波分頻多工存取(SC-FDMA)系統、時分同步分碼多工存取(TD-SCDMA)系統以及長期進化(LTE)。LTE/改進的LTE是對由第三代合作夥伴計畫(3GPP)發佈的通用行動電訊系統(UMTS)行動服務標準的增強集。Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasting. A typical wireless communication system may adopt a multiple access technology capable of supporting communication with multiple users by sharing available system resources (eg, bandwidth, transmit power, etc.). Examples of such multiple access techniques include Code Division Multiple Access (CDMA) systems, Time Division Multiple Access (TDMA) systems, Frequency Division Multiple Access (FDMA) systems, Orthogonal Frequency Division Multiple Access Access (OFDMA) system, single carrier frequency division multiple access (SC-FDMA) system, time division synchronous code division multiple access (TD-SCDMA) system and long-term evolution (LTE). LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile service standard promulgated by the Third Generation Partnership Project (3GPP).

無線通訊網路可以包括能夠支援針對多個使用者設備(UE)的通訊的多個基地台(BS)。使用者設備(UE)可以經由下行鏈路和上行鏈路與基地台(BS)進行通訊。下行鏈路(或前向鏈路)代表從BS到UE的通訊鏈路,而上行鏈路(或反向鏈路)代表從UE到BS的通訊鏈路。如將更加詳細描述的,BS可以被稱為節點B、gNB、存取點(AP)、無線電頭端、發送和接收點(TRP)、新無線電(NR)BS、5G節點B等。A wireless communication network may include a plurality of base stations (BSs) capable of supporting communication for a plurality of user equipments (UEs). A user equipment (UE) can communicate with a base station (BS) via downlink and uplink. The downlink (or forward link) represents the communication link from the BS to the UE, and the uplink (or reverse link) represents the communication link from the UE to the BS. As will be described in more detail, a BS may be called a Node B, a gNB, an Access Point (AP), a radio head, a Transmission and Reception Point (TRP), a New Radio (NR) BS, a 5G Node B, and the like.

已經在各種電訊標準中採用了以上的多工存取技術以提供使得不同的使用者設備能夠在城市、國家、地區、乃至全球的級別上進行通訊的公共協定。新無線電(NR)(其亦可以被稱為5G)是對由第三代合作夥伴計畫(3GPP)發佈的LTE行動服務標準的增強集。NR被設計為經由改善頻譜效率、降低成本、改善服務、利用新頻譜、以及在下行鏈路(DL)上使用具有循環字首(CP)的正交分頻多工(OFDM)(CP-OFDM)、在上行鏈路(UL)上使用CP-OFDM及/或SC-FDM(例如,亦被稱為離散傅裡葉變換擴展OFDM(DFT-s-OFDM))以及支援波束成形、多輸入多輸出(MIMO)天線技術和載波聚合,來更好地與其他開放標準整合,從而更好地支援行動寬頻網際網路存取。The above multiple access techniques have been adopted in various telecommunication standards to provide a common protocol enabling different user equipments to communicate at city, country, regional, and even global levels. New Radio (NR), which may also be referred to as 5G, is a set of enhancements to the LTE mobile service standard promulgated by the 3rd Generation Partnership Project (3GPP). NR is designed to improve spectral efficiency, reduce cost, improve service, utilize new spectrum, and use Orthogonal Frequency Division Multiplexing (OFDM) (CP-OFDM) with cyclic prefix (CP) on the downlink (DL). ), use CP-OFDM and/or SC-FDM (e.g. also known as discrete Fourier transform spread OFDM (DFT-s-OFDM)) on the uplink (UL) and support beamforming, multiple-input multiple Output (MIMO) antenna technology and carrier aggregation to better integrate with other open standards to better support mobile broadband Internet access.

人工神經網路可以包括互連的人工神經元(例如,神經元模型)的組。人工神經網路可以是計算設備或被表示為要由計算設備執行的方法。迴旋神經網路(諸如深度迴旋神經網路)是一種前饋人工神經網路。迴旋神經網路可以包括可以被配置在平鋪的感受野中的神經元層。將神經網路處理應用於無線通訊以實現更高的效率將是期望的。An artificial neural network may include groups of interconnected artificial neurons (eg, neuron models). An artificial neural network may be a computing device or be represented as a method to be performed by a computing device. A convolutional neural network (such as a deep convolutional neural network) is a type of feed-forward artificial neural network. A convolutional neural network may include layers of neurons that may be arranged in tiled receptive fields. It would be desirable to apply neural network processing to wireless communications to achieve greater efficiency.

由第一網路設備進行的無線通訊的方法包括:預測由UE經歷的空間細胞間下行鏈路干擾。方法亦包括:與第二網路設備進行通訊,以經由保護跨越所選資源集合的資源來減少在UE的方向上的空間細胞間下行鏈路干擾。A method of wireless communication by a first network device includes predicting spatial intercellular downlink interference experienced by a UE. The method also includes communicating with a second network device to reduce spatial inter-cell downlink interference in the direction of the UE by protecting resources across the selected set of resources.

描述用於由第一網路設備進行的無線通訊的裝置。裝置包括:用於預測由UE經歷的空間細胞間下行鏈路干擾的單元。裝置亦包括:用於與第二網路設備進行通訊,以經由保護跨越所選資源集合的資源來減少在UE的方向上的空間細胞間下行鏈路干擾的單元。Means for wireless communication by a first network device are described. The apparatus includes means for predicting spatial intercellular downlink interference experienced by a UE. The apparatus also includes means for communicating with a second network device to reduce spatial inter-cell downlink interference in the direction of the UE by protecting resources across the selected set of resources.

第一網路設備包括處理器和與處理器耦合的記憶體。第一網路設備亦包括儲存在記憶體中的指令。指令在由處理器執行時,第一網路設備可操作以預測由UE經歷的空間細胞間下行鏈路干擾。第一網路設備亦可操作以與第二網路設備進行通訊,以經由保護跨越所選資源集合的資源來減少在UE的方向上的空間細胞間下行鏈路干擾。The first network device includes a processor and a memory coupled with the processor. The first network device also includes instructions stored in memory. The instructions, when executed by the processor, the first network device is operable to predict spatial inter-cell downlink interference experienced by a UE. The first network device is also operable to communicate with the second network device to reduce spatial inter-cell downlink interference in the direction of the UE by protecting resources across the selected set of resources.

具有記錄在其上的程式碼的非暫時性電腦可讀取媒體由第一網路設備的處理器執行。非暫時性電腦可讀取媒體包括用於預測由UE經歷的空間細胞間下行鏈路干擾的程式碼。非暫時性電腦可讀取媒體亦包括用於與第二網路設備進行通訊,以經由保護跨越所選資源集合的資源來減少在UE的方向上的空間細胞間下行鏈路干擾的程式碼。A non-transitory computer readable medium having program code recorded thereon is executed by a processor of the first network device. The non-transitory computer readable medium includes program code for predicting spatial intercellular downlink interference experienced by a UE. The non-transitory computer readable medium also includes code for communicating with the second network device to reduce spatial inter-cell downlink interference in the direction of the UE by protecting resources across the selected set of resources.

各態樣通常包括如參照附圖和說明書充分描述的並且如經由附圖和說明書示出的方法、裝置、系統、電腦程式產品、非暫時性電腦可讀取媒體、使用者設備、基地台、無線通訊設備、以及處理系統。Aspects generally include methods, apparatus, systems, computer program products, non-transitory computer readable media, user equipment, base stations, A wireless communication device, and a processing system.

前文已經相當寬泛地概述了根據本案內容的實例的特徵和技術優勢,以便可以更好地理解隨後的具體實施方式。將描述額外的特徵和優勢。所揭示的概念和特定實例可以容易地用作用於修改或設計用於實現本案內容的相同目的的其他結構的基礎。此類等效構造不脫離所附的請求項的範疇。當結合附圖考慮時,根據下文的描述,將更好地理解所揭示的概念的特性(其組織和操作方法二者)以及相關聯的優點。附圖之每一者附圖是出於說明和描述的目的而提供的,並且不作為對請求項的限制的定義。The foregoing has outlined rather broadly the features and technical advantages of examples according to the present disclosure so that the detailed description that follows may be better understood. Additional features and advantages will be described. The conception and specific example disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the teachings herein. Such equivalent constructions do not depart from the scope of the appended claims. The nature of the disclosed concepts, both their organization and method of operation, and associated advantages will be better understood from the following description when considered in conjunction with the accompanying drawings. Each of the drawings is provided for purposes of illustration and description, and not as a definition of the limitations of the claims.

下文參考附圖更加充分地描述本案內容的各個態樣。然而,本案內容可以以許多不同的形式來體現,並且不應當被解釋為限於貫穿本案內容所呈現的任何特定的結構或功能。確切地說,提供這些態樣使得本案內容將是透徹和完整的,並且將向本發明所屬領域中具有通常知識者充分傳達本案內容的範疇。基於教導,本發明所屬領域中具有通常知識者應當明白的是,本案內容的範疇意欲涵蓋本案內容的任何態樣,無論該態樣是獨立於本案內容的任何其他態樣來實現的還是與任何其他態樣結合地來實現的。例如,使用所闡述的任何數量的態樣,可以實現裝置或可以實踐方法。此外,本案內容的範疇意欲涵蓋使用除了所闡述的揭示內容的各個態樣之外或不同於所闡述的揭示內容的各個態樣的其他結構、功能、或者結構和功能來實踐的此類裝置或方法。應當理解的是,所揭示的揭示內容的任何態樣可以由請求項的一或多個元素來體現。Various aspects of the content of this case are more fully described below with reference to the accompanying drawings. This disclosure may, however, be embodied in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of this disclosure to those having ordinary knowledge in the art to which this invention pertains. Based on the teachings, those of ordinary skill in the art to which the present invention pertains should understand that the scope of the subject matter is intended to cover any aspect of the subject matter, regardless of whether the aspect is implemented independently of any other aspect of the subject matter or in conjunction with any other aspect of the subject matter. It is realized by combining other aspects. For example, an apparatus may be implemented or a method may be practiced using any number of aspects set forth. Furthermore, the scope of the present disclosure is intended to cover such devices or devices practiced with other structures, functions, or both, in addition to or other than the various aspects of the stated disclosure. method. It should be understood that any aspect of the disclosed disclosure may be embodied by one or more elements of a claim.

現在將參考各種裝置和技術來提供電訊系統的若干態樣。這些裝置和技術將經由各種方塊、模組、部件、電路、步驟、程序、演算法等(被統稱為「元素」),在以下具體實施方式中進行描述並且在附圖中進行示出。這些元素可以使用硬體、軟體或其組合來實現。至於此類元素是被實現為硬體還是軟體,取決於特定的應用以及施加在整個系統上的設計約束。Several aspects of telecommunications systems will now be provided with reference to various devices and technologies. These devices and techniques will be described in the following detailed description and illustrated in the accompanying drawings via various blocks, modules, components, circuits, steps, procedures, algorithms, etc. (collectively referred to as "elements"). These elements may be implemented using hardware, software or a combination thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.

應當注意的是,儘管各態樣可能是使用通常與5G及之後的無線技術相關聯的術語來描述的,但是本案內容的各態樣可以應用於基於其他代的通訊系統,諸如並且包括3G及/或4G技術。It should be noted that although aspects may be described using terms commonly associated with 5G and beyond wireless technologies, aspects of this disclosure may apply to communication systems based on other generations, such as and including 3G and / or 4G technology.

細胞間干擾可能導致使用者的訊號(例如,訊號與干擾加雜訊比(SINR))降級。當使用者處於細胞邊緣時,使用者的訊號降級可能尤其顯著。另外,由於在下一代節點B(gNB)中引入大規模多輸入多輸出(MIMO)天線,因此該細胞間干擾可能導致使用者的顯著的SINR降級。例如,窄的下行鏈路發射波束可能是高度定向的並且隨著時間高度變化,從而導致SINR降級。特別地,在細胞邊緣的高度定向的干擾可能降低資料速率並且對使用者體驗產生負面影響。此外,干擾的高變化使得執行鏈路自我調整(例如預測可支援的調制和編碼方案(MCS))更加困難。這對於具有有限延遲預算的時延敏感的應用來說具有挑戰性。Cell-to-cell interference can degrade the user's signal (eg, signal-to-interference-plus-noise ratio (SINR)). The user's signal degradation may be especially noticeable when the user is at the edge of the cell. Additionally, due to the introduction of massive multiple-input multiple-output (MIMO) antennas in next-generation Node Bs (gNBs), this inter-cell interference may cause significant SINR degradation for users. For example, a narrow downlink transmit beam may be highly directional and highly variable over time, causing SINR degradation. In particular, highly directional interference at the cell edge can reduce data rates and negatively impact user experience. In addition, high variability in interference makes it more difficult to perform link self-tuning, such as predicting supported modulation and coding schemes (MCS). This is challenging for latency-sensitive applications with limited latency budgets.

在本案內容的一些態樣中,對神經網路進行訓練,以推斷鄰點基地台(例如,gNB)的任何潛在發射波束對任何潛在受害者使用者設備(UE)的影響。在本案內容的這些態樣中,神經網路是使用UE通道狀態資訊(CSI)參考訊號(CSI-RS)量測報告、波束資訊和UE位置隨時間進行訓練的。在本案內容的其他態樣中,資料庫儲存關於鄰點基地台(例如,gNB)的任何潛在發射波束對任何潛在受害者UE的影響的資訊。在本案內容的這些態樣中,資料庫儲存UE通道狀態資訊(CSI)參考訊號(CSI-RS)量測報告、波束資訊和UE位置以實現資料庫檢視,從而決定來子鄰點基地台的對任何潛在受害者UE的潛在影響。In some aspects of this case, a neural network is trained to infer the impact of any potential transmit beam from a neighboring base station (e.g., gNB) on any potential victim User Equipment (UE). In these aspects of the present case, the neural network is trained over time using UE channel state information (CSI) reference signal (CSI-RS) measurement reports, beam information, and UE location. In other aspects of the subject matter, the database stores information about the impact of any potential transmit beam of a neighboring base station (eg, gNB) on any potential victim UE. In these aspects of the content of the case, the database stores UE channel state information (CSI) reference signal (CSI-RS) measurement report, beam information and UE location to enable database inspection to determine the location of the sub-adjacent base station Potential impact on any potential victim UE.

一旦神經網路被訓練為推斷鄰點基地台的發射波束對受害者UE的影響,網路設備(例如,gNB)就與鄰點基地台進行協調。在本案內容的這些態樣中,網路設備協調可以在用於服務受害者UE的時間/頻率資源期間禁止由鄰點基地台進行的下行鏈路發射波束的通訊。例如,第一使用者設備(UE1)可能經歷來自鄰點基地台(gNB2)的下行鏈路發射波束k的顯著干擾。在該實例中,當鄰點基地台gNB2避免在服務於第一使用者設備的資源上在下行鏈路發射波束k的方向發送能量時,減輕了空間細胞間干擾。Once the neural network is trained to infer the impact of the neighbor base station's transmit beam on the victim UE, the network device (e.g., gNB) coordinates with the neighbor base station. In these aspects of the subject matter, network device coordination may prohibit downlink transmit beam communication by neighbor base stations during time/frequency resources used to serve victim UEs. For example, the first user equipment (UE1) may experience significant interference from the downlink transmit beam k of the neighbor base station (gNB2). In this example, spatial inter-cell interference is mitigated when the neighbor base station gNB2 avoids sending energy in the direction of the downlink transmit beam k on resources serving the first UE.

根據本案內容的各態樣,服務細胞針對被服務UE來預測所經歷的來自鄰點細胞的不同潛在下行鏈路發射波束的下行鏈路干擾。例如,服務細胞可以辨識被服務UE的子集,其中由細胞間下行鏈路干擾潛在地引起的負面影響超過預定UE干擾閥值。對UE的潛在受害者子集的這種辨識亦可以包括額外標準,諸如UE正在接收的傳輸量的類型。例如,可以選擇接收延遲敏感傳輸量及/或高可靠性傳輸量的UE作為UE的潛在受害者子集的一部分。According to aspects of this disclosure, the serving cell predicts, for the served UE, experienced downlink interference from different potential downlink transmit beams of neighboring cells. For example, a serving cell may identify a subset of served UEs where the potential negative impact caused by inter-cell downlink interference exceeds a predetermined UE interference threshold. This identification of the subset of potential victims of the UE may also include additional criteria, such as the type of transmission the UE is receiving. For example, UEs receiving delay sensitive traffic and/or high reliability traffic may be selected as part of the subset of potential victims of UEs.

在本案內容的這些態樣中,服務細胞針對UE的潛在受害者子集之每一者UE向潛在干擾的鄰點細胞發送請求訊息。請求訊息可以包括潛在干擾的鄰點細胞被請求避免的波束索引的禁止列表。此外,請求訊息可以指示針對其請求保護的所請求的時間/頻率資源(例如,時槽/資源區塊(RB))。在一些實現方式中,針對每個細胞來配置預定義的時間/頻率資源集合,使得訊號傳遞可以簡單地代表所提議的資源集合的索引。或者,時間/頻率資源留給鄰點細胞來決定。In these aspects of the present disclosure, the serving cell sends request messages to potentially interfering neighbor cells for each of a subset of potential victims of UEs. The request message may include a forbidden list of beam indices from which potentially interfering neighbor cells are requested to avoid. Furthermore, the request message may indicate the requested time/frequency resource (eg, time slot/resource block (RB)) for which protection is requested. In some implementations, a predefined set of time/frequency resources is configured per cell such that signaling can simply represent an index of the proposed set of resources. Alternatively, time/frequency resources are left to neighbor cells to decide.

在本案內容的一些態樣中,學習空間細胞間下行鏈路干擾和預測UE的受害者子集是在干擾細胞(其可以被稱為侵害者鄰點細胞)處執行的。在本案內容的這些態樣中,服務細胞基於潛在易受攻擊的UE的位置、傳輸量類型或其他選擇標準,來辨識潛在易受攻擊的UE。一旦被辨識,服務細胞就向侵害者鄰點細胞發送請求訊息。請求訊息可以指示以下各項的子集:(1)易受攻擊的UE的位置;(2) UE干擾容忍閥值;及/或(3)受保護的資源需求。在本案內容的其他態樣中,提供對受害者UE的傳輸量負載的指示以表示期望的受保護的資源的數量。In some aspects of the subject matter, learning spatial inter-cell downlink interference and predicting a victim subset of UEs is performed at interfering cells (which may be referred to as aggressor neighbor cells). In these aspects of the subject matter, the serving cell identifies potentially vulnerable UEs based on their location, traffic type, or other selection criteria. Once identified, the serving cell sends a request message to the aggressor neighbor cell. The request message may indicate a subset of: (1) location of vulnerable UEs; (2) UE interference tolerance threshold; and/or (3) protected resource requirements. In other aspects of this disclosure, an indication of the traffic load of the victim UE is provided to represent the desired amount of protected resources.

由服務細胞發送的請求訊息可以省略資源需求,資源需求是可選的。當請求訊息省略資源需求時,受保護的資源是由鄰點細胞決定。此外,可以存在針對每個細胞配置的預定義的時間/頻率資源集合。在該配置中,請求訊息的訊號傳遞可以簡單地代表滿足UE資源需求的所提議的資源集合的索引。Request messages sent by service cells can omit resource requirements, which are optional. When the request message omits the resource requirement, the protected resource is determined by the neighbor cells. Furthermore, there may be a predefined set of time/frequency resources configured for each cell. In this configuration, the signaling of the request message may simply represent the index of the proposed set of resources that satisfy the resource requirements of the UE.

在其他實現方式中,學習和預測是在集中式協調節點(諸如網路控制器)處執行的。例如,服務細胞基於潛在易受攻擊的UE的位置、傳輸量類型或其他選擇標準來辨識它們。一旦被辨識,服務細胞就將關於所辨識的易受攻擊的UE的資訊發送給集中式協調節點。該資訊可指示以下各項的全部或子集:(1)易受攻擊的UE的位置;(2)易受攻擊的UE的干擾閥值;和(3)傳輸量負載(例如,更新的傳輸量需求)。當多個侵害者鄰點細胞正在潛在地對受害者UE造成干擾時,包括中心節點協調的一些實現方式可能是有益的。In other implementations, learning and prediction are performed at a centralized coordinating node, such as a network controller. For example, the serving cell identifies potentially vulnerable UEs based on their location, traffic type, or other selection criteria. Once identified, the serving cell sends information about the identified vulnerable UEs to the centralized coordinating node. This information may indicate all or a subset of: (1) the location of the vulnerable UE; (2) the interference threshold for the vulnerable UE; and (3) the traffic load (e.g., the transmission of updates volume demand). Some implementations including central node coordination may be beneficial when multiple aggressor neighbor cells are potentially causing interference to the victim UE.

圖1是示出可以在其中實踐本案內容的各態樣的網路100的示意圖。網路100可以是5G或NR網路或某種其他無線網路(諸如LTE網路)。無線網路100可以包括多個BS 110(被示為BS 110a、BS 110b、BS 110c和BS 110d)和其他網路實體。BS是與使用者設備(UE)進行通訊的實體並且亦可以被稱為基地台、NR BS、節點B、gNB、5G節點B(NB)、存取點、發送和接收點(TRP)等。每個BS可以提供針對特定地理區域的通訊覆蓋。在3GPP中,術語「細胞」可以代表BS的覆蓋區域及/或為該覆蓋區域服務的BS子系統,取決於在其中使用術語的上下文。FIG. 1 is a schematic diagram illustrating a network 100 in which aspects of the present disclosure may be practiced. Network 100 may be a 5G or NR network or some other wireless network such as an LTE network. Wireless network 100 may include multiple BSs 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities. A BS is an entity that communicates with a User Equipment (UE) and may also be referred to as a Base Station, NR BS, Node B, gNB, 5G Node B (NB), Access Point, Transmitting and Receiving Point (TRP), etc. Each BS can provide communication coverage for a specific geographic area. In 3GPP, the term "cell" can refer to a coverage area of a BS and/or a BS subsystem serving that coverage area, depending on the context in which the term is used.

BS可以提供針對巨集細胞、微微細胞、毫微微細胞及/或另一類型的細胞的通訊覆蓋。巨集細胞可以覆蓋相對大的地理區域(例如,半徑為若干公里),並且可以允許由具有服務訂制的UE進行的不受限制的存取。微微細胞可以覆蓋相對小的地理區域,並且可以允許由具有服務訂制的UE進行的不受限制的存取。毫微微細胞可以覆蓋相對小的地理區域(例如,住宅),並且可以允許由與該毫微微細胞具有關聯的UE(例如,封閉用戶群組(CSG)中的UE)進行的受限制的存取。用於巨集細胞的BS可以被稱為巨集BS。用於微微細胞的BS可以被稱為微微BS。用於毫微微細胞的BS可以被稱為毫微微BS或家庭BS。在圖1中示出的實例中,BS 110a可以是用於巨集細胞102a的巨集BS,BS 110b可以是用於微微細胞102b的微微BS,以及BS 110c可以是用於毫微微細胞102c的毫微微BS。BS可以支援一或多個(例如,三個)細胞。術語「eNB」、「基地台」、「NR BS」、「gNB」、「TRP」、「AP」、「節點B」、「5G NB」和「細胞」可以互換地使用。A BS may provide communication coverage for macrocells, picocells, femtocells, and/or another type of cell. A macrocell may cover a relatively large geographic area (eg, several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A picocell may cover a relatively small geographic area and may allow unrestricted access by UEs with a service subscription. A femtocell may cover a relatively small geographic area (e.g., a residence) and may allow restricted access by UEs that have an association with the femtocell (e.g., UEs in a Closed Subscriber Group (CSG)) . The BS for macrocells may be referred to as macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be called a femto BS or a home BS. In the example shown in FIG. 1, BS 110a may be a macro BS for macro cell 102a, BS 110b may be a pico BS for pico cell 102b, and BS 110c may be a pico BS for femto cell 102c. Femto BS. A BS can support one or more (eg, three) cells. The terms "eNB", "base station", "NR BS", "gNB", "TRP", "AP", "Node B", "5G NB" and "cell" are used interchangeably.

在一些態樣中,細胞可能未必是靜止的,並且細胞的地理區域可以根據行動BS的位置進行移動。在一些態樣中,BS可以經由使用任何適當的傳輸網路的各種類型的回載介面(例如,直接實體連接、虛擬網路等)來彼此互連及/或與無線網路100中的一或多個其其他BS或網路節點(未圖示)互連。In some aspects, the cell may not necessarily be stationary, and the geographic area of the cell may move depending on the location of the mobile BS. In some aspects, BSs may interconnect with each other and/or with one of wireless networks 100 via various types of backhaul interfaces (eg, direct physical connections, virtual networks, etc.) using any suitable transport network. or multiple other BSs or network nodes (not shown) are interconnected.

無線網路100亦可以包括中繼站。中繼站是可以從上游站(例如,BS或UE)接收資料傳輸並且將資料傳輸發送給下游站(例如,UE或BS)的實體。中繼站亦可以是能夠針對其他UE中繼傳輸的UE。在圖1中示出的實例中,中繼站110d可以與巨集BS 110a和UE 120d進行通訊,以便促進在BS 110a與UE 120d之間的通訊。中繼站亦可以被稱為中繼BS、中繼基地台、中繼器等。The wireless network 100 may also include relay stations. A relay station is an entity that may receive data transmissions from upstream stations (eg, BS or UE) and send data transmissions to downstream stations (eg, UE or BS). A relay station may also be a UE capable of relaying transmissions to other UEs. In the example shown in FIG. 1, a relay station 11Od may communicate with a macro BS 110a and a UE 12Od in order to facilitate communication between the BS 110a and the UE 12Od. A relay station may also be called a relay BS, a relay base station, a repeater, etc.

無線網路100可以是包括不同類型的BS(例如,巨集BS、微微BS、毫微微BS、中繼BS等)的異質網路。這些不同類型的BS可以具有不同的發射功率位準、不同的覆蓋區域以及對在無線網路100中的干擾的不同影響。例如,巨集BS可以具有高發射功率位準(例如,5到40瓦特),而微微BS、毫微微BS和中繼BS可以具有較低的發射功率位準(例如,0.1到2瓦特)。The wireless network 100 may be a heterogeneous network including different types of BSs (eg, macro BSs, pico BSs, femto BSs, relay BSs, etc.). These different types of BSs may have different transmit power levels, different coverage areas, and different effects on interference in the wireless network 100 . For example, macro BSs may have high transmit power levels (eg, 5 to 40 watts), while pico, femto, and relay BSs may have lower transmit power levels (eg, 0.1 to 2 watts).

網路控制器130可以耦合到一組BS,並且可以提供針對這些BS的協調和控制。網路控制器130可以經由回載與BS進行通訊。BS亦可以經由無線或有線回載(例如,直接地或間接地)彼此進行通訊。A network controller 130 can couple to a group of BSs and can provide coordination and control for these BSs. The network controller 130 can communicate with the BS via backhaul. BSs can also communicate with each other via wireless or wired backhaul (eg, directly or indirectly).

UE 120(例如,120a、120b、120c)可以散佈於整個無線網路100中,並且每個UE可以是靜止的或行動的。UE亦可以被稱為存取終端、終端、行動站、用戶單元、站等。UE可以是蜂巢式電話(例如,智慧型電話)、個人數位助理(PDA)、無線數據機、無線通訊設備、手持設備、膝上型電腦、無線電話、無線區域迴路(WLL)站、平板設備、相機、遊戲裝置、小筆電、智慧型電腦、超級本、醫療設備或裝置、生物計量感測器/設備、可穿戴設備(智慧手錶、智慧服裝、智慧眼鏡、智慧腕帶、智慧珠寶(例如,智慧指環、智慧手鏈等))、娛樂設備(例如,音樂或視訊設備、或衛星無線電單元等)、車輛部件或感測器、智慧型儀器表/感測器、工業製造設備、全球定位系統設備或者被配置為經由無線或有線媒體進行通訊的任何其他適當的設備。UEs 120 (eg, 120a, 120b, 120c) may be dispersed throughout wireless network 100, and each UE may be stationary or mobile. A UE may also be called an access terminal, terminal, mobile station, subscriber unit, station, and the like. A UE may be a cellular phone (e.g., a smartphone), a personal digital assistant (PDA), a wireless modem, a wireless communication device, a handheld device, a laptop computer, a wireless phone, a wireless local loop (WLL) station, a tablet device , cameras, game devices, small notebooks, smart computers, ultrabooks, medical equipment or devices, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wristbands, smart jewelry ( For example, smart rings, smart bracelets, etc.)), entertainment equipment (such as music or video equipment, or satellite radio units, etc.), vehicle components or sensors, smart meters/sensors, industrial manufacturing equipment, global positioning system device or any other suitable device configured to communicate via wireless or wired media.

基地台110可以包括神經處理引擎150。為簡潔起見,僅基地台110a被示為包括神經處理引擎150,但是鄰點基地台亦可以包括神經處理引擎150。神經處理引擎150可以預測由UE經歷的空間細胞間下行鏈路干擾。神經處理引擎150亦可以與第二網路設備進行通訊,以經由保護跨越所選資源集合的資源來減少在UE的方向上的空間細胞間下行鏈路干擾。The base station 110 may include a neural processing engine 150 . For brevity, only the base station 110 a is shown as including the neural processing engine 150 , but neighboring base stations may also include the neural processing engine 150 . The neural processing engine 150 may predict the spatial inter-cell downlink interference experienced by the UE. The neural processing engine 150 may also communicate with the second network device to reduce spatial inter-cell downlink interference in the direction of the UE by protecting resources across the selected set of resources.

網路控制器130可以包括神經處理引擎160。神經處理引擎160可以預測由UE經歷的空間細胞間下行鏈路干擾。神經處理引擎160亦可以與第二網路設備進行通訊,以經由保護跨越所選資源集合的資源來減少在UE的方向上的空間細胞間下行鏈路干擾。Network controller 130 may include neural processing engine 160 . The neural processing engine 160 may predict the spatial intercellular downlink interference experienced by the UE. The neural processing engine 160 may also communicate with the second network device to reduce spatial inter-cell downlink interference in the direction of the UE by protecting resources across the selected set of resources.

一些UE可以被認為是機器類型通訊(MTC)或者進化型或增強型機器類型通訊(eMTC)UE。MTC和eMTC UE包括例如機器人、無人機、遠端設備、感測器、儀錶、監視器、位置標籤等,它們可以與基地台、另一設備(例如,遠端設備)或某個其他實體進行通訊。無線節點可以例如經由有線或無線通訊鏈路來提供針對網路(例如,諸如網際網路或蜂巢網路之類的廣域網)的連接或到網路的連接。一些UE可以被認為是物聯網路(IoT)設備,及/或可以被實現成NB-IoT(窄頻物聯網)設備。一些UE可以被認為是客戶駐地設備(CPE)。UE 120可以被包括在容納UE 120的部件(諸如處理器部件、記憶體部件等)的殼體內部。Some UEs may be considered as machine type communication (MTC) or evolved or enhanced machine type communication (eMTC) UEs. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, etc., which may interact with a base station, another device (e.g., a remote device), or some other entity communication. A wireless node may provide connectivity to or to a network (eg, a wide area network such as the Internet or a cellular network), eg, via a wired or wireless communication link. Some UEs may be considered Internet of Things (IoT) devices, and/or may be implemented as NB-IoT (Narrow Band Internet of Things) devices. Some UEs may be considered as Customer Premises Equipment (CPE). The UE 120 may be included inside a housing housing components of the UE 120 such as processor components, memory components, and the like.

通常,可以在給定的地理區域中部署任意數量的無線網路。每個無線網路可以支援特定的RAT並且可以在一或多個頻率上操作。RAT亦可以被稱為無線電技術、空中介面等。頻率亦可以被稱為載波、頻道等。每個頻率可以在給定的地理區域中支援單個RAT,以便避免在不同RAT的無線網路之間的干擾。在一些情況下,可以部署NR或5G RAT網路。In general, any number of wireless networks can be deployed in a given geographic area. Each wireless network may support a specific RAT and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, and the like. Frequency may also be called carrier, channel, etc. Each frequency can support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks can be deployed.

在一些態樣中,兩個或兩個以上UE 120(例如,被示為UE 120a和UE 120e)可以使用一或多個側行鏈路通道直接進行通訊(例如,而不使用基地台110作為彼此進行通訊的仲介)。例如,UE 120可以使用對等(P2P)通訊、設備到設備(D2D)通訊、車輛到萬物(V2X)協定(例如,其可以包括車輛到車輛(V2V)協定、車輛到基礎設施(V2I)協定等)、網狀網路等進行通訊。在這種情況下,UE 120可以執行排程操作、資源選擇操作及/或本文中在別處被描述為由基地台110執行的其他操作。例如,基地台110可以經由下行鏈路控制資訊(DCI)、無線電資源控制(RRC)訊號傳遞、媒體存取控制-控制元素(MAC-CE)或經由系統資訊(例如,系統資訊區塊(SIB)),來配置UE 120。In some aspects, two or more UEs 120 (eg, shown as UE 120a and UE 120e ) may communicate directly using one or more sidelink channels (eg, without using base station 110 as a intermediary for communicating with each other). For example, UE 120 may use peer-to-peer (P2P) communication, device-to-device (D2D) communication, vehicle-to-everything (V2X) protocol (which may include, for example, vehicle-to-vehicle (V2V) protocol, vehicle-to-infrastructure (V2I) protocol etc.), mesh network, etc. for communication. In this case, UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by base station 110 . For example, the base station 110 may pass downlink control information (DCI), radio resource control (RRC) signaling, medium access control-control element (MAC-CE) or system information (such as system information block (SIB) )), to configure UE 120.

如上文所指出的,圖1僅是作為實例來提供的。其他實例可以不同於關於圖1所描述的。As noted above, Figure 1 is provided as an example only. Other examples may differ from those described with respect to FIG. 1 .

圖2示出基地台110和UE 120(它們可以是圖1中的基地台中的一個基地台以及UE中的一個UE)的設計200的方塊圖。基地台110可以被配備有T個天線234a至234t,以及UE 120可以被配備有R個天線252a至252r,其中通常,T ≧ 1且R ≧ 1。2 shows a block diagram of a design 200 of base station 110 and UE 120 (which may be one of the base stations and one of the UEs in FIG. 1 ). Base station 110 may be equipped with T antennas 234a through 234t, and UE 120 may be equipped with R antennas 252a through 252r, where generally, T≧1 and R≧1.

在基地台110處,發送處理器220可以從資料來源212接收針對一或多個UE的資料,至少部分地基於從每個UE接收的通道品質指示符(CQI)來選擇用於該UE的一或多個調制和編碼方案(MCS),至少部分地基於針對每個UE選擇的MCS來處理(例如,編碼和調制)針對該UE的資料,並且針對所有UE提供資料符號。降低MCS減少了輸送量,但是增加了傳輸的可靠性。發送處理器220亦可以處理系統資訊(例如,針對半靜態資源劃分資訊(SRPI)等)和控制資訊(例如,CQI請求、准許、上層訊號傳遞等),並且提供管理負擔符號和控制符號。發送處理器220亦可以產生用於參考訊號(例如,特定於細胞的參考訊號(CRS))和同步訊號(例如,主要同步訊號(PSS)和輔同步訊號(SSS))的參考符號。發送(TX)多輸入多輸出(MIMO)處理器230可以對資料符號、控制符號、管理負擔符號及/或參考符號執行空間處理(例如,預編碼)(若適用的話),並且可以向T個調制器(MOD)232a至232t提供T個輸出符號串流。每個調制器232可以(例如,針對正交分頻多工(OFDM)等)處理相應的輸出符號串流以獲得輸出取樣串流。每個調制器232可以進一步處理(例如,轉換到類比、放大、濾波以及升頻轉換)輸出取樣串流以獲得下行鏈路訊號。來自調制器232a至232t的T個下行鏈路訊號可以分別經由T個天線234a至234t來發送。根據下文更加詳細地描述的各個態樣,可以利用位置編碼產生同步訊號以傳送額外的資訊。At base station 110, transmit processor 220 may receive data for one or more UEs from data source 212, select a channel quality indicator (CQI) for each UE based at least in part on a channel quality indicator (CQI) received from the UE for that UE or multiple modulation and coding schemes (MCS), process (eg, encode and modulate) data for each UE based at least in part on the MCS selected for that UE, and provide data symbols for all UEs. Lowering the MCS reduces the throughput, but increases the reliability of the transmission. The transmit processor 220 can also process system information (eg, for semi-static resource partitioning information (SRPI), etc.) and control information (eg, CQI requests, grants, upper layer signaling, etc.), and provide management burden symbols and control symbols. The transmit processor 220 may also generate reference symbols for reference signals (eg, cell-specific reference signal (CRS)) and synchronization signals (eg, primary synchronization signal (PSS) and secondary synchronization signal (SSS)). Transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on data symbols, control symbols, administrative burden symbols, and/or reference symbols, as applicable, and may send data to T Modulators (MOD) 232a through 232t provide T output symbol streams. Each modulator 232 may process a corresponding output symbol stream (eg, for Orthogonal Frequency Division Multiplexing (OFDM), etc.) to obtain an output sample stream. Each modulator 232 may further process (eg, convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. The T downlink signals from the modulators 232a to 232t may be transmitted via the T antennas 234a to 234t, respectively. According to various aspects described in more detail below, positional encoding may be used to generate synchronization signals to convey additional information.

在UE 120處,天線252a至252r可以從基地台110及/或其他基地台接收下行鏈路訊號,並且可以分別向解調器(DEMOD)254a至254r提供接收的訊號。每個解調器254可以調節(例如,濾波、放大、降頻轉換以及數位化)接收的訊號以獲得輸入取樣。每個解調器254可以(例如,針對OFDM等)進一步處理輸入取樣以獲得接收的符號。MIMO偵測器256可以從所有R個解調器254a至254r獲得接收的符號,對接收的符號執行MIMO偵測(若適用的話),並且提供偵測到的符號。接收處理器258可以處理(例如,解調和解碼)偵測到的符號,向資料槽260提供經解碼的針對UE 120的資料,並且向控制器/處理器280提供經解碼的控制資訊和系統資訊。通道處理器可以決定參考訊號接收功率(RSRP)、接收訊號強度指示符(RSSI)、參考訊號接收品質(RSRQ)、通道品質指示符(CQI)等。在一些態樣中,UE 120的一或多個部件可以被包括在殼體中。At UE 120, antennas 252a through 252r may receive downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMOD) 254a through 254r, respectively. Each demodulator 254 may condition (eg, filter, amplify, downconvert, and digitize) the received signal to obtain input samples. Each demodulator 254 may further process the input samples (eg, for OFDM, etc.) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols (if applicable), and provide detected symbols. Receive processor 258 may process (e.g., demodulate and decode) detected symbols, provide decoded data for UE 120 to data slot 260, and provide decoded control information and system information to controller/processor 280 . The channel processor can determine Reference Signal Received Power (RSRP), Received Signal Strength Indicator (RSSI), Reference Signal Received Quality (RSRQ), Channel Quality Indicator (CQI), etc. In some aspects, one or more components of UE 120 may be included in a housing.

在上行鏈路上,在UE 120處,發送處理器264可以接收並且處理來自資料來源262的資料和來自控制器/處理器280的控制資訊(例如,用於包括RSRP、RSSI、RSRQ、CQI等的報告)。發送處理器264亦可以產生用於一或多個參考訊號的參考符號。來自發送處理器264的符號可以由TX MIMO處理器266進行預編碼(若適用的話),由調制器254a至254r(例如,針對DFT-s-OFDM、CP-OFDM等)進一步處理,並且被發送給基地台110。在基地台110處,來自UE 120和其他UE的上行鏈路訊號可以由天線234接收,由解調器254處理,由MIMO偵測器236偵測(若適用的話),並且由接收處理器238進一步處理,以獲得經解碼的由UE 120發送的資料和控制資訊。接收處理器238可以向資料槽239提供經解碼的資料,並且向控制器/處理器240提供經解碼的控制資訊。基地台110可以包括通訊單元244並且經由通訊單元244與網路控制器130進行通訊。網路控制器130可以包括通訊單元294、控制器/處理器290和記憶體292。On the uplink, at UE 120, transmit processor 264 may receive and process data from data source 262 and control information from controller/processor 280 (e.g., for information including RSRP, RSSI, RSRQ, CQI, etc. Report). The transmit processor 264 may also generate reference symbols for one or more reference signals. Symbols from transmit processor 264 may be precoded by TX MIMO processor 266 (if applicable), further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, etc.), and transmitted Give 110 to the base station. At base station 110, uplink signals from UE 120 and other UEs may be received by antenna 234, processed by demodulator 254, detected by MIMO detector 236 (if applicable), and processed by receive processor 238. Further processing to obtain decoded data and control information sent by UE 120 . Receive processor 238 may provide decoded data to data slot 239 and decoded control information to controller/processor 240 . The base station 110 may include a communication unit 244 and communicate with the network controller 130 via the communication unit 244 . The network controller 130 may include a communication unit 294 , a controller/processor 290 and a memory 292 .

圖2的基地台110的控制器/處理器240及/或UE 120的控制器/處理器280可以執行與用於預測針對UE 120的基於位置的下行鏈路干擾輔助資訊的機器學習相關聯的一或多個技術,如在別處更詳細地描述的。例如,圖2的UE 120的控制器/處理器280可以執行或指導例如圖8的程序及/或所描述的其他程序的操作。另外,圖2的基地台110的控制器/處理器240可以執行或指導例如圖9-12的程序及/或所描述的其他程序的操作。記憶體242和282可以分別儲存用於基地台110和UE 120的資料和程式碼。排程器246可以排程UE以下行鏈路及/或上行鏈路上進行資料傳輸。Controller/processor 240 of base station 110 and/or controller/processor 280 of UE 120 of FIG. One or more techniques, as described in more detail elsewhere. For example, controller/processor 280 of UE 120 of FIG. 2 may perform or direct the operation of, for example, the procedure of FIG. 8 and/or other procedures described. Additionally, controller/processor 240 of base station 110 of FIG. 2 may execute or direct the operation of, for example, the procedures of FIGS. 9-12 and/or other procedures described. Memories 242 and 282 may store data and program codes for base station 110 and UE 120, respectively. The scheduler 246 can schedule the UE to perform data transmission on the downlink and/or uplink.

在一些態樣中,基地台110和網路控制器130可以包括用於預測的單元、用於選擇的單元、用於發送的單元、用於接收的單元、用於更新的單元及/或用於通訊的單元。此類單元可以包括結合圖2描述的網路控制器130或基地台110的一或多個部件。In some aspects, the base station 110 and the network controller 130 may include a unit for predicting, a unit for selecting, a unit for transmitting, a unit for receiving, a unit for updating and/or a unit for unit for communication. Such units may include one or more components of the network controller 130 or base station 110 described in connection with FIG. 2 .

如上文所指出的,圖2僅是作為實例來提供的。其他實例可以不同於關於圖2所描述的。As noted above, Figure 2 is provided as an example only. Other examples may differ from those described with respect to FIG. 2 .

在一些情況下,支援不同類型的應用及/或服務的不同類型的設備可以在細胞中共存。不同類型的設備的實例包括UE手持設備、客戶駐地設備(CPE)、車輛、物聯網路(IoT)設備等。不同類型的應用的實例包括超可靠低時延通訊(URLLC)應用、大規模機器類型通訊(mMTC)應用、增強型行動寬頻(eMBB)應用、車輛到萬物(V2X)應用等。此外,在一些情況下,單個設備可以同時支援不同的應用或服務。In some cases, different types of devices supporting different types of applications and/or services can coexist in a cell. Examples of different types of devices include UE handsets, customer premises equipment (CPE), vehicles, Internet of Things (IoT) devices, etc. Examples of different types of applications include ultra-reliable low-latency communication (URLLC) applications, massive machine-type communication (mMTC) applications, enhanced mobile broadband (eMBB) applications, vehicle-to-everything (V2X) applications, etc. Furthermore, in some cases, a single device may support different applications or services at the same time.

圖3示出根據本案內容的某些態樣的片上系統(SOC)300的實例實現方式,SOC 300可以包括被配置用於產生用於神經網路訓練的梯度的中央處理單元(CPU)302或多核心CPU。SOC 300可以被包括在基地台110或UE 120中。變數(例如,神經訊號和突觸權重)、與計算設備(例如,具有權重的神經網路)相關聯的系統參數、延遲、頻率資訊和任務資訊可以被儲存在與神經處理單元(NPU)308相關聯的記憶體塊中、與CPU 302相關聯的記憶體塊中、與圖形處理單元(GPU)304相關聯的記憶體塊中、與數位訊號處理器(DSP)306相關聯的記憶體塊中、記憶體塊318中,或者可以跨越多個塊來分佈。在CPU 302處執行的指令可以從與CPU 302相關聯的程式記憶體載入或者可以從記憶體塊318載入。3 illustrates an example implementation of a system-on-chip (SOC) 300 that may include a central processing unit (CPU) 302 configured to generate gradients for neural network training or Multi-core CPUs. SOC 300 may be included in base station 110 or UE 120 . Variables (e.g., neural signals and synaptic weights), system parameters associated with computing devices (e.g., neural networks with weights), delays, frequency information, and task information may be stored in a neural processing unit (NPU) 308 associated memory block, memory block associated with CPU 302, memory block associated with graphics processing unit (GPU) 304, memory block associated with digital signal processor (DSP) 306 in memory block 318, or may be distributed across multiple blocks. Instructions executed at CPU 302 may be loaded from program memory associated with CPU 302 or may be loaded from memory block 318 .

SOC 300亦可以包括針對特定功能定製的額外的處理塊,諸如GPU 304、DSP 306、連接塊310(其可以包括第五代(5G)連接、第四代長期進化(4G LTE)連接、Wi-Fi連接、USB連接、藍芽連接等)以及多媒體處理器312(其可以例如偵測和辨認手勢)。在一種實現方式中,NPU是在CPU、DSP及/或GPU中實現的。SOC 300亦可以包括感測器處理器314、影像訊號處理器(ISP)316及/或導航模組320(其可以包括全球定位系統)。SOC 300 may also include additional processing blocks customized for specific functions, such as GPU 304, DSP 306, connectivity block 310 (which may include fifth generation (5G) connectivity, fourth generation long term evolution (4G LTE) connectivity, Wi-Fi -Fi connection, USB connection, Bluetooth connection, etc.) and the multimedia processor 312 (which can detect and recognize gestures, for example). In one implementation, the NPU is implemented in a CPU, DSP and/or GPU. SOC 300 may also include sensor processor 314 , image signal processor (ISP) 316 and/or navigation module 320 (which may include a global positioning system).

SOC 300可以是基於ARM指令集的。在本案內容的一態樣中,載入到通用處理器302中的指令可以包括:用於預測由UE經歷的空間細胞間下行鏈路干擾的程式碼;及用於與第二網路設備進行通訊,以經由保護跨越所選資源集合的資源來減少在UE的方向上的空間細胞間下行鏈路干擾的程式碼。SOC 300 may be based on the ARM instruction set. In an aspect of this disclosure, the instructions loaded into the general purpose processor 302 may include: code for predicting spatial inter-cell downlink interference experienced by the UE; and for communicating with the second network device Code is communicated to reduce spatial inter-cell downlink interference in the direction of a UE by protecting resources across a selected set of resources.

深度學習架構可以經由學習在每個層中在連續較高的抽象級別上表示輸入來執行物件辨識任務,從而建立輸入資料的有用特徵表示。以這種方式,深度學習解決了傳統機器學習的主要瓶頸。在深度學習出現之前,針對物件辨識問題的機器學習方法可能在很大程度上依賴於人類工程特徵,亦許結合了淺分類器。淺分類器可以是兩類線性分類器,例如,其中可以將特徵向量分量的加權和與閥值進行比較以預測輸入屬於哪個類。人類工程特徵可以是由具有領域專業知識的工程師針對特定問題領域定製的範本或核心。相比之下,深度學習架構可以學習表示與人類工程師可能設計的特徵相似的特徵,但是經由訓練來學習。此外,深度網路可以學習表示和辨識人類可能尚未考慮的新類型的特徵。Deep learning architectures can perform object recognition tasks by learning to represent inputs at successively higher levels of abstraction in each layer, thereby building useful feature representations of the input data. In this way, deep learning solves a major bottleneck of traditional machine learning. Before the advent of deep learning, machine learning approaches to object recognition problems likely relied heavily on human-engineered features, perhaps combined with shallow classifiers. A shallow classifier can be a two-class linear classifier, for example, where a weighted sum of feature vector components can be compared to a threshold to predict which class the input belongs to. Human engineering features can be templates or kernels customized for a specific problem domain by engineers with domain expertise. In contrast, deep learning architectures can learn to represent features similar to those a human engineer might design, but learn through training. In addition, deep networks can learn to represent and recognize new types of features that humans may not have considered.

深度學習架構可以學習特徵的層次結構。例如,若被給予視覺資料,則第一層可以學習辨識在輸串入流中相對簡單的特徵,諸如邊緣。在另一實例中,若被給予聽覺資料,則第一層可以學習辨識在特定頻率中的譜功率。將第一層的輸出作為輸入的第二層可以學習辨識特徵的組合,諸如用於視覺資料的簡單形狀或用於聽覺資料的聲音的組合。例如,較高層可以學習在視覺資料中表示複雜的形狀,或者在聽覺資料中表示詞語。更高層可以學習辨識共同的視覺物件或口語短語。Deep learning architectures can learn hierarchies of features. For example, the first layer can learn to recognize relatively simple features in an input stream, such as edges, if given visual data. In another example, the first layer can learn to recognize spectral power in specific frequencies if given auditory data. A second layer, which takes as input the output of the first layer, can learn to recognize combinations of features, such as simple shapes for visual material or combinations of sounds for auditory material. For example, higher layers can learn to represent complex shapes in visual material, or words in auditory material. Higher layers can learn to recognize common visual objects or spoken phrases.

深度學習架構在應用於具有自然層次結構的問題時可以執行得特別好。例如,對機動車輛的分類可以受益於首先學習辨識車輪、擋風玻璃和其他特徵。這些特徵可以以不同的方式在較高層處進行組合,以辨識汽車、卡車和飛機。Deep learning architectures can perform particularly well when applied to problems with a natural hierarchy. For example, classifying motor vehicles could benefit from first learning to recognize wheels, windshields, and other features. These features can be combined at higher layers in different ways to recognize cars, trucks and planes.

可以利用多種連線性模式來設計神經網路。在前饋網路中,資訊從較低層傳遞到較高層,其中在給定層之每一者神經元向在較高層中的神經元進行傳送。可以在前饋網路的連續層中構建分層表示,如上文所描述的。神經網路亦可以具有循環或回饋(亦被稱為自頂向下)連接。在循環連接中,來自給定層中的神經元的輸出可以被傳送給同一層中的另一神經元。循環架構可以有助於辨識橫跨輸入資料區塊中的一個以上的資料區塊的模式,該資料區塊按順序被傳遞給神經網路。從給定層中的神經元到較低層中的神經元的連接被稱為回饋(或自頂向下)連接。當辨識高級別概念可以輔助區分輸入的特定低級別特徵時,具有許多回饋連接的網路可能是有説明的。Neural networks can be designed using a variety of connectivity patterns. In a feed-forward network, information is passed from lower layers to higher layers, where each neuron in a given layer communicates to a neuron in a higher layer. Hierarchical representations can be built in successive layers of feed-forward networks, as described above. Neural networks can also have recurrent or feedback (also known as top-down) connections. In recurrent connections, the output from a neuron in a given layer can be passed to another neuron in the same layer. The recurrent architecture can help identify patterns across more than one block of input data that is passed sequentially to the neural network. Connections from neurons in a given layer to neurons in lower layers are called feedback (or top-down) connections. Networks with many feedback connections may be informative when identifying high-level concepts can aid in distinguishing specific low-level features of the input.

在神經網路的層之間的連接可以是完全連接或局部連接的。圖4A示出完全連接的神經網路402的實例。在完全連接的神經網路402中,在第一層中的神經元可以將其輸出傳送給在第二層之每一者神經元,使得在第二層之每一者神經元將接收來自在第一層之每一者神經元的輸入。圖4B示出局部連接的神經網路404的實例。在局部連接的神經網路404中,在第一層中的神經元可以連接到在第二層中的有限數量的神經元。更通常,局部連接的神經網路404的局部連接的層可以被配置為使得在層之每一者神經元將具有相同或相似的連線性模式,但是具有可以具有不同值(例如410、412、414和416)的連接強度。局部連接的連線性模式可以在較高層中產生空間上不同的感受野,因為在給定區域中的較高層神經元可以接收經由訓練被調諧到網路的總輸入的受限部分的特性的輸入。The connections between the layers of a neural network can be fully connected or partially connected. FIG. 4A shows an example of a fully connected neural network 402 . In a fully connected neural network 402, a neuron in the first layer can send its output to every neuron in the second layer, so that every neuron in the second layer will receive input from The input to each neuron of the first layer. FIG. 4B shows an example of a locally connected neural network 404 . In a locally connected neural network 404, a neuron in a first layer may be connected to a limited number of neurons in a second layer. More generally, the locally connected layers of the locally connected neural network 404 may be configured such that each neuron in the layer will have the same or similar connectivity pattern, but with possibly different values (e.g., 410, 412 , 414 and 416) connection strength. Linear patterns of local connections can generate spatially distinct receptive fields in higher layers, because higher layer neurons in a given region can receive properties tuned to a restricted portion of the network's total input via training. enter.

局部連接的神經網路的一個實例是迴旋神經網路。圖4C示出迴旋神經網路406的實例。迴旋神經網路406可以被配置為使得與針對第二層之每一者神經元的輸入相關聯的連接強度是共享的(例如,408)。迴旋神經網路可能非常適合於其中輸入的空間位置有意義的問題。An example of a locally connected neural network is a convolutional neural network. An example of a convolutional neural network 406 is shown in FIG. 4C . Convolutional neural network 406 may be configured such that connection strengths associated with inputs to each neuron of the second layer are shared (eg, 408 ). Convolutional neural networks may be well suited for problems where the spatial location of the input is meaningful.

一種類型的迴旋神經網路是深度迴旋網路(DCN)。圖4D示出DCN 400的詳細實例,DCN 400被設計為根據從影像擷取裝置430(諸如車載相機)輸入的影像426來辨識視覺特徵。可以訓練當前實例的DCN 400來辨識交通標誌和在交通標誌上提供的數位。當然,DCN 400可以被訓練用於其他任務,諸如辨識車道標線或辨識交通燈。One type of convolutional neural network is a deep convolutional network (DCN). FIG. 4D shows a detailed example of a DCN 400 designed to recognize visual features from an image 426 input from an image capture device 430 , such as a vehicle-mounted camera. The DCN 400 of the present example can be trained to recognize traffic signs and the digits provided on the traffic signs. Of course, the DCN 400 can be trained for other tasks, such as recognizing lane markings or recognizing traffic lights.

可以利用監督學習來訓練DCN 400。在訓練期間,DCN 400可以被給予影像(諸如限速標誌的影像426),隨後可以計算向前傳遞以產生輸出422。DCN 400可以包括特徵提取部分和分類部分。在接收到影像426時,迴旋層432可以將迴旋核心(未圖示)應用於影像426以產生第一特徵圖集合418。作為實例,用於迴旋層432的迴旋核心可以是產生28x28特徵圖的5x5核心。在本實例中,因為在第一特徵圖集合418中產生四個不同的特徵圖,所以在迴旋層432處向影像426應用了四個不同的迴旋核心。迴旋核心亦可以被稱為濾波器或迴旋濾波器。The DCN 400 may be trained using supervised learning. During training, DCN 400 may be given an image, such as image of a speed limit sign 426 , and then may compute a forward pass to produce output 422 . DCN 400 may include a feature extraction part and a classification part. Upon receiving the image 426 , the convolution layer 432 may apply a convolution kernel (not shown) to the image 426 to generate the first set of feature maps 418 . As an example, the convolution kernel used for the convolution layer 432 may be a 5x5 kernel that produces a 28x28 feature map. In this example, because four different feature maps were generated in the first set of feature maps 418 , four different convolution kernels are applied to the image 426 at the convolution layer 432 . A convolution kernel may also be called a filter or a convolution filter.

第一特徵圖集合418可以由最大池化層(未圖示)進行二次取樣以產生第二特徵圖集合420。最大池化層減小第一特徵圖集合418的大小。亦即,第二特徵圖集合420的大小(諸如14x14)小於第一特徵圖集合418的大小(諸如28x28)。減小的大小向後續層提供類似的資訊,同時減少記憶體消耗。第二特徵圖集合420可以經由一或多個後續迴旋層(未圖示)進一步被迴旋,以產生一或多個後續特徵圖集合(未圖示)。The first set of feature maps 418 may be subsampled by a max pooling layer (not shown) to produce the second set of feature maps 420 . The max pooling layer reduces the size of the first set of feature maps 418 . That is, the size of the second set of feature maps 420 (such as 14x14) is smaller than the size of the first set of feature maps 418 (such as 28x28). The reduced size provides similar information to subsequent layers while reducing memory consumption. The second set of feature maps 420 may be further convoluted through one or more subsequent convolutional layers (not shown) to generate one or more subsequent sets of feature maps (not shown).

在圖4D的實例中,第二特徵圖集合420被迴旋以產生第一特徵向量424。此外,第一特徵向量424進一步被迴旋以產生第二特徵向量428。第二特徵向量428的每個特徵可以包括與影像426的可能特徵(諸如「標誌」、「60」和「100」)相對應的數字。softmax函數(未圖示)可以將第二特徵向量428中的數位轉換為概率。因此,DCN 400的輸出422是影像426包括一或多個特徵的概率。In the example of FIG. 4D , the second set of feature maps 420 is convolved to generate the first feature vector 424 . Additionally, the first eigenvector 424 is further convolved to generate a second eigenvector 428 . Each feature of the second feature vector 428 may include a number corresponding to a possible feature of the image 426 such as "logo", "60" and "100". A softmax function (not shown) can convert the digits in the second feature vector 428 into probabilities. Thus, the output 422 of the DCN 400 is the probability that the image 426 includes one or more features.

在本實例中,在輸出422中針對「標誌」和「60」的概率高於輸出422的其他項(諸如「30」、「40」、「50」、「70」、「80」、「90」和「100」)的概率。在訓練之前,由DCN 400產生的輸出422有可能不正確。因此,可以計算在輸出422與目標輸出之間的誤差。目標輸出是影像426的地面真值(例如,「標誌」和「60」)。隨後可以調整DCN 400的權重,使得DCN 400的輸出422與目標輸出更緊密地對準。In this example, the probability for "flag" and "60" in output 422 is higher than other items in output 422 (such as "30", "40", "50", "70", "80", "90 ” and “100”). Prior to training, the output 422 produced by the DCN 400 may be incorrect. Therefore, the error between output 422 and the target output can be calculated. The target output is the ground truth of the image 426 (eg, "sign" and "60"). The weights of the DCN 400 can then be adjusted so that the output 422 of the DCN 400 more closely aligns with the target output.

為了調整權重,學習演算法可以針對權重計算梯度向量。梯度可以指示若調整權重則誤差將增加或減少的量。在頂層處,梯度可以直接對應於連接在倒數第二層中的啟動神經元和在輸出層中的神經元的權重的值。在較低層中,梯度可以取決於權重的值和較高層的計算出的誤差梯度。隨後可以調整權重以減小誤差。這種調整權重的方式可以被稱為「反向傳播」,因為它涉及經由神經網路的「向後傳遞」。To adjust the weights, the learning algorithm can compute gradient vectors for the weights. The gradient can indicate the amount by which the error will increase or decrease if the weights are adjusted. At the top layer, the gradient may directly correspond to the value of the weights connecting the activation neurons in the penultimate layer and the neurons in the output layer. In lower layers, gradients can depend on the values of weights and the calculated error gradients of higher layers. The weights can then be adjusted to reduce the error. This way of adjusting weights can be called "backpropagation" because it involves a "backward pass" through the neural network.

在實踐中,可以在少量實例上計算權重的誤差梯度,使得計算出的梯度近似於真實誤差梯度。這種近似方法可以被稱為隨機梯度下降。可以重複隨機梯度下降,直到整個系統的可實現誤差率已經停止下降或者直到誤差率已經達到目標位準。在學習之後,DCN可以被給予新影像(例如,影像426的限速標誌),並且經由網路的前向傳遞可以產生可以被認為是DCN的推斷或預測的輸出422。In practice, the error gradient of the weights can be computed over a small number of instances such that the computed gradient approximates the true error gradient. This approach to approximation can be called stochastic gradient descent. Stochastic gradient descent can be repeated until the achievable error rate of the overall system has stopped decreasing or until the error rate has reached a target level. After learning, the DCN can be given a new image (eg, a speed limit sign of image 426 ), and a forward pass through the network can produce an output 422 that can be considered the DCN's inference or prediction.

深度信任網路(DBN)是包括多層隱藏節點的概率模型。DBN可以用於提取訓練資料集合的分層表示。可以經由將受限玻爾茲曼機(RBM)的層進行疊加來獲得DBN。RBM是一種類型的人工神經網路,它可以學習關於輸入集合的概率分佈。由於RBM可以在沒有關於每個輸入應當分類到的類的資訊的情況下學習概率分佈,因此RBM通常用於無監督學習。使用混合的無監督和有監督範式,DBN的底部RBM可以以無監督的方式進行訓練並且可以用作特徵提取器,並且頂部RBM可以以有監督的方式進行訓練(基於來自先前層的輸入和目標類的聯合分佈)並且可以用作分類器。Deep Belief Networks (DBNs) are probabilistic models that include multiple layers of hidden nodes. DBNs can be used to extract hierarchical representations of training data sets. A DBN can be obtained via superposition of layers of Restricted Boltzmann Machines (RBMs). RBM is a type of artificial neural network that learns a probability distribution over a set of inputs. Since RBMs can learn a probability distribution without information about the class each input should be classified into, RBMs are often used for unsupervised learning. Using a mixed unsupervised and supervised paradigm, the bottom RBM of a DBN can be trained in an unsupervised manner and can be used as a feature extractor, and the top RBM can be trained in a supervised manner (based on the input and target class) and can be used as a classifier.

深度迴旋網路(DCN)是迴旋網路的網路,其被配置有額外的池化層和正規化層。DCN已經在許多工上實現了最先進的效能。DCN可以使用有監督學習來訓練,其中輸入和輸出目標兩者對於許多範例都是已知的並且用於經由使用梯度下降方法來修改網路的權重。Deep Convolutional Networks (DCNs) are networks of convolutional networks that are configured with additional pooling and normalization layers. DCN has achieved state-of-the-art performance on many tasks. DCNs can be trained using supervised learning, where both the input and output targets are known for many examples and used to modify the weights of the network through the use of gradient descent methods.

DCN可以是前饋網路。另外,如上文所描述的,從在DCN的第一層中的神經元到在下一較高層中的一組神經元的連接,跨越在第一層中的神經元被共享。DCN的前饋和共享連接可以用於快速處理。例如,DCN的計算負擔可能比包括循環或回饋連接的類似大小的神經網路的計算負擔小得多。A DCN may be a feed-forward network. Additionally, as described above, connections from a neuron in a first layer of a DCN to a set of neurons in the next higher layer are shared across neurons in the first layer. DCN's feed-forward and shared connections can be used for fast processing. For example, the computational burden of a DCN may be much smaller than that of a similarly sized neural network that includes recurrent or feedback connections.

迴旋網路的每個層的處理可以被認為是空間不變範本或基投影。若首先將輸入分解為多個通道,諸如彩色影像的紅色、綠色和藍色通道,則在該輸入上訓練的迴旋網路可以被認為是三維的,具有沿影像的軸的兩個空間維度和擷取顏色資訊的第三維度。迴旋連接的輸出可以被認為在後續層中形成特徵圖,其中特徵圖的每個元素(例如,220)接收來自在先前層(例如,特徵圖218)中的一系列神經元和來自多個通道之每一者通道的輸入。可以利用非線性來進一步處理在特徵圖中的值,諸如校正、max(0,x)。來自相鄰神經元的值可以進一步池化,這對應於下取樣,並且可以提供額外的局部不變性和降維。正規化(其對應於白化)亦可以經由在特徵圖中的神經元之間的橫向抑制來應用。The processing of each layer of a convolutional network can be thought of as a spatially invariant template or base projection. If the input is first decomposed into channels, such as the red, green, and blue channels of a color image, a convolutional network trained on that input can be considered three-dimensional, with two spatial dimensions along the axis of the image and Retrieve the third dimension of color information. The output of the convolutional connection can be thought of as forming a feature map in subsequent layers, where each element of the feature map (e.g., 220) receives input from a sequence of neurons in a previous layer (e.g., feature map 218) and from multiple channels input for each of the channels. Values in the feature map can be further processed with non-linearity, such as correction, max(0,x). Values from neighboring neurons can be further pooled, which corresponds to downsampling and can provide additional local invariance and dimensionality reduction. Regularization (which corresponds to whitening) can also be applied via lateral inhibition between neurons in the feature map.

隨著更多標記資料點變得可用或隨著計算能力的提高,深度學習架構的效能可以提高。現代的深度神經網路是利用比15年前典型的研究人員可用的計算資源大上千倍的計算資源來程式化地進行訓練的。新的架構和訓練範式可以進一步提升深度學習的效能。校正的線性單元可以減少被稱為消失的梯度的訓練問題。新的訓練技術可以減少過度擬合,並且因此使得更大的模型能夠實現更好的泛化。封裝技術可以在給定的感受野中抽象化資料,並且進一步提升整體效能。The performance of deep learning architectures can increase as more labeled data points become available or as computing power increases. Modern deep neural networks are programmatically trained using computing resources thousands of times larger than were available to the typical researcher 15 years ago. New architectures and training paradigms can further improve the performance of deep learning. Rectified linear units can reduce a training problem known as vanishing gradients. New training techniques can reduce overfitting and thus enable larger models to achieve better generalization. Encapsulation technology can abstract data in a given receptive field and further improve overall performance.

圖5是示出深度迴旋網路550的方塊圖。深迴旋網路550可以包括基於連線性和權重共享的多種不同類型的層。如圖5中所示,深度迴旋網路550包括迴旋塊554A、554B。迴旋塊554A、554B之每一者卷極塊可以被配置有迴旋層(CONV)356、正規化層(LNorm)558和最大池化層(max POOL)560。FIG. 5 is a block diagram illustrating a deep convolutional network 550 . The deep convolutional network 550 may include many different types of layers based on connectivity and weight sharing. As shown in FIG. 5, the deep convolution network 550 includes convolution blocks 554A, 554B. Each convolution block 554A, 554B may be configured with a convolution layer (CONV) 356 , a normalization layer (LNorm) 558 and a max pooling layer (max POOL) 560 .

迴旋層556可包括一或多個迴旋濾波器,迴旋濾波器可以應用於輸入資料以產生特徵圖。儘管僅示出兩個迴旋塊554A、554B,但是本案內容不限制於此,並且替代地,可以根據設計偏好在深度迴旋網路550中包括任意數量的迴旋塊554A、554B。正規化層558可以對迴旋濾波器的輸出進行正規化。例如,正規化層558可以提供白化或橫向抑制。最大池化層560可以提供在空間上的下取樣聚合以實現局部不變性和降維。The convolutional layer 556 may include one or more convolutional filters that may be applied to the input data to generate a feature map. Although only two convolution blocks 554A, 554B are shown, the present disclosure is not so limited and instead, any number of convolution blocks 554A, 554B may be included in the deep convolution network 550 according to design preferences. A normalization layer 558 may normalize the output of the convolution filter. For example, normalization layer 558 may provide whitening or lateral suppression. A max pooling layer 560 may provide spatially downsampled aggregation for local invariance and dimensionality reduction.

例如,深度迴旋網路的並行濾波器組可以載入在SOC 300的CPU 302或GPU 304上,以實現高效能和低功耗。在替代實施例中,並行濾波器組可以載入在SOC 300的DSP 306或ISP 316上。另外,深度迴旋網路550可以存取在SOC 300上可能存在的其他處理塊,諸如分別專用於感測器和導航的感測器處理器314和導航模組320。For example, parallel filter banks of deep convolutional networks can be loaded on CPU 302 or GPU 304 of SOC 300 to achieve high performance and low power consumption. In an alternate embodiment, the parallel filter banks may be loaded on the DSP 306 or the ISP 316 of the SOC 300 . In addition, deep convolutional network 550 may access other processing blocks that may exist on SOC 300 , such as sensor processor 314 and navigation module 320 dedicated to sensors and navigation, respectively.

深度迴旋網路550亦可以包括一或多個完全連接的層562(FC1和FC2)。深度迴旋網路550亦可以包括邏輯回歸(LR)層564。在深度迴旋網路550的每個層556、558、560、562、564之間是要更新的權重(未圖示)。層(例如,556、558、560、562、564)之每一者層的輸出可以用作在深度迴旋網路550中的層(例如,556、558、560、562、564)中的隨後一個層的輸入,以根據在迴旋塊554A中的第一迴旋塊處供應的輸入資料552(例如,影像、音訊、視訊、感測器資料及/或其他輸入資料)來學習分層特徵表示。深度迴旋網路550的輸出是針對輸入資料552的分類得分566。分類得分566可以是概率集合,其中每個概率是輸入資料(包括來自特徵集合的特徵)的概率。The deep convolutional network 550 may also include one or more fully connected layers 562 (FC1 and FC2). The deep convolutional network 550 may also include a logistic regression (LR) layer 564 . Between each layer 556, 558, 560, 562, 564 of the deep convolutional network 550 are weights (not shown) to be updated. The output of each of the layers (e.g., 556, 558, 560, 562, 564) may be used as a subsequent one of the layers (e.g., 556, 558, 560, 562, 564) in the deep convolutional network 550 Layer input to learn hierarchical feature representations from input data 552 (eg, image, audio, video, sensor data, and/or other input data) supplied at a first convolution block in convolution block 554A. The output of the deep convolutional network 550 is a classification score 566 for the input data 552 . Classification score 566 may be a set of probabilities, where each probability is a probability of the input data including features from the feature set.

如上文所指出的,圖3-5是作為實例來提供的。其他實例可以不同於關於圖3-5所描述的。As noted above, Figures 3-5 are provided as examples. Other examples may differ from those described with respect to Figures 3-5.

如上文所描述的,細胞間干擾可能導致使用者的訊號(例如,訊號與干擾加雜訊比(SINR))降級。當使用者處於細胞邊緣時,使用者的訊號降級可能尤其顯著。另外,由於在下一代基地台(例如,gNB)中引入了大規模多輸入多輸出(MIMO)天線,這種細胞間干擾可能是高度定向的並且隨著時間高度變化。遺憾的是,在細胞邊緣處的高度定向的干擾可能降低資料速率,並且對使用者體驗產生負面影響。此外,干擾的高變化使得執行鏈路自我調整(例如,預測可支援的調制和編碼方案(MCS))更加困難。這對於具有有限延遲預算的時延敏感的應用來說具有挑戰性。當所選調制和編碼方案(MCS)不準確時,這種有限的延遲預算可能不足以經由混合自動重傳請求(HARQ)程序來恢復封包。As described above, intercellular interference may degrade a user's signal (eg, signal-to-interference-plus-noise ratio (SINR)). The user's signal degradation may be especially noticeable when the user is at the edge of the cell. Additionally, due to the introduction of massive multiple-input multiple-output (MIMO) antennas in next-generation base stations (e.g., gNBs), such intercellular interference can be highly directional and highly variable over time. Unfortunately, highly directional interference at the cell edge can reduce data rates and negatively impact user experience. In addition, high variability in interference makes it more difficult to perform link self-tuning (eg, predicting supportable modulation and coding schemes (MCS)). This is challenging for latency-sensitive applications with limited latency budgets. This limited delay budget may not be sufficient to recover packets via a hybrid automatic repeat request (HARQ) procedure when the selected modulation and coding scheme (MCS) is inaccurate.

圖6A和6B示出根據本案內容的各態樣的通訊網路,其中由使用者設備(UE)經歷的空間干擾是基於從鄰點基地台到鄰點UE的下行鏈路發射波束的。如圖6A所示,在第一干擾場景600中,第一UE 120-1經由下行鏈路發射波束i與第一基地台110-1進行通訊。類似地,第二UE 120-2經由下行鏈路發射波束j與鄰點基地台110-2進行通訊。在該實例中,來自下行鏈路發射波束j對下行鏈路發射波束i的空間細胞間干擾導致在第一UE 120-1處的極小的訊號降級(例如,SINR=20 dB)。6A and 6B illustrate communication networks according to aspects of the present disclosure, wherein spatial interference experienced by user equipment (UE) is based on downlink transmit beams from neighboring base stations to neighboring UEs. As shown in FIG. 6A, in a first interference scenario 600, a first UE 120-1 communicates with a first base station 110-1 via a downlink transmit beam i. Similarly, the second UE 120-2 communicates with the neighbor base station 110-2 via the downlink transmit beam j. In this example, the spatial inter-cell interference from downlink transmit beam j to downlink transmit beam i results in very little signal degradation (eg, SINR = 20 dB) at the first UE 120-1.

圖6B示出第二干擾場景650,其中第一UE 120-1經由下行鏈路發射波束i與第一基地台110-1進行通訊。相反,第二UE 120-2經由干擾下行鏈路發射波束i的下行鏈路發射波束k與鄰點基地台110-2進行通訊。在該實例中,來自下行鏈路發射波束k對下行鏈路發射波束i的空間細胞間干擾導致在第一UE 120-1處的顯著訊號降級(例如,SINR=5 dB),這降低在第一UE 120-1處的使用者體驗。FIG. 6B shows a second interference scenario 650, in which the first UE 120-1 communicates with the first base station 110-1 via downlink transmit beam i. On the contrary, the second UE 120-2 communicates with the neighbor base station 110-2 via the downlink transmit beam k interfering with the downlink transmit beam i. In this example, spatial intercellular interference from downlink transmit beam k to downlink transmit beam i results in significant signal degradation (eg, SINR=5 dB) at the first UE 120-1, which reduces A user experience at UE 120-1.

圖7是根據本案內容的各態樣的通訊網路700的示意圖,該通訊網路700示出來自鄰點基地台的下行鏈路發射波束的訊號強度量測,以實現空間細胞間干擾感知下行鏈路協調。根據本案內容的各個態樣,神經網路被訓練為以推斷鄰點基地台(例如,gNB)的任何潛在發射波束對任何潛在受害者UE的影響。在該實例中,受害使用者設備(UE 1)120-1經由下行鏈路發射波束i與服務基地台(gNB 1)110-1進行通訊。遺憾的是,受害者UE 1120-1經歷來自用於與第二使用者設備(UE 2)120-2進行通訊的鄰點基地台(gNB 2)110-2的下行鏈路發射波束k的顯著干擾。 FIG. 7 is a schematic diagram of a communication network 700 according to various aspects of the content of the present application. The communication network 700 shows signal strength measurements of downlink transmit beams from neighboring base stations to achieve spatial intercellular interference aware downlink coordination. According to various aspects of this case, the neural network is trained to infer the impact of any potential transmit beam of a neighboring base station (eg, gNB) on any potential victim UE. In this example, the victim user equipment (UE 1 ) 120-1 communicates with the serving base station (gNB 1 ) 110-1 via downlink transmit beam i. Unfortunately, the victim UE 1 120-1 experiences a disturbance of the downlink transmit beam k from the neighbor base station (gNB 2 ) 110-2 used to communicate with the second user equipment (UE 2 ) 120-2. Significant interference.

在該實例中,經由與鄰點基地台gNB 2110-2的協調,減輕對受害者UE 1120-1的空間細胞間干擾。例如,鄰點基地台gNB 2110-2可以在下行鏈路波束j上進行發送,以避免在服務於受害者UE 1120-1的資源上在下行鏈路發射波束k的方向上發送能量。本案內容的各態樣與鄰點基地台gNB 2110-2進行協調,以在用於服務於受害者UE 1120-1的資源上在下行鏈路波束j上進行發送,從而避免對受害者UE 1110-1的干擾。 In this example, the spatial intercellular interference to the victim UE 1 120-1 is mitigated via coordination with the neighbor base station gNB 2 110-2. For example, neighbor base station gNB2 110-2 may transmit on downlink beam j to avoid sending energy in the direction of downlink transmit beam k on resources serving victim UE1 120-1. Aspects of this case coordinate with neighbor base station gNB 2 110-2 to transmit on downlink beam j on resources used to serve victim UE 1 120-1, thereby avoiding victimization Interference by UE 1 110-1.

根據本案內容的各個態樣,服務基地台gNB 1110-1的神經網路被訓練為推斷鄰點基地台gNB 2110-2的下行鏈路發射波束對受害者UE 1120-1的影響。在本案內容的這些態樣中,服務基地台gNB 1110-1與鄰點基地台gNB 2110-2進行協調,以禁止由鄰點基地台gNB2 110-2在用於服務於受害者UE 1120-1的時間/頻率資源上進行的下行鏈路發射波束k的通訊。在一些配置中,對細胞間干擾的預測是使用具有神經處理引擎(NPE)的機器學習來執行的,例如,如圖8中所示。 According to various aspects of the content of this case, the neural network of the serving base station gNB 1 110-1 is trained to infer the impact of the downlink transmit beam of the neighboring base station gNB 2 110-2 on the victim UE 1 120-1. In these aspects of the content of this case, the serving base station gNB 1 110-1 coordinates with the neighboring base station gNB 2 110-2 to prohibit the neighboring base station gNB2 110-2 from serving the victim UE 1 The communication of the downlink transmit beam k is performed on the time/frequency resource of 120-1. In some configurations, prediction of intercellular interference is performed using machine learning with a Neural Processing Engine (NPE), eg, as shown in FIG. 8 .

圖8是根據本案內容的各態樣的包括神經處理引擎的網路的方塊圖,神經處理引擎被配置用於對基於空間細胞間干擾的分佈進行基於神經網路的預測,以實現空間細胞間干擾感知下行鏈路協調。在本案內容的各態樣中,資料庫儲存關於鄰點基地台(例如,gNB)的任何潛在發射波束對任何潛在受害者UE的影響的資訊。在本案內容的這些態樣中,資料庫儲存UE通道狀態資訊(CSI)參考訊號(CSI-RS)量測報告、波束資訊和UE位置以實現資料庫檢視,從而決定來自鄰點基地台對任何潛在受害者UE的潛在影響。8 is a block diagram of a network including a neural processing engine configured to perform neural network-based prediction of distributions of spatial intercellular interference in accordance with aspects of the subject matter to achieve spatial intercellular Interference aware downlink coordination. In aspects of the subject matter, the database stores information about the impact of any potential transmit beam of a neighboring base station (eg, gNB) on any potential victim UE. In these aspects of the subject matter, the database stores UE channel state information (CSI) reference signal (CSI-RS) measurement reports, beam information and UE location to enable database inspection to determine any Potential impact on potential victim UE.

圖8示出網路800,其包括具有位置塊830的UE 120和具有用於實現神經網路的神經處理引擎810的基地台110。在該實例中,位置塊830向神經處理引擎810指示UE位置802(X)。鄰點細胞發送預編碼器804(T)(例如,通道狀態資訊(CSI)波束索引)亦從鄰點細胞輸入到神經處理引擎810。基於UE位置802和鄰點細胞發送預編碼器804,神經處理引擎810預測針對UE 120的當前位置的基於干擾的分佈820(F)。例如,可以預測干擾(例如,熱干擾)分佈,或者可以預測訊號與干擾加雜訊比(SINR)分佈。Figure 8 shows a network 800 comprising a UE 120 with a location block 830 and a base station 110 with a neural processing engine 810 for implementing a neural network. In this example, the location block 830 indicates the UE location 802 (X) to the neural processing engine 810 . The neighbor cell transmits a precoder 804(T) (eg, channel state information (CSI) beam index) also as input to the neural processing engine 810 from the neighbor cell. Based on the UE location 802 and the neighbor cell transmit precoder 804 , the neural processing engine 810 predicts an interference-based distribution 820 (F) for the current location of the UE 120 . For example, interference (eg, thermal interference) distributions can be predicted, or signal-to-interference-plus-noise ratio (SINR) distributions can be predicted.

在本案內容的各態樣中,神經處理引擎810的神經網路的訓練可以是基於UE通道狀態資訊(CSI)參考訊號(CSI-RS)量測報告以及鄰點細胞發送預編碼器804和UE位置802的。UE CSI-RS量測報告提供針對鄰點基地台的每個波束的鄰點細胞訊號強度。例如,訊號強度量測報告可以是基於CSI報告(包括例如SINR資訊或參考訊號接收功率(RSRP)資訊)的。在本案內容的一些態樣中,UE CSI-RS量測報告可以提供SINR資訊,其中訊號強度對應於服務細胞,並且干擾對應於鄰點基地台的每個波束。In various aspects of the content of this case, the training of the neural network of the neural processing engine 810 may be based on UE channel state information (CSI) reference signal (CSI-RS) measurement reports and neighbor cell transmission precoder 804 and UE location 802. The UE CSI-RS measurement report provides the neighbor cell signal strength for each beam of the neighbor base station. For example, the signal strength measurement report may be based on a CSI report including, for example, SINR information or Reference Signal Received Power (RSRP) information. In some aspects of this disclosure, UE CSI-RS measurement reports may provide SINR information, where signal strength corresponds to serving cell and interference corresponds to each beam of neighboring base stations.

在本案內容的一些態樣中,基地台110週期性地向被服務UE 120發送預編碼的CSI-RS訊號。被服務UE 120可以使用接收到的CSI-RS訊號來估計通道條件。被服務UE 120亦可以使用接收到的CSI-RS訊號來辨識導致最強接收訊號品質(例如,最強波束)的單個波束或波束組合,以説明進行資料通道預編碼。另外,可以從其他細胞量測CSI-RS訊號。例如,UE可以使用來自其他細胞的CSI-RS訊號來估計由其他細胞引起的干擾。UE可以使用所量測的CSI-RS訊號來執行無線電資源管理。例如,UE使用所量測的其他細胞的CSI-RS訊號來辨識鄰點細胞是否比當前服務細胞強,這可能觸發切換。實際上,UE 120向服務細胞110報告由UE執行的CSI-RS量測。In some aspects of this disclosure, the base station 110 periodically sends the precoded CSI-RS signal to the served UE 120 . The served UE 120 can use the received CSI-RS signal to estimate the channel condition. The served UE 120 may also use the received CSI-RS signal to identify the single beam or beam combination that results in the strongest received signal quality (eg, the strongest beam) to account for data channel precoding. Additionally, CSI-RS signals can be measured from other cells. For example, UE can use CSI-RS signals from other cells to estimate the interference caused by other cells. The UE can use the measured CSI-RS signal to perform radio resource management. For example, the UE uses the measured CSI-RS signals of other cells to identify whether the neighbor cell is stronger than the current serving cell, which may trigger a handover. In fact, UE 120 reports to serving cell 110 the CSI-RS measurements performed by the UE.

如圖8中所示,神經處理引擎810的神經網路基於鄰點細胞發送預編碼器804和UE位置802來預測針對給定UE位置802的基於干擾的分佈820。鄰點細胞發送預編碼器804可以是在已知編碼簿內的預編碼器索引,或者可以是預編碼器權重。在本案內容的各態樣中,UE位置802可以以來自定位源的UE 120的(x, y, z)座標的組合的形式表示。定位源可以是例如全球導航衛星系統(GNSS)、5G NR位置伺服器等。或者,UE位置802可以是基於表示UE 120在服務細胞內的位置的度量集合來決定。例如,表示UE 120在服務細胞內的位置的度量集合可以包括服務細胞參考訊號接收功率(RSRP)訊號、指示最強發射波束方向的服務細胞預編碼器(例如,預編碼矩陣指示符(PMI))、服務細胞通道品質指示符(CQI)、及/或針對在服務細胞和UE 120之間的通道的路徑損耗估計。另外,UE位置802可以是基於其他UE感測器資訊來決定的。在一些態樣中,UE位置802可以是地理位置。As shown in FIG. 8 , the neural network of the neural processing engine 810 predicts an interference-based distribution 820 for a given UE location 802 based on the neighbor cell transmit precoder 804 and the UE location 802 . The neighbor cell transmit precoder 804 may be a precoder index within a known codebook, or may be a precoder weight. In aspects of this disclosure, UE location 802 may be represented as a combination of (x, y, z) coordinates of UE 120 from a positioning source. The positioning source may be, for example, a Global Navigation Satellite System (GNSS), a 5G NR location server, and the like. Alternatively, UE location 802 may be determined based on a set of metrics representing the location of UE 120 within the serving cell. For example, the set of metrics indicative of the location of UE 120 within a serving cell may include a serving cell reference signal received power (RSRP) signal, a serving cell precoder (e.g., a precoding matrix indicator (PMI)) indicating the direction of the strongest transmit beam , a serving cell channel quality indicator (CQI), and/or a path loss estimate for the channel between the serving cell and the UE 120 . Additionally, UE location 802 may be determined based on other UE sensor information. In some aspects, UE location 802 may be a geographic location.

在本案內容的各個態樣中,可以在各個節點處執行神經網路的訓練。例如,可以在服務細胞處執行神經網路的訓練。在該實例中,UE 120將干擾量測報告連同關於UE位置802的資訊一起發送到服務細胞的基地台110。UE 120的位置估計可以是在服務細胞基地台110處執行的,或者是由單獨的位置伺服器傳送到服務細胞的基地台110的。或者,UE 120向服務細胞報告UE位置指示符度量以決定UE位置802。In various aspects of the content of this case, the training of the neural network can be performed at various nodes. For example, the training of the neural network can be performed at the serving cell. In this example, the UE 120 sends the interference measurement report to the base station 110 of the serving cell together with information about the UE location 802 . The location estimation of the UE 120 can be performed at the serving cell base station 110 or transmitted to the serving cell base station 110 by a separate location server. Alternatively, UE 120 reports UE location indicator metrics to the serving cell to determine UE location 802 .

在本案內容的一些態樣中,如圖7中所示,神經網路的訓練是在鄰點細胞(諸如鄰點基地台gNB 2110-2)處執行的。在本案內容的這些態樣中,服務細胞的基地台gNB 1110-1向鄰點基地台gNB2 110-2發送UE位置802和干擾量測報告,以在鄰點基地台gNB 2110-2處執行神經網路的訓練。在本案內容的其他態樣中,神經網路的訓練是在集中式節點處執行的。在本案內容的這些態樣中,服務細胞的基地台gNB 1110-1向集中式節點發送UE位置802、服務細胞標識(ID)、鄰點細胞ID和干擾量測報告,以在集中式節點處執行神經網路的訓練。 In some aspects of the subject matter, as shown in FIG. 7, the training of the neural network is performed at a neighbor cell, such as a neighbor base station gNB 2 110-2. In these aspects of the content of this case, the base station gNB 1 110-1 of the serving cell sends the UE location 802 and the interference measurement report to the neighboring base station gNB2 110-2, so that the Perform training of the neural network. In other aspects of this case, the training of the neural network is performed at a centralized node. In these aspects of the content of this case, the base station gNB 1 110-1 of the serving cell sends the UE location 802, the serving cell identification (ID), the neighbor cell ID, and the interference measurement report to the centralized node for Perform neural network training.

一旦神經網路被訓練為推斷鄰點基地台的發射波束對受害者UE的影響,網路設備(例如,gNB)就與鄰點基地台進行協調。在本案內容的這些態樣中,網路設備協調可以防止由鄰點基地台在用於服務於受害者UE的時間/頻率資源上進行下行鏈路發射波束的通訊。例如,如圖7中所示,UE 1120-1經歷來自鄰點基地台(gNB 2)110-2的下行鏈路發射波束k的顯著干擾。在該實例中,當鄰點基地台gNB 2110-2避免在用於服務於UE 1120-1的資源上在下行鏈路發射波束k的方向上發送能量時,減輕了空間細胞間干擾。 Once the neural network is trained to infer the impact of the neighbor base station's transmit beam on the victim UE, the network device (e.g., gNB) coordinates with the neighbor base station. In these aspects of the subject matter, network device coordination may prevent communication of downlink transmit beams by neighbor base stations on time/frequency resources used to serve victim UEs. For example, as shown in Figure 7, UE 1 120-1 experiences significant interference from a downlink transmit beam k of a neighbor base station ( gNB2 ) 110-2. In this example, spatial inter-cell interference is mitigated when neighbor base station gNB 2 110-2 avoids sending energy in the direction of downlink transmit beam k on resources used to serve UE 1 120-1.

根據本案內容的各個態樣,不期望的鄰點細胞波束是基於某些標準根據預測的基於干擾的分佈來辨識的。例如,平均值或百分位數超過預定閥值可以是標準。另外,該空間干擾表徵可以用於協調在附近細胞(諸如鄰點基地台gNB 2110-2)之間的排程,以防止高干擾事件,例如,如圖9-11中所示。 According to various aspects of the subject matter, undesired neighbor cell beams are identified based on certain criteria based on predicted interference-based distributions. For example, an average or percentile exceeding a predetermined threshold may be a criterion. Additionally, the spatial interference characterization can be used to coordinate scheduling between nearby cells, such as neighboring base stations gNB 2 110-2, to prevent high interference events, eg, as shown in Figures 9-11.

圖9是示出根據本案內容的各個態樣的例如由UE 120(120-1、…、120-N)、服務細胞900的基地台110-1和鄰點細胞950(950-1、…、950-N)的基地台110-2、…、110-N執行的用於在服務細胞900處的空間細胞間干擾感知下行鏈路協調的實例程序的時序圖。Fig. 9 is a diagram showing, for example, UE 120 (120-1, ..., 120-N), base station 110-1 of serving cell 900, and neighbor cell 950 (950-1, ..., 950-N) is a timing diagram of an example procedure executed by base stations 110-2, . . . , 110-N for spatial inter-cell interference aware downlink coordination at serving cell 900.

根據本案內容的各個態樣,服務細胞900的基地台110-1預測由在服務細胞900中的UE 120(120-1、…、120-N)經歷的來自相鄰細胞950(950-1、…、950-N)的不同潛在下行鏈路發射波束的潛在下行鏈路干擾。例如,服務細胞900的基地台110-1辨識服務UE 120的子集,其中由來自鄰點細胞950的細胞間下行鏈路干擾引起的潛在負面影響超過預定UE干擾閥值。亦即,鄰點細胞950可以包括潛在干擾的鄰點細胞。對UE的潛在受害者子集的這種辨識亦可以包括額外標準,諸如UE正在接收的傳輸量的類型。例如,可以選擇接收延遲敏感傳輸量及/或高可靠性傳輸量的UE作為UE的潛在受害者子集的一部分。According to various aspects of the content of this case, the base station 110-1 of the serving cell 900 predicts that the UE 120 (120-1, ..., 120-N) in the serving cell 900 experiences ..., 950-N) for potential downlink interference of different potential downlink transmit beams. For example, the base station 110-1 of the serving cell 900 identifies a subset of the serving UEs 120 for which the potential negative impact caused by the inter-cell downlink interference from the neighbor cell 950 exceeds a predetermined UE interference threshold. That is, neighbor cells 950 may include potentially interfering neighbor cells. This identification of the subset of potential victims of the UE may also include additional criteria, such as the type of transmission the UE is receiving. For example, UEs receiving delay sensitive traffic and/or high reliability traffic may be selected as part of the subset of potential victims of UEs.

在時間t0處,服務細胞900的基地台110-1針對UE 120之每一者受害者子集向潛在干擾的鄰點細胞950發送請求訊息。請求訊息可以包括指示所請求的請求潛在干擾的鄰點細胞950避免的波束索引列表的提議。另外,請求訊息可以指示所請求的針對其請求保護的時間/頻率資源(例如,時槽/資源區塊(RB))。例如,請求訊息可以指示要保護的資源的數量。基地台110-1可以決定易受攻擊的UE需要多少頻寬,例如,所分配的資源的四分之一。在一些實現方式中,針對每個細胞配置預定義的時間/頻率資源集合,使得在時間t0處的請求訊息的訊號傳遞可以簡單地代表所提議的資源集合的索引。或者,對時間/頻率資源的選擇留給鄰點細胞950作決定。At time t0, the base station 110 - 1 of the serving cell 900 sends a request message to the potentially interfering neighbor cell 950 for each victim subset of the UE 120 . The request message may include a proposal indicating the requested list of beam indices for potential interfering neighbor cells 950 to avoid. Additionally, the request message may indicate the requested time/frequency resource (eg, time slot/resource block (RB)) for which protection is requested. For example, the request message may indicate the number of resources to be protected. The base station 110-1 may determine how much bandwidth is needed by the vulnerable UE, for example, a quarter of the allocated resources. In some implementations, a predefined set of time/frequency resources is configured for each cell such that the signaling of the request message at time t0 may simply represent the index of the proposed set of resources. Alternatively, the choice of time/frequency resources is left to the neighbor cell 950 to make the decision.

在時間t1處,侵害者鄰點細胞950的基地台110-2-N回復回應訊息,回應訊息由服務細胞900的基地台110-1在時間t1處接收。回應訊息可以是對經由請求訊息指示的提議的接受。例如,回應訊息可以指示同意針對所指出的時間/頻率資源在所辨識的波束方向上限制發送的能量。或者,回應訊息可以包括針對要保護的時間/頻率資源的潛在提議或替代提議。例如,當在來自服務細胞900的請求訊息中的提議(例如,服務提議)不被接受時,在時間t1處接收的回應訊息可以包括針對不同資源集合的替代提議。At time t1, the base station 110-2-N of the aggressor neighbor cell 950 replies with a response message, which is received by the base station 110-1 of the serving cell 900 at time t1. The response message may be an acceptance of the offer indicated via the request message. For example, the response message may indicate agreement to limit transmitted energy in the identified beam direction for the indicated time/frequency resource. Alternatively, the response message may include a potential proposal or an alternative proposal for the time/frequency resource to be protected. For example, when the offer (eg, service offer) in the request message from the serving cell 900 is not accepted, the response message received at time t1 may include an alternative offer for a different set of resources.

當受害者UE 120改變位置、通道條件改變及/或傳輸量需求改變時,服務細胞900可以週期性地重複空間細胞間下行鏈路干擾預測。例如,UE 120可能更靠近服務基地台110-1,或者UE可能進入閒置模式。在時間t2處,服務細胞900可以基於針對新條件的更新的預測,來向鄰點細胞950發送更新的請求訊息。另外,在時間t3處,鄰點細胞950可以類似地利用更新的回應訊息來對更新的請求訊息進行回應。一旦針對受害者UE 120的干擾威脅到期,在時間t4處,服務細胞900可以發送取消請求訊息以停止資源保護。例如,當受害者UE 120進入閒置模式時,服務細胞900可以在時間t4處發送取消請求訊息。When the victim UE 120 changes location, the channel condition changes and/or the traffic demand changes, the serving cell 900 can periodically repeat the spatial inter-cell downlink interference prediction. For example, UE 120 may be closer to serving base station 110-1, or UE may enter idle mode. At time t2, the serving cell 900 may send an updated request message to the neighbor cell 950 based on the updated prediction for the new condition. In addition, at time t3, the neighbor cell 950 can similarly respond to the updated request message with the updated response message. Once the interference threat to the victim UE 120 expires, at time t4, the serving cell 900 may send a cancel request message to stop resource protection. For example, when the victim UE 120 enters the idle mode, the serving cell 900 may send a cancel request message at time t4.

圖10是示出根據本案內容的各個態樣的例如由UE 120(120-1、…、120-N)、服務細胞900的基地台110-1和鄰點細胞950的基地台110-2執行的用於在鄰點細胞950處的空間細胞間干擾感知下行鏈路協調的實例程序的時序圖。Fig. 10 is a diagram showing the execution by UE 120 (120-1, ..., 120-N), base station 110-1 of serving cell 900, and base station 110-2 of neighbor cell 950 according to various aspects of the content of this application. A timing diagram of an example procedure for spatial inter-cell interference-aware downlink coordination at neighbor cells 950.

在本案內容的各態樣中,對空間細胞間下行鏈路干擾的預測發生在鄰點細胞950(其可以被稱為侵害者鄰點細胞950)處。在本案內容的這些態樣中,服務細胞900的基地台110-1基於潛在易受攻擊的UE的位置、傳輸量類型或其他選擇標準來辨識潛在易受攻擊的UE。一旦被辨識,在時間t0處,服務細胞900的基地台110-1向侵害者鄰點細胞950發送請求訊息。請求訊息可以指示以下各項的子集:(1)易受攻擊的UE的位置;(2) UE干擾容忍閥值;及/或(3)資源需求。In aspects of the present case, prediction of downlink interference between spatial cells occurs at neighbor cells 950 (which may be referred to as aggressor neighbor cells 950). In these aspects of the present disclosure, base station 110-1 of serving cell 900 identifies potentially vulnerable UEs based on their location, traffic type, or other selection criteria. Once identified, the base station 110-1 of the serving cell 900 sends a request message to the aggressor neighbor cell 950 at time t0. The request message may indicate a subset of: (1) location of vulnerable UEs; (2) UE interference tolerance threshold; and/or (3) resource requirements.

由服務細胞900的基地台110-1在時間t0處發送的請求訊息可以省略資源需求,資源需求是可選的。當請求訊息省略資源需求時,受保護的資源是由侵害者鄰點細胞950的基地台110-2決定的。另外,代替地理位置,UE的位置可以經由表示UE的位置的某個的度量集合來表示。此外,可以存在針對每個細胞配置的預定義的時間/頻率資源集合。在該配置中,在時間t0處發送的請求訊息的訊號傳遞可以簡單地代表滿足UE資源需求的所提議的資源集合的索引。The request message sent by the base station 110-1 of the serving cell 900 at time t0 may omit the resource requirement, which is optional. When the request message omits the resource requirement, the protected resource is determined by the base station 110-2 of the aggressor neighbor cell 950. Also, instead of geographic location, the UE's location may be represented via a certain set of metrics representing the UE's location. Furthermore, there may be a predefined set of time/frequency resources configured for each cell. In this configuration, the signaling of the request message sent at time t0 may simply represent the index of the proposed set of resources that satisfy the resource requirements of the UE.

在本案內容的這些態樣中,回應於在時間t0處的請求訊息,侵害者鄰點細胞950的基地台110-2預測來自侵害者鄰點細胞950的發射波束的干擾是否會對受害者UE造成超過UE干擾閥值的有害影響。回應於預測的有害影響,在時間t1處,侵害者鄰點細胞950的基地台110-2向服務細胞900發送回應訊息,該回應訊息指示同意針對受害者UE的所請求的時間/頻率資源在禁止的波束方向上限制發送的能量。潛在地,在時間t1處的回應訊息包括針對用於受保護UE的時間/頻率資源(諸如要保護的資源集合)的提議或替代提議(若資源需求未被接受的話)。In these aspects of the present case, in response to the request message at time t0, the base station 110-2 of the aggressor neighbor cell 950 predicts whether the interference from the transmit beam of the aggressor neighbor cell 950 would be harmful to the victim UE Cause harmful effects exceeding the UE interference threshold. In response to the predicted deleterious effect, at time t1, the base station 110-2 of the aggressor neighbor cell 950 sends a response message to the serving cell 900 indicating that the requested time/frequency resource for the victim UE is granted at Limits the energy transmitted in the prohibited beam directions. Potentially, the response message at time t1 includes a proposal or an alternative proposal (if the resource requirement is not accepted) for time/frequency resources (such as a set of resources to be protected) for the protected UE.

在一些實現方式中,當UE 120改變位置、通道條件改變或傳輸量需求改變時,服務細胞900的基地台110-1週期性地評估受保護UE 120的位置和脆弱性以及受保護資源。回應於這些改變的條件中的任何條件,在時間t2處,服務細胞900可以發送具有新條件的更新的請求訊息。在預測下行鏈路干擾是否不利於更新的易受攻擊的UE 120的集合之後,在時間t3處,侵害者鄰點細胞950的基地台110-2經由發送更新的回應訊息來對更新的請求訊息進行回應。在該實例中,一旦對易受攻擊的UE 120的集合的干擾威脅已經過期,在時間t4處,服務細胞900的基地台110-1就可以向侵害者鄰點細胞950發送用於終止資源保護的取消訊息。In some implementations, the base station 110 - 1 of the serving cell 900 periodically evaluates the location and vulnerability of the protected UE 120 and protected resources when the UE 120 changes location, channel conditions change, or traffic demand changes. In response to any of these changed conditions, at time t2, serving cell 900 may send an updated request message with the new conditions. After predicting whether downlink interference is detrimental to the updated set of vulnerable UEs 120, at time t3, the base station 110-2 of the aggressor neighbor cell 950 responds to the updated request message by sending an updated response message to respond. In this example, once the interference threat to the set of vulnerable UEs 120 has expired, at time t4, the base station 110-1 of the serving cell 900 may send a message to the aggressor neighbor cell 950 to terminate resource protection cancellation message for .

圖11是示出根據本案內容的各個態樣的例如由UE 120(120-1、…、120-N)、服務細胞900的基地台110-1、中心節點960和侵害者鄰點細胞950的基地台110-2執行的用於在中心節點處的空間細胞間干擾感知下行鏈路協調的實例程序的時序圖。Fig. 11 is a diagram showing, for example, UE 120 (120-1, ..., 120-N), base station 110-1 of serving cell 900, central node 960, and aggressor neighbor cell 950 according to various aspects of the present application. A timing diagram of an example procedure executed by base station 110-2 for spatial inter-cell interference aware downlink coordination at the central node.

在一些實現方式中,可以在中心節點960(諸如網路控制器130)處執行預測。例如,服務細胞900的基地台110-1基於潛在易受攻擊的UE的位置、傳輸量類型或其他選擇標準來辨識潛在易受攻擊的UE。一旦被辨識,在時間t1處,服務細胞900的基地台110-1向中心節點960發送關於所辨識的易受攻擊的UE的訊息。該訊息可以指示以下各項的全部或子集:(1)易受攻擊的UE的位置;(2) 易受攻擊的UE的干擾閥值;及(3)傳輸量負載。如上為所指出的,可以使用以下各項的組合來表示UE位置:(1)來自定位源的UE的(x, y, z)座標(例如,地理位置)及/或(2)表示UE在服務細胞900內的位置的度量集合。定位源可以是例如全球導航衛星系統(GNSS)位置伺服器、5G NR位置伺服器或其他位置伺服器。另外,表示UE位置的度量集合可以包括服務細胞900的參考訊號接收功率(RSRP)、服務細胞預編碼器(例如,最強發射波束方向)、服務細胞通道品質指示符(CQI)及/或在服務細胞900和UE 120之間的路徑損耗估計。其他UE感測器資訊亦可以被包括在時間t0處的易受攻擊的UE訊息中。In some implementations, prediction may be performed at a central node 960 , such as network controller 130 . For example, the base station 110-1 of the serving cell 900 identifies potentially vulnerable UEs based on their location, traffic type, or other selection criteria. Once identified, at time t1, the base station 110-1 of the serving cell 900 sends a message to the central node 960 regarding the identified vulnerable UE. The message may indicate all or a subset of: (1) the location of the vulnerable UE; (2) the interference threshold of the vulnerable UE; and (3) the traffic load. As noted above, UE location can be represented using a combination of (1) the UE's (x, y, z) coordinates (e.g., geographic location) from a positioning source and/or (2) an indication that the UE is in A set of metrics for a location within the serving cell 900 . The positioning source may be, for example, a Global Navigation Satellite System (GNSS) location server, a 5G NR location server, or other location servers. In addition, the set of metrics representing UE location may include reference signal received power (RSRP) of serving cell 900, serving cell precoder (eg, strongest transmit beam direction), serving cell channel quality indicator (CQI) and/or Path loss estimation between cell 900 and UE 120. Other UE sensor information may also be included in the vulnerable UE message at time t0.

在操作中,中心節點960預測由來自侵害者鄰點細胞950的下行鏈路發射波束的干擾對受害者UE 120造成的降級是否超過UE干擾閥值。在時間t1處,當鄰點細胞下行鏈路發射波束的干擾超過UE干擾閥值時,中心節點960向侵害者鄰點細胞950發送協調請求訊息。請求訊息可以包括經由針對由請求訊息指出的所請求的時間/頻率資源在指定波束方向上限制發送的能量來保護UE的提議。作為回應,在時間t2處,侵害者鄰點細胞950的基地台110-2向中心節點960發送回應訊息。回應訊息可以指示侵害者鄰點細胞950的基地台110-2接受該提議。否則,回應訊息可以提出保護UE的替代方案。在時間t3處,中心節點960向服務細胞900發送回應訊息,該回應訊息可以指示針對受保護UE的受保護資源的集合。In operation, the central node 960 predicts whether the degradation to the victim UE 120 by interference from the downlink transmit beam of the aggressor neighbor cell 950 exceeds a UE interference threshold. At time t1, when the interference of the downlink transmit beam of the neighbor cell exceeds the UE interference threshold, the central node 960 sends a coordination request message to the aggressor neighbor cell 950 . The request message may include an offer to protect the UE by limiting transmitted energy in the specified beam direction for the requested time/frequency resource indicated by the request message. In response, the base station 110 - 2 of the aggressor neighbor cell 950 sends a response message to the central node 960 at time t2 . The response message may instruct the base station 110-2 of the aggressor neighbor cell 950 to accept the offer. Otherwise, the response message may suggest alternatives to protect the UE. At time t3, the central node 960 sends a response message to the serving cell 900, which may indicate the set of protected resources for the protected UE.

在一些實現方式中,中心節點960週期性地評估受保護UE的位置和脆弱性以及受保護資源。週期性評估可以決定是否在UE的位置、UE的通道條件及/或關於UE的傳輸量需求中偵測到變化。回應於偵測到的變化,在時間t4處,中心節點960可以基於改變的條件來向侵害者鄰點細胞950發送更新的請求訊息。作為回應,在時間t5處,侵害者鄰點細胞950的基地台110-2可以利用指示更新的受保護資源的更新的回應訊息來對更新的請求訊息進行回應。在時間t6處,中心節點960向服務細胞900發送回應訊息,該回應訊息可以向基地台110-1通知更新的受保護資源的集合。In some implementations, the central node 960 periodically evaluates the location and vulnerability of protected UEs and protected resources. Periodic evaluation may determine whether a change is detected in the UE's location, the UE's channel condition, and/or the UE's traffic requirements. In response to the detected change, at time t4, the central node 960 may send an updated request message to the aggressor neighbor cell 950 based on the changed condition. In response, at time t5, the base station 110-2 of the aggressor neighbor cell 950 may respond to the updated request message with an updated response message indicating the updated protected resource. At time t6, the central node 960 sends a response message to the serving cell 900, which can notify the base station 110-1 of the updated set of protected resources.

一旦干擾威脅到期,在時間t7處,服務細胞900可以向中心節點960發送取消訊息,並且在時間t8處觸發終止訊息以終止資源保護。當多個侵害者鄰點細胞可能對受害者UE造成干擾時,包括中心節點的一些實現方式可能是有益的。Once the interference threat expires, at time t7, the serving cell 900 may send a cancel message to the central node 960, and trigger a terminate message at time t8 to terminate resource protection. Some implementations including a central node may be beneficial when multiple aggressor neighbor cells may cause interference to the victim UE.

圖12是示出根據本案內容的各個態樣的例如由網路設備執行的用於基於神經網路的空間細胞間干擾學習的實例程序1200的流程圖。實例程序1200是針對基於神經網路的空間細胞間干擾感知下行鏈路協調的網路增強的實例。12 is a flowchart illustrating an example procedure 1200 for neural network-based spatial intercellular interference learning, such as performed by a network device, in accordance with various aspects of the subject matter. The example procedure 1200 is an example of network enhancement for neural network based spatial intercellular interference aware downlink coordination.

如圖12中所示,在一些態樣中,程序1200包括:預測由UE經歷的空間細胞間下行鏈路干擾(方塊1202)。例如,基地台(例如,使用控制器/處理器240及/或記憶體242)可以預測空間下行鏈路細胞間下行鏈路干擾。預測可以發生在服務基地台、侵害者基地台或中心節點處。在一些態樣中,預測是基於UE的位置、UE干擾容忍閥值及/或針對UE的資源需求的。As shown in FIG. 12, in some aspects, procedure 1200 includes predicting spatial inter-cell downlink interference experienced by a UE (block 1202). For example, a base station (eg, using controller/processor 240 and/or memory 242) can predict spatial downlink inter-cell downlink interference. Prediction can occur at the serving base station, the aggressor base station, or the central node. In some aspects, the prediction is based on the location of the UE, a UE interference tolerance threshold, and/or resource requirements for the UE.

在一些態樣中,程序1200亦包括:與第二網路設備進行通訊,以經由保護跨越所選資源集合的資源來減少在UE的方向上的空間細胞間下行鏈路干擾(方塊1204)。例如,基地台(例如,使用天線234、DEMOD/MOD 232、TX MIMO處理器230、發送處理器220、控制器/處理器240及/或記憶體242)可以與第二網路設備進行通訊,以減少在UE的方向上的空間細胞間下行鏈路干擾。在一些態樣中,受保護資源包括禁止的波束索引、要保護的時間/頻率資源及/或要保護的資源的數量。 實例態樣 In some aspects, the procedure 1200 also includes communicating with a second network device to reduce spatial inter-cell downlink interference in the direction of the UE by protecting resources across the selected set of resources (block 1204). For example, the base station (e.g., using antenna 234, DEMOD/MOD 232, TX MIMO processor 230, transmit processor 220, controller/processor 240, and/or memory 242) may communicate with a second network device, to reduce spatial inter-cell downlink interference in the direction of the UE. In some aspects, protected resources include barred beam indices, time/frequency resources to be protected, and/or number of resources to be protected. Instance aspect

態樣1:一種由第一網路設備進行的無線通訊的方法,包括:預測由UE經歷的空間細胞間下行鏈路干擾;及與第二網路設備進行通訊,以經由保護跨越所選資源集合的資源來減少在UE的方向上的空間細胞間下行鏈路干擾。Aspect 1: A method of wireless communication by a first network device, comprising: predicting spatial intercellular downlink interference experienced by a UE; and communicating with a second network device to span selected resources via protected Aggregate resources to reduce spatial inter-cell downlink interference in the direction of the UE.

態樣2:根據態樣1之方法,其中第一網路設備包括服務細胞,並且第二網路設備包括潛在干擾的鄰點細胞,方法亦包括:由第一網路設備選擇針對其所預測的細胞間下行鏈路干擾超過預定閥值的UE;及向第二網路設備發送請求訊息。Aspect 2: The method of Aspect 1, wherein the first network device includes a serving cell and the second network device includes a potentially interfering neighbor cell, the method also includes: selecting, by the first network device, the predicted The UE whose inter-cell downlink interference exceeds a predetermined threshold; and sending a request message to the second network device.

態樣3:根據態樣1或2之方法,其中請求訊息指示導致過多干擾的波束。Aspect 3: The method of Aspect 1 or 2, wherein the request message indicates a beam causing too much interference.

態樣4:根據態樣1或2之方法,其中請求訊息指示要保護的時間/頻率資源。Aspect 4: The method according to Aspect 1 or 2, wherein the request message indicates the time/frequency resource to be protected.

態樣5:根據態樣1或2之方法,其中請求訊息指示要保護的資源的數量,數量是基於UE的傳輸量需求來決定的。Aspect 5: The method according to Aspect 1 or 2, wherein the request message indicates the quantity of resources to be protected, and the quantity is determined based on the UE's traffic requirement.

態樣6:根據態樣1或2之方法,其中請求訊息指示在預定資源集合列表內的所選資源集合的索引。Aspect 6: The method according to Aspect 1 or 2, wherein the request message indicates the index of the selected resource set within the list of predetermined resource sets.

態樣7:根據態樣1或2之方法,亦包括:接收回應訊息,回應訊息指示接受經由請求訊息指示的提議。Aspect 7: The method according to Aspect 1 or 2, also includes: receiving a response message, the response message indicating acceptance of the proposal indicated by the request message.

態樣8:根據態樣1或2之方法,亦包括:接收回應訊息,回應訊息指示針對不同資源集合的替代提議。Aspect 8: The method according to Aspect 1 or 2 also includes: receiving a response message, the response message indicating an alternative proposal for a different resource set.

態樣9:根據態樣1或2之方法,亦包括:回應於基於更新的UE位置、更新的針對UE的通道條件及/或更新的針對UE的傳輸量需求的更新的預測,來更新請求訊息。Aspect 9: The method according to Aspect 1 or 2, further comprising: updating the request in response to an updated prediction based on the updated UE location, the updated channel condition for the UE, and/or the updated throughput requirement for the UE message.

態樣10:根據態樣1-9中任何態樣所述的方法,其中第一網路設備包括鄰點細胞,並且第二網路設備包括服務細胞,方法亦包括:從第二網路設備接收請求訊息,請求訊息指示UE的位置、UE干擾容忍閥值及/或針對UE的資源需求;基於請求訊息進行預測;及向第二網路設備發送回應訊息。Aspect 10: The method of any of Aspects 1-9, wherein the first network device includes a neighbor cell, and the second network device includes a serving cell, the method further comprising: from the second network device receiving a request message indicating the location of the UE, a UE interference tolerance threshold and/or a resource requirement for the UE; performing prediction based on the request message; and sending a response message to the second network device.

態樣11:根據態樣1-10中任何態樣所述的方法,亦包括:從第二網路設備接收關於UE位置、UE干擾容忍閥值及/或針對UE的資源需求的更新。Aspect 11: The method according to any of aspects 1-10, further comprising: receiving an update about UE location, UE interference tolerance threshold, and/or UE-specific resource requirements from the second network device.

態樣12:根據態樣1之方法,其中第一網路設備包括中心節點,並且第二網路設備包括服務細胞,方法亦包括:從第二網路設備接收第一請求訊息,第一請求訊息指示UE的位置、UE干擾容忍閥值及/或針對UE的資源需求;基於第一請求訊息進行預測;向侵害者鄰點細胞發送請求資源保護的第二請求訊息;及向第二網路設備發送指示受保護資源的回應訊息。Aspect 12: The method according to Aspect 1, wherein the first network device includes a central node, and the second network device includes a serving cell, the method also includes: receiving a first request message from the second network device, the first request The message indicates the location of the UE, the UE interference tolerance threshold and/or the resource requirement for the UE; predicts based on the first request message; sends a second request message requesting resource protection to the aggressor neighbor cell; and sends a second request message to the second network The device sends a response message indicating the protected resource.

態樣13:根據態樣12之方法,亦包括:基於更新的UE位置、更新的針對UE的通道條件及/或更新的針對UE的資源需求來更新預測。Aspect 13: The method according to Aspect 12, further comprising: updating the prediction based on the updated UE location, the updated channel condition for the UE, and/or the updated resource requirement for the UE.

態樣14:一種用於由第一網路設備進行的無線通訊的裝置,包括:用於預測由UE經歷的空間下行鏈路細胞間干擾的單元;及用於與第二網路設備進行通訊,以經由保護跨越所選資源集合的資源來減少在UE的方向上的空間下行鏈路細胞間干擾的單元。Aspect 14: An apparatus for wireless communication by a first network device, comprising: means for predicting spatial downlink inter-cell interference experienced by a UE; and communicating with a second network device , to reduce spatial downlink inter-cell interference in the direction of the UE by protecting resources across the selected set of resources.

態樣15:根據態樣14之裝置,其中第一網路設備包括服務細胞,並且第二網路設備包括潛在干擾的鄰點細胞,裝置亦包括:用於經由第一網路設備選擇針對其所預測的空間下行鏈路細胞間干擾超過預定閥值的UE的單元;及用於向第二網路設備發送請求訊息的單元。Aspect 15: The apparatus of Aspect 14, wherein the first network device includes a serving cell and the second network device includes a potentially interfering neighbor cell, the apparatus further comprising: for selecting via the first network device for the A unit for the UE whose predicted spatial downlink inter-cell interference exceeds a predetermined threshold; and a unit for sending a request message to the second network device.

態樣16:根據態樣15之裝置,亦包括:用於接收回應訊息的單元,回應訊息指示接受經由請求訊息指示的提議。Aspect 16: The device according to Aspect 15, further comprising: means for receiving a response message indicating acceptance of the offer indicated through the request message.

態樣17:根據態樣15之裝置,亦包括:用於接收回應訊息的單元,回應訊息指示針對不同資源集合的替代提議。Aspect 17: The device according to Aspect 15, further comprising: means for receiving a response message indicating an alternative proposal for a different set of resources.

態樣18:根據態樣15之裝置,亦包括:用於回應於基於更新的UE位置、更新的針對UE的通道條件及/或更新的針對UE的傳輸量需求的更新的預測,來更新請求訊息的單元。Aspect 18: The apparatus according to Aspect 15, further comprising: updating the request in response to an updated prediction based on the updated UE location, the updated channel condition for the UE, and/or the updated throughput requirement for the UE The unit of the message.

態樣19:根據態樣14之裝置,其中第一網路設備包括鄰點細胞,並且第二網路設備包括服務細胞,裝置亦包括:用於從第二網路設備接收請求訊息的單元,請求訊息指示UE的位置、UE干擾容忍閥值及/或針對UE的資源需求;用於基於請求訊息進行預測的單元;及用於向第二網路設備發送回應訊息的單元。Aspect 19: The apparatus according to Aspect 14, wherein the first network device includes a neighbor cell, and the second network device includes a serving cell, the device also includes: means for receiving a request message from the second network device, The request message indicates the location of the UE, the UE interference tolerance threshold and/or the resource requirement for the UE; a unit for predicting based on the request message; and a unit for sending a response message to the second network device.

態樣20:根據態樣19之裝置,亦包括:用於從第二網路設備接收關於UE位置、UE干擾容忍閥值及/或針對UE的資源需求的更新的單元。Aspect 20: The apparatus according to Aspect 19, further comprising: means for receiving updates about UE location, UE interference tolerance threshold and/or UE-specific resource requirements from the second network device.

態樣21:根據態樣14之裝置,其中第一網路設備包括中心節點,並且第二網路設備包括服務細胞,裝置亦包括:用於從第二網路設備接收第一請求訊息的單元,第一請求訊息指示UE的位置、UE干擾容忍閥值及/或針對UE的資源需求;用於基於第一請求訊息進行預測的單元;用於向侵害者鄰點細胞發送請求資源保護的第二請求訊息的單元;及用於向第二網路設備發送指示受保護資源的回應訊息的單元。Aspect 21: The apparatus according to Aspect 14, wherein the first network device includes a central node, and the second network device includes a serving cell, the apparatus also includes: means for receiving the first request message from the second network device , the first request message indicates the position of the UE, the UE interference tolerance threshold and/or the resource requirement for the UE; a unit for predicting based on the first request message; a second request for resource protection sent to the aggressor neighbor cell A unit for requesting a message; and a unit for sending a response message indicating a protected resource to a second network device.

態樣22:根據態樣21之裝置,亦包括:用於基於更新的UE位置、更新的針對UE的通道條件及/或更新的針對UE的資源需求來更新預測的單元。Aspect 22: The apparatus according to Aspect 21, further comprising means for updating the prediction based on the updated UE location, the updated channel condition for the UE, and/or the updated resource requirement for the UE.

態樣23:一種第一網路設備,包括:處理器;與處理器耦合的記憶體;及被儲存在記憶體中並且可操作的指令,指令在由處理器執行時使得第一網路設備進行以下操作:預測由UE經歷的空間細胞間下行鏈路干擾;及與第二網路設備進行通訊,以經由保護跨越所選資源集合的資源來減少在UE的方向上的空間細胞間下行鏈路干擾。Aspect 23: A first network device, comprising: a processor; a memory coupled to the processor; and operable instructions stored in the memory, the instructions cause the first network device to Predicting spatial intercellular downlink interference experienced by the UE; and communicating with a second network device to reduce spatial intercellular downlink in the direction of the UE by protecting resources across the selected set of resources road interference.

態樣24:根據態樣23之第一網路設備,其中第一網路設備包括服務細胞,並且第二網路設備包括潛在干擾的鄰點細胞,指令亦使得第一網路設備進行以下操作:選擇針對其所預測的細胞間下行鏈路干擾超過預定閥值的UE;及向第二網路設備發送請求訊息。Aspect 24: The first network device according to Aspect 23, wherein the first network device includes a serving cell and the second network device includes a potentially interfering neighbor cell, the instructions also causing the first network device to: : selecting UEs for which the predicted inter-cell downlink interference exceeds a predetermined threshold; and sending a request message to the second network device.

態樣25:根據態樣23之第一網路設備,其中第一網路設備包括鄰點細胞,並且第二網路設備包括服務細胞,指令亦使得第一網路設備進行以下操作:從第二網路設備接收請求訊息,請求訊息指示UE的位置、UE干擾容忍閥值及/或針對UE的資源需求;基於請求訊息進行預測;及向第二網路設備發送回應訊息。Aspect 25: The first network device according to Aspect 23, wherein the first network device includes a neighbor cell, and the second network device includes a serving cell, and the instruction also causes the first network device to perform the following operations: The second network device receives the request message, the request message indicates the location of the UE, the UE interference tolerance threshold and/or the resource requirement for the UE; predicts based on the request message; and sends a response message to the second network device.

態樣26:根據態樣23之第一網路設備,其中第一網路設備包括中心節點,並且第二網路設備包括服務細胞,指令亦使得第一網路設備進行以下操作:從第二網路設備接收第一請求訊息,第一請求訊息指示UE的位置、UE干擾容忍閥值及/或針對UE的資源需求;基於第一請求訊息進行預測;向侵害者鄰點細胞發送請求資源保護的第二請求訊息;及向第二網路設備發送指示受保護資源的回應訊息。Aspect 26: The first network device according to Aspect 23, wherein the first network device includes a central node, and the second network device includes a serving cell, and the instructions also cause the first network device to perform the following operations: from the second The network device receives the first request message, the first request message indicates the location of the UE, the UE interference tolerance threshold and/or the resource requirement for the UE; predicts based on the first request message; sends a request for resource protection to the aggressor neighbor cell the second request message; and sending a response message indicating the protected resource to the second network device.

態樣27:根據態樣26之第一網路設備,其中指令亦使得第一網路設備進行以下操作:基於更新的UE位置、更新的針對UE的通道條件及/或更新的針對UE的資源需求來更新預測。Aspect 27: The first network device according to Aspect 26, wherein the instructions also cause the first network device to: based on the updated UE location, the updated channel condition for the UE, and/or the updated resource for the UE needs to update the forecast.

態樣28:一種具有記錄在其上的程式碼的非暫時性電腦可讀取媒體,程式碼由第一網路設備的處理器執行並且包括:用於預測由UE經歷的空間細胞間下行鏈路干擾的程式碼;及用於與第二網路設備進行通訊,以經由保護跨越所選資源集合的資源來減少在UE的方向上的空間細胞間下行鏈路干擾的程式碼。Aspect 28: A non-transitory computer-readable medium having recorded thereon program code executed by a processor of a first network device and comprising: a method for predicting a spatial inter-cell downlink experienced by a UE and code for communicating with a second network device to reduce spatial inter-cell downlink interference in the direction of the UE by protecting resources across the selected set of resources.

態樣29:根據條款28之非暫時性電腦可讀取媒體,其中第一網路設備包括鄰點細胞,並且第二網路設備包括服務細胞,非暫時性電腦可讀取媒體亦包括:用於從第二網路設備接收請求訊息的程式碼,請求訊息指示UE的位置、UE干擾容忍閥值及/或針對UE的資源需求;用於基於請求訊息進行預測的程式碼;及用於向第二網路設備發送回應訊息的程式碼。Aspect 29: The non-transitory computer-readable medium of clause 28, wherein the first network device includes a neighbor cell and the second network device includes a serving cell, the non-transitory computer-readable medium also includes: Code for receiving a request message from a second network device, the request message indicating the location of the UE, UE interference tolerance threshold and/or resource requirements for the UE; code for making predictions based on the request message; Code for sending a response message from the second network device.

態樣30:根據條款28之非暫時性電腦可讀取媒體,其中第一網路設備包括中心節點,並且第二網路設備包括服務細胞,非暫時性電腦可讀取媒體亦包括:用於從第二網路設備接收第一請求訊息的程式碼,第一請求訊息指示UE的位置、UE干擾容忍閥值及/或針對UE的資源需求;用於基於第一請求訊息進行預測的程式碼;用於向侵害者鄰點細胞發送請求資源保護的第二請求訊息的程式碼;及用於向第二網路設備發送指示受保護資源的回應訊息的程式碼。Aspect 30: The non-transitory computer-readable medium of clause 28, wherein the first network device comprises a central node and the second network device comprises a serving cell, the non-transitory computer-readable medium also comprises: for Code for receiving a first request message from a second network device, the first request message indicating the location of the UE, UE interference tolerance threshold and/or resource requirements for the UE; code for making prediction based on the first request message ; a program code for sending a second request message requesting resource protection to the aggressor neighbor cell; and a program code for sending a response message indicating the protected resource to a second network device.

前述揭示內容提供說明和描述,但是不意欲是詳盡的或者將各態樣限於所揭示的精確形式。按照上文揭示內容,可以進行修改和變型,或者可以從對各態樣的實踐中獲得修改和變型。The foregoing disclosure provides illustration and description, but is not intended to be exhaustive or to limit aspects to the precise forms disclosed. Modifications and variations are possible in light of the above disclosure or may be acquired from practice of the various aspects.

如所使用的,術語「部件」意欲被廣義地解釋為硬體、韌體、及/或硬體和軟體的組合。如所使用的,處理器是以硬體、韌體、及/或硬體和軟體的組合來實現的。As used, the term "component" is intended to be interpreted broadly as hardware, firmware, and/or a combination of hardware and software. As used, a processor is implemented in hardware, firmware, and/or a combination of hardware and software.

結合閥值描述了一些態樣。如所使用的,取決於上下文,滿足閥值可以代表值大於閥值、大於或等於閥值、小於閥值、小於或等於閥值、等於閥值、不等於閥值等。Some aspects are described in conjunction with thresholds. As used, meeting a threshold may mean that a value is greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, etc., depending on the context.

將顯而易見的是,所描述的系統及/或方法可以以不同形式的硬體、韌體、及/或硬體和軟體的組合來實現。用於實現這些系統及/或方法的實際的專門的控制硬體或軟體代碼不是對各態樣的限制。因此,在不引用特定的軟體代碼的情況下描述了系統及/或方法的操作和行為,要理解的是,軟體和硬體可以被設計為至少部分地基於描述來實現系統及/或方法。It will be apparent that the described systems and/or methods can be implemented in different forms of hardware, firmware, and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not a limitation of the various aspects. Thus, the operation and behavior of the systems and/or methods are described without reference to specific software code, it being understood that software and hardware can be designed to implement the systems and/or methods based at least in part on the description.

即使在申請專利範圍中記載了及/或在說明書中揭示特徵的特定組合,這些組合亦不意欲限制各個態樣的揭示內容。事實上,這些特徵中的許多特徵可以以沒有在申請專利範圍中具體記載及/或在說明書中具體揭示的方式來組合。儘管下文列出的每個從屬請求項可能僅直接依賴於一個請求項,但是各個態樣的揭示內容包括每個從屬請求項與在請求項集合之每一者其他請求項的組合。提及項目列表「中的至少一個」的短語代表那些項目的任意組合,包括單個成員。例如,「a、b或c中的至少一個」意欲涵蓋a、b、c、a-b、a-c、b-c和a-b-c、以及與相同元素的倍數的任意組合(例如,a-a、a-a-a、a-a-b、a-a-c、a-b-b、a-c-c、b-b、b-b-b、b-b-c、c-c和c-c-c或者a、b和c的任何其他排序)。Even if specific combinations of features are described in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of each aspect. In fact, many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. Although each dependent claim item listed below may directly depend on only one claim item, the disclosure of the various aspects includes each dependent claim item in combination with every other claim item in the set of claims. A phrase referring to "at least one of" a list of items means any combination of those items, including individual members. For example, "at least one of a, b, or c" is intended to encompass a, b, c, a-b, a-c, b-c, and a-b-c, and any combination of multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b , a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c, or any other ordering of a, b, and c).

所使用的元素、動作或指令不應當被解釋為是關鍵或必要的,除非明確描述為如此。此外,如所使用的,冠詞「一(a)」和「一個(an)」意欲包括一或多個項目,並且可以與「一或多個」互換使用。此外,如所使用的,術語「集合」和「組」意欲包括一或多個項目(例如,相關項目、無關項目、相關項目和無關項目的組合等),並且可以與「一或多個」互換使用。在意欲僅一個項目的情況下,使用短語「僅一個」或類似語言。此外,如所使用的,術語「有(has)」、「具有(have)」、「含有(having)」等意欲是開放式術語。此外,除非另有明確聲明,否則短語「基於」意欲意指「至少部分地基於」。No element, act, or instruction used should be construed as critical or essential unless expressly described as such. Also, as used, the articles "a" and "an" are intended to include one or more items and may be used interchangeably with "one or more". In addition, as used, the terms "collection" and "set" are intended to include one or more items (eg, related items, unrelated items, a combination of related items and unrelated items, etc.), and may be combined with "one or more" Used interchangeably. Where only one item is intended, the phrase "only one" or similar language is used. Furthermore, as used, the terms "has", "have", "having" and the like are intended to be open-ended terms. Additionally, the phrase "based on" is intended to mean "based at least in part on," unless expressly stated otherwise.

100:網路 102a:巨集細胞 102b:微微細胞 102c:毫微微細胞 110:BS 110-1:第一基地台 110-2:鄰點基地台 110a:BS 110b:BS 110c:BS 110d:BS 110-N:基地台 120:UE 120-1:UE 120-2:UE 120a:UE 120b:UE 120c:UE 120d:UE 120e:UE 120-N:UE 130:網路控制器 150:神經處理引擎 160:神經處理引擎 200:設計 212:資料來源 220:發送處理器 230:發送(TX)多輸入多輸出(MIMO)處理器 232a:調制器(MOD) 232t:調制器(MOD) 234a:天線 234t:天線 236:MIMO偵測器 238:接收處理器 239:資料槽 240:控制器/處理器 242:記憶體 244:通訊單元 246:排程器 252a:天線 252r:天線 254a:解調器(DEMOD) 254r:解調器(DEMOD) 256:MIMO偵測器 258:接收處理器 260:資料槽 262:資料來源 264:發送處理器 266:TX MIMO處理器 280:控制器/處理器 282:記憶體 290:控制器/處理器 292:記憶體 294:通訊單元 300:片上系統(SOC) 302:中央處理單元(CPU) 304:圖形處理單元(GPU) 306:數位訊號處理器(DSP) 308:神經處理單元(NPU) 310:連接塊 312:多媒體處理器 314:感測器處理器 316:影像訊號處理器(ISP) 318:記憶體塊 320:導航模組 400:DCN 402:神經網路 404:神經網路 406:迴旋神經網路 408:連接強度 410:值 412:值 414:值 416:值 418:第一特徵圖集合 420:第二特徵圖集合 422:輸出 424:第一特徵向量 426:影像 428:第二特徵向量 430:影像擷取裝置 432:迴旋層 550:深度迴旋網路 552:輸入資料 554A:迴旋塊 554B:迴旋塊 556:迴旋層 558:正規化層 560:最大池化層 562:完全連接的層 564:邏輯回歸(LR)層 566:分類得分 600:第一干擾場景 650:第二干擾場景 700:通訊網路 800:網路 802:UE位置 804:預編碼器 810:神經處理引擎 820:基於干擾的分佈 830:位置塊 900:服務細胞 950:鄰點細胞 950-1:鄰點細胞 950-N:鄰點細胞 960:中心節點 1200:實例程序 1202:方塊 1204:方塊 t0:時間 t1:時間 t2:時間 t3:時間 t4:時間 t5:時間 t6:時間 t7:時間 t8:時間 100: Internet 102a: Macrocytosis 102b: pico cells 102c: Femtocells 110:BS 110-1: The first base station 110-2: Adjacent base station 110a:BS 110b:BS 110c:BS 110d:BS 110-N: base station 120:UE 120-1:UE 120-2:UE 120a:UE 120b:UE 120c:UE 120d:UE 120e:UE 120-N:UE 130: Network controller 150: Neural Processing Engine 160: Neural Processing Engine 200: Design 212: Sources of information 220: send processor 230: Transmit (TX) multiple-input multiple-output (MIMO) processor 232a: Modulator (MOD) 232t: modulator (MOD) 234a: Antenna 234t: Antenna 236:MIMO detector 238: Receive processor 239: data slot 240: Controller/Processor 242: memory 244: Communication unit 246: Scheduler 252a: Antenna 252r: Antenna 254a: Demodulator (DEMOD) 254r: demodulator (DEMOD) 256:MIMO detector 258: Receive processor 260: data slot 262: Sources of information 264: send processor 266:TX MIMO processor 280: Controller/Processor 282: memory 290: Controller/Processor 292: memory 294: Communication unit 300: System on Chip (SOC) 302: Central Processing Unit (CPU) 304: Graphics Processing Unit (GPU) 306:Digital signal processor (DSP) 308: Neural Processing Unit (NPU) 310: connection block 312:Multimedia Processor 314: sensor processor 316: Image Signal Processor (ISP) 318: memory block 320:Navigation module 400:DCN 402: Neural Network 404: Neural Network 406:Convolutional Neural Network 408: Connection Strength 410: value 412: value 414: value 416: value 418: The first feature map set 420: The second feature map set 422: output 424: The first eigenvector 426: Image 428: Second eigenvector 430: image capture device 432:Convolution layer 550: Deep Convolutional Networks 552: Input data 554A: Convoluted block 554B: Convoluted block 556:Convolution layer 558:Regularization layer 560: Maximum pooling layer 562: Fully Connected Layers 564:Logistic regression (LR) layer 566: Classification Score 600: The first interference scene 650: The second interference scene 700: communication network 800: network 802: UE location 804: Precoder 810: Neural Processing Engine 820: Interference-based distribution 830: location block 900: Service cells 950: Adjacent cells 950-1: Adjacent Cells 950-N: Neighbor Cells 960: central node 1200: example program 1202: block 1204: block t0: time t1: time t2: time t3: time t4: time t5: time t6: time t7: time t8: time

為了可以詳細地理解本案內容的特徵,可以經由參照各態樣(其中一些態樣是在附圖中示出的)獲得具體的描述。然而,要注意的是,附圖僅示出本案內容的某些態樣並且因此不被認為是對其範疇的限制,因為說明書可以承認其他同等有效的態樣。在不同附圖中的相同的元件符號可以標識相同或相似的元素。So that the features of the present disclosure can be understood in detail, the specific description can be had by reference to various aspects, some of which are shown in the accompanying drawings. It is to be noted, however, that the drawings only illustrate certain aspects of the subject matter and are therefore not to be considered limiting of its scope, as the description may admit other equally valid aspects. The same reference numbers in different drawings may identify the same or similar elements.

圖1是概念性地示出根據本案內容的各個態樣的無線通訊網路的實例的方塊圖。FIG. 1 is a block diagram conceptually illustrating an example of a wireless communication network according to various aspects of the present disclosure.

圖2是概念性地示出在根據本案內容的各個態樣的無線通訊網路中基地台與使用者設備(UE)相通訊的實例的方塊圖。FIG. 2 is a block diagram conceptually illustrating an example of communication between a base station and a user equipment (UE) in a wireless communication network according to various aspects of the disclosure.

圖3示出根據本案內容的某些態樣的使用包括通用處理器的片上系統(SOC)來設計神經網路的實例實現方式。3 illustrates an example implementation of designing a neural network using a system-on-chip (SOC) including a general-purpose processor in accordance with certain aspects of the subject matter.

圖4A、4B和4C是示出根據本案內容的各態樣的神經網路的示意圖。4A, 4B, and 4C are schematic diagrams illustrating neural networks according to aspects of the present disclosure.

圖4D是示出根據本案內容的各態樣的示例性深度迴旋網路(DCN)的示意圖。4D is a schematic diagram illustrating an exemplary deep convolutional network (DCN) according to aspects of the present disclosure.

圖5是示出根據本案內容的各態樣的示例性深度迴旋網路(DCN)的方塊圖。5 is a block diagram illustrating an exemplary deep convolutional network (DCN) according to aspects of the present disclosure.

圖6A和6B圖示根據本案內容的各態樣的通訊網路,其中由使用者設備經歷的空間干擾是基於從鄰點基地台到鄰點使用者設備(UE)的下行鏈路發射波束的。6A and 6B illustrate communication networks according to aspects of the present disclosure, wherein spatial interference experienced by UEs is based on downlink transmit beams from neighboring base stations to neighboring user equipments (UEs).

圖7是根據本案內容的各態樣的通訊網路的示意圖,該通訊網路示出來自鄰點基地台的下行鏈路發射波束的訊號強度量測,以實現空間細胞間干擾感知下行鏈路協調。7 is a schematic diagram of various aspects of the communication network according to the content of the present application, the communication network shows the signal strength measurement of the downlink transmit beams from neighboring base stations to realize the spatial inter-cell interference aware downlink coordination.

圖8是根據本案內容的各態樣的網路的方塊圖,該網路包括被配置為實現空間細胞間干擾感知下行鏈路協調的神經處理引擎。8 is a block diagram of a network including a neural processing engine configured to implement spatial intercellular interference-aware downlink coordination in accordance with aspects of the present disclosure.

圖9是示出根據本案內容的各個態樣的例如由網路執行的用於在服務細胞處的空間細胞間干擾感知下行鏈路協調的實例程序的時序圖。9 is a timing diagram illustrating an example procedure, eg, performed by a network, for spatial inter-cell interference-aware downlink coordination at a serving cell, in accordance with various aspects of the subject matter.

圖10是示出根據本案內容的各個態樣的例如由網路執行的用於在鄰點細胞處的空間細胞間干擾感知下行鏈路協調的實例程序的時序圖。10 is a timing diagram illustrating an example procedure, eg, performed by a network, for spatial inter-cell interference-aware downlink coordination at neighbor cells, in accordance with aspects of the subject matter.

圖11是示出根據本案內容的各個態樣的例如由設備執行的用於在中心節點處的空間細胞間干擾感知下行鏈路協調的實例程序的時序圖。11 is a timing diagram illustrating an example procedure, eg, performed by a device, for spatial intercellular interference-aware downlink coordination at a central node, in accordance with aspects of the subject matter.

圖12是示出根據本案內容的各個態樣的例如由網路設備執行的用於空間細胞間干擾感知下行鏈路協調的實例程序的流程圖。12 is a flowchart illustrating an example procedure for spatial intercellular interference-aware downlink coordination, such as performed by a network device, in accordance with aspects of the present disclosure.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic deposit information (please note in order of depositor, date, and number) none Overseas storage information (please note in order of storage country, institution, date, and number) none

110-1:第一基地台 110-1: The first base station

110-2:鄰點基地台 110-2: Adjacent base station

110-3~110-N:基地台/BS 110-3~110-N: base station/BS

120-1~120-N:UE 120-1~120-N:UE

900:服務細胞 900: Service cells

950-1~950-N:鄰點細胞 950-1~950-N: Adjacent cells

Claims (30)

一種由一第一網路設備進行的無線通訊的方法,包括以下步驟: 預測由一UE經歷的空間細胞間下行鏈路干擾;及 與一第二網路設備進行通訊,以經由保護跨越所選資源集合的資源來減少在該UE的一方向上的該空間細胞間下行鏈路干擾。 A method of wireless communication performed by a first network device, comprising the following steps: predicting spatial intercellular downlink interference experienced by a UE; and Communicating with a second network device to reduce the spatial inter-cell downlink interference in a direction of the UE by protecting resources across the selected set of resources. 根據請求項1之方法,其中該第一網路設備包括一服務細胞,並且該第二網路設備包括一潛在干擾的鄰點細胞,該方法亦包括以下步驟: 由該第一網路設備選擇針對其所預測的細胞間下行鏈路干擾超過一預定閥值的該UE;及 向該第二網路設備發送一請求訊息。 The method according to claim 1, wherein the first network device includes a serving cell, and the second network device includes a potentially interfering neighbor cell, the method also includes the following steps: selecting, by the first network device, the UE for which the predicted inter-cellular downlink interference exceeds a predetermined threshold; and Send a request message to the second network device. 根據請求項2之方法,其中該請求訊息指示導致過多干擾的波束。The method according to claim 2, wherein the request message indicates beams causing too much interference. 根據請求項2之方法,其中該請求訊息指示要保護的時間/頻率資源。The method according to claim 2, wherein the request message indicates the time/frequency resource to be protected. 根據請求項2之方法,其中該請求訊息指示要保護的資源的數量,該數量是基於該UE的一傳輸量需求來決定的。The method according to claim 2, wherein the request message indicates a quantity of resources to be protected, and the quantity is determined based on a transmission capacity requirement of the UE. 根據請求項2之方法,其中該請求訊息指示在一預定資源集合列表內的該所選資源集合的一索引。The method according to claim 2, wherein the request message indicates an index of the selected resource set in a predetermined list of resource sets. 根據請求項2之方法,亦包括以下步驟:接收一回應訊息,該回應訊息指示接受經由該請求訊息指示的一提議。The method according to claim 2 also includes the following steps: receiving a response message indicating acceptance of a proposal indicated by the request message. 根據請求項2之方法,亦包括以下步驟:接收一回應訊息,該回應訊息指示針對一不同資源集合的一替代提議。The method according to claim 2 also includes the step of: receiving a response message indicating an alternative proposal for a different set of resources. 根據請求項2之方法,亦包括以下步驟:回應於基於一更新的UE位置、更新的針對該UE的通道條件及/或一更新的針對該UE的傳輸量需求的一更新的預測,來更新該請求訊息。The method according to claim 2, further comprising the step of: updating in response to an updated prediction based on an updated UE location, an updated channel condition for the UE, and/or an updated throughput requirement for the UE The request message. 根據請求項1之方法,其中該第一網路設備包括一鄰點細胞,並且該第二網路設備包括一服務細胞,該方法亦包括以下步驟: 從該第二網路設備接收一請求訊息,該請求訊息指示該UE的一位置、一UE干擾容忍閥值及/或針對該UE的一資源需求; 基於該請求訊息進行預測;及 向該第二網路設備發送一回應訊息。 The method according to claim 1, wherein the first network device includes a neighbor cell, and the second network device includes a serving cell, the method also includes the following steps: receiving a request message from the second network device, the request message indicating a location of the UE, a UE interference tolerance threshold and/or a resource requirement for the UE; make predictions based on the request information; and Send a response message to the second network device. 根據請求項10之方法,亦包括以下步驟:從該第二網路設備接收關於該UE位置、該UE干擾容忍閥值及/或針對該UE的該資源需求的更新。The method according to claim 10 also includes the step of: receiving an update from the second network device about the location of the UE, the interference tolerance threshold of the UE and/or the resource requirement for the UE. 根據請求項1之方法,其中該第一網路設備包括一中心節點,並且該第二網路設備包括一服務細胞,該方法亦包括以下步驟: 從該第二網路設備接收一第一請求訊息,該第一請求訊息指示該UE的一位置、一UE干擾容忍閥值及/或針對該UE的一資源需求; 基於該第一請求訊息進行預測; 向一侵害者鄰點細胞發送請求資源保護的一第二請求訊息;及 向該第二網路設備發送指示受保護資源的一回應訊息。 The method according to claim 1, wherein the first network device includes a central node, and the second network device includes a serving cell, the method also includes the following steps: receiving a first request message from the second network device, the first request message indicating a location of the UE, a UE interference tolerance threshold and/or a resource requirement for the UE; predicting based on the first request message; sending a second request message requesting resource protection to an aggressor neighbor cell; and A response message indicating protected resources is sent to the second network device. 根據請求項12之方法,亦包括以下步驟:基於一更新的UE位置、更新的針對該UE的通道條件及/或更新的針對該UE的一資源需求來更新該預測。The method according to claim 12, also comprising the step of updating the prediction based on an updated UE location, updated channel conditions for the UE and/or updated resource requirements for the UE. 一種用於由一第一網路設備進行的無線通訊的裝置,包括: 用於預測由一UE經歷的空間下行鏈路細胞間干擾的單元;及 用於與一第二網路設備進行通訊,以經由保護跨越所選資源集合的資源來減少在該UE的一方向上的該空間下行鏈路細胞間干擾的單元。 An apparatus for wireless communication by a first network device, comprising: means for predicting spatial downlink inter-cell interference experienced by a UE; and Means for communicating with a second network device to reduce the spatial downlink inter-cell interference in a direction of the UE by protecting resources across a selected set of resources. 根據請求項14之裝置,其中該第一網路設備包括一服務細胞,並且該第二網路設備包括一潛在干擾的鄰點細胞,該裝置亦包括: 用於經由該第一網路設備選擇針對其所預測的空間下行鏈路細胞間干擾超過一預定閥值的該UE的單元;及 用於向該第二網路設備發送一請求訊息的單元。 The device according to claim 14, wherein the first network device includes a serving cell, and the second network device includes a potentially interfering neighbor cell, the device also includes: means for selecting, via the first network device, the UE for which the predicted spatial downlink inter-cell interference exceeds a predetermined threshold; and A unit for sending a request message to the second network device. 根據請求項15之裝置,亦包括:用於接收一回應訊息的單元,該回應訊息指示接受經由該請求訊息指示的一提議。The device according to claim 15, further comprising: means for receiving a response message indicating acceptance of an offer indicated by the request message. 根據請求項15之裝置,亦包括:用於接收一回應訊息的單元,該回應訊息指示針對一不同資源集合的一替代提議。The device according to claim 15, further comprising: means for receiving a response message indicating an alternative proposal for a different set of resources. 根據請求項15之裝置,亦包括:用於回應於基於一更新的UE位置、更新的針對該UE的通道條件及/或更新的針對該UE的一傳輸量需求的一更新的預測,來更新該請求訊息的單元。The apparatus according to claim 15, further comprising: updating in response to an updated prediction based on an updated UE location, an updated channel condition for the UE, and/or an updated traffic demand for the UE The unit of the request message. 根據請求項14之裝置,其中該第一網路設備包括一鄰點細胞,並且該第二網路設備包括一服務細胞,該裝置亦包括: 用於從該第二網路設備接收一請求訊息的單元,該請求訊息指示該UE的一位置、一UE干擾容忍閥值及/或針對該UE的一資源需求; 用於基於該請求訊息進行預測的單元;及 用於向該第二網路設備發送一回應訊息的單元。 The device according to claim 14, wherein the first network device includes a neighbor cell, and the second network device includes a serving cell, the device also includes: a unit for receiving a request message from the second network device, the request message indicating a location of the UE, a UE interference tolerance threshold and/or a resource requirement for the UE; means for making predictions based on the request message; and A unit for sending a response message to the second network device. 根據請求項19之裝置,亦包括:用於從該第二網路設備接收關於該UE位置、該UE干擾容忍閥值及/或針對該UE的該資源需求的更新的單元。The apparatus according to claim 19, further comprising: a unit for receiving updates about the UE location, the UE interference tolerance threshold and/or the resource requirement for the UE from the second network device. 根據請求項14之裝置,其中該第一網路設備包括一中心節點,並且該第二網路設備包括一服務細胞,該裝置亦包括: 用於從該第二網路設備接收一第一請求訊息的單元,該第一請求訊息指示該UE的一位置、一UE干擾容忍閥值及/或針對該UE的一資源需求; 用於基於該第一請求訊息進行預測的單元; 用於向一侵害者鄰點細胞發送請求資源保護的一第二請求訊息的單元;及 用於向該第二網路設備發送指示受保護資源的一回應訊息的單元。 The device according to claim 14, wherein the first network device includes a central node, and the second network device includes a serving cell, the device also includes: A unit for receiving a first request message from the second network device, the first request message indicating a location of the UE, a UE interference tolerance threshold and/or a resource requirement for the UE; a unit for performing prediction based on the first request message; means for sending a second request message requesting resource protection to an aggressor neighbor cell; and means for sending a response message indicating protected resources to the second network device. 根據請求項21之裝置,亦包括:用於基於一更新的UE位置、更新的針對該UE的通道條件及/或更新的針對該UE的一資源需求來更新該預測的單元。The apparatus according to claim 21, further comprising: means for updating the prediction based on an updated UE location, updated channel conditions for the UE and/or updated resource requirements for the UE. 一種第一網路設備,包括: 一處理器; 與該處理器耦合的一記憶體;及 被儲存在該記憶體中並且可操作的指令,該等指令在由該處理器執行時使得該第一網路設備進行以下操作: 預測由一UE經歷的空間細胞間下行鏈路干擾;及 與一第二網路設備進行通訊,以經由保護跨越所選資源集合的資源來減少在該UE的一方向上的該空間細胞間下行鏈路干擾。 A first network device, comprising: a processor; a memory coupled to the processor; and Operable instructions stored in the memory, the instructions cause the first network device to perform the following operations when executed by the processor: predicting spatial intercellular downlink interference experienced by a UE; and Communicating with a second network device to reduce the spatial inter-cell downlink interference in a direction of the UE by protecting resources across the selected set of resources. 根據請求項23之第一網路設備,其中該第一網路設備包括一服務細胞,並且該第二網路設備包括一潛在干擾的鄰點細胞,該等指令亦使得該第一網路設備進行以下操作: 選擇針對其所預測的細胞間下行鏈路干擾超過一預定閥值的該UE;及 向該第二網路設備發送一請求訊息。 The first network device according to claim 23, wherein the first network device includes a serving cell and the second network device includes a potentially interfering neighbor cell, the instructions also cause the first network device to Do the following: selecting the UE for which the predicted inter-cellular downlink interference exceeds a predetermined threshold; and Send a request message to the second network device. 根據請求項23之第一網路設備,其中該第一網路設備包括一鄰點細胞,並且該第二網路設備包括一服務細胞,該等指令亦使得該第一網路設備進行以下操作: 從該第二網路設備接收一請求訊息,該請求訊息指示該UE的一位置、一UE干擾容忍閥值及/或針對該UE的一資源需求; 基於該請求訊息進行預測;及 向該第二網路設備發送一回應訊息。 According to the first network device of claim 23, wherein the first network device includes a neighbor cell, and the second network device includes a serving cell, the instructions also cause the first network device to perform the following operations : receiving a request message from the second network device, the request message indicating a location of the UE, a UE interference tolerance threshold and/or a resource requirement for the UE; make predictions based on the request information; and Send a response message to the second network device. 根據請求項23之第一網路設備,其中該第一網路設備包括一中心節點,並且該第二網路設備包括一服務細胞,該等指令亦使得該第一網路設備進行以下操作: 從該第二網路設備接收一第一請求訊息,該第一請求訊息指示該UE的一位置、一UE干擾容忍閥值及/或針對該UE的一資源需求; 基於該第一請求訊息進行預測; 向一侵害者鄰點細胞發送請求資源保護的一第二請求訊息;及 向該第二網路設備發送指示受保護資源的一回應訊息。 According to claim 23 of the first network device, wherein the first network device includes a central node, and the second network device includes a serving cell, the instructions also cause the first network device to perform the following operations: receiving a first request message from the second network device, the first request message indicating a location of the UE, a UE interference tolerance threshold and/or a resource requirement for the UE; predicting based on the first request message; sending a second request message requesting resource protection to an aggressor neighbor cell; and A response message indicating protected resources is sent to the second network device. 根據請求項26之第一網路設備,其中該等指令亦使得該第一網路設備進行以下操作:基於一更新的UE位置、更新的針對該UE的通道條件及/或更新的針對該UE的一資源需求來更新該預測。The first network device according to claim 26, wherein the instructions also cause the first network device to perform the following operations: based on an updated UE location, updated channel conditions for the UE and/or updated channel conditions for the UE A resource requirement for updating the forecast. 一種具有記錄在其上的程式碼的非暫時性電腦可讀取媒體,該程式碼由一第一網路設備的一處理器執行並且包括: 用於預測由一UE經歷的空間細胞間下行鏈路干擾的程式碼;及 用於與一第二網路設備進行通訊,以經由保護跨越所選資源集合的資源來減少在該UE的一方向上的該空間細胞間下行鏈路干擾的程式碼。 A non-transitory computer readable medium having recorded thereon code for execution by a processor of a first network device and comprising: code for predicting spatial intercellular downlink interference experienced by a UE; and Code for communicating with a second network device to reduce the spatial inter-cell downlink interference in a direction of the UE by protecting resources across a selected set of resources. 根據請求項28之非暫時性電腦可讀取媒體,其中該第一網路設備包括一鄰點細胞,並且該第二網路設備包括一服務細胞,該非暫時性電腦可讀取媒體亦包括: 用於從該第二網路設備接收一請求訊息的程式碼,該請求訊息指示該UE的一位置、一UE干擾容忍閥值及/或針對該UE的一資源需求; 用於基於該請求訊息進行預測的程式碼;及 用於向該第二網路設備發送一回應訊息的程式碼。 The non-transitory computer-readable medium according to claim 28, wherein the first network device includes a neighbor cell and the second network device includes a serving cell, the non-transitory computer-readable medium also includes: code for receiving a request message from the second network device, the request message indicating a location of the UE, a UE interference tolerance threshold and/or a resource requirement for the UE; code for making predictions based on the request message; and A program code for sending a response message to the second network device. 根據請求項28之非暫時性電腦可讀取媒體,其中該第一網路設備包括一中心節點,並且該第二網路設備包括一服務細胞,該非暫時性電腦可讀取媒體亦包括: 用於從該第二網路設備接收一第一請求訊息的程式碼,該第一請求訊息指示該UE的一位置、一UE干擾容忍閥值及/或針對該UE的一資源需求; 用於基於該第一請求訊息進行預測的程式碼; 用於向一侵害者鄰點細胞發送請求資源保護的一第二請求訊息的程式碼;及 用於向該第二網路設備發送指示受保護資源的一回應訊息的程式碼。 The non-transitory computer-readable medium according to claim 28, wherein the first network device includes a central node, and the second network device includes a serving cell, the non-transitory computer-readable medium also includes: code for receiving a first request message from the second network device, the first request message indicating a location of the UE, a UE interference tolerance threshold and/or a resource requirement for the UE; a code for performing prediction based on the first request message; code for sending a second request message requesting resource protection to an aggressor neighbor cell; and Code for sending a response message indicating protected resources to the second network device.
TW111106187A 2021-03-02 2022-02-21 Spatial inter-cell interference aware downlink coordination TW202239254A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202163155635P 2021-03-02 2021-03-02
US63/155,635 2021-03-02
US17/675,980 2022-02-18
US17/675,980 US11968151B2 (en) 2021-03-02 2022-02-18 Spatial inter-cell interference aware downlink coordination

Publications (1)

Publication Number Publication Date
TW202239254A true TW202239254A (en) 2022-10-01

Family

ID=81327894

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111106187A TW202239254A (en) 2021-03-02 2022-02-21 Spatial inter-cell interference aware downlink coordination

Country Status (6)

Country Link
EP (1) EP4302546A1 (en)
JP (1) JP2024508437A (en)
KR (1) KR20230152010A (en)
BR (1) BR112023017160A2 (en)
TW (1) TW202239254A (en)
WO (1) WO2022187031A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10070396B2 (en) * 2014-03-07 2018-09-04 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement for inter-cell interference coordination
WO2019029802A1 (en) * 2017-08-09 2019-02-14 Telefonaktiebolaget Lm Ericsson (Publ) System and method for antenna beam selection
US11096176B2 (en) * 2019-05-24 2021-08-17 Huawei Technologies Co., Ltd. Location-based beam prediction using machine learning

Also Published As

Publication number Publication date
JP2024508437A (en) 2024-02-27
BR112023017160A2 (en) 2023-12-12
EP4302546A1 (en) 2024-01-10
WO2022187031A1 (en) 2022-09-09
KR20230152010A (en) 2023-11-02

Similar Documents

Publication Publication Date Title
US20210326701A1 (en) Architecture for machine learning (ml) assisted communications networks
WO2022076863A1 (en) User equipment (ue) capability report for machine learning applications
US11968151B2 (en) Spatial inter-cell interference aware downlink coordination
US11616582B2 (en) Neural network-based spatial inter-cell interference learning
US11412521B1 (en) Machine learning aided location-based downlink interference assistance information
WO2022126307A1 (en) Gradient dataset aware configuration for over-the-air (ota) model aggregation in federated learning
TW202215799A (en) Transmission of known data for cooperative training of artificial neural networks
US11456834B2 (en) Adaptive demodulation reference signal (DMRS)
TW202201935A (en) Neural network augmentation for wireless channel estimation and tracking
TW202239254A (en) Spatial inter-cell interference aware downlink coordination
CN117063594A (en) Spatial inter-cell interference aware downlink coordination
US20230297825A1 (en) Weighted average federated learning based on neural network training loss
US11722921B2 (en) Secondary cell group selection based on primary frequency band measurements
US20230325654A1 (en) Scalable deep learning design for missing input features
US20220335294A1 (en) Reporting for machine learning model updates
WO2023077349A1 (en) Machine learning-based channel state information (csi) reporting
KR20230173664A (en) Reporting for machine learning model updates
CN117157647A (en) Reporting of machine learning model updates
CN118235348A (en) Bottleneck-band-based channel state estimation
CN118140559A (en) Channel state feedback to reduce resource consumption reference signals